GENOMICS TOOL FOR MONITORING ENGINEERED STORMWATER TREATMENT WETLANDS

by

Jessica LeNoble

B.Eng., Dalhousie University, 2014B.A., Dalhousie University, 2014

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES

(Civil Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

June 2017

© Jessica LeNoble, 2017

Abstract

In the context of this research, stormwater consists of precipitation that falls onto impervious surfaces and fails to infiltrate into the ground. Traditional stormwater management involves diverting stormwater into storm sewers followed by discharge to a watercourse. However, in Vancouver and elsewhere, there is a push from governments for a more integrated approach which makes use of low impact design (LIDs) features. For this reason, engineered wetlands, which are designed to optimize natural processes for water diversion and treatment, are becoming a more common and desirable treatment option for stormwater. However, there are barriers for the implementation of engineered wetlands and other LIDs because traditional water quality monitoring often does not provide a reliable enough validation that the wetlands are meeting water treatment objectives, thus leading to a lack of accountability for designers and operators.

In this research, a genomics-based approach was applied at an operating stormwater treatment wetland (the Lost Lagoon wetland located in Stanley Park, Vancouver British Columbia, Canada), with the goal to provide proof of concept data to inform the development of a genomics-based tool for stormwater treatment wetlands and other LIDs. In addition, a laboratory based stormwater dosing study was performed to allow for cross comparison of results. Microbial communities and functional genes with known adaptations for the contaminants found in stormwater were correlated with contaminant levels to increase the reliability and certainty of findings. Results from DNA sequencing were compared using samples extracted from the Lost Lagoon wetland and several outcomes suggested that bacteria may correlate with the performance of treatment wetlands. This was generally supported further using results from samples extracted during the stormwater dosing study. Cost estimates performed for various treatment wetland monitoring scenarios suggested that in the future, a genomics-based monitoring approach may supply more accurate treatment performance data at a lower overall cost and effort level than traditional stormwater treatment monitoring.

Proof of concept, for the application of genomics-based monitoring of stormwater treatment wetlands, was provided. It was demonstrated that genomics could supply benefits for future monitoring endeavours and that additional investigation into this field may be worthwhile.

Lay Summary

In this research, a novel treatment monitoring approach was applied at an operating stormwater treatment wetland (the Lost Lagoon wetland located in Stanley Park, Vancouver British Columbia, Canada). In addition, a laboratory based stormwater dosing study was performed to allow for comparison of results. Bacterial communities and genes with known adaptations for the contaminants found in stormwater were linked with contaminant levels to increase the reliability and certainty of treatment findings. Results were compared using samples collected from the Lost Lagoon wetland and several outcomes suggested that bacteria may correlate with the performance of treatment wetlands. This was generally supported further using results from samples collected during the stormwater dosing study. Cost estimates, performed for various treatment wetland monitoring scenarios, suggested that in the future this novel monitoring approach may supply more accurate treatment performance data at a lower overall cost and effort level than traditional stormwater treatment monitoring.

Preface

The research described in this document contains two parts of equal significance. First, a field study was conducted at the Lost Lagoon wetland in Stanley Park in Vancouver, British Columbia between June 2014 and December 2014. Second, a laboratory study was conducted using facilities at the University of British Columbia Vancouver Campus between November 2015 and April 2016. Both of these studies were student-led by the author of this document. In addition, the author was primarily responsible for the identification and design of the research program, the applications to funding agencies, the execution of both the field and laboratory studies, and the analyses of data. That being said, many individuals, including the author's primary supervisor and collaborating supervisors, contributed advice, expertise, and constructive criticism throughout the design of the research program and the analyses that were conducted by the author. Specifically, Prof. James Atwater, Dr. Susan Baldwin, Dr. Dirk Van Zyl, Dr. Bill Mohn and Chris Johnston provided direction for the two components of this research.

Additional contributions include:

- Staff from the Stanley Park Ecology Centre assisted with sample collection during the field study;
- Timothy Ma from the UBC Department of Civil Engineering conducted analyses for metals;
- Staff from Microbiome Insights performed Illumina MiSeq sequencing;
- Anastacia Kuzmin from the UBC Department of Zoology performed Illumina HiSeq sequencing; and
- Dr. Ido Hatam contributed codes and support for the analyses of Illumina MiSeq data.

Publications, Presentations and Data Deposition:

A version of the field study results in Chapter 1 and Chapter 2 has been prepared for submission.

Jessica LeNoble, James Atwater, Susan Baldwin, Chris Johnston, Ido Hatam. The application of genomics as a monitoring tool for the efficacy of engineered stormwater treatment wetlands: a case study using results from an operating stormwater treatment wetland in Stanley Park, Vancouver, British Columbia.

A version of the laboratory study in Chapter 2 has been prepared for submission:

Jessica LeNoble, James Atwater, Susan Baldwin, Chris Johnston, Ido Hatam. The application of genomics as a monitoring tool for the efficacy of engineered stormwater treatment wetlands: a proof of concept study using the results of a stormwater dosing experiment. The outcome of this work has been presented in conferences as follows:

Jessica LeNoble, James Atwater, Chris Johnston, Maria Egerton, Susan Baldwin ad Dirk Van Zyl. Genomics Tool for Monitoring Stormwater Treatment Wetlands. Poster session at the 14th Annual Genomics Forum: Global Impact of Genomics. Genome BC. Vancouver, Canada. May 13, 2016.

Jessica LeNoble, James Atwater, Chris Johnston, Maria Egerton, Susan Baldwin ad Dirk Van Zyl. Genomics Tool for Monitoring Stormwater Treatment Wetlands. Poster session at the 3rd Annual Water and Environment Student Talks Conference: Where is Water Taking Us? University of British Columbia. Vancouver, Canada. June 7, 2016.

Upon completion of this thesis and subsequent publications, raw microbial data will be deposited in the following repositories under project name, "Genomics Tool for Engineered Stormwater Treatment Wetlands."

- NCBI
- MGRAST

Table of Contents

Abstract	ii
Lay Summary	iii
Preface	iv
Table of Contents	vi
List of Tables	xiii
List of Figures	xviii
List of Abbreviations and Symbols	xxv
Acknowledgements	xxvii
Dedication	xxviii
1. Introduction	1
1.1 Background	1
1.2 Motivation	2
1.3 Objective and Study Goals	3
1.4 Scope and General Research Activities	4
2. Chapter 1: Application of Traditional Water and Sediment Quality Monitoring Techn	iques for Validation
of the Lost Lagoon Stormwater Treatment Wetland	6
2.1 Introduction and Chapter Goal	6
2.2 Chapter Objectives	6
2.3 Hypotheses	7
2.4 Literature Review	7
2.4.1 Regulatory Framework	7
2.4.2 Urban Stormwater and Accepted Treatment Efficacy of Engineered Wetlar	าds 10
2.4.2.1 Description and Sources of Common Pollutants in Urban Stormwater.	
2.4.2.2 Reasons for Toxicity for Common Pollutants in Urban Stormwater	
2.4.2.3 Wetlands as an Urban Stormwater Control Measure	
2.4.2.4 Barriers for Implementing Stormwater Treatment Wetlands	
2.4.3 Traditional Water and Sediment Quality Monitoring for Validating the Effi	cacy of Stormwater
Treatment Wetlands	
2.4.3.1 Visual Inspection	
2.4.3.2 Testing	
2.4.3.2.1 Capacity Testing	
2.4.3.2.2 Synthetic Runoff Testing	

	2.4.3.3	Monitoring	18
2	.4.4 Stud	y Site: Lost Lagoon Stormwater Treatment Wetland	18
	2.4.4.1	Precedent for Installation	18
	2.4.4.2	Design, Installation, Maintenance and Monitoring Regime	19
	2.4.4.2	2.1 Design	19
	2.4.4.2	2.2 Installation	22
	2.4.4.2	2.3 Maintenance and Monitoring Regime	24
	2.4.4.3	Best Management Practices Employed in the Lost Lagoon Wetland Design	26
	2.4.4.4	Previous Stormwater Quantity and Quality Data	27
	2.4.4.4	1.1 Year 2000: Drainage Area and Calculation of Design Flow	27
	2.4.4.4	1.2 Year 2007: UBC Undergraduate Thesis	27
	2.4.4.4	1.3 Year 2013: Vancouver Board of Parks and Recreation Sediment Dredging	Report 30
2.5	Metho	dology	33
2	.5.1 Site	Visits and Sampling Regime	33
	2.5.1.1	Field Site Survey and Conditions at the Time of the Field Study Site Visit	33
	2.5.1.2	Sampling Locations and Dates	37
	2.5.1.3	Water Sampling Equipment	39
	2.5.1.4	Sediment Sampling Equipment	
	2.5.1.5	Sample Collection, Preservation, Storage and Transport	41
	2.5.1.5	5.1 Water Samples	41
	2.5.1.5	5.2 Sediment Samples	42
2	.5.2 Lab	pratory Analysis of Water Quality Parameters	42
	2.5.2.1	Sample Handling and Preservation	
	2.5.2.2	Analytical Methods	42
2	.5.3 Stat	istical Analyses	43
2.6	Result	s and Interpretation	43
2	.6.1 Turk	pidity, Total Suspended Solids, Chemical Oxygen Demand and Total Organic Ca	arbon 44
	2.6.1.1	Interpretation	
	2.6.1.2	Turbidity Figures	45
	2.6.1.3	Totals Suspended Solids Figures	46
	2.6.1.4	Chemical Oxygen Demand Figures	47
	2.6.1.5	Total Organic Carbon Figures	48
	2.6.1.6	Statistical Scores for Site Comparison	49

2.6.2	Metals		.49
2.6.	2.1 Inte	erpretations	.49
2.6.	2.2 Wa	ater Samples	. 52
2.6.	2.3 Sur	rface Sediment Samples	. 55
2.6.	2.4 10-	-cm Depth Sediment Samples	. 58
2.6.	2.5 Sta	itistical Scores for Site Comparison	. 60
2.6.3	Mineral	Oil and Grease	61
2.6.	3.1 Inte	erpretation	.61
2.6.	3.2 Mi	neral Oil and Grease Figures	.62
2.7 E	iscussion	and Conclusion	.63
2.7.1	Chapter	Hypotheses	. 63
2.7.2	Chapter	Objectives	. 64
2.7.3	Final Re	marks	. 66
2.8 L	imitations	s	.67
3. Chapte	er 2: Appli	ication of Genomics-Based Monitoring Techniques for Complimentary Validation of	the
Lost Lagoo	n Stormw	ater Treatment Wetland	. 68
3.1 I	ntroductio	on and Chapter Goal	. 68
3.2 0	hapter O	bjectives	.68
3.3 H	lypothese	25	. 68
3.4 L	iterature	Review	. 69
3.4.1	Toxicity	of Urban Stormwater	. 69
3.4.2	Influenc	e of Urban Stormwater Contaminants on Microbial Communities	.70
3.4.3	Known I	Microbial Adaptations to Urban Stormwater Contaminants	.72
3.4.4	DNA Sec	quencing and Data Analysis Methods	. 75
3.4.	4.1 DN	IA Sequencing Overview	. 75
3.4.	4.2 Sec	quence Data Analysis Overview	. 81
3.5 N	/lethodolo	ogy	. 83
3.5.1	Field Stu	udy Site Visits and Sampling Regime	. 83
3.5.2	Column	Study Preparation and Execution	.83
3.5.	2.1 Sou	urcing and Confirmation of Uncontaminated Soil	. 83
3.5.	2.2 Col	llection of Uncontaminated Soil	. 83
3.5.	2.3 Col	lumn Study Environment	. 84
3.5.	2.4 Pre	e-Study Experiment	. 84

3.5.	2.5	Column Configuration and Set-Up	84
3.5.	2.6	Column Water Dosing Regime and Environmental Controls	85
3	8.5.2.	5.1 Stormwater Dose Quality	85
3	3.5.2.0	5.2 Stormwater Dose Volume and Frequency	
3.5.3	Col	umn Study Sampling Regime	
3.5.4	San	ple Preservation, Transport, Pre-Processing, Storage and Quality Control	90
3.5.5	Lab	oratory Analysis of Water and Sediment Quality Parameters	91
3.5.6	Lab	oratory Preparation of Bacterial DNA	91
3.5.	6.1	Sample Handling and Preservation	91
3.5.	6.2	Extraction of DNA and Quality Control	91
3.5.	6.3	Quantification of DNA	91
3.5.7	Seq	uencing for Comparison of Microbial Community Compositions	91
3.5.	7.1	Library Preparation and Quality Control	92
3.5.	7.2	Sequencing of the 16s rRNA Gene	93
3.5.8	Seq	uencing for Comparison of Microbial Functional Gene Compositions	94
3.5.	8.1	Sample Selection and Quality Control	94
3.5.	8.2	Library Preparation and Quality Control	95
3.5.	8.3	Cluster Generation	95
3.5.	8.4	Sequencing of Whole Bacterial Genomes	95
3.5.9	Ana	lysis of Bacterial Taxa Using the 16s rRNA Gene	96
3.5.	9.1	Quality Filtering and Determination of Unique Sequences and Abundances	96
3.5.	9.2	Preparation of OTU Tables	97
3.5.	9.3	Taxonomic Assignments	97
3.5.	9.4	Bioinformatics	97
3.5.	9.5	Statistical Analyses on Data	98
3	8.5.9.	5.1 Data Screening	98
3	8.5.9.	5.2 Alpha Diversity	98
3	8.5.9.	5.3 Community Composition	99
3	8.5.9.	5.4 Indicator Species	
3.5.10	Д	nalysis of Bacterial Functions Using Metagenomics	100
3.5.	10.1	File Conversion and Sequence De-Multiplexing	100
3.5.	10.2	Read Merging, Quality Filtering, and Contig Assembly	100
3.5.	10.3	Preparation of Function Lists	

	3.5.10.4	Analyse	s on Data	
	3.5.10.5	Review	of Results	
3.6	Results	and Inte	erpretation	
3.	6.1 Envi	ronment	al Analysis	
	3.6.1.1	Confirm	ation of Beaver Lake Bog Soil Quality	
	3.6.1.2	Prelimin	ary Study	
	3.6.1.3	Turbidit	y, TSS, COD and TOC	
	3.6.1.3	.1 Inte	rpretation	
	3.6.1.3	.2 Figu	res	
	3.6.1.4	Metals		
	3.6.1.4	.1 Inte	rpretation	106
	3.6.1.4	.2 Figu	res	
	3.6.1	L.4.2.1.	Water Samples	
	3.6.1	l.4.2.2.	Surface Sediment Samples	112
	3.6.1	l.4.2.3.	10-cm Depth Sediment Samples	116
3.	6.2 Micr	obial Co	mmunity Analysis	120
	3.6.2.1	Data Qu	ality and Screening	120
	3.6.2.1	.1 Inte	rpretation	120
	3.6.2.1	.2 Field	l Study	121
	3.6.2	2.1.2.1.	Sequence Depth Cutoff	121
	3.6.2	2.1.2.2.	Comparison of Pseudo-Replicates and Outlier Screening	122
	3.6.2.1	.3 Labo	pratory Study	
	3.6.2	2.1.3.1.	Sequence Depth Cutoff	124
	3.6.2	2.1.3.2.	Comparison of Pseudo-Replicates and Outlier Screening	126
	3.6.2.2	Alpha D	iversity	
	3.6.2.3	Commu	nity Composition	130
	3.6.2.3	.1 Inte	rpretation	130
	3.6.2.3	.2 Field	l Study	
	3.6.2	2.3.2.1.	Water Samples	
	3.6.2	2.3.2.2.	Surface Sediment Samples	
	3.6.2	2.3.2.3.	10-cm Depth Sediment Samples	134
	3.6.2.3	.3 Labo	pratory Study	
	3.6.2	2.3.3.1.	Water Samples	

	Э	3.6.2.3.	.3.2.	Surface Sediment Samples	136
	3	3.6.2.3.	.3.3.	10-cm Depth Sediment Samples	137
	3.6.2.4	1 Ind	dicato	r Species	137
	3.6	.2.4.1	Inte	rpretation	137
	3.6	.2.4.2	Field	l Study	138
	3	3.6.2.4.	.2.1.	Water Samples	138
	3	3.6.2.4.	.2.2.	Surface Sediment Samples	139
	3	3.6.2.4.	.2.3.	10-cm Depth Sediment Samples	139
	3.6	.2.4.3	Labo	pratory Study	140
	3	3.6.2.4.	.3.1.	Water Samples	140
	3	3.6.2.4.	.3.2.	Surface Sediment Samples	140
	3	3.6.2.4.	.3.3.	10-cm Depth Sediment Samples	141
	3.6.3 N	Microb	ial Fur	nctional Gene Analysis	141
	3.6.3.1	l Da	ata Qu	ality and Screening	141
	3.6.3.2	2 Fu	nctio	nal Gene Composition	142
	3.6	.3.2.1	Inte	rpretation	142
	3.6	.3.2.2	Figu	res	144
	3.6.3.3	3 M	etal A	daptation Genes	145
	3.6	.3.3.1	Inte	rpretation	145
	3.6	.3.3.2	Figu	res	146
3.	7 Dis	cussior	n and	Conclusion	149
	3.7.1 (Chapte	r Hypo	otheses	149
	3.7.2 (Chapte	r Obje	ectives	151
	3.7.3 F	inal Re	emark	s	152
3.	8 Lim	nitation	ıs		152
4.	Discussio	on			153
4.	1 Cos	st Com	parisc	n of Wetland Validation Techniques	153
	4.1.1 9	Sample	Colle	ction	153
	4.1.2 L	aborat	tory A	nalyses	154
	4.1.3	Fotal Co	ost of	Data Acquisition	155
4.	2 Cos	st Com	parisc	n of a Single Wetland Monitoring Event	156
5.	Conclusi	on			157
6.	Recomm	nendati	ons		158

6.1	Follow-On Research	
6.2	Application and Improvements of Study Methodology	
Bibliogr	aphy	
Append	lix A: Acid Digestion Procedure for Water and Sediment Samples	
Append	lix B: Historic Water and Sediment Quality Data for the Lost Lagoon Wetland	
Append	lix C: Rainfall Records During Lost Lagoon Wetland Site Visits	
Append	lix D: Temperature Records During Lost Lagoon Wetland Site Visits	
Append	lix E: Delineation of the Lost Lagoon Wetland Watershed	
Append	lix F: Raw Measurements for the Lost Lagoon Wetland Field Study	
Append	lix G: Raw Measurements for the Laboratory Column Test	
Append	lix H: Alpha Diversity	
Field	Study	
Wa	ater Samples	
Sur	face Sediment Samples	
10-	-cm Depth Sediment Samples	
Labor	ratory Study	
Wa	ater Samples	
Sur	face Sediment Samples	
10-	-cm Depth Samples	
Append	lix I: Letters of Permission and Support for the Research Project	
Append	lix J: Project Management – Timeline and Budget	
Append	lix K: Independent Statistical Review by UBC Applied Statistics and Data Science Group	
Append	lix L: Reflections on the Work	

List of Tables

Table 1. Description of Common Pollutants in Urban Stormwater 10
Table 2. Sources of Common Pollutants in Urban Stormwater 11
Table 3. Reasons for Toxicity of Common Pollutants in Urban Stormwater
Table 4. Concentration of Common Pollutants in Urban Stormwater, Treatment Guidelines and RemovalEfficiency Using Engineered Wetlands15
Table 5. Elements of the Lost Lagoon Wetland Maintenance and Monitoring Regime (Kerr Wood Leidal,2002)25
Table 6. 2007 Results for Plant Specimens in Lost Lagoon Wetland (Thoren et al., 2007)
Table 7. 2007 Results for Sediment Samples in Lost Lagoon Wetland (Thoren et al., 2007)
Table 8. 2007 Regression Analysis Results for Sediment Samples in Lost Lagoon Wetland (Thoren et al.,2007)29
Table 9. Comparison of 2007 Wetland Results with Sediment Data for Washington State (Thoren et al.,2007)29
Table 10. BC Residential Soil Standards and Metal Concentrations Measured in the Sediment of the LostLagoon Wetland Forebay
Table 11. Field Study Samples Taken
Table 12. Confidence Levels for Wilcoxon Rank Test Between Entry and Exit for Environmental Parameters
Table 13. Confidence Levels for Wilcoxon Rank Test Between Exit and Lagoon for Environmental Parameters
Table 14. Confidence Levels for Wilcoxon Rank Test Between Entry and Lagoon for EnvironmentalParameters49
Table 15. Confidence Levels for Wilcoxon Paired Rank Test Between Entry and Exit for Metals60
Table 16. Confidence Levels for Wilcoxon Paired Rank Test Between Exit and Lagoon for Metals61
Table 17. Confidence Levels for Wilcoxon Paired Rank Test Between Entry and Lagoon for Metals61
Table 18. Comparison of Maximum Pollutant Concentrations Measured in Water Samples at the LostLagoon to British Columbia Treatment Guidelines65
Table 19. Bacterial adaptations to metals in stormwater (adapted from Nies 1999; Das et al. 2016)73
Table 20. Common Conventional and Biochemical Techniques for Analyzing Microbial Diversity andAbundance (adapted from Fakruddin & Mannan, 2013)77
Table 21. Common Partial Community Analysis Molecular Techniques for Analyzing Microbial Diversity and Abundance (adapted from Fakruddin & Mannan, 2013; Rastogi & Sani, 2011)
Table 22. Common Techniques for Analyzing Microbial Diversity and Abundance using Whole Community Analysis (adapted from Fakruddin & Mannan, 2013; Rastogi & Sani, 2011)
Table 23. Common Software Applications for Sequence Data Analysis 82

Table 24. Urban Highway Stormwater Quality from Literature and Sediment Quality Data from the LostLagoon Wetland in 2013
Table 25. Target Element Concentrations for Semi-Synthetic Stormwater Recipe 87
Table 26. Chemical Additives Used for Semi-Synthetic Stormwater Supplementation
Table 27. Environment Canada Average Precipitation and Temperature Data for Vancouver Harbor(Environment Canada, 2016)
Table 28. Calculated Water Addition Volumes and Frequencies for Column Study
Table 29. Recipe for PCR Used During Library Preparation Prior to 16s rRNA Gene Sequencing92
Table 30. Conditions for PCR Used During Library Preparation Prior to 16s rRNA Gene Sequencing93
Table 31. Confirmation of Beaver Lake Bog Soil Quality
Table 32. Measurements Recorded During Preliminary Column Test
Table 33. Adonis Whole Dataset Comparison of Field Study Water Samples by Location with StrataAdjustment for Date132
Table 34. Adonis Pairwise Comparison of Field Study Water Samples by Location
Table 35. Adonis Whole Dataset Comparison of Field Study Surface Sediment Samples by Location withStrata Adjustment for Date133
Table 36. Adonis Pairwise Comparison of Field Study Surface Sediment Samples by Location
Table 37. Adonis Whole Dataset Comparison of Field Study Depth Sediment Samples by Location with StrataAdjustment for Date134
Table 38. Adonis Pairwise Comparison of Field Study Depth Sediment Samples by Location
Table 39. Adonis Whole Dataset Comparison of Laboratory Study Water Samples by Exposure and Date
Table 40. Adonis Whole Dataset Comparison of Laboratory Study Surface Sediment Samples by Exposure and Date 136
Table 41. Adonis Whole Dataset Comparison of Laboratory Study Depth Sediment Samples by Exposure andDate137
Table 42. Summary Statistics for Sequence Data Prior to Quality Control and Screening
Table 43. Summary Statistics for Sequence Data After Quality Control and Screening
Table 44. Approximate Cost Per Day for Sample Collection 153
Table 45. Approximate Cost Per Sample for Traditional Stormwater Quality Analysis
Table 46. Approximate Cost Per Sample for Genomics Stormwater Quality Analysis Using LengthComparison of Bacterial Communities154
Table 47. Approximate Cost Per Sample for Genomics Stormwater Quality Analysis Using Entry and ExitComparison of Bacterial Functional Genes155
Table 48. Environment Canada Temperature Records for July 1, 2015 through August 31, 2015

Table 49. Environment Canada Temperature Records for September 1, 2015 through October 31, 2015
Table 50. Environment Canada Temperature Records for November 1, 2015 through December 31, 2015
Table 51. In Situ Recordings of Dissolved Oxygen, pH and Temperature in the Lost Lagoon Wetland Forebay at the Water Surface and Water Floor
Table 52. Temperature, DO, pH, Conductivity, ORP - Raw Data - Field Samples 204
Table 53. Turbidity - Raw Data - Field Samples
Table 54. Chemical Oxygen Demand – Raw Data – Field Samples
Table 55. Total Suspended Solids - Raw Data - Field Samples 207
Table 56. Total Organic Carbon - Raw Data - Field
Table 57. Metals - Raw Data - Field Samples - Water
Table 58. Metals - Raw Data - Field Samples - Sediment
Table 59. Determination of the Water Content in Beaver Lake Bog Soil
Table 60. Raw Data Recorded for the 2-Week Preliminary Column Study
Table 61. Mass of Soil Added to Each Column for the Column Study
Table 62. Temperature, DO, pH, Conductivity, ORP - Raw Data – Column Log 212
Table 63. Temperature, DO, pH, Conductivity, ORP - Raw Data – Column Log
Table 64. Turbidity, TSS, COD, TOC - Raw Data - Column Study
Table 65. Metals - Raw Data - Column Study - Water 215
Table 66. Metals – Raw Data - Column Study - Sediment
Table 67. One Way ANOVA Test Result for Richness Comparison of Water Samples by Field Site Based onChao1 Estimator218
Table 68. Tukey HSD Test Result for Diversity Comparison of Water Samples by Field Site Based on Chao1 Estimator 218
Table 69. One Way ANOVA Test Result for Coverage Comparison of Water Samples by Field Site Based on Good's Coverage 219
Table 70. Tukey HSD Test Result for Coverage Comparison of Water Samples by Field Site Based on Good's Coverage 220
Table 71. One Way ANOVA Test Result for Diversity Comparison of Water Samples by Field Site Based on the Inverse Simpson Estimator
Table 72. One Way ANOVA Test Result for Observed OTUs Comparison of Water Samples by Field Site Based on SOBS Calculation 222
Table 73. Tukey HSD Test Result for Observed OTUs Comparison of Water Samples by Field Site Based onSOBS Calculation222

Table 74. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Field SiteBased on Chao1 Estimator224
Table 75. Tukey HSD Test Result for Diversity Comparison of Surface Sediment Samples by Field Site Basedon Chao1 Estimator224
Table 76. One Way ANOVA Test Result for Coverage Comparison of Surface Sediment Samples by Field SiteBased on Good's Coverage225
Table 77. Tukey HSD Test Result for Coverage Comparison of Surface Sediment Samples by Field Site Based on Good's Coverage 225
Table 78. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Field SiteBased on the Inverse Simpson Estimator226
Table 79. Tukey HSD Test Result for Diversity Comparison of Surface Sediment Samples by Field Site Basedon the Inverse Simpson Estimator
Table 80. One Way ANOVA Test Result for Observed OTUs Comparison of Surface Sediment Samples byField Site Based on SOBS Calculation228
Table 81. One Way ANOVA Test Result for Richness Comparison of 10-cm Depth Sediment Samples by FieldSite Based on Chao1 Estimator229
Table 82. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by FieldSite Based on Good's Coverage230
Table 83. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by FieldSite Based on the Inverse Simpson Estimator232
Table 84. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by FieldSite Based on SOBS Calculation233
Table 85. One Way ANOVA Test Result for Richness Comparison of Water Samples by Column Based on theChao1 Estimator234
Table 86. One Way ANOVA Test Result for Coverage Comparison of Water Samples by Column Based on the Good's Coverage 235
Table 87. Tukey HSD Test Result for Coverage Comparison of Water Samples by Column Based on the Good's Coverage 235
Table 88. One Way ANOVA Test Result for Diversity Comparison of Water Samples by Column Based on theInverse Simpson Estimator236
Table 89. One Way ANOVA Test Result for Diversity Comparison of Water Samples by Column Based onSOBS Calculation237
Table 90. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by ColumnBased on the Chao1 Estimator238
Table 91. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by ColumnBased on the Good's Coverage239
Table 92. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by ColumnBased on the Inverse Simpson Estimator240

Table 93. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by ColumnBased on SOBS Calculation241
Table 94. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples byColumn Based on Chao1 Estimator242
Table 95. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples byColumn Based on Good's Coverage
Table 96. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples byColumn Based on the Inverse Simpson Estimator
Table 97. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples byColumn Based on SOBS Calculation
Table 98. Project Budget and Finances

List of Figures

Figure 1. Map of Stanley Park (City of Vancouver, 2016b) Highlighting the Lost Lagoon Wetland2
Figure 2. Map of Stanley Park (City of Vancouver, 2016b) Highlighting the Beaver Lake Bog5
Figure 3. Visual Breakdown of the Regulatory Framework for Stormwater Management in Vancouver9
Figure 4. Illustration of the Lost Lagoon Wetland (Kerr Wood Leidal Associates Ltd., 1999)21
Figure 5. Laying of Silt Curtain
Figure 6. Construction of the Berm
Figure 7. Excavation of the Pools and Marshes
Figure 8. Vegetation Planted
Figure 9. Arial Shot Facing Northwest
Figure 10. Arial Shot Facing Southeast
Figure 11. Design Hydrograph for Lost Lagoon Wetland (adapted from Kerr Wood Leidal, 1999)27
Figure 12. 2007 Sample Sites in Lost Lagoon for Plants and Sediment (adapted from Thoren et al., 2007)28
Figure 13. Locations Sampled by Hemmera During the 2013 Sediment Investigation (Hemmera, 2013)31
Figure 14. Survey Map of Field Site
Figure 15. Lost Lagoon
Figure 16. On Site Graphic of Treatment Process
Figure 17. Storm Sewer on the Stanley Park Causeway35
Figure 18. Access Point for the Lower Stormceptor
Figure 19. Wetland Bypass to Lost Lagoon35
Figure 20. Setting Forebay
Figure 21. High Marsh
Figure 22. Low Marsh
Figure 23. Sections of Low Marsh Showing Plant Damage and Beaver Activity
Figure 24. Signs of Beaver Activity at Lost Lagoon
Figure 25. Access Point for the Wetland Outlet Control Valve System
Figure 26. Outlet Point to Lost Lagoon
Figure 27. Field Study Sampling Locations at the Lost Lagoon Wetland
Figure 28. Overview of Field Sampling Process
Figure 29. Image of the Water Sampling Equipment
Figure 30. Photograph of the Sediment Sampler40
Figure 31. Barplot Comparison by Plot of Turbidity in Water Samples Collected During the Field Study 45

Figure 32. Boxplot Comparison of Turbidity in Water Samples Collected During the Field Study45
Figure 33. Barplot Comparison by Plot of TSS in Water Samples Collected During the Field Study
Figure 34 Boxplot Comparison of TSS in Water Samples Collected During the Field Study
Figure 35. Barplot Comparison by Plot of COD in Water Samples Collected During the Field Study47
Figure 36. Boxplot Comparison of COD in Water Samples Collected During the Field Study
Figure 37. Barplot Comparison by Plot of TOC in Water Samples Collected During the Field Study
Figure 38. Boxplot Comparison of TOC in Water Samples Collected During the Field Study
Figure 39. Barplot Comparison by Plot of Metals Associated with Stormwater in Water Samples Collected During the Field Study
Figure 40. Barplot Comparison by Plot of Metals Associated with Stormwater in Water Samples Collected During the Field Study
Figure 41. Boxplot Comparison of Metals Associated with Stormwater for Water Samples Collected During the Field Study
Figure 42. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study
Figure 43. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study
Figure 44. Boxplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study
Figure 45. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study
Figure 46. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study
Figure 47. Boxplot Comparison of Metals Associated with Stormwater between Forebay and Exit for Samples taken at a Depth of 10 cm
Figure 48. Comparison by Site of Total Mineral Oil and Grease in Water Samples Collected During the Field Study
Figure 49. Boxplot Comparison of Total Mineral Oil and Grease for Water Sampled Collected During the Field Study
Figure 50. Barplot Comparison by Column of Turbidity in Water Samples
Figure 51. Barplot Comparison by Column of Total Suspended Solids in Water Samples
Figure 52. Comparison by Column of Chemical Oxygen Demand in Water Samples
Figure 53. Comparison by Column of Total Organic Carbon in Water Samples105
Figure 54. Comparison of Turbidity, TSS, TOC, and COD in Field and Lab Studies
Figure 55. Time Comparison of Metals Associated with Stormwater in Column Water Samples
Figure 56. Time Comparison of Metals Associated with Stormwater in Column Water Samples

Figure 57. Comparison of Metals Associated with Stormwater in Field Study and Lab Study Water Samples
Figure 58. Comparison of Metals Associated with Stormwater in Field Study and Lab Study Water Samples
Figure 59. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment 112
Figure 60. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment 113
Figure 61. Comparison of Metals Associated with Stormwater in Field Study and Lab Study Surface Sediment
Figure 62. Comparison of Metals Associated with Stormwater in Field Study and Lab Study Surface Sediment
Figure 63. Barplot Time Comparison of Metals Associated with Stormwater in 10-cm Depth Sediment . 116
Figure 64. Barplot Time Comparison of Metals Associated with Stormwater in 10-cm Depth Sediment . 117
Figure 65. Comparison of Metals Associated with Stormwater in Field Study and Lab Study 10-cm Depth Sediment
Figure 66. Comparison of Metals Associated with Stormwater in Field Study and Lab Study 10-cm Depth Sediment
Figure 67. Rarefaction Curve Illustrating Minimum Depth Cut-off for Field Samples
Figure 68. Anosim Boxplot Between Pseudo-Replicate Samples Prior to Outlier Screening in the Field Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)
Figure 69. NMDS Plot Illustrating Suspected Outliers Among Field Samples
Figure 70. Anosim Boxplot Between Pseudo-Replicate Samples After Outlier Screening in the Field Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)
Figure 71. Rarefaction Curve Illustrating Minimum Depth Cutoff for Column Samples
Figure 72. Anosim Boxplot Between Pseudo-Replicate Samples Prior to Outlier Screening in the Column Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)
Figure 73. NMDS Plot Illustrating Suspected Outliers Among Column Samples
Figure 74. Anosim Boxplot Between Pseudo-Replicate Samples After Outlier Screening in the Column Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)
Figure 75. NMDS Plot Comparing Field Study Water Samples
Figure 76. NMDS Plot Comparing Field Study Surface Sediment Samples
Figure 77. NMDS Plot Comparing Field Study 10-cm Depth Sediment Samples134
Figure 78. NMDS Plot Comparing Laboratory Study Water Sediment Samples
Figure 79. NMDS Plot Comparing Column Study Surface Sediment Samples
Figure 80. NMDS Plot Comparing Column Study 10-cm Depth Sediment Samples
Figure 81. Indicator Species Barplot for Field Study Water Samples138
Figure 82. Indicator Species Barplot for Field Study Surface Sediment Samples

Figure 83. Indicator Species Barplot for Field Study 10-cm Depth Sediment Samples	139
Figure 84. Indicator Species Barplot for Laboratory Study Water Sediment Samples	140
Figure 85. Indicator Species Barplot for Laboratory Study Surfaced Sediment Samples	140
Figure 86. Indicator Species Barplot for Laboratory Study 10-cm Depth Samples	141
Figure 87. NMDS Plot of KEGG Annotated Genes for Field Samples	144
Figure 88. NMDS Plot of KEGG Annotated Genes for Column Samples	144
Figure 89. Relative Abundance of Genes Associated with Zinc Measured in Field Samples	146
Figure 90. Relative Abundance of Genes Associated with Zinc Measured in Column Samples	146
Figure 91. Relative Abundance of Functional Associated with Manganese, Zinc and Iron Measured in Samples	Field 147
Figure 92. Relative Abundance of Genes Associated with Manganese, Zinc and Iron Measured in Co Samples	olumn 147
Figure 93. Relative Abundance of CzcA Tolerance Gene Measured in Field Samples	148
Figure 94. Relative Abundance of CzcA Tolerance Gene Measured in Column Samples	148
Figure 94. Rainfall Recorded for Downtown Vancouver Between July 1 and July 15, 2015	194
Figure 95. Rainfall Recorded for Downtown Vancouver Between July 15 and July 30, 2015	194
Figure 96. Rainfall Recorded for Downtown Vancouver between August 1 and August 15	194
Figure 97. Rainfall Recorded for Downtown Vancouver Between August 17 and August 31, 2015	195
Figure 98. Rainfall Recorded for Downtown Vancouver Between September 1 and September 15,	2015 195
Figure 99. Rainfall Recorded for Downtown Vancouver Between September 16 and September 30,	2015 195
Figure 100. Rainfall Recorded for Downtown Vancouver Between October 1 and October 15, 2015	196
Figure 101. Rainfall Recorded for Downtown Vancouver Between October 16 and October 30, 2015	196
Figure 102. Rainfall Recorded for Downtown Vancouver Between October 31 and November 14, 201	5 196
Figure 103. Rainfall Recorded for Downtown Vancouver Between November 15 and November 29,	2015 197
Figure 104. Rainfall Recorded for Downtown Vancouver Between November 30 and December 14,	2015 197
Figure 105. Rainfall Recorded for Downtown Vancouver Between December 15 and December 29,	2015 197
Figure 106. Delineation of Lost Lagoon Wetland Watershed Using ArcGIS Online Tool (2016)	201
Figure 107. Depth Profile Measurements Taken in the Lost Lagoon Wetland Forebay	202
Figure 108. Barplot Between Field Site Water Samples for Richness Based on the Chao1 Estimator	217
Figure 109. Boxplot Between Field Site Water Samples for Richness Based on the Chao1 Estimator	217

Figure 110. ANOVA Residuals Between Field Site Water Samples for Richness Based on the Chao1 Estimator
Figure 111. Barplot Between Field Site Water Samples for Coverage Based on Good's Coverage
Figure 112. Boxplot Between Field Site Water Samples for Coverage Based on Good's Coverage
Figure 113. ANOVA Residuals Between Field Site Water Samples for Coverage Based on Good's Coverage
Figure 114. Barplot Between Field Site Water Samples for Diversity Based on the Inverse Simpson Estimator
Figure 115. Boxplot Between Field Site Water Samples for Diversity Based on the Inverse Simpson Estimator 220
Figure 116. ANOVA Residuals Between Field Site Water Samples for Diversity Based on the Inverse Simpson Estimator
Figure 117. Barplot Between Field Site Water Samples for Observed OTUs Based on the SOBS Calculation
Figure 118. Boxplot Between Field Site Water Samples for Observed OTUs Based on the SOBS Calculation
Figure 119. ANOVA Residuals Between Field Site Water Samples for Observed OTUs Based on the SOBS Calculation
Figure 120. Barplot Between Field Site Surface Sediment Samples for Richness Based on the Chao1 Estimator
Figure 121. Boxplot Between Field Site Surface Sediment Samples for Richness Based on the Chao1 Estimator
Figure 122. ANOVA Residuals Between Field Site Surface Sediment Samples for Richness Based on the Chao1 Estimator
Figure 123. Barplot Between Field Site Surface Sediment Samples for Coverage Based on Good's Coverage
Figure 124. Boxplot Between Field Site Surface Sediment Samples for Coverage Based on Good's Coverage
Figure 125. ANOVA Residuals Between Field Site Surface Sediment Samples for Coverage Based on Good's Coverage
Figure 126. Barplot Between Field Site Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 127. Boxplot Between Field Site Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 128. ANOVA Residuals Between Field Site Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 129. Barplot Between Field Site Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation

Figure 130. Boxplot Between Field Site Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 131. ANOVA Residuals Between Field Site Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 132. Barplot Between Field Site 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator
Figure 133. Boxplot Between Field Site 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator
Figure 134. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator
Figure 135. Barplot Between Field Site 10-cm Depth Sediment Samples for Coverage Based on Good's Coverage
Figure 136. Boxplot Between Field Site 10-cm Depth Sediment Samples for Coverage Based on Good's Coverage
Figure 137. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Coverage Based on Good's Coverage
Figure 138. Barplot Between Field Site 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 139. Boxplot Between Field Site 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 140. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 141. Barplot Between Field Site 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 142. Boxplot Between Field Site 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 143. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 144. Barplot Between Column Samples for Richness Based on the Chao1 Estimator
Figure 145. ANOVA Residuals Between Column Water Samples for Richness Based on the Chao1 Estimator
Figure 146. Barplot Between Column Water Samples for Coverage Based on the Good's Coverage 234
Figure 147. ANOVA Residuals Between Column Water Samples for Observed OTUs Based on the Good's Coverage
Figure 148. Barplot Between Column Water Samples for Diversity Based on the Inverse Simpson Estimator
Figure 149. ANOVA Residuals Between Column Water Samples for Observed OTUs Based on the Inverse Simpson Estimator

Figure 150. Barplot Between Column Water Samples for Observed OTUs Based on the SOBS Calculation
Figure 151. ANOVA Residuals Between Column Water Samples for Observed OTUs Based on the SOBS Calculation
Figure 152. Barplot Between Column Surface Sediment Samples for Richness Based on the Chao1 Estimator
Figure 153. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the Chao1 Estimator
Figure 154. Barplot Between Column Surface Sediment Samples for Coverage Based on the Good's Coverage
Figure 155. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the Good's Coverage
Figure 156. Barplot Between Column Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 157. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the Inverse Simpson Estimator
Figure 158. Barplot Between Column Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 159. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 160. Barplot Between Column 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator
Figure 161. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the Chao1 Estimator
Figure 162. Barplot Between Column 10-cm Depth Sediment Samples for Coverage Based on the Good's Coverage
Figure 163. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the Good's Coverage
Figure 164. Barplot Between Column 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator
Figure 165. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the Inverse Simpson Estimator
Figure 166. Barplot Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation
Figure 167. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation

List of Abbreviations and Symbols

Symbol	Property
(A)RISA	(Automated) Ribosomal intergenic spacer analysis
AA	Atomic absorption
ANOSIM	Analysis of similarity
ANOVA	Analysis of variance
BCTFA	British Columbia Transportation Financing Authority
bp	Base-pair
CAMERA	Community cyberinfrastructure for advanced microbial ecology research
CEME	Civil engineering and mechanical engineering
CLPP	Community level physiological profiling
COD	Chemical oxygen demand
Cond	Conductivity
Df	Degrees of freedom
DGGE	Denaturing gradient gel electrophoresis
DNA	Deoxyribonucleic acid
DO	Dissolved oxygen
FAME	Fatty acid methyl ester analysis
FISH	Florescence in situ hybridization
GAAS	Genome relative abundance and average size
GPS	Global positioning system
GUSTA ME	Guide to statistical analysis in microbial ecology
ICP-OES	Inductively coupled plasma optical emission spectrometry
IMG/M	Integrated microbial genomes with microbiome samples
KEGG	Kyoto encyclopedia of genes and genomes
KWL	Kerr Wood Leidal Consulting Engineers Limited
MAFFT	Multiple alignment program for amino acid or nucleotide sequences
MeanSqs	Mean squares
MG-RAST	Metagenome rapid annotation subsystem technology
MO&G	Mineral oil and grease
NMDS	Non-metric multidimensional scaling
ORP	Oxidation-reduction potential
OTU	Operational taxonomic unit
РСВ	Polychlorinated biphenyl
PCR	Polymerase chain reaction
PC-SWMM	Personal computer stormwater management model
PLFA	Phospholipid fatty acid
PVC	Polyvinyl chloride
QIIME	Quantitative insights into microbial ecology
Q-PCR	Quantitative polymerase chain reaction
RAxML	Randomized accelerated maximum likelihood
RDP	Ribosomal database project
RFLP	Restriction fragment length polymorphism
rроВ	Polymerase beta sub-unit
rRNA	Ribosomal ribonucleic acid
SCSU	Sole-carbon source utilization
SPES	Stanley Park Ecology Society
SSCP	Single strand confirmation polymorphism
STAMP	Strategies and techniques for analyzing microbial populations
SumsOfSqs	Sum of squares
TACOA	Taxonomic classification of environmental genomic fragments approach
TGGE	Temperature gradient gel electrophoresis
ТОС	Total organic carbon

T-RFLP	Terminal restriction fragment length polymorphism
TSS	Total suspended solids
Turb	Turbidity
UBC	University of British Columbia
VOC	Volatile organic compound

Acknowledgements

This project was generously financed through a partnership between the University of British Columbia, the Natural Sciences and Engineering Council of Canada through the Industrial Postgraduate Scholarship (IPS) program, Genome British Columbia, through the User Partnership Program (UPP), Kerr Wood Leidal Consulting Engineers Ltd. and the Stanley Park Ecology Society.

In addition, the scope of this project required many partners and collaborators to whom I am most grateful:

UBC Professors:

- 1. Prof. James Atwater, project supervisor and endless source of knowledge and support
- 2. Dr. Susan Baldwin, project support for the microbiology portion of the research
- 3. Dr. Dirk Van Zyl, project proposal assistance and support for the laboratory study
- 4. Dr. Bill Mohn, input for the microbial sampling plan, bioinformatics and analyses
- 5. Dr. Karen Bartlett, providing laboratory space for sample processing

UBC Staff:

- Paula Parkinson, laboratory training and support in the CEME Environmental Lab
- Timothy Ma, laboratory support in the CEME Environmental Lab
- Jonathan Taylor, laboratory training and support in the CHBE microbiology lab
- Anastacia Kuzmin, whole genome sequencing
- Dr. Ido Hatam, software and bioinformatics training and review

UBC Students:

- Cristina Kei Oliveira, laboratory and fieldwork assistance
- Marie De Zetter, laboratory and fieldwork assistance
- Michael Harvard, laboratory and fieldwork assistance
- Shona Robinson, fieldwork assistance
- Jeff MacSween, fieldwork assistance
- Gal Av-Gay and Julian Ho, statistical consulting

Kerr Wood Leidal Consulting Engineers Ltd. Staff:

- Chris Johnston, financial support, project direction, and consulting
- Patrick Lilley, biology assistance
- Ryan Taylor, GIS assistance

Stanley Park Ecology Society Staff:

- Patricia Thomson, in-kind financial support for fieldwork
- June Pretzer and Maria Egerton, assistance with fieldwork management
- Paul Higginson, fieldwork assistance and local site resource

Genome BC:

• Aniko Takacs-Cox and Chen Wan, proposal development, sector and financial management

Other:

- Daniel Smith, laboratory and fieldwork assistance
- Jamen Kaye, laboratory assistance
- Nicholas Williams, fieldwork assistance

Dedication

This thesis is dedicated to my grade nine science teacher, Mr. Tobias Blaskovits. Without knowing it at the time, Mr. Blaskovits helped my awkward thirteen-year-old self find her niche in high school but more importantly, he was the first person to inspire my passion for environmental conservation, which has ultimately led to my pursuit of this research. Beyond this, Mr. Blaskovits connected me with the group pictured below, which includes some of my most treasured lifelong friends. Mr. Blaskovits continues to use hand-on approaches to help young students find their passion for science, engineering, and discovery. It is the teachers like Mr. Blaskovits that shape our future communities; they are deserving of our utmost appreciation and thanks.

Winning the Mind Grind in grade 9, 2007

In the photo: Mr. Tobias Blaskovitz, Edward Truong, Jessica LeNoble and Cody O'Neil photographed with CBC News Cast, Sandy Dawson and Mike Roberts

Our mind grind team in grade 12, 2010

In the photo: Edward Truong, Peter Davidson, Cody O'Neil, Connor Vandenberg, Alexa Geddes, Leanna Gruendel, and Jessica LeNoble

1. Introduction

1.1 Background

In the context of this research, stormwater consists of precipitation that falls onto impervious surfaces and fails to infiltrate into the ground. Traditional stormwater management involves diverting stormwater into storm sewers followed by discharge to a watercourse, which may or may not include prior treatment at a wastewater treatment facility. However, in Vancouver and elsewhere, there is a push by provincial and municipal governments to integrate stormwater treatment practices through the design and installation of low impact design features (British Columbia Ministry of Community, Sport, and Cultural Development, n.d.), which make use of natural processes to enhance the quality of discharged water, reduce the quantity of runoff, and recharge groundwater aquifers.

For this reason, engineered wetlands, which are designed to optimize natural processes for water diversion and treatment, are becoming a more common and desirable treatment option for stormwater. However, there are still barriers to the implementation of these wetlands as low impact design techniques for stormwater. Traditional water quality monitoring often does not provide a reliable enough validation that the wetlands are meeting water treatment objectives. Adequate pollutant removal efficiency monitoring requires continuous inflow and outflow measurements over a two-year study period (Erickson, Weiss, & Gulliver, 2013); thus, this regime is highly intensive for both resources and labour. In addition, the potential for erroneous and uncollected data is accelerated by unpredictable weather and the potential for equipment wear due to urban vandalism and routine use over an extensive study period. With diverse priorities and competition for limited resources, municipalities are unlikely to fund adequate monitoring regimes for engineered wetlands and will either choose to avoid their installation or base decision making on inadequate analyses.

As low impact design features become a greater priority, emerging analyses methods for monitoring pollutant removal efficiencies are of interest for application in the stormwater treatment sector. One such emerging analysis method for monitoring treatment effectiveness is the application of genomics, "the branch of molecular biology that is concerned with the structure, function, evolution, and mapping of genomes, or the complete set of DNA within a single cell of an organism." (Oxford University Press, 2016) Because the toxicity of stormwater influences microbial life (Karlsson, Viklander, Scholes, & Revitt, 2010), analysis of the microbiology within engineered wetlands may compliment traditional water quality monitoring and improve the effectiveness of treatment wetlands in the future. The content in this thesis

provides data to support this claim.

1.2 Motivation

In 1999, Kerr Wood Leidal Consulting Engineers Ltd. (KWL) was commissioned by the City of Vancouver for the design and commissioning of an engineered wetland, from here forward referred to as the Lost Lagoon wetland, which would treat stormwater exiting the newly expanded Stanley Park Causeway displayed by the map in Figure 1.

Figure 1. Map of Stanley Park (City of Vancouver, 2016b) Highlighting the Lost Lagoon Wetland

At the time it was commissioned, the Lost Lagoon wetland employed many of the best engineering management practices available and, in doing so, the design received an award of excellence from The Consulting Engineers of British Columbia. However, since the wetland was installed, only limited assessment of its treatment effectiveness has been performed. Though treatment monitoring is desirable and necessary, because of reasons described in the previous section, adequate water treatment monitoring

has not been performed.

That being said, the Lost Lagoon wetland is a highly desirable site for the application of an emerging monitoring method because it was designed as an ideal treatment system with its only source of influent being stormwater diverted from the Stanley Park Causeway. There is a wealth of knowledge indicating that the toxic components of stormwater have an influence on bacteria at both the species and functional gene levels (Nies, 1999). This wealth of knowledge along with the desire to increase the use of low impact design features for stormwater treatment led to the motivation behind this research.

1.3 Objective and Study Goals

Overall, the goal of this study was to provide proof of concept data that supports or rejects developing a genomics monitoring tool for low impact design features that treat stormwater, including engineered wetlands. This goal was achieved by splitting the study's components into two chapters, with each chapter encompassing three objectives.

Chapter 1: Apply traditional water and sediment quality monitoring techniques for validation of the Lost Lagoon wetland

Using limited water and sediment sampled from the Lost Lagoon wetland:

- 1. Demonstrate that the Lost Lagoon wetland is meeting water quality treatment guidelines;
- Demonstrate that the engineering best management practices employed in the design of the Lost Lagoon wetland have had some meaningful impact on the stormwater treatment efficiency; and
- 3. Identify knowledge gaps and opportunities for complimentary data analyses though the application of genomics.

Chapter 2: Apply genomics monitoring techniques for complimentary validation of the Lost Lagoon wetland

Using the same samples that were analysed in Chapter 1:

- 1. Apply genomics-based analysis methods to determine if there are shifts in the microbial communities and functional genes along the length of the Lost Lagoon wetland;
- 2. Determine if there is a correlation between the water and sediment quality, present over the study period, and the microbial communities and functional genes observed; and
- 3. Determine, through laboratory experimentation, if there are opportunities to expand and pursue genomics analyses at other stormwater treatment low impact design features.

1.4 Scope and General Research Activities

The scope of this research can be differentiated into two parts described here.

In the first part of the thesis, a field study was executed at the Lost Lagoon wetland in Stanley Park, British Columbia. The field study covered a six-month period between July, 2015 and December, 2015. Data obtained from the field study was analyzed in order to inform the conclusions of Chapter 1, where limited traditional water and sediment quality analyses were employed in an attempt to validate the Lost Lagoon wetland and to identify knowledge gaps and opportunities for complimentary analyses though the application of genomics.

In the second part of this thesis, DNA was first extracted from the field samples taken at the Lost Lagoon wetland and next sequenced, analyzed, and compared at both the bacterial species level and the functional gene level. In addition to these analyses, a laboratory study was carried out using columns of uncontaminated natural sediment sourced from a bog near Beaver Lake as highlighted in Figure 2.

Figure 2. Map of Stanley Park (City of Vancouver, 2016b) Highlighting the Beaver Lake Bog

The laboratory study ran for a four-month period between December 2015 and March 2016; however, laboratory conditions were controlled and designed to mimic the weather observed at the Lost Lagoon wetland over the period between September 2015 and December 2015. During the laboratory study period, seventeen sediment columns were repeatedly dosed with either semi-synthetic stormwater or distilled water. At one month intervals, sediment columns were sacrificed and analyzed for both the traditional water and sediment quality parameters as well as DNA. The results obtained from the field and laboratory studies were subsequently used to inform the conclusions of Chapter 2, where genomics monitoring techniques were employed in an attempt to provide complimentary validation of the Lost Lagoon wetland and to determine if there may be future opportunities to expand and pursue genomics analyses at other low impact design stormwater treatment features.

Chapter 1: Application of Traditional Water and Sediment Quality Monitoring Techniques for Validation of the Lost Lagoon Stormwater Treatment Wetland

2.1 Introduction and Chapter Goal

The contents of this chapter detail the background and environmental results of a field study that was undertaken at the Lost Lagoon wetland. Water and soil samples were collected from the wetland and environmental conditions were measured and analyzed. In addition, DNA was extracted and archived for future analyses in Chapter 2. Because the sampling regime was designed to optimize the collection of bacterial DNA, there were some limitations for the environmental analyses, which are further discussed later in this chapter. Most importantly, sampling of the wetland was performed over a six-month period, which is shorter than the required timespan needed to fully validate a stormwater treatment wetland.

The goal of this chapter was to demonstrate that the wetland is an ideal field site to be used for the 'proof of concept' design of a genomics-based monitoring tool for stormwater treatment wetlands. This chapter identifies common challenges that result from traditional wetland testing and also provides a lead in for opportunities to apply genomics as a method to reduce said challenges. To illustrate the need for stormwater management, background details on stormwater toxicity and treatment requirements are first provided. Next, engineered wetlands and associated best management practices are described. The Lost Lagoon wetland is then given some background and the design features are described in order to provide context for the field sampling and analysis plan. Finally, the study methodology, results, discussion and conclusions are provided.

2.2 Chapter Objectives

Based on the overall goal of this chapter, this chapter has three specific objectives.

Using water and sediment sampled from the Lost Lagoon wetland:

- 1. Demonstrate that the Lost Lagoon wetland is meeting or exceeding water quality treatment guidelines;
- Demonstrate that the engineering best management practices employed in the design of the Lost Lagoon wetland have had some meaningful impact on the stormwater treatment efficiency; and
- 3. Identify knowledge gaps and opportunities for complimentary data analyses though the application of genomics.

2.3 Hypotheses

The Lost Lagoon wetland was designed to improve stormwater runoff quality through a variety of treatment mechanisms including filtration, sedimentation, adsorption, and biological uptake. Therefore, in order to prove that the wetland is meeting treatment guidelines and in order to begin to validate the treatment mechanisms within the wetland, two hypotheses must be true.

- 1. The concentrations of metals associated with stormwater decrease along the length of the wetland; and
- 2. The concentration of oil and grease decreases along the length of the wetland.

2.4 Literature Review

In order to provide background and context for the objectives and hypotheses stated in this chapter, a review of relevant literature was performed. First, a description of the regulatory framework for stormwater treatment in Vancouver is supplied. Next, common pollutants in stormwater are given some context, including the pollutants' origins, reasons for toxicity, expected concentration ranges, guidelines for treatment, and the expected treatment that is achievable using engineered wetlands. Barriers for implementing wetlands for stormwater treatment are described as well as a description of traditional monitoring techniques. Finally, the precedent, design components and best management practices, and past analyses of the Lost Lagoon wetland are described.

2.4.1 Regulatory Framework

In Canada, a multi-jurisdictional approach provides the authority to discharge liquid waste and different regulations and guidelines come into force depending on the source and content of the liquid waste which is to be discharged.

At the national level, there are federal regulations under Section 35(1) of the Fisheries Act (Government of Canada, 1985), which stipulate conditions for discharges to fish bearing receiving bodies. In addition, the federal Environmental Protection Act (Government of Canada, 1999) makes pollution prevention the cornerstone of national efforts to reduce toxic substances in the environment. However, these Acts do not explicitly regulate discharges of waste where the only source is stormwater. This is mainly due to the fact that management of the natural environment is largely a provincial jurisdiction in Canada and, thus, federal regulations on environmental matters are limited. Concerning stormwater, beyond the Fisheries Act and Environmental Protection Act, several federal guidelines and best management practices exist that collectively serve to provide a Canada-wide strategy for stormwater management and planning. These

7

guidelines are largely the result of a consensus among provincial governments reached through meetings of the Canadian Council of Ministers of the Environment.

At the provincial level, British Columbia has adopted this federal strategy through application of its guideline for managing stormwater titled, Stormwater Planning: A guidebook for BC (Stephens, Graham, & Reid, 2002) and through enforcement of the Municipal Wastewater Regulation (Government of British Columbia, 2016). Within its suite of provincial regulations, British Columbia grants the authority to permit stormwater treatment and conveyance systems to municipalities. However, because municipalities do not hold an explicit right to jurisdictional power in Canada, the province of British Columbia still directly controls liquid waste discharges by requiring all municipalities to submit and adhere to an Integrated Liquid Waste and Resource Management Plan. Said plan must first be approved by the BC Ministry of the Environment before municipalities are granted implicit rights to regulate and permit the management of liquid waste, including stormwater.

At the municipal level, by developing an Integrated Liquid Waste and Resource Management Plan, Metro Vancouver provides resources, and guidelines concerning stormwater that its fourteen member municipalities must adhere to prior to being granted local authority over stormwater management. Through applying Metro Vancouver's liquid waste management plan, the City of Vancouver developed its target specific plan, namely the Citywide Integrated Stormwater Management Plan (City of Vancouver, 2016a). Within this plan, locally relevant best management practices are supplied in an easy to apply context for developers, planners and engineers. In addition, priorities for low impact design features are placed at a high significance concerning Vancouver's sustainability goals.

Because the guidelines and regulations for treating and conveying stormwater are managed within several documents and pieces of legislation, it is easy to become lost when attempting to discern what information is most applicable. For this reason, Figure 3 has been supplied as a summary of the regulatory framework concerning stormwater management in British Columbia.

8

Figure 3. Visual Breakdown of the Regulatory Framework for Stormwater Management in Vancouver

2.4.2 Urban Stormwater and Accepted Treatment Efficacy of Engineered Wetlands

2.4.2.1 Description and Sources of Common Pollutants in Urban Stormwater

As urbanization increases, construction and development lead to an increase in the total impervious surface area within watersheds. Because impervious surfaces limit the ability of water to infiltrate into the ground, unmitigated urbanization can lead to an increase in runoff volumes and peak flow rates. These larger faster runoffs yield more kinetic energy, which increases the opportunity for erosion and the movement of solid particles. In addition, roadways and vehicle traffic are sources of pollutants due to combustion of fossil fuels and mechanical wear. Thus, the quality of stormwater is degraded as a number of pollutants increase in concentration. *Table 1* outlines the common pollutants of concern found in stormwater and *Table 2* outlines the sources of said pollutants.

Pollutant	Description
Alkalinity	Water's capacity to neutralize acid measured as concentration of $CaCO_3$
Chloride	Concentration of dissolved Cl ⁻
Hardness	Dissolved calcium and magnesium, measured as CaCO $_3$
Nitrogen	Nutrient existing as particulate, dissolved, nitrate, nitrite, and ammonium
Phosphorus	Nutrient existing in numerous particulate and dissolved forms
Mineral Oil and Grease	Total concentration of hydrocarbons
Organic Carbon	Degradable organic material in total or dissolved form
рН	Function of the number of hydrogen ions in a solution
Solids	Total concentration of suspended or dissolved particulates
Temperature	Thermal property
Turbidity	Cloudiness of water, an indirect measure of particulates
Metals	Concentration of As, Ag, Al, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, V, and/or Zn in total or dissolved form

Table 1. Description of Common Pollutants in Urban Stormwater

Pollutant	Sources in Stormwater ^{1,2}
Alkalinity	Rainwater, rocks, soil and debris
Chloride	Road de-icing rock salts,
Hardness	Rainwater, rocks, soil and debris
Nitrogen	Atmosphere, animal waste, vegetative matter and fertilizers
Phosphorus	Atmosphere, animal waste, vegetative matter and fertilizers
Mineral Oil and Grease	Atmosphere, vehicle coolants, gasoline, oils, lubricants, coal-tar based asphalt sealants
Organic Carbon	Animal waste, vegetation, oils, greases, grass clippings
рН	Rainwater, reduced buffering due to impervious surfaces
Solids	Atmosphere, pavement wear, vehicles, and road maintenance
Temperature	Changes in land use, surface cover and shading
Turbidity	Atmosphere, pavement wear, vehicles, road maintenance, vegetation
Arsenic	Atmosphere, fertilizers, animal waste, solid wastes
Silver	Diesel fuels, improper disposal of industrial wastes
Aluminum	Atmosphere, rocks, soil, and debris, vehicle exhaust, asphalt
Barium	Vehicle wear
Beryllium	Vehicle wear
Calcium	Road de-icing rock salts, grease, atmosphere, rocks, soil and debris
Cadmium	Vehicle wear, tire fillers and insecticides
Cobalt	Atmosphere, vehicle wear
Chromium	Atmosphere, vehicle wear, moving engine parts and brake linings
Copper	Soil, bearing wear, engine parts, brake linings and radiator repair
Iron	Atmosphere, soil, vehicle wear, engine parts, and road structures
Potassium	Atmosphere and fertilizers
Magnesium	Road de-icing rock salts, soil, rocks and debris, rainwater
Manganese	Atmosphere, engine parts and gasoline additives
Molybdenum	Atmosphere, vehicle wear, brake linings
Sodium	Atmosphere, road de-icing rock salts, soil, rocks and debris
Nickel	Diesel fuel, lubricating oil, bushing wear, brake linings and asphalt
Lead	Tire fillers, lubricating oil/grease, vehicle wear and radiators
Antimony	Rubber tires, enamel paints and lacquers
Vanadium	Atmosphere
Zinc	Atmosphere, tire wear, vehicle wear, soil, rocks and debris

Table 2. Sources of Common Pollutants in Urban Stormwater

¹ (Erickson, Weiss, & Gulliver, 2013) ² (British Coloumbia Ministry of the Environment, 1992)

2.4.2.2 Reasons for Toxicity for Common Pollutants in Urban Stormwater

Urban stormwater can have hydrological, chemical, biological or physical impacts on the environment; however, the greatest concern is usually biological integrity and habitat alteration (Erickson, Weiss, & Gulliver, 2013). As the concentration of certain pollutants increases in stormwater, a variety of toxic effects may become evident in the ecosystems of receiving water bodies. For this reason, untreated, unmitigated urban stormwater runoff is detrimental over time. *Table 3* outlines the specific reasons for the toxicity of the common pollutants found in urban stormwater.

Pollutant	Reasons for Toxicity ¹
• Alkalinity	Low alkalinity limits the buffering capacity of receiving water to moderate changes in pH
• Chloride	High chloride concentrations indirectly affect soil properties such as swelling, porosity, water retention, and saturated hydraulic conductivity High chloride concentrations contribute to high salinity which can be lethal for freshwater species
• Hardness	Low hardness indirectly increases toxicity as cadmium, copper, nickel and lead toxicities increase as hardness decreases
• Nitrogen •	High nitrogen concentrations increase plant growth in a process called eutrophication Eutrophication leads to reduced water clarity and the presence of blue-green algae which decomposes, reducing the oxygen content of the receiving water body
• Phosphorus •	High phosphorus concentrations increase plant growth in a process called eutrophication Eutrophication leads to reduced water clarity and the presence of blue-green algae which decomposes, reducing the oxygen content of the receiving water body
• Mineral Oil and Grease •	Reduce the ability of some organisms to reproduce, negatively impact the ability of some plant species to grow, and can be lethal in high concentrations Can accumulate in the sediment of aquatic environments, reducing oxygen content as it slowly decomposes
Organic • Carbon	Degradation consumes oxygen and impairs aquatic life
•	Changes in pH can be lethal for aquatic organisms pH can indirectly influence the toxicity of other toxic compounds, including heavy metals
• Solids •	High solids loadings contribute to oxygen consumption and eutrophication High solids loadings are associated with higher concentrations of particle- bound pollutants, including heavy metals
• Temperature	Surges of elevated temperatures reduce dissolved oxygen content Temperature can indirectly influence the toxicity of other compounds, such as ammonia
• Turbidity	High turbidity is associated with high particulate loadings and is associated with higher concentrations of particle-bound pollutants, including heavy metals
Metals	Reduce the ability of some organisms to reproduce, negatively impact the ability of some plant species to grow, and can be lethal in high concentrations Can bioaccumulate in the sediment of aquatic environments
+ (Frickson Weiss	& Gulliver 2013)

Table 3. Reasons for Toxicity of Common Pollutants in Urban Stormwater

¹ (Erickson, Weiss, & Gulliver, 2013)

2.4.2.3 Wetlands as an Urban Stormwater Control Measure

While the technology has improved in the last twenty years, wetlands have long been known to improve water quality (Kerr Wood Leidal Associates Ltd., 1999). Removal efficiencies for toxins associated with sediments can be as high as 90%, with average total removal efficiencies in the range of 60%-80% (Hawkins et al., 1997). The expected removal efficiencies for wetlands are comparable with other treatment options but wetlands provide the added benefit of enhanced habitats for wildlife and plants. *Table 4* outlines the expected concentration of pollutants in stormwater, the guidelines for treatment in Canada and the removal efficiency expected from engineered wetlands.

D-llutant	Concentration		Removal Efficiency ⁴ , %
Pollulant	Stormwater ^{1,2}	<i>Guideline</i> ³	
Alkalinity (mg/L)	8-153 ¹	20	-
Chloride <i>(mg/L)</i>	0.5-75.3 ¹	0.640	-
Hardness (<i>mg/L</i>)	8.2-80.3 ¹	20	-
Nitrogen <i>(mg/L)</i>	0.34-20 ²	-	-19α
Phosphorus (<i>µg/L)</i>	64-4410 ¹	-	7
Mineral Oil and Grease (<i>mg/L</i>)	5.0-63.4 ¹	15	74
Organic Carbon (<i>mg/L)</i>	7.3-17.6 ²	-	31
рН	6.2-8.7 ²	6.5-9	-
Solids (<i>mg/L)</i>	44-809 ¹	20% above BL*	-5 ^α
Temperature	-	-	-
Turbidity	-	-	-
Arsenic (µg/L)	0-58 ⁵	5	41
Silver (µg/L)	3.0 ⁵	0.25	-
Aluminum (<i>µg/L)</i>	26-7100 ¹	100	85
Barium (<i>µg∕L)</i>	2-792 ¹	-	34
Beryllium (<i>µg/L)</i>	-	-	-
Calcium (<i>µg/L)</i>	42-506 ¹	-	67
Cadmium (<i>µg/L)</i>	0-40 ⁵	1	-
Cobalt (<i>µg/L)</i>	-	-	-
Chromium (<i>µg/L)</i>	0-40 ⁵	2	61
Copper (<i>µg/L)</i>	22-7033 ⁵	2	33
Iron (<i>μg/L)</i>	32-125000 ¹	350	84
Potassium (<i>mg/L)</i>	5-114 ¹	-	-8 ^α
Magnesium (<i>mg/L)</i>	113-741 ¹	-	29
Manganese (µg/L)	112-6910 ¹	80	91
Molybdenum (<i>µg/L)</i>	-	70	-
Sodium (<i>mg/L)</i>	$6.7-548^{1}$	-	-19 ^α
Nickel (µg/L)	0-126 ⁵	25	-
Lead ($\mu g/L$)	73-1780 ⁵	3	79
Antimony (μg/L)		6	-
Vanadium (<i>µg/L)</i>		-	-
Zinc ($\mu g/L$)	5-2386 ¹	7.5	71

Table 4. Concentration of Common Pollutants in Urban Stormwater, Treatment Guidelines and Removal Efficiency Using Engineered Wetlands

¹(Stime, 2014)

² (British Columbia Research Corporation, 1992)

³ (CCME Guidelines for Protection of Aquatic Life, Freshwater, 2016)

⁴ (Hawkins et al., 1997)

⁵ (Geosyntec Consultants & Wright Water Engineers Inc., 2011)

*BL = Baseline concentration

 ${}^{\alpha}\mbox{Negative values indicate that wetlands are a source of material$

2.4.2.4 Barriers for Implementing Stormwater Treatment Wetlands

While the popularity of low impact design features is increasing, these systems still make up a minority of all stormwater treatment systems in British Columbia. Even with the increase of literature, which indicates the importance of low impact design features for long term urban sustainability, the cost and uncertainty behind these types of systems still remain the primary reasons that the implementation of low impact designs is challenging. Specifically, for the case of engineered wetlands, as a stormwater control measure, construction costs and long term maintenance and monitoring costs are of primary concern for land developers. Because stormwater quality is variable in nature, treatment efficacy through natural processes is challenging to monitor and validate. Proper validation of these systems often requires a two-year sampling regime, which is unlikely to be prioritized by most municipalities.

2.4.3 Traditional Water and Sediment Quality Monitoring for Validating the Efficacy of Stormwater Treatment Wetlands

2.4.3.1 Visual Inspection

Visual inspection is the first and least complex option for inspecting an engineered wetland. Visual inspection is performed by running through a pre-prepared checklist in order to see if the different components of the wetland qualitatively appear to be functioning as they were designed. The downside of visual inspection is that if there are no outward signs of malfunction, there is no guarantee that the field inspector will notice that the wetland is operating improperly. A typical visual inspection should involve review of the following wetland properties:

- History of previous visual inspections and assessments;
- Condition and extent of access to the wetland, including upstream and downstream areas;
- Condition of the inlet and outlet structures;
- Condition of each component of the wetland (i.e. forebay, low marsh, high marsh etc.);
- Condition of water -moving or stagnant as designed;
- Potential that an illicit discharge occurred;
- Signs of erosion and deposition;
- Health and condition of soil and vegetation;
- Quantity of litter and debris; and
- Stability of banks and sides of practices. (Erickson, Weiss, & Gulliver, 2013)

Taken together, assessment of these properties should indicate to a field inspector whether the wetland is being maintained properly by the owner and whether the wetland is likely functioning within its design constraints. Visual inspection gives no quantitative indication of water treatment efficacy.

2.4.3.2 Testing

Testing involves preparing a series of measurements which are taken under synthetically controlled conditions. Testing is considerably more involved than visual inspection but requires fewer resources than monitoring, which requires taking measurements during natural runoff events. Two types of testing are common when assessing stormwater treatment practices, namely capacity testing and synthetic runoff testing. Capacity testing requires taking point measurements to determine surface infiltration/filtration capacity or the remaining sediment storage available in a specific space. Synthetic runoff testing measures the overall performance of a wetland, rather than only a series of point measurements

2.4.3.2.1 Capacity Testing

Capacity testing using sediment retention tests can be of great value for assessing the sedimentation and thus solids removal performance of wetlands. Sediment retention tests require measurement of surface elevations using a level rod and a boat or using electronic sonar depth measurement equipment. Taken together with GPS or total station longitude and latitudes and design drawings, these measurements can provide an estimate of the retained sediment within a forebay or settling pond (Erickson, Weiss, & Gulliver, 2013). The rate and efficiency of sediment accumulation can then be estimated using predictions or measurements of the inlet water quality and the timespan that the wetland has been in operation.

Infiltration/filtration testing estimates the saturated hydraulic conductivity at specific locations within stormwater treatment systems. In the case of engineered wetlands, these measurements are less valuable because the wetlands are generally designed to inhibit infiltration and to instead convey water to a receiving water body. Infiltration/filtration capacity testing would be valuable if there is suspicion that the wetland is not functioning as designed.

2.4.3.2.2 Synthetic Runoff Testing

Synthetic runoff testing requires that a prescribed quantity and quality of synthetic stormwater is applied to a stormwater treatment practice during controlled conditions. In the case of engineered wetlands, theoretically, the wetland could be dosed with synthetic stormwater and the quality of water at the outlet could be measured over time. Conservative tracers such as chloride or rhodamine can be added to the synthetic stormwater in order to determine if there are dead zones or short circuiting in the wetland. The accuracy of synthetic stormwater testing may be low because it is challenging to maintain representative and consistent suspended solids in synthetic stormwater (Erickson, Weiss, & Gulliver, 2013). This process is also limited by the amount of synthetic stormwater that can be prepared, either using a fire hydrant, water truck or other source. Synthetic stormwater testing is more practical for small stormwater systems like grit chambers and stormceptors.

2.4.3.3 Monitoring

Monitoring is the most accurate option for validating stormwater treatment systems but it is also the most time-consuming, resource intensive, and costly. Typically, monitoring is only performed when visual inspection and testing do not meet site validation goals or when stakeholders wish to use the treatment site as a demonstration of effective best management practices. Quantitatively monitoring the treatment effectiveness of engineered wetlands is achieved by collecting influent and effluent samples along each stage of the treatment system and determining the samples' pollutant concentrations through laboratory analyses. When developing a monitoring plan, it is necessary to follow standardized guidance procedures, which are described elsewhere (Erickson, Weiss, & Gulliver, 2013).

Due to the nature of weather, influent water quality and quantity is highly variable and, in order to have statistically significant analyses, repeat monitoring is generally required for all storms over a study period of fourteen to twenty-four months. Monitoring of engineered wetlands has a high potential for errors or losses in data because weather is unpredictable and the likelihood of equipment malfunctions over a long field study period increases with time.

2.4.4 Study Site: Lost Lagoon Stormwater Treatment Wetland

2.4.4.1 Precedent for Installation

In June of 1999, the Vancouver Board of Parks and Recreation commissioned KWL to prepare a stormwater management plan, which would coincide with upgrades to the Stanley Park Causeway. These upgrades were part of a larger Stanley Park Causeway rehabilitation project, which was funded under the umbrella of the British Columbia Transportation Financing Authority (BCTFA) Lions Gate Bridge project. On June 30th 1999, staff from the Park's Board and KWL held a workshop to develop recommendations for stormwater management along the causeway. The final recommendations included:

- Discharging all pavement surface runoff to Lost Lagoon;
- Treating the runoff through installation of an engineered wetland located in the northeast corner of Lost Lagoon; and

• Adding spill interceptors in two locations.

2.4.4.2 Design, Installation, Maintenance and Monitoring Regime

2.4.4.2.1 Design

Lost Lagoon was originally a saltwater passage between Vancouver and Stanley Park. In 1916, the eastern end of Lost Lagoon was cut off from Coal Harbour (Clifford, 1932). While there is a carp population that was seeded in the lagoon, it is recognized that, due to its artificial design, Lost Lagoon is primarily an aesthetic feature in the park and not a sensitive aquatic habitat (Kerr Wood Leidal Associates Ltd., 1999). Compared to other habitats in Stanley Park, the aquatic life in Lost Lagoon is generally tolerant to changes in salinity and water quality conditions but it was recognized during the design of the stormwater management plan in 1999 that the input of additional stormwater to Lost Lagoon, it is augmented by the city drinking water supply though use of a fountain. Originally, it was thought that stormwater from the causeway could supplement the inflow from the fountain but calculations proved that the stormwater inflow from the causeway would be negligible.

Before installation of the engineered wetland, the Stanley Park causeway was drained by catch basins which discharged stormwater into ditches on both sides of the road. This allowed the pollutants from the roadway to extend directly from the ditches into forested sections of Stanley Park. The new and revised drainage plan included a number of features to prevent contamination from the roadway from reaching forested areas. The causeway drainage plan had a number of provisions including:

- Two oil/water stormceptors Stormceptor Model #3000 online with the storm sewer and located on the upper end of the causeway near the pedestrian overpass and Stormceptor Model #4000 located near the Lost Lagoon wetland system;
- A single discharge point for stormwater runoff located at the northeast corner of Lost Lagoon;
- Ditch subdrains for redirection of clean shallow groundwater directly to existing creek systems;
- A flow diversion structure at Lost Lagoon; and
- An engineered wetland including a settling forebay and flow augmentation structure.

The city drainage plan was said to 'end' at the discharge point of the stormceptor but the installation of engineered wetlands or 'marshes' was said to be required before discharging to Lost Lagoon.

The required size of the engineered wetland to be installed near Lost Lagoon was based on a design storm of 46 mm of rain in 24-hours as this was calculated to be 'on-average' the largest storm that would occur

within a six-month return period. The peak flow and total volume for the design storm were calculated to be 21 L/s and 1022 m³, respectively. Comparatively, the causeway storm sewer system was designed for a 100-year return period storm. Thus, flows exiting the causeway during infrequently occurring large storms were designed to be diverted around the treatment wetland.

The final design of the Lost Lagoon wetland required construction of a berm to physically cut the wetland out of space along the side slope of Lost Lagoon. When the wetland was designed, sediments and low levels of oils, greases, nutrients, and organic matter were the primary contaminants of concern. De-icing salts were not considered to be of concern as the causeway very rarely requires de-icing. Thus, the wetland was designed to optimize removal of particulate matter through settling and removal of dissolved contaminants through adsorption on soil and bacterial processes associated with plant uptake.

The engineered wetland was designed to include several separate components for removal of various types of pollutants. Figure 4 illustrates these components. The major components include:

- A flow diversion structure, allowing flows greater than 25 L/s to bypass the wetland in order to prevent scouring and flooding;
- A sedimentation forebay, promoting settling of particles, including grit and particle-bound contaminants;
- Marsh terraces, allowing sustained contact between stormwater and soil and plant matter through extended settling, adsorption, and biological removal;
- Deep pools, contributing to biological diversity, increasing biological removal;
- Plants (e.g. *Carex* and *Scirpex*) specifically sourced to improve contaminant de-mobilization;
- An outlet structure, promoting a long residence time (2 weeks), eliminating short-circuiting and dead zones;
- Base flow inlets, helping sustain plant life during dry seasons by diverting surface watercourses if needed; and
- An augmentation structure, allowing movement of lagoon water into the forebay in the event that supplemental water is required in a drought year.

Figure 4. Illustration of the Lost Lagoon Wetland (Kerr Wood Leidal Associates Ltd., 1999)

2.4.4.2.2 Installation

Following its design, the Lost Lagoon wetland was constructed during the summer of 2000 and was fully commissioned for stormwater treatment in the spring of 2001. During construction, the water level in Lost Lagoon was lowered to the lowest feasible level based on environmental and aesthetic considerations. A silt curtain was set down and construction of the berm commenced first. Construction of the wetland's pools and marshes followed with subsequent construction of the access point and staging. Time was provided for expected settling and then final landscaping and planting was performed. This coincided with a monitoring and inspection plan for sediment and design quality. Figure 5 though Figure 10 are pictures, courtesy of KWL, that illustrate the installation and final wetland as commissioned in year 2001.

Figure 5. Laying of Silt Curtain

Figure 8. Vegetation Planted

Figure 6. Construction of the Berm

Figure 9. Arial Shot Facing Northwest

Figure 7. Excavation of the Pools and Marshes

Figure 10. Arial Shot Facing Southeast

2.4.4.2.3 Maintenance and Monitoring Regime

The BC Ministry of Transportation is responsible for the drainage sewer system, including both stormceptors and the Vancouver Board of Parks and Recreation is responsible for operating and maintaining the wetland and surrounding features.

The maintenance and monitoring regime for the wetland, as recommended by consultants at KWL includes several elements that occur during different seasons of the year and periodically. These elements are summarized in Table 5. Interestingly, there is no requirement for water or sediment quality testing, or testing of the treatment efficacy. Monitoring is performed only by visual inspection. KWL can be contacted directly for the manual on maintenance and monitoring of the Lost Lagoon wetland.

Period	Activity
	• Visually inspect the inlet pool, wetland marsh, inlet and outlet
	chambers, and Stormceptor
	 Record the Lost Lagoon water level at the Lagoon outlet
Monthly	• Check the wetland water level and record the level at the outlet
	flow control chamber
	Remove trash
	Check that people are not entering or damaging the riparian areas
	 Inspect and repair observation platforms and interpretive signs
	Clean out the Stormceptors
Spring Maintenance	Flush the inlet flow control chamber
(April)	Flush the outlet flow control chamber
(//þ///)	 Adjust the water level in Lost Lagoon to between 0.8 m and 0.9 m
	 Adjust the wetland outlet weir to an elevation 1.20 m
	Remove weeds and undesirable plants by hand
Summer Maintenance	Inspect plants for water stress
(July-August)	Augment inflow or irrigate if required
	Clean out the Stormceptor
Fall Maintonanco	Flush the inlet flow control chamber
	Flush the outlet flow control chamber
	 Adjust the water level in Lost Lagoon to 0.6 m
	Adjust the wetland outlet weir to elevation 1.15 m
Winter Maintenance	
(December)	Flush the inlet flow control chamber
	 Inspect wetland plants for presence, abundance and condition
	 Inspect bottom contours and water depths relative to plans
Annual Tasks	 Inspect sediment and outlet conditions
	• If plant harvesting for nutrient control is desired, perform in the late summer
Periodic Tasks	• 2002, inspect plants twice per month during the summer
	2011, sediment removal
Every 5 Vears	Settlement survey
	Infill/replant wetland plants

Table 5. Elements of the Lost Lagoon Wetland Maintenance and Monitoring Regime (Kerr Wood Leidal,2002)

2.4.4.3 Best Management Practices Employed in the Lost Lagoon Wetland Design

When it was designed in 1999, the Lost Lagoon wetland employed many of the best management practices available to engineers. This was due to a strong desire by the City of Vancouver and the design consultants, KWL, to produce an effective and lasting treatment site in this high profile, public location. The best management practices incorporated into the wetland design for stormwater treatment included:

- Installation of two stormceptors for overflow protection;
 - The first stormceptor reduces the degree of emulsification of spilled materials with stormwater by reducing the distance that contaminants travel before capture, thus increasing capture efficiency.
- Installation of a flow diversion structure, preventing scouring, flooding and washout of the wetland;
- Inclusion of a valved outlet from the forebay to the Lost Lagoon, allowing the marsh to be bypassed during maintenance;
- Sizing the settling forebay to treat a 6-month return period design storm, allowing adequate treatment of most rainfall events that occur on the causeway;
- Sizing the wetland as a whole to have a long enough hydraulic retention time (2 weeks) to allow for adequate contaminant removal;
- Variation of the depths of terraces in the marsh system, allowing a diversity of plant and biotic life to take part in pollutant removal processes;
- Inclusion of deep pools and low-flow channels, facilitating pollutant removal mechanisms;
- Inclusion of an outlet setting pool, increasing stormwater residence time and reducing shortcircuiting and under-treatment;
- Incorporation of an adjustable weir at the outlet, ensuring the water level in the marsh remains constant;
- Diversion of surface flow from nearby creeks, preventing flushing of the wetland during winter storms; and
- Inclusion of an irrigation connection along the length of the wetland berm for the case of an extreme drought, eliminating the need to add water from Lost Lagoon to the wetland as this could introduce algae and excessive sediment loads to the wetland.

The design consultants have a high interest in knowing whether these best management practices have contributed to the treatment efficacy of the wetland and this interest has been incorporated into the objectives of this study.

2.4.4.4 Previous Stormwater Quantity and Quality Data

2.4.4.4.1 Year 2000: Drainage Area and Calculation of Design Flow

In 1999, staff at KWL calculated the drainage area feeding into the Lost Lagoon wetland to be 2.7 hectares. This drainage area along with precipitation data from a nearby weather station in North Vancouver was used to model the 6-month design storm flow, using the PC-SWMM model (James, 2010). The calculations determined that a wetland design based on a maximum flow rate of 21 L/s would be able to treat over 92% of flow exiting the causeway on a yearly basis. Figure 11 illustrates the design hydrograph as retrieved from Kerr Wood Leidal Consulting Engineers Ltd. (1999)

Figure 11. Design Hydrograph for Lost Lagoon Wetland (adapted from Kerr Wood Leidal, 1999)

2.4.4.4.2 Year 2007: UBC Undergraduate Thesis

In 2007, a group of undergraduate students, in the UBC Earth and Oceans Sciences Honors Environmental Science Program, performed an analysis on the Lost Lagoon wetland to evaluate its effectiveness so that the City of Vancouver could plan future maintenance. *Carex obnupta* and *Scirpus acutus* plant samples and sediment grab samples were collected at several locations between the wetland's inlet and outlet. The group's findings indicated that plants in the wetland had accumulated several metals associated with stormwater and that the water flowrate through the wetland contributed to higher metal uptake for plants. In addition, significant reductions in metal concentrations in the sediment were found for all metals except for arsenic. The group found that metal concentrations in the sediment were highest along the edges of the wetland, indicating that the water residence time led to an increase in the deposition of metals. Figure 12 illustrates the locations that the student group sampled for plants and sediment. Table 7 lists the mean metal concentrations for the plant and sediment samples, respectively.

Figure 12. 2007 Sample Sites in Lost Lagoon for Plants and Sediment (adapted from Thoren et al., 2007)

Table 6. 2007 Results for Plant Specimens in Lost Lagoon Wetland (Thoren et al., 2007)

	,				(,=,	
Motal	Concentration in Carex (ppm)			Concentration in Scirpus (ppm)			
Wetur	Transect 1	Transect 2	Transect 3	Outside	Transect 1	Transect 2	Transect 3
Cd	1.1	2.8	0.37	0.5	0.66	0.53	0.33
Cu	75.2	119.7	30.3	24.9	68.0	38.7	30.2
Mn	383.3	730.7	664.3	453.0	311.0	580.7	463.7
Pb	26.4	34.3	8.95	6.21	30.1	9.69	7.76
Zn	146.0	236.0	77.7	0.44	109.1	184.0	97.6

-			
Metal	Mean Inlet Concentration (mg/kg dry weight)	Mean Outlet Concentration (mg/kg dry weight)	Percentage Decrease (%)
As	3.9	2.5	36.4
Cd	0.5	0.1	73.1
Cr	28.7	20.6	28.3
Cu	66.9	23.9	64.3
Pb	27.4	5.3	80.6
Ni	26.7	21.7	18.7
Zn	132.0	57.8	56.2

Thoren et al (2007) employed a simple regression model to relate metal concentrations to the distance from the outlet.

$$y = ae^{-kx}$$

Where,

- a represents the y-intercept of the graph;
- k represents the slope or removal efficiency; and
- x represents the distance along the wetland.

Regression analysis was accompanied by R² and p-values, which represent the accuracy and suitability of the exponential model and the significance of the decrease, respectively. These results are summarized inTable 8.

Table 8. 2007 Regression Analysis Results for Sediment Samples in Lost Lagoon Wetland (Thoren et al., 2007)

Metal	R^2	k-value	t-value	P> t (p-value)
As	0.348	-0.00693	-2.63	0.0207
Cd	0.614	-0.02083	-4.55	0.0005
Cr	0.494	-0.00618	-3.56	0.0035
Cu	0.549	-0.01681	-3.97	0.0016
Pb	0.549	-0.02414	-5.18	0.0002
Zn	0.6352	-0.01314	-4.76	0.0004

Thoren et al also compared the mean, maximum, and minimum metal concentrations in the sediment to average metal concentration in the soil of Washington State. These results are summarized in Table 9.

2007)				
	Washington	Lost Lagoon	Lost Lagoon Wetland	Lost Lagoon Wetland
Metal	State (g/kg dry	Wetland Mean	Max (mg/kg dry	Min (mg/kg dry
	weight) ¹	(mg/kg dry weight) ²	weight) ²	weight) ²
As	4.5	3.0	5.3	1.1
Cd	0.8	0.4	1.7	0.1
Cr	49.9	25.5	47.3	17.5
Cu	31	221	53.1	18.4
Pb	14	19.5	82.7	4.3
Zn	78	103.4	288.0	54.7

Table 9. Comparison of 2007 Wetland Results with Sediment Data for Washington State (Thoren et al., 2007)

¹ (Washington State Department of Transportation, 2007)

² (Thoren et al., 2007)

Overall, the results from the 2007 assessment provide a promising reason to use the Lost Lagoon wetland as a research site for development of a genomics tool. Both plant and sediment samples indicate metals are retained within the wetland and stormwater treatment is occurring successfully. However, further evidence of these conclusions is still needed, using more recent samples and a greater depth of sampling.

2.4.4.4.3 Year 2013: Vancouver Board of Parks and Recreation Sediment Dredging Report

In 2013, the City of Vancouver contracted Hemmera environmental consultants to perform an in-situ investigation of the sediment quality in the Lost Lagoon wetland. This project was executed in order to confirm that the sediment would not be classified as a hazardous waste prior to dredging and disposing of the sediment in a landfill. Grab samples were taken from eight locations in the wetland forebay and the samples from five of the eight locations underwent laboratory analysis. These locations are illustrated in Figure 13. Hemmera also unsuccessfully attempted to extract core sediment samples from the wetland but further results of this attempt were not recorded in their report.

Figure 13. Locations Sampled by Hemmera During the 2013 Sediment Investigation (Hemmera, 2013)

Field observations were recorded at the time of sampling and included the following:

- "The sediment substrate at the sampling locations generally consisted of dark grey to black sand with trace silt, gravel, organics, and pine needles;
- No marine fauna was observed by Hemmera;
- A hydrogen sulfide (H₂S) odor was noted in the majority of the sediment samples collected;
- No petroleum hydrocarbon sheens were observed in the collected samples. However, a petroleum hydrocarbon-like odor was observed in two samples; and
- The moisture content measured in the sample ranged from 68.8%-72.8%." (Hemmera, 2013)

The results provided by the laboratory analysis offer a number of important observations. Each sample submitted had concentrations of one or more metal constituents above soil guidelines and these constituents primarily included antimony, chromium, copper, molybdenum, lead and zinc. In addition, all samples had concentrations of HEPH above standards. Sodium and chloride ions as well as VOCs, PCBs, chlorinated hydrocarbons, and chlorinated/non-chlorinated phenols were measured to be below the allowable levels. *Table 10* summarizes the regulatory levels and concentrations measured in the sediment of the Lost Lagoon wetland for the constituents of primary interest. These measurements indicate that a high contaminant loading was deposited and retained in the wetland forebay in the ten years prior to when the forebay was dredged.

Table 10. BC Residential Soil Standards and Metal Concentrations Measured in the Sediment of the L	Lost
Lagoon Wetland Forebay	

Metal	Regulatory Standard	Measured Range	% In Excess
	(mg/kg dry weight) ¹	(mg/kg dry weight) ²	
Antimony	20	25-65	20-225
Chromium	100	100-140	0-40
Copper	90-150	350-650	153-620
Lead	150	160-240	7-60
Molybdenum	10	11-30	10-200
Zinc	450	600-1200	33-160

¹ (British Columbia Ministry of Water, Land and Air Protection, 2011)

² (Hemmera, 2013)

2.5 Methodology

The primary focus of this chapter was to demonstrate that, overall, the Lost Lagoon wetland is meeting treatment guidelines and to lay the groundwork for the microbial analyses in Chapter 2. With this goal in mind, a strategic methodology was developed for the Lost Lagoon wetland field study. Specifically, sediment quality and long term treatment trends in the wetland were of greatest concern for the environmental sampling. A detailed description of the methodology employed to answer the objectives and hypotheses listed at the beginning of this chapter is supplied here.

2.5.1 Site Visits and Sampling Regime

2.5.1.1 Field Site Survey and Conditions at the Time of the Field Study Site Visit

On April 23, 2015 at 8:00 AM, an initial field site survey was conducted to assess the conditions of the wetland. GPS coordinates and digital photographs were taken at all points of interest and locations that indicated damage to the wetland features. Figure 14 illustrates a map of the field site and GPS locations of the photos.

Figure 15 through Figure 26 illustrate some of the relevant photos from the site visit. The initial site survey indicated that all of the major elements of the wetland were intact and are being maintained. However, there were signs of beaver activity, which required further investigation with park staff members.

Figure 14. Survey Map of Field Site

Figure 15. Lost Lagoon

Figure 16. On Site Graphic of Treatment Process

Figure 17. Storm Sewer on the Stanley Park Causeway

Figure 18. Access Point for the Lower Stormceptor

Figure 19. Wetland Bypass to Lost Lagoon

Figure 20. Setting Forebay

Figure 21. High Marsh

Figure 22. Low Marsh

Figure 24. Signs of Beaver Activity at Lost Lagoon

Figure 25. Access Point for the Wetland Outlet Control Valve System

Figure 23. Sections of Low Marsh Showing Plant Damage and Beaver Activity

Figure 26. Outlet Point to Lost Lagoon

2.5.1.2 Sampling Locations and Dates

As sediment quality and long term treatment trends in the wetland were of greatest concern for the environmental sampling, the sampling locations and dates was optimized to obtain results that could both verify the treatment performance of the wetland and add to the microbial analyses in Chapter 2.

The hypotheses in this study require that there are differences in the sediment quality at the front and back end of the wetland. Therefore, initially a 'search sampling' methodology (Gilbert, 1987) was applied in order to divide the wetland into 6 areas for comparison as illustrated in Figure 27. These areas included:

- 1. The lower stormceptor;
- 2. The East side of the forebay, closest to the inlet pipe;
- 3. The centre of the forebay;
- 4. The West side of the forebay, furthest from the inlet pipe;
- 5. The settling pool closest to the outlet pipe; and
- 6. The exit pipe from the wetland, at the shore of Lost Lagoon.

Figure 27. Field Study Sampling Locations at the Lost Lagoon Wetland

In order to reduce the size of the comparison areas but retain statistical significance, the comparison areas were further divided into 1-m² plots and a 'systematic sampling' methodology (Gilbert, 1987) was applied to select study plots at equal intervals using an aligned grid. Sampling of the study plots was also performed using systematic sampling, where samples were taken from the four corners and the center of each plot.

Seven samplings of the wetland occurred between July and December of 2015. As the sample area in the wetland was relatively large, compared to the resources available to the research team, not all study plots could be sampled on a given study day. The implications of this are further discussed in the Limitations and Recommendations sections of this thesis.

Since sampling was to occur on public land in a treatment space that provides habitat for local birds and inner-city animals, great care was taken during the sampling process to reduce damage to the site. In addition, sampling plans were approved by staff at both the Vancouver Board of Parks and Recreation and at the Stanley Park Ecology Society. Documentation of approval and support for this study can be found in Appendix H.

During the sampling events, three mediums were sampled – surface sediment at the wetland floor, sediment at a depth of 10 cm below the wetland floor, and water at the soil-water interface. In some cases, inaccessibility or inoperable equipment limited the number of samples that could be taken. This is further discussed in the study's Limitations section.

Table 11 summarizes the samples, which were taken from the field study site and Figure 28 provides an overview of the field sampling process.

Site Number	Description	# Days Sampled	Dates	Sample Medias
1	Stormceptor	1	Dec 16	Water
2.1	NW Corner Forebay	3	Sept 9, Oct 21, Dec 16	Water, depth and surface sediment
2.2	N Centre Forebay	2	Nov 11, Dec 16	Water, surface sediment
2.3	NE Corner Forebay	3	Oct 6, Nov 11, Dec 16	Water, depth and surface sediment
3.1	W Centre Forebay	2	July 21, Sept 9, Oct 21	Water, depth and surface sediment
3.2	Centre Forebay	2	Oct 21, Nov 11	Water, depth and surface sediment
3.3	E Centre Forebay	2	Oct 6, Nov 11	Water, depth and surface sediment
4.1	SW Corner Forebay	3	July 21, Sept 9, Oct 21	Water, depth and surface sediment
4.2	S Centre Forebay	2	Oct 21, Nov 11	Water, depth and surface sediment
4.3	SE Corner Forebay	2	Oct 6, Nov 11	Water, depth and surface sediment
5.1	NW Settling Pond	2	Sept 22, Nov 11	Water, depth and surface sediment
5.2	Centre Settling Pond	2	Sept 22, Nov 11	Water, depth and surface sediment
5.3	SE Settling Pond	2	Sept 22, Nov 11	Water, depth and surface sediment
6.1	W Exit	3	July 21, Sept 9, Oct 21	Water, depth and surface sediment
6.2	Centre Exit	3	July 21, Sept 9, Oct 21	Water, depth and surface sediment
6.3	E Exit	3	July 21, Sept 9, Oct 21	Water, depth and surface sediment

Figure 28. Overview of Field Sampling Process

2.5.1.3 Water Sampling Equipment

As illustrated in Figure 29, a syphon (Col-Parmar WZ-70607-00) and plastic tubing were used to extract two 1-L samples from each sampling location. All samples were taken while the researcher sat in a small dinghy.

Figure 29. Image of the Water Sampling Equipment

2.5.1.4 Sediment Sampling Equipment

Sampling of sediment in the wetland represented a major challenge. Particularly in the wetland forebay, because the water depth exceeded 2 m in some locations, great care and accuracy was required to obtain a core of sediment. There was variability in the quality and consistency of the sediment with some areas being sandy soils and other areas being primarily clayey soils. In addition, sampling for microbiology and an interest in differences in the sediment at the surface of the wetland floor and below the surface of the wetland floor created additional challenges to ensure that mixing of the sediment layers did not occur during sampling.

During method development, different apparatuses were tested for their ability to extract and hold a sediment core. After several trials, a successful custom sediment core sampling was built. To build the apparatus, first a 60-mL syringe with a diameter of ¾ inches was fit at the nose end to a ball valve. The ball valve was connected to a PVC pipe to be used as a sampling rod. Next, two circular stainless steel fittings were clamped over the handle of the syringe. Two screws were driven through the metals fittings and copper rods were connected to the screws. A second 60 mL syringe was clamped to the tail end of the first syringe using stainless steel fittings and a plastic O-ring. Two stainless steel fittings were clamped over each end of the handle of the second syringe and removable screws were driven through the stainless steel clamps and screwed into the copper rods. The nose of the second syringe was sanded off so that this end of the sampler could be driven into the wetland soil using a rubber mallet. After taking a sample, the second syringe was unscrewed and unhooked from the rest of the apparatus and a new syringe was put in place. This process was repeated for each sample. Figure 30 illustrates the sediment core sampling apparatus.

Figure 30. Photograph of the Sediment Sampler

2.5.1.5 Sample Collection, Preservation, Storage and Transport

2.5.1.5.1 Water Samples

Two 1 L samples were taken above the wetland floor using a syphon and plastic tubing. After a sample was taken, it was immediately poured into a clean 1 L plastic bottle and labelled. The syphon and tubing were then rinsed with distilled water and 90% ethanol solution.

The plastics bottles were brought back to shore, where a small field lab processing site was set up. 500 mL of each sample was poured into a clean wide mouthed plastic bottle and immediately tested for environmental parameters using a YSI probe. On site measurements were recorded for DO, pH, temperature, conductivity, and redox potential.

Composite water samples were prepared to represent each plot and preserved on site using the following protocols.

- Total Organic Carbon (TOC)
 - o Add 25 mL from each of 5 1-L bottles
 - \circ Add 1 drop H₃PO₄
 - Place in cooler on ice
- Chemical Oxygen Demand (COD)
 - Add 20 mL from each of 5 1-L bottles
 - Add 1 drop H₂SO₄
 - Place in cooler on ice
- Metals
 - Add 10 mL from each of 5 1-L bottles
 - Add 1 drop HNO₃
 - Place in cooler on ice
- Turbidity/Total Suspended Solids (TSS)
 - Add 100 mL from each of 5 1-L bottles
 - Place in cooler on ice
- Mineral Oil and Grease (MO&G)
 - Add 50 mL from each of 15 1-L bottles (3 sets of 5)
 - o Add 2 drops H₂SO₄
 - Place in cooler on ice

Samples were also homogenized for microbial analysis. This method is described in Chapter 2.

Water samples for environmental parameters were stored on ice and transported by truck to the CEME Environmental Laboratory at UBC. The samples were stored at <4 Celsius until further processing and analysis.

2.5.1.5.2 Sediment Samples

During sampling, the researcher used a hard rubber mallet to drive the sampling apparatus into the sediment at the location of interest. The researcher then carefully pulled up the sampler, removed the syringe from the sampler apparatus, and wrapped both ends of the syringe in laboratory grade aluminum foil that was previously disinfected with ethanol. The syringe was immediately placed in a cooler on dry ice. For the next sampling event, the sampler was cleaned with ethanol and a new clean syringe was attached using an Allen key.

Sediment samples for were stored on dry ice and transported by truck to the CEME Environmental Laboratory at UBC. The samples were stored at <-20 Celsius until analyzed.

2.5.2 Laboratory Analysis of Water Quality Parameters

2.5.2.1 Sample Handling and Preservation

All equipment that was to come into contact with sediment was soaked in 10% bleach solution for a minimum of 24 hours prior to sample handling. All equipment was rinsed with nitric acid and then cleaned with 90% disinfectant grade ethanol between sampling.

Sediment samples remained in the plastic syringes and were frozen at <-20 Celsius until further processing. Frozen syringes were then removed from the freezer. The first 1-cm of sediment content in the five syringes which corresponded to one sample plot were cut from each sediment sample and placed in a mortar. To keep the samples frozen during processing, the mortar was placed in a stainless steel bowl that was filled with crushed dry ice. The sediment was ground and homogenized to a fine consistency using a pestle and any large rocks and sticks were pulled out prior to placing the ground sample into a disinfected plastic Ziploc bag. Samples were placed back in the freezer at <-20°C until further processing. The same process was followed for the last 1-cm of each sediment core. By this means, both the surface sediment and sediment at a depth of 10-cm could be analyzed.

2.5.2.2 Analytical Methods

The researcher applied standard environmental laboratory tests based on equipment available in the CEME Environmental laboratory. The laboratory tests employed for each environmental parameter were:

42

- Environmental parameters YSI handheld multi-parameter instrument;
- MO&G USA EPA Method 1664 (United States Environmental Protection Agency, 1999);
- TOC USA EPA Method 415.3 (Potter & Wimsatt, 2005);
- COD Hach Method 8000 (Hach, 2008);
- Turbidity USA EPA Method 180.1 (O'Del, 1993); and
- TSS Hach Gravimetric Method 8158 (Hach, 2007)

Due to high organic content in the samples, water samples were digested for metal analysis using a custom protocol based on EPA method 3050-B (United States Environmental Protection Agency, 1996) described in Appendix A. Metals were analyzed using ICP-OES on a Varian Liberty 100/200 apparatus. Samples were analyzed in triplicate and measurements included analysis of procedural and field blanks.

2.5.3 Statistical Analyses

Analyses of the main parameters of interest, metals and mineral oil and grease, were first performed through visual assessment of the data. To compare the metal concentrations at each plot, bar graphs were prepared to illustrate the average concentrations of each metal that is associated with stormwater. Boxplots of the concentrations for each metal were used to provide a visual assessment of the symmetry of the distribution and the variability in the concentrations between the wetland entry (Site 2, 3, and 4) and the wetland exit (Site 5). Each media (water, surface sediment, and 10-cm depth sediment) was visualized individually because it is expected that that these medias will behave differently.

In order to compare the measured environmental pollutant and metal concentrations, Wilcoxon paired rank tests were performed between the results measured at the wetland entry, exit and the Lost Lagoon. The Wilcoxon rank test is the equivalent to the common paired student t-test for comparison of two means. However, the Wilcoxon rank test does not assume that the measurements are normally distributed and for this reason, the Wilcoxon rank test carries somewhat less weight. However, environmental samples tend not be normally distributed due to outliers at high concentration levels; thus, in this case, the Wilcoxon rank test is a better fit for the data.

2.6 Results and Interpretation

In this section results and interpretation are supplied for the laboratory tests. Each environmental parameter is illustrated as a bar graph by plot and then by a boxplot between the wetland entry (Sites 2, 3, and 4), wetland exit (Site 5) and Lost Lagoon (Site 6). This method of visualization allows for comparison first along the width and length of the wetland and then between the major locations at the field site. After

the visual illustration, statistical comparisons are calculated. An interpretation of the data is supplied prior to the figures and statistical calculations.

2.6.1 Turbidity, Total Suspended Solids, Chemical Oxygen Demand and Total Organic Carbon

2.6.1.1 Interpretation

Turbidity, TSS, COD, and TOC cannot be directly attributed to the stormwater entering the wetland from the roadway because sampling was performed during the autumn season and leaf matter from overhanging trees deposited directly into the wetland and contributed to the high solids content during the study period. That being said, a similar relationship for turbidity, TSS, COD, and TOC was observed between the various sites where water was sampled in the Lost Lagoon wetland. Generally, these parameters were measured to have higher averages in the wetland inlet than in the wetland outlet and also higher averages in the Lost Lagoon than in the wetland outlet. Figure 31 through Figure 38 graphically illustrate the relationship that was observed.

In *Table 12* through *Table 14*, a significant statistical difference is interpreted when p<0.05, or in other words, when there is at least 95% confidence that interpreting two medians as being different occurs when the two medians are truly different. No significant differences in the medians of turbidity, TSS, TOC, and/or COD were calculated between the wetland entry, wetland exit, and the Lost Lagoon. This is likely due to the high range of measurements over the sampling period caused by the contribution of organic matter over the autumn sampling season.

Figure 31. Barplot Comparison by Plot of Turbidity in Water Samples Collected During the Field Study

Figure 32. Boxplot Comparison of Turbidity in Water Samples Collected During the Field Study

Figure 33. Barplot Comparison by Plot of TSS in Water Samples Collected During the Field Study

Figure 34 Boxplot Comparison of TSS in Water Samples Collected During the Field Study

2.6.1.4 Chemical Oxygen Demand Figures

Figure 35. Barplot Comparison by Plot of COD in Water Samples Collected During the Field Study

Figure 36. Boxplot Comparison of COD in Water Samples Collected During the Field Study

Figure 38. Boxplot Comparison of TOC in Water Samples Collected During the Field Study

2.6.1.6 Statistical Scores for Site Comparison

Table 12 through *Table 14* list the confidence levels (z-scores) computed using the Wilcoxon Paired Rank Test in the R standard package version 3.1.1, (R Core Team, 2016).

 Table 12. Confidence Levels for Wilcoxon Rank Test Between Entry and Exit for Environmental Parameters

 Turbidity
 TSS
 TOC
 COD

Turbiuity	155	100	COD
0.170	0.076	0.193	0.386

Table 13. Confidence Levels for Wilcoxon Rank Test Between Exit and Lagoon for Environmental Parameters

Turbidity	TSS	TOC	COD
0.067	0.097	0.115	0.425

Table 14. Confidence Levels for Wilcoxon Rank Test Between Entry and Lagoon for Environmental Parameters

Turbidity	TSS	TOC	COD
0.373	0.811	0.735	0.425

2.6.2 Metals

2.6.2.1 Interpretations

Together, Figure 39 through Figure 41 illustrate the distribution of metals within the water samples obtained from the Lost Lagoon wetland. From Figure 39 and Figure 40, visually, there is a trend of decreasing metal concentrations along the length of wetland. However, Site 6.1, 6.2, and 6.3, where samples were taken from the shore of Lost Lagoon, show higher concentrations of several metals that are associated with stormwater. This could be due to additional drainage into the Lost Lagoon from neighbouring roadways including Lost Lagoon Drive and Chilco Street because it does not appear to be explained by the contribution of stormwater from the treatment wetland. Additional information is needed to explain this trend. Generally, Figure 41 also illustrates that the high concentrations of metals in some water samples at the wetland entry were no longer measured at the wetland exit.

Figure 42 and Figure 43 illustrate the distribution of metals in the surface sediment at each plot along the study site. From these graphs, there is visual evidence that the concentration of metals is lower at the back end of the wetland compared to the front end of the wetland. There is also evidence that particle setting and adsorption are contributing to the decreasing concentration of metals in the stormwater because the plot with the highest metal concentrations, Site 3.2, is in the centre of the forebay, rather than at the beginning or end of the forebay. Figure 44 illustrates the variation of metals measured in surface sediment

between the entry and exit of the Lost Lagoon wetland and Lost Lagoon. At this resolution, there is also evidence that over the entire sampling regime, there are decreasing concentrations for some of the metals commonly associated with stormwater in the surface sediment.

Figure 45 and Figure 46 illustrate the distribution of metals averaged by plot in the sediment at a depth of 10 cm below the floor of the Lost Lagoon wetland. From these graphs, there is some visual evidence that the concentration of metals is lower at the back end of the wetland compared to the front end; however, the results are less clear than with the surface sediment samples. In addition, Figure 47 illustrates the variation of metals measured in the sediment sampled at a depth of 10 cm below the wetland floor, between the entry and exit of the Lost Lagoon wetland and Lost Lagoon. The results in Figure 47 generally appear to be consistent with the results in the boxplot for surface sediment metal concentrations. Due to equipment malfunction, depth sediment samples were not obtained at Site 2.2, Site 3.2 and Site 4.2.

Due to the variability in the measurements of metal concentrations, the statistical scores in *Table 15* through *Table 17* are complex and challenging to interpret. Overall, the observations include:

Between the entry and exit of the Lost Lagoon wetland;

- Insignificant differences were calculated between the water samples measuring cobalt and copper while significant differences were calculated between the water samples for barium, manganese, nickel, and zinc. Statistical conclusions could not be calculated for cadmium, chromium, molybdenum, lead, and antimony because measurements were too close to the detection limits of the analytical method.
- Insignificant differences were calculated between the surface sediment samples for nickel and zinc while significant differences were calculated between the surface sediment samples for barium, chromium, copper manganese, and lead. Statistical conclusions could not be calculated for cadmium, cobalt, molybdenum, and antimony because measurements were too close to the detection limits of the analytical method.
- Finally, insignificant differences between depth sediment samples were calculated for barium, copper, manganese, nickel, and zinc while a significant difference was calculated for chromium. Statistical conclusions could not be calculated for cadmium, cobalt, molybdenum, lead, and antimony because measurements were too close to the detection limits of the analytical method.

Between the entry to the wetland and Lost Lagoon;

• No statistical differences were calculated.

Between the exit of the wetland and Lost Lagoon;

- Statistical differences were calculated between surface sediment samples were calculated for chromium, copper, and lead.
- No other statistical differences were calculated.

Figure 39. Barplot Comparison by Plot of Metals Associated with Stormwater in Water Samples Collected During the Field Study

Figure 41. Boxplot Comparison of Metals Associated with Stormwater for Water Samples Collected During the Field Study

2.6.2.3 Surface Sediment Samples

Figure 43. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study

Figure 44. Boxplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment Samples Collected During the Field Study

2.6.2.4 10-cm Depth Sediment Samples

Figure 47. Boxplot Comparison of Metals Associated with Stormwater between Forebay and Exit for Samples taken at a Depth of 10 cm

2.6.2.5 Statistical Scores for Site Comparison

Table 15. Confidence Levels for Wilcoxon Paired Rank Test Between Entry and Exit for Metals

Metal	Water	Surface	Depth
Ва	0.016	0.047	0.661
Cd	-	-	-
Со	-	-	-
Cr	-	0.000	0.000
Cu	0.723	0.000	0.077
Mn	0.003	0.031	0.776
Мо	-	-	-
Ni	0.032	0.577	0.732
Pb	-	0.004	-
Sb	-	-	-
Zn	0.002	0.123	0.281

Metal	Water	Surface	Depth
Ва	0.174	0.236	0.525
Cd	-	-	-
Со	-	0.152	1
Cr	-	0.126	0.294
Cu	1	0.943	0.828
Mn	0.822	0.163	0.735
Мо	-	-	-
Ni	-	1	1
Pb	-	1	-
Sb	-	-	-
Zn	1	0.455	0.282

Table 16. Confidence Levels for Wilcoxon Paired Rank Test Between Exit and Lagoon for Metals

Table 17. Confidence Levels for Wilcoxon Paired Rank Test Between Entry and Lagoon for Metals

Metal	Water	Surface	Depth
Ва	0.372	0.075	0.525
Cd	-	-	-
Со	-	0.046	-
Cr	-	0.010	0.371
Cu	1	0.009	0.269
Mn	0.546	0.691	0.635
Мо	-	-	-
Ni	-	1	1
Pb	-	0.010	-
Sb	-	-	-
Zn	1	0.089	0.733

2.6.3 Mineral Oil and Grease

2.6.3.1 Interpretation

Figure 48 and Figure 49 illustrate the change in mineral oil and grease along the length of the wetland. Based on the date sampled, mineral oil and grease had the most variable concentration at Site 2. This was expected because the level of mineral oil and grease measured in water samples is dependent on the influent quality, which could be highly variable depending on vehicle traffic and potential vehicle leakage onto the causeway. Mineral oil and grease was measured to be below guideline levels (30-mg/L) (Canadian Council of Ministers of the Environment, 2015) at Site 4, Site 5, or Site 6. Unfortunately, only one mineral oil and grease sample was taken at Site 1 at the exit of the stormceptor, therefore the variability of mineral oil and grease entering the wetland is unknown.

Mineral oil and grease samples were only compared graphically because the sample size was too small to interpret statistical calculations.

2.6.3.2 Mineral Oil and Grease Figures

Figure 48. Comparison by Site of Total Mineral Oil and Grease in Water Samples Collected During the Field Study

Figure 49. Boxplot Comparison of Total Mineral Oil and Grease for Water Sampled Collected During the Field Study

2.7 Discussion and Conclusion

As described previously, the goal of this study is to provide proof of concept data that supports or rejects developing a genomics-based monitoring tool for low impact design features that treat stormwater, including engineered wetlands. In this chapter, data was gathered and analyses were conducted in order to provide background information for the treatment efficacy of a functioning stormwater treatment wetland, namely the Lost Lagoon wetland in Stanley Park, Vancouver. For this, an attempt was made to answer two hypotheses and to support three objectives.

2.7.1 Chapter Hypotheses

To prove that the wetland is effectively treating stormwater and to begin to validate the treatment mechanisms within the wetland, it was previously stated that two hypotheses must be true.

- 1. The concentrations of metals associated with stormwater decrease along the length of the wetland; and
- 2. The concentration of oil and grease decreases along the length of the wetland.

Regarding metal concentrations, for the three sample types, most metal concentrations visibly decreased between samples taken near the Lost Lagoon wetland entry and exit and this was confirmed by calculating and comparing the Wilcoxon rank test parameter between population medians. The same trend was not found when comparing the wetland entry and exit to the environment in Lost Lagoon. For this chapter's purposes, this result effectively proves that the first hypothesis is true.

Mineral oil and grease more clearly decreased between the wetland entry and exit. Variable and high mineral oil and grease concentrations were measured throughout the wetland forebay while low or undetectable levels of mineral oil and grease were measured at the wetland exit and in Lost Lagoon. For the purposes of this chapter, the measured results prove that mineral oil and grease decreases along the length of the Lost Lagoon wetland.

The persistence of outliers throughout the dataset may have contributed to some of the statistical uncertainty in the results. In addition, the natural background levels of certain metals may outweigh the calculation of a difference between the wetland entry and exit, especially for metals that exist at only slightly elevated levels in stormwater, such as cobalt and antimony.

2.7.2 Chapter Objectives

In order to support the goal of this study, to provide proof of concept data that supports or rejects developing a genomics monitoring tool for low impact design features that treat stormwater, including engineered wetlands, three objectives were previously stated for this chapter:

- 1. Demonstrate that the Lost Lagoon wetland is meeting water quality treatment guidelines;
- 2. Demonstrate that the engineering best management practices employed in the design of the Lost Lagoon wetland have had some meaningful impact on the stormwater treatment efficiency; and
- 3. Identify knowledge gaps and opportunities for complimentary data analyses though the application of genomics.

For the first objective, comparison of the maximum pollutant concentrations (*Table 18*) in the water samples collected at the entry and exit of Lost Lagoon wetland demonstrates that the wetland is generally meeting water quality treatment guidelines. The only exception for this, is the maximum point measurement for cadmium. The maximum cadmium concentration measured at the outlet was 4 μ g/L and the guideline for effluent water is 1 μ g/L (Canadian Council of Ministers of the Environment, 2015). The effluent guideline is the same as the method detection limit for the ICP instrument so, using the methodology employed here, it cannot be said with confidence whether this guideline is regularly exceeded.

	Concentration			
Pollutant	Stormwater ¹	Inlet	Outlet	Guideline ³
	Stornwater	Maximum	Maximum	Ouldenne
Mineral Oil and Grease (mg/L)	5.0-63.4 ¹	108	5.4	30
Organic Carbon (mg/L)	7.3-17.6	327	148	-
Solids (mg/L)	44-809 ¹	1359	106	5 above BL
Turbidity, NTU	-	359	155	-
Barium (μg/L)	0.2-0.792 ¹	492	10	-
Cadmium (ug/L)	0.035-2.3 ¹	18	4	1
Cobalt (µg/L)		34	1	-
Chromium (µg/L)	0.01-0.13 ²	238	1	-
Copper (µg/L)	4.0-6.59 ²	1552	123	2.0
Manganese (µg/L)	0.112-6.91			
Molybdenum (µg/L)		25	20	73
Nickel (µg/L)	.002-22.6 ²	73	1	25
Lead (µg/L)	0.2-2.78 ¹	376	1	3
Antimony (µg/L)		185	1	-
Zinc (µg/L)	6.5-27.5	2009	18	75

Table 18. Comparison of Maximum Pollutant Concentrations Measured in Water Samples at the Lost Lagoon to British Columbia Treatment Guidelines

¹ (Stime, 2014)

² (British Columbia Research Corporation, 1992)

³ (Canadian Council of Ministers of the Environment, 2015)

For the second objective, demonstrating that the best management practices employed in the design of the wetland have had some meaningful impact on stormwater treatment, one must review the wetland design and treatment capacity as a whole. Several different mechanisms, including sedimentation, adsorption, and plant uptake, are responsible for removing pollutants and the wetland was designed to optimize all of these mechanisms for long term stormwater treatment goals.

The stormceptors incorporated as a pre-treatment step prior to inflow to the wetland were not studied at depth during this study. However, high levels of mineral oil and grease were measured in the forebay of the wetland, indicating that use of the stormceptors as the only treatment method would not meet effluent discharge guidelines.

During the study period, there was no evidence of scouring or overflow from the wetland. In addition, sediment samples generally indicated that metal contaminant levels were higher on the front end of the wetland compared to the back end. This supports the notion that the overflow and diversion structures are beneficial to the overall treatment efficacy of the wetland.

During the initial site visit at the Lost Lagoon wetland, photographs and documentation of the state of plant species was documented. There was evidence that the plant species had adapted well to the climate within

the wetland but that additional maintenance is required to remove some invasive species, including blackberry plants. Thoren et al (2007) demonstrated that two plant species selected for the wetland design, *Carex obnupta* and *Scirpus acutus*, were effective in taking up certain metal pollutants. Therefore, continued monitoring and maintenance of the planned plant species should continue. There was also evidence of animal activity where beavers had removed trees along the berm between the wetland and Lost Lagoon. The beaver activity requires close monitoring so that the wetland outlet does not become blocked, causing backflow and damage.

Finally, the sizing of the settling forebay for a 6-month design storm was of interest during this study. In the results, there is evidence that the highest metal loading is received at the centre of the forebay. Measurements for metals taken at Location 2 (the wetland entry) and Location 3 (the centre of the forebay) were consistently higher than measurements taken at Location 4 (in the forebay, furthest from the wetland entry). However, additional analysis of flow rates and settling within the forebay would be required to properly validate this treatment stage.

For the third and final objective of this chapter, to identify knowledge gaps and opportunities for complimentary analysis through application of genomics, two statements can be made. First, while there is some evidence that the wetland is removing contaminants and meeting treatment objectives, there is still a lot of uncertainty in the results. Specifically, the results indicate that overall there is a significant decrease in contaminants along the length of the wetland but for some contaminants including cadmium, cobalt, lead, and zinc, more depth of analyses would be beneficial. Second, genomics provides an opportunity for complimentary analyses because microbial communities adapt and change due to the toxicity of pollutants. Specific species that thrive in contaminated environments will overtake other species, which due not have the same abilities. Over time, microbial communities also adapt and develop genetic tolerance mechanisms when exposed to pollutants. Analyzing species and gene differences between the microbial communities at the front and back end of the wetland would, thus, provide an additional resource to compliment uncertain pollutant treatment data.

2.7.3 Final Remarks

The work described in this chapter effectively answered both study hypotheses and provided data in support of the three objectives described here. In doing so, this chapter has laid the foundation for Chapter 2, where microbial analyses were conducted to provide proof of concept data in support of developing a genomics tool for monitoring stormwater treatment wetlands. Overall, there is evidence of effective

stormwater treatment at the chosen field study site, the Lost Lagoon wetland in Stanley Park, Vancouver, but further analyses are required to properly validate said evidence.

2.8 Limitations

Even though a wide range of techniques and several collection dates were incorporated into the environmental sampling design, single point in time measurements do not provide adequate proof that the wetland is meeting design targets. This is because the stormwater runoff entering the wetland is highly variable and the time it takes for stormwater to pass through the wetland is also variable. Therefore, one cannot directly compare water measurements taken at the front and back end of the wetland on a single date. Sediment sampling provides a clearer picture of long term treatment trends but there are still limitations because of the challenges with digesting organic rich samples prior to analysis using ICP-MS or other techniques. In contrast, there are many effective techniques to extract DNA from sediment and water samples and these are widely available from laboratory suppliers. In the future, analyzing the microbial response to contaminants may present itself as a valuable tool to validate environmental data.

In addition to the variability within the wetland, there were several limitations during this section of the research study, which contributed to uncertainty in the results. These include:

- Challenges accessing the wetland and stormceptor;
- Equipment malfunctions with the core sediment sampler;
- Budget limitations for the number of samples which could be processed;
- Limits to the number of samples which could be obtained and processed in a single day; and
- Challenges with the digestion of sediment samples.

Chapter 2: Application of Genomics-Based Monitoring Techniques for Complimentary Validation of the Lost Lagoon Stormwater Treatment Wetland

3.1 Introduction and Chapter Goal

The contents of this chapter expand on the results of Chapter 1 by applying genomics-based approaches to support the conclusion that the Lost Lagoon wetland is effectively treating stormwater. In addition, this chapter provides data to support the application of genomics for validation of other low impact design sites that treat stormwater. This chapter first describes the toxicity of stormwater in relation to bacteria. Next, bacterial adaptions to stormwater exposure are described with the goal of identifying potential markers for effective stormwater treatment. In support of the study methodology, potential genomics approaches are compared for application in stormwater treatment monitoring. The study methodology is described, which includes the incorporation of a laboratory based study, with the goal to illustrate the adaptability of this study's methodology for other low impact design sites. Finally, results, discussion, and conclusions are provided.

3.2 Chapter Objectives

Based on the overall goals of this research, this chapter has three specific objectives.

Using the same samples that were analysed in Chapter 1:

- 1. Apply genomics-based analysis methods to determine if there are shifts in the microbial communities and functional genes along the length of the Lost Lagoon wetland;
- 2. Determine if there is a correlation between the water and sediment quality, present over the study period, and the microbial communities and functional genes observed; and
- 3. Determine, through laboratory experimentation, if there are opportunities to expand and pursue genomics-based analyses at other stormwater treatment low impact design features.

3.3 Hypotheses

In order to use microbial comparisons as a monitoring parameter for stormwater treatment, one would need to observe differences in the microbial communities that exist in the presence of stormwater compared to the microbial communities that do not exist in the presence of stormwater. One would then need to meaningfully capitalize on these differences by correlating adaptation to contamination. In order to achieve said observations and correlations, this chapter attempts to answer three hypotheses:

- 1. There is a shift in the composition and function of the microbial communities that exist between the entry and exit of the Lost Lagoon wetland;
- 2. The shift in the composition and function of the microbial communities between the entry and exit of the Lost Lagoon wetland is influenced by the decreasing concentration of contaminants along the length of the wetland;
- 3. There are similarities across unconnected sites in the adaptations that take place within microbial communities due to exposure to stormwater.

3.4 Literature Review

Like in Chapter 1, in order to provide background and context for the objectives and hypotheses stated in this chapter, a review of relevant literature was performed. First, a description of the toxicity of urban stormwater is provided. Next, the influence of urban stormwater contaminants on microbial communities is reviewed. After this, a summary from the literature of known microbial adaptations to stormwater is given. Finally, current methods for DNA sequencing and data analysis are discussed and compared for their advantages and disadvantages. This information advises the decisions that were made for the methodology presented in Chapter 2.

3.4.1 Toxicity of Urban Stormwater

Numerous past and current studies examine the toxicity of highway stormwater from both an environmental and human health perspective and these studies generally conclude that stormwater has some toxic elements (Gjessing et al., 1984, Mulliss, Revitt, & Shutes, 1996, Marsalek et al., 1999, Karlsson et al., 2010). Dutka et al. (1994) recommend assessment of toxicity through chronic effects testing for stormwater because, while the immediate effects due to exposure may not be severe, the prolonged effects of stormwater exposure are impactful. There are a variety of means to test toxicity including tests for cytotoxicity (cellular damage) and genotoxicity (genetic damage), which both tend to focus on toxic effects for bacteria.

Because toxicity of stormwater is influenced by the quality of said stormwater, where temporal variability and uncertainty has already been discussed, many studies tend to focus their research efforts on the toxicity of sediments in locations that have been impacted by stormwater. However, sediment sampling introduces additional uncertainties because of chemical partitioning, bioavailability, and the small sample size (Marsalek et al., 1999). Pitt, et al. (1995) identified gravity settling as the most important means of reducing stormwater toxicity, where settling was shown experimentally to reduce stormwater toxicity by approximately 50%. However, in a review of four common toxicity testing methods for sediment and water samples, all samples were shown to include inherent uncertainties of between 10% and 50%, which limit the ability of toxicity testing to elucidate toxicity measurements (Marsalek et al., 1999).

Beyond water quality, stormwater also produces environmentally toxic effects to receiving environments due to sediment loadings and alterations to stream morphology. However, discussion of toxicity in this form is outside of the scope of this project.

While toxicity of stormwater as whole is less studied, the toxicity of specific elements within stormwater are well known. For example, chromium causes oxidative damage and inhibits sulfate membrane transport in bacteria and nickel can be highly toxic as it inhibits cell multiplication (Das, Dash, & Chakraborty, 2016). However, the toxicity of stormwater is not equal to the sum of its parts due to the interaction of pollutants including metals, natural organic matter, and hydrocarbons. Likewise, bacteria have developed complex resistance pathways, which are often correlated. The influence of stormwater on bacteria and the complexity of stormwater toxicity is further discussed in the sections that follow.

3.4.2 Influence of Urban Stormwater Contaminants on Microbial Communities

While there is a large body of literature that suggests that stormwater has toxic elements, the influence of stormwater on microbial communities, specifically bacteria, is lesser known. After an extensive review of literature, only a handful of published studies attempted to determine the influence of stormwater on the bacteria that reside within engineered wetlands or other low impact treatment systems (Nogaro et al., 2007; Hartman et al., 2008; Faulwetter et al., 2009; Karlsson et al., 2010; Truu, Juhanson, & Truu, 2009; Sun et al., 2013) Within the literature that was accessed, no study provided a dataset where bacteria were compared along the length of a stormwater treatment wetland.

Nogoro et al. (2007) examined the influence of stormwater quality on microbial characteristics. Their results showed that biogeochemical processes, including aerobic respiration, denitrification, and fermentation as well as microbial metabolism and enzymatic activities were stimulated by the presence of stormwater and the natural organic matter. Nogoro et al. (2007) also concluded that hydrocarbons and heavy metals did not have significant effect on microbial processes. However, Nogoro et al. only examined total bacteria counts, a crude index of bacteria diversity (optical density) and hydrolytic and dehydrogenase activities. The authors did not examine the bacterial community at a species or gene level, likely because the sequencing technologies were not available at the time of their study.

70

Hartman et al. (2008) suggested that "soil bacteria regulate wetland biogeochemical processes, yet little is known about controls over their distribution and abundance." While Hartman et al. (2008) did not specifically analyze stormwater treatment wetlands, they did perform a broad analysis of fifteen natural and restored wetlands. The analysis suggested that soil pH, land use, and restoration status greatly influenced bacterial composition and diversity but wetland type, soil carbon and nutrient concentrations had less of an impact. Land use was found to have the most significant impact on bacterial communities across all wetland sites even after accounting for wetland type and soil chemistry using pure-partial Mantel's tests. Interestingly, Hartman et al. (2008) noted that the responses of bacterial communities were dominated by a few taxa (Acidobacteria and Proteobacteria) and the authors suggested that this yields a promising result for the application of bacteria as an indicator of wetland health.

Faulwetter et al. (2009) noted that the recent application of newer molecular and genetic analysis methods has begun a "new era of treatment wetland research." In their literature review, Faulwetter et al. (2009) found that results up to 2009 confirmed the existence of microbial functional groups such as nitrifiers, denitrifiers and sulphate reducers that are responsible for pollutant removal but Faulwetter et al. also suggested that the future of this science would shift to the identification and linkage of the functional groups to the environmental factors of greatest influence. In 2009, Faulwetter et al. recognized the upcoming importance and value of microbial analysis in water treatment:

"When we understand what controllable factors turn critical functional groups on and off we will be able to fully optimize performance for removal of a specific pollutant, or perhaps still be able to achieve the "perfect" treatment system that can satisfactorily remove virtually all pollutants from domestic wastewater, and/or other sources."

Sun et al. (2013) used 454 pyrosequencing of the 16S rRNA gene in order to investigate how estuaries responded to contaminants. While this study did not specifically address stormwater treatment wetlands, Sun et al. (2013) conclude that an abundant and pervasive core set of bacteria were largely responsible for mediating the response of the microbial community to contamination. Like Hartman et al. (2008), Sun et al. (2013) also found that the microbial community core was dominated by proteobacteria and acidobacteria. The authors observed that silt and metals together explained approximately 20% of the variation in the bacterial community and that salinity and temperature predicted approximately 11% of the microbial community. The research supported the notion that there is some functional redundancy within the bacteria of contaminated sediments but that our understanding of bacteria communities' responses and resilience to contamination is still developing.

71

3.4.3 Known Microbial Adaptations to Urban Stormwater Contaminants

While few studies on bacteria specifically focus on the changes of communities due to exposure to stormwater contaminants, there is a wider body of knowledge that focuses on the response of bacterial communities to metal exposure (Das, Dash, & Chakraborty, 2016). For example, one study, which compared two metal contaminated sites with an order of magnitude difference in contamination, suggested that adaptations of bacterial communities to metal exposure are subtle but significant and that the bacterial communities in freshwater sediments adapt to metal exposure without widespread changes to the bacterial population (Gillan et al. 2015). Adaptations of microbial communities may occur at either the genus/species level (e.g. *Pseudomonas fluorescens, Alcaligenes faecalis, Ochrobactrum tritici*, etc.) or at the gene level (e.g. CadB, ChrA, CopAB, etc.).

Certain species of bacteria may be able to adapt to environments with elevated metal levels, which would otherwise be toxic for other bacteria, through application of elements within their genetic systems and/or through mechanisms for maintaining their internal ecosystem (Ryan et al. 2009). In their review of bacterial adaptations, Das et al. (2016) point out that bacteria are uniquely able to adapt to all types of extreme environments due to several features including their:

- Small size;
- High surface area to volume ratio; and
- Ability to efficiently transfer genetic traits.

In addition to these features, bacteria have developed three primary methods for metal resistance including:

- 1. Efflux of irritant metals outside the cell by transporters;
- 2. Transformation of metals into less toxic forms; and
- 3. Bioadsorption.

Efflux requires that bacteria consume energy (ATP) to pump metal cations outside of the cell (Nies 2003). Transformation to a less toxic state requires that bacteria reduce metals to a dissimilar oxidation state. Bioadsorption typically requires that bacteria bind metals onto their cellular surface – this typically involves formation of a biofilm, which can be highly complex and versatile (Harrison et al. 2006).

Beginning in the 1970's, numerous bacteria have been identified for their metal resistant traits. In 1999 Nies reviewed known metal resistance mechanisms to that date. In 2016, Das et al. updated the works of Nies with the goal of identifying opportunities for bioremediation. In their words, Das et al. (2016) state that "the ability of bacteria to resist toxic metals comes from a highly modified genetic system, by means of which bacteria synthesize proteins enabling them to thrive in the presence of such elements. Bacteria survive by expressing several metal-resistant genes toward toxic metals." The relevant details from both summaries with respect to stormwater pollutants are summarized in Table 19.

		,
Metal	Adaptation	Sources
	• Leishmania cells are able to gain resistance to arsenic and antimony by	Rosenstein et al. 1992;
Antimony	efflux.	Sanders et al. 1997
	• Aerobic bacteria, like Alcaligenes faecalis , are able to oxidize arsenic	Laverman et al 1995
Arsenic	 Leishmania cells are able to gain resistance to arsenic and antimony by 	
Alberne	• Leisinnaina cells are able to gain resistance to arsenie and antimony by	Dey et al. 1994
	Resistance to cadmium in bacteria is based on cadmium efflux	Olafson et al. 1979
	 In Ovanobacteria, amplification of the smt metallothionein locus. 	
	• In cyanobacteria, amplification of the sint metallotinonein locus	Gupta et al. 1992; Gupta et
	 In gram negative bacteria, cadmium is detoxified by RND driven 	al. 1993; Turner et al. 1993
	• In grann-negative bacteria, caunium is detoxined by http-unven systems like Crc , which is mainly a zinc exporter and Ncc , which is	Thelwell et al. 1998; Nies
Cadmium	mainly a nickel exporter	1995; Nies & Silver 1989b;
	 In gram-nositive bacteria, the first example of a cadmium-exporting P- 	Schmidt & Schlegel 1994
	type ATPase was the Cad-A nump from S <i>qureus</i>	Nucifora at al. 1080: Silver at
	type //// use was the eau //pamp from 5. dureus .	
		al. 1989
	• To fight chromium toxicity, microbes have developed two mechanisms	Das et al. 2016
	of chromium resistance. The first is a method of chromate efflux from	
	the cells, and the second method involves enzymatic reduction of toxic	
	Cr ⁶⁺ to less toxic Cr ³⁺ .	
	• The operon for chromium efflux if encoded in four genes, chr-BACF	Branco et al. 2008
	• Chr-R was identified as a chromate reductase gene. The general	Contains at al 2005
	chromate transport reactions involve a family of chromate ion	Gonzalez et al. 2003
Chromium	transporters.	
	• Three other genes, chr-JKL , were later identified and proven to be	Henne et al. 2009
	involved in the chromium reduction process.	
	Chromium can also be reduced through bacterial excretion of enzymes	Batool et al. 2012; Mishra et
	but this process is lesser known.	al. 2012
	Pseudomonas fluorescens strain LB300, was shown to reduce chromate	Bopp & Ehrlich 1988;
	and a broad variety of bacteria that are able to reduce chromate have	Cervantes & Silver 1992
	since been found.	
	• Resistance to cobalt in gram-negative bacteria is based on a trans-	Liesegang et al. 1993;
	envelope efflux driven by a resistance, nodulation, cell division (RND)	Schmidt & Schlegel 1994
Cobalt	transporter.	
	Cobait resistance seems always to be the by-product of resistance to	Nies et al 1987
	another heavy metal, either nickel or zinc.	Nics Ct dl. 1307
	• A major copper resistance mechanism in bacteria is encoded within	Odermatt et al. 1992, 1993;
	four genes, cop-YABZ. Bacteria with these genes will show early	Wunderli-Ye & Solioz 1999;
Conner	copper retention followed by a metal efflux process.	Albarracin et al. 2008
Copper	• Other bacteria, including <i>E. Coli</i> have been shown to a have a double	
	regulatory mechanism for copper resistance, which is encoded in a	Dialization 2010
	sensing system controlled by the two genes, cus-RS , and this sensing	Ujoko et al. 2010

	mechanism regulates metal efflux, which is controlled by four proteins cus-CFBA.	
	 Some bacteria also have a copper efflux system where the regulatory 	
	gene cue-R regulates two genes con-A and Cue-O which cause	
	copper efflux.	Diaka at al 2010
	• Cso-R is another regulatory gene in bacteria, which in the presence of	Djoko et al. 2010
	Cu^+ de-represses conner resistance genes	
	 A Streptococcus strain was seen to have a conner transport operon 	Changet al 2014
	named con-YA7 in which con-Y and con-7 were established as heavy	
	metal-binding proteins	
	 Pseudomonas fluorescens has been reported to possess a con-RSCD 	Vats & Lee 2001
	operon for copper efflux.	
	• <i>Helicobacter pylori</i> contains two separate operons for copper export	
	and import. hpcop-AP.	Hu et al. 2009
	Bacillus subtilis has another copper regulatory system, mediated and	Ge & Taylor 1996
	regulated by Ycn-Jk and Cso-R . Together, these genes maintain a state	
	of copper homoeostasis.	
	• An ATPase-driven copper efflux system is the main mechanism	Chillappagari et al. 2009
	responsible for cytoplasmic copper removal: the multicopper oxidase	
	Cue-O in <i>E.coli</i> and <i>Enetrobactin</i> oxidizes Cu (I) to Cu (II).	
	• Yersiniabactin sequesters Cu (II) outside the bacterial cell protecting	Grass et al. 2004
	the bacteria from intracellular killing.	
		Chaturvedi et al. 2012
	• Lead-tolerant bacteria have been isolated, and precipitation of lead	Trajanovska et al. 1997;
	phosphate within the cells of these bacteria has been reported.	Levinson & Mahler 1998;
	• Several bacteria, such as Arthrobacter spp., Bacillus megaterium,	Das et al. 2016
	Pseudomonas marginalis, Citrobacter freundii, Staphylococcus aureus,	
	and E. coli have been found to be resistant to lead.	
	• The most studied lead efflux operon, named the pbr operon, was	Borremans et al. 2001;
	found to contain many structural genes, (pbr-IABCD) and one	
		Jarosławiecka & Piotrowska-
	regulatory gene (pbr-R)	Jarosławiecka & Piotrowska- Seget 2014
	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toyicity. 	Jarosławiecka & Piotrowska- Seget 2014
	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: 	Jarosławiecka & Piotrowska- Seget 2014
	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Braudomongs, marginalis, is, able, to, resist, load, through</i> 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through components of lead in an expendemon 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Baenibacillus iamilan</i> bioadcorbs lead 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which assist in toxic metal transformation by chemical reaction 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999 Morillo et al. 2008
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which assist in toxic metal transformation by chemical reaction, precipitation or entrapment 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999 Morillo et al. 2008
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which assist in toxic metal transformation by chemical reaction, precipitation, or entrapment. 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999 Morillo et al. 2008
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which assist in toxic metal transformation by chemical reaction, precipitation, or entrapment. Bioprecipitation of toxic metals to insoluble complex formation is another strategy which reduces metal 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999 Morillo et al. 2008 Paul 2008
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which assist in toxic metal transformation by chemical reaction, precipitation, or entrapment. Bioprecipitation of toxic metals to insoluble complex formation is another strategy which reduces metal bioavailability and toxicity: 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999 Morillo et al. 2008 Paul 2008 Das et al. 2016
Lead	 regulatory gene (pbr-R) Metal immobilization by the process of extracellular sequestration is also important for regulating metal toxicity: Lead binding by the negatively charged components of EPS has been demonstrated in <i>P. aeruginosa</i> strain CH07. <i>Pseudomonas marginalis</i> is able to resist lead through sequestration of lead in an exopolymer. Similarly, the EPS of <i>Paenibacillus jamilae</i> bioadsorbs lead There are many enzymatic activities in the bacterial EPS which assist in toxic metal transformation by chemical reaction, precipitation, or entrapment. Bioprecipitation of toxic metals to insoluble complex formation is another strategy which reduces metal bioavailability and toxicity: <i>Bacillus iodinium</i> strain GP13 and <i>Bacillus pumilus</i> strain S3 	Jarosławiecka & Piotrowska- Seget 2014 Das et al. 2016 De et al. 2007 Roane 1999 Morillo et al. 2008 Paul 2008 Das et al. 2016

		D 2011
	• A phosphate-solubilizing bacterium, <i>E. cloacae</i> , was found to	Park et al. 2011
	resist lead by immobilizing lead as a insoluble lead phosphate	
	mineral, pyromorphite	
	• Nickel is detoxified by sequestration and/or transport. It is bound to	Gonzalez & Jensen 1998
	polyphosphate in <i>S. aureus</i> .	Nies 1999
	• The best-known nickel resistance in bacteria, in <i>Ralstonia sp.</i> strain	
	CH34 and related bacteria, is based on a nickel efflux pump driven by	
	an KND transporter.	Grass et al. 2000
	 Nickel resistance in bacteria is generally mediated by efflux pumps. One such resistance mechanism has been studied in <i>Cupriguidus</i>. 	
	metallidurane strain CU24 where it was reported that the presence of	
	the efflux numb was encoded by the cnr-VHYCBAT gape system	Grass et al. 2005
	 In Achromobacter vulosovidans strain 31A, only one gene preB, was 	Schmidt & Schlegel 1994
	responsible for conferring the entire nickel resistance efflux system.	
	• The ncc operon provides combined nickel, cobalt, and cadmium	Til + - + - 2000
Nickel	resistance.	Tibazarwa et al. 2000
	• Seven open reading frames (ORFs) were studied and	
	designated ncc-YXHCBAN . The nucleotide sequence revealed	
	significant similarity to the cnr and czc operons of <i>Alcaligenes</i>	
	<i>eutrophus</i> strain CH34.	Rodrigue et al. 2005
	• In <i>E. coli</i> , the rcn-A gene encodes a membrane-bound polypeptide	
	which had the ability to confer resistance to nickel and cobalt.	Stabler et al 2006
	• Another efflux pump was identified in <i>Helicobacter pylori</i> and named	
	czn-ABC , for cadmium, zinc, and nickel.	
	• In another study, the nickel/cobalt transferase gene, NiCo-T, from	Zhang et al. 2007
	Staphylococcus aureus was amplified and established as having high	C
	resistance	
	• Two systems are used for zinc detoxification in bacteria, P-type efflux	Beard et al. 1997; Rensing et
	ATPases and RND-driven transporters.	al. 1997b
Zinc	• In <i>E. coli</i> and <i>Synechocysti</i> , Znt-A and Zia-A are responsible for zinc	Thelwell et al. 1998
	efflux. Efflux pumps for cadmium resistance often also cause zinc	
	efflux.	

3.4.4 DNA Sequencing and Data Analysis Methods

3.4.4.1 DNA Sequencing Overview

Early methods for DNA sequencing began in 1970 and were unautomated, extremely costly, and took years to complete; these methods are generally no longer in use and are described elsewhere (Chen, 1994). However, since 1995 when the first bacterial genome was sequenced (Fleischmann et al., 1995), scientific capabilities with DNA sequencing and genome-based analytics have rapidly increased. Loman et al. (2012) discuss how extremely rapid growth in this field has led to "an embarrassment of choice" between instruments and platforms and also that "vigorous competition between manufacturers has resulted in sustained technical improvements on almost all platforms." There are numerous sequencing technologies available to researchers, each offering its own set of advantages and disadvantages. There are also

numerous precursors or alternate methods for analyzing bacterial diversity and function, some of which are still commonly used and others of which are being phased out due to out-competition from emerging/modern technologies.

Selecting the right analysis method for a study depends on a number of factors including:

- The goal of the study;
- The sample media and the expected DNA quantity and quality obtainable during extraction;
- The depth and quality of data required to achieve the study goal;
- The availability of analysis technologies and institutional expertise for guidance; and
- The study timeline and budget.

Bacteria are highly concentrated in the natural environment; one gram of soil or sediment typically contains 10^{10} bacteria while one millilitre of seawater typically contains 10^6 bacteria (Torsvik et al., 1990). Because of the massive population, comparing bacterial diversity quickly becomes extremely complex.

Bacterial diversity exists at three levels: within species (genetic), between species (species) and community (ecological) diversity (Harpole, 2010). Species diversity can be further broken down into two components – species richness and species distribution. Species richness refers to the total number of different species in the population while species distribution refers to the evenness of the different species in the population. Diversity studies can relay useful information about the stresses on an ecosystem; generally, a bacterial community that is diverse is more stable when responding to environmental stresses as it contains the genetic code for adaptability to change (Yannarell & Triplett, 2005). Diversity will change in response to stress and this can be monitored as a cause and effect relationship.

Methods for analyzing microbial diversity and abundance can be categorized into three groups: conventional (culture-based), biochemical and molecular. *Table 20* summarizes some of the most common conventional and biochemical analysis techniques.

Method	Description	Advantages	Disadvantages
Plate counts	 Culture bacteria on growth media followed by viable counts 	FastInexpensive	 Un-culturable bacteria not detected Bias towards fast growing bacteria
Community level physiological profiling (CLPP)/ Sole-Carbon Source Utilization (SCSU) Pattern	 Identify pure cultures of bacteria to the species level using their metabolic properties Examine the functional capabilities of the microbial population Compare metabolic capabilities of communities. 	 Fast Highly reproducible Relatively inexpensive Able to differentiate microbial communities Generates large amount of data Option of using bacterial, fungal plates or site specific carbon sources 	 Only represents culturable fraction of community Favours fast growing bacteria Only represents those organisms capable of utilizing available carbon sources Potential metabolic diversity, not <i>in situ</i> diversity Sensitive to inoculum density
Phospholipid fatty acid (PLFA) analysis/Fatty acid methyl ester analysis (FAME)	 Use the fatty acid composition of microorganisms to aid microbial characterization Analyze the PLFA composition of the organisms since different subsets of a community have different PLFA patterns. 	 Culturing not required Direct extraction from soil Follow specific organisms or communities 	 Can be influenced by external factors Results can be confounded by other microorganisms

Table 20. Common Conventional and Biochemical Techniques for Analyzing Microbial Diversity and Abundance (adapted from Fakruddin & Mannan, 2013)

Molecular techniques, can be further divided into partial community analysis techniques and whole community analysis techniques. These techniques can also be classified as first generation, next generation, or third generation methods based on the throughput, quality and depth of information obtained.

Partial community analysis generally involves first generation PCR-based analysis techniques where DNA or RNA extracted from an environmental sample is used as a template to characterize microorganisms (Rastogi & Sani, 2011). Essentially, in partial community analysis, researchers determine the genetic signature in a sample by selecting and analyzing a specific gene that is conserved among all species such as the 16S rRNA gene or the RNA polymerase beta sub-unit (rpoB).

The disadvantage of partial community analysis is that researchers must compare to a database of known information in order to parcel out results from their samples; however, the growing databases of known species data have made these methods highly desirable in recent years. Technological advances in the throughput and depth of information that can be obtained in partial community analysis has led to the development of next generation methods including the Illumina MiSeq platform, which is a type of clone library analysis. *Table 21* summarizes common partial community analysis techniques and their advantages and disadvantages.

Mathad			Disadvantagas
	Description		
Nucleic acid re-association and hybridization	 Estimate diversity by measuring the genetic complexity of the microbial community (re-association) Use specific probes (e.g. FISH) on extracted DNA or RNA, or <i>in situ</i> to examine and quantify known sequences (hybridization) 	 Total DNA extracted Not influenced by PCR biases Can study DNA or RNA Can be studied <i>in situ</i> 	 Lack of sensitivity Sequences need to be in high copy number for detection Dependent on lysing and extraction efficiency
DNA microarrays and DNA hybridization	• Develop a microarray to elucidate function diversity of a community by identify specific target genes coding for enzymes such as nitrogenase, nitrate reductase, naphthalene dioxygenase <i>etc</i> .	 Same as nucleic acid hybridization Thousands of genes can be analyzed Increased specificity 	 Only detect the most abundant species Need to culture organisms Only accurate in low diversity systems
Denaturing (DGGE) and Temperature (TGGE) Gradient Gel Electrophoresi s	• Use a linear gradient of DNA denaturants (DGGE) or temperature (TGGE) to separate DNA fragments (16S or 18S rRNA) of the same length but with different base-pair sequences and differentiate the fragments based on their mobility (Mühling <i>et al.</i> , 2008)	 Large number of samples can be analyzed simultaneously Reliable, reproducible and rapid 	 PCR biases Dependent on lysing and extraction efficiency Sample handling can influence community One band can represent more than one species Detects dominant species
Single Strand Conformation Polymorphism (SSCP)	 Analyze differences in the mobility of single stranded DNA on polyacrylamide gel, resulting from the folded secondary structure of DNA, which is dependent on DNA sequences 	 Same as DGGE/TGGE No GC clamp No gradient 	 PCR biases Some ssDNA can form more than one stable conformation
Restriction Fragment Length Polymorphism (RFLP)	 Blot electrophoresed digests from agarose gels onto membranes and hybridize with a probe prepared from cloned DNA segments of related organisms 	 Detect structural changes in microbial community 	 PCR biases Banding patterns often too complex
Terminal Restriction Fragment Length Polymorphism (T-RFLP)	• Follow the same principle as RFLP except label one PCR primer with a fluorescent dye, perform PCR on the sample DNA using universal 16S rDNA primers and separate fragments by gel electrophoresis, where each unique fragment length can be counted as an OTU and the frequency of OTUs can be calculated (Liu <i>et al.</i> , 1997)	 Simpler banding patterns than RFLP Can be automated Large number of samples Highly reproducible Ability to compare differences between microbial communities 	 Dependent on extraction and lysing efficiency PCR biases Type of <i>Taq</i> can increase variability Choice of restriction enzymes will influence community fingerprint

Table 21. Common Partial Community Analysis Molecular Techniques for Analyzing Microbial Diversity and Abundance (adapted from Fakruddin & Mannan, 2013; Rastogi & Sani, 2011)

Ribosomal Intergenic Spacer Analysis (RISA)/Automa ted Ribosomal Intergenic Spacer Analysis (ARISA)	 Detect sequence polymorphisms using silver staining in RISA or a fluorescently labeled forward primer in ARISA Use PCR to amplify the intergenic spacer (IGS) region between the 16S and 23S ribosomal subunits , denature and separate units on a polyacrlyamide gel and differentiate between bacterial strains and species based on heterogeneity (Fisher & Triplett, 1999). 	 Highly reproducible community profiles 	 Requires large quantities of DNA (for RISA) PCR biases
Quantitative polymerase chain reaction (Q-PCR)	 Use dyes or probes to measure the accumulation of amplicons in real time during each cycle of the PCR and quantify based on the exponential increase in amplicon concentration 	 Rapid Successfully used for quantification of important physiological groups 	 Highly sensitive to starting template concentration Requires microbe concentrations to be above detection limits
Clone library method (e.g. MiSeq)	 Clone and then sequence the individual gene fragments in an environmental sample (e.g. 16S rRNA genes) and compare to a known database such as GreenGenes or Silva 	 Most widely used method to analyze PCR products The 'gold standard' for preliminary microbial diversity surveys Large availability of data for comparison 16S rRNA gene is highly stable and conserved 	 Labor intensive Time consuming Expensive May not decipher the entire microbial community composition

In contrast with partial community analysis techniques, whole community analysis techniques attempt to analyze all of the genetic information extracted from a sample. The first common modern method of whole community analysis to be developed was automated Sanger sequencing (Slatko et al., 2011); however, this was a first generation technique that was costly and highly time-intensive and while it did elucidate much insight into the link between microbial function and taxonomic identity, a large body of information was still poorly understood. Next generation sequencing methods emerged in 2005 and their advent has revolutionized the scientific understanding of microbial communities and relationships (Lagares et al., 2012). Table 22 summarizes the most common techniques for whole community analysis.

Anulysis (uu	Description	Advantazaa	Disaduantana
ivietnod	Description	Aavantages	Disadvantages
Automated • chain terminator (Sanger) sequencing	Sequence whole microbial genomes using a shotgun cloning method that involves (1) extraction of DNA from pure cultures, (2) random fragmentation of obtained genomic DNA into small fragments, (3) ligation and cloning of DNA fragments into plasmid vectors, and (4) bidirectional sequencing of DNA fragments	 Small machines are available for low- throughput laboratories Useful for some specific applications (e.g. finishing genomes) 	 Costly Time-intensive Sequencing low number of clones captures only dominant components of the microbial communities
Metagenomics •	Investigation of the collective microbial genomes retrieved directly from environmental samples without relying on cultivation or prior knowledge of the microbial communities (Riesenfeld et al. 2004)	 Cost-effective Higher throughput Simpler library preparation No cloning step Steadily improving read lengths Minimal hands on time 	 Long run time Short read lengths Some methods yield high error rates or biases Expensive reagents
Metatranscrip- • tomics	Allows monitoring of microbial gene expression profiles in natural environments by studying global transcription of genes by random sequencing of mRNA transcripts pooled from microbial communities at a particular time and place	• Suitable for measuring changes in gene expression and their regulation with changing environmental conditions	 Prokaryotic microbial mRNA transcripts are not polyA tailed, so obtaining complementary DNA is not easy.
Proteogenomics •	Deals with the large-scale study of proteins expressed by environmental microbial communities at a given point in time	 Rapid and sensitive Protein biomarkers are more reliable and provide a clearer picture of metabolic functions than functional genes or even the corresponding mRNA transcripts of microbial communities 	 New emerging technology

Table 22. Common Techniques for Analyzing Microbial Diversity and Abundance using Whole Community Analysis (adapted from Fakruddin & Mannan, 2013; Rastogi & Sani, 2011)

Concerning whole community analysis, metagenomics is the focus of this study as the goal is to develop a genomics tool for stormwater treatment applications. Therefore, those interested in further detail of other whole community analysis methods should consult elsewhere (Rastogi & Sani, 2011). Various companies supply technologies for metagenome sequencing including the Roche 454 platform (Life Sciences), the HiSeq (Illumina), and the Ion Torrent Personal Genome Machine (Thermo Fisher) (Bragg & Tyson, 2014). Each of these technologies offers advantages and disadvantages with greater advantages established with
each upcoming model (ibid). Currently, the most popular platform is the Illumina HiSeq system. Bragg and Tyson (2014) describe the Illumina sequencing protocol:

"The Illumina sequencing protocol begins by ligating template DNA to an adaptor sequence and thence onto a glass flow cell. The template DNA is subjected to bridge amplification, whereby each template is increased to roughly 1,000 copies. By using an isothermal polymerase and 3' inactivated fluorescent nucleotides, Illumina is able to incorporate a solitary base each cycle. Each base addition is followed by an imaging step, which reads the fluorescent label."

There are numerous models of the HiSeq platform including the HiSeq, HiSeq 2000, HiSeq 2500, and HiSeq 3000/4000. With each model upgrade, the sequencing power and efficiency increases; however, the general analysis principles remain the same.

3.4.4.2 Sequence Data Analysis Overview

Due to the complexity of data obtained, analysis of next generation sequenced data requires several steps. These are summarized as follows (Lagares et al., 2012):

- 1. Data filtering: Identifying and removing noisy reads based on quality scores;
- 2. Data trimming: Removing regions with a high likelihood of error;
- 3. Noise removal: Iteratively pre-clustering and deleting both chimeras and PCR artifacts;
- Data clustering: Defining OTUs by linking sequences with a threshold for percent similarity (e.g. 97%);
- 5. Taxonomic assignment: Comparing with a reference alignment of known taxonomic assignments (for MiSeq) or classification based on sequence homology and composition (HiSeq);
- 6. Assembly of metagenomes: Finding overlaps between reads and building consensus sequences, so-called contigs, based on multiple alignments;
- 7. Gene annotation: Identifying metagenomic sequences using gene prediction tools;
- 8. Metabolic reconstruction: Using gene predictions to understand the metabolic potential of a microbial community; and
- 9. Comparative metagenomics: Searching for statistically significant differences between metagenomes using either taxonomic classifications or gene/metabolic annotations.

There are various software tools available to researchers for these purposes. *Table 23* summarizes some of the more common software applications and provides links to each tool's website for more information.

Application	Name	Webpage
General sequence	Mothur	http://www.mothur.org/
processing	QIIME	http://www.qiime.org/
	AmpliconNoise	http://code.google.com/p/ampliconnoise/
De-noising	DeNoiser	http://www.qiime.org/
Clustering	UCLUST	http://www.drive5.com/usearch/
0	Mothur	http://www.mothur.org/
	DNACLUST	http://sourceforge.net/projects/dnaclust/
	CD-hit	http://www.bioinformatics.org/cd-hit/
	Mothur	http://www.mothur.org/
	MAFFT	http://mafft.cbrc.jp/alignment/software/
Alignment	PyNAST	http://pynast.sourceforge.net/
0	, RDP	http://pyro.cme.msu.edu/
	SILVA	http://www.arb-silva.de/
	RAxML	http://sco.h-its.org/exelixis/software.html
Phylo-genetics	FastTree	http://www.microbesonline.org/fasttree/
	QIIME	http://www.qiime.org/
	Mothur	http://www.mothur.org/
Community analysis	MG-RAST	http://metagenomics.anl.gov/
	R (VEGAN, GGPlot)	http://www.r-project.org/
	Newbler	http://454.com/
	Celera Assember	http://sourceforge.net/apps/mediawiki/wgs-assembler/index.php?title=Main_Page
Assembly	CLC Assembly cell	www.clcbio.com
	, Meta-IDBA	http://i.cs.hku.hk/~alse/hkubrg/projects/metaidba/
	Genovo	http://cs.stanford.edu/group/genovo/
	MetaORFA	n.a.
	MetaVelvet	http://metavelvet.dna.bio.keio.ac.jp/
	Bambus 2	http://www.cbcb.umd.edu/software/bambus/
	Orphelia	http://orphelia.gobics.de/
Short read gene	Metagenemark	http://exon.gatech.edu/metagenome/Prediction/
prediction	FragGeneScan	http://omics.informatics.indiana.edu/FragGeneScan/
	MetaGeneAnnotator	http://metagene.cb.k.u-tokyo.ac.jp/
	MEGAN	http://ab.inf.uni-tuebingen.de/software/megan/welcome.html
	SOrt-ITEMS	http://metagenomics.atc.tcs.com/binning/SOrt-ITEMS/
	WebCARMA/CARMA 3	http://www.cebitec.uni-bielefeld.de/brf/carma/carma.html
	Treephyler	http://gobics.de/fabian/treephyler
	PhyloPhytiaS	http://binning.bioinf.mpi-inf.mpg.de
	TACOA	http://www.cebitec.uni-bielefeld.de/brf/tacoa/tacoa.html
	Phymm/PhymmBL	http://www.cbcb.umd.edu/software/phymm/
	Naïve Bayes classifier	http://ratite.cs.dal.ca/rita/submission
Metagenomics tools	, MG-RAST	http://metagenomics.anl.gov/
	CAMERA	http://camera.calit2.net/
	IMG/M	http://img.jgi.doe.gov
	GAAS	http://sourceforge.net/projects/gaas/
	SmashCommunity	http://www.bork.embl.de/software/smash
	Meta-rep	http://www.jcvi.org/metarep
	Xipe	http://edwards.sdsu.edu/cgi-bin/xipe.cgi
	STAMP	http://kiwi.cs.dal.ca/Software/STAMP

Table 23. Common Software Applications for Sequence Data Analysis

3.5 Methodology

The primary focus of this chapter was to provide proof of concept microbial results which either support or reject further research towards a genomics-based monitoring tool for stormwater treatment wetlands and other low impact stormwater treatment sites. With this goal in mind, a two-part strategic methodology was developed. First, a field study was performed at the Lost Lagoon wetland with the collection of water and sediment samples described in Chapter 1. In support of this chapter's first two objectives and hypotheses, DNA was extracted, sequenced, analyzed and compared with environmental data. Second, a laboratory study was designed and performed, in support of this chapter's third objective and hypothesis. Like in the field study, water and sediment samples were collected over the experimental period and DNA was extracted, sequenced, analyzed and compared with environmental data.

A detailed description of the methodology employed to answer the objectives and hypotheses listed at the beginning of this chapter is supplied here.

3.5.1 Field Study Site Visits and Sampling Regime

Please consult section 2.5 for details of the field study site visits and sampling regime.

3.5.2 Column Study Preparation and Execution

A four month long, laboratory study was carried out using columns of uncontaminated natural soil sourced from a bog near Beaver Lake as highlighted in Figure 2 in the introduction to this thesis. Columns were fed either semi-synthetic stormwater or distilled water and the contaminant levels and microbial responses were measured over time.

3.5.2.1 Sourcing and Confirmation of Uncontaminated Soil

To confirm the soil quality prior to collection of uncontaminated park soil, a location that was believed to be free of stormwater contamination was sited near the Beaver Lake bog. On October 27, 2015, six samples were collected across the bog site and each sample site was marked with flag tape. The samples were packed into plastic freezer bags and were brought back to the laboratory and analyzed for metal content.

3.5.2.2 Collection of Uncontaminated Soil

After soil quality was confirmed, a soil collection day was planned for November 11, 2015. Eight large coolers were disinfected. Coolers were scrubbed with laboratory dish detergent, soaked overnight with 5% bleach solution, allowed to dry, rinsed with 1% nitric acid solution, and sprayed and wiped with 95%

ethanol. Shovels were also cleaned with dish detergent, rinsed with bleach, and sprayed with ethanol prior to soil collection.

On November 11, 2015, bog soil was collected from Stanley Park. A team of four workers shoveled soil into clean five gallon buckets and transferred the soil to the disinfected coolers. A total of eight coolers of soil were collected and transferred by truck to the UBC civil engineering department refrigerators, where they were stored at <4°C until further processing.

3.5.2.3 Column Study Environment

In order to run the study over four months, a clean temperature controlled room was prepared. The room was emptied of shelving and the walls, ceiling, refrigeration system, and floor were scrubbed with laboratory grade dish soap and tap water. Next the surfaces were sprayed with hospital grade germicide and allowed to stand for fifteen minutes. Following germicide, the surfaces were wiped clean with paper towel and then sprayed with 10% beach solution and allowed to stand for twenty-four hours. Finally, the surfaces were given a final cleaning with 95% disinfection grade ethanol.

3.5.2.4 Pre-Study Experiment

Before the full laboratory experiment began, the column configuration was run and studied for one week on one column and the ORP, conductivity, pH, DO, and temperature were monitored and confirmed to be in the range of values measured in the Lost Lagoon wetland forebay.

3.5.2.5 Column Configuration and Set-Up

Seventeen sediment columns were analyzed over a four-month period. The sediment columns were constructed from five gallon opaque PVC buckets. Before the study began, the buckets were scrubbed with laboratory grade dish detergent and soaked in a 10% bleach-water solution for twenty-four hours. To prevent preferential flow along the smooth inside of the buckets, the inner lining of each bucket was then roughed with coarse sand paper. The buckets were again washed with laboratory grade dish detergent and soaked in bleach solution for twenty-four hours. Buckets were rinsed twice with distilled water, rinsed once with 1% nitric acid, rinsed once with distilled water, and wiped clean with 95% disinfection grade ethanol. The same cleaning process was used for the column lids.

On November 19, 2015, soil was packed into the laboratory columns. 2.5 L from each cooler was placed into a clean bucket and homogenized using a hand mixer. Large debris including sticks, rocks, leaves, roots etcetera, that had a length greater than 0.5 cm was removed. No garbage or fecal matter was observed in the soil. One litre of soil was then packed into each column using a clean rubber mallet. This process was

repeated eight times so that the height of soil packed into each column reach 15-cm. Columns were zeroed and weighed and the mass of soil added to each column was recorded. The columns were allowed to sit covered in the clean controlled room at <4°C until further processing.

On November 25, 2015, 8-L of distilled water was added to six columns, which would serve as study controls. 5-L of distilled water was added to each of eleven columns, which would serve as the object of the study, hereafter referred to as exposed columns. A 0.5 cm hole was drilled into the lid of each column and the holes were sealed with bungs. The lids were placed on top of each column while they reached temperature equilibrium with the control room. The temperature in the control room was then increased by 2°C on the morning of each subsequent day until the temperature of the room reached 18°C.

3.5.2.6 Column Water Dosing Regime and Environmental Controls

3.5.2.6.1 Stormwater Dose Quality

Based on several resources, (Bratieres et al., 2008; Blecken et al., 2009; Lewis & Sjostrom, 2010; Zhang et al., 2015), a recipe was developed for semi-synthetic stormwater to be used as simulated urban runoff in the column study. A combination of real sediment and chemical additives was mixed with dechlorinated distilled water in order to achieve target TSS concentrations and to maintain consistent inflow, while also mimicking 'natural' conditions.

On November 27, 2015, fine sediment, which was collected from Site 2.1 in the Lost Lagoon wetland forebay, was autoclaved, centrifuged and decanted to remove water, and baked at 105° C for 48 hours. This sediment was frozen at <-4°C prior to use in the stormwater recipe.

Average values from literature as well as the predicted quality of sediment from Site 2.1 in the Lost Lagoon Wetland were used to set target stormwater quality and to prepare a stormwater 'recipe'. *Table 24* lists stormwater qualities found in literature and the 2013 Hemmera analyses for quality of sediment in the Lost Lagoon Wetland.

Flomont	Washington ¹	British Columbia ²	Blecken et al (2009)	Dredged Sediment ³
Element	μg /L	μg /L	μg/L	mg/kg
Antimony	8.7	-	-	64
Arsenic	2.6	10-130	-	7
Barium	84	-	-	205
Cadmium	2.8	-	6.7	3.5
Chromium	18	10-110	-	135
Cobalt	4.4	0.7-30	-	11
Copper	72	13-288	95	650
Lead	61	10-3775	181.5	250
Molybdenum	9.5	-	-	28
Nickel	12.9	2-126	-	46
Zinc	394	40-25500	587.3	1150
Phosphorus	500	-	-	-
Nitrogen	2800	-	-	-
TSS*	400-1200		155	-

Table 24. Urban Highway Stormwater Quality from Literature and Sediment Quality Data from the Lost Lagoon Wetland in 2013

*mg/L

¹Washinton State (EPA), 2007

²British Columbia Waste Management Group, 1992

³Hemmera, 2013

Based on data from the state of Washington, USA, it was assumed that average highway stormwater would have a TSS concentration of approximately 800 mg/L. In order to maintain more consistent metal levels, the stormwater recipe for the laboratory column study was prepared in a semi-synthetic fashion. The stormwater was prepared using a target TSS of 400 mg/L and the remaining metal concentrations were 'topped up' using chemical additives. *Table 25* lists the target metal concentrations for the stormwater and the top up required using chemical additives.

	800 mg/L TSS	400 mg/L TSS	Target	Chemical Top Up Required
Element —	μg/L	μg/L	µg/L	μg/L
Antimony	51.2	25.6	65	39
Arsenic	5.6	2.8	100	97
Barium	164	82	205	123
Cadmium	2.8	1.4	5	4
Chromium	108	54	100	46
Cobalt	8.8	4.4	15	11
Copper	520	260	650	390
Lead	200	100	550	450
Molybdenum	22.4	11.2	30	19
Nickel	36.8	18.4	100	82
Zinc	920	460	1100	640
Phosphorus	0	0	500	500
Nitrogen	-	-	2800	2800

Table 25. Target Element Concentrations for Semi-Synthetic Stormwater Recipe

Chemical additives were selected based on previous work performed by Blecken et al., (2009) and based on common availability of these additives in the laboratory.

Table 26 lists the chemical additives that were used for the stormwater recipe. Concentrated volumes of the chemical additives were prepared in separate 1-L bottles for each element and the volumes were stored in a refrigerator at <4 $^{\circ}$ C for use over the duration of the study.

		Molecular	% Element
Element	Chemical Additive	Mass	% Element
		g/mol	g/g
Antimony	$K_2Sb_2(C_4H_2O_6)_2$	613.83	40%
Arsenic	As_2O_3	197.84	76%
Barium	BaCl ₂	208.23	66%
Cadmium	$Cd(NO_3)_2 \bullet 4H_2O$	368.45	31%
Chromium	[Cr(H₂O) ₆](NO₃)₃●3H₂O	535.07	10%
Cobalt	$Co(NO_3)_2 \bullet 6H_2O$	291.03	20%
Copper	$CuSO_4 \bullet 5H_2O$	267.70	24%
Lead	Pb(NO ₃) ₂	331.21	63%
Molybdenum	(NH ₄) ₆ Mo ₇ O ₂₄ •4H ₂ O	1,235.86	8%
Nickel	NiCl ₂ ·6H ₂ O	237.69	25%
Zinc	ZnCl ₂	136.30	48%
Phosphorus	KH ₂ PO ₄	136.09	23%
Nitrogen	NH_4NO_3	80.04	35%

Table 26. Chemical Additives Used for Semi-Synthetic Stormwater Supplementation

On November 30, 2015, semi-synthetic stormwater was prepared to match the target concentrations listed in *Table 25*. Stormwater was mixed in disinfected 5 gallon buckets and stored in sterile glass 2-L amber bottles at <4°C until application. Batches of semi-synthetic stormwater were prepared at two week intervals.

3.5.2.6.2 Stormwater Dose Volume and Frequency

To determine the stormwater dosing regime, the ratio of the top surface area sediment column to the Lost Lagoon wetland catchment area was calculated.

The watershed catchment area was calculated in Appendix E:

Lost Lagoon Watershed Catchment Area =
$$32143 m^2$$

The column top surface area was calculated using the measured diameter:

Column Top Surface Area =
$$\pi r^2 = \pi (0.14^2) = 0.061544 m^2$$

The ratio of column top surface area and catchment area was calculated using:

$$Ratio = \frac{0.061544 \ m^2}{32134 \ m^2} = 1.91 \times 10^{-6} \frac{m^2}{m^2}$$

Next, average weather data from Environment Canada weather station 1108446, Vancouver Harbour CS, which is located 1.82 km from Stanley Park was used to determine monthly average temperature and precipitation values for the field study site over the period between August and November.

Table 27. Environment Canada Average Precipitation and	Temperature Data for Vancouver Harbor
(Environment Canada, 2016)	

Month	Day Temperature	Night Temperature	Rain	Average Monthly Rain	Average Rain
wonth	°C	°C	Days/month	mm	mm
August	23	14	10	39.5	4.0
September	20	11	11	48.2	4.4
October	14	7	20	126.8	6.3
November	10	3	23	183.4	8.0

Using the data from the Environment Canada Station and assuming that the entire catchment area drains to the Lost Lagoon wetland, the average drainage volume per storm was calculated as:

$$Drainage Volume (m^3) = \frac{Average Rain (mm) \times Catchment Area(m^2)}{1000 \frac{mm}{m}}$$

The ratio of the catchment area to the column area was used to scale the water volume to be added to each laboratory column during each 'precipitation' event:

Column Volume (mL) = Drainage Volume (m³) × Ratio
$$(\frac{m^2}{m^2}) \times 1000 \frac{L}{m^3} \times 1000 \frac{mL}{L}$$

The frequency of precipitation events, or 'additions per week', was calculated using the average number of rain days and the days in each month:

Additions per week (n days) = Rain
$$\left(\frac{days}{month}\right) \times \frac{7\frac{days}{week}}{30\frac{days}{month}}$$

Month	Drainage Volume	Column Volume	Additions per Week
WOITT	m³	mL	n days
August	127.0	243	2
September	140.8	270	3
October	203.8	390	5
November	256.3	491	5

Table 28. Calculated Water Addition Volumes and Frequencies for Column Study

3 L of stormwater were initially added to each exposed column. After the initial loading of stormwater, the lids were sealed to each column and the columns were made watertight using Parafilm. Column watering was achieved using a sterilized 500 mL glass flask and a peristaltic pump. A piece of sterile tubing was connected to each side of the pump. One piece of tubing was inserted into the 500 mL glass flask and one side of the tubing was inserted through the small hole in the lid of the sample column. The glass flask was filled with the appropriate quantity of stormwater, or distilled water for the controls, and the water was fed into the column using the pump. Prior to adding volumes of water to each column, an equal volume of water in the column watering episode. All mobile equipment was soaked overnight in a 10% bleach solution prior to use. All stationary equipment was wiped clean with 95% disinfectant grade ethanol after every watering episode.

3.5.3 Column Study Sampling Regime

As previously stated, the column study began with 17 sediment columns, six of which were fed with distilled water and eleven of which were fed with semi-synthetic stormwater. The nature of sample collection required that columns be sacrificed. On day zero, two columns that were fed with stormwater and one column that was fed with distilled water were sacrificed and analyzed. Sampling of sediment columns then occurred at four week intervals following the same procedure. Thus, ten stormwater columns and five distilled water columns were sacrificed and analyzed for the study. The remaining two columns were used

to collect daily measurements for dissolved oxygen, conductivity, pH, temperature, and redox potential using the handheld device that was described in Chapter 1.

Sample collection for the column study was generally performed in the same manner as was performed in the Lost Lagoon wetland. 1 L plastic bottles were used to collect water samples near the soil-water interface. After collection of water, a peristatic pump was used to lower the water level in the column under investigation. For soil sampling, 5 disinfected 60 mL syringes, with sanded off ends, were carefully pressed into the soil layer at the centre and at four evenly spaced points around the column's perimeter. The syringes were carefully pulled from the column, capped on both ends with aluminum foil and frozen at <- 20°C until further processing.

3.5.4 Sample Preservation, Transport, Pre-Processing, Storage and Quality Control

Water samples collected at the Lost Lagoon wetland were preserved for DNA on site using the following procedure:

- To a 100 mL glass jar, add 20 mL of sample from each of 5 1-L plastic bottles;
- Cap the glass jar and place in a plastic zip-lock bag; and
- Place the bag in a cooler on dry ice.

Water samples collected during the laboratory study were combined and preserved by the same methods that were applied in the field. This includes taking samples for environmental parameters and contaminants.

Both field and laboratory study sediment samples were prepared and preserved for laboratory testing and DNA extraction following the procedures that were applied during the field study at the Lost Lagoon Wetland. These procedures are described in Section 2.5.1.5.

Field samples collected at the Lost Lagoon wetland were transported back to UBC using the methods described in Section 2.5.1.5. Laboratory study samples did not require additional transport.

For both the field and laboratory studies, water samples that were frozen on dry ice during transport were thawed at 4°C. 30 mL of sample water was filtered through a sterile filter paper with pore size of 0.45 μ m. Prior to filtering the water sample, the filtering apparatus was soaked in a 10% bleach solution overnight. The filtering apparatus was cleaned with 95% disinfectant grade ethanol between samples.

Filter papers were rolled in on themselves, placed in individual sterile petri dishes, wrapped in aluminium foil and frozen at <-20°C until DNA extraction.

Field and laboratory study sediment samples were pre-processed and stored according to the same procedure that is described in Chapter 1.

3.5.5 Laboratory Analysis of Water and Sediment Quality Parameters

Laboratory analysis for water and sediment quality parameters for the column samples followed the same procedures as were applied during the field study at the Lost Lagoon wetland. These procedures are described in Chapter 1.

3.5.6 Laboratory Preparation of Bacterial DNA

3.5.6.1 Sample Handling and Preservation

Prior to extracting DNA, water and soil samples from the field and lab studies were placed in sterile plastic bags, labelled and frozen at <-20°C.

3.5.6.2 Extraction of DNA and Quality Control

All equipment used during the DNA extraction process was soaked in bleach overnight and disinfected with 95% ethanol solution prior to and during use. The extraction of DNA was performed using Mobio PowerSoil® DNA Isolation Kits, catelog number 12888-100 (Qiagen, 2016) according to the manufacturer's instructions. Soil samples were extracted without modification to the procedure. Because the contents of the water samples were filtered onto sterile 0.45µm filters, prior to extraction, the filters were cut into 2mm by 2mm squares and the squares were inserted into the bead tubes using sterile forceps. The manufacturer's DNA extraction protocol was then followed without modification.

After extraction, DNA aliquots were frozen at <-20°C until further processing.

3.5.6.3 Quantification of DNA

DNA samples were thawed and quantified for DNA concentration using fluorimetric analysis on the Qubit[®] 3.0 Fluorimeter (Thermo Scientific, catalogue #Q33216)

3.5.7 Sequencing for Comparison of Microbial Community Compositions

Comparison of microbial community composition was achieved through sequencing and analysis of the 16s rRNA gene. Sequencing of the 16s rRNA gene was outsourced to Microbiome Insights, a Vancouver-based service company that has delivered microbial analyses to hundreds of both academic and industrial researchers. Prior to delivering DNA samples to Microbiome Insights, the researchers discussed with

Microbiome Insights staff to prepare a sequencing protocol that included the appropriate standards for quality control. After a satisfactory plan was established, samples were transported on dry ice to the Microbiome Insights facility, which is located approximately 300 m from the UBC chemical engineering building. Samples were frozen at <-80°C until further processing. An electronic sample list with DNA concentrations and appropriate meta-data was also provided to Microbiome Insights. Samples were delivered in two batches. The first batch included the DNA extracts from all 185 field study samples. The second batch included DNA extracts from all 112 column study samples.

3.5.7.1 Library Preparation and Quality Control

In preparation for sequencing of the 16s rRNA gene, the following procedures were performed.

10 μ M index primer aliquots were arrayed into 96-well plates as recommended by Kozich et al., (2013) as follows:

- A701 A712 with A501 A508
- A701 A712 with B501 B508
- B701 B712 with B501 B508
- B701 B712 with A501 A508

Template DNA was aliquoted into a 96-well format with blank wells included for negative control. PCR reactions were performed using ThermoFisher Phusion Hot Start II DNA Polymerase (2 U/ μ L). Each sample constituted a single PCR reaction. The PCR recipe and cycling conditions are indicated in *Table 29* and Table 30.

	Volume	
PCR Mix	μL/reaction	100
5x Buffer	10	1000
MgCl	1	100
Forward Primer	1	
Reverse Primer	1	
dNTP	1	100
dH ₂ O	33.5	3350
taq	0.5	50
template	2	
total	50	5000

Table 29. Recipe for PCR Used During Library Preparation Prior to 16s rRNA Gene Sequencing

	Temperature °C	Time	_
-	98	2:00	-
	98	0:20	20 cyclor
	55	0:15	
	72	0:30	
	72	10:00	-
_	4	hold	

Table 30. Conditions for PCR Used During Library Preparation Prior to 16s rRNA Gene Sequencing

In order to validate PCR success, eleven random samples and the negative control were analyzed and validated using gel electrophoresis. PCR products were then cleaned using Agencourt Ampure XP beads with a 0.8:1 bead to sample ratio. Following cleaning, PCR products were eluted to a final volume of 20 µL.

10 μ L of the clean PCR product were used for normalization using the Invitrogen SequalPrep kit, and the remaining 10 μ L were stored for backup. The amplicon library was normalized as recommended by Invitrogen (1-2 ng/ μ L), and 5 μ L of each normalized sample was pooled into a single library per plate (ie. 4 pooled plates in a 384-sample sequencing run). Library pools were further concentrated using the DNA Clean & Concentrator kit, following the manufacturer's instructions (Zymo Research). A dilution series was performed for each of the four pooled libraries for subsequent quality control steps.

Each pool was analyzed on the Agilent Bioanalyzer using the High Sensitivity DS DNA assay in order to determine the approximate library fragment size, and to verify library integrity.

Library pools containing unintended amplicons were purified using the Qiagen QIAquick Gel Extraction kit, following the manufacturer's instructions (Qiagen).

Pooled library concentrations were then determined using the KAPA Library Quantification Kit for Illumina and following the manufacturer's instructions (Kapa Biosystems).

Library pools were diluted to 4 nM and denatured into single strands using fresh 0.2 N NaOH as recommended by Illumina. The final library loading concentration was 8 pM, with an additional PhiX spikein of 20%.

3.5.7.2 Sequencing of the 16s rRNA Gene

The amplicon library was sequenced on the Illumina MiSeq using the MiSeq 500 Cycle V2 Reagent Kit (250 x 2).

3.5.8 Sequencing for Comparison of Microbial Functional Gene Compositions

Sequencing for comparison of microbial functional genes was achieved through metagenome sequencing. Metagenome sequencing was outsourced to the UBC Beatty NextGen Sequencing Centre. The steps towards sequencing of metagenomes are described here.

3.5.8.1 Sample Selection and Quality Control

Because meaningful results are dependent on sequence depth and quality, these parameters were of primary importance for the analysis of metagenomes. However, this also had to be balanced with the desire to maximize cost effectiveness. It was determined that a balance of sequence depth/quality and cost effectiveness could be reached when sequencing metagenomes, if six samples were sequenced per lane, using the Illumina HiSeq 2000.

To maximize the diversity of samples and to ensure redundancy was achieved, DNA extracts were pooled to form each sample. Only DNA extracts that had a concentration between 5 ng/µL and 20 ng/µL were considered for possible pooling. Prior to pooling samples, to ensure the DNA was not degraded, DNA extracts were visualized using gel electrophoresis. 12.5 µL of each of four DNA extracts were pooled to form a sample with a volume of 50 µL. Pooled samples were treated for RNA – 1 µL of RNASE A (Purelink-Introgen) was added to each pooled sample and the pooled samples were inclubated at 37 °C for twenty-five minutes.

To re-purfiy samples, 2 μ L of 5 M NaCL was added to each 50 μ L pooled sample. Samples were inverted three to five times to mix. 90 μ L of cold ethanol (100%) was added to each sample and the samples were inverted three to five times to mix. Samples were centrifuged at 10,000xg for 5 minutes. The liquid was decanted and the precipitate was allowed to air dry at room temperature. The DNA was then re-suspended in 45 μ L of sterile Tris, containing no EDTA (Solution 6 from the Mobio Powersoil Reagent Kit). The DNA concentration in each pooled sample was quantified a second time using the Qubit Fluorimeter 2.0.

Samples were selected based on the objectives of both field and lab studies and for the case of the field study, based on the known quality of environmental data.

A breakdown of the pooled samples is as follows:

- Lane 1
 - 1. Four sediment samples (2 depth, 2 surface) pooled, site 2.1 September 9, 2015
 - 2. Four sediment samples (2 depth, 2 surface) pooled, site 5.2, September 22, 2015
 - 3. Four sediment samples (2 depth, 2 surface) pooled, site 2.1, October 20 2015

- 4. Four sediment samples (2 depth, 2 surface) pooled, site 3.1, October 20, 2015
- 5. Four sediment samples (2 depth, 2 surface) pooled, site 4.1, October 20, 2015
- 6. Four sediment samples (2 depth, 2 surface) pooled, site 6.2, October 20, 2015
- Lane 2
 - 1. Four sediment samples (2 depth, 2 surface) pooled, Column 1, December 4, 2015
 - 2. Four sediment samples (2 depth, 2 surface) pooled, Column 7, December 4, 2015
 - 3. Four sediment samples (2 depth, 2 surface) pooled, Column 8, December 4, 2015
 - 4. Four sediment samples (2 depth, 2 surface) pooled, Column 5, March 29, 2016
 - 5. Four sediment samples (2 depth, 2 surface) pooled, Column 15, March 29, 2016
 - 6. Four sediment samples(2 depth, 2 surface) pooled, Column 16, March 29, 2016

Pooled samples were stored at <-20°C until they were delivered to the Beatty NextGen Sequencing Centre. Samples were placed on dry ice during transportation to the Beatty NextGen Sequencing Centre, which is located approximately 400 m from the UBC chemical engineering laboratory, where the samples were originally stored. Upon delivery, samples were stored at <-20°C until further processing.

3.5.8.2 Library Preparation and Quality Control

Library preparation was performed following a standard Illumina protocol for the HiSeq 2000 analyzer. The TruSeq Nano DNA LT Library Prep kit was used following manufacturer's instructions with settings for the Covaris M220 sonicator and 550bp insert size. Libraries were then validated using a Qubit Fluorimeter 2.0. Libraries were then sealed and stored at -20 °C for less than seven days. Libraries and the PhIX control were denatured and diluted according to manufacturer's instructions. The prepared libraries and PhIX control were then combined at a ratio of 99:1.

3.5.8.3 Cluster Generation

Cluster generation was performed using the cBot 2 system (SY-312-2001) following manufacturer's instructions for preparation of reagents and consumables and for quality control.

3.5.8.4 Sequencing of Whole Bacterial Genomes

Sequencing reagents were prepared following manufacturer's instructions and the following chemistry settings:

- SBS: HiSeq SBS Kit v4;
- Index: HiSeq v4 Index; and

• PE turnaround: HiSeq PE Cluster Kit v4.

When programming the sequencing run, the SBS reagent kit was set to 250 cycles on the reagent screen. The sequencing flow cell was loaded following the manufacturer's instructions for 100 base pair, pairedend sequencing and the sequencing run was executed.

3.5.9 Analysis of Bacterial Taxa Using the 16s rRNA Gene

Analysis of bacterial taxa using the 16s rRNA gene was performed through combination of three common microbial software programs, namely USearch, Mothur, and the R package, Vegan. Initial quality filtering, bioinformatics treatment and preparation of OTU tables was performed in USearch. Taxonomic assignments and calculation of alpha diversity and community composition parameters were performed in Mothur. Statistical analyses were performed in R. Further details and justification of input parameters are described below.

3.5.9.1 Quality Filtering and Determination of Unique Sequences and Abundances

Fastq file names were returned in the formatted output from MiSeq (i.e. s1_R1_001 etc). All Fastq files were transformed to fasta files. Using USearch, sequences were truncated to 200 bp and shorter sequences were dropped so that only high quality sequences remained. An example of the code is as follows:

• USearch -fastq_filter s1_R1_001.fastq -sample s1 -relabel @ -fastq_trunclen 200 -fastaout reads1.fa

Next, all files were concatenated to a single file to be used to determine the abundance of each operational taxonomic unit (OTU):

• copy/b read*.fa reads.fa

Following this, all sequences were transformed and truncated again and base quality was accounted for by setting the fastq_maxee parameter to 1.0:

• USearch -fastq_filter s1_R1_001.fastq -sample s1 -relabel @ -fastq_trunclen 250 -fastaout filtered1.fa -fastq_maxee 1.0

Again, all files were merged to a single file to be used for OTU calling:

• copy/b filt*.fa filtered.fa

A file was prepared with only unique sequences:

• USearch -derep_fullength filtered.fa -relabel Uniq -sizeout -fastaout uniques.fa Unique sequences were then sorted by abundance:

• USearch -sortbysize uniques.fa -fastaout suniques.fa -minsize 1

3.5.9.2 Preparation of OTU Tables

Unique sequences were pre-clustered with a threshold of 98% similarity:

• USearch -cluster_smallmem suniques.fa -id 0.98 -maxdiffs 4 -centroids preclustered.fa

The unique pre-clustered sequences were then sorted by size:

• USearch -sortbysize preclustered.fa -fastaout preclustered.fa -minsize 1

OTUs were clustered with "-minsize 2" in order to remove singletons:

• USearch -cluster_otus preclustered.fa -minsize 2 -otus otus_preuchime.fa -relabel Otu0

Chimera removal was performed using the rdp_gold.fa database:

• USearch -uchime_ref otus_preuchime.fa -db rdp_gold.fa -strand plus -nonchimeras otus.fa

An OTU table was prepared for the samples at 97% similarity with exported formats for both Mothur and Qiime applications:

• USearch -USearch_global reads.fa -db otus.fa -strand plus -id 0.97 -otutabout willotutab1.txt - biomout willotutab.json -mothur_shared_out wsh1.shared

3.5.9.3 Taxonomic Assignments

In Mothur, OTUs were classified and taxonomy was assigned using the Silva reference database for bacteria:

 Mothur -classify.seqs (fasta=otus.fa, template=silva.bacteria.fasta, taxonomy=silva.bacteria.silva.tax)

3.5.9.4 Bioinformatics

Alpha diversity and community composition parameters and indicator species analyses were calculated using Mothur. Sequences were subsampled to 9000 sequences for the field study and 5000 sequences for the lab study. Samples that had fewer than these numbers of sequences were dropped from the dataset. The sample code is as follows:

- Mothur -count.groups(shared=current)
- Mothur -summary.single(calc=coverage-sobs-chao-invsimpson, subsample=9000)
- Mothur -rarefaction.single(shared=current, calc=sobs, freq=100)
- Mothur -indicator(shared=current, design= current, processors=4)

3.5.9.5 Statistical Analyses on Data

3.5.9.5.1 Data Screening

Before analyses, a number of data screening techniques were applied, using GUide to STatistical Analysis in Microbial Ecology (GUSTA ME) (Buttigieg & Ramette, 2014).

These include:

• Avoiding data dredging;

Data dredging can occur when subsets of data are used to confirm hypotheses or when hypotheses are generated after the data is observed. Data dredging was avoided by <u>not</u> discarding data when it did not fit the hypotheses and by testing the hypotheses on more than one dataset.

• Ensuring awareness and consideration of pseudoreplication in the study;

Pseudoreplication occurs when dependent data is assumed to be independent. For example, if three measurements of the same sample are taken, then this data is dependent. In this study, pseudo-replicates were averaged prior to hypotheses testing and prior to visualization of the data.

• Checking and correcting for missing values;

Due to the nature of analysis using both ICP for metals and DNA sequencing for bacteria, some missing values occurred in the dataset. Samples with missing values were removed from the dataset prior to hypotheses testing. This generally was performed using is.na() parameter in R.

• Screening for outliers;

Microbial outliers were screened from the dataset using the Analysis of Similarity (ANOSIM) test in R. Outlier samples were removed from the dataset prior to analyses. This is further discussed in the results section.

3.5.9.5.2 Alpha Diversity

In order to compare alpha diversity among the samples, four indicators were calculated using the Mothur summary.single command. These include:

• Richness, or the number of different species present in a sample, based on the Chao1 estimator;

- Coverage, or the percent of the total species present in a sample, based on the Good's coverage calculation;
- Diversity, (richness and evenness, or the relative abundances of species) based on the inverse Simpson estimator; and
- Observed OTUs based on the SOBS calculation.

To compare alpha diversity, samples were split into separate datasets for the three materials (water, surface sediment, and 10-cm depth sediment) and split into separate datasets for the field and laboratory studies. Calculations were performed based on the different sites within the wetland and based on the columns analyzed in the laboratory study. In order to illustrate the variation among the data, barplots and boxplots were prepared for the various indices. To identify if there were significant differences among the data, one-way ANOVA tests were calculated using the standard R package (R Core Team, 2016) and interpreted using a confidence of 95%. Confirmation of both positive and negative statistical results was performed using the Tukey HSD test in R.

3.5.9.5.3 Community Composition

To compare community composition, samples were split into separate datasets for the three materials (water, surface sediment, and 10-cm depth sediment) and split into separate datasets for the field and laboratory studies. Statistical calculations were performed based on the different locations within the wetland (stormceptor, entry, exit and Lost Lagoon) for the field study and based on the dosing of columns and the date of sample extraction for the laboratory study. Plots and statistical calculations were completed in R using the R standard package and using the vegan package. OTU tables for the various datasets were imported from Mothur into RStudio. OTU data were log transformed and dissimilarity matrices were calculated using the vegan while setting the dissimilarity index to Bray Curtis and the maximum number of tries equal to 100. Stressplots were prepared and NMDS were only accepted if the R² in the stressplot was greater than 0.90 and the stress calculation was less than 0.20. Comparison between field study sites and laboratory study dosing was performed using the Adonis function in vegan with 999 permutations, the Bray Curtis dissimilarity index and the Bonferroni p-value adjustment. Fitting of environmental data was performed using the envfit statistic in vegan and 999 permutations. Statistical calculations for hypotheses tests were considered significant if the p-value was less than 0.05.

3.5.9.5.4 Indicator Species

The same approach for splitting the dataset was applied for the indicator species comparisons as was applied for the alpha diversity comparisons and community composition comparisons. Indicator species were calculated using the indicator() function in Mothur. Indicator species were considered statistically significant if the R statistics was greater than 80 and the p-value was less than 0.05.

3.5.10 Analysis of Bacterial Functions Using Metagenomics

Analysis of functional genes was performed using standard computational techniques. Initially, file conversion and de-multiplexing was performed using Illumina CASAVA software. Merging, assembly and quality filtering was performed using MetaVelvet. Bioinformatics treatments and preparation of functional lists were performed using MetaPathways. Additional analyses were performed using RStudio and Microsoft Excel.

3.5.10.1 File Conversion and Sequence De-Multiplexing

All sequences passing the HiSeq Q30 filter were converted by the Beatty Biodiversity centre from bcl to FastQ format with barcodes extracted using standard input to the Illumina supported software, CASAVA 1.8.2.

3.5.10.2 Read Merging, Quality Filtering, and Contig Assembly

Read merging, quality filtering and assembly of reads into contigs was performed using MetaVelvet (Namiki et al., 2011). The Kmer length was set to 31 and the minimum contig length was set to 100 bp.

3.5.10.3 Preparation of Function Lists

The MetaPathways v2.5.3 pipeline was used to perform quality control, protein prediction, clustering and similarity based annotation on sequence datasets using several bioinformatics tools as described by the authors (Konwar et al., 2014). The MetaPathways pipeline features:

- "Open reading frame (ORF) prediction using Prodigal with BLAST or LAST annotation against the MetaCyc, RefSeq, KEGG, and COG protein databases;
- 2. Taxonomic analysis using MEGAN, ML-TreeMap, 16S SSU and 23S LSU rRNA homology using the Silva and GreenGenes databases; and
- 3. Systematic creation of Environmental Pathway/Genome Databases (ePGDBs) mapping functional information onto the MetaCyc database of metabolic Pathways." (Konwar et al., 2014).

Minimum sequence length was set to 70 bp and minimum ORF length was set to 20 bp. All other quality control indices were left as standard parameter inputs.

3.5.10.4 Analyses on Data

Analysis were performed using the Vegan package in R and using basic graphing options in Microsoft Excel. Statistical analyses were not performed on this dataset because of the small sample size and because, at the time of publication, this is an area for future work.

3.5.10.5 Review of Results

Upon completion of this project, statistical results were independently reviewed by a consultant at the UBC Applied Statistics and Data Group (ASDA). As a reference, results of this review are included in Appendix K. Some minor modifications to the description of the methodology were made to clarify outcomes of this review; however, the majority of recommendations were outside of the scope of this study and left for future follow on research.

3.6 Results and Interpretation

3.6.1 Environmental Analysis

3.6.1.1 Confirmation of Beaver Lake Bog Soil Quality

In *Table 31*, a list is provided of the averages and standard deviations for the concentrations of all metals that were measured in order to confirm the quality of the soil at the Beaver Lake Bog. This was an essential first step because this soil was to be collected and packed into the sediment columns for the future study. The metals associated with stormwater runoff were of greatest interest. Barium, cadmium, cobalt, copper, manganese, molybdenum nickel, lead, and zinc were below detection limits or near/below the concentrations of metals measured at the exit to the Lost Lagoon wetland. The only stormwater metal of concern that measured above the levels in wetland exit was antimony. The reasons for this are unclear because other metals did not observe the same trend. The observation could be due to naturally occurring higher antimony levels in the bog soil or possibly some interference on the analytical instrument, where the antimony levels are quite close to the detection limit of 10 mg/kg dry weight.

		As	Ag	Al	В	Ba	Be	Cd	Со	Cr	Cu	Fe	К	Li
						mg	/kg dry \	veight						
							Averag	ge						
Bog 1	Surface			1051.5		23.2				20.5	31.2	1388.6	39.5	27.0
Bog 2	Surface			1821.8	49.5					43.3	35.2	3345.9	48.2	25.6
Bog 3	Surface			706.5	38.0	23.2				4.5	24.1	1028.4	52.3	25.1
Bog 4	Surface			921.0	44.7	28.5				46.7	20.5	1740.0	30.5	25.0
Bog 5	Surface			1284.3		57.0				15.4	32.4	2166.8	40.0	25.1
Bog 6	Surface			1360.3	44.3					69.5	17.7	2511.2	40.2	25.0
Site 5	Surface			9342.3	29.3	14.5				16.1	61.3	3144.4	101.5	36.3
						Stan	idard De	viation						
Bog 1	Surface			173.3		4.5				14.3	0.6	57.6	2.5	2.4
Bog 2	Surface			217.6						19.1	3.3	585.0	5.6	0.4
Bog 3	Surface			17.3	10.1	0.8					1.5	117.3	4.5	0.1
Bog 4	Surface			159.6	2.0	6.2					3.1	66.8	5.2	0.1
Bog 5	Surface			113.5		3.5				12.8	0.6	201.4	0.0	0.2
Bog 6	Surface			249.8	4.6						0.9	522.6	4.2	0.2
Site 5	Surface			3961.9	7.5	13.4				8.8	19.4	3338.8	71.2	4.7
		Mg	Mn	Mo	Na	Ni	Pb	Sb	Se	Si	Sr	Ti	V	Zn
						mg	/kg dry \	veight						
							Averag	ge						
Bog 1	Surface	726.9	24.4		626.5	5.8		12.9	81.4	1497.5		31.0		127.2
Bog 2	Surface	780.2			665.8	6.6		13.3	62.0	1379.7		67.3		122.6
Bog 3	Surface	302.1	20.6		528.3	4.1		14.2	78.4	1446.2		27.8		88.8
Bog 4	Surface	495.6	79.6		426.3	6.0		13.0	64.9	1601.5		33.4		94.9
Bog 5	Surface	827.8			761.5	4.3		15.3	46.5	1673.3		51.4		160.3
Bog 6	Surface	648.9	90.9		518.0	5.7		12.7	67.9	887.2		68.8		98.9
Site 5	Surface	858.5	103.3	7.0	1560.2	19.3	7.1	10.0		5286.4		184.6		253.6
						Stan	idard De	viation						
Bog 1	Surface	199.3	9.9		222.0	2.7		0.5	22.6	743.9				10.7
Bog 2	Surface	23.4			45.0	1.3		1.4	11.6	881.5		1.7		34.3
Bog 3	Surface	14.6	4.3		70.0	2.2		2.0	20.5	612.9		1.8		16.1
Bog 4	Surface	100.9			26.0	2.8		1.5	22.4	403.0				16.1
									10.5	000 1				
Bog 5	Surface	19.7			149.9	0.3			12.5	800.1				
Bog 5 Bog 6	Surface Surface	19.7 53.1	6.1		149.9 12.7	0.3		1.3	12.5 19.4	800.1 667.3		17.6		39.4

Table 31. Confirmation of Beaver Lake Bog Soil Quality

3.6.1.2 Preliminary Study

Prior to beginning the laboratory column study, a preliminary test was performed over one week. The results are recorded in *Table 32*. Measurements were collected and recorded for DO, pH, temperature, conductivity, and ORP using a YSI probe, as described previously. The measurements were taken at the surface of the column and at the soil-water interface (below a water depth of 30-cm). Measurements were compared to see if the conditions in the column would equilibrate to similar conditions as measured at the soil water interface in the Lost Lagoon wetland forebay. DO and pH generally equilibrated to the same range as measured in the forebay. Temperature measurements were not relevant because the preliminary test was operated at room temperature (approximately 22 °C) and the temperature in the forebay decreased over the autumn season. Conductivity measurements in the column were lower than the average measurement in the forebay; however, the column measurements were trending towards the forebay measurements. ORP measurements in the column also trended towards the levels measured in the forebay.

Overall, the results of the preliminary study were considered adequate enough to continue moving forward with the column study.

		-						
Time	DO, mg/L	pH Temperature, °C Conductivity, μS/cm		Conductivity, µS/cm	ORP, mV			
	Water Surface							
Zero	8.37	6.5	16.67	53.75	322.7			
36 hrs	4.69	5.71	19.21	54.97	390.2			
96 hrs	5.45	5.31	20.31	57.06	378.9			
192 hrs	5.35	5.48	20.45	49.95	372.6			
Soil-Water Interface								
Zero	7.64	7.14	16.75	64.12	309.1			
36 hrs	5.19	6.15	19.2	58.13	384.7			
96 hrs	5.8	5.49	20.14	66.24	373.5			
192 hrs	3.99	5.44	20.36	94.33	376.6			
	Wetland Forebay Soil-Water Interface							
Average	3.53	5.15	11.65	153.73	285.16			
St.Dev.	1.99	1.33	3.09	55.45	126.00			

Table 32. Measurements Recorded During Preliminary Column Test

3.6.1.3 Turbidity, TSS, COD and TOC

3.6.1.3.1 Interpretation

Turbidity, TSS, COD, and TOC were measured in the water samples of each lab study column at the time the columns were sacrificed. In Figure 50 through Figure 53, there was no observable trend in the measurements for any of these parameters with the exception that Column 1, which was sacrificed and analyzed on the first day of the column study, measured higher levels for all parameters. These higher measurements may have occurred because some organic material from the soil layer was stirred into the water layer during the initial addition of 30-L of water to the column. Unfortunately, the dataset was too small to make statistical comparisons between the columns.

In Figure 54, turbidity, TSS, TOC, and COD are visually compared between the first and last week of column samples and between the Lost Lagoon wetland entry and exit. With the exception of Column 1 having higher measurements, the field and lab study measurements for these parameters are generally within the same range. These parameters may have an influence on the microbial populations present in the water samples. Thus, in order to use the laboratory results to verify the field results, it is essential that the same range of measurements exists between the two studies.

3.6.1.3.2 *Figures*

Figure 50. Barplot Comparison by Column of Turbidity in Water Samples

Figure 51. Barplot Comparison by Column of Total Suspended Solids in Water Samples

Figure 52. Comparison by Column of Chemical Oxygen Demand in Water Samples

Figure 53. Comparison by Column of Total Organic Carbon in Water Samples

Figure 54. Comparison of Turbidity, TSS, TOC, and COD in Field and Lab Studies

3.6.1.4 Metals

3.6.1.4.1 Interpretation

Together, Figure 55 and Figure 56 illustrate the distribution of metals within the water samples obtained from the columns. From Figure 55 and Figure 56, visually, there is a trend over time of slightly decreasing metal concentrations in the columns that were fed distilled water and of increasing metals concentrations in the columns that were fed distilled water for molybdenum, nickel, barium, copper, manganese, and zinc. Cadmium, cobalt, and antimony measurements were near detection limits and this may account for less clarity in the results. The slight decrease in metal concentrations in the columns that were fed distilled water and of the soil as water in the columns that were fed distilled water may be due to some partial flushing of the soil as water in the columns was exchanged with distilled water on a regularly occurring basis, following the rain patterns in Vancouver.

In Figure 57 and Figure 58, the metal concentrations, measured during week one and week sixteen of the laboratory study and at the entry and the exit of the Lost Lagoon wetland, are compared. Unfortunately, statistical tests could not be performed between the two studies because the dataset for the column study was too small in comparison to the field study. However, the metal concentrations in the water samples collected from the stormwater columns at week sixteen generally did reach the concentrations measured at the entry of the Lost Lagoon wetland and of the stormwater that was fed into them. Due to the stormwater recipe that was prepared, some metal concentrations differed, including that molybdenum and nickel concentrations were higher in the laboratory stormwater columns than in the wetland forebay

and barium and that antimony concentrations were lower in the laboratory stormwater columns than in the wetland forebay.

In Figure 59 through Figure 62, generally the same trends were observed for the surface sediment samples as were observed for the water samples. Molybdenum and nickel concentrations were also higher in the laboratory stormwater column surface sediment samples than in the wetland forebay and barium and antimony concentrations were lower in the laboratory stormwater column surface sediment samples than in the wetland forebay. Figure 63 through Figure 66 illustrate that the same trend over time was observed for the 10-cm depth samples as was observed for the water and surface sediment samples. However, metal concentrations in the depth samples taken in the column study were higher than were observed in the field study. This was generally true for all metals present in the semi-synthetic stormwater. This may have an influence on the microbial communities present in these samples.

That being said, overall, the column study achieved its goal regarding the metal concentrations, which was to mimic the concentrations in the Lost Lagoon wetland, in order to provide a dataset for microbial comparisons later on.

Figure 55. Time Comparison of Metals Associated with Stormwater in Column Water Samples

Figure 56. Time Comparison of Metals Associated with Stormwater in Column Water Samples

3.6.1.4.2.2. Surface Sediment Samples

Figure 59. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment

Figure 60. Barplot Comparison by Plot of Metals Associated with Stormwater in Surface Sediment

Figure 62. Comparison of Metals Associated with Stormwater in Field Study and Lab Study Surface Sediment

3.6.1.4.2.3. 10-cm Depth Sediment Samples

Figure 63. Barplot Time Comparison of Metals Associated with Stormwater in 10-cm Depth Sediment

Figure 64. Barplot Time Comparison of Metals Associated with Stormwater in 10-cm Depth Sediment

Figure 65. Comparison of Metals Associated with Stormwater in Field Study and Lab Study 10-cm Depth Sediment

3.6.2 Microbial Community Analysis

3.6.2.1 Data Quality and Screening

3.6.2.1.1 Interpretation

Using the count.seq command in Mothur (Schloss et al., 2009), the average sequence count for the field samples (excluding blanks) was initially calculated to be 21,888. To ensure only high quality outputs were analyzed, the minimum cutoff was set to 9000 clones and by this means two DNA extracts were eliminated from the dataset. After setting the cutoff, the new average clone count for the field samples was calculated to be 22,084 clones. Because there was a range of counts obtained using the MiSeq platform, diversity analyses were performed by randomly subsampling 9000 clones from each sample present in the dataset.

Figure 67 is a rarefaction curve for the field sample sequences, which was calculated using the rarefaction.single command and SOBS parameter in Mothur. This graph illustrates the sequence depth and cutoff for the field samples. From the figure, it is clear that there were more OTUs identified in the sediment samples (marked with black and brown lines) than in the water samples (marked with blue lines). This is expected because there is generally a higher level of microbial diversity in soil samples than in water samples when sampling in the natural environment, as was performed in this field study. Diversity analyses were performed by randomly subsampling 5000 clones from each sample present in the dataset.

Using the ANOSIM function in R (R Core Team, 2016), an assessment of outliers among pseudo-replicate field samples was performed. The boxplot output is illustrated in Figure 68. Three pseudo-replicate field samples were identified as likely to be including outliers and all three pseudo-replicates corresponded to water samples. Figure 69 is an NMDS plot, which illustrates the pseudo-replicates that contain outliers. Three outliers were identified and removed from the field study dataset and the ANOSIM calculation was performed a second time, as illustrated in Figure 70. The removal of outliers increased the R fit statistic for the water sample dataset from 0.912 to 0.974.

The same screening procedures were performed on the dataset for the sequences obtained from samples taken during the laboratory column study (Figure 71). Sequence diversity was lower in this dataset, as was expected due to the controlled conditions in the laboratory. Before screening, the average number of clones (excluding blanks) was calculated to be 7138 clones. The minimum and maximum cutoffs were set to 5000 clones and 9000 clones, respectively. A maximum cutoff was set because three DNA extracts produced an unreasonably high level of clones (more than 500% above the average). This may be the result of a laboratory handling error because the samples were consecutively located on the sequencing plate for the MiSeq platform. After setting the cutoffs, the new average number of clones was calculated to be 6353.

Using the ANOSIM function (Figure 72), four outliers were identified among pseudo-replicates in the laboratory column study dataset. These outliers are illustrated using the NMDS plot displayed in Figure 73. After removal of outliers, the R fit statistic increased from 0.985 to 0.986 for the water samples dataset, from 0.906 to 0.908 for the surface sediment sample dataset, and from 0.904 to 0.951 for the depth sediment sample dataset. The recalculated ANOSIM output is illustrated in Figure 74.

3.6.2.1.2 Field Study

3.6.2.1.2.1. Sequence Depth Cutoff

Figure 67. Rarefaction Curve Illustrating Minimum Depth Cut-off for Field Samples

3.6.2.1.2.2. Comparison of Pseudo-Replicates and Outlier Screening

Figure 68. Anosim Boxplot Between Pseudo-Replicate Samples Prior to Outlier Screening in the Field Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)

Figure 69. NMDS Plot Illustrating Suspected Outliers Among Field Samples

Figure 70. Anosim Boxplot Between Pseudo-Replicate Samples After Outlier Screening in the Field Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)

3.6.2.1.3 Laboratory Study

3.6.2.1.3.1. Sequence Depth Cutoff

Figure 71. Rarefaction Curve Illustrating Minimum Depth Cutoff for Column Samples

3.6.2.1.3.2. Comparison of Pseudo-Replicates and Outlier Screening

Figure 72. Anosim Boxplot Between Pseudo-Replicate Samples Prior to Outlier Screening in the Column Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)

Figure 73. NMDS Plot Illustrating Suspected Outliers Among Column Samples

Figure 74. Anosim Boxplot Between Pseudo-Replicate Samples After Outlier Screening in the Column Study (Left to right: Water, Surface Sediment, and 10-cm Depth Sediment Samples)

3.6.2.2 Alpha Diversity

Please refer to Appendix H for the figures and tables that are referenced in this section.

In *Table 67*, one-way ANOVA comparison of the richness parameter using Chao1 indicated that there was a significant difference between the richness levels in the water samples, based on location (p-value =

0.008). Figure 109 through Figure 111 illustrate that lower richness was observed at Site 1 (stormceptor) and Site 6 (Lost Lagoon). The highest richness was observed at Site 5 (wetland exit). Alternately, in *Table 69*, comparison of coverage indicates a significant difference among locations (p-value = 0.004) with Site 1 and Site 6 having greater coverage than Site 2 through Site 5, as illustrated in Figure 112 through Figure 114. In *Table 71*, no significant difference (p-value = 0.237) was calculated for diversity among the water samples based on the Inverse Simpson index. Likewise, in *Table 72*, no significant difference (p-value = 0.130) was calculated for observed OTUs among the water samples based on SOBS. Figure 115 through Figure 120 graphically illustrate the calculations for diversity and observed OTUs.

In *Table 74*, one-way ANOVA comparison of the richness parameter using Chao1 indicated that there was a significant difference between the richness levels in the surface sediment samples, based on location (p-value = 0.011). Figure 121 through Figure 123 illustrate that lower richness was observed at Site 6 (Lost Lagoon). Alternately, in *Table 76*, comparison of coverage indicates a significant difference among locations (p-value = 0.010) with Site 6 having greater coverage than Site 2 through Site 5, as illustrated in Figure 124 through Figure 126. In *Table 78*, a significant difference (p-value = 0.003) was calculated for diversity among the surface sediment samples based on the Inverse Simpson index. However, in *Table 80*, no significant difference (p-value = 0.095) was calculated for observed OTUs among the surface sediment samples based on SOBS. Figure 127 through Figure 129 graphically illustrate the calculations for diversity and observed OTUs.

In *Table 81*, one-way ANOVA comparison of the richness parameter using Chao1 indicated that there was no significant difference between the richness levels in the 10-cm depth sediment samples, based on location (p-value = 0.727). Figure 130 through Figure 132 illustrate the similarity among sampling sites. Likewise, in *Table 82*, comparison of coverage indicated no significant difference among locations (p-value = 0.720), as illustrated in Figure 133 through Figure 135. In *Table 83*, no significant difference (p-value = 0.130) was calculated for diversity among the 10-cm depth sediment samples based on the Inverse Simpson index. In *Table 84*, no significant difference (p-value = 0.815) was calculated for observed OTUs among the 10-cm depth sediment samples based on the sediment the calculations for diversity and observed OTUs.

In *Table 86*, using the ANOVA test, a significant difference for diversity (p-value =0.0486) was calculated between water samples taken for the column study; however, this was not confirmed with the Tukey HSD test (p-value =0.0580). No other significant differences were calculated for any of the indices. The comparisons are illustrated in *Table 85* through *Table 97* and in Figure 145 through Figure 168.

3.6.2.3 Community Composition

3.6.2.3.1 Interpretation

Analysis of the bacterial communities in the field samples generally indicated significant differences based on the location where the samples were collected. This significance also held true after adjusting for the date when the samples were collected.

Among the water samples taken during the field study, the hypothesis that no difference existed between field sites failed (p-value = 0.002). Further pairwise testing indicated that the Lost Lagoon had the most significantly different bacterial community from the wetland entry or forebay (p-value = 0.006) and a significantly different bacterial community from the wetland exit or settling pond (p-value = 0.03). Of importance, a significant difference was not calculated between the wetland entry and wetland exit (pvalue = 0.492). In addition, no significant differences were determined between the stormceptor and any of the other sites for the bacterial communities identified in the water samples; however, this is likely due to a small sample size for the stormceptor. Figure 75 is an NMDS plot which illustrates the distance of dissimilarities among the field water samples. From this plot, there is a clear difference between the Lost Lagoon and the wetland; however, differences between the wetland entry and exit are more difficult to visually discern. Statistical outputs for the field water samples are summarized in Table 33 and Table 34. In addition, using the *envfit* statistic in the vegan package in R, only nickel had a significant correlation (pvalue <0.05) with the bacterial communities in the field water samples. However, nickel correlated with the Lost Lagoon, which had higher concentrations of nickel than the wetland. The lack of correlations among metal concentration and the field water samples suggest that water sampling alone would not be an adequate technique for validating a stormwater treatment wetland, such as the Lost Lagoon wetland.

Of greater significance among the bacterial community comparisons are the results between the surface sediment samples. In Figure 76, there are clear visual differences between the Lost Lagoon and the wetland forebay and wetland settling pond. These differences are supported by the statistical calculations summarized in *Table 35* and *Table 36* where all p-values are less than 0.05. In addition, using the envfit parameter, copper and chromium positively correlated with the wetland forebay samples and nickel negatively correlated with the wetland settling pond samples. The 10-cm depth sediment field samples yielded the same overall results as the surface sediment field samples. Barium concentrations also positively correlated with the wetland forebay. These results are illustrated in Figure 77 and summarized in *Table 37* and *Table 38*.

The bacterial communities, identified among the samples extracted from the laboratory column samples, yielded interesting results. These results begin to show some potential causation between the application or dosing of stormwater and the response of bacteria to said stormwater.

The NMDS plot in Figure 78 illustrates the response of bacteria in the water samples extracted over the duration of the column study. From the figure, generally, there is a departure between columns that were dosed with stormwater and between columns that were dosed with distilled water. Exposure to stormwater yielded a difference from distilled water (p-value = 0.035) even when accounting for the fact that the date that the samples were taken along the study period also yielded a significant impact (p-value = 0.003). Results positively correlated with four metals – manganese, nickel, chromium and copper. The statistical computations for the column water samples can be found in *Table 39*.

The NMDS plot in Figure 79 illustrates a similar response of bacteria in the surface sediment samples extracted over the duration of the column study as was observed with the water samples. There is significant departure between columns that were dosed with stormwater and columns that were dosed with distilled water (p-value = 0.05). Results positively correlated with copper. This held true when considering the date in which samples were extracted and computations are summarized in *Table 40*.

The NMDS plot in Figure 80 illustrates a different result for the 10-cm depth sediment samples extracted over the duration of column study. While there is some departure between the columns that were dosed with stormwater and the columns that were dosed with distilled water, there is no clear pattern with time for the progression of the bacterial communities in the columns that were dosed with distilled water. The summary of statistics for the 10-cm depth sediment samples can be found in *Table 41*.

3.6.2.3.2.1. Water Samples

Figure 75. NMDS Plot Comparing Field Study Water Samples

Table 33. Adonis Whole Dataset Comparison of Field Study Water Samples by Location with Strata Adjustment for Date

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Length	3	2.201482	0.733827	5.13504	0.401122	0.002
Residuals	23	3.286835	0.142906	NA	0.598878	NA
Total	26	5.488317	NA	NA	1	NA

Table 34. Adonis Pairwise Comparison of Field Study Water Samples by Location

	1 5	/	1 /		
	Pairs	F.Model	R2	p.value	p.adjusted
1	Lagoon vs Forebay	18.39609	0.505441	0.001	0.006
2	Lagoon vs Settling-Pond	13.37634	0.548743	0.005	0.03
3	Lagoon vs Stormceptor	1.588809	0.209362	0.266	1
4	Forebay vs Settling-Pond	2.45167	0.126039	0.082	0.492
5	Forebay vs Stormceptor	2.783385	0.188278	0.073	0.438
6	Settling-Pond vs Stormceptor	2.92018	0.368701	0.138	0.828

Figure 76. NMDS Plot Comparing Field Study Surface Sediment Samples

Table 35. Adonis Whole Dataset Comparison of Field Study Surface Sediment Samples by Location with Strata Adjustment for Date

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Length	2	1.215679	0.60784	6.157626	0.339121	0.002
Residuals	24	2.36912	0.098713	NA	0.660879	NA
Total	26	3.584799	NA	NA	1	NA

Table 36. Adonis Pairwise Comparison of Field Study Surface Sediment Samples by Location

	1 5	, ,		/	
	Pairs	F.Model	R2	p.value	p.adjusted
1	Lagoon vs Forebay	20.51019042	0.519111404	0.001	0.003
2	Lagoon vs Settling-Pond	22.04533539	0.710101376	0.005	0.015
3	Forebay vs Settling-Pond	6.611271881	0.248438779	0.001	0.003

Figure 77. NMDS Plot Comparing Field Study 10-cm Depth Sediment Samples

Table 37. Adonis Whole Dataset Comparison of Field Study Depth Sediment Samples by Location with Strata Adjustment for Date

	-					
	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Length	2	1.097689211	0.548844606	4.629741405	0.415979243	0.02
Residuals	13	1.541118444	0.118547573	NA	0.584020757	NA
Total	15	2.638807656	NA	NA	1	NA

Table 38. Adonis Pairwise Comparison of Field Study Depth Sediment Samples by Location

	, J	/ /		/	
	Pairs	F.Model	R2	p.value	p.adjusted
1	Lagoon vs Forebay	6.498867792	0.371387902	0.001	0.003
2	Lagoon vs Settling-Pond	14.66670227	0.70967792	0.016	0.048
3	Forebay vs Settling-Pond	5.200414149	0.366215668	0.004	0.012

3.6.2.3.3 Laboratory Study

Figure 78. NMDS Plot Comparing Laboratory Study Water Sediment Samples

Table 39. Adonis Whole Dataset	Comparison of	Laboratory Study	Water Samples by Exposure	and Date
--------------------------------	---------------	------------------	---------------------------	----------

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Exposure	1	0.167920169	0.167920169	2.007923907	0.121214106	0.035
Date	4	0.631997288	0.157999322	1.889294283	0.456210748	0.003
Residuals	7	0.58540126	0.083628751	NA	0.422575147	NA
Total	12	1.385318718	NA	NA	1	NA

Figure 79. NMDS Plot Comparing Column Study Surface Sediment Samples

Table 40. Adonis Whole Dataset Comparison of Laboratory Study Surface Sediment Samples by Exposure and Date

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Exposure	1	0.067210634	0.067210634	1.777639956	0.085997169	0.05
Date	4	0.37405388	0.09351347	2.473318129	0.478608408	0.001
Residuals	9	0.340280217	0.037808913	NA	0.435394423	NA
Total	14	0.781544732	NA	NA	1	NA

3.6.2.3.3.3. 10-cm Depth Sediment Samples

Figure 80. NMDS Plot Comparing Column Study 10-cm Depth Sediment Samples

Table 41. Adonis Whole Dataset Comparison of Laboratory Study Depth Sediment Samples by Exposure and Date

	Df	SumsOfSqs	MeanSqs	F.Model	R2	Pr(>F)
Exposure	1	0.051649735	0.051649735	1.168781611	0.061211356	0.224
Date	4	0.394423785	0.098605946	2.231353513	0.467441217	0.001
Residuals	9	0.39771982	0.044191091	NA	0.471347427	NA
Total	14	0.843793339	NA	NA	1	NA

3.6.2.4 Indicator Species

3.6.2.4.1 Interpretation

Indicator species were determined using Mothur for the three different sample types extracted during both the field study and the laboratory column study. In Figure 81 through Figure 83, the top indicator species are illustrated by relative abundance for the field sites. In Figure 84 through Figure 86, the top indicator species are illustrated by relative abundance for the laboratory columns that were sampled during week 16 of the column study. While significant indicator species were determined, there are no discernable patterns at the phylum level among the identified indicator species. One discernable difference was that, generally, there were a greater number of significant indicator species identified at the sites and in the columns that were not dosed with stormwater. This might suggest that some species of bacteria are influenced by stormwater, either negatively (extinction) or positively (adaptation). Further research and repeat testing would be required in order to deduce statistics for this hypothesis, however.

3.6.2.4.2 Field Study

Ч Ц

Phylum,

OTU,

3.6.2.4.2.1. Water Samples

Figure 81. Indicator Species Barplot for Field Study Water Samples

138

3.6.2.4.2.2. Surface Sediment Samples

Otu049, Alphaproteobacteria, 96, 0.003 Otu03321, Deltaproteobacteria, 77, 0.002 Otu0682, Alphaproteobacteria, 92, 0.003 -Otu0870, Alphaproteobacteria, 78, 0.001 Otu0349, Acidobacteria, 81, 0.001 Otu0681, Erysipelotrichi, 88, 0.003 -Otu048, Sphingobacteria, 83, 0.003 Otu0784, Alphaproteobacteria, 80, 0.003 -Otu01578, Actinobacteria, 77, 0.002 L Otu0122, Gammaproteobacteria, 78, 0.003 , Phylum, R. Otu01558, Alphaproteobacteria, 79, 0.001 Otu0601, Spirochaetes, 79, 0.003-Otu01788, Clostridia, 80, 0.003 OTU, Otu0801, Acidobacteria, 76, 0.003 Otu03455, Anaerolineae, 76, 0.001 Otu0828, Spirochaetes, 79, 0.001 Otu04186, Anaerolineae, 80, 0.001 Otu02213, Erysipelotrichi, 78, 0.001 Otu01645, Planctomycetacia, 79, 0.003 Otu01860, Deltaproteobacteria, 82, 0.002 Otu03647, Erysipelotrichi, 81, 0.001 Otu01003, Spirochaetes, 94, 0.003 Otu03708, Sphingobacteria, 83, 0.002

Figure 82. Indicator Species Barplot for Field Study Surface Sediment Samples

Figure 83. Indicator Species Barplot for Field Study 10-cm Depth Sediment Samples

139

3.6.2.4.3 Laboratory Study

3.6.2.4.3.1. Water Samples

Figure 84. Indicator Species Barplot for Laboratory Study Water Sediment Samples

3.6.2.4.3.2. Surface Sediment Samples

Figure 85. Indicator Species Barplot for Laboratory Study Surfaced Sediment Samples

Figure 86. Indicator Species Barplot for Laboratory Study 10-cm Depth Samples

3.6.3 Microbial Functional Gene Analysis

3.6.3.1 Data Quality and Screening

Quality control removed an average of %1.80 percent of sequences and 1.79% of translated ORFs. *Table* 42 and *Table* 43 provide summary statistics for the quality control of sequence data.

	Sequences (#)	Minimum Length	Average Length	Maximum Length	Total Base Pairs	Translated ORFs (amino) (#)	Minimum Length	Average Length	Maximum Length	Total Base Pairs
October Site 2	1112254	61	109	2172	122159553	1032935	18	34	523	36034670
October Site 3	874221	61	107	1606	93989112	824868	18	34	460	28107007
October Site 4	862982	61	106	11286	91791432	801450	18	33	917	27091806
October Site 5	3313614	61	103	13962	344045197	3128608	15	32	1434	102697812
October Site 6	1367387	61	104	5548	142795471	1057221	15	33	805	35373718
September Site 2	795230	61	110	6160	881879676	739436	18	35	598	26103686
Column 1	886693	61	110	2208	98099327	832115	16	35	528	29327503
Column 7	1010237	61	111	1843	99794400	949845	17	35	511	33618691
Column 8	792921	61	108	1467	86045364	731896	18	34	377	25359107
Column 5	733631	61	145	27254	107065610	704410	18	45	1114	31937114
Column 15	1068593	61	165	16241	177132959	1026190	17	50	2197	51854855
Column 16	967645	61	147	12007	142540522	927311	18	45	1237	42313345

Table 42. Summary Statistics for Sequence Data Prior to Quality Control and Screening

Table 43. Summary Statistics for Sequence Data After Quality Control and Screening

	Sequences (#)	Minimum Length	Average Length	Maximum Length	Total Base Pairs	Translated ORFs (amino) (#)	Minimum Length	Average Length	Maximum Length	Total Base Pairs
October Site 2	1093496	70	110	2172	120966323	1032935	20	34	523	35458633
October Site 3	868657	70	107	1606	93627335	808769	20	34	460	27628016
October Site 4	849512	70	107	11286	90924595	784604	20	33	917	26593745
October Site 5	3309767	70	103	13962	343209220	3071139	20	32	1434	100954728
October Site 6	1284648	70	107	5548	137559094	1029315	20	33	805	34575323
September Site 2	778822	70	111	6160	87149331	724319	20	35	598	25658071
Column 1	874291	70	111	2208	97300822	813273	20	35	528	28758224
Column 7	997944	70	111	1843	111616320	929628	20	35	511	33007909
Column 8	777275	70	109	1467	85048533	715807	20	34	377	24879426
Column 5	723742	70	146	27254	106382831	693944	20	45	1114	31617064
Column 15	1045794	70	167	16241	175054974	1011977	20	50	2197	51425082
Column 16	953961	70	148	12007	141415083	914016	20	45	1237	41908807

3.6.3.2 Functional Gene Composition

3.6.3.2.1 Interpretation

To visualize the composition of annotated genes using the KEGG database, NMDS plots were prepared in the same fashion as was performed for visualization of bacterial communities except this time using the relative abundance of annotated genes for the samples instead of the abundance of OTUs.

Figure 87 is an NMDS plot for the metagenomes sequenced from a subset of sediment samples collected during the field study at the Lost Lagoon wetland. From Figure 87, based on the relative distance between samples, there is some indication that samples taken at the same location but a month apart have more similar metagenomes than samples that are taken on the same date but in different locations. There is also some evidence that Site 2, Site 3, and Site 4 (wetland forebay) have greater similarity to each other than they do to Site 5 (wetland settling pond) or Site 6 (Lost Lagoon). The dataset provides some interesting proof of concept results, though there are too few data points to form definitive conclusions.

Likewise, Figure 88 is an NMDS plot for the metagenomes sequenced from sediment samples collected at the beginning and at the end of the column study. From Figure 88, there is some evidence that after sixteen

weeks, the soil columns that were dosed with stormwater formed a separate cluster from the soil column that was dosed with distilled water. As with the field study, the dataset provides some interesting proof of concept for the utility of metagenomics in monitoring stormwater treatment but more data would be needed to strengthen preliminary findings 3.6.3.2.2 Figures

Figure 87. NMDS Plot of KEGG Annotated Genes for Field Samples

Figure 88. NMDS Plot of KEGG Annotated Genes for Column Samples

3.6.3.3 Metal Adaptation Genes

3.6.3.3.1 Interpretation

Genes, which are known to be partially responsible for metal adaptation, (*Table 19*) were highlighted from the dataset and plotted based on their relative abundance. It was the desire of the author to compare mechanisms for tolerance of copper, lead and zinc in this section as these three metals showed clear trends of decreasing concentrations along the length of the Lost Lagoon wetland. However, few markers for copper and no markers for lead adaptations were present in the KEGG database from 2014. The one marker that was present in the dataset for copper (CusR) did not form an identifiable trend among samples taken during the field study or among samples taken during the column study. For these reasons, comparisons were instead performed using markers for zinc, manganese/zinc/iron, and cobalt/nickel tolerances.

Figure 89 is a plot which illustrates the relative abundance of six genes that are relevant for zinc transport or resistance. The comparison is complicated because the genes do not all present the same trend. For example, the znuB gene has a downward trend between the wetland exit and entry; however, the zraP gene has an upward trend between the wetland exit and entry. The relative abundances of znuB is greater than the relative abundance of the other genes in this subset and this suggests that this gene may be more dominant in zinc transport than some of the others, though this is not conclusive. Of interest, in Figure 90, the znuB gene also has a greater relative abundance in the soil columns that were dosed with stormwater than in the soil columns that were dosed with distilled water. For this initial investigation, this suggests that znuB may be an important factor in zinc tolerance and that this could be an item for further investigation.

A similar result, as was just described, is illustrated in Figure 91 for four genes associated with manganese/zinc/iron transport. In this figure, the two genes with the highest relative abundances (troB and sitB) have higher relative abundances in the wetland entry than in the wetland exit. However unlike in the previous example for zinc, the results for the column study, illustrated in Figure 92, do not present the same result. This adds to the complexity of the observations and illustrates that there are many influential factors at play.

Finally, in Figure 93 and Figure 94, the relative abundances of the czcA sequence, which codes for cobalt and nickel resistance proteins (Gillan et al 2015), are compared for the field and column studies, respectively. CzcA expressed both a clear decrease in relative abundance along the length of the wetland and clear increase in relative abundance in soil columns that were dosed with stormwater compared to soil columns that were dosed with distilled water. Like znuB, CzcA also represents an item that may be useful for further investigation.

3.6.3.3.2 Figures

Figure 89. Relative Abundance of Genes Associated with Zinc Measured in Field Samples

Figure 90. Relative Abundance of Genes Associated with Zinc Measured in Column Samples

Figure 91. Relative Abundance of Functional Associated with Manganese, Zinc and Iron Measured in Field Samples

Figure 93. Relative Abundance of CzcA Tolerance Gene Measured in Field Samples

Figure 94. Relative Abundance of CzcA Tolerance Gene Measured in Column Samples

3.7 Discussion and Conclusion

While the goal of this study was to provide proof of concept data that supports or rejects developing a genomics monitoring tool for low impact design features that treat stormwater, including engineered wetlands, the goal of Chapter 2 was to expand on the results of Chapter 1 by applying genomics-based approaches to support the conclusion that the Lost Lagoon wetland is effectively treating stormwater. In addition, this chapter attempted to provide data to support the application of genomics for validation of other low impact design sites that treat stormwater. In this chapter experimentation was conducted and data was gathered and analyzed to provide proof that microbial analyses can support environmental analyses for the validation of a stormwater treatment wetland and possibly other similar systems. For this, an attempt was made to answer three hypotheses and to support three objectives.

3.7.1 Chapter Hypotheses

To provide proof of concept results for the application of genomics-based analyses as a wetland validation technique, it was previously stated that three hypotheses must be true.

- 1. There is a shift in the composition and function of the microbial communities that exist between the entry and exit of the Lost Lagoon wetland;
- The shift in the composition and function of the microbial communities between the entry and exit of the Lost Lagoon wetland is influenced by the decreasing concentration of contaminants along the length of the wetland; and
- 3. There are similarities across unconnected sites in the adaptations that take place within microbial communities due to exposure to stormwater.

Regarding the first hypothesis, demonstrating a shift in the composition and function of microbial communities along the Lost Lagoon wetland, some important conclusions can be drawn. There was a significant difference in microbial community composition calculated between the wetland entry and exit for the surface sediment samples and for the 10-cm depth sediment samples but no significant difference was calculated for community composition between the water samples taken at the wetland entry and exit. Comparison of community diversity between the wetland entry and exit did not yield significant differences. However, a greater number of indicator species were identified at the wetland exit than at the wetland entry, suggesting that future analyses at a greater depth could focus on this element of the current study. For the proof of concept stage of analysis, the overall community composition comparisons suggest that long term trends are of greater importance for wetland validation and that further research could focus on sediment testing only.

Relating to functional genes for the first hypothesis, data was only obtained for a small subset of sediment samples collected during the field study and thus, final conclusions could not be drawn at the time of writing. Initial results suggest that there was some clustering of metagenomes based on the location where samples were collected in the wetland and that the date in which samples were collected was less important than the location in which samples were collected. These observations fit positively with the hypothesis that there is a shift in functional genes between the wetland entry and exit; however further investigation is required for validation of this hypothesis.

Regarding the second hypothesis, correlating contaminants with microbial communities and functions, additional conclusions can be drawn. Some significant correlations were determined between the wetland entry and exit. However, challenges remain where metal concentrations are only slightly higher than detection limit concentrations using ICP-OES analysis. Copper, nickel, and chromium displayed the strongest correlations with the microbial communities (p-values < 0.05) between the wetland entry and wetland exit. Likewise, some functional gene sequences that are known to code for metal tolerances had higher relative abundances in samples that were measured to have higher metal concentrations. For example, this was evident for both the znuB gene, which codes for zinc resistance and the czcA gene, which codes for nickel/cobalt resistance. That being stated, there were great complexities among the functional genes data and it is important to evaluate the dataset as a greater whole before conclusions can be drawn.

Finally, regarding the third hypothesis, determining if exposure to stormwater will shift the microbial communities at an unconnected site, unique and interesting conclusions can be drawn. For the community bacteria compositions, no significant changes in microbial diversity were determined. However, for the water samples and surface sediment samples, there was a clear departure between the microbial communities in the sediment columns that were dosed with stormwater and the microbial communities that were dosed with distilled water. This trend was not evident in the 10-cm depth sediment samples, however. As with the wetland field study, there were also a greater number of indicator species identified in sediment columns that were dosed with distilled water over sediment columns that were dosed with stormwater.

Interestingly, some similarities were present between the field and column study for functional genes. The znuB gene and the czcA gene both had higher relative abundances after sixteen weeks in the columns that were dosed with stormwater versus the column that was dosed with distilled water. However, the same result between the laboratory and field studies was not evident for genes associated with zinc/manganese/iron, thus observations are not conclusive and further exploration of the data and

150

experimentation is required. Metal resistance is regulated by a wide host of cellular functions and because the data output is so large, challenges arise in identifying the factors that have the greatest influence.

3.7.2 Chapter Objectives

To support the goal of this study, to provide proof of concept data that supports or rejects developing a genomics-based monitoring tool for low impact design features that treat stormwater, including engineered wetlands, three objectives were previously stated for this chapter:

- 1. Apply genomics-based analysis methods to determine if there are shifts in the microbial communities and functional genes along the length of the Lost Lagoon wetland;
- 2. Determine if there is a correlation between the water and sediment quality, present over the study period, and the microbial communities and functional genes observed; and
- 3. Determine, through laboratory experimentation, if there are opportunities to expand and pursue genomics analyses at other low impact design features for stormwater treatment.

Comparing the results of the hypotheses tests in this chapter serves to support the first objective, (i.e. determining if microbial shifts exist along the length of the Lost Lagoon wetland). While diversity and indicator species did not prove to be significant measures for comparison, microbial community composition presented clear shifts between the wetland entry and wetland exit, as was confirmed using common statistical techniques in microbiology, including the Adonis test in the R vegan package. Comparison of the metagenomes presented similar results and helped to confirm that there is a change in the microbial community between the entry and exit of the wetland.

For the second objective, determining if correlations exist between sample quality and bacteria, some important conclusions were drawn; however, this objective could, perhaps, be taken further with future research. Using the envfit statistic in the R vegan package, some significant correlations were calculated between metal concentrations and microbial communities but the noise present in the data presents challenges for validating conclusions. Similar results were observed for functional genes responsible for metal tolerances. Sequences that were present in greater relative abundances, such as znuB and czcA were illustrated to demonstrate some correlation with metal concentrations; however, this result was complicated by a wide array of additional sequences that may play a part in metal tolerance but are not present in a high enough quantity to be measurable or comparable.

For the third and final objective in this chapter, performing laboratory experiments to determine if there may be opportunities to perform genomics analyses at other sites, the research presented here suggests that stormwater influences bacteria and that this may be exploited for treatment monitoring purposes.

Specifically, in the column study, the departure over time, of the microbial communities in the sediment columns that were dosed with stormwater from the sediment columns that were dosed with stormwater, suggests that there is causation between stormwater contamination and the composition of microbial communities. In addition, some similar results between the field and column studies, for dominant metal resistance genes, present promise for future research.

3.7.3 Final Remarks

The work described in this chapter effectively provided data to inform the three hypotheses that were laid out in this chapter and this also supported the three objectives described here. In doing so, this chapter has provided some interesting proof of concept for the application of genomics analyses for stormwater treatment monitoring purposes, particularly for engineered wetlands. As time continues, the expansion of datasets for bacterial species and gene annotation will improve the quality of future data comparisons, only adding to the interest in this field of research. This will be particularly valuable for metals that are toxic in low concentrations and for metals that do not have strong documentation for bacterial tolerances.

3.8 Limitations

Limitations for the environmental sampling in the Lost Lagoon wetland were described in Chapter 1 and similar limitations were present throughout the methodology described in Chapter 2. The limitations experienced here were mainly due to budget constraints that limited the number of unique samples that could be sequenced and analyzed. This was true for both the community analyses and functional gene analyses. Conclusions presented in this chapter are only true for the study presented here; they are not universal for wetland treatment systems. Further research at other stormwater treatment wetlands is required to validate the application of genomics as a viable treatment monitoring method. In addition, the suggestion of causation between stormwater contamination and microbial communities demonstrated in the laboratory column study requires repetition of the column study in its entirety before conclusions can be drawn. For the proof of concept, that genomics can be used to support monitoring and validating stormwater treatment wetlands, this chapter has laid a strong foundation for future research in support of designing a more concrete monitoring tool.
4. Discussion

In Chapter 1, the results of traditional analyses techniques for monitoring and validating the efficacy of an operating stormwater treatment wetland, namely the Lost Lagoon wetland, were described. These analyses were performed to support the notion that genomics-based analyses can be applied as a tool to enhance and/or improve traditional monitoring techniques. Conclusions in Chapter 1 suggested that the uncertainty inherent to traditional monitoring for stormwater treatment may be an area where additional analyses may provide support. In Chapter 2, the results of genomics-based analyses at the Lost Lagoon wetland and a laboratory study for stormwater dosing were described. Conclusions in Chapter 2 suggest that including genomics-based analyses in stormwater treatment monitoring may provide greater certainty of treatment efficacy using a lower number of samples for analyses. Here, a cost comparison of the traditional stormwater treatment wetland validation method described by Erickson, Weiss and Gulliver (2013) is compared to the method described in Chapter 1 and Chapter 2. Theoretical costs are calculated based on a both a full validation, as well as a single compliance monitoring event, using the Lost Lagoon wetland that was analyzed in this study as an example.

4.1 Cost Comparison of Wetland Validation Techniques

4.1.1 Sample Collection

For traditional stormwater treatment validation, Erickson, Weiss and Gulliver (2013) recommend the deployment of stormwater automatic samplers at the inlet and outlet pipes of the treatment wetland. Automatic samplers would be triggered during each storm event and a field technician would be required to visit the site to collect samples each time the automatic samplers were triggered. Using the Lost Lagoon wetland as an example, there are 166 storm events in Vancouver each year (Environment Canada, 2016) and thus sampling would need to occur at this frequency.

For genomics-based treatment validation, the sampling methods described in this study would be applied. Two field technicians would be required to extract samples from the wetland at two week intervals over the rain season, which is approximately 8 months in Vancouver, thus 16 sampling events would be required. *Table 44* lists the predicted labor cost for each sampling event based on a rate of \$30 per hour per technician.

Eay jet sample sensetien	
Sample Collection Labor	Cost/Day
Traditional	\$ 90.00
Genomics	\$ 480.00

Table 44. Approximate Cost Per Day for Sample Collection

The cost of labor for sample collection using traditional methods is calculated to be:

$$166 \ storms \times 2 \ years \times \frac{\$90}{storm} = \$29,880$$

Likewise, the cost of labor for sample collection using genomics-based methods is calculated to be:

$$16 \, days \times \frac{\$480}{day} = \$15,360$$

4.1.2 Laboratory Analyses

Laboratory analyses of environmental samples presents a major cost for validating stormwater treatment wetlands. *Table 45* lists the approximate cost per sample for a traditional wetland validation. *Table 46* lists the approximate cost per sample for bacterial community analysis and corresponding analysis of trace metals in soil. *Table 47* lists the approximate cost per sample for sample for functional genes analyses with corresponding analysis of trace metals in water samples.

1 3	
Traditional Ana	alyses
Element	Cost ¹
рН	\$ 10.00
ORP	\$ 10.00
Conductivity	\$ 10.00
Turbidity	\$ 10.00
TSS	\$ 20.00
COD	\$ 30.00
TOC	\$ 30.00
Oil and Grease	\$ 40.00
Trace Metals Water	\$ 125.00
Total	\$ 285.00

Table 45. Approximate Cost Per Sample for Traditional Stormwater Quality Analysis

¹(Canadian Association for Laboratory Accreditation, 2016)

Table 46. Approximate Cost Per Sample for Genomics-Based Stormwater Quality Analysis Using Length Comparison of Bacterial Communities

Genomics Ar	alyses
Element	Cost
Trace Metals Soil	\$ 150.00 ¹
MiSeq	\$ 75.00 ²
Total	\$ 225.00

¹(Canadian Association for Laboratory Accreditation, 2016) ²(Microbiome Insights, 2016)

Table 47. Approximate Cost Per Sample for Genomics Stormwater Quality Analysis Using Entry and Exit Comparison of Bacterial Functional Genes

Genomics Ana	lyses
Element	Cost
Trace Metals Water	\$ 125.00 ¹
HiSeq	\$ 850.00 ²
Total	\$ 975.00

¹(Canadian Association for Laboratory Accreditation, 2016)

²(University of British Columbia Beatty Biodiversity Sequencing Centre, 2016)

Using the values listed in *Table 44* through *Table 47* the costs for traditional and genomics laboratory analyses are as follows.

Traditional:

166 storms ×3 (triplicates)×2 locations ×2 years ×
$$\frac{\$285}{sample}$$
 = \$567,720

Genomics:

$$16 \ days \times 3 \ (triplicates) \times 18 \ locations \times \frac{\$225}{sample} = \$194,400$$
$$16 \ days \times 3 \ (triplicates) \times 2 \ locations \ \times \frac{\$975}{sample} = \$93,600$$
$$Total = \$194,400 + \$93,600 = \$288,000$$

4.1.3 Total Cost of Data Acquisition

By summing the cost of sample collection and laboratory analyses, an estimate for the cost of data acquisition for both a traditional and a genomics-based wetland validation is calculated.

Traditional:

Total = \$567,720 + \$29,880 = \$597,600

Genomics:

$$Total = $288,000 + $15,360 = $303,360$$

Only the cost for sample collection and laboratory analyses were included in the cost estimate because these two factors were deemed to be the items of greatest significance. The cost of sampling equipment would be relatively small compared to the cost of laboratory analyses, for example. This cost estimate suggests that the genomics-based method described in this study may represent a lower cost option for data acquisition for validating stormwater treatment wetlands than traditional techniques. The cost and time for data analysis and reporting is also a major item but is not included here.

4.2 Cost Comparison of a Single Wetland Monitoring Event

The results expressed in the previous section represent total cost figures for a full wetland validation study but it is expected that this level of effort would not be expended by a municipality that is operating a stormwater treatment wetland. From an engineering perspective, monitoring tends to only be performed on one date annually or even less frequently (Chris Johnston, personal communication). This is because regulatory agencies typically do not require performance monitoring for stormwater treatment systems for road runoff, even though contaminant concentrations may be greater than effluent guidelines. Single point in time monitoring events often provide inconclusive results, which can be a barrier for the installation of engineered wetlands. This was described further in Chapter 1. Strengthening the quality of single event monitoring data may be beneficial in the face of increasing regulatory requirements and a will among municipalities to implement low impact design features, such as engineered stormwater treatment wetlands.

Thus, using the Lost Lagoon wetland as an example, if a municipality only monitored the performance of the wetland on one day, the monitoring regime would be quite limited. Based on past single point in time monitoring including that of Hemmera (2013) and Thoren et al (2007), the traditional single monitoring event would theoretically include sampling approximately nine soil and water samples from the entry and exit of the wetland followed by metal analyses performed in duplicate. This would represent a cost of:

$\frac{\$275}{sample} \times 9 \ Locations \times 2 \ Sites \times 2 \ (duplicate)[analyses] + \$480 \ [collection] = \$9,900$

If that same single monitoring event also included genomics-based analyses with nine locations selected for 16s bacterial community analysis and three locations selected for metagenome analysis, the cost increase would be:

$$(\frac{\$75}{sample} \times 9 \text{ Locations } \times 2 \text{ Sites } \times 2 \text{ (duplicate)} + \$850 \times 3 \text{ Locations } \times 2 \text{ Sites)} \text{ [analyses]} + \$480 \text{ [collection]} = \$7,800$$

× - -

While this represents a greater cost to acquire data, the added benefit for confidence in results may be worth the expense. In addition, as methods and scientific understanding of genetic data processing increases in the future, it may one day be possible to drop the sample size or to exclude some of the metal analyses entirely. Thus, for future monitoring efforts, there is a significant financial opportunity for genomics-based methods to outcompete traditional methods for stormwater treatment monitoring, particularly for low impact design systems where microbiota influence treatment performance.

5. Conclusion

The goal of this study was to provide proof of concept data to inform the development of a genomics-based tool for monitoring stormwater treatment wetlands. In the introduction, the motivation for improving wetland monitoring techniques was described and the Lost Lagoon wetland was illustrated as an ideal location to perform a case study. In Chapter 1, background details on stormwater contaminants, stormwater treatment wetlands and the Lost Lagoon wetland were outlined. Results of traditional monitoring were prepared and conclusions illustrated that there are shortcomings present with the status quo for traditional wetland monitoring. In Chapter 2, genomics-based methods were introduced as an additional technique for monitoring stormwater treatment wetlands. Results from DNA sequencing were compared using water and sediment samples extracted from the Lost Lagoon wetland and several outcomes suggested that bacteria may correlate with the performance of treatment wetlands. This was generally supported further using results from samples extracted during a stormwater dosing study using columns of soil sourced from the Stanley Park bog in Vancouver, British Columbia.

The discussion immediately before this section provided a brief cost comparison of traditional validation and monitoring and genomics-based validation and monitoring. This cost comparison highlighted that an full wetland validation study may be less expensive using genomics and that a single point in time wetland monitoring event may be more expensive using genomics, though the improvement on data and confidence in results could be worth the cost increase. In addition to providing proof of concept data and cost analyses, this study also included method development which should serve to refine future genomicsbased studies for stormwater treatment wetlands and other low impact design features. Specifically, it was found that sediment sampling provided the greatest promise when attempting to discern long-term stormwater treatment trends in both the field wetland study and in the laboratory stormwater dosing study.

Within the limits of graduate studies research, this study achieved its goal. Proof of concept, for the application of genomics-based monitoring of stormwater treatment wetlands, was provided. It was demonstrated that genomics will supply benefits for future stormwater treatment monitoring endeavours and that additional investigation into this field is worthwhile.

6. Recommendations

6.1 Follow-On Research

This study provided useful proof of concept results and preliminary conclusions. However, there are several facets which were not in the scope of this research project and could be continued with further. These include:

- Measuring the quality of stormwater that enters and exits the Lost Lagoon wetland, through installation of an automatic sampler;
- Performing a validation on the sizing of the Lost Lagoon wetland forebay based on flow velocities;
- Performing more in depth analyses of other pollutants, including petrochemicals, exiting the Stanley Park Causeway and the analyzing the impact of these other pollutants on bacteria;
- Statistically correlating indicator species with metal concentrations;
- Statistically correlating known metal resistance genes with metal concentrations;
- Sequencing a larger number of metagenomes to increase the confidence in this study's findings;
- Repeating the metagenome analyses using an updated and more widely accepted annotation tool, such as the MG-RAST server;
- Performing some additional statistical analyses, as outlined by the independent review of this project included in Appendix K;
- Repeating the field study at additional stormwater treatment wetlands of similar and different configurations and comparing the findings with the results illustrated here;
- Repeating the column study using the same controls and comparing the findings with the results illustrated here;
- Repeating the column study using modified controls and comparing the findings with the results illustrated here; and
- Modifying the approach applied here for application at other low impact design sites such as retention ponds, absorbent landscapes, and swales, among others.

Based on these facets that were outside the scope of this research project, there are several follow-on recommendations. First, at the time of publication, the twelve metagenomes, which were analyzed in this thesis, had been submitted to the MG-RAST server for gene annotation. Analysis of these results will be used to inform the articles (listed in the Preface to this thesis), which are currently in preparation and will be submitted for publication. After this analysis is confirmed and finalized, the main follow-on recommendation resulting from the present study is to repeat the sampling and analysis methodology at

additional stormwater treatment wetlands. Ideally, a follow-on study would perform the methodology recommended here at two or more additional sites – one with similar structure to that of the Lost Lagoon wetland and one with an alternate structure. Following this, results could be compared between wetlands and more significant conclusions could be drawn as to the validity in applying genomics as a monitoring tool for engineered wetlands.

6.2 Application and Improvements of Study Methodology

The research presented here provided a broad analysis of data using several sample mediums. Based on outcomes described in Chapter 1 and Chapter 2, for follow-on phase applications of this research, some optimum choices for the sampling and analyses methodology include:

- During the rainy season, collect field samples at either two or four week intervals for at least four months but preferably eight months if time and budgets permit;
- Collect and analyze samples at the inlet and outlet of each wetland instead of along the entire length of each wetland;
- Follow the environmental sampling protocols described in Chapter 1 for both sediment and water samples but analyze all samples for environmental parameters in triplicate instead of in duplicate;
- Perform DNA analyses on surface sediment samples only;
- To reduce the overall number of samples in the que for DNA sequencing, homogenize surface sediment samples across the entire wetland entry and entire wetland exit for each date sampled instead of on a 1 m plot basis for each date sampled; and
- Follow the sequencing and bioinformatics methodologies described in Chapter 2 for both 16s and metagenome analyses but also consider modifying these techniques as new improvements become available.

Taken together, these improvements should allow for a more streamlined comparison of the treatment efficacy within each wetland and between different wetlands for future applications of the tool described within this document.

Bibliography

- Albarracin VH, Avila AL, Amoroso MJ, Abate CM (2008) Copper removal ability by Streptomyces strains with dissimilar growth pat- terns and endowed with cupric reductase activity. FEMS Microbiology Letters, 288:141–148
- Batool R, Yrjala K, Hasnain S. (2012). Hexavalent chromium reduction by bacteria from tannery effluent. Journal of Microbial Biotechnology 22:547–554
- Beard SJ, Hashim R, Membrillo-Hernandez J, Hughes MN, Poole RK (1997) Zinc(II) tolerance in *Escherichia coli* K-12: evidence that the zntA gene (o732) encodes a cation transport ATPase. Molecular Microbiology, 25: 883-891
- Blecken, G.-T., Zinger, Y., Deletić, A., Fletcher, T. D., & Viklander, M. (2009). Influence of intermittent wetting and drying conditions on heavy metal removal by stormwater bio-filters. Water Research, 43(18), 4590–4598.
- Bopp LH, Ehrlich HL (1988) Chromate resistance and reduction in *Pseudomonas fluorescens* strain LB300. Archives of Microbiology, 150: 426-431
- Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of *Ralstonia metallidurans* CH34. Journal of Bacteriology, 183: 5651–5658
- Branco R., Chung, A.P., Johnston T., Gurel, V., Morais P., Zhitkovich A. (2008) The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium(VI) and superoxide. Journal of Bacteriology, 190(21):6996–7003
- Bratieres, K., Fletcher, T., Deletic, A., & Zinger, Y. (2008a). Nutrient and sediment removal by stormwater biofilters: A large-scale design optimization study. Water Research, 42, 3930-3940.
- Bratieres, K., Fletcher, T.D., Alcazar, L., Le Coustumer, S.M., McCarthy, D.T. (2008b). Removal of nutrients, heavy metals and pathogens by stormwater biofilters. In: 11th International Conference on Urban Drainage. Edinburgh, Scotland, UK, 2008.
- British Columbia Ministry of Community, Sport, and Cultural Development. (n.d.). Environmental Infrastructure. Retrieved May 17, 2016, from LGD: Stormwater: http://www.cscd.gov.bc.ca/lgd/environment/stormwater.htm

- British Columbia Ministry of the Environment. (1992). Urban Runoff Quality Guidelines for the Province of British Columbia. Vancouver, BC: Municipal Waste Branch: Environmental Protection Division.
- British Columbia Ministry of Water, Land and Air Protection. (2011). Environmental Management Act, 2004. Contaminated Sites Regulation. British Columbia, Canada.
- Buttigieg PL, Ramette A (2014) A Guide to Statistical Analysis in Microbial Ecology: a community-focused, living review of multivariate data analyses. FEMS Microbial Ecology, 90: 543–550.
- Government of Canada. Fisheries Act (1985). Retrieved from http://laws-lois.justice.gc.ca/PDF/F-14.pdf

Canadian Association for Laboratory Accreditation (2016). Environmental Laboratory Price Guide. Retrieved from: http://www.enr.gov.nt.ca/programs/taiga-environmental-laboratory/price-guide.

Canadian Council of Ministers of the Environment. (2015). Water Quality Guidelines for the Protection of Aquatic Life.

Cervantes C, Silver S (1992) Plasmid chromate resistance and chromium reduction. Plasmid 27: 65-71

- Chang FM, Coyne HJ, Cubillas C, Vinuesa P, Fang X, Ma Z, Ma D, Helmann JD, García-de los Santos A, Wang YX, Dann CE3rd, Giedroc DP (2014) Cu(I)-mediated allosteric switching in a copper-sensing operon repressor (CsoR). Journal of Biological Chemistry, 289(27): 19204–19217
- Chaturvedi KS, Hung CS, Crowley JR, Stapleton AE, Henderson JP (2012) The siderophore yersiniabactin binds copper to protect pathogens during infection. Natural Chemical Biology 8:731–736
- Chen, E.Y. Chapter One The Efficiency of Automated DNA Sequencing, In Automated DNA Sequencing and Analysis, edited by MD. Adams, C. Fields and JC Venter, Academic Press, San Diego, 1994, Pages 3-10
- Chillappagari S, Miethke M, Trip H, Kuipers OP, Marahiel MA (2009) Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. Journal of Bacteriology, 191:2362–2370
- City of Vancouver. (2016a). Integrated Rainwater Management Plan Best Management Practice Toolkit, II, 48.
- City of Vancouver. (2016b). Trail Map of Stanley Park. Retrieved from http://vancouver.ca/files/cov/Stanley-Park-trails-map.pdf
- Clifford, G. (1932). A Biological Survey of Lost Lagoon. University of British Columbia.

Cole Parmer. (2016). Hand Syphon. Retrieved from:

http://www.coleparmer.co.uk/Product/Hand_operated_water_and_chemical_siphon_drum_pump 32 strokes gallon/WZ-70607-00

- Das, S., Dash, H. R., Chakraborty, J. (2016). Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants. Applied Microbiology and Biotechnology, 100(7), 2967–2984.
- De J, Ramaiah N, Bhosle NB, Garg A, Vardanyan L, Nagle VL, Fukami K (2007) Potential of mercury resistant marine bacteria for detoxification of chemicals of environmental concern. Microbes of the Environment, 22:336–345
- De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Marine Biotechnology, 10:471–477
- Dey S, Papadopoulou B, Haimeur A, Roy G, Grondin K, Dou D, Rosen BP, Ouellette M (1994) High level arsenite resistance in *Leishmania tarentolae* is mediated by an active extrusion system. Molecular Biochemistry, 67: 49-57
- Djoko KY, Chong LX, Wedd AG, Xiao Z (2010) Reaction mechanisms of the multi-copper oxidase CueO from Escherichia coli support its functional role as a cuprous oxidase. Journal of the American Chemistry Society, 132:2005–2015
- Dutka, B., Marsalek, J., Jurkovic, A., Kwan, K., & Mcinnis, R. (1994). Eco-toxicological study of stormwater ponds under winter conditions. Zeitschrift Für Angewandte Zoologie, 80(1), 25–42.
- Edgar, R.C. (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads, Nature Methods [Pubmed:23955772, dx.doi.org/10.1038/nmeth.2604].
- Edgar, R.C. (2016), SINTAX, a simple non-Bayesian taxonomy classifier for 16S and ITS sequences, http://dx.doi.org/10.1101/074161.
- Edgar, R.C. (2016), UCHIME2: Improved chimera detection for amplicon sequences, http://dx.doi.org/10.1101/074252.
- Edgar, R.C. and Flyvbjerg, H (2015) Error filtering, pair assembly and error correction for next-generation sequencing reads, doi: 10.1093/bioinformatics/btv401.

Edgar, RC (unpublished) http://drive5.com/usearch

- Edgar, RC (2010) Search and clustering orders of magnitude faster than BLAST, Bioinformatics 26(19), 2460-2461. doi: 10.1093/bioinformatics/btq461
- Edgar, RC, Haas, BJ, Clemente, JC, Quince, C, Knight, R (2011) UCHIME improves sensitivity and speed of chimera detection, Bioinformaticsdoi: 10.1093/bioinformatics/btr381 [Pubmed 21700674].
- Environment Canada. (2016, December 1). Station Results Historical Data Vancouver Harbour CS. Vancouver, British Columbia, Canada.
- Erickson, A. J., Weiss, P. T., & Gulliver, J. S. (2013). Optimizing Stormwater Treatment Practices: A Handbook of Assessment and Maintenance. New York, United States: Springer Science and Business.
- ESRI. (2016, October). ARCGIS Map Maker and Analysis Tool. Retrieved from https://www.arcgis.com/home/webmap/viewer.html
- Fakruddin, M., & Mannan, K. S. Bin. (2013). Methods for Analyzing Diversity of Microbial Communities in Natural Environments. Ceylon Journal of Science (Biological Sciences), 42(1), 19–33.
- Faulwetter, J. L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M. D., Brisson, J., ... Stein, O. R. (2009).
 Microbial processes influencing performance of treatment wetlands: A review. Ecological
 Engineering, 35(6), 987–1004.
- Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of *Haemophilus influenza Rd*. Science 269, 496-512 (1995).
- Ge Z, Taylor DE (1996) Helicobacter pylori genes hpcopA and hpcopP constitute a cop operon involved in copper export. FEMS Microbiology Letters, 145:181–188
- Geosyntec Consultants, & Wright Water Engineers Inc. (2011). International Stormwater Best Management Practices (BMP) Database Pollutant Category Summary Statistical Summary: Metals. International Stormwater BMP Database. Retrieved from www.bmpdatabase.org
- Gilbert, R. O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York: John Wiley and Sons, Inc.
- Gillan, D. C., Roosa, S., Kunath, B., Billon, G., & Wattiez, R. (2015). The long-term adaptation of bacterial communities in metal-contaminated sediments: A meta-proteo-genomic study. Environmental Microbiology, 17(6), 1991–2005.

- Gjessing, E., Lygren, E., Andersen, S., Berglind, L., Carlberg, G., Efraimen, H., ... Martinsen, K. (1984). Acute toxicity and chemical characteristics of moderately polluted runoff from highways. The Science of the Total Environment, 33, 225–232.
- Gonzalez CF, Ackerley DF, Lynch SV, Matin A (2005). ChrR, a soluble Quinone reductase of Pseudomonas putida that defends against H2O2. Journal of Biological Chemistry 280:22590–22595
- Gonzalez H, Jensen TE (1998) Nickel sequestering by polyphosphate bodies in Staphylococcus aureus. Microbiosphere, 93: 179-185

Government of British Columbia. (2016). Municipal Wastewater Regulation. B.C. Reg 87/2012.

Government of Canada. (1999). Environmental Protection Act.

- Grass G, Fricke B, Nies, DH. (2005) Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. Biometals. 18:437–448
- Grass G, Grobe C, Nies DH (2000) Regulation of the cnr cobalt and nickel resistance determinant from Ralstonia sp. strain CH34. Journal of Bacteriology, 182:1390–1398
- Grass G, Thakali K, Klebba PE, Thieme D, Muller A, Wildner GF, Rensing C (2004) Linkage between catecholate siderophores and the multi-copper oxidase CueO in *Escherichia coli*. Journal of Bacteriology, 186:5826–5833
- Gupta A, Matsui K, Lo JF, Silver S (1999) Molecular basis for resistance to silver in Salmonella. Nat Med (in press)
- Gupta SD, Wu HC, Rick PD (1997) A Salmonella typhimurium genetic locus which confers copper tolerance in copper sensitive mutants of *Escherichia coli*. Journal of Bacteriology 179: 4977-4984
- Hach. (2007). Hach Method 8158/8164. Solids, Non-filterable Suspended Solids; Total and Volatile:
 Adapted from USAEPA Standard Gravimetric Method in Standard Methods for Examination of
 Water and Wastewater Section 2450. Hach Company. Retrieved from http://www.hach.com/asset-get.download-en.jsa?code=56432.

Hach. (2008). Portable Turbidimeter Model 2100P: Instrument and Procedure Manual. Hach Company.

Harpole, W. (2010). Neutral theory of species diversity. Nature Education Knowledge. 1: 31.

- Hartman, W. H., Richardson, C. J., Vilgalys, R., & Bruland, G. L. (2008). Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 105(46), 17842–17847.
- Hawkins, W. B., Rodgers, J. H., Gillespie, W. B., Dunn, A. W., Dorn, P. B., & Cano, M. L. (1997). Design and Construction of Wetlands for Aqueous Transfers and Transformations of Selected Metals. Ecotoxicology and Environmental Safety, 36, 238–248.
- Hemmera. (2013). In-Situ Sediment Investigation at Lost Lagoon Stormwater Treatment Wetland. Vancouver, BC.
- Henne KL, Nakatsu CH, Thompson DK, Konopka AE. (2009). High-level chromate resistance in *Arthrobacteria sp.* strain FB24 requires previously uncharacterized accessory genes. BMC Microbiology 9:199
- Hu YH, Wang HL, Zhang M, Sun L (2009) Molecular analysis of the copper-responsive CopRSCD of a pathogenic Pseudomonas fluorescens strain. Journal of Microbiology, 47:277–286

James, W. (2010). User's Guide to SWMM. USA: CHI Management.

Jarosławiecka A, Piotrowska-Seget Z (2014) Lead resistance in microorganisms. Microbiology 160:12–25

- Karlsson, K., Viklander, M., Scholes, L., & Revitt, M. (2010). Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks. Journal of Hazardous Materials, 178(1–3), 612–618.
- Kerr Wood Leidal Associates Ltd. (1999). Stanley Park Stormwater Management Plan. Prepared in Burnaby for the City of Vancouver Board of Parks and Recreation.
- Kerr Wood Leidal. (2002). Lost Lagoon Stormwater Treatment Wetland: Operation and Maintenance Manual. Vancouver, BC: Kerr Wood Leidal Associates Ltd.
- Konwar, K. M., Hanson, N. W., Pagé, A. P., & Hallam, S. J. (2013). MetaPathways: a modular pipeline for constructing pathway/genome databases from environmental sequence information. BMC Bioinformatics, 14(1), 202.
- Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K., & Schloss, P. D. (2013). Development of a dualindex sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and environmental microbiology, 79(17), 5112-5120.

- Laverman AM, Blum JS, Schaefer JK, Phillips EJP, Lovley DR, Oremland RS (1995) Growth of strain SES-3 with arsenate and other diverse electron acceptors. Applied Environmental Microbiology, 61:3556-3561
- Levinson HS, Mahler I (1998) Phosphatase activity and lead resistance in *Citrobacter freundii* and Staphylococcus aureus. FEMS Microbiology Letters 161: 135-138
- Lewis, J., & Sjöstrom, J. (2010). Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. Journal of Contaminant Hydrology, 115(1–4), 1–13.
- Liesegang H, Lemke K, Siddiqui RA, Schlegel H-G (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. Journal of Bacteriology, 175: 767-778
- Loman, N. J., Constantinidou, C., Chan, J. Z. M., Halachev, M., Sergeant, M., Penn, C. W., Pallen, M. J. (2012). High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nature Reviews Microbiology, 10(9), 599–606.
- Marsalek, J., Rochfort, Q., Mayer, T., Servos, M., Dutka, B., & Brownlee, B. (1999). Toxicity testing for controlling urban wet-weather pollution: advantages and limitations. Urban Water, 1(1), 91–103.
- Meyer, F., Paarmann, D., D'Souza, M. D., Olson, R., Glass, E. M., Kubal, M., ... Edwards, R. A. (2008). The metagenomics RAST server - A public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9(386). Retrieved from http://www.biomedcentral.com/1471-2105/9/386.%0A1.5

Microbiome Insights. (May 2016). Personal communication.

- Mishra R, Sinha V, Kannan A, Upreti RK. (2012). Reduction of chromium-VI by chromium resistant Lactobacilli: a prospective bacterium for bioremediation. Toxicology International, 19:25–30
- Morillo JA, Garcia-Ribera R, Quesada T, Aguilera M, Ramos- Cormenzana A, Monteoliva-Sanchez M (2008) Biosorption of heavy metals by the exopolysaccharide produced by *Paenibacillus jamilae*. World Journal of Microbial Biotechnology, 24:2699–2704
- Mulliss, R. M., Revitt, D. M., & Shutes, R. B. E. (1996). A statistical approach for the assessment of the toxic influences on *Gammarus pulex* (Amphipoda) and *Asellus aquaticus* (Isopoda) exposed to urban aquatic discharges. Water Research, 30(5), 1237–1243.

- Namiki, T., Hachiya, T., Tanaka, H., Sakakibara, Y., 2011. MetaVelvet: An extension of Velvet assembler to de novo metagenome assembly from short sequence reads. ACM Conference on Bioinformatics, Computational Biology and Biomedicine.
- Nies D, Mergeay M, Friedrich B, Schlegel HG (1987) Cloning of plasmid genes encoding resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus CH34. Journal of Bacteriology, 169: 4865-4868
- Nies DH (1995) The cobalt, zinc, and cadmium efflux system CzcABC from *Alcaligenes eutrophus* functions as a cation-proton-antiporter in Escherichia coli. Journal of Bacteriology 177: 2707-2712
- Nies DH, Silver S (1989a) Metal ion uptake by a plasmid-free metal-sensitive *Alcaligenes eutrophus* strain. Journal of Bacteriology 171:4073-4075
- Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730–750.
- Nies, D. H. (2003). Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiology Rev, 27, 313–339.
- Nogaro, G., Mermillod-Blondin, F., Montuelle, B., Boisson, J. C., Bedell, J. P., Ohannessian, A., Gibert, J. (2007). Influence of a stormwater sediment deposit on microbial and biogeochemical processes in infiltration porous media. Science of the Total Environment, 377(2–3), 334–348.
- Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid pl258 cadA gene results from a cadmium-efflux ATPase. Proceedings of the National Academy of Sciences, USA, 86:3544-3548
- O'Del, J. W. (1993). Determination of Turbidity by Nephelometry. Standard Methods for the Examination of Water and Wastewater, (August), 1–10.
- Odermatt A, Krapf R, Solioz M (1994) Induction of the putative copper ATPases, CopA and CopB, of Enterococcus hirae by Ag+ and Cu2+, and Ag+ extrusion by CopB. Biochemical Biophysics Res. Community, 202: 44-48
- Olafson RW, Abel K, Sim RS (1979) Prokaryotic metallothionein: preliminary characterization of a bluegreen algae heavy-metal binding protein. Biochemistry Biophysics Res. Community 89: 36-43
- Oxford University Press. (2016). Oxford Dictionaries. Retrieved May 17, 2016, from Definition of Genomics in English: http://www.oxforddictionaries.com/us/definition/american_english/genomics

- Park JH, Bolan N, Meghraj M, Naidu N (2011) Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilising bacteria (Enterobacter sp.). Journal of Environmental Management, 92:1115–1120
- Parks DH, Tyson GW, Hugenholtz P, Beiko RG. (2014). STAMP: Statistical analysis of taxonomic and functional profiles. Bioinformatics, 30, 3123-3124.
- Paul D, Pandey G, Pandey J, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology, 23:135–142
- Paulsen, I. T., & Holmes, A. J. (2014). Environmental Microbiology: Methods and Protocols. (J. Walker, Ed.) (2nd ed.). USA: Humana Press.
- Pitt, R., Field, R., Lalor, M., & Brown, M. (1995). Urban stormwater toxic pollutants: assessment, sources, and treatability. Water Environment Research, 67(3), 260–275.
- Potter, B., & Wimsatt, J. (2005). Method 415.3 Measurement of Total Organic Carbon, Dissolved Organic Carbon and Specific UV Absorbance at 254 NM in Source Water and Drinking Water. Washington, DC: U.S. Environmental Protection Agency.
- R Core Team. (2016). R: A language and environment for statistical computing. R. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
- Rastogi G, Sani RS (2011) Molecular techniques to assess microbial community structure, function and dynamics in the environment. In Microbes and microbial technology: agricultural and environmental applications. Ahmad I, Ahmad F, Pichtel J, eds, pp 29–57. Springer, New York.
- Rensing C, Mitra B, Rosen BP (1997b) The zntA gene of Escherichia coli encodes a Zn(II)-translocating Ptype ATPase. Proceedings of the National Academy of Science, USA 24: 14 326-14 331
- Roane TM (1999) Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecology. 37:218–224
- Rodrigue A, Effantin G, Mandrand-Berthelot MA (2005) Identification of rcnA (yohM), a nickel and cobalt resistance gene in Escherichia coli. Journal of Bacteriology, 187:2912–2916
- Rosenstein, R., Peschel, A., Wieland, B., & Götz, F. (1992). Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of *Staphylococcus Xylosus* plasmid pSX267. Journal of Bacteriology, 174(11), 3676–3683.

- Sanders, O, Rensing C, Kuroda M, Miltra B, Rosen, B. (1997). Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia Coli. Journal of Bacteriology. 179: 3365-3367.
- Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., ... Weber, C. F. (2009).
 Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 75(23), 7537–41. https://doi.org/10.1128/AEM.01541-09
- Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. Journal of Bacteriology, 176: 7045-7054
- Seitzinger, S., Harrison, J., Böhkle, J., Bouwman, A., Lowrance, R., Peterson, B., & Ven Drecht, T. (2006). Denitrification across waterscapes and landscapes: A synthesis. Applied Ecology, 16, 2064–2090.
- Silver S, Misra TK, Laddaga RA (1989) DNA sequence analysis of bacterial toxic heavy metal resistances. Biological Trace Element Resistance, 21:145-163
- Stahler FN, Odenbreit S, Haas R, Wilrich J, Van Vliet AH, Kusters JG, Kist M, Bereswill S (2006) The novel Helicobacter pylori CznABC metal efflux pump is required for cadmium, zinc, and nickel resistance, modulation, and gastric colonization. Infection Immunology, 74: 3845–3852
- Stephens, K. A., Graham, P., & Reid, D. (2002). Stormwater Planning: A Guidebook for British Columbia. Victoria: British Columbia Ministry of Water, Land, and Air Protection.
- Stime, S. E. (2014). Source Controls for Runoff Treatment: Hydrologic Response and Water Quality Attenuation. University of British Columbia.
- Sun, M. Y., Dafforn, K. A., Johnston, E. L., & Brown, M. V. (2013). Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environmental Microbiology, 15(9), 2517–2531.
- Thelwell C, Robinson NJ, Turner, JA, Cavet JS (1998) An SmtB-like repressor from Synechocystis PCC 6803 regulates a zinc exporter. Proceedings of the National Academy of Sciences, USA 95: 10 728-10 733
- Thoren, R., Shiu, R., Shum, J., Jensen, M., & Wells, S. (2007). The Effectiveness of Heavy Metal and Hydrocarbon Removal by the Stanley Park Stormwater Treatment Wetland at Lost Lagoon. University of British Columbia.

- Tibazarwa C, Wuertz S, Mergeay M, Wyns L, van Der Lelie D (2000) Regulation of the cnr cobalt and nickel resistance determinant of *Ralstonia eutropha* (*Alcaligenes eutrophus*) CH34. Journal of Bacteriology, 182(5):1399–1409
- Torsvik, V., Goksoyr, J. and Daae, F.L. (1990). High diversity in DNA of soil bacteria. Applied and Environmental Microbiology 56: 782–787.
- Trajanovska S, Britz ML, Bhave M (1997) Detection of heavy metal ion resistance genes in gram-positive and gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 8: 113-124
- Truu, M., Juhanson, J., & Truu, J. (2009). Microbial biomass, activity and community composition in constructed wetlands. Science of the Total Environment, 407(13), 3958–3971.
- Turner JS, Morby AP, Whitton BA, Gupta A, Robinson NJ (1993). Construction of Zn2+/Cd2+ hypersensitive cyanobacterial mutants lacking a functional metallothionein locus. Journal Biological Chemistry, 268: 4494-4498
- United States Environmental Protection Agency. (1996). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils, Revision 2.
- United States Environmental Protection Agency. (1999). Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. Washington, D.C.: Office of Water.
- University of British Columbia Beatty Biodiversity Sequencing Centre. (2016). Illumina HiSeq Sequencing. Retrieved from: https://sites.google.com/site/biodiversitynextgensequencing/gallery.
- Vats N, Lee SF (2001) Characterization of a copper-transport operon, copYAZ, from *Streptococcus mutans*. Microbiology. 147:653–662
- Washington State Department of Transportation. (2007). Untreated Highway Runoff in Western Washington. Seattle Washington.
- Wunderli-Ye H, Solioz M (1999) Copper homeostasis in *Enterococcus hirae*. In: Copper Transport and Its Disorders. Springer USA. pp. 255–264
- Yannarell, A.C. and Triplett, E.W. (2005). Geographic and environmental sources of variation in lake bacterial community composition. Applied and Environmental Microbiology 71: 227–239.

- Zhang YM, Yin H, Ye JS, Peng H, Zhang N, Qin HM, Yang F, He BY (2007) Cloning and expression of the nickel/cobalt transferase gene in E. coli BL21 and bioaccumulation of nickel ion by genetically engineered strain. Huan Jing Ke Xue 28(4):918–923
- Zhang, K., Deletic, A., Page, D., & McCarthy, D. T. (2015a). Surrogates for herbicide removal in stormwater biofilters. Water Research, 81, 64-71.
- Zhang, K., Randelovic, A., Aguiar, L. M., Page, D., McCarthy, D. T., & Deletic, A. (2015b). Methodologies for Pre-Validation of Bio-filters and Wetlands for Stormwater Treatment. PLoS ONE, 10(5), 1–21.

Appendix A: Acid Digestion Procedure for Water and Sediment Samples

Acid digestion of sludge and manure for metals on ICP

This method is based on United States Environmental Protection Agency method 3050B. The method is not a total digestion technique. It is a very strong acid digestion that will dissolve almost all elements that could become environmentally available. Elements bound in silicate structures are not normally dissolved by this procedure.

This procedure uses very strong acid and peroxide. These chemicals are highly corrosive and can cause severe burns. Wear a splash shield, lab coat and rubber apron and gloves when handling them.

Equipment:

- BD-46 block digester set at 140°C, which will give a tube temperature of 95°C
- Digestion tubes
- Cold fingers

Reagents:

- Concentrated nitric acid
- Concentrated hydrochloric acid
- 30% hydrogen peroxide
- Aqua regia 1:3 volume ratio of hydrochloric acid and nitric acid

Procedure:

- 1. Put 5 mL of sample into a digestion tube 1
- 2. Add 5 mL of aqua regia or use a 1:1 volume ratio of nitric acid and hydrochloric acid 2
- 3. Add 1 mL of 30% hydrogen peroxide 3
- 4. Place a cold finger on the top of the tube
- 5. Heat at 95°C for two hours in the block digester
- 6. Cool and make the volume up to 50 mL with deionized water
- 7. Filter through a hardened fast filter such as Whatman 54 or equivalent
- 8. Transfer to the appropriate autosampler test tubes
- 9. Run on the AA or the ICP

Digest a blank along with the samples.

Standards should be made up in a matrix to match the samples (10% aqua regia or 1:1 volume ratio of hydrochloric acid and nitric acid). If performing trace metal analysis, use trace level concentrated acids.

If a brown gas appears (NO_2) during the digestion, then the digestion is not complete. Add more nitric acid in 1 mL increments to each tube until it disappears.]

- 1. If using this procedure for soils, weigh out 0.10 g of dry sample
- 2. A 1:1 volume mixture of nitric acid and hydrochloric acid is easier to work with
- 3. Do not add 30% hydrogen peroxide if there is little organics in the sample

Appendix B: Historic Water and Sediment Quality Data for the Lost Lagoon Wetland

Norwest		An	Analytical Report			Norwest Labs #104, 19575-55 A Ave. Surrey. BC. V3S 8P8 Phone: (604) 514-3322 Fax: (604) 514-3323	
Bill to: Vancour c/o 2099 Vancour V6G 12/ Attn: Eric M Sampled By: Company:	ver Park Board ver Park Board 9 Beach Avenue ver, BC, Canada 4 Meagher	Project ID: Name: Location: LSD: P.O.: Acct. Cod	Stanley Park We 4500353208	etland Testing	NWL Lot ID: 524772 Control Number: 314001 Date Received: Feb 09, 2007 Date Reported: Feb 20, 2007 Report Number: 966301		
					Page:	1 of 8	
		NWL Number Sample Description Matrix	524772-1 Carex - 1A Tissue	524772-2 Carex - 18 Tissue	52477 Carex - Tiron	2-3 1C	
Analyte	and the second strength	Units	Results	Results	Results	Detection Limit	
Metals Total	NOT COMPANY AND					a creation citin	
Aluminum	Total (dry weight)	ug/g	1340	1910	1500	1	
Antimony	Total (dry weight)	ug/g	6.65	12.0	4.4	0.5	
Arsenic	Total (dry weight)	ug/g	16.9	1.7	1.1	0.2	
Banum	Total (dry weight)	ug/g	78.6	54.9	40.1	0.03	
Beryllium	Total (dry weight)	ug/g	0.04	0.095	0.050	0.01	
Bismuth	Total (dry weight)	ug/g	<0.5	1.2	<0.5	0.5	
Cadmium	Total (dry weight)	ug/g	1.0	1.2	1.1	0.05	
Calcium	Total (dry weight)	ug/g	4610	3730	3160	2	
Chromium	Total (dry weight)	ug/g	9,90	15.2	14.3	0.04	
Cobalt	Total (dry weight)	ug/g	1.9	4.5	1.6	0.05	
Copper	Total (dry weight)	ug/g	59.1	117	49.4	0.05	
Iron	Total (dry weight)	ug/g	6410	4880	4050	0.05	
Lead	Total (dry weight)	ug/g	24.0	39 5	15.0	1 2	
Lithium	Total (dry weight)	ug/g	0.64	0.70	13.0	0.5	
Magnesium	Total (dry weight)	ua/a	2440	793	1100	0.1	
Manganese	Total (dry weight)	ug/g	247	580	21.4	1	
Molybdenum	Total (dry weight)	uala	27	2 7	214	0.3	
Nickel	Total (dry weight)	uala	6 29	3,7	2.1	0.05	
Phosphorus	Total (dry weight)	ua/a	2250	1040	8.32	0.1	
Potassium	Total (dry weight)	ua/a	10800	1040	1370	1	
Selenium	Total (dry weight)	ua/a	20000	1300	6530	2	
Silver	Total (dry weight)	ug/g	<0.15	<0.2	<0.2	0.3	
Sodium	Total (dry weight)	uala	2600	10.13	<0.15	0.2	
Strontium	Total (dry weight)	uala	35.0	1//	1000	1	
litanium	Total (dry weight)	100/0	20.7	30.4	20.5	0.02	
/anadium	Total (dry weight)	10/0	20.7	61.2	66.2	0.05	
2000000000	Total (dry weight)	ugia	121	9.06	7.68	0.1	
Cinc	Total (deuxeiseb)	ugia	0 61	1/4	143	0.1	
anc Circonium	FORM (OLA MERGUR)	09.9	0.01	0.13	12 3	0.05	

CONTRACTOR CONTRACTOR CONTRACTOR				Norwest Labs #104, 19575-55 A Ave. Surrey, BC. V3S 8P8 Phone: (604) 514-3322 Fax: (604) 514-3323 NWL Lot ID: 524772 Control Number: 314001 Date Received: Fcb 09, 2007 Date Reported: Fcb 09, 2007 Report Number: 966301 Page: 2 of 8	
'ark Board 'ark Board ach Avenue BC, Canada gher	Project ID: Name: Location: LSD: P.O.: Acct. Code	Stanley Park We 4500353208	etland Testing		
	NWL Number Sample Description Matrix	524772-4 Carex - 2A Tissue	524772-5 Carex - 2B Tissue	52477 Carex - Tissu	2-6 - 2C
	Units	Results	Results	Results	Detection Limi
		ADMINIANS.	010000	North States	
Total (dry weight)	ug/g	2090	4470	2110	1
Total (dry weight)	ug/g	9.08	13.0	2.1	0.5
Total (dry weight)	ug/g	3.6	2.9	3.4	0.2
Total (dry weight)	ug/g	48.8	84.4	68.0	0.03
Total (dry weight)	ug/g	0.12	0.20	0.080	0.01
Total (dry weight)	ug/g	<0.5	0.92	<0.5	0.5
Total (dry weight)	ugig	2.5	4.9	1,0	0.05
Total (doy weight)	ug/g	4120	5230	3690	2
Total (dry weight)	ugig	14.2	29.5	17.8	0.04
Total (dry weight)	uala	9+1	177	3.1	0.05
Total (dry weight)	ua/a	7020	10200	42.0	0.05
Total (dry weight)	ua/a	38 3	50 7	7010	1
Total (dry weight)	ua/a	0.95	26	14.0	0.3
Total (dry weight)	ua/a	626	1640	1410	1
Total (dry weight)	ug/g	669	784	730	0.2
Total (dry weight)	ug/g	4.1	6.35	1.7	0.05
Total (dry weight)	ug/g	7.69	18.7	8.45	0.05
Total (dry weight)	ug/g	1450	2410	2610	1
Total (dry weight)	ug/g	1120	3120	11800	5
Total (dry weight)	ug/g	<0.25	<0.25	<0.25	0.3
Total (dry weight)	ug/g	<0.15	<0.15	<0.15	0.2
Total (dry weight)	ug/g	254	4.92	1120	l
Total (dry weight)	ug/g	29.5	39.7	24.9	0.02
Total (dry weight)	ug/g	37.0	59.8	57.2	0.05
Total (dry weight)	nðvä	9.64	16.2	7.98	0.1
Total (dry weight)	ug/g	203	386	119	0.1
Total (dry weight)	ugig	<0.05	1.2	<0.05	0.05
	Ach Avenue BC, Canada gher Total (dry weight) Total (dry weight)	Ach Avenue BC, Canada Location: BC, Canada Location: gher LSD: P.O.: Acct. Code NWL Number Sample Description Matrix Units Total (dry weight) ug/g Total (dry weight) ug/g	Ach Avenue Name: Stanley Park Weight BC, Canada Location: gher LSD: P.O.: 4500353208 Acet. Code: NWL Number 524772-4 Sample Description Carex - 2A Matrix Tissue Units Results Total (dry weight) ug/g 9.08 Total (dry weight) ug/g 9.08 Total (dry weight) ug/g 0.12 Total (dry weight) ug/g 0.12 Total (dry weight) ug/g 41.20 Total (dry weight) ug/g 4.1 Total (dry weight) ug/g 4.1 Total (dry weight) ug/g 6.9 Total (dry weight) ug/g 6.69 Total (dry weight) ug/g 6.69 Total (dry weight) ug/g 7.69 Total (dry weight) ug/g 6.15 Total (dry weight) ug/g 6.15 Total (dry weight) ug/g 6.9 Total (dry weight) ug/g 6.69	Ach Avenue BC, Canada Name: Location: Location: Stanley Park Wetland Testing gher LSD: P.O.: 4500353208 Acet. Code: Acet. Code: NML Number 524772-4 524772-5 Sample Description Carex - 2A Carex - 2B Matrix Tissue Tissue Total (dry weight) ug/g 9.08 1.3.0 Total (dry weight) ug/g 0.12 0.20 Total (dry weight) ug/g 0.12 0.20 Total (dry weight) ug/g 0.12 0.20 Total (dry weight) ug/g 41.0 5230 Total (dry weight) ug/g 14.2 29.5 Total (dry weight) ug/g 14.1 5.99 Total (dry weight) ug/g 0.95 2.6 Total (dry weight) ug/g 2.6 1640 Total (dry weight) ug/g 626 1640 Total (dry weight) ug/g 2.25 <0.25	Act Avenue BC, Canada Name: Location: Stanley Park Wetland Testing Location: Control Number: Date Reported: Report Number. gher LSD: P.O.: 4500353208 Date Reported: Report Number. Date Reported: Report Number. MVL Number 524772-4 524772-5 52477 Sample Description Carex - 2A Carex - 2B Carex - 2B Matrix Tissue Tissue Tissue Total (dry weight) ug/g 9.08 1.3.0 2.1 Total (dry weight) ug/g 9.08 1.3.0 2.1 Total (dry weight) ug/g 9.08 1.3.0 2.1 Total (dry weight) ug/g 2.5 4.9 1.0 Total (dry weight) ug/g 2.5 4.9 1.0 Total (dry weight) ug/g 14.2 29.5 17.8 Total (dry weight) ug/g 14.2 2.9 3.4 Total (dry weight) ug/g 14.2 2.9 1.0 Total (dry weight) ug/g 1.4.2 2.9 1.4.0 <t< td=""></t<>

No	RWEST 3S	An	alytical Repor	t	HID4, 19575-55 A Ave. Surrey, BC. V3S 8P8 Phone: (604) 514-3322 Fax: (604) 514-3323	
Bill to: Vancouv	er Park Board	Project				
Report to: Vancouv	er Park Board	NWL Lot ID: 524		524772		
c/o 2099	Reach Avenue	Namo	Real and Mr.	41 4 225	Control Number:	314001
Vancouv	er, BC, Canada	Name.	Stanley Park W	ctland Testing	Date Received	Feb 09, 2007
V6G 1Z4		Location:			Data Danada d	E-L 30, 2007
Attn: Eric N	leagher	LSD;			Late Reported:	F60 20, 2007
Sampled By:		P.O.;	4500353208		Report Number:	900301
Company:		Acct. Code	R			
					Page:	3 of 8
		NV/L Number	524772-7	524772-8	52477	2-9
		Sample Description Matrix	Carex - 3A Tissue	Carex - 3B Tissue	Carex - Tissu	- 3C
Analyte		Units	Results	Results	Results	Detection Limi
Metals Total	+	10000			4443457.00	
Auminum	Total (dry weight)	ug/g	5900	644	4650	1
Antimony	Total (dry weight)	ug/g	<0.50	0.76	<0.5	0.5
Arsenic	Total (dry weight)	ug/g	3.3	1.4	4.0	0.2
Barium	Total (dry weight)	ug/g	44.2	69.3	75.5	0.03
Beryllium	Total (dry weight)	ug/g	0.11	0.02	0.12	0.01
cismum	Total (dry weight)	ug/g	<0.50	<0.5	<0.5	0.5
Cadmium	Total (dry weight)	ug/g	0.5	0.1	0.5	0.05
Calcium	Total (dry weight)	ug/g	4660	3830	6500	2
Chromium	Total (dry weight)	ug/g	77.5	3.58	39.4	0.04
Cobait	Total (dry weight)	ug/g	4.6	1.1	4.4	0.05
Jopper	Total (dry weight)	ug/g	27.4	14.1	49.4	0.05
ron	Total (dry weight)	ug/g	11000	3960	10400	1
.ead	Total (dry weight)	ug/g	7.55	4.2	15.1	0.3
Linium	Total (dry weight)	ug/g	5.00	0.53	3.6	0.1
Magnesium	Total (dry weight)	ug/g	3400	1150	2490	1
vlanganese	Total (dry weight)	ug/g	288	130	555	0.3
Violybdenum	Total (dry weight)	ug/g	1.6	0.54	2.1	0.05
Nickel	Total (dry weight)	ug/g	34.3	2.7	21.4	0.1
nosphorus	Total (dry weight)	ug/g	1240	2520		1
				3320	1440	
Potassium	Total (dry weight)	ug/g	2040	12200	1440 1160	5
Potassium Selenium	Total (dry weight) Total (dry weight)	ug/g ug/g	2040 <0.2	12200 <0.2	1440 1160 <0.25	5
Potassium Selenium Silver	Total (dry weight) Total (dry weight) Total (dry weight)	ug/g ug/g ug/g	2040 <0.2 <0.15	12200 <0.2 <0.15	1440 1160 <0.25 <0.15	5 0.3 0.2
Potassium Selenium Silver Sodium	Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight)	ug/g ug/g ug/g ug/g	2040 <0.2 <0.15 686	3520 12200 <0.2 <0.15 2080	1440 1160 <0.25 <0.15 385	5 0.3 0.2
Potassium Selenium Silver Sodium Strontium	Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight)	ug/g ug/g ug/g ug/g ug/g	2040 <0.2 <0.15 686 25.8	3520 12200 <0.2 <0.15 2080 36.0	1440 1160 <0.25 <0.15 385 36.2	5 0.3 0.2 1
Potassium Selenium Silver Sodium Strontium Itanium	Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight)	ug/g ug/g ug/g ug/g ug/g	2040 <0.2 <0.15 686 25.8 394	5520 12200 <0.2 <0.15 2080 36.0 21.0	1440 1160 <0.25 <0.15 385 36.2 240	5 0.3 0.2 1 0.02
Potassium Selenium Silver Sodium Strontium Itanium Venadium	Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight) Total (dry weight)	ug/g ug/g ug/g ug/g ug/g ug/g ug/g	2040 <0.2 <0.15 686 25.8 394 24.0	5520 12200 <0.2 <0.15 2080 36.0 21.0 2.5	1440 1160 <0.25 <0.15 385 36.2 240 20.8	5 0.3 0.2 1 0.02 0.05
Potassium Selenium Silver Sodium Strontium Itanium /anadium Jinc	Total (dry weight) Total (dry weight)	ug/g ug/g ug/g ug/g ug/g ug/g ug/g	2040 <0.2 <0.15 686 25.8 394 24.0 77.6	5520 12200 <0.2 <0.15 2080 36.0 21.0 2.5 33.5	1440 1160 <0.25 <0.15 385 36.2 240 20.8 122	5 0.3 0.2 1 0.02 0.05 0.1
Potassium Selenium Silver Sodium Strontium Vanadium Vanadium Sinc Linconium	Total (dry weight) Total (dry weight)	ug/g ug/g ug/g ug/g ug/g ug/g ug/g	2040 <0.2 <0.15 686 25.8 394 24.0 77.6 2.0	5520 12200 <0.2 <0.15 2080 36.0 21.0 2.5 33.5 0.2	1440 1160 <0.25 <0.15 385 36.2 240 20.8 122 1.9	1 0.3 0.2 1 0.02 0.05 0.1 0.1 0.05

Norwest

Analytical Report

Norwest Labs #104, 19575-55 A Ave. Surrey, BC. V3S 8P8 Phone: (604) 514-3322 Fax: (604) 514-3323

Bill to: Vancouver Park Board Report to: Vancouver Park Board c/o 2099 Beach Avenue Vancouver, BC, Canada V6G 124 Attn: Eric Meagher Sampled By: Company: Project ID: Name: Stanley Park Wetland Testing Location: LSD: P.O.: 4500353208 Acct. Code:

 NWL Lot ID:
 524772

 Control Number:
 314001

 Date Received:
 Fcb 09, 2007

 Date Reported:
 Fcb 20, 2007

 Report Number:
 966301

					Page:	4 of 8
-		NWL Number Sample Description Matrix	524772-10 Scirpus - 1A Tissue	524772-11 Scirpus - 1B Tissue	524772 Scirpus Tissu	-12 - 1C
Analyte		Units	Results	Results	Results	Detection I Imit
Metals Total						Server Cinn
Aluminum	Total (dry weight)	ug/g	3200	4910	572	1
Antimony	Total (dry weight)	ug/g	12.8	4.8	20 E	- E
Arsenic	Total (dry weight)	ug/g	6.75	5 65	0.5	0.5
Barium	Total (dry weight)	ug/g	39.8	43.1	16 6	0.2
Beryllium	Total (dry weight)	ug/g	0.095	0.11	10.0	0.03
Bismuth	Total (dry weight)	ug/g	1.1	1.0	<0.01	0.01
Cadmium	Total (dry weight)	ug/g	1.1	0.93	0.00	0.5
Calcium	Total (dry weight)	ua/a	2770	4080	1000	0.05
Chromium	Total (dry weight)	ua/a	24 7	30.00	1980	2
Cobalt	Total (dry weight)	uo/o	1 5	30.4	1.11	0.04
Copper	Total (dry weight)	uala	107	2.0 05 6	0.4	0.05
Iron	Total (dry weight)	uala	207.0	00.0	11.4	0,05
Lead	Total (dry weight)	uo/o	52.0	7760	1300	1
Lithium	Total (dry weight)	uala	2.0	36.5	1.0	0.3
Magnesium	Total (dry weight)	uala	1600	3.6	0.64	0,1
Manganese	Total (dry weight)	uala	220	2440	1050	1
Molybdenum	Total (dry weight)	ugig	220	232	481	0.3
Nickel	Total (dry weight)	ugig	3.4	2.4	0.4	0.05
Phosphorus	Total (dry weight)	999	0.80	12.6	2.8	0.1
Potassium	Total (dry weight)	ugig	3360	1290	3640	1
Selenium	Total (dry weight)	ugig	12000	3910	19900	5
Silver	Total (dry weight)	ugig	<0.2	<0.2	<0.2	0.3
Sodium	Total (day weight)	ug/g	<0.15	<0.15	<0,1	0.2
Strontium	Total (dry weight)	ugig	2730	1450	3910	1
Etanium	Total (dry weight)	ug/g	21.4	29.8	14.1	0.02
/anadium	Total (dry weight)	ug/g	61.0	195	29.5	0.05
Zine	Total (dry weight)	ug/g	15.4	22.0	2.9	0.1
Timonium	Total (dry weight)	ug/g	160	138	29.3	0.1
Dallian	Total (dry weight)	ug/g	0.76	0.63	0.79	0.05
manium	Total (dry weight)	ug/g	1.5	<0.2	1.2	0.3

ark Board ark Board ich Avenue 3C, Canada her	Project ID: Name: Location: LSD: P.O.:	Stanley Park Wet	land Testing	NWL Lot ID: Control Number:	524772
	Acct. Cod	4500353208 e:		NWL Lot ID: 524772 Control Number: 314001 Date Received: Fcb 09, 2007 Date Reported: Fcb 20, 2007 Report Number: 966301 Page: 5 of 8	
	NWL Number Sample Description Matrix	524772-13 Scirpus - 2A Tissue	524772-14 Scirpus - 28	524772 Scirpus	-15 - 2C
	Units	Results	Regulto	Populto	Batastian Lint
			rioouita	INSIGUES	Detection Limit
Total (dry weight)	ug/g	626	2380	4140	
Total (dry weight)	ug/g	1.0	2.6		1
Total (dry weight)	ug/g	1.2	1.5	2.4	0.3
Total (dry weight)	ug/g	27.6	46.0	50.0	0.03
Total (dry weight)	ug/g	0.02	0.075	0.080	0.03
Total (dry weight)	ug/g	<0.5	<0.5	<0.5	0.5
Total (dry weight)	ug/g	0.4	1.0	0.2	0.05
Total (dry weight)	ug/g	4780	4000	3810	2
Total (dry weight)	ug/g	5.22	37.2	93.4	0.04
Total (dry weight)	ug/g	0.89	2.6	4.1	0.05
Total (dry weight)	ug/g	27.6	61.0	27.6	0.05
Total (dry weight)	ug/g	1920	4850	9840	1
Total (dry weight)	ug/g	6.07	16.4	6.60	0.3
Total (dry weight)	ug/g	0.52	1.8	3.6	0.1
Total (dry weight)	ug/g	1440	1810	2770	1
Total (dry weight)	ug/g	468	634	640	0.3
Total (dry weight)	ug/g	1.2	2.1	1.5	0.05
Total (dry weight)	ug/g	3.6	10.7	17.8	0.1
Total (dry weight)	ug/g	3440	2950	2540	1
Total (dry weight)	ug/g	12600	7750	7250	5
Total (dry weight)	nð\ð	<0.2	<0.25	<0.25	0.3
Total (dry weight)	ug/g	<0.1	<0.15	<0.15	0.2
Total (dry weight)	ug/g	2430	2760	1340	1
Total (dry weight)	ug/g	27.7	28.9	23.6	0.02
Total (dry weight)	ng/g	19.5	44.5	108	0.05
Total (douweight)	ug/g	2.7	9,62	18.3	0.1
Total (dry weight)	ug/g	314	159	80.3	0.1
Total (dry weight)	ugiy	0.56	0.4	0.56	0.05
	Total (dry weight) Total (dry weight)	UnitsTotal (dry weight)ug/gTotal (dry weight)ug/g <t< td=""><td>Units Results Total (dry weight) ug/g 626 Total (dry weight) ug/g 1.0 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 0.02 Total (dry weight) ug/g 0.02 Total (dry weight) ug/g 0.4 Total (dry weight) ug/g 0.4 Total (dry weight) ug/g 0.39 Total (dry weight) ug/g 0.52 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 0.52 Total (dry weight) ug/g 0.52 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 3.6 <t< td=""><td>Units Results Results Total (dry weight) ug/g 626 2380 Total (dry weight) ug/g 1.0 2.6 Total (dry weight) ug/g 1.2 1.5 Total (dry weight) ug/g 0.02 0.075 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.89 2.6 Total (dry weight) ug/g 0.52 37.2 Total (dry weight) ug/g 0.52 1.8 Total (dry weight) ug/g 6.07 16.4 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.40 1810 Total (dry weight) ug/g 3.6 10.7 Total (dry wei</td><td>Unita Results Results Results Total (dry weight) ug/g 626 2380 4140 Total (dry weight) ug/g 1.0 2.6 c0.5 Total (dry weight) ug/g 1.2 1.5 2.4 Total (dry weight) ug/g 2.7.6 46.0 50.0 Total (dry weight) ug/g 0.02 0.075 0.080 Total (dry weight) ug/g 0.4 1.0 0.2 Total (dry weight) ug/g 0.89 2.6 4.1 Total (dry weight) ug/g 6.07 16.4 6.60 Total (dry weight) ug/g 0.52 1.8 3.6 Total (dry weight) ug/g 3.6 10.7 17.8 Total (dry weight) ug/g 3.6</td></t<></td></t<>	Units Results Total (dry weight) ug/g 626 Total (dry weight) ug/g 1.0 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 0.02 Total (dry weight) ug/g 0.02 Total (dry weight) ug/g 0.4 Total (dry weight) ug/g 0.4 Total (dry weight) ug/g 0.39 Total (dry weight) ug/g 0.52 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 0.52 Total (dry weight) ug/g 0.52 Total (dry weight) ug/g 1.2 Total (dry weight) ug/g 3.6 <t< td=""><td>Units Results Results Total (dry weight) ug/g 626 2380 Total (dry weight) ug/g 1.0 2.6 Total (dry weight) ug/g 1.2 1.5 Total (dry weight) ug/g 0.02 0.075 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.89 2.6 Total (dry weight) ug/g 0.52 37.2 Total (dry weight) ug/g 0.52 1.8 Total (dry weight) ug/g 6.07 16.4 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.40 1810 Total (dry weight) ug/g 3.6 10.7 Total (dry wei</td><td>Unita Results Results Results Total (dry weight) ug/g 626 2380 4140 Total (dry weight) ug/g 1.0 2.6 c0.5 Total (dry weight) ug/g 1.2 1.5 2.4 Total (dry weight) ug/g 2.7.6 46.0 50.0 Total (dry weight) ug/g 0.02 0.075 0.080 Total (dry weight) ug/g 0.4 1.0 0.2 Total (dry weight) ug/g 0.89 2.6 4.1 Total (dry weight) ug/g 6.07 16.4 6.60 Total (dry weight) ug/g 0.52 1.8 3.6 Total (dry weight) ug/g 3.6 10.7 17.8 Total (dry weight) ug/g 3.6</td></t<>	Units Results Results Total (dry weight) ug/g 626 2380 Total (dry weight) ug/g 1.0 2.6 Total (dry weight) ug/g 1.2 1.5 Total (dry weight) ug/g 0.02 0.075 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.4 1.0 Total (dry weight) ug/g 0.89 2.6 Total (dry weight) ug/g 0.52 37.2 Total (dry weight) ug/g 0.52 1.8 Total (dry weight) ug/g 6.07 16.4 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.2 2.1 Total (dry weight) ug/g 1.40 1810 Total (dry weight) ug/g 3.6 10.7 Total (dry wei	Unita Results Results Results Total (dry weight) ug/g 626 2380 4140 Total (dry weight) ug/g 1.0 2.6 c0.5 Total (dry weight) ug/g 1.2 1.5 2.4 Total (dry weight) ug/g 2.7.6 46.0 50.0 Total (dry weight) ug/g 0.02 0.075 0.080 Total (dry weight) ug/g 0.4 1.0 0.2 Total (dry weight) ug/g 0.89 2.6 4.1 Total (dry weight) ug/g 6.07 16.4 6.60 Total (dry weight) ug/g 0.52 1.8 3.6 Total (dry weight) ug/g 3.6 10.7 17.8 Total (dry weight) ug/g 3.6

	IORWEST .ABS	An	alytical Report		Norwest Labs #104, 19575-55 A Ave. Surrey, BC. V3S 8P8 Phone: (604) 514-3322 Fax: (604) 514-3323 NWL Lot ID: 524772 Control Number: 314001 Date Received: Fcb 09, 2007 Date Reported: Fcb 20, 2007 Report Number: 966301	
Bill to: Vanc Report to: Vanc c/o 2 Vanc V6G Attn: Er Sampled By: Company:	couver Park Board couver Park Board 099 Beach Avenue couver, BC, Canada 1Z4 ic Meagher	Project ID: Name: Location: LSD: P.O.: Acct. Cod	Stanley Park We 4500353208 e:	tland Testing		
					Page:	6 of 8
		NWL Number Sample Description Matrix	524772-16 Scirpus - 3A Tissue	524772-17 Scirpus - 3B Tissue	524773 Scirpus Tissu	2-18 - 3C Je
Analyte		Units	Results	Results	Results	Detection Limi
Metals Total		Units	results	Results	Results	Detection Limi
Aluminum	Total (dry weight)	ug/g	365	2640	3100	1
Antimony	Total (dry weight)	ug/g	<0.5	1.8	0.80	0.5
Arsenic	Total (dry weight)	ug/g	1.5	3.7	16.9	0.2
Banum	Total (dry weight)	ug/g	19.1	97.9	60.0	0.03
Berymum	Total (dry weight)	nð\ð	<0.01	0.089	0.10	0.01
Bismuth	Total (dry weight)	ug/g	<0.5	0.58	0.50	0.5
Cadmium	Total (dry weight)	ug/g	<0.05	0.55	0.4	0.05
Calcum	I otal (dry weight)	ug/g	1450	5100	4950	2
Chromium	Total (dry weight)	ug/g	6.08	26.6	23.5	0.04
Cobalt	Total (dry weight)	ug/g	0.83	3.0	5.60	0.05
Copper	Total (dry weight)	ug/g	9.38	37.8	43.3	0.05
Iron	Total (dry weight)	ug/g	1400	9750	13100	1
Lead	Total (dry weight)	ug/g	0,97	10.3	12.0	0.3
Lithium	Total (dry weight)	ug/g	0.52	1.8	2.3	0.1
Magnesium	Total (dry weight)	ug/g	1290	1650	1770	1
Manganese	Total (dry weight)	ug/g	334	309	748	0.3
Molybdenum	Total (dry weight)	ug/g	0.2	1.3	2.3	0.05
Nickel	Total (dry weight)	ug/g	4.3	12.2	15.0	0.1
Phosphorus	Total (dry weight)	ug/g	6930	2670	2490	1
Potassium	Total (dry weight)	ug/g	22400	6620	10000	5
Selenum	Total (dry weight)	ug/g	<0.2	<0.25	<0.25	0.3
Silver	Total (dry weight)	ug/g	<0.1	<0.15	<0,15	0.2
Sodium	Total (dry weight)	ug/g	1880	1360	1010	1
arontum	Total (dry weight)	ug/g	11.1	34.5	34.3	0.02
Title and see	Total (dry weight)	ug/g	14.0	54.8	73.6	0.05
Titanium	COTAL LOUSE SAMARAN	nð/ð	1.7	11.7	14.3	0.1
Titanium Vanadium Zinc	Total (dry Weight)	210 M C	20.0	1 (A) (A)		A
Titanium Vanadium Zinc Zirconium	Total (dry weight) Total (dry weight)	ug/g	32.0	100	155	0.1
Titanium Vanadium Zinc Zirconium Thalium	Total (dry weight) Total (dry weight) Total (dry weight)	ug/g ug/g	0.3	0,63	0.62	0.05

NORWEST

Bill to: Vancouver Park Board

c/o 2099 Beach Avenue Vancouver, BC, Canada

Report to: Vancouver Park Board

Attn: Eric Meagher

V6G 1Z4

Sampled By:

Company:

 Analytical Report
 Norwest Labs

 Analytical Report
 \$104, 19575-55 A Ave.

 Surrey, BC. V3S 8P8
 Phone: (604) 514-3322

 Project
 (604) 514-3323

 D:
 Name: Stanley Park Wetland Testing

 Location:
 Date Received: Feb 09, 2007

 LSD:
 Date Reported: Feb 20, 2007

 Report Number:
 966301

P.O.: 4500353208 Acct. Code:

Page: 7 of 8

		NVL Number Sample Description	524772-19 Bird Poop			
Analyte		Unite	Tissue	Basulta	P	-
Metals Total		Grinta	results	Results	Results	Detection Limit
Aluminum	Total (dry weight)	ua/a	1050			
Antimony	Total (dry weight)	unin	4000 20 50			1
Arsenic	Total (dry weight)	ug/g	0.00			0.5
Barlum	Total (dry weight)	uala	0,90			0.2
Beryllium	Total (dry weight)	unia	0.000			0.03
Bismuth	Total (dry weight)	uala	0.000			0.01
Cadmium	Total (dry weight)	09/9	0.00			0.5
Calcium	Total (dry weight)	ua/a	3060			0.05
Chromium	Total (dry weight)	uala	0.30			2
Cobalt	Total (dry weight)	09/9	3.13			0.04
Copper	Total (dry weight)	09/9	1.0			0.05
Iron	Total (dry weight)	ug/g ug/g	10.0			0.05
Lead	Total (dry weight)	ugia	2630			1
Lithium	Total (dry weight)	ugig	3.9			0.3
Magnesium	Total (dry weight)	10/0	2.0			0.1
Manganese	Total (dry weight)	unio	2370			1
Molybdenum	Total (dry weight)	ugig ugig	223			0.3
Nickel	Total (dry weight)	ugrg	1.5			0.05
Phosphorus	Total (dry weight)	ug/g	0,00			0.1
Potassium	Total (dry weight)	ugig	2360			1
Selenium	Total (dry weight)	ugig	14700			5
Silver	Total (dry weight)	ug/g	<0.2			0.3
Sodium	Total (dry weight)	ugyg	<0.15			0.2
Stronlium	Total (dry weight)	ug/g	1060			1
litanium	Total (dry weight)	ug/g	20.5			0.02
/anadium	Total (dry weight)	ug/g	196			0.05
line	Total (dry weight)	ugvg	14.5			0.1
lirozojum.	Total (dry weight)	nð/ð	35.3			0.1
hallium	Total (dry weight)	ug/g	0.1			0.05
Channel II	rotar (ury weight)	ug/g	<0.25			0.3

Approved by:

WRB. A

Walter Brandl Operations Manager - Surrey

Norwest		Methodology and Notes	Norwest #104, 19 Surrey, B Phone: Fax:	Labs 575-55 A Av C. V3S 8P8 (604) 51- (604) 51-	e. 4-3322 4-3323
Bill to: Vancouver Park B Report to: Vancouver Park B c/o 2099 Beach A Vancouver, BC, C V6G 1Z4 Attn: Eric Meagher Sampled By: Company:	ioard Joard Venue Janada	Project ID: Name: Stanley Park Wetland Testing Location: LSD: P.O.: 4500353208 AccL Code:	NWL Control I Date R Date R Report I	Lot ID: 5 Number: 3 sceived: Fri eported: Fri Number: 90	24772 14001 25 09, 2007 26 20, 2007 56301
Method of Analysis:				Page: 80	01.8
MethodName	Reference	Method	Date Analysis Started	Location	
Metals (Total) dry weight	US EPA	* Metals & Trace Elements by ICP-AES, 6010B	19-Feb-07	Norwest L	abs Surrey
US EPA Comments:	US Environ	mental Protection Agency Test Methods			
	Please direct any	inquiries regarding this report to our Client Servic	es group.		

Norwe	ST	Ana	lytical Report		Norwest Labs #104, 19575-55 A Surrey, BC, V3S (Phone: (604) 5 Fax: (604) 5	Ave. 8P8 14-3322 14-3323
Bill to: Vancouver Pa Report to: Vancouver Pa c/o 2099 Beac Vancouver, B V6G 124 Attn: Eric Meagh Sampled By Company:	rk Board rk Board ch Avenue C, Canada ier	Project ID: Name: Location: LSD: P.O.: Acct. Code	Stanley Park Wet 4500353208	land Testing	NWL Lot ID: Control Number: Date Received: Date Reported: Report Number: Page:	524777 314038 Feb 09, 2007 Feb 15, 2007 966305
					, ago,	
5 C		NWL Number	524777-1	524777-2	52477	7-3
	Samp	le Description	Soil - 1A	Soil - 1B	Soil -	1C
		Matrix	Soil	Soil	Soil	
Analyte		Units	Results	Results	Results	Detection Limit
Metals Strong Acid Diges	ition	22				
Antimony	Strong Acid Extractable	ug/g	4.6	1.0	0.9	0.5
Arsenic	Strong Acid Extractable	ug/g	5.3	4.3	3.8	0.2
Barlum	Strong Acid Extractable	ug/g	66.2	55.5	47.0	0.03
Beryllium	Strong Acid Extractable	ug/g	0.24	0.16	0.17	0.01
Cadimium	Strong Acid Extractable	ug/g	1.2	0.56	0.50	0.05
Chromium	Strong Acid Extractable	ug/g	44.3	27.0	27.4	0.04
Cobalt	Strong Acid Extractable	ug/g	5.20	5.51	5.52	0.05
Copper	Strong Acid Extractable	ug/g	147	62.5	59.0	0.05
Lead	Strong Acid Extractable	ug/g	71.0	24.1	24.7	0.3
Mercury	Strong Acid Extractable	ug/g	0.059	0.036	0.023	0.003
Molybdenum	Strong Acid Extractable	ug/g	4.3	1.8	1.8	0.05
Nickel	Strong Acid Extractable	ug/g	27.4	26.6	26.7	0.1
Selenium	Strong Acid Extractable	ug/g	0.6	0.8	0.8	0.3
Silver	Strong Acid Extractable	ug/g	<0.2	<0.2	<0.2	0.2
Thallium	Strong Acid Extractable	ug/g	<0.3	<0.3	<0.3	0.3
Tin	Strong Acid Extractable	ug/g	5.4	2.0	1.8	0.2
Vanadium	Strong Acid Extractable	ug/g	41.2	33.4	34.6	0.1
Zinc Soil Acidity	Strong Acid Extractable	ug/g	264	138	124	0.1
pH	1:2 Soil:Water	pН	6.2	5.7	6.0	0.5
1						

Bill fo: Vancouver Park Board Report to: Vancouver Park Board Vancouver, BC, Canda Vancouver, BC, Canda Vancouve	NC LA	Norwest		lytical Report		Norwest Labs #104, 19575-55 A Ave. Surrey, BC. V3S 8P8 Phone: (804) 514-3322 Fax: (804) 514-3323		
MML Number Sample Description 524777-4 Soil 524777-5 Soil - 1D 524777-6 Soil - 2A Analyte Units Results Results Results Detection Lin Antimony Strong Acid Digestion Units Results Results Results Detection Lin Arsenic Strong Acid Extractable up/g 4.7 4.1 3.2 0.5 Britin Strong Acid Extractable up/g 7.4 4.1 3.2 0.03 Berylium Strong Acid Extractable up/g 0.5 1.7 0.1 0.05 Codmum Strong Acid Extractable up/g 0.5 1.7 0.1 0.05 Codmum Strong Acid Extractable up/g 6.46 8.02 5.32 0.05 Codper Strong Acid Extractable up/g 0.041 0.079 0.022 0.003 Morcury Strong Acid Extractable up/g 2.6 8 3.6 23.3 0.1 Strong Acid Extractable up/g 2.6 8	Bill to: Vancoo Report to: Vancoo o/o 205 Vancoo V6G 12 Attn: Eric Sempled By: Company:	iver Park Board iver Park Board 19 Beach Avenue iver, BC, Canada 14 Meagher	Project ID: Name: Location: LSD: P.O.: Acct. Code:	Stanley Park Wet 4500353208	land Testing	NWL Lot ID: Control Number: Date Received: Date Reported: Report Number: Page:	524777 314038 Feb 09, 2007 Feb 15, 2007 966305	
Analyle Units Results Results Results Detection Lim Metals Strong Acid Digestion Artimony Strong Acid Extractable up/g 3.7 4.1 3.2 0.2 Barium Strong Acid Extractable up/g 7.4.2 111 45.2 0.03 Berlum Strong Acid Extractable up/g 0.5 1.7 0.1 0.06 Codmitum Strong Acid Extractable up/g 0.5 1.7 0.1 0.06 Chromikem Strong Acid Extractable up/g 3.1.8 47.3 19.5 0.04 Cobat Strong Acid Extractable up/g 3.5 82.7 6.8 0.3 Metory Strong Acid Extractable up/g 3.6 6.55 0.56 0.05 Lead Strong Acid Extractable up/g 3.6 6.55 0.36 0.03 Motodenum Strong Acid Extractable up/g 0.61 0.077 1.1 0.9 0.3 Nekel Strong Acid Extractabl		Samp	NWL Number le Description Matrix	524777-4 Soil - 1D Soil	524777-5 Soil - 1E Soil	52477 Soil -	7-6 2A	
Ansam Name Name <t< th=""><th>Analyte</th><th></th><th>Units</th><th>Results</th><th>Rosulte</th><th>Baculto</th><th>Detection Limit</th></t<>	Analyte		Units	Results	Rosulte	Baculto	Detection Limit	
Antimony Strong Acid Extractable ug/g 4.2 6.5 <0.5 0.5 Arsenic Strong Acid Extractable ug/g 3.7 4.1 3.2 0.2 Berium Strong Acid Extractable ug/g 0.19 0.30 0.14 0.01 Cadmium Strong Acid Extractable ug/g 0.5 1.7 0.1 0.05 Chommum Strong Acid Extractable ug/g 0.64 8.02 5.32 0.04 Cobalt Strong Acid Extractable ug/g 3.5 82.7 6.8 0.3 Cobalt Strong Acid Extractable ug/g 0.041 0.079 0.022 0.003 Cobalt Strong Acid Extractable ug/g 0.6 6.55 0.556 0.05 Lead Strong Acid Extractable ug/g 0.7 1.1 0.9 0.33 Mercury Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Strong Acid Extractable <thug g<="" th=""> 0.2 <thug g<="" th=""></thug></thug>	Metals Strong Acid	Digestion		1100 2150	i ve o u i ta	Nesuls	Detection Limit	
Arsenic Strong Acid Extractable ug/g 3.7 4.1 3.2 0.2 Barium Strong Acid Extractable ug/g 74.2 111 45.2 0.03 Beryllum Strong Acid Extractable ug/g 0.19 0.03 0.144 0.01 Cadmium Strong Acid Extractable ug/g 0.5 1.7 0.1 0.05 Chromium Strong Acid Extractable ug/g 31.8 47.3 19.5 0.04 Cobert Strong Acid Extractable ug/g 79.2 221 22.7 0.05 Copper Strong Acid Extractable ug/g 3.5 92.7 6.8 0.3 Mercury Strong Acid Extractable ug/g 3.6 6.55 0.55 0.051 Nickel Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g 3.6 6.55 0.55 0.05 Thallum Strong Acid Extractable ug/g 3.7<	Antimony	Strong Acid Extractable	ug/g	4.2	6.5	<0.5	0.5	
Barium Strong Acid Extractable ug/g 74.2 111 45.2 0.03 Beryllum Strong Acid Extractable ug/g 0.19 0.30 0.14 0.01 Cadmium Strong Acid Extractable ug/g 31.8 47.3 19.5 0.04 Cobait Strong Acid Extractable ug/g 6.46 8.02 5.32 0.05 Copper Strong Acid Extractable ug/g 33.5 82.7 6.8 0.3 Mercury Strong Acid Extractable ug/g 2.6.8 33.6 23.3 0.11 Mercury Strong Acid Extractable ug/g 2.6.8 33.6 23.3 0.11 Strong Acid Extractable ug/g 2.6.8 33.6 23.3 0.1 Silver Strong Acid Extractable ug/g 2.0.2 c0.2 0.2 0.2 Silver Strong Acid Extractable ug/g 2.7 0.4 0.2 0.2 Silver Strong Acid Extractable ug/g 3.7	Arsenic	Strong Acid Extractable	ug/g	3.7	4 1	3.2	0.0	
Beryllum Strong Acid Extractable ug/g 0.19 0.30 0.14 0.01 Cadmium Strong Acid Extractable ug/g 0.5 1.7 0.1 0.05 Chromium Strong Acid Extractable ug/g 6.46 8.02 5.32 0.05 Copper Strong Acid Extractable ug/g 6.46 8.02 5.32 0.05 Laad Strong Acid Extractable ug/g 0.041 0.079 0.022 0.003 Mercury Strong Acid Extractable ug/g 0.6 6.55 0.56 0.05 Nickel Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g 0.3 <0.2	Barium	Strong Acid Extractable	ug/g	74.2	111	45.2	0.03	
Cadmium Strong Acid Extractable ug/g 0.5 1.7 0.1 0.05 Chomium Strong Acid Extractable ug/g 31.8 47.3 19.5 0.04 Cobalt Strong Acid Extractable ug/g 6.46 8.02 5.32 0.05 Copper Strong Acid Extractable ug/g 3.5 82.7 6.8 0.3 Mercury Strong Acid Extractable ug/g 0.041 0.079 0.022 0.003 Mercury Strong Acid Extractable ug/g 3.6 6.55 0.56 0.05 Molyddenum Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 2.0	Beryllium	Strong Acid Extractable	ug/g	0.19	0.30	0.14	0.01	
Chromium Strong Acid Extractable ug/g 31.8 47.3 19.5 0.04 Cobait Strong Acid Extractable ug/g 6.46 8.02 5.32 0.05 Copper Strong Acid Extractable ug/g 79.2 221 22.7 0.05 Lead Strong Acid Extractable ug/g 33.5 82.7 6.8 0.3 Mercury Strong Acid Extractable ug/g 0.041 0.079 0.022 0.003 Nobidenum Strong Acid Extractable ug/g 26.8 33.6 23.3 0.1 Nckel Strong Acid Extractable ug/g 26.8 33.6 23.3 0.1 Silver Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g <0.2	Cadmium	Strong Acid Extractable	ug/g	0.5	1.7	0.1	0.05	
Cobalt Strong Axid Extractable ug/g 6.46 8.02 5.32 0.05 Copper Strong Axid Extractable ug/g 79.2 221 22.7 0.05 Lead Strong Axid Extractable ug/g 33.5 92.7 6.6 0.3 Mercury Strong Axid Extractable ug/g 0.041 0.079 0.022 0.003 Molybdenum Strong Axid Extractable ug/g 2.6 33.6 23.3 0.1 Steel Strong Axid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Axid Extractable ug/g 0.2 <0.2 0.2 0.2 0.2 Silver Strong Axid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Axid Extractable ug/g 3.9 7.7 0.4 0.2 Thallum Strong Axid Extractable ug/g 3.7.0 46.6 33.4 0.1 Zhc Strong Axid Extractable ug/g	Chromium	Strong Acid Extractable	ug/g	31.8	47.3	19.5	0.04	
Copper Strong Acid Extractable ug/g 33.5 22.1 22.7 0.05 Lead Strong Acid Extractable ug/g 33.5 62.7 6.8 0.3 Mercury Strong Acid Extractable ug/g 0.041 0.079 0.022 0.003 Molybdenum Strong Acid Extractable ug/g 3.6 6.55 0.56 0.05 Nickel Strong Acid Extractable ug/g 26.8 33.6 23.3 0.1 Selenium Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g <0.2	Cobalt	Strong Acid Extractable	ug/g	6.46	8.02	5.32	0.05	
Lead Strong Axid Extractable ug/g 33.5 92.7 6.8 0.3 Mercury Strong Axid Extractable ug/g 0.041 0.079 0.022 0.003 Molybderum Strong Axid Extractable ug/g 2.6 6.55 0.56 0.05 Nickel Strong Axid Extractable ug/g 26.8 33.6 23.3 0.1 Selenium Strong Axid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Axid Extractable ug/g <0.2	Copper	Strong Acid Extractable	ug/g	79.2	221	22.7	0.05	
Mercury Strong Acid Extractable ug/g 0.041 0.079 0.022 0.003 Molybdenum Strong Acid Extractable ug/g 3.6 6.55 0.56 0.05 Nickel Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g <0.7	Lead	Strong Acid Extractable	ug/g	33.5	82.7	6.8	0.3	
Molybdenum Strong Acid Extractable ug/g 3.6 6.55 0.56 0.05 Nickel Strong Acid Extractable ug/g 26.8 33.6 23.3 0.1 Selenium Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g <0.2	Mercury	Strong Acid Extractable	ug/g	0.041	0.079	0.022	0.003	
Nickel Strong Acid Extractable ug/g 26.8 33.6 23.3 0.1 Selenium Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	Molybdenum	Strong Acid Extractable	ug/g	3.6	6.55	0.56	0.05	
Steinum Strong Acid Extractable ug/g 0.7 1.1 0.9 0.3 Silver Strong Acid Extractable ug/g <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <td>Nickel</td> <td>Strong Acid Extractable</td> <td>ug/g</td> <td>26.8</td> <td>33.6</td> <td>23.3</td> <td>0.1</td>	Nickel	Strong Acid Extractable	ug/g	26.8	33.6	23.3	0.1	
Silver Strong Acid Extractable ug/g <0.2 <0.2 <0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.1 0.2 0.4 0.2 0.1 0	Selenium	Strong Acid Extractable	ug/g	0.7	1.1	0.9	0.3	
Instruction Strong Acid Extractable ug/g <0.3 <0.3 <0.3 0.3 Tin Strong Acid Extractable ug/g 3.9 7.7 0.4 0.2 Vanadium Strong Acid Extractable ug/g 37.0 46.6 33.4 0.1 Zinc Strong Acid Extractable ug/g 134 288 63.0 0.1 Soil Acidity Image: Soil Acidity Image: Soil Acidity Image: Soil Water pH 5.9 6.2 6.0 0.5	Silver	Strong Acid Extractable	ug/g	<0.2	<0.2	<0.2	0.2	
Tin Strong Acid Extractable ug/g 3.9 7.7 0.4 0.2 Vanadium Strong Acid Extractable ug/g 37.0 46.6 33.4 0.1 Zinc Strong Acid Extractable ug/g 134 288 63.0 0.1 Soil Acidity pH 1:2 Soil:Water pH 5.9 6.2 6.0 0.5	Thallium	Strong Acid Extractable	ug/g	<0.3	<0.3	<0.3	0.3	
Vanadium Strong Acid Extractable ug/g 37.0 46.6 33.4 0.1 Zino Strong Acid Extractable ug/g 134 288 63.0 0.1 Soil Acidity pH 5.9 6.2 6.0 0.5	Tin	Strong Acid Extractable	ug/g	3.9	7.7	0.4	0.2	
Zinc Strong Acid Extractable ug/g 134 288 63.0 0.1 Soil Acidity pH 5.9 6.2 6,0 0.5	Vanadium	Strong Acid Extractable	ug/g	37.0	46.6	33.4	0.1	
Soir Acidity pH 1:2 Soit:Water pH 5.9 6.2 6.0 0.5	Zinc	Strong Acid Extractable	ug/g	134	288	63.0	0.1	
pri 1.2 solitivater pri 5.9 6.2 6.0 0.5	Soll Acidity	10 0-1110-1-1	201	2.2				
	but	1.2 Ooll vyater	pri	519	6.2	6.0	0.5	
	0							
	-							
	0							
	2							
	0							
	2							
	2							
	2							
	2							
	-							

Bill to: Vancouver Park Board Project NWL Lot II Report to: Vancouver Park Board ID: Control Numbe c/o 2099 Bcach Avenue Name: Stanley Park Wetland Testing Date Receiver Vancouver, BC, Canada Location: Date Reported Date Reported V6G 1Z4 LSD: Date Reported Report Numbe Sampled By: P.O.: 4500353208 Report Numbe	 524777 314038 Feb 09, 2007 Feb 15, 2007 966305 3 of 7
rage	177.0
NWL Number 524777-7 524777-8 5247 Sample Description Soil - 2B Soil - 2C Soil	-2D
Analytic Soli Soli S	l
Metale Strong Acid Disaction	Detection Limit
Antimony Strong Acid Extractable unio 20.5 20.5	0.5
Arsenic Strong And Extractable up/s 0.5 (0.5 (0.5	0.5
Barium Strong Add Extractable undo 53.2 1.1 2.6	0.2
Beryllium Strong Add Extractable us/g 0.14 0.13 0.13	0.03
Cadmium Strong Acid Extractable uo/a 0.2 0.2 0.1	0.01
Chromium Strong Acid Extractable ug/g 22.2 20.0 22.3	0.03
Cobalt Strong Acid Extractable ug/g 6,49 5,91 5,03	0.05
Copper Strong Acid Extractable ug/g 23.8 20.5 19.8	0.05
Lead Strong Acid Extractable ug/p 6.9 6.0 5.4	0.00
Mercury Strong Acid Extractable ug/g 0.022 0.024 0.02	3 0.003
Molybdenum Strong Acid Extractable ug/g 1.3 0.58 0.52	0.05
Nickel Strong Acid Extractable ug/g 24,6 25,0 24,7	D.1
Selenium Strong Acid Extractable ug/g 0.6 <0.3 0.6	0.3
Silver Strong Acid Extractable ug/g <0,2 <0.2 <0.2	0.2
Thallium Strong Acid Extractable ug/g <0.3 <0.3 <0.3	0.3
Tin Strong Acid Extractable ug/g 0.4 0.3 0.3	0.2
Vanadium Strong Acid Extractable ug/g 33.9 29.3 35.8	0.1
Zinc Strong Acid Extractable ug/g 79.2 61.3 55.3	0.1
Soil Acidity	
PH 1.2 Solt/Water pH 5.7 6.0 6.0	0.5

Norwes	т	Anal	ytical Report		Norwest Labs #104, 19575-55 A Surrey, BC. V38 Phone: (604) 5 Fax: (804) 5	Ave. 898 14-3322 14-3323
Bill to: Vancouver Park Report to: Vancouver Park c/o 2099 Beach Vancouver, BC V6G 1Z4 Attn: Eric Meagher Sampled By: Company:	k Board k Board i Avenue , Canada r	Project ID: Name: Location: LSD: P.O.: Acct. Code:	Stanley Park Wet 4500353208	land Testing	NWL Lot ID: Control Number: Date Received: Date Reported: Report Number: Page:	524777 314038 Feb 09, 2007 Feb 15, 2007 966305 4 of 7
0	Sam	NWL Number ple Description Matrix	524777-10 Soil - 2E Soil	524777-11 Soil - 3A Soil	524777 Soil -	7-12 3B
Analyte		Units	Results	Posulte	Pagulte	Detection Limit
Metals Strong Acid Digesti	ion			114.0411.0	results	Detection Limit
Antimony	Strong Acid Extractable	ug/g	<0.5	<0.5	<0.5	0,5
Badum	Strong Acid Extractable	ug/g	2.0	2.0	1.1	0.2
Berulium	Strong Acid Extractable	ug/g	36.0	36.0	36.9	0.03
Cadmium	Strong Acid Extractable	ugyg	0.12	0.13	0.15	0.01
Chromium	Strong Acid Extractable	ugrg	0.2	0.1	0.2	0.05
Cobait	Strong Acid Extractable	unia	6.07	25.4	18.2	0.04
Copper	Strong Acid Extractable	uala	21 6	4.9	7.05	0.05
Lead	Strong Acid Extractable	uala	1.0	10.4	32.1	0.05
Mercury	Strong Acid Extractable	unia	0.010	4.0	4.3	0.3
Molybdenum	Strong Acid Extractable	uala	0.4	0.010	0.010	0.003
Nickel	Strong Acid Extractable	ua/a	20.6	23.5	10.0	0.05
Selenium	Strong Acid Extractable	ug/g	<0.3	0.7	20.3	0.2
Silver	Strong Acid Extractable	ug/g	<0.2	<0.2	<0.5	0.2
Thellium	Strong Acid Extractable	ug/g	<0.3	<0.3	<0.3	0.2
Tin	Strong Acid Extractable	ug/g	0.2	0.2	0.4	0.2
Vanadium	Strong Acid Extractable	ug/g	36.2	33.5	41.7	0.1
Zino	Strong Acid Extractable	ug/g	54.8	54.7	57.2	0.1
Soil Acidity						0.7075
рн	1:2 Soil:Water	рH	6.3	6.3	6.2	0.5
2						
2						
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		

No La	RWEST BS	Ana	llytical Report		Norwest Labs #104, 19575-55 A Surrey, BC. V3S i Phone: (604) 5 Fax: (604) 5	Ave. 8P8 14-3322 14-3323
Bill to: Vancou Report to: Vancou c/o 209 Vancou V6G 1Z Attn: Eric 1 Sampled By. Company:	iver Park Board iver Park Board 9 Beach Avenue wer, BC, Canada 4 Meagher	Project ID: Name: Location: LSD: P.O.: Acct. Code	Stanley Park Wetl 4500353208	and Testing	NWL Lot ID: Control Number: Date Received: Date Reported: Report Number: Page:	524777 314038 Feb 09, 2007 Feb 15, 2007 966305 5 of 7
9						
0		NWL Number	524777-13	524777-14	524777	7-15
	Samp	le Description	Soil - 3C	Soil - 3D	Soil -	3E
0		Matrix	Soil	Soil	Sol	1
Analyte		Units	Results	Results	Results	Detection Limit
Metals Strong Acid	Digestion					
Antimony	Strong Acid Extractable	ug/g	<0.5	<0.5	<0.5	0.5
Arsenio	Strong Acid Extractable	ug/g	3.2	2.9	3.3	0.2
Banum	Strong Acid Extractable	nð/ð	39.2	31.6	46.2	0.03
Derysum Cadmium	Strong Acid Extractable	nð\ð	0.14	0.14	0.14	0.01
Chomium	Strong Acid Extractable	ug/g	0.1	0.2	0.1	0.05
Cohalt	Strong Acid Extractable	ug/g	17.5	19.4	22.3	0.04
Cooper	Strong Acid Extractable	ug/g	5.72	5.97	5.08	0.05
Lead	Strong Acid Extractable	ug/g	23.5	24.9	19.8	0.05
Mercury	Strong Acid Extractable	ug/g	4.6	6.5	6.4	0.3
Molybdenum	Strong Acid Extractable	ugig	0.024	0.040	0.024	0.003
Nickel	Strong Acid Extractable	ug/g	17 7	0.31	0.62	0.05
Selenium	Strong Acid Extractable	ua/a	0.8	20.3	24.1	0.1
Silver	Strong Acid Extractable	uala	<0.2	<0.3	20.2	0.3
Thallium	Strong Acid Extractable	ug/g	<0.3	<0.3	<0.2	0.2
Tin	Strong Acid Extractable	ug/g	0.2	0.3	0.3	0.2
Vanadium	Strong Acid Extractable	ug/g	43.5 1	33.0	32.9	0.1
Zinc	Strong Acid Extractable	ug/g	56.2	62.6	58.4	0.1
Soil Acidity				122.022		0 T A
∩рН	1:2 Soil:Water	pH	5.8	6.3	6.3	0.5
-						
0						
0						
0						
0						
0						
2						

NORWEST		Ana	lytical Report		Norwest Labs #104, 19575-55 A Ave. Surrey, BC. V3S 8P8 Phone: (604) 514-3323 Fax: (604) 514-3323		
Bill to: Vancour Report to: Vancour c/o 2099 Vancour V6G 12/ Attn: Eric M Sampled By Company	ver Park Board ver Park Board 9 Beach Avenue ver, BC, Canada 4 Meagher	Project ID: Name: Location: LSD: P.O.: Acct. Code:	Stanley Park Weth 4500353208	and Testing	NWL Lot ID: Control Number: Date Received: Date Reported: Report Number:	524777 314038 Feb 09, 2007 Feb 15, 2007 966305	
					Page:	6 of 7	
	Samp	NWL Number le Description Matrix	524777-16 Soil - S-Outlet Soil	524777-17 Soil - S-Inlet Soil			
Analyte		Units	Results	Results	Results	Detection Limit	
Metals Strong Acid Antimony Arsenic Barium Beryillum Cadmium Cobait Copper Lead Mercury Molybdenum Nickel Selerium Silver Thallium Tin Vanadium Zinc Soll Acidity pH	Digestion Strong Acid Extractable Strong Acid Extractable	ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g	<0.5 2.2 49.5 0.20 0.73 18.7 8.49 80.0 32.0 0.047 1.3 18.3 <0.2 <0.3 <0.2 <0.3 1.5 46.9 94.1 6.6	5.6 3.3 63.0 0.21 0.53 40.7 6.85 153 48.5 0.041 3.6 19.7 1.6 <0.2 <0.3 6.7 49.1 246 6.5		0.5 0.2 0.03 0.01 0.05 0.04 0.05 0.05 0.3 0.003 0.05 0.1 0.3 0.2 0.3 0.2 0.3 0.2 0.1 0.1 0.5	
			Арргочес	i by: Uniter Brandl Operations Ma	anager - Surrey	Ú	

NORWEST		Methodology and Notes	Norwest I #104, 195 Surrey, B0 Phone: Fax:	abs 75-55 A Ave. 2. V3S 8P8 (604) 514-3322 (604) 514-3323
Bill to: Vancouver Park Boa Report to: Vancouver Park Boa c/o 2099 Beach Aver Vancouver, BC, Can V6G 124 Attn: Eric Meagher Sampled By: Company:	rd rd ada	Project ID: Name: Stanley Park Wetland Testing Location: LSD: P.O.: 4500353208 Acct. Code:	NWL Control N Date Re Date Re Report N	Lot ID: 524777 Jumber: 314038 iceived: Feb 09, 2007 iported: Feb 15, 2007 Jumber: 966305 Page: 7 of 7
Method of Analysis: MethodName	Reference	Method	Date Analysis	Location
Metals (Strong Acid Leachable) in	B.C.M.O.E	 Strong Acid Leachable Metals (SALM) in 	Started 14-Feb-07	Norwest Labs Surrey
soils		Soil, V 1.0, SALM		
H and EC in Soil - 1:2 (Surrey)	McKeague	* 1:2 Soit: Water Ratio, 4.12	13-Feb-07	Norwest Labs Surrey
McKeague Comments:	Manual on	Soll Sampling and Methods of Analysis		

HEMMERA ENVIROCHEM INC. ATTN: James Mair # 250 - 1380 Burrard Street Vancouver BC V6Z 2H3

Environmental 🚴

Date Received: 01-AUG-13 Report Date: 27-AUG-13 12:45 (MT) Version: FINAL REV. 3

Client Phone: 604-669-0424

Certificate of Analysis

Lab Work Order #: L1341753

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc: NOT SUBMITTED 358-013.02 10-340088, 10-340089

Comments: This report replaces the previous version and contains additional parameters.

Mark

Brent Mack Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 8081 Lougheed Hwy, Suite 100, Burnaby, BC V5A 1W9 Canada | Phone: +1 604 253 4188 | Fax: +1 604 253 6700 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

RIGHT SOLUTIONS RIGHT PARTTIER
L1341753 CONTD.... PAGE 2 of 14 27-AUG-13 12:45 (MT) Version: FINAL REV. 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1341753-2 Sediment 31-JUL-13 SS13-2	L1341753-3 Sediment 31-JUL-13 SS13-3	L1341753-4 Sediment 31-JUL-13 SS13-4	L1341753-6 Sediment 31-JUL-13 SS13-6	L1341753-7 Sediment 31-JUL-13 SS13-7
Grouping	Analyte					
SOIL			()			
Physical Tests	Moisture (%)	71.4	72.9	71.0	72.9	70.1
	pH (1:2 soil:water) (pH)	5.78	5.00	8.25	8.01	8 17
Saturated Paste Extractables	Chloride (Cl) (mg/kg)	5.70	3.02	132	319	0.17
	% Saturation (%)			110	154	
	Sodium (Na) (mg/kg)			194	103	
Metals	Antimony (Sb) (mg/kg)	25.8	28.3	48.0	45.8	54.7
	Arsenic (As) (mg/kg)	3.70	4.43	5.69	5.16	5.59
	Barium (Ba) (mg/kg)	117	131	182	173	186
	Beryllium (Be) (mg/kg)	<0.20	0.24	0.28	0.24	0.31
	Cadmium (Cd) (mg/kg)	1.61	1.74	2.58	2.28	2.57
	Chromium (Cr) (mg/kg)	101	112	131	135	134
	Cobalt (Co) (mg/kg)	8.46	8.36	10.8	9.63	10.8
	Copper (Cu) (mg/kg)	355	372	615	582	678
	Lead (Pb) (mg/kg)	88.1	97.9	179	162	184
	Mercury (Hg) (mg/kg)	0.085	0.085	0.150	0.128	0.154
	Molybdenum (Mo) (mg/kg)	11.0	11.5	21.0	19.7	22.8
	Nickel (Ni) (mg/kg)	29.4	28.7	37.5	36.3	39.3
	Selenium (Se) (mg/kg)	0.98	1.18	1.11	1.07	1.30
	Silver (Ag) (mg/kg)	0.39	0.34	0.58	0.57	0.73
	Thallium (TI) (mg/kg)	0.090	0.097	0.144	0.127	0.149
	Tin (Sn) (mg/kg)	23.3	27.9	47.3	42.1	52.5
	Uranium (U) (mg/kg)	0.473	0.500	0.702	0.648	0.723
	Vanadium (V) (mg/kg)	46.2	48.3	67.6	61.0	68.4
	Zinc (Zn) (mg/kg)	616	685	1010	950	1110
TCLP Extractables	Benzo(a)pyrene (mg/L)			0.000.000	100420	- 1.6 //
	1st Preliminary PH (pH)					
	2nd Preliminary PH (pH)					
	Extraction Solution Initial pH (pH)					
	Final pH (pH)					
TCLP Metals	Chromium (Cr)-Leachable (mg/L)					
	Lead (Pb)-Leachable (mg/L)					
Volatile Organic Compounds	Benzene (mg/kg)			0.038 ABL		
	Bromodichloromethane (mg/kg)			<0.10		
	Bromoform (mg/kg)			<0.10		
	Carbon Tetrachloride (mg/kg)			<0.10		
	Chlorobenzene (mg/kg)			<0.10		

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

L1341753 CONTD.... PAGE 3 of 14 27-AUG-13 12:45 (MT) Version: FINAL REV. 3

ALS ENVIRONMENTAL ANALYTICAL REPORT

	Sample ID Description Sampled Date Sampled Time Client ID	L1341753-9 Sediment 31-JUL-13 8813-9		
Grouping	Analyte			
SOIL		÷		
Physical Tests	Moisture (%)	68.8		
	pH (1:2 soil:water) (pH)	6.26		
Saturated Paste Extractables	Chloride (CI) (mg/kg)			
	% Saturation (%)			
1	Sodium (Na) (mg/kg)			
Metals	Antimony (Sb) (mg/kg)	63.9		
	Arsenic (As) (mg/kg)	6,83		
	Barium (Ba) (mg/kg)	205		
	Beryllium (Be) (mg/kg)	0.33		
	Cadmium (Cd) (mg/kg)	3.28		
	Chromium (Cr) (mg/kg)	135		
	Cobalt (Co) (mg/kg)	14.0		
	Copper (Cu) (mg/kg)	644		
	Lead (Pb) (mg/kg)	241		
	Mercury (Hg) (mg/kg)	0.183		
	Molybdenum (Mo) (mg/kg)	28.0		
	Nickel (Ni) (mg/kg)	45.9		
	Selenium (Se) (mg/kg)	0.92		
	Silver (Ag) (mg/kg)	0.76		
	Thallium (TI) (mg/kg)	0.162		
	Tin (Sn) (mg/kg)	42.3		
	Uranium (U) (mg/kg)	0.846		
	Vanadium (V) (mg/kg)	75.5		
	Zinc (Zn) (mg/kg)	1150		
TCLP Extractables	Benzo(a)pyrene (mg/L)	<0.000050		
	1st Preliminary PH (pH)	7.13		
	2nd Preliminary PH (pH)	1.38		
	Extraction Solution Initial pH (pH)	4.95		
	Final pH (pH)	5.05		
TCLP Metals	Chromium (Cr)-Leachable (mg/L)	<0.25		
	Lead (Pb)-Leachable (mg/L)	<0.25		
Volatile Organic Compounds	Benzene (mg/kg)			
	Bromodichloromethane (mg/kg)			
	Bromoform (mg/kg)			
	Carbon Tetrachloride (mg/kg)			
	Chlorobenzene (mg/kg)			

* Please refer to the Reference Information section for an explanation of any qualifiers detected.

Reference Information

QC Type Des	cription		Parameter	Qualifier	Applies to Sample Number(s)
Duplicate			Silver (Ag)	DUP-H,J	L1341753-2, -3, -4, -8, -7, -9
Laboratory Co	ontrol Sample	2	Hexachlorocyclohexane (Total)	LCS-ND	L1341753-4
Laboratory Co	ontrol Sample	8)	Hexachloroethane	LCS-ND	L1341753-4
Qualifiers fo	r Individual	Parameters	Listed:		
Qualifier	Descripti	ол			
ABL	Approxin	nate Result:	May Be Biased Low		
DLA	Detection	n Limit Adius	ted For required dilution		
DLHM	Detection	n Limit Adius	ted: Sample has High Moisture Content		
DLM	Detection	n Limit Adius	ted For Sample Matrix Effects		
DUP-H,J	Duplicate	e results outs e.	ide ALS DQO, due to sample heterogen	eity. Duplicate r	results and limits are expressed in terms of absolute
LCS-ND	Lab Cont	trol Sample r	ecovery was slightly outside ALS DQO.	Reported non-o	detect results for associated samples were unaffected.
LSRA	Low sum extractab	ogate recove de concentra	ry observed due to adsorp <mark>tive</mark> material ir tions.	i sample (e.g. o	charcoal). Associated results represent solvent
est Method	Reference	s:			
LS Test Cod	e	Matrix	Test Description		Method Reference**
L-PASTE-CO	LOR-VA	Soil	Chloride in Soil (Paste) by Colourimet	ry	Carter-CSSS / APHA 4500-CI Et/modified)
A soil extract	produced by	the saturate	d paste extraction procedure is analyzed	for chloride by	ferricyanide colourimetry.
H-SOX-MS	VA	Soil	Chlorinated Hydrocarbons in Soil by G	CMS	3510 3610 8121 SW-846 AND 8270 EPA
This analysis by the United dichlorometh Hexachlorocy	is carried ou States Envir ane. The fin (clohexanes	it using proci ronmental Pr al extract is a includes the	edures adapted from "Test Methods for E otection Agency (EPA). The procedure u analysed by capillary column gas chroma alpha, beta, gamma, and delta isomers	valuating Solid ses a Soxhlet s tography with n	Waste" SW-846, Methods 3540, 3810, 8270, published system to extract a subsample of the sediment/soilwith nass spectrometric detection (GC/MS).
LPHEN-TMB	-MS-VA	Soil	Chlorinated Phenols by Tumbler/GCN	IS	EPA 3570, 8270, Knapp(1979)
A subsample	of the soil/se	ediment is ro	tary extracted by solvent, derivitized, and	analysed by G	iC/MS.
	D VA	Soil	EPU in Solids by Tumbles and GCEID		BC MOE EBU CCEID
Analysis is in samples are chromatograg equivalent to	accordance extracted wit phy with flam Light and He	with BC MO h a 1:1 mixtu e ionization avy Extracta	E Lab Manual method "Extractable Petro re of hexane and acetone using a rotary detection (GC-FID). EPH results include lole Petroleum Hydrocarbons (LEPH/HEF	leum Hydrocarl extraction tech Polycyclic Aror PH).	bons in Solids by GC/FID*, v2.1, July 1999. Soil nique modified from EPA 3570 prior to gas matic Hydrocarbons (PAH) and are therefore not
G-200.2-CVA	F-VA	Soil	Mercury in Soil by CVAFS		EPA 200.2/245.7
This analysis Environment, sieved throug weighed. The Instrumental	is carried ou 26 June 200 h a 2 mm (1 e sample is t analysis is by	It using proc 09, and proce 0 mesh) siev hen digested y atomic fluo	edures from CSR Analytical Method: "Str edures adapted from EPA Method 200.2. e (this sieve step is omitted for internatio I at 95 degrees Celsius for 2 hours by blo rescence spectrophotometry or atomic al	ong Acid Leach The sample is nal soil sample ck digester usi bsorption spect	hable Metals (SALM) in Soil", BC Ministry of a manually homogenized, dried at 60 degrees Celsius, is), and a representative subsample of the dry material is ng concentrated nitric and hydrochloric acids. trophotometry(EPA Method 245.7).
be environme mobile in the	entally availat environment	ble. By design	a total digestion technique. It is a very s gn, elements bound in silicate structures	are not normal	ly dissolved by this procedure as they are not usually
EPH/HEPH-C	CALC-VA	Soil	LEPHs and HEPHs		BC MOE LABORATORY MANUAL (2005)
Light and Hei Environment, Solids or Wal by subtractin results for Na Benzo(b)fluor are subtracte	avy Extractate Lands, and ter". According selected Polyphthalene ar ranthene, Be d from EPH(Botroleum H	ble Petroleun Parks Analyt ing to this me olycyclic Arou nd Phenanth nzo(k)fluorar C19-32). An	h Hydrocarbons in Solids. These results a ical Method for Contaminated Sites "Cali- thod, LEPH and HEPH are calculated matic Hydrocarbon results from Extractat rene are subtracted from EPH(C10-19). thene, Benzo(a)pyrene, Dibenz(a,h)anth alysis of Extractable Petroleum Hydrocan is Solide NG CEID" (Aperice 24, https:// Calification.com/Soliders/Califica	are determined culation of Ligh ole Petroleum H To calculate HE racene, Indeno toons adheres to 0 10000	according to the British Columbia Ministry of t and Heavy Extractable Petroleum Hydrocarbons in Hydrocarbon results. To calculate LEPH, the individual EPH, the individual results for Benz(a)anthracene, (1,2,3-c,d)pyrene, and Pyrene to all prescribed elements of the BCMELP method
ET-200 2-CC	MS-VA	Soil	Metals in Soil by CRC ICPMS	a, toop	EPA 200.2/6020A
This analysis Environment, sieved throug weighed. Th Instrumental	is carried ou 26 June 200 h a 2 mm (1 e sample is t analysis of th	at using proce 09, and proce 0 mesh) siev hen digested ne digested e	edures from CSR Analytical Method: "Str edures adapted from EPA Method 200.2. e (this sieve step is omitted for internatio I at 95 degrees Celsius for 2 hours by blo xtract is by collision cell inductively coup	ong Acid Leach The sample is nal soil sample ck digester usi led plasma - m	nable Metals (SALM) in Soi [®] , BC Ministry of smanually homogenized, dried at 60 degrees Celsius, is), and a representative subsample of the dry material is ng concentrated nitric and hydrochloric acids. ass spectrometry (modifed from EPA Method 6020A).

L1341753 CONTD.... PAGE 13 of 14 27-AUG-13 12:45 (MT) Version: FINAL REV. 3

Reference Information

Method Limitation: This method is not a total digestion technique. It is a very strong acid digestion that is intended to dissolve those metals that may be environmentally available. By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment MET.TCI PJCP.VA Soil Metals by ICPOES (TCLP) EPA 1311/6010B This analysis is carried out in accordance with the extraction procedure outlined in "Test Methods for Evaluating Solid Waste - Physical/Chemical Methods Volume 1C* SW-846 EPA Method 1311, published by the United States Environmental Protection Agency (EPA). In summary, the sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (glacial acetic acid, water and sodium hydroxide) or extraction fluid #2 (glacial acetic acid), depending on the pH of the original sample. The extract is then filtered through a 0.6 to 0.8 micron glass fibre filter and analysed using inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B). Soil MOISTURE-VA Moisture content ASTM D2974-00 Method A This analysis is carried out gravimetrically by drying the sample at 105 C for a minimum of six hours. PAH'S IN TOLP LEACHATE EPA 3510/8270 LIQ-LIQ GCMS PAH-TCLP-SE-MS-VA Soil The sample is extracted at a 20:1 liquid to solids ratio for 16 to 20 hours using either extraction fluid #1 (acetic acid, water and sodium hydroxide) or extraction fluid #2 (acetic acid and water) depending on the pH of the original sample. The extract is filtered and then extracted with dichloromethane. The extract is solvent exchanged to toluene prior to analysis by capillary column gas chromatography with mass spectrometric detection (GC/MS). Because the two isomers cannot be readily chromatographically separated, benzo(i)fluoranthene is reported as part of the benzo(b)fluoranthene parameter. PAH-TMB-H/A-MS-VA Soil PAH - Rotary Extraction (Hexane/Acetone) EPA 3570/8270 This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846, Methods 3545 & 8270, published by the United States Environmental Protection Agency (EPA). The procedure uses a mechanical shaking technique to extract a subsample of the sediment/soil with a 1:1 mixture of hexane and acetone. The extract is then solvent exchanged to toluene. The final extract is analysed by capillary column gas chromatography with mass spectrometric detection (GC/MS). Surrogate recoveries may not be reported in cases where interferences from the sample matrix prevent accurate quantitation. Because the two isomers cannot be readily chromatographically separated, benzo()fluoranthene is reported as part of the benzo(b)fluoranthene parameter. PCB by Extraction with GCECD PCB-SE-ECD-VA Soil EPA8082, 3630 This analysis is carried out using procedures adapted from "Test Methods for Evaluating Solid Waste" SW-848, Methods 3500, 3620, 3630, 3660, 3665 & 8082, published by the United States Environmental Protection Agency (EPA). The procedure involves a solid-liquid extraction of a subsample of the sediment/soil using a mixture of hexane and acetone. Water is added to the extract and the resulting hexane extract undergoes one or more of the following clean-up procedures (if required): florisit clean-up, silica gel clean-up, sulphur clean-up and/or sulphuric acid clean-up. The final extract is analysed by capillary column gas chromatography with electron capture detection (GC/ECD). Soil PCB-SUM-CALC-VA Total PCBs in soil CALCULATION. Calculation of Total PCB. Total PCB is the sum of the concentrations of PCB aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1280, 1262, and 1268. Results below detection limit (DL) are treated as zero. The Total PCB detection limit is equal to the highest of the aroclor detection limits used in the sum PH-1:2-VA Soil pH in Soil (1:2 Soil:Water Extraction) BC WLAP METHOD: PH. ELECTROMETRIC, SOIL This analysis is carried out in accordance with procedures described in the pH, Electrometric in Soil and Sediment method - Section B Physical/horganic and Misc. Constituents, BC Environmental Laboratory Manual 2007. The procedure involves mixing the dried (at <80±0) and sieved (No. 10 / 2mm) sample with deionized/distilled water at a 1:2 ratio of sediment to water. The pH of the solution is then measured using a standard pH probe Soil Phenolics by Tumbler/GC-MS EPA 3570 & 8270, Knapp (1979) PHEN-TMB-MS-VA A subsample of the soil/sediment is rotary extracted by solvent, derivitized, and analysed by GC/MS. EPA 3540/8270-GC/MS Soil PHTHAI ATE-ED Phthalates SAR in Soil (Paste) by ICPOES Carter-CSSS / EPA 6010B (modified) SAR-CALC-MGKG-ICP-VA Soil A soil extract produced by the saturated paste extraction procedure is analyzed for Sodium, Calcium, and Magnesium by ICPOES. Sodium Adsorption Ratio (SAR) is calculated as per "Soil Sampling and Methods of Analysis" by M. Carter. SAT-PCNT-VA Soil Saturation Percentage Carter-CSSS Saturation Percentage (SP) is the total volume of water present in a saturated paste (in mL) divided by the dry weight of the sample (in grams), expressed as a percentage, as described in "Soil Sampling and Methods of Analysis" by M. Carter. VOC-HSMS-VA VOCs in soil by Headspace GCMS EPA8260B, 5021, 5035, BC MOE Soil The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection VOC7-L-HSMS-VA Soil VOCs in soil by Headspace GCMS EPA8260B, 5021, 5035, BC MOE The soil methanol extract is added to water and reagents, then heated in a sealed vial to equilibrium. The headspace from the vial is transferred into a gas chromatograph. Target compound concentrations are measured using mass spectrometry detection. EPA METHODS 8260B & 524.2 VOC7/VOC-SURR-MS-VA Soil VOC7 and/or VOC Surrogates for Soils

L1341753 CONTD PAGE 14 of 14 27-AUG-13 12:45 (MT) Version: FINAL REV. 3

Reference Information

XYLENES-CALC-VA

Soil Sum of Xylene Isomer Concentrations EPA 8260B & 524.2

Calculation of Total Xylenes

Total Xylenes is the sum of the concentrations of the ortho, meta, and para Xylene isomers. Results below detection limit (DL) are treated as zero. The DL for Total Xylenes is set to a value no less than the square root of the sum of the squares of the DLs of the individual Xylenes.

** ALS test methods may incorporate modifications from specified reference methods to improve performance.

The last two letters of the above test code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code	Laboratory Location	
ED	ALS ENVIRONMENTAL - EDMONTON, ALBERTA, CANADA	
VA	ALS ENVIRONMENTAL - VANCOUVER, BRITISH COLUMBIA, CANADA	
the second second the second second second		

Chain of Custody Numbers:

10-340088

GLOSSARY OF REPORT TERMS

Surrogate - A compound that is similar in behaviour to target analyte(s), but that does not occur naturally in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery.

mg/kg - milligrams per kilogram based on dry weight of sample. mg/kg wwt - milligrams per kilogram based on wet weight of sample. mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight of sample.

10-340089

mg/L - milligrams per litre.

< - Less than.

D.L. - The reported Detection Limit, also known as the Limit of Reporting (LOR). N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Appendix C: Rainfall Records During Lost Lagoon Wetland Site Visits

Blue stars indicate the dates when sampling was performed at the Lost Lagoon wetland.

Data was retrieved from the Vancouver Harbour Weather Station (Environment Canada, 2016)

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 96. Rainfall Recorded for Downtown Vancouver Between July 15 and July 30, 2015

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 97. Rainfall Recorded for Downtown Vancouver between August 1 and August 15

Figure 98. Rainfall Recorded for Downtown Vancouver Between August 17 and August 31, 2015

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 99. Rainfall Recorded for Downtown Vancouver Between September 1 and September 15, 2015

Figure 100. Rainfall Recorded for Downtown Vancouver Between September 16 and September 30, 2015

Figure 101. Rainfall Recorded for Downtown Vancouver Between October 1 and October 15, 2015

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 102. Rainfall Recorded for Downtown Vancouver Between October 16 and October 30, 2015

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 103. Rainfall Recorded for Downtown Vancouver Between October 31 and November 14, 2015

Figure 104. Rainfall Recorded for Downtown Vancouver Between November 15 and November 29, 2015

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 105. Rainfall Recorded for Downtown Vancouver Between November 30 and December 14, 2015

Rainfall over the Last 2 Weeks (daily data) for Vancouver

Figure 106. Rainfall Recorded for Downtown Vancouver Between December 15 and December 29, 2015

Appendix D: Temperature Records During Lost Lagoon Wetland Site Visits

Bold fonts indicate the dates when sampling was performed at the Lost Lagoon wetland.

Data was retrieved from the Vancouver Harbour Weather Station (Environment Canada, 2016)

Table 48. Environment Canada	Temperature Records for July 1,	2015 through August 31, 2015

Date	Maximum	Mean	Minimum	Date	Maximum	Mean	Minimum
Jul 1 2015	23.9 °C	20.6 °C	17.2 °C	Aug 1 2015	24.3 °C	20.6 °C	16.8 °C
Jul 2 2015	24.6 °C	21.2 °C	17.8 °C	Aug 2 2015	23.9 °C	20.7 °C	17.5 °C
Jul 3 2015	24.8 °C	20.7 °C	16.5 °C	Aug 3 2015	23.2 °C	18.8 °C	14.4 °C
Jul 4 2015	24.6 °C	20.7 °C	16.7 °C	Aug 4 2015	22.5 °C	19.2 °C	15.9 °C
Jul 5 2015	25.6 °C	20.9 °C	16.2 °C	Aug 5 2015	19.3 °C	16.9 °C	14.4 °C
Jul 6 2015	27.1 °C	21.8 °C	16.5 °C	Aug 6 2015	22.4 °C	18.4 °C	14.4 °C
Jul 7 2015	22.7 °C	18.6 °C	14.4 °C	Aug 7 2015	23.2 °C	18.4 °C	13.6 °C
Jul 8 2015	23.8 °C	19.5 °C	15.2 °C	Aug 8 2015	21.8 °C	18.7 °C	15.6 °C
Jul 9 2015	26.0 °C	20.4 °C	14.7 °C	Aug 9 2015	23.4 °C	19.6 °C	15.8 °C
Jul 10 2015	22.9 °C	19.5 °C	16.0 °C	Aug 10 2015	22.6 °C	18.5 °C	14.4 °C
Jul 11 2015	18.7 °C	17.3 °C	15.9 °C	Aug 11 2015	24.1 °C	19.4 °C	14.6 °C
Jul 12 2015	24.2 °C	20.1 °C	16.0 °C	Aug 12 2015	26.8 °C	22.0 °C	17.1 °C
Jul 13 2015	21.8 °C	19.3 °C	16.7 °C	Aug 13 2015	24.3 °C	20.1 °C	15.8 °C
Jul 14 2015	22.3 °C	18.1 °C	13.8 °C	Aug 14 2015	18.8 °C	16.9 °C	15.0 °C
Jul 15 2015	23.1 °C	18.5 °C	13.8 °C	Aug 15 2015	20.6 °C	17.6 °C	14.5 °C
Jul 16 2015	21.9 °C	18.9 °C	15.9 °C	Aug 16 2015	22.2 °C	18.4 °C	14.5 °C
Jul 17 2015	22.9 °C	18.2 °C	13.4 °C	Aug 17 2015	21.8 °C	17.0 °C	12.2 °C
Jul 18 2015	26.4 °C	21.5 °C	16.5 °C	Aug 18 2015	22.8 °C	18.4 °C	14.0 °C
Jul 19 2015	27.3 °C	22.6 °C	17.8 °C	Aug 19 2015	24.6 °C	20.6 °C	16.5 °C
Jul 20 2015	24.3 °C	20.4 °C	16.5 °C	Aug 20 2015	22.4 °C	18.9 °C	15.3 °C
Jul 21 2015	22.7 °C	19.5 °C	16.2 °C	Aug 21 2015	21.0 °C	17.7 °C	14.3 °C
Jul 22 2015	22.5 °C	18.2 °C	13.8 °C	Aug 22 2015	24.0 °C	17.3 °C	10.6 °C
Jul 23 2015	23.4 °C	17.7 °C	12.0 °C	Aug 23 2015	22.7 °C	17.2 °C	11.7 °C
Jul 24 2015	18.1 °C	16.2 °C	14.2 °C	Aug 24 2015	22.8 °C	17.9 °C	12.9 °C
Jul 25 2015	21.8 °C	17.9 °C	14.0 °C	Aug 25 2015	20.2 °C	16.0 °C	11.7 °C
Jul 26 2015	18.3 °C	16.1 °C	13.9 °C	Aug 26 2015	21.8 °C	16.8 °C	11.7 °C
Jul 27 2015	21.4 °C	17.3 °C	13.1 °C	Aug 27 2015	25.4 °C	20.1 °C	14.7 °C
Jul 28 2015	22.4 °C	18.1 °C	13.7 °C	Aug 28 2015	21.5 °C	18.3 °C	15.0 °C
Jul 29 2015	24.2 °C	19.5 °C	14.7 °C	Aug 29 2015	21.4 °C	18.3 °C	15.1 °C
Jul 30 2015	26.4 °C	20.2 °C	14.0 °C	Aug 30 2015	20.2 °C	16.9 °C	13.6 °C
				Aug 31 2015	16.5 °C	15.4 °C	14.2 °C

Date	Maximum	Mean	Minimum	Date	Maximum	Mean	Minimum
Sep 1 2015	16.2 °C	15.0 °C	13.7 °C	Oct 1 2015	15.0 °C	11.5 °C	8.0 °C
Sep 2 2015	17.0 °C	13.4 °C	9.8 °C	Oct 2 2015	14.6 °C	11.9 °C	9.1 °C
Sep 3 2015	16.4 °C	13.3 °C	10.2 °C	Oct 3 2015	15.9 °C	11.4 °C	6.8 °C
Sep 4 2015	16.9 °C	12.3 °C	7.6 °C	Oct 4 2015	16.9 °C	11.5 °C	6.1 °C
Sep 5 2015	18.8 °C	13.6 °C	8.4 °C	Oct 5 2015	16.4 °C	11.4 °C	6.3 °C
Sep 6 2015	16.7 °C	14.3 °C	11.9 °C	Oct 6 2015	17.7 °C	12.8 °C	7.8 °C
Sep 7 2015	20.3 °C	15.9 °C	11.5 °C	Oct 7 2015	15.4 °C	14.3 °C	13.1 °C
Sep 8 2015	19.8 °C	16.8 °C	13.8 °C	Oct 8 2015	17.2 °C	15.2 °C	13.1 °C
Sep 9 2015	22.7 °C	18.5 °C	14.3 °C	Oct 9 2015	18.8 °C	15.3 °C	11.8 °C
Sep 10 2015	20.2 °C	16.2 °C	12.1 °C	Oct 10 2015	17.8 °C	15.8 °C	13.8 °C
Sep 11 2015	20.1 °C	16.8 °C	13.5 °C	Oct 11 2015	15.6 °C	12.1 °C	8.6 °C
Sep 12 2015	20.6 °C	17.7 °C	14.8 °C	Oct 12 2015	13.2 °C	12.2 °C	11.1 °C
Sep 13 2015	17.6 °C	15.7 °C	13.8 °C	Oct 13 2015	14.5 °C	11.4 °C	8.2 °C
Sep 14 2015	15.7 °C	12.1 °C	8.5 °C	Oct 14 2015	13.1 °C	9.7 °C	6.2 °C
Sep 15 2015	17.1 °C	13.7 °C	10.3 °C	Oct 15 2015	14.6 °C	10.3 °C	6.0 °C
Sep 16 2015	19.2 °C	14.6 °C	9.9 °C	Oct 16 2015	15.4 °C	10.1 °C	4.7 °C
Sep 17 2015	18.1 °C	15.3 °C	12.4 °C	Oct 17 2015	16.5 °C	13.4 °C	10.2 °C
Sep 18 2015	16.8 °C	14.6 °C	12.4 °C	Oct 18 2015	14.3 °C	13.4 °C	12.4 °C
Sep 19 2015	17.1 °C	15.5 °C	13.9 °C	Oct 19 2015	14.5 °C	12.6 °C	10.6 °C
Sep 20 2015	20.6 °C	16.7 °C	12.8 °C	Oct 20 2015	14.4 °C	11.6 °C	8.7 °C
Sep 21 2015	15.9 °C	12.2 °C	8.5 °C	Oct 21 2015	13.8 °C	10.0 °C	6.2 °C
Sep 22 2015	16.8 °C	12.0 °C	7.2 °C	Oct 22 2015	13.0 °C	10.0 °C	6.9 °C
Sep 23 2015	18.2 °C	12.1 °C	6.0 °C	Oct 23 2015	12.5 °C	8.9 °C	5.2 °C
Sep 24 2015	17.5 °C	14.2 °C	10.8 °C	Oct 24 2015	12.2 °C	8.2 °C	4.1 °C
Sep 25 2015	15.6 °C	12.4 °C	9.2 °C	Oct 25 2015	13.5 °C	11.0 °C	8.4 °C
Sep 26 2015	15.5 °C	11.4 °C	7.2 °C	Oct 26 2015	14.5 °C	11.8 °C	9.0 °C
Sep 27 2015	14.9 °C	10.5 °C	6.1 °C	Oct 27 2015	14.0 °C	9.8 °C	5.5 °C
Sep 28 2015	15.7 °C	10.8 °C	5.9 °C	Oct 28 2015	12.0 °C	10.6 °C	9.2 °C
Sep 29 2015	16.6 °C	11.8 °C	7.0 °C	Oct 29 2015	15.4 °C	12.7 °C	10.0 °C
Sep 30 2015	17.1 °C	12.1 °C	7.1 °C	Oct 30 2015	13.6 °C	11.9 °C	10.2 °C
				Oct 31 2015	15.8 °C	12.5 °C	9.2 °C

Table 49. Environment Canada Temperature Records for September 1, 2015 through October 31, 2015

Date	Maximum	Mean	Minimum	Date	Maximum	Mean	Minimum
Nov 1 2015	11.6 °C	9.4 °C	7.1 °C	Dec 1 2015	10.8 °C	8.0 °C	5.2 °C
Nov 2 2015	10.8 °C	7.7 °C	4.6 °C	Dec 2 2015	11.0 °C	8.9 °C	6.8 °C
Nov 3 2015	10.1 °C	6.2 °C	2.3 °C	Dec 3 2015	13.9 °C	10.5 °C	7.1 °C
Nov 4 2015	8.7 °C	5.5 °C	2.2 °C	Dec 4 2015	10.4 °C	7.4 °C	4.4 °C
Nov 5 2015	10.9 °C	7.8 °C	4.6 °C	Dec 5 2015	9.4 °C	8.2 °C	6.9 °C
Nov 6 2015	10.6 °C	7.9 °C	5.2 °C	Dec 6 2015	10.7 °C	9.1 °C	7.4 °C
Nov 7 2015	11.1 °C	9.4 °C	7.7 °C	Dec 7 2015	10.3 °C	9.4 °C	8.5 °C
Nov 8 2015	10.3 °C	7.9 °C	5.4 °C	Dec 8 2015	13.8 °C	11.0 °C	8.1 °C
Nov 9 2015	9.6 °C	6.1 °C	2.5 °C	Dec 9 2015	10.6 °C	8.6 °C	6.5 °C
Nov 10 2015	8.9 °C	5.0 °C	1.0 °C	Dec 10 2015	10.8 °C	8.3 °C	5.8 °C
Nov 11 2015	10.2 °C	7.1 °C	4.0 °C	Dec 11 2015	11.3 °C	7.0 °C	2.6 °C
Nov 12 2015	9.2 °C	6.2 °C	3.2 °C	Dec 12 2015	8.7 °C	5.1 °C	1.5 °C
Nov 13 2015	12.2 °C	10.1 °C	8.0 °C	Dec 13 2015	8.6 °C	7.3 °C	5.9 °C
Nov 14 2015	8.9 °C	7.7 °C	6.4 °C	Dec 14 2015	6.7 °C	4.3 °C	1.8 °C
Nov 15 2015	8.1 °C	7.0 °C	5.8 °C	Dec 15 2015	5.3 °C	3.6 °C	1.8 °C
Nov 16 2015	6.9 °C	3.3 °C	-0.3 °C	Dec 16 2015	5.3 °C	2.7 °C	0.1 °C
Nov 17 2015	13.1 °C	9.3 °C	5.5 °C	Dec 17 2015	3.4 °C	2.1 °C	0.8 °C
Nov 18 2015	7.5 °C	5.5 °C	3.4 °C	Dec 18 2015	8.5 °C	5.7 °C	2.9 °C
Nov 19 2015	6.7 °C	2.7 °C	-1.4 °C	Dec 19 2015	7.3 °C	5.4 °C	3.5 °C
Nov 20 2015	6.1 °C	1.5 °C	-3.1 °C	Dec 20 2015	7.6 °C	5.0 °C	2.3 °C
Nov 21 2015	6.2 °C	1.4 °C	-3.4 °C	Dec 21 2015	5.9 °C	4.0 °C	2.0 °C
Nov 22 2015	6.9 °C	2.7 °C	-1.6 °C	Dec 22 2015	4.9 °C	2.4 °C	-0.1 °C
Nov 23 2015	5.5 °C	4.3 °C	3.0 °C	Dec 23 2015	6.1 °C	3.6 °C	1.1 °C
Nov 24 2015	8.6 °C	3.2 °C	-2.2 °C	Dec 24 2015	5.0 °C	3.6 °C	2.1 °C
Nov 25 2015	6.3 °C	1.2 °C	-4.0 °C	Dec 25 2015	5.1 °C	2.2 °C	-0.7 °C
Nov 26 2015	6.4 °C	1.4 °C	-3.7 °C	Dec 26 2015	3.8 °C	1.9 °C	-0.1 °C
Nov 27 2015	6.3 °C	1.2 °C	-4.0 °C	Dec 27 2015	5.4 °C	3.3 °C	1.2 °C
Nov 28 2015	5.2 °C	0.3 °C	-4.7 °C	Dec 28 2015	4.6 °C	2.1 °C	-0.4 °C
Nov 29 2015	4.3 °C	-0.1 °C	-4.5 °C	Dec 29 2015	5.6 °C	1.9 °C	-1.9 °C
Nov 30 2015	7.5 °C	1.1 °C	-5.3 °C	Dec 30 2015	2.6 °C	-1.0 °C	-4.5 °C
				Dec 31 2015	2.7 °C	-1.4 °C	-5.4 °C

Table 50. Environment Canada Temperature Records for November 1, 2015 through December 31, 2015

Appendix E: Delineation of the Lost Lagoon Wetland Watershed

The ArcGIS online watershed area calculation tool was used for the calculation of the Lost Lagoon wetland watershed. Below is an illustration of the output.

Figure 107. Delineation of Lost Lagoon Wetland Watershed Using ArcGIS Online Tool (2016)

Appendix F: Raw Measurements for the Lost Lagoon Wetland Field Study

Figure 108. Depth Profile Measurements Taken in the Lost Lagoon Wetland Forebay

		Oct 16 20	15	
Depth	Site	DO	рН	Temp
		mg/L		Celsius
Surface	1.2	0.94		
Floor	1.2	0.85		
Surface	1.1	1.04		
Floor	1.1	0.98		
Surface	1.3	0.77		
Floor	1.3	0.19	ГЛГЛ	17 5 17 7
Surface	2.1	1	5.2-5.5	12.5-12.7
Floor	2.1	0.85		
Surface	2.2	0.8		
Floor	2.2	0.67		
Surface	2.3	0.43		
Floor	2.3	0.34		

Table 51. In Situ Recordings of Dissolved Oxygen, pH and Temperature in the Lost Lagoon Wetland Forebay at the Water Surface and Water Floor

·					•	
Date	Site	Temp	DO	pH	Cond	ORP
21-lul	61	18 66	2 37	6.09	51 23529	-6.6
21 Jul	6.1	10.00	6.35	6.00	51.25525	22.0
21-Jul	6.1	18.97	6.25	6.28	50.47059	23.6
21-Jul	6.1	20.17	9.02	6.38	271.4706	8.7
21-Jul	6.2	19.37	4.93	7.09		94
21-Jul	6.2	19 75	4 93	6 57		59 5
21 Jul	0.2	10.75	4.55	0.57	70 44476	35.5
21-Jul	6.2	18.82	5.97	6.2	/3.411/6	10.9
21-Jul	6.3	20.36	8.81	6.42	52.76471	33
21-Jul	6.3	20.17	8.63	6.42	86.41176	11.1
21 Jul	6.5	20.52	0.02	6.40	61 17647	24.1
Z1-JUI	0.5	20.55	9.92	0.49	01.17047	24.1
08-Sep	2.1	15.4		8.35	58.11765	219.5
08-Sep	2.1	15.32		7.89	57.35294	208.8
08-Sen	2.1	15.52		7.65	58 88735	202.4
00 500	2.1	15.52		7.05	50.00255	202.4
08-Sep	4.1	15.44		/.1/	58.11/65	252.9
08-Sep	4.1	15.6		7.17	58.88235	206.5
08-Sep	4.1	15.61		7.13	58.88235	162.5
08-Sen	6.2	15.07		7.01	55 87353	21/ 0
08-3ep	0.2	15.07		7.01	55.82555	214.5
08-Sep	6.2	16.08		7.07	35.17647	196.1
08-Sep	6.2	16.18		7.14	91.76471	186.6
22-Sen	5.1	15.3	45	6 66	58 11765	39
22.500	U.1	15		6.00	50.11705	20
zz-Sep	5.1	12	2.5	6.27	58.88235	20
22-Sep	5.1	15.4	1.5	6	61.17647	45
22-Sep	5.2	18.5	3.5	6.5	58.88235	
22.50m	5.2	17	2.5	C C0	F0 0000F	
zz-Sep	5.2	1/	3.5	80.0	20.08235	
22-Sep	5.2	16.6	1	6.57	35.17647	
22-Sep	5.3	16.95	2.4	6.5	60.41176	21
22-Sen	53	17	16	6 72	63.47059	32
22 Sep	5.5	105	1.0	0.72	03.47035	32
22-Sep	5.3	16.5	1.2	6.64	52	38
06-Oct	2.3	12.71	0.13	5.81	247.2	447
06-Oct	2.3	12.61	0.15	5.47	171.7	421.6
06 Oct	2.2	12.62	0.16	E /11	164	404.1
06-001	2.5	12.02	0.16	5.41	104	404.1
06-Oct	3.3	14.78	4.94	5.66	201.5	557.6
06-Oct	3.3	14.97	2.34	5.6	190.1	500.7
06-Oct	3.3	14.96	1.75	5.55	178.3	481.8
OC Oat	4.2	15.60	1 5 2	F 20	216.0	C22.4
00-001	4.5	15.02	1.52	3.25	210.9	022.4
06-Oct	4.3	15.63	0.27	4.95	217.8	576.1
06-Oct	4.3	15.55	1.14	5.63	324.8	613.6
20-Oct	2.1	13 29	1.88	5 5 5	160	335
20 000	2.1	13.23	2.00	5.55	100	310
20-Oct	2.1	13.23	2.8	5.52	98	218
20-Oct	2.1	13.35	1.3	5.4	170	171
20-Oct	3.1	13.68	1.7	5.35	180	320
20-Oct	3.1	13 78	17	5.4	170	314
20-000	5.1	13.78	1.7	5.4	1/5	514
20-Oct	3.1	13.8	2	5.4	1/9	313
20-Oct	4.1	15.55	1.6	5.3	190	313
20-Oct	4.1	15.92	2		188	335
20. Oct	л 1	15.04	- 7 1	E /	100	321
20-001	4.1	13.94	2.1	J.4	193	221
20-Oct	6.1	18.46	5.4	5.4	24	228
20-Oct	6.1	17.57	5.4	5.4	15	219
20-Oct	61	17.86	5.8	6.6	23	222
20-000	0.1	10.57	5.0	5.0	22	100 0
20-Oct	6.2	19.27	6.6	5./	24.8	198.6
20-Oct	6.2	18.37	6.7	5.65	19.6	136
20-Oct	6.2	18.41	5.9	5.9	16.98	146
20. Oct	6.2	17 04	7.02	5.02	21 52	100 5
20"ULL	0.5	17.04	7.02	5.52	21.33	0.502
20-Oct	6.3	18.3	7.81	6.03	29.45	215.3
20-Oct	6.3	18.14	7.79	6.17	20.05	230.5
11-Nov	2.2	9,71	5.59	4 23	111.2	202 1
11.1404	2.2	0.75	5.55		112.2	102.5
11-Nov	2.3	9.75	5.5	4.4	112.2	182.5
11-Nov	3.1	9.62	5.7	4.03	109.9	148.3
11-Nov	3.2	9,72	5,61	3.15	134.5	195.5
11 No.		0.70		2.0	155.0	177 5
11-NOV	5.5	9.73	5.44	2.8	155.2	1//.5
11-Nov	4.2	9.76	5.61	3.65	119.5	216.2
11-Nov	5,1	8,65	5,25	2.78	132.5	171
11 No.		0.40	E 22	o	100.7	114.2
11-NOV	5.2	8.48	5.32	6.79	133.7	114.3
11-Nov	5.3	8.37	5.31	2.75	144.5	121.8
16-Dec	1.1	8.47	10	5.15	375.5	90
16.Doc	21	7 01	1 0/	5 07	235 7	- 207
TO-DGC	Z. I	1.01	1.04	2.07	200./	231
		_		_		
16-Dec	2.2	7.3	4.53	5.69	169.7	340

Table 52. Temperature, DO, pH, Conductivity, ORP - Raw Data - Field Samples

Date	Site	Turbidity, NTU	Date	Site	Turbidity, NTU
21-Jul	6.1	50.0	06-Oct	Lab Blank	0.40
21-Jul	6.1	48.5	06-Oct	Lab Blank	0.29
21-Jul	6.1	50.4	06-Oct	Lab Blank	0.38
21-Jul	6.2	94.0	20-Oct	6.1	22
21-Jul	6.2	100.0	20-Oct	6.1	22.15
21-Jul	6.2	93.0	20-Oct	6.1	19.7
21-Jul	6.3	54.7	20-Oct	6.2	58.1
21-Jul	6.3	53.6	20-Oct	6.2	57.3
21-Jul	6.3	57.2	20-Oct	6.2	41.65
21-Jul	Field Blank	0.4	20-Oct	6.3	11.75
21-Jul	Field Blank	0.3	20-Oct	6.3	9.44
21-Jul	Field Blank	0.4	20-Oct	6.3	10.945
08-Sep	2.1	143	20-Oct	Lab Blank	0.645
08-Sep	2.1	161	20-Oct	Lab Blank	0.47
08-Sep	2.1	147	11-Nov	2.2	15.2
08-Sep	4.1	91.7	11-Nov	2.2	14.8
08-Sep	4.1	104	11-Nov	2.2	14.7
08-Sep	4.1	89.9	11-Nov	2.3	15.3
08-Sep	6.2	144	11-Nov	2.3	13.7
08-Sep	6.2	155	11-Nov	2.3	13.2
08-Sep	6.2	155	11-Nov	3.1	13
08-Sep	Field Blank	0.30	11-Nov	3.1	17.3
08-Sep	Lab Blank	0.20	11-Nov	Lab blank	0.12
08-Sep	Trip Blank	0.12	11-Nov	Lab blank	0.18
06-Oct	2.3	32.9	16-Dec	1	1.9
06-Oct	2.3	28	16-Dec	1	2.6
06-Oct	2.3	42	16-Dec	1	2.8
06-Oct	3.3	20.1	16-Dec	2.1	11.3
06-Oct	3.3	22.4	16-Dec	2.1	11.1
06-Oct	3.3	25.6	16-Dec	2.1	11.4
06-Oct	4.3	17.8	16-Dec	2.2	16.6
06-Oct	4.3	20.5	16-Dec	2.2	16.6
06-Oct	4.3	17.9	16-Dec	2.2	19.5
06-Oct	Field Blank	0.16	16-Dec	2.3	12
06-Oct	Field Blank	0.19	16-Dec	2.3	12.2
06-Oct	Field Blank	0.13	16-Dec	2.3	11.7

Table 53. Turbidity - Raw Data - Field Samples

. chenneu oxyge		Nuw Dutu Titi	u Sumpies		
Date	Site	COD, mg/L	Date	Site	COD, mg/L
21-Jul	Field Blank	10	06-Oct	3.3	42
21-Jul	Field Blank	-	06-Oct	3.3	59
21-Jul	Field Blank	-	06-Oct	3.3	51
21-Jul	Lab Blank	0	06-Oct	4.3	36
21-Jul	Trip Blank	6	06-Oct	4.3	79
21-Jul	6.2	232	06-Oct	4.3	28
21-Jul	6.2	172	20-Oct	2.1	1160
21-Jul	6.2	144	20-Oct	2.1	1256
21-Jul	6.1	116	20-Oct	2.1	1176
21-Jul	6.1	144	20-Oct	3.1	167
21-Jul	6.1	-	20-Oct	3.1	189.5
21-Jul	6.3	115	20-Oct	3.1	212
21-Jul	6.3	129	20-Oct	4.1	131.5
21-Jul	6.3	-	20-Oct	4.1	107
08-Sep	Field Blank	12	20-Oct	4.1	108
08-Sep	Field Blank	18	20-Oct	6.1	21
08-Sep	Field Blank	8	20-Oct	6.1	34
08-Sep	Lab Blank	0	20-Oct	6.1	46
08-Sep	Lab Blank	-	20-Oct	6.2	102
08-Sep	Lab Blank	4	20-Oct	6.2	72
08-Sep	Trip Blank	10	20-Oct	6.2	55
08-Sep	Trip Blank	12	20-Oct	6.3	32
08-Sep	Trip Blank	4	20-Oct	6.3	24
08-Sep	2.1	382	20-Oct	6.3	35
08-Sep	2.1	324	20-Oct	Lab Blank	-
08-Sep	2.1	300	20-Oct	Lab Blank	-
08-Sep	4.1	459	11-Nov	3.1	29
08-Sep	4.1	433	11-Nov	3.1	26
08-Sep	4.1	435	11-Nov	3.1	-
08-Sep	6.2	277	11-Nov	4.2	18
08-Sep	6.2	344	11-Nov	4.2	36
08-Sep	6.2	351	11-Nov	4.2	-
06-Oct	Field Blank	30	11-Nov	3.2	39
06-Oct	Field Blank	43	11-Nov	3.2	46
06-Oct	Field Blank	10	11-Nov	3.2	-
06-Oct	Lab Blank	0	11-Nov	2.2	74
06-Oct	Lab Blank	-	11-Nov	2.2	95
06-Oct	Lab Blank	4	11-Nov	2.2	-
06-Oct	Trip Blank	-	11-Nov	3.3	1
06-Oct	Trip Blank	-	11-Nov	3.3	1
06-Oct	Trip Blank	-	11-Nov	3.3	-
06-Oct	2.3	28	11-Nov	2.3	37
06-Oct	2.3	81	11-Nov	2.3	96
06-Oct	2.3	20	11-Nov	2.3	-
11-Nov	5.1	55	11-Nov	Lab blank	-
11-Nov	5.1	41	16-Dec	1	8
11-Nov	5.1	-	16-Dec	1	19
11-Nov	5.2	157	16-Dec	1	13
11-Nov	5.2	124	16-Dec	2.1	28
11-Nov	5.2	-	16-Dec	2.1	24
11-Nov	5.3	67	16-Dec	2.1	26
11-Nov	5.3	69	16-Dec	2.2	30
11-Nov	5.3	-	16-Dec	2.2	22
11-Nov	Lab blank	-7	16-Dec	2.2	39
11-Nov	Lab blank	-	16-Dec	2.3	936
			16-Dec	2.3	925

Table 54. Chemical Oxygen Demand – Raw Data – Field Samples

- 1			1		
Date	Site	TSS, mg/L	Date	Site	TSS, mg/L
21-Jul	Field Blank	0.0	06-Oct	3.3	41
21-Jul	Field Blank	-	06-Oct	3.3	33
21-Jul	Field Blank	-	06-Oct	3.3	52
21-Jul	lab blank	0.0	06-Oct	4.3	41
21-Jul	trip blank	0.0	06-Oct	4.3	33
21-Jul	6.2	66.0	06-Oct	4.3	45
21-Jul	6.2	67.0	20-Oct	2.1	1306
21-Jul	6.2		20-Oct	2.1	1359
21-Jul	6.1	10.0	20-Oct	2.1	-
21-Jul	6.1	-	20-Oct	3.1	327
21-Jul	6.1	31.0	20-Oct	3.1	366
21-Jul	6.3	37.0	20-Oct	3.1	-
21-Jul	6.3	40.0	20-Oct	4.1	157
21-Jul	6.3	42.0	20-Oct	4.1	111
08-Sep	Field Blank	-	20-Oct	4.1	-
08-Sep	Field Blank	-	20-Oct	6.1	37
08-Sep	Field Blank	5	20-Oct	6.1	38
08-Sep	Lab Blank	-	20-Oct	6.1	-
08-Sep	Lab Blank	1	20-Oct	6.2	97
08-Sep	Lab Blank	-	20-Oct	6.2	106
08-Sen	Trip Blank	0	20-0ct	6.2	-
08-Sep	Trip Blank	4	20-Oct	63	28
08-Sep	Trip Blank	5	20-Oct	63	32
08-Sep	2.1	179	20-Oct	63	52
08-Sep	2.1	174	20-Oct	Lab Blank	7
08-Sep	2.1	170	20-Oct	Lab Blank	5
08-Sen	2.1 4 1	59	11-Nov	2 1	33
08-Sep	4.1	70	11-Nov	3.1	23
08-Sep	4.1	70	11-Nov	3.1	25
08-Sep	4.1	103	11-Nov	1.2	1/
08-Sep	6.2	105	11 Nov	4.2	14
08-Sep	6.2	100	11-Nov	4.2	-
06-0ct	Field Blank	100	11-Nov	3.2	25
06 Oct	Field Blank		11 Nov	3.2	25
06 Oct	Field Blank	2	11-NOV	3.2	44
00-Oct	Lab Plank	5	11-NOV	3.2	EQ
06-Oct	Lab Blank	-	11-NOV	2.2	20
06-0ct	Lab Dialik	-	11-NOV	2.2	05
06-0cl	Lap Blank	-	11-NOV	2.2	-
06-0ct	Trip Blank	-	11-NOV	3.3	22
06-001	тпр вылк	-	11-NOV	3.3	30
06-001	тир віанк	-	11-NOV	3.3	-
06-001	2.3	98	11-NOV	2.3	34
06-Oct	2.3	115	11-NOV	2.3	38
06-Oct	2.3	109	11-Nov	2.3	-
11-Nov	5.1	21	16-Dec	1	13
11-Nov	5.1	1/	16-Dec	1	18
11-Nov	5.1	-	16-Dec	1	-
11-Nov	5.2	34	16-Dec	2.1	12
11-Nov	5.2	37	16-Dec	2.1	18
11-Nov	5.2	-	16-Dec	2.1	-
11-Nov	5.3	50	16-Dec	2.2	38
11-Nov	5.3	59	16-Dec	2.2	25
11-Nov	5.3	-	16-Dec	2.2	-
11-Nov	Lab blank	12	16-Dec	2.3	12
11-Nov	Lab blank	11	16-Dec	2.3	6
11-Nov	Lab blank	-	16-Dec	2.3	-

Table 55. Total Suspended Solids - Raw Data - Field Samples

Date	Site	TSS, mg/L	Date	Site	TSS, mg/L
21-Jul	Field Blank		06-Oct	3.3	24.807
21-Jul	Field Blank		06-Oct	3.3	22.6145
21-Jul	Field Blank	0.10725	06-Oct	3.3	21.8105
21-Jul	lab blank	-0.00215	06-Oct	4.3	11.6075
21-Jul	trip blank	6.856	06-Oct	4.3	9.913
21-Jul	6.2	28.916	06-Oct	4.3	9.401
21-Jul	6.2	24.202	20-Oct	2.1	43.26475
21-Jul	6.2	-	20-Oct	2.1	83.9025
21-Jul	6.1	29.178	20-Oct	2.1	-
21-Jul	6.1	24.128	20-Oct	3.1	186.997
21-Jul	6.1	-	20-Oct	3.1	182.698
21-lul	63	29 034	20-Oct	3.1	179 5035
21-lul	6.3	26 392	20-Oct	4 1	310 2305
21-Jul	6.3	-	20-Oct	4 1	307 4545
08-Sen	Eield Blank	1 9295	20-0ct	4.1	307.4545
08 Sop	Field Blank	2 2115	20 Oct	6.1	12 017
08-Sep	Field Blank	2.2113	20-001	6.1	12 055
08-3ep		2.173	20-0ct	0.1	12.900
08-sep	Lab Blank	0.4428	20-0ct	0.1	12.823
08-Sep		0.141/5	20-0ct	0.2	148.074
08-Sep		-	20-001	0.2	140.0555
08-Sep	тір віалк	1.3615	20-Oct	6.2	142.55
08-Sep	Trip Blank	1.32	20-Oct	6.3	//.5135
08-Sep	Trip Blank	1.125	20-Oct	6.3	//.843
08-Sep	2.1	25.5425	20-Oct	6.3	/8.4525
08-Sep	2.1	26.5955	20-Oct	Lab Blank	0.2432
08-Sep	2.1	28.1905	20-Oct	Lab Blank	0.20775
08-Sep	4.1	82.574	11-Nov	3.1	70.9973
08-Sep	4.1	87.999	11-Nov	3.1	68.143927
08-Sep	4.1	77.686	11-Nov	3.1	-
08-Sep	6.2	84.679	11-Nov	4.2	56.177737
08-Sep	6.2	79.916	11-Nov	4.2	65.007464
08-Sep	6.2	81.5505	11-Nov	4.2	-
06-Oct	Field Blank	26.5485	11-Nov	3.2	63.35835
06-Oct	Field Blank	22.378	11-Nov	3.2	61.956378
06-Oct	Field Blank	19.2495	11-Nov	3.2	-
06-Oct	Lab Blank	-	11-Nov	2.2	59.974744
06-Oct	Lab Blank	-	11-Nov	2.2	60.85097
06-Oct	Lab Blank	-	11-Nov	2.2	-
06-Oct	Trip Blank	-	11-Nov	3.3	60.810535
06-Oct	Trip Blank	-	11-Nov	3.3	61.174509
06-Oct	Trip Blank	-	11-Nov	3.3	-
06-Oct	2.3	28.792	11-Nov	2.3	59.498433
06-Oct	2.3	24.4865	11-Nov	2.3	58.307656
06-Oct	23	21 214	11-Nov	23	-
11-Nov	5.1	60 275809	16-Dec	1	58 509863
11-Nov	5.1	61 4755735	16-Dec	1	56 91/67
11-Nov	5.1	-	16-Dec	1	50.51407.
11 Nov	5.1	E0 200200E	16 Dec	1 2 1	E7 04022
	J.2 E D	50 016200	16 Dec	2.1	50.01700
	Э.Z	22.210372	16 Dec	2.1	23.017625
11 No.	5.2		TO-Dec	2.1	-
11-Nov	5.3	59.619/58	16-Dec	2.2	59.520901
11-Nov	5.3	57.4583845	16-Dec	2.2	58.518850
11-Nov	5.3	-	16-Dec	2.2	-
11-Nov	Lab blank	0.536478965	16-Dec	2.3	327.176228
11-Nov	Lab blank	0.54721843	16-Dec	2.3	310.595213
11-Nov	Lab blank	-	16-Dec	2.3	-

Table 57. Metals - Raw Data - Field Samples - Water	

	Tuble	57.1	1100	ano	1101				0. 00																				
Date	Site	As	Ag	Al	В	Ba	Be	Ca	Cd	Co	Cr	Cu	Fe	K	Li	Mg	Mn	Mo	Na	Ni	Pb	Sb	Se	Si	Sr	Ti	TI	V	Zn
		(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)						
2015-07-21	6.2		0.011	1 779	0.316	0.065	0.006	92.262	0.009	0.018	0.241	0.060	6 809	2 741	0.026	45 074	0 313	0.016	84 324	0.175	0.023	0.085		10 151	0 397	3.054		0.014	0.886
2015 07 21	6.2		0.010	2.240	0.440	0.000	0.004	101.014	0.000	0.007	0.034	0.000	5.040	2.002	0.020	40.101	0.370	0.017	00.207	0.175	0.017	0.000		10.401	0.436	0.007		0.015	3.603
2015-07-21	0.2		0.010	2.549	0.449	0.069	0.004	151.614	0.009	0.007	0.024	0.204	5.640	2.002	0.026	46.191	0.270	0.017	66.507		0.017	0.004		10.461	0.450	0.067		0.015	2.005
2015-07-21	6.2																												
2015-07-21	6.1		0.010	1.607	0.319	0.072	0.005	55.025	0.011	0.019	0.192	0.214	8.607	3.086	0.027	47.381	0.397	0.018	86.301	0.297	0.048	0.040		10.759	0.411	1.890		0.018	0.965
2015-07-21	6.1		0.010	1.630	0.323	0.069	0.004	111.492	0.009	0.007	0.066	0.071	6.062	2.939	0.026	46.823	0.295	0.017	86.864	0.004	0.006	0.002		10.129	0.427	0.059	0.012	0.015	0.646
2015-07-21	6.1																												
2015 07 21	6.2		0.010	1 772	0.202	0.064	0.004	50 700	0.009	0.010	0.075	0.062	6 220	2 516	0.025	42 276	0.290	0.015	01 060	0.092	0.022	0.027		10.290	0.266	0.570	0.012	0.019	0.192
2015-07-21	0.5		0.010	1.//2	0.295	0.064	0.004	50.790	0.008	0.010	0.075	0.062	0.529	2.510	0.025	45.570	0.280	0.015	01.009	0.065	0.022	0.027		10.280	0.500	0.570	0.012	0.018	0.165
2015-07-21	6.3		0.010	2.332	0.348	0.068	0.004	99.471	0.008	0.005	0.033	0.128	6.022	2.525	0.025	45.163	0.261	0.016	83.932		0.009	0.012		10.417	0.402	0.074		0.013	1.498
2015-07-21	6.3																												
2015-09-08	2.1			14.720	0.076	0.223		15.710	0.007	0.010	0.113	0.725	17.890	0.394	0.016	5.881	0.323		10.870	0.028	0.106	0.030		23.170	0.111	0.654		0.050	0.751
2015-09-08	2.1																												
2015 00 00	2.1																												
2013-03-08	2.1																												
2015-09-08	4.1			5.310	0.073	0.091		9.494	0.004	0.005	0.035	0.308	7.526	0.284		2.600	0.166		6.///	0.012	0.037			9.706	0.063	0.220		0.024	0.255
2015-09-08	4.1																												
2015-09-08	4.1																												
2015-09-08	6.2			7.460	0.150	0.069		27.220	0.009	0.005		0.141	16.360	1.373	0.019	22.450	0.440			0.007				15.450	0.231	0.313		0.037	0.035
2015-09-08	6.2																												
2015-09-08	6.2																												
2015 10.06	2.2			0.104	0.056							0.144	7 2 2 2	0.020	0.050	0.260	0.200	0.010	192 021				0.170	15 414					0.077
2013-10-00	2.5			0.104	0.050							0.144	1.322	0.020	0.050	0.205	0.205	0.010	102.521				0.175	13.414					0.077
2015-10-06	2.5																												
2015-10-06	2.3																												
2015-10-06	3.3			0.960	0.107	0.032		8.922	0.003	0.000		0.062	1.450	0.239		1.548	0.026		15.380	0.002				5.599	0.058	0.031		0.012	0.033
2015-10-06	3.3																												
2015-10-06	3.3																												
2015-10-06	4.3			0.869	0.083	0.027		8.327	0.003	0.001		0.057	1.340	0.230		1.432	0.020		20.320	0.001				5.267	0.052	0.024		0.011	
2015-10-06	43					,																							
2015 10 05	4.2																												
2015-10-00	4.5			40.070	0.000	0.000		37.240	0.010	0.001	0.220	1.552	F3 440	0.040	0.022	14 700	0.755	0.025	13,000	0.072	0.275	0.055		53.050	0.224	1.050		0.127	2.000
2015-10-20	2.1			40.970	0.080	u.492		27.340	0.018	0.034	U.238	1.552	52.440	U.619	0.038	14./60	U./56	0.025	12.900	0.073	U.3/6	0.056		52.950	U.231	1.850		0.127	2.009
2015-10-20	2.1																												
2015-10-20	2.1																												
2015-10-20	3.1			8.321	0.059	0.125		14.150	0.007	0.006	0.047	0.339	11.190	0.412	0.011	4.152	0.209		10.070	0.012	0.053			15.250	0.095	0.384		0.034	0.360
2015-10-20	3.1																												
2015-10-20	3.1																												
2015 10 20	4.1			2.5.45	0.072	0.075		10,000	0.002	0.000	0.014	0.103	4.000	0.331		2.422	0.101		7 2 2 2	0.000	0.012			0.000	0.071	0.120		0.020	0.170
2015-10-20	4.1			3.545	0.075	0.075		10.890	0.005	0.002	0.014	0.162	4.890	0.251		2.422	0.101		1.552	0.006	0.015			0.090	0.071	0.150		0.020	0.175
2015-10-20	4.1																												
2015-10-20	4.1																												
2015-10-20	6.1			0.985	0.210	0.043		36.160	0.004	0.001		0.090	2.333	2.136	0.013	37.290	0.178			0.003				4.306	0.351	0.014		0.019	0.027
2015-10-20	6.1																												
2015-10-20	6.1																												
2015 10 20	6.2			2 004	0.210	0.059		20 220	0.005	0.002		0.092	7 509	2 102	0.016	26.000	0.201			0.002				7 05 1	0 2 4 9	0.000		0.024	0.051
2015-10-20	6.2			2.004	0.210	0.058		0.00	0.005	0.002		0.002	1.330	2.105	0.010	30.050	0.501			0.005				7.551	0.345	0.030		0.024	0.051
2015-10-20	0.2																												
2015-10-20	6.2																												
2015-10-20	6.3			0.801	0.200	0.043		36.070	0.004	0.000		0.041	1.593	2.077	0.013	36.580	0.143			0.002				4.089	0.346	0.014		0.019	
2015-10-20	6.3																												
2015-10-20	63																												
2015 11 11	2.1			2.022	0.120	0.020		6 707	0.004	0.001		0.114	2 107	0.167		1 5 1 9	0.042		5 205	0.004				7 5 2 7	0.049	0.002		0.012	0.024
2015-11-11	3.1			2.033	0.150	0.030		0.767	0.004	0.001		0.114	2.137	0.107		1.510	0.045		5.440	0.004				7.000	0.048	0.052		0.012	0.024
2015-11-11	3.1			1.939	0.081	0.028		6.754	0.003	0.001		0.101	2.053	0.158		1.468	0.040		5.148	0.003				7.030	0.047	0.066		0.010	0.022
2015-11-11	3.1																												
2015-11-11	4.2			1.083	0.068	0.011		3.782	0.003	0.001		0.072	1.052	0.093		0.754			2.082	0.002				4.880	0.024	0.023			0.014
2015-11-11	4.2			1.219	0.042	0.016		4.383	0.004	0.003		0.089	1.260	0.096		0.872	0.016		2.243	0.002				5.616	0.028	0.031			
2015-11-11	4.2																												
2015-11-11	3.2			5.834	0.075	0.015		6.160	0.004	0.002		0.093	1.840	0.150		1.320	0.023		4.536	0.002				7.171	0.041	0.058		0.010	0.012
2015-11-11	3.2			1 986	0.053	0.012		5 281	0.003	0.001		0.080	1.671	0.134		1 1 4 7	0.014		3 740	0.001				6 176	0.035	0.049			
2015 11 11	2.2			1.500	0.055	0.011		5.201	0.005	0.001		0.000	1.071	0.134		1.147	0.014		5.740	0.001				0.170	0.055	0.040			
2013-11-11	3.2																												
2015-11-11	2.2			1.485	0.045	0.026		5.971	0.003	0.002		0.065	1.544	0.135		1.214	0.028		3.857	0.001				6.326	0.040	0.042			0.024
2015-11-11	2.2			1.661	0.108	0.029		6.846	0.004	0.002		0.085	1.741	0.146		1.350	0.036		4.521	0.001				7.173	0.046	0.051		0.010	0.020
2015-11-11	2.2																												
2015-11-11	3.3			1.435	0.065	0.012		4.321	0.004	0.001		0.090	1.533	0.110		0.948	0.013		2.543	0.000				4.557	0.028	0.044			0.020
2015-11-11	3.3			1.386	0.042	0.011		4.281	0.003	0.000		0.081	1.457	0.110		0.937			2.527	0.000				4.608	0.027	0.044			0.014
2015-11-11	3.3																												
2015-11-11	2.3			1 346	0 144	0.015		4 538	0.003	0.002		0.073	1 4 2 3	0.127		0 000	0.018		3 255	0.000				5 248	0.030	0.044			
2015 11 11	2.2			1.470	0.099	0.020		5 100	0.002	0.000		0.075	1 506	0.124		1.097	0.028		2 6 6 2	0.000				6.061	0.024	0.046		0.010	
2015-11-11	2.5			1.470	0.000	0.020		5.129	0.005	0.000		0.075	1	0.134		1.00/	0.028		3.032	0.002				0.001	0.034	0.040		0.010	
2015-11-11	2.3																												
2015-11-11	5.1			0.473	0.080			4.760	0.004	0.002		0.080	U./44	0.112		U./04	0.022		2.494	0.002				4.555	0.028				
2015-11-11	5.1			0.714	0.045			4.600	0.004	0.001		0.066	0.658	0.106		0.646	0.016		2.284	0.002				4.161	0.025				0.017
2015-11-11	5.1																												
2015-11-11	5.2			0.718	0.082			4.350	0.003	0.001		0.057	1.175	0.114		0.745	0.010		2.541	0.000				3.674	0.026				0.010
2015-11-11	5.2			0.806	0.062	0.010		4.594	0.003	0.000		0.056	1.368	0.116		0.803	0.012		2.623	0.001				3.936	0.029			0.010	0.018
2015-11 11	5.2			2.300									2.300																
2015-11-11	5.2			0.744	0.072	0.010		5 702	0.000	0.000		0.122	1.210	0.144		0.067			3.5.16	0.001				4.310	0.035				0.010
2010-11-11	5.3			0.744	0.0/3	0.010		5./03	0.003	0.000		0.123	1.210	0.144		0.967	0.0.1		3.316	0.001				4.310	0.035				0.010
2015-11-11	5.3			0.723	0.043			5.407	0.004	0.001		0.100	1.184	0.137		0.937	0.015		3.319	0.001				4.271	0.033				
2015-11-11	5.3																												
2015-12-16	1.1			0.412	0.123			5.120	0.003	0.002		0.057	0.154	0.114		0.806			3.998	0.003				4.224	0.037				
2015-12-16	1.1			0.712	0.098			3.380	0.003	0.001		0.048	0.198	0.095		0.539			2.479	0.000				2.668	0.023				
2015-12-16	1.1			0.390	0.169			5.084	0.002	0.001		0.076	0.187	0.115		0.796			3.807	0.002				3.945	0.036				
2015-12-16	2.1			0.391	0.070	0.012		5.366	0.003	0.002		0.093	0.282	0.134		0.800	0.012		8 377	0.001				3 771	0.036	0.116			
2015-12-10	2.1			0.000	0.070	0.012		5.000	0.000	0.002		0.000	0.202	0.134		0.000	0.012		0.377	0.001				4 212	0.034	0.110			
2010-12-16	2.1			U.629	U.Ub2	0.011		5.257	0.000	0.001		0.080	0.594	U.121		0.635	0.017		0.188	0.001				4.312	0.034				
2015-12-16	2.1																												
2015-12-16	2.2			0.510	0.057	0.014		6.160	0.003	0.000		0.054	0.284	0.130		0.944	0.030		8.029	0.002				4.502	0.041				
2015-12-16	2.2			0.688	0.046	0.011		5.746	0.003	0.000		0.058	0.410	0.125		0.943	0.028		7.073	0.000				4.487	0.038				
2015-12-16	2.2																												
2015-12-16	2.3			0.436	0.064	0.011		5.641	0.003	0.006		0.055	1.153	0.132		0.871	0.017		7.695	0.002		0.185		5.114	0.037	2.840		0.010	
2015-12-16	2.3			0.542	0.044	0.013		5.888	0.001	0.002		0.071	0.390	0.128		0.928	0.022		8.089	0.000				4,784	0.039				
2015-12-16	2.3																												
1013 11 10	A																												

Table 58. Metals - Raw Data - Field Samples - Sediment

Date	Site	mg/kg dry	As	Ag	AI	В	Ba	Ca	Cd	Co	Cr	Cu	Fe	К	Li	Mg	Mn	Мо	Na	Ni	Pb	Sb	Si	Sr	Ti	v	Zn
21-Jul	6.2	Surface		8.5	17,670.00	31	119.5	12,970.00	-	16.72	42.5	120.5	24,690.00	141.5	22.5	7,415.00	385.5	-	1,177.50	21.56	9	-	5,455.00	69.5	2,532.50	86	218
21-Jul	6.2	Surface							-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
21-Jul	6.2	Depth			14,290.00	25.5	31	13,040.00	5.57	15.55	42.5	93	21,445.00	119	19	7,220.00	340	-	1,216.00	19.41	-	-	4,382.00	52	2,121.50	77.5	173.5
21-Jul	6.2	Depth	23.5		18,940.00	22.5	36	20,635.00	6.34	14.24	35	73.5	24,510.00	107.5	19.5	7,485.00	404	-	1,559.50	14.97	-	-	4,329.50	81	2,034.00	96.5	155.5
08-Sep	2.1	Surface			15 705 00	72 5	136.5	-	6.93	-	25.15	224.17	29,066.02	162 5	40.49	10,104.30	480.84	-	2,414.50	6.6	33.51	10.27	690	-	3,014.16	-	305.2
08-Sep	2.1	Surface			20,955.00	95	128	-	-	-	69.84	259.43	33 321 79	217.5	41.81	8 993 04	438.81		1,552.00	6.45	39.74	17.56	906.5		2 463 90	-	306
08-Sep	2.1	Depth			21,710.00	97.5	56.5	-	-	-	-	83.35	22,380.85	206	39.3	5,571.59	511.5	-	-	-	-	-	908	-	1,611.23	-	27.97
08-Sep	2.1	Depth			19,915.00	84	87	-	8.26	-	33.04	74.83	25,256.23	163.5	37.76	7,803.26	461.64	-	1,491.50	5.98	-	-	802	-	2,470.66	-	74.22
08-Sep	2.1	Depth			18,680.00	88	66	-	5.68	-	45.56	84.88	24,530.92	151.5	38.49	7,180.33	482.88	-	1,670.50	4.56	-	-	996	-	2,576.90	-	57.58
08-Sep	2.1	Surface		9.5	11,440.00	27.5	87	16,780.00	-	16.22	49	262.5	16,900.00	183.5	17	5,410.00	301.5	-	1,279.50	28.84	34.5	-	8,645.00	42.5	1,366.50	58.5	676
08-Sep	2.1	Surface	8		21,835.00	48.5	148	29,900.00	5.32	23.76	101.5	408	24,075.00	238	21.5	7,015.00	361	5.5	1,613.50	45.6	72.5	14.5	14,025.00	78	2,195.00	77.5	863.5
08-Sep	2.1	Depth	47.5	9	14,875.00	26.5	137	11,810.00	5.18	16.2	81	108.5	20,275.00	103	14.5	5,925.00	336.5	-	1,430.00	20.05	10.5	-	5,720.00	62	2,006.00	55.5	288
08-Sep	2.1	Depth	17.5		21,295.00	17.5	70.5	7,005,00	8.31	15.04	50.5	130	17.000.00	155	18.5	8,360.00	421	-	1,999.00	28.66	15.5	-	5,735.00	//.5	2,523.00	117.5	368.5
08-Sep	4.1	Surface	23.5		13,350.00	43.5	115	13 835 00	7.47	15.04	39	125.5	18,070,00	161.5	12 12 5	6,403.00	276		1,095.00	37.08	17		9,635,00	58	1,522.00	56.5 61	404
08-Sep	4.1	Depth	23.5		16,905.00	22	70	13,860.00	-	12.13	28.5	226	20,165.00	140	15	5,815.00	328.5	-	1,309.50	15.9		-	6,360.00	56.5	1,943.00	65	308.5
08-Sep	4.1	Depth	14		16,905.00	18.5	70	11,905.00	-	16.38	73.5	83	21,135.00	135	16	6,935.00	368	-	1,275.00	29.63		-	6,930.00	63.5	2,206.00	69	233
08-Sep	6.2	Surface	26		20,830.00	38.5	60.5	19,780.00	-	17.31	45	67	25,295.00	168	21	7,995.00	433.5	-	1,397.00	27.3	-	-	5,540.00	70	2,788.50	80.5	145
08-Sep	6.2	Surface	11		18,055.00	26	43	17,565.00	6.15	17.87	37.5	71	23,900.00	148.5	24.5	7,520.00	395.5	-	1,473.00	20.28	-	-	5,690.00	73	2,357.00	80.5	162.5
08-Sep	6.2	Depth	17		27,145.00	25	67.5	19,615.00	12.06	29.61	37	89.5	37,895.00	177.5	36	13,485.00	662	-	1,650.50	27.36	-	-	5,860.00	88	4,022.00	138	202.5
08-Sep	6.2	Depth	10		24,565.00	27	63	18,395.00	11./1	24.84	34.5	84	33,/15.00	163	29	11,455.00	609.5	-	1,575.00	26.32	- 12	-	7,320.00	79.5	3,397.50	112.5	209.5
22-sep 22-sep	5.1	Surface	18		9,475.00	5.4	76.5	7 400 00		12.94	23	88	17,090.00	123.5	9.5	4 566 00	215		1 058 00	27.4	19.5		4,518.50	41.5	924.5 1.009.50	41.5	233.5
22-Sep	5.1	Denth	23		14 725 00	24	83.5	10.865.00	6.42	15 59	23	55.5	19 260 00	153	15.5	7 655 00	373.5		1 352 00	30.02	-		4 882 50	53	1 698 50	61	228.5
22-Sep	5.1	Depth	32.5		12,875.00	35.5	60.5	13,685.00	-	15.04	18	93	19,010.00	112	15.5	6,750.00	377	-	1,160.50	23.75		-	4,665.00	55	1,519.50	56.5	181
22-Sep	5.2	Surface	16.5		11,110.00	24.5		8,955.00	-	10.64	27	84.5	16,650.00	137	10	4,201.00	-	-	1,162.50	24.06	-	-	7,835.00	64	1,042.00	44	136.5
22-Sep	5.2	Surface	57.5		18,930.00	22	119	-	-	11.64	38	99	18,270.00	153	12	4,976.50	414.5	-	1,960.50	19.93	-	-	-	102.5	1,186.00	54.5	156
22-Sep	5.2	Depth	62		16,985.00	10	82.5	11,285.00	-	15.25	27.5	64	23,970.00	243	20	6,975.00	393	-	1,318.50	18.71	-	-	7,955.00	71	2,091.00	88.5	120.5
22-Sep	5.2	Depth	10		21,800.00	15.5	106	-	-	15.25	37.5	81	24,240.00	246	19	7,295.00	399	-	1,125.50	16.55	-	-	3,923.00	60.5	1,841.00	88	82
22-Sep 22.Sop	5.3	Surface	8.5		11,240.00	38	/2 60 5	11,725.00	6 27	12.01	24.5	97	17,430.00	116.5	11.5	5,190.00	319	-	1,258.00	24.67	-	-	4 778 50	48.5	1,459.00	49	174 5
22-Sep	5.3	Depth	24		10.665.00	14	50	9.885.00	-	10.2	19	68	15,720.00	133.5	11.5	5.600.00	273		982	16.41			3,421.50	44	1.374.00	50	56
22-Sep	5.3	Depth			10,645.00	14	50	· -	5.75	9.66	25.5	98.5	15,900.00	135	12	5,665.00	274.5	-	1,033.00	19.13		-	3,420.00	46.5	1,381.50	50.5	257.5
06-Oct	3.3	Surface			20,915.00	127.5	92	-	-	-	221.46	90.38	24,170.12	197	37.7	6,844.33	429.34	-	2,596.00	10.33	-	4.16	622.5	-	2,121.70	-	66.52
06-Oct	3.3	Surface			18,340.00	126.5	77.5	-	-	-	183.42	101.75	21,619.81	161	36.61	5,934.29	389.74	-	1,785.00	13.94	-	5.79	850	-	2,247.64	-	88.26
06-Oct	3.3	Surface		9.5	16,735.00	98	92.5	-	-	-	190.43	121.03	21,330.53	180	35.81	5,474.86	365.12	-	1,583.00	9.98	6.2	11.7	756	-	2,100.79	-	126.3
06-Oct	3.3	Depth			23,475.00	95.5	61	-	-	-	30.33	67.69	20,449.75	141	35.29	4,860.95	317.38	-	2,066.00	4.45	-	5.88	927	-	1,868.59	-	52.53
06-Oct	3.3	Depth			20 105 00	102.5	58				44.03	64.73 75.69	21,881.17	151.5	36.87	6,614.01	384.57		2 135 00	3.96			904.5		2 176 34		54.02
06-Oct	Lab Blank	Water			0.06	0.06	-	-			0.07	0.09	0.55	0.01	0.05	0.01	0.01	-	0.49	0.04			1.18		-		0.1
06-Oct	Lab Blank	Water			0.09	0.03	-	-	-	-	0.03	0.08	0.49	0.01	0.05	0.03		-	0.4	0.18	-	-	1.17	-	-	-	0.02
06-Oct	Lab Blank	Water			0.03	0.06	-	-	-	-	0.07	0.05	0.88	0.01	0.05	0.01		-	0.48	0.23	-	-	1.12	-	0.6	-	-
06-Oct	2.3	Surface			15,905.00	13	76	13,040.00	5.58	15.27	52	235	21,955.00	129	18	7,665.00	361	-	1,212.50	15.54	18.5	-	4,610.50	57.5	2,198.00	69	191
06-Oct	2.3	Surface	14.5		17,055.00	17	66.5	12,645.00	8.61	15.32	48	160	25,720.00	114	20	8,330.00	397.5	-	1,210.50	15.48	11	-	3,250.00	57	2,357.50	79	164
06-Oct	2.3	Depth	17		18,010.00	22	67	15,000.00	7.59	13.47	34	91	22,095.00	125.5	20.5	7,785.00	341.5	-	1,249.00	12.1	-	-	2,740.00	56	2,557.00	89.5	82.5
06-Oct	2.3	Depth	21.5		16,785.00	19	70.5	12,490.00	8.88	16.01	36.5	/5.5	24,520.00	149.5	21.5	8,320.00	394	-	1,008.00	13.05	-	-	3,8/3.00	55	2,686.00	7/	97
06-0ct	3.3	Surface	21.5		17,035,00	14.5	54.5 88.5	11,710.00	10.05	14.53	54.5	111.5	23,030.00	121.5	20.5	8,270.00	389.5	-	1,074.50	18.47			3,818,50	57.5	2,569.50	70.5	118
06-Oct	3.3	Depth	9		13,425.00	15.5	46	11,190.00	7.05	11.9	21.5	87	19,335.00	-	15.5	-	336	-	1,026.50	14.02	-	-	3,046.00	-	1,945.50	55.5	94
06-Oct	3.3	Depth	11		16,550.00	12.5	39.5	14,585.00	7.11	13.3	18	82.5	22,685.00	84	20	7,655.00	422.5	-	1,079.50	-	-	-	3,147.50	69.5	2,040.50	54	102
06-Oct	4.3	Surface			12,465.00	10	55	9,565.00	7.11	10.85	45.5	95	20,235.00	104	14	5,605.00	280	-	1,161.00	10.38	-	-	2,914.00	45	1,934.50	71	96.5
06-Oct	4.3	Surface	7		20,030.00	15.5	133	15,565.00	10.54	17.29	45.5	131	29,390.00	141	21.5	8,980.00	498	-	1,227.00	16.49	10	-	2,877.50	69.5	2,982.00	92.5	157
06-Oct	4.3	Depth		235.5	25,135.00	9	78.5	17,765.00	13.09	20.49	83.5	74	34,770.00	164	29	13,485.00	594.5	-	1,213.50	32.52	-	-	2,656.50	56.5	3,117.50	110	103.5
06-Oct	4.3	Depth			12,830.00	12.5	52.5	-	-	10.9	45	63.5	19,490.00	140	16.5	6,945.00	308.5	-	978.5	17.53	-	-	1,534.50	33	1,711.00	56.5	62
20-0ct	2.1	Surface			21 595 00	90.5	86				57.6	97 75	26,678,58	178.5	38.23	8 275 44	528.4	-	2 242 00	13.03	8.04	0.09	829.5	-	2 266 05		112 76
20-Oct	2.1	Surface			21.965.00	128	83	-			77.08	115.49	26.678.92	181.5	35.57	7.786.50	556.96		1.856.50	71.29	17.93	7.1			2.208.50	-	147.47
20-Oct	2.1	Depth			14,285.00	93.5	68	-	-	-	-	90.01	24,849.56	135.5	35.84	6,737.06	554.73	6.6	990.5	271.05	5.17	5.24	758.5	-	1,740.22	-	68.53
20-Oct	2.1	Depth			13,675.00	126	69	-	-	7.42	61.9	87.8	16,599.00	131	33.37	4,252.57	298.16	-	1,641.00	25.99	2.96	7.85	1,025.50	-	1,610.90	-	116.02
20-Oct	2.1	Depth			17,900.00	81	-	-	-	-	112.98	102.02	24,923.04	328	38.59	7,024.91	442.85	-	1,648.50	61.96	8.77	6.82	984.5	-	2,577.53	-	139.15
20-Oct	2.1	Surface	7		19,450.00	19	123	10,525.00	9.01	15.54	52.5	250	26,570.00	159	19.5	9,695.00	441	-	1,386.00	27.6	50	5.5	9,855.00	58.5	2,039.00	78	391
20-Oct	2.1	Surface			20,470.00	16.5	104.5	13,820.00	10.05	18.42	37.5	193.5	28,050.00	196	20	10,455.00	501.5	-	1,654.50	25.01	15	-	2,260.50	46	2,648.00	81.5	169
20-Oct	2.1	Depth	22.5		13,305.00	14	53.5	10,000.00	-	12.16	50.5	109.5	18,835.00	112	15.5	6,325.00	348.5	-	1,069.00	12.3	10.5	16.5	3,322.50	54.5	1,853.00	62.5	166
20-0ct	2.1	Surface	11		17,350.00	14	-	648.5	0.65	10.51	41	23	23,800.00	30	21.5	8,550.00	200		622.5	20.82	21		4,542.00	50.5	2,254.00	/8	277.5
20-Oct	3.1	Surface	17		71	12	-	280.5	-	-	-	26	75	29.5	-	61.5		-	482	3.9	-	-	578.5	-	8.5	-	73
20-Oct	3.1	Depth	8.5		5,800.00	28.5	57.5	5,465.00	-	7.71	24.5	169.5	8,055.00	70	-	2,695.00	131	-	836	12.91	14.5	-	6,280.00	31.5	499	21.5	311.5
20-Oct	3.1	Depth	16.5		3,721.00	40	52	5,295.00	-	-	27.5	138	4,547.00	61	-	1,231.00	70	-	838.5	17.71	13.5	-	5,675.00	28.5	238.5	11.5	292
20-Oct	4.1	Surface			19,475.00	27.5	-	14,080.00	10.39	18.42	34	140.5	26,925.00	163.5	24.5	8,910.00	402.5	-	1,090.00	25.76	13.5	-	6,215.00	54.5	2,050.50	75	241
20-Oct	4.1	Surface	55	60 F	14,065.00	26.5	68	11,450.00	-	15.13	67	122.5	18,690.00	112.5	15	6,810.00	317	-	984	21.68	14.5	-	4,253.00	35	1,866.50	73	167.5
20-0ct 20-0ct	4.1	Depth	10	03.5	10,440.00	22.5 27.5	138.5	6,400.00 10.405.00		13.61	43 56 5	206.5	15,205.00	126.5	13	4,615.00	209		335.5	36.65	20 30		7,450.00 8.670.00	4b 52 5	1,173.50	48	390 5
20-Oct	6.1	Surface	15.5		10.825.00	33.5	103.5	8.415.00	5.4	11.86	31.5	56.5	14.110.00	143.5	11.5	4.674.50	249.5		859	33.22	-		7.915.00	48.5	1.152.00	52	201.5
20-Oct	6.1	Surface			11,710.00	21	97	8,510.00	-	11.7	28.5	48	14,895.00	137.5	12	5,510.00	258	-	991.5	26.22	-	-	7,520.00	56	1,368.00	52.5	168.5
20-Oct	6.1	Depth	21		13,460.00	22	53.5	9,345.00	6.48	11.38	17	37	20,360.00	143	25	6,440.00	374	-	944	12.53	-	-	1,998.00	53	1,731.50	59.5	57
20-Oct	6.1	Depth	23.5		15,825.00	19.5	62.5	11,755.00	10.57	18.11	29	44.5	27,805.00	205	28	8,470.00	520	-	1,086.00	16.29	-	-	3,681.00	50	2,754.50	80.5	100.5
20-Oct	6.2	Surface	12.5		23,890.00	25	43.5	8,6/5.00	11.03	21.04	27	38	30,970.00	200.5	64	14,880.00	1045	-	887.5	20.41	-	-	5,000.00	52	2,165.00	102.5	69.5
20-0ct	6.2	Denth	116.5		13,105.00	36	27 5	8,990.00		10 08	68 5	49	19,390.00	116 5	16	7,455.00	351		929	22.49	-		3,534.50	32	1,402.00	55.5	74
20-Oct	6.2	Depth	24		78	21	-	1,741.50	-	-	-	17.5	65	30		69.5		-	516.5	2.74	-		400.5	-	-	-	56
20-Oct	6.3	Surface			29,000.00	34	51	14,150.00	-	10.5	39.5	126	34,240.00	122.5	66	13,370.00	502	-	1,996.50	17.5	8.5	-	4,153.00	85	1,941.00	98	80.5
20-Oct	6.3	Surface		7	22,840.00	31.5	58.5	13,550.00	-	-	20	129.5	24,995.00	179	62	8,080.00	378.5	-	1,428.50	6	13	-	-	60.5	1,817.00	83.5	91.5
20-Oct	6.3	Depth		-	24,450.00	27.5	80.5	19,200.00	-	10.5	45.5	135.5	33,850.00	181.5	62	11,035.00	650	-	-	18.5	16	-	6,560.00	95.5	2,849.00	101	217
20-Oct	6.3	Depth		7.5	1/,730.00	34.5	66.5	9,765.00	-	-	40.5	126.5	22,150.00	-	50	6,895.00	347	-	1,738.00	8.5	32.5	-	7,040.00	66 er	1,972.00	65	103
11-Nov	2.1	Surface		75	23,315.00 19,500.00	29.5	64 5	10 395 00		10	112.5	682	32,075.00 23,860.00	174 5	32.5	10,280.00 6.440.00	350.5	11.5	1,498.50	24	33.5 127	21	4 351 50	65 75	2,093.00	98 63 5	96.5 790 5
11-Nov	3.2	Surface		7.5	10,000.00	26.5	191.5	9,390.00			109.5	658.5	22,925.00	189	43.5	6,280.00	312	10.5	1,817.50	22.5	127	17	10,885.00	84.5	1,193.50	58.5	750
11-Nov	3.2	Surface			20,140.00	22	207	12,740.00	-	12	173	1,065.50	32,280.00	213.5	48.5	8,515.00	477	21.5	2,788.00	38	183.5	40	19,725.00	98	2,295.50	91	1,220.50
11-Nov	4.2	Surface		-	25,595.00	23	266	10,310.00	-	6.5	124	827	25,795.00	257	44.5	6,950.00	371.5	15.5	1,962.50	26.5	142.5	28	7,825.00	-	1,741.00	69	973
11-Nov	4.2	Surface		7.5	20,325.00	18	214	12,515.00	-	-	108.5	669	23,220.00	220.5	-	6,600.00	341.5	10.5	2,059.50	22.5	101	13	11,555.00	79	1,657.00	63	809
11-Nov	2.2	Surface		7.5	19,665.00	24	177	5,820.00	-	-	58.5	399.5	12,775.00	192	43.5	3,391.50	179	-	2,188.50	8.5	59	-	12,160.00	79	972	31.5	-
11-Nov	2.2	Surface		10.5	9,885.00	25	97	10,605.00	6.38	-	113.5	750	24,575.00	115.5	40.5	6,665.00	371	14.5	1,495.00	26	138	20.5	/,265.00	46	1,467.50	62.5	443
11-Nov	3.3	Surface		7.5	20,500.00	32 22 5	238.5	10 585 00		o.5 -	412	710.5 547 5	24,770.00	239.5 239	44.5	5,475.00	307	11	2,948.00	20 5	14U 95 5	18	16,215.00 20,535.00	00 AD	1 465 50	63	9215
11-Nov	2.3	Surface		8	16,645.00	28.5	190				-			179	41.5		-		2,570.50			-	16,940.00	89.5	1,164.00	49.5	737.5
11-Nov	2.3	Surface		13	,00	12.5	-	9,505.00	-	5.5	87	621.5	20,200.00	25	32	5,435.00	297	8.5	-		96	12					-
11-Nov	5.1	Surface		8.5	15,995.00	32	-	-	-	-	-	-	-	168	41.5	-	294.5	-	2,283.50	26	-	13.5	12,930.00	78	1,388.00	52	-
11-Nov	5.1	Surface		8.5	18,165.00	42	-	3,524.50	-	-	8	77.5	5,485.00	189.5	41.5	719.5	-	9	2,890.50	20	13.5	-	-	91	1,171.50	49.5	208.5
11-Nov	5.2	Surface		12	2,672.00	45.5	43	487.5	-	-	-	8	41.5	51.5	33	-	86	-	1,118.00	-	-	-	3,788.50	26	93	6	208.5
11-Nov	5.2	Surface		13.5	0.077.77	12	-	-	-	-	31	152	-	25.5	32	47.5	-	-	641	-	-	-	-	-	-	-	-
11-Nov	5.3	Surface		9	8,925.00	15	123	6,825.00	-	-	27	120.5	12 225 00	92.5	35	2,484.00	-	-	1,033.50	17.5	-	-	6,610.00	62.5	456	33	- 200 5
16-Dec	5.3 2.1	Surface		0	7,625.00 9,880.00	29	98 132	a,ua0.00 7,145.00	-	-	20.5	- 112	13,325.00 17,590.00	82	34.5	2,386.00	224	1	1,394.50	13.5 20	134	1	6,560.00 10,320.00	5U 63	321	19.5 27 5	320.5
16-Dec	2.1	Surface		9.5	8,115.00	20.5	115.5	9,960.00	-	-		98	16,245.00	71.5	34.5	1,854.50	242	-	1,430.50	16	121	-	7,800.00	57.5	290.5	24	295.5
16-Dec	2.2	Surface		7.5	14,265.00	18	60.5		-	-	50.5	65	22,455.00	119.5	40	5,070.00	323	-	1,675.00	-	8	-	-	71	1,534.00	53.5	-
16-Dec	2.2	Surface		9	8,575.00	12	-	6,710.00	-	-	25	39	15,790.00	88	36	2,926.50	196.5	-	1,266.50	-	-	-	3,851.00	38	741.5	24.5	100.5
16-Dec	2.3	Surface		9	14,040.00	15.5	-	7,525.00	-	-	67.5	390	17,375.00	161	40.5	4,717.00	245.5	-	1,828.50	13	72.5	16	10,430.00	58	1,185.00	41	492
16-Dec	2.3	Surface		6	23,745.00	21	245	12,640.00	-	9	112.5	639.5	28,825.00	255.5	48	8,055.00	430	10.5	2,496.50	29.5	119.5	21	14,440.00	95	1,892.00	76.5	759.5

Appendix G: Raw Measurements for the Laboratory Column Test

				0								
Dec 6 2015												
Sample	Dish	Mi	Mf	Change	Change %	Water Content						
	g	g	g	g	%	g/g						
1	0.9957	14.839	3.3151	10.5282	71%	0.71						
2	0.9896	15.829	3.5311	11.3083	71%	0.71						
3	1.0012	15.6708	3.4155	11.2541	72%	0.72						
Average	-	-	-	-	71.4%	0.714						
St Dev	-	-	-	-	0.4%	0.004						

Table 59. Determination of the Water Content in Beaver Lake Bog Soil

Table 60. Raw Data Recorded for the 2-Week Preliminary Column Study

	Nov 8, 2015														
	30 cm sediment, 30 cm water														
		Depth Surface													
Time	DO	рН	Temp	Cond	ORP	DO	рН	Temp	Cond	ORP					
Zero	7.64	7.14	16.75	64.12	309.1	8.37	6.5	16.67	53.75	322.7					
36 hrs	5.19	6.15	19.2	58.13	384.7	4.69	5.71	19.21	54.97	390.2					
96 hrs	5.8	5.49	20.14	66.24	373.5	5.45	5.31	20.31	57.06	378.9					
192 hrs	3.99	5.44	20.36	94.33	376.6	5.35	5.48	20.45	49.95	372.6					

Table 61. Mass of Soil Added to Each Column for the Column Study

Nov 30, 2015							
Column	Mass (kg)						
1	8.18						
2	8.16						
3	8.36						
4	8.6						
5	8.46						
6	8.82						
7	8.36						
8	8.9						
9	9.24						
10	9.84						
11	8.38						
12	7.6						
13	8.46						
14	8.56						
15	8.82						
16	9.08						
Average	8.61375						
St Dev	0.49597						

Date	Temp	DO	pН	ORP	Cond	Temp	DO	pН	ORP	Cond
		Distille	d Water Co	olumn			Storn	nwater Co	lumn	
01-Dec	17.46	2.3	6.12	328.1	34.31	17.36	2.85	5.7	345.6	60.55
02-Dec	17.64	4.93	4.62	303.3	36.75	16.68	3.76	4.72	295.8	53.15
06-Dec	17.61	4.7	4.75	330.6	48.25	17.71	1.44	4.54	270	61.99
09-Dec	17.81	5.61	4.9	303.4	55.74	17.39	3.4	4.99	312.4	79.52
13-Dec	17.21	3.11	4.91	292.9	67.55	17.61	1.1	4.92	358.4	77.26
16-Dec	17.81	5	4.86	310.1	75.34	17.14	4.98	4.92	350.2	81.22
19-Dec	17.16	1.96	4.96	332.1	/4.3/	17.59	2.61	5.39	281.1	89.74
23-Dec	17.1	2.57	4.88	285.7	70.04	17.46	1.75	5.24	288.6	90.15
26-Dec	17.58	0.43	5.14	323.7	82.82	17.75	0.31	5.09	299.15	83.58
30-Dec	17.38	0.63	5.26	289.5	86.94	17.63	0.53	5.18	287.3	93.75
02-Jan	17.56	0.41	5.14	285.5	91.66	17.45	0.12	5.4	2/8.3	88.26
04-Jan	17.62	0.41	5.15	278.9	88.62	17.13	0.57	5.34	284.2	94.3
06-Jan	16.99	1.5	5.38	385.2	81.29	15.85	0.86	4.95	237.7	81.72
06-Jan	10.17	1.33	4 20	220	70.1	15.64	1.00	4.42	255.2	105.8
11-Jdll	10.10	1.55	4.56	210.7	/0.1	15.59	0.72	4.25	225	100.5
15-Jan	10.25	1.2	4.5	215.1	79.02	10.01	0.99	4.7	215	100.0
10-Jali	15.94	1.5	4.25	225.0	120.1	15.98	0.95	4.50	260.2	100.5
20 Jan	10.05	0.95	2.00	200.1	126.1	10.05	1.04	3.00	200.1	111.0
20-Jan	16.55	0.57	3.57 A 11	102 E	110 /	16.01	0.44	4.07	220.5	172.2
22-Jan	10	1 1 2	4.11	152.5	112.4	10.01	0.44	4.07	170.4	112.3
23-Jan	16.01	1.12	4.32	203.4	101.9	15 78	1 17	4.31	182.3	111.1
29-Jan	15 35	0.27	4.27	255.1	1111.4	15.76	0.2	4.27	234.4	93.1
01-Feb	15.21	0.45	5.03	231.5	111.9	15.61	0.4335	4.5	229	97
03-Feb	16.01	1.09	4.9	226.1	112.9	14.74	1.87	4.62	245.3	103
04-Feb	13.1	0.29	4.89	231.1	111.5	13.1	0.67	4.67	240.5	104.1
05-Feb	11.72	1.77	4.76	269.8	92.74	11.6	0.71	5	244.5	78.94
08-Feb	11.08	1.23	4.82	209.7	110.1	11.1	0.54	4.98	201.4	87.67
09-Feb	11.07	0.28	5.31	186.2	98.7	10.7	0.21	5.07	191.4	90.36
10-Feb	11	1.3	5.1	184.2	98.4	10.79	0.12	5.05	190.17	90.91
11-Feb										
12-Feb										
15-Feb						11.58	0.9	5.11	311.7	109.3
16-Feb	11.48	0.4	4.88	256.6	127	11.42	0.44	5.13	288.5	98.8
17-Feb	11.41	0.35	4.85	254.3	132.5	9.65	0.76	5.44	301.4	99.9
18-Feb	11.39	0.33	4.85	250.1	134.9	9.78	0.36	5.39	295.7	109.1
19-Feb	10.41	0.34	5.3	270.1	110.8	10.12	0.76	5.4	290.1	110.1
21-Feb	10.35	0.21	5.28	256.2	113	11.1	0.75	5.32	293.2	101.1
23-Feb	10.38	0.81	5.28	261.2	109.7	9.8	0.3	5.4	290.3	144.1
24-Feb	10.3	0.86	5.42	260.6	90.81	10.48	1.02	5.24	282.1	96.99
25-Feb	10.41	0.64	5.16	308.1	100.8	9.78	0.95	5.42	257.2	75.83
26-Feb						10.37	1.96	5.58	352.3	73.93
28-Feb	7.69	1.06	5.45	366	80.38	6.83	0.23	5.23	334.7	71.47
01-Mar	10.51	0.58	5.43	311.8	77.32	10.12	2.84	5.45		66.99
02-Mar	10.64	0.55	5.39	307.5	82.21	9.79	0.57	5.31	341.8	75.88
03-Mar	10.44	0.21	5.5	299.2	74.25	10.47	0.14	5.52	317.1	55.84
04-Mar	6.58	1.26	5.4	322	82.76	6.7	3.23	5.8	372.1	51.97
06-Mar	7.58	2	5.33	331.1	71.04	5.16	0.62	5.63	258.1	45.83
08-Mar	6.92	0.51	5.75	285.2	76.12	5.06	0.24	5.61	252.1	50.62
U9-Mar	5.91	0.57	5.67	324.1	55.8	5.08	0.5	5.83	324.1	47.12
10-Mar	6.55	2.32	5.9	345	62.79	5.99	1.9	5.6	339	43.12
11-Mar	6.44	3.13	5.49	334.7	59.49	5.53	1.87	5.73	298.1	45
13-IVIAF	6.45	1.24	5.0 E 40	321	58.13	5.51	1.1	5.69	295.1	46.1
10-IVIdF	0.45 C 41	1.10	D.46 E E	220	59.5	5.49	0.97	2.09	201.1	47.1
10-IVIar 17 Mar	0.41 E 0	1	5.5	320	59.UI 60.21	5.98	0.95	5./	202.1	4/.1
19 Mar	3.9	2.66	5.59	323.3 221 /	E4 27	0.1	2.04	5.09	201.1	40.D
20 Mar	4.00	2.00	5.92	207 0	57 C	5.50	3.04 A 1	5.65	312 C	J1.95 A7 E4
20-IVIdI 22-Mar	6.13	3.54	5.83	237.0	61.16	5.74	+.1 2.03	5.85	240.0	47.04
22-1vid1 23-Mar	5.04	1 21	5.76	227	53.02	5.00	2.03	5 99	205.5	40.65
24-Mar	6.63	1.51	5.83	233.0	50.07	5.93	1.09	5.81	200.1	40.91
25-Mar	6.66	1.94	5.82	233.4	50.37	6.13	1.14	5.83	275.2	43.48
28-Mar	5.88	0.86	5.87	267.1	67	6.02	0.6	5.9	279.1	51.52

Table 62. Temperature, DO, pH, Conductivity, ORP - Raw Data – Column Log

Column	Date	Temp	DO	pН	ORP	Cond
	D	istilled Wa	ater Colu	imns		
1	Dec 4 2015	17.75	0.99	4.52	312.9	83.2
2	Jan 3 2016	17.62	0.41	5.15	278.9	88.62
3	Feb 3 2016	15.21	0.63	5.49	85.11	25.11
4	Mar 3 2016	10.4	0.67	5.68	37.25	331
5	April 1 2016	5.82	0.98	6.23	31.47	266.5
	:	Stormwat	er Colun	าทร		
7	Dec 4 2015	17.66	2.16	4.51	330.7	86.43
8	Dec 4 2015	17.63	1.11	4.48	322.4	92.27
9	Jan 3 2016	17.13	0.86	4.95	284.3	94.3
10	Jan 3 2016	17.01	0.97	4.46	297.4	92.1
11	Feb 3 2016	14.91	0.97	5.01	230.1	82.1
12	Feb 3 2016	14.50	0.64	4.93	235.1	83.2
13	Mar 3 2016	10.5	1.69	5.93	345.1	50.59
14	Mar 3 2016	10.41	1.31	5.84	345.7	33.93
15	April 1 2016	6.21	0.40	6.23	263.1	31.01
16	April 1 2016	6.44	1.31	6.23	266.5	31.17

Table 63. Temperature, DO, pH, Conductivity, ORP - Raw Data – Column Log

Date	Site	Type	Turbidity	TSS	COD	тос
		,,,	NIU	mg/L	mg/L	mg/L
Dec 4 2015	Column 1	Water	338.00	576.00	670.00	/4.03
Dec 4 2015	Column 1	Water	353.00	506.67	633.00	//.58
Dec 4 2015	Column 1	water	349.00	546.67	626.00	-
Jan 4 2015	Column 2	water	192.33	347.00	642.50	69.92
Jan 4 2015	Column 2	Water	238.33	221.00	690.50	78.09
Jan 4 2015	Column 2	Water	-	-	-	-
Feb 4 2016	Column 3	Water	40.00	75.00	174.00	33.77
Feb 4 2016	Column 2	Water	50.67	80.00	174.00	28.00
Mar 4 2010	Column 4	Water	-	-	-	-
Mar 4 2010	Column 4	Water	43.07	81.00	230.30	09.41
April 3 2016	Column 4	Water	29.67	83.00	242.30	100.66
April 3 2016	Column 5	Water	72.83	41.00	169.33	41.05
April 3 2016	Column 5	Water	84.17	127.00	171.00	41.05
April 3 2016	Column 5	Water	-	127.00	1/1.00	41.04
Dec 4 2015	Column 7	Water	66 70	63 33	273 67	93.03
Dec 4 2015	Column 7	Water	65.90	73 33	193.00	95.00
Dec 4 2015	Column 7	Water	65.30	113 33	177.67	55.45
Dec 4 2015	Column 8	Water	48 10	136.67	149.67	92 92
Dec 4 2015	Column 8	Water	47.80	136.67	148 33	95.92
Dec 4 2015	Column 8	Water	47 30	113 33	152.33	-
lan 4 2015	Column 9	Water	132 33	97.00	464 50	95 31
Jan 4 2015	Column 9	Water	129.33	133.00	447.00	97.99
lan 4 2015	Column 9	Water		211.00	-	
Jan 4 2015	Column 10	Water	57.33	28.00	203.50	82.18
Jan 4 2015	Column 10	Water	15.33	-	252.00	90.36
Jan 4 2015	Column 10	Water	-	-	-	-
Feb 4 2016	Column 11	Water	106.67	148.00	277.00	36.54
Feb 4 2016	Column 11	Water	111.00	84.00	268.00	37.42
Feb 4 2016	Column 11	Water	-	-	-	-
Feb 4 2016	Column 12	Water	118.33	43.00	272.00	33.67
Feb 4 2016	Column 12	Water	124.67	73.00	286.00	34.88
Feb 4 2016	Column 12	Water	-	-	-	-
Mar 4 2016	Column 13	Water	55.33	46.00	220.00	40.80
Mar 4 2016	Column 13	Water	51.33	33.00	224.50	65.65
Mar 4 2016	Column 13	Water	34.67	-	-	-
Mar 4 2016	Column 14	Water	89.00	29.00	673.50	103.46
Mar 4 2016	Column 14	Water	87.33	78.00	566.00	129.50
Mar 4 2016	Column 14	Water	60.33	-	-	-
April 3 2016	Column 15	Water	35.73	41.00	114.00	20.59
April 3 2016	Column 15	Water	36.93	39.00	108.67	22.00
April 3 2016	Column 15	Water	-	-	-	-
April 3 2016	Column 16	Water	37.60	44.00	207.67	45.50
April 3 2016	Column 16	Water	39.40	94.00	210.00	44.99
April 3 2016	Column 16	Water	-	-	-	-
Dec 4 2015	Stormwater Week 1	Water	39.50	169.00	-	54.70
Dec 4 2015	Stormwater Week 1	Water	53.00	162.00	-	54.96
Dec 4 2015	Stormwater Week 1	Water	50.20	201.00	-	-
Jan 4 2015	Stormwater Week 4	Water	22.33	64.00	178.50	84.16
Jan 4 2015	Stormwater Week 4	Water	20.67	70.00	195.50	84.32
Jan 4 2015	Stormwater Week 4	Water	-	-	-	-
Feb 4 2016	Stormwater Week 8	Water	25.33	83.00	108.00	5.57
Feb 4 2016	Stormwater Week 8	Water	28.33	85.00	119.00	5.45
Feb 4 2016	Stormwater Week 8	Water	-		-	-
Mar 4 2016	Stormwater Week 12	Water	6.00	406.00	134.50	48.75
Mar 4 2016	Stormwater Week 12	Water	6.00	188.00	143.50	59.87
Mar 4 2016	Stormwater Week 12	Water	4.00	-	-	-
April 3 2016	Stormwater Week 16	Water	91.57	267.00	234.67	3.18
April 3 2016	Stormwater Week 16	Water	92.57	1,491.00	191.00	3.05
April 3 2016	Stormwater Week 16	Water	-	-	-	-
Dec 4 2015	Blank Week 1	water	0.19	-	-	0.58
Dec 4 2015	Blank Week 1	water	1.64	1.00	-	0.56
Dec 4 2015	DIdlik Week 1	Water	1.58	2.00	-	-
Jan 4 2015	DIdTIK WEEK 4	Water	0.24	-	3.00	0.56
Jan 4 2015	DIdTIK WEEK 4	Water	0.13	-	10.00	0.55
Jan 4 2015 Eeb 4 2016	Blank Week 4	Water Water	- 1 20	-	-	-
Feb 4 2010	Blank Week o	Water Water	1.30	1.00	2.00	1 10
Feb 4 2010	Blank Week o	Water	1.00		2.00	1.10
Mar / 2016	Rlank Week 0	Water	-		-	1 04
Mar / 2010	Blank Week 12	Water	-	3.00	-	1.04
Mar 4 2010	Blank Week 12	Water	-	-	-	-
April 3 2016	Blank Week 16	Water	0.14	-	-	0.53
April 3 2016	Blank Week 16	Water	0.13	2.00	-	0.81
April 3 2016	Blank Week 16	Water				

Table 65. Metals	5 - Ra	aw [Data	1 - C	olur	nn S	Stud	y - 1	Nat	er
Column	As	Al	В	Ba	Ca	Cd	Co	Cr	Cu	F
	1	1 (1)	1	$L_{\rm ext} = D \lambda$	(1 (1)	1	1	1	1

Column	As	Al	В	Ba	Ca	Cd	Со	Cr	Cu	Fe	К	Mg	Mn	Mo	Na	Ni	Pb	Sb	Se	Si	Sr	Ti	V	Zn
	(mg/L) ((mg/L) ((mg/L)	mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L) ((mg/L)	(mg/L)	(mg/L) (mg/L) (mg/L) (mg/L) (mg/L)							
Column 1		0.96	0.08	0.05					0.07	1.34	0.12		0.11			0.02	0.15	0.01	0.03		0.02		0.01	
Column 1		0.91	0.08	0.05					0.17		0.15	1.02	0.16	0.10	8.79	0.13	0.10	0.02	0.05	3.39	0.04	0.04	0.01	0.14
Column 2		0.89	0.07	0.05	5.75						0.15	1.02	0.16		8.58	0.11	0.08	0.02	0.05	3.25	0.04	0.04	0.01	0.14
Column 2		0.88	0.07	0.05	5.67				0.19	2.09	0.14	1.01	0.15	0.09	8.52	0.11	0.07	0.02	0.04		0.03	0.04	0.01	0.14
Column 3		0.78	0.07	0.05	5.39			0.04		2.09	0.14	1.01	0.15	0.09	8.29	0.10	0.07	0.02	0.04	3.25	0.03	0.03	0.01	0.13
Column 3		0.76	0.07	0.05	11.75			0.05	0.14	1.96	0.13	0.97	0.14	0.09	8.15	0.09	0.06	0.02	0.04		0.03	0.03	0.01	0.13
Column 4	0.03	0.72	0.07	0.05	10.47			0.12	0.17	1.74	0.13	0.95	0.14	0.08	7.68	0.07	0.04	0.02	0.04	3.24	0.03	0.03	0.01	0.12
Column 4		0.71	0.07	0.05	8.76			0.17		1.72	0.13	0.93	0.14		7.52	0.07	0.04	0.02	0.04	3.17	0.03	0.03	0.01	0.12
Column 4	0.01	0.57	0.06	0.04	10.22				0.17	1.63	0.13	0.92	0.13		7.28	0.07	0.03	0.02	0.04	3.05	0.03	0.01	0.01	0.11
Column 5		0.52	0.06	0.03	11.33			0.02	0.14	1.56	0.13	0.89	0.13	0.08	7.27	0.06	0.02	0.01	0.04	3.02	0.02	0.01	0.01	0.10
Column 5		0.46	0.05	0.03	10.48			0.05	0.13	1.40	0.13	0.65	0.12	0.08	7.21	0.03	0.02	0.01	0.04	2.81	0.02	0.01	0.01	0.10
Column 7		1.04	0.08	0.06	4.85			0.04		2.58	0.15	1.06	0.17	0.08	13.41	0.14	0.10	0.02	0.05	2.30	0.04	0.04	0.01	0.14
Column 7		1.13	0.08	0.06	5.40			0.05	0.45	2.59	0.16	1.12	0.17	0.07	14.87	0.17	0.11	0.02	0.05	2.03	0.04	0.04	0.01	0.18
Column 8	0.02	1.20	0.09	0.06	3.67		0.01	0.06	0.47	2.63	0.16	1.13	0.18	0.02	14.93	0.20	0.11	0.02	0.05	3.46	0.04	0.04	0.01	0.20
Column 8	0.06	1.21	0.10	0.06	3.48		0.02		0.47	2.75	0.17	1.17	0.19	0.02	16.31	0.21	0.12	0.02	0.05	3.46	0.04	0.04	0.01	0.22
Column 9	0.01	1.28	0.10	0.06	15.44			0.07	0.42	2.81	0.18	1.17	0.21	0.10	16.54	0.22	0.12	0.02	0.05	3.57	0.04	0.05	0.02	0.23
Column 9		1.31	0.10	0.06	14.43			0.07		2.88	0.18	1.20	0.21	0.10	17.04	0.25	0.14	0.02	0.05	3.80	0.05	0.05	0.02	0.25
Column 10		1.35	0.11	0.07	9.90					2.92	0.18	1.20	0.22	0.10	17.81	0.27	0.14	0.02	0.05	3.80	0.05	0.05	0.02	0.25
Column 10		1.59	0.12	0.07	12.36		0.01	0.12	0.48	2.96	0.22	1.23	0.23	0.11	18.88		0.16	0.03	0.05	3.81	0.05	0.06	0.02	0.26
Column 11		1.93	0.12	0.08	7.77				0.51	3.57	0.25	1.27	0.24	0.12	19.90		0.17	0.03	0.05	3.91	0.06	0.06	0.02	0.26
Column 11		2.00	0.12	0.08	8.25			0.12	0.55		0.26	1.27	0.24	0.12	20.16	0.28	0.18	0.03	0.06		0.06	0.07	0.02	0.26
Column 12	0.02	2.05	0.13	0.08	5.64		0.01	0.18	0.55		0.26	1.29	0.28		20.57	0.29	0.18	0.03	0.06	3.98	0.07	0.07	0.02	0.27
Column 12		2.06	0.13	0.09	6.69		0.01	0.22	0.56	3.57	0.26	1.31	0.30	0.12	21.15		0.18	0.03	0.06	4.10	0.07	0.08	0.02	0.28
Column 13		2.06	0.14	0.09	4.90			0.12	0.60	3.85	0.27	1.32	0.30		21.87	0.40	0.18	0.03	0.06	4.57	0.07	0.09	0.02	0.29
Column 13	0.02	2.07	0.17	0.09	4.47			0.12	0.61	3.87	0.27	1.34	0.31	0.13	22.20		0.23	0.03	0.06	4.63	0.07	0.09	0.02	0.30
Column 13		2.14	0.21	0.09	5.30		0.04		0.63	4.06	0.28	1.42	0.31	0.15	22.82	0.43	0.23	0.03	0.06	4.74	0.07	0.09	0.02	0.36
Column 14	0.04	2.16	0.21	0.09	7.76		0.01		0.64	5.91	0.28	1.56	0.32		24.06		0.24	0.04	0.06	4.83	0.08	0.09	0.02	0.38
Column 14		2.24	0.22	0.10	8.06			0.18	0.65	6.01	0.29	1.63	0.37	0.16	24.10	0.53	0.25	0.04	0.07	4.88	0.08	0.09	0.02	0.40
Column 14	0.02	2.32	0.25	0.10	8.29			0.22	0.70	6.46	0.29	1.71	0.40	0.23	24.20		0.25	0.04	0.07	4.90	0.09	0.10	0.02	0.40
Column 15		2.57	0.25	0.10	5.92	0.01	0.01	0.25	0.70	6.52	0.31	1.76	0.41	0.24	25.66	0.66	0.26		0.07	5.25	0.09	0.10	0.03	0.43
Column 15	0.08	2.61	0.25	0.11	5.72			0.28	0.70	7.06	0.36	1.76	0.41	0.26	25.87	0.46			0.07	5.32	0.09	0.11	0.03	0.44
Column 16	0.11	2.86	0.29	0.12	5.68			0.29	0.75	8.90	0.37	1.80	0.46	0.27	27.81	0.56			0.07	5.35	0.11	0.55	0.03	0.44
Column 16	0.06	2.87	0.33	0.12	5.68			0.30	0.78	10.04	0.38	2.05	0.46	0.27		0.43			0.07	5.84	0.11		0.03	0.49
Stormwater Week 1		4.57	0.27	0.18	3.44	0.01	0.03		0.77	12.16	0.07	1.32	0.35	0.40	18.25	1.07	0.29	0.05	0.04	8.04	0.03	0.22	0.02	0.82
Stormwater Week 1		4.04	0.17	0.20	3.16	0.01	0.03		0.82	13.19	0.06	1.18	0.34	0.42	16.98	1.20	0.28	0.07	0.05	7.67	0.02	0.18	0.03	0.88
Stormwater Week 4		2.12	0.14	0.10	2.64		0.03		0.56	10.91	0.05	0.74	0.48	0.56	15.13		0.32	0.06	0.05	4.86	0.02	0.11	0.02	0.72
Stormwater Week 4		1.36	0.21	0.10	2.49		0.02		0.48	4.71	0.04	0.52	0.23	0.52	13.23	0.90	0.33	0.05	0.05	4.09	0.01	0.07	0.01	0.74
Stormwater Week 8	0.03	2.25	0.05	0.12	2.36		0.02	0.22	0.51	3.16	0.05	0.77	0.11	0.32	14.02	0.41	0.21	0.05	0.05	4.40	0.01	0.11	0.01	1.01
Stormwater Week 8	0.04	3.52	0.07	0.14	3.98		0.02	0.11	0.59	3.86	0.06	1.17	0.21	0.38	20.24	0.22	0.25	0.04	0.05	7.20	0.02	0.18	0.02	1.11
Stormwater Week 12		7.82	0.05	0.24	4.06		0.01	0.29	0.91	8.36	0.10	2.24	0.14	0.67	15.99	0.25	0.85	0.06	0.04	14.01	0.04	0.38	0.03	1.02
Stormwater Week 12		9.34	0.05	0.28	5.00		0.01	0.28	1.11	9.85	0.12	2.79	0.18	0.75	10.98	0.36	0.99	0.06	0.07	16.55	0.04	0.43	0.03	1.14
Stormwater Week 16	0.04	4.03	0.10	0.21	3.64	0.01		0.13	0.71	4.37	0.06	1.27	0.39	0.54	5.24	0.15	0.67	0.05	0.05	7.72	0.02	0.19	0.02	0.93
Stormwater Week 16	0.09		0.12			0.02	0.02	0.53			0.28		0.37			0.22		0.11	0.05		0.11	1.24	0.07	
Blank Week 1		0.11			0.05					2.19		0.02	0.10	0.01					0.05	1.03			0.01	0.04
Blank Week 1		0.09	0.10			0.01				3.40		0.02	0.14	0.01	1.08		0.02		0.05	0.90			0.01	0.04
Blank Week 4			0.10						0.11			0.03	0.09	0.01	1.26		0.01	0.02	0.05	1.09			0.01	0.04
Blank Week 4	0.01	0.13			0.13				0.11	2.48		0.03	0.17	0.01			0.01	0.01	0.08	1.10		0.01	0.01	0.04
Blank Week 8		0.12	0.09		0.20		0.02					0.09	0.07	0.03	1.52		0.05	0.02	0.05	1.22			0.02	0.07
Blank Week 8	0.01	0.09	0.08		0.14			0.02		0.43	0.02	0.08	0.02			0.03	0.05		0.06					0.04
Blank Week 12	0.02	0.06	0.07				0.01		0.06			0.01	0.08	0.01	0.71		0.02	0.01	0.06	0.55			0.01	0.02
Blank Week 12	0.01	0.07	0.08					0.03	0.03	0.17			0.02		0.60	0.08			0.06	0.63				0.02
Blank Week 16		0.05	0.04		0.54			0.07	0.04	0.39		0.12			0.84	0.03		0.01	0.04	0.52				0.04
Blank Week 16		0.06	0.04		0.72			0.14	0.05	0.58		0.15	0.01		1.05	0.08		0.01	0.06	0.70				0.05

Table 66. Metals – Raw Data - Column Study - Sediment

Date	Column	Sediment	Al	В	Ba	Ca	Cd	Со	Cr	Cu	Fe	К	Mg	Mn	Mo	Na	Ni	Pb	Sb	Zn
			(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Dec 4 2015	Column 1	Surface	1525.62	29.74	-	14590.41	-	-	-	-	2932.54	23.95	886.21	228.22	9.08	-	34.57	-	7.31	151.05
Dec 4 2015	Column 1	Surface	-	29.68	88.67	14299.08	-	-	-	-	2864.73	23.37	885.27	-	8.98	2680.83	28.24	-	7.15	166.81
Dec 4 2015	Column 1	Surface	1525.62	27.47	90.37	13325.11	-	-	-	-	2745.01	22.65	884.75	218.48	8.63	2504.64	22.77	-	6.48	-
Jan 4 2016	Column 2	Surface	-	27.40	84.42	13222.67	-	-	-	-	2/2/.06	21.48	914.01	211.59	8.41	2485.42	24.18	-	6.57	-
Jan 4 2016	Column 2	Surface	1437.94	26.28	85.09	12623.69	-	-	-	-	-	20.32	852.33	-	8.13	2483.48	25.80	-	7.05	142.55
Jan 4 2016	Column 2	Surface	1465.42	-	85.05	11702.02	-	-	-	-	2636.59	21.37	850.52	194.98	8.07	2362.90	26.93	-	6.48	143.28
Feb 4 2016	Column 3	Surface	1343.70	-	-	11661.47	-	-	-	-	2/1/./2	19.12	6/6.61	190.73	8.01	2083.92	-	-	-	-
Feb 4 2016	Column 3	Surface	1285.75	23.42	77.35	11482.28	-	-	-	-	2597.35	19.84	814.80	208.91	7.97	2249.87	-	-	6.34	140.13
Feb 4 2016	Column 3	Surface	1209.56	24.64	75.52	11256.94	-	-	-	-	2589.79	18.66	737.67	186.52	7.92	2027.08	27.47	-	6.36	136.80
Mar 4 2016	Column 4	Surface	1174.62	22.92	74.54	106/5.60	-	-	-	-	2590.50	10.45	/ 50.15	172.57	7.67	2055.75	-	-	0.05	120.40
Mar 4 2016	Column 4	Surface	11/4.05	-	72.09	7202 52	-	-	-	-	2002.09	16.55	099.54	176 50	7.00	2020.08	22.01	-	0.15	115 20
April 3 2016	Column 5	Surface	1050.22	22 71	68 77	5644.48				_	2//6/19	18.05	657.20	158 37	6.92	1908.03	18.62	_	5.83	109.51
April 3 2016	Column 5	Surface	1050.22	22.71	68.48	5040.16	_	_	_	_	2026 57	17.64	587.10	156.94	6.66	1811 39	-	_	-	107.11
April 3 2016	Column 5	Surface	-	-	-	-	-	-	-	-	2439.99	18.65	-	168 44	-	-		-	-	-
Dec 4 2015	Column 7	Surface	1628.57	41.40	96.94	15328.71	-	-	-	-	-	25.08	902.52	230.01	10.33	2916.05	34.88	120.57	7.37	150.94
Dec 4 2015	Column 7	Surface	1635.84	38.40	-	15414.99	-	-	20.00	-	-	25.02	861.50	253.50	11.45	3038.51	29.14	117.38	7.59	-
Dec 4 2015	Column 8	Surface	1646.69	41.40	97.69	15520.93	-	-	20.89	-	-	25.14	959.89	255.97	11.71	3130.09	40.32	103.04	7.72	168.85
Dec 4 2015	Column 8	Surface	1685.12	43.77	-	15676.16	-	-	17.42	-	-	26.67	1016.23	222.53	12.05	4021.57	-	98.56	7.90	170.36
Jan 4 2016	Column 9	Surface	1881.78	50.37	-	17966.27	-	-	28.24	365.15	-	25.79	999.79	266.29	-	3172.10	42.99	158.78	10.28	170.30
Jan 4 2016	Column 9	Surface	1829.04	49.95	99.35	17073.15	-	-	25.71	366.09	3027.24	27.78	1024.05	277.49	12.96	3695.47	-	-	9.97	199.66
Jan 4 2016	Column 10	Surface	1841.17	49.27	97.86	16794.02	-	-	23.86	374.11	3109.95	30.31	1053.04	278.90	13.01	-	47.81	179.46	9.53	181.42
Jan 4 2016	Column 10	Surface	-	48.48	-	16483.31	-	-	-	379.35	2956.01	29.88	1035.02	276.64	12.50	3512.95	51.07	175.27	9.32	225.84
Feb 4 2016	Column 11	Surface	1903.22	52.40	106.39	21546.60	-	5.24	38.37	401.18	3333.85	29.86	1084.48	280.07	13.69	3407.08	60.74	172.90	8.98	224.26
Feb 4 2016	Column 11	Surface	1991.74	53.96	-	21554.99	-	-	42.30	406.44	3250.65	30.36	1117.57	280.71	13.18	3580.71	66.54	175.39	7.90	226.43
Feb 4 2016	Column 12	Surface	2039.44	58.10	117.56	22840.07	-	5.14	40.63	415.07	3401.45	30.75	1167.95	288.74	15.02	3812.54	54.23	181.09	10.57	244.25
Feb 4 2016	Column 12	Surface	-	64.51	-	23296.70	-	-	39.33	425.91	3439.57	31.55	1124.76	-	-	-	54.86	189.25	10.72	250.02
Mar 4 2016	Column 13	Surface	2596.64	68.51	-	23780.81	-	5.30	71.16	427.70	3622.37	31.01	-	316.20	19.54	4600.69	62.51	182.55	11.31	318.02
Mar 4 2016	Column 13	Surface	2366.85	71.64	121.18	24041.01	-	5.39	64.35	443.40	3582.91	33.92	1260.08	-	19.70	3338.50	64.51	197.31	11.72	306.55
Mar 4 2016	Column 14	Surface	2457.86	80.76	118.17	25040.65	-	6.13	66.50	445.91	3581.56	42.19	1297.79	-	-	5160.07	61.72	-	12.87	323.88
Mar 4 2016	Column 14	Surface	2326.62	81.03	118.55	27966.34	-	-	55.14	-	-	37.26	1221.63	302.30	23.83	4721.10	81.67	191.93	15.03	323.97
April 3 2016	Column 15	Surface		91.09	150.59	29033.97	-	9.89	96.09	508.04	4488.20	35.57	1307.80		-	5561.68	78.61	-	18.14	-
April 3 2016	Column 15	Surface	3375.88	91.16	-	31383.00	-	9.54	86.27	525.60	4044.50	48.56	-	345.46	36.21	5731.93	-	203.67	21.29	350.51
April 3 2016	Column 16	Surface	3492.38	104.75	144.31	3/912.45	-	10.85	103.87	4/6./4	4004.22	49.11	1335.00	-	36.64	-	86.01	215.66	25.73	347.20
April 5 2016	Column 1	Denth	76 74	109.64	-	20.05	0.04	-	1102 50	490.54	4700.75	-	-	331.95	-	107.27	75.59	-	27.20	20.95
Dec 4 2015	Column 1	Depth	70.74 8/L12	9723.96	20.88	29.65	2600.52	32.03 28.19	861.27	225.90	6.44	4469.60	-	13.35	-	15/ 86	70.74 8/L12	9723.96	20.88	29.65
Dec 4 2015	Column 1	Depth	56.48	9537.64	15.54	30.08	2605.50	28.05	856.20	2/13/18	0.44			13.46	5.44	121.86	56.48	9537.64	15.54	30.08
Dec 4 2015	Column 7	Depth	84.52	11237.87	16.71	31.93	2664.30	52.08	1012.19	203.56	8.98	3800.08	25.81	13.84	8.06	173.50	84.52	11237.87	16.71	31.93
Dec 4 2015	Column 7	Depth	85.99	19133.53	50.64	32.22	2924.00	36.88	1123.22	253.45	8.21	4079.25	27.26		9.12	178.23	85.99	19133.53	50.64	32.22
Dec 4 2015	Column 8	Depth	87.77	11885.02	35.09	32.99	2853.95	31.21	930.30	290.34	7.52	3891.88	26.00	-	8.17	161.36	87.77	11885.02	35.09	32.99
Dec 4 2015	Column 8	Depth	90.26	19253.47	-	33.56	2741.65	33.02	1076.51	305.57	6.65	-	32.00	16.83	7.95	189.16	90.26	19253.47	-	33.56
Jan 4 2016	Column 2	Depth	65.41	15159.82	-	34.18	3372.13	39.29	1229.41	209.29	-	4735.34	-	-	-	-	65.41	15159.82	-	34.18
Jan 4 2016	Column 2	Depth	70.90	12687.10	30.41	34.34	3064.78	34.72	1093.03	200.08	-	4523.90	-	20.99	5.56	-	70.90	12687.10	30.41	34.34
Jan 4 2016	Column 2	Depth	70.24	26653.80	-	-	3735.21	45.35	1447.49	208.33	6.93	-	-	19.04	-	100.94	70.24	26653.80	-	-
Jan 4 2016	Column 9	Depth	91.16	19781.10	47.52	204.77	2650.28	29.97	968.22	189.83	9.36	3071.60	39.75	-	9.98	205.17	91.16	19781.10	47.52	204.77
Jan 4 2016	Column 9	Depth	92.13	15873.45	78.37	205.28	3101.98	34.59	1115.48	264.87	9.83	2786.38	47.06	148.08	11.00	231.44	92.13	15873.45	78.37	205.28
Jan 4 2016	Column 10	Depth	92.49	30073.50	61.07	210.16	3036.34	30.18	1202.91	228.57	7.87	2662.73	32.61	-	7.86	211.81	92.49	30073.50	61.07	210.16
Jan 4 2016	Column 10	Depth	93.80	8946.96	-	-	2741.56	29.87	930.86	229.00	7.94	2610.63	27.19	197.09	10.17	214.07	93.80	8946.96	-	-
Feb 4 2016	Column 3	Depth	-	15605.74	-	-	3882.58	39.97	1012.65	165.28	-	2440.04	-	15.99	5.81	-	-	15605.74	-	-
Feb 4 2016	Column 3	Depth	68.27	1/003.28	17.28	38.22	2173.38	29.20	842.79	161.58	7.61	2845.20	-	17.39	-	106.76	68.27	17003.28	17.28	38.22
Feb 4 2016	Column 3	Depth	/2.43	25651.09	36.95	-	2385.57	35.12	993.52	146.12	-	-	-	18.38	-	-	72.43	25651.09	36.95	-
rep 4 2016 Eeb 4 2010	Column 11	Depth	94.43 96 24	21657.70	66.91	348.27	2103.55	21.56	397.96 1020 27	189.34	8.25 11 15	2368.84	55.45 59.40	148.08	7.Ub Q E 1	191.69 191.69	94.43	21657.70	00.91	363 16
Feb 4 2010	Column 12	Dopth	00.34	21037.70	-	274 56	2020.72	20.24	1179.00	221 62	17.74	2040.05	59.00	171 04	0.31	203.32	00.34	21037.70	-	274 56
Feb 4 2010	Column 12	Dopth	100.32	24755.08	65 50	200.11	2305.05	25.24	070.70	162 20	12.12	2700.21	53.50	1/1.04	0.22	233.05	100.22	24733.08		200.11
Mar 4 2010	Column 4	Depth	72 52	137/0 12		560.11	2133.58	23.41	857.94	179.26	12.13	1735.02	52.55		5.66	115 / 3	72 52	137/0 12	-	560.11
Mar 4 2016	Column 4	Depth	73.07	10596.40	28.63	12.41	2/18/3	25.55	682.21	1/5 23	8 88	1/82 77		12.83	1 78	13/ 95	73.07	10596.40	28.63	42.41
Mar 4 2016	Column 4	Depth	75.25	16010.01	-	-	2436.11	27.31	772.57	158.08	-	1777.67	-	14.25	-	113.12	75.25	16010.01	-	-
Mar 4 2016	Column 13	Depth	104.30	7927.01	52.68	-	3579.86	25.97	811.93	191.42	13.11	1742.78	58.50	180.10	11.37	226.52	104.30	7927.01	52.68	-
Mar 4 2016	Column 13	Depth		13392.54	57.38	440.07	2760.56	25.03	817.05	180.16	10.53	1665.96	76.81		11.30	205.17		13392.54	57.38	440.07
Mar 4 2016	Column 14	Depth	107.52	11349.75	104.61	440.25	5191.54	26.11	807.29	216.55	11.45	1531.56	61.62	169.35	9.88	223.35	107.52	11349.75	104.61	440.25
Mar 4 2016	Column 14	Depth	75.46	9602.39	123.26	446.26	3353.59	20.61	750.49	187.39	12.66	1412.92	56.85	180.93	-	223.77	75.46	9602.39	123.26	446.26
April 3 2016	Column 5	Depth	-	8288.39	-	-	3175.62	22.49	633.81	165.01	-	1753.51	-	14.65	5.99	158.31	-	8288.39	-	-
April 3 2016	Column 5	Depth	70.24	14576.27	30.53	-	2261.22	24.49	749.78	159.93	7.88	1329.04	-	-	-	-	70.24	14576.27	30.53	-
April 3 2016	Column 5	Depth	-	6064.44	-	-	1870.92	19.81	578.97	139.76	5.38	1210.18	4.53	14.42	-	-	-	6064.44	-	-
April 3 2016	Column 15	Depth	-	12179.55	249.06	454.56	2052.15	22.56	665.16	141.68	-	1121.18	74.35	171.85	17.00	289.55	-	12179.55	249.06	454.56
April 3 2016	Column 15	Depth	108.21	6715.62	-	487.31	7096.38	19.25	588.96	279.62	21.81	1451.15	67.71	180.14	10.59	261.12	108.21	6715.62	-	487.31
April 3 2016	Column 16	Depth	110.52	15609.73	262.29	497.15	8616.85	26.34	771.92	299.29	25.46	1834.52	97.05	222.25	10.56	293.51	110.52	15609.73	262.29	497.15
April 3 2016	Column 16	Depth	-	11408.66	-	552.65	-	26.04	552.99	366.18	-	1622.96	97.20	195.77	15.53	329.71	-	11408.66	-	552.65

Appendix H: Alpha Diversity

Field Study

Water Samples

Figure 110. Boxplot Between Field Site Water Samples for Richness Based on the Chao1 Estimator

Figure 111. ANOVA Residuals Between Field Site Water Samples for Richness Based on the Chao1 Estimator

Table 67. One Way ANOVA Test Result for Richness Comparison of Water Samples by Field Site Based on Chao1 Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	5	9484682.454	1896936.491	4.225	0.008
Residuals	21	9429328.86	449015.66	NA	NA

Table 68. Tukey HSD Test Result for Diversity Comparison of Water Samples by Field Site Based on Chao1 Estimator

Comparison	p-value
Site2-Site1	0.821324
Site3-Site1	0.904872
Site4-Site1	0.70785
Site5-Site1	0.355519
Site6-Site1	0.999981
Site3-Site2	1
Site4-Site2	0.994339
Site5-Site2	0.561553
Site6-Site2	0.089305
Site4-Site3	0.997624
Site5-Site3	0.849941
Site6-Site3	0.498426
Site5-Site4	0.969094
Site6-Site4	0.128793
Site6-Site5	0.004016

Figure 113. Boxplot Between Field Site Water Samples for Coverage Based on Good's Coverage

Figure 114. ANOVA Residuals Between Field Site Water Samples for Coverage Based on Good's Coverage

Table 69. One Way ANOVA Test Result for Coverage Comparison of Water Samples by Field Site Based on Good's Coverage

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	5	0.018	0.004	4.820	0.004
Residuals	21	0.015	0.001	NA	NA

Table 70. Tukey HSD Test Result for Coverage Comparison of Water Samples by Field Site Based on Good's Coverage

_

Comparison	p-value
Site2-Site1	0.827992639
Site3-Site1	0.905485326
Site4-Site1	0.671668950
Site5-Site1	0.336667924
Site6-Site1	0.999753717
Site3-Site2	0.999999986
Site4-Site2	0.985021091
Site5-Site2	0.499809440
Site6-Site2	0.059521831
Site4-Site3	0.994793003
Site5-Site3	0.825560531
Site6-Site3	0.414424802
Site5-Site4	0.975734200
Site6-Site4	0.075627941
Site6-Site5	0.002070515

Figure 115. Barplot Between Field Site Water Samples for Diversity Based on the Inverse Simpson Estimator

Figure 117. ANOVA Residuals Between Field Site Water Samples for Diversity Based on the Inverse Simpson Estimator

Table 71. One Way ANOVA Test Result for Diversity Comparison of Water Samples by Field Site Based on the Inverse Simpson Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	5	22762.53	4552.507	1.484	0.237
Residuals	21	64442.52	3068.692	NA	NA

Figure 118. Barplot Between Field Site Water Samples for Observed OTUs Based on the SOBS Calculation

Figure 119. Boxplot Between Field Site Water Samples for Observed OTUs Based on the SOBS Calculation

Figure 120. ANOVA Residuals Between Field Site Water Samples for Observed OTUs Based on the SOBS Calculation

Table 72. One Way ANOVA Test Result for Observed OTUs Comparison of Water Samples by Field Site Based on SOBS Calculation

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	5	2356581	471316.3	3.752	0.014
Residuals	21	2638105	125624.1	NA	NA

Table 73. Tukey HSD Test Result for Observed OTUs Comparison of Water Samples by Field Site Based on SOBS Calculation

Comparison	p-value
Site2-Site1	0.93985
Site3-Site1	0.983178
Site4-Site1	0.817223
Site5-Site1	0.56575
Site6-Site1	0.998299
Site3-Site2	0.999971
Site4-Site2	0.9829
Site5-Site2	0.637026
Site6-Site2	0.115232
Site4-Site3	0.985022
Site5-Site3	0.832528
Site6-Site3	0.624077
Site5-Site4	0.993807
Site6-Site4	0.118609
Site6-Site5	0.007

Surface Sediment Samples

Estimator

Figure 123. ANOVA Residuals Between Field Site Surface Sediment Samples for Richness Based on the Chao1 Estimator

Table 74. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Field Site Based on Chao1 Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	2052628	513157	4.261	0.011
Residuals	22	2649487	120431.2	NA	NA

Table 75. Tukey HSD Test Result for Diversity Comparison of Surface Sediment Samples by Field Site Based on Chao1 Estimator

Comparison	p-value
Site3-Site2	0.819704
Site4-Site2	0.938196
Site5-Site2	0.604435
Site6-Site2	0.098849
Site4-Site3	0.519824
Site5-Site3	0.20691
Site6-Site3	0.717862
Site5-Site4	0.987759
Site6-Site4	0.053663
Site6-Site5	0.008423

Figure 124. Barplot Between Field Site Surface Sediment Samples for Coverage Based on Good's Coverage

Figure 126. ANOVA Residuals Between Field Site Surface Sediment Samples for Coverage Based on Good's Coverage

Table 76. One Way ANOVA Test Result for Coverage Comparison of Surface Sediment Samples by Field Site Based on Good's Coverage

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	0.003	0.001	4.302	0.010
Residuals	22	0.004	0.000	NA	NA

Table 77. Tukey HSD Test Result for Coverage Comparison of Surface Sediment Samples by Field Site Based on Good's Coverage

Comparison	p-value
Site3-Site2	0.688732
Site4-Site2	0.950255
Site5-Site2	0.764651
Site6-Site2	0.072843
Site4-Site3	0.423353
Site5-Site3	0.207471
Site6-Site3	0.766981
Site5-Site4	0.998012
Site6-Site4	0.044596
Site6-Site5	0.01057

Figure 128. Boxplot Between Field Site Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Figure 129. ANOVA Residuals Between Field Site Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Table 78. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Field Site Based on the Inverse Simpson Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	61359.32	15339.83	5.558	0.003
Residuals	22	60716.58	2759.844	NA	NA

Table 79. Tukey HSD Test Result for Diversity Comparison of Surface Sediment Samples by Field Site Based on the Inverse Simpson Estimator

Comparison	p-value
Site3-Site2	0.999893
Site4-Site2	0.197192
Site5-Site2	0.142988
Site6-Site2	0.003011
Site4-Site3	0.383686
Site5-Site3	0.346143
Site6-Site3	0.017658
Site5-Site4	0.999974
Site6-Site4	0.562339
Site6-Site5	0.404104

Figure 130. Barplot Between Field Site Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation

Figure 131. Boxplot Between Field Site Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation

Figure 132. ANOVA Residuals Between Field Site Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation

Table 80. One Way ANOVA Test Result for Observed OTUs Comparison of Surface Sediment Samples by Field Site Based on SOBS Calculation

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	174258.734	43564.683	2.264	0.0948
Residuals	22	423382.085	19244.640	NA	NA

10-cm Depth Sediment Samples

Figure 134. Boxplot Between Field Site 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator

Figure 135. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator

Table 81. One Way ANOVA Test Result for Richness Comparison of 10-cm Depth Sediment Samples by Field Site Based on Chao1 Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	501734.553	125433.638	0.514	0.727
Residuals	11	2685664.111	244151.283	NA	NA

Figure 136. Barplot Between Field Site 10-cm Depth Sediment Samples for Coverage Based on Good's Coverage

Figure 137. Boxplot Between Field Site 10-cm Depth Sediment Samples for Coverage Based on Good's Coverage

Figure 138. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Coverage Based on Good's Coverage

Table 82. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Field Site Based on Good's Coverage

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	0.001	0.000	0.524	0.720
Residuals	11	0.005	0.000	NA	NA

Figure 139. Barplot Between Field Site 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Figure 140. Boxplot Between Field Site 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Figure 141. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Table 83. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Field Site Based on the Inverse Simpson Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	58934.719	14733.680	1.995	0.165
Residuals	11	81253.934	7386.721	NA	NA

Figure 142. Barplot Between Field Site 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation

143. Boxplot Between Field Site 10-cm Depth Sediment Samples for Observed OTUs Based o SOBS Calculation

Figure 144. ANOVA Residuals Between Field Site 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation

Table 84. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Field Site Based on SOBS Calculation

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Length	4	65168.126	16292.032	0.385	0.815
Residuals	11	464907.031	42264.276	NA	NA

Laboratory Study

Water Samples

2015.12.01

Figure 145. Barplot Between Column Samples for Richness Based on the Chao1 Estimator

Figure 146. ANOVA Residuals Between Column Water Samples for Richness Based on the Chao1 Estimator

Table 85. One Way ANOVA Test Result for Richness Comparison of Water Samples by Column Based on the Chao1 Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	164052.902	164052.902	3.743	0.079
Residuals	11	482161.543	43832.868	NA	NA

Figure 147. Barplot Between Column Water Samples for Coverage Based on the Good's Coverage

Figure 148. ANOVA Residuals Between Column Water Samples for Observed OTUs Based on the Good's Coverage

Table 86. One Way ANOVA Test Result for Coverage Comparison of Water Samples by Column Based on the Good's Coverage

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	0.001	0.001	4.912	0.0486
Residuals	11	0.001	0.000	NA	NA

Table 87. Tukey HSD Test Result for Coverage Comparison of Water Samples by Column Based on the Good's Coverage

Figure 150. ANOVA Residuals Between Column Water Samples for Observed OTUs Based on the Inverse Simpson Estimator

Table 88. One Way ANOVA Test Result for Diversity Comparison of Water Samples by Column Based on the Inverse Simpson Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	871.026	871.027	4.478	0.0580
Residuals	11	2139.510	194.501	NA	NA

Figure 151. Barplot Between Column Water Samples for Observed OTUs Based on the SOBS Calculation

Figure 152. ANOVA Residuals Between Column Water Samples for Observed OTUs Based on the SOBS Calculation

Table 89. One Way ANOVA Test Result for Diversity Comparison of Water Samples by Column Based on SOBS Calculation

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	92725.930	92725.930	2.972	0.113
Residuals	11	343157.497	31196.136	NA	NA

Surface Sediment Samples

Figure 153. Barplot Between Column Surface Sediment Samples for Richness Based on the Chao1 Estimator

Figure 154. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the Chao1 Estimator

Table 90. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Column Based on the Chao1 Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	21786.842	21786.842	1.130	0.307
Residuals	13	250705.703	19285.054	NA	NA

Figure 155. Barplot Between Column Surface Sediment Samples for Coverage Based on the Good's Coverage

Figure 156. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the Good's Coverage

Table 91. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Column Based on the Good's Coverage

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	7.19E-05	7.19E-05	0.713	0.414
Residuals	13	0.001	0.000	NA	NA

Figure 157. Barplot Between Column Surface Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Figure 158. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the Inverse Simpson Estimator

Table 92. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Column Based on the Inverse Simpson Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	1189.593	1189.593	0.955	0.346
Residuals	13	16194.774	1245.752	NA	NA

Figure 159. Barplot Between Column Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation

Figure 160. ANOVA Residuals Between Column Surface Sediment Samples for Observed OTUs Based on the SOBS Calculation

Table 93. One Way ANOVA Test Result for Diversity Comparison of Surface Sediment Samples by Column Based on SOBS Calculation

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	15856.479	15856.479	2.414	0.144
Residuals	13	85388.725	6568.363	NA	NA

10-cm Depth Samples

Figure 161. Barplot Between Column 10-cm Depth Sediment Samples for Richness Based on the Chao1 Estimator

Figure 162. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the Chao1 Estimator

Table 94. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Column Based on Chao1 Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	35596.312	35596.312	0.496	0.494
Residuals	13	932234.181	71710.322	NA	NA

Figure 163. Barplot Between Column 10-cm Depth Sediment Samples for Coverage Based on the Good's Coverage

Figure 164. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the Good's Coverage

Table 95. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Column Based on Good's Coverage

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	0.000	0.000	0.687	0.422
Residuals	13	0.003	0.000	NA	NA

Figure 165. Barplot Between Column 10-cm Depth Sediment Samples for Diversity Based on the Inverse Simpson Estimator

Figure 166. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the Inverse Simpson Estimator

Table 96. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Column Based on the Inverse Simpson Estimator

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	7.152	7.152	0.002	0.962
Residuals	13	39758.351	3058.335	NA	NA

Figure 167. Barplot Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation

Figure 168. ANOVA Residuals Between Column 10-cm Depth Sediment Samples for Observed OTUs Based on the SOBS Calculation

Table 97. One Way ANOVA Test Result for Diversity Comparison of 10-cm Depth Sediment Samples by Column Based on SOBS Calculation

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Exposure	1	6898.043	6898.0429	0.473	0.504
Residuals	13	189753.330	14596.410	NA	NA

Appendix I: Letters of Permission and Support for the Research Project

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA Department of Civil Engineering 2002 - 6250 Applied Science Lane Vancouver, BC Canada V6T 1Z4

Phone 504 822 2637 Fax 604 822 6901 info@civil.ubc.ca

Dear Genome BC

As the academic project leader for this project, I fully support the proposed research, to develop a biomarker tool for monitoring and validating stormwater treatment wetlands. I also support the proposed collaboration between UBC and Kerr Wood Leidal Consulting Engineers Ltd. The results from this collaboration will benefit UBC and will provide research opportunities for students in the Pollution Control and Waste Management group at UBC. For these reasons, I agree that UBC will provide in-kind funding to support the analysis of environmental samples for metals. Based on estimates provided by Paula Parkinson, the manager of the UBC Civil-Environmental lab, where the lab supplies cost is \$20/sample (without overhead), UBC will provide in-kind support at a value of \$4000, for the analysis of 200 samples for metals.

Sincerely,

hurto

Prof. James Atwater Associate Professor jatwater@civil.ubc.ca T: 604.822.4694 F: 604.822.6901 CEME - Room 2004C Civil and Mechanical Engineering Building University of British Columbia 6250 Applied Science Lane Vancouver BC V6T 1Z4 Canada

a place of mind The UNIVERSITY OF BRITISH COLUMBIA

Department of Civil Engineering 2002 – 6250 Applied Science Lane Vancouver, BC Canada V6T 1Z4

> Phone 604 822 2637 Fax 604 822 6901 info@civil.ubc.ca

Dear Genome BC,

The UBC Department of Civil Engineering is dedicated to world-class research and supports partnerships with industry which aim to innovate new technologies. For these reasons, on Prof. James Atwater's advice, the UBC Department of Civil Engineering supports the collaboration between UBC and Kerr Wood Leidal Consulting Engineers Ltd. for the development of a biomarker tool to monitor and validate stormwater treatment wetlands. This collaboration is further supported by our department through an in-kind contribution valued at \$4,000, for analysis of metals in soil and water samples using our facilities. In return for the in-kind contribution, UBC expects to grow its reputation in academia through the opportunity to publish research results and to support current graduate students within our department.

Sincerely,

Dr. Perry Adebar

adebar@civil.ubc.ca T: 604.822.6820 F: 604.822.7006 CEME – Room 2002E Civil and Mechanical Engineering Building University of British Columbia 6250 Applied Science Lane Vancouver BC V6T 1Z4 Canada

Stanley Park Ecology Society PD Box 5167 Vancouver BC V6B 4B2 Telephone 604 257 6908 Facsimile 604 257 8378 www.stanleyparkecology.ca

Connecting People with Nature

Dear Genome BC,

Stanley Park Ecology Society (SPES) is a non-profit organization founded in 1988 that works alongside the Vancouver Board of Parks and Recreation to promote stewardship and conservation in Stanley Park. Our mission is to promote awareness of and respect for the natural world and to play a leadership role in the stewardship of Stanley Park through collaborative initiatives in education, research and conservation.

SPES is supporting collaboration with Kerr Wood Leidal (KWL) Consulting Engineers Ltd. and the University of British Columbia (UBC) for the development of a biomarker tool to monitor and validate the microbial uptake of metals at storm water treatment sites. The proposed project is beneficial for our goals and mission as it will provide greater insight into the key microbiological activities within the Lost Lagoon wetland and may highlight potential concerns for the establishment of an additional wetland inside Stanley Park. SPES has an interest in this project's outcomes because the location for analysis is the Lost Lagoon storm water treatment wetland in Stanley Park. Because Stanley Park is a Canadian National Historic Site, Lost Lagoon has significant historical importance and environmental benefits for British Columbia and Canada.

In exchange for the ability to influence this project's outcomes and to publish the results of this project in our annual publications, SPES has agreed to be a co-applicant for this Genome BC UPP application and to support this project, as a user-partner, through an in-kind contribution valued at \$2,000. This in-kind contribution includes performing site maintenance at the Lost Lagoon wetland and assisting with site sampling and public relations and outreach for the project, particularly due to the fact that the sampling site is in an area near high pedestrian traffic.

SPES looks forward to the results of this project and is interested in the development of a biomarker tool for validating and monitoring wetlands. For this reason, we hope that Genome BC will accept and fund this proposed project.

Sincerely,

June Pretzer Conservation Project Manager

Greater Vaccowver 200 - 4185A Still Creek Drive Burnaby, BC VSC 6GB T 604 254 2088 F 604 254 2090

Aug 27, 2015,

Genome British Columbia 400 – 575 West 8th Ave. Vancouver, BC V5Z 0C4

Re: Support of Genome BC User Partnership Program

Dear Genome BC,

KWL is committed to developing a genomics tool that can be used to monitor and validate stormwater treatment systems. KWL is playing a significant role in the development of this tool through cash and inkind support as well as through consulting and leadership support throughout the course of the project. KWL has committed \$12,000 in cash to be paid towards a stipend for graduate student, Jessica LeNoble, who will act as the project manager for the sampling and analysis plan. In addition, KWL will supply incremental in-kind support for this project at a value of \$2,000, which will cover printing and office supplies, software licenses, and resources for information sharing.

KWL has been active in the development of this tool from the beginning of the brainstorming phase to the refinement of a practical genomics application. To ensure useful results are obtained KWL will remain engaged throughout the research and development activities. If results suggest follow on research and development is required, KWL is committed to exploring options for the further development of this biomarker tool.

KWL will benefit from this project because a greater understanding of the biological activity taking place in treatment wetlands will allow us to modify our best practices in order to produce even more effective treatment systems in the future. The development of a database with biomarkers for bacteria that contribute to the successful uptake of metals from wetland treatment systems will provide a monitoring and validation tool that will have great benefits for engineered wetlands operating in British Columbia.

KWL is in full support of this funding application for the Genome BC User Partnership Program.

Sincerely, KERR WOOD LEIDAL ASSOCIATES LTD.

Chris Johnston, P.Eng. Vice President, Stormwater Kerr Wood Leidal

Greater Vancouver + Okanagan + Vancouver Island + Calgary

kwl.ca

September 14, 2015

Dear Genome BC,

The Vancouver Board of Parks and Recreation (VBPR), Stanley Park Department, supports this application to the Genome BC User Partnership Program for funding to research and develop a biomarker tool with the aim to monitor and validate stormwater treatment wetlands.

The mission of the VBPR is to provide, preserve, and advocate for parks and recreation to benefit all people, communities, and the environment. This mission is in line with using best practices to manage water treatment. As such, the VBPR contracted Kerr Wood Leidal Consulting Engineers Ltd. in 1999 to design the Lost Lagoon stormwater treatment, which treats stormwater exiting the Stanley Park Causeway. The VBPR also manages the upkeep and maintenance of the Lost Lagoon wetland. This includes having contracted and overseen the dredging of the sediment basin in the wetland in 2013.

Because the site of interest for the proposed project is on property managed by the VBPR, the VBPR has an interest in the data which will result from this analysis. This project is also in line with our Strategic Plan's mandate to be a "leader in greening" or "to demonstrate leading green and horticultural practices and [to] preserve, protect and create green space."

Wetlands in our parks provide habitat for plants and animals and give citizens and tourists the opportunity to connect with nature. We believe this project may have benefits to the City of Vancouver as it may provide a better understanding of treatment wetlands and allow for an expansion of these types of green practices in the future.

Sincerely,

Brian Quinn

Manager of Park Operations Vancouver Board of Parks and Recreation Office: 604-257-8521 Email: brian.quinn@vancouver.ca

Anniles million Vancouver Board of Parks and Recreation 2099 Beach Avenue Vancouver, British Columbia Canada: VEG 124 ter 311 (within Vancouver) nr 604.873.7000 (outside Vancouver) for 604.257.8427 webtite vancouverparks.ca

The University of British Columbia Biohazard Approval Certificate													
PROTOCOL NUMBER: B16-0012 INVESTIGATOR OR COURSE DIRECTOR: James W. Atwater													
DEPARTMENT: Civil Engineering													
Type of Biological Material Host Range Biological	Species/Source/Comm Name	^{on} Other Information	Building	Room	Room Used	Containment Level							
Environmental Not Samples Applicable Soil	Indigenous	Lost Lagoon Wetland Stanley Park Vancouver, BC Canada	Wetland Stanley Park Chemical and Biological BC Canada Engineering Building										
PROJECT OR COURSE TITLE: Wetland M	lonitoring Tool												
APPROVAL DATE: February 12, 2016		START DATE: Janua	ary 1, 2015										
APPROVED CONTAINMENT LEVEL: CL	1												
FUNDING TITLE: DNA-Based Tool for Monitoring and Validating Stormwater Treatment Wetlands FUNDING AGENCY: Genome British Columbia													
UNFUNDED TITLE: N/A													

The Principal Investigator/Course Director is responsible for ensuring that all research or course work involving biological hazards is conducted in accordance with the University of British Columbia Policies and Procedures, Biosafety Practices and Public Health Agency of Canada guidelines.

This certificate is valid for one year from the above start or approval date (whichever is later) provided there are no changes. Annual review is required.

Appendix J: Project Management – Timeline and Budget

42

52

54

54

Project Accepted by Gen

2

2

me BC

100%

100%

100%

100%

Genome BC

All

JA/SB/CJ

JA/SB/CJ

42

44

47

50

Genome BC resubmission review

Genome BC project launch

Prepare for Genome BC project launch

Genome BC project launch meeting

Mil

	PLAN	PLAN	ACTUAL	ACTUAL	PERCENT														
ACTIVITY	START	DURATION	START	DURATION	COMPLETE														
	WEEK	WEEK(S)	WEEK	WEEK(S)			07-Jun	14-Jun	21-Jun	28-Jun	05-Jul	12-Jul	19-Jul	26-Jul	02-Aug	09-Aug	16-Aug	23-Aug	30-Aug
						Week	19	20	21	22	23	24	25	26	27	28	29	30	31
						Responsibility													
NSERC IPS Proposal																			
Genome BC Proposal																			
Method Development																			
Select research site	19	2	19	2	100%	CJ													
Obtain site and lab access	19	2	19	2	100%	JL													
Define research plan	19	13	19	13	100%	JL											-		
Determine site characteristics	25	4	25	4	100%	JL													
Assemble lab and field equipment	25	7	25	7	100%	JL											-		
Validate lab methods	25	4	25	4	100%	JL													
Milestone: Method	s and Re	search Pla	n Devel	oped and F	inalized														

ACTIVITY	START	DURATION	START	DURATION	COMPLETE																								
	WEEK	WEEK(S)	WEEK	WEEK(S)			01-Nov	08-Nov	15-Nov	22-Nov	29-Nov	06-Dec	13-Dec	20-Dec	27-Dec	03-Jan	10-Jan	17-Jan	24-Jan	31-Jan	07-Feb	14-Feb	21-Feb	28-Feb	06-Mar	13-Mar	20-Mar	27-Mar	03-Apr
						Week	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62
						Responsibility																							
NSERC IPS Proposal																													
Genome BC Proposal																													
Method Development																													
Gather and Process Samples																													
Extract and process field samples	25	20	25	22	100%	JL																							
Build lab study setup	39	1	43	4	100%	DV/JL																							
Extract and process lab study samples	39	16	46	17	100%	JL																							
Milestone: Field and Lab Samp	les Ana	lyzed for E	Environm	nental Para	ameters and Extr	acted/Preserved for DNA Analysis																							

ACTIVITY	START	DURATION	START	DURATION	COMPLETE																																								
	WEDC	WEE8253	WEEK	WEEK(S)			27-Dec 0	0-Jan 10-Jan	s 17-Jan	24-Jan 21-J	Ian 07-Feb	54-Feb	21-Feb 28-	Feb 06-Mai	r 13-Mar	20-Mar 23	7-Mar 03-J	pr 10-Apr	17-Apr 2	I-Apr 01-May	y OB-May	15-May 22-8	May 29-Ma	ay 05-Jun	12-Jun	19-Jun 26-	-Jun 03-Jul	10-Jul 17-	dul 24-hul	21-Jul 07-A	g M-Aug	21-Aug 28-Au	g 04-Sep	11-Sep 18-	Sep 25-Sep	ip 02-Oct	09-Oct 1		t 30-Oct	05-Nov 13-8	tov 20-Nov	22-Nov 0	6-Dec 11-Dec	ic 18-Dec	25-Dac
						Week	48	40 50		a c	3 54		<6 <	:7 48	50	60	61 62	63	64	6s 66	67	68 6	fa тa	73	72	73 7	74 75	76 7	7 78	72 80	81	82 81	84	81 8	6 87	88	80	00 01	03	01 04	4 95	95	a5 a5		07
						Responsibility																																							
NSERC IPS Proposal																									_																				
Genome BC Proposal																																													
Method Development																																													
Gather and Process Samples																																													
Sequencing																																													
Bioinformatics																																													
Train graduate student	48	16	48	16	100%	SB/BM/JL																																							
Assemble and filter MiSeq data for field samples	54	2	64	4	100%	SB/JL																																							
Perform pipeline and statistical approaches using field results	56	2	66	8	100%	JL.																																							
Review field study results	58	2	74	2	100%	BM/SB																																							
Assemble and filter MiSeq data for lab samples	67	2	76	1	100%	JL.																																							
Perform pipeline and statistical approaches using lab results	67	2	77	1	100%	JL.																																							
Review lab study results	69	2	78	1	100%	BM/SB																																							
Assemble and filter HiSeq data	67	2	80	4	100%	16																																							
Perform pipeline and statistical approaches using field and lab results	67	6	85	11	100%	JL.																																							
Review Metagenome results	69	2	96	2	100%	BM/SB																																							
Milestone: Data Filtered, Ana	lyzed and Rev	viewed																																											

	PLAN	PLAN	ACTUAL	ACTUAL	PERCENT																				
ACIVIT	WEEK	WEEK(S)	WEEK	WEEK(S)	CONFEETE		24-Jul	31-Jul	07-Aug	14-Aug	21-Aug	28-Aug	04-Sep	11-Sep	18-Sep	25-Sep	02-Oct	09-Oct	16-Oct	23-Oct	30-Oct	06-Nov	13-Nov	20-Nov	27-Nov
						Week	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	95
						Responsibility																			
NSERC IPS Proposal																									
Genome BC Proposal																									
Method Development																									
Gather and Process Samples																									
Sequencing																									
Bioinformatics																									
Tool Development																									
Compare field and lab study results	78	2	94	2	100%	JL																			
Compare study results with literature	78	2	94	2	100%	JL																			
Review results, observations, and conclusions	78	2	94	2	100%	SB/JA																			
Discuss commercialization opportunities	80	1	94	2	100%	JA/JL																			
Discuss limitations and shortcomings	80	1	94	2	100%	JA/JL																			
Write methodology for follow up	83	2	94	2	100%	JA/CJ/JL																			
Milestone: Observations Drawn and Sugges	tions Gi	ven for Fo	llow Up																						

	PLAN	PLAN	ACTUAL	ACTUAL	PERCENT																																		
ACTIVITY	START	DURATION	START	DURATION	COMPLETE																																		
	WEEK	WED(5)	WEEK	WEEK(S)			31-Jan 07-Feb	14-Feb	21-Feb 28-Fel	06-Mar	3-Mar 20-Mar	27-Mar 03	Apr 10-Apr	17-Apr 24-Apr	G1-May	08-May 15-Ma	y 22-May	29-May 05	S-Jun 12-Jun	19-Jun	26-Jun 03-	Jul 10-Jul	17-Jul 24-Jul	31-Jul	07-Aug 14-1	Aug 21-Aug	28-Aug O	-Sep 11-3	Sep 18-Sep	25-Sep 0	2-Oct 09-Oct	15-Oct :	23-Oct 30-Oc	t 06-Nov 1	3-Nov 20-No	v 27-Nov	04-Dec 11-	Dec 18-Dec	25-Dec
						Week	53 54	55	56 57	58	59 60	61 1	52 63	64 65	66	67 68	6g	70	71 72	73	74 7	5 76	77 78	79	80 8	a 82	83	84, 8	15 86	87	88 8g	90	g1 g2	93	94 95	35	96 g	6 97	97
						Responsibility																																	
NSERC IPS Proposal																																							
Genome BC Proposal																																							
Method Development																																							
Gather and Process Samples																																							
Sequencing																																							
Bioinformatics																																							
Tool Development																																							
Reporting and Writing																																							
Write graduate thesis	53	40	65	32	100%	JL																																	
Review and revise graduate thesis	82	12	80	18	100%	DV/S8/JA/JL																																	
Write journal article	82	8	94	2	100%	JL																																	
Review journal article	90	4	96	2	100%	DV/SB/JA																																	
Write SPES publication	82	1	96	1	100%	JP/JL																																	
Review SPES publication	83	1	97	1	100%	CJ/PL																																	
Prepare conference presentations - i.e. BCWWA, WEST, other	68	8	64	9	100%	All																																	
Milestone: Graduate Thesis Journal Article, Dublica	tions and D	ecentatio	n Materia	al Dromaro																																			

	PLAN	PLAN	ACTUAL	ACTUAL	PERCENT																				
ACTIVITY	START	DURATION	START	DURATION	COMPLETE		21 Aug	29 4.1.7	04 500	11 Con	19 Con	25 Son	02 Oct	09 Oct	16 Oct	22 Oct	20.0ct	06 Nov	12 Nov	20 Nov	27 Nov	04 Dec	11 Dec	19 Dec	25 Dec
	WELK	WEEK(5)	WELK	WEEK(3)		Week	82	80 80	84	8c	86	23-36p	88	80	00	01	02	00-1000	13-1000	05	05	04-06	06	07	07
						Responsibility	02	- <u>-</u>		02	00		00			2*	34	- 22	24	22	- 22				
NSERC IPS Proposal																									
Genome BC Proposal																									
Method Development																									
Gather and Process Samples																									
Sequencing																									
Bioinformatics																									
Tool Development																									
Reporting and Writing																									
Sharing and Publishing																									.
Present User Partners with results and recommend follow up	82	8	96	2	100%	All																			
Submit article to relevant journals for publishing	92	4	96	2	100%																				
Publish graduate thesis in UBC CiRcle	92	4	96	2	100%	All																			
Include publication in SPES annual report	88	8	96	2	100%																				
Add raw data to repositories	88	8	96	2	100%																				
Milestone: Written Material Submit	ted for	Publishing																							
Milestone: Data Available to Advise	Follow	on Phases																							

Table 98. Project Budget and Finances

ltem	Budgeted	Spent	Difference	Description
1	400.00	165.00	235.00	Sampling disposables
2	10.00	20.00	-10.00	Renting sediment samplers
3	80.00	80.49	-0.49	Supplies for sampling equipment
4	110.00	0.00	110.00	Supplies for column test
Subtotal	600.00	265.49	334.51	Field and lab study execution
5	10200.00	1431.87	8768.13	DNA Preparation
6	900.00	829.00	71.00	DNA Consumables
8	8400.00	4000.00	4400.00	Environmental lab
9	3150.00	14033.25	-10883.3	MiSeq
10	6250.00	8929.66	-2679.66	HiSeq
Subtotal	28900.00	29223.78	-323.78	Sequencing and preparation
11	10000.00	10000.00	-	Graduate student stipend
12	12000.00	12000.00	-	Graduate student stipend
13	2500.00	2500.00	-	Bioinformatics
14	2000.00	2000.00	-	Printing, publishing
Total	54000.00	53989.27	10.73	

Appendix K: Independent Statistical Review by UBC Applied Statistics and Data Science Group

Upon completion of this thesis, an independent review was conducted by the University of British Columbia Applied Statistics and Data Science Group. The following is the report on statistical limitations and potential opportunities for future exploration.

Revision of Statistical Methods for the master thesis: Genomics tool for monitoring and validating engineered stormwater treatment wetlands

> Biljana J Stojkova Applied Statistics and Data Science Group Department of statistics University of British Columbia

> > June 13, 2017

Abstract

This report provides a revision to the statistical methods used in the thesis. The thesis work under review performs an exploratory statistical analysis in order to provide a 'proof of concept' that the wetland treatment does work when it comes to purifying the storm-water. In general, the project fulfills its objective of providing an exhaustive exploratory statistical analysis supported by appropriate statistical methods. The statistical hypotheses are established to match the scientific question, a sound sampling design is used to collect the data, appropriate statistical tests are used to prove that the hypotheses hold, and an abundant graphics assists with deeper understanding of the data space. The use of the specific statistical tests is well explained and justified throughout the thesis, and the results are clearly presented. The reminder of this report will focus on limitations and guidelines for future work on these project's data.

Limitations and guidelines for future continuation of the project

Addressing the limitations for the future continuation of this project:

- Sampling design is done in two phases, first the 'search sampling' is used to detect the hot spots of contaminated areas, and then 'systematic sampling' is applied to sample from grids. The validity of the 'search sampling' depends on the accuracy of prior info on where or when to begin the search or on the accuracy of measurement to guide the search. If this assumption is violated, the resulting estimates might be biased. In order to justify that the 'search sampling' is appropriately used here, the section 2.5.1.2 needs some explanation of what kind of prior knowledge was available in order to satisfy the assumption of the 'search sampling'. Gilbert 1987 [3], Chapter 10, provides statistical methods on how to find hot spots of high contamination given that the target hot spot is circular or elliptical. Therefore, if the methods by Gilbert 1987 [3], Chapter 10 were used in this thesis work, then it should be mentioned in section 2.5.1.2 along with explanation and justification of whether the target hot spot is circular or elliptical.
- As regards the 'systematic sampling', an aligned grid of equidistant lines has been used to determine the population of the sampling units. Sampling on the aligned grid might introduce bias in the estimates as a result of unsuspected periodicities over the space or some other environmental factors ([3]). To reduce the introduced bias one can use unaligned sampling grid. This is simply a reminder of the possibility that bias might be introduced when sampling on aligned grid. A brief mentioning in the section 2.5.1.2 that aligned grid has been used could clarify sampling design.
- Systematic sampling occurs when samples are taken at regularly spaced intervals over time or space. Initial time or location are chosen at random, and then the remaining samples are collected at regular intervals over time or space. Again, section section 2.5.1.2 would be more clear by including an explanation of how the initial random sample was chosen and if samples were obtained at same locations but different times.
- In section 3.5.9.5.1 checking and correcting for missing values, samples with missing values were removed from the dataset prior to hypothesis testing. Some explanation and references about dealing with missing data are needed here. Some of the missing data techniques do remove the samples with missing data, however, one has to check if the data are missing at random, or learn the distribution of missing data (see for example [1]). After that, decision can be made on how the missing data problem can be handled. Could be that the DNA sequencing technology makes random errors? This needs some explanation, before the missing data are removed.

Some of the deletion methods for missing data are list-wise deletion, and pairwise deletion, and these are their disadvantages:

- Removing the missing data reduces statistical power.
- The estimates might be biased if the data are not missing completely at random.
- Does not use all information.
- In section 3.5.9.5.1, when screening for outliers, the outliers are removed from the dataset without learning the distribution of the measurements with and without outliers. Can we learn how the outliers affect the results? At least obtaining results with and without outliers would show how the outliers affect the results (see for example [2]).
- In section 3.5.9.5.1, one-way ANOVA was used to compare diversity of the bacterial communities among different sites, and Tukey test was run only for the sites where significant differences have been identified. Why not perform Tukey test for all sites, but only for those sites where ANOVA detected significant differences? At least findings should be stated in terms of whether the results from the one-way ANOVA were confirmed or not.
- In Section 3.6.1.4.1, a decreasing trend in the contaminants, such as molybdenum, nickel, barium, copper manganese and zinc, is observed by visual inspection of the graphs, which is the obvious thing to do for exploration purposes. However, if more formal proof is needed to estimate the trend, some modeling should be considered. For instance, time series models or regression model similar to that in section 2.4.4.4.2 could be used here.
- There are repeated measures in time, that have not been used. Although comparisons are made at different time points, the correlations between repeated measures are not taken into account. Having in mind that this was a pilot project, exploratory analysis is the first step towards learning what is hidden in the data. However, in the continuation of this project, the data can be modeled so that all the available information could be used. For instance, mixed model could use all available information, while taking into account the correlations between the repeated measures in Chapter 2. One could model the in-site and between-site variability in how toxicity in the storm-water affects composition and function of the microbial communities.

Bibliography

- Bennett, Derrick A, How can I deal with missing data in my study? Australian and New Zealand journal of public health, 25(5):464-469, 2001.
- [2] Osborne, Jason W and Overbay, Amy, The power of outliers (and why researchers should always check for them). Practical assessment, research & evaluation, 9(6): 1-12, 2004.
- [3] Gilbert, Richard O, Statistical methods for environmental pollution monitoring, John Wiley & Sons, 1987.
Appendix L: Reflections on the Work

Here, I (Jessica LeNoble), present a personal reflection on the work that was performed over the duration of this research project and for the preparation of this thesis. This narrative was inspired by my reading of a past graduate student's thesis, who studied under my supervisor.

During my graduate degree, I learned that there is a great deal of education that takes place beyond the classroom and beyond the design of a research plan and the achievement of one's intended (or unintended) results and conclusions. Some examples include:

- I learned to adapt: when I arrived at UBC, my original research goals involved testing a very different set of hypotheses for the mining sector. At the time of this research, the finances and desire for a student-led project did not exist within the local mining community but there was desire for a similar project to be conducted for stormwater treatment systems. I struggled at first but was ultimately able to design a project that met my desire to learn a new skill in genomics and to experiment with metal-contaminated sites, which was the area for which I was most passionate.
- I learned to think quickly: with field work, there is really no end to the unexpected troubles one can encounter. Especially while working in a public park, thinking quickly or creatively is an essential trait that can only be acquired through experience. My experiences in the wetland will not be forgotten. Highlights include, blowing up my research vessel (dinghy) without a pump (i.e. with my mouth), fending off wild animals (racoons) who were enticed by my tin foil, fixing equipment with packing tape, and working around the general public who walk the gravel path that boarders Lost Lagoon.
- Finally, I learned to appreciate the research community: while at UBC, I experienced an incredible level of kindness and guidance. Everyone I worked with wanted to see me succeed with my project and I observed a fantastic level of passion for pollution control and conservation among my colleagues and supervisors.

I have taken the opportunity to share my experiences with others through presentations in several forums. First, while studying at UBC, I worked for a program called eng-cite where I shared my experience of studying and researching in engineering with hundreds of girls between the age of 8 and 18, encouraging them to consider entering a technical discipline. I think back to the privilege that I experienced at a young age where I was exposed to the environmental field by a teacher in grade 9 and I hope that this outreach may have the same effect for someone else. I also presented my research as a narrative on my experiences in graduate studies at two conferences – the Water and Environment Student Talks Conference and at the young professionals' reception during the British Columbia Water and Waste Association Annual Conference. In both presentations, rather than focusing on my research outcomes, I focused on the three learning outcomes that I have listed above. I believe that while our research conclusions shape our presentations and publications, it is ultimately our research experiences that shape our futures. It was my goal with these presentations to inspire others to pursue research in the area where they are most passionate so that they too may produce positive changes in the fields of their interests.

I have been incredibly fortunate to work with an excellent team and to have contributed a useful resource to fields of growing importance, namely pollution control, waste management, stormwater treatment, microbiology, and environmental conservation.