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Abstract 

The rapid spread and increasing affordability of sensors, are encouraging the government and 

stake-holders to instrument important infra-structures and structures. These sensors generate vast 

amount of data which can be used in real-time health monitoring of the instrumented structures by 

using damage identification methods. 

A significant component of structural health monitoring is damage identification methods 

which process the data with the purpose of detecting damages in the structures. One of these 

methods with a theoretical background is the statistical subspace damage identification method 

(SSDI). The overarching goal in this thesis is to close the gap between theory and practice, in order 

to have a method with a strong theoretical background and a credible applicability at the same 

time. 

In order to achieve this goal several contributions are motivated in this thesis, which are 

presented as follows:  

Firstly, the effect of two challenges faced in the damage detection of structures under real 

test conditions, namely the measurement noise and duration (length), are theoretically evaluated. 

It is demonstrated that the measurement noise and length have considerable influence on the 

statistical subspace damage detection method and they need to be considered based on these 

proposed theories. 

Secondly, the statistical subspace damage localization (SSDL) method, is assessed for the 

first time, in localizing the damage of a real experimental structure, i.e. the Yellow frame, 

established on the course of this research at UBC. Several methods and theories are developed in 

order to enable this method in identifying the damage under real test conditions. It was 
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demonstrated that by employing the proposed theories, the SSDL method can robustly locate the 

damage in a real structure such as the Yellow frame. 

Finally, two indexes are proposed in predicting the detectability of damage in each element 

of a structure. These indexes provide valuable information on the sensitivity of SSDL method to 

the damage in each element.  

All the proposed theories and methods are demonstrated theoretically; subsequently, they 

are verified by simple and sophisticated analytical models, and finally, they are validated by real-

test data. 
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Lay Summary 

Structural health monitoring is regarded as the main tool in assessing the functionality of existing 

structures. The importance of these techniques emerges by considering that failure of an 

infrastructure results in catastrophic loss. With such techniques, damages in a structure can be 

detected, before reaching dangerous levels. One of the robust damage detection techniques with 

strong theoretical background is the statistical subspace damage identification (SSDI) method.  

In this thesis, the goal is to enable the SSDI method to detect damages in existing structures 

not only in theory but also in practice. Therefore, several theories and methods are developed and 

validated to assist the SSDI method in detection and localization (finding the existence and 

location) of damages in practice. These theories and methods not only help in predicting and 

treating the problems faced under real testing conditions, but also they provide valuable insight 

into the method and interpretation of the results. 
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Chapter  1: Introduction 

Structural health monitoring is regarded as the main tool in assessing the functionality of existing 

structures. The importance of the research on this technique becomes obvious by considering that 

failure of a structure can result in catastrophic loss. Existing civil structures deteriorate by aging 

and under different loading conditions imposed from natural phenomena such as earthquakes, 

typhoons, flood and etc. Therefore, it is imperative to investigate the safety of continuing to use 

these structures, especially after occurring major loads on them from these phenomena. 

With the advent of new technologies, instrumentation of structures is becoming 

widespread. The data acquired from the instrumented structures can provide beneficial information 

on their structural conditions. However, efficient techniques and methods are necessary in 

processing this data in order to assess the functionality of the structure.  

As an example, consider a structure such as Figure 1.1, which we need to assess its current 

conditions (safe or unsafe). The sensors located on the structure provide data measured from the 

structure at any time. This data can be acquired from the undamaged and possibly damaged 

(current) structure and subsequently processed (compared) to evaluate if the structure is damaged 

or not, by using damage identification techniques. 

Damage identification methods are the main component of structural health monitoring 

which process the data in order to detect damages in the structure. Among these methods, the 

statistical subspace damage identification method has a strong theoretical foundation. This 

technique can detect the damage in a structure by creating a subspace from measurement data in a 

reference (healthy) state. This subspace is based on the modeshapes of the structure but without 

actual computation of them. This subspace is employed in a statistical comparison along with the 

data measured from the possibly damaged structure in assessing the condition of the structure. 
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Figure 1.1 Structural condition evaluation using the damage identification techniques 

The overarching goal in this thesis is to close the gap between the theory and applications, 

in order to have a method with strong theoretical background and great functionality under real 

test conditions. This goal is towards the vision behind this thesis, which is to create a platform in 

real-time monitoring of the conditions of any structure. Theoretical analyses of this method are 

carried out, and the theories and methods necessary to achieving this goal are developed. These 

theories and methods are verified by analytical models, and finally validated by the real data 

acquired from several tests on an experimental structure, i.e. the Yellow frame, at UBC. 

1.1 Vision 

The long-term vision behind this thesis is to create a platform to monitor the conditions of any 

structure or infrastructure continuously in real-time. This monitoring includes all levels of damage 

identification through ambient vibration testing: detecting if the structure is damaged, locating the 

damaged element/s, quantizing the extent of the damage and finally predicting the remaining life 

of the structure. This also helps in assessing the resilience of a structure. Particularly, the first three 

levels of damage identification in this platform are envisioned as a chart, namely a control chart, 
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depicting a damage index which represents the condition of the structure versus time in comparison 

to a threshold, namely, safety threshold. This damage index is evaluated from a statistical test using 

the statistical subspace damage detection and localization method ((Basseville et al. 2000); 

(Basseville et al. 2004)). This chart is exemplified in Figure 1.2. 

  
(a) (b) 

Figure 1.2 Control chart used in assessing the condition of the structure in terms of (a) existence of damage 
in the structure and (b) the location and extent of the detected damage 

This vision entails assessing the functionality of the statistical subspace damage 

identification method in facing the problems occurring in real test conditions, specifically, the 

effect of measurement noise, limited number of samples and low number of sensors. This 

assessment needs to be performed both from a theoretical and experimental basis. 

Aligned to this vision, in this thesis the effect of several challenges faced in real testing 

conditions, are studied on the statistical subspace damage identification method. Hence, the 

underlying theories and methods will be developed, and then they will be verified using simulated 

data from analytical models; finally, they will be validated by real data from experimental tests. 

1.2 State-of-knowledge 

There are numerous researches found in the literature dealing with damage identification of 

structures. These methods use different responses of structure and are reviewed in Chapter 2. One 
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category of these techniques include the methods employing statistical tests in identifying the 

damage. The statistical subspace damage identification method is categorized in this group. 

Since the damage in a structure results in changes in its natural frequencies and 

modeshapes, monitoring these modal parameters can be used in identifying the damage. However, 

identification of modal parameters is not usually accurate (especially for higher modeshapes) and 

it needs manual processing of the data; therefore they are not appropriate for real-time health 

monitoring. In the SSDD method, there is no need to estimate the natural frequencies and 

modeshapes, making this approach capable of being used in real-time monitoring of structures. In 

this way, the whole eigenstructure, i.e. modeshapes and natural frequencies, of the measurements 

are included in the damage detection and the focus is not only on dominant frequencies. Including 

higher modes in this evaluation makes the damage detection approach more robust, considering 

that the main effect of local damages is on higher modeshapes. 

In most of the statistical damage detection methods including SSDD, the noise can be 

treated robustly by taking the data related uncertainty into account. This will make these methods 

able to deal with sparsely instrumented structures, at least for the level one of damage detection, 

namely investigating the existence of damage. It was demonstrated in (Döhler et al. 2014b) and 

(Döhler and Hille 2014) that SSDD technique can perform robustly under ambient excitations with 

changing statistics. The SSDD method was used in (Döhler et al. 2014a) to detect the damage with 

the real test data acquired from S101 bridge. The effects of measurement noise and limited number 

of samples were not studied on this method, which are key issues in practicing a detection 

approach. The study of these effects is among the objectives of this thesis. 

Localizing the damage is the second level of damage identification and is more challenging 

in practice than damage detection. Some reasons for this fact, are the low number of sensors and 
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the need for a link between the data and the physical properties of the structure. Many localization 

methods locate the damage by using the modeshapes which are in turn, highly dependent on the 

number and location of the sensors. The statistical subspace damage localization (SSDL) method 

(Balmès et al. 2008; Basseville et al. 2004) locates the damage in a structure by testing each 

element with a statistical test. The SSDL method was used and investigated for small-scale 

academic simulations in (Balmès et al. 2008) and (Döhler et al. 2014c). This method was not tested 

on the real data before, which is included in the objectives of this study. Furthermore, there are 

several challenges needed to be addressed to enable the SSDL method for real data. There are 

some methods proposed in (Balmès et al. 2008) and (Döhler et al. 2014c) to deal with some of 

these challenges which need to be investigated under real test conditions. This evaluation is one of 

the focuses in this study, along with proposal of new enhanced methods for dealing with these 

challenges. 

Another challenge in damage localization of structures stems from the detectability of the 

location of damage. The detectability of damage increases by using more sensors and higher 

frequency mode shapes which are less identifiable, or by optimizing their geometrical location. 

This detectability using the SSDL method was not studied before and composes another objective 

of this thesis. 

1.3 Motivation 

During last decades numerous studies have been performed on the subject of damage detection 

and localization methods. In the literature, some of these methods are proven to be promising; 

however, an ideal damage identification method that can perform robustly under real testing 

conditions for every type of structure is not developed yet. On the other hand, although most of 

these methods perform well for simulated data, few of them are successful under real test 
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conditions. Therefore, investigating a damage identification method under real test conditions is a 

significant step in evaluating it as a practical and robust damage identification method. The 

overarching goal in this study is to smooth the path of SSDD and SSDL method towards damage 

identification of structures under real test conditions. 

Among the main challenges faced in the health monitoring of real structures is the existence 

of noise in the measurements. Existence of noise in experimental data is inevitable. There are 

different sources of the noise in measuring a structure and processing the data, such as the unknown 

excitation (Döhler et al. 2014b; Döhler and Hille 2014), measurement noise and limited data 

length. Besides, the data quality (e.g. measurement noise ratio) can affect significantly on the 

damage detection output (some of the studies are reviewed in (Alvandi and Cremona 2006)). Thus, 

investigating the effect of this inherent characteristic of the measurements, i.e. measurement noise, 

on the SSDD technique is an important factor in assessing its functionality.  

Another challenge in damage identification of real structures is the limited number of 

samples or data length. One of the focuses in this thesis is on the effect of number of samples on 

the SSDD technique. By having such information, these factors might be controlled while 

employing this method in practice. 

Although the theories and functionality of the SSDL method was investigated for simulated 

data, still the detailed analysis and necessary improvements under real test conditions of a real or 

controlled experimental structure is needed. Therefore, the other focus of this study is motivated 

on the damage localization under real test conditions using the SSDL technique. 

Detectability is not the same throughout a structure, and is different depending on the 

location and number of sensors, and the extracted modal parameters. Knowing which elements are 

less detectible is a critical information to know what damage, we are not able to observe. Moreover, 
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it provides valuable information in optimizing the location of the sensors to increase the 

detectability of all or some selected elements of the structure. Hence, the detectability of damage 

in each element is another topic motivated to be investigated in this thesis. 

Thus, detecting the existence and the location of a damage in a structure using the statistical 

subspace technique along with investigating its functionality and applicability for real test 

conditions are the motivated goals of this study. 

1.4 Objectives and tasks 

In this study the objectives are multifold and can be envisioned in three main directions. Firstly, 

the focus is on a theoretical study on the effects of different factors faced under real testing 

conditions on the SSDD technique. Specifically, these factors can be named as: measurement noise 

and data duration (number of samples). 

Secondly, the focus is shifted to the damage localization using the SSDL technique. The 

theories and methods needed in using the SSDL method under real test conditions will be 

developed. The SSDL method functionality from real test data needs to be assessed. Consequently, 

the developed methods and theories need to be verified and validated from the simulated data and 

real data. Another objective in this direction is to study and develop the underlying theories to find 

an index showing the detectability of damage in each element. 

Lastly, as mentioned before the developed theories and proposed methods need to be first 

verified by using analytical methods, and then, validated by the real test experiments. For this 

purpose, the objective is to create several numerical simulations, simple and sophisticated (finite 

element models). Subsequently, these theories and methods will be validated with data measured 

from a real experimental structure namely, the Yellow frame, assembled during this research at 
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UBC in 2016. Thanks to its modular properties, different damage scenarios are created and the 

real data is measured. This data is used in validating the proposed theories and methods. 

Therefore, these objectives are addressed with following specific tasks: 

I) Theoretical investigation on the practicability of the SSDD technique: 

a- Theoretical investigation on the effect of number of samples (data length) on the 

SSDD method 

b- Theoretical investigation on the effect of measurement noise on the SSDD method 

II) Investigation on damage localization using the SSDL technique for real test conditions 

a- Investigating the formation of the Jacobians from analytical data or combination of 

analytical and real data 

In the SSDL method an analytical model, e.g. finite element model, of the structure is 

necessary to find the location/s of damage/s. The modeshapes and natural frequencies 

are related to each physical parameter, e.g. stiffness of elements or dimensions of 

sections or elemental mass, through this analytical model. In order to connect this 

analytical model to the χ2-test, a matrix of Jacobians needs to be computed. The 

formation of this matrix can be computed purely from analytical modal parameters or 

from a combination of the analytical and real modal parameters. These two formations 

and their differences need to be studied in practice. 

b- Creating a method in scaling the modeshapes acquired from real data (decoupling 

if coupled) to the ones evaluated from the analytical model 

The modeshapes from the real data might need to be scaled to the modeshapes from 

analytical model in composing the Jacobians with latter formation in II-a, i.e. 

combination of analytical and real data. Creating and investigating a scaling method is 
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another objective in this direction. It is seen that some modeshapes from the real data 

are coupled together due to their very close natural frequencies, therefore, they need to 

be decoupled by this scaling method as well. 

c- Investigation on the functionality of the proposed new clustering approach (HFC) 

in comparison to k-means for the SSDL technique 

Due to the low number of sensors in practice, the structural elements need to be 

clustered in the SSDL method. This clustering was performed using k-means (Altman 

et al. 1960) approach. This approach is investigated in practice and compared to another 

clustering method, i.e. hierarchical Fisher-information-matrix-based clustering (HFC) 

method, proposed in this thesis. 

d- Proposing an index indicating the detectability of damage in each element 

III) Verification and validation of proposed theories and methods in application 

This objective encompasses the creation of several simple and sophisticated models 

along with an experimental test in order to verify and then validate the methods and 

theories. 

a- Verification of the proposed theories and methods by simulated models (simple and 

sophisticated) 

b- Assessing the functionality of SSDL method in localizing of damage from real 

experimental data (the Yellow frame structure) 

c- Validation of proposed theories and methods by the real data 

1.5 Scope 

Since the statistical subspace damage identification is an output only approach, the underlying test 

is an ambient vibration test. Therefore, the data from ambient vibration test in the context of 
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operational modal analysis is considered. Accordingly, the structure is assumed to behave linear 

elastic, under ambient vibrations. Non-linearity or inelasticity are not in the scope of this thesis.  

Moreover, the damage is considered as a linear damage. The linear damage is defined as a 

damage that does not change the behavior of a linear structure to nonlinear behavior (Doebling et 

al. 1998). The extent of the damage is considered to be from cracks up to sever damages without 

failure: the structure is still operational and no failure has happened. 

The focus in this thesis is on using statistical tests for detecting and locating the damage in 

a structure. Thus, the probabilistic analysis of the damage/failure (such as (Maier et al. 2001)) is 

out of scope. 

The considered damage identification levels, are the first two levels: damage detection and 

damage localization. The damage quantification and life prediction are excluded. 

The environmental effects such as temperature, moisture, soil-structure interaction, and 

changes in the statistical characteristics of input excitations are excluded. However, the effect of 

output measurement noise on the SSDD method is considered in this study. 

The output measurement noise is assumed to be white noise with Gaussian distribution. 

The change of covariance or colorful noise is not in scope of this thesis. 

In SSDD and SSDL method the damage can be a change in any structural parameter that 

changes the dynamic behavior and modal parameters of the structure. In this thesis, the damage is 

modeled as a reduction of stiffness or change of the mass of one or some elements. 

1.6 Exegesis 

Several terms employed throughout this thesis need to be defined. The terms damage “detection” 

and “localization” refer to, in order, detecting the existence of damage and locating it. Besides, the 

term “damage identification” is referred as all the 4 levels of damage detection, localization, 
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quantification and remaining-life-prediction. Since in this thesis only damage detection and 

localization are considered, this term is also used in referring to these two levels. 

The term “detectability of damage” of an element is defined as the increase of damage 

index from the safety threshold, per unit of damage ratio in that element. In other words, if the 

damage ratio in all elements are considered equal, the elements with higher detectability will result 

in higher damage index, and therefore, the damage is easier to be monitored in them. 

While the term noise is used as its general definition, the term “measurement noise” or 

“output measurement noise” (defined in Chapters 3 and 4) is defined as the difference between the 

response of structure at one sensor location and the recorded measurement from that sensor. 

Furthermore, the term “additional measurement noise” is the measurement noise that will be added 

to the real outputs from sensors. Since every sensor in real life always contains some unknown 

measurement noise, the noise added to the real data is named as the additional measurement noise. 

The term “eigenstructure” is referred to the combination of eigenvalues and eigenvectors 

of a system. Hence, it can also be used in referring to the combination of natural frequencies and 

modeshapes of a structure. 

The term “verification” is used when the proposed theories or methods are assessed with 

analytical models. On the other hand, the term “validation” is used when the proposed theories or 

methods are assessed using the real data. These definitions are based on the book by (Oberkampf 

and Roy 2010). 

The term “real data” refers to the data measured from testing a real or experimental 

structure. Therefore in this thesis, it is also used for the data obtained from testing the Yellow 

frame structure. The term “simulated data” is used to refer to the data which is obtained from 

analytical models. 
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1.7 Methodology 

The methodology employed in addressing the tasks pointed out in 1.4 is described in this section.  

I) Theoretical investigation on the practicability of the SSDD technique 

a- Number of samples is already exposed in the χ2-test theory. The effect of this 

parameter will be conveyed back to the final χ2-value. Hence, the final χ2-value is 

formulated in terms of number of samples, and its effect will be investigated for 

damaged and undamaged structures. 

b- The effect of measurement noise on the χ2-test is investigated with adding a 

Gaussian distributed white noise to the output measurements. Using the state-space 

system representation, the effect of this extra added term will be evaluated in a 

closed form manner on the final χ2-value. The closed form formulation of the final 

χ2-value with respect to the added noise, represents the effect of the measurement 

noise on the χ2-test. This extra nuisance term is assumed to be zero mean and 

Gaussian distributed with standard deviation equal to a ratio of standard deviation 

of output measurements. The effect of the measurement noise will be investigated 

with different characteristics for damaged and undamaged structures in the data 

from the reference or testing states. 

II) Investigation on damage localization using the SSDL technique for real test conditions 

a- Two formations of composing the Jacobian matrix will be addressed. The 

practicability of these formations will be investigated. They will be assessed by 

using the real data from the Yellow frame structure. 

b- When the Jacobian matrix is supposed to be formed from the modal parameters 

from both real and analytical data, the modeshapes acquired from real data need to 
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be scaled to the ones evaluated from the analytical model. The scaling approach 

will be elaborated. Moreover, some modeshapes acquired from the Yellow frame 

are coupled due to their very close natural frequencies, therefore, the scaling 

method will be extended to decouple and scale these modeshapes as well. 

c- A new clustering method (HFC) will be developed to cluster the elements using the 

Fisher information matrix. This method will be elaborated. The advantages and 

disadvantages of this method compared to the k-means will be investigated.  

d- The relation of the diagonals of the Fisher information matrix with the detectability 

of each element from the sensitivity based approach, is investigated theoretically. 

Furthermore, a robust Fisher-information-matrix-type value is investigated to 

indicate the detectability of damage in each element when using the MinMax test. 

III) Verification and validation of proposed theories and methods in application 

a- Four analytical models, including three simple structures and one sophisticated 

finite element model of a bridge, i.e. S101, are used in verifying the theories and 

methods addressed in I.a, I.b, II.c and II.d. The models are tailored to reflect purely 

the functionality of the proposed theories and methods. 

b- The real data acquired from the Yellow frame is used in assessing the functionality 

of the SSDL method in damage detection and localization. Different damage 

configurations are created in the structure by removing its modular braces.  

c- The proposed theories and methods addressed in I.a, I.b, II.a, II.b, II.c and II.d are 

validated by the results from this real data.  
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1.8 Overview of dissertation 

In this section the organization of this thesis is explained and the address of objectives through this 

organization are given. In Chapter 2, a literature review on the methods dealing with structural 

damage identification is presented. These methods are categorized into several groups and from 

each group some researches are exemplified. At the end of that chapter, the researches on the 

statistical subspace damage identification method are also reviewed. 

In Chapter 3, the background of the statistical subspace damage detection and localization 

methods is presented. The underlying basic theories of this method are elaborated, since they are 

used in developing of new theories, proposed in this thesis. 

In Chapter 4, the SSDD is in the focus. The effects of two practical challenges in real test 

conditions, namely the measurement noise and length, are evaluated theoretically. In this chapter 

objectives I are addressed. The theories on these effects are provided in this chapter and the rest 

are shown in Appendix A.  

In Chapter 5, the theories and methods for damage localization under real test conditions 

are developed and described. In this chapter objectives II are addressed. 

In Chapter 6 the developed theories and methods are verified using analytical models. 

Subsequently, in Chapter 7 the experimental test, the Yellow frame, is introduced and the 

developed theories and methods are validated from the real data measured from this test. Therefore, 

objectives III are addressed in these two chapters. The instrumentation of this test is described in 

Appendix E.  

Finally, the contributions, conclusions and recommended future work are presented in 

Chapter 8. 
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Chapter  2: Literature Review 

2.1 Introduction 

Numerous researches can be found in the literature and different approaches are proposed to detect 

possible damages in a structure. Some of these tests include sampling of the structure, which may 

affect the functionality of structure. These tests are named destructive tests. However the other 

type of the tests, namely non-destructive tests, do not involve with any action that can damage the 

structure or affect its functionality. Due to the need of continuation of the serviceability of the 

structure, more researchers have been focusing on the latter approach. 

Nondestructive damage detection techniques can be categorized into two groups based on 

their requirements ((Fan and Qiao 2010), (Doebling et al. 1998)): (I) local techniques, which need 

access to all parts of the structure or the location of damage if known, and (II) global damage 

techniques which use vibration data to evaluate global dynamic characteristics of the structure. 

Employing the local techniques may lead to interference in the operation of the structure and is 

not suitable for major structures. However, in the latter techniques there is no need to know or 

have access to the location of damage in priori. 

The global techniques can be also categorized into two groups based on their approach to 

the problem. In the first category, the structural properties are identified and employed to assess 

the condition of the structure. The structural properties identified from these approaches include 

stiffness, damping, mass, load paths and boundary conditions (supports, connections, etc.). In the 

second category, the eigenstructure of the problem is employed to evaluate the condition of the 

safety of the structure. In these methods, modal properties such as natural frequencies, modal 

damping values and modeshapes are used to identify any changes in the structure. Any change in 

the structural properties leads to a change in the modal parameters of the structure. However 
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generally, identifying the modal parameters in a structure is more practical and accurate than the 

structural properties. 

In order to keep the structure in operation, shaking the structure artificially or using impact 

loads are not promising. Therefore by employing ambient vibration testing, the operation of the 

structure will not be interfered. In this case due to the fact that the input excitation to the structure, 

such as wind, traffic, earth vibration, cannot be measured practically, output-only damage 

detection techniques are of interest. Moreover, the process of evaluating and matching the modal 

parameters of a structure is also time consuming (Salawu 1997) and it usually cannot be employed 

in real-time monitoring of structures which are not well instrumented. In addition, local damage 

in a structure affects typically on higher frequency modeshapes ((Doebling et al. 1998) and 

(Worden et al. 2007)) which are not usually identifiable to be used in damage detection due to their 

high modal density and low participation factors (Farrar et al. 2001). Evaluation of these modal 

characteristics can be avoided by using output-only statistical approaches e.g. Kalman filter 

technique (Yan et al. 2004), outlier analysis method (Worden et al. 2000) or the statistical subspace 

damage detection technique (SSDD) ((Abdelghani and Benveniste 2000), (Basseville et al. 2004)). 

2.2 An overview on damage identification methods in structural health monitoring 

It is about five decades that vibration based health monitoring of structures is utilised to evaluate 

the conditions of the structures. At the beginning, it was basically focused over the offshore oil 

industries and aerospace engineering problems and now it is widespread throughout the civil and 

mechanical engineering communities as well. In this context, the damage can be identified as the 

change in: the boundary conditions of the structure, the geometrical/material properties of the 

composing elements and or the connectivity of these elements. Based on this definition, it should 
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be noted that the damage cannot be identified in a structure without comparing it in two system 

states (Worden et al. 2007). 

Damage detection of the structures can be categorized into 4 groups based on their level of 

identification: I) identifying the damage existence, II) identifying the geometrical location of the 

damage, III) quantification of the severity of damage and IV) evaluation of the remaining service 

life of the structure. Most of the literature is concentrated on the level 1 to 3 of the detection on 

the controlled laboratory structures and some on-field tests. 

Several extensive review papers can be found in literature on the topic of damage detection 

((Fan and Qiao 2010), (Doebling et al. 1998), (Worden et al. 2007) and (Carden and Fanning 

2004)). Also some of the damage detection methods are originating from the Control domain. 

Some overview studies in this topic can be named as review papers by (Willsky 1976) and (Frank 

1990), and books such as (Patton et al. 1989).  

The damage identification methods can be categorized based on their approach in detecting 

the damage, by using a model of the structure, i.e. model-based, or using only the measured data, 

i.e. data-driven. In data-driven methods the damage is identified with using only the recorded 

response of the structure. These methods are usually simpler to be used than the model-based 

methods, since there is no need of creating and adjusting a model to the structure. Although, 

independency of these methods to a model makes them simpler in use, their resolution in localizing 

the damage in elements and estimating its severity is not as good. In the model-based approaches 

the model of the structure is updated based on the response (usually modal parameters) of the 

system. These methods are reviewed in 2.2.5. In these methods, there is a need in processing the 

data and then updating the model based on it. This will delay the identification procedure and 

makes these methods less appealing for real-time damage detection. However, the model will 
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enhance the damage localization resolution and it helps in evaluating the damage severity. There 

is a third group of methods recently emerged in the literature (such as the SSDD and SSDL 

method) that are a combination of data-driven and model-based methods. In these methods the 

data is used in damage detection and a model of the structure is used in localization and estimating 

the extent of the damage from the data. In these methods there is no need to update the model 

continuously and it is only created in the reference state (undamaged condition) of the structure. 

The SSDD/SSDL method will be reviewed at the end of this section.  

It can be seen in the literature that identification of the damage in a structure can be 

performed by employing different properties of a system. These can be named as (Rytter 1993) 

suggests: 

1) Natural frequency based methods 

2) Modeshape based methods (modeshapes, their curvature/strain) 

3) Dynamic flexibility method 

4) Residual force vector method 

5) Matrix/model updating methods 

6) Methods employing Genetic or neural network algorithms or wavelets 

7) Statistical methods 

2.2.1 Natural frequency based methods 

There are numerous researches found on the damage detection based on the shifts in the natural 

frequencies of the systems ((Mirza et al. 1990), (Ågårdh 1991), (Kato and Shimada 1986), (Adams 

et al. 1978), (Gudmundson 1982), (Springer et al. 1988), (Hearn and Testa 1991)). Salawu 

reviewed some of these researches in (Salawu 1997). The fact that the change in the properties of 
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a structure will affect the resonant frequencies of that structure forms the basis of this category of 

methods.  

Cawley and Adams (Cawley and Adams 1979) propose a method that can identify the 

damage location and extent from two frequencies of a pair of modeshapes. This study is done for 

a 2D plane structure. They also showed that the ratio of the changes in frequency is also a function 

of damage location. Kulla also used the change in the natural frequencies as a basis of identifying 

the existence of damage for a real bridge structure (Kullaa 2003). In (Magalhães et al. 2008) it is 

also shown that Magalhães used the natural frequencies obtained from Frequency Domain 

Decomposition (FDD) method ((Brincker et al. 2000, 2001b)), in real-time monitoring of the 

conditions of a long span bridge. 

It should be noted that the damage identification based on the natural frequencies is not 

much accurate due to the low sensitivity of frequency shifts to the damage. However, the natural 

frequencies identified in a structure have less variance due to the noise than other modal parameters 

(Doebling et al. 1998). The other problem in this category of damage detection is that the damage 

is usually localized in a specific point of structure that affects more on the higher modeshapes and 

resonant frequencies of the structure. While the modal density is high on higher frequencies and 

the modal participation factor is less, the detection of damage is harder by using the modal 

parameters such as the natural frequencies. 

In another study by Chen et al (Chen et al. 1995) it was shown that the critical damage in 

a structure could change the natural frequencies less than 10%. They also discussed that the 

environmental effects can change this value with magnitude of 5-10%, which can hide this shift of 

frequencies. 
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Most of the success in use of natural frequencies in damage detection was achieved for 

single damage in small and simple laboratory structures (Carden and Fanning 2004). In a study by 

Lee and Chung (Lee and Chung 2000), by using a FE model, and using a ranking system, the 

damage was detected in a beam structure. Then they could also locate and quantify the damage, 

i.e. crack in their study, by using this system. It was shown in their study that the damage in the 

cantilever beam, is less detectible when is close to the clamped end.  

Yang et al (YANG et al. 2001) developed a model from a beam with two boundary 

conditions, i.e. simply supported and fixed-fixed, to locate the damage (crack) in a beam by using 

frequency contours. These contours are based on the location and depth of crack. They could locate 

the damage based on the assumption that if crack is located in a vibration node of a specific mode, 

the frequency of that modeshape will not be changed. In other studies such as (Chinchalkar 2001), 

(MORASSI 2001) and (Cerri and Vestroni 2000) the damage was identified and located in beams 

or rods using the shifts in natural frequencies.  

2.2.2 Modeshape based methods (modeshapes, their curvature/strain) 

In another category of methods for damage detection the modeshapes features are employed in 

order to detect the damage in a structure. In one type of these methods, the modeshapes are 

compared between two states of the structure to detect the damage. One of these methods is the 

Modal Assurance Criterion (MAC) factor (Allemang and Brown 1982). This value which varies 

between 0 and 1, indicates the similarity of two vectors of modeshapes. Since the modeshapes are 

spatial vectors, the location of damage can also be found from this comparison. However, to 

achieve the precision needed for such a comparison, many sensors or many locations of excitation 

(roving exciter) are required. Araújo dos Santos et al (Araújo Dos Santos et al. 2000) proposed a 

technique based on the orthogonality of the modeshapes for composite materials. The results were 
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more sensitive to damage than the modeshapes. Moreover, a finite element model of the structure 

was employed in this method. In subsequent studies by Ren and De Roeck ((Ren and De Roeck 

2002a) and (Ren and De Roeck 2002b)), this method was shown to have difficulties in locating 

the damage from real test data because of the noise and measurement errors existing in a real test 

data.  

In the methods using the curvatures of the modeshapes, it is assumed that the location of 

high curvature in a modeshape is near the damage location. The same concept is also used in modal 

strain energy methods.  

There is a discrepancy between the usefulness of these methods in the literature. In some 

studies they are shown to be more sensitive than the natural frequency method, however doubts 

are raised for their use from real case studies. It is shown in the literature that the modal strain 

energy methods are promising for some case studies, e.g. Z24 bridge (Abdel Wahab and De Roeck 

1999). Some methods also use modal strain energy in order to detect the damage which can be 

categorized in this group as well. Some of the researches using the modal strain energy in damage 

identification can be named as (Kim and Stubbs 1995) and (Kim and Stubbs 2002). 

A seven story full-scale concrete building was tested by Moaveni et al (Moaveni et al. 

2010) and several ambient vibration tests were performed on the structure after exciting it with 

different earthquake records. Several modal parameters were used in identifying the damage in 

conjunction with a model updating approach. It was shown that the modal parameters identified 

from the ambient vibration input match better with the linear model, compared to the ones obtained 

when the input to the system is white noise. 

The damage considered as the delamination in composite beams was located in (Ratcliffe 

and Bagaria 1998) using the curvature of the modeshapes. A FE model is used instead of data from 
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the healthy state of the beam and then the modeshapes are evaluated from the data measured from 

damaged structure. A review paper on the vibration based damage detection in composite 

structures is (Zou et al. 2000).  

Oh and Jung (Oh and Jung 1998) used the static displacement data and the modeshapes 

slope or curvature in detecting damage in a continuous two-span beam. Cornwell et al (Cornwell 

et al. 1999) used the modal strain energy in locating the damage in plate-like structures.  

Hu et al (Hu et al. 2001), detected and localized the damage in a beam structure based on 

the modal strain energy. This method was tested for simulated data from a planar truss structure 

and for measured data from a fixed-fixed beam. The modal strain energy method was also 

employed by Peterson et al ((Peterson et al. 2001a) and (Peterson et al. 2001b)) in identifying the 

damage in timber beams. It was shown that due to the inherent variability of timber beams, the 

severity of damage needed to be high, i.e. 1/3rd of the depth of beam. 

In the research done by Brincker et al (Brincker et al. 2001a), the combination of the natural 

frequency changes and modeshape changes and even damping was used in detecting the damage 

in the Z24 highway bridge. The use of damping as a parameter in damage detection was also 

investigated by C. Willimas and OS. Salawu in (Williams and Salawu 1997) and Curadelli et al in 

(Curadelli et al. 2008). 

2.2.3 Dynamic flexibility method 

Another category of methods use the dynamic flexibility matrix to detect the damage. This matrix 

is based on the square of modeshapes and inverse of natural frequencies. In practical problems, it 

is only constructed from low frequency modeshapes since they can be evaluated in practice and 

they have higher contribution in the final constructed dynamic flexibility matrix. Although in some 

studies it was shown that this method is more sensitive to damage than other methods, e.g. (Zhao 



23 

and DeWolf 1999), in a study by Farrar and Doebling (Farrar and Doebling 1999) it was shown 

that this method could not find damage in most of the damage scenarios while the damage 

curvature method showed to be the most sensitive approach. In (Pandey and Biswas 1994) the 

flexibility matrix was used in detecting and locating the damage. This matrix was shown to be 

accurately built by some lower frequency mode shapes. The flexibility matrix was combined with 

the stiffness matrix by Yan and Golinval in (Yan and Golinval 2005) to detect and locate the 

damage. In their method no finite element model is needed.  

Li et al in (Li et al. 1999) used the flexibility method in identifying the damage in 

cantilevers. They modeled tall buildings and chimneys as cantilevers. They could detect the 

damage by using a small number of modeshapes, i.e. 2 modeshapes.  

2.2.4 Residual force vector method 

In the residual force vector method, the eigenequation of the system in the healthy and damaged 

states are subtracted resulting in some vectors, namely residual force vector, which by applying it 

to the undamaged structure, it responds as a modeshape of damaged structure. If the damage occurs 

in the structure, the element of the residual force vector corresponding to that element will be large.  

In (Sheinman 1996), this method is used in identifying the damage in three analytical 

models including a 3D truss structure. Kosmatka and Ricles (Kosmatka and Ricles 1999), used 

this method in detecting and localizing the damage in an experimental test of space truss. In this 

study they considered the change in mass or stiffness and the variations of modeshapes and natural 

frequencies.  

Farhat and Hemez (Farhat and Hemez 1993) used an iterative approach in updating the 

model using the residual load vectors. In their study, the incomplete modeshapes were expanded. 

In (Castello et al. 2002), Castello et al used a modeshape projection method to make the 
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experimental and analytical modeshapes compatible.  They tested this method in identifying the 

damage in a cantilever beam and a truss structure. Kahl and Sirkis (Kahl and Sirkis 1996) also 

used this method in localizing the damage in a cantilever beam. They concluded that they need 

higher frequency modeshapes in locating the damage in beams compared to the truss structures. 

2.2.5 Matrix/model updating methods 

Another method of damage detection is the use of physical parameters, e.g. mass, stiffness, 

damping and etc., from the structure and updating them in a sense that the model based on them 

can predict the structural dynamic behaviour (specially the modal parameters). The correlation 

between this model and the structure is usually achieved by an optimization algorithm using least 

square method. There are several obstacles which must be dealt with when using this method. The 

size of the model should not be large since the model must be analyzed many times. Moreover, 

the accuracy of the initial model should be acceptable as it affects the whole procedure of the 

updating. The number of parameters which can be identified is also a usual problem in model 

updating because the number of model parameters is always very large in civil structures compared 

to the measured points or identifiable modal parameters. In theory, the maximum number when 

only natural frequencies are considered is equal to the number of natural frequencies. If the 

modeshapes are also considered in the model updating then the number of measuring points times 

the modeshapes is an upper limit to the number of identifiable parameters based on the study in 

(Gola et al. 2001). Another problem in this method is the lack of uniqueness in the updated model. 

Unless the number of degrees of freedom of the model is not less than the actual structure, the 

solution is not unique (Berman 2000). They concluded since the real structure has infinite number 

of DOFs, always the identified model is not unique. However, any updated model of a structure is 

useful to show the dynamic behaviour of the structure in limited cases. For some problems such 
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as damage detection, the updated model might not be a good representative of the damage, since 

knowing the true change of parameters in the right locations is needed to identify the damage 

(Berman 2000). In general, in model updating technique the engineer needs to use his/her own 

judgment in the modelling process and in making decision between the possible solutions. 

In a study by Moaveni et al (Moaveni et al. 2009), the effect of uncertainty in evaluation 

of the modal parameters on the damage identification from model updating was investigated for 

different factors. It was shown that the effect of mesh size of the model is the most significant one 

on the mean of identified damage, although its effect on the evaluated modal parameters is not 

high. 

In some of these methods, the damaged model matrices are updated which are referred as 

optimal matrix methods ((Baruch and Bar-Itzhack 1978), (Liu 1995), (Zimmerman and Kaouk 

1994) and (Kaouk and Zimmerman 1994)). A review paper on these methods is (Smith and Beattie 

1991). Some other type of model updating approaches are sensitivity based approaches. In these 

methods the first order Taylor series is used in approximating the updated matrices. For this 

purpose, the first order sensitivity of the parameters with respect to variables e.g. stiffness matrix, 

is needed. Some of the researches in this topic can be named as (Sanayei and Onipede 2001), 

(Mottershead et al. 2011) and (Sanayei et al. 1992). 

Jang et al (Jang et al. 2002) used a regularization in regulating the error function defined 

between the identified modeshapes from the analytical FE model and measured data. The damage 

was modeled as saw cut in the elements of a grid-type bridge laboratory experiment. It was shown 

that the damage could be identified and located.  

In several researches ((Marwala et al. 1998) and (Cha and Tuck-Lee 2000)) the use of 

frequency response functions (FRF) in model updating can be observed. By converting the data 
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from the time domain to the frequency domain, the dimension of the problem is reduced. However, 

by assuming that the system is linear, Friswell and Penny (Friswell, M. I. and Penny 1997) suggest 

that there is no information lost due to this compression. The frequency domain compared to the 

modal domain is less compact, notwithstanding it is argued that since the structural response is 

dominated by its lower frequency modal parameters, the modal domain and frequency domain are 

the same (Friswell, M. I. and Penny 1997). Some researchers, e.g. (Lee and Shin 2002), 

differentiate these two domains further into the errors associated in identifying the modal 

parameters when using the modal domain. Also one more advantage of using FRFs compared to 

the modal parameters is that it conveys more information in a specific frequency range compared 

to the modal domain which includes the same information as FRF but only in one point (Lin and 

Ewins 1990). These methods are also compared in (Maia et al. 2003) by Maia et al for simulated 

data from a beam structure. 

2.2.6 Methods employing Genetic or neural network algorithms or wavelets 

In another category of approaches, the neural network or genetic algorithm methods are used in 

order to identify the damage in a system. These methods are used in diverse applications in 

artificial intelligence, machine learning and also vibration based damage detection ((Feng and 

Bahng 1999), (Zubaydi et al. 2002), (Waszczyszyn and Ziemiański 2001), (Marwalla and Hunt 

1999), (Wu et al. 1992) and (González and Zapico 2008)). Neural networks are usually used in 

systems with large measured databases. As an example for the neural network approaches, Ramu 

and Johnson (Ramu and Johnson 1995) used the neural network approach in conjunction with 

Fuzzy logic concept and proposed a method to identify damage in composite materials. For this 

purpose an experimental data was used to train the neural network prior to employing it for damage 
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detection. Ostacowicz (Ostachowicz et al. 2002) also used genetic algorithm in order to find the 

change in the lumped masses in a plate structure based on its fundamental frequencies. 

In a number of researches such as ((Chiang and Lai 1999) and (Moslem and Nafaspour 

2002)), the residual force vector is used to locate the damage and then the genetic algorithm is 

employed to quantify the damage. In (Gomes and Silva 2008), the genetic algorithm is also used 

as an optimization tool in detection and localizing the damage using a finite element model of the 

structure. It was concluded that the quantification of the damage could not be achieved accurately. 

Hao and Xia (Hao and Xia 2002) used the genetic algorithm along with three criteria, namely 

frequency and modeshapes changes and their combination, to compare the measurements from a 

reference state with a damaged state which leads to identifying the damage. 

The wavelet transformation is also used in several studies ((Rucka and Wilde 2006), (Kim 

and Melhem 2004), (Liew and Wang 1998) and (Hou et al. 2000)) in identifying the damage in 

structures. The wavelets are useful in detecting singularities and steep changes in a system, e.g. in 

modeshapes or time history. According to Carden et al in (Carden and Fanning 2004) the resolution 

of the sensors, i.e. the number of sensors, affect significantly on the functionality of using wavelets 

in damage detection of structures. 

2.2.7 Statistical methods 

Among the methods above, least researchers are investigating the statistical methods for damage 

detection. There were promising results obtained from proposed methods in this category and 

therefore the focus of this dissertation is on the statistical approaches. 

Farrar and Doebling in ((Farrar and Doebling 1999) and (Doebling et al. 1998)) suggested 

that the damage detection with using the vibrations of a system is fundamentally a statistical pattern 

recognition (Schiffer et al. 2014). They also argue that since the variability of the inputs to these 



28 

methods cannot be completely eliminated, this variability must be quantified by using statistical 

methods.  

In a study by Zaurin et al (Zaurin et al. 2016), the sensor data along with camera images 

was used in detecting the damage of a bascule bridge. The traffic video from the cameras was used 

in identifying the load on the bridge and the strain in the bridge was evaluated from the sensors. 

Some influence lines were then evaluated from these data and by using a statistical outlier analysis 

the damage was identified.  

In two studies by M. Gul and F. N. Catbas ((Gul and Catbas 2011a) and (Gul and Catbas 

2011b)) a time series analysis was proposed in which an auto regressive with eXogenous input 

(ARX) model is created from the healthy state of the structure. This model is created based on the 

prediction of the reference sensor by considering the outputs of other sensors in a cluster. This 

model then was associated to damage by two approaches and was tested successfully on a large 

scale experimental laboratory model. 

Sohn and Farrar (Sohn and Farrar 2001) also used a combination model of ARX and AR 

models to locate the damage by comparing the data from the reference state to the damaged state. 

This difference was identified as the difference between the prediction of these models and the 

actual measured data. 

Worden et al (Worden et al. 2000) proposes a method that by using an outlier analysis, the 

features of the structure which have discordance compared to the reference state of the structure 

would be identified. They use a Mahalanobis  distance (Mahalanobis 1936) in order to quantify 

this discordance. 

In a study by Todd et al (Todd et al. 2001) a feature, namely the average local attractor 

ratio, was proposed to detect and quantify the damage by using it along with an outlier analysis.  
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In some other studies, simple statistical features such as mean or fourth statistical moment 

(kurtosis) of the distribution is used as the damage sensitive feature to be monitored (Martin 1989). 

In this concept Fugate et al. (Fugate et al. 2000) used the outlier analysis in detecting damage from 

an experimental data set. In another study (Fugate et al. 2001) he uses the control charts along with 

the statistical methods in detecting the damage. They suggested that the environmental variations 

can influence on the statistical approaches significantly and therefore their effects must be studied. 

In some studies such as (Peeters et al. 2001; Rohrmann et al. 2000) the effects of environmental 

conditions like temperature or change in the loading conditions were studied. The principal 

component analysis (PCA) was used by Yan et al, in (Yan et al. 2005a) to take into account the 

effect of environmental changes. They also extended this method to nonlinear cases in (Yan et al. 

2005b). The damage detection in nonlinear systems are investigated in several papers. In (Farrar 

et al. 2007), several nonlinear system identification methods are exemplified in damage detection 

of structures. 

Fanning and Carden (Fanning and Carden 2001) studied the damage identification in a 

telecommunication mast using an autoregressive model and by defining an error term between the 

predicted values and the measured values. They tried to identify the damage using control charts 

of the mean and variance of this error term. 

The statistical subspace damage detection technique (SSDD) ((Abdelghani and Benveniste 

2000), (Basseville et al. 2004), (Benveniste and Basseville 1987) and (Basseville et al. 2001)) is 

another approach in the category of statistical methods. In this approach a residual (Basseville 

1998) is constructed from the difference between two states of the system and then with the use of 

a χ2-test, an index for the change is defined. This approach is also used in damage localization of 

the simulated models in ((Balmès et al. 2008) and (Döhler et al. 2014c)) which illustrated 
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promising results for analytical FE models. In this method there is no need in identifying the modal 

parameters of the data which makes it robust in real-time monitoring of structures.   

The damage detection from this method is tested on real test data such as S101 bridge in 

Austria (Döhler et al. 2014a).The effect of environmental excitation variations on this technique 

was also investigated in ((Döhler et al. 2014b), (Döhler and Hille 2014) and (Döhler and Mevel 

2013)) where a residual was proposed which was insensitive to the covariance variation of the 

input noise to the system. This feature is a very significant parameter in health monitoring of 

structures which increases the robustness of this approach. Moreover, the effect of temperature on 

this method was also investigated in (Balmes et al. 2008) and (Balmes et al. 2009). In the latter 

study the effect of the temperature was rejected by assuming it as a nuisance parameter and 

removing its effect with projection. 
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Chapter  3: Background of the Statistical Subspace Damage Detection and 

Localization Technique 

3.1 Introduction 

In this chapter, the theoretical background of the statistical subspace damage detection and 

localization techniques are introduced, mainly based on references (Basseville et al. 2000), 

(Basseville et al. 2001) and (Basseville et al. 2004). The Statistical Subspace Damage Detection 

(SSDD) technique evaluates the global condition of a structure by identifying changes in the 

eigenstructure of the system. This change can be identified by detecting the changes in the mean 

of a residual. This residual is built from the current measurements of the structure and a data-driven 

subspace (referred as mold in Figure 3.1) made in the reference state, i.e. undamaged structure. 

This detection is possible since the changes of the mean of this residual is related to the change in 

the structure occurred from damage. It should be noted that the damage in the structure results in 

the change in its physical parameters, e.g. stiffness, dimension reduction of sections, mass of 

elements, and also it results in change in modeshapes and natural frequencies of a structure. 

Figure 3.1 shows this procedure of damage detection and localization using the SSDD and SSDL 

method. 

Therefore, the damage can be detected by comparing a statistical model from the possibly 

damaged structure to thresholds obtained from a reference state. A subspace based residual 

function between these states is defined and compared using a  χ2-test. The results from  χ2-test 

can be displayed and monitored in a chart, namely control chart (Carden and Fanning 2004). Thus, 

there is no need to estimate the natural frequencies and mode shapes (for the detection part), 

making this approach capable of being used in real-time monitoring of structures. In this way, the 

whole eigensystem of the measurements are included in the damage detection and the focus is not 
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Figure 3.1 Statistical subspace damage detection and localization procedure 

only on dominant frequencies. This is because there is no natural frequencies or modeshapes 

estimated or used in the damage detection procedure. Including higher modes in this evaluation 

makes the damage detection approach more robust, considering that the main effect of local 

damages is usually seen in higher mode shapes.  

Following the detection of existence of damage in a structure, the second level of damage 

identification is to locate the damage. The objective of the damage localization is to find which 

part or parts of the structure are damaged. On one hand, the damage in a structure results in changes 

in its physical parameters, e.g. stiffness, mass or damping characteristics, and on the other hand, 

the change in the physical parameters of a structure alters the eigenstructure of the system. 

Identifying this alteration is the basis of damage detection and by tracing the source of this change 

in the physical parameters, the location of the damage can be identified. 

In this chapter the SSDD technique and its theoretical basis will be described. 

Subsequently, the SSDL approach is described. The fundamental theoretical basis and some of the 

numerical implementation of this approach will be presented. 
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3.2 The statistical subspace damage detection method 

The theories and formulations of SSDD method stem from the subspace based system 

identification. In this section, models, parameters and formulations needed to derive the final 

residual used in assessing the condition of the system along with some properties of this method 

is presented based on studies in (Basseville et al. 2000, 2004). 

3.2.1 Dynamic equilibrium equation in discrete time domain 

The state-space representation of a dynamic system is well known. Herein, the governing equation 

for the dynamic behavior of a structural system is presented and then it is reformed to the state-

space representation. The dynamic behavior of a structure can be represented by the following 

continuous model: 

( ) ( ) ( ) ( )
( ) ( ) ( )

Mu t Cu t Ku t p t

y t Lu t e t

+ + =


= +

ɺɺ ɺ

ɺɺ
 (3-1) 

where M, C and K are mass, damping and stiffness matrices, respectively, and u represents the 

displacement vector in all degrees of freedom of the system. Vector p is the vector of forces and t 

denotes continuous time. It should be noted that the external force p is unknown while it is assumed 

to be a non-stationary white noise. Vector y contains the measured output responses at the observed 

degrees of freedom of the structure. Based on the type of the sensor recording: acceleration, 

velocity or displacement, the second part of the equation changes; herein, the type of the sensor is 

assumed as accelerometers. Matrix L states the location of the sensors in relation to the geometry 

of the degrees of freedom, and e represents the measurement noise. As an example, the matrix L 

for a simple cantilever beam of 6 degrees of freedom and 3 sensors (shown in Figure 3.2) is 



34 

1
0 0

1
0

0 1
0

L

 
 
 
 

=  
 
 
 
 

. 

 

Figure 3.2 A 6 degrees of freedom structure instrumented with 3 sensors 

The eigenstructure ( µ ,ψ ) of the system can be computed from 

2( ) 0, for    1j j j j jM C K L j nµ µ ψ+ + Ψ = = Ψ = ⋯  (3-2) 

where n is the system order. The discrete-time state-space representation of model (3-1) can be 

written by performing sampling with time step τ  in step k as 

1k k k

k k k

x Fx w

y Hx ε
+ = +

 = +
 (3-3) 

in which nx ∈R  is representing the state of the system and the measured output is represented by

ry ∈R . r is the number of sensors. n nF ×∈R  is the state transition matrix and r nH ×∈ℝ   is the 

observation matrix. The state noise 
k

w  and output measurement noise kε  (which is a combination 



35 

of ( )e t  and inputs to the system (3-7)) are generally assumed to be white noise for output-only 

system identification approaches. The state x and the measured output y, are related to the 

displacement vector with equation (3-4). 

( )
, ( )

( )k k

u k
x y y k

u k

τ
τ

τ
 

= = 
 ɺ

. (3-4) 

Therefore, the state transition matrix is 

F e τ= L  where 1 1

0 I

M K M C− −

 
=  − − 
L , (3-5) 

and the observation matrix is 

[ ]1H LM K C−= −  (3-6) 

based on the definition of the output as the acceleration. From this reformation of the system, the 

output measurement noise is evaluated as 

1 ( ) ( )k LM p k e kε τ τ−= +  (3-7) 

which is composed from the input and measurement noise.  

The eigenstructure ( λ ,ϕ ) of system (3-3) can be computed similarly to (3-2) from 

( ) 0,j j j jF Hλ φ ϕ φ− = =I  (3-8) 

for 1j n= ⋯ . The modal parameters of the dynamic model ( 3-1), which are present in its 

eigenvalues 
jµ , and modeshapes 

jΨ , are related to the eigenvalues 
jλ  and eigenvectors 

jφ  of the 

state transition matrix F: 

    where  and  for  1
j

j

j j j j

j j

e
H L j n

µ τλ
ϕ φ ψ

ϕ ψ

 =
= = Ψ =

=
⋯ . (3-9) 
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The natural frequencies f, modeshapes ℘  and damping coefficient ξ  of the structure are 

related to the eigenstructure ( ,µ ψ ) by 

,     and
2j j j j

a b
f

a
ψ ξ

π
= ℘ = = −  (3-10) 

for 1j n= ⋯ , where , ( )j ja bµ µ= = ℜ . It should be noted that typically for buildings and bridges 

0 1ξ< < . The eigenvalues µ  is also related to f and ξ  by 

22 2 1j j j j jf i fµ π ξ π ξ= − + − . (3-11) 

The eigenstructure parameterization of system (3-3) is formed by pairs ( ,λ ϕ ) which is 

referred as the system eigenstructure and can be employed as the system parameter in the vector 

form of 

vec( )
Λ 

 Φ 
 (3-12) 

in which Λ  is the vector containing all the eigenvalues λ  and Φ  is the matrix composed of all 

eigenvectors ϕ . The function vec() is the vectorization function.  

3.2.2 System parameter 

Before defining hypotheses and testing them, some parameters of the system are needed to be 

chosen whose change represent the damage in the system. Let such as a parameter be called θ , 

and its value in the reference state be 0θ  where the structure is assumed to be undamaged. The 

system parameter includes any parameters in the system that their change shows a damage in the 

system. The damage in any element results in changes in the physical parameters, e.g. stiffness of 

element, cross section change, mass change, which leads to a change in the eigenstructure of the 

system, i.e. modeshapes and natural frequencies. Therefore, this parameter can be chosen as this 

physical parameter corresponding to each element of the structure or the continuous-time/discrete-
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time eigenstructure, e.g. vector (3-12). Since in damage localization we are looking to locate the 

damage in physical elements, the system parameter is defined as the physical parameters of the 

structure when localizing the damage. 

3.2.3 Output-only covariance based subspace system identification 

In order to compute a residual vector between the reference and the current states of the system, 

the output-only covariance based subspace system identification method (Van Overschee and De 

Moor 1996) is employed. By defining the output covariance as ( )T

i k k iR y y −= Ε  and parameters p 

and q such that ( 1)qr p r n≥ + ≥ , the block Hankel matrix 1,p q+H is composed as 

1 2

2 3 1
1,

1 2

Hank( )

q

p

p q i

p p p q

R R R

R R R
R

R R R

+
+

+ + +

 
 
 = = 
 
  

H

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

. (3-13) 

The output covariances satisfy 1i

iR HF G−=  (Van Overschee and De Moor 1996), where 

1( )T

k kG x y+= E  is the cross covariance between the states and the outputs, which leads to the well-

known factorization property of 

1, 1Cp q p q+ += ΟH  (3-14) 

where C n qr

q

×∈ℂ  and 

1
1 , C [ ]q

p q

p

H

HF
G FG F G

HF

−
+

 
 
 Ο = =
 
 
 

⋯
⋮

 (3-15) 

in which we have ( 1)
1

p r n

p

+ ×
+Ο ∈ℂ . The observation matrix H, state transition matrix F, and 

subsequently the system parameters θ , can be computed from the defined observability matrix 

1p+Ο . The observation matrix can be directly found from the first block row of the observability 



38 

matrix 1p+Ο . Moreover, by considering the shift invariance property of the observability matrix in 

(3-15), the observation matrix F is computed by solving  

p pF↑ ↓Ο = Ο  (3-16) 

in which  

2

1

andp p

p p

HFH

HF HF

HF HF

↑ ↓

−

  
  
  Ο = Ο =
  
  
    

⋮ ⋮
 (3-17) 

By measuring data from the current state of the structure, an estimation of the block Hankel 

matrix, i.e. 1,
ˆ

p q+H , is computed from the covariance estimates 
îR  as 

1,
1

1ˆ ˆ ˆ, Hank( )
N

T

i k k i p q i

k i

R y y R
N i

− +
= +

= =
− ∑ H  (3-18) 

where N is the total number of samples. The factorization of the estimated Hankel matrix 1,
ˆ

p q+H  is 

also achieved by performing a Singular Value Decomposition (SVD) as 

1 1
1, 1 2

20

ˆ ˆ0ˆ ˆ ˆ
ˆ ˆ0

p q

V
U U

V
+

   ∆
 =      ∆      

H . (3-19) 

By truncating the decomposed matrices at system order n the observability matrix is 

estimated as 
1
2

1 1 1
ˆ ˆO

p
U

−
+ = ∆ . From this observability matrix the system matrices F and H will be 

computed and subsequently the system parameters θ  will be formed from the eigenstructure 

( , )λ ϕ  calculated from these system matrices. 
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3.2.4 Definition of residual vector and hypotheses 

By assuming that the system parameter in reference state of the structure is 0θ and in current state 

is θ , a residual function is defined between these states which reacts to the changes in the system 

due to, for instance, damage. In order to create such a residual, the left null-space of the 

observability matrix 1p+Ο , namely orthonormal matrix S, is defined. Due to property (3-14), the 

Hankel matrix 1,p q+H  and observability matrix 1p+Ο  share the same left null space and therefore S 

can be computed directly from performing a singular value decomposition of 1,p q+H . The reference 

state 0θ θ=  by having 
def

0 0( )S S θ= is then characterized by  

0 1 0( ) 0T

pS θ+Ο = . (3-20) 

Due to the factorization property ( 3-14), the left null-space of 1,p q+H  is equal to 

( 1)
0( ) p r sS θ + ×∈ℝ  where ( 1)s p r n= + − . Hence (3-20) can be rewritten as 

0 1, 0T

p qS + =H . (3-21) 

By defining damage as a change in the system parameter θ , i.e. 0θ θ≠ , two hypotheses can be 

written as follows; 

0 0

1 0

: unchanged system

:  changed system (damaged)

H

H

θ θ

θ θ

= ∴


≠ ∴
. (3-22) 

1,p q+H  contains information from the dynamic properties of the system and, hence, any 

change in the system will be reflected in a change in 1,p q+H . A simple way of monitoring those 

changes is to compare 1,p q+H  to its value in the reference state or even simply to compare 0 1,
T

p qS +H  

with zero. 
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Therefore to test these hypotheses, a residual function needs to be defined based on 

property (3-21) that holds if and only if 1,p q+H  corresponds to the reference state. Since matrix 0S  

depends implicitly on parameter 0θ  (we are treating it as a function of 0θ  (Basseville et al. 2004)), 

a representation of the current state parameter of the structure, i.e. θ , is needed. In view of (3-21), 

the empirical block Hankel matrix 1,
ˆ

p q+H  is used to create residual function ( 3-23) which 

corresponds to the difference between θ  and 0θ  (Basseville et al. 2000, 2004). 

0 1,
ˆvec( )T

p qN Sζ += H . (3-23) 

In view of section 3.2.2, a change in the system parameter can be formulated based on the 

asymptotic local approach for change detection (Benveniste and Basseville 1987) as  

0 Nθ θ δθ= + . (3-24) 

where δθ  is defined as the (unknown) parameter change vector normalized by N . 

In order to test the residual for a change, the information on the probability distribution of 

the residual is required, which depends on for example the noise distribution which is not available 

in general. However, an asymptotic analysis for N → ∞  shows that the residual distribution can 

be approximated by a normal distribution. In fact, it will be shown that the residual satisfies the 

central limit theorem and is thus asymptotically normal distributed. To achieve this property, the 

factor N  has been introduced in ( 3-23) and ( 3-24). Furthermore, it should be noted that 

definition ( 3-24), results in interesting properties of the detection technique: if the change in 

parameters θ  is small, the change might be still detectable with large number of samples N, since 

0( )N θ θ δθ− = . 
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Now, as the Central Limit Theorem (CLT) states, the average of a sequence of independent 

and identically distributed (any distribution) random samples is distributed normally when 

multiplied by N . In view of (3-13), the Hankel matrix is composed of the covariance estimates 

îR  which are computed as an average as (3-18). Based on this and the fact that 0S  is evaluated only 

in the reference state and is constant in each test, in view of (3-23) each element of the residual 

vector is distributed normally as the CLT states. The mean of this distribution is zero if the system 

is unchanged. If the system is changed, the mean can be computed by a Taylor expansion theorem. 

By using a first order Taylor expansion from the reference state to the damaged state, the 

expectation of the residual writes as 

[ ] [ ] [ ]
0

0

0 0( ) ( ) ( ) ( )θ θ η
η θ

ζ θ ζ θ ζ η η θ
η

=

∂
≈ + −

∂
E E E . (3-25) 

 Since in the reference state [ ]
0 0( ) 0θ ζ θ =E , in view of definition (3-24), (3-25) can be 

rewritten as 

[ ] [ ]
0

1
( ) ( )

N
θ η

η θ

ζ θ ζ η δθ
η

=

∂
≈

∂
E E  (3-26) 

which by defining [ ]
0

1
( )

def

J
N

η
η θ

ζ η
η

=

∂
=

∂
E  is rewritten as 

[ ]( ) Jθ ζ θ δθ≈E  (3-27) 

Therefore, by considering the Central Limit Theorem (CLT), for N → ∞   

0

1

(0, ) under 

( , ) under 

H

J H
ζ

δθ

Σ
→ 

Σ

N

N
 (3-28) 

in which Σ  is the asymptotic covariance computed in 3.2.6, and J  is the asymptotic sensitivity 

of the residual computed in Chapter 5. 
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3.2.5 Hypothesis test 

In order to test hypotheses (3-22), a generalized likelihood ratio (GLR) test is employed (Basseville 

et al. 2000). Based on the parameter chosen, it leads to two possible approaches: a non-parametric 

and a parametric χ2-test. In damage localization, since the system parameters include the 

information from physical parameters of the structure, the parametric test is always employed to 

detect the change in these parameters. However, for the damage detection method the non-

parametric test is simpler to use as there is no need to localize the damage in each parameter. 

3.2.5.1 Parametric     χχχχ2-test 

Define ( | )L Z h  as the likelihood function of Z under hypothesis h: 

( )
1

22 11
( | ) (2 ) det( ) exp ( ) ( ) ( )

2
d T

h hL Z h Z Z Z Zπ −− − = Σ − − Σ − 
 

 (3-29) 

where Z is a normally distributed variable with dimension d, covariance matrix Σ  and mean 

( | )hZ Z h= E , conditioned on hypothesis h.  

The GLR test for hypothesis (3-28) is written as  

1

0( | )
( ) 2 log

sup ( | )H

L
GLR

Lθ

ζ θ
ζ

ζ θ∈

= −  (3-30) 

where 0( | )L ζ θ  and ( | )L ζ θ  are the likelihood functions of residual under, respectively, the null 

hypothesis and alternative hypothesis (3-28). The GLR test will be expanded as 

( ) ( )( )
( )

1

1

1 1

1 1

( ) sup

sup 2 ( )

TT

H

T T T T

H

GLR J J

J J J

θ

θ

ζ ζ ζ ζ δθ ζ δθ

δθ ζ δθ δθ

− −
∈

− −
∈

= Σ + − − Σ −

= Σ − Σ
. (3-31) 

The gradient of the GLR is zero at ( ) 11 1( )T TJ J Jδθ ζ
−− −= Σ Σ  and therefore  

( ) 11 1 1( ) T T TGLR J J J Jζ ζ ζ
−− − −= Σ Σ Σ . (3-32) 
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In view of (3-28), the GLR test is asymptotically  χ2-distributed with degrees of freedom 

equal to =rank( ) dim( )d J θ=  and non-centrality parameter 1T TJ Jδθ δθ−Σ  under 1H  and 0 under 

0H , and thus 

( )12 11 1T T TJ J J Jχ ζ ζ
−− − −= Σ Σ Σ . (3-33) 

The χ2-variable is the parametric representation of a damage index and is compared with a 

threshold of safety. Since its distribution is shifted with the given non-centrality parameter under 

H1, if its value surpasses this threshold, it shows that the condition of the structure is being changed. 

Hence, it indicates that a damage in the system has happened. This test is particularly used in 

damage localization for different parameters and will be discussed in 3.3 and Chapter 5. 

3.2.5.2 Non-parametric χχχχ2-test 

By computing a null-space from a reference data set, a non-parametric residual is created for which 

there is no need to evaluate any parameters. This test is very robust and hence can be used in global 

damage detection of structures.  

The null-space 0S  is obtained by a singular value decomposition of the estimated Hankel 

matrix from the measurement data in the reference state as discussed in 3.2.3 and 3.2.4 based on 

(Balmes et al. 2008). Since no explicit system parameterization is used, we have J = I  in the 

residual distribution (3-28), where I  is the identity matrix. Therefore, (3-28) can be rewritten as 

0

1

(0, ) under 

( , ) under 

H

H
ζ

δ

Σ
→ 

Σ

N

N
 (3-34) 

where δ  is now directly linked to the change in the residual vector (when normalized by N ). 

Subsequently, the  χ2-test variable (3-33) simplifies to 

12 Tχ ζ ζ−= Σ . (3-35) 
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Similarly to (3-33), this variable is asymptotically  χ2-distributed with ( )dimd ζ=  degrees 

of freedom. Its non-centrality parameter is 0 under H0 and 1Tδ δ−Σ  under H1. 

This test can be also viewed as the Mahalanobis distance (Mahalanobis 1936) of the test 

dataset to the reference state dataset. The covariance matrix will account for the effect of noise in 

the data and uncertainties in the estimation of the residual vector. 

3.2.6 Covariance matrix computation 

The covariance matrix of the residual vector ζ  in the reference state is defined as 

( )lim T

N
ζζ

→∞
Σ = E  (3-36) 

since the expectation of the residual is zero (3-28).The covariance matrix includes the uncertainty 

in estimation of the residual vector and measurement noise. This effect is taken into account by 

including the covariance matrix (Basseville et al. 2004; Mahalanobis 1936) in the  χ2-test. The 

computation of the covariance matrix is performed by dividing the whole measurement data into 

b  blocks containing bN  samples such that bN N b= . Hence, the covariance matrix can be 

estimated in view of (3-36) as 

1

1ˆ
b

T

i i

iN
ζ ζ

=

Σ = ∑  (3-37) 

where iζ  is the residual vector computed from the ith block of the total b blocks. This estimation 

is affected by the excitation for finite number of samples (Basseville et al. 2004). Therefore, it is 

preferable to compute it for each test. However, by assuming unchanged statistical characteristics 

of the input noise (white noise) and the output measurement noise, the estimated covariance matrix 

in the reference state can be used for the test too. Moreover, because the data in the reference state 

is usually big enough, the estimated covariance is accurate. This will increase the efficiency of the 
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method computationally since evaluating the covariance matrix is computationally expensive. 

However, it will also affect on the χ2-test as will be discussed in Chapter 4. 

3.3 Statistical Subspace damage localization 

Based on the theories developed in 3.2, the damage localization can be further developed as will 

be presented in this section. A concise review on the presented theories will be done in the next 

section and subsequently the theories will be further developed to the localization tests. 

3.3.1 Hypothesis test with parametric χχχχ2-test 

With the interpretation that if the system is damaged, the system parameter θ  becomes changed, 

i.e. 0θ θ≠ , two hypotheses were defined in (3-22) and a generalized likelihood ratio (GLR) test 

was employed as stated in 3.2.5. 

In order to test (3-22) the GLR test was defined in two approaches based on the parameters 

used, i.e. non-parametric and parametric. Because in damage localization the system parameters 

are physical parameters of the structure, the parametric test is employed to detect the change in 

these parameters through Jacobian vectors from (3-33). In the damage detection, we are interested 

to test if 0θ θ≠ . However, in damage localization we are interested in finding the parameter in the 

vector of θ  that is responsible for this change, i.e. 0θ θ≠ . This parameter corresponds to the 

damaged element. Since a finite element model is employed to connect the residual values to each 

parameter, the Jacobian vectors are the components of this bridge. The computation and 

composition of these Jacobian vectors will be described and elaborated in Chapter 5. 

The change in a physical parameter of the structure can be computed by evaluating the χ2-

test of it using the Jacobian matrix computed. This test can be performed in two ways as described 

in the following sections. It should be noted that in these tests, the scaling of the columns of the 
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Jacobian will not affect the final χ2-value and the test only reacts to the directions of these vectors 

(columns).  

3.3.2 Sensitivity based approach 

The damage in the structure can be modelled as a change in a parameter, e.g. kp , of the analytical 

model as used in (Balmès et al. 2008; Basseville et al. 2004).This change can be defined as kpδ  

and its effect on the residual function is shown in (3-28). For this purpose the system parameter is 

defined as the vector containing kp  for ρ1k N= ⋯ , where ρN  is the total number of parameters. 

In this test, the χ2-value is derived for each element k from (3-33) by assuming 0 for .lp l kδ = ∀ ≠  

Now, define  

1 1
2 2ˆ ˆ ˆand

kk pJ Jζ ζ− −= Σ = Σɶ ɶ  (3-38) 

where ˆ
kpJ is the consistent estimate of ( )kJ p  and 

1
2ˆ−Σ  is the matrix square root of the inverse of 

ˆ.Σ  Such decomposition of the covariance matrix to its inverse roots is possible since it is positive 

definite. 

Based on (3-38) and in view of (3-28), the new residual is distributed as 

0

1

(0, ) under 

( , ) under 

H

J H
ζ

δθ


→ 



I

I
ɶ

ɶ

N

N
 (3-39) 

where Jɶ  is a matrix collecting all vectors 
kJɶ  for ρ1k N= ⋯ ,  as its columns. Hence, the GLR test 

(3-32) yields the χ2-test for each parameter kp  as 

2( )
T T

k k
k T

k k

J J
p

J J

ζ ζ
χ =

ɶ ɶɶ ɶ

ɶ ɶ
 (3-40) 

Therefore, the damaged (changed) element can be identified as the element k with higher 

2 ( )kpχ  value (Balmès et al. 2008; Basseville et al. 2004).  
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The proposed test for each element k is based on the assumption of damage only in the 

element being tested. This assumption is not true when more than one element is damaged or when 

testing the undamaged elements while another element is damaged. Thus, the results from this test 

are approximate in these situations as the effect of other elements might be partially present in the 

evaluated χ2-value. This effect is identified in following subsection and a remedy is introduced. 

3.3.3 MinMax test 

In this test, the effect of changes in other elements on the χ2-test value of an element is removed. 

This removal is achieved in (Basseville 1997; Döhler et al. 2014c) by projecting the residual on 

the element being tested and removing the projections from other elements (being “blind” to other 

elements). Therefore, in this test the computed χ2-value for an element conveys only the 

information from the change in that element while being blind to the changes in other elements. 

This will reduce the chance of false positive result for the undamaged elements. 

In order to evaluate the projected χ2-test for an element, e.g. k with property kp  and 

ρ1k N= …  , the corresponding Jacobians are partitioned as 

1
2

1
2

1 1 1 ρ

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ
k

k k N

a p

b p p p p

J J

J J J J J
− +

−

−

 = Σ


 = Σ  

ɶ

ɶ ⋯ ⋯
 (3-41) 

By this definition, the Fisher information matrix can also be partitioned consistently as 

T aa ab

a b a b

ba bb

F F
F J J J J

F F

 
   = =     

 
ɶ ɶ ɶ ɶ  (3-42) 

in which 

, ,

, .

T T

aa a a ab a b

T T

ba b a bb b b

F J J F J J

F J J F J J

= =

= =

ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
 (3-43) 
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By defining 
1
2ˆζ ζ−= Σɶ  and in view of (3-41), the partial residuals 

aζɶ  and 
bζɶ  corresponding 

to the discretization a and b can be defined as 

,T T

a a b bJ Jζ ζ ζ ζ= =ɶ ɶ ɶ ɶɶ ɶ  (3-44) 

which are normally distributed in consideration of (3-28) as 

( , )

( , )
a aa a ab b aa

b ba a bb b bb

F F F

F F F

ζ δ δ

ζ δ δ

 → +


→ +

ɶ

ɶ

N

N
 (3-45) 

where a kpδ δ=  and 
ρ1 1 1

T

b k k Np p p pδ δ δ δ δ− +
 =  ⋯ ⋯ . Therefore, the robust residual *

aζ  

defined as  

* 1
a a ab bb bF Fζ ζ ζ−= −ɶ ɶ  (3-46) 

is also distributed normally as 

* * *( , )a a a aF Fζ δ→ N  (3-47) 

where  

* 1
a aa ab bb baF F F F F−= − . (3-48) 

The corresponding robust χ2-test can be then defined as 

* *2 * 1* ( ) T

k a a ap Fχ ζ ζ−= . (3-49) 

The robust χ2-test in aδ  is independent of bδ  as can be seen in (3-47) and (3-48). 

It should be noted that the expected value of the robust χ2-test is zero when 0aδ =  while 

the expected value of the test from the sensitivity based approach is not zero and equals to ab bF δ . 

Moreover, although for a damaged element the robust χ2-test has smaller or equal value than the 
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sensitivity based approach (as 1
ab bb baF F F−  is semi positive definitive)1, but the effect of damage in 

other elements is removed from this factor. This makes the damaged elements more 

distinguishable than the other test. 

This test can be repeated for each element and the elements with higher robust χ2-value are 

linked to the changed elements. It is worth mentioning that this test is also independent of the 

scaling of the Jacobian matrices (Basseville 1998; Döhler 2011) as will be discussed in Chapter 5. 

 

 

 

 

 

 

 

 

 

 

                                                 
1 Semi definiteness comes from the occurrence that modeshapes sensitivities (a and b) be orthogonal 
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Chapter  4: Impact of Measurement Noise and Length on the Statistical 

Subspace Damage Detection Technique 

4.1 Introduction 

Two main challenges in health monitoring of real structures are low number of sensors and 

existence of noise in the measurements. Statistical damage detection methods including SSDD 

have a robust architecture that can deal with sparsely instrumented structures, at least for the level 

one of damage detection, namely investigating the existence of damage. Moreover, these methods 

can also deal with noisy data due to their intrinsic statistical approach to the problem. In order to 

assess and to predict the performance of the SSDD method in real-life SHM problems, the impact 

of the measurement noise and also of the measurement length on the performance of the SSDD 

method is of interest. While previous studies (Döhler et al. 2014b; Döhler and Mevel 2013) 

investigated the effect of changes in the unknown excitation properties on the SSDD technique, 

the impact of measurement noise and length have never been elaborated. 

In this chapter both effects on the SSDD technique will be investigated in the mathematical 

theory of the method. Existence of noise in experimental data is inevitable. There are different 

sources of the noise in ambient vibration testing of a structure such as the change in the excitation 

sources (Döhler et al. 2014b; Döhler and Hille 2014), noise of measuring instruments and human 

error. Moreover, as suggested in different studies such as (Alvandi and Cremona 2006), the data 

quality (noise ratio) can affect significantly on the damage detection test and , therefore, 

investigating the effect of measurement noise on the SSDD technique is an important factor in 

assessing its functionality. It was demonstrated that SSDD technique can perform robustly under 

ambient excitations with changing statistics (Döhler et al. 2014b; Döhler and Mevel 2013). 
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In this chapter, the main contributions include analyzing the theory associated to the effects 

of the measurement noise and number of samples on the SSDD technique. This study helps in 

having a better understanding of the results from the SSDD approach. Moreover, these theorems 

help on the evaluation of system identification approaches, because the variance of the identified 

system parameters (in here, system parameter refers to the eigenstructure) are directly related to 

the noise. Although this noise does not have effect on the expected value of the parameters 

evaluated from system identification approaches, but they affect on the variance of these 

parameters which is recently of interest to operational model analysis approaches too. 

4.2 Properties of χχχχ2-test 

The residual ζ  is a function of number of samples and the noise in the measured data. The 

dependence of this variable on the number of samples is explicit in equation (3-23). Moreover, 

analogous to the effect of change in the excitation properties (Döhler et al. 2014b), additional 

measurement noise superposed on the measured data will affect on the cross covariance between 

the outputs, and hence, on the estimated Hankel matrix. Thus, the evaluated residual (3-23) and its 

covariance Σ  are a function of the superposed noise. 

Since in this chapter mainly the effect of measurement noise and number of samples is 

investigated, the dependence of variables to these parameters are needed to be notified over their 

symbols. Therefore, for example, e

Nζ , ˆeΣ  and 2
Nχ  will be used, respectively, instead of ζ , Σ̂  and 

2χ , with keeping the same properties. The indices N and e represent, in order, the number of 

samples and measurement noise level in the measured data. 

 It should be noted that the estimated covariance matrix is a function of number of samples 

as well, but in its asymptotic basis, the effect of number of samples is removed as N goes towards 

infinity, i.e. lime e

N
N→∞

Σ = Σ . 
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Hence, both the number of samples and measurement noise can change the residual and 

the final evaluated  χ2-value. In this section their effect on the non-parametric  χ2-test is studied 

for a constant damage. 

It is always assumed that the residual covariance eΣ  is estimated once on healthy data from 

the reference state of the structure, where usually lots of data is available allowing for a good 

covariance estimation (Döhler et al. 2014b). The covariance is never recalculated when testing a 

residual e

Nζ  for damage that is computed on new test data as discussed in subsection 3.2.6. 

Before starting the analysis, we recall a basic property of the  χ2-distribution: let γ be a  χ2-

distributed variable, d its number of degrees of freedom and nc its non-centrality parameter, then 

we have  

cd nγ = +E . (4-1) 

4.3 Effect of number of samples 

The effect of number of samples can be seen in residual (3-23) both explicitly in terms of √� and 

implicitly such as its variance and the change in the system parameter. The reason of pre-

multiplying the square root of number of samples in the residual vector is that based on the Central 

Limit Theorem, the resultant product, i.e. (3-23), is distributed asymptotically normal as stated in 

(3-28), with its covariance being independent of the number of samples. A detailed analysis is 

made in this section. 

4.3.1 Effect on the residual covariance 

Since the asymptotic residual covariance is the same in reference and damaged states (see Eq. 

(3-28)), an estimate ˆ eΣ of the covariance matrix eΣ  is more conveniently obtained from data in the 

reference state of the structure under the assumption of no changes in the noise properties of the 
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system (Döhler et al. 2014b). The computation of the covariance estimate is described in detail in 

(Döhler et al. 2014b) and in section 3.2.6. Note that the asymptotic covariance eΣ  is independent 

of the number of samples N, which can also be seen in (3-28) considering the CLT. Hence, the 

expected value of the covariance estimate ˆ eΣ  neither depends on the number of datasets nor their 

length used in the estimation. Of course, the quality of the estimation improves when using more 

data, and we assume that sufficient data has been used to achieve an accurate estimation.  

4.3.2 Effect on the     χχχχ2-test value  

Considering CLT and (3-28), the residual is approximately Gaussian for large number of samples 

N, and it holds  

0

1

(0, ) under 

( , ) under 

e

e

N e

H

H
ζ

δ
≈

 Σ


Σ

N

N
 (4-2) 

where e
Nδ = ϒ  with ( )0 1 0 1

ˆvec( ) vec( )e T T

p pS S+ +ϒ = =E H H .  

Note that eϒ  depends on the expected value 1p+H  of the Hankel matrix of the current 

system (which is independent of the number of samples N), and 1
ˆ

p+H  is a consistent estimate of 

matrix 1p+H . Note also that 0eϒ =  if the system is in the reference state due to the definition of 

the null-space. 

In the following, the influence of N on the expected value of the  χ2-test variable in (3-35) 

is investigated. 

4.3.3 Proposed theorems on the effect of number of samples on the     χχχχ2-test 

In this section, two theorems will be proposed and proved in order to predict the behavior of the 

 χ2-test under the influence of number of samples when the structure is damaged or undamaged. 

These theorems are presented in the following. 
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Theorem 4.1: Under the undamaged state of the structure, i.e. H0 is true, increase or 

decrease of the number of samples does not change the mean of the χ� value. 

Proof: Since (0, )e e

Nζ Σ≈ N  under H0 (for sufficiently large number of samples N), the 

non-centrality parameter of the resulting  χ2-test variable in (3-35) is 0, as stated in (3-34). From 

the property (4-1) of the  χ2-distribution it follows 2( )N dχ ≈E  where dim( )e

Nd ζ= , and d is the 

number of degrees of freedom of  χ2-value and independent of N. 

Theorem 4.2: If the structure is damaged, i.e. H1 is true, change of the number of samples will 

result in a change (in the same direction) in the mean of the evaluated χ2 test variable. 

Proof: Under H1 the non-centrality parameter of  χ2-value is 1( )eTδ δ−Σ . Because 

e
Nδ = ϒ , the non-centrality parameter yields 1( ) ( )e T e e

N
−ϒ Σ ϒ , where both eϒ  and eΣ  are 

independent of N. From the property ( 4-1) of the non-central  χ2-distribution, it follows 

2 1( ) ( ) ( )e eT e

N d Nχ −≈ + ϒ Σ ϒE  (for sufficiently large number of samples N). Thus, the mean of the 

test variable grows (or decreases) when the number of samples of the same damaged system grows 

(or decreases). 

4.4 Effect of measurement noise 

Effect of the amount of measurement noise is investigated in two settings. In the first one, the 

properties of the measurement noise are the same in the reference state and possibly damaged state, 

while in the second setting they are different. Each of these settings are investigated in the 

following two subsections. 

First, some properties regarding the noise properties of the state space system (3-3) are 

recalled (Van Overschee and De Moor 1996). They are given by 
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( )T T

k

k

k

k T

w Q S
w

S R
ε

ε
    

=    
   

E . (4-3) 

Only matrix R depends on the variance of the measurement noise. Note that the 

measurement noise is denoted as e, and the output noise term kε  is in fact a sum of the 

measurement noise and the excitation noise in the case of acceleration measurements (reader is 

referred to ( 3-7)). In this case matrix S only depends on the excitation noise, assuming that 

excitation and measurement noise are independent.  

With these definitions, the expected value of the Hankel matrix does not depend on the 

measurement noise, since 1( )T i

i k k iR y y HF G
−

−= =Ε  for 1i ≥ , where TG FDH S= + , with D being 

the state covariance (assuming zero mean). None of these quantities depend on the measurement 

noise under the previous assumptions. 

However, the residual covariance lim (( )( ) )e e e e e

N N N
N

T

Nζ ζ ζ ζ
→∞

Σ = − −Ε Ε Ε  depends on the 

measurement noise. The mathematical analysis of the relationship between residual covariance 

and measurement noise is demonstrated in Appendix A. It can be seen that the residual covariances 

before and after addition of noise are related as 

2 1e e v

ΣΣ = Σ + ∆ . (4-4) 

By assuming that a Gaussian distributed noise is applied to the measurements with the 

mean equal to zero and the standard deviation equal to a ratio β of the standard deviation of the 

measurements, v

Σ∆  is a matrix containing fourth order polynomials of β (Appendix A). For the 

analysis of the effect of changes in the measurement noise, 1e  refers to the noise properties of the 

data before applying an additional measurement noise and 2e  refers to the data with the additional 

measurement noise, i.e. 2 1 ee e δ= + . This is the case if each of the measured signals in the first 
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configuration have a lower signal to noise ratio than the respective signals in the second 

configuration (while the properties of the ambient excitation noise remain the same). A higher 

measurement noise leads to larger variations in the residual and thus to a bigger residual covariance 

as shown in Appendix A.  

The effect of changes in the measurement noise is now investigated in two settings. In the 

first one, the noise properties in the reference state and in the possibly damaged state are the same, 

while in the second setting they are different. 

4.4.1 Effect of noise with equal properties between the reference state and possibly 

damaged state 

In this section, it is assumed that the measurement noise properties in data from reference state and 

possibly damaged state are equal. We compare different noise properties that are equal in both 

states. Note that the residual covariance matrices 1eΣ  and 2eΣ  for different noise properties 1e  and 

2e  are assumed to be obtained from reference datasets under their respective conditions. Two 

theorems (for damaged and undamaged structures) are presented in here on the effect of 

measurement noise with equal properties in the reference state and test state. 

4.4.1.1 Proposed theorems  

Theorem 4.3: If the structure is undamaged and the noise properties of both the reference 

state data and the current state data are equal, then an increase or decrease of the noise in both 

states does not change the expected  χ2-value. In other words, 

1 1 1 2 2 21 1( ) ( ) ( ) ( )e e e e e eT T

N N N Nζ ζ ζ ζ− −   Σ = Σ   Ε Ε  under H0. 
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Proof: From the property of the  χ2-distribution in (4-1) it follows that the expected value 

of the respective  χ2-values is 1 2)dim( dim( )e e

N Nd ζ ζ= =  under H0, as in proof of Theorem 4.1, 

which is independent of the noise. 

Theorem 4.4: If the structure is damaged and the noise properties of both the reference 

state data and the current state data are equal, then an increase or decrease of the noise in both 

states results in a change (in inverse direction) in the expected χ2 value for a constant damage. In 

other words, if 2 1 ee e δ= +  then 2 2 2 1 1 11 1( ) ( ) ( ) ( )e e e e e eT T

N N N Nζ ζ ζ ζ− −   Σ < Σ   Ε Ε  under H1. 

Proof: As shown in Section 3.1.1, the measurement noise does not influence the expected 

value of the respective Hankel matrices. Hence, 1 2e e

N Nζ ζδ == Ε Ε  is equal for both noise 

configurations (see also ( 3-34)), while the non-centrality parameters are 1 1 1( )ee T

cn δ δ−= Σ  and 

2 2 1( )ee T

cn δ δ−= Σ , respectively. Due to assumption 2 1e e v

ζΣ= + ∆Σ Σ  it follows 

2 12 1 1( ) ( )e T e T v

c

en
ζ

δ δ δ δ− −
Σ== Σ Σ + ∆ . By using the matrix inverse lemma it holds 

( )1 1 1 1 1
1

1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( )e e e e ev v

ζ ζ

−
− − − − − −

Σ ΣΣ + ∆ = Σ − Σ ∆ + Σ Σ . Thus, 2 11 1 1( ) ( )e e− − −
ΣΣ = Σ − ∆  and 

12 1e Te

c cn n δ δ−
Σ= − ∆  where 

( )1 1 1
1

1 1 1 1 1( ) ( ) ( ) ( )e e ev

ζ

−
− − − − −
Σ Σ∆ = Σ ∆ + Σ Σ . (4-5) 

Since 1eΣ and v

ζΣ∆ (as shown in Appendix A) are positive definite matrices, 1−
Σ∆  is a positive 

definite matrix and therefore 1 0Tδ δ−
Σ∆ > . Hence we have 2 1e e

c cn n< . Then, the assertion follows 

from property (4-1) of the  χ2-distribution. 
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4.4.2 Effect of noise with different properties between the reference state and possibly 

damaged state 

In this section it is assumed that the measurement noise will change in the test data irrespective to 

the noise in the reference data where the residual covariance was computed. Note that since under 

this condition the noise properties of the residual do not correspond to its covariance, one would 

need to repeat the computation of the covariance matrix to accommodate noise changes in a correct 

test (Döhler et al. 2014b). However as mentioned before, in practice the numerical computation of 

the covariance on each tested dataset is complex and impractical. Hence, the covariance is usually 

only computed once in the reference state assuming that the statistical characteristics of the noise 

are not changed. In this section we investigate the consequences of using different noise properties, 

which violates this assumption. 

First, the effect of changes in the measurement noise of the test data are investigated, while 

the noise level in the residual covariance remains constant. Subsequently, the effect of different 

noise levels in the residual covariance are investigated, while the noise level in the test data remains 

constant. Two theories on these effects of the measurement noise on the χ�-test are presented in 

the following section.  

4.4.2.1 Proposed theorems 

Theorem 4.5: Change in the noise properties of the test data results in a change in the 

expected χ�-value in the same direction, regardless to the state of the structure. In other words, if 

2 1 ee e δ= +  then 2 1 2 1 1 11 1( ) ( ) ( ) ( )e e e e e eT T

N N N Nζ ζ ζ ζ− −   Σ > Σ   Ε Ε  both under H0 and H1. 

Proof: Analogous to proof of Theorem 4.4, it follows from property ( 4-1), that

2 2 2 21 1( ) ( ) ( )e e e eT

N N

Tdζ ζ δ δ− − Σ = + Σ Ε . Having 2 11 1 1)( ( )e e− − −
Σ= − ∆Σ Σ , it follows from ( 4-5) 
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2 2 2 2 1 2 2 21 1 1( ) ( ) ( ) ( ) ( )e e e e e e e eT T T

N N N N N Nζ ζ ζ ζ ζ ζ− − −
Σ     Σ = Σ − ∆     Ε Ε Ε . The left expectation corresponds 

now to a standard  χ2-distribution and hence 

2 1 2 2 2 2

1 2 2

1 2 2

1 1

1

1

1

1 1

1 1

( ) ( ) ( )( ) ( )

(( ) ) ( )

( ) ( )

( )

e e e e e eT TT

eT

N N N N

e eT

N N

e e eT

N N

T T

d

d

d

δ δ

δ δ

ζ ζ ζ ζ

ζ ζ

ζδ δ δ δ ζ

−− −
Σ

− − −
Σ Σ

− −
Σ Σ

−

   Σ = Σ ∆+   

 − ∆ ∆ 

 Σ

+

∆

= + Σ +

= + ∆ − +

Ε Ε

Ε

Ε

 

which is rewritten as 

2 1 2 1 1 1 2 21 1 1 1( ) ( ) ( ) ( ) ( )e e e e e e e eT T T

N N N N N N

Tζ ζ ζ ζ δ ζ ζδ− − − −
Σ Σ     Σ = Σ − ∆ ∆    +  Ε Ε Ε . (4-6) 

Define 2 2e e

N Nξ ζ δ= − , then we have 2 (0, )e e

Nξ → ΣN  by considering ( 3-34). By this 

definition (4-6) is rewritten as 

2 2 2 2 2 2 21 1 1 1 1( ) ( ) ( ) ( ) 2e e e e e e eT T T T T

N N N N N N Nζ ζ ξ δ ξ δ δ δ ξ ξ δ ξ− − − − −
Σ Σ Σ Σ Σ        ∆ = + ∆ + = ∆ + ∆ + ∆        Ε Ε Ε Ε Ε  

in which 2 21 1 0e eT T

N Nδ ξ δ ξ− −
Σ Σ   ∆ = ∆ =   Ε Ε . Therefore, in view of (4-6) 

2 1 2 1 1 1 2 21 1 1( ) ( ) ( ) ( ) ( )e e e e e e e eT T T

N N N N N Nζ ζ ζ ζ ξ ξ− − −
Σ+     Σ = Σ ∆     Ε Ε Ε  

where 2 21( ) 0e eT

N Nξ ξ−
Σ ∆ > Ε  since 1−

Σ∆ is positive definite. Comparing now with 

1 1 11( ) ( ) ,e e eT

N Nζ ζ− Σ Ε  the assertion follows both for H0  (where 0δ = ) and for H1. 

 

Theorem 4.5 may be somewhat counterintuitive as it states “less noise leads to a weaker 

reaction of the test”. However, this would not be the case if the appropriate covariance matrix had 

been used, which would be of lower magnitude and thus would normalize the residual correctly 

by dividing it with lower values. 

Theorem 4.6: Regardless of the state of the system, change in the noise properties of the 

reference data, on which the residual covariance is computed, results in a change in inverse 
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direction in the expected χ�  value. In other words, if 2 1 ee e δ= +  then 

1 2 1 1 1 11 1( ) ( ) ( ) ( )e e e e e eT T

N N N Nζ ζ ζ ζ− −   Σ < Σ   Ε Ε  both under H0 and H1. 

Proof: The proof is analogous to the proof of Theorem 4.5. We have 

1 1 1 1 11( ) ( ) ( )e e e eT

N N

Tdζ ζ δ δ−− Σ = + Σ Ε , and since 2 11 1 1)( ( )e e− − −
Σ= − ∆Σ Σ , 

1 2 1 1 1 1 1 11 1 1( ) ( ) ( ) ( ) ( )e e e e e e e eT T T

N N N N N Nζ ζ ζ ζ ζ ζ− − −
Σ     Σ = Σ − ∆     Ε Ε Ε . Hence the assertion follows both for 

H0 and for H1, because 1−
Σ∆ is positive definite. 

4.5 Discussion and practical conclusions 

Considering Theorems 4.1 and 4.2, the expected χ�-value is not affected by data duration in the 

ideal undamaged state. This will make the test insensitive to the number of samples. However, 

when the structure is damaged, the χ�-value will be affected by the number of samples. In other 

words, if there is more data the damage state becomes more distinct and identifiable. Therefore, 

by having more samples, the damage detectability will be increased. 

It can be inferred from Theorems 4.3 and 4.4 that if the noise in the test data is being 

increased, the detectability of damage will be less. Moreover, Theorem 4.4 is also intuitive in the 

sense that higher noise, i.e. a lower signal-to-noise ratio, decreases the quality of the data and 

makes it harder to detect damage, which is reflected in the lower  χ2-test value. 

Considering Theorems 4.5 and 4.6, the unequal noise between the reference state and the 

test state results in the false alarm or not detecting the damage, when the noise level is high. Based 

on Theorem 4.5 if the reference state includes a very higher noise ratio than the test state, the 

damage cannot be identified, and if the test state has a very higher noise ratio than the reference 

state, then the false alarm would be the result. Hence, the noise ratio should be almost similar 

between these states in order to have an appropriate result from the χ�-test. 
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Therefore, it can be concluded that the number of samples should be high enough in the 

reference state and test state. Moreover, for the safety threshold creation and testing, the number 

of samples should be similar and not changed. With having a higher number of samples we will 

be able to detect smaller damages and vice versa. 

Furthermore, the measurement noise characteristics between the reference state and test 

state should be almost similar and not very different. The lesser the noise ratio would be, the better 

the quality of the detection will be. 

Finally, it should be noted that in a real case study, as will be shown, the expected value of 

the residual in the undamaged condition is not zero as suggested in (3-34) and it is a small value, 

namely ε . Therefore, Theorems 4.1 and 4.3 will not be valid for the undamaged condition in 

practice and the χ�-test will behave same as for the damaged conditions, i.e. Theorems 4.2 and 

4.4, but with less intensity (since ε  is small). This will be shown and discussed in Chapters 6 and 

7. 
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Chapter  5: Statistical Subspace Damage Localization in Practice 

5.1 Introduction 

As shown in section 3.3, the SSDD framework offers the possibility to detect parameters that are 

responsible for the changes in the residual function. Hence, by defining the parameter set as the 

collection of parameters linked to a finite element model, e.g. stiffness, mass, damping etc., we 

can detect the parts of the model that has changed due to this damage. 

While the theoretical framework for this localization approach has been set up previously, 

as described in section 3.3, it has never been applied to real structures in combination with realistic 

finite element models. Reasons for this were the missing link between the data-driven residual and 

the finite element model, which is made through a sensible parameter choice (and clustering) and 

the respective sensitivity computations. In this chapter, an applicable scheme for the required 

sensitivity computation is proposed for realistic applications, which makes the application of the 

damage localization possible in practice. 

As mentioned, in this approach in addition to the data driven residual, an analytical model 

of the structure, e.g. finite element model, is used to localize the damage. This analytical model 

needs to be created for the system in the reference state only and there is no need to update the 

model for the damage testing. This model is used to calculate Jacobians of the data driven residual 

to each physical parameter of the structure. The Jacobians are a bridge in connecting the data 

driven domain, i.e. residual, to the analytical model domain, i.e. physical parameters. Herein, the 

challenges in connecting the data-driven residual from the SSDD method to the physical 

parameters of the structure will be addressed. Finally, some methods are proposed in dealing with 

these challenges. 
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5.2 Sensitivity analysis 

In this section, the sensitivity of the residual is developed with respect to physical parameters of 

the structure. Let the system parameter θ  be set as the vector containing all physical properties (

kp  for ρ1:k N= ) of the elements of the structure (e.g. stiffness, mass, sectional area, elasticity 

modulus, reduction factor, etc). Therefore, we have 
ρ1

T

Np pθ  =  ⋯ , where ρN  is the total number 

of parameters considered for damage localization. By this definition and by assuming damage as 

change in one or some of the system parameters θ , in view of (3-28) the expected value of the 

residual ζ  under the hypothesis of small deviation is computed as 

( ) Jζ δθΕ ≃  (5-1) 

where J  is the sensitivity of the residual function with respect to all of the parameters θ , i.e. all 

physical properties kp . 

In order to compute Jacobian J , each of its columns are the sensitivities of the residual 

vector with respect to each physical parameter kp  for ρ1:k N= , i.e. 
1 2 ρNp p pJ J J J =

 
⋯ . 

The methodology is in finding the dependencies in a consequential manner as shown in next figure.  

 

Figure 5.1 Connecting the data-driven residual to the analytical model 

As shown in Figure 5.1, the residual vector is firstly related to the discrete-time 

eigenstructure. The reason is that the observability matrix (from which the residual is evaluated) 

can be directly related to the discrete-time eigenstructure in its modal basis (see Appendix B.1). In 

the next stage this eigenstructure is related directly to the continuous-time eigenstructure as shown 

in ( 3-9). Subsequently, the continuous-time eigenstructure is related to the modal parameters 

Residual vector
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eigenstructure

Continuous-time 

eigenstructure
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through equations ( 3-10) and ( 3-11), and finally, the modal parameters are depending on the 

physical parameters of the structure. This dependency is evaluated using an analytical model, e.g. 

finite element model, of the structure. Accordingly, the Chain rule is employed in connecting the 

residual function (3-23) to the physical parameters kp  based on Figure 5.1 as 

( , ) ( , ) ( , , )
( , ) ( , , )( ) ( , )

k

f

k f pJ p J J J Jλ ϕ µ ψ ξ
µ ψ ξλ ϕ ℘

℘=  (5-2) 

in which, ( )kJ p  is one column of the Jacobian matrix J , i.e. [ ] ( )k kJ J p= , and J  is consisting 

of vectors corresponding to all elements considered in damage localization test; ( , )J λ ϕ  is the 

sensitivity of the residual to the eigenstructure ( , )λ ϕ  and J •



 is the consistent Jacobian of 

parameters •  with respect to 
 . Computation of the Jacobians in (5-2) is described in the next 

subsection. 

5.2.1 Calculating the sensitivities 

Since the modal parameters of the discrete-time and continuous-time systems are complex 

conjugate values, computation of Jacobian matrices in (5-2) is performed in two ways based on 

the arrangement of these modal parameters: complex-valued and real-valued approaches. The 

difference between the real-valued approach and the complex-valued approach is in the numerical 

computation procedure; in the real-valued approach the complex valued eigenstructure is replaced 

by its real and imaginary parts consistently which will make the computational procedure more 

efficient and practical. Therefore, the eigenstructures of the discrete-time and continuous-time 

systems can be represented either in their complex-valued format, i.e. ( , )λ ϕɶ ɶ  and ( , )µ ψɶɶ  or real-

valued format, i.e. ( , )λ ϕ  and ( , )µ ψ . Because the computation of these Jacobians is more 

efficient and practical in real-valued format, these eigenstructures are used as real-valued 

parameters.  
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It should be noted that both the real-valued and complex-valued Jacobians result in the 

same final Jacobian in ( 5-2) and only their procedure is different in the organization of the 

parameters. These approaches will be discussed in the following subsections. 

5.2.1.1 Computation of Jacobian ( , )J λ ϕ  

The Jacobian matrix ( , )J λ ϕ  contains the sensitivities of the residual vector with respect to the 

real-valued modal parameters of the discrete-time system, i.e. ( , )λ ϕ . The computation of this 

Jacobian is performed by composing the observability matrix from the eigenstructure ( , )λ ϕ  and 

subsequently derivating the residual computed from this matrix with respect to ( , )λ ϕ . 

5.2.1.1.1 Complex valued Jacobian computation 

The defined parameters in (5-3) contain the eigenstructure ( , )λ ϕɶ ɶ  which are pairs of conjugated 

complex eigenvalues and modeshapes. Therefore, computation of complex-valued Jacobian 

( , )J λ ϕɶ ɶ  involves calculation of Jacobian with respect to the complex numbers which can be done 

directly as discussed in this section. 

In order to calculate the first part of (5-2) in complex-valued format, i.e. ( , )J λ ϕɶ ɶ , some 

definitions are necessary which are elaborated as follows. Let the model parameter ηɶ  be defined 

as the eigenstructure ( , )λ ϕɶ ɶ  with model order n, i.e. 

1

2 and     
vec( )

n

λ

λ
η

λ

 
 Λ   = Λ =   Φ 
 
 

ɶ
⋮

, (5-3) 

in which, Φ  represents a matrix containing all the vectors of the modeshapes iϕ  and vec() is the 

vectorization function of a matrix. By factorizing the block Hankel matrix 1,p q+H  as 
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1, 1Cp q p q+ += ΟH ɶ ɶ , (5-4) 

the complex-valued observability matrix 1p+Οɶ  is written in modal basis (look at Appendix B.1) as 

1p

p

+

Φ 
 Φ∆ Ο =
 
 Φ∆ 

ɶ
⋮

 (5-5) 

where ∆  is a diagonal matrix containing the eigenvalues λ , i.e. diag( )∆ = Λ . It should be noted 

that, as mentioned in Chapter 3, 1,p q+H  and 1p+Οɶ  share the same complex-valued left null space 

0 .Sɶ  Therefore, the left null space can be calculated from a Singular Value Decomposition (SVD) 

of 1p+Οɶ  or 1,p q+H  and hence 

 0 1 0T

pS +Ο =ɶ ɶ . (5-6) 

The derivative of the observability matrix (5-5) is introduced from (Basseville et al. 2000, 

2004) and writes as 

( ) ( )
1 1 1

1 ( 1) ( 1)
1

( ) ( )

0 0
vec

0 0

p p

r

p nr p n r

p

p p

n n n r

ϕ

η
ϕ

+ + × +
+

 ′Λ ⊗ Λ ⊗
∂ Ο  

′Ο = = ∈ ∂  ′Λ ⊗ Λ ⊗ 

I

I

… …
ɶ

ɶ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ℂ
ɶ

⋯ ⋯

 (5-7) 

where, 

def def
( ) 2 ( ) 1[1 ] , [0 1 2 ]p p T p p T

j j j j j j jpλ λ λ λ λ −′Λ = Λ =⋯ ⋯  for 1 j n≤ ≤ . (5-8) 

Now, in view of (3-23) and defining the parameter as (5-3), 

0 1,( , ) vec( )T

p qJ Sλ ϕ
η +

∂
=

∂
Hɶ ɶɶ

ɶ
 (5-9) 

which based on (5-4) and vectorization property vec( ) ( )vec( )TABC C A B= ⊗ , can be rewritten 

as  
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0 1( , ) ( )T T

q pJ C Sλ ϕ +′= ⊗ Οɶ ɶ ɶ ɶɶ . (5-10) 

Finally, since from (5-4) it follows †
1 1,q p p qC O + += Hɶ ɶ (†  represents pseudo inverse function), 

(5-10) writes 

†
1 1, 0 1( , ) ( )T

p p q pJ Sλ ϕ + + +′= Ο ⊗ ΟHɶ ɶ ɶ ɶɶ . (5-11) 

5.2.1.1.2 Real valued Jacobian computation 

In structural vibration analysis, typically the parameter ηɶ  defined in (5-3) consists of m pairs of 

conjugate complex values ( 2n m= ). Therefore, the computation of real-valued Jacobian ( , )J λ ϕ  

can be performed in an alternative approach dealing with only real values, based on (Basseville et 

al. 2004). 

Based on definition ( 5-3), Λ  and Φ  can be reorganized based on their consisting 

conjugate value pairs of ( ,c cΛ Φ ) as 

,c

c c

c

Λ 
 Λ = Φ = Φ Φ   Λ 

. (5-12) 

The parameter ηɶ  can also be analogously defined as pairs of conjugate parameters ( , )c cη η  

such that 

vec( )
c

c

c

η
Λ 

=  Φ 
 (5-13) 

from which, the observability matrix is reorganized as 

1 , diag( )

cc

c c c c

p c c

p p

c c c c

+

 ΦΦ
 
Φ ∆ Φ ∆ Ο = ∆ = Λ 

 
 Φ ∆ Φ ∆ 

ɶ

⋮ ⋮
. (5-14) 

Now by defining the real valued parameter as 
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( )

( ) vec( ( ))

( ) ( )

vec( ( ))

c

c c

c c

c

η
η

η

ℜ Λ 
 ℜ ℜ Φ   = =   ℑ ℑ Λ 
 

ℑ Φ 

, (5-15) 

the real valued observability matrix can be computed by 

1 1 1

( ) ( )

( ) ( )
( ) ( )

( ) ( )

c c

c c c c

p p p

p p

c c c c

+ + +

ℜ Φ ℑ Φ 
 ℜ Φ ∆ ℑ Φ ∆   Ο = = ℜ Ο ℑ Ο  
 ℜ Φ ∆ ℑ Φ ∆ 

ɶ ɶ
⋮ ⋮

 (5-16) 

where, 

1 1

1
,

2
m m

p p

m m

i
T T

i
+ +

− 
Ο = Ο =  

 

I I
I I

ɶ . (5-17) 

Based on the relation between the real valued and complex valued observability matrix, 

i.e. (5-17), and that the conversion matrix T is unitary, the left null space of 1p+Ο , i.e. 0S , is the 

same as the left null space of 1p+Οɶ , i.e. 0Sɶ . Therefore, the left null space of the real valued 

observation matrix can be used in computation of the residual function with the real valued 

parameter η . 

In the next step, by considering ( 5-15) and ( 5-16) the Jacobian of the real valued 

observability matrix writes as 

1 1

1
1

1 1

vec( ( )) vec( ( ))
( ) ( )vec( )

vec( ( )) vec( ( ))
( ) ( )

p p

c cp

p

p p

c c

η η

η

η η

+ +

+
+

+ +

 ∂ ℜ Ο ∂ ℜ Ο
 

∂ ℜ ∂ ℑ∂ Ο  ′Ο = =
 ∂ ∂ ℑ Ο ∂ ℑ Ο
 

∂ ℜ ∂ ℑ  

ɶ ɶ

ɶ ɶ
. (5-18) 
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In order to compute the Jacobian matrix 1p+′Ο  expanded in (5-18), its parameters will be 

related to the complex valued observability matrix 1p+′Οɶ  computed in (5-7). Thus, each complex 

value of 1p+′Οɶ  is expanded and then simplified using the Wirtinger derivatives operators as follows. 

1 1
1

1 1 1 1

vec( ( )) vec( ( ))

vec( ( )) vec( ( )) vec( ( )) vec( ( ))1
2 ( ) ( ) 2 ( ) ( )

p p

p

c c

p p p p

c c c c

i

i
i i

η η

η η η η

+ +
+

+ + + +

∂ ℜ Ο ∂ ℑ Ο
′Ο = +

∂ ∂

   ∂ ℜ Ο ∂ ℜ Ο ∂ ℑ Ο ∂ ℑ Ο
= − + −      ∂ ℜ ∂ ℑ ∂ ℜ ∂ ℑ   

ɶ ɶ
ɶ

ɶ ɶ ɶ ɶ
 (5-19) 

whose elements satisfy the Cauchy-Riemann equations ( 1p+Οɶ  is a polynomial function and hence 

complex differentiable) as  

1 1

1 1

vec( ( )) vec( ( ))
( ) ( )

vec( ( )) vec( ( ))
( ) ( )

p p

c c

p p

c c

η η

η η

+ +

+ +

 ∂ ℜ Ο ∂ ℑ Ο
=

∂ ℜ ∂ ℑ


∂ ℜ Ο ∂ ℑ Ο = − ∂ ℑ ∂ ℜ

ɶ ɶ

ɶ ɶ
. (5-20) 

Now by substituting (5-20) into (5-19) 

1 1
1

1 1
1

1 1
1

vec( ( )) vec( ( ))
,

( ) ( )

vec( ( )) vec( ( ))
( )

( ) ( )

vec( ( )) vec( ( ))
( )

( ) ( )

p p

p

c c

p p

p

c c

p p

p

c c

i
η η

η η

η η

+ +
+

+ +
+

+ +
+

∂ ℜ Ο ∂ ℜ Ο
′Ο = −

∂ ℜ ∂ ℑ

 ∂ ℜ Ο ∂ ℑ Ο
′ℜ Ο = =

∂ ℜ ∂ ℑ


∂ ℜ Ο ∂ ℑ Ο ′ℑ Ο = − = ∂ ℑ ∂ ℜ

ɶ ɶ
ɶ

ɶ ɶ
ɶ

ɶ ɶ
ɶ

 

(5-21) 

from which, (5-18) is rewritten as 

1 1
1

1 1

( ) ( )
( ) ( )

p p

p

p p

+ +
+

+ +

′ ′ ℜ Ο −ℑ Ο
′Ο =  ′ ′ℑ Ο ℜ Ο 

ɶ ɶ

ɶ ɶ
. (5-22) 

Finally, the real-valued Jacobian ( , )J λ ϕ  similar to (5-11) and (5-9) is computed as 
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†
1 1, 0 1( , ) ( )T

p p q pJ Sλ ϕ + + +
′= Ο ⊗ ΟH . (5-23) 

5.2.1.2 Computation of Jacobians ( , )
( , )J λ ϕ
µ ψ  and ( , )

( , , )fJ
µ ψ

ξ ℘  

The Jacobian of the eigenstructure of the discrete-time system, i.e. ( , )λ ϕ  to the one from 

continuous system, i.e. ( , )µ ψ , is represented by ( , )
( , )J

λ ϕ
µ ψ . By considering equation ( 3-9), the 

eigenvectors of both systems are equal and hence their corresponding Jacobian for each part, i.e 

real and imaginary parts, are identity matrix of size mr (r is the number of sensors). 

In order to calculate the derivation of the eigenvalue 
jλ  with respect to 

jµ , we should 

consider them in two real and imaginary parts based on the definition of real-valued 

parameterization (5-15). Hence, the Jacobian needs to be computed for real and imaginary part of 

eigenvalue 
jλ  with respect to real and imaginary parts of eigenvalue 

jµ . In view of (3-9),  

( ) ( )( ) ( ) ( ) cos( ( )) sin( ( ))j j ji

j j je e i
τ µ µ τ µλ τ µ τ µℜ + ℑ ℜ= = ℑ + ℑ  

which yields 

( ) ( )( ) cos( ( )), ( ) sin( ( ))j j

j j j je e
τ µ τ µλ τ µ λ τ µℜ ℜℜ = ℑ ℑ = ℑ . 

Therefore, the derivations are evaluated as 

( ) ( )
( ), ( )

( ) ( )

( ) ( )
( ), ( )

( ) ( )

j j

j j

j j

j j

j j

j j

λ λ
τ λ τ λ

µ µ

λ λ
τ λ τ λ

µ µ

∂ℜ ∂ℜ
= ℜ = − ℑ

∂ℜ ∂ℑ

∂ℑ ∂ℑ
= ℑ = ℜ

∂ℜ ∂ℑ

 . (5-24) 

Thus, considering that eigenvalues of a system are independent ( , )
( , )J

λ ϕ
µ ψ  can be defined based 

on (Basseville et al. 2004) as 
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1 1

( , )
( , )

1 1

0

0

m m

mr

m m

mr

J λ ϕ
µ ψ

 
 
 
 
 
 =
 
 
 
 
 
 

Ι

Ι

⋱ ⋱

⋱ ⋱

I

I

I

I

-I

-I

I

I

. (5-25) 

where ( ) , ( )j j j jτ λ τ λℜ = ℑI = I . The discretization of ( 5-25) is based on definition of 

parameter η  in (5-15). 

Jacobian matrix ( , )
( , , )fJ

µ ψ
ξ ℘  represents the Jacobian of the eigenstructure ( , )µ ψ  to the 

frequencies, damping ratios and modeshapes of the structure. The modeshapes of the structure are 

not changed in these systems similar to the eigenvectors of the continuous and discrete systems 

and therefore by positioning them all together, for each part the Jacobian will be equal to unitary 

matrix with dimension mr. Based on (3-11), the other derivatives are calculated as 

2

2

( ) ( )
2 , 2

( ) ( ) 2
2 1 ,

1

j j

j j

j j

j j j j

j

j j j

f
f

f

f

µ µ
πξ π

ξ

µ µ π ξ
π ξ

ξ ξ

∂ℜ ∂ℜ
= − = −

∂ ∂

∂ℑ ∂ℑ −
= − =

∂ ∂ −

 . (5-26) 

By defining row vectors 

( ) ( ) ( ) ( )
   and   j j j jM M

j j

j j j jf f

µ µ µ µ

ξ ξ

   ∂ℜ ∂ℜ ∂ℑ ∂ℑ
= =   

∂ ∂ ∂ ∂      
I I , 

the Jacobian matrix is evaluated as 
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1

( , )
( , , )

1

0

0

M

M

m

mr

f M

M

m

mr

J µ ψ
ξ ℘

 
 
 
 
 
 =
 
 
 
 
 
  

Ι

Ι

⋱

⋱

I

I

I

I

 (5-27) 

in which, the parameters ( , , )f ξ ℘  are organized as pairs of frequency and damping ratios, 

followed by the modeshapes. 

It should be noted that the computed damping ratio is one of the high variance variables in 

operational modal analysis. Moreover, in modal analysis of finite element models usually the 

damping is ignored. Therefore, the identified modeshapes will be also all real. In this case, all the 

columns related to the imaginary part of modeshapes (the most right columns) and the damping 

ratio can be removed from ( , , )
k

f

pJ
ξ ℘  in (5-27), consistently. 

5.2.1.3 Linear model sensitivity analysis with respect to physical parameters, ( , , )
k

f

pJ
ξ ℘  

The computation of the sensitivities of eigenstructure of a model to all its physical parameters is 

usually time consuming, since usually the model of structures consists of large number of 

parameters. This computation can be performed directly or by using mathematical differential 

approximation methods such as finite difference approach. In the following these two approaches 

are described. 

5.2.1.3.1 Direct sensitivity approach 

In this approach the last two Jacobians of (5-2), i.e. ( , ) ( , ) ( , , )
( , , )k k

f

p f pJ J J
µ ψ µ ψ ξ

ξ
℘

℘=  can be evaluated directly 

for each parameter without the need of evaluating ( , )
( , , )fJ

µ ψ
ξ ℘ .  

Based on derivation of eigenequation (3-2) for a linear model 
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2 2(2 ) ( ) ( ) 0j j

j j j j j j j

k k k k k

M C K
M C M C K

p p p p p

µ
µ µ µ µ µ

∂ ∂Ψ∂ ∂ ∂
+ Ψ + + + Ψ + + + =

∂ ∂ ∂ ∂ ∂
. (5-28) 

 Premultiplying (5-28) by T

jΨ  results in 

2 2(2 ) ( ) ( ) 0j jT T T

j j j j j j j j j j

k k k k k

M C K
M C M C K

p p p p p

µ
µ µ µ µ µ

∂ ∂Ψ∂ ∂ ∂
Ψ + Ψ + Ψ + + Ψ + Ψ + + =

∂ ∂ ∂ ∂ ∂
 (5-29) 

which in view of (3-2) yields 

 

2( )

(2 )

T

j j j j
j k k k

T

k j j j

M C K

p p p

p M C

µ µ
µ

µ

∂ ∂ ∂
Ψ + + Ψ

∂ ∂ ∂ ∂
= −

∂ Ψ + Ψ
. (5-30) 

By assuming of negligible damping and mass normalized modeshapes 
jΨ , i.e. 

T

j jMΨ Ψ = I , (5-30) will be simplified to 

21
( )

2
j T

j j j

k j k k

M K

p p p

µ
µ

µ
∂ ∂ ∂

= − Ψ + Ψ
∂ ∂ ∂

. (5-31) 

The sensitivity of modeshapes to the parameter pk can also be computed by rewriting (5-28) 

as 

2 2( ) (2 ) ( )j j

j j j j j j j

k k k k k

M C K
M C K M C

p p p p p

µ
µ µ µ µ µ

∂Ψ ∂ ∂ ∂ ∂
+ + = − + Ψ − + + Ψ

∂ ∂ ∂ ∂ ∂
. (5-32) 

and substituting (5-30) into it. 

It should be noted that ( 5-32) does not have a unique solution, since if j

k

k

J
p

∂Ψ
=

∂
 is a 

solution then  for j

k j

k

J
p

α α
∂Ψ

= + Ψ ∈
∂

ℝ  is also a solution for (5-32). This can be seen by writing 

the solution for (5-32) as 
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2 † 2( ) (2 ) ( )j

k j j j j j j j

k k k k

M C K
J M C K M C

p p p p

µ
µ µ µ µ µ

∂ ∂ ∂ ∂
= + + − + Ψ − + + Ψ ∂ ∂ ∂ ∂ 

. (5-33) 

Now another solution is computed by adding eigenequation (3-2) to (5-32) as 

2 2( ) (2 ) ( )j j

j j j j j j j j

k k k k k

M C K
M C K M C

p p p p p

µ
µ µ α µ µ µ

∂Ψ ∂  ∂ ∂ ∂
+ + − Ψ = − + Ψ − + + Ψ ∂ ∂ ∂ ∂ ∂ 

. 

whose solution is  

2 † 2( ) (2 ) ( )

.

j

k j j j j j j j j

k k k k

k j

M C K
M C K M C

p p p p

J

µ
µ µ µ µ µ α

α

∂ ∂ ∂ ∂
= + + − + Ψ − + + Ψ + Ψ ∂ ∂ ∂ ∂ 
= + Ψ

J
 (5-34) 

Therefore, any solution as  for j

k j

k

J
p

α α
∂Ψ

= + Ψ ∈
∂

ℝ  is a solution for the eigenvector 

Jacobian. It should be noted that in section 5.2.1.4 it will be shown that the final Jacobian is 

independent of the particular solution of j

kp

∂Ψ

∂
. However, in the damage localization of a structure 

for the sake of consistency, the basis of j

kp

∂Ψ

∂
 can be made unique by imposing a constraint, e.g. 

0jT

j

kp

∂Ψ
Ψ =

∂
, on the solution.  

Again it should be emphasized that after choosing the solution, it needs to be pre-multiplied 

by matrix L to calculate the sensitivities of modeshapes ψ , as seen in (3-2). 

In evaluating the sensitivities directly, the stiffness, mass and damping matrices of the 

structure are needed to be evaluated and then their sensitivities to the parameters be calculated. 

This might be a problem in using commercial software in modelling big structures or complex FE 

models. Moreover, in case of using these software, there might be no access granted to the full 

stiffness and mass matrices.  
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5.2.1.3.2 Finite difference method 

One of the simplest methods of indirect sensitivity analysis is the finite difference method. This 

method is computational more expensive than the direct method, however due to its simplicity and 

the increase of computational power of computers it is still widely used. The reason for being 

simple is that there is no extra analysis other than the evaluation of the function needed in 

computing the Jacobian.  

The basis of the theory in finite difference is based on the following equation: 

0

( ) ( )
lim

k

k k k

p
k k

F F p p F p

p pδ

δ
δ→

∂ + −
=

∂
 (5-35) 

where F is a function of physical variables kp . In calculating the sensitivity to each variable the 

other variables are kept constant and therefore the evaluation of function F needs to be repeated to 

the number of variables. Since (5-35) is exact if 0kpδ → , in practice only an approximation of 

the sensitivity can be computed by choosing kpδ  small enough. It should be noted that the value 

chosen for kpδ  cannot be chosen too small considering machine precision and computational 

error. Furthermore, it cannot be chosen large due to the high approximation of (5-35). Hence, the 

optimal value of this parameter can be evaluated by running a series of tests of different small 

kpδ  and choosing the smallest value which does not change the sensitivity values unreasonably. 

By decreasing kpδ  the change rate of the sensitivities should be decreased. Moreover, there are 

some other researches on choosing the optimal perturbation value kpδ  for dynamic models such 

as (De Pauw and Vanrolleghem 2003). 
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5.2.1.4 Independence of the residual Jacobian to non-uniqueness of modeshapes 

sensitivities 

It was shown in (5-32), that the solution for j

k

k

J
p

∂Ψ
=

∂
 is not unique and it can be any combination 

of  for j

k j j j

k

J
p

α α
∂Ψ

= + Ψ ∈
∂

ℝ . However, the final Jacobian is independent of 
j jα Ψ . In other 

words, in any basis that the solution for j

k

k

J
p

∂Ψ
=

∂
 is gained, the final Jacobian of residual ( )kJ p  

calculated from it yields similar unique result. This will be proved in the following lemma. This is 

important because it will help us in understanding why the evaluated Jacobian from different 

sensitivity analysis methods might be different, while the final Jacobian computed from these must 

be still identical. 

Lemma 5.1: The final Jacobian of residual ( )kJ p  is unique, although the solution for 

j

k

k

J
p

∂Ψ
=

∂
 is not unique. 

Proof: For simplification, this proof will be demonstrated in complex format of the 

eigenstructure. As mentioned before, the calculation of Jacobians can be performed in either real-

valued or complex-valued format and the final results are similar.  

After premultiplication by matrix L as suggested in section 5.2.1.3.1 (reader is referred to 

equation (3-2)) the effect of 
j jα ψ  will be investigated as a multiplier to all parameters of (5-2) 

preceding ( , )
( , )fJ

µ ψ
ξ . Since this part is only added on the modeshapes part of parameters, (5-2) with 

( , ) ( , ) ( , , )
( , , )k k

f

p f pJ J J
µ ψ µ ψ ξ

ξ
℘

℘=ɶ ɶɶ ɶ  is rewritten as 

( , ) ( , ) ( , ) ( , )
( , )( ) ( , ) ,

k k kk p p pJ p J J J J J lλ ϕ µ ψ µ ψ µψ
µψ αψλ ϕ ′ ′= = +
ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ

ɶɶ
ɶ ɶ  (5-36) 
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where  

1 1

0

n n

lαψ

αψ

α ψ

 
 
 =
 
 
 

⋮
 (5-37) 

Therefore, the evaluated Jacobian is written as 

( , ) ( , ) ( , )
( , ) ( , )( ) ( , ) ( , )

kk pJ p J J J J J lλ ϕ µψ λ ϕ
µψ µψ αψλ ϕ λ ϕ= +
ɶ ɶɶ ɶ ɶɶ

ɶ ɶɶ ɶ
ɶ ɶɶ ɶ  (5-38) 

whose second part needs to be equated to zero so that the proof is achieved. 

As shown in 5.2.1.2, the modeshapes are constant in the discrete and continuous systems 

and therefore ( , )
( , )J λ ϕ
µ ψ

ɶ ɶ

ɶɶ  will not affect this vector, i.e. ( , )
( , )J l lλ ϕ
µψ αψ αψ=
ɶ ɶ

ɶɶ . Moreover, since 
j jψ ϕ=  as per 

(3-9), we have 

1 1

0

n n

lαψ

α ϕ

α ϕ

 
 
 =
 
 
 

⋮
. (5-39) 

Now by multiplying ( , )J λ ϕɶ ɶ  to lαψ  in view of (5-10) it yields 

( )
1 1 1

( , )
( , ) 1 0 1 1 0

( )

( )
( , ) ( , ) ( ) ( )

( )

p

r

T T T T

p p p

p

n r n n

J J l J l C S l C Sλ ϕ
µ ψ αψ αψ αψ

αϕ
λ ϕ λ ϕ

α ϕ
+ + +

 Λ ⊗
 ′= = ⊗ Ο = ⊗  
 Λ ⊗ 

I

I

ɶ ɶ

ɶɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ⋮ . (5-40) 

From the mixed-product property of Kronecker product for 1j n= ⋯  

( ) ( ) ( )( ) ( ( )) ( )p p p

j r j j j j r j j j jα ϕ α ϕ α ϕΛ ⊗ = Λ ⊗ = Λ ⊗I I  

which by comparing to the composition of 1p +Οɶ  in (5-5) it can be seen that each nonzero element 

of (5-40) equals to a vector of 1p +Οɶ , i.e. ( )
1( ) [ ]p

j j p jϕ +Λ ⊗ = Οɶ . Hence,  
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( )
1 1 1

1
( )

( )
vec( A)

( )

p

r

p

p

n r n n

αϕ

α ϕ
+

 Λ ⊗
  = Ο 
 Λ ⊗ 

I

I

ɶ⋮  

where A  is a diagonal matrix with 
jα  on its diagonals. Hence, (5-40) is rewritten as 

( , )
( , ) 0 1( , ) ( )vec( A)T T

q pJ J l C Sλ ϕ
µψ αψλ ϕ += ⊗ Ο
ɶ ɶ

ɶɶ
ɶ ɶ ɶ ɶɶ  (5-41) 

which by employing the vectorization property of Kronecker product yields 

( , )
( , ) 0 1 0 1( , ) ( )vec( A) vec( A )T T T

q p p qJ J l C S S Cλ ϕ
µψ αψλ ϕ + += ⊗ Ο = Ο
ɶ ɶ

ɶɶ
ɶ ɶ ɶ ɶ ɶ ɶ ɶɶ . (5-42) 

Since 0 1 0T

pS +Ο =ɶ ɶ  in view of (5-6), 

( , )
( , ) 0 1( , ) vec( A ) 0T

p qJ J l S Cλ ϕ
µψ αψλ ϕ += Ο =
ɶ ɶ

ɶɶ
ɶ ɶ ɶ ɶɶ  (5-43) 

and hence, the second part of (5-38) is zero from which the assertion follows. 

5.2.1.5 Independence of the residual Jacobian to modeshapes scaling 

The scaling type of the modeshapes acquired from the analytical model of structure or the 

measured data will not emerge in the final χ2-value because it will not be affecting the Jacobian J, 

as will be demonstrated in here. Therefore, the scaling of the modeshapes can be any type such as 

mass-normalized or unit maximum value. However, they need to be scaled with the same 

procedure throughout the whole procedure of calculating (5-2). In other words, the scaling of the 

modeshapes used in building the observability matrix and all other parameters in (5-2) need to be 

identical. In here, the independence of Jacobian J to the modeshape scaling is proved in the 

following lemma. 

Lemma 5.2: The modeshapes scaling type, e.g. mass normalized or unit maximum value, 

does not affect the final Jacobian J.  
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Proof: This can be proved by looking into the constituting parts of J in (5-2). ( , )J λ ϕ  is 

computed from (5-23) in which 1p+Ο  is composed from the modeshapes. Since the scalar scaling 

of the modeshapes only affects on †
1p +Ο  inversely and on ( , , )

k

f

pJ
ξ ℘  directly, this scalar factor will be 

removed by the multiplication of †
1p +Ο  and ( , , )

k

f

pJ
ξ ℘  in (5-2). It should be noted that the Jacobians 

related to the modeshapes in the other parameters, i.e. ( , )
( , )J

λ ϕ
µ ψ  and ( , )

( , , )fJ
µ ψ

ξ ℘ , are unit and therefore 

do not affect the scalar factor. Hence, the final Jacobian will be independent of the scaling of the 

modeshapes used in †
1p +Ο  and ( , , )

k

f

pJ
ξ ℘  as long as they are identical. 

5.2.1.6 Invariance of the sensitivity and MinMax tests to the scaling of final Jacobians 

The scaling of the columns of Jacobian matrix J  does not affect the χ2-test in both the sensitivity 

based test and MinMax test (Döhler 2011), as will be proved in here. Therefore, this Jacobian is 

only projecting the residual based on its direction for each parameter on the χ2-value. This 

directionality and its implications will be used and discussed in clustering of elements later in this 

chapter. In this section, this invariance is demonstrated. 

Lemma 5.3: The χ2-test from both the sensitivity based and MinMax approaches is 

invariant to the scaling of the columns of the Jacobian matrix J. 

Proof: For the sensitivity based approach by keeping the same notation and using 
kJα ɶ  

instead of 
kJɶ , where α  is a scalar variable, the test (3-40) is written as 

2 ( )( )
( )

( )( )

T T T T

k k k k
k T T

k k k k

J J J J
p

J J J J

ζ α α ζ ζ ζ
χ

α α
= =
ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ
 (5-44) 

which shows the invariance property of the test to the scaling factor α . 
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In order to show the invariance property in the MinMax test, by using the same notation 

and substituting the Jacobians 
aJɶ  and 

bJɶ , with 
a aJ Tɶ  and 

b bJ Tɶ , respectively, where aT  and aT  are 

invertible matrices, the new scaled Fisher information matrix Fɶ  is computed as 

T T

aa ab a aa a a ab b

T T

ba bb b ba a b bb b

F F T F T T F T
F

F F T F T T F T

   
= =   

   

ɶ ɶ
ɶ

ɶ ɶ
. (5-45) 

Moreover, in view of (3-44) and (3-46), the scaled robust residual *
aζɶ  and writes as 

* *T

a a aTζ ζ=ɶ  (5-46) 

and (3-48) is rewritten as 

* 1 *( )( ) ( )T T T T T

a a aa a ab b b bb b b ba a a a aF T F T T F T T F T T F T T F T−= − =ɶ . (5-47) 

Therefore, the χ2-test (3-49) is rewritten as 

* * 1 * * * 1 * * * 1 **2 ( ) ( )T T T T T

k a a a a a a a a a a a a ap F T T F T T Fχ ζ ζ ζ ζ ζ ζ− − −= = =ɶ ɶɶɶ  (5-48) 

and hence 

*2 *2( ) ( )k kp pχ χ=ɶ  (5-49) 

which implies that the χ2-test is independent of the Jacobian matrix scaling. By having this 

invariance of the MinMax test and sensitivity based approach the assertion follows. 

5.2.2 Formation of the parameters of the Jacobian in the chain rule 

In the previous section it was described how to evaluate the Chain derivatives of (5-2) from the 

eigenstructure of the system. However, in the SSDD damage localization technique these 

parameters can be evaluated from an analytical model, e.g. finite element model, and or from the 

measured data from ambient vibration test. Thus, there are two sets of eigenstructures available 

for each part in the Jacobian Chain. 
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It is emphasized that the fundamental idea behind the SSDL method is to use the 

information from an analytical model of the structure along with the data measured. This model is 

the analytical relation between the eigenstructure and the physical parameters. The use of the 

analytical model is mainly in the Jacobian and it makes a connection between the data driven 

residual and the physical system parameters. 

5.2.2.1 Measured data eigenstructure versus analytical model modal parameters 

The residual defined in the SSDL method is derived from the mathematical operations on the 

measured data and has a mathematical notion while the finite element model is directly connected 

to the physical behaviour of the structure. In order to be able to use this model, a bridge connecting 

the mathematical notion to the physical model is needed. The derivative Chain in (5-2) is the bridge 

connecting these two domains. This will let us to benefit from a physical model of the structure 

along with the measured data to identify the damage. 

For the formation of this bridge, there should be a decision made on the use of the measured 

data eigenstructure versus the modal parameters from the analytical model, on each part of the 

Jacobians. The reason is that, the modal parameters identified from these two sources are generally 

not exactly the same even if a model updating has been performed. The parameters from the 

measured data are assumed more precise conditional to a good identification procedure. In general, 

the model updating on the analytical model is not necessary and not needed in the subspace damage 

localization procedure unless the modal parameters are very different than the identified ones and 

the model is not a good representative of the dynamic behaviour of the structure. The important 

accuracy needed for the damage localization is in the sensitivity values of modal parameters with 

respect to physical parameters. The scaling of these sensitivities is not affecting on the final χ2-

value as shown in 5.2.1.6. 
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Herein, two options are described and their performance will be investigated in Chapter 7. 

Since ( , )
( , )J

λ ϕ
µ ψ  and ( , )

( , , )fJ
µ ψ

ξ ℘  in the Jacobian formation, have closed-form evaluations and are 

related to transition from different systems, i.e. continuous and discrete systems, they can be both 

chosen from the same parameters from either the measured data or analytical model. Therefore, 

only based on the choice of the first and last Jacobians the two formations are defined: 

Formation 1: The first combination is simply chosen by evaluating all parts of (5-2) from 

the analytical model. In this way, all the parameters are consistent and the Jacobian is purely 

computed from the analytical model. Like so, the modal parameters of the analytical model are 

used in forming the observability matrix 1pO + , and only the Hankel matrix 1p+H  and 0S  are from 

the measured data. 

Formation 2: Using this formation, the first, second and third parts of the Jacobian are 

evaluated from the measured data eigenstructure and the last part is evaluated from the modal 

parameters of the analytical model. It should be noted that the modal parameters of the analytical 

model and the eigenstructure of the measured data need to be identified and adjusted in terms of 

scaling and order. Hence, one system identification is needed in the reference state prior to the 

localization of damage. 

The scaling of the modeshapes from the analytical model and the measured data need to be 

identical and therefore this scaling is described in the following subsection. 

5.2.2.2 Scaling of modeshapes from two sources 

By using the second formation described in previous subsection, there is a need in scaling the 

modeshapes obtained from the analytical model, i.e. ℘ , and measured data, i.e. ϕ  or ψ  since, 

ϕ ψ= . This scaling can be performed in typical ways such as modal mass scaling or unit maximum 

member. However, usually the mass matrix of the analytical model is complicated to truncate and 
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the modeshapes are obtained from limited number of degrees of freedoms on which a sensor is 

located. Therefore, the general scaling of these vectors is performed as follows. 

Since the scaling of the modeshapes are not matching, we have 

j jα ϕ℘ =  (5-50) 

where α  is a constant scalar. Thus, the adjusted modeshapes ℘ɶ  where 
j jα℘ = ℘ɶ , can be 

evaluated as 

H

j j

j jH

j j

ϕ℘
℘ = ℘

℘ ℘
ɶ . (5-51) 

5.2.2.3  Coupled modeshapes scaling/decoupling 

Coupled modeshapes happen mostly in symmetric or nearly symmetric structures which have sets 

of two close eigenvalues. In these cases, the identified modeshapes are coupled and result in a 

linear combination of the analytical modeshapes. In order to solve this issue, the scaling needs to 

be done by solving a double linear equation. Let 1℘  and 2℘  be the two coupled modeshapes 

corresponding to the analytical modeshapes 1ϕ  and 2ϕ , respectively. The linear combination is 

written as 

1,2 1,2C Γ = Φ  where 1 2 1 1
1,2 1,2

3 4 2 2

, and
T T

T T

c c
C

c c

ϕ
ϕ

   ℘ 
= Γ = Φ =     ℘     

. (5-52) 

Therefore, we have †
1,2 1,2C = Φ Γ  and then the scaled modeshapes 1

1,2
2

T

T

 ℘
Γ =  ℘ 

ɶ
ɶ

ɶ
 can be 

evaluated as 

†
1,2 1,2 1,2 1,2Γ = Φ Γ Γɶ . (5-53) 
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5.3 Clustering 

The number of physical parameters in a structure is usually higher than the identified modal 

parameters and hence, the Jacobian matrix J is usually a “wide” matrix. Since the number of 

sensors is considerably less than the number of DOFs of the structure, the resolution of the 

identification in terms of elements is not high and the columns of the Jacobian corresponding to 

close elements are pointing to the same direction. This causes the χ2-test of the close elements to 

react the same way. This closeness stems from the modal behaviour of the elements which in turn 

is related to their geometrical and physical closeness and modal direction in the considered 

modeshapes.  

Furthermore, the close elements cannot be directly treated in the MinMax test, because the 

Jacobian matrix is required to be full column rank. The reason is that the MinMax test insures of 

seeing purely the change in the tested element by removing the other elements effect. However, if 

two elements are close and one of them is damaged, when testing the damaged element the effect 

of damage is removed from the test by its close element. This will reduce drastically the χ2-test 

reaction to damage for the damaged element and therefore generates false negative results. In order 

to remove this effect, clustering of elements is necessary. 

The closeness of the elements can be identified from the directions of their corresponding 

Jacobian vectors which will be used in the clustering procedure. Figure 5.2 illustrates how the 

vectors of Jacobians of close elements look like. 
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Figure 5.2 Schematic illustration of closeness of Jacobian vectors 

In clustering the columns of Jacobian matrix, the normalized Jacobians are used because 

in both the sensitivity approach and MinMax test, Jɶ  (reader is referred to (3-38) for the definition) 

is the basis of χ2-test. This will assure that the Jacobian vectors are clustered consistent to the χ2-

test in (3-40) and (3-49) as the directions of columns in Jɶ  are not necessarily the same as J . 

Since the scaling of the columns of Jacobian will not affect the test value (as demonstrated 

in 5.2.1.6), the angles of them in the vector space is the only parameter for measuring closeness 

and their sizes are used in section 5.4 in assessing the detectability of the elements in terms of 

damage. Therefore, the Columns of Jacobian should be normalized to unit vector prior to 

clustering, to remove any effect of their scaling on the clustering approach. This normalization can 

be performed as 

k
k

k

J
J

J
=
ɶ

ɶ
 (5-54) 

where 
iJ  is the normalized Jacobian column corresponding to element k with unit length. 

It should be noted that the final χ2-value of all the tests proposed herein, is not affected by 

the scale (size) of Jacobians. Therefore, one way in dealing with the elements with small size of 
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Jacobian columns 
kJɶ  is to remove them before the testing. The reason of this removal is the fact 

that, with similar variances, the columns of Jacobian matrix with small scaling will pose higher 

error on the test than the larger ones. However, the decision of removal or keeping these vectors 

are based on the engineering judgment of the tester.  

Two approaches of clustering close elements are described in the following. 

5.3.1 k-means clustering 

The k-means clustering, is a vector quantization approach frequently used in signal processing, 

image processing and machine learning fields. In this algorithm, firstly k number of groups is 

assumed and then randomly k points (vectors) in the space are selected from the total ρN  points 

as the centroids for these groups. Subsequently, the other points in the space are categorized to 

each of these points based on their minimum distance to the centroids. Iteratively, the mean of 

each group is calculated and each point in the space is re-associated to the group with closest 

centroid. This iteration converges when no point is re-associated to other groups. The clusters and 

their centroids are illustrated schematically in the following figure: 

 

Figure 5.3 Schematic illustration of k-means clustering 

Although this algorithm is frequently used in clustering approaches in literature, there are 

some important shortcomings of it which will be described in here.  

This algorithm is highly dependent on the number of groups, i.e. k, and the starting random 

points. It is not guaranteed to converge while it only can converge to local minima. Therefore, 
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different starting points can result in different classifications. Moreover, the number of groups of 

the structural elements are unknown and the resultant χ2-test is highly depending on that. 

Furthermore, even after convergence of this algorithm close elements are not necessarily 

categorized into the same group and hence the results are not promising from the Min-Max test. 

This algorithm is also computationally not efficient since the running time of it is given as 

ρ( ),O N ki  where i represents the number of iterations to convergence. 

Due to these disadvantages of this approach, the Fisher information matrix is used in 

clustering of the elements as proposed in the following subsection. 

5.3.2 Hierarchical Fisher-information-matrix-based clustering (HFC) 

The closeness of the elements of the Jacobian matrix J  can be assessed by the correlation between 

the vectors. This correlation is calculated as the normalized Fisher information matrix f , 

Tf J J= . (5-55) 

 Each element 
ijf  of this matrix corresponds to the closeness of vectors i and j of the 

normalized Jacobians and is computed as 

1,
T

i j

ii ij

i j

J J
f f

J J
= =

ɶ ɶ

ɶ ɶ
. (5-56) 

The normalized Fisher information matrix (NFIM) is positive definite and symmetric due 

to its composition in (5-55). An element of this matrix with value near 1 corresponds to the close 

vectors of the Jacobians and a small value near 0 shows the opposite. Therefore, the clustering can 

be done by grouping the elements corresponding to high values in the normalized Fisher 

information matrix (NFIM). For this purpose, a hierarchical clustering approach is used to group 

the elements based on upper triangle of NFIM. Figure 5.4 is a dendrogram depicting the 

hierarchical clustering of 32 elements based on their corresponding values in f. In this picture, as 
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the height of the connections are increased, their closeness is decreased; the height of the 

connections is an inverse ratio of their corresponding value in the NFIM. 

 

Figure 5.4 Hierarchical clustering of 32 elements 

The elements clustered at the lowest level, two by two in Figure 5.4 are not distinguishable 

in terms of damage from each other and hence they become clustered in the first step. This happens 

when two elements are very close. 

After having the classification shown in Figure 5.4, a threshold 
fε  needs to be selected on 

the difference of 
ijf  from 1. This threshold defines the amount of closeness of vectors needed in 

order to classify them as one vector. The dashed line in Figure 5.4 shows the threshold 0.15fε =  

from which the elements are clustered into 15 clusters. 

 By increasing this value, the number of clusters will decrease, the resolution of the damage 

localization is decreased and the uniqueness (perpendicularity) of the clusters will increase. 

Therefore, there is a compromise between the resolution of damage localization and uniqueness of 

clusters which can be adjusted by 
fε . The optimal 

fε  can be chosen by minimizing it while having 
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the constraint of sufficient perpendicularity of the clusters. This is achieved by looking at the 

dendrogram of the clustering and the resultant NFIM in an iterative manner, only in the reference 

state.  

 
(a) (b) 

 
  (c) 

 

Figure 5.5 (a) Normalized Fisher information 
matrix (NFIM) of 32 elements before 
clustering; (b) after clustering with 

0.15fε =  into 15 clusters and (c) after 

clustering with 0.23fε =  into 14 clusters 
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After having this clustering, the mean of the vectors associated to each cluster is used as 

the centroid of that cluster. The NFIM of the 32 elements before and after clustering are compared 

in Figure 5.5. 

It can be seen from this figure that the number of elements with high values (warm colors) 

of 
ijf  are reduced after clustering. To further reduce the remaining orange spots, we need to 

increase 
fε  which as discussed will reduce the resolution of the damage localization. 

5.3.3 Application of clusters in tests 

After clustering the Jacobians matrices, the clusters need to be applied in the sensitivity based and 

MinMax test. This application can be done in different ways for each test, which will be described 

in here. 

5.3.3.1 Clusters in Sensitivity approach test 

By clustering the normalized Jacobian matrix J , into Nc clusters, the sensitivity test (3-40) can be 

performed on the centroids of the clusters from k-means or HFC approach as 

2 ( ) , for , 1
T T

j j

k j cT

j j

C C
p k j N

C C

ζ ζ
χ = ∀ ∈ =C

ɶ ɶ
⋯ . (5-57) 

In (5-57), 
jC  is the jth cluster with centroid 

jC . In view of (5-57), all the elements inside 

a cluster will be identified as damaged or undamaged based on the χ2-value of their corresponding 

cluster centroid. 

5.3.3.2 Clusters in MinMax test 

The use of clusters in the MinMax test can be performed in two approaches based on the definition 

of 
aJɶ  in (3-41). 
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First approach: In this approach, 
aJɶ  is chosen as the centroid of one cluster to be tested 

and 
bJɶ  is formed consistently to (3-41) from the centroids of other clusters. Therefore, (3-41) is 

rewritten as 

1 1 1

, 1
c

a j

c

b j j N

C C
j N

C C C C C− +

=
=

 =  
⋯

⋯ ⋯
. (5-58) 

Thus, all the elements in the cluster are treated similarly as damaged or not damaged. 

Second approach: In this approach each of the elements in a cluster can be tested which 

results in a higher resolution than the first approach. To achieve that, the Jacobian is discretized as 

1 1 1

, , 1
c

a k

j c

b j j N

C J
k j N

C C C C C− +

=
∈ =  =  

C ⋯
⋯ ⋯

. (5-59) 

Therefore, each element in a cluster is tested while removing the effects of other clusters. 

Since, the other clusters do not include the elements close to the element being tested, the damage 

effect will not be removed from the resulting χ2-test. 

After partitioning the Jacobians from either approach the normalized Fisher information 

matrix cF  can be defined consistently from the cluster centroids as [ ] [ ]T

C a b a bF C C C C=  and 

partitioned similar to (3-43) as 

aa ab

ba bb

C C

C

C C

F F
F

F F

 
=  

  
. (5-60) 

By defining the residuals as  and 
a b

T T

C a C bC Cζ ζ ζ ζ= =ɶ ɶ ɶ ɶ  the robust residual will be 

* 1
a a ab bb bC C C C CF Fζ ζ ζ−= −ɶ ɶ . Hence, the robust χ2-test writes as 

**2 * *
a a a

T

C C CFχ ζ ζ=  (5-61) 
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where * 1
a aa ab bb baC C C C CF F F F F

−= − . 

Based on the definition of Ca from the two approaches, the χ2-test (5-61) identifies the 

location of the damage in each cluster or element. It should be noted that although in the second 

approach the test is performed on each element, but the resolution of damage localization is highly 

depending on the number and location of sensors. Therefore, the resolution of the test is higher in 

the second approach while limited by the available information from data. 

Based on the characteristics of the MinMax test and HFC clustering, the combination of 

these two with the second approach should be a very robust approach. From such combination, the 

detection resolution is element basis and the effect of each element is investigated without the 

interruption of condition of other elements.  

The other alternative is the sensitivity based approach with/out clustering. There is no need 

to cluster this method. From this approach the resolution is element based if no clustering is used. 

However, the condition of other elements will affect the result of testing a specific element which 

may lead to possible false positive results. 

5.4 Detectability of damage in each physical element 

Due to the high number of elements, low number of sensors and comparably low number of 

identifiable modal parameters from the measured data, the detectability of all elements is not 

identical. This detectability is affected by the comparative location of sensors to the element, 

number of sensors, comparative noise in relation to the location of element and sensitivity of the 

identifiable modal parameters to the physical properties of element. By looking closer to the un-

normalized Fisher information matrix (the “real” Fisher information matrix) built from un-

normalized Jacobians Jɶ , it can be seen that it includes all the mentioned factors. The fisher 

information matrix measures the amount and quality of information that a random variable carries. 
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This information is a function of size of Jacobian of the element normalized by its variance. While 

the Jacobian includes information from the sensitivity of the modal parameters to the element and 

the location and number of sensors, the variance will reduce the value of FIM for elements with 

comparatively higher noise ratios. Therefore, the diagonals of the Fisher information matrix with 

original (un-normalized) columns 
kJɶ  of Jacobian, can be a potential index in assessing the 

detectability of damage in each element. 

It should be noted that, the location and number of sensors can be adjusted to increase the 

detectability of damage in a certain element. The modeshapes that are highly dependent on an 

element in terms of deflection (or curvature) will contribute the most in identification of damage 

in that element. Consequently, organizing the sensors to capture those modeshapes and including 

them in the Jacobian formation will increase their detectability. 

5.4.1 Theoretical investigation of detectability of damage 

The relation between the detectability of an element and its corresponding element on the diagonal 

of the FIM can also be demonstrated in the mathematical way: the χ2-value from parametric test 

(3-33) has d degrees of freedom with non-centrality parameter 1T TJ Jδθ δθ−Σ  under 1H , when the 

structure is damaged. Hence, in view of (4-1), the expectation of the χ2-value under 1H  is 

12( ) T Td J Jχ δθ δθ−= + ΣE . (5-62) 

This expectation can be rewritten as 

2( ) Td Fχ δθ δθ= +E  (5-63) 

where F is the Fisher information matrix and TF J J= ɶ ɶ . By assuming damage only in one element, 

for example element k, the corresponding value in δθ , i.e. kpδ , will be nonzero, while the rest 

will be zero. Therefore, for this damage condition, (5-63) will be boiled down to 
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2 2( ( ))k k kkp d p Fχ δ= +E  (5-64) 

in which kkF  is the diagonal of the FIM corresponding to element k. Hence, for a constant damage 

in each element, the expected χ2-value is dependent on the diagonal of FIM corresponding to that 

element. A higher diagonal value of the FIM leads thus to a stronger reaction of the test for the 

respective element when the damage is constant. 

If there are more than one element damaged, the detectability of them is depending on a 

combination of their FIM diagonals and some non-diagonal members of FIM matrix. Thus, this 

detectability theorem is only valid for one damaged element.  

5.4.2 Detectability of damage from MinMax test 

In the MinMax test (3-49) or (5-61), the detectability of elements can be further investigated as 

the values of *F  instead of the diagonals of Fisher information matrix. This is seen by comparing 

the definition of the robust residual in (3-47) and the χ2-value defined in (3-49). The expectation 

of this χ2-value for damage kpδ  when testing element k writes as 

* 2 **2( ( ))k k kp d p Fχ δ= +E  (5-65) 

Thus, the value of *F  evaluated for each element is a good representative for detectability 

of damage in that element for the MinMax test. 

5.5 Step-by-step procedure of the SSDD and SSDL methods 

In this section the procedures of performing the SSDD and SSDL techniques along with 

the methods presented in this chapter are described. The flowchart of the algorithm is shown in 

Appendix G.  

After measuring the structure in undamaged conditions, the correlations of the 

measurements between different sensors are calculated considering a shift in time. Based on this 
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shift, several correlation matrices can be created which are used in composing a Hankel matrix 

based on the procedure shown in Chapter 3. In the next step, this Hankel matrix is decomposed 

using the SVD method. The reference subspace 0S  is then created from the left singular vectors 

acquired from the results of this SVD. The reference subspace 0S  is used as the basis of comparison 

between the conditions of the undamaged and possibly damaged structures.  

Subsequently, similar to the procedure explained for the reference state, another Hankel 

matrix is built from the measurements acquired from the possibly damaged structure. By 

multiplication of this Hankel matrix and the reference subspace, a residual is shaped which reflects 

the change (damage) in the structure compared to the reference state conditions.  

This residual is then statistically tested using a χ2-test method. The result is a χ2-distributed 

parameter, namely χ2-value, that represents a norm of the residual as shown in Chapter 3. 

When the structure is undamaged, several measurements are acquired and similar to the 

reference state, their corresponding Hankel matrices are computed. By computing the residual for 

each measurement, a safety threshold can be created as a percentile of the probability of 

exccedance. Therefore, for each χ2-value computed from the possibly damaged structure, if the 

value is higher than this threshold the structure has a high probability of being damaged. 

After detecting the existence of damage, we need to localize it in the structure. For this 

purpose, a FE model of the structure is needed to be created which is a good representative of the 

dynamic behaviour of the structure.  

Consequently, a sensitivity analysis is needed in computing the derivation of the modal 

parameters with respect to each element’s physical properties such as stiffness or cross sectional 

dimensions. The sensitivity of the residual vector to each physical parameter can then be computed 

from the results of this sensitivity analysis and the formulations described in this chapter. These 
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sensitivities can be computed from two alternative formations proposed in this thesis. If the modal 

parameters from the real-data and FE model are used in this formation, the modeshapes need to be 

scaled and decoupled (if needed) from the proposed methods in this chapter, in order to match to 

each other.  

All of these sensitivity vectors will compose a matrix, namely Jacobian matrix. In the next 

step, using the vectors of the Jacobian matrix corresponding to each element, the elements of the 

FE model are clustered by a clustering approach such as HFC method (proposed in this chapter). 

In the next step, these clusters are used in the MinMax and or sensitivity based approach in 

calculating a χ2-value associated to each element. By comparing these values, the elements with a 

higher χ2-value are identified as being damaged. Finally, using the indexes proposed in this 

chapter, the detectability of damage can also be computed from a Fisher information matrix 

computed from the Jacobian matrix to better understand the severity of damage detectible in each 

element. 

5.6 Conclusions 

In this chapter the underlying theories in evaluating the Jacobian matrix from a Chain rule was 

presented. This Jacobian matrix is used directly in localizing the damage in the structure using the 

SSDL method. Several important independencies of the final χ2-test to the scale of Jacobians or 

modeshapes and to the non-uniqueness of Jacobians were also presented. These theories need to 

be considered in practice for composing the Jacobian matrix as they comfort the procedure. 

Two formations of the Jacobian matrix were elaborated. In one formation only the modal 

parameters evaluated from the analytical model is used in composing the Jacobian matrix. This 

formation enjoys the consistency of the parameters in the Chain rule. The other formation uses the 

modal parameters evaluated from both real and analytical data. In order to compose the Jacobians 
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from these modeshapes coming from different sources, they need to be matched and scaled to each 

other. Therefore, a scaling approach was also proposed. Since in some structures, such as the 

Yellow frame, the modeshapes are coupled, the scaling method was extended to decouple these 

coupled modeshapes. 

A new clustering approach (HFC) was proposed in this chapter. Based on its stability and 

consistency with the SSDL method, it is expected to have a better performance in comparison to 

the k-means approach. 

Finally, two indices were presented in assessing the detectability of each element. It was 

theoretically proved that these indices are in a direct relationship with the detectability of each 

element. These indices were created for both the sensitivity based and MinMax methods. 
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Chapter  6: Application through Analytical Models 

6.1 Introduction 

The ideal test that can be used to evaluate a damage detection technique is to damage a real 

structure progressively and measure its response continuously. Having a clear understanding of 

the condition of the structure before damaging it and the type of damage play a critical role in the 

test results. Furthermore, in addition to the cost of the procedure, damaging a structure and 

restoring it to its undamaged condition for the next test, is not practical; it even becomes more 

complicated when different elements of the structure are needed to be damaged in separate tests to 

various extents. 

In addition to experimental tests, simulating the damage in a structure and subsequently 

generating data that represents the ambient vibration test measurement can be a useful preliminary 

approach to evaluate damage detection techniques. Since this data can be an acceptable benchmark 

to evaluate the functionality of these techniques by allowing control on the test conditions, e.g. 

structural properties and damage effects, in this chapter some analytical models will be elaborated. 

In these models, different damage scenarios are simulated and various measurement noise ratios 

are imposed on the simulated measured data to study the effect of noise on the SSDD technique. 

The results from the damage detection and localization of these models will be demonstrated in 

this chapter. 

6.2 Analytical models: introduction 

In order to evaluate the functionality of the subspace-based damage identification technique, the 

ambient vibration test data can be simulated from analytical models for different damage types 

and amounts. In order to simulate this data, a finite element model is created from the structure 

and then it might be calibrated to the real structure. It should be mentioned that calibration of the 
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structure does not have a direct effect on the damage detection technique. In other words, the 

damage detection technique should be able to detect the damage in any structural model including 

the uncalibrated one, as long as the base of comparison is identical (the same model is damaged). 

In the Statistical Subspace Damage Localization (SSDL) method, the analytical model does not 

need to be calibrated as well. However, it should be a good representative of the dynamic behavior 

of the real structure. Herein, in one of the models, calibration to a real structure is performed to 

obtain a realistic model and simulate the damage in it. 

6.2.1 Ambient vibration simulation 

Although in the theoretical development of output-only approaches used in ambient vibration 

testing the input to the system is assumed as a white noise excitation, in reality the input is never 

purely white and is colored noise or their combinations. However, the output-only approaches 

usually result in outcomes with acceptable precision. In this dissertation, for simulating the 

ambient vibration data, the input to the system is assumed to be white noise excitation.  

6.2.1.1 Data simulation 

In a real structure the excitation is imposed from different sources, such as wind, ambient vibration 

of base, excitations from users and close structures or trees and etc, in different locations of the 

structure. Therefore, the simulation of the ambient vibration should be performed in different 

locations of the structure with different random excitations to excite more modeshapes of the 

model. 

For this purpose, several points of the structure are excited using white noise excitation in all 

dimensions. Different excitations are imposed on the structure in order to excite the structure as 

randomly as possible. This excitation can be done by acceleration or load forces in different points 

of the structure. It should be noted that these load forces will excite different modeshapes of the 
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structure based on their location. In order to excite all the modeshapes of a finite element model, 

every degree of freedom needs to be excited with a unique random excitation (not identical to other 

excitations). Since for a large finite element model it is practically expensive to impose separate 

excitations to each degree of freedom, the location of the excitation forces can be chosen to excite 

the dominant modeshapes of the structure based on the prior knowledge to the structural modal 

behavior and engineering judgment.  

The simulated data can be obtained by measuring acceleration time histories of all the 

degrees of freedom or the sensor locations. Subsequently, the simulated data will be analyzed in 

order to compute the natural frequencies and their corresponding modeshapes. These can be used 

to check which modeshapes can be captured by the simulated white noise excitation. Based on the 

positioning of the sensors and or insufficient excitation of the structure, some modeshapes may 

not be captured. For the latter, the excitation must be modified to impose an excitation close to the 

white noise in different points of the structure and in different directions. For this purpose, in a 

loop, the location of these vectors based on the detectable modes from the simulated data will be 

adjusted. 

6.2.1.2 Damage simulation 

As discussed in Chapter 1, the damage in a structure can be defined based on its effect on the 

structure: the structure is not functional for what it is designed for, but it is still operational (as 

defined in (Worden et al. 2007)). With this definition damage in terms of severity is in the middle 

of defect, e.g. existing defects found in materials, and fault, i.e. failure of the structure in being 

operational. Therefore, the goal in structural health monitoring of a structure can be viewed as 

monitoring the condition of the structure, i.e. the damage conditions, in order to alleviate damages 

and prohibit their transformation into faults.  
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The damage in a structure is differentiated based on I) the type of damage, e.g. corrosion, 

blast, outside forces (hitting of car to peer) II) the damaged element type, e.g. girders, columns, 

slab, III) the extent of damage, i.e. from a crack to total failure of an element and IV) the linearity 

or nonlinearity of damage (Doebling et al. 1998). The linear damage does not change the linear-

elastic behavior of the structure while the nonlinear damage will change it to nonlinear behavior. 

Most of the literature is focused on linear damages, since the initiation of damage is usually linear. 

Furthermore, the damage can be related to the change in stiffness with constant mass or change in 

the mass of a structure with constant stiffness. The latter can happen when the non-structural 

elements or the structural elements with low contribution on stiffness, e.g. some parts of slabs, 

detach from the structure. Detecting this change in the structure is of importance in structural heath 

monitoring and plenty of the damage detection techniques cannot detect it. 

Herein, the damage is modeled as a linear damage with various extents. The damage in 

different elements of the model is simulated by reducing the dimensions or modulus of elasticity 

of one or some of the elements in the intended location of damage. The damage in mass is modeled 

simply by changing the mass value in the location of damage. The amount of the damage is defined 

in terms of the ratio of this reduction. The type of the damage is not investigated in here, however, 

the damage in different element types is considered for a sophisticated finite element model, 

namely, model of S101 bridge, which will be presented in 6.2.3.3. 

6.2.1.3 Measurement noise simulation 

The imposed measurement noise ( )e t  on the data is created using a random generation algorithm. 

The simulated test data in each point and each direction is defined as a measurement channel. The 

probability distribution of the random generator is normally distributed and its standard deviation 

is chosen as a ratio, i.e. noise ratio, of the standard deviation of each channel. Therefore, the 
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standard deviation iσ  in each measurement channel i is evaluated and then by multiplying it to the 

noise ratio Nr, the standard deviation of the random numbers is defined. The random vector ie  is 

evaluated from 

Gaussianrandom (0, )i r ie N σ= . (6-1) 

In the next step, the random vector ie  is added to the measured data di for the corresponding 

channel, i.e. i. Hence, the modified measured data e

id  can be evaluated as 

e

i i id d e= +  (6-2) 

It should be noted that the mean of the generated noise vector, ie , is zero. As an example, 

in Figure 1.2, a Gaussian wave packet function is modified with 10% of noise ratio. The original 

data and the generated Gaussian noise, with standard deviation of 10% of the standard deviation 

of the data, are added together to create the modified data with noise. 

 

Figure 6.1 The original and modified data with noise ratio of 10%; the noise signal is a Gaussian white 
noise (at bottom left) and the data is a Gaussian wave packet function (at top left) 
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It can be inferred from Figure 1.2 that the imposed noise affects the low amplitude parts of 

the measurement more than the higher amplitude parts of the excitation. This is due to the constant 

distribution of the noise during the time. 

It is worthwhile to illustrate how noise may affect on the eigenstructure of the 

measurements, especially that the SSDD technique is sensible to the changes in the eigenstructure 

of the problem. 

In Figure 6.2, the simulated data in a sensor (from S101 bridge FE model 6.2.3.3) is shown 

in frequency domain. In this figure the Fourier transformation of the data without noise and with 

30% noise ratio are compared. It can be seen that the lower amplitude frequencies of the data are 

drowning in the noise. The higher the noise ratio becomes, higher amplitudes will be drown. It 

should be expected that the higher measurement noise ratio makes the modeshapes and natural 

frequencies with lower amplitudes unidentifiable. 

 

Figure 6.2 The frequency domain of original and modified data with noise ratio of 30%; the noise signal is 
a Gaussian white noise 
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6.2.2 Sensitivity analysis 

The sensitivity analysis of the models used in damage localization approach is performed from the 

methods described in Chapter 5. The sensitivity analysis of simple models is performed from the 

direct sensitivity analysis and for complicated models, the finite difference approach is employed. 

In case of using the finite difference approach, the perturbation ratio is confirmed by computing 

the sensitivities with different perturbation factors and checking the convergence of the resultant 

sensitivities. 

Since the modeshapes are evaluated in sensor locations, the sensitivities of the modeshapes 

are also evaluated in the degrees of freedoms corresponding to these sensor locations in the 

simulated models. The sensitivity analysis is used only in the statistical subspace damage 

localization approach for the analytical simple models and the finite element model of the 

experiment. 

The computation of other components of the Jacobian matrix is performed as suggested in 

Chapter 5. Because the model is analytical, all these components are computed from the modal 

parameters of the analytical model, i.e. Formation 1 in Chapter 5. 

6.2.3 The models 

There are several analytical models employed in demonstrating the theoretical properties described 

in Chapters 4 and 5. These models range from simple, such as mass-spring model, to complicated 

models such as finite element model of a bridge. These models are solved using programming 

codes or modeled in commercial software. 

6.2.3.1 Mass-spring model 

A mass-spring chain model is one of the simplest models usually used in simulating the ambient 

vibration test. The schematic shape of this model for 6 degrees of freedom is shown in Figure 6.3. 
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Figure 6.3 The schematic model of a mass-spring chain model and sensor locations 

The model is directly built from the stiffness and mass matrices of this system in closed-

form solution. The number of the masses and therefore degrees of freedom can be different. In 

here, the number of masses is assumed to be 6 and the number of sensors is 3 which are located at 

the mass numbers 1, 3 and 5 shown in Figure 6.3. It should be noted that for simplicity, the stiffness 

and mass values are equivalent in the system. There is a 2% damping associated to all modeshapes. 

The sensitivity analysis is performed by the direct sensitivity analysis method. The 

calculation of other components of the Jacobian vector is done as suggested in Chapter 5. All these 

components are computed from the analytical modal parameters, i.e. Formation 1 of Jacobian.  

The data is simulated from Gaussian white noise excitations as explained in section 6.2.1. 

All the degrees of freedom are excited and the acceleration of the masses are recorded in the 

location of sensors.  

Two types of damage is considered based on the change in the mass or stiffness of the 

system. Firstly, the value of one or some of the stiffness of springs or mass values are changed. 

Then this change is detected and subsequently located using the SSDD and SSDL method. Since 

this model is small, there is no need to cluster the elements. 

The output measurement noise is assumed to be 5% in damage localization. This ratio is 

varied in damage detection when studying the effect of measurement noise on the test to investigate 

the proposed theories. The damping ratio is also chosen as 2%. 

6.2.3.2 Shear wall model 

The shear wall model is considered in two configurations composed from 7 or 12 elements. These 

configurations are designed to demonstrate the functionality of clustering approaches in the 
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damage localization. The damage detection and localization of each configuration is performed to 

detect the damage effect as a change in stiffness or mass of the one or some elements. The 

schematic shapes of the structure are shown in Figure 6.4 for both configurations. 

 
(a) 

 
(b) 

Figure 6.4 The schematic model of a shear wall model for two configurations 

The stiffness and the mass are equal for all levels. The stiffness of a double small wall, e.g. 

elements 6 and 7 in configuration Figure 6.4.a, is equal to the stiffness of a single big wall, e.g. 

element 1 in the same configuration. These configurations are made with the purpose of studying 

the clustering methods. 

The sensitivity analysis is performed with the direct approach. After the computation of 

Jacobians for configuration Figure 6.4.b, the Jacobian columns corresponding to each right 

element of each level, i.e. 2, 4, 6, 8, 10, 12, is slightly changed randomly for the demonstration 

purposes as will be discussed.  
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The data is simulated by exciting the structure in all story levels. The sensor locations are 

in all levels, however the employed number of modeshapes might be different than the number of 

sensors for the demonstration purposes. 

The damage is simulated in one or some of the columns or in masses of each story. The 

measurement noise is constantly chosen as 5% in all case studies of this structure. The damping 

ratio used is also 2% for all modeshapes. 

6.2.3.3 S101 bridge model 

In the damage detection, a realistic model from a finite element of a bridge, namely S101, located 

in Reibersdorf, Austria, is investigated. This structure was progressively damaged in different 

locations and elements while it was instrumented and the ambient vibration test data was recorded 

continuously (as reported in (Wenzel et al. 2012)). In (Döhler et al. 2014a) the SSDD method was 

used in evaluating the damage condition of the structure on the real data which was shown to be 

robust.  

In this study, the finite element model of the structure which is calibrated to the real data 

is used in investigating the proposed theorems on the effect of measurement noise and number of 

samples. The effect of element type and damage ratio is also studied for this model. As mentioned 

before, the purpose of this calibration is to have a realistic model of a bridge and it does not affect 

on the assessment of the functionality of the damage detection technique. This model is only used 

in the damage detection and not in the damage localization. 

The bridge structure and its finite element model are shown in Figure 6.5. The natural 

frequencies of the analytical model and the bridge structure are also compared at Table 6-1. 
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(a) (b) 
Figure 6.5 (a) S101 bridge structure, Austria, (Wenzel et al. 2012) and (b) its calibrated finite element 

model 

Table 6-1 Natural frequencies of the bridge structure in undamaged condition obtained from the measured 
data (Wenzel et al. 2012) and finite element model 

 Measured 
 data (Hz) 

Finite element 
 model (Hz) 

First bending mode 4.05 4.04 
First torsional mode 6.30 6.08 
Second bending mode 9.69 10.72 
Second torsional mode 13.29 12.85 
Third bending mode 15.93 19.58 

The modeshapes of the structure from the real data and the finite element model are 

illustrated and compared at Appendix D. 

The effect of bearings when simulating the damage in other elements of the bridge is 

neglected. However, for simulating the damage in bearings the reference structure is equipped by 

bearings at the supports. Therefore the reference state of the structure with bearings is used to 

create the threshold of the χ2-value and then the damaged-bearing models are compared with that 

reference state. 

6.2.3.3.1 Damage simulation 

The damaged element types include girders, columns, deck and bearings. Furthermore, since this 

bridge is composed of three spans, the damage for the girder and deck is modeled in two locations, 

i.e. in central span and about side span. Girders and columns are modeled by a number of finite 
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elements. The damage is simulated only in one of these finite elements by reducing a ratio, namely 

damage ratio, of its section dimension around the strong axis. This damage ratio varies among 

20% (minor damage), 40% (intermediate damage) and 80% (severe damage). Damage is simulated 

in the deck by removing some portions of it (for two damage extents) and in the bearings by 

reducing their stiffness. It should be noted that, the dynamic mass is only computed from the 

element mass and removal of an element changes the corresponding elements in mass and stiffness 

matrices. Removal of deck elements affect more on the mass change than the stiffness change due 

to their geometry in the model. These damage scenarios are shown in Figure 6.6. 

  
Damage in center of girder (severe) Damage in side of girder 

  
Damage in slab at central span (high) Damage in slab at central span (low) 

  
Damage in slab at side span (high) Damage in slab at side span (low) 
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Damage in column (severe) Damaged bearings (for model with bearings) 

Figure 6.6 Damage scenarios considered in the S101 bridge model 

6.2.3.3.2 Data simulation 

The finite element model of the structure is excited with a white noise excitation (as acceleration) 

in three directions. In addition, the structure is vibrated by different white noise loads in various 

locations. The measured points to record acceleration time histories are illustrated in Figure 6.7.a. 

Spectral densities of the simulated data with 500Hz sampling rate is obtained from undamaged 

reference case as shown in Figure 6.7.b. 

 
(a) 

 
(b) 

Figure 6.7 (a) measuring-points corresponding to sensor locations; (b) Frequency domain decomposition of 
the simulated measurement data in undamaged structure 

It is seen in Figure 6.7.b that the natural frequencies of the analytical model can be obtained 

from processing the simulated data accurately. Although, the structure is properly excited by white 

noise excitation, but some modeshapes cannot be captured. This is related to the location of the 

sensors and their number. As an example, some modeshapes associated to the longitudinal edges 
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(sidewalks) of the bridge cannot be captured by the sensors (located on the girders) due to their 

small accelerations occurring in the sensor locations. 

6.2.3.3.3 Measurement noise addition 

The measurement noise applied on the data in all the cases is 5% except when studying the effect 

of measurement noise on the 2χ -test. There are 90 sensors (channels) modeled for this bridge and 

the measurement noise for each channel is applied based on the characteristics (standard deviation) 

of that channel. Therefore, for each noise ratio, 90 vectors of records of measurement noise is 

created and applied to the data. 

6.3 Damage detection in analytical models 

In this section, the analytical models, i.e. mass-spring and S101 bridge model, will be employed 

in validating the proposed theorems regarding the effect of measurement noise and number of 

samples on the statistical subspace damage detection technique. In here, only the global condition 

of the structure, i.e. damaged or not damaged, is assessed and there is no identification of the 

location of damage. This study is presented in two subsections: the mass-spring model and the 

S101 bridge structure model. For this purpose, the ambient vibration test is simulated and the 

measurement noise is imposed on it, as described in 6.2.1. 

6.3.1 Mass-spring model 

The mass-spring model introduced in 6.2.3.1 is employed with 6 degrees of freedom and three 

sensor locations, i.e. masses 1, 3 and 5. The sampling rate is 50 Hz. Both the stiffness and mass 

parameters are changed in order to demonstrate the detection of the damage by the SSDD method. 

Following that, the effect of number of samples and the measurement noise will be presented in 

two subsequent sections.  
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6.3.1.1 Detecting the damage effect in stiffness or mass 

In this study, the number of samples and measurement noise are constant. In the first case, the 

stiffness of each spring is decreased 5% (as damage), the ambient vibration is simulated and then 

the χ2-value is computed for each damaged spring. In the second test, instead of stiffness of springs 

the mass inertia is changed and then the χ2-value is computed for each ambient vibration test 

simulated for this damage in each mass-element. In order to be able to create a threshold, the 

undamaged mass-spring is tested 5 times and from them the threshold is assessed as the 99% 

quantile. The resultant χ2-values in log-scale are demonstrated in Figure 6.8. The red colour bars 

show that the χ2-value of the test (in which an element is damaged) is above the threshold, 

indicating that the structure is damaged. 

 
Figure 6.8 Damage detection of the mass-spring model for damage in mass or stiffness of each element  

It can be seen that the damage in the stiffness or mass of all the elements is detectible using 

the SSDD technique. The threshold is shown as a yellow line in Figure 6.8. It should be noted that 

this figure only demonstrates that the global condition of the structure in case of happening damage 

in any element is identified to be damaged or not. This does not indicate where the damage is 

located. 
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6.3.1.2 Effect of number of samples 

For this case, the number of samples is changed from 1000 to 10000 in 10 steps of equal size 

(1000) for both undamaged and damaged cases. In each step, 100 repetitions are made to calculate 

the mean, representing the expected value of the χ2-value. The measurement noise ratio in all cases 

is 5%. It is observed from the results in Figure 6.9, that as stated in Theorem 4.1, when the model 

is not damaged, the expected χ2-value is not changed. However, when the model is damaged (5% 

damage in spring 2), this value grows linearly with the number of samples, which confirms the 

linear factor N in the non-centrality parameter as shown in the proof of Theorem 4.2. In Figure 6.9, 

the expectation of the χ2-value is normalized as 
2
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, where 2( )χE  is the average of 

the χ2-values computed from the undamaged models. 

 
Figure 6.9 Change of the expected χχχχ2-value (normalized by the least value) evaluated for different number 

of samples in damaged and undamaged conditions (yellow line represents the 99% percentile threshold 
and N is changed from 1000 to 10000 in 10 equal steps of (1000)) 

It can be inferred from Figure 6.9 that the number of samples need to be big enough, so 

that the damage could be detected. Moreover, this framework allows for a trade-off between the 

number of samples and damage size: the  χ2-test variable may have the same value either using a 
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longer dataset with a smaller damage, or using a shorter dataset with a bigger damage. This also 

means that for constant (non-zero) damage the test variable grows with the number of samples. 

6.3.1.3 Effect of measurement noise: equal properties between reference and test data 

In here, the number of samples is kept constant at 10000. However, the measurement noise, which 

has equal properties in reference and testing state, is changed. This noise ratio is changed from 5% 

to 125% in 25 equal steps for damaged and undamaged conditions. Again in each step the 

repetition is 100 times. The results are presented in Figure 6.10. The test values in the undamaged 

state are constant and independent of the noise ratio, confirming Theorem 4.3. The test values in 

the damaged state decrease when the noise ratio increases, as shown in Theorem 4.4.  

 
Figure 6.10 Change of the expected χχχχ2-value evaluated for different noise ratios with equal properties in 

reference and test states in damaged and undamaged conditions (yellow line represents the 99% percentile 
threshold and Nr is changed from 5% to 125% in 25 equal steps) 

It can be seen that the increase of measurement noise reduces the detectability of damage 

in the structure, although it does not affect on the tests from undamaged structure. 

6.3.1.4 Effect of measurement noise: unequal properties between reference and test data 

In this case study, the measurement noise properties are not equal in the reference and test states. 

For this purpose, same as previous case study, the number of samples is constantly equal to 10000. 

The measurement noise is being increased in 25 equal steps from 5% to 125% with 100 repetitions 
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in each step. This is also investigated for damaged and undamaged conditions. In Figure 6.11 the 

results are shown when the measurement noise is changed only in the testing state (both in 

undamaged and damaged conditions, respectively). The measurement noise in the reference state 

that was used to set up the residual covariance is constant at 5%. It is observed that both in 

undamaged and damaged states the test value increases by the increase in noise level, confirming 

Theorem 4.5. 

 
Figure 6.11 Change of the expected χχχχ2-value evaluated for different noise ratios only in the test data for 

damaged and undamaged conditions (Nr is changed from 5% to 125% in 25 equal steps) 

In Figure 6.12, the study is done for the changing of measurement noise in the residual 

covariance computed in the reference state while the measurement noise in the test data is kept 

constant at 5%. It can be seen that by increasing the measurement noise in the reference data, the 

expected χ2-value is being decreased for both undamaged and damaged conditions, as stated in 

Theorem 4.6. 

The case studies in here are matching the theorems proposed in Chapter 4. In the next 

section the model of the S101 bridge is employed in studying these theorems. 
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Figure 6.12 Change of the expected χχχχ2-value evaluated for different noise ratios only in the reference data 

for damaged and undamaged conditions (Nr is changed from 5% to 125% in 25 equal steps) 

6.3.2 S101 bridge structure 

The S101 bridge finite element model is used to study the effect of number of samples and noise 

ratio on the SSDD technique. The ambient vibration on the undamaged structure is simulated for 

a reference state and two cases. From these two cases, a safety threshold is computed.  

First, different element types are damaged with different damage ratios, i.e. mild (20%), 

intermediate (40%) and severe (80%), as discussed in 6.2.3.3. The noise ratio for these cases is 

kept constantly 5%. Subsequently, only for the damage scenario related to the center of main 

girder, for each damage ratio, in two sections the simulated data is created with different length 

and measurement noise ratios to evaluate the χ2-value. Finally, this value is compared to the 

computed threshold from the undamaged cases, checking the proposed theorems. 

6.3.2.1 Detecting the damage effect in different element types 

In this section, different element types of the finite element (FE) model of S101 bridge is damaged 

for three mentioned damage ratios and then the SSDD technique is employed in detecting the 

damage in each element type. As mentioned, the damage is applied on girders, column, deck and 

bearings. The results are shown in Figure 6.13. 
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Figure 6.13 χχχχ2-value evaluated for the damage in different element types with different damage ratios 

(yellow line represents the 99% percentile threshold) 

It is observed that the minor damage in the column is not detected. This is related to the 

high axial stiffness of the columns even when they are damaged. This stiffness plays a critical role 

in the formation of the vertical modeshapes of the bridge. Therefore, with this change in the column 

the eigenstructure of the system is not changed enough to reflect in the  χ2-test. 

The effect of damage in the bearings is evaluated from the reference state acquired from 

the undamaged model with bearings. The stiffness of the bearings are reduced with the mentioned 

damage ratios and the results of the SSDD technique are illustrated in Figure 6.14. 

 
Figure 6.14 χχχχ2-value evaluated for the damage in bearings with different damage ratios (yellow line 

represents the 99% percentile threshold) 

All the damage cases in the bearings are identified distinctly as can be seen in Figure 6.14.   
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6.3.2.2 Effect of number of samples 

As a demonstrative example, the damage is considered only in the center of the main girder of the 

bridge. The reason of choosing this damage scenario is because of the significant effect of the main 

girders on the functionality of the bridge. The data length is varying among 5 min, 7.5 min, 10 

min, 12.5 min, 15 min, 17.5 min and 20 min. The analysis is only performed once for each case, 

although the theorems proposed in Chapter 4 consider the mean of this value. However, since the 

input excitation is completely white noise and the structure is an analytical model without any 

change in time, the resultant  χ2-value is expected to be a good approximation of the mean. The 

results of the damage detection for different damage ratios are shown in Figure 6.15. 

 
Figure 6.15 χχχχ2-value evaluated for different data length with different damage ratios 

It is observed in this figure that the resultant χ�-value of the damaged cases are increased 

linearly by the increase in the number of samples as stated in Theorem 4.2. However, the  χ2-

values of the undamaged cases are almost unchanged and unaffected by the number of samples as 

per Theorem 4.1. It should be noted that since for each data length and damage scenario, the 

ambient test data (input excitation and measurement noise) are simulated independently, eϒ  is not 
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exactly zero and results in a slight change in the  χ2-values when changing the number of samples. 

The rate of this change is dependent on eϒ  value which will be elaborated in 7.2.2. 

6.3.2.3 Effect of measurement noise: equal properties between reference and test data 

To investigate the effect of measurement noise, the number of samples is kept constant and the 

measurement noise is applied on the reference and test data with the same characteristics. The 

noise ratio varies among 1%, 2%, 5%, 10%, 30%, 50%, 70%, 80% and 90%. The analysis is, again, 

performed only once in each case. The resultant χ2-values are illustrated in Figure 6.16. 

 
Figure 6.16 χχχχ2-value evaluated for different noise ratio in the reference and test data for undamaged and 

damaged structure with different damage ratios 

Same as the mass-spring example, the �� -values are decreasing by the increase of 

measurement noise when the structure is damaged as stated in Theorem 4.4. When the structure is 

not damaged the resultant ��-values are almost unchanged as suggested by Theorem 4.3. Same as 

previous section, this slight change stems from the fact that eϒ is not exactly zero. Again the rate 

of this change depends on eϒ . 
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6.3.2.4 Effect of measurement noise: unequal properties between reference and test data 

For this case, the measurement noise is changed only in the test data while the measurement noise 

in the reference data is kept constantly 5%. The effect of this change is investigated on this model 

same as the mass-spring system. The results are shown in the following figure. 

 
Figure 6.17 Change of the χχχχ2-value evaluated for different noise ratios only in test data for undamaged and 

damaged conditions with different damage ratios 

It can be seen in Figure 6.17, that the χ2-value is increasing by the increase in the noise 

ratio of the test data, confirming Theorem 4.5. 

As the next study, the measurement noise is being increased only in the reference state and 

the χ2-test is performed for each damage scenario. The results are shown in Figure 6.18. It is 

observed that as Theorem 4.6 suggests, the χ2-value is decreasing for the undamaged and damaged 

cases. 
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Figure 6.18 Change of the χχχχ2-value evaluated for different noise ratios only in reference data for 

undamaged and damaged conditions with different damage ratios 

6.4 Damage localization 

In this section the statistical subspace damage localization method is investigated in localizing the 

damage in two analytical models, i.e. mass-spring model and the shear wall model. The damage 

in stiffness or mass is to be localized and the sensitivity based and MinMax methods are used in 

localizing the damage. The two clustering methods are also investigated. Finally, the detectability 

of damage is also elaborated for each element. It should be noted that based on the results from 

the effect of noise and number of samples acquired from the previous section, the number of 

samples and measurement noise are kept constant in this section for each model to avoid their 

effects on the results. 

6.4.1 Mass-spring model 

Herein, the mass-spring model presented in 6.2.3.1 is employed with 6 degrees of freedom and 

three sensors at the masses 1, 3 and 5. However, in composing the Jacobian matrix, all the 6 

modeshapes are used with values corresponding to the sensor locations. Again the sampling rate 

is 50 Hz and the stiffness and mass are damaged factors in one or two elements. Since the number 
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of elements is low and the Jacobians showed to be not close, there is no clustering needed as will 

be demonstrated in next subsection. Moreover, the damaged detection of this system was done in 

the previous section and therefore, we can continue to localize the detected damage. 

6.4.1.1 MinMax and sensitivity based damage localization 

In order to locate the damage in the system, four damage configurations are considered: two for 

damage in stiffness and two for damage in mass. For each case the Jacobian is computed with 

respect to each mass value or spring stiffness. The Normalized Fisher information matrix (NFIM) 

is then computed from the resultant Jacobian matrix. The resultant dendrogram chart for each case 

based on their NFIM using HFC method is shown in Figure 6.19, which shows that the elements 

are not close enough to be clustered, i.e. 1 0f− ≫ . 

  
(a) (b) 

Figure 6.19 Hierarchical Fisher-information-matrix-based Clustering (HFC) of elements from Jacobians 
with respect to (a) stiffness and (b) mass 

The damage in stiffness is applied in two configurations: damage only in element 3 and 

damage in elements 3 and 6. For mass, the damage is modeled in element 4 in one configuration 

and in another configuration it is modeled in elements 4 and 6. The damage is applied by 

decreasing the corresponding value of stiffness or mass by 5%. The resultant χ2-values from the 

sensitivity based and MinMax approaches are shown in Figure 6.20. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 6.20 Damage localization of the mass-spring system with the sensitivity based and MinMax 
approach; damage in (a) spring 3, (b) spring 3 &6, (c) mass 4 and (d) mass 4 & 6  



124 

It can be seen in Figure 6.20 that damaged elements (one or two) are identified from both 

methods. However, the results from the MinMax approach are more distinctive than the sensitivity 

based approach. This is expected as explained in Chapter 5: in the sensitivity based approach the 

effect of damage in one element is observed in all other elements while in the MinMax approach 

this effect is removed. 

6.4.1.2 Detectability of damage in each element 

In order to be able to assess the detectability of damage in each element, in Chapter 5 the diagonal 

elements of the Fisher information matrix and the *F  values were proposed. These values are 

computed and shown in Figure 6.21. Moreover, to check the proposed detectability approach, the 

system is damaged in each element to an equal ratio, i.e. 5% damage ratio, and the resultant χ2-

value corresponding to the damaged element is computed from both the sensitivity based and 

MinMax approaches. The expectation of these values are calculated by computing these values for 

100 times with different random inputs to the system and taking their average. These values are 

also illustrated in Figure 6.21 to be compared with the diagonal of FIM and *F  values. When an 

element has a higher χ2-value with the 5% damage, it shows that the damage is more detectible in 

it; in other words, for smaller damage ratios the reaction of the test is still visible in terms of χ2-

value. 

It can be seen that the format of the expected χ2-value from the sensitivity based approach 

is the same as the diagonals of FIM, and the χ2-value from the MinMax test is following the same 

format as *F  values. 
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Figure 6.21 Detectability of damage in each element from the diagonals of Fisher information matrix and 

F* values 

6.4.2 Shear wall model 

In this section, the shear wall model introduced in 6.2.3.2 is employed in investigating the damage 

localization and clustering approaches. There are two configurations, i.e. 7 element and 12 

element, of this structure and both of them will be investigated. It should be noted that the sensors 

are located in every level and the number of modeshapes used in composing the Jacobian matrix 

is chosen to be 4 for localizing the damage in stiffness and is 6 for localizing the damage in mass. 

6.4.2.1 Detecting the damage effect in stiffness or mass 

The damage is modeled in both 7 and 12 elements shear walls, by decreasing the stiffness or mass 

of each level for 5%. Since the stiffness of both structural configurations is identical in each story, 
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when localizing the damage in mass, both structures will be identical. However, when the damage 

is occurring in the stiffness of each element, these configurations are not identical.  

The damage in mass is applied for three cases: I) damage in levels 4, II) damage in level 6 

and III) damage in levels 4 and 6. Additionally, the damage in stiffness is applied as one 

configuration for both 7 element and 12 element shear walls. For the 7 element shear wall the 

damage is in elements 3 and 6, and for the 12 element shear wall, the damage is in elements 5 and 

11. These configurations are presented in Figure 6.22. 

 
(a) 

 
(b) 

Figure 6.22 Damage configurations for the shear wall model with (a) 7 elements and (b) 12 
elements 

Similar to a practical approach, before localizing the damage in these structures, the 

damage detection should be done and if the structure is detected to be damaged, then the damage 

localization is sensible to be performed. Therefore, the damage detection of these damage 

scenarios are performed firstly; the results are shown in the following figure. 
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(a) (b) 

Figure 6.23 Damage detection of the shear wall for damage in (a) mass and (b) stiffness of walls 

6.4.2.2 Clustering 

In order to cluster the elements, the clustering approaches, i.e. k-means and HFC, introduced in 

Chapter 5 are employed. By considering the formation of the 7 and 12 element shear walls, it can 

be expected that the elements located in the same story level are close and therefore they should 

be clustered in the same group. Since the number of masses are only 6, same as the mass-spring 

example in 6.4.1, they do not need to be clustered. This is demonstrated in the following 

dendrogram in Figure 6.24. As noted before, both 7 and 12 element structures are practically the 

same when they are undamaged and hence, their FIMs composed from the Jacobians with respect 

to mass elements are identical. 
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Figure 6.24 Hierarchical Fisher-information-matrix-based clustering (HFC) of mass elements for 7 and 12 

element shear wall 

It should be noted that the elements in the same story level are playing the role of one 

element in an analytical view to the structure. This means that the damage in either of the two 

elements results in the identical output from the same input excitation. Therefore, for this structure 

these two elements are almost not distinguishable in terms of damage. However, these elements 

are modeled and formed in this way to clarify the clustering concept and its effect on the results. 

Since the Jacobian columns corresponding to the stiffness of elements located in the same 

story level is exactly equal (which does not happen in a typical real structure), for the 

demonstration purposes, in the 12 element shear wall the Jacobian columns of the right elements 

in each story are changed by adding a random noise vector to them. This noise vector is having a 

minor magnitude and is applied to the Jacobians in order to demonstrate the functionality of the 

clustering approaches. In this way, the corresponding elements of the normalized FIM deviate 

from 1.0. In order to cluster these elements, the HFC and k-means approach are employed. The 

threshold for the HFC method is chosen as 0.15fε = . The number of clusters for the k-means 

approach is chosen as 6, because the number of independent clusters/elements is 6 in both shear 

walls (7 and 12 element). It should be noted, as was mentioned in Chapter 5, although the threshold 

for the HFC method can be identical for most of the structures, the number of clusters needed as 
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input to the k-means algorithm is usually unknown and needs to be guessed. Herein, this number 

is chosen based on our complete knowledge on the structural behavior of this shear wall. 

The hierarchical clustering of the elements using the HFC approach, for the 7 and 12 

element shear walls are depicted in Figure 6.25. It is seen in this figure that all the elements in the 

same story level are correctly clustered in the same cluster using the HFC approach.  

(a) (b) 
Figure 6.25 Dendrograms depicting the Hierarchical Fisher-information-matrix-based clustering (HFC) of 

the shear wall with (a) 7 elements and (b) 12 elements  

The Normalized Fisher Information Matrix (NFIM) for the 7 and 12 element shear walls 

are compared with the HFC clustered NFIM in Figure 6.26. It is observed in Figure 6.26, that the 

elements with higher value (close elements) are moved into clusters and therefore the final clusters 

are almost perpendicular to each other. 

Now, the same Jacobians are clustered with the k-means approach. It was observed that 

different clustering schemes were achieved by the k-means in each execution of program with the 

same inputs. For the 7 element shear wall, these clusters were almost unique, although in most of 

the cases k-means did not converge. One reason is that the Jacobian vectors for this structure 

corresponding to the 6 and 7 elements are completely identical. When k-means converges for the 
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7 element shear wall, the resultant clustering is same as the HFC approach as shown in 

Figure 6.25.a. 

 

NFIM of 7 element shear wall NFIM of centroids of clusters 
for 7 element shear wall 

 

NFIM of 12 element shear wall NFIM of centroids of clusters 
for 12 element shear wall 

Figure 6.26 Normalized Fisher information matrix (NFIM) for the HFC clustered and uncluttered 
Jacobians for the shear walls with 7 and 12 elements 
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For the 12 element structure, k-means resulted in different clustering schemes for each repetition 

of the algorithm. In some repetitions it did not converge too. As mentioned before, the reason of 

this instability is that in the k-means method, the starting point of its clustering approach is with 

random selection of vectors. Since the starting point changes and each column vector has big 

dimension (equal to the dimension of residual vector), the resultant cluster changes regularly for 

this problem. It should be noted that the objective function for k-means in clustering is chosen as 

cosine between input vectors. It was observed that the results are almost the same when choosing 

correlation between the vectors as the objective function. Two clustering schemes achieved by the 

k-means for the 12 element shear wall are illustrated in Figure 6.27. 

  
(a) (b) 

Figure 6.27 Two clustering schemes acquired for the 12 element shear wall with k-means approach 

It can be seen in Figure 6.27 that k-means could not achieve in clustering the close 

elements, i.e. the elements in the same story level, into the same cluster. The warm colors are still 
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existing on non-diagonal elements of the clustered NFIM. It is expected that if the damage happens 

in elements 9 or 10, the first clustering scheme (Figure 6.27.a) would not work for the MinMax 

approach. Similarly, if the damage is occurring in elements 5 or 6, the damage will not be identified 

using the MinMax approach from the second clustering scheme (Figure 6.27.b) as will be shown 

in the next section. 

6.4.2.3 MinMax and sensitivity based damage localization 

The simulated data from the shear wall structure with different damage configurations presented 

before, will be localized in this section. The damage was detected from each of these 

configurations in 6.4.2.1 and therefore now the damage will be localized as the next step of damage 

identification. 

In the first step the damage in the mass is localized using the MinMax and sensitivity based 

approaches. As mentioned before with having masses as the parameters, there is no need to cluster 

them. Hence, the MinMax method is performed without clustering. The results are shown in 

Figure 6.28. 
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(a) 

 

(b) 

 

(c) 

 
Figure 6.28 Damage localization of the shear wall with the sensitivity based and MinMax approach; 

damage in (a) mass 4, (b) mass 6 and (c) masses 4 & 6  

In the next step, the damage in the stiffness of elements of 7 and 12 element shear walls 

will be localized by using the sensitivity based and MinMax approaches. For this purpose the 

clustering is performed using the HFC method as Figure 6.25. The results with clustering and 

without clustering are shown in Figure 6.29. 
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(a) 

(b) 

 
Figure 6.29 Damage localization of the (a) 7 element shear wall with damage in elements 3 and 6; (b) 12 

element shear wall with damage in elements 5 and 11; the clustering method is HFC 

It can be seen that the damage in the shear wall elements are correctly identified. Moreover, 

because the elements in the same level are close to each other and they are clustered by HFC 

method in the same cluster, the damage in one element will be reflected in other element in its 

cluster, in both sensitivity based and MinMax methods. It should be noted that the MinMax 

approach only removes the effect of the damage from the elements outside the cluster of the tested 

element.  

Moreover, since the close elements were correctly clustered, the damage is distinctly 

identified for the cluster containing the damaged elements. As shown in Figure 6.29, without 

clustering the close elements the effect of damage is not seen on the χ2-test. 
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Now, to check the k-means clustering approach, the clustering schemes presented in 

Figure 6.27 will be used in localizing the damage in the 12 element shear wall. The results are 

illustrated in Figure 6.30. It can be seen that as expected when the damage is occurring in the close 

elements not clustered correctly in the same cluster, the damage cannot be seen in the MinMax test 

(Figure 6.30.b). Therefore, these clusters suggested by the k-means are not appropriate in removing 

the effect of closeness. 

(a) 

 

(b) 

 
Figure 6.30 Damage localization of the 12 element shear wall with damage in elements 5 and 11 using the k-

means clustering scheme (a) Figure 6.27.a, and (b) Figure 6.27.b 

6.4.2.4 Detectability of damage in each element 

Similarly to the mass-spring case-study, in here, the relation between the detectability of damage 

for each element and the diagonals of the un-normalized FIM are investigated by considering the 

trend of the evaluated expected χ2-value of each element (when damaged with 5% ratio) and the 
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diagonals of FIM. Additionally, the values of expected χ2-value from MinMax test are compared 

to the *F  values. Therefore, the χ2-value of each element from the sensitivity based method and 

MinMax method are calculated when only that element is damaged, and then they are compared 

to the corresponding value in the diagonals of the FIM and *F  values. The results for the 7 element 

shear wall are illustrated in Figure 6.31.  

 

 
Figure 6.31 Detectability of damage in each element of 7 element shear wall from the diagonals of Fisher 

information matrix and F* values 

It is observed that the elements with higher values are the same in both corresponding 

graphs which confirms that the diagonals of FIM and *F  values are a good representative of the 

detectability of elements from, respectively, sensitivity based and MinMax approaches. It should 
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be noted that, these values are calculated with all modeshapes used in composing the Jacobian 

matrix. The number of repetitions to compute the expectation is 100. 

6.5 Conclusions 

In this chapter three analytical models were used in verifying the theories and methods introduced 

in Chapters 4 and 5. The effect of number of samples and noise ratio on these models could be 

predicted by the theories developed in Chapter 4. 

The k-means and HFC clustering methods were used in clustering the close elements of the 

shear wall model. It was demonstrated that the HFC method could identify and cluster the close 

elements correctly, while k-means was not promising. The k-means approach could not cluster the 

close elements properly. The instability of this approach was shown. 

Moreover, the damage was localized in two of these models using the sensitivity based and 

MinMax tests. It was seen that the results from the MinMax test with the HFC clustering can 

identify the damage distinctly. While both MinMax and sensitivity based approaches could 

identify the damage, the MinMax results were clearer as expected.  

The two indices indicating the damage detectability were tested for two of the models. It 

was verified that these indices have a direct relationship with the detectability of damage in each 

element. 
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Chapter  7: Experimental Test: the Yellow Frame 

Experiments on large scaled structures are one of the best ways in measuring a structure in a 

controlled environment with different damage scenarios to different extents. The measured data 

from these experiment can be used in assessing different damage detection techniques. In this 

chapter, the experimental measurement of a steel frame, namely the Yellow frame, is elaborated.  

In order to study the effect of measurement noise and number of samples on the SSDD test, 

the noise is simulated and added to the measured data. Moreover, the data is cut to the length 

required in studying the effect of number of samples. 

In case of localizing the damage in experiments using the subspace damage localization 

approach, an analytical model of the structure is also needed in computing the Jacobians of the 

modal parameters of the structure with respect to each physical parameter. Therefore, this 

analytical model will be presented in this chapter.  

The damage localization using the SSDL technique will be elaborated and validated step 

by step from calculating of the Jacobians, clustering them, to the testing of each element. The 

results of these studies will be presented in this chapter. 

7.1 Introducing the Yellow Frame 

The Yellow frame is a modular 4 story, scaled (1/3) steel frame restablished during this research 

in 2016 at the University of British Columbia (UBC). Several damage scenarios (configurations) 

are designed and tested by removal of braces of the structure. These damage configurations are 

used in assessing the statistical subspace damage detection and localization methods. 

7.1.1 Frame description 

This structure is 3.6 m high and is composed of 2 spans in each direction with the total length of 

2.5 m. Each floor of the structure is carrying dead loads applied to the structure by using 4 steel 
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plates distributed on each level. The dimensions of the steel plates are 1.5 m × 0.65 m. The weight 

of the steel plates for the first three floors is 17.8 kN per floor and for the fourth floor the weight 

is 13.34 kN. The frame is constructed from hot rolled 300W steel members. The beams are S75×11 

sections and the columns are B100×9 sections. Four 50 mm square steel tubes are used to provide 

in-plane stability to the diaphragm of each floor. For the lateral stability, four pairs of threaded 

steel rods (with diameter of 12 mm) are used as braces on each side of the structure in each floor. 

These braces are all pretensioned by using a torque wrench. The torque moment is equal for all the 

braces in order to assure the same pretensioned force consistently throughout the structure. The 

photo of the Yellow Frame structure and its schematic plan are shown in Figure 7.1.  

 

 

(a) (b) 
Figure 7.1 (a) Photo of the Yellow Frame structure (south-east corner), (b) scaled plan of each level, mass 

plates, and location of sensors 
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It can be seen that the strong and weak directions of the structure are defined based on the 

orientation of the columns. In each level, two of the mass plates are moved towards south on the 

structure to increase the eccentricity and, therefore, magnify the effects of torsional modeshapes. 

These plates are fixed to the structure by using two channels fastening them to the beams using 

pretensioned screws. 

There are three base beams (gray color in the photo) designed and built for this structure 

in order to increase the rigidity of base connections of columns. These beams are balanced and 

then stabilized with concrete mixture covering half of their depth. Moreover, two heavy channels 

are located on top of them to assure that the structure will not have relative displacement to the 

ground in ambient vibration testing. 

7.1.2 Background on benchmark structure 

This structure was previously established on a shaking table at UBC in 1999 and on the ground in 

2002 as the IASC/ASCE benchmark structure. Some of the base beams are redesigned and built 

in order to restablish the structure. Moreover, sensor locations, the damage configurations, sensor 

types and location of masses are differentiated in this test. Other than that, the structure is 

instrumented with temperature and moisture sensors in addition to the accelerometers.  

7.1.3 Instrumentation 

This structure is instrumented by 15 accelerometer sensors of which three are located on the base 

of the structure. In each floor, three sensors are located at the north, south and west side of the 

structure as depicted in Figure 7.1.b. In addition, one temperature and one moisture sensor are also 

located on the structure for future study of the effects of these environmental factors on the damage 

detection method. All these sensors are connected through wires to a data acquisition system 

located inside the lab. The details of the instrumentation is explained in Appendix E. 
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The data measured from the structure is not filtered using a hardware filter and therefore, 

it is detrended, decimated and low-pass filtered by using developed software codes. The sampling 

rate is 1000 Hz which is decimated with a factor of 4 to 250 Hz. The reason is that the frequency 

content of the data is negligible after 125 Hz as shown in Figure 7.2. 

(a) (b) 
Figure 7.2 Fourier transformation of (a) the unfiltered real data from the Yellow Frame with 1000 Hz 

sampling rate and (b) the decimated data with 250 Hz sampling rate 

7.1.4 Eigenstructure identification 

The natural frequencies and modeshapes of the structure can be identified from the measured data 

in the healthy state of the system. These modeshapes and natural frequencies are not needed in the 

damage detection or localization of the structure unless the real data eigen-parameters are chosen 

to be used (instead of analytical ones) in forming the Jacobian matrix (Formation 2) as was 

described in Chapter 5. Even in the latter case the system identification needs to be performed only 

once in the reference state of the structure and is not needed in the testing phase. 

It should be noted that the analytical model does not need to be calibrated to the structure, 

however, the model should be a good representative of the dynamic behavior of the structure and 

the first (dominant) modal parameters should not have different order than the real data. Therefore, 

identifying the modal parameters of the system in the reference state is recommended in validating 

the model used in the sensitivity analysis. 
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The first ten modeshapes and natural frequencies of the structure from the real data are 

evaluated. The natural frequencies are illustrated in Figure 7.3 and their corresponding 

modeshapes are shown in Figure 7.4. 

 
Figure 7.3 Identified 10 natural frequencies from the real data for Yellow frame structure 

As illustrated in Figure 7.4, the transitional modeshapes are not in the direction of strong 

or weak axes and they are diagonally coupled in the direction of the combination of these axes. 

Each mixed couple of modeshapes are presented by symbols ⊥ and ├, i.e. (XY-n⊥ and XY-n├) 

represents the n’th pair of coupled transitional modeshapes. The reason for this combination is that 

the corresponding natural frequencies of these modeshapes are very close to each other which 

stems from the closeness of the stiffness of the structure in each direction. In other words, the 

stiffness of the structure in the strong and weak axes are very close. The onliest difference between 

the stiffness in each direction is in the orientation of columns as shown in Figure 7.1. Moreover, 

the stiffness in each direction is the sum of stiffness of the frames and the braces, and because the 

braces create the major part of the total stiffness in each direction, the difference of the total 

stiffness in each direction is comparably very small. 
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1st modeshape (transitional, coupled XY-1├) 2nd modeshape (transitional, coupled XY-1⊥⊥⊥⊥) 

  
3rd modeshape (torsional, T-1) 4th modeshape (transitional, coupled XY-2├) 

  
5th modeshape (transitional, coupled XY-2⊥⊥⊥⊥) 6th modeshape (transitional, coupled XY-3├) 

  
7th modeshape (transitional, coupled XY-3⊥⊥⊥⊥) 8th modeshape (torsional, T-2) 

  
9th modeshape (transitional, coupled XY-4) 10th modeshape (torsional, T-3) 

Figure 7.4 First 10 modeshapes identified from the real data measured from the Yellow frame 
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It should be noted that this complexity of modeshapes happens in the numerical 

computation of the eigenstructure of the real data. The modeshapes acquired from the analytical 

model will not be coupled unless the stiffness is exactly the same in each direction as will be 

discussed in 7.1.6.1. In other words, if the two modeshapes (in two directions) are exactly identical, 

any combination of them, e.g. diagonal modeshapes, can be a modeshape too. 

Since the modeshapes from the analytical model are not coupled unlike to the modeshapes 

from the real data, the coupled modeshapes should be decoupled and scaled prior to the use in the 

Jacobian computation as described in Chapter 5. The reason for this decoupling and scaling is to 

make them consistent with the analytical modeshapes in composing the final Jacobians. 

7.1.5 Damage creation 

In order to evaluate the SSDD and SSDL methods, several damage scenarios need to be created 

on the structure. The damage is created by removal of one or both of the braces in each span at 

each story. The ratio of damage by removing one brace is half of the ratio for removal of both 

braces. Based on the number of braces, the location of removal and the combination of the removal 

of one or more braces, 15 damage configurations are created and investigated. It should be noted 

that the testing of these damage configurations was performed during 4 inconsecutive days. 

Moreover, having a single damage location in the structure is the typical case investigated 

in damage detection methods and localizing the damage for multiple damage cases is more 

complicated. However in here, different multiple-damage cases are also created along with single-

damage cases. 
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7.1.5.1 Damage configurations 

The damage configurations investigated in this study are 15 configurations which are organized 

based on the damage ratio and their locations. Based on the numbering of the braces shown in 

Figure 7.5, the damage configurations are demonstrated in Table 7-1. 

 
Figure 7.5 Numbering of the braces in each outside frame of the Yellow frame structure 



146 

Table 7-1 Damage configurations of the Yellow frame: the location of damage and number of removed braces 

Configuration 
number 

Removed braces (number of 
braces removed) 

C1 2 (I) 
C2 2 (II) 
C3 2 (I), 4 (I) 
C4 2 (II), 4 (II) 
C5 2 (II), 4 (II), 18 (I), 20 (I) 
C6 2 (II), 4 (II), 18 (II), 20 (II) 
C7 2 (II), 4 (II), 17 (II), 19 (II) 

C8 
1 (I), 2 (I), 3 (I), 4 (I), 
17 (I), 18 (I), 19 (I), 20 (I) 

C9 
1 (II), 2 (II), 3 (II), 4 (II), 

17 (II), 18 (II), 19 (II), 20 (II) 
C10 25 (I), 27 (I) 
C11 10 (II), 12 (II) 
C12 21 (II), 23 (II) 
C13 10 (II), 12 (II), 21 (II), 23 (II) 
C14 6 (I), 8 (I), 29 (I), 31 (I) 
C15 7 (I), 8 (I), 21 (I), 22 (I) 

Each configuration is depicted in Appendix F. 

7.1.6 The finite element model 

In order to calculate the sensitivities of the eigenstructure to the physical parameters (chosen in 

here as stiffness of each brace), a finite element model of the Yellow frame is created using 

Abaqus® software (Hibbett et al. 1998). In this model, the section properties of the elements of 

the Yellow frame are used in modeling the beams, braces and columns. The model of the structure 

is depicted in Figure 7.6. 
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Figure 7.6 Finite element model of the Yellow frame structure (x represents North/strong axe direction) 

The plates with mass are modeled as lumped mass in the four corners of each plate on the 

structure. Since these plates are bolted and connected with pretensioned rods to their surrounding 

beams (in friction), their contribution to the stiffness of structure for ambient vibration is not 

negligible. Therefore these plates are also modeled as two parallel beams.  

The base of the structure is modeled as fixed connection to the ground. The connections of 

beams and columns are also modeled as fixed connection and the braces are connected as moment 

free hinge connections to the structure. Because each group of two braces in each floor at each 

span is only under axial force, they are modeled as one element with cross section area equal to 

the total area of both braces. Localizing damage in one brace element indicates the possibility of 

damage in both of these parallel braces. This structure is not updated based on the real data, and 

will be used in the sensitivity analysis of modeshapes and natural frequencies without calibration.  

7.1.6.1 Eigenstructure evaluation 

A modal analysis is performed on the finite element model and the natural frequencies and 

modeshapes are evaluated. The first 10 modeshapes are shown in Figure 7.7. 
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1st modeshape (transitional Y-1) 2nd modeshape (transitional X-1) 

  
3rd modeshape (torsional, T-1) 4th modeshape (transitional Y-2) 

  
5th modeshape (Flexible diagram D-1) 6th modeshape (transitional X-2) 
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7th modeshape (transitional Y-3) 8th modeshape (Flexible diagram D-2) 

  
9th modeshape (transitional Y-4) 10th modeshape (transitional X-3) 

Figure 7.7 First 10 modeshapes evaluated from the finite element model of the Yellow frame 

It can be seen by comparing Figure 7.7 and Figure 7.4 that the order of the modeshapes 

identified from the real data and from the finite element model are the same from the 1st to 6th 

modeshape, without considering the flexible diaphragm modeshapes. Therefore, the finite element 

model is a good representative of the real structure. This model is not updated to match the natural 

frequencies to the real data, and only it is used in evaluating the sensitivities without the importance 

of their scaling factor. The order of the modeshapes play a more critical role than the values of 

their corresponding natural frequencies, since the sensitivities will be scaled in the SSDL method. 

The reason that the natural frequencies evaluated from the FE model and measured data are 

different is that the connections in joints are modeled as solid, while they need to be modeled 
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flexible to some ratio. Moreover, the connection of the structure to the basis is also not rigid as is 

modeled. These are in addition to the aleatoric uncertainties of the material and section properties 

present in the model. 

Although in each floor, four square steel tubes are connecting the corner beams together to 

increase the rigidity of diaphragms, from the finite element model of the structure, it is observed 

that these beams do not provide enough rigidity to the diaphragm to completely remove the flexible 

diagram modeshapes. It should be noted that since the sensors are not located in the corners of the 

structure (where maximum movement occurs in flexible-diaphragm modeshapes), these 

modeshapes were not identified from the real data. Nevertheless, because they are present on the 

real structure, they will be used in its damage localization when using only the sensitivities from 

the FE model, i.e. Formation 1. However, when the sensitivities are calculated from both the FE 

model and real data (Formation 2), they need to be matched as will be shown in 7.3. 

7.1.6.2 Sensitivity analysis 

The computation of the sensitivities of the modal parameters of the structure to the stiffness of 

each brace is computed using the finite difference approach. The employed perturbation factor is 

0.1% which proved to be optimal. The sensitivity analysis was performed using a Python script 

executed on Abaqus® software. There are 32 braces modeled in the finite element model that each 

of them represents two steel rods. The sensitivities of the first 10 natural frequencies and 

modeshapes are calculated with respect to the stiffness of each of these 32 braces. 

7.1.7 Measurement noise simulation and data length 

In order to study the effect of measurement noise in the data, the noise is created as white noise 

from the procedure mentioned in 6.2.1.3. The reason is that the measurement noise cannot be 

evaluated nor changed naturally with the sensors. Therefore, the measurement noise is simulated 
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and used as an additional measurement noise to the data (which already contains some unknown 

measurement noise). This simulated noise is added to each measurement channel. As mentioned 

before, the noise ratio is a percentage of the standard deviation of the measurement of each channel. 

This percentage of the standard deviation is used as the standard deviation of the Gaussian noise 

imposed on the measurements. 

The length of data is changed by cutting the data from the beginning to the needed length. 

This change is performed for each case on the same measured data and only the number of samples 

are changed in evaluating the effect of data length on the damage detection method. 

In damage localization there is no additional measurement noise imposed on the data. 

Moreover, the length of the data is kept constant for different damage configurations. 

7.2 Damage detection in the Yellow Frame 

Herein, the results from the damage detection of the experimental model introduced in 7.1 are 

presented. The data measured from the structure is also used in investigating the effect of number 

of samples by cutting the data in different lengths. Subsequently, several noise vectors are created 

based on output of each sensor and they are added to the data to study the effect of the additional 

measurement noise as stated in 7.1.7. 

7.2.1 Detecting the damage for different damage configurations 

The damage configurations defined in Table 7-1, are tested using the SSDD method. The data 

length is constant and there is no additional measurement noise added to the data. In three tests, 

the structure is not damaged and therefore they are used in evaluating a safety threshold based on 

the 99th percentile of their distribution. The resultant χ2-values in log-scale are illustrated in 

Figure 7.8 from testing all the damage configurations.  
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Figure 7.8 Damage detection of the damage configurations of the Yellow frame (the yellow line represents 

the 99% percentile threshold) 

It can be seen in Figure 7.8 that all the damage configurations are detectible. It should be 

noted that the scale of the χ2-value is not a representative of the amount of damage. The damage 

quantification using the SSDD technique is not considered in this dissertation. Since all the 

configurations are detectible, they are used in the damage localization as the next step of damage 

identification. 

In the next subsection, the effect of number of samples and additional measurement noise 

is investigated. 

7.2.2 Effect of number of samples 

In order to investigate the effect of number of samples, the data from the undamaged structure and 

damage configuration C15 are cut to several lengths corresponding to 5 min, 7.5 min, 10 min, 12.5 

min, 15 min and 18.33 min. Configuration C15 is depicted in Figure 7.9. 
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Figure 7.9 Damage configuration C15 used in studying the effect of noise and number of samples 

The results for the undamaged and damaged states of the structure for no additional noise 

and 80% additional noise are shown in Figure 7.10. In order to calculate the expected χ2-value, 

when noise is present, the analysis is performed for 30 times at each case and the average is 

computed. It should be noted that this expectation value is only affected by the measurement noise 

and not the input excitation, while in the proposed theories, the expectation is assumed on the input 

excitation as well as the output measurements. Therefore, the results should be assumed as an 

approximate of the final expectation value. 

It can be seen from Figure 7.10 that there is a linear trend for the undamaged and damaged 

states of the structure. This linearity confirms Theorem 4.2 for the damaged state. However, for 

the undamaged state, because we are using real data, eϒ  is not exactly zero and equals to a small 

value, namelyε . This yields Nδ ε= . Therefore, the non-centrality parameter of the resulting 

test variable 2
Nχ  is 1( )eTNε ε−Σ , where ε  is independent of N. Hence, by considering equation 

(4-1) we have 2 1( ) ( ) ( )T

N

ed Nχ ε ε−= + ΣE . Consequently, the mean of the test variable increases 

when the number of samples grows similar to Theorem 4.2. The growth rate is depending on the 

value of ε . Since ε  is a small value for an undamaged structure, 2( )NχE  increases with a lower 
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rate compared to the damage state, as demonstrated in Figure 7.10. The value of 2( )NχE  is 

normalized as 
0 18.
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 where 0 18

2
.33( )χE  represents the expected 2

Nχ  value for the 

18.33 min long data from undamaged structure with no additional noise. 

 
Figure 7.10 Expected χχχχ2-value evaluated for different number of samples in damaged and undamaged 

conditions of the Yellow frame 

7.2.3 Effect of measurement noise 

Same as previous study on number of samples, the undamaged structure and damaged structure 

(of configuration C15) are employed in here for investigating the effect of additional measurement 

noise on the data. Again in each case, to calculate the expected χ2-value the analysis is performed 

for 30 times and the average is computed. As mentioned in previous section, the results should be 

assumed as an approximate of the real expectation value as the input is not changing. In the 

following two sections, this effect is studied for the equal and unequal additional measurement 

noise properties in the reference and test data. 

7.2.3.1 Equal properties between reference and test data 

In order to investigate the effect of the measurement noise on the expected χ2-value, noise vectors 

with equal ratios are added to the reference and test data as an additional measurement noise. The 

noise ratio varies among 0%, 5%, 10%, 20%, 35%, 50%, 65% and 80%. The length of the data is 
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kept constant and equal to 18.3 min. The resultant expected  is illustrated versus Nr in 

Figure 7.11. 

 
Figure 7.11 Expected χχχχ2-value evaluated for different noise ratios with equal properties in reference and 

test data for damaged and undamaged conditions of the Yellow frame 

It is observed in Figure 7.11 that the expected 2
Nχ  value decreases by the increase of Nr for 

both damaged and undamaged states. Herein, same as previous case study on number of samples, 

since we are using real data, eϒ  is not exactly zero. Therefore the second part of equation (4-1) is 

not zero and will be decreased by the growth of the noise in the data based on Theorem 4.4. 

7.2.3.2 Unequal properties between reference and test data 

In this case study, the applied noise to the measurements of the reference and test states are 

different and unequal. In order to investigate the measurement noise effect on the reference and 

test states independently, in two studies, the noise will be applied only to one of the two states. 

In the first study, the additional noise is applied with different ratios to the data from 

undamaged and damaged structure in the test state. There is no additional noise applied to the 

reference state data. The test is performed for two lengths of data: 5 min and 18.3 min. The results 

are illustrated in Figure 7.12. It is observed that for both damaged and undamaged structures, the 

expected χ2-value increases as stated in Theorem 4.5. 

2
Nχ
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Figure 7.12 Expected χχχχ2-value evaluated for different noise ratios only in test data for damaged and 

undamaged conditions of the Yellow frame 

For the second study, the noise is only applied to the reference state data. The length of the 

data is kept constant and equals to 18.3 min. The results of the expected χ2-value for the 

undamaged and damaged structures are illustrated in Figure 7.13. It can be seen that the expected 

χ2-value decreases by the increase of noise, confirming Theorem 4.6. 

 
Figure 7.13 Expected χχχχ2-value evaluated for different noise ratios only in reference data for damaged and 

undamaged conditions of the Yellow frame 

7.3 Damage localization in the Yellow Frame 

In this section the damage localization is investigated on the real measured data acquired from the 

Yellow frame structure. Different damage configurations were introduced in 7.1.5.1 and they were 

detected in 7.2.1. As the next step of damage identification the damage is localized in the brace 

elements using the SSDL technique for different configurations. In this chapter, the damage will 
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be localized using the sensitivity based and MinMax tests. The proposed clustering approach, i.e. 

HFC, and the k-means will be used and the results will be compared. Furthermore, The Jacobians 

constructed from different formations introduced in Chapter 5 will be compared. Finally, the 

detectability of each element will be investigated. 

 As investigated in the damage detection of this structure, to avoid the effect of number of 

samples, the data length in the damage localization is not changed and it is constant among all the 

tests. Moreover, there is no additional measurement noise applied to the data and it contains only 

the original measurement noise from the test. 

In the following section the two formations of Jacobians, described in Chapter 5 are 

constructed and compared.  

7.3.1 Jacobian formation 

Composing the Jacobian matrix from Formation 1 in 5.2.2, can be achieved by using only the 

analytical modeshapes and natural frequencies computed from the analytical model, i.e. FE model, 

of the structure shown in Figure 7.7. These modeshapes are used in forming all parts of the 

Jacobian in (5-2). In this formation all the parts of the Jacobian are consistent, and therefore, all 

the evaluated modeshapes and natural frequencies will be used. However, when using Formation 

2 in 5.2.2, the modeshapes and natural frequencies from both the FE model and measured data are 

needed. Therefore, they need to be consistent in terms of I) number, location and order of sensors, 

II) number and order of natural frequencies, and III) number and order of modeshapes. For this 

purpose, the modeshapes acquired from the FE model and the measured data are matched in 

Figure 7.14. 
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Figure 7.14 Matching the modeshapes and natural frequencies evaluated from the measured data and 

analytical FE model 

It can be seen that the coupled modeshapes need to be scaled and decoupled using the 

scaling approach proposed in Chapter 5. As described before, they will be matched by the 

modeshapes in the analytical model. Moreover, the order of the modeshapes from the analytical 

model is changed in order to match the order of the modeshapes from the measured data. This will 

make the sensitivity analysis from the analytical modeshapes consistent with the real data. The 

first three modeshapes before and after the scaling are illustrated and compared in Figure 7.15. It 

should be noted that the values are corresponding to the sensor number in their direction. 
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1st modeshape 

 
2nd modeshape 

 
3rd modeshape 

Figure 7.15 Scaling the modeshapes  evaluated from the measured data to the ones from analytical FE 
model (the horizontal axe is sensor number) 
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The first and second modeshapes are coupled and therefore they are more different than 

the analytical modeshape. The third modeshape is not coupled and it is matching very closely to 

the real data, before and after scaling. 

It should be noted that from this matching only 8 modeshapes can be matched and used 

while for Formation 1 all the 10 modeshapes can be used. Furthermore, because in Formation 1 

all the parts of the Jacobian are made from the analytical modeshapes consistently, the order of 

these modeshapes needs not to be identical to the real measured data. 

7.3.2 Clustering 

The elements of the Yellow frame need to be clustered before damage localization. Based on the 

formation of the Jacobians, the clustering is different. It should be noted that the braces located in 

the same story level and in the same side of the structure are close as can be seen in Figure 7.1. 

Therefore, ideally the clustering methods should consider them in the same group. Since there are 

16 pairs of these close braces present in the structure, the number of the resultant clusters should 

be less than 16. This can be used in checking the output of the clustering approaches. 

7.3.2.1 Hierarchical Fisher-information-matrix-based clustering 

The clustering for the structure by HFC method with using threshold of 0.15fε =  for both 

Jacobian formations are shown in Figure 7.16. 
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(a) 

 
(b) 

Figure 7.16 Dendrograms depicting the Hierarchical Fisher-information-matrix-based clustering (HFC) of 
the Yellow frame from Jacobians with (a) Formation 1 and (b) Formation 2 

It is observed in Figure 7.16, both formation of the Jacobians resulted in clustering schemes 

with 15 and 14 clusters which are less than 16 clusters. Furthermore, all the braces expected to be 
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close, are in the same group. Using this clustering scheme, the NFIM is evaluated and shown in 

Figure 7.17 for both formations of Jacobian. 

 

NFIM of Yellow frame for Formation 1 NFIM of centroids of clusters 
for Formation 1 

 

NFIM of Yellow frame for Formation 2 NFIM of centroids of clusters 
for Formation 2 

Figure 7.17 Normalized Fisher information matrix (NFIM) for the HFC clustered and unclustered 
Jacobians (Formation 1 and Formation 2) from the Yellow frame structure 
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In the next section the clustering is performed with k-means approach. 

7.3.2.2 k-means clustering 

In order to show the performance of k-means in clustering the elements, the k-means approach is 

used in clustering the Jacobians obtained from Formation 1. As mentioned before, the results are 

not unique and therefore in here, two clustering schemes are presented in Figure 7.18. The number 

of clusters is chosen as 15 to be comparable to the results from HFC approach. Again it should be 

noted that the objective function of k-means is chosen as cosine between input vectors, i.e. columns 

of Jacobian. The results was also observed to be the same when choosing the correlation between 

vectors as the objective function. 

It can be seen in Figure 7.18, that some of the close braces are not in the same cluster. 

Therefore, in the NFIMs corresponding to these clustering schemes, several red color spots are 

existing which are related to these close elements. Based on these clustering schemes, it is expected 

that if the damage happens in close elements that are not in the same cluster, e.g. elements 18 and 

20 in clustering scheme 1 or elements 2 and 4 in clustering scheme 2, the damage would not be 

identified. 



164 

  
NFIM with clustering scheme 1 NFIM with clustering scheme 2 

 
Clustering scheme 1 

 
Clustering scheme 2 

Figure 7.18 Two clustering schemes acquired for the Yellow frame with k-means approach 

7.3.3 MinMax and sensitivity based damage localization 

In this section, the measured data from the structure is used with the clustering schemes presented 

in previous section to localize the damage for different damage configurations defined in 7.1.5.1. 

All the damage configurations will be localized using the HFC based clustering and with Jacobians 

composed from Formation 1, i.e. Figure 7.16.a. The results are presented in Figure 7.19.  
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Configuration 1 (2 (I)) 

Configuration 2 (2 (II)) 

Configuration 3 (2 (I), 4 (I)) 
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Configuration 4 (2 (II), 4 (II)) 

Configuration 5 (2 (II), 4 (II), 18 (I), 20 (I)) 

Configuration 6 (2 (II), 4 (II), 18 (II), 20 (II)) 
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Configuration 7 (2 (II), 4 (II), 17 (II), 19 (II)) 

Configuration 8 (1 (I), 2 (I), 3 (I), 4 (I), 17 (I), 18 (I), 19 (I), 20 (I)) 

Configuration 9 (1 (II), 2 (II), 3 (II), 4 (II), 17 (II), 18 (II), 19 (II), 20 (II)) 
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Configuration 10 (25 (I), 27 (I)) 

Configuration 11 (10 (II), 12 (II)) 

Configuration 12 (21 (II), 23 (II)) 
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Configuration 13 (10 (II), 12 (II), 21 (II), 23 (II)) 

Configuration 14 (6 (I), 8 (I), 29 (I), 31 (I)) 

Configuration 15 (7 (I), 8 (I), 21 (I), 22 (I)) 

Figure 7.19 Damage localization of the Yellow frame with HFC clustered Jacobians (from Formation 1) 
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It is seen that almost in all of the damage configurations, the damaged brace/s can be 

identified with acceptable accuracy. It is observed that identifying the damage for multiple damage 

cases is possible, although the accuracy and clarity of the result will be compromised. The damage 

is localized more distinctly for the damage configurations of single or double damaged braces. It 

should be noted that the close braces, i.e. every couple of braces in each level at each side, cannot 

be distinguished in terms of being or not being damaged from each other. In other words, if one of 

the braces is damaged, the other close brace also reacts in the test as to be damaged. 

The MinMax method with the HFC clustering, can clarify the damage in most of the cases 

compared to the sensitivity based damage localization. Furthermore, the MinMax method without 

clustering is always incapable of localizing the damage as predicted. 

7.3.3.1 Assessing the functionality of Jacobian matrix computed from Formation 2 

In here, some of the damage configurations, i.e. C1, C6 and C12, will be localized using the HFC 

based clustering Figure 7.16.b and Formation 2 of the Jacobian. The results are illustrated in 

Figure 7.20. 
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Configuration 1 (2 (I)) 

Configuration 6 (2 (II), 4 (II), 18 (II), 20 (II)) 

Configuration 12 (21 (II), 23 (II)) 

Figure 7.20 Damage localization of the Yellow frame with HFC clustered Jacobians from Formation 2 

It can be seen from Figure 7.20, that the damage is localized in two configurations. 

Nonetheless, the results are not as clear as when the Jacobians are computed from Formation 1. 
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Moreover, even in some cases, e.g. configuration 6, the damage cannot be localized from the 

MinMax or sensitivity based approaches. The reason of this problem is that the number of 

modeshapes and natural frequencies being matched and used is only 8, while for Formation 1 this 

number is 10. This stems from the difficulties in finding the local modeshapes and modeshapes 

blind to the sensor locations (in here, flexible diaphragm) from the real data, compared to the FE 

model. The other reason is in the slight difference and inconsistency between the modeshapes from 

the real measured data and the analytical model. For the latter reason, this difference showed to be 

very minor in this problem after the scaling is performed. 

7.3.3.2 Assessing the functionality of k-means clustering 

In order to assess the clustering schemes in Figure 7.18, computed by k-means approach, in here, 

two damage configurations, i.e. C5 and C12, are chosen to demonstrate the effect of close elements 

that are not clustered properly on the MinMax method. In damage configuration 5, elements 2 and 

4 (which are close elements) and 18 and 20 (which are also close elements), are damaged. Elements 

2 and 4 are not in the same cluster in clustering scheme 2 in Figure 7.18 while elements 18 and 20 

are not in the same cluster in clustering scheme 1. Therefore, as can be seen in Figure 7.21, the 

damage in close elements not clustered properly is not detected. In other words, the damage in 

elements 2 and 4 is not detected when using clustering scheme 2 and the damage in elements 18 

and 20 is not identified when clustering scheme 1 is used.    
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Configuration 5 (2 (II), 4 (II), 18 (I), 20 (I)) with k-means clustering scheme 1 (Figure 7.18) 

Configuration 5 (2 (II), 4 (II), 18 (I), 20 (I))  with k-means clustering scheme 2 (Figure 7.18) 

Configuration 12 (21 (II), 23 (II)) with k-means clustering scheme 2 (Figure 7.18) 

Figure 7.21 Damage localization of the Yellow frame with k-means clustered Jacobians from Formation 1 

As another example, because elements 21 and 23 are not in the same cluster in clustering 

scheme 2, for damage configuration 12 the damaged elements, i.e. elements 21 and 23, cannot be 
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identified using MinMax approach, as shown in Figure 7.21. Therefore, the clustering schemes 

acquired from the k-means approach are not appropriate in damage localization of these 

configurations. Subsequently, since there is no prior knowledge of the location of damage and 

closeness of elements in practice to check the k-means output and considering the unstable inherent 

of the k-means approach, it is not an appropriate clustering method to be used in SSDL method. 

7.3.4 Detectability of damage in each element 

The diagonals of un-normalized Fisher information matrix and *F  values computed by Jacobians 

acquired from Formation 1 are shown in Figure 7.22. It can be seen that almost all the elements 

are equally detectible in Figure 7.22.a while from *F  values the elements located in the east frame, 

where no sensor is located, are in general less detectible than other elements. 

  
(a) (b) 

Figure 7.22 Detectability of damage in the Yellow frame from (a) the diagonals of Fisher information 
matrix and (b) F*; Jacobians are computed from Formation 1 

In order to demonstrate the relation of the diagonals of FIM and values of *F  to the 

detectability of each element, the 3 sensors located in the first level are removed. Since elements 

17 and 19 are located in the first level and they have a very high value in Figure 7.22.a, it is 

expected that their corresponding value would be decreased when removing the sensors in the first 
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level. The Jacobians are computed from the remaining sensors using Formation 1 and the resultant 

diagonals of FIM and *F  values are illustrated in Figure 7.23. It can be seen that the values 

corresponding to the elements 17 and 19 are decreased from both diagrams. Moreover, in the 

diagram from *F  values, the elements located in the first level are generally decreased to a higher 

percentage than the elements located in other levels. While this change is distinctly visible in *F  

values of elements located in the first level compared to other elements, the diagonals of FIM are 

not showing this behaviour. 

  
(a) (b) 

Figure 7.23 Detectability of damage in the Yellow frame from (a) the diagonals of Fisher information 
matrix and (b) F*, from Jacobians computed from Formation 1 with removal of sensors in the first level 

To check the effect of the sensor removal on the detectability of damage in each element, 

3 damage configurations, i.e. C2, C11 and C13, are tested. The first configuration is related to the 

damages in the elements in first story level and the other two are related to the damage in elements 

in higher story levels. The damage localization results are illustrated in Figure 7.24. It can be seen 

that the damage (from configuration C2) is still detectible in element 2, whose corresponding value 

in Figure 7.23 is still high after removal of the sensors. Moreover, in configurations C11 and C13, 

damage in elements 10 and 12 is detectible (more from MinMax method) while the damage in  
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Configuration 2 (2 (II)) 

Configuration 11 (10 (II), 12 (II)) 

Configuration 13 (10 (II), 12 (II), 21 (II), 23 (II)) 

Figure 7.24 Damage localization of the Yellow frame without sensors on the first level, with HFC clustered 
Jacobians from Formation 1 

elements 21 and 23 is not found. It is inferred from Figure 7.23 that in both graphs, the values 

corresponding to elements 10 and 12 are still high, especially for *F  values.  
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Furthermore, elements 21 and 23 did not have high FIM values before removal of sensors 

while they had high *F  values. Therefore, in Figure 7.19 (C13), they could be detected only from 

the MinMax approach. After removal of sensors, they have small values of both FIM and *F , and 

hence, they are not detected from MinMax or sensitivity based approaches as shown in Figure 7.24.  

It should be noted that these tests are performed only once and therefore the evaluated χ2-

values are one instance of the random variable and not the expected values. Therefore, these results 

can be viewed as an approximation to the expected value. 

7.4 Comparative elemental safety threshold 

In this thesis, unlike the SSDD technique there is no safety threshold used in localizing the 

damage; therefore, only the elements with higher χ2-values compared to other elements, are 

presumed to be damaged. Hence, if the χ2-value of one or more elements is distinctly higher than 

other elements, that/those elements are considered to be damaged. Investigation on a robust safety 

threshold tailored for the SSDL technique is also needed and recommended in Chapter 8 as the 

future work. 

7.5 Conclusions 

In this chapter, the Yellow frame structure and its testing were introduced. The data measured from 

this test was employed in validating the theories and methods proposed in Chapters 4 and 5. In this 

structure, 15 damage configurations were tested and all of them could be detected using the SSDD 

method. By adding additional measurement noise to the data, the theories on the effect of 

measurement noise and number of samples were validated. It was concluded that when the 

structure is undamaged, under real test conditions some assumptions made for Theories 4.1 and 

4.3 were not held anymore, and instead, the effect of measurement noise and number of samples 
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for the undamaged structure can be evaluated same as the damaged structure from Theories 4.2 

and 4.4. 

Subsequently, the SSDL method was used in localizing the damage in this structure for 

each damage configuration. The two formations of the Jacobian matrix were investigated. It was 

demonstrated that using only the modeshapes from the analytical model in composing the Jacobian 

matrix results in more robust results. An important reason for this is that in order to compose the 

Jacobians from analytical and real data modal parameters, they need to be detectible in both 

sources. Therefore, the number of matched parameters came out to be less than the analytical 

modal parameters, which resulted in less precision in the test. Furthermore, the modeshapes and 

coupled modeshapes from the real data were decoupled and scaled to the analytical modeshapes 

successfully. 

The HFC and k-means clustering were tested on the Yellow frame data. It was observed 

that HFC could cluster the close elements properly. The k-means approach was shown to be 

unstable and it could not cluster properly some close elements. 

The MinMax and sensitivity based approach were used in localizing the damage. It was 

seen that the clustering scheme obtained from HFC is appropriate in localizing the damage with 

the MinMax test. Subsequently, all the configurations were tested from the MinMax and sensitivity 

based approach with Formation 1 Jacobians clustered by HFC method. It was observed that the 

MinMax test with HFC can localize the damage in most of the cases, including single and multiple 

damage cases. Furthermore, it was observed that the damage in single damage scenarios is more 

distinct than multiple damage scenarios. 

Finally, the detectability of damage from the proposed indices was investigated in this 

chapter. By removal of some sensors, the detectability was compared to the original structure. It 
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was seen that the damaged elements which still have a high detectability index after the removal 

of sensors, are still detectible. Conversely, the damaged elements which their detectability index 

was reduced after the removal of sensors, could not be detected. 
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Chapter  8: Conclusions, Contributions and Future Work 

In this chapter, the contributions of this thesis will be elaborated. Subsequently, the conclusive 

remarks from this research on the practicability of the SSDD and SSDL methods are provided. 

Finally, the recommendations for the future work on this topic are suggested. 

8.1 Contributions 

In this section the contributions are listed, and their corresponding methodologies and objectives 

are addressed. The contributions can be stated, in a nut shell, as:  

I) Predicting the effect of measurement length and measurement noise on the SSDD 

technique;  

II) Enabling the SSDL method to perform on the real data under real test conditions; 

III) Developing indexes which represent the detectability of damage in each element. 

The contributions are listed and elaborated in the following subsections. 

8.1.1 Significant contributions 

8.1.1.1 Developed and validated theories to predict the effect of number of samples on 

the SSDD method 

By the use of the developed theories we are now able to predict and recognize the effects of 

different measurement lengths in the SSDD result. This will help us in the correct use of the method 

and also in treating the results when the measurement length cannot be changed e.g. availability to 

only short measurements.  

These theories were expanded for the effect of number of samples on damaged and undamaged 

structures. Based on these theories, the number of samples will affect significantly on the χ2-test 

results, and hence, it needs to be taken into account while employing this technique for different 

data lengths. The behavior of this effect could be predicted from these theories. Accordingly, 
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objective I.a was addressed in Chapter 4.Using the methodology I.a, two theories reflecting the 

effect of number of samples on the χ2-test were developed and described in Chapter 4 (and 

Appendix A).  

These theories were verified using the analytical models in Chapter 6, and the results were 

obtained as predicated by them. Subsequently, they were validated with real data from the Yellow 

frame in Chapter 7. It was demonstrated that under real test conditions, the behavior of the χ2-test 

for undamaged structure is the same as the ones for damaged structure. Therefore for real test 

conditions, the behavior of the test can be predicted for both damaged and undamaged structures 

using the theory related to the damaged structure. 

8.1.1.2 Developed and validated theories on the effect of measurement noise on the 

SSDD method 

Thanks to the developed theories in this thesis, the effect of measurement noise can be predicted 

and analyzed. This will significantly help in the practical use of the SSDD method and in predicting 

and understanding the results from this method. In Chapter 4 (and Appendix A), the SSDD 

formulations were expanded to include the effect of measurement noise in the data. The noise 

characteristics are assumed to be different or equal between the reference and testing states. For 

each case, this effect was also investigated for damaged and undamaged structures. Thus, four 

theories were developed to reflect each combination of noise characteristic and damage-state of 

the structure. It was shown that the measurement noise affects the χ2-test results significantly. This 

effect can be predicted from the proposed theories. Thus, they need to be considered when using 

the SSDD method in practice. Objective I.b was also addressed in this chapter. 

Similar to 8.1.1.1, the proposed theories were verified using analytical models in Chapter 

6. In Chapter 7, the real data from the Yellow frame was employed in validating these proposed 
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theories. It was shown that for real data under real test conditions, similar to 8.1.1.1, when the 

measurement noise characteristics are the same between the reference and testing states, if the 

structure is damaged or not, it can be predicted from the same theory for damaged structure. The 

other theories were also validated in predicting the behavior of the test under real test conditions. 

8.1.1.3 Proposed and validated a decoupling method for coupled modeshapes 

In order to use the modeshapes from real data in conjunction with the ones from analytical model 

in Formation 2, they needed to be scaled and matched to each other. With the proposed decoupling 

method, these modeshapes can be decoupled fully and be used in the SSDL method. Coupled 

modeshapes can happen in many structures. Furthermore, some modeshapes acquired from the 

real data in the Yellow frame are coupled, since their natural frequencies are very close. Therefore, 

the scaling method needed to be extended to decouple these coupled modeshapes. The 

formulations of these scaling methods were derived and presented in Chapter 5. Subsequently, 

they were used in scaling the modeshapes from the real data of Yellow frame to its analytical ones 

in Chapter 7. Objective II.b was addressed in this part. 

8.1.1.4 Developed and validated a new clustering approach (HFC), robust in dealing 

with real data 

The elements of the structure need to be clustered prior to the use in the SSDL method. This 

clustering was previously performed by known methods such as k-means, which was not 

promising in dealing with the practical problems. In Chapter 5, a new clustering approach was 

proposed based on the Fisher information matrix. This method is tailored to the SSDL method and 

therefore it is robustly able to cluster the elements under real testing conditions. The advantages 

of this method in comparison to the k-means approach are listed in here: 
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1- There is no iterative algorithm in HFC and therefore, there is no convergence issues. 

However, k-means does not converge in some executions of the algorithm. 

2- The results from HFC are unique and stable for the same measurements. In k-means due to 

its random starting points, the results are not unique and are unstable. 

3- In HFC method a statistical value is defined which represents the amount of similarity of 

elements to be clustered in the same group. This value reflects the resolution of the clusters 

and can be defined practically without the need of in-depth information about the structure. 

However, in k-means approach, this value is the number of groups, i.e. k (in k-means), for 

which the user needs to gain sufficient prior knowledge about the structure, sensor 

locations and noise in the data (which is often not possible under real test conditions). 

Hence, the practicability of using the k-means in SSDL method is low. 

4- With the HFC method, we can be assured from a theoretical point of view that the elements 

with similar Jacobians are clustered in the same group, while from k-means this is not 

necessarily valid. Since the MinMax test, in SSDL approach is sensitive to the similarity 

of Jacobians, their proper clustering is critical. Therefore, the HFC method is tailored to be 

used with the MinMax method, while the k-means approach might result in false negative 

results. The HFC and k-means clustering approaches were compared using the analytical 

models in Chapter 6 and using the real data in Chapter 7. The functionality of the HFC 

approach was verified and validated in these chapters. Objective II.c was, hence, addressed 

in there. 
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8.1.1.5 Proposed and validated indexes indicating the detectability of damage in each 

element 

Two indexes were defined and investigated in representing the detectability of damage in each 

element from the sensitivity based and MinMax approaches in SSDL method. These indexes 

provide important information on the sensitivity of the SSDL method in detecting the damage in 

different elements. This will help in understanding the limits of the detection approach and in 

designing optimized and efficient sensor layouts. The relation of these indexes to the detectability 

was elaborated in Chapter 5. The proposed indexes were verified in Chapter 6 for analytical models 

and were used in assessing the detectability of the elements of the Yellow frame with real data in 

Chapter 7. Objective II.d was addressed in here. 

8.1.2 Other contributions 

8.1.2.1 Proposed two formations for the Jacobian formulation 

In Chapter 5, two formations for calculating the Jacobian formulation used in the SSDL method 

were proposed and studied. It was demonstrated that one of these formations is more robust than 

the other one.  

Since, the SSDL method was previously used only for simulated data acquired from analytical 

models, these formations were identical in definition. However in this research, in order to use the 

SSDL method in practice for real data, the formation of the Jacobians can be defined from two 

approaches. In one approach, referred as Formation 1, the Jacobians are computed from only the 

analytical modal parameters. In Formation 2 they are computed from modal parameters acquired 

from both analytical and real data. The difference and applicability of these formations in practice 

were discussed in Chapter 5, and they were investigated and validated with real data from the 

Yellow frame in Chapter 7. Objective II.a was addressed in here. 
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8.1.2.2 Assessing the functionality of SSDL method under real test conditions 

The SSDL method was not tested on real data before. In this research, the SSDL technique was 

adjusted and smoothed to be used in localizing the damage from the data obtained from the Yellow 

frame. It was demonstrated in Chapter 7 that the results are promising in localizing the single and 

multiple damage cases. Objective III.b was addressed in here. 

8.2 Concluding remarks 

In this thesis several challenges in damage identification of structures using the SSDD and SSDL 

methods were addressed. As a general conclusion, by considering the proposed theories, the SSDD 

method can be used in practice and is able to detect the damage under real testing conditions. 

Moreover, the SSDL method could perform robustly under real test conditions by using the 

methods and theories developed in this thesis. 

The detailed concluding remarks from this investigation are as follows: 

I) The SSDD method can robustly detect the damage in the real structure (the Yellow 

frame) 

II) It was demonstrated from a theoretical and practical point of view how measurement 

length will affect the SSDD method. The proposed theories were, subsequently, 

verified with analytical models and validated using the real data from the Yellow frame. 

Based on these theories, the number of samples need to be high: the higher the number 

of samples is, the smaller the damage that can be detected. Moreover, it was concluded 

that the number of samples used for the test on undamaged structure (to create a safety 

threshold) needs to be almost equal to the number of samples of the test data. 

III) The effect of the measurement noise on the SSDD method in the reference and test data 

was formulated. There were 4 theories proposed in predicting this effect. These theories 
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were verified by the analytical models and then validated by the real data. It was shown 

that higher measurement noise will reduce the chance of detecting the damage or 

increase the chance of false alarm. It was concluded that the measurement noise should 

be the same when creating the safety threshold and when the test is being performed. 

If this measurement noise is higher or lower compared to the test data, the damage 

might not be detected or false alarm might happen. Furthermore, it is concluded that 

the data used in the reference state and the data used in the testing state should have the 

same amount of measurement noise. Otherwise, for each test the covariance matrix 

needs to be revaluated from the test data which might be computationally not efficient. 

IV) The SSDL method could robustly locate the damage in real structures from MinMax 

test and sensitivity based approaches. The results from the MinMax test are clearer than 

the sensitivity based approach. 

V) It was concluded that the Jacobian matrix formed from analytical modal parameters 

can be used robustly in the SSDL method. The Jacobian matrix formed from both 

analytical and real modal parameters might not be as robust due to the difference of the 

analytical model with the real structure and lower detectability (low number of sensors) 

of the modeshapes from the real data compared to the ones from the analytical model. 

VI) The scaling methods proposed for the modeshapes can perfectly scale and decouple 

real modeshapes in order to be matched to the analytical ones. 

VII) The HFC clustering approach proved to be a stable and consistent method to cluster the 

elements robustly for the SSDL method. The k-means approach is not a suitable method 

in clustering the elements for the SSDL method. 
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VIII) It was demonstrated theoretically that the proposed damage detectability indices are a 

good representative of detectability of damage in each element. Using the analytical 

models, this proposition was also verified. These indices were used and tested in the 

Yellow frame to show how the removal of sensors, decrease the detectability of each 

element. 

8.3 Recommendation for future work 

Several recommendations for the future research topics and tasks were identified in the course of 

this research. These recommendations are aligned to the vision behind this thesis and are 

considered the next steps towards the goals presented in the Introduction. 

The effect of temperature, moisture and other environmental conditions on the SSDD and 

SSDL methods need to be investigated. These factors are important and need to be taken into 

account for real test conditions. Therefore, one of the next steps in advancing these techniques 

under real test conditions is to study and remove these effects on them. 

After studying the environmental factors, damage quantization using the statistical 

subspace damage identification method should be investigated by analytical and experimental 

data. This will be the next level of damage identification and the theories were developed for this 

purpose. However, similar to this thesis, the theories and methods needed in achieving the 

performance under real test conditions, need to be developed and validated. Additionally, 

investigation on the effect of damage type and element type on the SSDD and SSDL method with 

real data, gives critical information on these methods especially for higher levels of damage 

identification. 

The relation between the Hankel matrix and modal parameters, i.e. natural frequencies and 

modeshapes, can be defined from ( 3-13) using modal basis of 1i

iR HF G−=  or from analytical 
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solution shown in (Brincker 2017). Further investigation of this relationship is suggested in 

connecting the modal domain to the data-driven residual in SSDD method. This relationship can 

provide valuable insight on the SSDD technique in terms of number of present modeshapes in 

measured data and accuracy of the subspace created from the reference state and used in forming 

the residual. 

In view of the damage localization results of the Yellow frame, it is observed that similar 

to the SSDD method, a safety threshold needs to be created for each element in testing if the 

element is damaged or not. This safety threshold was created in the SSDD technique by testing 

several measurements of the undamaged structure and fitting a normal distribution on them. Next, 

a value based on a probability of exceedance was chosen as a safety threshold. This technique can 

be performed in the same manner in SSDL method too, with the difference that it needs to be 

evaluated for each element. The practicability of this method needs to be investigated and is 

recommended as a future research. 

Further study on the SSDD and SSDL method for various types of laboratory structures 

will assure its applicability in practice on different types of structures. Moreover, investigation of 

these methods on the real data from an existing structure (damaged and undamaged) is perfect in 

showing its robustness for non-laboratory structures. In this way, the effect of different input 

excitations on the SSDD and SSDL techniques can also be identified.  

The damage detectability indexes need to be also investigated on complete tests with the 

real data under real test conditions. Their relation to detectability of damages, needs to be validated 

by the real data by tailored tests. 
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The necessity and needed amount of calibration of the FE model to the real data should be 

investigated deeper to understand its limitations and conditions. It should be noted that even if the 

model is calibrated to the real data it needs to be only done once in the reference state. 

The other complementary studies are suggested as following: studying the effect of 

nonlinear damage and nonlinear structures on the SSDD method; investigation on the use of the 

statistical subspace identification method along with the probabilistic and reliability based 

methods; further work on life prediction of the elements based on the damage quantization results 

from this method; and creation of a platform to automatically pull the data, analyze it, identify the 

damage with this method and finally trigger the alarm if needed. 



190 

Bibliography 

Abdel Wahab, M. M., and De Roeck, G. (1999). “Damage Detection in Bridges Using Modal 

Curvatures: Application To a Real Damage Scenario.” Journal of Sound and Vibration, 

226(2), 217–235. 

Abdelghani, M., and Benveniste, A. (2000). “Subspace-based fault detection algorithms for 

vibration monitoring �.” 36, 101–109. 

Adams, R. D., Cawley, P., Pye, C. J., and Stone, B. J. (1978). “A vibration technique for non‐

destructively assessing the integrity of structures.” ARCHIVE: Journal of Mechanical 

Engineering Science 1959-1982 (vols 1-23), SAGE PublicationsSage UK: London, England, 

20(2), 93–100. 

Ågårdh, L. (1991). “Modal Analyses of Two Concrete Bridges in Sweden.” Structural 

Engineering International, 1(4), 35–39. 

Allemang, R., and Brown, D. (1982). “A correlation coefficient for modal vector analysis.” 

Proceedings of the 1st international modal. 

Altman, M., Infeld, L., Słowikowski, W., Mycielski, J., and Mrowka, S. (1960). (In French) 

Bulletin de l’Académie polonaise des sciences. Série des sciences chimiques. [Państwowe 

Wydawn. Naukowe]. 

Alvandi, A., and Cremona, C. (2006). “Assessment of vibration-based damage identification 

techniques.” Journal of Sound and Vibration, 292(1), 179–202. 

Araújo Dos Santos, J. V., Soares, C. M. M., Mota Soares, C. A., and Pina, H. L. G. (2000). 

“Damage identification numerical model based on the sensitivity of orthogonality conditions 

and least squares techniques.” Computers and Structures, 78(1), 283–291. 

Balmes, E., Basseville, M., Bourquin, F., Mevel, L., Nasser, H., and Treyssede, F. (2008). 



191 

“Merging Sensor Data from Multiple Temperature Scenarios for Vibration         Monitoring 

of Civil Structures.” Structural Health Monitoring, 7(2), 129–142. 

Balmes, E., Basseville, M., Mevel, L., and Nasser, H. (2009). “Handling the temperature effect in 

vibration monitoring of civil structures: A combined subspace-based and nuisance rejection 

approach.” Control Engineering Practice. 

Balmès, E., Basseville, M., Mevel, L., Nasser, H., and Zhou, W. (2008). “Statistical model-based 

damage localization: A combined subspace-based and substructuring approach.” Structural 

Control and Health Monitoring, 15(6), 857–875. 

Baruch, M., and Bar-Itzhack, I. Y. (1978). “Optimal weighted orthogonalization of measured 

modes.” AIAA Journal, 16, 346–351. 

Basseville, M. (1997). “Information criteria for residual generation and fault detection and 

isolation.” Automatica, 33(5), 783–803. 

Basseville, M. (1998). “On-board Component Fault Detection and Isolation Using the Statistical 

Local Approach.” Automatica, 34(11), 1391–1415. 

Basseville, M., Abdelghani, M., and Benveniste, A. (2000). “Subspace-based fault detection 

algorithms for vibration monitoring.” Automatica, 36(1), 101–109. 

Basseville, M., Benveniste, A., Goursat, M., Hermans, L., Mevel, L., and Van der Auweraer, H. 

(2001). “Output-Only Subspace-Based Structural Identification: From Theory to Industrial 

Testing Practice.” Journal of Dynamic Systems, Measurement, and Control, 123(4), 668. 

Basseville, M., Mevel, L., and Goursat, M. (2004). “Statistical model-based damage detection and 

localization: Subspace-based residuals and damage-to-noise sensitivity ratios.” Journal of 

Sound and Vibration, 275(3–5), 769–794. 

Benveniste, A., and Basseville, M. (1987). “The asymptotic local approach to change detection 



192 

and model validation.” IEEE Transactions on. 

Berman, A. (2000). “Inherently incomplete finite element model and its effects on model 

updating.” AIAA journal. 

Brincker, R. (2017). “On the application of correlation function matrices in OMA.” Mechanical 

Systems and Signal Processing, 87, 17–22. 

Brincker, R., Andersen, P., and Cantieni, R. (2001a). “Identification and Level 1 Damage 

Detection of the Z24 Highway Bridge by Frequency Domain Decomposition.” Experimental 

techniques, 25(6), 51–57. 

Brincker, R., Zhang, L., and Andersen, P. (2000). “Modal identification from ambient responses 

using frequency domain decomposition.” Proceedings of SPIE - The International Society for 

Optical Engineering. 

Brincker, R., Zhang, L., and Andersen, P. (2001b). “Modal identification of output-only systems 

using frequency domain decomposition.” Smart Materials and Structures, 10(3), 441–445. 

Carden, E. P., and Fanning, P. (2004). “Vibration Based Condition Monitoring: A Review.” 

Structural Health Monitoring, 3(4), 355–377. 

Castello, D. A., Stutz, L. T., and Rochinha, F. A. (2002). “A structural defect identification 

approach based on a continuum damage model.” Computers & Structures, 80(5), 417–436. 

Cawley, P., and Adams, R. D. (1979). “The location of defects in structures from measurements 

of natural frequencies.” The Journal of Strain Analysis for Engineering Design, 14(2), 49–

57. 

Cerri, M. N., and Vestroni, F. (2000). “Detection of Damage in Beams Subjected to Diffused 

Cracking.” Journal of Sound and Vibration, 234(2), 259–276. 

Cha, P. D., and Tuck-Lee, J. P. (2000). “Updating Structural System Parameters Using Frequency 



193 

Response Data.” Journal of Engineering Mechanics. 

Chen, H. L., Spyrakos, C. C., and Venkatesh, G. (1995). “Evaluating Structural Deterioration by 

Dynamic Response.” Journal of Structural Engineering, 121(8), 1197–1204. 

Chiang, D.-Y., and Lai, W.-Y. (1999). “Structural Damage Detection Using the Simulated 

Evolution Method.” AIAA Journal, 37(10), 1331–1333. 

Chinchalkar, S. (2001). “Determination of Crack Location in Beams Using Natural Frequencies.” 

Journal of Sound and Vibration, 247(3), 417–429. 

Cornwell, P., Doebling, S. W., and Farrar, C. R. (1999). “Application of the Strain Energy Damage 

Detection Method To Plate-Like Structures.” Journal of Sound and Vibration, 224(2), 359–

374. 

Curadelli, R. O., Riera, J. D., Ambrosini, D., and Amani, M. G. (2008). “Damage detection by 

means of structural damping identification.” Engineering Structures, 30(12), 3497–3504. 

Doebling, S. W., Farrar, C. R., and Prime, M. B. (1998). “A Summary Review of Vibration-Based 

Damage Identification Methods.” The Shock and Vibration Digest, 30(2), 91–105. 

Döhler, M. (2011). “Subspace-based system identification and fault detection: Algorithms for 

large systems and application to structural vibration analysis.” Université Rennes 1. 

Döhler, M., and Hille, F. (2014). “Subspace-based damage detection on steel frame structure under 

changing excitation.” Structural Health Monitoring, Volume 5. 

Döhler, M., Hille, F., Mevel, L., and Rücker, W. (2014a). “Structural health monitoring with 

statistical methods during progressive damage test of S101 Bridge.” Engineering Structures, 

69, 183–193. 

Döhler, M., and Mevel, L. (2013). “Subspace-based fault detection robust to changes in the noise 

covariances.” Automatica, 49(9), 2734–2743. 



194 

Döhler, M., Mevel, L., and Hille, F. (2014b). “Subspace-based damage detection under changes 

in the ambient excitation statistics.” Mechanical Systems and Signal Processing, 207–224. 

Döhler, M., Mevel, L., and Hille, F. (2014c). “Efficient computation of minmax tests for fault 

isolation and their application to structural damage localization.” IFAC Proceedings Volumes. 

Fan, W., and Qiao, P. (2010). “Vibration-based Damage Identification Methods: A Review and 

Comparative Study.” Structural Health Monitoring, 10(1), 83–111. 

Fanning, P., and Carden, E. (2001). “Auto-regression and statistical process control techniques 

applied to damage indication in telecommunication masts.” Key Engineering Materials. 

Farhat, C., and Hemez, F. M. (1993). “Updating finite element dynamic models using an element-

by-element sensitivity methodology.” AIAA Journal, 31(9), 1702–1711. 

Farrar, C. R., and Doebling, S. W. (1999). “Damage Detection and Evaluation II: field applications 

to large structures.” Modal Analysis and Testing NATO Science Series, 363, pp 345-378. 

Farrar, C. R., Doebling, S. W., and Nix, D. a. (2001). “Vibration-based structural damage 

identification.” Philosophical Transactions of the Royal Society A: Mathematical, Physical 

and Engineering Sciences, 359(1778), 131–149. 

Farrar, C. R., Worden, K., Todd, M. D., Park, G., Nichols, J., Adams, D. E., Bement, M. T., and 

Farinholt, K. (2007). Nonlinear System Identification for Damage Detection. Los Alamos, 

NM (United States). 

Feng, M. Q., and Bahng, E. Y. (1999). “Damage Assessment of Jacketed RC Columns Using 

Vibration Tests.” Journal of Structural Engineering, 125(3), 265–271. 

Frank, P. M. (1990). “Fault diagnosis in dynamic systems using analytical and knowledge-based 

redundancy. A survey and some new results.” Automatica. 

Friswell, M. I., and Penny, J. E. T. (1997). “Is Damage Location Using Vibration Measurements 



195 

Practical?” EUROMECH 365 International Workshop: DAMAS 97, Structural Damage 

Assessment using Advanced Signal Processing Procedures, (July 1997), 1–7. 

Fugate, M. L., Sohn, H., and Farrar, C. R. (2000). “Unsupervised learning methods for vibration-

based damage detection.” Proceedings of the International Modal Analysis Conference - 

IMAC, 1, 652–659. 

Fugate, M. L., Sohn, H., and Farrar, C. R. (2001). “Vibration-Based Damage Detection Using 

Statistical Process Control.” Mechanical Systems and Signal Processing, 15(4), 707–721. 

Gola, M. M., Som, A., and Botto, D. (2001). “ON THEORETICAL LIMITS OF DYNAMIC 

MODEL UPDATING USING A SENSITIVITY-BASED APPROACH.” Journal of Sound 

and Vibration, 244(4), 583–595. 

Gomes, H. M., and Silva, N. R. S. (2008). “Some comparisons for damage detection on structures 

using genetic algorithms and modal sensitivity method.” Applied Mathematical Modelling, 

32(11), 2216–2232. 

González, M. P., and Zapico, J. L. (2008). “Seismic damage identification in buildings using neural 

networks and modal data.” Computers & Structures, 86(3–5), 416–426. 

Gudmundson, P. (1982). “Eigenfrequency changes of structures due to cracks, notches or other 

geometrical changes.” Journal of the Mechanics and Physics of Solids, 30(5), 339–353. 

Gul, M., and Catbas, F. N. (2011a). “Structural health monitoring and damage assessment using a 

novel time series analysis methodology with sensor clustering.” Journal of Sound and 

Vibration, 330(6), 1196–1210. 

Gul, M., and Catbas, F. N. (2011b). “Damage Assessment with Ambient Vibration Data Using a 

Novel Time Series Analysis Methodology.” Journal of Structural Engineering, 137(12), 

1518–1526. 



196 

Hao, H., and Xia, Y. (2002). “Vibration-based Damage Detection of Structures by Genetic 

Algorithm.” Journal of Computing in Civil Engineering, 16(3), 222–229. 

Hearn, G., and Testa, R. B. (1991). “Modal Analysis for Damage Detection in Structures.” Journal 

of Structural Engineering, 117(10), 3042–3063. 

Hibbett, Karlsson, and Sorensen. (1998). “ABAQUS/standard: User’s Manual.” 

Hou, Z., Noori, M., and Amand, R. S. (2000). “Wavelet-based approach for structural damage 

detection.” Journal of Engineering Mechanics, 126(7), 677–683. 

Hu, N., Wang, X., Fukunaga, H., Yao, Z. H., Zhang, H. X., and Wu, Z. S. (2001). “Damage 

assessment of structures using modal test data.” International Journal of Solids and 

Structures, 38(18), 3111–3126. 

Jang, J.-H., Yeo, I., Shin, S., and Chang, S.-P. (2002). “Experimental investigation of system-

identification-based damage assessment on structures.” Journal of Structural Engineering, 

128(5), 673–682. 

Kahl, K., and Sirkis, J. S. (1996). “Damage detection in beam structures using subspace rotation 

algorithm with strain data.” AIAA Journal, 34(12), 2609–2614. 

Kaouk, M., and Zimmerman, D. C. (1994). “Structural damage assessment using a generalized 

minimum rank perturbation theory.” AIAA Journal, 32(4), 836–842. 

Kato, M., and Shimada, S. (1986). “Vibration of PC Bridge during Failure Process.” Journal of 

Structural Engineering, 112(7), 1692–1703. 

Kim, H., and Melhem, H. (2004). “Damage detection of structures by wavelet analysis.” 

Engineering Structures, 26(3), 347–362. 

Kim, J.-T., and Stubbs, N. (1995). “Model-Uncertainty Impact and Damage-Detection Accuracy 

in Plate Girder.” Journal of Structural Engineering, 121(10), 1409–1417. 



197 

Kim, J. T., and Stubbs, N. (2002). “Improved Damage Identification Method Based on Modal 

Information.” Journal of Sound and Vibration, 252(2), 223–238. 

Kosmatka, J. B., and Ricles, J. M. (1999). “Damage Detection in Structures by Modal Vibration 

Characterization.” Journal of Structural Engineering, 125(12), 1384–1392. 

Kullaa, J. (2003). “Damage detection of the Z24 bridge using control charts.” Mechanical Systems 

and Signal Processing, 17(1), 163–170. 

Lee, U., and Shin, J. (2002). “A frequency response function-based structural damage 

identification method.” Computers & Structures, 80(2), 117–132. 

Lee, Y.-S., and Chung, M.-J. (2000). “A study on crack detection using eigenfrequency test data.” 

Computers & Structures, 77(3), 327–342. 

Li, G.-Q., Hao, K.-C., Lu, Y., and Chen, S.-W. (1999). “A flexibility approach for damage 

identification of cantilever-type structures with bending and shear deformation.” Computers 

& Structures, 73(6), 565–572. 

Liew, K. M., and Wang, Q. (1998). “Application of the wavelet theory for crack identification in 

structures.” Journal of Engineering Mechanics, 124(2), 152–157. 

Lin, R. M., and Ewins, D. J. (1990). “Model updating using FRF data.” 15th International Seminar 

on Modal Analysis, 141–163. 

Liu, P. (1995). “Identification and Damage Detection of Trusses Using Modal Data.” Journal of 

Structural Engineering, 121(4), 599–608. 

Magalhães, F., Cunha, Á., and Caetano, E. (2008). “Dynamic monitoring of a long span arch 

bridge.” Engineering Structures, 30(11), 3034–3044. 

Mahalanobis, P. C. (1936). “On the generalized distance in statistics.” Proceedings of the National 

Institute of Sciences (Calcutta), 2, 49–55. 



198 

Maia, N. M. M., Silva, J. M. M., Almas, E. A. M., Sampaio, R. P. C., ! A Autica, E. N., and 

Henrique, I. D. (2003). “Damage Detection in Structures: From Mode Shape To Frequency 

Response Function Methods.” Mechanical Systems and Signal Processing, 17(3), 489–498. 

Maier, H. R., Lence, B. J., Tolson, B. A., and Foschi, R. O. (2001). “First-order reliability method 

for estimating reliability, vulnerability, and resilience.” Water Resources Research, 37(3), 

779–790. 

Martin, H. (1989). “Statistical moment analysis as a means of surface damage detection.” 

Proceedings of the 7th International. 

Marwala, T., Heyns, P. S., Marwala T., Heyns, P. S., Marwala, T., and Heyns, P. S. (1998). 

“Multiple-criterion method for determining structural damage.” AIAA Journal, 1682–1687. 

Marwalla, T., and Hunt, H. E. M. (1999). “Fault Identification Using Finite Element Models and 

Neural Networks.” Mechanical Systems and Signal Processing, 13(3), 475–490. 

Mirza, M. S., Ferdjani, O., Hadj-Arab, A., Joucdar, K., Khaled, A., and Razaqpur, A. G. (1990). 

“An experimental study of static and dynamic responses of prestressed concrete box irder 

bridges.” Canadian Journal of Civil Engineering,  NRC Research Press Ottawa, Canada , 

17(3), 481–493. 

Moaveni, B., Conte, J. P., and Hemez, F. M. (2009). “Uncertainty and sensitivity analysis of 

damage identification results obtained using finite element model updating.” Computer-Aided 

Civil and Infrastructure Engineering, 24(5), 320–334. 

Moaveni, B., He, X., Conte, J. P., and Restrepo, J. I. (2010). “Damage identification study of a 

seven-story full-scale building slice tested on the UCSD-NEES shake table.” Structural 

Safety, 32(5), 347–356. 

Morassi, A. (2001). “Identification of a Crack in a Rod Based on Changes in a Pair of Natural 



199 

Frequencies.” Journal of Sound and Vibration, 242(4), 577–596. 

Moslem, K., and Nafaspour, R. (2002). “Structural Damage Detection by Genetic Algorithms.” 

AIAA Journal, 40(7), 1395–1401. 

Mottershead, J. E., Link, M., and Friswell, M. I. (2011). “The sensitivity method in finite element 

model updating: A tutorial.” Mechanical Systems and Signal Processing, 25(7), 2275–2296. 

Oberkampf, W. L., and Roy, C. J. (2010). Verification and Validation in Scientific Computing. 

Cambridge University Press, New York, NY, USA. 

Oh, B. H., and Jung, B. S. (1998). “Structural Damage Assessment with Combined Data of Static 

and Modal Tests.” Journal of Structural Engineering, 124(8), 956–965. 

Ostachowicz, W., Krawczuk, M., and Cartmell, M. (2002). “The location of a concentrated mass 

on rectangular plates from measurements of natural vibrations.” Computers and Structures, 

80(16–17), 1419–1428. 

Van Overschee, P., and De Moor, B. (1996). Subspace Identification for Linear Systems. Springer 

US, Boston, MA. 

Pandey, A. K., and Biswas, M. (1994). “Damage Detection in Structures Using Changes in 

Flexibility.” Journal of Sound and Vibration, 169(1), 3–17. 

Patton, R., Frank, P., and Clarke, R. (1989). “Fault diagnosis in dynamic systems: theory and 

application.” 

De Pauw, D., and Vanrolleghem, P. A. (2003). “Practical aspects of sensitivity analysis for 

dynamic models.” IMACS 4th MATHMOD Conference. 

Peeters, B., Maeck, J., and Roeck, G. De. (2001). “Vibration-based damage detection in civil 

engineering: excitation sources and temperature effects.” Smart Materials and Structures, 

10(3), 518–527. 



200 

Peterson, S. T., McLean, D. I., Symans, M. D., Pollock, D. G., Cofer, W. F., Emerson, R. N., and 

Fridley, K. J. (2001a). “Application of Dynamic System Identification to Timber Beams. I.” 

Journal of Structural Engineering, 127(4), 418–425. 

Peterson, S. T., McLean, D. I., Symans, M. D., Pollock, D. G., Cofer, W. F., Emerson, R. N., and 

Fridley, K. J. (2001b). “Application of Dynamic System Identification to Timber Beams. 

II.” Journal of Structural Engineering, 127(4), 426–432. 

Ramu, S. A., and Johnson, V. T. (1995). “Damage assessment of composite structures-A fuzzy 

logic integrated neural network approach.” Computers and Structures, 57(3), 491–502. 

Ratcliffe, C. P., and Bagaria, W. J. (1998). “Vibration technique for locating delamination in a 

composite beam.” AIAA Journal, 36(6), 1074–1077. 

Ren, W.-X., and De Roeck, G. (2002a). “Structural damage identification using modal data. I: 

Simulation verification.” Journal of Structural Engineering, 128(1), 87–95. 

Ren, W.-X., and De Roeck, G. (2002b). “Structural Damage Identification using Modal Data. II: 

Test Verification.” Journal of Structural Engineering, 128(1), 96–104. 

Rohrmann, R. G., Baessler, M., Said, S., Schmid, W., and Ruecker, W. F. (2000). “Structural 

causes of temperature affected modal data of civil structures obtained by long time 

monitoring.” Proceedings of IMAC-XVIII: A Conference on Structural Dynamics. 

Rucka, M., and Wilde, K. (2006). “Application of continuous wavelet transform in vibration based 

damage detection method for beams and plates.” Journal of Sound and Vibration, 297(3–5), 

536–550. 

Rytter, A. (1993). “Vibrational Based Inspection of Civil Engineering Structures.” Fracture and 

Dynamics. 

Salawu, O. S. (1997). “Detection of structural damage through changes in frequency: a review.” 



201 

Engineering Structures, 19(9), 718–723. 

Sanayei, M., and Onipede, O. (2001). “Damage assessment of structures using static test data.” 

International Journal of Solids and Structures, 38(18), 3111–3126. 

Sanayei, M., Onipede, O., and Babu, S. (1992). “Selection of noisy measurement locations for 

error reduction in static parameter identification.” AIAA journal. 

Schiffer, S., Rothe, S., Baccar, D., and Dirk, S. (2014). “Classification of Systems ’ Health 

Condition Using the New Adaptive Fuzzy-Based Feature Classification Approach Affca in 

Comparison To a Macro-Data-Based Approach.” EWSHM - 7th European Workshop on 

Structural Health Monitoring. 

Sheinman, I. (1996). “Damage detection and updating of stiffness and mass matrices using mode 

data.” Computers and Structures, 59(1), 149–156. 

Smith, S. W., and Beattie, C. A. (1991). Model correlation and damage location for large space 

truss structures: secant method development and evaluation. 

Sohn, H., and Farrar, C. R. (2001). “Damage diagnosis using time series analysis of vibration 

signals.” Smart Materials and Structures, 10, 446–451. 

Springer, W. T., Lawrence, K. L., and Lawley, T. J. (1988). “Damage assessment based on the 

structural frequency-response function.” Experimental Mechanics, Kluwer Academic 

Publishers, 28(1), 34–37. 

Todd, M. D., Nichols, J. M., Pecora, L. M., and Virgin, L. N. (2001). “Vibration-based damage 

assessment utilizing state space geometry changes: local attractor variance ratio.” Smart 

Materials and Structures, IOP Publishing, 10(5), 1000–1008. 

Waszczyszyn, Z., and Ziemiański, L. (2001). “Neural networks in mechanics of structures and 

materials--new results and prospects of applications.” Computers & Structures, 79(22), 



202 

2261–2276. 

Wenzel, H., Veit-Egerer, R., and Widmann, M. (2012). Project: D11-1 ANNEX B INTEGRATED 

EUROPEAN INDUSTRIAL RISK REDUCTION SYSTEM WP3 DEMONSTRATION 

REPORT – ANNEX B. 

Williams, and Salawu, O. S. (1997). “Damping as a damage indication parameter.” Proceedings 

of the 15th International Modal Analysis Conference, 1531–1536. 

Willsky, A. (1976). “A survey of design methods for failure detection in dynamic systems.” 

Automatica, 12, 601–611. 

Worden, K., Farrar, C. R., Manson, G., and Park, G. (2007). “The fundamental axioms of structural 

health monitoring.” Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 463, 1639–1664. 

Worden, K., Manson, G., and Fieller, N. R. J. (2000). “Damage detection using outlier analysis.” 

Journal of Sound and Vibration, 229(3), 647–667. 

Wu, X., Ghaboussi, J., and Garrett Jr, J. H. (1992). “Use of neural networks in detection of 

structural damage.” Computers & Structures, 42(4), 649–659. 

Yan, A.-M., De Boe, P., and Golinval, J.-C. (2004). “Structural Damage Diagnosis by Kalman 

Model Based on Stochastic Subspace Identification.” Structural Health Monitoring, 3(2), 

103–119. 

Yan, A.-M., Kerschen, G., De Boe, P., and Golinval, J.-C. (2005a). “Structural damage diagnosis 

under varying environmental conditions—Part I: A linear analysis.” Mechanical Systems and 

Signal Processing, 19(4), 847–864. 

Yan, A., and Golinval, J. C. (2005). “Structural damage localization by combining flexibility and 

stiffness methods.” Engineering Structures, 27(12 SPEC. ISS.), 1752–1761. 



203 

Yan, A. M., Kerschen, G., De Boe, P., and Golinval, J. C. (2005b). “Structural damage diagnosis 

under varying environmental conditions - Part II: Local PCA for non-linear cases.” 

Mechanical Systems and Signal Processing, 19(4), 865–880. 

YANG, X. F., SWAMIDAS, A. S. J., and SESHADRI, R. (2001). “Crack Identification in 

Vibrating Beams Using the Energy Method.” Journal of Sound and Vibration, 244(2), 339–

357. 

Zaurin, R., Khuc, T., and Catbas, F. N. (2016). “Hybrid Sensor-Camera Monitoring for Damage 

Detection: Case Study of a Real Bridge.” Journal of Bridge Engineering, 21(6), 5016002. 

Zhao, J., and DeWolf, J. T. (1999). “Sensitivity study for vibrational parameters used in damage 

detection.” Journal of Structural Engineering, 125(4). 

Zimmerman, D. C., and Kaouk, M. (1994). “Structural damage detection using a minimum rank 

update theory.” Journal of Vibration and Acoustics, Transactions of the ASME, 116(2), 222–

231. 

Zou, Y., Tong, L., and Steven, G. P. (2000). “Vibration-Based Model-Dependent Damage 

(Delamination) Identification and Health Monitoring for Composite Structures — a Review.” 

Journal of Sound and Vibration, 230(2), 357–378. 

Zubaydi, A., Haddara, M. R., and Swamidas, A. S. J. (2002). “Damage identification in a ship’s 

structure using neural networks.” Ocean Engineering, 29(10), 1187–1200. 

 

 

  



204 

Appendix A  Investigating the Relation between Measurement Noise and 

Residual Covariance 

In order to investigate the effect of noise on the residual covariance, the noise effect on the data is 

defined as y y v= +ɶ , where, yɶ  is the data with noise and v is the additional noise vector. The 

added noise would not have any effect on the expected value of the correlation matrix îR , assuming 

that the noise is white and with zero mean. Therefore, in view of (4) and (5), the expected value of 

the residual vector will not be also affected by the noise. However, the effect can be seen directly 

in the asymptotic covariance eΣ  which will be described in here. 

The effect of noise on the covariance matrix of residual, i.e. eΣ , is related directly to the 

covariance of the block Hankel matrix 1
ˆ

p+H , considering that the matrix 0( )S θ  is independent of 

the noise effect. Moreover, 1
ˆ

p+H  is composed of output covariance matrices 
iRɶ  which, therefore, 

will be investigated for the effect of noise.  

An element of 
iRɶ  corresponding to the covariance between sensor a and b is defined as 

, 1

1

N
a b a b

i k k iN

k

R y y −
=

= ∑ɶ ɶ ɶ . Subsequently, one general element of the covariance of 1
ˆ

p+H is expressed 

between two elements of the output covariance matrix, for sensors a, b, c and d as 

, , , , , ,cov( , )a b c d a b c d a b c d

i j i j i jR R R R R R     = −     E E Eɶ ɶ ɶ ɶ ɶ ɶ  (A-1) 

 The noise is affecting only to the first part of (A-1), since 

, 1 1

1 1

N N
a b a b a b

i k k i k k iN N

k k

R y y y y− −
= =

    = =     
∑ ∑E E Eɶ ɶ ɶ ɶ ɶ  

which can be expanded as 

( )( )a b a a b b a b a b a b a b

k k i k k k i k i k k i k k i k k i k k iy y y v y v y y y v v y v v− − − − − − −     = + + = + + +     E E Eɶ ɶ  
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where  

0a b a b a b

k k i k k i k k iy v v y v v− − −     = = =     E E E , 

and therefore 

a b a b

k k i k k iy y y y− −   =   E Eɶ ɶ  

which is not affected by the additional output noise. Hence, 

, , , ,a b c d a b c d

i j i jR R R R       =       E E E Eɶ ɶ . 

In order to investigate the effect of the noise, the first part is expanded as 

2
, , 1

1 1

N N
a b c d a b c d

i j k k i l l jN
k l

R R y y y y− −
= =

   =     
∑∑E Eɶ ɶ ɶ ɶ ɶ ɶ  

which can be rewritten as 

2
, , 1

1 1

N N
a b c d a b c d

i j k k i l l jN
k l

R R y y y y− −
= =

   =   ∑∑E Eɶ ɶ ɶ ɶ ɶ ɶ  . 

Moreover, by expanding the measurement vectors yɶ  to its components of y  and v ,  

( )( )( )( )a b c d a a b b c c d d

k k i l l j k k k i k i l l l j l jy y y y y v y v y v y v− − − − − −   = + + + +   E Eɶ ɶ ɶ ɶ  

which is expanded to 

[ a b c d a b c d a b c d a b c d

k k i l l j k k i l l j k k i l l j k k i l l j

a b c d a b c d a b c d a b c d

k k i l l j k k i l l j k k i l l j k k i l l j

a b c d a b c d a b c d a b c

k k i l l j k k i l l j k k i l l j k k i l

y y y y y y y v y y v y y y v v

y v y y y v y v y v v y y v v v

v y y y v y y v v y v y v y v

− − − − − − − −

− − − − − − − −

− − − − − − −

+ + + +

+ + + +

+ + +

E

]

d

l j

a b c d a b c d a b c d a b c d

k k i l l j k k i l l j k k i l l j k k i l l j

v

v v y y v v y v v v v y v v v v

−

− − − − − − − −

+

+ + +

 (A-2) 

Since the measurements and noise vectors are independent, some of the components of 

( A-2) will be zero. As an example, in the second term, a b c

k k i ly y y−  and noise element d

l jv −  are 
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independent, which results in [ ] [ ] [ ]a b c d a b c d

k k i l l j k k i l l jy y y v y y y v− − − −=E E E , and since [ ] 0d

l jv − =E , then 

[ ] 0a b c d

k k i l l jy y y v− − =E . This will bring (A-2) boiled down to 

[

]

a b c d a b c d

k k i l l j k k i l l j

a b c d a b c d

k k i l l j k k i l l j

a b c d a b c d

k k i l l j k k i l l j

a b c d a b c d

k k i l l j k k i l l j

y y y y y y v v

y v y v y v v y

v y y v v y v y

v v y y v v v v

− − − −

− − − −

− − − −

− − − −

+ +

+ +

+ +

+

E

 (A-3) 

In addition, since 1, 1i j≥ ≥  the noise vectors with phase differences of i or j are always 

independent, i.e. [ ] [ ] 0l l j k k iv v v v− −= =E E , which makes (A-3) further simplified to , , ,k l i jE  defined 

as 

, , , [

]

a b c d

k l i j k k i l l j

a b c d a b c d

k k i l l j k k i l l j

a b c d a b c d

k k i l l j k k i l l j

a b c d

k k i l l j

E y y y y

y v y v y v v y

v y y v v y v y

v v v v

− −

− − − −

− − − −

− −

= +

+ +

+ +

E

 (A-4) 

Each component of , , ,k l i jE  can be evaluated by adjusting the indices in order to get nonzero 

values. These indices are adjusted based on the noise vectors, as they are assumed to be 

independent from each other and from measurements. The first term of , , ,k l i jE  contributes to the 

covariance matrix of the Hankel matrix without additional measurement noise. The second term is 

nonzero when b d=  and for k i l j− = − . By assuming that i j≥   

( )  and 

0  or 

a c b b

k k i j k i k ia b c d

k k i l l j

y y v v b d k i l j
y v y v

b d k i l j

− − − −
− −

   = − = −    =  
≠ − ≠ −

E
E  

in which  

( ) ( )
a c b b a c b b

k k i j k i k i k k i j k i k iy y v v y y v v− − − − − − − −     =     E E E . (A-5) 
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 The first part of (A-5) is the covariance between output measurements with i j−  phase 

difference. In view of (1), a a

k a k ky H x ε= +  and therefore 

1
( ) ( ) ( )

1

1
( ) ( ) ( ) ( )

1

i j
a c i j a a c

k k i j a k i j k k k i j

i j
i j c a c a c

a k i j k i j k k i j k k i j

y y H F x F w y

H F x y F w y y

ι
ι

ι

ι
ι

ι

ε

ε

−
− −

− − − − − − −
=

−
− −

− − − − − − − − −
=

  
  = + +   

  

     = + +     

∑

∑

E E

E E E

. 

Since the noise in a future time is independent of the output of the system in the past, 

( ) 0a c

k k i jw yι− − −  = E  for i jι ≤ −  and ( ) 0a c

k k i jyε − −  = E . Therefore, 

( ) ( ) ( ) , c

a c i j c i j

k k i j a k i j k i j a x y
y y H F x y H F σ− −

− − − − − −   = =   E E  

which gives 

2
( ) ,,

 c

a c b b i j

k k i j k i k i a v bx y
y y v v H F if b dσ σ−

− − − −  = = E  

and by defining bdδ  as the Kronecker delta function between b and d, it can be rewritten as 

2
( ) ,, c

a c b b i j

k k i j k i k i a v b bdx y
y y v v H F σ σ δ−

− − − −  = E . 

The third term of , , ,k l i jE  is nonzero only when b c=  and for k i l− = , which equals to 

( )  and 

0  or 

a b b d

k k i k i k i ja b c d

k k i l l j

y v v y b c k i l
y v v y

b c k i l

− − − +
− −

   = − =    =  
≠ − ≠

E
E . 

By considering the independence of noise and outputs 

( ) ( ) ( )
a b b d a d b b a d b b

k k i k i k i j k k i j k i k i k k i j k i k iy v v y y y v v y y v v− − − + − + − − − + − −       = =       E E E E . 

In ( )
a d

k k i jy y − +  E  the outputs are in i j+  phase difference. Similar to the evaluation of the 

second term of , , ,k l i jE , this term is evaluated as 

( ) , d

a d i j

k k i j a x y
y y H F σ+

− +  = E  
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and hence 

2
( ) ,,

,d

a d b b i j

k k i j k i k i a v bx y
y y v v H F if b cσ σ+

− + − −  = = E  

or  

2
( ) ,, d

a d b b i j

k k i j k i k i a v b bcx y
y y v v H F σ σ δ+

− + − −  = E . 

The fourth term of , , ,k l i jE  is nonzero for a d=  when k l j= − , and it can be defined as 

 and 

0  or 

a b c a

k k i k j ka b c d

k k i l l j

v y y v a d k l j
v y y v

a d k l j

− +
− −

   = = −    =  
≠ ≠ −

E
E . 

Again by considering the independence of noise and outputs 

a b c a c b a a c b a a

k k i k j k k j k i k k k j k i k kv y y v y y v v y y v v− + + − + −       = =       E E E E  

in which c b

k j k iy y+ −  E  is the covariance between outputs with i j+  phase difference. Therefore, it 

is evaluated as 

, b

c b i j

k j k i c x y
y y H F σ+

+ −  = E . 

Hence, the fourth term can be computed as 

2
,,

,b

a b c a i j

k k i k j k c v ax y
v y y v H F if a dσ σ+

− +  = = E  

or  

2
,, b

a b c a i j

k k i k j k c v a adx y
v y y v H F σ σ δ+

− +  = E . 

The fifth term is nonzero when a c=  and k l= . Therefore, it is evaluated as 

 and 

0  or 

a b a d

k k i k k ja b c d

k k i l l j

v y v y a c k l
v y v y

a c k l

− −
− −

   = =    =  
≠ ≠

E
E  

in which  
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a b a d b d a a b d a a

k k i k k j k i k j k k k i k j k kv y v y y y v v y y v v− − − − − −       = =       E E E E  

Due to the independence of noise and measurements. Moreover, d b

k j k iy y− −  E  is the 

covariance between measurement outputs with i j−  phase difference. Similar to second term 

evaluation, by assuming i j≥  it can be computed as 

, b

d b i j

k j k i d x y
y y H F σ−

− −  = E . 

Hence the fifth term of , , ,k l i jE  is evaluated as 

2
,,

,b

a b a d i j

k k i k k j d v ax y
v y v y H F if a cσ σ−

− −  = = E  

which can be rewritten as 

2
,, b

a b a d i j

k k i k k j d v a acx y
v y v y H F σ σ δ−

− −  = E . 

Finally, the last term of , , ,k l i jE  is nonzero when a c= , b d=  and i j=  for k l= . These 

conditions are satisfied only for the diagonal elements. This term is computed as 

 and  and  and 

0  and  and  and 

a b a b

k k i k k ia b c d

k k i l l j

v v v v a c b d i j k l
v v v v

a c b d i j k l

− −
− −

   = = = =    =  
= = = =

E
E . 

Since the noise vectors are independent from each other and from themselves in different 

phases, 2 2
, ,

a b a b a a b b a a b b

k k i k k i k k k i k i k k k i k i v a v bv v v v v v v v v v v v σ σ− − − − − −       = = =       E E E E . 

By defining  

1  and 
0 otherwise

cd

ab

a c b d
δ

= =
= 


 , 

the last term can be evaluated as 

2 2
, ,

a b a b cd

k k i k k i v a v b abv v v v σ σ δ− −  = E . 
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By adding up all the evaluated components of , , ,k l i jE , an element of the covariance matrix 

of the block Hankel matrix is evaluated as 

2
, , , ,1

, , ,
1 1

cov( , )
N N

a b c d a b c d

i j k l i j i jN
k l

R R E R R
= =

   = −    ∑∑ E Eɶ ɶ . (A-6) 

Since the nonzero components of , , ,k l i jE  are constant with the change in k and l, their 

summation over [ 1... , 1... ]k N l N= =  equals to their value multiplied by the number of their 

repetitions. Therefore, each component needs to be counted based on its definition in terms of k 

and l. The first component of , , ,k l i jE  and the second part of (A-6) compose the covariance matrix 

element with no additional noise condition, i.e. , ,cov( , )a b c d

i jR R  which has a factor of 1
N . 

In view of the evaluation of other components of , , ,k l i jE , it can be seen that the factors k 

and l are in terms of each other. In all these components, factor k equals to factor l plus a constant 

in terms of i and or j. Therefore, number of repetitions for the two summations on k and l will be 

N times, which makes the final factor equal to 2
1 1

NN
N× = . 

By the addition of all the components of , , ,k l i jE , an element of the covariance matrix of the 

block Hankel matrix can be evaluated as 

, , , , 2 21 1
, ,, ,

2 2 2 21 1 1
, , , ,, ,

cov( , ) cov( , ) c d

b b

a b c d a b c d i j i j
N Ni j i j a v b bd a v b bcx y x y

i j i j cd
N N Nc v a ad d v a ac v a v b abx y x y

R R R R H F H F

H F H F

σ σ δ σ σ δ

σ σ δ σ σ δ σ σ δ

− +

+ −

= + +

+ + +

ɶ ɶ

. (A-7) 

where, i j≥ . 

By assuming that the standard deviation of noise in channel ⊙  is a ratio, i.e. noise ratio β

, of the standard deviation of the output of that channel, 2 2 2
, ,v yσ β σ=
⊙ ⊙

, (A-7) is rewritten as 
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( )

( )

2
, , , , 2

,, ,

2 4
2 2 2

, , ,, ,

cov( , ) cov( , ) c d

b b

a b c d a b c d i j i j

i j i j a bd a bc y bx y x y

i j i j cd

c ad d ac y a y a y b abx y x y

R R R R H F H F
N

H F H F
N N

β
σ δ σ δ σ

β β
σ δ σ δ σ σ σ δ

− +

+ −

= + +

+ + +

ɶ ɶ

. (A-8) 

It can be seen that the order of noise ratio is 2 for nonzero non-diagonal elements and 4 for 

diagonal elements. This relationship is simplified as 

, , , , , , , 2 4
,cov( , ) cov( , ) ,

R

a b c d a b c d a b c d v

i j i j i jR R R R β β
Σ

= + ∆ ∆ = ℑ+ ℵɶ ɶ . (A-9) 

In which 
R

v

Σ∆  is a matrix containing elements , , ,
,

a b c d

i j∆ . It should be also noted that in the χ2 

value (9), the effect of the number of samples on the covariance matrix is neutralized by the factor 

N  in the residual vector (5). 

A.1 Positive definiteness of 
R

v

Σ∆  

In order to investigate the positive definiteness of 
R

v

Σ∆ , an element of ,a b

iRɶ  is expanded as 

, , ,a b a b a b

i i iR R= + ℜɶ  

in which ( ), 1

1

N
a b a b a b a b

i k k i k k i k k iN

k

y v v y v v− − −
=

ℜ = + +∑ . It was shown for (A-1) that , 0a b

i
 ℜ = E  for 1i >  . 

By this definition, (A-1) can be rewritten as 

, , , , , , , ,cov( , ) ( )( )a b c d a b a b c d c d a b c d

i j i i j j i jR R R R R R     = +ℜ +ℜ −     E E Eɶ ɶ  (A-10) 

considering that , ,a b a b

i iR R   =   E Eɶ  as mentioned in the beginning of this appendix. The first part 

of (A-10) is expanded as 

, , , , , , , , , , , ,( )( )a b a b c d c d a b c d a b c d a b c d a b c d

i i j j i j i j i j i jR R R R R R         +ℜ +ℜ = + ℜ ℜ + ℜ + ℜ         E E E E E  (A-11) 

The two latter parts of (A-11) are evaluated similarly as 
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( )

( )

2

2

, , 1

1 1

1

1 1

0

N N
a b c d a b c d c d c d

i j k k i l l j l l j l l jN
k l

N N
a b c d a b c d a b c d

k k i l l j k k i l l j k k i l l jN
k l

R y y y v v y v v

y y y v y y v y y y v v

− − − −
= =

− − − − − −
= =

   
 ℜ = + +    

   

     = + + =     

∑ ∑

∑∑

E E E

E E E
. 

due to the independence of noise and output measurements and independence of noise in different 

steps for 0j > . Therefore, (A-10) can be simplified as 

, , , , , ,cov( , ) cov( , )a b c d a b c d a b c d

i j i j i jR R R R  = + ℜ ℜ Eɶ ɶ . (A-12) 

By comparing ( A-9) and ( A-12) it can be seen that , , , , ,
,

a b c d a b c d

i j i j
 ∆ = ℜ ℜ E  which is a 

member of the covariance matrix of vector ℜ , i.e. 
R

v

Σ∆ . Therefore, 
R

v

Σ∆  is semi-positive definite. 

Moreover, if 0β ≠  the diagonal elements are always nonzero and hence 
R

v

Σ∆ is positive definite. 

The noise effect on the diagonal elements is investigated in the next section.  

A.2 Effect on the diagonal elements 

Since the diagonals of the covariance matrix dominate the calculations of the χ2 test, (A-8) is 

investigated in here for the diagonal elements which correspond to ,a c b d= =  and i j= . Based 

on these assumptions, (A-8) is rewritten as 

( )

( )

2
, , , , 2 2

,, ,

2 4
2 2 2 2

, , ,, ,

cov( , ) cov( , ) a b

b b

a b a b a b a b i

i i i i a a ab y bx y x y

i

a ab b y a y a y bx y x y

R R R R H H F
N

H F H
N N

β
σ σ δ σ

β β
σ δ σ σ σ σ

= + +

+ + +

ɶ ɶ

. (A-13) 

Because, 2
, a a

a a a a

a a k k ax y y
H H x y H x y y yι ι ι ισ σ     = = = =     E E E , (A-13) can be evaluated as 

( )
2 4

, , , , 2 2 2 2 2 2
, , , , ,,

2
cov( , ) cov( , ) a

a b a b a b a b i

i i i i y a y b a y a ab y a y bx y
R R R R H F

N N

β β
σ σ σ σ δ σ σ= + + +ɶ ɶ  (A-14) 

in which the effect of noise is in the order of 4 of β , the noise ratio applied on the standard 

deviation of the outputs. It can be inferred from (A-14) that in the diagonal elements, the parameter 
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with noise converges to a nonzero constant value by increasing i. In addition, all the diagonal 

elements of 
R

v

Σ∆ , in presence of noise, are non-zero, since the two last terms of (A-14) are positive 

as shown in the following.  

The 2β  factor in (A-14) can be rewritten as 

2 2
, ,2 2 2 2

, , , 2 2 2 2,
, , ,,

a

a

y a y bi

y a y b a y a ab ix y

y a y a a y ax y

a b
H F

H F a b

σ σ
σ σ σ σ δ

σ σ σ σ

 ≠
+ = 

+ =
. 

Because 2
2, a

i a a

a k k ix y
H F y yσ − =  E  and 2

,
a a

y a k ky yσ  =  E , by using the Cauchy-Schwartz 

inequality 

1 1
2 2

2 2 2
a a a a a a

k k i k k k i k iy y y y y y− − −     ≤     E E E  

in which 2 2
a a a a

k i k i k ky y y y− −   =   E E . Thus, the 2β  factor is always non-negative. The 4β  factor in 

(A-14) is also always positive and therefore the diagonals of 
R

v

Σ∆  are always nonzero if 0β ≠ . 

A.3 Relation between 
R

v

Σ∆ and the covariance matrix of the residual 

In view of (3-18), matrix T can be defined that 

( ) ( )pvec Tvec R=Hɶ ɶ  

in which Rɶ is a matrix containing 
iRɶ . By considering (3-23), the covariance of the residual vector 

e

Nζɶ  from the measurements with added noise can be evaluated as 

( ) ( )

( ) ( )

0 0

0 0

cov( , ) ( ) vec( )vec( ) ( )

( ) vec( ) ( ) vec( )

Te e T T

N N

T

N S T R R T S

N S T R S T R

ζ ζ θ θ

θ θ

 = ⊗ ⊗ 

   − ⊗ ⊗   

E I I

E I E I

ɶ ɶ ɶ ɶ

ɶ ɶ
 (A-15) 

since ( )0 0vec( ( ) ) ( ) vec( )T

pS S T Rθ θ= ⊗H Iɶ ɶ  in which ⊗  represents the Kronecker product. 

(A-15) is rewritten as 
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( ) ( )

( ) ( )

( ) ( ) ( )

0 0

0 0

0 0

cov( , ) ( ) vec( )vec( ) ( )

( ) vec( ) vec( ) ( )

( ) vec( )vec( ) vec( ) vec( ) ( )

Te e T T

N N

T TT

T TT T

N S T R R T S

N S T R R T S

N S T R R R R T S

ζ ζ θ θ

θ θ

θ θ

 = ⊗ ⊗ 

   − ⊗ ⊗   

     = ⊗ − ⊗    

I E I

I E E I

I E E E I

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ ɶ ɶ ɶ

. 

In view of (A-9),  

vec( )vec( ) vec( ) vec( ) cov( , ) cov( , )
R

T
T vR R R R R R R RΣ     − = = ∆ +    E E Eɶ ɶ ɶ ɶ ɶ ɶ . 

Therefore, the covariance matrix of the residual with additional noise can be defined as 

cov( , ) cov( , )e e e e v

N N N N ζ
ζ ζ ζ ζ Σ= + ∆ɶ ɶ  

in which  

( ) ( )0 0( ) ( )
R

Tv v TN S T T S
ζ

θ θΣ Σ∆ = ⊗ ∆ ⊗I I . 

It should be noted that since 
R

v

Σ∆ is a positive definite matrix, v

ζΣ∆  is also positive definite 

based on its symmetric definition in terms of 
R

v

Σ∆ . Moreover, as mentioned before, the factor N 

removes the effect of number of samples in terms of 1
N

  in (A-8)and the final residual covariance 

matrix is independent on the number of samples.  
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Appendix B  Basis of System Matrices 

Lemma B.1: The acquired measurement ky  from a system such as (3-3) can be associated 

to other systems as well. In other words, the evaluated system matrices from a measured data, are 

not unique.  

Proof: In order to demonstrate this non-uniqueness of the basis of the system matrices, 

assume measurement ky  is acquired from system (3-3). This measurement can be associated to 

any system with the formation 

1k k k

k k k

x Fx w

y Hx ε
+ = +


= +

ɶɶ ɶ ɶ

ɶ ɶ
 (B-1) 

 where 

1 1, and     ,k k k kT Tx x F TFT H HT w w− −= == =ɶ ɶɶ ɶ  (B-2) 

in which T is any invertible matrix. By substituting the matrices of (B-2) into (B-1), the system 

(3-3) will be acquired and therefore the system matrices and measurements can be defined in any 

basis based on definition of T in (B-2). 

Lemma B.2: Although the basis of the system matrices is not unique, the eigenstructure (

,λ ϕ ) of the state transition matrix is unique. 

Proof: The eigenequation of F  writes as 

for 1j j jF j nφ λ φ= = ⋯  (B-3) 

which in view of (B-2) is expanded as 1( )( ) ( )j j jTFT T Tφ λ φ− =  or similarly as ( ) ( )j j jF T Tφ λ φ=ɶ . 

By comparing the eigenequation of Fɶ , i.e. j j jFφ λ φ=ɶ ɶ ɶɶ , with ( ) ( )j j jF T Tφ λ φ=ɶ , it follows 

andj j j jTφ φ λ λ= =ɶ ɶ . (B-4) 

The observed eigenvectors of the alternative basis are also written as 
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1( )( )j j j j jH HT T Hϕ φ φ φ ϕ−= = = =ɶɶɶ . (B-5) 

Hence, based on (B-4) and (B-5), the observed eigenstructure of the system is unique and 

independent of the system basis. 

B.1 Modal basis 

Since the system matrices are not unique, different basis can be assumed for the system from a 

specific measurement. One of the practical and appropriate basis of the system is the modal basis 

which is used often in the theoretical development of the method. The modal basis can be achieved 

by choosing the invertible matrix as 

1T − = Ø , where [ ]1 nφ φ= ⋯Ø . (B-6)  

The eigenequation (B-3) is extended as 

F = ∆Ø Ø  (B-7)  

where  

1 0

0
n

λ

λ

 
 ∆ =  
  

⋱ . (B-8)  

Based on definition 1T − = Ø , (B-7) is rewritten as 1 1FT T− −= ∆ which by premultiplying 

with T results in the modal basis state transition matrix Fλ
ɶ , where  

Fλ = ∆ɶ . (B-9)  

The observation matrix in the modal basis, i.e. Hλ
ɶ , is similarly computed as 

1H HT Hλ
− == = Φɶ

Ø

. (B-10)  

By this definition, the observability matrix (3-15) can be defined in modal basis as 
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1p

p

+

Φ 
 Φ∆ Ο =
 
 Φ∆ 

⋮
. (B-11) 
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Appendix C  Invariance Property of the    χχχχ2-test 

Lemma C.3: The  χ2-tests (3-33) and (3-35) will not change based on scaling of residual. 

Therefore, the non-uniqueness of the basis and the left singular vector 0( )S θ . 

Proof: By assuming the residual vector ζ  scaled as Tζ , where T is an invertible matrix, 

the Jacobian and Covariance matrices will be consistently TJ and TT TΣ . Thus, the  χ2-test (3-33) 

writes as 

( )
( )

11 1 1

11 1

2

1

( ) ( ) ( ) ( ) ( ) ( )T T T T T T

T T T

T T T TJ TJ T T TJ TJ T T T

J J J J

χ ζ ζ

ζ ζ

−− − −

−− − −

= Σ Σ Σ

= Σ Σ Σ
 (C-1)  

which is equivalent to (3-33). Since the non-parametrical test is derived from the parametrical test, 

it inherits the invariance property. 
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Appendix D  S101 Bridge Model Modeshapes 

The modeshapes from the S101 bridge model are presented in the following figure. 

  
1st modeshape (bending 1) 2nd modeshape (torsional 1) 

  
3rd modeshape (bending 2) 4th modeshape (torsioanl 2) 

  
5th modeshape (local - not detected) 6th modeshape (bending 3) 

 
 

7th modeshape (torsional 3) 8th modeshape (bending 4, local on side spans) 

Figure D.1 Modeshapes of the S101 bridge model 

 

  



220 

Appendix E  The Data Acquisition System of the Yellow Frame 

E.1 Data acquisition (DAQ) system 

The DAQ system employed in this test is a hardware unit composed of IOTech®2 data acquisition 

cards. The acquisition component is DAQ-Book/216. This system has an A/D converter of 16 bits 

with a maximum data transfer rate of 800Kbytes/sec. This system has 16 programmable input 

channels. The IOTech DBK13 card is used for the input with amplification capability of 10, 100 

or 1000x. Moreover, there is an anti-aliasing filter from a DBK18 card included in this set. This 

system is shown in Figure E.1. 

 

Figure E.1 DAQ system of the Yellow frame structure 

E.2 Sensors and data acquisition software 

There are two different types of force balanced accelerometers used in the testing of this structure. 

They are manufactured by Kinemetrics®3. One of these sensor types is FBA-11 which is a uniaxial 

accelerometer with the range of +/- 1.0 g. The other type is Epi-sensor which is a triaxial 

                                                 
2 National Instruments http://www.ni.com/ 
3 Kinemetrics http://www.kinemetrics.com/ 
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accelerometer with the selectable range of +/-0.25g upto +/-4 g. In this structure, 9 FBA-11 sensors 

are used on the structure and 6 Epi-sensors are located on the ground (3 sensors) and on the 

structure (12 sensors). Two of these sensors are illustrated in Figure E.2. 

  
(a) (b) 

Figure E.2 Two sensors used in instrumenting the Yellow frame: (a) FBA-11 and (b) Epi-sensor 

In order to acquire the data from the DAQ system, DaisyLab®4, a graphical data acquisition 

software was used. Several programs and tools were used and further developed in the DaisyLab 

software to acquire the data from the sensors, scale them and write them to the hard disks. 

 

  

                                                 
4 MC Measurement Computing http://www.mccdaq.com/ 
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Appendix F  Damage configurations of the Yellow frame 

C1 C2 

C3 C4 

C5 C6 
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C7 C8 

C9 C10 

C11 C12 
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C13 C14 

Figure F.1 Damage configurations of 
the Yellow frame 

C15  
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Appendix G  Flowchart of the SSDD and SSDL Technique 

(a) 

 
(b) 

Figure G.1 (a) Flowchart of the SSDD and SSDL technique, (b) Schematic design of a basic structural health 
monitoring system of a bridge 
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G.1 Steps of the flowchart 

In view of 5.5 and Figure G.1.a, the first step, i.e. step (1), is to create the subspace 0S  and a safety 

threshold from a set of measurements acquired from the undamaged structure. Firstly a period of 

measurement is chosen to serve as the reference state to build the subspace 0S . Subsequently, 

another set of measurements from the undamaged structure is chosen to create a safety threshold.  

In the next step, i.e. step (2) the real-time monitoring is performed for each time interval, e.g. 30 

min, to test the current unknown condition of the structure using SSDD method. In this step, if the 

damage is identified, it will be rechecked and then the result will be reported. In case of detecting 

the damage, the next step is to localize the damage in the structure from step (3). However, if there 

is no damage detected, this measurement can be used in step (1) too, for creating the subspace 0S  

or the safety threshold. Finally, the test continues to testing the next time interval in step (2). 

Figure G.1.b shows a schematic design of a basic SHM system of a bridge. The data is collected 

by the sensors and sent to central system. This central system will send the data to a server located 

in University of British Columbia. In here, the steps (1) to (3) are performed and the results are 

reported. 


