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Abstract 

 

Opening large number of holes takes considerable amount of time during manufacturing 

and assembly of aircrafts. Traditionally, tools having the same diameter of each hole have been 

used in drilling which take considerable amount of time for tool change and fixturing. Recently, 

orbital drilling technology has been introduced to open holes with a single set-up. The combined 

orbital motion around the hole and helical penetration in axial direction are either given by 

stationary computer numerically controlled (CNC) machines or hand held, portable heads that 

are attached to aircraft body with suction pads. Although the tool path and machine were 

developed, the process mechanics and dynamics have not been modeled to predict cutting forces, 

torque, power and chatter stability diagrams to identify most productive and safe cutting 

conditions. This thesis presents mathematical model to simulate the mechanics and dynamics of 

orbital drilling process.  

The mechanics of the process are modeled by identifying the chip thickness distribution 

along the peripheral and bottom cutting edges of the helical end mills used in orbital drilling, The 

pitch length of the path, tool and hole diameters, spindle speed, feed and material properties are 

used in the model which is experimentally proven by comparing predicted and measured cutting 

forces.  

The flexibilities of the orbital drilling head and tool are incorporated to the mechanics 

model to predict the dynamics of the system. It is shown that the additional delay contributed by 

orbital motion of the tool can be neglected, and the regenerative delay is dominated by the 

spindle speed. However, structural dynamic modes of the system need to be oriented along the 

tangential feed direction since it varies continuously along the orbital path. The chatter stability 
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of the system has been developed in both frequency and semi-discrete time domains. The 

experimentally verified stability model considers spindle speed, tool and hole geometries, 

structural dynamics, material properties and orbital drilling pitch length.    

The proposed orbital drilling model allows optimal selection of spindle speed, feed, 

orbital speed, pitch length and tool diameter for a given work material without overloading the 

machine and chatter while achieving highest possible material removal rates.    
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Lay Summary 

 

Drilling operations are widely used in aircraft industry to assemble light structural parts. 

Traditional drilling requires tools having the same diameter as the hole, hence significant number 

of drills are needed in production. Additionally, drills cannot be used to open holes with large 

diameters. The drilling must be followed by boring, which increases cost and production time.  

Orbital drilling is an emerging method to open holes with any diameter, which is larger 

than the tool diameter. Portable, computer controlled orbital drilling heads are clamped to 

aircraft body with suction pads. End mill with drilling edges at the bottom traverses along the 

hole circumference while helically penetrating into material along the hole axis.  

This thesis presents the mathematical model of the process to predict the chatter vibration 

free, most productive spindle speed, feed, and pitch length of the process as a function of tool 

geometry, work material properties and machine’s stiffness.   
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Chapter 1: Introduction 

 

Aircraft parts are mainly assembled by riveting or bolting them through holes opened 

with drilling operations. A typical mid-size aircraft may have over a million holes, hence the 

process is highly time consuming and costly. While holes with small diameter are opened 

through twist or indexed drills, and holes with large diameter have been opened combination of 

drilling and boring on large machine tools. Orbital drilling is a new technology which allows 

opening of medium to large diameter holes on the aircraft body directly during the assembly. The 

portable, computer numerical controlled (CNC) drilling head is attached to aircraft body through 

suction, and the drilling head follows an orbital – helical motion to open and enlarge the hole by 

an end milling process. The operation has been found successful in drilling aluminum, titanium 

and composite parts in aerospace industry. In orbital drilling, an end mill moves along a three 

dimensional helical tool path by cutting at its periphery and bottom to open the hole. The cutting 

forces on both sections may excite the structural dynamics of the machine tool head during the 

operation. If the process parameters are not selected correctly, the flexibility of the orbital 

drilling head, spindle and end mill may experience severe chatter and large deflections which 

may destroy the costly aircraft parts during assembly. This thesis presents modeling the 

mechanics and dynamics of the orbital drilling process to predict the cutting forces, dimensional 

surface errors and chatter stability. The mathematical simulation model is intended for optimal 

selection of tool geometry, orbital and tangential feeds, and spindle speeds without causing 

chatter and overloading of the machine and cutting. . 

 

The thesis is organized as follows: 
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 Chapter 2 summarizes the related background and the review of the literature in orbital 

drilling.  

In Chapter 3, the mechanics of orbital drilling operations is presented. A numerical 

method to identify tool-workpiece engagements (TWE) is introduced, and compared against the 

previous approaches [11].  The cutting force coefficients of the bottom part of the end mill are 

identified mechanistically, and the coefficient for the peripheral side are predicted from the 

orthogonal cutting parameters.  The mechanics of orbital drilling have been experimentally 

validated by comparing the predicted and measured cutting forces. 

Chapter 4 is dedicated to the chatter stability of the orbital drilling operation. The 

regenerative time delay has two components: One is caused by the spindle speed while the other 

is contributed by the orbital – helical feed motion of the tool. The mathematical modeling of the 

orbital – helical motion has a negligible contribution to regenerative delay which is dominated by 

the spindle speed. The stability is reduced to regular end milling process but with feed direction 

dependent structural dynamics. Chatter stability of the operation is solved in semi discrete time 

domain and frequency domains. Nyquist stability criterion is used for frequency domain 

approach considering the radial engagement boundaries of the end mill. Three dimensional 

stability lobes are predicted as a position of the tool along the orbital path, spindle speed and 

pitch lengths of the tool path. The stability models are verified experimentally.  

The thesis is concluded in Chapter 5, summarizing the contributions of the thesis and 

future research directions. 
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Chapter 2: Literature Review 

 

2.1  Overview 

 

Hole machining is one of the most dominating in aerospace industry. While regular twist 

drilling operations have been widely studied and used, the orbital drilling is a new process and 

emerged during the last decade. Orbital drilling has shown a great capability of machining burr 

free and high quality holes in different types of aerospace materials. The mechanics and 

dynamics of twist drilling, where the drill rotates and moves only in axial direction, have been 

widely studied in the past. The prediction of drilling forces [20, 21], forced [22, 23] and self-

excited chatter vibrations [24, 25, 26] have been widely published. However, the mechanics and 

dynamics of orbital drilling,  where the tool follows an orbital and helical path to open and 

enlarge the hole, has not been studied widely to predict the cutting forces, chatter free cutting 

conditions and dimensional hole quality.  The objective of this thesis is to predict the cutting 

forces and chatter stability diagrams to identify most productive and safe cutting conditions.  

This chapter presents the review of the orbital drilling literature.  

 

2.2 Application and Experimental Investigation of Orbital Drilling Operations 

 

The major concern of the hole drilling processes is the dimensional quality of the hole 

while using tool geometry and cutting conditions which yield to highest productivity.   

Early studies on the orbital drilling process mostly focused on the applicability of the 

operation and its potential to replace conventional, twist drilling process. The first study by 
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Lindqvist et al. [1] from Navator Company of Sweden showed that the orbital drilling process is 

capable of eliminating delamination while machining holes on carbon sandwich structures for 

aerospace applications. They designed a novel portable, orbital drilling system attached to 

aircraft body to drill holes during the assembly, and demonstrated the applicability of the process 

with test trials.  

The academic investigations followed the introduction of orbital drilling concept. 

Kihlman et al. [2] compared the cutting forces in orbital drilling and conventional drilling 

process by conducting experiments. They showed that the orbital drilling leads to lower axial 

cutting forces than the conventional drilling process. Lindqvist and Kihlman [3] from Navator 

experimentally proved that the orbital drilling produces holes with higher surface quality and in 

comparison to conventional drilling. Furthermore, the work of Whinnem [4] on Boeing 787 

demonstrated that the orbital drilling process can create holes without burr which leads to less 

scrap rate in producing costly aircraft parts. Iyer et al. [5] showed that H7 quality holes on AISI 

D2 hardened tool steel can be opened with orbital drilling with a surface finish of 0.3 μm, 

experimentally. The orbital drilling allows the opening of holes with different diameter with the 

same tool diameter [6]. Furthermore, the same cutting tool can be used for finish machining of 

the hole, hence the number of post-processes (i.e. boring) for opening the borehole is reduced.  

The observed reduction in cutting forces led to the use of industrial robots or similar light weight 

but mobile structures for portable orbital drilling operations [7]. A portable orbital drilling unit 

on a robot is shown in Figure 2.1. 
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Figure 2.1 Robotic orbital drilling unit. Taken from [10]. 

Orbital drilling is highly used in machining of carbon fiber reinforced polymers (CFRP) 

and carbon fiber reinforced polymers/titanium (CFRP/Ti) alloy stacks in aerospace industry. 

Since the process results in lower drilling forces compared to conventional drilling, the process 

temperature is expected to be lower [9]. Orbital drilling also led to less low burr formation and 

reduced delamination in machining CFRP or CFRP/Ti relative to conventional drilling [6,8,9]. In 

a recent work [10], researchers investigated the effects of orbital drilling on the hole diameter 

variation and roundness of CFRP/Ti stacks. The outcome of their work showed that hole and tool 

diameter ratio has a greater impact on the roundness of the CFRP layer. 

All of the articles cited in this section are based on experimental trials without providing 

model based, analytical reasoning.   
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2.3 Mechanics and Dynamics of Orbital Drilling Operations 

 

The kinematics model of orbital drilling was first studied by Brinksmeier et al. [11], 

which led to the prediction of varying tool- workpiece engagements as a function of tool and 

hole diameters, the pitch length of helical - downward motion along the tool path. The model led 

to the prediction of chip geometry generated by cylindrical flat end mills as shown in Figure 2.2.  

Li and Liu [12] created a simulation model based on Z-mapping to simulate three-dimensional 

(3D) surface topography of the finished hole produced by orbital drilling process.  

 

 

Figure 2.2 a) Orbital drilling process b) Undeformed chip geometries during orbital drilling c) topography of the 

hole ground and the cross section of undeformed chip of the radial cut as a function of immersion angle. Taken from 

[11] 

Liu et al. [13] predicted orbital drilling forces as a function of spindle speed, helical feed, 

radial and axial cutting depth, and cutter geometry. Wang et al. [14] identified the cutting force 

coefficients mechanistically from a series of orbital drilling tests conducted on titanium.  In a 

recent study, Meyer et al. [15] considered complex tool geometries in modeling orbital drilling 
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forces by considering the chip geometry and forces generated by the bottom and radial parts of 

the tool. The differences between the predicted and measured forces are attributed to the 

indentation of the bottom part of the end mill into the work material. 

The prediction of vibrations, hole surface quality and chatter free depth, speed and pitch 

length require the dynamic model of orbital drilling.  

The circular and thread milling operations have similarities with orbital drilling. They 

have two time delays which are functions of spindle speed and orbital motion. Kardes and 

Altintas presented a stability model of circular milling which resembles orbital milling but 

without axial motion [17]. They applied zero order solution of Altintas and Budak [27] and 

Finite Time model of Bayly et al. [28] in solving the stability. Thread milling has a path similar 

to orbital milling but with cutting edges similar to thread profile. Wan and Altintas [18] 

presented both mechanics and chatter stability models to predict the thread milling process. Dual 

time delay is considered in solving the stability of operations which are governed by coupled, 

time periodic, delayed differential equations.  

Li et al. [16] presented the only study to predict the chatter stability diagrams, i.e. critical 

depth of cut versus spindle speed, in orbital milling. They assumed the worst engagement 

conditions, i.e. slotting or peripheral milling, and applied Altintas and Budak’s zero order 

stability law to simplified orbital drilling process which does not consider varying engagement 

and dynamic flexibilities along the tool path.  

The TWEs are analytically calculated from the kinematics model proposed by 

Brinksmeier et al. [11]. The engagement conditions are used to describe the chip thickness 

distribution at the periphery and bottom edges of the helical end mill along the orbital tool path. 

The cutting forces are predicted as a function of chip thickness distribution. The effect of lateral 
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vibrations of the flexible tool on the regenerative, dynamic chip thickness is modeled as a 

function of tool and hole diameters, pitch length of the orbital motion, and feed. The frequency 

response functions (FRF) of tool structure are projected into the feed and normal directions along 

the orbital path. The chatter stability of the process is solved by applying the zero order stability 

law of Altintas and Budak [27] in frequency domain. The chatter stability is also solved in semi-

discrete time domain proposed by Insperger and Stepan [19].The linear, semi discrete time 

model can also be used to predict the cutting forces and vibrations along the tool path [29].  

In summary, this thesis presents integrated mechanics and dynamics models of orbital 

drilling process. The proposed models are experimentally proven.   
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Chapter 3: Mechanics of Orbital Drilling Operations 

 

3.1 Introduction 

 

Orbital drilling is used to open large holes, especially common in aircraft fuselage 

manufacturing. The cutting tool follows a 3D helical toolpath with the combination of rotational 

and axial motions as shown in Figure 3.1. 

 

Figure 3.1 Illustration of orbital drilling 

 

This process can be considered as a combination of circular and plunge milling rather 

than drilling, since the cutting occurs both at the periphery and the bottom part of the tool. The 
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engagement conditions in orbital drilling can be separated into three different regions as shown 

in Figure 3.2.  

 

Figure 3.2 Engagement zones in orbital drilling 
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In this chapter an analytical engagement model from the literature is presented. A model 

to evaluate engagement conditions is introduced, and its results are compared against the values 

predicted by computationally costly, generic commercial software (Moduleworks). The 

kinematics and TWE models are used to evaluate the chip geometry generated during orbital 

drilling, which is needed for modeling the mechanics of the cutting process.  The mechanics of 

orbital drilling process have been developed, and experimentally proven by comparing the 

predicted and experimentally measured cutting forces.  

 

3.2 Geometric Modelling of Tool and Workpiece Intersection 

 

 Engagement conditions during orbital drilling operation vary as the tool penetrates and 

leaves the work material, since both radial and axial edges of the cutting tool remove material 

from the workpiece. While the cutting tool moves along the 3D helical toolpath, axial part of the 

tool engages with the workpiece first followed by the radial edges (Figure 3.2.). The axial part of 

the tool has full contact with the workpiece material in regions 1 and 2. However, the radial 

engagement conditions change in region 1 where the cutting tool rotates 360 degrees around the 

center of the hole. The engagement area on the radial part of the tool increases as the tool 

plunges into the workpiece until the pitch length of the tool path is travelled. After tool finishes 

the first 360 degrees of rotation inside the workpiece, the engagement areas on both radial and 

axial cutting edges stay constant although the radial engagement boundaries, the entry ∅𝑠𝑡,𝑟 and 

exit ∅𝑒𝑥,𝑟 angles of the tool change along the longitudinal direction of the cutter. In region 3, the 

tool makes the last 360 degrees of rotation around the center of the hole on xy plane without a 

plunge motion which resembles circular milling. The engagement conditions vary significantly 
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in region 3.  The radial engagement boundaries for slot milling and orbital drilling operations are 

shown in Figure 3.3 to highlight the differences.          

 

Figure 3.3 Comparison of radial engagements, left slot milling case, right orbital drilling case 

 

3.2.1 Modelling of the Radial Engagement  

 

Brinksmeier et al. [11] presented the geometric engagement of  cylindrical end mills  

zone 2 of orbital milling where radial engagement boundaries stay constant. The intended hole 

diameter 𝐷𝐻, cutting tool diameter 𝐷𝑇, and the pitch length of the tool path 𝑎𝑝 are used in the 

engagement model. 
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Figure 3.4 Graphic for the calculation radial engagement condition 

The eccentricity (𝑒) of the tool center from the hole center is, 

 
, ,

2 2

T H
T H

H T

D D
R R

e R R

 

 

  (3.1) 

The tool inspection arc angle 𝛽 (Figure 3.4) is, 
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  (3.2) 

The cutting tool engagement boundaries change along the circumference of the tool (Figure 3.4). 

The depth of the radial chip along the tool circumference is given as: 

 1 1i ph a




 
  

 
  (3.3) 

The radial engagement area along the circumference of the cylindrical end mill changes as the 

tool rotates around the center of the hole in zone 1 and 3, which is modeled here.  
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Figure 3.5 Discretization of tool periphery along the axial direction of the tool 

. Since the periphery of the end mill does not change along the axial direction of the 

cylindrical tool, its orbital motion can be projected on xy plane. If the rigid body motion of the 

tool is discretized at discrete time intervals Δ𝑡, the position of the tool center can be found on xy 

plane as: 
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  (3.4) 

where Ω is the orbital speed [rad/sec] and 𝜃(𝑡) is the rotation of the tool center around hole 

center in [rad]. Vertical displacement of the tool at each time interval is Δ𝑧,  

 axz t f      (3.5) 

where 𝑓𝑎𝑥 is the axial feed. Tool’s periphery at each time step can be evaluated as follows.  
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By considering the tool’s previous positions on both vertical and horizontal planes, as well as on 

its periphery, the radial engagement at each time step can be predicted with a line intersection 

algorithm.  The intersection points represent the starting points of the radial engagement ∅𝑠𝑡,𝑞, 

along the tool’s axial direction. The engagement area along the tools feed direction is shown in 

Figure 3.6. 

 

Figure 3.6 Tool motion on vertical (right) and horizontal (left) planes 

 

3.2.2 Comparison of the Engagement Models 

 

The proposed radial engagement of the tool with the workpiece during the orbital drilling is 

compared against commercial graphics system Moduleworks.   

In Moduleworks which is a module within UBC’s virtual machining system (MACHPRO), 

the TWEs are calculated at discrete points of the tool path. The engagement boundaries, the 

stereolithography (STL) file of the raw material geometry and NC tool path are used as inputs in 

calculating the engagements. Engagement information is extracted at user defined, constant 
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sampling distances along the tool path. A sample orbital drilling process (a), the radial 

engagement area of an end mill at a point where the tool is in zone 2 (b), and the corresponding 

hole shape (c) are shown in Figure 3.7.  

 

Figure 3.7 a) Virtual orbital drilling on ,MACHPRO , b) Radial engagement mapped on the end mill, c) Workpiece 

after end mill leaves the workpiece in zone2  

The radial engagement on the end mill is projected to two dimensional plane where horizontal 

and vertical axes represent the immersion angle and the axial depth of chip, respectively. A 

comparison of engagement maps generated by Moduleworks in MACHPRO and proposed 

analytical models are shown in Figure 3.8 where the results are in good agreement.   
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Figure 3.8 Comparison of the radial engagement boundaries. Cutting conditions: Hole Diameter 𝑫𝑯 = 30 

mm, tool Diameter 𝑫𝑻 = 16 mm, pitch length of the tool path 𝒂𝒑 = 3 mm, spindle speed 𝒏 = 1000 rpm, orbital speed 

𝒏𝒐 = 6 rev/min, 𝒔𝒕𝒂𝒏= 0.1319 mm/rev/tooth, 𝒔𝒂𝒙  = 0.009 mm/rev/tooth. 
 

Moduleworks is based on the STL model of the part and tool, hence the resolution of 

STL mesh greatly affect the accuracy of evaluating engagement maps. Hence, Moduleworks 

cannot predict the engagements accurately, if the tool diameter is very small. The proposed 

engagement map solution is based on the analytical, geometric models of the cylindrical end mill 

and the hole diameter, hence it is independent of mesh size in STL models of the tool and the 

part.  
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3.3 Mechanics of Orbital Drilling 

 

Orbital drilling can be considered as a combination of plunge and circular milling 

operations. The cutting process at the bottom part of the end mill can be considered as plunge 

milling, whereas the process at the cylindrical surface resembles the circular milling process.  

The mechanics of the circular milling was investigated by Kardes and Altintas [17]. They 

considered the varying engagement conditions of the solid end mill and workpiece along the 

circular – trochoidal tool path.  Ko and Altintas [30] presented mechanics of plunge milling by 

utilizing the chip generated by the axially penetrating end mill as it rotates.  

In addition to the engagement geometry presented in the previous section, the mechanics 

model require the identification of cutting force coefficients, chip thickness and cutting force 

model which are presented below.  

 

3.3.1 Identification of Cutting Force Coefficients at the Bottom Part of the End 

Mill  

 

The accuracy of the cutting force estimation significantly depends on the accuracy of cutting 

force coefficients. Unlike the geometry of cutting edges on the periphery of end mills, the 

manufacturers do not provide much information about the geometry of flutes at the bottom of the 

tool.  Since it is also difficult to measure the bottom geometry on the standard tool microscopes, 

the cutting force coefficients need to be identified from the cutting experiments. During the 

orbital drilling process bottom part of the end mill plunges into the material like a drill, hence the 
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chip thickness distribution and the corresponding cutting force coefficients need to be identified 

from the geometry of cut shown in Figure 3.9.   

 

Figure 3.9 Plunge milling geometry 

The instantaneous width of chip  𝑤𝑐 is given by. 
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where 𝑟 is the radial engagement length. The tangential ( ,btF ), radial ( ,brF ) and axial ( ,baF ) 

forces caused by the plunge milling are expressed as a function of chip area ( ax ch w  ) and cutting 

edge contact length ( cw ): 
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Where ℎ𝑎𝑥 is chip thickness and equal to axial feed rate ax axh s , { ,b ,b ,b, ,tc rc acK K K  } and {

,b ,b ,b, ,te re aeK K K  } are the cutting and edge force coefficients in tangential, radial and axial 

directions, respectively. 

The tools coordinate and global coordinate systems are coincided. The cutting forces on all teeth 

are transformed to x,y and z directions as:  
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  (3.9) 

Instead of using orthogonal to oblique cutting transformation [31], the mechanistic prediction of 

cutting coefficients for the bottom edges of the tool is employed. The average cutting forces per 

tooth period are measured while the axial feed rate is varied during each experiment with 

constant immersion conditions. 
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Average forces on each axis can be evaluated as:  
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Where 𝛿1, 𝛿2 and 𝛿3 are;  
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In order to obtain cutting coefficients associated with one tooth, intermittent plunge milling tests 

have been modeled with  𝑟 = 𝑅𝑇 , ∅𝑒𝑥,𝑏 = 180° and ∅𝑠𝑡,𝑏 = 0°. The corresponding average forces 

can be expressed as: 
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The cutting coefficients associated with the bottom part of the tool can be calculated by 

following: 
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Half plunge milling tests were carried at 5 different axial feed rates at 1000 rpm and the 

experiment parameters are given on the Table 3.1. 

Table 3.1 Axial feed rates and average forces of half plunge milling tests 

 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

Axial Feed Rate 

[mm/rev/tooth] 

0.005 0.020 0.040 0.060 0.080 

Average Forces on 

X axis [N] 

-1.16 -12.92 -24.82 -34.05 -41.55 

Average Forces on 

Y axis [N] 

67.35 144.6 245.6 349.4 442.2 

Average Forces on 

Z axis [N] 

105.4 136.8 196.4 248.1 297.6 

 

Experiments were implemented on Aluminum 7050-T7451 and the workpiece and its computer 

aided design (CAD) model are shown in Figure 3.10. 

 

Figure 3.10 Half plunge milling workpiece (bottom), CAD model of the workpiece (top) 
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Figure 3.11 Average forces on each axis for half plunge milling  

The average forces are fitted to a line (Equation. 3.14) with a linear least squares, and the 

estimated cutting force coefficients are given in Table 3.2 

Table 3.2 Identified cutting force coefficients for the bottom part of the tool and 

𝑲𝒓𝒄,𝒃 [MPa] 𝑲𝒓𝒆,𝒃[N/mm] 𝑲𝒕𝒄,𝒃[MPa] 𝑲𝒕𝒆,𝒃[N/mm] 𝑲𝒂𝒄,𝒃[MPa] 𝑲𝒂𝒆,𝒃[N/mm] 

104.63 0.20 986.04 8.62 326.44 11.22 

 

 

 

 

 

 



24 

 

3.4 Prediction of Cutting Forces  

 

The spindle speed 𝑛 and orbital travel speed 𝑛𝑜 are given in [rev/min] with corresponding 

angular speeds in [rad/s]: 

 
22
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Figure 3.12 Tangential and axial feed directions 

Tangential linear feed (𝑓𝑡𝑎𝑛) and feed rate (𝑠𝑡𝑎𝑛) are evaluated in feed direction (𝑥𝑐) from Figure 

3.12.  
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The axial feed 𝑓𝑎𝑥 and feed rate 𝑠𝑎𝑥 along the axial (Z) direction are evaluated by considering the 

ramp angle of the tool path 𝛼 (Figure 3.12): 
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Where 𝐷𝑃 is the diameter of the tool path. The axial linear feed (𝑓𝑎𝑥) and the axial feed rate per 

tooth 𝑠𝑎𝑥 are given by:  
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  (3.18) 

The instantaneous immersion angle of a tooth j at elevation z can be evaluated : 
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where ∅𝑗0,𝑟 is the immersion angle of the associated cutting flute at the bottom and 𝛽ℎ is the 

helix angle of the cylindrical end mill with N number of flutes. The chip thickness within the 

engagement zone is defined by:    

   , tan ,sin ( )j j r j rh g k s k     (4.20) 

Where the following unit pulse function indicates whether the flute is in or out of material:  
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The cutting forces contributed by a cutting edge segment with a differential height (dz) are 

evaluated from Figure 3.13 as: 
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Figure 3.13 Radial, tangential and axial cutting forces on the radial part of the tool at one discrete element 

The total forces generated by the peripheral edges of the end mill can be calculated by summing 

the projected differential forces in the cartesian axes as:   
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 (3.23) 

The cutting forces contributed by the bottom edges of the end mill are evaluated when the tool 

plunges in the workpiece as: 
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The total forces contributed by the peripheral and bottom edges of the tool are: 
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  (3.25) 

3.5 Simulations and Experimental Results 

 

Series of orbital drilling tests have been carried out on Quaser UX600 5 axis machining 

center instrumented with a Kistler 9255B table top dynamometer as shown in  Figure 3.14.     

 

Figure 3.14 Experimental setup for mechanics test 

The geometric properties of the helical end mill used in orbital drilling tests are shown in 

Table 3.3 and the cutting conditions are given in Table 3.4. 
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Table 3.3 Specifications of the carbide end mill used for the experiments  

Tool Type 
Cutting 

Diameter 

Radial 

Rake 

Angle 

Axial 

Rake 

Angle 

Flute 

Helix 

Angle 

Max. 

Ramping 

Angle 

Orbital 

Drilling 

Capability 

2- Fluted Solid 

Flat-End mill 

16 mm 13.5° 13.5° 25° 15° Yes 

3 experiments with different process parameters are experimentally verified and the parameters 

of each experiment are listed as follows. 

Table 3.4 Cutting conditions used in orbital drilling tests.  

Exp # 

Hole 

Diameter 

[mm] 

Spindle 

Speed 

[RPM] 

Orbital 

Speed 

[RPM] 

Pitch Length 

of the Tool 

Path [mm] 

Tangential 

Feed Rate 

[mm/rev/tooth] 

Axial Feed 

Rate 

[mm/rev/tooth] 

1 25 1000 10 3 0.1414 0.015 

2 25 1000 10 6 0.1414 0.030 

3 30 1000 5 4.5 0.11 0.0113 

 

The workpiece material was selected Aluminum 7050-T7451 with the cutting force 

coefficients 𝐾𝑡𝑐,𝑟 = 884.65 [MPa], 𝐾𝑡𝑒,𝑟 = 15.33 [N/mm], 𝐾𝑟𝑐,𝑟 = 214.64 [MPa], 𝐾𝑟𝑒,𝑟 = 35.36 

[N/mm], 𝐾𝑎𝑐,𝑟 = 185.14 [MPa], 𝐾𝑎𝑐,𝑟 = 0 [N/mm]. Cutting coefficients related with the bottom 

part of the tool was given on the Table 3.2. When the cutting coefficients on both sides of the 

end mill are compared, the difference for both cutting and edge coefficients of radial, tangential 

and axial directions is obvious. The reason behind this difference is the cutting geometry on the 

periphery and on the axial part of the tool which are different. In addition to that, for 
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mechanistically calibrating the cutting force coefficients on the bottom part of the tool, cutting 

force coefficients are assumed to be constant throughout the cutter radius. However since the 

cutting speed is changing throughout the radius of the end mill, the cutting force coefficient 

values shouldn’t be different considering the orthogonal to oblique transformation approach. In 

order to present a more realistic solution the bottom geometry should be analyzed with an 

advanced tool microscope. The simulated maximum radial engagement conditions for each 

experimental case are shown in Figure 3.15. 

 

Figure 3.15 Simulated maximum radial engagement boundaries for experiments 

The predicted and experimentally measured cutting forces of experiment 1 in zone 2 of 

orbital drilling operation are given for one travel period of tool around the hole center in Figure 

3.16 and Figure 3.17 respectively. Simulated and experimental results consider the cutting forces 

when tool starts cutting in zone 2 and rotates around the hole center 360 degrees which is equal 

to the pitch length of the path in vertical direction. A detailed comparison of the predicted and 

measured forces is given in Figure 3.18. 
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Figure 3.16 Measured cutting forces in x, y and z directions (Exp#1)

 

Figure 3.17 Predicted cutting forces in x, y and z directions (Exp#1) 
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Figure 3.18 Comparison of measured and predicted cutting forces (Exp#1) 

The predicted and measured forces for the experiments 2 and 3 are shown in Figure 3.19 and 

Figure 3.20, respectively. 

 

Figure 3.19 Comparison of measured and predicted cutting forces (Exp#2) 
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Figure 3.20 Comparison of measured and predicted cutting forces (Exp#3) 

While the prediction accuracy is quite satisfactory in radial (X, Y) directions, there are 

slight deviations in the axial (Z) direction due to uncertainties in modeling the plunge cutting 

process. The prediction errors are shown on average axial forces in Table 3.5.  

Table 3.5 Prediction errors on average axial forces.  

 
Average Predicted 

Force [N] 

Average Measured 

Force [N] 

Average  

Error (%) 

Experiment #1 229 211 8.5 

Experiment #2 281 273 2.9 

Experiment #3 196 204 3.9 
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Chapter 4: Chatter Stability of Orbital Drilling Operations 

 

4.1 Introduction 

 

Chatter is a self-excited vibration that is caused by the phase shift between two 

successive waves left on the workpiece material during the metal cutting operations. Chatter 

must be avoided to obtain good surface finish and high material removal rates while avoiding 

tool breakage and high dynamic loads on machine tool spindle. 

The acceptable quality of machined surface is determined by the static and dynamic 

deflections of the flexible tool which are imprinted on the hole surface.  The mechanics of orbital 

drilling which leads to prediction of chip thickness and forces are presented in the previous 

chapter. This chapter extends the model to include the effects of vibrations on the chip thickness 

hence on the dynamic forces. The dynamic model allows the identification of chatter stability 

diagrams which lead to stable speeds and cutting engagement conditions which yield to good 

surface finish and high material removal rate. The model also allows the prediction of static 

deflection and forced vibration marks left on the hole surface.      

Henceforth, the chapter is organized as follows. First, the dynamic model of orbital 

drilling is modeled and the effect of orbital motion on time delay investigated. The chatter 

stability of the orbital drilling is solved both in frequency and semi-discrete time domain. The 

varying engagement conditions and position dependent structural dynamics of the tool are 

considered in the stability models. The models are experimentally verified.  
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4.2 Dynamic Cutting Forces in Orbital Drilling 

 

Dynamic cutting forces excite the machine tool structure in both radial (x,y) and axial (z) 

directions in global coordinate system. The dynamic displacements in the tangential and axial 

chip thicknesses are derived in terms of tools instantaneous angular position around hole (𝜃), 

instantaneous immersion angle at both radial and bottom part of the end mill ∅𝑗, and vibrations 

in global coordinates ∆𝑥, ∆𝑦, ∆𝑧 as follows: 
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   (4.1) 

 tan ,sin j rs  is the static and    , ,cos sinj r j rx y       represents the dynamic part of 

the chip thickness in global coordinates.   ( ) ( )x t x t x t     ,   ( ) ( )y t y t y t     and

  ( ) ( )z t z t z t     denotes the difference between dynamic displacements at present and 

previous cuts in global coordinates.  The static chip thickness does not affect the chatter stability 

when the cutting force coefficient is constant, hence it can be dropped from the stability 

formulation [32]. The tangential and axial chip thicknesses can be rewritten as follows:  
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The cutting forces are evaluated in global coordinates 
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Where 𝐾𝑡𝑐,𝑟, 𝐾𝑟𝑐,𝑟, 𝐾𝑎𝑐,𝑟, are cutting force coefficients,  ∅𝑗 instantaneous immersion angle of 

tooth j,  𝑎(∅𝑗)  is the instantaneous depth of cut,  and ℎ𝑟(∅𝑗, 𝜃) is radial chip thickness. 

Dynamic cutting forces at the bottom part of the end mill acting on tooth j is expressed 
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Where 𝐾𝑡𝑐,𝑏, 𝐾𝑟𝑐,𝑏, 𝐾𝑎𝑐,𝑏 are the cutting coefficients for the bottom part of the cuing edges, 

ℎ𝑎𝑥(∅𝑗, 𝜃) is the axial chip thickness.   
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By considering the contributions of both radial and bottom part of the end mill, dynamic forces 

acting on tooth j can be as:  
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Where 

jA      (4.6) 

Total dynamic cutting forces 𝐹𝑥, 𝐹𝑦 and 𝐹𝑧 can be evaluated by summing the forces contributed 

by all the teeth which are engaged with the workpiece: 
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4.3 Chatter Stability in Orbital Drilling 

 

The chatter stability of orbital drilling process is solved in frequency domain and semi-

discrete time domain with the following assumptions: 

 The radial chip load is always greater than the axial chip load due to the helical-

orbital motion of the tool. Hence, it is assumed that the main source of the chatter is 

by the lateral deflections of the end mill and axial deflections are neglected in the 

chatter stability solution.  

 Since the core of the end mills are stronger than twist drills the torsional modes of 

the end mill is neglected.  

 Gyroscopic effects that might come from the orbital motion of the cutter are 

negligible due to slow orbital motion. 

Since the feed direction changes during the orbital motion, FRF of the machine on global 

coordinates is oriented onto the local coordinates of the end mill in lateral directions. As a result, 

the stability model is 3D and dependent on the position of the tool, spindle speed and axial pitch 

length of the tool path. Different than the approach presented by Li et al. [16], in frequency 

domain solution the exact engagement conditions are taken into account for solving the chatter 

stability of the operation. Besides, the presented semi-discrete time domain solution is the first 

attempt to study the dynamics of orbital drilling in time domain. 
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4.3.1 Orbital Motion Effect on Time Delay 

 

The stability of machining processes with by two different delay terms contributed by the 

spindle speed and feed motions has been studied before [17, 18].  Here, the effect of tool’s 

orbital helical motion on the regenerative delay is studied using an analysis model proposed by 

Long et al [33]. The spindle speed 𝑛 and orbital speed 𝑛𝑜 are expressed in [rad/sec] as: 

    
22

,
60 60

/ / orad sec rad se
n

c
n 

      (4.8) 

Which leads to tangential feed 𝑓𝑡𝑎𝑛[mm/sec] : 

 tan
2

H TD D
f

 
 

 
  (4.9) 

The motion of the end mill’s tooth after one tooth period is shown in Figure 4.1 where 

end mill’s center shifts from (𝑂1) to (𝑂2). The dashed and solid lines represent the tool paths of 

the first and the second tooth, respectively. 𝑂1 is the position of tool center when the first tooth 

cuts the workpiece at point B and 𝑂2 is the position of tool center when the subsequent tooth cuts 

the workpiece at point A. The kinematics of the motion leads to static chip thickness  𝐴𝐵̅̅ ̅̅ . 

 

Figure 4.1 Toolpath of orbital drilling process and simultaneous feed directions 
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In practice, the orbital speed ( on ) is significantly lower than the spindle speed ( n ), i.e.  

100
o

n

n
 . The speed ratio could change as a function of tool diameter, hole diameter and cutting 

conditions such as tangential and axial feed rates. Hence the angular orientation of the feed in 

one tooth period ( 0
60

Nn
  ) ( 0  ) between two consecutive tool centers is extremely small: 

 0 0
0

260 2

60

n n

Nn N n

 
       (4.10) 

For a two fluted end mill ( 2N  ), orbital speed 0 12[ / min]n rev  and spindle speed of

1200 [ / min]n rev , the angular change in the direction of feed is 0.0314[rad] or 1.8 degrees 

which is negligible. As a result, it is assumed that the structural dynamics of the system in one 

tooth period are assumed to remain constant.  

 

Figure 4.2 Vibration independent toolpath of orbital drilling process 
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If the ∅′𝑗 and ∅𝑗 are assumed to be equal the constant time delay (tooth period) can be evaluated 

as: 

 0
60

Nn
    (4.11) 

If the vibrations of the tool are neglected, tool center shifts at amount of: 
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By using the sine rule: 
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In practical orbital drilling applications 0 tanf  is much smaller than the radius of the cutter 

hence the following assumption is made: 

  ' 'sin j j j j        (4.14) 

By using the definition of time delay:  
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Where t’ is the time at which the previous cutter tooth reaches at the angular position ∅′𝑗 and t is 

the time when the current cutter tooth reaches at the angular position ∅𝑗.  
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Varying time delay is derived as: 
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  (4.16) 

As it can be seen from the Equation 4.16 the effect of orbital motion on time delay depends on 

the hole diameter HD , tool diameter TD , spindle speed   [rad/sec] and orbital speed   

[rad/sec]. 

Time delays are evaluated as a function of orbital speeds, with fixed tool and hole 

diameters at  the angular position of the each tooth in Figure 4.3. The following parameters are 

used in the analysis: spindle speed n = 8000 rpm, tool diameter TD  = 16 mm, hole diameter 

HD  = 30 mm, number of the teeth N = 2. The following orbital speeds and tangential feed rates 

are used: 

i. on  = 20 rpm, tans  = 0.055 mm/tooth/rev 

ii. on  = 40 rpm, tans  = 0.110 mm/tooth/rev 

iii. on  = 80 rpm, tans  = 0.220 mm/tooth/rev 

iv. on  = 120 rpm, tans  = 0.330 mm/tooth/rev 

In practical orbital drilling operations, the tangential feed rate (𝑠𝑡𝑎𝑛) is often less than 

0.25 mm/tooth/rev. As the orbital speed increases, the variable delay changes. For the case where 

the orbital speed is on  = 120 rpm, the variation in the delay amplitude is expected to be less than 

1.5% of constant time delay ( 0 ).  



42 

 

 

Figure 4.3 Variable time delay versus angular position of cutting tooth 

The results given in Figure 4.3 demonstrates the real time delay remains within 1.5%  of 

the tooth period at extreme orbital speeds, hence the effect of orbital speed on the delay term 

used in chatter stability is negligible.  
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4.3.2 Chatter Stability in Frequency Domain Solution 

 

If the cutting with the bottom part is neglected the dynamics of the orbital drilling at a 

frozen point along the path is similar to the milling. The regeneration of radial chip thickness is 

shown in Figure 4.4 and can be expressed as [32]: 

 

Figure 4.4 Dynamic radial chip thickness generation in orbital drilling 

 

      , , ,sin cosr j r j r j rh x y       (4.17) 

The dynamic cutting forces in x and y directions are:  
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where the time varying directional dynamic milling coefficients are represented by 
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, , tc,/r r rc r rK K K . The dynamic cutting forces in time domain can be expressed in vector form 

as: 
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Where  D t  is the time varying directional matrix. Altintas and Budak [27] introduced frequency 

domain linear stability law to predict critically stable depth of cut and spindle speeds as a 

function of machine’s dynamics, tool geometry and work material properties. They transformed 

the time varying, periodic directional matrix into frequency domain: 
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Where 𝜏 is the tooth passing period. Budak and Altintas [34] proposed two approaches: Multi-

Frequency solution where the harmonics of periodic coefficients are considered; and Zero Order 

method where the harmonics are neglected to eliminate time dependency of directional 
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coefficient. The Zero Order method is used here by taking only the mean value of directional 

coefficients as:  
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Which is valid only when the tool is in engagement boundaries (
,st r

 ,
,ex r
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Where pitch  is the pitch angle of the cutter. The resulting average directional milling 

coefficients become:  
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The dynamic cutting forces in Equation 4.20 can be expressed as:  
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The lateral directions  i  can be expressed from the frequency response of the machine tool 

 i  and the dynamic cutting forces  F i  as. 
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  (4.26) 

Where 
ie 

 is the delay between two successive teeth. The frequency response matrix includes 

both direct (  xx i ,  yy i ) and cross (  xy i ,  yx i ) FRFs. However machine tools 

usually have orthogonal structures, hence cross FRFs can be neglected: 
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  (4.27) 

The dynamic cutting forces can be reduced to following:  
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  (4.28) 

The characteristic equation of the system becomes 
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Or in a short form as: 
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  (4.30) 

Which leads to the following quadratic function: 
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Then the eigenvalue   is obtained as 
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     (4.32) 

The eigenvalue of the system has both real and imaginary part R Ii    . Using the 

cos sinc
i

c ce
    

  transformation and the eigenvalue given in Equation 4.32 the critical 

depth of cut a  at the chatter frequency c  can be calculated as follows:    
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Since the depth of cut is a real number, the imaginary part of the Equation 4.33 vanishes 

 Im 1 cos sin 0c R c        . By substituting 

 
sin

1 cos

cI

R c

 


  
 


  (4.34) 

Chatter free axial depth of cut is reduced to: 

 
2

,

2
[1 ]

tc r

a
NK


     (4.35) 

The phase distance between the inner and outer cut surface is: 

 2 2 2c k k             (4.36) 

Where k is the integer number of waves generated within one tooth period ( ) and 2     is 

the phase shift between the inner and outer waves. The spindle speed n (rev/min) can be is found 

as: 

 
60

n
N

   (4.37) 

Equations 4.35 and 4.37 lead to analytical prediction of critically stable depth of cuts and spindle 

speeds in regular milling operations. However as the radial engagement boundaries in orbital 

drilling process vary throughout the tool diameter as shown in Chapter 3, which brings additional 

delays and varying directional coefficients depending on the cutting conditions and speed. As a 

result, the frequency domain, analytical solution presented by Altintas and Budak [27] may not 

always lead to accurate solutions for the stability of orbital drilling operations. By considering 

the spindle speed, Nyquist stability criterion is used in this thesis as illustrated in Figure 

4.5[35][36]. 
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Figure 4.5 Nyquist plot of the characteristic equation for stable and unstable process 

 

The Nyquist stability criterion sweeps around the most flexible modes of the structure 

and looks clock-wise encirclements of the complex plane origin as illustrated in Figure 4.5. If the 

Nyquist plot encircles the origin, it means unstable process. 

 The stability lobes are searched at different pitch lengths of tool path (𝑎𝑝) and spindle 

speed ( n ) pairs. The radial engagement profile changes at each different pitch length, hence it is 

required to calculate the most severe radial engagement in second zone, first. Then the calculated 

engagement area is discretized into segments as shown in Figure 4.6.  
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Figure 4.6 Predicted and discretized radial engagement profile for the case where Tool Dia.=16mm, Hole Dia.=30 

mm, Pitch Length=5 mm, Discretization Angle: 6 deg. 

 

After discretizing the radial engagement into different segments, the characteristic equation of 

each segment can be written as follows: 

    , 0,
1

det 1 0
2

c
i

tc r i i cI K a e D i
  

         
 

  (4.38) 

Where   , ,

, ,
0, 0

ex r i

st r i
iD D




   

is the coefficient matrix and 𝑎𝑖 is the height of each segment. The 

characteristic equation for each pitch length (𝑎𝑝) and spindle speed ( n ) pair can then be 

expressed as : 
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  (4.39) 
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The characteristic equation of each case is assessed by the Nyquist stability criterion and then 

stability lobes are generated for different pitch lengths. 

  

4.3.3 Chatter Stability in Semi-Discrete Time Domain Solution 

 

Stability of the milling was predicted by extending semi-discretization method proposed by 

Stepan et al.[37,38].  If the machines structural flexibilities are assumed to be orthogonal, the 

FRF of the lateral directions can be represented as follows: 
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  (4.40) 

 

Figure 4.7 Discretized tool geometry(left) and a sample radial engagement(right) 
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The end mill is discretized into differential segments with uniform height of dz as it is 

shown in Figure 4.7. The dynamic forces inn x and y directions at each segment can be 

expressed as: 
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  (4.41) 

which is valid if  the cutting flute at a specific segment is in cut, i.e. within engagement 

boundaries. The dynamics of the cutting at each differential segment is expressed as, 

     

     

 

 

 

 

2

2

2

, 2

2

2

/ 01

2 0 /

x nx nx

y ny ny

ny x xx xy

tc r
yx yyny y

x t x t x t

y t y t y t

k a a x t x t
dzK

y t y ta ak

  

  

 



   
 

   

                                 

  (4.42) 

Or in matrix as follows: 
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  (4.43) 

The two sets of second order delayed differential equations are reduced to state space form as: 
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First order representation of the system becomes 
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where 
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 (4.46) 

The tooth period  is discretized into small time intervals t  as shown in Figure 4.8. Current 

state at time it is represented by  iq where the state a tooth period before is represented by

  iq t  . 

 

Figure 4.8 Semi-discretization of tooth period 
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If the time interval t  is very small, the states  q can be defined as the average of two 

consecutive states as given as:  

   
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2 2

i i i m i mq t t q t q q
q t

 
       

     (4.47) 

The dynamics of the system can be rewritten at discrete time intervals as:  
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2
i i i i i m i mq L q R q q       (4.48) 

The differential Equation 4.48 has homogeneous   ,i hq t  and particular   ,piq t solutions. 

The details of the semi-discrete solution can be found in [32].  

         , ,pi i h iq t q t q t    (4.49) 

The state solution at time 1it t   is given as:  
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Where 1i it t t    and 1it t  . Equation 4.50 requires the previous value of the state iq  and 

values of the state a delay before     1 1,i m i mq q    . Equation 4.50 can be expressed as 

follows: 

     1i i iz B z    (4.51) 
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where 
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 (4.52)  

The stability of the process can be assessed for one tooth period 𝜏 with 𝑚 number of discrete 

time intervals as: 

             
2 1

..i m i im
z z B B B z      (4.53) 

According to Floquet’s linear periodic system theory, the system is defined as unstable if any of 

the eigenvalues of the transition matrix    have a modulus greater than one, critically stable if 

the modulus is equal to one, and stable if the moduluses of all the eigenvalues are less than one. 

The stability lobes are obtained by checking different pitch length spindle speed pairs as carried 

out in Nyquist method. However, semi-discrete method considers time varying directional 

coefficients which are averaged and assumed to be time independent when Nyquist approach is 

used for the stability.    
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The equations given above are valid when one dominant mode is considered for each 

direction. However when there are 𝑁𝑚 number of dominant modes for each direction, 
1

M


, 

 C and   matrices should be expanded as follows: 

 

 

    

    

   

 

    

    

   

 

1 1

1 1

1 1

1 1

2

2

1

2

2

2 2

2 2

/ 0 0

0 0 0

0 0 /

/ 0 0

0 0 0

0 0 /

2 0 0

0 0 0

0 0 2

2 0 0

0 0 0

0 0 2

m m

N Nm m

m m

N Nm m
m m

m m

N Nm m

m m

N Nm m
m m

nx x

N x N

nx x

ny y

N x N

ny y
N x N

x nx

N x N

x nx

y ny

N x N

y ny
N x N

k

k
M

k

k

C









 

 

 

 



 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 

  

 

    

    

   

1

1

2

2

2

2

2 2

0 0

0 0 0

0 0

0 0

0 0 0

0 0

m m

Nm

m m

Nm
m m

nx

N x N

nx

ny

N x N

ny
N x N









 
 
 
 
 
 
 
 
 
 
  

 (4.54) 

The procedure for the rest of the solution is identical to what is given for the one dominant mode 

case.    
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Results of stability solution is given for a sample case in Figure 4.9 when the end mill is at 𝜃 = 0 

[deg.] 

 

Figure 4.9 Semidiscrete time domain stability lobes for orbital drilling process. Tool Dia.=16 [mm], Hole Dia.= 30 

[mm], Helix Angle = 25 [deg], 𝑲𝒕𝒄,𝒓 = 900 [MPa],  𝑲𝒓𝒄,𝒓 = 270 [MPa], modal parameters taken from [39]. 

 𝒘𝒏𝒙𝟏= 624 [Hz] , 𝝃𝒙𝟏 = 0.052 , 𝒌𝒙𝟏 = 8.2 x 𝟏𝟎𝟕 [N/m], 𝒘𝒏𝒙𝟐= 871 [Hz]  , 𝝃𝒙𝟐 = 0.033 , 𝒌𝒙𝟐 = 16.1 x 𝟏𝟎𝟕 [N/m], 

𝒘𝒏𝒙𝟑= 2311 [Hz] , 𝝃𝒙𝟑 = 0.022, 𝒌𝒙𝟑 = 8.7 x 𝟏𝟎𝟕 [N/m], 𝒘𝒏𝒙𝟒= 3052 [Hz]  , 𝝃𝒙𝟒 = 0.029 , 𝒌𝒙𝟒 = 14.5 x 𝟏𝟎𝟕 [N/m], 

𝒘𝒏𝒚𝟏= 692 [Hz]  , 𝝃𝒚𝟏 = 0.042, 𝒌𝒚𝟏 = 7.6 x 𝟏𝟎𝟕 [N/m], 𝒘𝒏𝒚𝟐= 862 [Hz] , 𝝃𝒚𝟐 = 0.052 , 𝒌𝒚𝟐 = 13.5 x 𝟏𝟎𝟕 [N/m], 

𝒘𝒏𝒚𝟑= 2289 [Hz], 𝝃𝒚𝟑 = 0.019, 𝒌𝒚𝟑 = 7.9 x 𝟏𝟎𝟕 [N/m], 𝒘𝒏𝒚𝟒= 3050 [Hz], 𝝃𝒚𝟒 = 0.027 , 𝒌𝒚𝟒 = 15.0 x 𝟏𝟎𝟕 [N/m] 

 

The multiple mode solution considers the flexibilities of all modes of the end mill. 
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4.4 Oriented Frequency Response Function 

 

The methods that presented so far assess the stability of the system at one point however 

during orbital drilling operation the feed direction of the end mill changes as the tool moves 

around the hole center as it is shown in Figure 4.10.  

 

Figure 4.10 Frequency response on local and global coordinates 

Koenigsberger and Tlusty [40] defined the frequency response function between cutting 

forces and the resultant vibration directions (X’,Y’) as oriented FRFs.  Hence, the FRFs on 

global coordinates  ,xx yy   has to be projected to the feed and normal directions as the tool 

follows orbital drilling path. The projected frequency responses along instantaneous feed and 

normal direction  ' ',xx yy   of the end mill can be evaluated as: 

 

2 2
'

2 2
yy'

cos (90 ) cos ( )

cos (180 ) cos (90 )

xx xx yy

xx yy

 

 

    
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  (4.55) 
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4.5 Simulations and Experimental Results 

 

A set of orbital drilling experiments have been carried out a range of hole pitch lengths 

and spindle speeds listed in Table 4.2.  

An end mill with radius 𝑅𝑇 = 8 [mm], pitch angle 𝛽ℎ = 25 [deg] and 𝑁 = 2 teeth has been 

used for opening holes with 𝐷𝐻 = 30 [mm] diameter. The workpiece material is Al7050-T7451 

with the experimentally identified cutting coefficients 𝐾𝑡𝑐,𝑟 = 752.4 [MPa] and 𝐾𝑟𝑐,𝑟 = 178.3 

[MPa]. The presence of chatter has been detected from the spectrum of sound and hole surface. If 

the spectrum peaks close to one of the natural frequencies of the machine, with peaks 

spindle/tooth passing frequencies away on the left and right, the presence of chatter is assumed. 

The presence of forced vibrations is decided when the spectrum is dominated by the spindle 

and/or tooth passing frequencies and their harmonics.  

 

Figure 4.11 Experimental setup for chatter tests 

Modal parameters of the structures in x and y directions are given in Table 4.1. FRF’s on the tool 

tip are given in Figure 4.12. 
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Table 4.1 Modal parameters at the tool tip 

Measurement 

Direction 

Natural Frequency 

[Hz] 

Damping Ratio 

𝜉 

Stiffness 𝑘  

[N/m] 

X 

376.6, 503.9, 1008.1, 

1241.5, 1584.7, 1821.1, 

2357.8, 3554.9, 4574.7 

0.0251, 0.0927, 0.0351, 

0.0245, 0.0461, 0.0277, 

0.0769, 0.0291, 0.0214 

2.31e7, 1.50e7, 5.19e7, 

5.49e7, 2.59e7, 4.26e8, 

2.58e7, 3.41e8, 2.58e8 

Y 

443.4, 522.6, 996.1, 

1138.9, 1344.1, 1608.0, 

2369.3, 3818.8, 4586.8 

0.0797, 0.0657, 0.0729, 

0.0687, 0.0500, 0.0320, 

0.0589, 0.0366, 0.0243 

1.57e7, 1.42e7, 4.25e7, 

8.81e7, 9.62e7, 4.28e7, 

3.07e7, 3.81e8, 2.76e8 

 

Figure 4.12 Two orthogonal direction FRF’s at the tool tip  
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Table 4.2 Pitch length of tool path (𝒂𝒑) and spindle speed (𝒏) values for chatter tests 

Experiments 
Spindle Speed 

[RPM] 

Orbital 

Speed 

[RPM] 

Pitch of 

Tool Path 

[mm] 

Tangential 

Feed of the 

Tool 

[mm/tooth] 

Axial Feed of 

the Tool 

[mm/tooth] 

# 1. 8000 10 3 0.0275 0.002 

# 2. 8000 10 5 0.0275 0.003 

# 3. 8000 10 6 0.0275 0.0037 

# 4. 8400 10.5 3 0.0275 0.002 

# 5. 8400 10.5 4 0.0275 0.0025 

# 6. 8400 10.5 5 0.0275 0.003 

# 7. 8400 10.5 6 0.0275 0.0037 

# 8. 8800 11 3 0.0275 0.002 

# 9. 8800 11 4 0.0275 0.0025 

# 10. 8800 11 5 0.0275 0.003 

# 11. 8800 11 6 0.0275 0.0037 

# 12. 9200 11.5 2.5 0.0275 0.0016 

# 13. 9200 11.5 4 0.0275 0.0025 

# 14. 9200 11.5 5 0.0275 0.003 

# 15. 9200 11.5 6 0.0275 0.0037 

 

FRFs have been oriented as the feed direction changes along the orbital tool path. Sample 

oriented FRFs for feeds with 45 deg  are given for X and Y directions in Figure 4.13 and 

Figure 4.14 respectively.   
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Figure 4.13 FRF on global and local X coordinates of end mill when 𝜽 = 45 deg.  

 

Figure 4.14 FRF on global and local Y coordinates of end mill when 𝜽 = 45 deg. 
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Sound measurements and the corresponding spectrums are shown along the orbital drilling path 

starting at 0  degree and completing the full hole at 360  degrees. A stable orbital drilling 

process carried out at the spindle speed of 8000 rev/min is shown in Figure 4.15. The spectrum is 

dominated by the spindle frequency (133.33Hz) due to run out, tooth passing frequency (266.7 

Hz) and their harmonics which indicate forced vibrations hence the stability. The visually 

observed surface finish was also smooth. Sample, unstable orbital drilling test results are shown 

in Figure 4.16 where the system chatters close to 522 Hz natural mode. The spectrums are spread 

to the right and left with integer number (k) of tooth passing frequencies away (i.e. c Tk   ) 

which indicates the presence of chatter. The hole surface was also observed to be rough 

containing chatter marks.  

 

Figure 4.15 Stable orbital drilling: Measured sound signals and their FFT for 𝒂𝒑 = 3mm, 𝒏 = 8000 RPM, 𝒔𝒕𝒂𝒏 = 

0.0275 mm/tooth, 𝒔𝒂𝒙 = 0.002 mm/tooth, Tooth Passing Frequency=266.7 Hz 

0 60 120 180 240 300 360
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Angular position of the cutter center [Deg.]

S
o

u
n

d
 [

-]

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

A
m

p
lit

u
d

e
 o

f 
th

e
 s

ig
n
a
l

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Frequency [Hz]

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

P2

P2P1

P3

P3

P4

P4

P5

P5

P6

P6

266.4 Hz 267.2 Hz 267.2 Hz 267.2 Hz 267.2 Hz 267.2 Hz

P1



64 

 

 

Figure 4.16 Unstable orbital drilling: Measured sound signals and their FFT for 𝒂𝒑 = 6mm, 𝒏 = 9200 RPM, 𝒔𝒕𝒂𝒏 = 

0.0275 mm/tooth, 𝒔𝒂𝒙 = 0.0037 mm/tooth, Tooth Passing Frequency=306.7 Hz 

 

The predicted stability charts have been experimentally validated by recording the sound 

from a microphone attached close to the cuting zone. The assesment of stable and unstable 

process was made when the end mill starts cutting in zone 2, where the radial engagement 

reaches its maximum.  

Frequency domain solution requires FRF of the structure in feed and normal directions 

whereas the semi-discrete time domain solution requires the modal parameters of the system in 

each direction. Regarding the feed direction change during the orbital drilling process, 

calculation of modal parameters in both directions at each predefined point is necessary for 

solving the 3D chatter stability of the operation in time domain. Besides, if higher number of the 

modes of the structure is included in the time domain solution, the solution starts being time 

consuming since the matrixes corresponding with the modal parameters start expanding. 

0 60 120 180 240 300 360
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Angular position of the cutter center [Deg.]

S
o
u
n
d
 [

-]

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

Frequency [Hz]

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

0 500 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-3

A
m

p
lit

u
d
e
 o

f 
th

e
 S

ig
n
a
l

P1 P2 P3 P4 P5 P6

P2 P3 P4 P5 P6P1

wc+wt=824.2 Hz

wt=307 Hz

wc=519.5 Hz wc=521.9 Hzwc=521.1 Hz wc=520.3 Hzwc+wt=833.6 Hz

wc=529.7 Hz

wc=518 Hz



65 

 

Therefore, it is decided to solve the stability of the system in frequency domain in order to 

observe the dominant modes around the experiment points. 

The chatter stability diagram (Figure 4.17) is obtained in Frequency Domain as functions 

of spindle speed, angular position of the tool and pitch length of the tool path.  

 

Figure 4.17 3D stability lobe for orbital drilling and chatter simulated chatter frequencies/Nyquist solution 
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Results of the experiments and simulation can be better compared on a two dimensional 

graph when the tool is at 0 deg   and when n=9200 rpm as shown in Figure 4.18 and Figure 

4.19.  

 

Figure 4.18 Comparison of Nyquist solution and experimentally measured chatter stability when end mill is at 𝜽 = 0 

deg 

 

Figure 4.19 Stability limits during the rotation of the tool around the hole center for 𝒏 = 9200 RPM/ Nyquist 

solution 
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Frequency domain solution and the experimental results are in great agreement. 

Furthermore, from the frequency domain solution it is observed that when the spindle speed 

changes between 7500 rpm and 9500 rpm  the dominant natural frequencies of the structure are 

around 500 Hz and 1600 Hz. That’s why time domain simulation considers the modal parameters 

given on Table 4.3.  

Table 4.3 Modal parameters for semi-discrete time domain solution 

Direction 
Natural Frequency 

[Hz] 

Damping Ratio 

𝜉 

Stiffness 𝑘  

[N/m] 

X 503.9, 1584.8 0.0927, 0.0461 1.50e7, 2.59e7 

Y 522.6, 1608 0.0657, 0.0320 1.42e7, 4.28e7 

 

The chatter stability diagram (Figure 4.20) is obtained in Semi-Discrete Time Domain as 

functions of spindle speed, angular position of the tool and pitch length of the tool path.  

 

Figure 4.20 3D stability lobe for orbital drilling /Semi-discrete time domain solution 
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Time domain and frequency domain solutions can be better compared on a two 

dimensional graph when the tool is at 0 deg   as shown in Figure 4.21.  

 

Figure 4.21 Comparison of predicted and experimentally measured chatter stability when end mill is at 𝜽 = 0 deg 

The frequency and time domain results have small discrepancies and they show 

consistency with the experimental results. The radial engagement profile is discretized into 

segments and average directional coefficient matrix for each segment is calculated with the zero 

order frequency domain method. However as the engagement area gets smaller, the averaging of 

directional coefficients  lead to errors. On the other hand, semi discrete time domain solution 

considers the cutters exact rotation within the engagement, hence time varying directional 

coefficients are considered, hence leads to more accurate solutions. 
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 Frequency and time domain simulation results are computed at each 20 degrees rotation 

of the end mill around hole center with 50 rpm intervals. Both solution algorithms are 

implemented on Matlab R2016a platform. Nyquist solution that considers all of the natural 

frequencies in both lateral directions takes seventy six minutes whereas Nyquist solution that 

considers only two modes, takes thirty two minutes. Semi-discrete time domain solution that 

considers two modes takes three hundred and one minutes.  

 

Figure 4.22 Stability limits during the rotation of the tool around the hole center for 𝒏 = 9200 RPM 
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Chapter 5: Conclusion 

 

 

5.1 Conclusions 

 

The mechanics and dynamics of orbital drilling operations have been modeled in this 

thesis. The model is able to predict the cutting forces, chatter stability and dimensional hole 

quality for cylindrical helical end mills with drilling edges at their bottom.  

The mechanics model uses orthogonal to oblique transformation at the helical flutes at 

the periphery of the end mill. The orthogonal model is based on the plastic shearing, and uses 

shear yield stress, shear angle and average Coulomb friction coefficient of the work-tool material 

couple. Due to indentation and severe ploughing, the orthogonal to oblique cutting model has 

shown to be unsuitable for the penetration of the bottom flutes into the material during 

downward motion, i.e. drilling with the end mill. The cutting force coefficients have been 

mechanistically identified from cutting tests, and used in modeling the contribution of the cutting 

forces by the cutting edges at the bottom face of the end mill.  

The kinematic model of the orbital drilling motion has been modeled as a function of tool 

and hole geometries, spindle speed, tangential and orbital feed velocities. The distribution of chip 

thickness along the bottom and periphery of the end mill have been modeled, and used in 

predicting the vibration free (i.e. static) cutting forces. The model has led to accurate prediction 

of cutting forces quite well in lateral directions, but not well in the axial direction where the 

forces are dominated by ploughing due to plunging into the material. 
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The chatter stability model has been reduced to orbital feed independent, regular milling 

system by orienting the structural flexibilities in the feed and normal directions. The stability has 

been solved as a function of pitch length of the orbital motion in frequency domain using 

Nyquist Stability Criteria, and in Semi Discrete Time domain proposed by Insperger and Stepan. 

The predicted stability lobes have been experimentally proven on a mill turn machine tool.  

The contributions of the thesis can be summarized as follows:     

 A general force model of orbital drilling for cylindrical flat end mills is 

developed. A numerical model for calculating the TWE is introduced.  

 The dynamic force model of orbital drilling that considers the vibration on lateral 

(x, y) and axial (z) directions is presented.  

 The effect of orbital motion on time delay is analyzed and found to be negligible. 

 Since the feed direction of the end mill is changing during orbital drilling, FRF on 

global coordinates projected along instantaneous feed and normal direction. 

Hence the stability charts are 3 dimensional considering the end mills position 

around the hole center, spindle speed and pitch length of the tool path.  

 In frequency domain, Nyquist stability criterion is utilized in order to obtain 

accurate stable pitch lengths since the radial engagement conditions are not 

constant throughout the end mill diameter.          

The proposed mathematical model has the following impact on the orbital drilling operations 

used in industry: 

 The model allows the chatter free spindle speed, orbital feed and pitch length of 

the operation that leads to highest material removal rates.  
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 The prediction of cutting forces, hence the torque and power allows the selection 

of tool diameter and cutting conditions which do not violate the tool’s breakage 

and machine tool’s spindle’s torque-power limits.   

 

 

5.2 Future Research Directions 

 

Future research directions can be pursued in following topics: 

 The cutting coefficients related with the bottom part of the end mill are obtained 

by using the mechanistic approach in this thesis. However, the process is 

dominated by indentation mechanics which can be modeled based on slip line 

field or other plasticity methods. 

 For high speed orbital drilling applications (i.e. robotic orbital drilling), the 

gyroscopic effects that might come from the orbital motion of the cutter could be 

analyzed. 

 Orbital drilling is a highly used process in aerospace industry especially on 

difficult to cut materials at low spindle speeds. The modeling of process damping 

that considers the contact between the flank face of the cutting edge and cut 

surface is needed. 

 Optimization of the orbital drilling process which considers structural dynamics 

of the machine, work material properties, Computer Numerical Control (CNC) 

servo drive bandwidth, tool breakage and dimensional hole surface errors can be 

highly useful tool for manufacturing industry.   
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