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Abstract

In social sciences, the signed directed networks are used to represent the
mutual friendship and foe attitudes among the members of a social group.
Recent studies show that different real-world properties (e.g. preferential at-
tachment, copying etc.) can be observed in the web-based social networks.
In this thesis, we study the positive/negative - in/out - degree distributions
in three online signed directed social networks. We observe that all signed-
directed degree distributions in the web-based social networks with multiple
edges possibilities (in both directions) follow a power law with exponents in
the range 2.0 ≤ γ ≤ 3.5. We present three random models, which capture
the preferential attachment and copying properties, for web-based signed
directed social networks. The signed-directed degree distributions in the
networks simulated by the proposed random models also indicate a power-
law trait with an exponent in the range 2.0 ≤ γ ≤ 3.5.

We also present a heuristic algorithm for the Correlation Cluster-
ing (CC) which is a class of community detection problem in the signed
network. The CC problem can be defined as follow: for a given signed
network, finding an optimal partition in the vertices such that the edges
inside a group are positives and the edges between two groups are negative.
We present the algorithm based on the relaxing integer linear programming
formulation of the minimum disagreement CC problem and rounding the
approximate ultrametric distance matrix by using a given threshold. The
experimental results show that, in the random signed G(n, e, p) network,
the runtime of this algorithm is nearly independent for the cases e ≥ 0.4
and p ≤ 0.6 , where e and p are the probabilities of connecting two ver-
tices by an edge and an edge to be positive respectively. But this algorithm
does not give any convincing argument in the variation of the minimum dis-
agreements due to the changing of the given threshold. We also apply this
algorithm to the International National Bilateral Tread Growth Network
derived from the bilateral trading data in 2011-2015 from the International
Trade Center (ITC) to identify the groups of countries with average positive
trade growth.
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Chapter 1

Introduction

Scientists are using networks to explain different real-world complex phe-
nomena for a long times. For example, in social sciences, people are using
the concept of social interaction by the words ‘web’, ‘social fabric’ and ‘net-
work.’ In 1934, Moreno [Mor34] first used a structure, called ‘sociogram’ to
represent the formal properties of social configuration. In sociogram, he rep-
resented individuals by ‘points’ and their social attitudes to one another by
‘lines.’ Moreno proposed to use the sociometric ‘star’ to identify leaders and
isolated individuals based on the popularity of the social group. In 1946, Hei-
der [Hei46] first used the signed version on the network, in which the edges
are labeled by positive and negative signs, to represent the mutual attitudes
of friendship and foe behaviors in a social group respectively. Heider [Hei46]
used signed directed networks to introduce the notion of balance theory. In
1965 Cartwright and Harary [CH56] formalized the definition of balance
state in graph-theoretic language. According to their definition, a signed
network is in balance state if there exists two or more subgroups/partitions
in the network such that the mutual interactions among the members in the
same subgroup are supportive (i.e. connected with positive edge) and the
attitudes between two subgroups are hostile (i.e. connected with negative
edges). Later, the both directed and undirected versions of signed networks
have been growing significantly in the different scientific disciplines such as
computer science, biology, and physics, etc.. The analysis of these networks
is evolving in both data-centric and problem-centric perspectives.

Before the beginning of the world-wide-web era, the signed networks
involved a small number of vertices and edges in general and usually derived
from studying the physical world [TCAL16]. With the development of the
online social networks the number of the web-based signed networks, such as
Epinions Trust Network [LHK10], Slashdot [LHK10], have been increasing
significantly in the recent times. In a web-based signed social network,
the mutual positive and negative interactions are often determined by the
like/dislike, or trust/distrust between two users of a common platform. The
vertex sets in the web-based signed social networks are most often enormous
in size, but the networks are sometimes very sparse and noisy.
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Chapter 1. Introduction

To examine new ideas or to find solutions for the real-world complex
network problems, it is always desirable to test those ideas/solutions on an
artificial network with tractable structural properties that can precisely sim-
ulate the real-world networks phenomena. Over the years, several attempts
have been proposed to design random models for the web and social net-
works that can capture different real-world properties. The first attempt
to design such model can be seen in Watts-Strogatz’s [WS98] small-world
model proposed in 1998. This model successfully captures the ’small-world’
property: having high density and small diameter, which can be found in
many real-world networks such as neural, power grid and film actors col-
laboration networks. This property was studied by some social scientists
including Milgram [Mil67] in the early 1960s. In 1999, Faloutsos, Falout-
sos, and Faloutsos [FFF99] observed that the degree distributions in many
real-world networks such as the Internet network follow a certain power-
law also known as ’scale-free’ property. The preferential-attachment model
proposed by Barabási and Albert [BA99] in 1999 successfully captured the
scale-free property in the random networks. The copying model captures
the process of creating a new web page by copying and then modifying links
from existing web-pages [KRR+00].

Due to the evolution of web-based signed networks, there is now a con-
siderable necessity of designing random models to capture different aspects
of these networks. Recently, Ciotti et al. [CBC+15] studied the signed-
degree distributions in the signed social networks such as Epinions-trust
(www.epinions.com) and Slashdot (www.slashdot.org) networks. Their
study suggests that the signed-degree distributions of those networks fol-
low a power law with exponent 2.2 ≤ γ ≤ 4.5. Ciotti et al. [CBC+15]
also proposed the power-law degree distribution model for signed undirected
network to capture this property. To the best of our knowledge, there
has been no study on the random modeling and the degree distributions
in the signed directed networks. In this thesis, we have studied singed-
directed degree distributions in three real-world signed directed social net-
works: Wikipedia Request for Adminship (www.wikipedia.org), Epinions-
trust (www.epinions.com) and Slashdot (www.slashdot.org). Our study
suggests that the signed-directed degree distributions in those networks obey
the power-law with an exponent in the range 2.0 ≤ γ ≤ 3.5. Then, we pro-
pose three random models for signed directed social network to capture the
properties observing in the real-world networks.

According to Cartwright and Harary [CH56]’s study in 1956, a balanced
signed network can be partitioned into one or more mutually hostile (i.e.
negatively connected) balanced communities. A balanced community is a
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Chapter 1. Introduction

group of vertices in a social network that is “positively connected”, i.e., the
mutual interaction among the member inside the community are support-
ive/friendly. In 2004, Bansal et al. [BBC04] formulated the Correlation
Clustering problem to find a optimal partition in the signed networks.
Later, this problem is becoming a very natural way of identifying communi-
ties in network analysis [MMP12] as well as other scientific areas such as ma-
chine learning and data mining [CDK14, GMT07], portfolio analysis in risk
management [FF14, HLW02], biological system networks [HBN07, DESZ07]
etc..

The Correlation Clustering problem is NP-hard [BBC04]. In re-
cent years, several approximate algorithms have been proposed by Bansal
et.al. [BBC04], Ailon, Charikar, and Newman [AAELvZ12], Charikar et al.
[CGW03], Demaine et al. [DEFI06] etc.. In this thesis we propose a heuris-
tic algorithm for the Correlation Clustering problem and then apply
it to International Bilateral Trade Growth network.

The rest of the chapters of this thesis are organized as following.
Chapter 2 introduces definitions, notation and background material for

the rest of the thesis.
Chapter 3 proposes three models to generate signed directed random

network in which the signed-directed-degrees follow power-law distributions.
These models are preferential attachment model, edge copying model and
clique copying model.

Chapter 4 presents a heuristic algorithm for the Correlation Clus-
tering (CC) problems by solving the relaxed integer linear program of
the CC problem and then finding the closest ultrametric distance matrix
problem from the solution matrix of the relaxed problem.

Summary and concluding remarks are presented in Chapter 5.

3



Chapter 2

Preliminaries

In this chapter, we present graph-theoretic background material and no-
tions used in the following chapters. All graph-theoretic definitions, termi-
nologies, models, and algorithms are used in this thesis follow the books Net-
work Analysis [BE05], Algorithm Design [KT06], and Handbook of Graphs
and Networks [BS06].

2.1 Graphs and Networks

A network is an abstract structure, which represents the mutual interac-
tions among different objects/members called vertices. For example, a social
group is a network composed of vertices (members/persons) and the mutual
friendship/foe attitudes between the members as the connection between
these vertices. Mathematically, a network can be represented by a graph.

A graph G = (V,E) is a structure formed by a set V of vertices and a
set E of edges that connect pair of vertices. In this thesis, we use network
and graph interchangeably.

An edge e ∈ E that connects two vertices can be written as e = (u, v), or
{u, v} or simply as uv, where u, v ∈ V . Different attributes can be assigned
to an edge e (e.g. sign, direction etc.), based on the nature of the relation
between the vertices u and v.

Based on the edge direction attribute, we have two types of networks:
undirected and directed.

An undirected network is defined by G = (V,E), where each edge in
E is undirected. In an undirected network, (u, v) and (v, u) represent the
same edge. The vertices u and v are called endpoints of the edge e = (u, v).
The number of distinct edges having a vertex v as an endpoint is called the
degree of v. The degree of v ∈ V in G is denoted by dG(v).

A directed network is also defined byG = (V,E), where each edge (u, v) ∈
E is directed. In the edge (u, v), the vertex u is called source vertex and v is
called target vertex. That is, in directed network, (u, v) and (v, u) represent
two distinct edges between u and v in two opposite directions. The number

4



2.1. Graphs and Networks

of distinct edges having a vertex v as the source vertex is called the out-
degree of v and is denoted by doutG (v). Similarly, the number of distinct
edges having a vertex v as the target vertex is called the in-degree of v and
is denoted by dinG (v).

If we consider both edge attributes, sign and direction together, then we
can categorize two types of networks: signed undirected network, and signed
directed network.

A signed undirected network or simply signed network is defined by G =
(V,E, s), where V is the vertex set and E is the edge set. Also, the function
s : E → {+,−} assigns a sign to each edge in E. Based on the sign, the edge
set E can be written as E = E+ ∪ E−, where E+ is the set of all positive
edges, E− is the set of all negative edges, and E+ ∩ E− = ∅. That is, the
edges (u, v) = (v, u), if s(u, v) = s(v, u), where u ∈ V and v ∈ V are the
endpoints. The number of distinct positive edges having a vertex v as an
endpoint is called positive-degree of v and is denoted by d+

G(v). Similarly,
the number of distinct positive edges having a vertex v as an endpoint is
called the negative-degree of v and is denoted by d−G(v).

A signed directed network is also defined by G = (V,E, s), where V
is the set of all vertices and E is the set of all directed edges in G and
s : E → {+,−}. Also, E = E+ ∪E−, E+ ∩E− = ∅, where E+ is the set of
all positive directed edges and E− is the set of all negative directed edges.
The number of distinct positive edges having a vertex v as the source vertex
is called the positive-out-degree of v and is denoted by d+out

G (v). Also, the
number of distinct positive edges having a vertex v as the target vertex is
called the positive-in-degree of v and is denoted by d+in

G (v). Similarly, the
distinct number negative edges having a vertex v as the source and target
vertex are defined by the negative-out-degree d−outG (v) and negative-in-degree
d−inG (v) respectively.

A dynamic network that evolves with the time t is denoted by Gt =
(Vt, Et), where Vt and Et are the vertex and edge sets in Gt at time t. Here,
the sets Vt and Et depend on time t, i.e. Vt = f(t) and Et = g(t), where f
and g are some functions of t.

A subgraph or subnetwork H = (V ′, E′) of a network G = (V,E) is also
a network such that V ′ ⊆ V and E′ ⊆ E. A subgraph H = (V ′, E′) of a
graph G = (V,E) is said to be an induce subgraph if V ′ ⊆ V , E′ ⊆ E, where
for every pair u, v ∈ V ′ , (u, v) ∈ E′ only if (u, v) ∈ E.

A path P in G = (V,E) is a sequence of distinct vertices v1, ..., vk such
that (vi, vi+1) ∈ E where 1 ≤ i ≤ k. We can denote a path between two
vertices u, v ∈ V by P (u, v). If there exist a path between vertices u and v,
they are called connected vertices. A path v1, ..., vk is said to be a cycle if

5



2.2. Random Network Models

(v1, vk) ∈ E. A cycle of three vertices is called a triangle.
A clique C is a set of vertices in G = (V,E) such that for all u, v ∈

C, u 6= v implies (u, v) ∈ E. In other words, a clique is a set of vertices
which are pairwise adjacent. A clique is said to be a maximal clique if it is
not a subgraph in any other clique. A maximum clique in G is the clique
with the maximum number of vertices. A maximum clique is a maximal
clique, but the converse is not always true.

A tree is an undirected, acyclic connected graph. A graph in which every
disjoint connected component is called forest. A spanning tree T = (V,ET )
of an undirected graph G = (V,E) is a tree that includes all vertices of G
and ET ⊆ E.

2.2 Random Network Models

The proposed network models can be divided into four groups: classical
random network model, small-world property model, scale-free models, and
signed random network models. A brief discussion and definitions are given
in the following.

2.2.1 Erdős-Rényi Model

Erdős-Rényi [ER59] model is first classical model for generating random
network.

Definition 2.1 (Erdős-Rényi Model). The model generates a networkG(n, p),
where n is the fixed number of vertices and p is the probability of joining
any two vertices by an edge. Each edge is created independently of other
edges, therefore, the probability distribution P (d) of the degree d of a vertex
v in G(n, p) is

P (d) =

(
n− 1

d

)
pd(1− p)n−1−d. (2.1)

When, np the average degree of a vertex is a fixed constant c, then this
probability approaches to the Poisson probability cde−c

d! as n→∞ [BE05].

2.2.2 Watts-Strogatz’s Small-World Model

Many real-world networks (e.g. neural networks, the power-grid net-
work of the western US and the collaboration network of film actors) exhibit

6



2.2. Random Network Models

‘small-world’ properties, which are having a small diameter and highly clus-
tered networks. Watts-Strogatz[WS98] models simulate ‘small-world’ prop-
erties of real-world networks. Where the model parameters are, the number
of vertices N , the average degree of a vertex d such that ln(N) < d < N and
probability of edge rewiring β ∈ [0, 1]. The Watts-Strogatz’s Small-World
model is defined as follows:

Definition 2.2 (Small-World Model). Initially, the network G starts with
a set of vertices V of size n placed in a cyclic order and with no edge. Then,
it follows:

(1) Connect each vertex v ∈ V with next d
2 vertices on both sides of v

from the cycle.

(2) For each vertex u ∈ V ,

(a) select a vertex v ∈ V such that u 6= v and (u, v) /∈ E,

(b) rewire edge (u, v) with the probability β.

When the rewiring parameter β → 1 the generated model network work
approaches to the Erdős-Rényi network [WS98].

Beside the ‘small-world’ properties, many real-world networks (e.g. Inter-
net, telephone call networks etc.) show ‘scale-free’ property, which is the
existence of hubs. That is, these networks show a power-law (heavy-tailed)
distribution in vertex degrees. The following network models are proposed
to capture the ‘scale-free’ property of real-world networks.

2.2.3 Barabási-Albert Preferential Attachment Model

Barabási-Albert [BA99] proposed this simple but elegant random model
to grasp two important phenomena of real-work networks such as world-
wide-web (www) etc. The first phenomenon is growth, i.e. the network
grows with the time and there is no restriction on the number of vertices
that can be added to the network. The second phenomenon is preferential
attachment, which often is referred as the ‘rich-getting-richer ’ property. The
Barabási-Albert model is defined as follows:

Definition 2.3 (Barabási-Albert Model). At t = 0, the random process
starts with an initial connected network Gk0 of size |V0| = m0 and m0 ≥
k. Then, a sequence of vertices, v1, v2, ..., vN , are entered to the existing
network inductively, one vertex at a time, to produce a sequence of networks

7



2.2. Random Network Models

{Gkt } by connecting with k number of existing vertices. At time t, the new
vertex vt+1 enters to the network Gkt (Vt, Et) and connects with an existing
vertex v ∈ Vt with the probability

P[vt+1 connects with v] =
dGkt

(v)∑N
v∈Vt dGkt

(v)
, (2.2)

where, dGkt
(v) is the degree of the vertex v in Gkt and

∑N
v∈Vt dGkt

(v) is the

total degree of all vertices in Gkt .

Barabási-Albert [BA99] proved the following theorem to find the power
law bound of the degree distribution.

Theorem 2.4. The probability distribution P (d) of the degree d of a vertex
is reduced to d−3 for large d when t→ 0.

2.2.4 Cooper-Frieze Model

The Cooper-Frieze model, proposed in [CF03], is a a mixture of preferen-
tial attachment (by degree) and uniformly at random (u.a.r) selection. This
model needs to fix a set of parameters in advance. The fixed parameters are
defined as follows ([CF03]):

Procedure selection at each step t:

α : Probability to follow OLD procedure,

1− α : Probability to follow NEW procedure,

Procedure NEW:

p = (pi : i ≥ 1) : Probability that new vertex generates i new edges,

β : Probability that the target vertices are selected uniformly,

1− β : Probability that the target vertices are selected accordant to degree,

Procedure OLD:

q = (qi : i ≥ 1) : Probability that existing vertex generates i new edges,

δ : Probability that the source vertex is selected uniformly,

1− δ : Probability that the source vertex is selected accordant to degree,

γ : Probability that the target vertices are selected uniformly,

1− γ : Probability that the target vertices are selected accordant to degree,

This model also needs two fixed integer parameters j0 and j1 such that
pj = 0, j > j0 and qj = 0, j > j1. The model definition is given in following.
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Definition 2.5 (Cooper-Frieze Model). The random process starts with an
initial network G0 with single vertex v0 and no edge. Then a sequence of
random networks {Gt} evolves according to the following procedure.

At time t, the edges are added by choosing either NEW or OLD method
with probability 1 − α or α respectively. In NEW method, a new vertex
vt+1 is added to the network Gkt (Vt, Et), and connects vt+1 with one or more
existing vertices. In OLD method, a number of new edges are added to a
selected existing vertex v.

This model follows a mixture of preferential attachment (by degree) and
uniformly at random (u.a.r) rules to select the endpoints, target vertex in
the NEW method and source & target vertices in the OLD method, for the
newly added edges.

Let, at time t, let E[Xd(t)] be the expected numbers of vertices with
degree d in Gt and {βd} is a sequence of positive integers. Cooper et al.
[CF03] proved that the following theorem for t→∞ and small k.

Theorem 2.6 ([CF03]). There exist a constant M > 0 such that almost
surely for all t, k ≥ 1

|E[Xd(t)]− tβd| ≤Mt1/2 log t

Therefore, for t → ∞ and small k, E[Xd(t)] can be approximated by tβd,
i.e. E[Xd(t)] ≈ tβd, for t → ∞, where βd is a sequence of positive integers,
which obeys power-law bounds [CF03].

2.2.5 Copying Model

Kumar et al. [KRR+00] proposed this model to capture the copying
property which is observed in the web-base networks. The core idea behind
this copying property is that, when a new web-page (vertex) is created, most
often it copies all out-links (directed edges) from an existing web-page and
then modifies some links. Based on this observation the copying model can
be defined as follows:

Definition 2.7 (Copying Model). At time t, a new vertex vt+1 enters to
the network Gkt (Vt, Et) and creates k directed edges (out-links) as follows:

(1) Selects a ‘prototype’ vertex v ∈ Vt uniformly at random.

(2) For all (v, w) ∈ Et, such that w ∈ Vt, adds (vt+1, w) to the network
Gkt+1.

9
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(3) For each edge (vt+1, w) ∈ Et+1, such that w ∈ Vt+1,

(i) with the probability 1 − α re-wires the edge with a randomly
selected vertex u ∈ Vt.

(ii) with probability α, keeps the edge unchanged.

Let E[Xd(t)] be the expected number of vertices of degree d in the net-
work generated by the copying model at time d. Then the following results
was proved by Kumar et al. [KRR+00].

Theorem 2.8. For d > 0, the limit P (d) = lim
t→∞

E[Xd(t)]
t exist, and satisfies

P (d) = P (0)
r∏
i=1

1 + α
i(1−α)

1 + 2
i(1−α)

and
P (d) = Θ(d

2−α
a−α ).

The motivation of this model is that it creates a lot of induced bipartite
subgraphs that are common phenomena in real world web networks. But the
networks generated by copying model do not show high clustering, which is
another common phenomenon of web networks.

2.2.6 k-Tree Random Model

Gao [Gao09] proposed the k-Tree random model which can generate ran-
dom networks with a well-defined graph structure. The degree distribution
in the simulated networks obeys a power-law. The model definition is given
in following ([Gao09]):

Definition 2.9 (k-Tree Random Model). The random process starts with an
initial clique Gk0 of size |Vt| = k+1. A sequence of vertices, {v1, v2, ..., vN}, is
added to the existing network inductively to generate a sequence of random
networks {Gkt }. At time t, a new vertex vt+1 enters the existing network
Gkt (Vt, Et) and generate Gkt+1 as follows.

(1) Selects k-clique, Ct, uniformly at random from {Gkt }.

(2) Connects vt+1 with all k vertices in Ct
Let, Xd be the random variable for the total number of vertices of degree
d in Gkt and {βd} be a sequence of positive integers. Gao [Gao09] proved
the following theorem to approximate the expected number of vertices with
degree d.
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Theorem 2.10 ([Gao09]). Let, E[Xd(t)] be the expected number of be ver-
tices with degree d in the random k-tree Gkt . There exists a constant N =
N(k) (independent of d) such that for any n > N ,

|E[Xd(t)]−−tβd| ≤ C

where C = C(k) is a constant that is independent of d and n and βd obeys
a power law bound

d−
(

1+ k
k−1

)
.

In 2011, Sridharan et al. [SGWN11] showed that the edge embeddedness

dGkt
(e) = D of k-tree random network also follows a power-law D−

(
1+ k

k−2

)
.

2.2.7 Signed Random Network Models

Recently, Ciotti et al. [CBC+15] has proposed two models for signed
social networks: Binomial degree distribution model and Power-law degree
distribution model.

Definition 2.11 (Binomial Degree Distribution Model). This model con-
structs a signed random network by applying the following procedure:

(1) Generating Unsigned Network: Generate an unsigned networkG(V,E)
of size |V | = N , by connecting any pair of vertices through an edge
with probability p.

(2) Attributing Signs: Attribute sign to each edge in G as follows:

(i) Divide all vertices in V into two groupsA andB with probabilities
m and 1−m respectively.

(ii) An edges is attributed by the positive sign if the end vertices are
in the same group, otherwise attributed by the negative sign.

Definition 2.12 (Power-law Degree Distribution Model). According to this
model, we can construct a signed random network with power-law positive
and negative degree distributions by applying following procedures:

(1) Generating Unsigned Network: Generate an unsigned networkG(V,E)
of size |V | = N by a power-law degree distribution network model, e.g.
Barabási-Albert model, copying model, etc..

(2) Attributing signs: Attribute sign to each edge in G by following the
similar procedure from the above Binomial Distribution Model.
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2.3 Algorithmic Problems on Graphs

Many algorithmic problems have been studied on graphs over the years.
Here, we only give a short discussion on the algorithmic problems relevant
to this thesis.

2.3.1 Shortest Path

The shortest path problem on a weighted, directed, and connected graph
G = (V,E,w) in which V is the vertices set, E is the edge set, and w : E →
R+

0 is the distance (weight) function for each edge in E, can be defined as
follows:

Problem 2.1. Shortest Path.
Instance: Given a weighted, directed, and connected graph G = (V,E,w)
and a fixed source vertex s.
Task: Find the shortest path from s to every other vertex in v ∈ G.

Different algorithms have been proposed for solving the shortest path prob-
lems such as Dijkstra’s algorithm [Dij59], Bellman-Ford algorithm [Bel58],
Floyed-Warshall algorithm [Flo62], etc.. Here, we discuss the Dijkstra’s al-
gorithm for solving the single-source shortest path problem.

Dijkstra’s Algorithm: Let S ⊆ V such that the final shortest-path of
the vertices in S from a fixed source s have already been determined. Let S̄
be the complement of S in V , i.e. S̄ = V \S and d(s, S̄) be the shortest-path
distance from s to any vertex in S̄.

Consider a path P = (s, ..., u, v) from the source vertex s to a vertex
v ∈ S̄ and u ∈ S. Therefore, the path distance d(s, u) must be the shortest-
path distance from s to u. Thus the shortest-path from s to v can be written
as

d(s, v) = d(s, u) + wuv,

where wuv is the distance (weight) of the edge (u, v). Therefore, we can find
the shortest-path distance from s to any vertex in S̄ by

d(s, S̄) = min
u∈S; v∈S̄

{d(s, u) + wuv}.

Initially, Dijkstra’s algorithm starts with vertex set S0 = {s}. Then, a
sequence of vertices sets S1, S2, ... ⊆ V is constructed which satisfies the
following conditions.
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1. In S0, the shortest-path distance d(s, s) = 0.

2. If S = {s, u1, ..., ui}, where s, u1, ..., ui ∈ V , then d(s, u1) ≤ ... ≤
d(s, ui).

3. In the step of constructing the set Si, the shortest-path distances from
the source s to all of the vertices u1, ..., ui are already known.

The generic Dijkstra’s algorithm can be represented by the pseudo-code
given in Algorithm 1 .

Algorithm 1: Dijkstra’s Algorithm

Data: A directed, weighted graph G(V,E,w) and source vertex s.
Result: S ← the set of explored vertices.

d(s, u)← the shortest-path distance from s, ∀u ∈ S.
Initialization: S ← s; d(s, s)← 0;
while S 6= V do

Select a vertex v ∈ S̄ such that
dmin(u, v) = minu∈S;(uv)∈E{d(s, u) + wuv};
d(u, v)← dmin(u, v);
S ← S ∪ {v};

end

The runtime of a straightforward implementation of Dijkstra’s algorithm
needs O(mn) whereas a min-priority queue implemented by a Fibonacci-
heap based implementation takes O(m log n) [FT87].

2.3.2 Minimum Spanning Tree

Let G = (V,E,w) be an undirected, weighted connected graph in which
w : E → R+

0 is the weight function that defines the weight of an edge
(u, v) ∈ E by wuv. A minimum spanning tree of G is a spanning tree with
minimum total edges weight. Consider the weight for an edge (u, v) ∈ E is
wuv, which is defined by the cost to connect the vertices u, v ∈ V . Then, we
can define the minimum spanning tree problem as follows:

Problem 2.2. Minimum Spanning Tree;
Instance: An undirected, weighted connected graph G = (V,E,w).
Question: Find a spanning tree T = (V,ET ) such that, w(T ) =

∑
(u,v)∈ET wuv

is minimized. Here w(T ) is the total weight of the edges in the spanning
tree T .
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There are several algorithms for finding the minimum spanning tree: Kruskal’s
algorithm [Kru56], Prim’s algorithm [Pri57], etc. In the following section,
we briefly discuss the Kruskal’s algorithm.

Algorithm 2: Kruskal’s Algorithm[Cor09]

Input: An undirected, weighted graph G(V,E,w).
Output: Minimum spanning tree T (V,ET ).
Initialization: ET = φ
for each vertex v ∈ V do

Make-Set(v)
end
Esort ← sorted edges in E into nondecreasing order by weight w
for each edge (u, v) ∈ Esort do

if Find-Set(u) 6=Find-Set(v) then
ET ← ET ∪ (u, v)

end

end
return ET

Kruskal’s Algorithm: In the Kruskal’s algorithm, proposed in [Kru56],
the edges set ET is a forest on the vertex set V of G. At each step, Kruskal’s
algorithm finds a safe edge (u, v) ∈ E, with least-edge-weight that connects
two disjoint connected components, to add to ET . The implementation of
this algorithm needs to use Union-Find data structure to maintain indi-
vidual disjoint sets of elements. The operation Find-Set(u) is used to see
whether or not a vertex u belongs to a set by returning the representing ele-
ment from the set. The operation Union(u, v) is used to merge two disjoint
sets that contains the vertices u and v. The pseudo-code of the Kruskal’s
algorithm is given in Algorithm 2 .

2.3.3 Maximal Cliques Problem

The decision problem to identify all maximal cliques in a network can
be formulated as follows:

Problem 2.3. Maximal Cliques.
Instance: A graph G = (V,E).
Question: Find all maximal cliques in G.
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Moon and Moser [MM65] showed that if |V | = n then G has at most 3n/3

maximal cliques. Bron and Kerbosch [BK73] proposed a recursive back-
tracking algorithm for identifying maximal cliques in an undirected graph.
This algorithm is known as Bron-Kerbosch algorithm.

Consider an undirected graph G = (V,E) and three vertices sets R,P ,
and X. The Bron-Kerbosch algorithm finds the set R that belongs the
maximal clique with all vertices of V , the set P that belongs the maximal
cliques with some vertices of V and the null set X. The pseudo-code of the
classical implementation of the Bron-Kerbosch algorithm is given bellow.

Algorithm 3: Bron-Krebosch Algorithm

Bron-Krebosch(R,P,X)
if P and X are both empty then

report R as a maximal clique;
end
for each vertex v in P do

BronKrebosch(R ∪ v, P ∩N(v), X ∩N(v);
P ← P \ v;
X ← X ∪ v;

end

2.3.4 Maximum Clique Problem

The problem to identify a maximum clique in a network can be formu-
lated as follows:

Problem 2.4. Maximum Clique.
Instance: A graph G = (V,E).
Task: Find a set of vertices S ⊆ V , if there exist, of size at least k such
that for every u, v ∈ S, (u, v) ∈ E, i.e. S is a maximum clique in G.

The maximum clique problem is NP hard [GJ79] and it is computationally
equivalent to some other algorithm problems, e.g., minimum vertex cover
problem, maximum independent set problem.
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2.4 Network Communities and Clustering

Let G = (V,E) be an unweighted and undirected graph in which V is
the vertex set, and E is the edge set. A community in G is a set C ⊆ V in
which any vertex v ∈ C has comparatively more connections compared to the
connection with any other vertex in V \ C. The attribute of the high edge
density inside a community can be categorized by different graph classes.
Gao [Gao14] proposed the following general graph-theoretic definition of
community.

Definition 2.13 (Π-Community). A Π-community (or a Π-graph) in a net-
work is a maximal, connected, and induced subgraph that belongs to the
Π-graph class.

Therefore, identifying communities in a network can be interpreted as
identifying subgraphs induced by a particular Π-graph class. A Π-graph class
is a subgraph defined with a particular structural property. A Π-graph class
is called hereditary if it satisfies the following property: for G ∈ Π, every
induced subgraph H of G is also in Π.

In the following subsections, we briefly discuss on some of the graph
classes.

2.4.1 Cluster Graphs

An undirected graph G = (V,E) is said to be a cluster graph if every
connected component in G is a maximal clique. That is, a cluster graph is
a collection of disjoint maximal cliques.

For any three vertices i, j, k ∈ V , the graph G is a cluster graph if and
only if (i, j), (j, k) ∈ E =⇒ (i, k) ∈ E, where (i, j) = (j, i);∀i, j ∈ V .

This above transitive property of the cluster graph can also be inter-
preted as P3-free. Note that, an induced subgraph of three ordered vertices
is called P3 if any those three vertices are connected as a simple path. There-
fore, we can say that a graph G is a cluster graph if and only if G is P3-free.

The cluster graphs have numerous applications in different fields such
as in data mining to find a group of an object with maximum inter-class
similarity and minimum intra-class similarity [HPK11], in computational
biology to cluster and visualize the gene expression data [SMKS03], in image
segmentation [WL93], etc..
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2.4.2 Quasi-Threshold Graphs

An induced subgraph of four ordered vertices is said to be a P4 if the all
four of those vertices are connected as a simple path. A C4 is an induced
subgraph of four ordered vertices in which the first and the last vertices are
connected to form a close circuit.

A graph G is said to be (P4, C4)-free if and only if P4 and C4 are the
forbidden induced subgraph classes in G. That is, in G there exist no path
and close circuit of size four.

In literature, the (P4, C4)-free graphs are also known as quasi-threshold
graphs [MWW89, YCC+96], comparability graphs of tree [Wol65] and triv-
ially perfect graphs [Gol78]. A quasi-threshold graph can be recognized in
linear time [YCC+96].

2.4.3 Cographs

A graph G is said to be a cograph, if there exist no P4 induced subgraph
in G. That is, cograph is a P4-free graph. In a cograph every connected
induced subgraph has a disconnected complement.

In literature, different authors studied cographs independently with dif-
ferent names: decay graphs [Sum74], D∗-graphs [Jun78], and 2-party graphs.

2.4.4 Threshold Graphs

A connected graph is 2K2-free, first studied by El-Zahar and Erdős
[EZE85], if it does not contain a pair of independent edges as an induced
subgraph.

A graph G is said to be threshold (or (P4, C4, 2K2)-free) if and only if
there exist no P4, C4, 2K2 induced subgraphs in G. It was first studied by
Chvátal and Hammer [CH73].

2.4.5 Community Editing Problems

Based on Gao’s [Gao14] Π-community definition, we can generalize the
graph editing problems as the Π-Community Editing, which is defined as
follows.

Problem 2.5. Π-Community Editing(G)
Instance: An unweighted graph G = (V,E).
Task: Determine a modified graph G′ = (V,E′) with minimum number of
edge editions (insertions or deletions) in which each connected component
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is a Π-community.

Based on the desired Π-community we can redefine Problem 2.5 to dif-
ferent community editing problem. A brief on the well known community
editing problems is given next.

Clustering Editing Problem: The Clustering Editing problem is a
class of community editing problems. It can be defined from Problem 2.5
if the desired Π-community network is a cluster graph. The Clustering
Editing problem is a NP-hard [KM86]. In this thesis, we devote Chapter 4
to design a heuristic algorithm for the Correlation Clustering Editing
problem which is a class of community editing problem on signed networks.

Quasi-Threshold Editing Problem: The Quasi-Threshold Editing
problem can be formulated from Problem 2.5 if the desired Π-community
network is a quasi-threshold graph. Nastos and Gao [NG13] first studied the
Quasi-Threshold Editing problem to define the communities in social
networks. They also showed that this problem is NP-hard.

Cograph Editing Problem: The Cograph Editing problem can be
also be formulated from Problem 2.5 if the desired Π-community network is
a cograph. Liu et al. [LWGC12] showed that Cograph Editing problem
is NP-complete. An Edge P4 centrality-based divisive algorithm for identify
cograph communities in graph is proposed by Jia et al. [JGG+15].

2.5 Balance Theory and Clustering

In 1946, Heider [Hei46] first introduced the balance theory to explain
the cognitive balance by resolving the sentimental inconsistency in a social
system. Heider also first used the signed network to represent the mutual
sentimental interaction among the members of the social system. In the
positive (negative) network each vertex represents a member/person, and
a sign edge represents the mutual friend (hostile) interaction between two
members. According to the balance theory, the balanced state in a social
system is based on the following principles:

“friend of my friend is my friend”
“enemy of my friend is my enemy”
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In signed network, Heider’s balance states can be represented by a triad
(sub-network with three vertices) and then the number of positive edges in
the triad. A balanced state in a triad can be achieved by only having an odd
number of positive edges. On the other hand if a triad has an even number
of positive edges then it is imbalanced. In Fig.2.1, the triads T3 and T1 are
in balanced state, and the triad T2 is in imbalanced.

Davis [Dav77] extended this idea by considering “enemy of my enemy
is my enemy”, which can be represented by the triad T0, is also a balanced
state. Cartwright and Harary [CH56, Har59] formalized the definition of
the balance theory in graph-theoretic language. They also showed that a
signed network is said to be in balance state or structural balanced if the
vertex set of the network can be partitioned into mutually hostile subgroups
in which the internal attitudes (edges) among the members of a subgroup
are friendly to each other.

Figure 2.1: Triads with odd number or no positive edges or are balanced
(T3, T1) and with even number edges are imbalanced (T2).

A signed network is called k-clusterable or k-correlation-clusterable if
its vertex set can be partitioned into k subgroups in such way that the
signed edges inside a subgroup are positive and the signed edges between
two subgroups are negative.
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Chapter 3

Random Models for Signed
Directed Social Networks

3.1 Signed Directed Social Network

In a social group, the mutual attitude among the members (e.g. persons)
can be represented by a signed directed network G = (V,E, s), where V the
vertex set, E the directed-edge set and the function s : E → {+,−} assigns
a sign for each directed-edge in the network [Hei46, Dav77].

In G, each vertex v ∈ V represents an individual member, and each
signed-directed-edge e ∈ E represents the attitude from a source vertex
(member) to a target vertex. Based on the sign, E can be partitioned as
E = E+ ∪ E−, where E+ ∩ E− = ∅, and E+ and E− are the set of all
positive and negative edges respectively. Therefore, each edge e ∈ E has
two attributes: sign and direction. A positive edge e ∈ E+ directed from a
member A to another member B indicates the friendly attitude from A to
B. Similarly, a negative edge e ∈ E− directed from a member A to another
member B indicates the hostile attitude from A to B.

In the rest of this chapter, we will simply denote signed directed social
network as G = (V,E).

3.2 Motivation for Modeling Signed Directed
Social Networks

Our motivation to design random models for signed directed networks
follows the observations of the signed-directed degree distributions in three
real-world signed directed social networks: Wikipedia Request for Admin-
ship (WikiRfA) [WPLP14], Epinions Social Netwrok [LHK10], and Slashdot
Social Network [LHK10]. A brief description of the studied networks is given
in the following.
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3.2.1 Empirical Networks

Wiki-RfA: To be an admin from an editor, in Wikipedia (www.wikipedia.
org), an application has to be submitted either by a candidate or by any
member on behalf of a candidate. Then any member of the Wikipedia com-
munity can vote to either support (+1) or oppose (−1) or neutral (0) to the
adminship request. In this network, each vertex represents a community
member (either an editor or an applicant or both) and each signed-directed-
edges represents a vote from a community member to an applicant. The
data were collected from all the votes for RfA process between 2003 to May
2013. Since many candidates applied for adminship for several times dur-
ing that period, there exist multiple signed-directed-edges between the same
pair of members.

Slashdot: The Slashdot (www.slashdot.org) is a technology-related news
website where users can tag each other as friends or foes. In this network,
each tag is represented by a signed-directed-edge from a tag-given-user to
a tag-receiving-user. If a user A tags another user B as a friend (foe) then
there is a positive (negative) edge from A to B. This network contains
81,867 vertices (users) and 545,671 edges (links).

Epinions: This network data obtained from a general consumer review
site called Epinions (www.epinions.com), where users can post their opin-
ions on various products. Users can also rate each other as trustworthy
(positive) or not (negative) base on their reviews. This network contains
131,828 vertices (users) and 841,372 edges (mutual attitudes).

3.2.2 Analyzing Real-World Networks

To analyze the signed-directed degree distributions in our studied real-
world networks, we fit the power-law distribution p(d) ≈ d−γ to all of
the four types signed-directed-degrees (i.e. positive-in-degree, negative-in-
degree, positive-out-degree, and negative-out-degree) and calculate the val-
ues of exponent γ with the corresponding p-value individually. We use the
procedure and implementations given by Clauset et al. [CSN09] to estimate
the exponents γ and the corresponding p-values. In this procedure use about
2500 synthetic data sets to test the null-hypothesis against the given data
set and the corresponding p-value.

The results of the fitting power law models are given in the Table 3.1.
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3.2. Motivation for Modeling Signed Directed Social Networks

(a) (b)

(c) (d)

Figure 3.1: Cumulative signed-directed-degree distribution Pcum(d) of Wiki-
RfA social network.
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(a) (b)

(c) (d)

Figure 3.2: Cumulative singed-directed-degree distribution Pcum(d) of Slash-
dot social network.
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(a) (b)

(c) (d)

Figure 3.3: Cumulative signed-directed-degree distribution Pcum(d) of Epin-
ions social network.
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Empirical data sets results

Datasets |V |, |E| Dist. type n γ p-value

Wiki-RfA 11381 pos-out-deg 9331 3.500 0.529
185612 pos-in-deg 3036 3.500 0.013

neg-out-deg 5170 2.640 0.010
neg-in-deg 2860 3.250 0.218

Slashdot 81867, pos-out-deg 42105 2.020 0.000
545671 pos-in-deg 61894 2.830 0.906

neg-out-deg 14611 2.000 0.000
neg-in-deg 29297 2.200 0.000

Epinions 131828, pos-out-deg 88180 1.730 0.000
841372 pos-in-deg 69900 1.720 0.000

neg-out-deg 18499 1.800 0.000
neg-in-deg 31791 2.30 0.000

Table 3.1: Power-law exponents γ and the corresponding p-values for differ-
ent signed-directed-degree distributions for above empirical data sets.

Also, the Fig.3.1 - Fig.3.3 show the cumulative signed-directed-degree dis-
tributions in the studied real-world social networks.

In Table 3.1, we can observe that the power-law model fitting on all
of the four signed-directed-degree distributions in the Wiki-RfA network as
being statistically significant (i.e. p-value ≥ 0.01). On the other hand, in
Slashdot network, the power-law model fitting is statistically significant only
for the positive-in-degree distribution. But for the Epinions network, none of
the power-law models for the signed-directed-distributions are statistically
significant.

Again in the Table 3.1, we see that the values of the power law com-
ponents γ are in the range 2.5 ≤ γ ≤ 3.5 for the Wiki-RfA and are in the
range 2.0 ≤ γ ≤ 3.0 for the Slashdot. But the values of γ in Epinions are
less than 2.5. Therefore, from the above observations, we can say that in a
network in which the signed-directed-degree distributions has a tendency to
follow the power law the component γ should be in the range 2.0 ≤ γ ≤ 3.5.

Let’s look at the evolving process of the Wiki-RfA network. This data
was collected over a period, and many candidates had requested for the
adminship for several times during this time because of failing in the election.
Therefore, there exist multiple edges between the same pair of members with
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3.2. Motivation for Modeling Signed Directed Social Networks

the same or different signs and directions. On the other hand, in the Slashdot
and Epinions networks, there exist only one edge between a pair of members.
From this above observations, we can conclude that the signed-directed-
degree distributions in an attitude based signed directed social network with
multiple edge possibilities between a same pair of vertices follow the power-
law.

In Table 3.1, we can observe another property in the column n which
represents the number of vertices having positive/negative-in-degrees and
positive/negative-out-degrees in the Wiki-RfA and Slashdot networks. In
Wiki-RfA network, the numbers of vertices having positive-out-degrees and
negative-out-degrees are greater than the numbers of vertices having positive-
in-degrees and negative-in-degrees respectively. That is the members in this
network have more prone to give votes (either positive or negative) than
receiving votes. On the other hand, in Slashdot network, the numbers of
vertices having positive-out-degrees and negative-out-degrees are less than
the numbers of vertices having positive-in-degrees and negative-in-degrees
respectively. That is the members this network have more prone than votes
(either positive or negative) compare to giving votes. But this inverse rela-
tion between the numbers of in and out degree vertices (for both positive
and negative) is not visible in the case of the Epinions network.

Again, from the first observation, we know that all of the four signed-
directed-degree distributions in Wiki-RfA and only positive-in-degree distri-
bution in Slashdot follow the power law property with the component γ in
the ranges 2.0 ≤ γ ≤ 3.5. But the signed-directed-degree distributions in
Epinions network do not follow the power-law property. Now from our first
and second observation, we can say that a signed directed social network
in which the signed-directed-degree distributions have a tendency to follow
power law has an inverse relation between the numbers of in and out degree
vertices (for the case both positive and negative).

Attributes/Properties Wiki-RfA Slashdot Epinions

A1 Power-law component in the range 2.0 ≤ γ ≤ 3.5 Yes Yes No

A2 # of in and out degree vertices are inversely related Yes Yes No

A3 Exists multiple edges in both directions Yes No No

Table 3.2: The list of observed attributes in the real-world networks. We
denote these attributes by A1, A2, and A3 respectively.

The summary of observed attributes in the real-world signed directed
networks is given in the Table 3.2.2. These observations inspired us to
design random models for signed directed networks (given in sections 3.4, 3.5,
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and 3.6) with the above observed properties and with some other specified
controlling features in the network structure.

3.3 Literature Review

The study of classical models for random graphs or network dates back
to Erdős and Rényi with the series of papers [ER59, ER60, ER61]. But
the first attempt to model a random network to explain real-world phe-
nomena is observed in 1998 by Watts and Strogatz [WS98]. Their random
model represents the Milgram’s [Mil67] ‘small-world’ properties which are
highly clustered and having a small diameter in social networks. In re-
cent empirical studies suggests that the real-world complex networks mostly
demonstrate the ‘scale-free’ attributes. For example, the degree distribu-
tions of the Internet router networks studied by Faloutsos, Faloutsos and
Faloutsos [FFF99] and the telephone call networks studied by Aiello et al.
[ACL00] both follows power-laws. Since then, different network models with
power-law degree distributions and with other structural features have been
proposed to duplicate the scale-free phenomena in the real-world complex
networks.

In 1999, Barabási and Albert [BA99] proposed a random model with
preferential attachment trait. Later, in 2003, Bollobás et al. [BR03] pre-
sented a rigorous proof for the power-law degree distribution for this model.
Preferential attachment models with adjustable parameter investigate by
Dorogovtsev et al. [DMS00], Aielllo et al. [ACL01] and Jordan [Jor06]. In
2003, Cooper et al. [CF03] proposed a more generalized form of preferential
attachment model which removes the restrictions on the creation of edges
between two existing vertices and the number of new edges adding to the
network.

Beside the preferential attachment models, Kumar et al. [KRR+00] pro-
posed a random network model, called copying model, to capture the link
copying property in creating a new web-page in the world-wide-web network.
They showed that the degree distribution in this model follows the scale-free
property.

A random model for the complex network with a well defined graph
structural property was proposed in [Gao09], which is called k-Tree random
model. Later, Sridharan et al. [SGWN11] showed that the edge embedded-
ness of k-tree random network follows a power-law distribution.

In 2015, Ciotti et al.[CBC+15] proposed two models for signed social
networks: binomial degree distribution model and power-law degree distribu-
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tion model. Both of these models follow two main steps to produce a signed
random network. In the first step, models generate an unsigned network in
which the (unsigned) degree follow either binomial or power-law degree dis-
tribution. In the second step, determine sign to each edge of the simulated
network by dividing the vertices into two groups. If the endpoints of an edge
are in the same group then label this edge as a positive edge, otherwise; if
the endpoints of an edge are in different groups then label this edge as a
negative edge. Ciotti et al.[CBC+15] showed that the positive and negative
degree distributions in the simulated networks obey power-law. But they did
not present any analytical proof for the degree distribution in these models.
The main features of these models are that the generated signed networks
are structurally balanced, and that the each vertex is a member of one of
the two mutually exclusive groups.

3.4 Model A: Preferential Attachment Model

3.4.1 Model Definition

The random process start with a signed directed initial network Gk0 =
(V0, E0) of size |V0| = 2k + 1. Suppose there exist exactly k positive and k
negative directed edges in Gk0. At time step t+ 1, we add a new vertex vt+1

to construct Gkt+1. The new vertex vt+1 connects with k existing vertices
from Gkt as their positive-out-neighbor with the probability

P[vt+1 is positive-out-neighbor of v] =
2d+out

Gkt
(v)∑

v d
+
Gkt

(v)
; (3.1)

where v ∈ Vt. Also, vt+1 connects with k existing vertices as their negative-
out-neighbor with the probability

P[vt+1 is negative-out-neighbor of v] =
2d−out

Gkt
(v)∑

v d
−
Gkt

(v)
; (3.2)

where v ∈ Vt. On the other hand, the new vertex vt+1 also connects with k
existing vertices as their positive-in-neighbor and with k existing vertices as
their negative-in-neighbor with the following probabilities.

P[vt+1 is positive-in-neighbor of v] =
2d+in

Gkt
(v)∑

v d
+
Gkt

(v)
; (3.3)
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P[vt+1 is negative-in-neighbor of v] =
2d−in

Gkt
(v)∑

v d
−
Gkt

(v)
; (3.4)

where v ∈ Vt.

3.4.2 Degree Dynamics

In this section, we investigate the degree dynamics in Gkt≥1, which we

simply denote as Gkt . That is, we ignore the initial network Gk0. Let the
random model A for signed directed network generates the σ-algebra which
can be denoted by Ft = σ(Gkt , t ≥ 1).

First, we analyze the dynamics of the positive-in-degree in Gkt . Let,
X+in
d (t) be the random variable for the number of vertices with positive-in-

degree d in Gkt . By the following lemma, we find the minimum positive-in-
degree for a vertex and the total positive-degree (in and out) in Gkt .

Lemma 3.1. For any vertex v ∈ Vt, positive-in-degree of v, d+in
Gkt

(v) ≥ k

and the total positive-degree in Gkt is
∑

v dGkt
(v) = 4kt.

Proof. By ignoring the initial vertices, when a new vertex enters to the
network, it selects k existing vertices as its positive-in-neighbors. Therefore,
each vertex enters in the network with exactly k positive-in-degrees, i.e.
d+in
Gkt

(v) ≥ k, for all v ∈ Vt≥1.

At time t, the new entering vertex adds k additional positive edges in
the both directions with respect to itself. That is, in total 2k new positive
edges are added at the time when the new vertex is entering to the existing
network Gkt . So, at the end of the time t, the total number of the positive
degrees in Gkt is increased by 4k. Therefore, if we ignore the initial network,
the total number of positive degrees in Gkt is

∑
v dGkt

(v) = 4kt.

According to the model construction, at time t + 1, an existing vertex
v ∈ Vt can only increase its positive-in-degree if the new vertex vt+1 connects
as a positive-in-neighbor of the vertex v. Therefore, the probability of a
vertex v ∈ V receives a positive-in-degree is (using Eq.(3.3))

P[v receives a positive-in-degree] =
2 d+in

Gkt
(v)∑

v∈Vt d
+
Gkt

(v)
. (3.5)
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Again, for given d+in
Gkt

(v) = d, the conditional probability that v ∈ Vt receives

a positive-in-degree is (using Eq.(3.5))

P[v receives a positive-in-degree|d+in
Gkt

(v) = d] =
2d∑

v∈Vt d
+
Gkt

(v)
. (3.6)

Since, vt+1 connects as positive-in-neighbor with k existing vertices, then
for given Gkt , by using Eq.(3.6) and Lemma 3.1 , the expected number of
vertices with positive-in-degree d that receive a positive-in-degree in Gkt+1 is

2kd

4kt
X+in
d (t) =

d

2t
X+in
d (t) (3.7)

which is independent of k.
Let {β+in

d } be a sequence of positive integers. We now show that,∣∣E[X+in
d (t)

]
−tβ+in

d

∣∣ is asymptotically bounded by a constant, where {β+in
d }

satisfies the following equations

β+in
d =

d− 1

d+ 2
β+in
d−1, β+in

k ≈ 1, (3.8)

as t→∞.

Theorem 3.2. Let E
[
X+in
d (t)

]
be the expected number of vertices with

positive-in-degree d in the random network Gkt generated by the Model A.
Then ∣∣E[X+in

d (t)
]
− β+in

d t
∣∣ ≤ C,

where C is a constant and β+in
d has a power-law bound d−3.

Proof. First, consider the base case d = k. If we ignore the initial vertices,
then according to the Lemma 3.1 , any vertex v ∈ Vt has at least k positive-
in-degree in Gkt , i.e. d+in

Gkt
(v) = k; ∀ v ∈ Vt. That is, if v ∈ Vt connects

with vt+1 as a positive-out-neighbor, then d+in
Gkt+1

(v) = k + 1 . Therefore,

from Eq.(3.7), for given Gkt , the expected number of vertices with positive-
in-degree (k + 1) in Gkt+1 and k in Gkt is

d

2t
X+in
k . (3.9)

Again, at the time step t+1, the new vertex vt+1 has exactly k-positive-
in-degree and k-positive-out-degree in Gkt+1. Therefore, for given the value
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of X+in
k , the net difference in the number of vertices with positive-in-degree

k from Gkt to Gkt+1 is

E
[
X+in
k (t+ 1)

∣∣Ft]−X+in
k (t) = 1− k

2t
X+in
k . (3.10)

By taking expectation on the both side of the Eq.(3.10), we get

E
[
X+in
k (t+ 1)

]
= 1− k

2t
E
[
X+in
k (t)

]
+ E

[
X+in
k (t)

]
,

≈ E
[
X+in
k (t)

]
+ 1, (3.11)

as t→∞.
According to the model structure, at time t, exactly one vertex enters to

the network with positive-in-degree k. Now, if we ignore the initial network,
then E

[
X+in
k (t)

]
= 1 at t = 1. Then, by solving the above recurrence

Eq.(3.11), we get

E
[
X+in
k (t)

]
= t+O(1). (3.12)

Now, consider the general case d > k. Due to the model construction,
we have to consider two cases to estimate the difference in the number of
vertices with positive-in-degree d during the transition from Gkt to Gkt+1.
First, if the new vertex vt+1 connects with v ∈ Vt as a positive-in-neighbor,
and if d+in

Gkt
(v) = d − 1, then positive-in-degree of v increases to d in Gkt+1.

Therefore, from Eq.(3.7) for given Gkt , the expected number of vertices with
positive-in-degree d in Gkt+1 and (d− 1) in Gkt is

d− 1

2t
X+in
d−1. (3.13)

Second, if vt+1 connects with v ∈ Vt as a positive-in-neighbor, and if d+in
Gkt

(v) =

d, then the positive-in-degree of v increases to (d + 1) in Gkt+1. Therefore,
again from Eq.(3.7), for given Gkt , the expected number of vertices with
positive-in-degree (d+ 1) in Gkt+1 and d in Gkt is

d

2t
X+in
d . (3.14)

Therefore, by using Eq.s (3.13) and (3.14), for given the value of X+in
d , the

net difference in the number of vertices with positive-in-degree d from Gkt
to Gkt+1 is

E
[
X+in
d (t+ 1)

∣∣Ft]−X+in
d (t) =

d− 1

2t
X+in
d−1 −

d

2t
X+in
d . (3.15)
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By taking expectation on the both side of the Eq.(3.15), we get

E
[
X+in
d (t+ 1)

]
= E

[
X+in
d (t)

]
+
d− 1

2t
E
[
X+in
d−1(t)

]
− d

2t
E
[
X+in
d (t)

]
. (3.16)

Assume β+in
d = 0 for d < k in {β+in

d }. Let E
[
X+in
d (t)

]
can be approximated

by tβ+in
d . Then, Eq.(3.16) satisfies

(t+ 1)β+in
d = tβ+in

d +
1

2t
((d− 1)tβ+in

d−1 − dtβ
+in
d ),

β+in
d =

d− 1

d+ 2
β+in
d−1. (3.17)

Again, from the Eq.(3.11), as t→∞, we have

(t+ 1)β+in
k = 1 + tβ+in

k ,

β+in
k = 1. (3.18)

Here, Eq.s(3.17) and (3.18) give the recurrence equations, which are satisfied
by the sequence {β+in

d }.

Let ∆+in
d (t) = E

[
X+in
d (t)

]
−tβ+in

d . To show that, E
[
X+in
d (t)

]
can be approx-

imated by tβ+in
d , we need to proof by induction that

∣∣∆+in
d (t)

∣∣ is bounded
by a constant.

For the base case d = k, from the Eq.s(3.12) and (3.18), we get∣∣∆+in
k (t)

∣∣+ tβ+in
k = t+O(1),∣∣∆+in

k (t)
∣∣ = O(1), (3.19)

i.e.
∣∣∆+in

k (t)
∣∣ is bounded by a constant which is independent of d and t.

Consider,
∣∣∆+in

d (t)
∣∣ is also bounded by a constant which is independent

of d and t. Thus, we get∣∣∆+in
d (t)

∣∣ =
∣∣E[X+in

d (t)
]
− tβ+in

d

∣∣ ≤ O(1). (3.20)

Now, from the Eq.(3.16), we get

∆+in
d (t+ 1) + (t+ 1)β+in

d = ∆+in
d (t) + tβ+in

d +
1

2t

(
(d− 1)(∆+in

d−1(t)

+ tβ+in
d−1)− d(∆+in

d (t) + tβ+in
d )

)
.
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By rearranging the above equation, we have

∆+in
d (t+ 1) =

d− 1

2t
∆+in
d−1(t) +

(
1− d

2t

)
∆+in
d (t)

+
d− 1

2t
β+in
d−1 −

(
1 +

d

2

)
β+in
d . (3.21)

Now, using the definition of β+in
d from the Eq.(3.17), we get

d− 1

2
β+in
d−1 −

(
1 +

d

2

)
β+in
d =

d− 1

2
β+in
d−1 −

d+ 2

2
β+in
d

=
d− 1

2

d+ 2

d− 1
β+in
d − d+ 2

2
β+in
d

= 0. (3.22)

Then, from the Eq.s (3.21) and (3.22), we get

∣∣∆+in
d (t+ 1)

∣∣ ≤ d− 1

2t

∣∣∆+in
d−1(t)

∣∣+ (1− d

2t
)
∣∣∆+in

d (t)
∣∣,

≤
(
d− 1

2t
+

2t− d
2t

)
max

(∣∣∆+in
d−1(t)

∣∣, ∣∣∆+in
d (t)

∣∣),
=

(
1− 1

2t

)
max

(∣∣∆+in
d−1(t)

∣∣, ∣∣∆+in
d (t)

∣∣), (3.23)

Therefor, as t→∞ then, we get from the Eq.s (3.19), (3.20) and (3.23)∣∣∆+in
d (t+ 1)

∣∣ =
∣∣E[X+in

d (t+ 1)
]
− (t+ 1)β+in

d

∣∣ ≤ O(1), (3.24)

i.e.,
∣∣∆+in

d (t+ 1)
∣∣ is bounded by a constant which is independent of d and t.

Hence, by using the induction hypothesis we can say that,
∣∣E[X+in

d (t)
]
−

tβ+in
d

∣∣ is bounded by a constant which is independent of d and t, i.e.

E
[
X+in
d (t)

]
can be approximated by tβ+in

d .

To find the power-law bound for the positive-in-degree distribution in the
signed directed networks generated by the Model A, we get from the defini-
tion of β+in

d at Eq.(3.17), that

β+in
d =

d∏
i=1

i− 1

i+ 2
≈ d−3, (3.25)

which is independent of k.
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Similarly, to find the power-law bound for the positive-out-degree distri-
bution, let {β+out

d } be a sequence of the positive integers. Then by following
the above procedure for positive-out-degree, we can prove the following the-
orem.

Theorem 3.3. Let E
[
X+out
d (t)

]
be the expected number of vertices with

positive-out-degree d in the random network Gkt generated by the Model A.
Then ∣∣E[X+out

d (t)
]
− β+out

d t
∣∣ ≤ C,

where C is a constant and β+out
d has a power-law bound d−3.

In similar manner, let {β−ind } and {β−outd } be two sequence of positive
integers. Then we can also prove the following theorems for negative-in-
degree and negative-out-degree distributions respectively.

Theorem 3.4. Let E
[
X−ind (t)

]
be the expected number of vertices with

negative-in-degree d in the random network Gkt generated by the Model A.
Then ∣∣E[X−ind (t)

]
− β−ind t

∣∣ ≤ C,
where C is a constant and β−ind has a power-law bound d−3.

Theorem 3.5. Let E
[
X−outd (t)

]
be the expected number of vertices with

negative-out-degree d in the random network Gkt generated by the Model A.
Then ∣∣E[X−outd (t)

]
− β−outd t

∣∣ ≤ C,
where C is a constant and β−outd has a power-law bound d−3.

3.5 Model B: Edge Copying Model

3.5.1 Model Definition

Initially at t = 0, we start with a initial signed directed network Gk0 with
the vertex set of size |V0| = 2k + 1. The initial network Gk0 is connected by
exactly k positive and k negative directed edges in such way that, there exist
exactly k number of vertices having each type of degrees: positive-in-degree,
positive-out-degree, negative -in-degree, and negative-out-degree.

At the time t+1, the new vertex vt+1 is added to the network to construct
Gkt+1. The vertex vt+1 connects with k existing vertices by copying k distinct
edges from Gkt . The copy procedure obeys the following steps:
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(1) Selects a distinct (i.e. not copied already) signed-directed-edge e from
Gkt uniformly at random (u.a.r). Let e[src], e[trg] and e[sign] are the
e’s source, target vertices and e’s sign respectively.

(2) Add a new signed-directed-edge

(a) from vt+1 to e[trg] with probability (1 − α), by copying e’s sign
and source e[src] vertex.

(b) or, from e[src] to vt+1 with probability α, by copying e’s sign and
target e[trg] vertex.

(3) Repeat the above procedure k times.

3.5.2 Comparison with Preferential Attachment Model

Before studying the degree dynamics in the signed directed network gen-
erated by the edge copying model, first we analyze following facts.

According to the edge copying model, at time t + 1, the new vertex
vt+1 selects uniformly at random an edge, which to be copied, from Gkt .
Regardless the signs and directions, at each time step, exactly k new edges
are added to the network. Therefore, the total number of edges in Gkt is∣∣Et∣∣ = kt+ 2k ≈ kt, (for large t) (3.26)

where Et is the set of all edges in Gkt and
∣∣E0

∣∣ = 2k is the number of edges
in initial network Gk0.

Again, according to the model construction, the new vertex vt+1 adds
k new edges by randomly copying k vertices (either the source or target)
from the selected k distinct edges in the existing network. Therefore, any
vertex v can only receives a positive-in-degree if v is the target vertex of the
selected edge (v′, v) ∈ E+

t for copying in which the source vertex v′ is copied
by the vt+1. That is, if vt+1 connects with v by the edge (vt+1, v), such
that (vt+1, v) ∈ E+

t , (v′, v) ∈ E+
t and v′ is copied by vt+1, then v receives a

positive-in-degree.
Also, we know that the number of positive-directed-edges, in which

v ∈ Vt is the target vertex, is equal to the positive-in-degree of v in Gkt ,
i.e. d+in

Gkt
(v). Now, v receives a positive-in-degree only if vt+1 copied the

source vertex from the selected positive-directed-edge e, in which v is the
target vertex. Therefore, in the process of copying k edges from the existing
network, there is a chance of copying one more edge in which v ∈ Vt is the
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target vertex. That is, v may receive more than one positive-in-degree in
the transition from Gkt to Gkt+1.

Therefore, the probability that the vertex v ∈ Vt receives exactly l
positive-in-degree in time t+ 1 is

P[v receives exactly l positive-in-degree] =

α

(d+in
Gkt

(v)

l

)(kt−d+in
Gkt

(v)

k−l

)
(
kt
k

) , (3.27)

where e ∈ E+
t , l ≥ 1. In the Eq.(3.27), the term α is the probability of

copying the source vertex for the selected edge (i.e. connecting vt+1 with
the target vertex) and the fractional term is the probability of selecting l
edges in which v is the target vertex of e.

For given d+in
Gkt

(v) = d, the conditional probability that a vertex v ∈ Vt
receives exactly l positive-in-degree in time t+ 1 is

P[v receives exactly l positive-in-degree |d+in
Gkt

(v) = d]

= α

(
d
l

)(
kt−d
k−l
)(

kt
k

) , (3.28)

which is dependent on t, d and k.
At this point, if we look at the above probability, then it is very unclear

to have any preferential attachment property.

3.5.3 Notations

We introduce the following parameters:

ak = 1− k − 1

kt
→ 1 as t→∞, (3.29)

bd =

k−2∏
i=0

(
1− d

kt− i
)
→ 1 as t→∞, (3.30)

bd−1 =

k−2∏
i=0

(
1− d− 1

kt− i
)
→ 1 as t→∞. (3.31)

3.5.4 Degree Dynamics

Before investigating the degree dynamics, first, we analyze the evolution
of the number of positive and negative edges in Gkt . Consider the edge
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copying model for signed directed networks generates the σ-algebra which
is denoted by Ft = σ(Gkt , t ≥ 1).

Let, X+
e (t) and X−e (t) are the random variables for the number of pos-

itive and negative edges in Gkt respectively. According to the model con-
struction, there exist exactly k positive and k negative edges in the initial
network Gk0.

At time t, the new vertex adds k edges (both positive and negative) to
the network by copying k distinct edges from the existing network. That
is, a positive edge will add to network if the new vertex select a positive
existing edge. Therefore, for given the value of X+

e (t), the expected number
of newly added positive edges in Gkt+1 is

k

|Et|
X+
e (t). (3.32)

Therefore, the net difference in the number of positive edges from Gkt to
Gkt+1 is

E
[
X+
e (t+ 1)

∣∣Ft]−X+
e (t) =

k

|Et|
X+
e (t). (3.33)

By taking mathematical expectation on the both side of the Eq.(3.33), we
get (using Eq.(3.26))

E
[
X+
e (t+ 1)

]
=
(
1 +

k

kt+ 2k

)
E
[
X+
e (t)

]
=
t+ 3

t+ 2
E
[
X+
e (t)

]
. (3.34)

Therefore, we can write

E
[
X+
e (t)

]
=
t+ 2

t+ 1
E
[
X+
e (t− 1)

]
. (3.35)

Since, E
[
X+
e (0)

]
= k, by solving the Eq.(3.35), we get (using Eq.(3.26))

E
[
X+
e (t)

]
=
t+ 2

2
k =
|Et|

2
. (3.36)

Now, we focus on analyzing the dynamic of the positive-in-degree distribu-
tion in Gkt .

Let, X+in
d (t) be random variable for the number of vertices with positive-

in-degree d in Gkd generated by edge copying model. Now, we prove the fol-
lowing lemmas for calculating the expected number of vertices with positive-
in-degree d in Gkt+1.
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3.5. Model B: Edge Copying Model

Lemma 3.6. For each d ≤ k, the expected number of vertices with positive-
in-degree d in Gkt+1 satisfies

E
[
X+in
d (t+ 1)

]
≈ O(1) +

(d− 1)α

tak
bd−1 E[X+in

d−1(t)]

+ (1− dα

tak
bd) E[X+in

d (t)] +
d∑
l=2

O(t−l);

where E
[
X+in
d−1(t)

]
and E

[
X+in
d (t)

]
are the expected number of vertices with

positive-in-degree d − 1 and d in Gkt respectively. Also, bd and bd−1 are
defined in Eq’s(3.30) and (3.31) respectively.

Proof. For the case d ≤ k, a vertex v ∈ Vt may receive at most k positive-
in-degree in the transition Gkt to Gkt+1. To find the expected number of
positive-in-degree d in Gkt+1, in this case, we have to consider the following
three situations.

The first situation is, if v ∈ Vt, with d+in
Gkt

(v) = d− l; 1 ≤ l ≤ d, receives

exactly l positive-in-degree in Gkt+1. Then, for given Gkt , the expected num-
ber of vertices with positive-in-degree d− l in Gkt and d in Gkt+1 is (by using
Eq.s(3.26) and (3.28))

d∑
l=1

α

(
d−l
l

)(
kt−d+l
k−l

)(
kt
k

) X+in
d−l (t)

= α

(
d−1

1

)(
kt−d+1
k−1

)(
kt
k

) X+in
d−1(t) +

d∑
l=2

α

(
d−l
l

)(
kt−d+l
k−l

)(
kt
k

) X+in
d−l (t)

=
α(d− 1)

t− k−1
k

k−2∏
i=0

(1− d− 1

kt− i
)X+in

d−1(t)

+
d∑
l=2

α
l−1∏
i=0

(
(d− l − i)(k − i)

(l − i)(kt− i)

) k−l−1∏
i=0

(1− d− l
kt− i

)X+in
d−l (t)

=
α(d− 1)

tak
bd−1X

+in
d−1(t) +

d∑
l=2

O(t−l)X+in
d−l (t); (3.37)

where ak = 1− k−1
kt and bd−1 =

k−2∏
i=0

(1− d−1
kt−i).

The second situation is, if v ∈ Vt, with d+in
Gkt

(v) = d; 1 ≤ l ≤ d, re-

ceives exactly l positive-in-degree in Gkt+1. Then, for given Gkt , the expected

38



3.5. Model B: Edge Copying Model

number of vertices with positive-in-degree d in Gkt and d+ l in Gkt+1 is

d∑
l=1

α

(
d
l

)(
kt−d
k−l
)(

kt
k

) X+in
d (t)

= α

(
d
1

)(
kt−d
k−1

)(
kt
k

) X+in
d−1(t) +

d∑
l=2

α

(
d
l

)(
kt−d
k−l
)(

kt
k

) X+in
d (t)

=
αd

t− k−1
k

k−2∏
i=0

(1− d

kt− i
)X+in

d (t)

+

d∑
l=2

α

l−1∏
i=0

(
(d− i)(k − i)
(l − i)(kt− i)

) k−l−1∏
i=0

(1− d

kt− i
)X+in

d (t)

=
αd

tak
bdX

+in
d (t) +

d∑
l=2

O(t−l)X+in
d (t); (3.38)

where ak = 1− k−1
kt and bd =

k−2∏
i=0

(1− d
kt−i).

The third situation is, whether the new vertex vt+1 has positive-in-degree
d in Gkt+1 or not. The vertex vt+1 can achieve a positive-in-degree in Gkt+1 if
the random process selects an edge (vi, vj) ∈ E+

t in which the target vertex
vj is selected for copying. That is, vt+1 receives a positive-in-degree in Gkt+1,
if vt+1 connects with the source vertex vi from the randomly selected edge
(vi, vj) ∈ E+

t by the new edge (vi, vt+1) ∈ E+
t+1. Therefore, according to the

model construction, the probability that vt+1 receives a positive-in-degree
in Gkt+1 is

(1− α)

∣∣E+
t

∣∣∣∣Et∣∣ , (3.39)

where E+
t and Et are the sets of all positive-edges and all edges in Gkt

respectively.
Since, vt+1 has k neighbors in Gkt+1, then we can write the expectation of the
event that the vertex vt+1 has exactly d positive-in-degree in Gkt+1, where
1 ≤ d ≤ k, as

E
[
Ikd (vt+1)

∣∣Ft] =

(
k

d

)(
1−

(1− α)
∣∣E+

t

∣∣∣∣Et∣∣
)k−d((1− α)

∣∣E+
t

∣∣∣∣Et∣∣
)d

=

(
k

d

)((|Et| − (1− α) |E+
t |
)k−d

|Et|k

)
(1− α)d |E+

t |d
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≤
(
k

d

)(
|Et|k−d + (1− α)k−d|E+

t |k−d

|Et|k

)
(1− α)d |E+

t |d

=

(
k

d

)(
(1− α)d

|E+
t |d

|Et|d
+ (1− α)k

|E+
t |k

|Et|k

)
; (3.40)

where Ikd (vt+1) is the indicator function of the event that vertex vt+1 has
positive-in-degree d, such that 1 ≤ d ≤ k, in Gkt+1.
Since, E[X+

e (t)] be the expected number of positive edges in Gkt , then we
get (using Eq.(3.36))

|E+
t | ≈ E[X+

e (t)] =
|Et|

2
. (3.41)

Then, from Eq.s(3.40) and (3.41), we get

E
[
Ikd (vt+1)

∣∣Ft] ≤ (k
d

)(
1

2d
(1− α)d +

1

2k
(1− α)k

)
= IM . (let), (3.42)

where 1 ≤ d ≤ k. Here, IM , which is independent of t and equals to zero for
d > k, is constant for a random process.

Therefore, by using Eq.s(3.37), (3.38) and (3.42), for given the value of
X+in
d (t), the net difference in the number of vertices with positive-in-degree

d from Gkt to Gkt+1 can be approximated as (after rearranging)

E
[
X+in
d (t+ 1)

∣∣Ft]−X+in
d (t) ≈ IM +

(d− 1)α

tak
bd−1X

+in
d−1(t)

− dα

tak
bdX

+in
d (t) +

d∑
l=2

O(t−l). (3.43)

By taking mathematical expectation on the both side of Eq.(3.43), we get

E
[
X+in
d (t+ 1)

]
≈ IM +

(d− 1)α

tak
bd−1E[X+in

d−1(t)]

+
(
1− dα

tak
bd
)
E[X+in

d (t)] +

d∑
l=2

O(t−l); (3.44)

where d ≤ k and IM is a constant which is independent of t.
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Lemma 3.7. For each d > k, the expected number of vertices with positive-
in-degree d in Gkt+1 satisfies

E
[
X+in
d (t+ 1)

]
=

(d− 1)α

tak
bd−1E[X+in

d−1(t)]

+
(
1− dα

tak
bd
)
E[X+in

d (t)] +

k∑
l=2

O(t−l),

where E
[
X+in
d−1(t)

]
and E

[
X+in
d (t)

]
are the expected number of vertices with

positive-in-degree d − 1 and d in Gkt respectively. Also, bd and bd−1 are
defined in Eq’s(3.30) and (3.31) respectively.

Proof. For the case d > k, a vertex v ∈ Vt may receive at most k positive-
in-degree in the transition from Gkt to Gkt+1. To find the expected number of
positive-in-degree d in Gkt+1, in this case, we have to consider the following
two situations.

The first situation is, if v ∈ Vt, with d+in
Gkt

(v) = d− l; 1 ≤ l ≤ k, receives

exactly l positive-in-degree in Gkt+1. Then, for give Gkt , the expected number
of vertices with positive-in-degree d− l in Gkt and d in Gkt+1 is

k∑
l=1

α

(
d−l
l

)(
kt−d+l
k−l

)(
kt
k

) X+in
d−l (t)

=
α(d− 1)

tak
bd−1X

+in
d−1(t) +

k∑
l=2

O(t−l)X+in
d−l (t), (3.45)

where ak = 1− k−1
kt and bd−1 =

k−2∏
i=0

(1− d−1
kt−i).

The second situation is, if v ∈ Vt, with d+in
Gkt

(v) = d; 1 ≤ l ≤ k, re-

ceives exactly l positive-in-degree in Gkt+1. Then, for given Gkt , the expected
number of vertices with positive-in-degree d in Gkt and d+ l in Gkt+1 is

k∑
l=1

α

(
d
l

)(
kt−d
k−l
)(

kt
k

) X+in
d (t)

=
αd

tak
bdX

+in
d (t) +

k∑
l=2

O(t−l)X+in
d (t), (3.46)

where ak = 1− k−1
kt and bd =

k−2∏
i=0

(1− d
kt−i).
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Therefore, by using the Eq.s(3.45) and (3.46), for given the value of
X+in
d (t), the net difference in the number of vertices with positive-in-degree

d from Gkt to Gkt+1 is (after rearranging)

E
[
X+in
d (t+ 1)

∣∣Ft]−X+in
d (t) =

(d− 1)α

tak
bd−1X

+in
d−1(t)

− dα

tak
bdX

+in
d (t) +

k∑
l=2

O(t−l). (3.47)

By taking mathematical expectation on the both side of the Eq.(3.43), we
get

E
[
X+in
d (t+ 1)

]
=

(d− 1)α

tak
bd−1E[X+in

d−1(t)]

+
(
1− dα

tak
bd
)
E[X+in

d (t)] +

k∑
l=2

O(t−l) (3.48)

where d > k.

Let {β+in
d } be a sequence of positive integers. In next theorem, we show

that,
∣∣E[X+in

d (t)
]
− tβ+in

d

∣∣ is asymptotically bounded by a constant where

{β+in
d } satisfies the following recurrence equations

β+in
d =

d− 1

d+ 1
α

β+in
d−1; d > k, and β+in

k ' c, (3.49)

as t→∞ and c is a constant.

Theorem 3.8. Let E[X+in
d (t)] be the expected number of vertices with positive-

in-degree d in Gkt generated by Model B. If α is the probability of coping
source vertex from a randomly selected edge, then∣∣E[X+in

d (t)]− tβ+in
d

∣∣ ≤ O(1),

where β+in
d has a power-law bound d−

(
1+ 1

α

)
.

Proof. First, we investigate the base case for d = 1. In the Eq.(3.44), the
second term becomes zero for d = 1. Then, the expected number of vertices
with positive-in-degree 1(one) in Gkt+1 can be approximated as

E
[
X+in

1 (t+ 1)
]
≈ IM +

(
1− α

tak
bd
)
E[X+in

1 (t)] +

d∑
l=2

O(t−l). (3.50)
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By using E
[
X+in

1 (t)
]

= k at t = 0, we get from solving the Eq.(3.50)

E
[
X+in

1 (t)
]
≈ IM t+O(1). (3.51)

Now, we investigate the case 2 ≤ d ≤ k. We get from the Eq.(3.44), the
expected number of vertices with positive-in-degree d in Gkt+1 can be ap-
proximated as

E
[
X+in
d (t+ 1)

]
≈ IM +

(d− 1)α

tak
bd−1E[X+in

d−1(t)]

+
(
1− dα

tak
bd
)
E[X+in

d (t)] +
d∑
l=2

O(t−l), (3.52)

where 2 ≤ d ≤ k.
Finally, for d > k the expected number of vertices with positive-in-degree d
in Gkt+1 is (using Eq.(3.48))

E
[
X+in
d (t+ 1)

]
=

(d− 1)α

tak
bd−1E[X+in

d−1(t)]

+
(
1− dα

tak
bd
)
E[X+in

d (t)] +
k∑
l=2

O(t−l). (3.53)

Assume, β+in
d = 0 for d ≤ 0. Let, E

[
X+in
d

]
can be approximate by tβ+in

d .
Then, the Eq.(3.50) satisfies

(t+ 1)β+in
1 ≈ IM +

(
1− α

tak
bd
)
tβ+in

1 +
d∑
l=2

O(t−l),

(
1 +

dαbd
ak

)
β+in

1 ≈ IM +
d∑
l=2

O(t−l).

Since, as t → ∞, then ak → 1, bd → 1, and
∑d

l=2O(t−l) → 0, and also IM
is a constant. Therefore, from the above equation, we get

β+in
1 ≈ IM ; as t→∞. (3.54)

Also, from the Eq.(3.52), we get for 2 ≤ d ≤ k

(t+ 1)β+in
d ≈ IM +

(d− 1)α

tak
bd−1tβ

+in
d−1

+
(
1− dα

tak
bd
)
tβ+in
d +

d∑
l=2

O(t−l).
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By rearranging the above equation and using the facts that, as t→∞, then
ak, bd−1, bd all approach to 1,

∑d
l=2O(t−l) → 0, and IM is a constant, we

get

β+in
d ≈ O(1) +

d− 1

d+ 1
α

β+in
d−1; 2 ≤ d ≤ k (3.55)

as t→∞.
Also, from the Eq.(3.53), we get for d > k

(t+ 1)β+in
d =

(d− 1)α

tak
bd−1tβ

+in
d−1 +

(
1− dα

tak
bd
)
tβ+in
d +

k∑
l=2

O(t−l) (3.56)

Since, as t→∞, then ak, bd−1, bd all approach to 1,
∑d

l=2O(t−l)→ 0, then
by rearranging above equation we get

β+in
d =

d− 1

d+ 1
α

β+in
d−1; d > k, (3.57)

as t→∞.

Let, ∆+in
d (t) = E

[
X+in
d (t)

]
− tβ+in

d . To show that, E
[
X+in
d (t)

]
can be

approximated by tβ+in
d , we have to prove by induction that,

∣∣∆+in
d (t)

∣∣ is
bounded by a constant.

For d = 1, we get from the Eq.s(3.51) and (3.54)

∆+in
1 (t) + tβ+in

1 = IM t+O(1),

∆+in
1 (t) =

αIM t

1 + α
+O(1), (3.58)

Therefore, for d = 1 we get

|∆+in
1 (t)| ≤ O(1). (3.59)

Consider
∣∣∆+in

d (t)
∣∣ is also bounded by a constant. Thus, we can write∣∣∆+in
d (t)

∣∣ =
∣∣E[X+in

d (t)
]
− tβ+in

d

∣∣ ≤ O(1). (3.60)

Now, from the Eq.(3.52), we get

∆+in
d (t+ 1) + (t+ 1)β+in

d ≈ IM +
(d− 1)α

tak
bd−1

(
∆+in
d−1(t) + tβ+in

d−1

)
+
(
1− dα

tak
bd
)(

∆+in
d (t) + tβ+in

d

)
+

d∑
l=2

O(t−l).
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By rearranging the above equation, we get

∆+in
d (t+ 1) = IM +

(d− 1)αbd−1

tak
∆+in
d−1(t) +

tak − dαbd
tak

∆+in
d (t)

+
(d− 1)αbd−1

ak
β+in
d−1 −

dαbd + ak
ak

β+in
d +

d∑
l=2

O(t−l). (3.61)

Now, by using the definition of β+in
d from the Eq.(3.55), we can write

(d− 1)αbd−1

ak
β+in
d−1 −

dαbd + ak
ak

β+in
d

=
(d− 1)αbd−1

ak

dα+ 1

(d− 1)α
β+in
d − dαbd + ak

ak
β+in
d +O(1)

=
1

ak
((dα+ 1)bd−1 − (dαbd + ak))β

+in
d +O(1)

=

(
bd−1

ak
+
dα(bd−1 − bd)

ak
− 1

)
β+in
d +O(1)

= Aβ+in
d +O(1), (3.62)

where A =

(
bd−1

ak
+

dα(bd−1−bd)
ak

− 1

)
.

Since, bd−1 − bd < 0 and also bd−1 → 1, ak → 1 for t → ∞. Hence,
A→ 0 as t→∞. Therefore, from the Eq.s(3.61) and (3.62), we get

∣∣∆+in
d (t+ 1)

∣∣ ≤ IM +
(d− 1)αbd−1

tak

∣∣∆+in
d−1(t)

∣∣+
tak − dαbd

tak

∣∣∆+in
d (t)

∣∣
+Aβ+in

d +O(1)

≤ IM +

(
(d− 1)αbd−1

tak
+
tak − dαbd

tak

)
max

(∣∣∆+in
d−1(t)

∣∣, ∣∣∆+in
d (t)

∣∣)
+Aβ+in

d +O(1)

= IM +

(
1− αbd−1

tak
+
dα(bd−1 − bd)

tak

)
max

(∣∣∆+in
d−1(t)

∣∣, ∣∣∆+in
d (t)

∣∣)
+Aβ+in

d +O(1)

= IM +B max
(∣∣∆+in

d−1(t)
∣∣, ∣∣∆+in

d (t)
∣∣)+Aβ+in

d +O(1),

(3.63)

where B =

(
1− αbd−1

tak
+

dα(bd−1−bd)
tak

)
.
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Since, bd−1 − bd < 0 and also bd−1 → 1, ak → 1 for t → ∞. Hence,
B → 1 as t→∞. Hence, from the Eq.s(3.59), (3.60), and (3.63), we get∣∣∆+in

d (t+ 1)
∣∣ =

∣∣E[X+in
d (+1)

]
− (t+ 1)β+in

d

∣∣ ≤ O(1). (3.64)

Therefore, by using the induction hypothesis, we can say that, E
[
X+in
d (t)−

tβ+in
d

]
is bounded by a constant.

Now, to find the the power-low bound for the positive-in-degree distribu-
tion in GKt generated by edge copying model, we have to solve the following
recurrence equation

β+in
d =

d− 1

(d+ 1
α)
β+in
d−1; for d > k, (3.65)

with the initial conditions

β+in
1 ≈ IM ; for d = 1, (3.66)

β+in
d ≈ O(1) +

d− 1

(d+ 1
α)
β+in
d−1; for 2 ≤ d ≤ k, (3.67)

when t→∞.
From the Eq.(3.42), we know that, IM , which is independent of t, is constant
for a random process. Therefore, in Eq.(3.66), β+in

1 is also a constants.
Again, from the Eq.(3.67), the first term is constant for 2 ≤ d ≤ k.

Therefore, for 1 ≤ d ≤ k, we can write (using Eq.(3.66))

β+in
k = K (3.68)

where K is a constant.
Therefore, from the Eq.(3.65), we get

β+in
d = K

d∏
i=k

i− 1

i+ 1
α

= K
Γ
(
k + 1

α

)
Γ(k − 1)

Γ(d)

Γ
(
d+ 1

α + 1
) (3.69)

By using Stirling’s approximation in the above equation, we can write β+in
d ≈

d−
(

1+ 1
α

)
.
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Now, we analyze the dynamics of the positive-out-degree distribution in
Gkt . The model parameter 1 − α is for probability of the copying target
vertex.

Let {β+out
d } be a sequence of positive integers. Then, by following the

above procedure for positive-out-degrees, we can prove the following theorem
for the positive-out-degree distribution in Gkt .

Theorem 3.9. Let E[X+out
d (t)] be the expected number of vertices with

positive-out-degree d in Gkt generated by Model B. If 1− α is the probability
of coping target vertex from a randomly selected edge, then∣∣E[X+out

d (t)]− tβ+out
d

∣∣ ≤ O(1),

where β+out
d has a power-law bound d−

(
1+ 1

1−α

)
.

In similar manner, let {β−ind } and {β−outd } be two sequences of positive
integers. Then we can also prove the following theorems for the negative-
in-degree and the negative-out-degree distributions respectively.

Theorem 3.10. Let E[X−ind (t)] be the expected number of vertices with
negative-in-degree d in Gkt generated by Model B. If α is the probability of
coping source vertex from a randomly selected edge, then∣∣E[X−ind (t)]− tβ−ind

∣∣ ≤ O(1),

where β−ind has a power-law bound d−
(

1+ 1
α

)
.

Theorem 3.11. Let E[X−outd (t)] be the expected number of vertices with
negative-out-degree d in Gkt generated by Model B. If 1−α is the probability
of coping target vertex from a randomly selected edge, then∣∣E[X−outd (t)]− tβ−outd

∣∣ ≤ O(1),

where β−outd has a power-law bound d−
(

1+ 1
1−α

)
.

3.6 Model C: Clique Copying Model

3.6.1 Model Definition

In this model, we try to generalize our edge copying model for signed
directed networks. According to the edge copying model, at each time, a
new vertex enters to the network and copy an existing edge u.a.r to connect
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3.6. Model C: Clique Copying Model

with a vertex (either source or target) from the selected edge. Alternatively,
we can consider an edge as a k-clique where k = 2 and a vertex is a (k− 1)-
clique. Therefore, in other words, we can express the general form of the
edge copying model as follows.

Initially, we start with an arbitrarily signed directed clique Gk0 of size∣∣Vt∣∣ = k+ 1. At the time t+ 1, the new vertex vt+1 enters to the network to
construct Gkt+1. The vertex vt+1 connects with k − 1 existing vertices and
creates a new k-clique in the following ways:

(1) Select a k-clique uniformly at random form Gkt .

(2) Select a vertex v from the selected k-clique uniformly at random. This
process gives a (k − 1)-clique in which the vertex v does not belong.

(3) Connect vt+1 with the vertices in (k − 1)-clique by copying signed-
directed-edges between the vertex v and the (k − 1)-clique vertices.

3.6.2 Structural Balanced

The signed directed network generated by the clique copying model
shows following structural property.

Theorem 3.12. If the initial network Gk0 is structurally balanced, then the
signed directed network Gkt = (Vt, Et) generated by clique copying model is
also structurally balanced.

Proof. Let, at any time t − 1, the network Gkt−1 = (Vt−1, Et−1) is struc-
turally balanced. Therefore, according to the balanced theory, we can find a
partition in Vt−1 such that the end vertices of a positive edge belong to the
same group, and the end vertices of a negative edge belong to two different
groups.

According to the clique model, at time t, a new vertex vt enters to the
network Gkt−1 and connects with all vertices in a (k − 1)-clique by copy-
ing their one of the common vertices v. That is, the signed-directed-edges
between v and the (k− 1)-clique vertices are copied by the signed-directed-
edges between vt and the (k − 1)-clique vertices. Let, V (Ck−1) is the set of
vertices in the selected (k − 1)-clique.

First, assume the existing network Gkt−1 is structurally balanced. Let,
k = 2, i.e., k − 1 = 1. Therefore, there exist only one vertex, let vi, in the
set V (Ck−1). Then, if the edge between v and vi ∈ V (Ck−1) is positive then
the new edge between vt and vi is also positive. In that case, vt join the vi’s
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balanced partition in Gkt . Again, if the edge between v and vi is negative
then the new edge between vt and vi is also negative. In that case, vt cre-
ates a new vertex partition in Gkt . In both cases, Gkt preserves its structural
balance.

Let, k > 2. Therefore, there exist more than one vertex in the set
V (Ck−1). Since Gkt−1 is structurally balanced, then any two vertices vi, vj ∈
V (Ck−1) and their common neighbor vertex v are in the same partition if
the edges among vi, vj and v are positive. If vt connects with vi and vj
by copying two positive edges (v, vi) and (v, vj), then vt is also in the same
partition with vi and vj in Gkt . This addition of the new vertex preserves
the balanced state of Gkt .

Again, since Gkt−1 is structurally balanced, if vi, vj and v are in two
partitions there exist exactly one positive edge among these vertices. Then
vt may copies one positive and one negative edges or both negative edges.
If vt copies one positive and one negative edges, then the edge between vi
and vj must be a negative edge, i.e. vi and vj are in different partitions.
Therefore, vt enters either vi or vj ’s partition in Gkt based on the new positive
edge. In this case, Gkt is also structurally balanced.

Again, if vi, vj and v are in three different partitions there exist no
positive edge among these vertices. Then, vt copies two negative edges to
connect with vi and vj , which are already in different partitions. Therefore,
vt creates a new partition in Vt. This case also preserve the balanced state
of Gkt .

Next assume Gkt−1 is not balanced. Therefore, there exist at least three
vertices v, vi and vj such that they are connected by exactly two positive
edges and one negative edge. Now, let the vertex vt connect with vi and
vj by copying the edges (v, vi) and (v, vj). If vt copies both positive edges
then the edge between vi and vj must be negative, which leads Gkt is not
structurally balanced.

Again, if vt copies one positive and one negative edge, then edges between
vi and vj is positive, i.e. vi and vj are in same partition. Now, vt has a
positive edge and a negative edge with two vertices from the same partition,
which leads Gkt is not structurally balanced.

Therefore, if Gkt−1 is balanced, then Gkt is also balanced. By using back
induction, we conclude that, if the initial networkGk0 is balanced, then at any
time the network generated by the clique copying model is also structurally
balanced.
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Model A: Preferential Attachment Model

|V |, |E| Param.’s Dist. type n γ p-value

10000, k = 2 pos-out-deg 9999 2.860 0.533
79968 pos-in-deg 9999 2.830 0.480

neg-out-deg 9999 2.730 0.019
neg-in-deg 9999 2.790 0.724

10000, k = 3 pos-out-deg 9999 2.930 0.510
119928 pos-in-deg 9999 2.840 0.688

neg-out-deg 9999 2.840 0.449
neg-in-deg 9999 2.800 0.337

10000, k = 4 pos-out-deg 9999 2.800 0.840
159872 pos-in-deg 9999 2.870 0.249

neg-out-deg 9999 2.870 0.353
neg-in-deg 9999 2.800 0.023

Table 3.3: Power-law exponents γ and the corresponding p-values for differ-
ent signed-directed-degree distributions in the synthetic networks generated
by preferential attachment model.

3.7 Simulation and Results Discussion

In the preferential attachment model (Model A), at each time, k number
of positive and negative directed-edges are added in the both directions (in
and out) with respect to the new vertex. So according to the Theorem 3.2-
Theorem 3.5, all of the signed-directed-degrees follow the same power-law
distribution with a exponent in the range γ ≈ 3. In Table 3.3, the values
of the exponent γ for the power-law model fitting for the signed-directed-
degree distributions in the random networks generated by the preferential
attachment model is u 2.8 which supports the theoretical argument.

Again, compare to our empirical study, the preferential attachment model
only captures the observing property that the signed-directed-degree distri-
butions follow the power-law with exponents in the range 2.0 ≤ γ ≤ 3.5.
But this model fails to capture the another observing property of having
the inverse relationship between the number of vertices with in-degree and
out-degree (for both positive and negative). This is because, in this model,
the new vertex enters to the existing network with equal numbers of all the
four types of signed-directed-degrees and there is no parameter to control
the direction or sign of the newly added edges.
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Model B: Edge copying model

|V |, |E| Param.’s Dist. type n γ p-value

100000, k = 2, pos-out-deg 42005 2.240 0.439
299996 α = 0.25 pos-in-deg 87386 3.500 0.000

neg-out-deg 23300 2.310 0.146
neg-in-deg 57930 3.500 0.000

100000, k = 2, pos-out-deg 40771 2.850 0.165
299996 α = 0.50 pos-in-deg 40797 2.770 0.119

neg-out-deg 71259 2.760 0.003
neg-in-deg 71379 2.780 0.012

100000, k = 2, pos-out-deg 89861 3.500 0.000
299996 α = 0.75 pos-in-deg 44679 2.270 0.323

neg-out-deg 51817 3.500 0.000
neg-in-deg 20179 2.220 0.769

100000, k = 3, pos-out-deg 49327 2.260 0.246
399995 α = 0.25 pos-in-deg 92175 3.500 0.000

neg-out-deg 32638 2.270 0.541
neg-in-deg 73278 3.500 0.000

100000, k = 3, pos-out-deg 54980 2.850 0.479
399995 α = 0.50 pos-in-deg 54617 2.770 0.086

neg-out-deg 78642 2.890 0.251
neg-in-deg 78460 2.940 0.495

100000, k = 3, pos-out-deg 94961 3.500 0.000
399995 α = 0.75 pos-in-deg 53777 2.250 0.654

neg-out-deg 63809 3.500 0.000
neg-in-deg 26806 2.270 0.870

Table 3.4: Power-law exponents γ and the corresponding p-values for differ-
ent signed-directed-degree distributions in the network instances generated
by edge copying model.
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Model C: Clique copying model

|V |, |E| Param.’s Dist. type n γ p-value

100000, k = 2 pos-out-deg 16705 2.510 0.012
100000 pos-in-deg 16780 2.890 0.141

neg-out-deg 8430 2.560 0.007
neg-in-deg 8231 2.650 0.070

100000, k = 3 pos-out-deg 24138 2.300 0.003
199998 pos-in-deg 24611 2.420 0.146

neg-out-deg 16908 2.360 0.954
neg-in-deg 16902 2.370 0.200

100000, k = 4 pos-out-deg 28719 2.330 0.365
299995 pos-in-deg 31431 2.210 0.851

neg-out-deg 19835 2.280 0.919
neg-in-deg 19724 2.170 0.262

Table 3.5: Power-law exponents γ and the corresponding p-values for differ-
ent signed-directed-degree distributions in the network instances generated
by clique copying model.

From the results given in the Table 3.4 for the edge copying model, we
can observe that the power-law model fitting for the signed-directed-degree
distributions in the random networks generated by this model are mostly
statistically significant (p-value ≥ 0.01) with components in the range 2.0 ≤
γ ≤ 3.5. Therefore, this model captures the real-world signed directed
social networks property of having signed-directed-degree distributions with
a component in the range 2.0 ≤ γ ≤ 3.5.

Again, in the edge copying model (Model B), the signed-directed-degree
distributions depend on the parameter α which is the probability of copying
the target vertex from the randomly selected edge. That is, when α → 1,
more vertices receive signed-out-degrees (both positive and negative) com-
pare to the number of vertices that receive singed-in-degrees (both positive
and negative). In Table 3.4, the values in the column n support this ar-
gument. Therefore, the edge copying model captures the inverse property
between the number of in and out degree vertices (positive and negative) of
the real-world signed directed social networks.

The results are given in Table 3.5, show that power law can also char-
acterize the signed-directed degree distributions in random networks gener-
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ated by clique copying model with an exponent in the range 2.0 ≤ γ ≤ 3.5.
Since there is no parameter for controlling the in and out direction of newly
added edges, this model also does not capture the inverse property between
the number of in and out degree vertices (positive and negative) of the real-
world signed directed social networks.

The summary of the capturing our observed attributes (from Table 3.2.2)
by the proposed random models for signed directed networks is given in the
following Table 3.7.

Features Model A Model B Model C

(+/−)-out-deg∗ d−3 d−(1+ 1
1−α ) No

(+/−)-in-deg∗ d−3 d−(1+ 1
α

) No

2 ≤ γ ≤ 3.5 Yes Yes Yes

Captured Attributes A3 A1, A2, A3 A1, A2, A3

Table 3.6: Summary of capturing observed attributes by the proposed ran-
dom models.
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Chapter 4

Heuristic Algorithm for
Correlation Clustering
Problems

4.1 Correlation Clustering Problem

On a given signed weighted network (either undirected or directed), in
which each edge is labeled by either a positive or a negative sign, the Corre-
lation Clustering problem is to find a partition P in the vertex set that is
consistent with the edge-sign labels as much as possible. This problem can,
equivalently, be expressed in terms of two different objectives: maximum
agreements and minimum disagreements. A positive edge can be regarded
as a clustering agreement if the both end-vertices are in the same cluster,
whereas, it can be regarded as a clustering disagreement if the end-vertices
are in different clusters. On the other hand, a negative edge can be re-
garded as a clustering agreement if the both end-vertices are in different
clusters, whereas, it can be regarded as clustering disagreement if the both
end-vertices are in the same cluster. For the case of maximizing agreements,
the correlation clustering problem looks at the total weight of positive (+)
edges inside clusters, and negative (−) edges between the clusters. On the
other hand, for the case of minimizing disagreements, the correlation clus-
tering problem looks at the total weight of negative (−) edges inside the
clusters and positive (+) edges between the clusters. In this chapter, we de-
fine the maximizing agreements and minimizing disagreements correlation
clustering problems as Max-Agree-CC and Min-Agree-CC respectively.

Let G = (V,E, s) be a signed network with n vertices, where every edge
e = (i, j) in E has a non-negative weight wij . We also define the weight
of an edge e = (i, j) equivalently as we = wij . Assume every edge e ∈ E
is labeled by a sign function s : E → {+,−}. An edge (i, j) labeled with
positive-sign (+) suggests that the vertices i and j are similar and should
belong to the same cluster, whereas an edge (i, j) labeled with negative-sign
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(−) suggests that the vertices i and j are different and should be in different
clusters. Let E+ and E− denote the set of all positive and negative edges in
G respectively. Therefore, we can write E = E+ ∪ E− and E+ ∩ E− = ∅.

Let P = {P1, P2, ..., Pk} be a partition of V . Let C(i) be the set of
vertices in the same cluster as i. Then we can define the total weight of
the positive and negative edges inside the clusters due to the partition P
respectively as

W+
IC(P) =

∑
{wij : (i, j) ∈ E+, i ∈ C(j)},

W−IC(P) =
∑
{wij : (i, j) ∈ E+, i ∈ C(j)}.

Similarly, the total weight of the positive and negative edges between the
clusters due to the partition P respectively as

W+
BC(P) =

∑
{wij : (i, j) ∈ E+, i /∈ C(j)},

W−BC(P) =
∑
{wij : (i, j) ∈ E+, i /∈ C(j)}.

Therefore, the total weight of the positive edges insider the clusters and
negative edges between the clusters due to the partition P is

fw(P) = W+
IC(P) +W−BC(P) (4.1)

Similarly, the total weight of the positive edges between clusters and negative
edges inside clusters due to the partition P is

gw(P) = W+
BC(P) +W−IC(P) (4.2)

Based on the definition of Bansal et al. [BBC04], we can formulate the
Max-Agree-CC and Min-Disagree-CC problems as follows:

Problem 4.1 Max-Agree-CC Problem.
Instance: A weighted signed graph G = (V,E, s), where |V | = n and
s : E → {+,−}.
Task: Find a partition P∗ of vertices such that

fw(P∗) = max
P

fw(P).
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Problem 4.2 Min-Disagree-CC Problem.
Instance: A weighted signed graph G = (V,E, s), where |V | = n and
s : E → {+,−}.
Task: Find a partition P∗ vertices such that

gw(P∗) = min
P
gw(P).

In this chapter, we focus on Problem 4.2 , i.e. minimizing disagreements
due to the partition. In the following sections of this chapter we refer
Min-Disagree-CC Problem equivalently as Correlation Clustering
Problem or Clustering Problem.

4.2 Literature Review

The term Correlation Clustering was first used by Doreian and
Mrvar [DM96] as a criteria for analyzing the structural balance in social
networks. In 2003, Charikar et al. [CGW03] investigate the correlation
clustering editing problem on both complete and general graphs. They also
proved that this editing problem is APX-hard on complete graphs. Bansal et
al. [BBC04], in 2004, formalized the Correlation Clustering problem
as an optimization problem and showed that this is a special case of Clus-
tering Editing problem defined on signed network. They also showed
that this problem is a NP-hard and can be formulated in two different
ways: maximum agreements (Max-Agree) and minimum disagreements
(Min-Disagree). Since then, two distinct traits can be seen to solve this
problem. Bansal et al. [BBC04] first presented a polynomial time approxi-
mation scheme (PTAS) for the Max-Agree problem when the edge weights
of the signed networks are ±1. In 2006, Giotis et al. [GG06] proposed an-
other PTAS for the Max-Agree problem to signed network with ±1 edge
weights to find a partition P in which the maximum number of clusters
in P is fixed, say k. Coleman et al. [CSW08] presented an efficient local-
search approximation for this problem when k = 2. A 0.766-approximation
algorithm for the Max-Agree problem to signed network with arbitrary
edge weights was proposed by Charikar et al. [CGW05]. In 2015, Ahn et
al. [ACG+15] introduced a Max-Agree of the Correlation Cluster-
ing problem in the dynamic data stream model and presented a polynomial
time O(n.polylog n)-space approximation algorithm.

On the other hand, Charikar et al. [CGW05] first proposed an approxi-
mate algorithm to solve the Min-Disagree correlation clustering problems

56



4.3. Heuristic Algorithm for Correlation Clustering Problems

in 2005. In 2006, Demaine et al. [DEFI06] studied this problem on gen-
eral weighted graphs and presented an O(log n)-approximation algorithm
based on linear programming rounding and region growing technique. An
agent-based heuristic algorithm of the correlation clustering problems was
proposed by Yang et al. [YCL07], in which no prior knowledge on hidden
community structure is needed. A 3-approximation and implementable in
the computational model such as MapReduce was introduced by Chierichetti
et al. [CDK14].

The Correlation Clusterings problem is important in network sci-
ence as well as other scientific areas [MMP12]. In social networks, this
problem becomes a natural way to identify communities [CBGV+12] and
predicting missing edge sign in the link classification problem [CSX12]. For
example, Figueiredo and Moura [FM13] used this problem to evaluate bal-
anced partition in signed directed social networks by ignoring the edges di-
rections. The Correlation Clustering problem has an significant use in
the area of machine learning and data mining [CDK14, GMT07, ACG+15],
portfolio analysis in risk management [FF14, HLW02], biological system
networks [HBN07, DESZ07] etc..

4.3 Heuristic Algorithm for Correlation
Clustering Problems

4.3.1 Integer Linear Programming Formulation

In this section, we restate the integer linear programming formulation of
correlation clustering problem on general weighted signed graph proposed by
Demaine et al. [DEFI06]. We also used Grötschel and Wakabayashi [GW89]
integer linear programming formulation of clustering editing problem for
simplifying the constraints, which later studied by Charikar et al. [CGW03],
and Böcker et al. [BBK11].

Consider a set of
(
n
2

)
binary decision variables X = (xij ; 1 ≤ i < j ≤ n)

to represent each pair of vertices in G. Then, for a given clustering partition
P, set xij = 0 if i and j are in a same cluster, and xij = 1 otherwise.
Here, the solution matrix X for a given partition P can be represented as
an underlying induced undirected and unsigned graph GX with the same set
of vertices as G. We can define this underlying graph GX by the following
definition.

Definition 4.1 (X-Induced Graph). A graph GX = (V,EX) is said to be
X-Induced for a given matrix X if and only if (i, j) ∈ EX , i, j ∈ V then
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xij = 0.

Therefore, we can draw the relation among the signed graph G, a given
solution matrix X, and the underlying X-Induced graph GX in such way
that,

if xij = 0, =⇒ (i, j) ∈ EX ,
=⇒ i and j are in the same cluster in G

Alternatively, we can express this relation as for a given partition P in a
signed graph G if vertices i and j are in the same cluster then (i, j) ∈ GX .

Now by definition, we know that if 1− xij = 1 then vertices i and j are
in the same cluster, and 1 − xij = 0 then they are in the different clusters.
Thus, we can express gw(P) given Eq.(4.2) as follows:

gw(P) =
∑

(i,j)∈E+

wijxij +
∑

(i,j)∈E−

wij(1− xij), (4.3)

Described in Demaine et al. [DEFI06], the integer linear programming
formulation for the Correlation Clustering Problems, given in the
Problem 4.2 which minimizes the objective function given in the Eq.(4.3),
can be defined as follows:

min
∑

(i,j)∈E+

wijxij +
∑

(i,j)∈E−

wij(1− xij); ∀i, j ∈ V, (4.4)

subject to: xij + xjk ≥ xik; ∀i, j, k ∈ V, (4.5)

xij = xji; ∀i, j ∈ V, (4.6)

xij ∈ {0, 1}; ∀i, j ∈ V. (4.7)

The inequality constraint, in Eq.(4.5), enforces the condition that any dis-
tinct vertices i, j, k ∈ V such that, if i and j are in a same cluster then k
is also in this cluster. This is also called triangle inequality constraint. The
equality constraint, in Eq.(4.6), is to represent the undirected edge con-
straint.

Therefore, our goal is to solve the integer linear programming problems
given in Eq.s(4.4)-(4.7) to find the solution matrix X which leads us to a
vertex partition P. The underlying X-induced graph GX induced by this
solution matrix X will be a collection of disjoint maximal clique, in which
the vertices set corresponding to each maximal clique represents a cluster in
P.
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4.3.2 Relaxed-ILP

In this step, we relax the integer constraint in the Eq.(4.7). Then we get
the following linear programming problem:

min
∑

(i,j)∈E+

wijxij +
∑

(i,j)∈E−

wij(1− xij); ∀i, j ∈ V, (4.8)

subject to: xij + xjk ≥ xik; ∀i, j, k ∈ V, (4.9)

xij = xji; ∀i, j ∈ V, (4.10)

xij ∈ [0, 1]; ∀i, j ∈ V. (4.11)

Based on Grötschel and Wakabayashi [GW89], the linear programming for-
mulation for the Correlation Clustering Problems, the above relaxed
linear programming problem, given in Eq.s(4.8)-(4.11), equivalently can be
written as follows :

min
∑

(i,j)||(j,i)∈E+

wijxij +
∑

(i,j)||(j,i)∈E−

wij(1− xij); ∀ 1 ≤ i < j ≤ n,

(4.12)

subject to: xij + xjk ≥ xik; ∀ 1 ≤ i < j < k ≤ n, (4.13)

xij + xik ≥ xjk; ∀ 1 ≤ i < j < k ≤ n, (4.14)

xjk + xik ≥ xij ; ∀ 1 ≤ i < j < k ≤ n, (4.15)

0 ≤ xij ≤ 1; ∀ 1 ≤ i < j ≤ n. (4.16)

This relaxed problem, given in Eq.s(4.12)-(4.16), can be solved by using any
standard linear programming algorithm by the time polynomial of the input
size.

Let XR = (xij ; 1 ≤ i < j ≤ n) be the solution of the above relaxed
problem. Here, we may consider XR as a distance matrix in which x :
V × V → [0, 1] is the distance function with the following properties:

0 ≤ xij ≤ 1; ∀ i, j ∈ V, (4.17)

xij = xji; ∀ i, j ∈ V, (4.18)

xij + xjk ≥ xik; ∀ i, j, k ∈ V. (4.19)

Therefore, after solving the linear programming problem, given in Eq.s(4.12)-
(4.16), we get a complete weighted graph GXR induced by the solution
(distance) matrix XR in which all entries (distances) satisfies the above con-
ditions Eq.s(4.17)-(4.19) and lies between [0, 1].
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At this point, our goal is to calculate a distance matrix X∗ = (x∗ij ; 1 ≤
i < j ≤ n), which is closest to the solution distance matrix XR and is a
feasible solution of the integer program problem given in Eq.s(4.8)-(4.11).
Thus the distance matrixX∗ satisfy the constraints given in Eq.s(4.9)-(4.11),
the underlying X-Induced graph GX∗(V,EX∗) induced by X∗ satisfy , if
x∗ij = 0, (i, j) ∈ V then (i, j) ∈ EX∗ and otherwise, and then all of the
connected components in GX∗ can be interpreted as approximate cluster in
the signed graph G.

4.3.3 Ultrametric Distance Matrix

In this step, we calculate the ultrametric distance matrix UX for the
given solution distance matrix XR which is the solution of the relaxed linear
program of the Correlation Clustering Problem. An ultrametric on
the set V is defined as follows.

Definition 4.2 (Ultrametric). A distance function u : V ×V → IR+
0 is said

to be ultrametric if

max{uij , ujk} ≥ uik; ∀ i, j, k ∈ V, (4.20)

where, uij is the distance between i and j for all i, j ∈ V .

Ultrametric Definition as Linear Inequality: Consider the above dis-
tance function as u : V × V → {0, 1}. Then the ultrametric condition given
in Eq.(4.20) can be written as:

uij + ujk ≥ uik (4.21)

which is equivalence to the triangle inequality constraint, given in Eq.(4.5),
in the Correlation Clustering Problem given in Eq.s(4.4)-(4.7). Based
on the Definition 4.2 and Eq.(4.21), we define the following definition.

Definition 4.3 (0-1 Ultrametric Distance Matrix). A distance matrix U
is said to be 0-1 Ultrametric Distance Matrix if each of the elements in
U satisfies the linear inequality conditions given in Eq.(4.21), where u :
V × V → {0, 1}.

From the above Definition 4.3 and Eq.(4.21), we can say that any fea-
sible solution matrix of the integer linear programming formulation for the
Correlation Clustering Problem problem given in Eq.s(4.4)-(4.7) is
also a 0-1 Ultrametric Distance Matrix.
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Therefore, here, our goal to find the closest 0-1 Ultrametric Distance
Matrix UX for a given solution distance matrix XR in which all entries sat-
isfy the distance function x : V × V → [0, 1]. Here, XR is the solution of
the relaxed linear programming problem given in Eq.s(4.12)-(4.16). This
problem can be formulated as follows:

Problem 4.3. 0-1 Ultrametric Distance Matrix.
Instance: A distance matrix XR with x : V × V → [0, 1].
Task: Find a 0-1 Ultrametric Distance Matrix UX , where u : V × V →
{0, 1}, in minimum distance (cost).

In the above problem, finding UX with minimum cost is hard. We can
solve this issue by using two following steps: approximation and rounding.
In the first step, we solve the Problem 4.3 to approximate the closest ul-
trametric distance matrix by relaxing the integer constraint. The relaxed
version of the Problem 4.3 can be described as follows:

Problem 4.4. Closest Ultrametric.
Instance: A distance matrix XR with x : V × V → [0, 1].
Task: Find the closest ultrametric distance matrix UR with u : V × V →
[0, 1].

After finding the ultrametric distance matrix UR (relaxed) by solving Prob-
lem 4.4 , we can use a rounding method by using a given threshold k to
determine the 0-1 ultrametric distance matrix UX . The rounding problem
can be formulated as follows:

Problem 4.5. Rounding.
Instance: A distance matrix UR = (uij) with u : V × V → [0, 1] and a
given threshold k.
Task: Find a distance matrix UX = (u∗ij), such that u∗ : V × V → [0, 1] by
using a rounding process.

4.3.4 Closest Ultrametric

In this section, we focus on solving the Problem 4.4 , which is a closest
ultrametric problem. The complexity and algorithm for finding the closest
ultrametric from V × V , where V is set of vertices of a complete weighted
graph G′ = (V,E), depends on the type of distortion we are looking for.
The Problem 4.4 , which is finding and ultrametric u which is closest to x
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on V can be formulated under lp-distortion as follows:

Problem 4.6. Closest Ultrametric (lp-Distortion).
Instance: A distance matrix XR with x : V × V → [0, 1].
Task: Find a ultrametric distance matrix UX with u : V × V → [0, 1], such
that

min
u∈U

max
i,j∈V

( ∑
i,j∈V

|uij − xij |p
)1/p

,

where u : V × V → IR+
0 and U is the set of all ultrametrics on V .

Křivánek and Morávek[KM86] proved that this problem is NP-hard for
p = 1, i.e. for the case of additive distortion. Later, Harb et al.[HKM05]
proved it is APX-hard for any fixed p ≥ 1.

Again, the Problem 4.4 of finding the closest ultrametric u on V can
be formulated under l∞-distortion as follows:

Problem 4.7. Closest Ultrametric (l∞-Distortion).
Instance: A distance matrix XR with x : V × V → [0, 1].
Task: Find a ultrametric distance matrix UX with u : V × V → [0, 1], such
that

min
u∈U

max
i,j∈V

|uij − xij |,

where u : V × V → IR+
0 and U is the set of all ultrametrics on V .

Křivánek [Kři88] showed that the complexity of the algorithm to solve Prob-
lem 4.7 , i.e. to find closest ultrametric u on V from x under l∞-distortion is
O(n3). In Křivánek’s algorithm, the ultrametric distance between vertices
i, j ∈ V are adjusted by the ‘bottleneck ’ in the minimum spanning tree T on
G′. This bottleneck in T can be defined as

max
e∈T (i,j)

xe, (4.22)

where T (i, j) is the path between the vertices i and j in T . It can be noted
that, the graph G′ may have more than one minimum spanning tree, but
the value in Eq.(4.22) is independent of the selection of T . Křivánek[Kři88]
proved the following theorem:

Theorem 4.4 ([Kři88]). If T be a minimum spanning tree on a complete
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weighted graph G, then

2 min
u∈U

max
i,j∈V

|xij − uij | = max
i,j∈V
{xij − max

e∈T (i,j)
xe} (4.23)

where T (i, j) is the edge set of the path between i to j in T , xe is the edge
weight (distance) of an edge e ∈ T (i, j), and U is the set of all ultrametrics
on V .

Křivánek[Kři88] also proved that, for a given weighted completed graph
G = (V,E) and a minimum spanning tree T = (V,ET ) on G, an ultrametric
u∗ : V × V → IR+

0 on V such that

u∗ij =
1

2
max

e∈T (i,j)
{xe + x′e}; for all i, j ∈ V, (4.24)

satisfies Eq.(4.23), where x′e is the adjustment valuation can be defined by

x′ij = max
e∈T (i,j)

xe; for each (i, j) /∈ ET and, (4.25)

x′e = max
(i,j)/∈ET

{x′i,j , xe}; for each e ∈ ET . (4.26)

In this point, by using Eq.s(4.24)-(4.26), our goal is to find the closest ul-
trametric distance matrix UX on V in which u∗ : V × V → IR+

0 from the
given distance matrix XR obtained from the solution of the relaxed linear
program given in Eq.s(4.12)-(4.16).

4.3.5 Rounding

In this step, our focus to solve the Problem 4.5 to get an 0-1 ultrametric
distance matrix UX = (u∗ij); ∀i, j ∈ V , from the calculated relaxed ultra-
metric distance matrix UR with the distance function u : V × V → [0, 1],
and a given threshold k. We use a simple rounding process such that, take
u∗ij = 0 if uij ≤ k for each i, j ∈ V , otherwise u∗ij = 1.

4.3.6 The Algorithm and Implementation: Summary

The algorithmic steps and implementations procedures of the above al-
gorithm for solving the Correlation Clustering Problems are given
in the follows:

Step 1: Solve the relaxed linear program problem, given in Eq.s(4.12)-
(4.16). LetGXR = (V,EXR) be the underlyingX-induced complete weighted-
graph by the solution (distance) matrix XR. Each real number xij ∈ XR

represents the weight (distance) corresponds to the edge (i, j) ∈ EXR .
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Step 2: Find a minimum spanning-tree TXR = (V,ET ) of GXR . We use
Kruskal’s[Kru56] algorithm for minimum spanning-tree.

Step 3: Compute adjust valuation x′ij for all i, j ∈ V from Eq.s(4.24)-
(4.26). This can be implemented as follows:

Algorithm 4: u∗ : V × V → [0, 1].

Data: Complete, weighted graph G(V,E) and a spanning tree
T (V,ET ) on G.

Result: Ultrametric distance matrix UX .
for each (i, j) /∈ ET do

T (i, j)← set of edges in the path between i and j;
x′ij ← maxe∈T (i,j) xe;

end
for each e ∈ ET do

x′e ← max{x′ij ; (i, j) /∈ ET & x′ij = xe}
end
for each (i, j) ∈ E do

T (i, j)← set of edges in the path between i and j;
u∗ij ← 1

2 maxe∈T (i,j){x′e + xe};
end

Step 4: Find UX = (u∗ij) from UR = (uij) by using the given threshold k
and return the partition P such that the vertices i and j are in same cluster
if u∗ij <= k; ∀i, j ∈ V . Otherwise, i and j are in different clusters.

Corollary 4.1. (Complexity) The proposed heuristic algorithm runs in
polynomial-time of the input network size.
Proof. The complexity of the step 1 for solving relaxed linear program is
polynomial with the input graph size [Meg86]. In step 2 and 3, the com-
plexity of finding the closest ultrametric distance matrix from the solution
matrix XR is O(n3) [Kři88]. Finally, the complexity of a straight forward
implementation of the rounding in step 4 is O(n2). �

4.4 Experimental Results

Evaluation Platform: We implements the proposed algorithm in Java
and use the IBM CPLEX V.12.1 solver for solving the relaxed ILP problem.
We also use graph package jGrapht to deal with the graph properties. The
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running times we calculated on a system with Intel Core i5 @ 1.70 GHz, 64
bit and 8GB memory.

4.4.1 Random G(n, e, p) Signed Networks:

We generate random G(n, e, p) network instances, in which n the number
of vertices and e is the probability of connecting two vertices, and if there
is an edge, then p is the probability for that edge is positive. Therefore, the
probability of connecting two vertices with a positive edge is ep and with a
negative edge is e(1−p). The experimental results of the proposed heuristic
algorithm are given in Fig.4.1 for different random network instances.

According to Corollary 4.1 any striaght forward implementation of the
proposed algorithm should run in polynomial time. In Fig.4.1(a), it looks
like the running time graphs for changing networks size in different network
instances are polynomial except for the case when e = 0.7, p = 0.7. For this
case the run time graph seems like increasing exponentially. This exception
may arise due to some issues in our implementation which we failed to
identify.

In the proposed heuristic algorithm, after solving the ILP-relaxed prob-
lem, we deal with the complete induced weighted network to determine the
0 − 1-ultrametric distance matrix. Also in the ILP-relaxed problem, the
number of decision variable only depends on the size of the vertex set and
independent from the size of the edge set. Therefore, according to our hy-
pothesis, the run time should be independent from the edge density (for
both positive and negative edges). The Fig.4.1(b) support this hypothesis
for the cases when e ≥ 0.4. With the same argument, the runtime should
be independent from the ratio of positive or negative edge densities. The
Fig.4.1(c) also supports the argument for the cases p ≤ 0.6.

Next, we tested the variations of the minimum disagreements due to the
partition with the changing of the given threshold. For do this we have
tested the variations in ten random signed G(n, e, p) networks with fixed
n = 100, e = 0.5, p = 0.5. The results, in Fig.4.2, shows an inconclusive
argument on the relation between the minimum disagreement due to the
partition and user-given threshold.
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(a)

(b)

(c)

Figure 4.1: (a) Runtime (in sec.) for changing n when e and p are fixed. (b)
Runtime (in sec.) for changing e when n = 50 and p are fixed. (c) Runtime
(in sec.) for changing p when n = 50 and e are fixed.
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Figure 4.2: Minimum disagreement due the changing of threshold in ten
random signed network instances G1, ..., G10 with fixed n = 100, e = 0.5, p =
0.5s.

4.4.2 International Bilateral Trade Growth Rate Network

The International Trade Centre (ITC)1 is an auxiliary group of the World
Trade Organization (WTO)2 and the United Nations Conference on Trade
and Development (UNCTAD)3. It provides trade-related technical assistance
and bilateral trading data between its member countries and economical ter-
ritories. We have collected bilateral average trade growth rate between the
years 2011-2015 among 231 countries and territories. The network con-
sist 231 vertices (country or territory) and 16,356 edges. Each signed and
weighted edge indicates the average of the total trade rate (import and ex-
port) between two members. The sign of each edge depends on the positive-
negative growth rate. The summary of the trade growth rate network is
given in the following Table 4.3 .

We have solved to find the partition in the country set by using the
proposed heuristic algorithm and different thresholds. At threshold = 0.45
the algorithm return 189 clusters. Most of these clusters include a single
county or economic territory except few. The clusters with more than three
countries are given in Fig.4.3. Again by using threshold = 0.5 the algorithm
returns only 5 (five) clusters, in which all of the countries are in one cluster
excepts the countries: Iran, Kazakhstan, Greenland, Syrian Arab Republic.
These four countries are in four separate clusters. From this result, the only

1http://www.intracen.org/
2https://www.wto.org
3http://www.unctad.org
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Number of Countries 231

Edges 16356

Positive edges 7471

Negative edges 8885

Balance triangles 340495

Imbalance triangles 353107

Table 4.1: Summary of the International Bilateral Trade Growth Rate Net-
work 2011-2015.

Figure 4.3: Clusters of countries when threshold = 0.45.

information we can predict that due to the UN economic sanction on Iran
and recent Syrian civil war the bilateral trading with these two countries
with rest of the world has been drastically decreased in the period 2011-
2015. The algorithm returns a single cluster for the threshold > 0.5 and
puts each countries in separate clusters for the cases threshold ≤ 0.4.
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Chapter 5

Conclusion

In this thesis, we attempted to study the two prominent areas of network
science: the evolution of the signed directed social network, e.g. Wikipedia’s
request for adminship (Wiki-RfA), etc. and to design a heuristic algorithm
for the Correlation Clustering Problems in the signed networks.
Those works are presented in Chapter 3 and Chapter 4 respectively.

5.1 Random Models for Signed Directed Social
Networks

In Chapter 3 , to the best of our knowledge, we have studied (for the first
time) the signed-directed-degree distributions in the real-world web-based
signed directed social networks and proposed three random models: pref-
erential attachment model, edge copying model, and clique copying model.
Our analysis and simulation results suggest that the signed-directed degree
distributions in the networks simulated by the proposed models follow a
power law with an exponent in the range 2.0 ≤ γ ≤ 3.5. For the clique
copying model, we have proved that if the initial network is structurally
balanced, then the signed directed networks generated by this model is also
structurally balanced.

Future Works: We have presented theoretical proof for the power-law
signed-directed degree distributions in the networks generated by prefer-
ential attachment and edge copying models. Despite this theoretical jus-
tification, we still need to prove that the number of vertices of degree d
concentrates on its expectation. For the clique copying model, one also re-
quires a theoretical analysis for its power-law signed-directed distributions.
Also, an empirical experiment is needed to justify for the balance network
theorem in this model.
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5.2 Heuristic Algorithm for Correlation
Clustering Problems

In Chapter 4 , we have proposed a heuristic algorithm for the Corre-
lation Clustering Problem which is a NP-hard problem. Our exper-
imental results for random signed G(n, e, p) network instances have shown
that the runtime of this algorithm is independent of the case when e ≥ 0.4
or when p ≤ 0.6. The limitation of this algorithm is that it can not give any
conclusive argument for the changing of the minimum disagreements due to
the variation of given threshold.

Future Works: To improve the runtime performance of this algorithm we
can apply a data reduction technique to reduce the input graph size. The
process given in [BBK11] and [GHK+10] may lead us to this research. Again,
after solving the closest ultrametric problem, we use simple rounding based
on the given threshold. We would also like to improve an efficient rounding
technique to get a better result.
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in random networks. Science, 286(5439):509–512, 1999. →
pages 2, 7, 8, 27

[BBC04] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation
clustering. Machine Learning, 56(1-3):89–113, 2004. → pages
3, 55, 56
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