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Abstract

Magnesium (Mg) and its alloys are known for their high chemical reactivity. This property
often poses issues related to undesirable corrosion, or degradation of exposed surfaces. The
chemical reactivity of Mg can be also exploited, and as a result Mg alloys often find use as
anode materials for fuel cells. However, due to a long term immersion of the anodes in highly
alkaline environments, the problem of corrosion remains and needs to be evaluated.
Therefore, in this research, the corrosion behavior of a commercially available magnesium
alloy AZ31 in 45 wt% potassium hydroxide (KOH), a common electrolyte for alkaline fuel
cells, was studied.

Immersion tests were performed for a total duration of 20 days to study the growth of
corrosion products on the alloy’s surface. Scanning Electron Microscopy (SEM),
Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) were carried out to
characterize the structure and chemistry of the corrosion products. Also, electrochemical
studies were carried out to study the kinetics of corrosion of the AZ31 alloy. Finally, the
effect of adding 2 wt% sodium silicate (Na,SiO3) to the KOH electrolyte in order to
manipulate the corrosion rate was also examined.

Tafel analysis confirmed that the corrosion potential of the AZ31 sample immersed in
the Na,SiO; + KOH solution reduced by 16% with respect to that of sample immersed in
pure KOH. Although the AZ31 alloy contains only a trace amount of nickel, SEM-EDS
characterization of the corrosion products revealed that they contained high levels of nickel,
with XRD analysis confirming the presence of a nickel hydroxide layer. In the case of the

sample immersed in Na,SiO; + KOH electrolyte, an additional layer rich in silicates
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developed, and likely acted as a barrier for diffusion of ions from surface of the AZ31 sample
to the electrolyte. EIS results of modeling the surface corrosion phenomena revealed that a
modified Randle’s circuit represented the electrochemical processes occurring on the surface
of the alloy. Warburg impedance for the sample immersed in Na,SiO3; + KOH was relatively
high, suggesting a dissolution of ions from the surface into the highly alkaline KOH

electrolyte.
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Chapter 1: INTRODUCTION

Elemental magnesium (Mg) metal is widely abundant and is estimated to constitute
approximately two percent of the Earth’s crust and approximately 13% of sea water. [1] Mg
is one of the lightest structural metals, with a density of only 1.74 g/cm?®. [2] Due to its low
density, Mg alloys have an excellent strength to weight ratio and thus find use in many
automotive, aerospace and consumer electronics applications, where a component weight is a

critical design attribute.

Magnesium also has a highly negative electrode potential and thus is highly reactive
with many elements on the periodic table. This high reactivity restricts the use of Mg and its
alloys, primarily due to galvanic corrosion and coupling, leading to undesirable degradation
of the Mg component. However, this property can be utilized for many benefits, including
galvanic protection of steel, or the use of Mg alloys as electrodes (anodes) in fuel cells. Fuel
cells are energy conversion devices in which energy of a chemical reaction is converted into
an electrical energy. Mg-containing fuel cells are environmentally friendly in comparison to
the commonly used lead-acid batteries and have a longer life compared to the conventional

batteries. [3]

However, a prolonged exposure of Mg alloy electrodes to the harsh fuel cell
environments leads to aqueous corrosion of the anodes, which significantly deteriorates the
overall performance of the entire fuel cell system. Further, the presence of impurities or the
presence of secondary intermetallic particles has an effect on the corrosion susceptibility of

the Mg alloy electrodes.



In this work, the corrosion behavior of a commercial grade wrought Mg alloy AZ31
was studied in highly alkaline aqueous solutions. Literature on the aqueous corrosion of
AZ31 in chloride- or sulphide-rich environments encountered in the automotive industries is
widely available. [4] However, there is a paucity of literature on the corrosion behavior of
Mg alloys in alkaline fuel cell environments. Therefore, this research focused on the
corrosion behavior of AZ31 in alkaline solutions with a relatively high pH (15) levels. The

objectives of this research were to:

i.  Characterize in-service AZ31 magnesium alloy electrode exhibiting advanced

stage of corrosion damage.

ii.  Carry out immersion and electrochemical experiments in order to study the
initiation and advancement of corrosion on AZ31 alloy exposed to highly alkaline

environments.

iii.  Study the effect of adding sodium silicate (Na,SiO3) to potassium hydroxide
(KOH) electrolyte and its effect on the initiation of corrosion of AZ31 magnesium

alloy.

In Chapter 2, a detailed literature review on the understanding of Mg alloy corrosion
behavior is presented. In Chapter 3, the experimental approach used for the present research
is described, followed by a discussion of the generated results in Chapter 4. Finally, the
conclusions of the thesis and suggestions for future work are summarized in Chapter 5.

Figure 1.1 provides an overview of the scope of the thesis.
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Figure 1.1: Scope of research.



Chapter 2: LITERATURE REVIEW

In this chapter, an overview of the literature pertaining to the fundamental mechanisms of
corrosion of metals is presented. Then, a discussion of the corrosion behavior of Mg and its

alloys in aqueous environments is provided.

2.1. Corrosion

Corrosion is the destructive attack of a material by chemical reaction with its environment.[5]
The chemical reaction requires a transfer (a loss or a gain) of electrons, thus corrosion
fundamentally requires the migration of ions or electrons. As a result, corrosion can be seen
as an electrochemical process.

In many instances, physical changes of the corroding material involve the degradation
of the material’s surface, cracking or a loss of integrity. In ceramics and other non-metals,
corrosion may not be readily visible, and other processes (such as swelling or decay) may
dominate. [5] In the case of metals, corrosion usually involves several steps: [6]

i.  Absorption of chemical species: The corrosion process is initiated by the absorption
of chemical species on the surface of the corroding material. In aqueous
environments, the chemical species maybe ions originating from the electrolyte.

ii.  Growth of corrosion products: After the absorption of ionic species, chemical
reactions initiate at the interface between the substrate and the electrolyte, and
generally result in the formation of an oxide layer. The growth of the oxide can
proceed in two directions: i) inwards (due to the loss of chemical species under the
oxidized layer), or ii) outwards (due to the continued deposition of chemical species

onto the layer).



The electrochemical reactions happen at two distinct locations, which are required for
corrosion to occur: [7]
I. atananode, where an oxidation reaction occurs, and
ii. ata cathode, where a reduction reaction occurs. The chemical species from the anode

may be deposited onto the cathode after gaining electrons.

In the case of corrosion in aqueous environments, the above processes can take place
even if the anodic and cathodic components in the galvanic cell are separated by a large
distance [8], since the electrolyte acts as a path for the movement of electrons from the anode
towards the cathode. As a result, as long as the electrolyte is in contact with both the anodic

and cathodic sites, continuous corrosion prevails.

2.1.1. Factors affecting corrosion

The corrosion resistance or susceptibility of a material is largely governed by the Gibb’s Free
Energy and the nature of the corrosion products forming on the surface of the corroding
material. [5] The nature of corrosion products is dependent on the Pilling-Bedworth (P/B)
ratio, ambient temperature, ionic species in the electrolyte and the pH of the electrolyte. [9]
The relation between these variables is governed by the Nernst equation used to calculate

potential of a system. [10] These factors are discussed in the following sections.

2.1.1.1. Gibbs Free Energy

The main driver for corrosion of metals is governed by the ability of the chemical reactions
to reduce the Gibb’s Free Energy of the system (the system being the metal and the

electrolyte). [5] Based on thermodynamic principles, metals seek to attain a minimum Gibb’s



Free Energy state. [10] Therefore, any chemical reaction (e.g., the formation of an oxide)
leading to the reduction of the Gibb’s Free Energy will readily take place. For example, the
net reaction for the formation of magnesium hydroxide (Mg(OH),) due to the exposure of

Mg to water (H,O) is provided in Equation 1. [5]

Mg + H20 +§oz — Mg(OH), 8

The Gibbs Free Energy change for Equation 1 is AG’= -596.6 KJ. [5] This relatively
large negative value of the Gibbs Free Energy indicates the high tendency of Mg to react

with water and oxygen (O;) and form a surface oxide.
2.1.1.2. Pilling-Bedworth (P/B) ratio

An important factor controlling the rate of degradation of a material during corrosion is the
P/B ratio, which represents the ratio of the volume occupied by the corrosion products to that
of the base metal. [5] If the P/B ratio significantly deviates from unity (i.e., >>1 or <<1), the
volumetric mismatch between the corrosion products and the substrate may attribute to the
evolution of high stresses at the corrosion product interface. For example, in the case of
Mg(OH), formation on the surface of Mg, the P/B ratio is 1.73, which indicates a significant
volumetric expansion of the Mg(OH), on the surface, leading to high porosity and cracking
in the hydroxide layer. [11] Therefore, such corrosion products may offer only limited
protection for the substrate and continuous corrosion of the Mg substrate will occur with

degradation or cracking of the surface oxide.



2.1.2. Corrosion tests

Evaluation of the degradation behavior of materials in aqueous environments can be achieved
by several methods. Ultimately, the aim is to quantify the degradation by measuring the
corrosion rate, which represents the amount of a material removed per unit of time. [6]

Methods relevant to the present work are discussed in the following sections.

2.1.2.1. Immersion test

In an immersion test, the specimen is completely immersed in an electrolyte for a prescribed
period of time. [6] The immersion test is usually performed to study the nature of corrosion
products as well as the corrosion penetration rate (CPR). By calculating the loss of weight in
the material due to the exposure to an electrolyte, Equation 2 can be used to determine CPR

as outlined in ASTM G37-12a standard: [12]

CPR = ’I‘:‘"T‘;‘_’ @)

Where:
CPR is the corrosion penetration rate in um/ year
k=8.76 x 10" is the constant for converting corrosion rate from cm/h to um/ year
AW is the loss of weight in g
p is the density in g/ cm®
A is the area exposed to corrosion in cm?

T is the time in hours



The sample can be immersed in the electrolyte for the entire duration of the
immersion test. However, if the corrosion degradation is rapid and a more accurate
measurement is required, the sample can be removed from the electrolyte, cleaned, and the
weight loss measured, following by a re-immersion back into the electrolyte. [6] This process
is repeated for a finite number of cycles, and Equation 2 is used to calculate the intermediate
CPR values after each immersion segment.

Although the immersion test is relatively simple to carry out, it has limitations. First,
the electrolyte absorbed on the surface of the sample can overestimate the weight of the
corrosion products. [13] Another drawback of this method is that the substrate may
inadvertently be removed along with the corrosion products when measuring the weight
loss.[13] Also, for micro-galvanic corrosion occurring on the surface of a material (e.g., via
pitting corrosion), the resultant corrosion rate may not be accurately measured, because of
the relatively low weight loss. However, despite the low weight loss in the corroded sample,
material failure may still occur. [14] Therefore, results obtained from weight loss
measurements may carry a relatively high level of inaccuracy and may not be directly

applicable when examining diverse forms of corrosion.

2.1.2.2. Tafel analysis

The corrosion rate can also be estimated by performing tests where the sample of interest is
connected to an electrical circuit, such that a flow of electrons (in the sample and the
electrolyte) is accelerated. One variation of this approach is called the “Tafel analysis”,
where the applied potential is varied above and below the corrosion potential of the sample to
obtain a cathodic and an anodic curve. Thereafter, the corrosion potential is inferred as the

potential at the intersection of the anodic and cathodic curves (i.e., a point where the cathodic

8



and anodic current densities are equal). [14] The Tafel plot is a logarithm of the current with
respect to the applied potential (shown in Figure 2.1), which can be explained with the help

of Butler-Volmer Equation 3. [14]

2.303( E— Erw} 2.303( Erm-f_E}

I=1.,.(e Ba —e Be ) (3)

Where:
| is the measured current in the cell in A
lcorr IS the corrosion current at corrosion potential in A
E is the electrode potential in V
Ecorr IS the corrosion potential in V

Ba and B are the anodic and cathodic Tafel constants (\V/decade)

In Equation 3, the first component is the contribution to the corrosion current (for the
total current measured) from the anodic reaction, whereas the second component is the
contribution from the cathodic reaction. For a case where E =E, equal current is generated
from both the cathodic and anodic processes and results in a zero net current. In cases where
E<< Ecorr, the contribution from the cathodic reaction is more than from the anode (which can
be neglected) and hence the cathodic polarization dominates. Similarly, when E>> Eq, the
anodic polarization dominates. Figure 2.1 shows a typical Tafel curve. The cathodic and
anodic branches are extrapolated to meet at a point. This point gives the value of corrosion

current in the circuit.



Additional data provided by Tafel plot analysis is related to the polarization resistance
of the sample. It is calculated mathematically from the slope of the Tafel curve near the
corrosion potential via the Stern-Geary equation (Equation 4): [7]

I — ﬂﬂ-ﬂt‘
corr R,2.303 (B,+B.)

(4)

Where:
R, is the polarization resistance in Qcm?
Ba and B are the anodic and cathodic Tafel constants in V/decade

lcorr IS the corrosion current density in Alcm?

Equation 4 provides another method to calculate the corrosion current in a system.
However, the accuracy of the equation depends on the existence of a linear Tafel region, as

indicated in Figure 2.1 below.

Tafel Plot

Anodic Region

Ecor
Cathodic Region

Figure 2.1: A typical potentiodynamic polarization curve. [15]
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2.1.2.3. Electrochemical impedance spectroscopy

Electrochemical Impedance Spectroscopy (EIS) is an experimental method used to
characterize an electrochemical system. [14] During EIS, an experiment is performed by
varying the input potential sinusoidally using a potentiostat. The properties related to the
impedance (such as the magnitude and phase difference of the real and imaginary
components) of the system are measured against frequency. The elements involved in the
corrosion experiment are converted into electrical equivalents. Thus, the components of the
corroding system (i.e. the system containing the corrosion products, substrate and the
electrolyte) may act as capacitor, inductor or a resistor in an electrical circuit. The resulting
circuit analysis enables modeling of the electrochemical processes occurring in the system.

A Nyquist plot shows the relationship between the real and imaginary values of
impedance, as illustrated in Figure 2.2. The different points on the semicircle represent
different values of responses at varying frequencies. The magnitude of frequency decreases
by tracing the curve in the clockwise direction, as indicated in the figure. The imaginary
value of the impedance (Z;) is 0 for starting and end points of the semi-circular region, and
such a circuit would be expected to behave as a purely resistive circuit. For non-zero values
of imaginary impedance, the circuit would be composed of a capacitive or an inductive
reactance, in addition to having resistance. Solution resistance (Rs) and the polarization

resistance (Rp) can be directly calculated from the Nyquist plots, as shown in Figure 2.2.
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Figure 2.2: A typical Nyquist plot. [9]

One shortcoming of the Nyquist plot analysis is that the quantitative values of
frequencies cannot be determined at different impedance values. As a result, Bode plots must
be created to extrapolate the relationship between the frequency and the absolute value of the
impedance and phase shifts. The value of capacitive and inductive reactance can be

calculated using Equation 5 and Equation 6: [16]
1
Xe = 21IC ®)

X, = 2IIfL (6)

Where:
Xc is the capacitive reactance in Q
XL is the inductive reactance in Q
f is the frequency in Hz
C is the capacitance in F

L is the inductance in the circuit in H
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Therefore, with the help of Bode plots, one can determine the nature (i.e., capacitive,
inductive or resistive) of a circuit at a particular frequency. Unlike Nyquist plots, Bode plots
provide information corresponding to the exact values of frequencies. As a result, with the
Nyquist and Bode plots, valuable information pertinent to modeling of corrosion phenomena

in diverse systems can be obtained.

2.2. Magnesium

Magnesium is one of the most abundant elements in the Earth’s crust. [2] Pure Mg is ductile,
malleable and light in weight. [17] Therefore, it has found many applications in the
automobile and aeronautical industries. However, despite its many favorable mechanical
properties, use of Mg is limited in industrial application due to environmental corrosion
issues. [2] [18]

Mg has an electrode potential of -2.37V [19] [20] and has a long shelf life because of
a low electrochemical equivalence. [20] Due to these properties, Mg can be used as
electrodes (anodes) in batteries. [21] However, being highly reactive, it has a tendency to
corrode rapidly.

Alloying Mg with other elements impacts the corrosion behavior of an Mg alloy. In
general, pure Mg has a lower corrosion rate than an Mg alloy. [22] However, Mg also has
poor corrosion resistance, which makes using Mg and its alloys in anodes a challenge for

industrial applications. [19] [22]
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2.2.1. Corrosion behavior of Mg

Mg is a highly reactive metal and corrodes easily when exposed to air or moisture, with the
primary corrosion product being Mg(OH),. The standard Reduction-Oxidation (Redox)

reactions involved in the corrosion of magnesium are: [23]

Mg> Mg + 2¢ (anode) (7)
2H,0 + 2" > H;,+ 2 (OH) (cathode) (8)

As seen in Equation 7 and Equation 8, Mg oxidizes to form divalent Mg cations,
while hydrogen gas (H,) is evolved at the cathode. The Mg cation reacts with hydroxide ions

to form Mg(OH),, as seen in Equation 9 below. [23]

Mg?* +2 (OH)” = Mg(OH), (9)

It has been observed that the corrosion rate increases at the beginning of the corrosion
process until it reaches some critical value and then it stabilizes. [19] [20] However, for Mg,
corrosion rate seems to increase with an increase in immersion time. [25] Many scientists
have given different explanations to this increase. For example, according to Udhayan and
Bhatt [20], this behavior is due to the initial dissolution of Mg and subsequent formation of
unstable Mg(OH),. However, according to Shi, formation of Mg(OH), is attributed to the
increase in surface roughness of the corroded surface due to the formation of

oxides/hydroxides in the beginning of the process. [22]
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2.3. Aqueous corrosion of Mg and alloying elements

The behavior of Mg and some elements in acidic and alkaline aqueous solutions is discussed

in the following sections.

2.3.1. Pourbaix diagram

Pourbaix diagrams relate the pH of the electrolyte and the electrochemical behavior of a
metal in an aqueous environment. [10] A vertical line on the Pourbaix diagram indicates that
the chemical reaction is independent of the potential (E,V) of the system, suggesting that no
electron transfer occurs in the reaction. On the other hand, a horizontal line on the Pourbaix
diagram indicates that only pH dependence exists.

With the help of the Pourbaix diagrams, the pH and potential range can be found
wherein the metal is not active, but forms stable corrosion products. For example, the

Pourbaix diagram for Mg in sea water is shown in Figure 2.3.
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Figure 2.3: Pourbaix diagram for Mg in sea water. (©1974, NACE International, by permission) [24]

As seen in Figure 2.3, Mg®* ions are stable in acidic solutions. For alkaline solutions,
Mg(OH); is expected to form. A major drawback of using the Pourbaix diagram, however, is
that it does not provide any information about the reaction rates. Therefore, the information
about the stable species predominant at a particular pH solution and applied potential values
is de-coupled from the rate of formation of these species. Also, the nature of the corrosion
products is not given. For example, Figure 2.3 reveals that Mg(OH), forms for pH values
greater than 12. However, the nature of the formed layer (i.e., porosity, stability, etc.)
remains unknown. [5]

Corrosion behavior o