
Toward User-Adaptive Visualizations: Further Results on Real-Time 
Prediction of User Cognitive Abilities from Action and Eye-Tracking Data 

 
 
 

by 
 
 
 

Md Abed Rahman 
 
 
 

B.Sc., Islamic University of Technology, 2012 
 
 
 
 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF 
THE REQUIREMENTS FOR THE DEGREE OF 

 
 
 

Master of Science 
 

in 
 

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES 
(Computer Science) 

 
 
 
 
 

THE UNIVERSITY OF BRITISH COLUMBIA 
(Vancouver)  

 
 
 
 

June 2017 
 

© Md Abed Rahman, 2017 



ii 

 

Abstract 

 
Previous work has shown that some user cognitive abilities relevant for processing information 

visualizations can be predicted from eye-tracking data. Performing this type of user modeling is 

important for devising user-adaptive visualizations that can adapt to a user’s abilities as needed 

during the interaction. In this thesis, we contribute to previous work by extending the type of 

visualizations considered and the set of cognitive abilities that can be predicted from gaze data, 

thus providing evidence on the generality of these findings. We also evaluate how quality of gaze 

data impacts prediction. Finally, we further extend previous work by investigating interaction 

data as an alternative source to predict our target user characteristics. We present a formal 

comparison of predictors based solely on gaze data, on interaction data, or on a combination of 

the two. 
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Lay Summary 

This thesis aims in finding the feasibility of modeling users in a commercial system, one that 

would facilitate the development of systems that adapt to users’ needs. This thesis explores three 

potential sources of information for user modeling: eye-tracking, interaction and a combination 

of both. First contribution of this thesis is to provide a first inspection of the tradeoff between 

having sufficient amount of eye-tracking data for user modeling and having good quality data, 

since, eye-tracking data is inherently noisy. Another contribution of this thesis is to explore the 

use of user interaction and a combination of eye-tracking and user interaction data for user 

modeling. A comparative analysis performed on the feasibility of using the aforementioned three 

source of information is also presented in this thesis. Finally, this thesis also provides insights on 

the feasibility of real-time user modeling, a pre-requisite for the development of adaptive 

systems. 
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Preface 

The study presented in Chapter 3 was not designed by the author of this Thesis. This includes 

decisions such as: which user characteristics were selected, design of the task, which tasks to use, 

the generation of raw data. Generating the subsequent datasets from raw data used for this thesis 

has been done by the author of this Thesis. 

 

A version of the research reported in Chapters 4 and 5 has been accepted to be published as: 

Conati, C., Lallé, S., Rahman, M. A., Toker, D. (2017) Further Results on Predicting Cognitive 

Abilities for Adaptive Visualizations. To appear in IJCAI 2017 
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Chapter 1: Introduction 

Information visualization (InfoVis) is a thriving area of research that takes advantage of the 

strength of human perception to facilitate the analysis of complex data. There is mounting 

evidence that several cognitive abilities and traits can influence users’ visualization experience 

both in terms of overall task performance (e.g., [Toker et al. 2012; Ziemkiewicz et al. 2011]) as 

well as in how well users can process specific elements of a visualization (e.g., [Jang et al. 2014; 

Ooms et al. 2014; Toker et al. 2013]). These findings support the value of having user-adaptive 

visualizations, i.e., intelligent interfaces that learn about their users (user modeling) and adapt the 

visualization to meet each user’s needs in real time [Conati et al. 2015]. 

Previous work has shown that some of the user cognitive abilities known to be relevant for 

processing information visualizations – perceptual speed, visual working memory (WM), and 

verbal WM – can be predicted in real time from eye-tracking data [Gingerich and Conati 2015; 

Steichen et al. 2014]. These findings provided encouraging evidence on the feasibility of 

performing user modeling; necessary for user-adaptive visualization. However, this previous 

work focused on users processing either bar graph or radar graph visualizations, to perform 

fictional question-answering tasks abstracted from any real usage context. We contribute to this 

previous work by replicating results on the real-time prediction of perceptual speed and visual 

WM, for users working with two very different types of visualizations (a deviation chart and a 

map-based visualization), embedded in a commercial application designed to engage the public 

in decision making related to urban planning. We also show that real-time prediction is feasible 

for two other cognitive abilities (visual scanning and spatial memory), not previously considered 

and relevant for processing the new visualizations we investigated. These results are an 



2 

 

important step for advancing research on user-adaptive visualizations from initial proof of 

concepts to more generalizable findings.  

We also evaluate how quality of eye-tracking data impacts prediction accuracy. There are 

promising results on the value of eye-tracking data for predicting a variety of user states and 

abilities in user modeling (e.g., [Bednarik et al. 2013; Gingerich and Conati 2015; Jaques et al. 

2014; Kardan and Conati 2012; Ooms et al. 2014; Lallé et al. 2016b]). However, eye-tracking 

data can be rather noisy, due to several factors such as user eye physiology (e.g., wearing 

glasses), excessive movement, design of the eye tracker, etc. [Holmqvist 2011]. Existing user-

modeling research has mostly dealt with this problem either by adopting usually laborious 

procedures to increase data quality during data collection, or by discarding too-noisy data. In 

addition to being time consuming, these approaches provide results that have limited 

generalizability to real-world settings, where eye-tracking data is bound to be noisy. In this 

thesis, we show that relatively noisy eye-tracking data can still be used for prediction, thus 

providing encouraging, albeit preliminary, evidence on the applicability of our findings to real-

world scenarios.  

Additionally, we show that action data i.e., data about the user’s interaction with the system can 

also be used to predict said user characteristics. There have been positive results about using 

action data for predicting user’s cognitive states during interaction with educational software 

[Kardan and Conati 2013], framework designed to capture fatigue [Pimenta et al. 2013] and 

InfoVis [Lallé et al. 2016a] . Kardan and Conati [2013] used action data to predict user learning 

with an interactive simulation for AI algorithms. Pimenta et al. [2013] showed that it is possible 

to predict mental fatigue using keyboard and mouse interaction data that were logged using a 

simple application that ran in the background, while the user performs day to day tasks in a 
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computer. Lallé et al. [2016a] showed that it is possible to predict user confusion using 

interaction data during user’s interaction with a visualization that supports decision making. In 

this thesis, we explore the value of action data to predict our target set of user characteristics 

during interaction with MQ because eye-tracking data might not always be available, especially 

in real-world applications. Action data, on the other hand, is always available and easier to track.   

 Finally, we investigate whether fusing eye-tracking and action data can provide better prediction 

accuracy than each individual data source in isolation. Namely, we derive a third combined set of 

features, and perform an analysis for comparing the predictive capabilities of eye-tracking, action 

and combined data sources. Exploring the value of combining eye-tracking and action data has 

been done by Kardan and Conati [2013] and Lallé et al. [2013] in the domains described earlier, 

to capture learning and confusion, respectively. Both Kardan and Conati [2013] and Lallé et al. 

[2013] show that the fused data source is superior in predictive capabilities than the individual 

sources [i.e., action and eye-tracking]. In contrast, our results show that for 3 [out of 4] user 

characteristics, eye-tracking performs as well as or better than the fused feature set; a result 

which is different than before. This finding indicates that the value of combining eye and action 

data depends on the user states and traits to be predicted, and possibly on the interaction task, 

calling for future research to better understand how prediction target and interaction task affect 

data source value.  Additionally, our analysis indicates that, while for some cognitive abilities 

eye-tracking and the fused feature set give the best predictive accuracy, action features do best at 

early predictions, namely they have better accuracy than the other two data sources in earlier 

stages of interaction. Thus, our work provides evidence on the possible merits of leveraging 

these data sources separately instead of always fusing them to get better results.  Specifically, 

given our long-term goals of using these predictions for providing real-time adaptive support for 
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visualization processing, these results call for further investigation of the tradeoff between giving 

early predictions and accuracy of the interventions.     

The rest of the thesis starts with an overview of related work, followed by a description of the 

study that generated the dataset that we used for this research. Next, we explain the processing of 

the eye-tracking data obtained from the study, classification experiments performed on eye-

tracking data and analysis of their results. Then, we repeat the process for action data by 

explaining the processing of action data, describing the classification experiments done and 

presenting the analysis of the results obtained for action data. Finally, we describe the generation 

of the fused data source followed by a comparative analysis of predictive capabilities between 

eye-tracking, action and combined data sources. 
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Chapter 2: Related Work 

 
There is increasing interest in integrating AI and InfoVis research to devise user-adaptive 

visualizations that can support the specific needs on each individual user. Such user-adaptive 

visualizations would be especially beneficial as complex visualizations are becoming 

increasingly used by broad audiences, not only in professional settings, but also for personal 

usage (e.g., for monitoring health and fitness, interactions in social media, and home resources 

consumption) [Huang et al. 2015] .  

 Previous work suggests that there is value in user modeling for the development of user-

adaptive visualizations [Domik and Gutkauf 1994] . Work to date has leveraged various sources 

of information to perform user modeling that would facilitate the development of user adaptive 

interfaces. One such source is eye-tracking data. Eye-tracking has been shown to be a good 

predictor of other emotional or attentional states such as mind wandering while reading [Bixler 

and D’Mello 2015] as well as boredom, curiosity and excitement, while learning with 

educational software [Jaques et al. 2014; Muldner et al. 2010] . There has also been research on 

leveraging eye-tracking data for predicting user cognitive abilities (namely perceptual speed, 

visual working memory (WM), and verbal WM) that have been shown to be relevant for 

processing information visualizations based on bar and radar graphs. Other work has shown that 

these cognitive abilities impact the processing of specific elements of bar and radar graphs. For 

instance, lower levels of perceptual speed can result in slower processing of legend and labels in 

bar graphs [Toker et al. 2013], suggesting that these users might benefit from personalized 

interventions geared toward facilitating legends and labels processing if the visualization can 

detect in real-time that they have low perceptual speed.  
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[Lallé et al. 2017] showed similar impact of cognitive abilities on how users process two 

different types of visualizations in MetroQuest (MQ), a commercial system designed to support 

decision making for environmental problems. These results suggest that adaptive interventions 

based on user cognitive abilities could enhance user experience with MQ. One of the goals of 

this thesis is to investigate whether previous results on predicting cognitive abilities in real-time 

with eye-tracking data can be reproduced on data collected with MQ, both for some abilities 

already seen in previous work and for new ones specific to [Lallé et al. 2017].  

Work in user modeling has typically handled noise in eye-tracking data by discarding users or 

trials with too noisy data. An alternative approach adopted in [Kardan and Conati 2012] involved 

monitoring data generated by each participant in real-time and requesting adjustments when 

noisy data was observed, e.g., asking the participants to move less. There are techniques in eye-

tracking research designed to reduce noise without discarding data, such as removing artifacts 

responsible for noise, e.g., blinks [Holmqvist 2011], or smoothing noisy gaze datapoints based 

on the latest clean ones [Špakov 2012]. However, there is limited understanding on how well 

these techniques scale up with the increase of noise in the data. Also, little is known about the 

need to use these techniques, i.e., the need for cleaner data for good predictions. Thus, a second 

goal of this thesis is to provide insights on how noise in eye-tracking data affects the prediction 

in a user modeling task. 

Another stream of research in user-adaptive visualizations has leveraged user interaction data for 

user modeling [Ahn and Brusilovsky 2013; Gotz and Wen 2009; Lim et al. 2015; Liu et al. 2010; 

Mouine and Lapalme 2012; Nazemi et al. 2014; Yelizarov and Gamayunov 2014]. Ahn and 

Brusilovsky [2013] worked on proposing and implementing an adaptive visualization based 

search system using actions, one which provided tailored search results based on modeling users 
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based on their interests. Gotz & Wen [2009] contributed to the development of a behavior-driven 

visualization recommendation system. Their idea was to monitor a user’s interaction data in 

order to define and detect suboptimal usage patterns, and then adapt to these patterns by 

recommending alternative visualizations to the user. Lim et al. [2015] measured cognitive stress 

in students by using mouse and keyboard dynamics. They have shown that mouse click rate, 

mouse speed etc. change based on user’s cognitive stress levels. Liu et al. [2010] used mouse 

click logs to perform a detailed analysis of user browsing behaviors. Mouine and Lapalme 

[2012] worked on providing personalization of visualization using interface actions; this was 

achieved by automatic user profiling. Nazemi et al. [2014] used actions to develop an approach 

to find the average user of a visual environment to provide adaptation. They also used this user 

model to measure the distance between an average user and individual users to detect anomalies 

in user behaviors. Yelizarov and Gamayunov [2014] tracked mouse and keyboard events to 

predict users’ level of cognitive load and adjusted the amount of information to be displayed 

accordingly. 

Another goal of this thesis is to compare gaze, action and combination of gaze and action as 

predictors of our target user characteristics [namely perceptual speed, visual working memory 

(WM), Visual scanning, verbal WM and Visual Literacy; [see Section 3.2 for details]. Previous 

work has done similar comparisons for predicting user cognitive states [Kardan and Conati 2013; 

Lallé et al. 2016a]. Kardan and Conati [2013], used both eye-gaze and action data to modeling 

user’s learning in Interactive Simulations(IS). They trained classifiers on eye-tracking only, 

action only and on fused data [action and eye-tracking]. Finally, they also did a comparative 

analysis of the predictive capabilities of gaze data, interface actions and a combination of these 

two sources of user interaction data. Lalle et. al [2016a] worked on predicting confusion that 
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occur during working with an interactive visualization named ValueCharts. They showed that a 

combination of gaze and action features give the best predictions for confusion. In this thesis, we 

do a similar analysis for eye-tracking, action and fused [action and eye-tracking] for the user 

characteristics reported earlier. 
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Chapter 3: Dataset  

The data used in this thesis was collected during a user study (mentioned in the related work and 

fully described in [Lallé et al. 2017]) that investigated the impact of individual differences on 

user experience and gaze behavior with MetroQuest (MQ). Here we provide a brief summary of 

MQ and of the study, sufficient for the purposes of this thesis. 

 
3.1  MetroQuest (MQ) 

MQ supports rapid customization of a set of standardized screens that guide users through the 

process of learning about a target decision problem, defining their preferences over the decision 

factors, exploring various outcome scenarios and generating their decision. 

The MQ interface used in this study (Figure 3.1) addresses the problem of building a new 

transportation system to our campus. This is a real project currently studied by the City, and it 

has generated substantial controversy on which of the proposed transit scenarios (light rail, rapid 

rail, or a combination of both) should be selected. MQ allows users to rank their priorities for 

seven factors that are affected by the transit decision (e.g., travel time saving to campus, wait 

time, frequency of stops, reduction in auto trips and pollution). Then MQ shows how each of the 

proposed transit scenarios affects the decision factors by displaying two complementary 

visualizations, a deviation chart and a map.  

The deviation chart (Figure 3.1, upper right hand side of the screen) indicates whether the value 

of each factor improves (green arrow) or worsens (red arrow) compared to the current situation. 

Arrow size shows the magnitude of the difference. The map (Figure 3.1, bottom) displays factual 

information on the planned transit scenario (e.g., the route, stop locations) as well as the actual 

values for factors by means of map keys (e.g., time savings are reported at stops along the route). 
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A button allows opening the legend for the keys of the map. Users can view and compare the 

different scenarios by using the tabs shown at the top left of Figure 3.1. A short textual 

description of each scenario is provided below the tabs. Users can rate a scenario by using the 

scale shown below the textual description. 

 

 
Figure 3.1 MQ interface used in the study. 

 
3.2 User Study 

In the study, 166 participants were invited to use MQ to learn about and provide their 

preferences on the transit scenarios described in the previous subsection. They used a mouse to 

click on various parts of the screen. They also used keyboards to provide feedback about each 

individual transit scenario. This mimics how MQ is often used in public settings, such as in 

information kiosks, where target communities engage in one-time interaction with MQ. 

Participants were recruited among the population living or working on campus, and thus 

undoubtedly have a real interest in the task. During the interaction with MQ, participants’ gaze 



11 

 

was tracked with the Tobii T120, a non-intrusive camera-based eye tracker embedded in the 

study monitor. Prior to engaging in the study task, each participant underwent a standard 

calibration phase with the eye tracker. The Tobii T120 also tracks pupil size, which we include in 

the dataset for predicting user characteristics (see Section 4.2). To compensate for physiological 

differences in pupil size among users, pupil diameter baselines were collected for each 

participant by having them stare at a blank screen for ten seconds. To avoid possible confounds 

of pupil size due to lighting changes, the study was administered in a windowless room with 

uniform lighting. After completion of the task with MQ (mean completion time = 4min 45sec, st. 

dev. = 2min 01sec), participants filled a postquestionnaire about their experience with MQ. 

Lastly, each participant took a battery of tests to measure 12 user characteristics. In this thesis, 

we focus on five of them: 

• Perceptual speed (PS), a measure of speed when performing simple perceptual 

comparisons [Ekstrom et al. 1976];  

• Visual working memory (VisWM) a measure of storage and manipulation capacity of 

shapes and colors of visual objects [Fukuda and Vogel 2009]; 

• Spatial memory (SpM), a measure of storage and manipulation of the spatial arrangement 

of objects [Ekstrom et al. 1976];  

• Visual scanning (VisScan, a measure of the capacity to actively find relevant information 

in our surroundings quickly and efficiently [Ekstrom et al. 1976].  

• Visualization literacy (VisLit, the “ability to use well-established data visualizations to 

handle information in an effective and efficient manner” [Boy et al. 2014]1. 

                                                 
1 PS, SpM, VisScan and VisWM  were collected using the Kit of Factor-Referenced Cognitive Tests [Ekstrom et al. 1976]. The Fukuda & Vogel’s 
test [Fukuda and Vogel 2009] was used for visual WM. VisLit was collected using a formal test that has been recently proposed [Boy et al. 2014]. 
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We focus on these five characteristics because a previous analysis [Lallé et al. 2017] on this 

dataset has shown that they are the ones influencing user experience and gaze behavior with the 

MQ visualizations. Specifically, VisWM affects user preference between chart and maps, i.e., 

users with high VisWM preferred the deviation charts over the maps. SpM influenced perceived 

visualization usefulness, i.e., users with lower SpM found the deviation chart less useful than 

users with higher SpM. SpM, along with PS, VisScan, and VisLit, also influenced gaze 

behaviors related to making comparisons between visualizations across scenarios, i.e., users with 

lower levels of these characteristics made fewer visual comparisons than users with higher 

levels. These results indicate that it could be beneficial to predict in real time whether MQ users 

have lower or higher levels of the aforementioned abilities and provide adaptive support 

accordingly. Such support could include for instance, interventions designed to make deviation 

charts more useful for users predicted to have low SpM, or to facilitate comparisons between 

scenarios for users with low levels for the relevant abilities. In the next sections, we discuss the 

eye-tracking data and machine learning experiments we used to ascertain if making such 

predictions is possible. 
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Chapter 4: Eye-Tracking Data Processing 

We leverage the eye-tracking data collected during the user study described in the previous 

section to build classifiers that can predict binary labels of the five user characteristics reported 

in Section 3.2. The binary labels were generated by dividing participants into “High” and “Low” 

groups for each characteristic (e.g., High and Low perceptual speed), based on a median split on 

the test scores from the study.  Table 4.1 shows a table that includes summary statistics on the 

test scores for various user characteristics; obtained from the previously reported user study. 

 

User 
Characteristic 

Max  Min Mean Standard 
Deviation 

PS 63 13 39.6 9.1 
SpM 22 0 11.2 5.3 
VisWM 5.6 -1.2 2.1 1.2 
VisLit 1 -1.67 .41 .5 
VisScan 40 0 24.6 8.1 

 

Table 4.1 Summary statistics on user-characteristics scores obtained 

 
4.1 Data Windows 

To simulate the real-time prediction of user characteristics, we generated ten data windows 

corresponding to incremental percentages (10%, 20%... up to 100%) of eye-tracking data during 

interaction with MQ. This approach allows us to verify how early during the interaction with MQ 

the target user characteristics can be predicted. Investigating prediction timing is of prime 

importance for our goal of providing adaptive support in real-time to users with specific 

characteristics. Early adaptation is especially important in systems like MQ that typically target 

one-time users for a short period of time, and thus need to be quickly understandable. To predict 
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user characteristics, we generated a battery of eye-tracking features (described next) at each data 

windows. 

4.2 Eye-Tracking Features 

The Tobii eye tracker captures user’s gaze samples, i.e., where the user is looking on the screen, 

at 120 Hz. Then fixations (gaze maintained at one point on the screen) and saccades (quick eye 

movement between two fixations) are derived from gaze samples. For every recorded gaze 

sample, the eye tracker also captures pupil size and distance from user’s head to the screen. From 

all these measures (Gaze, Pupil, and Head Distance) we derived a set of features listed in Table 

4.2 that we leveraged to predict user characteristics during interaction with MQ. We used 

EMDAT (https://github.com/ATUAV/EMDAT), an eye-tracking data analysis toolkit, to 

generate these features. 

4.2.1 Gaze Features  

EMDAT generated the gaze features listed in Table 4.2 (part a) by calculating various summary 

statistics (e.g., sum, mean) over a user’s fixations and saccades. These statistics are computed for 

gaze movements over the whole interface, generating the gaze features labelled as Overall Gaze 

Features in Table 4.2 (part a), or they can be computed over specific areas of interest (AOI) in 

the MQ interface, generating the AOI Gaze Features in Table 4.2 (part a). There are four AOIs 

defined over four regions of MQ (which is shown Figure 3.1): Description of the transit scenario; 

Deviation chart; Map; Legend of the map. 

4.2.2 Pupil features  

Pupil sizes were adjusted using the pupil baseline collected during the study, following [Iqbal et 

al. 2005]. Using EMDAT, we computed a set of summary statistics on user-adjusted pupil size, 

suitable for describing fluctuations of this measure over the course of the interaction with MQ. 
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These include min, max, mean, and std. dev. of users’ pupil sizes in each data window [see Table 

4.2 (part b)]. We also included the measure of a user’s pupil at the beginning and the end of the 

current data window (Pupil width at the first and last fixation in the data window Table 4.2 (part 

b), as a way to capture pupil size variations between the start and the end of each window. 

4.2.3 Head Distance features  

Head distance is obtained by averaging the distances from both eyes to the screen. We used 

EMDAT to compute the same set of statistics as for pupil size [see Table 4.2 (part c)], as 

described above. 

 
a) Gaze Features (68) 

 Overall Gaze Features (12): 

    Fixation rate 
    Mean & Std. deviation of fixation durations 

    Mean & Std. deviation of saccade length 

    Mean, Rate & Std. deviation of relative saccade angles 

    Mean, Rate & Std. deviation of absolute saccade angles 

    Mean saccade velocity 

 AOI Gaze Features for each AOI (56): 

    Fixation rate in AOI 

    Longest fixation in AOI, Time to first & last fixation in AOI 

    Proportion of time, Proportion of fixations in AOI 

    Number & Prop. of transitions from this AOI to every AOI  

b) Pupil Features (6) and c) Head Distance Features (6)  

    Mean, Std. deviation, Max., Min. of pupil width/head distance 

    Pupil width/head distance at the first and last fixation in the data window 

  
Table 4.2 Set of features considered for classification. 
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4.3 Eye-tracking Data Validity Thresholds  

As described in the introduction, we want to investigate if and how quality of eye-tracking data 

influences the real-time prediction of our target user characteristics. The Tobii eye tracker marks 

each gaze sample as valid or not. Too many invalid gaze samples may make the data for a given 

user unreliable to represent their gaze, pupil and head behaviors. However, there are no 

established guidelines to ascertain how many invalid samples are too many. One could be 

conservative and include only users with small percentages of invalid samples, but this can 

severely reduce the size of the dataset. To illustrate, Figure 4.1 shows the percentage of study 

participants in our dataset with a proportion of valid gaze samples higher than validity thresholds 

ranging from 0.5 to 1. Setting a validity threshold of 0.9 (i.e., including participants with at least 

90% of valid gaze samples) would exclude about 40% of users in our dataset.  

 

 
 
Figure 4.1 Number of participants with valid eye-tracking data as the strictness of validity threshold is 

increased from 0.5 to 1. 

 

We study the tradeoff between data quality and amount available for training by comparing the 

accuracy of classifiers built on datasets with the following three validity thresholds: 
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• 0.9, which is the last threshold in Figure 4.1 that maintains high quality data without losing a 

large majority of participants (97 participants retained, i.e., 58% of all users); Similar 

thresholds have often been used in previous work on eye-tracking based user modeling, e.g., 

[Gingerich and Conati 2015; Jaques et al. 2014; Lallé et al. 2016a; Steichen et al. 2014];  

• 0.6, which includes rather noisy data but a large pool of users (144 participants retained, i.e., 

86% of all users); 

• 0.8, which is a compromise between the two other thresholds (127 participants retained, i.e., 

77% of all users). 
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Chapter 5: Classification Experiments and Results 

We evaluate the prediction of our user characteristics (PS, SpM, VisScan, VisWM, VisLit) using 

a two-stage approach. The first stage ascertains whether we can build classifiers that can beat a 

majority-class baseline by evaluating two classification algorithms available in the caret package 

[Kuhn 2008] in R: Boosted logistic regression (LB); and Random Forest (RF). Classifier 

performance is measured by their accuracy (proportion of correct predictions). We focus on these 

algorithms because in previous work they produced good results for predicting various user 

states during visualization processing, e.g., [Steichen et al. 2014; Lallé et al. 2016b]. 

The second stage takes the best classifier identified in stage one, and investigates the impact of 

data quality on prediction accuracy, as well as how early during interaction with MQ we can 

obtain accurate predictions.  

 
5.1 Feasibility of Predicting User Characteristics  

In this first stage, we evaluate the performance of LB, RF, and majority-class baselines as 

predictors for the target binary labels. It should be noted that baselines are slightly different for 

datasets with different thresholds because they include different users. For all combinations of 

user characteristics (5), window lengths (10) and validity thresholds (3), LB, RF and the 

appropriate baselines were trained and evaluated in 10-fold cross validation over users, namely at 

each fold users in the test set do not appear in the training set. The process was repeated 25 times 

(runs) to strengthen the stability and reproducibility of the results. The accuracy of each classifier 

is averaged over the 10 folds and the 25 runs.  
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 Threshold 0.6 Threshold 0.8 Threshold 0.9 
User 
Char 

Accuracy (%) 
F-Statistic 

Accuracy (%) 
F-Statistic 

Accuracy (%) 
F-Statistic 

RF LB Baseline RF LB Baseline RF LB Baseline 
PS 60.3† 55.8† 50.8 F2,7497=496.2 60.6† 56.3† 50.8 F2,7497=523.436 58.1† 54.1† 51.5 F2,7497=194.1 
SpM 60.9† 58.2† 50.6 F2,7497=587.08 61.3† 58.7† 50.4 F2,7497=663.93 61.2† 57.5† 50.4 F2,7497=504.99 
VisScan 57.3† 55.4† 52.5 F2,7497=125.469 56.7† 54.9† 51.8 F2,7497=124.778 56.2† 53.7† 51.9 F2,7497=82.02 
VisWM 57.5† 54.7† 50.1 F2,7497=282.09 58.8† 55.5† 50.5 F2,7497=354.177 60.3† 55.7† 52.9 F2,7497=225.75 

 

Table 5.1 Accuracies (averaged across data windows) and F-statistics for the main effects of classification algorithm (RF, 

LF and baseline) for each of PS, SpM, VisScan and VisWM, and for each data validity threshold tested. † indicates that 

RF or LB significantly beat the corresponding baseline. Bold indicates that RF significantly beat LB. 

 

To formally compare the obtained accuracies, for each of the five user characteristics, and for 

each of the three thresholds, we run a univariate General Linear Model (GLM) [Field 2012] with 

classification algorithm (3 levels) as factor and classification accuracy averaged across windows 

as the dependent measure2. Results show significant3 main effects of classification algorithm for 

PS, SpM, VisWM, and VisScan, for all three thresholds (F statistics are reported in the “F-

statistic” columns in Table 5.1). Pairwise comparisons for these main effects (Sidak correction 

applied to adjust for multiple comparisons[Field 2012]), indicate that LB always beats the 

baseline. RF always beats the baseline and also outperforms LB in all cases (see “Accuracy” in 

Table 5.1). We thus opt for RF as the algorithm to further investigate the effect of threshold in 

the second stage of analysis. Neither RF nor LB beat the baseline in predicting VisLit, thus this 

characteristic is dropped from the next stage (stage 2) of our analysis. 

5.2 Effects of Data Validity Threshold 

For each of the four user characteristics found to be predictable by RF in the previous subsection 

(Table 5.1), Figure 5.1 includes a graph showing, for the 3 validity thresholds, classifier accuracy 
                                                 

2 We run a separate model for each threshold (as opposed to including threshold as factor in one model) because this 
approach is better to compare classifiers for each threshold with the baseline for that threshold. 

3 Statistical significance in this thesis is reported at p < 0.05. 
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over the 10 windows. To formally compare the accuracies with different thresholds, for each of 

the 4 user characteristics, we run a linear mixed-effects ANOVA [Field 2012] with validity 

threshold (3 levels) and window length (10 levels) as factors along with classification accuracy 

as the dependent variable. The last column of Table 5.2 reports the see F-statistics for these 

models. 

There is a main effect of validity threshold for PS, VisScan and VisWM. The results of pairwise 

comparisons on validity threshold (Sidak correction applied) for these three characteristics are 

summarized in the second column of Table 5.2. Thresholds are ordered by prediction accuracy, 

e.g., “0.6 > 0.9” indicates RF with data validity at 0.6 performed better than RF with data 

validity at 0.9. Underlining indicates that the differences between thresholds underlined together 

are not statistically significant. 

User 
Char. 

Ranking of accuracy at  
different threshold 

Main Effect  
(F-Statistic) 

PS 0.8 > 0.6 > 0.9 F2,7470= 23.78† 
SpM 0.8 > 0.9 > 0.6 F2,7470= 1.02 

VisScan 0.6 > 0.8 > 0.9 F2,7470= 7.10† 
VisWM 0.9 > 0.8 > 0.6 F2,7470= 34.46† 

 

Table 5.2 Comparison of RF accuracy with different data validity thresholds, † indicates that RF significantly 

beat the corresponding baseline. 

 
Table 5.2 shows that for PS, both 0.8 and 0.6 are the best thresholds (there is no significant 

difference between their accuracies). For VisScan, validity threshold 0.6 provides the best 

classification accuracies. For VisWM, the best validity threshold is 0.9. No main effect of 

validity threshold was found for SpM, meaning that there are no significant differences in 

classification accuracies among the three thresholds for this characteristic. 
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It is notable that for PS, SpM, and VisScan, a validity threshold of 0.6 is either the best or is tied 

for the best. Recall that a threshold of 0.6 allows for more eye-tracking data to be used for 

training our models, but the data is noisier. When 0.6 provides top predictive accuracies, it 

means that having more training data outweighs or compensates for the need for having clean 

data. These findings provide preliminary evidence that accurate predictions can be made for 

users with rather noisy data, which is what will likely be available to the classifier if these 

predictions are to be used to guide adaptive support to users of MQ in real-world settings. As 

Table 5.2 shows, VisWM is the only user characteristic for which having more data is less 

important than having clean data, possibly because the patterns indicative of this ability are 

subtler and thus more prone to be learned incorrectly by a classifier with noisier data. We will 

further discuss prediction of VisWM at the end of this section. 

In the rest of this section, we focus on the classifier with the winning validity threshold for each 

user characteristic, and discuss when it achieves its maximum accuracy over the ten data 

windows representing the availability of classification data overtime during an interaction with 

MQ. For each classifier, we performed pairwise comparisons between its accuracy at each of the 

10 windows and report in Table 5.3 (third column) the set of windows (ordered by accuracy) 

where classification accuracy was statistically equivalent and outperformed the accuracy in all 

other windows.  

User 
Char 

Optimal Validity 
Threshold 

Best Window 
Lengths 

Accuracy at 
Earliest Best 

Window 
PS .6 40>10>50 63.9% 
SpM .6 80>60>70>90 67.4% 
VisScan .6 30 64.0% 
VisWM .9 30 68.2% 

 

Table 5.3  Windows for which the highest accuracies are achieved for the given validity thresholds. 
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The last column in Table 5.3 reports the accuracy at the earliest window reported in the previous 

column. For instance, for PS, windows 10, 40, and 50 have statistically equivalent accuracy and 

outperform all other windows. Thus, the earliest optimal prediction for PS can be obtained after 

only 10% of a user’s interaction with the MQ task (only 15 seconds of interaction on average), 

with an accuracy close to 63.9%. Overall, Table 5.3 shows that the best predictions occur early 

not just for PS, but also for VisScan and VisWM (window 30). For SpM, the earliest best 

window is 60, i.e., slightly more than halfway in the task, which still leave substantial time to 

provide adaptation. 

 

 
Figure 5.1 Accuracy of RF classifiers using data with three different validity thresholds for: PS, SpM, VisScan and 

VisWM. 

5.3 Further Results for VisWM  

The previous subsection showed that unlike the other user characteristics, the best predictions for 

VisWM are obtained using data with a high validity threshold of 0.9. Here, we investigate 

 
. 
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whether a VisWM classifier trained using this high-quality data can still make good predictions 

on users with noisier (and thus more realistic) data. Specifically, we evaluated a RF classifier 

using 25-runs of 10-fold cross validation, where at each fold the training set included only users 

with data at the 0.9 validity threshold, and the test set included unseen users with data at the 0.6 

validity threshold. A statistical analysis similar to the one in the previous subsection shows that 

this combined classifier and the VisWM classifier evaluated on data at the 0.9 threshold are not 

statistically different and both are significantly better than the model evaluated on data at the 0.6 

threshold. In terms of actual accuracies and when they peak during interaction, the best 

(statically equivalent) windows for the combined classifier are 30, 80, and 70. The earliest of 

these windows (30), is the same as for the classifier with 0.9 validity and the accuracy at this 

window is 66.1%, which is comparable to the best accuracies for the other three user 

characteristics.   
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Chapter 6: Prediction using Action Features 

In this chapter, we explore prediction of user characteristics using features derived from user 

interaction data collected during the user study described in Chapter 3. The data contains record 

of users performing various actions involving mouse clicks (e.g., to select the various tabs in 

screen 3, to rate a scenario etc.).  Just like we did for eye-tracking data, we look at the actions 

performed only on screen 3. We divide them into two types: low-level and high-level actions.  

 
6.1 Low-level action features  

Low-level actions are generic actions related to mouse clicks and are not specific to any 

particular interface or task. Low-level action features are generated by EMDAT by calculating 

summary statistics on mouse clicks. Table 6.1, part a shows the list of all overall low-level 

features we considered for classification.  

a) Overall low-level action Features (2): 

    Left click rate, Time to first left click  
 b) AOI low-level action Features for two out of the four AOIs (4): 

    Left click rate on AOI, Time to first left click on AOI  

 
Table 6.1 Set of low-level Action features considered for classification. 

By overall features we mean that these are generated for mouse clicks over the entire screen 3 

instead of any defined AOIs. We included mouse click rate because it has been shown to be 

effective at predicting cognitive states in other interactive tasks [Lim et al. 2015] , thus we want 

to investigate whether this indicator might also inform classifiers for predicting our target user 

characteristics. We only consider rate of left mouse clicks because all mouse-related events in 

screen 3 are activated via the left button. Similarly, we included time to first click because it has 
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also shown potential for informing classifiers for user modeling, namely it has been used for 

early prediction of user failure with an interface [Liu et al. 2010]. Each of those features was 

generated for the interaction with the whole of screen 3. We also computed these features with 

respect to two of the AOIs that we defined in Chapter 4, namely the Map and the Legend AOI, 

because they are left clickable. Mouse clicks on AOIs have been used to understand the user’s 

decision making process [Qin et al. 2013]. Furthermore, the use of AOI-related features from 

gaze data have been shown to have a strong impact on classification accuracy for user abilities 

related to the ones targeted here [Steichen et al. 2014]. Here, we want to ascertain whether there 

is merit in leveraging mouse-related features based on AOI to help predict our target user 

abilities. 

6.2 High-level action features  

High-level actions are actions that have significance for the interface in question. For our 

purposes, these are the actions that the users can perform to inform their ratings for various 

transit scenarios in screen 3 of MQ, i.e., the high-level actions that have significance from a 

decision-making perspective for MQ. Thus, we exclude actions that do not directly inform a 

user’s choice (e.g., making optional additional comments, an option available for each scenario). 

The full list of high-level actions is in Table 6.2.    

Switching tabs 
Rating a scenario 
Open instruction pop up in screen 3 
Moving the map 
Opening the legend 
Zooming on the map 

 

Table 6.2 Set of high-level actions 
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It should be noted that some of these high-level actions happen very infrequently or not at all for 

some users. For instance, 'Zooming on the map’ was only done by 33 users [out of 166]. 

 

 

Figure 6.1 Average number of each type of high-level actions performed per user (blue bars) and number of different 

users who performed each action type at least once (red bars) 

 

Figure 6.1 shows the number of time every high-level action has been performed per user (red 

bars), as well as how many different users have performed each action type at least once. From 

the figure, we can see that ‘Open instruction pop up in Screen3’ and ‘Opening the legend’ have 

the lowest frequencies of less than one, and were performed by less than a third of the users.  

Computing summary statistics such as mean and standard deviation over these infrequent actions 

is not meaningful. Instead, simply knowing whether a user performed these actions or not gives 
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the classification algorithms information that could be used for distinguishing between two users. 

Hence, for each of the two infrequent actions we included a binary feature symbolizing whether 

a participant performed that action or not, as listed in Table 6.3 (part a).  

 

high-level action features (26) 

a) Binary features for infrequent actions (2) 
    Open instruction pop up in Screen3’, ‘Opening the legend’ 

b) Features for the remaining high-level actions (24): 

Frequency, Mean & Std. deviation for interval between an action and the 
subsequent one performed      
 Time before first action 

Proportion of time spent on action, Proportion of actions performed 

 

Table 6.3 Set of high-level Action features considered for classification. 

• For the rest of the actions, we generated the features in Table 6.3 (part b), described below 

• Time before first action indicates how much time the user has spent on screen 3 before 

performing a particular type of high-level action   

• Frequency of an action indicates how many times that type of high-level action in performed 

during the time spent on screen 3.   

• Time intervals between a given action and the subsequent one performed are derived from 

the logs and used to generate the following features:    

i. mean and standard deviation of those intervals which indicate, respectively, how much 

time, on average the user spent on a specific action before performing a new one, and 

how consistent this behavior was;   

ii. Proportion of overall time spent on an action by using the following formula 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑠𝑠𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 =
𝑆𝑆𝑆𝑆𝑡𝑡 𝑃𝑃𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠 𝑎𝑎𝑜𝑜𝑃𝑃𝑡𝑡𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑃𝑃 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑠𝑠𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑆𝑆𝑎𝑎𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃3
 

 

• Proportion of actions performed, computed as   the ratio between the number of times a 

certain high-level action has been performed divided by the total number of actions 

performed on screen3.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑝𝑝 =
# 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑠𝑠 𝑎𝑎𝑃𝑃 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑝𝑝

𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎 # 𝑃𝑃𝑜𝑜 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑝𝑝 𝑃𝑃𝑃𝑃 𝑆𝑆𝑎𝑎𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃3
 

Since, proportion of time and proportion of action features are both calculated for the entire 

screen, we calculate Pearson’s correlation coefficient (r) [Field 2012] for each pair of features. 

None of them were highly correlated [r > 0.8] (see Appendix A.1- High Level Proportion 

Features). We also checked whether the low-level features were correlated with the generated 

high level action features. However, none of the features were highly correlated [see Appendix 

A.2- Low and High-Level Features]. Finally, as we did for eye-tracking data, we generated high 

and low-level action features for each of the 10 windows as reported previously; this enables us 

to ascertain how the accuracy of classifiers based on these features evolves with the amount of 

interaction data available.    

6.3 Feasibility of Predicting User Characteristics using action features 

As we did in Section 5.1 for eye-tracking-based classifiers, we start our analysis of action-based 

classifiers by finding the best classifier that beats a majority class baseline (if any) and 

evaluating how early during interaction with MQ we can obtain accurate predictions using only 

action features. We still consider only RF and LB as classification algorithms to maintain 

uniformity of analysis that was performed with eye-tracking data.  
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For all user characteristics (5) and window lengths (10), LB, RF and the appropriate baselines 

were trained and evaluated through 25 runs of 10-fold cross validation over users, as it was done 

with eye-tracking data. Figure 6.2 show the accuracy overtime for the three classifiers over the 

four user characteristics.  

To formally compare the obtained accuracies, for each of the five user characteristics, we run a 

linear mixed-effects ANOVA [Field 2012] with classification algorithm (3 levels) and window 

length (10 levels) as factors, and with classification accuracy averaged across windows as the 

dependent variable.  

 

 

Figure 6.2 Results for PS, SpM, VisWM and VisScan with action features  
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Results show significant main effects of classification algorithm for PS, SpM, VisWM and 

VisScan, (F statistics are reported in the “F-statistic” column in Table 6.4). Pairwise comparisons 

for these main effects (Sidak corrections applied to adjust for multiple comparisons [Field 

2012]), indicate that RF always beats the baseline; LB on the other hand fails to beat the baseline 

for VisWM and VisScan. Neither RF nor LB beat the baseline in predicting VisLit, which is 

consistent with the results we found for eye-tracking data. For PS and SpM, both classifiers beat 

the baseline, and there is no statistically significant difference in their accuracies.  Thus, overall 

RF is the best performing classifier, because it consistently beats the baseline for PS, SpM, 

VisWM, and VisScan, and it is never outperformed by LB.  Hence, we choose RF as the 

classifier for predicting user characteristics using action features. 

 

User Char. Ranking of accuracy of classifiers Main Effect  
(F-Statistic) 

PS LB > RF > Baseline F2,7470 = 455.84† 
SpM LB > RF > Baseline F2,7470 = 88.33† 

VisScan RF > Baseline > LB F2,7470 = 42.29† 
VisWM RF > Baseline > LB F2,7470 = 80.37† 

  

Table 6.4 Comparison of classification accuracies for the User characteristics that can be predicted better 

than baseline, † indicates that RF significantly beat the corresponding baseline.    

 

Using the RF classifier, for each user characteristic we performed pairwise comparisons between 

classifier accuracy at each of the 10 windows, and report in Table 6.5 the best windows, ordered 

by accuracy, namely the set of windows where classification accuracy was statistically 

equivalent and outperformed (with statistical significance) the accuracy in all other windows. 

The last column in Table 6.5 reports the accuracy at the earliest window listed in the previous 
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column. For instance, for PS windows 100, 50, and 70 have statistically equivalent accuracy and 

outperform all other windows. Thus, the earliest optimal prediction for PS can be obtained after 

only 50% of a user’s interaction with the MQ task, with an accuracy of 63%. Table 6.5, shows 

that for the four user characteristics, the best predictions using our approach occur no later than 

halfway in the task (i.e., window 50 for PS). Also, for VisScan only window length 10 is listed, 

since it outperforms every other window. 

In the next chapter, we compare the performance of action data, eye-tracking data and the 

combination of the two for predicting our target user characteristics. 

 

User 
Char 

Chosen 
Classifier Best Window Lengths 

Accuracy at 
Earliest Best 

Window 
PS RF 100>50>70 63.06% 
SpM RF 50>30>20 57.2% 
VisScan RF 10 62.2% 
VisWM RF 10>30>70>100 57.3% 

 

Table 6.4 Windows for which the highest accuracies are achieved for the chosen classifier (RF). 
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Chapter 7: Comparing the data sources 

In Chapters 5 and 6, we have seen that both eye-tracking and Action features can be used to 

predict user characteristics. Eye-tracking and Action features can be considered as different data 

sources for prediction. In this section, we evaluate their effectiveness, i.e., we compare their 

prediction accuracies to see how good or bad they are in predicting user characteristics. We also 

introduce a new data source called combined by fusing eye-tracking and Action features 

together. For the combined datasets, we choose a threshold of 0.6 for the eye-tracking portion of 

the datasets. For 3 out of 4 user characteristics for which we beat the baseline [PS, VisScan and 

SpM], this is the threshold [0.6] that gave the best prediction accuracies when using eye-tracking 

data alone, thus it is natural to use this threshold for data fusion for the aforementioned 3 user 

characteristics. However, for VisWM, 0.9 had the best performance. The reasoning behind 

choosing 0.6 as the default threshold for VisWM is to build models with sufficient 

generalizability. A validity threshold of 0.6 corresponds to data which is rather noisy but also 

includes a sufficiently large pool of users, hence more general in nature. At this point, this is the 

same tradeoff we mention in Section 4.3. We address this tradeoff at this level by making the 

decision of having a larger pool of users for the fused data source instead of having cleaner but a 

smaller pool of user data.  

We use the same approach as previous chapters by generating features in the combined dataset 

for each of the 10 interaction windows; in order to simulate increasing amounts of data available 

for classification as the interaction proceeds. We do not consider VisLit in this analysis, as 

neither action nor eye-tracking beat the baseline in predicting it, hence trying to predict VisLit 

using the combined data source does not hold much value. 
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7.1.1 Finding the Best Data Source and Feasibility of Early Predictions using Best Data 

Source 

Using separate datasets for all 3 data sources [Action, Eye-Tracking and Combined], for all user 

characteristics (4) and window lengths (10), RF was trained and evaluated through 25 runs of 10-

fold cross validation over users. As reported before, 0.6 was used as the default threshold for 

eye-tracking features in datasets associated with both eye-tracking and combined data sources. 

Figure 7.1 shows the graphs with average accuracies, for the 3 data sources over 10 windows. 

To formally compare the obtained accuracies, for each of the five user characteristics, we run a 

linear mixed-effects ANOVA [Field 2012] with data source (3 levels) and window length (10 

levels) as factors along with classification accuracy averaged across windows as the dependent 

variable. 

 

Figure 7.1 Comparison of accuracies for action, eye-tracking and mixed featuresets for PS, SpM, VisWM and VisScan  



34 

 

Results show significant main effects of data source for PS, SpM, VisWM and VisScan, (F 

statistics are reported in the “F-statistic” columns in Table 7.1). Pairwise comparisons for these 

main effects (Sidak correction applied to adjust for multiple comparisons [Field 2012]), indicate  

eye-tracking performs the best (with VisWM) or is tied for the best with Combined (with SpM, 

VisScan) in terms of prediction accuracies. For PS, combined performs significantly better than 

the other two data sources. Regardless of the best performing data source, the best performance 

requires eye-tracking data.  

 
User Char. Ranking of accuracy for various data 

source 
Main Effect  
(F-Statistic) 

PS Combined > Eye-Tracking > Action F2,7470 = 37.26 
SpM Combined > Eye-Tracking > Action F2,7470 = 254.24 

VisScan Eye-Tracking> Combined > Action   F2,7470 = 31.99 
VisWM Eye-Tracking> Combined > Action   F2,7470 = 116.69 

 

Table 7.1 Windows for which the highest accuracies are achieved for the chosen classifier (RF). 

 
For each data source, we performed pairwise comparisons between its accuracy at each of the 10 

windows, and report in Table 7.2 the best windows for the chosen data source reported 

previously, ordered by accuracy, namely the set of windows where classification accuracy was 

statistically equivalent and outperformed (with statistical significance) the accuracy in all other 

windows. The last column in Table 7.2 reports the accuracy at the earliest window reported in 

the previous column. For instance, for SpM, windows 80, 60, 70 and 90 have statistically 

equivalent accuracy and outperform all other windows. Thus, the earliest optimal prediction for 

SpM can be obtained slightly more than halfway in the task i.e., 60%. Table 7.2 shows that this 

is the latest window for optimal prediction: for the other three user characteristics, best 

prediction can be done as early as the 30% window (for VisScan and VisWM) or 10% (for PS).  
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Interestingly, for PS, all windows have statistically similar accuracies with the winning 

Combined data source. This is a result of the fact that, for this user characteristic, eye-tracking 

performs best in the first half of the interaction [40>10>50] as reported in Table 5.3 whereas 

action, as reported in Table 6.4, performs well in later windows [100>50>70] with almost similar 

average accuracies. This leads to the intuition that RF manages to pick the right features at each 

window with the combined data source datasets, i.e., presumably more eye-tracking features are 

selected in the earlier windows whereas in later windows RF most likely choose more action 

features. Thus, for PS, combined is the winning data source because it ensures steadier accuracy 

overtime, but it does not substantially improve the value of the peak accuracy (63.5%) compared 

to the other two data sources (63.9% for eye-tracking and 63% for actions).  

In contrast to what happens with PS, for SpM, VisWM and VisScan, the action data source does 

better than the other two data sources earlier in the interaction, as seen in Figure 7.1, though it is 

never the best data source overall. For these user characteristics, the best data sources perform 

better in later windows. Thus, using action only gives us the opportunity to have early 

predictions, if getting early predictions is the priority, instead of getting the best possible results. 

 
User 
Char 

Chosen 
DataSource Best Window Lengths 

Accuracy at 
Earliest Best 

Window 
PS Combined All windows have 

similar performance 63.4% 
SpM Eye-Tracking 80>60>70>90 64.95% 
VisScan Eye-Tracking 30 63.95% 
VisWM Eye-Tracking 30>100>80>60 63.42% 

 

Table 7.2 Windows for which the highest accuracies are achieved for the chosen data source. 



36 

 

Chapter 8: Conclusion 

 
In this thesis, we investigated if a user’s cognitive abilities relevant for processing information 

visualizations can be predicted only either using eye-tracking or action data during interaction 

with MetroQuest (MQ), a visualization-based system designed to engage the public in 

environmental decision making. We also used data fusion to generate a third featureset called 

combined and predicted user cognitive abilities on the combined featureset. Then, we compared 

these data sources to find out which data source is the most suitable to predict each of the user 

characteristics considered.  

We showed that a Random Forest classifier outperforms a majority-class baseline in predicting 

four of the five user cognitive abilities we tested: perceptual speed (PS), visual WM (VisWM), 

spatial memory (SpM), and visual scanning (VisScan) using eye-tracking data. Our results are 

important because previous findings on predicting user abilities during visualization processing 

were obtained for fictitious tasks done on bar and radar charts, whereas here we consider two 

different visualizations used for a task resembling how MQ is employed in real-life settings. 

Moreover, previous findings were obtained only for PS and VisWM, whereas we also showed 

the feasibility of predicting two additional cognitive abilities. Thus, our findings are a step 

toward showing the generality of predicting a variety of user cognitive abilities during 

visualization processing. These predictions are motivated by the long-term goal of devising user-

adaptive visualizations that can recognize and adapt to the specific abilities of their users. 

 

We also investigated how noise in eye-tracking data influences our prediction. For PS, SpM, and 

VisScan we found that training our classifiers with noisier but larger datasets worked better that 
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having cleaner but fewer data. These results suggest that further investigation on the impact of 

gaze data validity in user modeling is worthwhile, because it may eventually reduce the efforts 

researchers have to put in obtaining high validity data, at least for specific user modeling tasks. 

As for VisWM, the best accuracies were obtained with a classifier trained with high validity 

data. However, we showed that this classifier can still make good predictions on noisier data 

containing up to 40% invalid samples per user. Investigating prediction on noisy data is 

important to gauge the applicability of eye-tracking based user models in real-world settings.  

 

Just as we did for eye-tracking data, we also showed that action data, which is more easily 

available than eye-tracking, can also be used to predict PS, VisWM, SpM and VisScan. We also 

fused these two data sources to yield similar results. Additionally, we showed that, while some 

previous work indicates that the fused featureset is best for predicting user’s cognitive states, it is 

not always the case. In fact, for three out of the four user characteristics [VisWM, SpM and 

VisScan] for which we beat a majority class baseline, eye-tracking gives the best overall 

performance. For PS, combined gives the best overall performance; a featureset which contains 

eye-tracking data. This works as a proof of concept for leveraging eye-tracking data for 

predicting user’s cognitive abilities, even in real world scenarios. On the other hand, we showed 

that while action data might not give the best results overall, it gives good predictions at the 

beginning of the interaction. Thus, it gives us the indication that while eye-tracking is the most 

suited for predicting user characteristics among the data sources leveraged, use of action data has 

merit if we want early predictions. 
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Thus, as part of future work for this research, we plan to continue experimenting with both eye-

tracking and action data collected in realistic settings. One direction of research is to investigate 

the tradeoff between having early predictions using action data vs getting better accuracies using 

eye-tracking data. We also plan to investigate ways to increase the performance of our 

classification models. We can use feature selection and experiment with other classifiers in order 

to get better accuracies. The datasets used had a lot of features compared to number of data 

points. Thus, another potential direction of future investigation would be to use dimensionality 

reduction techniques such as PCA, which might yield better accuracies. 
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Appendices 

 
Appendix A   - Correlation Analysis 

As reported in Chapter 6 we calculated Pearson’s correlation coefficient [Field 2012] for 

proportion of time and proportion of action features [see Table 6.3 for details]. We calculated the 

same to see whether there is correlation between high level and low-level action features [see 

Table 6.1]. Here, we describe our findings in detail. 

 
A.1 High Level Proportion Features 

In  6.2 we defined proportion of overall time spent as the ratio between as sum of all time 

intervals after that action divided by the total time spent on screen 3. The formula for calculating 

this feature is as follows:  

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑠𝑠𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 =
𝑆𝑆𝑆𝑆𝑡𝑡 𝑃𝑃𝑜𝑜 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃𝑖𝑖𝑎𝑎𝑎𝑎𝑠𝑠 𝑎𝑎𝑜𝑜𝑃𝑃𝑡𝑡𝑃𝑃 𝑃𝑃ℎ𝑎𝑎𝑃𝑃 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑠𝑠𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃 𝑆𝑆𝑎𝑎𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃3
 

 
and Proportion of actions performed, computed as the ratio between the number of times a 

certain high-level action has been performed divided by the total number of actions performed on 

screen3. The formula for calculating this feature is as follows: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑜𝑜 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑝𝑝 =
# 𝑃𝑃𝑜𝑜 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑠𝑠 𝑎𝑎𝑃𝑃 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑤𝑤𝑎𝑎𝑠𝑠 𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑝𝑝

𝑇𝑇𝑃𝑃𝑃𝑃𝑎𝑎𝑎𝑎 # 𝑃𝑃𝑜𝑜 𝑎𝑎𝑎𝑎𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠 𝑃𝑃𝑡𝑡𝑃𝑃𝑜𝑜𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑝𝑝 𝑃𝑃𝑃𝑃 𝑆𝑆𝑎𝑎𝑃𝑃𝑡𝑡𝑡𝑡𝑃𝑃3
 

 

Here it should be noted that for four out of six high level actions we calculated the features 

reported above. For the rest two [‘Opening the legend’ and ‘Zooming on the map’], we do not 

calculate these two features because they are infrequent actions [see Section 6.2 for details]. For 

the rest of the four more frequent actions, we calculated the Pearson’s correlation coefficient for 
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each pair of proportion of time spent and proportion of actions performed features. The results 

are reported in Table A.1.1. 

Feature name Pearson’s 
coefficient 

value 

Correlation type 

Proportion of time spent for ‘switching tabs’  
0.64 

 
Moderately strong positive 

correlation Proportion of actions performed for ‘switching tabs’ 

Proportion of time spent for ‘Rating a scenario’  
0.6 

 
Moderately strong positive 

correlation 
Proportion of actions performed ‘Rating a scenario’ 

Proportion of time spent for ‘Open instruction pop up’ 0.2 Weak positive correlation 

Proportion of actions performed ‘Open instruction pop 

up’ 

Proportion of time spent for ‘Moving the map’ 0.57 Moderately strong positive 

correlation Proportion of actions performed ‘Moving the map’ 

 
Table A.1.1 Pearson’s correlation coefficient values for proportion of time and proportion of actions features 

 
 
 
 
A.2  Low and High-Level Features 

We calculated Pearson’s correlation coefficient between low-level features and high level-
features. We report the correlation coefficient among high-level frequency features with other 
low-level features in Table A.1.2. It should be noted that only the ones where there has been 
some amount of correlation among the low-level features and high level frequency features are 
reported. 
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High-level action feature name Pearson’s 
coefficient 
value 

Correlation type 
 
 

 
Frequency Switching Tabs 

 
 

Low 
Level 
Features 
 
 
 

 

 
Left click rate                      

 
.47 

 
weak positive correlation 

 
Time to first left click  

 
-.18 

 
weak negative correlation 

 
Left click rate on ‘Map’  

 
.26 

 
weak positive correlation 

Left click rate on ‘Description of the 
transit scenario’  

.36 weak positive correlation 

Time to first left click on ‘Description of 
the transit scenario’ 

.02 weak positive correlation 

Left click rate on ‘Legend of the map’ .32 weak positive correlation 

Time to first left click on ‘Legend of the 
map’ 

.18 weak positive correlation 

 
Frequency Moving the map 

 

Low 
Level 
Features 
 
 
 

 

 
Left click rate                      

.32 weak positive correlation 
 

Time to first left click -.20 weak negative correlation 

 
Left click rate on ‘Map’ 

.52 weak positive correlation 

Left click rate on ‘Description of the 
transit scenario’ 

.33 weak positive correlation 

Time to first left click on ‘Description of 
the transit scenario’ 

.37 weak positive correlation 

Time to first left click on ‘Legend of the 
map’ 

.26 weak positive correlation 
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High-level action feature name Pearson’s 
coefficient 
value 

Correlation type 
 
 

 
Frequency Zooming on the map 

 
 

Low 
Level 
Features 
 
 
 

 

 
Left click rate                      

 
.33 

 
weak positive correlation 

 
Time to first left click  

 
-.18 

 
weak negative correlation 

 
Left click rate on ‘Map’  

 
.26 

 
weak positive correlation 

Left click rate on ‘Description of the 
transit scenario’  

.36 weak positive correlation 

Time to first left click on ‘Description of 
the transit scenario’ 

.02 weak positive correlation 

Left click rate on ‘Legend of the map’ .32 weak positive correlation 

Time to first left click on ‘Legend of the 
map’ 

.18 weak positive correlation 

 
Frequency Rating a scenario  

 

Low 
Level 
Features 
 
 
 

 

 
Left click rate                      

.36 weak positive correlation 
 

Time to first left click -.20 weak negative correlation 

 
Left click rate on ‘Deviation Chart 

.17 weak positive correlation 

 
 
Table A.1.2 Pearson’s correlation coefficient values for high level frequency and low-level features 
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