
ADAPTIVE WIRELESS SENSOR NETWORK FOR REAL-TIME 

MONITORING OF WATER QUALITY 

by 

 

Jiahong Chen 

 

B.Eng., Xiamen University, 2015 

 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF APPLIED SCIENCE 

in 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 

(Mechanical Engineering) 

 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver)  

 

 

May 2017 

 

© Jiahong Chen, 2017 



 ii 

Abstract  

Water quality problems have appeared in many places all around the world, and have caused severe 

public health problems. In identify the quality of different aquatic environments, wireless sensor 

networks have been used for monitoring large geographic areas of interest (AOI). Among the 

challenges of using wireless sensor networks for water quality monitoring in large areas, sensor 

node deployment strategy is a key consideration since an optimal sensor node deployment strategy 

can ensure the most appropriate utilization of the limited monitoring resources (sensor node, 

incorporated sensors, power supply, monitoring rates, etc.). To tackle such problems, we in the 

Industrial Automation Laboratory (IAL) of the Department of Mechanical Engineering, the 

University of British Columbia (UBC) have developed a mobile wireless sensor network for water 

quality monitoring. It has mobile (dynamic) sensor nodes, which can move to best sensing 

locations, and the ability to sense key water quality attributes. The developed platform is equipped 

with multiple nodes each of which having basic water quality detecting sensor probes, supports up 

to six propellers, and has upgradable wireless communication boards. Besides, we have also 

proposed an optimal sensor node deployment strategy called “Rapid Random exploring tree with 

Linear Reduction” (RRLR) for this mobile wireless sensor network. The proposed method 

removes redundant sensor nodes depending on the linear dependence of sensor readings at the 

current deployment location without losing information. In this manner, spatial-temporal 

correlation of sensor node deployment in large geographic AOI can be minimized. The developed 

platform is demonstrated to have good performance even when moving against water flow and has 

low packet loss rate (0.85%) while transmitting data under different types of obstacles in real-

world tests. Furthermore, the developed optimal sensor node deployment strategy, RRLR, requires 

nearly 60% fewer sensor nodes to achieve the same estimation error as our benchmark.  
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Lay Summary 

This thesis makes two contributions. First, a practical platform is developed for real-time 

monitoring of water quality using a network of mobile sensors having sensor mobility, efficient 

data transmission, and less costly has easy-to-upgrade modular design. Second, a novel strategy is 

proposed for optimal sensor deployment. In particular theorems are presented and proved for 

eliminating linear redundant sensor nodes, and minimizing the number of sensor nodes for 

acquiring the same information content. Also, a lower prior estimation error and a lower linear 

dependence among the deployed sensor nodes are achieved with the developed methodology. 
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Chapter 1 : Introduction  

1.1 Motivation and Background 

Poor quality of water can lead to crisis situations as seen in many places all around the world. 

Occurring in both developing and developed countries, water quality degradation can put public 

health in great danger [1] [2] [3]. A platform that can monitor the quality of water in various 

sources and aquatic environments in real time can help address such problems quickly [4] [5]. To 

detect the quality of aquatic environments, wireless sensor networks have been used, which can 

monitor large geographic areas of interest (AOI) [6] [7] [8]. The present work concerns the 

development and implementation such a network with mobile/dynamic sensor nodes. Among 

challenges of using wireless sensor networks with mobile sensor nodes for water quality 

monitoring in large geographic AOI, a leading one is finding an optimal sensor node deployment 

strategy. An optimal sensor node deployment strategy can ensure effective utilization of limited 

sensor nodes and power resources, while acquiring the needed information rapidly in the field [9] 

[10] [11]. In order to address such issues, we in the Industrial Automation Laboratory (IAL) of the 

Department of Mechanical Engineering, the University of British Columbia, have developed a 

mobile wireless sensor network for water quality monitoring. It has the ability to sense key water 

quality parameters while autonomously moving the sensor nodes to best sensing locations. The 

optimal location of the sensor nodes may be achieved by considering both spatial and temporal 

correlation [8] [12] [13] [14] [15] [16]. The developed platform is equipped with basic water 

quality monitoring sensor probes, and propellers for autonomously moving the nodes possibly 

against strong water flow conditions and currents, and upgradable wireless communication boards 

with low packet loss rates. The optimal sensor node deployment strategy that is developed in the 

present work is termed Rapid Random exploring tree with Linear Reduction (RRLR). It has shown 
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good performance by reducing the required number of sensor nodes while achieving low prior 

estimation error for the water quality. 

 

1.2 Work on Platform Design 

A real-time adaptive wireless sensor network for water quality monitoring uses sensor nodes to 

acquire the required information in an interested segment of water. Researchers and companies 

have been involved in the design and development of sensor nodes, sensor networks, and 

unmanned surface vehicles (USVs), which are all relevant to this application. Since water quality 

monitoring sensors and dynamic multi-sensor nodes are expensive, the densely deployment of 

them can be prohibitive. Hence, it is desirable to find ways to deploy the minimum number of 

sensor nodes, at low cost, and collect as much information as possible. It follows that the design 

of inexpensive and autonomously mobile sensor nodes and also develop strategies for optimizing 

the sensor node deployment locations.  

 

Researchers have worked in the development of sensors to monitor aquatic environments. 

Singh et al. proposed an aquatic-based networked info-mechanical system, which is a single 

mobile node with the ability to relocate and easily assemble [17]. However, as shown in Figure 

1.1 their system only has a single node to detect water quality, which is not adequate for monitoring 

large AOI. Also, it is not robust to sudden environmental changes. Moreover, their system is not 

self-propelling, and is driven using a cable hold by a technician. This method is impractical since 

it is hard to relocate a sensor node using a drive cable when monitoring a large area, and also it is 

hard to control when the water flow is strong. Besides, it is a single degree-of-freedom system, 

which can only move along one axis, and cannot go to any desired position. 
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Figure 1.1: Aquatic-based Networked Info-mechanical System [17]. 

Alippi et al. designed a static wireless sensor network for large AOI monitoring [18]. In 

their sensor network, each sensor node had the ability of rapid data transmission and analysis. 

Figure 1.2 shows the design for their static sensor node, which integrated a data acquisition board, 

a wireless communication board and a solar panel. The sensor nodes are able to communicate with 

each other for exchanging and analysing the data, to determine the health condition of the coralline 

barrier and to provide quantitative indications related to cyclone formations in tropical areas. Since 

their framework only includes static sensor nodes, which cannot relocate as appropriate for data 

collection, it may not collect all necessary information from the environment.  
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Figure 1.2: Static Wireless Sensor Node [18]. 

Recently, some companies developed unmanned surface vehicles (USV) for multiple 

purposes such as oceanography, underwater video recording, and water quality investigation. 

USVs are far more capable than static nodes since they are able to navigate autonomously to 

desired locations, and are less costly than research vessels that needs to carrying technicians, 

scientists, and heavy and complex equipment. A water quality monitoring system will require a 

lightweight USV as the carrier for the sensors, data acquisition module, wireless communication 

board, and data processing module. Clearpath Robotics developed a mid-sized surface vessel 

named HERON for water sampling [19] as shown in Figure 1.3. It is a self-propelling unmanned 

surface vessel with built in GPS receiver for self-location. Furthermore, it contains open source 

SDK for system development, and has a high payload capacity, which are desirable features. 

However, it is too expensive for multiple node deployment since the cost of a single node is about 

fifty thousand USD for a single robot. Also, it is very heavy (around 28 kg) and is not suitable for 

deployment in rural areas. 
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Figure 1.3: HERON by Clearpath Robotics [19]. 

Blue Robotics developed a small-size remotely operated vehicle [20], which was targeted 

for discovering underwater environments. It is cost effective with powerful propellers that can 

easily navigate in rough waters, and also provides open source SDK that greatly facilitates system 

developments. However, it is intended for discovering underwater environments and cannot float. 

All its signals are transmitted through a cable, which method is not suitable for long range control 

in the field with such obstacles as trees. 

 

1.3 Literature Review on Optimal Sensor Deployment 

There exist several strategies for optimal sensor deployment location. Among them, a common 

approach is as follows. First, densely deploy sensor nodes in the field of interest.  Then, according 

to the spatial and temporal correlation of the sensor node location and their sensor reading [21], 

keep the most important sensor nodes and remove the unnecessary (redundant) ones depending on 

the spatial and temporal correlation [10] [22] [23], or transmit only those data that are not identical, 
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in order to reduce the communication cost [24] [25] [26] [27] [28] [29]. As verified through 

experiments, driving the sensor nodes to desired locations cost much more energy than do 

communication and sampling. Hence, using the least number of sensor nodes and requiring fewer 

locations for the nodes to monitor are the main objectives of the deployment strategy. Gupta et al. 

proposed a novel strategy to determine the linear dependence of sensor readings among sensor 

nodes, and remove sensors in the network that provide linearly dependant information [10]. This 

method greatly reduces the number of active sensor nodes deployed in the field, while collecting 

the required information. However, this method requires pre-deployment of a large number of 

static sensor nodes, which is costly and not robust to environmental changes. Liu et al. proposed a 

model for densely deployed nodes based on balanced energy consumption [30]. But it is densely 

deployed and considers only the deployment density of nodes, while not manipulating the node 

movement. Villas et al. investigated both spatially correlated information and redundant data 

collected by nearby sensor nodes inside the densely deployed sensor network to reduce the active 

sensor nodes [15] [30]. These methods greatly reduced the energy consumption while achieving a 

high event detection rate. However, it too requires deployment of many sensor nodes while saving 

energy only during data transmission. Mocanu et al. proposed a method for establishing 

redundancy reduction metrics based on network centrality [31]. It focused on exploiting centrality 

of each node in the sensor network topology and only kept the nodes having certain centrality. 

However, the information of the entire AOI might be lost during this process because centrality 

only considers the connectivity among the nodes but not the amount of information that a node 

collects. This method also requires the deployment of many static sensor nodes in the initial stage, 

which is costly and impractical.  
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Besides dense deployment and redundancy reduction of sensor nodes, researchers have 

considered the sensor node deployment from the objective of area coverage, by assuming that each 

sensor node can detect at a specific probability the events that happen within a specific sensing 

radius. Both fixed and dynamic nodes may be considered [32] [33] where a dynamic node has 

mobility to relocate itself [34]. Mohammed et al. used a multi-objective artificial immune system 

(AIS) algorithm to determine the optimal coverage rate subjected to constraints such as 

communication energy consumption, distance which the mobile nodes have to move, and so on 

[35] [36] [37]. However, they did not consider the correlation of the collected data, which will 

indicate redundant deployment location of sensor nodes, which amounts to wastage of resources. 

Alsheikh et al. employed a neural network to estimate the sensor values at uncovered locations by 

studying the nonlinear relationship of the deployed static sensor nodes [38]. This approach is 

impractical and cannot detect sudden environmental change in the uncovered area. This is because 

such information is not acquired by the deployed static sensor nodes, and cannot be estimated as a 

result. Attea et al. proposed an multi-objective optimization method that sought both high area 

coverage rate and long network life [39]. Aziz et al. utilized particle swarm optimization (PSO) 

and Voronoi diagram to search for highest area coverage rate [40]. Ganganath et al. applied an 

anti-flocking algorithm to solve the dynamic coverage problem by deploying sensor nodes 

separately and maximizing the total area covered [41]. Li et al. designed a k-coverage sensor 

deployment strategy that optimized certain objectives in relatively sparse WSNs [42]. Although 

the area coverage problems are suitable for optimization that determines best locations for sensor 

nodes, they have a common drawback due to the underlying assumption that a sensor has a specific 

probability to detect events within its sensing radius. Although this assumption may be true for 

active sensor nodes, which emit active signals (e.g., microwave, radar, sonar) to detect events, it 



 8 

is impractical for passive sensor nodes, which can only detect the events transmitted from the 

source to the location where it is being deployed (e.g., temperature sensors, pH value sensors, 

dissolved oxygen sensors, electrical conductivity sensors, and oxidation-reduction potential 

sensors, which we used in water quality monitoring). Hence, the assumption that a passive sensor 

has a sensor radius that covers a specific AOI is not realistic. Hence, a more realistic formulation 

is needed for water quality monitoring using a wireless sensor network. 

 

Recently, researchers have improved the problem formulation. They have deployed a 

limited number of sensor nodes in locations that can provide most useful information [9] or can 

achieve least estimation error [13]. Guestrin et al. first proposed a mutual information criterion 

that produces better sensor node placement than entropy [43]. They tested this criterion on two 

real world datasets and determined that mutual information could achieve lower root mean square 

(RMS) for prediction [9]. However, their method only selects the best deploy locations from the 

environmental model of static sensor network and does not consider further environmental changes. 

If the environment changes, the chosen node locations may not be accurate. Du et al. proposed an 

optimal sensor placement strategy for monitoring hydrodynamics and water quality in an urban 

district, using entropy [43] and mutual information [9] to gather most information in selected 

locations [8]. Although they deployed the sensor network for monsoon seasons, which follows a 

different distribution, they do not provide a strategy for better detection of sudden changes in the 

environment. In the case of water quality monitoring, the quality might experience sudden changes 

due to unplanned events (floods, biological waste, fertilizer pollution, industrial effluent, etc.), 

which require quick detection and response. This necessitates moving the limited number of 

mobile sensor nodes to new locations that can provide most useful information about the changes.  
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Lan et al. proposed a method to estimate a spatiotemporal field in a dynamic environment 

by deciding which locations in the field which one or more robots should reach to acquire data [44] 

[45] [46] [47]. This algorithm first models the environment using past data. Based on that, mobile 

sensor nodes are deployed to explore the environment of interest. The locations are determined 

whose data minimize the largest eigenvalue of the error covariance matrix of the field estimate 

error over an infinite horizon. By doing so, they aim for the minimal number of sensor nodes that 

best estimate the environment. However, their method does not consider the correlation among 

sensory data from different sampling locations, which might make some sensor nodes redundant, 

since their information may be inferred from other nodes. 

 

1.4 Problem Formulation 

This section presents the model for the proposed real-time adaptive mobile wireless sensor network 

and then formulates the problem solution with the relevant mathematical details. 

 

1.4.1 System Model  

Assume that the sensor network consists the set of sensor nodes 𝒩 = {𝑛1, 𝑛2, … , 𝑛𝐿}, where 𝐿 is 

the number of nodes, |𝒩| = 𝐿. Also the set 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝐿}, represents the positions of the 

nodes. For mobility, each sensor node is equipped with some mechanisms (e.g., DC motor, 

propeller), which can propel the node to a required position, as in [48] [49]. Initially, the sensor 

nodes are arbitrarily deployed in a 2-D AOI, 𝒜. The shape of this area can be either rectangular 

or irregular. The goal is to determine the proper locations 𝒫 ∈ 𝒜 for sensory data acquisition, so 
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as to provide best estimates for the water quality in the entire environment while acquiring most 

information. 

 

1.4.2 Energy Consumption Analysis 

There are two main categories of energy consumption in a mobile wireless sensor network. The 

first category represents the continuously consumed energy for sensing. The second category 

consists of sporadically consumed energy, which includes energy for mobile node movement, data 

communication, and computation. It is known that the quantity of continuously consumed energy 

is small when compared to sporadically consumed energy. Also, the former can be greatly 

reduced/optimized through power management. So, the present analysis does not consider 

continuously consumed energy. Among various types of sporadically consumed energy, the one 

used for driving the mobile sensor nodes in the aquatic environment is the primary one. It usually 

consumes most energy and if the mobile sensor node needs to relocate frequently, the battery 

power will quickly run out. Then, without power, the dynamic sensor network will be disabled. 

The present work focuses on minimizing the distance travelled by the mobile sensor nodes to reach 

the desired locations for data acquisition, specifically by reducing the number of locations of 

sensor node deployment. 

 

1.4.2.1  Energy for Node Movement 

The Rapid-exploring Random tree with infinite horizon cost and Linear Reduction (RRLR) 

algorithm aims to achieve optimal coverage ratio, based on spatial data correlation in a dynamic 

monitoring environment and a dynamic sensor network. Thus, it requires the ability of the sensor 

nodes to move to optimal sensing locations, which consumes energy. The amount of energy 
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consumed by a drive propeller is incorporated an energy model for each node 𝑛𝑖, which is denoted 

by 𝐸𝑚𝑜𝑏(𝑛𝑖). This is a proportional to the distance that the node travels until the sensor network 

is settled [37] [50]: 

𝐸𝑚𝑜𝑏(𝒏𝑖) = 𝑘𝑚𝑜𝑏 ∙ 𝜓(𝒏𝑖)                                                      ( 1-1 ) 

where 𝜓(𝒏𝒊) is the total distance the node 𝒏𝒊 travels during the entire relocating process, and 𝑘𝑚𝑜𝑏 

is the coefficient of energy consumption. Since sensors are able to collect only the instant location 

information via GPS, field imaging positioning [51], and so on, in a certain time interval 𝜏𝑚𝑜𝑏, the 

distance that node 𝒏𝑖 travels in a unit time (i.e., instantaneous speed) at time t is given by: 

∆𝜓𝑡(𝒏𝑖) = ‖𝒑𝑖
𝑡+1 − 𝒑𝑖

𝑡‖                                                         ( 1-2 ) 

where 𝒑𝑖
𝑡  is the position of node 𝒏𝑖  at time 𝑡. Hence, the total distance a node travels can be 

expressed as: 

𝜓(𝒏𝑖) = ∫ ∆𝝍𝑡(𝒏𝑖)
𝑡𝑒𝑛𝑑

𝑡0
𝑑𝑡                                                      ( 1-3 ) 

where 𝒕0 is the starting time and 𝒕𝑒𝑛𝑑 is the end time, when the node has reached its goal location. 

Since it considers the movement at each time instant (instantaneous speed), 𝜓(𝒏𝑖) takes into 

account both not uniform speed of a sensor node and nonlinear relocating path. 

 

1.4.2.2  Communication Energy 

Energy is dissipated as well while transmitting and receiving information. It varies quadratically 

with the communication radius 𝑅𝐶 and also increases with the number of message exchanged [52] 

[53], while payload size does not directly affect the communication energy [51]. To conserve 

power, the frequency of message exchange should be reduced, by transmitting bundles of 𝐿 sensor 

readings at a time instead of each sensor reading, for spatial correlation calculation. Furthermore, 
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sensor data compression can be used for reducing the size of the data packets that are transmitted, 

by using an energy-efficient data compression procedure [54]. 

 

1.4.3 Problem Formulation 

The problem that has been formulated in this chapter involves the following. A set of sensor nodes 

𝒩 = {𝑛1, 𝑛2, … , 𝑛𝑘}  is deployed in the geographical AOI, al positions 𝒫 = {𝑝1, 𝑝2, … , 𝑝𝐿} ,  

generating the sensor readings 𝑴 = [𝒎𝟏 𝒎𝟐  … 𝒎𝒌]
T. An exploring tree strategy will be designed 

to search the entire monitoring environment, which will determine the best sensor node 

deployment locations that will minimize the infinite-horizon cost and also make the matrix 𝑴 

contain the maximum information without any redundancy (i.e. no linearly dependent rows or 

columns in the matrix; it has the full rank).  

 

 

1.5 Thesis Organisation 

The present chapter (Chapter 1) of the thesis presented an introduction and objectives of the 

research. Next a survey of the pertinent literature was given.  The design of the proposed mobile, 

wireless sensor network platform design for water quality monitoring was outlined. The algorithm 

for the optimal mobile sensor node deployment strategy based on environment estimation and 

sensor data correlation was introduced. The associated problem was formulated starting with the 

system model, which includes the energy consumption for node mobility and data communication. 

The organization of the rest of the thesis is given below.  
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Chapter 2 presents the framework of the adaptive water quality monitoring system and the 

design and development of the mobile sensor nodes for water quality monitoring. Also, field test 

results and baseline comparison are presented. 

 

Chapter 3 demonstrates and verifies that sensor nodes with linearly dependent data can be 

removed from the network without sacrificing the monitoring accuracy while improving the 

system efficiency. This approach, called linear reduction, is used in Chapter 4 to reduce and 

optimize the number of deployed sensor nodes. 

 

Chapter 4 presents the complete algorithm for sensor node deployment with linear 

reduction. It employs a rapid-exploring random tree to find the optimal locations for sensor node 

deployment. Results of the proposed algorithm, called Rapid-exploring Random tree with infinite 

horizon cost and Linear Reduction (RRLR), are compared with those of the benchmark algorithm 

called Rapidly-exploring Random Cycles (RRC) [13]. This comparison shows that RRLR provides 

a significant reduction in the number of sensor nodes while maintaining the same level of 

estimation error. 

 

Chapter 5 concludes the thesis. It summarizing the main contributions of the research and 

suggests possible future work. 
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Chapter 2 : Design of the Water Quality Monitoring System 

Advances of information and communication technologies (ICT) in sensing, processing and 

wireless communication have led to useful progress in the applications of remote environmental 

monitoring. Wireless sensor networks with capabilities of fast data acquisition and wireless 

transmission have been designed and deployed to provide quantitative monitoring and evaluation 

of aquatic environments. Mobility of sensor nodes is required to provide the capability of 

relocation of the sensor nodes to locations that can best estimate the environment or collect most 

information. This requirement is important in the present application of water quality monitoring. 

This chapter present the design details of our water quality monitoring system. 

 

2.1 Design of an Adaptive Water Quality Monitoring System 

An adaptive water quality monitoring system should minimize the number of sensor nodes that are 

used while maximizing the useful information that is collected in the area of interest. Aquatic 

sensors are expensive, which prohibits their dense deployment. Hence, it is important to use the 

least number of sensor nodes to collect as much information as possible. To collect most 

information, the system needs an optimal deployment strategy as well as the sensor mobility. This 

means sensor nodes should be able to communicate with each other in order to optimize their 

current deployment and move themselves to suitable locations. To meet this objectives, the 

architecture of our water quality monitoring system is designed as in Figure 2.1. 
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Figure 2.1 System Architecture of the ICT Platform.  

As Figure 2.1 indicates, the proposed system is able to monitoring large aquatic areas using 

wireless communication technologies. Mobile sensor nodes are able to collect sensory data and 

then transmit them to a base station via radio or Wi-Fi to carry out data preprocessing, which may 

lead to abnormal value alerts, redundant/failure value removal and data compression. Then GPRS 

or Ethernet can be used to transmitting stored data to the Central Assessment Unit (CAU). 

Collected data can then be used for early warning generation and decision making in CAU. Besides, 

the users can have access to the visualized data easily through a web based Graphical User 

Interface (GUI), as shown in Figure 2.2.  
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Figure 2.2: Graphical User Interface for Water Quality Monitoring System. 

It is seen that five curves are displayed on the GUI, representing temperature, pH value, 

conductivity, oxidation-reduction potential (ORP), and dissolved oxygen (DO), along with online 

calculated water quality index (WQI) value. Using this web-based GUI, users can easily find out 

the historical readings of sampled water quality data. 

 

This system can help technicians to access sensor data directly if they are carrying out field 

testing in remote areas without access to the Internet. This feature is essential because when 

carrying out filed tests in some rural area, base stations are not able to connect to the Internet, 

which means the technicians will not get real time sensor readings from the web-based GUI. The 

original solution provided by Libelum [55] is to send the collected sensor data from sensor nodes 

to a local gateway, and then, forward these messages to a local server. This method is not efficient 

and the gateway limits the bandwidth of the transmission within the network. Also, it requires a 
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steady power supply, which is not easy when deploying in rural areas.  In our system, we developed 

a GUI based on local area network for the transmission of data, which represent sensor readings 

and real time water quality index (WQI). Real time data transmission and representation system is 

designed as in Figure 2.3. Figure 2.3 (a) represents the framework provided by a sensor supplier, 

which requires an extra gateway for data transmission. Figure 2.3 (b) indicates the proposed system 

framework that skips the gateway. It transmits data from the sensor nodes directly to the local 

server. In this enhanced framework, mobile sensor nodes use Rapidly-exploring Random Cycles 

to continuously collect sensor readings and transmit them to the processor for data transmission 

and processing via a serial port. Then, the microcontroller generates a local wireless network that 

allows a technician to access it using local servers, where the local GUI is running. After successful 

connection, localized GUI are able to plot real time data values from the sensor nodes.  
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Figure 2.3: (a) Data Transmission Solution From Libelium; (b) Enhanced Data 

Transmission Framework. 

The capability of data transmission is enhanced in the developed system. However, the 

packet loss rate is found to be high and the transmission distance is short, according to our tests. 

This is because the sensor node (Waspmote) that was purchased from Libelium [55] uses a low 

performance processor and Wi-Fi board. The solution from sensor node provider, Libelium, 

requires the data collected from the sensor nodes to be first transmitted to a gateway and then 

forwarded to local servers, as shown in Figure 2.3 (a). However, the gateway limits the 

performance of data acquisition in the water quality monitoring system and it is somewhat difficult 

to deploy it in a rural area. The data on route to the local server is first stored in the gateway, which 

introduces considerable delay thereby hampering real-time data acquisition. Besides, the system 

bandwidth is not adequate for receiving data from the sensor nodes and forwarding to local server 
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at the same time. Moreover, the power supply is a key challenge. In particular, technicians will 

have to carry an Uninterruptible Power Supply (UPS) as an energy supply to provide adequate 

voltage that will enable booting the gateway. To get rid of limitations of the gateway, a new data 

transmission framework will be designed to both increase the system reliability and save labor. As 

shown in Figure 2.3 (b) and Figure 2.4, raspberry pi 3 microcontroller is chosen as the data 

processor and transmitter, which has a CPU with four ARM Cortex-A53 at 1.2GHz, and EDUP 

USB Wi-Fi extender [56] as the data transmitter, which is an industry leading and affordable USB 

wireless adapter. This data transmitting framework can then transmit data directly from a sensor 

node to the local server. Another advantage of using a commercial wireless communication board 

is that the power and the bandwidth can be easily increased by switching to higher end ones. Also, 

the Transmission Control Protocol (TCP) is used to ensure reliable and error checked data 

transmission [57]. Its three-way TCP handshake establishes stable connection between data 

transmitting server and client and thus addresses the problem of packet loss. By doing so, the 

packet loss during transmitting sensor readings from the sensor nodes to the local server is 

minimized. According to the tests, there will be very little packet loss within a distance of 50 

meters (without obstacles). Further comparison of the two data transmitting schemes will be made 

in section 2.3 Sensor Node Deployment and Field Testing. 
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Figure 2.4: Enhanced Sensor Node with Wireless Network Extender. 

 

The GUI at the local server is shown in Figure 2.5. All five sensor readings will be plotted. Thus, 

technicians who work in a remote rural area and who may not have access of the Internet, are able 

to easily monitor the current and the past water quality in the area that they are interested in. 

Sometimes, technicians may only be interested in the sensor reading after they arrived to help them 

study on-going trends of different water quality attributes. In this way, we also place a reset button 

on the GUI that enables the user to monitor sensor readings and WQI curve after they arrive the 

area of interest. 
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Figure 2.5: Local Network Based GUI. 

2.2 Design of Mobile Water Quality Monitoring Sensor Node 

The purpose of the mobile sensor node is to propel itself to any desired location in an aquatic 

environment and acquire information at that location using its sensors. Technicians can use a 

remote controller (e.g., a joystick) to drive the mobile sensor node directly or the node may move 

autonomously according to some algorithm. The information/data acquired by the mobile sensor 

nodes may be analyzed to determine the best deployment locations [13] that would generate most 

useful information [9] [58]. An algorithm may command a node to follow a certain path and stop 

at several points in this path for short periods to acquire environmental data. Then, an optimal 

planning strategy can be determined by studying the spatial and temporal relationships in the 
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collected data. Commonly, mobile sensor nodes are controlled manually. Controlling a mobile 

sensor node through the remote controller is a convenient way for technicians to operate the node 

for it to move to any desired location quickly, but such control is costly and may not be accurate. 

One technician is only able to control one sensor node at a time and has to control it continuously. 

Besides, humans have limited sight, which restricts the operation range if the sensor node is 

controlled by sight, directly through the remote controller. Hence, in the developed system, both 

automatic control and environmental information computation are located on board in the sensor 

node, which can automatically navigate the sensor node to acquire information. The generated data 

includes the GPS location and the water quality attributes at that location. 

 

The mobile sensor nodes are operated as in Figure 2.6. In the beginning, the GPS location 

and the mobile node inertia are captured by the sensors and used as system input. The processed 

sensory data for a specific period is treat as the system feedback. The position controller processes 

both spatial and temporal information and makes a decision on the path that the mobile node should 

follow to acquire the environmental information. The position and velocity control can be used to 

move the node by controlling the propellers. The information is processed by the on-board 

microcontroller for driving the node to a desired location. 
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Figure 2.6: Mobile Sensor Node Operation. 

Based on the mentioned requirements for a sensor node, its components are chosen. For 

position and velocity control, one 3DR Pixhawk Mini [59] is chosen, which is a well-known 

programmable autopilot controller for unmanned vehicles. It includes an advanced 32-bit ARM 

Cortex M4 Processor, 8 servo outputs and the capability to connect to a GPS module and a dual 

inertial measurement unit (IMU). Chosen sensors for a node include the GPS module [59], which 

is compatible with Pixhawk mini that could receive up to 3 GNSS (GPS, Galileo, GLONASS, 

BeiDou) with industry-leading 167 dBm navigation sensitivity. Also, Libelium Waspmote [55] is 

chosen as the aquatic environment sensor, since it has an open source SDK with ultra-low power 

consumption (7 µA), supports up to 110 different types of sensor and equipped with 16 different 

radio technologies. Finally, as actuators, two T100 thruster and their electronical servo controller 

(ESC) from BlueRobotics [20] are chosen, each of them can produce over 5.2 lbf forward thrust 

and 4.1 lbf reverse thrust.  

 

The designed sensor node is shown as in Figure 2.7, which consists of two parts. The first 

part is the motion control module, as shown in Figure 2.8 where a four-cell battery is the power 

source for 3DR Pixhawk Mini and ESC. The 3DR Pixhawk Mini is the position and velocity 
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controller, which connects to the controller Wi-Fi/Radio module to communicate with the remote 

control server for the technicians, the GPS module to receive the location information, and ESC 

of the propellers to direct the movement of the sensor node. The second part is the data 

transmission module, as shown in Figure 2.4, where the data transmission microcontroller 

Raspberry Pi is powered by one of two ESCs through a jumper cable and connects to the aquatic 

information collection sensors and the data transmission Wi-Fi module. 

 

Figure 2.7: Developed Mobile Sensor Node. 
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Figure 2.8: Controller of the Mobile Sensor Node. 

An operating requirement determines proper control of the mobile sensor node. The plant can only 

be deployed in an outdoor aquatic environment without strong waves, since electronical 

components are not water proof and the GPS cannot function accurately inside buildings. Besides, 

it is assumed that there are no obstacles in the aquatic environment since the node is not equipped 

with obstacle avoidance devices such as camera or ultrasonic distance sensor and associated 

schemes. Also, the battery life is assumed to be adequately long for a mobile node to execute its 

tasks. 

 

2.3 Sensor Node Deployment and Field Testing 

First, the rate of packet loss is tested for both data transmitting schemes. Two sets of sensor nodes 

are deployed in the ICICS (Institute of Computing, Information and Cognitive Systems) building, 

University of British Columbia, Vancouver, Canada for a period of 3 hours to test the performance 

of the different schemes. They are deployed in the level 1 of the ICICS building as shown in Figure 

2.9. A blue dot indicates the location of the sensor node, which has a Raspberry Pi microcontroller 

as the data transmitter; an orange dot indicates the location of a sensor node that directly connects 
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to the gateway; a red node denotes the location of the local server and the gateway. Test results 

show that the packet loss rates are 0.85% and 2.56% for the enhanced sensor node and the original 

one, respectively. Also, data collected from the two nodes has a large gap. During the three-hour 

data collection operation, both sensor nodes are set to collect data at full speed. However, the 

enhanced sensor node collects 1651 reading samples (each sample includes a reading for all five 

water quality attributes), while the original node only collects 468 samples. Moreover, the original 

node cannot connect to the server when it is placed in room 061D during the test, and the data 

collection is initiated when it is placed in room 065. Also, data forwarding is not done from the 

gateway to the local server, because the performance of the original sensor could be worse since 

it would use a two hop wireless sensor network. 

 

Figure 2.9: Sensor Node, Local Server and Gateway Deployment in the ICICS Building. 

After the water quality monitoring system is developed, field testing has been carried out with it 

in both Canada and India. In the first stage, static sensor nodes are deployed in Yosef Wosk 

reflecting pool at UBC. The deployment is shown in Figure 2.10, where five static sensors are 

spread over the entire pool.  



 27 

 

Figure 2.10: Deployment of Sensor Nodes in UBC. 

Interval of sampling is about 5 seconds for the first stage deployment in UBC, when 306 data 

samples have been collected in total. They are plotted as in Figure 2.11. 

 
    (a) Temperature Reading;                (b) pH Value Reading;                   (c) ORP Reading; 

 
(d) Conductivity Reading;                   (e) DO reading. 

Figure 2.11: Sensor Readings of the Field Test at UBC. 



 28 

It is seen that in view of the small aquatic environment, the sensor readings are rather 

similar when the node locations are close. This indicates the existence of some redundancy if the 

sensor nodes are closely deployed. In view of this, a Linear Reduction method is proposed in 

Chapter 3 to reduce the linear dependency within the sensor network. 

 

Furthermore, we also carried out field test in Ulhas River, Neral, India. The location is 

shown in Figure 2.12,. The dynamic system of sensor node and control flow were tested at that 

location. Results show that the mobile sensor node is able to move against the water flow using 

only 2 propellers, and a lightweight Wi-Fi-based communication board is able to control the 

mobile sensor node within 100 meters. 

 

 

Figure 2.12: Location of Field Testing in Ulhas River, Neral, India. 

2.4 Conclusion 

This chapter presented the design of the overall platform for water quality monitoring, and some 

results from field testing using the platform. A practical platform for water quality monitoring was 
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developed and tested to determine the ability of the sensor node to move against strong water flow, 

and data transmission under obstacles. The cost of the platform was low, and the node had easy to 

upgrade components. According to the test results, the sensing platform has shown good 

performance under different conditions like moving in an aquatic environment with strong water 

flow and transmitting data in an indoor environment with many obstacles and moving humans. 
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Chapter 3 : Linearly Redundant Sensor Reduction 

This chapter presents the Linear Reduction (LR) algorithm. It uses the correlated neighbor 

detection strategy to determine the linearly dependent sensor locations, for optimal deployment of 

sensor nodes within the AOI.  

 

3.1 Linearly Dependent Neighbor Clustering  

Given a set of sensor nodes that is deployed in a geographical AOI, 𝒩 = {𝑛1, 𝑛2, … , 𝑛𝑘} and their 

readings at a specific time ℳ = {𝒎1,𝒎2, … ,𝒎𝑘}, where 𝒎𝑖 ∈ ℝ𝑀×1 and M is the length of this 

sensor reading. The readings of this k nodes are placed in a matrix 𝑴 ∈ ℝ𝑘×𝑀  as 𝑴 =

[𝒎1 𝒎2  … 𝒎𝑘]
T. If some readings among different 𝒎𝑖 are linearly correlated to others, they are 

linearly redundant columns (or rows), i.e., M does not have the full rank, and they can be expressed 

as a linear combination of some other rows: 

𝒎𝑖 = ∑𝑘𝑗 ∙ 𝒎𝑗 , (𝑘𝑗 ≠ 0 𝑎𝑛𝑑 𝒎𝑖,𝒎𝑗 ∈ ℳ)                           ( 3-1 ) 

Thus, the linear dependence relationship of nodes indicates the presence of redundancy of the node 

deployment. Any non-zero 𝒎𝑗 with the associated non-zero kj is a correlated neighbor of 𝒎𝑖. Then, 

𝒎𝑖 together with its correlated neighbors composes a linearly correlated set. If several nodes are 

linearly dependent, some of these nodes (called redundant nodes) can be inferred from the 

remaining nodes. As a precursor to the algorithm, a way to detect linearly correlated clusters for a 

given matrix 𝑨 is presented first. 

 

Theorem 1. Zero rows in the result of Gaussian Elimination represent the cluster of linearly 

dependent rows. The corresponding rows in the original matrix are redundant and can be removed. 
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Proof. Consider a 𝐾 × 𝑀 matrix 𝑨, where 𝐾 (rows) denotes the number of sensor nodes and 𝑀 

(columns) is the number of readings generated at each node. Assume that the rank of matrix 𝑨 is 

𝑟. If 𝑟 < 𝑚𝑖𝑛 (𝐾,𝑀), there are linearly dependent rows in this matrix, and they can be inferred 

from other rows.  

Matrix 𝑨 may be expressed as:  

𝑨𝐾×𝑀 = [

𝒂1

𝒂2

⋮
𝒂𝐾

] =

[
 
 
 
𝒎1

T

𝒎2
T

⋮
𝒎𝐾

T ]
 
 
 

                                                ( 3-2 ) 

After the first step in the Gaussian elimination, each row will be of the form: 

𝒂𝑝 = 𝒂𝑝 −
𝐴𝑝,𝑖

𝐴𝑖,𝑖
𝒂𝑖  (𝐴𝑖,𝑖 ≠ 0, 𝑖 ≠ 𝑝)                                     ( 3-3 ) 

After several steps of row addition in the Gaussian elimination, each row in the final result of the 

row reduction matrix 𝑩, may be expressed as  

𝒃𝑖 = ∑ 𝑘𝑗 ∙ 𝒂𝑗
𝐾
𝑗=1 , (𝑘𝑘 = 1)                                          ( 3-4 ) 

where 𝑘𝑗 is the linear coefficient. This linear combination is produced by Eqn. (3-3).  

 

In the normal matrix representation, if matrix 𝑨 does not have the full rank, then zero rows 

exist in 𝑩. For these rows, we have: 

𝒃𝑘 = 𝟎                                                        ( 3-5 ) 

Combining ( 3-4 ) and ( 3-5 ) we get: 

∑ 𝑘𝑗 ∙ 𝒂𝑗
𝐾
𝑗=1 = 𝟎, (𝑘𝑘 = 1)                                      ( 3-6 ) 

This can be further expressed by q non-zero linearly correlated rows, say 𝒂𝑙𝑖
, where 𝑙𝑖 is the index 

of these correlated rows in the matrix 𝑨 and 𝑖 ranges from 1 to 𝑞: 

𝒂𝑘 = ∑ 𝑘′
𝑙𝑖

∙ 𝒂𝑙𝑖
𝑞
𝑗=1  (𝑘′

𝑙𝑖
≠ 0, 𝑘 ≠ 𝑙𝑖, 1 ≤ 𝑞 ≤ 𝐾)                     ( 3-7 ) 



 32 

It follows that row 𝒂𝑘 in the matrix 𝑨 can be represented by other rows. Hence it is redundant and 

can be removed. 

 ∎ 

 

According to Theorem 1, from the information of the row addition process in Gaussian Elimination, 

we are able to cluster linearly correlated rows and linearly correlated sets of the matrix. Linear 

Reduction is applied to group the linearly redundant nodes as clusters by calculating their linear 

correlation. 

 

As shown in Algorithm 1, the inputs of algorithm LR are the data matrix 𝑴, its dimensions 

M and K, error bound 𝜀, and the manipulation matrix Θ, which records the row addition actions 

while carrying out Gaussian elimination. Algorithm LR initializes Θ to a diagonal matrix with all 

elements equal to 1 in Line 3. This means 𝑖 th row is present by itself in matrix M. Line 4 indicates 

that LR is about to carry out row reduction, column by column, as in Gaussian elimination. Line 

5 identifies the unselected row, which is not used for row reduction, with the largest element in 

the current reducing column. This improves the stability of the algorithm [60] and avoids adding 

the same row multiple times. Line 13 carries out row addition for removing row redundancy while 

line 14 records this action in Θ. After the iteration ends, if the input matrix 𝑴 has row redundancy, 

there should be zero rows in the output matrix 𝑴. The number of zero rows should be equal to the 

row dimension M minus the rank of the input M. Next, extract the rows Θ𝑖 in matrix Θ, where the 

corresponding location in the output matrix 𝑴 is 𝟎. Then, in each row Θ𝑖, the column indices of 

non-zero elements represent linearly correlated rows of 𝑴, which form the linearly correlated set, 

and their values are the linear correlation coefficients, which satisfy Eqn. ( 3-5 ). 
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Algorithm 1: Linearly Dependent Neighbor Cluster Detection by Linear Reduction. 

 

Once the correlated set of rows (sensor nodes) is identified in this manner, the 

corresponding redundant nodes can be relocated to other uncovered places, based on their readings. 

It is important to note that the removal of any nodes from a correlating cluster will keep other 

clusters correlated, regardless of whether the removed row/node is part of another correlating 

cluster, as clear from Theorem 2. 
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Theorem 2. Removal of any nodes in a correlating cluster will not affect other correlating clusters 

and will not result in information loss, even if the removed node is part of another correlating 

cluster. 

 

Proof. Suppose that there are m nodes, and that q rows could be inferred from other rows, where 

q < m. Then 𝑞𝑗th rows are zero at the end of LR (1 ≤ j ≤ q). This means any 𝑞𝑗th row can be 

inferred from some other rows. Similar to ( 3-6 ), we have: 

𝒂𝑞𝑗
= ∑ 𝑘𝑗 ∙ 𝒂𝑗𝒂𝑗∈𝐼                                                   ( 3-8 ) 

where 𝐼 is a set containing all possible rows. One node p that is used for inferring node 𝑞𝑗 will be 

removed as it is a linearly redundant node, where 𝒂𝑝 corresponds to the left side of Eqn.  ( 3-7 ). 

If 𝒂𝑝 does not belong to any other correlation set, it can be just swapped with 𝒂𝑞𝑗
: 

𝒂𝑞𝑗
= ∑ 𝑘𝑗 ∙ 𝒂𝑗

𝒂𝑗∈𝐼,𝑖≠𝑝

+ 𝑘𝑝 ∙ 𝒂𝑝 

𝒂𝑝 = − ∑
𝑘𝑗

𝑘𝑝
∙ 𝒂𝑗

𝒂𝑗∈𝐼,𝑖≠𝑝

+
1

𝑘𝑝
∙ 𝒂𝑞𝑗

 

𝒂𝑝 = ∑ 𝑘𝑖
′ ∙ 𝒂𝑗

𝒂𝑗∈𝐼′

, 𝐼′ = (𝐼\{𝒂𝑝}) ∪ {𝒂𝑞𝑗
} 

Thus, according to Theorem 1, 𝒂𝑝 is redundant and can be removed while no information will be 

lost. Besides, since 𝒂𝑝does not belong to any other correlation set, other sets will not be affected. 

Moreover, if 𝒂𝑝is in another correlation set 𝐼′′, we have: 

𝒂𝑝 = ∑ 𝑛𝑖 ∙ 𝒂𝑖𝒂𝑖∈𝐼′′                                                  ( 3-9 ) 

𝒂𝑞𝑗
= ∑ 𝑘𝑗 ∙ 𝒂𝑗𝒂𝑗∈𝐼,𝑖≠𝑝 + 𝑘𝑝 ∙ 𝒂𝑝                                  ( 3-10 ) 



 35 

Combining ( 3-9 ) and ( 3-10 ) we have: 

𝒂𝑞𝑗
= ∑ 𝑘𝑗 ∙ 𝒂𝑗

𝒂𝑗∈𝐼,𝑖≠𝑝

+ 𝑘𝑝 ∙ ∑ 𝑛𝑖 ∙ 𝒂𝑖

𝒂𝑖∈𝐼′′

 

𝒂𝑞𝑗
= ∑ 𝑘𝑗 ∙ 𝒂𝑗

𝒂𝑗∈𝐼,𝑖≠𝑝

+ ∑ 𝑘𝑝𝑛𝑖 ∙ 𝒂𝑖

𝒂𝑖∈𝐼′′

 

𝒂𝑞𝑗
= ∑ 𝑘𝑖

′ ∙ 𝒂𝑗𝒂𝑗∈𝐼′′′ , 𝐼′′′ = 𝐼 ∪ 𝐼′′\{𝒂𝑝}                                ( 3-11 ) 

Thus, information in both sets 𝐼 and 𝐼′′ will not be lost. 

∎ 

Corollary 1. Removing single linearly dependent row from the matrix will not result in information 

loss until the smaller dimension of the matrix has been reduced to its rank. 

 

Proof. According to Theorem 2, linearly redundant rows can be removed without affecting the 

linear dependence in other linearly dependent sets. Thus, once there are linearly dependent rows 

in the matrix, as detected by LR, the selected rows in the linearly correlating sets can be removed 

iteratively until the matrix become full rank. 

∎ 

 

We have proved that the removal of a single linearly dependent row within a linearly correlating 

set will not result in information lost. Another observation is that if the average data value in one 

sampling period 𝑀 exceeds the early waring threshold in the removed rows during real-time water 

quality monitoring, it should be represented by the rows that infer it. 

 

Theorem 3. When the average sensor reading of a redundant node 𝑛𝑝 over the sampling period 

M achieves the threshold value 𝜌, there exists at least one other node, 𝑛𝑗 , which can detect this 
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situation (without knowing sensor reading 𝒎𝑝  of sensor node 𝑛𝑝 ). Specifically, under this 

condition, there exists a sensor node 𝑛𝑗 , whose average data value over the same sampling period 

M will be ≥ 
𝜌

𝑘𝑗
 where  𝑘𝑗 is the linear dependent coefficient of sensor node 𝑛𝑗  . Then, the sensor 

node 𝑛𝑗   will provide the early warning.  

 

Proof. Assume the redundant node to be relocated as 𝑛𝑝 ∈ 𝒩 and its value is 𝒎𝑝 ∈ ℳ. Then, it 

can be represented by the data from the other nodes as: 

𝒎𝑝 = ∑ 𝑘𝑖 ∙ 𝒎𝑖 + 𝜖𝒎𝑖∈ℳ , (𝑖 ≠ 𝑝, 𝑘𝑖 ≠ 0)                                  ( 3-12 ) 

where 𝒎𝑖 is the reading for node 𝑛𝑖, and 𝑘𝑖 is its linear dependence coefficient.  

The number of 𝒎𝑖 in Eqn. ( 3-12 ) is denoted as K, which is the total number of sensor nodes in 

the field, and 𝜖 is the error variable, which mainly represents noise.  

Let 𝑎𝑣𝑔(𝒎i) denote the average value of one data vector 𝒎i, specifically, 

𝑎𝑣𝑔(𝒎i) =
𝑠𝑢𝑚(𝒎𝑖)

𝑀
. 

Then, we can formulate Theorem 3 as: ∃𝑠𝑢𝑚(𝒎j) ≥
𝜌

𝑘𝑗
, if 𝑎𝑣𝑔(𝒎p) ≥ 𝜌, where 𝑗 ≠ 𝑝, and 𝑘𝑗 

is the linear dependence coefficient of sensor node 𝑛𝑗  for the sensor node 𝑛𝑝. Thus,  

𝑎𝑣𝑔(𝒎p) = 𝑎𝑣𝑔( ∑ 𝑘𝑖 ∙ 𝒎𝑖

𝒎𝑖∈ℳ

) + 𝜖′ 

𝑎𝑣𝑔(𝒎p) = ∑ 𝑎𝑣𝑔(𝑘𝑖 ∙ 𝒎𝑖)

𝒎𝑖∈ℳ

+ 𝜖′ 

⇒ ∑ 𝑘𝑖 ⋅
𝑠𝑢𝑚(𝒎𝑖)

𝑀
𝒎𝑖∈ℳ

≥ 𝜌 

Then, there must exist at least one 𝑘𝑗 ⋅
𝑠𝑢𝑚(𝒎𝑗)

𝑀
 that is larger than 

𝜌

𝐾
, because otherwise the above 

condition will not be satisfied. Then: 
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∃𝑗, 𝑘𝑗 ⋅
𝑠𝑢𝑚(𝒎𝑗)

𝑀
≥

𝜌

𝐾
, 

⇒ ∃𝑗, 𝑘𝑗 ∙ 𝑠𝑢𝑚(𝒎𝑗) ≥
𝜌 ∙ 𝑀

𝐾
 

Given that the total number of nodes in the field, K, must not greater than the data sampling period 

M as shown in Lemma 1 below, we have: 

𝑠𝑢𝑚(𝒎𝑗) ≥
𝜌

𝑘𝑗
 

Thus, 

∃𝑠𝑢𝑚(𝒎j) ≥
𝜌

𝑘𝑗
, if 𝑎𝑣𝑔(𝒎p) ≥ 𝜌, where 𝑗 ≠ 𝑝. 

∎ 

With the help of this theorem, it is easy for us to find out whether there is a threshold event in the 

field. Each node can store the information of the cluster it belongs to and its linear dependence 

coefficient. Then, on reading sufficient data over a sampling period, a simple calculation can lead 

to the detection an extreme event at the location of sensor node 𝑛𝑝.  

 

Lemma 1. Suppose that a data matrix has K node readings, expressed as 𝑴 = [𝑋∙1, 𝑋∙2, ⋯ , 𝑋∙𝐾], 

where 𝑴 ∈ ℝ𝑀×𝐾, and the row rank is equal to the column rank [61] [62]. Then, if K > M, which 

means the data sampling period is less the number of nodes to be analyzed, which is infeasible. 

Thus, we must have 𝑀 ≥ 𝐾. 

 

In the present analysis it is assumed that each node has only one sensor. The case of 

multiple sensors in a node will be considered in future work. 
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3.2 Conclusion 

This chapter presented the Linear Reduction method, which is able to determine linearly dependent 

sensor data, which in turn can detect redundant sensor nodes. It was shown that linearly dependent 

data vectors within the linear correlation set could be removed until the sampling data matrix was 

full rank. By doing so, the redundancy among sensor node locations could be removed. Based on 

the theorems presented and proved in this chapter, a sensor placement strategy can be developed 

which avoids redundant sensor node deployment locations thereby reducing the cost while not 

sacrificing the acquired information. Algorithms proposed in this chapter will be utilized in the 

following chapter for optimizing the sensor node deployment for monitoring the environment. 
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Chapter 4 : Optimal Sensor Node Deployment with Linear Reduction 

In water quality monitoring, a group of mobile sensor nodes are deployed to explore a geographical 

area of interest (AOI) and acquire key water quality parameters at various locations and time. Since 

the number of mobile sensor nodes is limited, moving them to the best locations to acquire most 

information with least error (e.g., least estimation error) is a key objective. To determine the best 

sensor placement locations, a discrete number of mobile sensor nodes needs to search a 

mathematically infinite region subject to some optimizing criteria [63]. Sampling-based path 

planning for sensor scheduling over an infinite horizon may be used to achieve this objective [64] 

[65]. For this purpose, an optimal sensor node deployment strategy with linear reduction may be 

proposed as in Figure 4.1. 

 

Figure 4.1: Framework of Optimal Sensor Node Deployment with Linear Reduction. 

First, such technologies as satellite imaging, mobile sensor nodes or static sensor network 

may be utilized for monitoring and then modeling the current aquatic environment. Then, based 

on this model, algorithms may be developed to establish the optimal sensor node deployment 

locations that meet certain optimizing criteria like receiving most information or achieving least 

estimation error. After analysing the sensor reading at these locations based on the environment 

model, linear reduction may be applied to determine the redundant sensor nodes. After optimal 

sensor node deployment locations are determined, the sensor nodes will be deployed to persistently 

monitor the aquatic environment. Once the collected data is analyzed to fully estimate the current 
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environment with respect to the current model or if a change in the aquatic environment is detected, 

the above process has to be repeated to generate a new model that satisfies the new environment. 

 

In the present work, a common model that is used in geological and environmental studies, 

which is generated from a fixed number of spatial basis function is used for modeling the 

environment. It has been proved that this model is a linear-Gaussian dynamic system, which 

presents both spatial and temporal correlation in the geographical AOI [13]. In water quality 

monitoring, passive sensors are used to monitoring the water quality. The mobile sensor nodes will 

capture the water quality information plus noise (assumed to be Gaussian white) noise at their 

deployed locations. Then, infinite horizon cost is used as an evaluation criterion for this problem. 

By minimizing the infinite horizon cost, optimal sensor deployment locations can be determined 

[63]. The linear Kalman filter, which minimizes the mean square estimation error (MSE) for a 

linear system is used to optimize the sensor node deployment [13] [45].  

 

4.1 Modeling of Environment 

Modeling of the aquatic environment within the geographical AOI is presented now. A common 

environmental model that is used for geological and environmental systems [66] is chosen for this 

purpose. The environment model can be represented as the output value at a desired location and 

at a given time. It is a function of the temporal information matrix A, spatial information matrix 

(𝑥, 𝑦), location (𝑥, 𝑦) in the field and the time t, and may be expressed as 𝑣𝑡(𝑥, 𝑦) =

𝐹 (𝑨, 𝑪(𝑥, 𝑦), 𝑥, 𝑦, 𝑡). The output value in the field 𝑣𝑡(𝑥, 𝑦)may be decomposed as the dot product 

of the spatial information matrix 𝑪(𝑥, 𝑦) = [𝑐1(𝑥, 𝑦) … 𝑐𝑛(𝑥, 𝑦)], which is in fact a static row 

vector consisting of n spatial basis functions, and the time varying coefficient vector 𝒂𝒕 =
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[𝑎𝑡
1 … 𝑎𝑡

𝑛]𝑇 . Each basis function is represented by a Gaussian basis function as 𝑐𝑖(𝑥, 𝑦) =

𝐾𝑒
−

‖(𝑥,𝑦)−(𝑥𝑖, 𝑦𝑖)‖
2

2𝜎𝑐
2

, where (𝑥𝑖,  𝑦𝑖) represents the location of the 𝑖th basis center. The time-varying 

coefficient vector can be represented as the state of a linear discrete-time system: 

𝒂𝑡+1 = 𝑨𝒂𝑡 + 𝝎𝑡 

where 𝝎𝑡~𝑁 (0, 𝑸) is Gaussian white noise and Q is the covariance matrix, which is positive 

semidefinite. 

 

It follows that the aquatic model output can be represented as 

𝑣𝑡(𝑥, 𝑦) = 𝑪(𝑥, 𝑦)𝒂𝑡 + 𝒗𝑡 

where 𝒗𝑡~𝑁 (0, 𝑹) is Gaussian white noise and R is the covariance matrix, which is positive 

semidefinite. In this manner, both spatial and temporal information is captured. Matrices A and Q 

are learned from the data set that was collected during our field testing at Yosef Wosk Reflecting 

Pool, UBC, Vancouver, Canada, using the subspace estimation method for a state space model 

[67]. To illustrate this environment model, the estimated environment at times 1, 100, 200, 300 is 

plotted as in Figure 4.2. the z-axis represents the estimated temperature. These figures are 

generated by using 𝑡1 = 1 as the initial time, 𝒂1  as the initial state vector, and by calculating 

𝑪(𝑥, 𝑦). Thus the state-space output 𝑣𝑡(𝑥, 𝑦) at each location at any time, can be calculated. 
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Figure 4.2: Example of Spatiotemporal Field for Different Times. 

4.2 Estimation Quality of Deployment Locations 

As shown by Lan et al. [13], the linear Kalman filter can be used for estimating the time-varying 

coefficients 𝒂𝒕, and the prior error covariance matrix of this estimation can be used as a quality 

measure for the criteria [13]. Linear Kalman filter is an optimal estimator, which uses state-space 

models and minimizes the mean square error (MSE) [68]. The Riccati equation of the linear 

Kalman filter is used for updating the prior error covariance matrix as: 

𝜮𝑡+1＝𝑨𝜮𝑡𝑨
𝑇 − 𝑨𝜮𝑡𝑪(𝑥𝑖, 𝑦𝑖)

𝑇 × (𝑪(𝑥𝑖, 𝑦𝑖)𝜮𝑡𝑪(𝑥𝑖, 𝑦𝑖)
𝑇 + 𝑹)−1𝑪(𝑥𝑖, 𝑦𝑖)𝚺t𝑨

𝑇 + 𝑸   ( 4-1 ) 

Thus, the maximum eigenvalue of this prior covariance matrix, 𝜌(𝜮𝑡), can be used as the objective 

function for optimization since the largest eigenvalue represents the worst estimation accuracy in 

the field, which is more general for evaluating the goodness of estimation over the entire 
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geographical AOI. Furthermore, to remove the effect of transient high error of estimation in the 

beginning, the prior error should be evaluated as time goes infinite. Then Eqn. ( 4-1 ) becomes: 

𝜮∞
𝑖 ＝𝑨𝜮∞

𝑖 𝑨𝑇 − 𝑨𝜮∞
𝑖 𝑪(𝑥𝑖, 𝑦𝑖)

𝑇 × (𝑪(𝑥𝑖, 𝑦𝑖)𝜮∞
𝑖 𝑪(𝑥𝑖, 𝑦𝑖)

𝑇 + 𝑹)
−1

𝑪(𝑥𝑖, 𝑦𝑖)𝜮∞
𝑖 𝑨𝑇 + 𝑸 

The minimal largest eigenvalue in each possible deployment strategy is the cost: 

𝐽(�̃�) = 𝜌(𝜮∞
�̃� ) = max

𝑖=1,2,…,𝐾
𝜌(𝜮∞

𝑖 ) 

where �̃�  is the deployment strategy selected by the algorithm,  𝜮∞
𝑖  indicates the prior error 

covariance for the 𝑖th deployment location of strategy �̃� as time goes infinite, 𝜌(𝜮∞
�̃� )stands for the 

largest eigenvalue of the prior error covariance matrix for strategy �̃� as time goes infinite. Now 

that the estimation quality of a selected deployment location can be determined, the optimization 

method for finding the optimal deploying locations based on the linear dependence of sensor 

readings is developed. 

 

4.2 Optimization Scheme for Sensor Node Deployment 

Rapid-exploring random tree (RRT) is an efficient method for searching within a nonconvex 

geographical AOI by randomly building space-filling trees [69] [70]. RRT builds up a graph 𝐺 =

 (𝑉, 𝐸), where 𝑉 represents the vertices of the graph and 𝐸 represents the edges of the graph. Graph 

𝐺 contains many spanning trees, which indicate the locations traveled within the field. The graph 

is in fact the state-space model, which can be used for calculating the prior estimation error when 

the state value is known. Thus, by expanding the trees using the strategy of RRT while sampling, 

we are able to determine the infinite cost of each spanning tree inside the graph generated by the 

RRT algorithm, and then choose the one with the smallest estimation error. The nodes on each 

spanning tree indicates the deployment location, where the collected data is assumed to be 

stationary (i.e., does not undergo significant change during the tree expansion period). Thus, the 
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linear dependence of sensor readings at nodes on each spanning tree can be captured and 

eliminated by applying the Linear Reduction method while expanding the spanning tree. The 

algorithm of Rapid-exploring Random tree with infinite horizon cost and Linear Reduction (RRLR) 

is presented in in Algorithm 2. 

 

Algorithm 2: Rapid-exploring Random tree with Linear Reduction. 

Algorithm 2 has several inputs. In it 𝐺 denotes the tree graph generated by the rapid-exploring 

random tree, and 𝑉 and 𝐸 stand for its vertices and edges, respectively. Also, 𝒯 denotes the set of 
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computed deployment locations, which should be empty in the beginning, and 𝜂  records the 

infinite horizon cost calculated through prior estimation error on locations in set 𝒯, which is an 

infinite set. Furthermore, 𝜌 is the step size that adjusts the exploring speed, and matrices 𝑨 and 𝑪 

contain the parameters of the environmental model for calculating the estimation error and the 

sampling value. The information about the boundaries of the geographical AOI is provided in 𝒜. 

 

The algorithm starts with the initialization in line 1 and iterates until the optimal 

deployment location is determined. A loop is continuously executed from line 3 to line 12 until 

the newly generated vertex meets several criteria. Line 4 generates the new random node of the 

tree and is used for finding the nearest vertex in the tree graph 𝐺 in line 5. Then, line 6 examines 

whether the distance between the newly generated vertex and its closest vertex in the graph are 

within the step size and whether it is inside the boundary of the geographical AOI. Next, in line 

13, the method of cluster detection is used for finding the vertices in graph 𝐺 within a certain 

distance of the newly generated vertex. If only one vertex can be found in graph 𝐺, this provides 

the only option to connect the new random vertex, and it must be the nearest vertex that was just 

found in line 5. Thus, the graph is expanded as indicated in lines 15 and 16. Otherwise, there will 

be several options, and the one that minimizes the infinite horizon cost as indicated in line 19, must 

be chosen. The details are given in Algorithm 3. After a new edge to the spanning tree in graph 𝐺 

has been added with minimal infinite horizon cost, redundant sampling data should be checked. In 

the spanning tree with the new edge and vertex, the sensor readings for a time period can be 

generated according to the environmental model using matrices A and C in line 22. Then, line 23 

generates an identity matrix and the linear reduction method is used to determine if there are 

linearly dependent sampling readings in line 24. The strategy that minimizes the locations for 
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sensor node deployment is given in line 25, which returns the reduced set 𝒯. Its details are given 

in Algorithm 4.  

Algorithm 3 aims to minimize the infinite horizon cost by comparing each possible 

spanning in the tree graph [13] [44]. For each vertex in the set that contains nodes near the new 

vertex, the spanning tree that connects to the new node is calculated as in line 6. Then its infinite 

horizon cost is computed in line 7. After this, the vertex and the computed deployment with the 

minimal cost are recorded from line 8 to line 12. 

 

Algorithm 3: Method of vertexPick to Minimize the Infinite Horizon Cost. 

Algorithm 4 generates the graph that will reduce the size of the deployment set using linear 

dependence among the collected sampling data in different nodes. It first utilizes matrices 

𝑴 and 𝚯 to find the set that stores the redundant sampling locations according to theorem 2 in line 

2 to line 6. Then, from line 7 to line 18, redundant deployment locations are removed according to 

several strategies. If the dimension of the redundant sampling location set is not larger than the 
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difference between the matrix size and its rank, the locations in the set can be directly removed, 

and will not result in information loss in the matrix. However, if that dimension exceeds that 

difference, which means there are multiple choices for removing selected sampling locations, then 

we can only remove some of them to avoid information loss in the matrix. Hence, the size of the 

redundant sampling location set should be reduced to |𝑴| − 𝑟𝑎𝑛𝑘(𝑴), as shown in line 13. 

 

Algorithm 4: Method of IndextoEliminate. 

4.3 Experimental Results 

In this section, numerical simulation results are presented using the methodology developed in the 

thesis. The RRLR algorithm is applied on the dataset collected from the field tests at Yosef Wosk 

Reflecting Pool, UBC, Vancouver, Canada. RRLR produces several locations of deployment from 

the collected data, as shown in Figure 4.3, where the yellow rectangular blocks indicate the 
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deployment locations while the blue lines represent the exploring trees in the tree graph. Also, 

geographical AOI is generated based on the pool’s GPS location given in meters. After that, a 

comparison between RRLR and the benchmark is presented. 

 

 

Figure 4.3: Deployment Locations Produced by RRLR. 

Matrices 𝑨, 𝑪, 𝑸, and 𝑹, which present the spatiotemporal correlation of the environment, are 

studied from the data sampled from five sampling locations as shown in Figure 2.10. The number 

of basis functions is set to five. The parameter values for 𝑐𝑖(𝑥, 𝑦) = 𝐾𝑒
−

‖(𝑥,𝑦)−(𝑥𝑖, 𝑦𝑖)‖
2

2𝜎𝑐
2

 are chosen 

as: 𝜎𝑐
2 = square sum of the basis function variance, and 𝐾 = average of the entire vector. The 

comparison algorithm, RRC [13] is also executed using the same parameter values. All 

experiments are run on a PC with 4.0 GHz Quad-Core CPU and 16 G memory. 
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Figure 4.4 presents the deployment result generated by the algorithm Rapidly-exploring 

Random Cycles (RRC), which requires 12 deployment locations to achieve the overall lowest prior 

estimation error. Although the environment is estimated with low estimation error, that requires 

too many sensor nodes since it does not consider the correlation among the deployment locations 

when comparing to the results generated by RRLR in Figure 4.3. The method developed in the 

present work, RRLR, only requires five sensor nodes to persistently monitor this environment, 

which is close to 60% less than the solution provided by RRC. This significant reduction is due to 

the comparison and redundant elimination among sampling data during the tree expansion using 

the Linear Reduction algorithm. The result of RRLR also shows that the sensor nodes are sparsely 

deployed, which is practical since there is no significantly temperature change in the tested pool.  

 

Figure 4.4: Deployment Results Generated by RRC. 

Finally, the error levels in estimating the environment by the two algorithms are compared. 

As shown in Figure 4.5, the minimum estimation error (infinite horizon cost) for RRLR is close to 
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but less than the result provided by RRC, which indicates that RRLR requires fewer sensor nodes 

to carry our persistent monitoring within the geographical AOI. Also, RRLR can achieve low prior 

estimation error while RRC requires 140% more sensor nodes to achieve the same error level. 

 

Figure 4.5: Cost Comparison between RRLR and RRC. 
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Chapter 5 : Conclusions and Future Work 

 

5.1 Contributions 

This thesis developed a practical platform for real time monitoring of water quality using a network 

of mobile sensors, which provides efficient data acquisition and transmission and less costly and 

easy-to-upgrade modular components. A novel strategy for optimal sensor deployment was 

developed, which is based on environmental estimation error and the linear dependence of 

sampling, so as to minimize the number of sensor nodes for the same acquired information content, 

through the minimization of the infinite-horizon cost. 

 

Test results show that the developed mobile sensor network platform exhibits good 

performance in transmitting data and mobility in aquatic environments with strong water flow. 

Also, the proposed algorithm, RRLR, performs well in both estimating an aquatic environment at 

low prior estimation error and low linear dependence among the deployed sensor nodes. 

 

5.2 Possible Future Work 

Extensive field testing of networked multiple mobile sensor nodes will be carried in Canada and 

India, for monitoring active aquatic environments. Optimal collaboration among mobile sensor 

nodes should be further investigated, subject to various criteria of cost (e.g., energy, distance 

travelled, cost, and accuracy). Also, the information sharing among sensor nodes has to be 

improved to save energy. Besides, an improved strategy for planning the next steps of monitoring 

should be introduced. In the present approach, the spanning trees expend randomly without 

considering captured historical data, which can result in unnecessary search steps. By examining 
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the historical sensor data in the locations that the spanning tree has searched, we may find more 

beneficial places for searching. The size of random exploring tree may be reduced in this manner, 

and the search of the overall environment will be accelerated.  

 

Modeling of an unknown environment should be explored. Some of water quality attributes 

like temperature may be modeled as prior knowledge using satellite or aerial thermal images. 

Utilizing historical data in this manner, at locations that are monitored, can be quite beneficial.  

 

In the theorems that are proved in the present work, it was assumed that each sensor node 

contained just one sensor. The theorems will be generalized for the case of multiple sensors in 

each node. The developed algorithms will be implemented in the prototype multi-node mobile 

sensor platform, and extensive field testing will be carried out. Noise, disturbances, and 

unknown/unmodeled factors will enter during practical implementation and testing. Measures to 

mitigate such effects should be explored. In general, the developed methodologies and algorithms 

should be improved for accommodating such more challenging and practical issues. 
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