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Abstract

This thesis studies individual choice in both individualistic and interactive deci-
sions, under different situations of risk, uncertainty and time delay.

The first chapter of my dissertation investigates the tendency of human beings
to make choices that are biased towards alternatives in the present. I characterize
the general class of utilities which are consistent with present-biased behavior. I
show that any present-biased preference has a subjective max-min representation,
which can be cognitively interpreted as the decision maker considering the most
conservative “present equivalents” in the face of subjective uncertainty about future
tastes.

The second chapter of my thesis provides desiderata of choice consistency that
experimenters should employ while estimating time preferences from choice data.
We also show how application of this desiderata can help us learn new insights
from previous experimental studies.

The third chapter of my thesis establishes a tight relation between non-standard
behaviors in the domains of risk and time by considering a decision maker with
non-expected utility preferences who believes that only present consumption is
certain while any future consumption is uncertain. We provide the first complete
characterization of the two-way relations between i) certainty effect and present
bias, and, ii) common ratio effect and the common difference effect. A corollary
to our results is that hyperbolic discounting implies the Common Ratio Effect and
that quasi-hyperbolic discounting implies the Certainty Effect.

In the fourth chapter of my thesis, I use variation in experimental design (time-
discounting) and belief data from subjects to investigate the determinants of behav-
ior in Finitely Repeated Prisoner’s Dilemma games.
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Lay Summary

My thesis investigates decision making under conditions of risk, uncertainty and
temporal delay. In chapters one and three, instead of studying each of these be-
haviors in isolation, I provide a more comprehensive theory of human behavior by
studying the interplay of uncertainty and time as infleuncing factors in different en-
vironments. Chapter two uses a meta-study over recent influential experimental pa-
pers to inform the design of future experiments investigating temporal-preferences.
Chapter four studies the effect of temporal delay (discounting) on human interac-
tion in an environment where there is a tradeoff between individual gain and social
surplus.
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Preface

A version of Chapter 2 has been published [Chakraborty, A., Calford, E.M., Fenig,
G. et al. Exp Econ (2017). doi:10.1007/s10683-016-9506-z]. I was the principal
contributor on the project, and hence I am the main author on this project.
Chapter 3 was jointly co-authored with Professor Yoram Halevy, and we equally
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#H13-02107].
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Introduction

The discipline of Economics studies how different incentive structures and eco-
nomic stimuli shape behavior. As expected of any social science, this requires a two
pronged approach grounded in theory and empirics. On one hand, economists pro-
vide theories of behavior progressively consistent with the human actions we ob-
serve in everyday market and non-market transactions. On the other hand, economists
also generate and utilize data obtained from surveys, census, market studies or cre-
ative experiments to test and select between competing theories of human behavior.

This thesis combines features of both theoretical and empirical approaches to
investigate decision making under conditions of risk, uncertainty, and temporal de-
lay. In its course, it uses existing empirical findings to motivate why particular devi-
ations from classical economic assumptions are necessary for better understanding
of human behavior in certain scenarios. Then, precise alternative assumptions1 are
provided to formulate new theories and the empirical implications are discussed
subsequently2. Below we provide the overarching background and motivation for
the questions and results studied in this thesis.

The modal temporal preferences obtained in previous experimental studies
show a disproportionate bias for present rewards and consumption (Loewenstein
and Prelec [1992], Frederick et al. [2002]), a phenomenon known as Present Bias.
Existing theories (Pollak [1968], Harvey [1986], Laibson [1997], Hayashi [2003],
Ebert and Prelec [2007]) which try to account for Present Bias, require extrane-
ous assumptions on behavior which are often unrealistic or too strong. In Chapter
1, we ask the question if it is possible to obtain a characterization and model for
Present Biased preferences, without having to impose extraneous assumptions on
behavior. We further study the consequences of such behavior in practical settings
and its welfare implications.

In situations of risk and uncertainty, the modal behavior observed is consistent
with conservative behavior under uncertainty, and subsequently a bias for certainty
(Allais [1953b], Ellsberg [1961], Gilboa and Schmeidler [1989], Cerreia-Vioglio
et al. [2015]). This bears a close resemblance to the temporal behavior of a bias
for present rewards (Present Bias), as introduced in the previous paragraph. The

1These alternative assumptions are weaker versions of previous classical assumptions.
2This is why the following essays are broadly consistent with the topic of Behavioral Economics.

1



Introduction

similarity begs the following question: Are preferences under risk and time prefer-
ences related, and if so, how could one formally understand this relationship? We
answer this question in Chapter 3.

On the empirical side of matters, the importance of developing new experi-
mental methods for studying temporal preferences cannot be overstated. Chapter
2 of this thesis provides benchmarks which should be used to evaluate recently de-
veloped experimental methodologies (Andreoni and Sprenger [2012], Augenblick
et al. [2015]) in isolation, as well as to compare them to older methodologies (Har-
rison et al. [2002]).

In light of the preceding questions, it is natural to wonder about how temporal
delay (and risk) affects human behavior in interactive environments. One such
interactive environment is captured by the Prisoner’s Dilemma game (Roth and
Murnighan [1983], Bo [2005]), where subjects face a tradeoff between individual
gain and social surplus. In Chapter 4 we answer the following question: How
could we study human behavior in interactive environments under temporal delay/
discounting, and what could we extrapolate about human motivations from such a
study?

2



Chapter 1

Present Bias

Exponential discounting is extensively used in economics to study the trade-offs
between alternatives that are obtained at different points in time. Under exponen-
tial discounting, the relative preference for early over later rewards depends only
on the temporal distance between the rewards (stationarity). However, recent ex-
perimental findings have called the model into question. Specifically, experiments
have shown that small rewards in the present are often preferred to larger rewards
in the future, but this preference is reversed when the rewards are equally delayed.
As an example, consider the following two choices:

Example 1.

A. $100 today vs B. $110 in a week

C. $100 in 4 weeks vs D. $110 in 5 weeks

Many decision makers choose A over B, and D over C. This specific pattern of
choice reversal can be attributed to a bias we might have towards alternatives in the
present, and hence is aptly called present bias or immediacy effect. This is one of
the most well documented time preference anomalies (Thaler 1981; Loewenstein
and Prelec 1992; Frederick et al. 2002). If preferences are stable across decision-
times and the decision-makers are unable to ward against the behavior of their
future selves, the same phenomenon creates dynamic inconsistency in behavior:
People consistently fail to follow up on the plans they had made earlier, especially
if the plans entail upfront costs but future benefits. Every year many people pledge
to exercise more, eat healthier, become financially responsible or quit smoking
starting next year but fail to follow through when the occasion arrives, to their own
frustration.

There is a big literature on what kind of utility representations could rational-
ize choices made by a present-biased decision maker (DM), which we succinctly
summarize in Table A.1 in Appendix I. Though all of these models capture the
behavioral phenomenon of present bias, none of them can be called the model of
present-biased preferences. Instead they are all models of present bias and some
additional temporal behavior that is idiosyncratic to the model.3 Moreover, these

3For example, Quasi-Hyperbolic Discounting ( called β -δ discounting interchangeably) addition-
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Chapter 1. Present Bias

additional behavioral features conflict across the models and are often not empir-
ically well-founded. This raises the following natural question: What is the most
general model of present-biased preferences? Or alternatively, what general class
of utilities is consistent with present-biased behavior? Such a model would be able
to represent present-biased preferences without imposing any extraneous behav-
ioral assumption on the decision maker. This paper proposes a behavioral charac-
terization for such general class of utilities. We start by introspecting about what
exactly present-biased behavior implies in terms of choices over temporal objects.
The following example provides the motivation for our “weak present bias” axiom.

Example 2. Suppose that a DM chooses (B) $110 in a week over (A) $100 today.
What can we infer about his choice between (B′) $110 in 5 weeks versus (A′) $100
in 4 weeks, if we condition on the person being (weakly) present-biased?4

Note that B%A, implies that a possible present-premium ($100 is available at
the present) and the early factor ($100 is available 1 week earlier) are not enough
to compensate for the size-of-the-prize factor ($110>$100). Equally delaying both
alternatives preserves the early factor and the size-of-the-prize factor, but, the al-
ready inferior $100 prize further loses its potential present-premium, which should
only make the case for the previous preference stronger. Hence, B%A must imply
B′ %A′ to be consistent with a weak notion of present bias.

We use this motivation to define a Weak Present Bias axiom, which relaxes sta-
tionarity by allowing for present bias but rules out any choice reversals inconsistent
with present bias5. We then show that if a decision maker satisfies Weak Present
Bias and some basic postulates of rationality, then, his preferences over receiving
an alternative (x, t) (that is receiving prize x at time t) can be represented in the
following way (henceforth called the minimum representation)

V (x, t) = min u∈U u−1(δ tu(x))

where δ ∈ (0,1) is the discount factor, and U is a set of continuous and increasing
utility functions. The minimum representation can be interpreted as if the DM has

ally assumes Quasi-stationarity: violations of constant discounting happen only in the present period
and the decision maker (DM)’s discounting between any two future periods separated by a fixed dis-
tance is always constant. On the other hand, Hyperbolic Discounting (which subsumes Proportional
and Power discounting as special cases) captures the behavior of a decision maker whose discounting
between any two periods separated by a fixed distance decreases as both periods are moved into the
future.

4The choice of monetary reward for this example is without loss of generality. The reader can
replace monetary reward with a primary reward in the example, and the main message of this example
would still go through undeterred.

5Note that we are assuming present-premium≥ 0, thus ruling out the case where it is negative,
i.e, something that would be consistent with future bias. This “weak” inequality of present-premium
is conceptually equivalent to a “weak” presence of present bias.

4



Chapter 1. Present Bias

not one, but a set U of potential future tastes or utilities. Each potential future
taste (captured by a utility function u ∈ U ) suggests a different present equiva-
lent6 for the alternative (x, t). The DM resolves this multiplicity by considering the
most conservative or minimal present equivalent. Given that the present equivalent
of any prize in the present is the prize itself, the minimum representation has no
caution imposed on the present, thus treating present and future in fundamentally
different ways. For any prize x received at time t = 0, min u∈U (u−1(δ 0u(x))) = x7,
which can be interpreted as if, immediate alternatives are not evaluated through
similar standards of conservativeness, as is expected of a DM with present bias.
Moreover, the fact that all alternatives are procedurally reduced to present equiv-
alents for evaluation and comparison, underlines the salience of the present to the
DM. This is another way in which the psychology of present bias is incorporated in
the representation. Our representation nests the classical exponential discounting
model as the special case obtained when the set U is a singleton and hence can
be considered a direct generalization of the standard model of stationary temporal
preferences.

Our model of decision making nests all the popular models of present-biased
discounting as special cases, as those models satisfy all the axioms imposed in
our analysis. However, there are several robust empirical phenomena discussed in
Sections 1.3 and 1.9 which temporal models like β -δ or hyperbolic discounting
cannot account for, but the current model can. For example, Keren and Roelofsma
[1995] show that once all prizes under consideration are made risky, they are no
longer subject to present-biased preference reversals anymore. In other words,
once certainty is lost, present bias is lost too. None of the models of behavior
that treat the time and risk components of an alternative separately (for example,
any discounted expected or non-expected utility model) can accommodate such
behavior. We extend our analysis to a richer domain of preferences over risky timed
prospects and provide an extended minimum representation that can account for
this puzzling behavioral phenomenon. In Section 1.10 we show how a benevolent
social planner can use insights from time-risk behavior to improve the welfare of
present-biased individuals. Another choice pattern that most temporal models fail
to accommodate is the stake dependence of present bias. For example, a DM might
have a bias for the present, but he might also expend considerably more cognitive
effort to fight off this bias when the stakes are large. His large stake choices would
satisfy stationarity, whereas he would appear to be present-biased in his choices

6Present equivalent of an alternative (x, t) is the immediate prize that the DM would consider
equivalent to (x, t). For a felicity function u defined on the space of all possible prizes x, and a
discount factor of δ , the discounted utility from (x, t) is δ tu(x). Hence the corresponding present
equivalent is u−1(δ tu(x)).

7As, δ 0 = 1, u−1(δ 0u(x)) = u−1(u(x)) = x for all u ∈U .
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1.1. Model and the main result

over smaller stakes (see Halevy 2015 for supporting evidence). We show how our
representation can accommodate such preferences in Section 1.9.

The subjective max-min feature of the functional form has been used previ-
ously by Cerreia-Vioglio et al. [2015] in the domain of risk preferences, though
they had the minimum replaced by an infimum. In their paper, Cerreia-Vioglio
et al. [2015] show that if we weaken the Independence axiom to account for the
Certainty Effect (Allais 1953a), we obtain a representation where a decision maker
evaluates the certainty equivalent of each lottery with respect to a set of Bernoulli
utility functions and then takes the infimum of those values as a measure of pru-
dence. We discuss this connection in greater detail in Section 1.5 and describe how
the techniques used in our paper can be used to provide an alternative derivation of
their main result in a reduced domain.

The paper is arranged as follows: Section 1.1 defines the novel Weak Present
Bias axiom and provides the main representation theorem of the paper. Section 1.2
builds on the main result to provide intuition about the separation of β -δ discount-
ing from Hyperbolic discounting. Section 1.3 extends the main result to a richer
domain with risk. Section 1.4 discusses extensions of the representation result to
consumption streams. We provide an intuition of the inner workings of the proofs
in Section 1.5. Section 1.6 comments on the uniqueness of the results. Section
1.7 surveys the literature closely related to this paper. Sections 1.8 and 1.9 discuss
the testability, refutability and empirical content of our model. Sections 1.10-1.11
provide applications, policy implications and extensions of the main results of the
paper. The proofs of the main theorems are included in Appendix II.

1.1 Model and the main result

A decision maker has preferences % defined on all timed alternatives (x, t)∈X×T
where the first component could be a prize (monetary or non-monetary) and the
second component is the time at which the prize is received. Let T= {0,1,2, ...∞}
or T = [0,∞) and X = [0,M] for M > 0. We impose the following conditions on
behavior.

A0: % is complete and transitive.

Completeness and transitivity are standard assumptions in the literature, though
one can easily argue that they are more normative than descriptive in nature. The
few instances of present-biased intransitive preferences studied in the economics
literature, notably Read [2001], Rubinstein [2003] and Ok and Masatlioglu [2007]
fall outside our domain of consideration due to (A0).

6



1.1. Model and the main result

A1: CONTINUITY: % is continuous, that is the strict upper and lower contour
sets of each timed alternative is open w.r.t the product topology.

Continuity is a technical assumption that is generally used to derive the conti-
nuity of the utility function over the relevant domain. When, T= R+, the standard
β -δ model does not satisfy continuity at t = 0.8

A2: DISCOUNTING: For t,s ∈ T, if t > s then (x,s)� (x, t) for x > 0 and
(x,s)∼ (x, t) for x = 0. For y > x > 0, there exists t ∈ T such that, (x,0)% (y, t).

The Discounting axiom has two components. The first part says that the deci-
sion maker always prefers any non-zero reward at an earlier date. The second part
states that any reward converges to the zero reward (and hence, continually loses
its value), as it is sufficiently delayed.

A3: MONOTONICITY: For all t ∈ T (x, t)� (y, t) if x > y.

The Monotonicity axiom requires that at any point in time, larger rewards are
strictly preferred to smaller ones. Finally, in light of Example 1, we formally define
Weak Present Bias below.

A4: WEAK PRESENT BIAS: If (y, t)% (x,0) then, (y, t + t1)% (x, t1) for all
x,y ∈ X and t, t1 ∈ T.

To provide context the standard Stationarity axiom is stated below.
Stationarity: (y, t1) % (x, t2) if and only if, (y, t + t1) % (x, t + t2) for all x,y ∈ X
and t, t1, t2 ∈ T.
Weak present bias as defined in the fourth axiom is the most intuitive weakening
of Stationarity in light of the experimental evidence about present bias or imme-
diacy effect. It allows for choice reversals that are consistent with present-bias,
something that Stationarity does not allow. On the other hand, having an opposite
bias for future consumption is ruled out . 9Other than all the separable discounting
models mentioned in Appendix I, this Weak Present Bias axiom is also satisfied
by the non-separable models of present bias proposed by Benhabib et al. [2010]

8Pan et al. [2015] axiomatize a model of Two Stage Exponential (TSE) discounting which incor-
porates the idea of β -δ discounting while maintaining continuity.

9Further, (y, t) � (x,0) and (y, t + t1) ∼ (x, t1) is also not consistent with WPB, Continuity and
Monotonicity. The reason being that, by Continuity, there would exist y′ < y, (y′, t) � (x,0) and
(x, t1)� (y′, t + t1). Whereas, (y, t)∼ (x,0) and (y, t + t1)� (x, t1) is allowed by the postulates A0-4.

7



1.1. Model and the main result

10 and Noor [2011]. This stands testimony to the fact that the Weak Present Bias
axiom is able to capture the general behavioral property of present bias in a very
succinct way. Now we present our main representation result.

Theorem 3. The following two statements are equivalent:
i) The relation % defined on X×T satisfies axioms A0-A4.
ii) For any δ ∈ (0,1), there exists a set Uδ of monotonically increasing contin-

uous functions such that

F(x, t) = min
u∈Uδ

u−1(δ tu(x)) (1.1)

represents the binary relation %. The set Uδ has the following properties: u(0) = 0
and u(M) = 1 for all u ∈Uδ . F(x, t) is continuous.

Note that for any timed alternative (x, t), u−1(δ tu(x)) in (1.1) computes its
“present equivalent”, the amount in the present which the individual would deem
equivalent to (x, t) if u were his utility function. For all present prizes, the present
equivalents are trivially equal to the prize itself (u−1(δ 0u(x)) = x ∀u) irrespective
of the utility function under consideration, and thus there is no scope or need for
prudence. Whereas for timed alternatives in the future, whenever U is not a single-
ton, the DM chooses the most conservative present equivalent due to the minimum
functional, thus exhibiting prudence. This is the primary intuition of how this
functional form treats the present differently from the future and thus incorporates
present bias into it. A potential motivation for the minimum representation and dif-
ferential treatment towards present and future, follows from Loewenstein [1996]’s
visceral states argument: “..immediately experienced visceral factors have a dis-
proportionate effect on behavior and tend to crowd out virtually all goals other
than that of mitigating the action, ...but.. people under weigh, or even ignore, vis-
ceral factors that they will experience in the future.” The following example shows
an easy application of the theorem to represent present-biased choices.

Example 4. Consider U = {u1,u2}, where,

u1(x) = xa for a>0

u2(x) = 1− exp(−bx) for b>0

10Benhabib et al. [2010] introduce the discount factor

∆(y, t) =

{
1 t = 0
(1− (1−θ)rt)(1−θ)− b

y t > 0

8



1.2. Special cases

Also consider, a = .99, b = .00021, δ = .91. One can easily check that a
minimum representation with respect to this U would satisfy Weak Present Bias
(also follows from Theorem 3). The minimum representation with respect to this
U would assign the following utilities to the timed alternatives in Example 1.

V (100,0) = min(100,100) = 100

V (110,1) = min(100.056,99.995) = 99.995

V (100,4) = min(68.317,68.48) = 68.317

V (110,5) = min(68.320,68.344) = 68.320

Hence,

V (100,0) > V (110,1)

V (100,4) < V (110,5)

Thus the minimum function with a simple U can be used to accommodate
present biased choice reversals.

1.2 Special cases

This section applies Theorem 3 to a popular model of present bias, the β -δ model
(Phelps and Pollak 1968, Laibson 1997). The β − δ model evaluates each alter-
native (x, t) as U(x, t) = (β + (1− β ).1t=0)δ

tu(x), where u,δ ,β have standard
interpretation. 1t=0 is the indicator function that takes value of 1 if t = 0 and value
0 otherwise, thus assigning a special role to the present. Given that the β−δ model
satisfies Weak Present Bias and all the other axioms included in Theorem 1 (for the
discrete case) , any such β − δ representation must have an alternative minimum
representation, as shown in Theorem 3.

Below, we consider the simplest possible β − δ representation with linear fe-
licity function u(x) = x, T = {0,1,2, ..} and construct the corresponding Weak
Present Bias representation.

Claim 5. β -δ representation with u(x) = x has an alternative minimum represen-
tation.

Proof. Define the functions uy : R→ R+ for all y ∈ R+:

9



1.2. Special cases

uy(x) =


x
β

for x≤ βδy

δy+(x−βδy)
1−δ

1−βδ
for βδy < x≤ y

x for x > y

For any y ∈R+, x≤ uy(x)≤
x
β

for all x ∈R+. As uy is an increasing function,

it must be that x ≥ u−1
y (x) ≥ βx. Since, x ≤ uy(x), we get δ tuy(x) ≥ δ tx, which

implies,
u−1

y (δ tuy(x))≥ u−1
y (δ tx)≥ βδ

tx

Finally, for x = y, δ tuy(x) = δ tx < δx and, hence, uy(δ
tuy(x)) = βδ tx.

Therefore, V (x, t) = miny∈R+u−1
y (δ tuy(x)) = (β +(1−β ).1t=0)δ

tx, which fin-
ishes our proof.11

This shows that if we start with a rich enough set of piece-wise linear utilities,
the minimum representation with respect to that set, is enough to generate behavior
consistent with β -δ discounting. In the example above, the set values taken by the
set of functions is bounded above and below at each non-zero point x of the domain
by [

x
β
,x], and this brings us to our next result. Our next theorem characterizes the

behavioral axiom necessary and sufficient for the functions in Uδ to be similarly
bounded.

We start by introducing two more axioms.

A5: EVENTUAL STATIONARITY: For any x > z > 0 ∈ X, there exists t1 ∈ T,
such that for t ≥ 0, (z, t)� (x, t + t1) and (z,0)� (xt , t1 + t) for any xt such that
(x,0)∼ (xt , t).

A6: NON-TRIVIALITY: For any x ∈ X, and t ∈ T, there exists z ∈ X, such that
(z, t)� (x,0).

The last axiom basically means that the space of prizes is rich enough to have
exceedingly better outcomes, and it is only needed when X= R+, and can be
dropped if X= [0,M]. (See Corollary 1)

A5 is the more crucial axiom. That for any x > z > 0 ∈ X , there exists a suffi-
cient delay τ1 ∈T, such that (z,0)� (x,τ1) is already implied by Discounting (A2).

11This is not necessarily the only possible minimum-representation of the β -δ discounting.
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1.2. Special cases

What has been added is the existence of delay t1 for which we additionally have
(z, t) � (x, t + t1) for all t ≥ 0: This intuitively means once the later larger prize
is “sufficiently” delayed, the relative rates at which the attractiveness of the ear-
lier and later rewards fall with further delay (increasing values of t) are consistent
with stationarity. This rules out certain preference reversals that were previously
allowed under WPB. The last and third part of the axiom, (z,0) � (xt , t1 + t) for
any xt such that (x,0) ∼ (xt , t), also has the same interpretation. The A5 prop-
erty provides a crucial separation between two popular classes of present-biased
discounting functions: β -δ discounting and Hyperbolic discounting , as only the
former satisfies it, but the latter does not. We show this more formally in Proposi-
tion 25 in Appendix II.

Theorem 6. Let T= {0,1,2, ...∞} and X=R+. The following two statements are
equivalent:

i) The relation % satisfies properties A0-A6.
ii) There exists a set Uδ of monotonically increasing continuous functions such

that
F(x, t) = min

u∈Uδ

u−1(δ tu(x)) (1.2)

represents the binary relation %. The set Uδ has the following properties:u(0) =

0 for all u ∈ Uδ , supu u(x) is bounded above, infu u(x) > 0 ∀x > 0, infu
u(z)
u(x)

is

unbounded in z for all x > 0. F(x, t) is continuous.

This theorem implies that any “minimum-representation” of hyperbolic dis-
counting must require a set of functions which would take unbounded set values
at some point of the domain. The immediate conclusion one can draw from here
is that one cannot generate any variant of Hyperbolic discounting (with any felic-
ity function) with a minimum representation over a finite set U of utilities. This
theorem also has a straightforward corollary, where we consider the prize domain
X=[0,M] and drop A6.

Corollary 7. Let T= {0,1,2, ...∞} and X= [0,M]. The following two statements
are equivalent:

i) The relation % satisfies properties A0-A5.
ii) There exists a set Uδ of monotonically increasing continuous functions such

that
F(x, t) = min

u∈Uδ

u−1(δ tu(x))

represents the binary relation %. The set Uδ has the following properties:u(0) = 0,
u(1) = 1 for all u ∈U , infu u(x)> 0 ∀x. F(x, t) is continuous.

11
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Prospect A Prospect B % chosing A % chosing B N
1 (9,1,0) (12,.8,0) 58% 42% 142
2 (9,.1,0) (12,.08,0) 22% 78% 65
3 (9,1,3) (12,.8,3) 43% 57% 221
4 (100,1,0) (110,1,4) 82% 18% 60
5 (100,1,26) (110,1,30) 37% 63% 60
6 (100,.5,0) (110,.5,4) 39% 61% 100
7 (100,.5,26) (110,.5,30) 33% 67% 100

Table 1.1: Risk vs No-Risk

1.3 An extension to risky prospects

In this section, we extend the representation derived in Section 1.1 to risk. This
extension serves the following three goals. First, it shows that the representation
in Section 1 has a natural extension to simple binary lotteries, with zero being
one of the lottery outcomes. Second, through the extended representation we are
able to accommodate experimental evidence that is inconsistent with most previous
temporal models of behavior. Finally, through this extension, we will be able to
identify a unique discount factor δ for any DM satisfying certain postulates of
behavior.

We start by presenting the experimental evidence from time-risk domain that
our model would be able to accommodate, but, the temporal models from Ap-
pendix I would not. In the following text, we summarize each alternative by the
triplet (x, p, t) where x is a monetary prize, p is the probability with which x is
attained at time t. For the first three rows (from Baucells and Heukamp [2010]
), x was offered in Euros, and in the next four (taken from Keren and Roelofsma
[1995].), x was offered in Dutch Guilder, t was measured in months in Columns
1:3, and measured in weeks in Columns 4:7.

The data can be interpreted in the following way: People have an affinity for
both certainty and immediacy. The loss in either certainty or immediacy has a
similar disproportionate effect on preferences (compare rows 5 and 6 with row 4,
or rows 2-3 with row 1). Most interestingly, there is very little evidence of present-
biased reversals over risky prospects (compare rows 6-7, with rows 4-5). It is the
latter finding that is at odds with most temporal models of behavior. In fact it
rules out all discounted expected or non-expected utility functional forms which

12



1.3. An extension to risky prospects

are separable in the temporal and risk components.12

We will consider preferences over triplets (x, p, t) ∈X×P×T, which describe
the prospect of receiving a reward x ∈ X at time t ∈ T with a probabilityp ∈ [0,1].
X = [0,M] is a positive reward interval, P = [0,1] is the unit interval of probabil-
ity, and T = [0,∞) is the time interval. We impose the following conditions on
behavior.

B0: % is complete and transitive.

B1: CONTINUITY: % is continuous, that is the strict upper and lower contour
sets of each risky timed alternative are open w.r.t the product topology.

B2: DISCOUNTING: For t,s ∈ T, if t > s then (x, p,s)� (x, p, t) for x, p > 0
and (x, p,s)∼ (x, p, t) for x = 0 or p = 0. For y > x > 0, there exists T ∈ T such
that, (x,q,0)% (y,1,T ).

B3: PRIZE AND RISK MONOTONICITY: For all t ∈ T, (x, p, t)% (y,q, t) if
x≥ y and p≥ q. The preference is strict if at least one of the two following
inequalities is strict.

Note that the first four axioms are just extensions of A0-A3.

B4: WEAK PRESENT BIAS: If (y,1, t)% (x,1,0) then, (y,1, t + t1)% (x,1, t1)
for all x,y ∈ X, α ∈ [0,1] and t, t1 ∈ T.

B5: PROBABILITY-TIME TRADEOFF: For all x,y ∈ X, p,q,θ ∈ (0,1], and
t,s,D ∈ T, (x, pθ , t)% (x, p, t +D) =⇒ (y,qθ ,s)% (y,q,s+D).

The fifth axiom (used previously in Baucells and Heukamp 2012a) says that
passage of time and introduction of risk have similar effects on behavior, and there
is a consistent way in which time and risk can be traded off across the domain
of behavior. This axiom implies calibration properties as well that we will utilize
in the proofs, and it will be crucial to pin down a unique discount factor δ for
any DM. Additionally, (B4) when combined with (B5) captures a decision maker’s
joint bias towards certainty as well as the present, i.e, it embeds Weak Present Bias
as well as Weak Certainty Bias13 in itself. This underlines the insight that once

12Rows 1 and 3 also imply the same.
13Weak Certainty Bias can be defined on X×P in the following fashion: If (y, p) % (x,1) then,

(y, pα)% (x,α) for all x,y ∈ X and α ∈ [0,1].

13



1.4. Extension to consumption streams

risk and time can be traded-off, Weak Present Bias and Weak Certainty Bias are
behaviorally equivalent. Similar relations between time and risk preferences have
been elaborated on previously by Halevy [2008], Baucells and Heukamp [2012a],
Saito [2015], Fudenberg and Levine [2011], Epper and Fehr-Duda [2012] and
Chakraborty and Halevy [2015]. In Section 1.5, we will discuss how the Weak
Certainty Bias postulate connects the current work to previous literature on risk
preferences.

We are now ready for our next result.

Theorem 8. The following two statements are equivalent:
i) The relation % on X×P×T satisfies properties B0-B5.
ii) There exists a unique δ ∈ (0,1) and a set U of monotonically increas-

ing continuous functions such that F(x, p, t) = minu∈U (u−1(pδ tu(x))) represents
the relation %. For all the functions u ∈ U , u(M) = 1 and u(0) = 0. Moreover,
F(x, p, t) is continuous.

The next example shows a potential application of this representation in light
of Keren and Roelofsma [1995]’s experimental results.

Example 9. Consider the set of functions U and parameters considered in Exam-
ple 4. When applied to the representation derived in Theorem 8, they predict the
following choice pattern.

V (100,1,0) > V (110,1,1)

V (100,1,4) < V (110,1,5)

V (100, .5,0) < V (110, .5,1)

V (100, .5,4) < V (110, .5,5)

Note that this is exactly the choice pattern obtained in the original Keren and
Roelofsma [1995] experiment: time and risk affect choices in similar ways, and
once certainty is removed present bias disappears.

1.4 Extension to consumption streams

In this section, we extend the representation derived in Section 1.1 to deterministic
consumption streams. The DM’s preferences % are defined over [0,∞)T , the set of
all consumption streams of finite length T > 1. We impose the following conditions
on behavior.

14



1.4. Extension to consumption streams

D0: % is complete and transitive.

D1: CONTINUITY: % is continuous, that is the strict upper and lower contour
sets of each consumption stream are open w.r.t the product topology.

D2: DISCOUNTING: If 0≤ s < t ≤ T −1, then
(0, .. y︸︷︷︸

in period s

, ..,0)% (0, .. y︸︷︷︸
in period t

, ..,0) for y≥ 0 with the relation being strict if

and only if y > 0. Further, for y0 > x > 0, and for any sequences (y1,y2,y3, ..ym)
and (n1,n2, ..,nm), where, (0, ..0, yi−1︸︷︷︸

in period ni

,0..,0)% (yi,0, ..,0) ∀i ∈ {1,2, ...,m} ,

0 < ni ≤ T −1 and ∑
m
1 ni = t, there exists t ∈ N such that, ym ≤ x.

D3: MONOTONICITY: For any (x0,x1, ..xT−1), (y0,y1, ..yT−1) ∈ [0,∞)T ,
(x0,x1, ..xT−1)% (y0,y1, ..yT−1) if xt ≥ yt for all 0≤t≤ T −1. The preference is
strict if at least one of the inequalities is strict.

D4: WEAK PRESENT BIAS: If (0, .. y︸︷︷︸
in period t

, ..,0)% (x,0, ..,0) then,

(0, .. y︸︷︷︸
in period t + t1

, ..,0)% (0, . x︸︷︷︸
in period t1

.,0) for all x,y ∈ X and t, t1 ∈ T.

Note that the first five axioms are alternative restatements of A0-A4 in the current
domain, but the Discounting axiom warrants some independent discussion. As
before, the second part of the Discounting axiom states that any
period-consumption keeps falling arbitrarily in present-equivalent value, as one
increases the total discounting it is subjected to. Due to the added restriction that
the DM can only consider time delays of upto T −1 periods for T ≥ 2, we have
approximated arbitrary delays by a sequence of delays, none greater than T −1.
But, the restatement is also a stronger version of the former (under WPB) as it
also imposes path independence (by stating the axiom for arbitrary sequences
(ni)m

i=1 of delays instead of requiring it to hold for a particular sequence of delays,
that sum to t) while achieving this total discounting. This is necessary while
working with the non-compact prize space of [0,∞).
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1.5. An outline of the proofs

D5: STRONG ADDITIVITY: For any pair of orthogonal14 consumption
bundles (x0,x1, ..xT−1), (y0,y1, ..yT−1) ∈ [0,∞)T , if, (x0,x1, ..xT−1)∼ (z0,0, ..,0)
and (y0,y1, ..yT−1)∼ (z′0,0, ..,0), then,
(x0 + y0,x1 + y1, ..xT−1 + yT−1)∼ (z0 + z′0,0, ..,0).

Orthogonality of consumption vectors imply that xt > 0 only if yt = 0, and
yt > 0 only if xt = 0 for all t. The fifth axiom implies the standard notion of
Additivity used in axiomatizations of additive representation of streams, and is
hence named Strong Additivity.

We are now ready for our next result.

Theorem 10. The following two statements are equivalent:
i) The relation % on [0,∞)T satisfies properties D0-D5.
ii) For any δ ∈ (0,1), there exists a set Uδ of monotonically increasing contin-

uous functions such that

F(x0,x1, ..,xT−1) = x+
T−1

∑
1

min
u∈Uδ

u−1(δ tu(xt))

represents the binary relation %. The set Uδ has the following properties: u(0) = 0
and u(M) = 1 for all u ∈Uδ . F(.) is continuous.

It is worth noting that this extension to streams required a strong notion of
additivity, and hence, the resulting representation on streams is not as general as
the one derived in the previous domain. For example, the representation here does
not nest the classical exponentially discounted additive utility representation in its
most general form.

1.5 An outline of the proofs

This section outlines the proofs of Theorems 3-8 chronologically and places the
methodology used in the proofs in the context of recent literature.
We will provide the outline for the case of T ∈ [0,∞), as it is less technical but
conveys the main idea behind the proofs nonetheless. For any timed alternative
(z,τ), there exists x ∈ X such that (z,τ)∼ (x,0). This follows from monotonicity,
continuity, connectedness of the prize-domain and this guarantees that any (timed)

14

Two vectors are orthogonal if their dot product is zero.
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alternative has a well defined present equivalent with respect to %. It is easy to see
that when τ = 0, one must have z = x. Given the present equivalents with respect
to % are well defined, one possible utility representation V : X×T→ R+ is the
function that assigns to every alternative (z,τ), the present equivalent according to
the relation (z,τ) ∼ (x,0). The crux of the remaining proof lies in showing that
there exists a set of utilities Uδ such that the previously defined V function can be
rewritten as

V (z,τ) = x = min
u∈Uδ

u−1(δ τu(z))

The proof is constructive. For any point x∗ ∈ (0,M), we construct a function ux∗(.)
in the following steps.
i) We assign ux∗(0) = 0, ux∗(x∗) = 1.
ii) For any x ∈ (x∗,M], we find t > 0 such that (x, t)∼ (x∗,0). Define, ux∗(x) = δ−t

(for any δ ∈ (0,1) under consideration) and re-label x as xt .
iii) For y ∈ (0,x∗), define ux∗(y) = min{δ τ : (xt , t + τ) ∼ (y,0)} for some t from
step (ii).
We show that the minimum is well defined in step (iii), and the constructed ux∗()
is strictly increasing, continuous, and has the following crucial property: If (z, t)∼
(x,0) then, δ tux∗(z) ≥ ux∗(x) and subsequently, u−1

x∗ (δ
tux∗(z)) ≥ x , with the weak

inequality replaced by equality if x = x∗. The asymmetric construction of ux∗() on
the left and right of x∗ is crucial for this to hold.
Next we define Uδ = {ux∗(.) : x∗ ∈ (0,M)}. It readily follows from the afore-
mentioned property of constructed utility functions that minu∈Uδ

u−1(δ tux(z)) = x
whenever (z, t)∼ (x,0).

Theorem 6 builds on these methods and insights of Theorem 3. Eventual Sta-
tionarity gurantees that the functions in U can be constrcuted in a way such that
for any two points x < y there exists t1 for which u(x) > δ t1u(y) for all u ∈ U .
Now when one normalizes, u(1) = 1 for all u ∈U , using the condition mentioned
in the previous sentence, one additionally obtains that supu u(x) is bounded above
and infu u(x)> 0 ∀x > 0.

Theorem 8 connects time and risk in the following way: Given the Probability-
Time Tradeoff axiom, the X×P×T domain is isomorphic to either of the reduced
domains of X×P or X×T. For example, there exists unique δ ∈ (0,1) such that
(x, p, t) ∼ (x, pδ t ,0) and (x, p, t) ∼ (x,1, t + logδ p) for all x ∈ X and p ∈ P. This
theorem restricts its domain to T= R+, unlike Theorem 3, which holds equally for
T= N0 as well. The axioms on X×P×T domain imply completeness, transitiv-
ity, continuity, risk monotonicity (Discounting respectively), Weak Certainty Bias
(Weak Present Bias respectively) for a preference defined on the reduced domain
of X×P (X×T respectively for T= R+). Proving Theorem 8, now reduces to
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proving that there is a minimum representation on X×P or X×T of the forms
minu∈U (u−1(pu(x))) or minu∈U (u−1(δ tu(x))) respectively. Additionally, proving
any one of the representations from the implied axioms on the relevant domain is
equivalent to proving all of the representations on the respective domains. This
flexibility is allowed by the Probability Time Tradeoff axiom. In the Appendix, we
prove how the reduction from the richer domain to X×P or X×T works, and then
prove that a relation on X×P satisfies completeness, transitivity, continuity, risk
monotonicity and Weak Certainty Bias if and only if the relation on X×P can be
represented by the functional form of minu∈U (u−1(pu(x))).

This result on the reduced X×P domain brings us to a very interesting con-
nection that the present work has with Cerreia-Vioglio et al. [2015]. In that paper,
the authors consider preferences over lotteries (L ) defined over a compact real in-
terval [w,b] of outcomes. To account for violations of the Independence Axiom15

based on a DM’s bias towards certainty or sure prizes16, they relax it in favor of
Negative Certainty Independence (NCI) axiom defined below.

NCI: (Dillenberger 2010) For p,q ∈L , x ∈ [w,b], and λ ∈ (0,1),

q D Lx =⇒ λ p+(1−λ )q D λ p+(1−λ )Lx

Cerreia-Vioglio et al. [2015] show that if D satisfies NCI and some basic ra-
tionality postulates, then there exists a set of continuous and strictly increasing
functions W , such that the relation D can be represented by a continuous function
V (p) = infu∈W c(p,u), where c(p,u) is the certainty equivalent of the lottery p with
respect to u∈U . The proof of their theorem has the following steps: From D, they
construct a partial relation D′ which is the largest sub-relation of the original pref-
erence D that satisfies the Independence axiom. By Cerreia-Vioglio [2009], D′

is reflexive, transitive (but possibly incomplete), continuous and satisfies Indepen-
dence. Next, following Dubra et al. [2004] 17, there exists a set W of continuous
functions on [w,b] that constitutes an Expected Multi-Utility representation of D′,
that is, p D′ q if and only if Ev(p)≥ Ev(q) for all v ∈W . Now taking an infimum
of the present equivalents with respect to all the functions in W yields a represen-
tation that assigns to each lottery its certainty equivalent implied by the relation
D.

This NCI axiom when reduced to the domain of binary lotteries on X×P,
conveys the same behavior as the Weak Certainty Bias axiom we have discussed

15For p,q,r ∈ L, and λ ∈ (0,1), p D q if and only if λ p+(1−λ )r D λq+(1−λ )r.
16We denote the lottery that gives the outcome x ∈ [w,b] for sure as Lx ∈L .
17Dubra et al. [2004] define a convex cone in the linear space generated by the lotteries related by

D′ and then apply an infinite-dimensional version of the separating hyperplane theorem to establish
the existence of W .
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above and have used in the proof of our theorem. Our representation over X×P
is a minimum representation that is an exact parallel of the infimum representation
obtained by Cerreia-Vioglio et al. [2015]. This is no coincidence: we provide an
alternative derivation of Cerreia-Vioglio et al. [2015]’s result in a reduced domain
of lotteries for similar behavior and show that their infimum representation can be
replaced with a minimum representation under the implied axioms in our domain.
Our proof is essentially constructive, as illustrated in Claim 5, and it does not use
any intermediate results (for example, results from Dubra et al. [2004]).

The similarity in functional forms naturally prompts the question: Could the
proof in Cerreia-Vioglio et al. [2015] be applied directly to our representation theo-
rems? The answer to the question is negative for the following two reasons. Firstly,
when an NCI-like axiom (Weak Certainty Bias) is imposed on my restricted do-
main of binary lotteries, the results from Cerreia-Vioglio et al. [2015] no longer
follow as corollaries of their main theorem due to the reduced strength of the im-
plied axioms. This follows the usual relation between size of domain and strength
of axiom. Secondly, there is no way of starting with an appropriately defined axiom
of present bias on consumption streams (instead of timed payments) and reach-
ing a present-biased utility representation on streams by using the route (Present
Bias)⇔(NCI)⇔(Multi EU)⇔ (Present-biased representation), under any equiva-
lence of time and implicit risk necessary for the first and last steps.

1.6 Uniqueness

The uniqueness results discussed here are formulated keeping the main represen-
tation theorem of the paper in mind, but they apply equally to the other represen-
tation theorems with minor adjustments. We start with a crucial question about
the representation: Could we have come across an alternative representation for
the same preferences without the exponential discounting part inside the present
equivalents? For example, could we have ended up with a representation of the
form:

V ′(x, t) = min
u∈U

u−1(∆(t)u(x)) (1.3)

where ∆(t) is some time-decreasing discount function other than exponential dis-
counting, for example the hyperbolic one? Note that this is an interesting question,
as a positive answer would open the door to representations where the present
equivalents are taken with respect to hyperbolic or quasi-hyperbolic discounting.

However, the answer is negative. If we start with any ∆(t) such that
∆(t + t1)

∆(t)
6=
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∆(t1) for some t, t1 , there would either 1) exist some binary relation which satis-
fies all the axioms in this paper, but cannot be represented by the representation in
(1.3), or 2) the representation in (1.3) with a permissible set of utilities U would
represent preferences which do not satisfy at least one of the axioms in this paper,
thus breaking the two-way relation between the axioms and representation.

Proposition 11. Given the axioms A0-4, the representation in (1.3) is unique in
the discounting function ∆(t) = δ t inside the present equivalent function.

Proof. See Appendix II.

One of the limitations of representations over X×T space (the domain used
in Sections 1 and 2) is the lack of uniqueness in terms of the discount factor δ .
We inherit the non-uniqueness of δ in Theorems 3-6 from Fishburn and Rubinstein
[1982]. Fishburn and Rubinstein [1982] impose A0-A3 along with Stationarity on
preferences to derive a exponential discounting representation. In their represen-
tation, given those conditions on preferences, and given δ ∈ (0,1) , there exists a
continuous increasing function f such that (x, t) is weakly preferred to (y,s) if and
only if δ tu(x)≥ δ su(y). They have the following result: if (u,δ ) is a representation

for a preference % then so is (v,β ) where β ∈ (0,1) and v = u
logβ

logδ . Same holds for
our representations in Theorems 3-6: if (δ ,U ) is a representation of %, then so is

(α,F ),where F is constructed by the functions v = u
logβ

logδ for u ∈ U . Obviously
this is a restriction imposed by working on the prize-time domain and we can no
longer consider δ as a measure of impatience. To put things in perspective, in a
seminal paper Koopmans [1972] instead considers the richer domain of consump-
tion streams, and under the additional assumptions of separability and stationarity,
he derives a time-separable additive exponential discounting representation of be-
havior. In Theorem 8 we provide a representation over a richer domain where the
discount factor δ ∈ (0,1) is unique.
Next, we show that the set of functions in the representation in (1.1) is unique up
to its convex closure. Define

F = {u : [0,M]→ R+ : u(0) = 0, u is strictly increasing and continuous}

Define the topology of compact convergence on the set of all continuous func-
tions from R to R. Also, let co(A) and Ā define the convex hull and closure of the
set A (with respect to the defined topology), and c̄o(A) define the convex closure
of the set A.

Proposition 12. If U ,U ′ ⊂F are such that c̄o(U ) = c̄o(U ′), and the functional
form in (1.1) allows for a continuous minimum representation for both of those
sets, then, minu∈U u−1(δ tu(x)) = minu∈U ′ u−1(δ tu(x)).
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1.7. Related literature

Proof. See Appendix II.

Proposition 13. i) If there exists a concave function f ∈U , and if U1 is the subset
of convex functions in U , then minu∈U (u−1(δ tu(x))) = minu∈U \U1(u

−1(δ tu(x))).
ii) If u1,u2 ∈U and u1 is concave relative to u2, then, minu∈U u−1(δ tu(x)) =

minu∈U \{u2} u−1(δ tu(x)).

Proof. See Appendix II.

1.7 Related literature

This paper is closely linked to the literature that explores the conditions under
which a “rational” person may have present-biased preferences. Sozou [1998],
Dasgupta and Maskin [2005] and Halevy [2008] explain particular uncertainty
conditions that can give rise to present-biased behavior. While telling an uncer-
tainty story sufficient to explain present bias, all these models explicitly assume
the particular structure of risk or uncertainty with relevant risk attitude, and these
assumptions are central to establishing behavior consistent with present bias in
the respective models. In this paper we deviate from this norm: we do not ex-
plicitly assume any uncertainty framework or uncertainty attitude. But we still
obtain a subjective state space representation that is necessary and sufficient for
present bias. The set of future tastes U can be considered to be the subjective
state-space, and the decision maker considers the most conservative state depen-
dent utility minu∈U u−1(δ tu(x)) to evaluate each timed alternative.

Our representation looks similar to the max-min expected utility representation
of Gilboa and Schmeidler [1989] used in the uncertainty or ambiguity aversion
literature, though there is no objective state space or uncertainty defined in our set-
up. We have already discussed the connection of our paper with Cerreia-Vioglio
et al. [2015] in terms of the similarity in representation. There are other variants
of the minimum or infimum functional in previous literature, for example, Cerreia-
Vioglio [2009] and Maccheroni [2002], used in different contexts.

There is also a sizable literature on the behavioral characterizations of temporal
preferences, that the current project adds to. Olea and Strzalecki [2014], Hayashi
[2003] and Pan et al. [2015] characterize the behavioral conditions necessary and
sufficient for β -δ discounting, Loewenstein and Prelec [1992] characterize Hyper-
bolic discounting, and, Koopmans [1972], Fishburn and Rubinstein [1982] do the
same for exponential discounting. Gul and Pesendorfer [2001] study a two-period
model where individuals have preferences over sets of alternatives that represent
second-period choices. Their axioms provide a representation that identifies the de-
cision maker’s commitment ranking, temptation ranking and cost of self-control.
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1.8 Properties of the representation

We propose an alternative notion of “present premium” comparison below. The
present premium can be considered as the maximal amount of future consumption
one is willing to forego to have the residual moved to the present. For example, if
(y, t)∼ (x,0), then the present premium of (y, t) is (y− x)≥ 0.

Consider the following partial relation defined on the set of binary relations %
over X×T.

Definition 14. %1 allows a higher premium to the present than %2 if for all x,y∈X
and t ∈ T

(x, t)%1 (y,0) =⇒ (x, t)%2 (y,0)

The next result connects this notion of comparative present premia to our rep-
resentation.

Theorem 15. Let %1 and %2 be two binary relations which allow for minimum
representation w.r.t sets Uδ ,1 and Uδ ,2 respectively. The following two statements
are equivalent:

i) %1 allows a higher premium to the present than %2.
ii) Both Uδ ,1 and Uδ ,1∪Uδ ,2 provide minimum representations of %1.

Proof. See Appendix II.

One might wonder if there could also be a representation theorem similar to
Theorem 3 for an appropriately defined Weak Future Bias axiom. Below we
define Weak Future Bias, and provide a corresponding representation.

A4*: WEAK FUTURE BIAS: If (x,0)%(y, t) then, (x, t1)% (y, t + t1) for all
x,y ∈ X and t, t1 ∈ T.
This is an alternative relaxation of Stationarity that is complementary to WPB.
Weak Present Bias, when combined with Weak Future Bias yields the Stationarity
Axiom. We now present the following result.

Theorem 16. Let T = [0,∞) and X = [0,M]. The following two statements are
equivalent:

i) The relation % satisfies properties A0-A3 and A4*.
ii) There exists a set Uδ of monotonically increasing continuous functions such

that
F(x, t) = max

u∈U
u−1(δ tu(x))
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1.9. Stake dependent Present Bias

represents the binary relation %. The set Uδ has the following properties: u(0) = 0
and u(M) = 1 for all u ∈Uδ . F(x, t) is continuous.

As expected Weak Future Bias is characterized by a weakly optimistic attitude to-
wards the future. The proof is similar to that of Theorem 3, and is hence omitted.

Testable Implications

The major testable condition in the paper comes from the Weak Present Bias ax-
iom: If (y, t) % (x,0) then, (y, t + t1) % (x, t1) for all x,y ∈ X and t, t1 ∈ T. Stated
in terms of the contra-positive, If (x, t1)� (y, t + t1) for some x,y ∈ X and t, t1 ∈ T,
t, t1 > 0, then, (x,0) � (y, t). Intuitively speaking, this model only allows prefer-
ence reversals that arise from present bias (as restricted by the Weak Present Bias
axiom). So any temporal preference that stems from any other behavioral phe-
nomenon would refute the model.

1.9 Stake dependent Present Bias

Consider a decision maker who makes the following 2 pairs of choices.

Example 17.

$100 today � $110 in a week

$110 in 5 weeks � $100 in 4 weeks

$11 in a week ∼ $10 today

$11 in 5 weeks ∼ $10 in 4 weeks

Both pairs of choices are consistent with Weak Present Bias, but there is a clas-
sical choice reversal (or a local violation of Stationarity) only in the first pair.18

This kind of choice is at odds with all the models of present bias that we have men-
tioned other than the one in this paper, but not necessarily at odds with economic
intuition. For example, if a DM’s present bias is driven by the psychological fear
of future uncertainty, the higher the stake, the higher would be the manifestation of
this fear, and the more present-biased he would appear. The opposite phenomenon,

18This kind of behavior closely parallels the “magnitude effect”: in studies that vary the outcome
sizes, subjects appear to exhibit greater patience toward larger rewards. For example, Thaler [1981]
finds that respondents were on average indifferent between $15 now and $60 in a year, $250 now and
$350 in a year, and $3000 now and $4000 in a year, suggesting a (yearly) discount factor of 0.25,
0.71 and 0.75 respectively.
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1.10. Application to a timing game

when a subject appears strictly present-biased for smaller stakes but appears sta-
tionary at larger stakes (for the same set of temporal values) can happen, if the
subjects get better at temporal decisions at higher stakes due to cognitive optimiza-
tion. None of the models in Appendix I can account for the behavior in Example
17,19 whereas, the simple minimum function mentioned in Example 4 can account
for such choices. There is scope to run future experiments to test for such stake de-
pendent behavior. The closest precedent for such an experimental design appears
in Halevy [2015] where the author finds evidence of stake dependent present bias.

1.10 Application to a timing game

In this section we are going to study dynamic decision-making games for a present-
biased DM whose preferences are consistent with the time-risk relations outlined
in Keren and Roelofsma [1995]. Present-biased preferences, when extended to a
dynamic context20, create time inconsistent preferences, which in turn results in
inefficient decision making and loss in long-term welfare. The goal of this section
is to convince the reader about the importance of axiomatization of risk-time rela-
tions, by showing that risk-time relations have important welfare implications for
such a present-biased individual.
Consider the following game adopted from O’Donoghue and Rabin [1999]. Sup-
pose a DM gets a coupon to watch a free movie, over the next four Saturdays. He
has to redeem the coupon an hour before the movie starts. His free ticket is issued
subject to availability of tickets, and if there are no available tickets, the coupon
is wasted. Hence there is some risk while redeeming the coupon. The movies on
offer are of increasing quality- the theater is showing a mediocre movie this week,
a good movie next week, a great movie in two weeks and Forrest Gump in three
weeks. Our DM perceives the quality of these movies as 30, 40, 60 and 90 on a
scale of 0−100. In our problem, the DM can make a decision maximum 4 times,
at τ = 1,2,3,4 (measured in weeks). The DM’s utility at calendar time τ from
watching a movie of quality x with probability p at calendar time t + τ(in weeks)
is given by:

Uτ(x, p,τ + t) =


p100α tx for p100α t ≥ α

1
2(

α

β

) 1
2

pβ tx for p100α t < α
1
2

19For example, if one tries to fit a β -δ model to this data, the second pair of choices immediately
suggest β = 1, which in turn is inconsistent with the first pair of choices.

20We are imposing Time Invariance of preferences following Halevy [2015]. We will make precise
assumptions about sophitication/ naivete as we go.
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1.10. Application to a timing game

Where, β = .99, α = (.99)100 ≈ .36. This utility function (which is inspired by
Pan et al. [2015]’s Two Stage Exponential discounting model) has the following in-
terpretation: The DM has a long run weekly discount factor of .99 that sets in after
a delay of half a week for p = 1. Before reaching the cut-off, the DM is extremely
impatient, with a smaller discount factor of α = β 100 ≈ .36, and hence is biased
towards the present and very short-run outcomes. Similarly, the DM also propor-
tionally undervalues probabilities close to 1. The utility function(s) Uτ define a
preference that satisfies all the axioms in Section 1.3, and hence have a minimum
representation. The DM is time-inconsistent, as his preferences between future
options differ between any two decision periods τ1 and τ2 for τ1,τ2 ∈ {1,2,3,4}.
Let us assume that the DM is aware of his future preferences, that is she is sophis-
ticated, a notion pioneered by Pollak [1968]. We are going to use the following
notion of equilibrium for this game.

Definition 18. (O’Donoghue and Rabin [1999]) A Perception Perfect Strategy for
sophisticates is a strategy ss = (ss

1,s
s
2,s

s
3,s

s
4), such that such that for all t < 4, ss

t =Y
if and only if U t(t)≥U t(τ ′) where τ ′ = minτ>t{ss

τ = Y}.

In any period, sophisticates correctly calculate when their future selves would
redeem the coupon if they wait now. They then decide on redeeming the coupon if
and only if doing it now is preferred to letting their future selves do it. We consider
two cases:

Case 1: Suppose, there is not much demand for movie tickets in that city, and
the DM knows that he can always book a ticket through his coupon and p = 1 for
all alternatives under consideration.

In this case, the unique Perception Perfect Strategy is ss = (Y,Y,Y,Y ). The
knowledge that the future selves are going to be present biased creates an unwind-
ing effect: The period 2 sophisticate would choose to use the coupon towards the
good movie as he knows that the period 3 sophisticate would end up using the
coupon for the great movie instead of going for Forrest Gump due to present bias.
The period 1 sophisticate in turns correctly understands that waiting now would
only result in watching the good movie and hence decides to see the mediocre
movie right now instead.

Case 2: Suppose, due to persistent demand for movie tickets in that city, and
the DM knows that redeeming a coupon results in a movie ticket in only 99% of
cases.

The unique Perception Perfect Strategy is ss = (N,N,N,Y ). The unwinding
from the previous case does not happen here due to the risk involved in redeeming
the coupon. Once the present is risky (equivalent to having a front end delay due
to Probability Time Tradeoff), the bias previously assigned to the present vanishes,
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1.10. Application to a timing game

t ss
τ t ss

τ

1 2 3 4 1 2 3 4

τ

4 90 Y

τ

4 54.2 Y
3 60 54.2 Y 3 36.1 53.6 N
2 40 36.1 53.6 Y 2 24 35.8 53 N
1 30 24 35.8 53 Y 1 18 24 35.8 52.57 N

Table 1.2: Utilities of different selves under Case 1 (Left) and Case 2 (Right)

stopping the unraveling. The DM waits until the final period to cash in his coupon
when the expected returns are the highest to the long run self.

The Left pane of Table 1.2 is for Case 1 (p = 1), the right table is for Case 2
(p= .9). The entries in the table provide Uτ(x, p, t), and explain the equilibria. The
sophisticated DM compares the quantities in red row-wise for each τ when making
a decision.

It would be instructive to compare the two cases in terms of welfare implica-
tions. Since present-biased preferences are often used to model self-control prob-
lems rooted in the pursuit of immediate gratification, we would compare welfare
from the long run perspective. This outcome in Case 1 is consistent with the fol-
lowing general result in O’Donoghue and Rabin [1999]: When benefits are imme-
diate, the sophisticates “preprorate”, i.e, they do it earlier than it might be optimal.
For example, considering the long term self’s interests, given a long term weekly
discount factor of .99 for movie quality, the equilibrium outcome of watching the
mediocre movie (quality of 30) in the first week, instead of Forrest Gump (quality
of 90) definitely results in sub-optimal welfare in Case 1. For example, considering
the choices from a τ = 0 self gives U0(30,1,1) = 18, and U0(90,1,4) = 53. On
the other hand, the introduction of a small amount of risk in Case 2, stops the un-
raveling in terms of “preprorating” (preponing consumption), thus helping the DM
attain the most efficient outcome in equilibrium, thus reversing the O’Donoghue
and Rabin [1999] result. In fact, not only is the highest level of available welfare
achieved in Case 2 after the introduction of risk, the equilibrium welfare improves
from Case 1 to Case 2 in the absolute sense, even though apriori Case 2 seems to
be worse than Case 1 for the DM!

U0(30,1,1) = 18 < U0(90, .99,4) = 52

This is an interesting application of how introducing a dominated menu of
choices can result in absolute welfare improvement.

What would happen if the DM had the same preferences Uτ(), but, instead was
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1.11. Choice over timed bads

unaware that his preferences were dynamically inconsistent? Let us consider the
extreme case (popularly called “naïveté” in the literature) where the DM thinks that
his future selves’ preferences would be identical to his current selves’. We will call
such a DM naive, and use the following equilibrium notion to characterize their
behavior.

Definition 19. A Perception Perfect Strategy for naifs is a strategy sn =(sn
1,s

n
2,s

n
3,s

n
4),

such that such that for all t < 4, sn
t = Y if and only if U t(t)≥U t(τ) for all τ > t.

The naive DM, acting under his false belief of time consistency, redeems the
coupon in the current period if and only if it yields him the highest payoff among
the remaining periods. Table 1.2 tells us that in Case 1, sn = (N,N,Y,Y ), and in
Case 2, sn = (N,N,N,Y ). Thus the introduction of risk in this example also helps
a naive DM make the most efficient choice in equilibrium.

1.11 Choice over timed bads

Most of the discussion on Present Bias till now has been centered around timed
prizes or consumption, in general objects which are desirable. The central result of
this paper is that Present Bias (as defined in A4 in Section 1.1) over such outcomes,
can be represented by a minimum representation. This section would provide us the
answers to the following two natural follow-up questions: 1) What would Present
Bias look like when timed undesireable-goods or bads (for example, effort) are
concerned? 2) What would be a utility representation of such preferences?

We would consider the richer domain that includes risk, without loss of gener-
ality. The DM has preferences over triplets (x, p, t), which describe the prospect of
receiving an undesirable good x ∈ X at time t ∈ T with a probabilityp ∈ [0,1]. We
impose the following conditions on behavior.

C0: % is complete and transitive.

C1: CONTINUITY: % is continuous, that is the strict upper and lower contour
sets of each timed alternative are open w.r.t the product topology.

The first two axioms are identical to axioms B0 and B1 used in Section 1.3.

C2: DISCOUNTING: For t,s ∈ T, if s > t then (x, p,s)� (x, p, t) for x, p > 0
and (x, p,s)∼ (x, p, t) for x = 0 or p = 0. For x > y > 0, there exists T ∈ T such
that, (x,q,0)% (y,1,T ).
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Conclusion

C3: PRIZE AND RISK MONOTONICITY: For all t ∈ T, (x, p, t)% (y,q, t) if
y≥ x and q≥ p. The first binary relation is strict if at least one of the 2 following
relations are strict and if y,q > 0.

Discounting and Monotonicity have been adapted in the most intuitive way.
People want to delay bad outcomes and they prefer when bad outcomes are less
likely. Also when bad outcomes are concerned, more is worse.

C4: WEAK PRESENT BIAS: If (x,1,0)% (y,1, t) then, (x,1, t1)% (y,1, t + t1)
for all x,y ∈ X and t, t1 ∈ T.

The Weak Present Certainty Bias requires that given the present and certainty
are special, a DM would try to avoid bad outcomes which are in the present and
are certain. Moreover, loss of certainty or immediacy can only make bad outcomes
better.

C5: PROBABILITY-TIME TRADEOFF: For all x,y ∈ X, p ∈ (0,1], and
t,s ∈ T, (x, pθ , t)% (x, p, t +D) =⇒ (y,qθ ,s)% (y,q,s+D).

The Probability-Time tradeoff axiom is unchanged and has the same interpre-
tation as before.

Theorem 20. The following two statements are equivalent:
i) The relation % on X×P×T satisfies properties C0-C5.
ii) There exists a unique δ ∈ (0,1) and a set U of monotinically decreasing

continuous functions such that

F(x, p, t) = max
u∈U
−u−1(pδ

tu(x)) =−min
u∈U

u−1(pδ
tu(x))

represents the relation %. For all the functions u ∈U , u(M) = −1 and u(0) = 0.
Moreover, F(x,p,t) is continous.

Conclusion

This paper provides an intuitive behavioral definition of (Weak) Present Bias and
characterizes a general class of utility functions consistent with such behavior. Our
utility representation can be interpreted as if a DM is unsure about future tastes and
present bias arises as an outcome of his cautious behavior in the face of uncertainty
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Conclusion

about future tastes. Given most of the previous models of present bias have ex-
traneous behavioral assumptions over and above present bias which are often em-
pirically unsupported, we believe that our representation theorem is an important
theoretical development in this literature. Having a more general representation
for present bias, also helps us accommodate empirical phenomenon (for example,
stake dependent present biased behavior) that previous models could not account
for. We have extended the model to incorporate time-risk relations in behavior
and provided an example where this relation can be utilized for welfare improv-
ing policy design. Given the axiomatic nature of our work, we provide simple
testable conditions necessary and sufficient for our utility representations. These
conditions can be easily taken to the laboratory or field to be empirically tested.
We hope that this paper generates further interest in theoretical and applied work
directed towards forming a better understanding of intertemporal preferences.
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Chapter 2

External and Internal
Consistency of Choices made in
Convex Time Budgets

2.1 Introduction

Andreoni and Sprenger (2012, henceforth AS) introduce Convex Time Budgets
(CTB) to experimentally measure intertemporal substitution. In their design the
subject faces linear experimental budgets, which allow her to choose interior al-
locations between payments at two time periods (henceforth ct , ct+k). One can
rationalize such interior allocations if the subject’s preferences between ct and ct+k
are (weakly) convex. It thus provides a way to adjust the measurement of subjective
discount rates for intertemporal substitution.

There are some basic properties that allocations in the Andreoni and Sprenger
design should satisfy in order to be rationalizable by a very general model of in-
tertemporal choice: allocations should satisfy wealth monotonicity (normality);21

ct should be weakly decreasing in interest rate (demand monotonicity);22 alloca-
tions should be consistent with impatience.23,24

The AS design includes nine choicesets per subject, where each choiceset is a
collection of five CTB tasks between payments at t and at t + k (where t = 0,7,35
and k = 35,70,98 measured in days). Eight out of the nine choicesets contain a
wealth shift which could be used to test for wealth monotonicity. Demand mono-
tonicity is tested by the other four CTB tasks within a choiceset. Impatience is

21ct and ct+k should be weakly increasing in wealth, holding interest rate constant.
22ct is a weakly decreasing function of the interest rate, holding the dates t and t + k and wealth

normalized to the later date constant.
23As the later (earlier) date is shifted away from the present, ct should weakly increase (decrease),

holding the earlier (later) date, price ratio and wealth constant.
24The various monotonicity criteria for which we evaluate the empirical demand should not be

confused with monotonicity of the utility function with respect to (ct ,ct+k) . In particular, wealth and
demand monotonicity are consequences of the very weak assumption that ct and ct+k are normal
goods.
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tested by comparing across choicesets belonging to the same subject.25

AS included three choice lists (MPLs) that correspond to three choicesets. Each
one of these choice lists included four pairwise choices that corresponded to CTBs.
In other words, on these lines of the choice list a subject was asked to make a pair-
wise choice between the two points in which each CTB intersects the horizontal
axis (ct+k = 0) and the vertical axis (ct = 0). In the CTB task the menu of alloca-
tions the subject was allowed to choose from included these two allocations and all
interior allocations. We use this set-up to test for violations of the Weak Axiom of
Revealed Preference (WARP), which requires that if an alternative is chosen from
a menu and is available in a sub-menu then it should be chosen from the sub-menu
as well. If in the pairwise choice a subject chooses one corner while in the CTB she
chooses the opposite corner this contradicts WARP. The implication is that there
exist no complete and transitive preference that can rationalize these choices.

In this study we document the level of adherence of choices (at the individual
level) to the above very mild external and internal consistency requirements. We
find a very high level of WARP violations among the many subjects who made
corner choices. Violations for all three internal measures of monotonicity are con-
centrated in subjects who make interior choices and thereby take advantage of the
novel feature of Andreoni and Sprenger’s experimental design. Wealth monotonic-
ity violations are more prevalent and pronounced than either demand or impatience
monotonicity violations.

We believe that the findings reported here make it very challenging for one to
claim that choices made in CTB experiments reflect on deep and stable preferences.
We urge researchers to study the source of the documented problematic behavior in
order to decide if it is inherent to CTB or could be attributed to the implementation
of CTB in AS (2012).

25When evaluating wealth monotonicity we allow for the non-generic possibility of linear pref-
erences with marginal rate of substitution between ct and ct+k equal to the gross interest rate over
k days in which the wealth shift occurs, i.e. 1+ r = 1.25. In this case, the demand is a correspon-
dence and wealth monotonicity as defined above need not hold (we thank Jim Andreoni and Charlie
Sprenger for bringing up this possibility). However, to be consistent with this knife edge case, sub-
jects need to satisfy: (1) c∗t = 0 for all r > 0.25 and c∗t+k = 0 for all r < 0.25. (2) In every choiceset
(t,k′) such that k′ < k: c∗t = 0 for all r≥ 0.25. (3) In every choice set (t,k′) such that k′ > k: c∗t+k′ = 0
for all r ≤ 0.25. (1) follows from linearity and (2-3) follow since the daily rate changes as k varies.
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2.2. Quantitative evaluation

2.2 Quantitative evaluation

2.3 Corner choices

Although the CTB design allowed for interior choices, 70% of all choices were
made at the corners of the budget set. 36 of the 97 subjects made only corner
choices. There is little within subject variation and between subject heterogene-
ity among these subjects. Nineteen of these subjects had the exact same choice
sequence for all tasks: they chose the later-larger reward whenever the “gross in-
terest rate” was greater than 1. Four other subjects chose the later-larger reward for
all 45 CTB tasks, irrespective of interest rate and time horizon.

2.4 WARP violations

Out of the 36 subjects who made all corner choices in CTB, we found 43 violations
of WARP.26 This is especially impressive if one considers that 17 of them always
chose later consumption in the CTB and switched immediately in the choice lists
(always chose later consumption). Therefore WARP violations could be detected
only among the remaining 19 subjects. The direction of WARP violations is not
random: 34 violations are in the direction of exhibiting less impatience in CTB
than in choice list, while only 9 are in the opposite direction.

Since these subjects did not exhibit any curvature in their CTB choices, we
can directly estimate their discount factor based on the 3 choice lists and the cor-
responding CTBs. One should not adjust for curvature for these subjects, since
their intertemporal decisions did not suggest any concavity of the felicity func-
tion. The results are plotted in the attached Figure 2.1.27 We find that for 11 of
them the discount factor estimated from CTB data would be higher than the one
estimated from choice list data, while for two subjects the relation between the
discount factors would be in the opposite direction. Note that the choices made
by the 17 subjects who always chose later consumption can be rationalized with a
discount factor of 1, and one cannot form a point estimate of the discount factors
of 4 other subjects who chose always immediate consumption in at least one of the
three CTBs.28

26The discussion in this subsection ignores indifferences since we believe that the evidence is
systematic and cannot be accounted for by the knife-edge arguments of linear preferences.

27AS’ Figure 4A is similar, but we restrict to subjects who made only corner choices and therefore
there is no need to adjust for concavity

28If one estimates a quasi-hyperbolic model based on these three CTBs or CLs, the conclusions do
not change. In particular, the present-bias parameter (beta) under both elicitation methods is exactly
1 for 28 out of the 32 subjects.
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Figure 2.1: Choice list vs CTB estimates of discount factor for the 36 all-corner
subjects

Among the other 61 subjects who made at least a single interior choice in the
45 CTBs tasks we find similar directional effect of WARP violations. If one of
the three choicesets that has a comparable choice list has all corner choices, we
find 23 WARP violations in the direction of exhibiting lower impatience in CTB
than in choice list and none in the opposite direction. In choicesets with interior
CTB choices (where the potential to observe direct WARP violation is smaller) we
found 10 violations in the direction of exhibiting lower impatience in CTB than in
choice list and 5 in the opposite direction.

One interpretation to WARP violation (following Ok, Ortoleva and Riella,
2015) is that CTB generates some reference dependence; alternatively it is pos-
sible that many subjects become really confused when presented with CTBs. In
any case, the fact that a larger menu changes optimal choice systematically can-
not be reconciled with a standard model of choice rationalized by a complete and
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2.5. Demand and wealth monotonicity

transitive preferences, as the discounted utility model.

2.5 Demand and wealth monotonicity

As the 36 subjects with all corner choices did not take advantage of the convexifi-
cation offered by the CTB, we believe it would be misleading to include them in
evaluating CTB for internal consistency (monotonicity). Hence, the analysis below
concentrates on the 61 subjects with at least one interior choice.

2.6 Frequency

Table 2.1 reports the frequency of choicesets that have wealth or demand mono-
tonicity violations as a function of the number of interior choices made in a choic-
eset.

The frequency of demand monotonicity violations is below 10% for choicesets
that contain 4 or fewer interior choices. However, more than 36% of choicesets
with all interior choices have demand monotonicity violations. The frequency of
wealth monotonicity violations is considerably higher: around half of the choice-
sets with at least one interior choice have a wealth monotonicity violation.

Table 2.2 reports, for the 61 subjects with at least one interior choiceset, the
distribution of subjects satisfying wealth and demand monotonicity as a function
of the number of interior choicesets. A choiceset is considered interior if at least
a single choice (out of five) is not at the corners of the budget line (ct ,ct+k > 0).29

Table 2.2 reveals that more than half of the 61 subjects violate monotonicity in at
least half of their interior choicesets (the shaded entries in the table).

2.7 Magnitude

The two tables above demonstrate the high frequency of non-monotone choices
in interior choicesets, especially as a response to wealth changes. We now turn
to measure the magnitude of these behaviors. We calculate the magnitude of a
wealth monotonicity violation by the number of tokens required to be reallocated
to eliminate the violation at the higher wealth level. Our wealth monotonicity
measure differs substantially from that reported in footnote 25 by Andreoni and
Sprenger for four reasons (presented in decreasing order of importance).

29Table 2.2 excludes subjects who made all corner solutions. Among the 36 subjects who made
only corner choices, we find only one non-monotonic choiceset.
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# of interior
choices in a

choiceset

# of
choice-

sets

# of choicesets that
exhibit demand
monotonicity

violations

# of choicesets that
exhibit wealth
monotonicity

violations

# of choicesets that
exhibit either wealth

or demand
monotonicity

violations
0 435* 1 9 10
1 101 10 26 34
2 78 5 31 34
3 80 6 47 48
4 63 6 47 47
5 116 42 56 76

Total 873 70 216 249

*324 out of the 435 choicesets with no interior choice (almost 75%) belong to the 36 subjects

with only corner solutions.

Table 2.1: Demand and wealth monotonicity violations as a function of number of
interior choices

# of interior* # of monotone interior* choicesets
choicesets 0 1 2 3 4 5 6 7 8 9 Total

1 0 2 2
2 1 0 0 1
3 2 0 0 2 4
4 0 2 0 0 1 3
5 1 1 0 0 2 1 5
6 0 2 0 0 0 1 1 4
7 0 0 1 1 0 0 0 2 4
8 0 3 2 0 0 2 1 1 0 9
9 1 8 5 4 2 0 2 2 0 5 29

Total 5 18 8 7 5 4 4 5 0 5 61

*A choiceset is considered “interior” if at least a single choice (out of 5) is not at the corners of

the budget line.

Table 2.2: Joint frequency of number of interior choicesets (by subjects) and num-
ber of interior choicesets that do not violate (demand and wealth) monotonicity (by
subject), restricted to subjects who have at least one interior choiceset.
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2.7. Magnitude

First, when calculating non-monotonicity, AS mistakenly defined non-
monotonicity that is expressed as an over-allocation to ct+k (and under-
allocation to ct) as a negative number, while non-monotonicity that is expressed as
an under-allocation to ct+k (and over-allocation to ct) as a positive number. Averag-
ing these two wealth monotonicity violations cancels out at the aggregate level. For
example, if choices are generated at random using a uniform distribution over the
token allocated to ct , independently among the two budget lines, the AS measure
of wealth monotonicity violation would equal zero in expectation. The expected
value of our measure would be approximately 27 tokens (out of 100 tokens).30

Second, when calculating the average adjustment required to restore mono-
tonicity, AS use a denominator that includes all choicesets with a wealth shift,
rather than just choicesets which have a wealth monotonicity violation. We believe
that the AS approach is not advisable chiefly because, by including the 36 sub-
jects who made only corner choices (and had no wealth monotonicity violation),
it artificially dilutes the magnitude of monotonicity violations performed by sub-
jects who responded to the convexification offered by the CTB design by making
interior choices. Third, we consider the knife edge case of linear preferences with
marginal rate of substitution between ct and ct+k equals the gross interest rate in
which the wealth comparative statics is performed as discussed in footnote 25. This
correction applies to 8 choicesets. Fourth, when calculating adjustments AS allow
for fractional token adjustments. Given that subjects were only able to allocate in-
teger values of tokens we believe it is more appropriate to calculate the adjustment
values using whole tokens.31

We find that there are 216 violations of wealth monotonicity, with an average
size of 23.2 tokens, which is 23.2% of the experimental budget or $4.64 of ct at
the higher wealth level. That is, conditional on violating wealth monotonicity, the
magnitude of the measure is almost as high as the equivalent measure calculated for
random choice. Andreoni and Sprenger report an average adjustment of just 1.67
tokens to restore wealth monotonicity. It is important to note that the canceling out
occurs mainly at the population level rather than the individual level. Allowing for
only individual-level canceling out reduces our measure to only 17.9 tokens.

We calculate the magnitude of demand monotonicity violations by finding the
minimal amount of ct that needs to be reallocated per choiceset to restore mono-
tonicity. There are 70 choicesets with demand monotonicity violations, with an
average size of 17.4 tokens and a value (at time t) of $3.02.32

30Note that the probability that a pair of choices violate wealth monotonicity in this case is 80%.
31Indeed, AS use integer number of tokens when calculating the magnitude of demand monotonic-

ity violations.
32AS report 8 demand monotonicity violations for the (t = 7,k = 70) choiceset with an average

magnitude of 24.6 tokens; in comparison, we find only 7 violations with an average magnitude of
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2.8. Impatience monotonicity

Another measure of the degree of non-monotonicity within a choiceset is to
calculate the smallest number of choices that must be removed from a choiceset
to restore monotonicity.33 For the 249 choicesets that exhibit at least one non-
monotonicity, the average number of data points that must be removed is 1.2. This
figure includes the 179 choicesets that exhibit only wealth non-monotonicity and
therefore require the removal of only a single data point; for the 70 choicesets that
exhibit demand non-monotonicity the average number of data points that must be
removed is 1.8.

2.8 Impatience monotonicity

Turning to impatience, there are 10 pairs of choicesets across which either t is
constant and k varies, or t + k is constant and t varies; these are the only pairs of
choicesets in which it is possible to test for impatience. In a comparable pair of
choicesets (in the sense described above), we test for impatience monotonicity as
described in footnote 23 for all pairs of choice tasks (one in each choiceset) with
the same prices.

We find that 47 of the 97 subjects satisfy the impatience criterion for all 10
pairs of choicesets; restricting the sample to the 61 subjects with at least one inte-
rior choice, we find that only 12 subjects made choices consistent with impatience
monotonicity, and that 17 subjects violate impatience monotonicity in at least 5 of
the 10 choiceset comparisons.

2.9 Monotonicity index

Finally, we calculate an index that measures the (approximate) minimal number of
data points that need to be eliminated from an individual’s dataset in order to be
consistent with the three monotonicity requirements.34 Out of the 36 subjects with
no interior choice, 35 subjects satisfy all monotonicity measures.35 Out of the 61

23.4 tokens in this choiceset. AS appear to have erroneously included additional adjustments for ct+k,
and correcting for this reduces both the number and magnitude of demand monotonicity violations.

33When removing data points to restore monotonicity we also consider joint violations of demand
and wealth monotonicity.

34This index is close in spirit to the Houtman-Maks (1985) index which is used to calculate the
maximal set of observations in a dataset that is consistent with the Generalized Axiom of Revealed
Preference (GARP). Because the AS (2012) design has no power to detect violations of GARP, any
choices made in a choiceset can be rationalized by a utility function, and by Afriat’s theorem the
utility function can be chosen to be increasing in (ct ,ct+k). This, however, should not be confused
with wealth monotonicity, which is a property of the demand function.

35For the other subject, one needs to remove a single choice.
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2.10. Conclusion

subjects with at least a single interior choice, in 22 datasets we need to remove four
or fewer choices,36 in 21 datasets we need to remove between five to nine choices
(more than 10% of choices) and in an additional 18 datasets one needs to remove
10 or more choices (more than 20% of the total number of choices).

2.10 Conclusion

Andreoni and Sprenger’s proposal to use CTB in order to measure time preferences
represents a potentially important methodological advance. In principle, assuming
discounted expected utility, such a method can allow a researcher to calculate a
more precise measurement of the discount function by controlling for intertemporal
substitution. However, our examination of data gathered by Andreoni and Sprenger
(2012) using this method uncovers serious problems.

Subjects who made only corner choices in CTB violate WARP very frequently
relative to the pairwise choice benchmark. This fact suggests that corner choices in
CTB cannot be interpreted as reflecting reasoned behavior or deep preferences, but
are heavily influenced by confusion or some reference introduced by the CTB. As a
whole, the bias of WARP violations relative to the pairwise choice benchmark is in
the direction of lower impatience (higher discount factor). This explains why AS
do not require the concavity adjustment used in other studies in order to estimate
similar discount factors.

Subjects with interior choices are broadly consistent with demand monotonic-
ity (except when all choices are interior) and the evidence for impatience mono-
tonicity violations is moderate. However, the high frequency and substantial mag-
nitude of wealth monotonicity violations in this data suggest that interior choices
made in CTB (responding to the convexification) may not reflect reasoned behavior
and stable preferences as well.

Unfortunately, the data does not permit us to identify the source of these severe
problems. It could be systematic to CTB or a result of AS’ experimental interface.
We believe that further investigation into the origin of the serious problems docu-
mented in the present study is crucial for an informed interpretation of existing and
new experiments utilizing CTB.

36Only 9 of the 61 subjects made choices fully consistent with monotonicity.
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Chapter 3

Allais meets Strotz: Remarks on
the relation between Present Bias
and the Certainty Effect

3.1 Introduction

Almost all decisions involve outcomes that are uncertain, realized at different points
in time, or both. For example, following a strict and often unpleasant diet program
requires some motivation about future gains accruing from it, which are quite of-
ten uncertain. There has been persistent interest in the fields of Psychology and
Economics to understand how behaviors across risky and temporal domains might
be related to each other. The standard approach of modeling intertemporal prefer-
ences is through the use of geometric (constant, exponential) discounting in which
the payoff of a stream of consumption is aggregated through a (delay-geometric)
weighting that results in a present discounted value. This is mirrored in the risk
domain, as the canonical model for risk behavior is expected utility which aggre-
gates the utility of each possible alternative by weighting it by its probability. But
the similarities do not end here as both models contain similar inadequacies as
descriptive models. First, preferences are disproportionately sensitive to certainty
(certainty effect) and to the present (present bias/immediacy effect/diminishing im-
patience). Second, proportional changes in probabilities or equal changes in time
delays for timed consumption affect preferences disproportionately (common ratio
effect and common difference effect respectively).37 This two-way relation is well
accepted in the Psychological literature [Keren and Roelofsma, 1995, Green and
Myerson, 2004, Weber and Chapman, 2005, Chapman and Weber, 2006, to name
a few] and there is an understanding that the existence of such mirroring behav-
iors is not a mere coincidence, but points to a common fundamental property of
decision making that manifests itself in different domains of behavior [Prelec and
Loewenstein, 1991]. There are many ways in which this relation between risk and

37Often times certainty effect and present bias are taken as special cases of common ratio effect
and common difference effect, respectively.
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3.2. Background

temporal behavior can be motivated. Delayed rewards or consumption can be in-
herently risky, as there might be events between the current date and the promised
date which interfere in the process of acquiring the reward/consumption. On the
other hand, Rachlin et al. [1986, 2000] suggested that the certain value of proba-
bilistic rewards may be expressed not directly by probabilities but by mean waiting
time, and the form of the waiting-time discount function is similar to that used
in a model of temporal behavior consistent with present bias. This relation has
also been analyzed in more recent works in Economics [Halevy, 2008, Saito, 2011,
Baucells and Heukamp, 2012b, Epper and Fehr-Duda, 2012, Saito, 2015]. Given
this is a two way relation, none of risk or temporal behaviors have primacy over the
other, so any formalization of this relation would necessarily involve the two-way
feature discussed above. The goal of this paper is to provide a formal characteriza-
tion of this relation in the most natural setting. We start by showing how previous
attempts at this endeavor have failed to achieve this goal. To be more specific,
we show that though the formalization in the direction from certainty effect to di-
minishing impatience has been correctly posited in the literature, it is the converse
relation that still lacks formal rigor. We provide a formal characterization of the
two-way relations between i) certainty effect and present bias, and, ii) common
ratio effect and the common difference effect. A corollary to our results is that hy-
perbolic discounting implies the Common Ratio Effect and that quasi-hyperbolic
discounting implies the Certainty Effect.

The next section provides a brief acknowledgment to the prior unsuccessful
attempts made in this literature to establish risk-time equivalence relations. In Sec-
tion 3 we suggest an intuitive extension to the existing notion of diminishing impa-
tience, which when used in the analytical framework provided by Halevy [2008],
re-establishes the severed connection between non-standard behavior over time and
under risk.

3.2 Background

The idea that diminishing impatience (hyperbolic discounting, present bias) may
be related to the certainty of the present and the risk associated with future re-
wards, was formalized by Halevy [2008]. In this model, every consumption path
c = (c0,c1,c2, . . .) is subject to a constant hazard rate of termination (r). The de-
cision maker chooses among consumption paths as if she calculates present dis-
counted utility for every possible length of the path (periods before stopping). The
distribution over present discounted utilities is then evaluated using Rank Depen-
dent Utility (RDU) with probability weighting function g(·), which models prefer-
ences that are disproportionately sensitive to certainty. The crucial behavioral ax-

40



3.2. Background

iom accommodates dynamic inconsistency between optimal choices at the present
and the immediate future (t = 1) only if there is uncertainty concerning consump-
tion in the immediate future, drawing an important qualitative distinction between
the effect of randomness in the immediate future and stochastic consumption in
later periods (t = 2,3, . . .).38 Together with other standard axioms on the DM’s
preferences over stochastic consumption streams, they are then represented by the
utility function:

U (c,r) =
∞

∑
t=0

g
(
(1− r)t)

δ
tu(ct) (3.1)

where δ is a constant pure time preference parameter and u(·) is her felicity func-
tion. The decision maker’s impatience at time t is then the ratio of her discount
function at periods t and t+1. Halevy [2008] defines diminishing impatience if the
impatience is maximized at t = 0, and Theorem 1 in his paper claims equivalence
between diminishing impatience and increasing elasticity of g(·). To prove his
claim, Halevy [2008] proceeds in two steps. First, diminishing impatience holds if
and only if the weighting function satisfies a certain functional inequality.39 Sec-
ond, he invokes an equivalence result from Segal [1987, Lemma 4.1] between the
above functional inequality and increasing elasticity of g(·). Saito [2011] correctly
points out that Segal did not prove that increasing elasticity of the weighting func-
tion is necessary for the functional inequality, and provides an example of a DM
who exhibits diminishing impatience but her weighting function’s elasticity is not
increasing (and therefore does not exhibit the common ratio effect).40 Saito [2011]
attempts to establish the sought equivalence between present bias and the certainty
effect (Claim 3 in his paper) by retaining the first part of Halevy’s argument, and
noting that the functional inequality is equivalent (by definition) to the certainty
effect for RDU.
We show that diminishing impatience as defined by Halevy [2008] and used by
Saito [2011] does not imply the certainty effect. In light of this new finding, the
equivalence results of Halevy [2008] and Saito [2011] reduce to a one-directional
implication from the domain of risk to the domain of time. We provide details in
Appendix.

38Which is impossible to draw in a framework in which consumption occurs only in a single
period.

39The functional inequality is a special case of Kahneman and Tversky [1979, pg. 282] sub-
proportionality which characterizes common-ratio violations for RDU. Kahneman and Tversky also
state the equivalence claimed later by Segal [1987, Lemma 4.1], which is used in the second part of
Halevy’s argument.

40In particular, Saito [2011] shows that Tversky and Kahneman [1992] weighting function for
gains with γ = 0.5 exhibits diminishing impatience but does not possess increasing elasticity around
0 and does not satisfy the common ratio effect.
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3.3. Definitions and Results

3.3 Definitions and Results

3.3.1 The Certainty and Common Ratio Effects

Let (x, p) be a lottery that pays x with probability 0≤ p≤ 1 and 0 with probability
1− p. A DM exhibits Strict Certainty Effect if for every x,y∈R+ and p,q∈ (0,1):
(x,1)∼ (y,q)⇒ (x, p)≺ (y, pq). She exhibits Certainty Effect if for every x,y∈R+

and p,q ∈ (0,1): (x,1) ∼ (y,q)⇒ (x, p) � (y, pq) and there exist p,q for which
the preference is strict. If the DM’s preferences are represented by RDU then
Strict Certainty Effect is equivalent to the following restriction on the weighting
function:41

g(pq)> g(p)g(q) (3.2)

A DM exhibits Strict Common Ratio Effect if for every x,y ∈ R+ and p,q ∈ (0,1),
` ∈ (0,1]: (x, `) ∼ (y,q`)⇒ (x, p`) ≺ (y, pq`). She exhibits Common Ratio Effect
if the implied preference is weak and there exist p,q, ` for which the preference is
strict. If the DM’s preferences are represented by RDU then Strict Common Ratio
Effect is equivalent to the following restriction on the weighting function:42

g(`)
g(p`)

>
g(q`)

g(pq`)
(3.3)

3.3.2 Diminishing Impatience

We assume that the DM’s preferences over stochastic consumption paths satisfy
the behavioral axioms in Halevy [2008] and are represented by (3.1). The discount
function at period t is: ∆(t) = β tg

(
(1− r)t) and her (one period) impatience at t is

∆(t)/∆(t +1). In Halevy [2008] and Saito [2011], the definition of Diminishing
Impatience (DI) is restricted to only one-period delay. It implies that for all natural
numbers t: ∆(0)/∆(1)> ∆(t)/∆(t +1) which is satisfied if and only if for every
r ∈ (0,1) and t ∈ N:43

g
(
(1− r)t+1

)
> g(1− r)g

(
(1− r)t) (3.4)

Both Halevy [2008] and Saito [2011] state without proof that (3.2) holds if and
only if (3.4) holds. Although the direction (3.2)→(3.4) is immediate,44 we pro-
vide in Appendix A.2.1 a counter-example which shows that the converse in not

41Certainty Effect implies weak inequality in (3.2) for every x,y ∈ R+ and p,q ∈ (0,1) and exis-
tence of p,q for which (3.2) is satisfied with strict inequality.

42Common Ratio Effect implies weak inequality in (3.3) and existence of p,q, ` for which the
inequality in (3.3) is strict.

43Note that this is equivalent to writing g
(
rt+1)> g(r)g(rt) ∀r ∈ (0,1) and t ∈ N.

44Define p := 1− r and q := (1− r)t
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true in general. In other words, DI as defined above does not imply the certainty
effect for arbitrary weighting functions. Intuitively, the certainty effect implies a
bias towards certainty irrespective of how risky the alternative is, the dual to which
would be a bias towards the present (t = 0) irrespective of the delay in the com-
pared consumption. In evaluating the reason for the severed connection between
time and risk preferences, we note that the definition of diminishing impatience
used in the literature focuses on a delay of a single period, thus only comparing
∆(t) to ∆(t+1) as t increases from 0. This one-period definition fails to generalize
to longer delays, and thus fails to account for present bias behaviorally.45

Motivated by the behavioral literature in general, and the quasi-hyperbolic dis-
counting model in particular, which focus on the failure of stationarity indepen-
dently of the delay under consideration,46 we suggest to compare ∆(t) to ∆(t + k)
for arbitrary k ≥ 1.

Definition 21. The decision maker exhibits Delay Independent Diminishing Im-
patience (DIDI) if ∆(0)

∆(k)> ∆(t)
∆(t+k) ∀k, t ∈ N, where ∆(t) is the decision maker’s time

discounting at period t.

DIDI requires impatience to diminish for all possible delays (k≥ 1), hence is a
strengthening of the standard definition,47 which is satisfied by the quasi hyperbolic
discounting model (see the Proposition below). For preferences represented by
(3.1) DIDI holds if and only if for every r ∈ (0,1) and t,k ∈ N: g

(
(1− r)t+k

)
>

g
(
(1− r)k

)
g
(
(1− r)t).

Hyperbolic discounting motivates the definition of Strongly Diminishing Im-
patience as ∆(t)

∆(t+1)>
∆(t ′)

∆(t ′+1) ∀t
′ > t ∈ N. Note that Strongly Diminishing Impatience

too, is restricted to only one-period delays, and hence similar to Definition 21, we
strengthen this measure to be delay independent:

Definition 22. The decision maker exhibits Delay Independent Strongly Diminish-
ing Impatience (DISDI) if ∆(t)

∆(t+k)>
∆(t ′)

∆(t ′+k) ∀k, t
′ > t ∈ N, where ∆(t) is the decision

maker’s time discounting at period t.

If preferences are represented by (3.1) then DISDI holds if and only if for every

r ∈ (0,1) and t < t ′, k ∈ N\{0}:
g
(
(1− r)t)

g
(
(1− r)t+k

) >
g
(
(1− r)t ′

)
g
(
(1− r)t ′+k

) .

45For further discussion and intuition see the introductory discussion in Appendix A.2.1.
46Halevy [2015] provides a formal definition and recent experimental evidence for stationarity in

a dynamic setting.
47DI is the special case of DIDI where delay k = 1. An implication of the counter-example pro-

vided in Appendix A.2.1 is that DI does not imply DIDI.
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Proposition. Quasi-hyperbolic discounting satisfies DIDI (but not DISDI), Hyper-
bolic discounting satisfies DISDI (and hence DIDI).

Proof. In case of quasi-hyperbolic discounting: U = u(c0)+ β ∑
∞
t=1 δ tu(ct), and

for β < 1:

∆(0)
∆(k)

=
1

βδ k >
βδ t

βδ t+k =
1
δ k =

∆(t)
∆(t + k)

=
∆(t ′)

∆(t ′+ k)

The last equality holds for t, t ′ > 0. Hence, quasi-hyperbolic discounting satis-
fies DIDI, but not DISDI.

In Hyperbolic Discounting the discount function for period t is given by ∆(t) =
1

1+ρt
for ρ > 0. For arbitrary k, and t ′ > t,

∆(t)
∆(t + k)

= 1+
ρk

1+ρt
> 1+

ρk
1+ρt ′

=
∆(t ′)

∆(t ′+ k)

Hence, hyperbolic discounting satisfies DISDI (and hence DIDI).

3.3.3 The Relation between Risk and Time Preferences

As noted above, the effect of risk attitude on intertemporal preferences in (3.1) is
straightforward. We summarize this relation below.

Claim. Strict Certainty Effect (3.2) implies Delay Independent Diminishing Impa-
tience (DIDI), and the Strict Common Ratio Effect (3.3) implies Delay Independent
Strongly Diminishing Impatience (DISDI).

The following Theorem proves the converse direction (though in a weaker form
that does not substantiate an equivalence), that is - how the DM’s intertemporal
preferences determine her risk attitudes.48 The result is direct and comprehensive
in the sense that it does not rely on any intermediate connections through properties
(e.g, convexity, increasing elasticity) of the weighting function.

Theorem. Consider a DM represented by (3.1) with continuous g(·).

1. Delay Independent Strongly Diminishing Impatience implies the Common
Ratio Effect (and the Certainty Effect).

2. Delay Independent Diminishing Impatience implies the Certainty Effect.
48Note that although the Theorem does not imply Strict Common Ratio/Certainty Effects, it is

inconsistent with expected utility since even the weaker forms imply the existence of probabilities
for which (3.2) and (3.3) are satisfied with strict inequality.
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Proof. (1) Consider a sequence {mi
ni
}∞

i=1 of rational numbers that converges to ln p
lnq` ,

where mi,ni are positive integers. Similarly, consider a sequence {ai
bi
}∞

i=1 of rational
numbers that converges to ln`

lnq` , where ai,bi are positive integers. Note that ln`
lnq` <

1, so we can choose {ai
bi
}∞

i=1 such that ai < bi. Now, given this sequences, define a

sequence {ri}, such that q`= rnibi
i , that is ri =(q`)

1
nibi < 1. Note that as ai

bi
converges

to ln`
lnq` , raini

i = (q`)
ai
bi converges to (q`)

ln`
lnq` = `. Similarly, as mi

ni
converges to ln p

lnq` ,

rmibi
i = (q`)

mi
ni converges to (q`)

ln p
lnq` = p.

Now using DISDI, ∀i :

g(raini
i )

g
(

raini+mibi
i

) >
g
(

rnibi
i

)
g
(

rnibi+mibi
i

)
Using the continuity of g, as i→ ∞, the Common Ratio Effect follows:

g(`)
g(p`)

≥ g(q`)
g(pq`)

(2) Let p,q ∈ (0,1) and assume without loss of generality that p < q. Consider
a sequence {mi

ni
}∞

i=1 of rational numbers that converges to ln p
lnq , where mi,ni are

positive integers. Given this sequence, define a sequence {ri}, such that q = rni
i ,

that is: ri = q
1
ni < 1. Note that as mi

ni
converges to ln p

lnq , rmi
i = q

mi
ni converges to

q
ln p
lnq = p.

Now, ∀i :

g(rmi+ni
i ) > g(rmi

i )g(rni
i )

g(rmi
i q) > g(rmi

i )g(q)

Using the continuity of g, Certainty Effect follows: g(pq)> g(p)g(q).

Corollary. Consider a DM represented by (3.1) with continuous g(·).

1. Hyperbolic discounting implies the Common Ratio Effect (and the Certainty
Effect).

2. Quasi-hyperbolic discounting implies Certainty Effect.
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It is important to recall that preferences represented by (3.1) are defined over
consumption streams in discrete time (following Koopmans, 1960).49 It follows
that all notions of diminishing impatience (as DI, DIDI, DISDI) are required to
hold only for natural numbers, while risk preferences (Certainty Effect, Common
Ratio Effect) are defined over lotteries with probabilities in the simplex. With this
insight, it is not surprising that properties of risk preferences manifest themselves in
the time domain. The counter-example in the Appendix together with the Theorem
demonstrate that the opposite direction can be established as well, but the notion
of diminishing impatience must be appropriately defined so it will not be delay
dependent. We believe that these new notions (DIDI and DISDI) are very intuitive
and reflect the natural meaning of diminishing impatience. Moreover, in light of
recent work generalizing hyperbolic discounting to continuous time [Webb, 2016]
we conjecture that continuous adaptations of DIDI and DISDI will be required in
order to create the link from time to risk, though this remains for future work as
the behavioral underpinning of (3.1) are stated in discrete time.

49This framework is considerably different from Fishburn and Rubinstein [1982] whose domain
includes payments of $x at time t, which is applicable to more selective environments (as bargaining).
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Chapter 4

Drivers of Cooperation in Finitely
Repeated Prisoner’s Dilemma

Prisoner’s dilemma is probably one of the most popular games in economics as it
pits two fundamental human actions against one another - Cooperation and Defec-
tion. From human-beings to competing firms, from feuding countries to animals
in the eco-system- wherever there is a possible interaction of interests, one often
faces a choice between cooperation and defection against others, the latter com-
ing at a personal gain and social cost. As a result, many economic and strategic
interactions we see around us can be represented simply as finitely repeated Prison-
ers dilemma (FRPD) games. One standard result from Microeconomic Theory is
that under standard assumptions, no cooperation can be supported in any subgame
perfect Nash equilibrium of a Finitely Repeated Prisoner’s dilemma(FRPD) game.

Column Player
Defect (F) Cooperate (C)

Row Player
Defect (F) b,b c,d

Cooperate (C) d,c a,a

c>a>b>d>0

This paper investigates the question of how the gains from potential future peri-
ods (shadow of the future) determine behavior in FRPD games. We vary the future
gains in a 5-period FRPD game by imposing (and varying) exponential discount-
ing (δ t) over periods t = 1−5 of the 5-period game. The discount factors used are
δ = 1, 3/4, 3/8, 1/4. As the discounting increases (and δ decreases), for any fixed
first-period payoff matrix, the payments diminish at a higher rate across rounds 1
to 5. In a few of our treatments, we also ask subjects about their beliefs on their
partners’ actions, to pin down the driving force behind cooperation and defection
in the games, and see how subject beliefs react to their exxperiences. The game
horizon and payoffs are chosen in such a way that an egoist (a player with is only
concerned about maximizing payoffs subject to beliefs) would never cooperate50

50See Appendix A.3
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under the δ = 1/4 treatment. Such an egoist would also never cooperate in the last
two periods of the δ = 3/8 treatment, and never cooperate at all if she believes
that the her partner plays any variety of threshold strategies 51. Cooperation under
reputation equilibrium Kreps et al. [1982] is possible in the δ = 1, 3/4 treatments,
and it should decrease with δ . The predictions from egoistic cooperation driven
by reputation contrast sharply with that from theories that assume that subjects’
actual utilities are determined by joint strategies and payoffs of them and their
partners. For example, any theory that assumes that subjects get a fixed boost in
utility from playing kind/ altruistic (cooperative) strategies would suggest that co-
operation might increase disproportionately in later rounds of the low δ treatments.
Similarly, Rabin [1993] would suggest that as long as reciprocity minded people
put a high enough belief on their partner being kind in their actions, they might
reciprocate with kindness too, as long as the utility gains from their kind action
supersede the utility loss from getting a sub-optimal payoff. So, with the mone-
tary loss from sub-optimal actions diminishing in the low δ treatments (especially
in the later rounds), subjects are more likely to be kind, especially if they expect
kindness from their partners.

We find the following results: 1) Cooperation in the first period of a FRPD
game decreases monotonically the more the future is discounted. First period co-
operation is highly correlated with subjects’ beliefs on their partners’ cooperating
in the same period, and, their partners’ propensity to cooperate in the future in
response to cooperation. 2) Higher the discounting (and lower the final period
discounted stakes), higher is the observed final-period cooperation, and this is ro-
bust to subjects gaining a considerable amount of game-experience. Final period
cooperation is also highly correlated with the subject’s belief of their partners coop-
erating in the final period. 3) Subjects systemcatically over-estimate their partner’s
propensity of engaging in cooperative behavior. 4) Reported beliefs are consistent
with reasonable learning, and move in predictable directions in response to good
and bad outcomes. 5) Justifying aggregate subject behavior requires the use of both
egoistic and altruistic theories.
In Section 4.1, we provide an overview of the related literature. Section 4.2 dis-
cusses the experimental design. Section 4.3 provides the main results and analysis
from the experimental data, and Section 4.4 concludes.

4.1 An overview of the literature

There have been many experimental studies about both finitely and infinitely re-
peated Prisoner’s Dilemma games. Below we describe the relevant literature sepa-

51Strategies that conditionally cooperate till some period, and revert to always defecting thereafter.
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rately for studies on finitely repeated PD games and infinitely repeated PD games.
The effect of the scope of future cooperation on current behavior has been stud-

ied in detail in the domain of infinitely repeated PD games. Infinitely repeated PD
games are implemented in the lab using a random termination protocol, i.e, after
each period, the game ends with some predetermined probability. This probability
of continuation is a dual of the δ used in our setting, under Expected Utility, and
it determines the shadow of the future in infinitely repeated PD games. Roth and
Murnighan [1983] vary the probability of continuation in their experimental setting
and find that higher the probability, the greater the number of players who cooper-
ated in the first round of the game. Bo [2005] replicates that higher continuation
probabilities result in higher cooperation levels, and additionally shows that it is
not just the higher number of expected periods of play, but the higher probability
of repeated interaction that drives this behavior.52

In the following, we will discuss the experimental literature that studies the
determinants of cooperation in FRPD games. Andreoni and Miller [1993] con-
trol subjects’ beliefs over the value of building a reputation (Kreps et al. [1982])
by varying the probability that subjects interact with a pre-programmed opponent
(a computer that plays a Tit-For-Tat strategy). In their study, cooperation falls
through the rounds of FRPD and higher beliefs about playing the computer are
more conducive to higher cooperation. Cooper et al. [1992] compare behavior in
one-shot PDs to that in FRPDs and observe higher cooperation rates in the FRPD.
The authors find evidence of both reputation building and altruism and they con-
clude that neither model can explain all the features of the data on its own. There
is some dispersed evidence about how cooperation in FRPD might be affected by
the shadow of the future. Bereby-Meyer and Roth [2006] find more cooperation in
round one of FRPDs than in the one-shot games, which is equivalent of compar-
ing first round cooperation rates of δ = 1 and δ = 0 in our setting. In the FRPD
games conducted by Bo [2005] first round cooperation rates are higher in games
with a longer horizon, consistent with the hypothesis that shadow of the future
might drive cooperation even in FRPD games. Embrey et al. [2015] identify how
the value of cooperation can be captured by the “size of the basin of attraction of
Always Defect”, and how it is an important determinant of cooperation in FRPD
games in the previous literature. Beside their comprehensive meta-study, they also
design a new experiment that compares two treatments in which the horizon of the
repeated game is varied, but the value of cooperation is kept constant. One can
think of our experiment as a dual to theirs, as we keep the horizon of the repeated

52The paper compares first period cooperation rates from infinitely repeated games with x number
of expected periods to that of finitely repeated games having x periods, and finds that the former is
bigger.
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game constant, but vary the value of cooperation. Charness et al. [2016] show that
higher monetary payoffs from cooperation are associated with substantially higher
cooperation rates in one shot PD games.

There is also some work about how beliefs might evolve and affect PD play.
For example, Kagel and McGee [2016a,b] have both individual play and team play
in their FRPD games and, analysis of team dialogues show signicant discrepancies
between subjects’ inferred beliefs and those underlying standard models of cooper-
ation in the FRPD. Cox et al. [2015] reveal second-mover histories from an earlier
sequential-move FRPD game to the first-mover. They unexpectedly find higher
cooperation rates when histories are revealed. They also provide an accompany-
ing theory in which players decide on conditional cooperation based only on naive
prior beliefs about what strategy their opponent is playing.

4.2 Experimental design

A total of 132 subjects participated in 5 sessions between November 19, 2015 to
December 3, 2015, where subjects played 5-period FRPD-D games, for the values
δ = 1, 3/4, 3/8, 1/4. Each subject played under each of the four treatments in these
Within sessions. Sessions lasted approximately one hour and a total of 132 subjects
participated in these sessions. Within any game, as the rounds progressed, the stage
payments diminished according to the particular δ employed in that game. The
payoff matrix for the first period for any treatment was fixed at:

Column Player
Defect Cooperate

Row Player
Defect 1200,1200 2600,200

Cooperate 200,2600 2000,2000

Subjects were be divided into two groups. In each match, a subject from the
first group was matched with a new subject from the second group using turn-pike
matching. Two subjects would never meet in more than a game. Within every
game or match, the subjects could see the past actions taken by their partner, but
they could not see their partner’s actions in previous games. This information
protocol coupled with the matching procedure ensured that actions taken within
a match or game should not influence their or their partner’s behavior in future
matches. The fact that no information of previous matches was provided to their
new partners and the payoff structures in each treatment was common knowledge
for the subjects. The block of treatments were repeated twice in the same order,
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so, each subject played 2 matches under each treatment, thus playing a total of
(2× 4) = 8 matches/ games. At the end of the experiment, one of the 8 games
was randomly chosen, the total points or lab currency earned by the subject in that
game was converted into dollars at an exchange rate of 300 points = $1 and paid to
the subject. The subjects also received a $5 show-up fee.

The order of treatments in the Within sessions was randomized at the session
level: At the beginning of each session, a coin toss by the experimenter decided if
the treatments in that session were arranged in the order

δ = 1, 3/4, 3/8, 1/4, 1, 3/4, 3/8, 1/4

(block of treatments repeated twice) or in the opposite order. Over all, 3 sessions
were ran in the former order and 2 in the latter order. A considerable time was
spent at the beginning of each session, to make sure that the subjects understood
the game, the payment scheme, the matching protocol and the interface thoroughly.
The subject instructions and screen shots of the GUI are included in the Appendix.

As a robustness checks for the results, four more sessions were run, with Be-
tween design, two each for δ = 1/4 and δ = 3/4. In the four Between sessions (held
in April, 2017) the subjects played 8 games under a single δ , thus giving them
more time to learn about the particular treatment, and eliminating any possibility
of cross-treatment effects. The subjects were also asked to answer the following
four prediction questions at the start of each game with a new partner:

• How likely is your partner to play L on the first round of the this game?

• How likely is your partner to play L in the very next round if you played T
in the previous round of the game?

• How likely is your partner to play L in the very next round if you played B
in the previous round of the game?

• How likely is your partner to play L on the very last (5th) round of the this
game?

At each question the subjects could respond on a scale of 0 to 10, and they were
advised to enter a higher number the more likely they thought the event was. They
were also provided the following the following reference points:

• A response of 0 (lowest point of the scale) would mean "never".

• 5 (midway point of the scale) would mean "as likely as getting Heads on a
fair coin toss/ 50-50 odds",
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• 10 (right extreme of the scale) would mean "surely".

• Events more likely than “never” and less likely than heads on a fair coin toss,
should be rated between 0 and 5, and so on.

There was a separate paragraph in the instructions which the subjects were advised
to read only if they were more comfortable in thinking of likelihoods in terms
of probabilities. This para linked how their probability assesments would map to
responses on the 0−10 scale. The prediction tasks were not incentivized, to make
sure that prediction incentives could not influence FRPD-D play in any way. A
total of 90 subjects participated in the Between sessions. The payment scheme
and exchange rate in the Between treatment was identical to those in the Within
treatment, and the subjects received $6 as show-up fee.

There is one more crucial aspect of the design that deserves separate men-
tion. The norm in the experimental literature on repeated games is to model the
shadow of the future by varying the continuation probabilities, and tie the exper-
imental findings with theoretical predictions by assuming that subjects calculate
expected returns in accordance with Expected Utility Theory. Under Expected
Utility Theory, the continuation probability is equivalent to a discount factor im-
posed on future rounds of a repeated game. This norm runs almost in denial of
the literature (Kahneman and Tversky [1979], Tversky and Kahneman [1992]) that
rejects Expected Utility Theory (EUT) based on lab evidence. Our decision to im-
pose discounting instead of random termination was taken in acknowledgement of
the rich set of findings that indicate that subjects frequently violate EUT in their
behavior.

4.3 Results

Our analysis will be presented in three parts. We will start by analysis of the data
from the Within sessions, then show how the main results about cooperation were
replicated in the Between session, and then finally describe the rich beliefs data
from the Between sessions.
Twenty seven of the total 132 subjects in the Within sessions always defect,
whereas only one subject always cooperates. Hence, there is very little evidence
of subjects who play the game as if cooperation was a dominant strategy in the
sub-game. Fifty four of the subjects cooperate only thrice among their forty
decisions. Average cooperation across the 5 periods of the Within sessions is
highest in the δ = 1 treatment, and is lower for all lower values of δ (Table 4.1,
Column 1). There is very little evidence of any change in total cooperation for
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treatments with δ ∈ (0,1). One could interpret the data as if the discount factor of
δ = 1 is saliently different from all discount factors in terms of being a driver of
total cooperation. This mirrors Kahneman and Tversky [1979]’s finding that there
is a discrete change in risk behavior when moving from certainty (probability
p = 1) to risky options, but preferences are less sensitive to moving between two
different risky options. The average percentage cooperation in the δ = 1 treatment
is close to what was obtained (23.78%) by Bo [2005] over 10 matches in his
4-period FRPD experiment.

Table 4.1: Total Cooperation by treatments
(1) (2)

All data Block 2
d1 22.20∗∗∗ 20.91∗∗∗

(2.301) (2.704)

d2 15.15∗∗∗ 12.88∗∗∗

(1.789) (2.009)

d3 15.61∗∗∗ 13.48∗∗∗

(1.830) (2.231)

d4 15.08∗∗∗ 13.64∗∗∗

(1.720) (2.198)
N 5280 2640
d1_d2 0.0000570 0.000911
d2_d3 0.775 0.769
d3_d4 0.742 0.946
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The same results holds when we we allow for learning and only consider the
second block of the treatments (Column 2 in Table 4.1) in our analysis. The aver-
age cooperation in the second block is lower than the average over first and second
blocks.
Though the treatments of δ = 3/4, 3/8, 1/2 have very similar aggregate cooperation
levels, the strategy profiles by periods look very different across all the three treat-
ments. Figure 4.1 describes the evolution of cooperation throughout the periods
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Figure 4.1: Evolution of cooperation

for the different peroids. The cooperation levels aggregated across all sessions are
indeed ranked period by period till the first two periods. The difference in coop-
eration among the treatments vanishes around the third period and thereafter flips
signs! This is why the difference between cooperation levels at δ = 3/4, 3/8, 1/2

vanishes when all five periods are aggregated.
The cooperation rates decline progressively and sharply across the periods in

the δ = 1, 3/4 treatments, whereas, they are stable in the lower δ treatments. For
example, very few people start by cooperating in δ = 1/4 treatment, but the level
of cooperation remains stable throughout the later stages of a game. This is in
sharp contrast to the cooperation profile in the δ = 1 treatment, where the percent-
age cooperation is in a steady decline throughout. This results in a cross-over of
cooperation rates between the two treatments at period 5, which explains why the
δ < 1 treatments result in similar aggregate levels of cooperation. The percentage
cooperation in the first period is decreasing in δ . The differences between the first
and terminal period cooperation levels across the treatments is presented in Table
4.2.

The first round cooperation rates are decreasing in δ , and the differences are
significant for all pairs of discount factors, other than the smallest two, which are
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Table 4.2: Comparison of first and terminal periods
Period 1 Period 5

δ1 = 1 33.71∗∗∗ 9.85∗∗∗

(3.55) (1.97)

δ2 =
3
4 26.14∗∗∗ 6.06∗∗∗

(3.12) (1.70)

δ3 =
3
8 20.08∗∗∗ 12.88∗∗∗

(2.84) (2.32)

δ4 =
1
4 17.42∗∗∗ 16.67∗∗∗

(2.64) (2.45)
N 1056 1056

δ1 = δ2 .009 .11
δ2 = δ3 .03 .006
δ3 = δ4 .14

Standard errors (clustered at subject level)

are reported in parentheses below

Lower panel reports p-values from F test for H0 : δi = δ j

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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underpowered. This is consistent with the meta-analysis in Embrey et al. [2015]
which finds that across experimental studies, the cooperation in the first period is
increasing in the length of the horizon, another metric for shadow of the future. On
the other hand, the percentage cooperation in the last period of the δ = 1/4 treat-
ment is significantly higher than those of the δ = 1 and δ = 3/4 treatments.

Table 4.3: Cooperation by treatment and period

Period1 Period2 Period3 Period4 Period5 Average
1 33.71 25.76 23.11 18.56 9.85 22.20
2 26.14 16.67 15.53 11.36 6.06 15.15
3 20.08 13.26 14.77 17.05 12.88 15.61
4 17.42 11.36 14.02 15.91 16.67 15.08
Total 24.34 16.76 16.86 15.72 11.36 17.01

Part of this cross-over can be attributed higher propensity of subjects cooperat-
ing in the terminal period of the game in the δ = 1/4, 3/8 treatments. As consistent
with previous experiments, a big proportion of the subject pool (62 out of the 132
total subjects) make such non-egoistic choices at least once, but only 17 subjects
do it more than once. But this cannot be the whole story behind the cross-over
pattern, given the cooperation rates start converging across treatments well before
that. Below we study some of the other behavioral channels that could be driving
the cross-over in cooperation rates.
We call a choice Forgiving, if a subject cooperates while her opponent played De-
fect against her cooperative move in the last period. Recooperating implies that a
subject switched back to cooperation in the current period after Defecting in the
last period. Both Forgiving and Recooperating play are behaviors which would
increase cooperation.
Similarly, we define Unfolding as responding to Cooperate-Cooperate in the previ-
ous period by Defaulting in the current period. This behavior results in unfolding
the Default-Default equilibrium one eventually expects under reputation theories,
and hence the name. In the table below we report the relative frequencies and total
possible instances of these three kinds of behavior by the Treatments.
As one would expect from the previous results, subjects are significantly more for-
giving in the lower δ treatments. For example, they are twice as likely to forgive in
the δ = 1/4 treatment than the δ = 3/4 treatment. 82 out of the 132 subjects indulge
in Forgiving behavior at least once. There are insignificant minor differences in
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Recooperating and Unfolding behavior. Forgiving seems to be the major driving
force behind the cooperation rates flipping in later periods. Here is a rough way
to understand this: Compared to δ = 1/4, there are respectively 43 and 23 more
instances of cooperation in first period in treatments δ = 1 and δ = 3/4. These
differences are almost single handedly overcome by 33 and 41 instances of addi-
tional instances of Forgiveness observed in the δ = 1/4 treatment compared to the
the other two aforementioned treatments. 53In the four treatments, 82 of the total
132 subjects commit Forgiving behavior at least once.
The more frequent forgiving behavior at the lower δ treatments implies that smaller
the payment horizon gets, the more forgiving people are. The fact that the smaller
δ treatments have smaller cooperation rates in the earlier periods and have similar
rates of Reciprocal play means that it is most likely the lower costs of Forgiving
that is driving the crossing over of cooperation rates for the higher periods.

Table 4.4: Relative Frequency of Forgiving , Reciprocal, and Unfolding play

Treatments Forgiving Recooperating Unfolding
1 0.07 0.21 0.17

(789) (117) (150)
2 0.05 0.23 0.16

(872) (114) (70)
3 0.07 0.28 0.14

(884) (98) (74)
4 0.10 0.22 0.14

(901) (105) (50)
Total 0.07 0.23 0.15

(3446) (434) (344)
The top entry reports the relative frequency of behaviors by

Treatment. The total number of possible observations is reported

in brackets below. Treatments 1-4 are in decreasing order from

1 to 1/4.

Results on cooperation from Between study:
The between study replicates the central finding of cross-over of cooperation

trends from the Within study, as shown in Fig 4.2. The average cooperation in
the δ = 3/4 treatment is relatively stable, whereas cooperation falls steadily in the
δ = 1/4 treatment. In Table 4.5, we compare the first and last period cooperations

53Fudenberg et al show that subjects are “Slow to anger and fast to forgive” in PD games where
actions are noisy. We see a similar trend here.
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Figure 4.2: Evolution of cooperation (All games from Between Session)

of the two treatments for games while allowing for learning in the initial periods.
The cross-over pattern is still highly significant.

Beliefs in the Between study:
In the following, we analyze the responses to the four likelihood questions. For

each subject, let the quadruple (g1, g2, g3, g4) contain responses to the following
four questions on the 0−10 scale:

• How likely is your partner to play L in the very next round if you played T
in the previous round of the game?

• How likely is your partner to play L in the very next round if you played B
in the previous round of the game?

• How likely is your partner to play L on the very last (5th) round of the this
game?

Firstly, the reported likelihoods/ beliefs seem consistent with learning. For exam-
ple, subjects weakly decrease their reported g1 (∆g1 ≤ 0) after a bad experience
(their partner defecting in the first period of the last game) in 89% of all possible
occasions and weakly increase g1 after a good experience (their partner cooperating
in the first period of the last game) on 86% of all occasions. These percentages are
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Table 4.5: Comparison of first and terminal periods
Games 2-8 Games 4-8

Period 1 Period 5 Period 1 Period 5
δ2 =

3
4 40.48∗∗∗ 11.90∗∗∗ 40∗∗∗ 9.52∗∗∗

(6.12) (2.78) (6.25) (2.73)

δ4 =
1
4 23.80∗∗∗ 21.73∗∗∗ 18.75∗∗∗ 18.33∗∗∗

(4.72) (4.06) (4.80) (4.19)
δ2 = δ4 .03 .049 .008 .08

Standard errors (clustered at subject level) are reported in parentheses below

Lower panel reports p-values from F test for H0 : δi = δ j

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4.6: Change in beliefs and Forgiving across games (1-8)
Quarter Three Quarters

g1 g2 g3 g4 Forgiving g1 g2 g3 g4 Forgiving

(game-1) -.41 -.26 -.10 -.36 -.007 -.19 -.26 -.13 -.23 -.013

(.07) (.07) (.06) (.07) (.005) (.07) (.07) (.06) (.06) (.004)

constant 5.3 6.5 2.4 5.2 .14 4.9 5.8 2.8 3.8 .12

(.39) (.39) (.26) (.38) (.03) (.37) (.36) (.29) (.37) (.02)

N 384 384 384 384 1194 336 336 336 336 969

90% and 91% respectively in case of g4. Note that ∆gi = 0 is consistent with learn-
ing, as we only observe subject responses on a discrete grid, and for small changes
in gi we might not see any changes in their reported beliefs. We can summarize the
evolution of beliefs across the games by running a regression of the beliefs against
the variable (game-1). The coefficient of regression can be read as the average
change in beliefs after every passing game, whereas the coefficient on “constant”
provides us average beliefs at the start of the session. As seen in Table 4.6, on av-
erage, subjects get more pessimistic about their partners as the session goes on and
more games are played. Our finding are in contrast to Cox et al (2015) who find
that subjects might have unsophisticated priors. Further, the learning of threshold
strategies (that defection should be followed by defection) is slower in the Quarter
treatment. There only seems to be significant learning away from Forgiving in the
δ = 3/4 treatment only.

In Figure 4.3, we plot the evolution of Period 1 belief g1 (and and Period 5
belief g4) against the average cooperation in that period, across the two treatments,
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Figure 4.3: Average Beliefs (g1,g4) vs Average cooperation across Games 1-8

Table 4.7: Behavior and beliefs
Reported belief N % Coop

g1

0-4 358 16%
5 198 48%

6-10 164 53%

g4

0-4 429 13%
5 155 21%

6-10 136 30%

throughout games 1−8. Under the assumption that the subjects report their prob-
abilistic assessments about the population in their response, we can meaningfully
compare it to the actual average response of the population. Other than in the case
of first period cooperation in the Three quarters treatment, subjects systematically
overestimate the how often cooperation takes place.

Optimistic beliefs about partner’s actions are also highly associated with coop-
erative behavior by the players themselves, as we show in Table 4.7. Given that
subjects were provided reference points for 0, 5, 10 on their response scale, we
use the most natural way to tabulate the belief data, and look at subject responses.
Fisher’s exact test and the chi-squared test result in a rejection of the null of equal
relative proportions of cooperation with p-values of zero for the tabulations, and
suggest that more optimistic a subject was about her partner’s responses, the more
likely they were to cooperate.

To take the analysis a step further, in Table 4.3 we run a logit regression of
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first and last period cooperation on the self-reported beliefs, game and treatment
dummies. The standard errors are clustered at the subject level, as in the rest of this
study. Even after controlling for the treatments and the games, beliefs over partner
cooperating in the first period and partner’s propensity to reciprocate to coopera-
tion are significant drivers of first period cooperation. Also, as expected higher the
odds of partner cooperating after facing a defection, lower is the cooperation in
the first period. On the other hand, it seems that among the belief variables, belief
about partner cooperating in the final period is the sole determinant of last period
cooperation. This result is highly intuitive. We have focussed on forgiving behav-
ior from only the first 4 periods to make sure we do not double account Period 5
behavior. Forgiving behavior (in the first four periods) decreases with increasing
beliefs about partner cooperating in the first period, and increases with higher be-
liefs about the partner cooperating in the last period. The former is consistent with
possible disenchantment driven aversion to forgiving, and the latter is consistent
with forgiving being driven by optimism about partner’s future play.
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4.4 Conclusion

This paper povides a systematic analysis of how the the shadow of the future might
affect cooperation in FRPD games. The discount factor, which is a measure of
the shadow of the future is a significant determinant of first-round cooperation in
FRPD games. First period cooperation decreases as the discount factor decreases,
consistent with reputation play. But, latter period cooperation is instead driven
by behavior consistent with theories of altruism, fairness and reciprocal kindness
(Rabin [1993]), and cooperation increases with decreasing discount factor. We find
that cooperation in both the first and the last period is driven by beliefs about the
partner reciprocating. We also find that subjects are generally over-optimistic in
their beliefs about their partners, but their beliefs move in reasonable directions
when confronted with good or bad news. Finally, the subject population contains
both subjects who look like they are playing egoistic reputation equilibrium, and
players whose utility respond to altruistic and reciprocity motives.
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Table 4.8: Logit regressions on belief variables and game dummies
(1) (2) (3)

Coop in Period 1 Coop in Period 5 Forgiving in Period<5
main
1.game 0 0 0

(.) (.) (.)

2.game -0.0615 0.206∗ -0.261∗

(0.254) (0.309) (0.150)

3.game -0.299∗ 0.103 -0.337
(0.282) (0.322) (0.195)

4.game -0.252∗ -0.508∗ -0.660∗∗∗∗

(0.291) (0.402) (0.179)

5.game -0.0443∗ -0.566∗ -0.533∗∗

(0.286) (0.376) (0.214)

6.game -0.408∗ -0.343 -0.297∗

(0.316) (0.384) (0.187)

7.game -0.368∗ -0.613∗ -0.489∗∗∗

(0.317) (0.387) (0.188)

8.game -0.389∗ -0.271∗ -0.601∗∗∗

(0.314) (0.346) (0.200)

T 0.902∗∗ -0.661∗∗ -0.139
(0.386) (0.319) (0.178)

g1 0.216∗∗∗∗ -0.0437 -0.0555∗

(0.0610) (0.0479) (0.0324)

g2 0.159∗∗ 0.0241 0.0166
(0.0636) (0.0533) (0.0303)

g3 -0.0892∗ -0.0210 0.0255
(0.0807) (0.0676) (0.0411)

g4 0.0956 0.128∗∗ 0.0658∗

(0.0705) (0.0572) (0.0360)

_cons -2.915∗∗∗∗ -1.431∗∗∗ -1.081∗∗∗∗

(0.593) (0.461) (0.260)
N 720 720 1594
Standard errors in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01, ∗∗∗∗ p < 0.001
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Conclusion

The first chapter provides a novel, testable weakening of classical assumptions to
derive a new theory that would best fit Present Biased behavior. We show that any
present-biased preference has a max-min representation, which can be cognitively
interpreted as if the decision maker considers the most conservative present equiv-
alents in the face of uncertainty about future tastes. We compare our theory with
existing theories of temporal behavior (Koopmans [1972], Fishburn and Rubin-
stein [1982], Harvey [1986], Laibson [1997], Ebert and Prelec [2007]) to discuss
the dimensions along which it is an improvement over the latter. We also discuss
how previously unsupported behavioral anomalies from the domain of time and
risk can now be addressed through this new theory, and how knowledge of such
anomalous behavior can in turn be used for better policy design. The third chapter
of the thesis shows how time-delay and risk are behavioral duals of one another,
and a formal study of any one also conveys fundamental insights about the other.
Though this duality had been hypothesized previously in the literature (Green and
Myerson [2004], Baucells and Heukamp [2012b], Halevy [2008], Saito [2015]), we
provide the first formal derivation of the duality relationship. We show how under
the assumptions of Non-Expected Utility and constant hazard rate, one can derive
a bias from the present or a bias for certainty from one another, thus completing
the characterization result in Halevy [2008]. In chapters one and three, instead of
studying behaviors under risk or time-delay in isolation, we provide a more holistic
theory of human behavior by studying the joint interplay of uncertainty and time
as influencing factors.

Chapters two and four contribute to the literature on the empirical study of pref-
erences. Chapter two uses a meta-study over recent influential experimental papers
to inform the design of future experiments investigating temporal-preferences. We
provide desiderata of choice consistency that experimenters should employ while
estimating time preferences from choice data. We also show how the application
of our desiderata can help us learn new insights from recent experimental studies.
Chapter four introduces a novel experimental design to study the effect of tempo-
ral delay (discounting) on human interaction in an environment where there is a
tradeoff between individual gain and social surplus. We find that subject behavior
is driven by a combination of altruistic and selfish motives, and selfish motives

64



Conclusion

sometimes drive cooperative play, especially when the future gains from coopera-
tion is large enough. Altruistic play is common only when returns from selfish play
are very low. We also see that subjects become more pessimistic about altruistic
play from their partners as they gain more experience.
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Appendix A

Appendix

A.1 Appendix to to Chapter 1

Appendix I

MODELS OF PRESENT BIAS

Consider the general separable discounted utility mode defined over timed
prospects (x, t)

V (x, t) = ∆(t)u(x)

Here, ∆(t) is the discount factor, and u(x) is the felicity function. Below54,
we give a brief summary of the literature on different discounting models which
accommodate present bias, in terms of the discount functions they propose. We
also include the exponential discounting model as a point of reference.

Appendix II

Theorem 3: Let T = {0,1,2, ...∞} or T=[0,∞) and X = [0,M] for M > 0. The
following two statements are equivalent:

54We take the idea of tabular presentation from Abdellaoui et al (2010).

Model Author(s) ∆(t)

0 Exponential discounting Samuelson (1937) (1+g)−t ,g > 0

1 Quasi-hyperbolic discounting Phelps and Pollak (1968) (β +(1−β )t=0)(1+g)−t ,β < 1,g > 0

2 Proportional discounting Herrnstein (1981) (1+gt)−1,g > 0

3 Power discounting Harvey (1986) (1+ t)−α ,α > 0

4 Hyperbolic discounting Loewenstein and Prelec (1992) (1+gt)−α/γ ,α > 0,g > 0

5 Constant sensitivity Ebert and Prelec (2007) exp[−(at)b],a > 0,1 > b > 0

Table A.1: Models of temporal behavior
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i) The relation % defined on X×T satisfies properties A0-A4.
ii) For any δ ∈ (0,1) there exists a set Uδ of monotinically increasing contin-

uous functions such that

F(x, t) = min
u∈Uδ

(u−1(δ tu(x)))

represents the binary relation %. Moreover, u(0) = 0 and u(M) = 1 for all u ∈Uδ .
F(x, t) is continuous.

Proof: We start by showing (ii) implies (i). To show Weak Present Bias, we
follow the following steps

(y, t)% (x,0)

=⇒ minu∈Uδ
(u−1(δ tu(y)))≥minu∈U (u−1(u(x)))

=⇒ minu∈Uδ
(u−1(δ tu(y)))≥ x

=⇒ u−1(δ tu(y))≥ x ∀u ∈Uδ

=⇒ δ tu(y)≥ u(x) ∀u ∈Uδ

=⇒ δ t+t1u(y)≥ δ t1u(x) ∀u ∈Uδ

=⇒ u−1(δ t+t1u(y))≥ u−1(δ t1u(x)) ∀u ∈Uδ

=⇒ minu∈Uδ
(u−1(δ t+t1u(y)))≥minu∈Uδ

(u−1(δ t1u(x)))

=⇒ (y, t + t1)% (x, t1)

To show Monotonicity and Discounting, let us show (x, t) � (y,s), when, either
x > y and t = s, or, x = y and t < s. As all the functions u ∈ Uδ are strictly
increasing, and δ ∈ (0,1),

δ
tu(x) > δ

su(y) ∀u ∈Uδ

⇐⇒ u−1(δ tu(x)) > u−1(δ su(y)) ∀u ∈Uδ

⇐⇒ min
u∈Uδ

u−1(δ tu(x)) > min
u∈Uδ

u−1(δ su(y))

⇐⇒ (x, t) � (y,s)

For proving the second statement under Discounting, start with any u1 ∈ Uδ . For
z > x > 0, and δ ∈ (0,1) there must exist t big enough such that
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u1(x) > δ
tu1(z)

⇐⇒ u−1
1 (u1(x)) > u−1

1 (δ tu1(z))

⇐⇒ x > min
u∈Uδ

u−1((δ tu(z))

Hence, there exists t big enough such that (x,0)� (z, t).
That % satisfies continuity follows directly from the definition of continuity on the
utility function.
Now, we will prove the other direction of the representation theorem. We will first
deal with the case of T=[0,∞). A similar proof technique would be used in the
proof of Theorem 8.

Proof for the case when T=[0,∞).

Proof. For every x∗ ∈ (0,M), we are going to provide an increasing utility function
ux∗ on [0,M] which would have δ τux∗(x)≥ ux∗(y) if (x,τ)% (y,0). Additionally it
would also have δ tux∗(xt) = ux∗(x∗) for all (x∗,0)∼ (xt , t).
Fix ux∗(x∗) = 1, ux∗(0) = 0.
For any x ∈ (x∗,M], by Discounting there exists a delay T large enough, such that
(x∗,0)� (x,T ). Hence, it must be true that (x,0)� (x∗,0)� (x,T ). By Continuity
there must exist t(x) ∈ T such that, (x, t(x))∼ (x∗,0). Define the utility at x as

ux∗(x) = δ
−t(x) (A.1)

It would be helpful to introduce the following additional notation to move seam-
lessly between prizes and time in terms of indifference of time-prize pairs w.r.t
(x∗,0). For t > 0, define xt as the value in (x∗,M] such that (xt , t)∼ (x∗,0). Using
continuity, we can say that all points in the interval (x∗,M] can be written as xt for
some t > 0. This notation essentially implements the inverse of the t(x) function
defined in the previous paragraph.
Now, for x ∈ (0,x∗), define

ux∗(x) = inf{δ τ : There exists t such that (xt , t + τ)∼ (x,0)} (A.2)

Firstly, we will show that the infimum in (A.2) can be replaced by minimum. Let
the infimum be obtained at a value I = δ τ∗ . Consider a sequence of delays {τn} that
converge above to τ∗, and (xtn , tn + τn)∼ (x,0). Clearly, {tn} is the corresponding
sequence of t’s in (A.2). Note that tn ∈ [0, tmax] where (x∗,0) ∼ (M, tmax). Hence,
{tn} must lie in this compact interval, and must have a convergent subsequence
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{tnk}. If t∗ is the corresponding limit of {tnk}, we know that t∗ ∈ [0, tmax]. Similarly,
xt can be considered a continuous function in t (this also follows from the continu-
ity of %). Therefore, xtnk

→ xt∗ when tnk→ t∗. Thus, we have (xtnk
, tnk +τnk)∼ (x,1)

for all elements of {nk}. As, nk → ∞, xtnk
→ xt∗ , tnk + τnk → t∗+ τ∗. Then, using

the continuity of %, (xt∗ , t∗+ τ∗)∼ (x,1). Hence, the infimum can be replaced by
a minimum.
Now we will show that the utility defined in (A.1) and (A.2) has the following
properties : 1) It is increasing. 2) δ tux∗(xt) = ux∗(x∗) for all (x∗,0) ∼ (xt , t). 3)
(x,τ) % (y,0) implies δ τux∗(x) ≥ ux∗(y), 4) u is continuous. The first two proper-
ties are true by definition of u. We will show the third and fourth in some detail.
Consider (x,τ)% (y,0). In the case of interest, τ > 0 and hence, x > y.
Now let x > y > x∗. Let, u(y) = δ−t1 , which means, (y, t1) ∼ (x∗,0) . Given
(x,τ)% (y,0), we must have

(x,τ + t1)% (y, t1)∼ (x∗,0)

Hence, if (x, t2)∼ (x∗,0), then,

t2 ≥ τ + t1
⇐⇒ ux∗(x) = δ

−t2 ≥ δ
−(τ+t1)

⇐⇒ δ
τux∗(x) ≥ δ

−t1 = ux∗(y)

If, x > x∗ > y, the proof follows from the way the utility has been defined.
Let y < x < x∗. Let, ux∗(x) = δ t1 , which means, (xt , t + t1) ∼ (x,0) for some xt ∈
[x∗,M]. Given (x,τ)% (y,0), we must have

(xt , t + t1 + τ)% (x,τ)% (y,0)

Hence, ux∗(y)≤ δ τ+t1 = δ τux∗(x).
Now we turn to proving the continuity of ux∗ . The continuity at x∗ from the right,
or on (x∗,M] is easy to see.
Next, for any r = δ s ∈ (0,1), define

f (r) = sup{y : (xt , t + s)∼ (y,0)}= ŷ (A.3)

The supremum can be replaced by a maximum, and the proof is similar to the one
before. Suppose there is a sequence of {yn} that converges up to a value ŷ, and,
(xtn , tn + s)∼ (yn,1). Note that tn lies in a compact interval [0, tmax], and hence has
a convergent subsequence tnk that converges to a point in that interval t̂ ∈ [0, tmax].
Now, xt is continuous in t (in the usual sense), and hence, xtn also converges to xt̂ .
Further, ynk → ŷ as nk→ ∞. Therefore, using, (xtnk

, tnk + s) ∼ (ynk ,0), as, nk→ ∞,
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it must be that (xt̂ , t̂ + s) ∼ (ŷ,0). Hence, the supremum in (A.3) must have been
attained from xt̂ , and hence the supremum can be replaced by a maximum. Further
given this is a maximum, we can say that ŷ∈ (0,x∗). The f function is well defined,
strictly increasing and is the inverse function of ux∗ over r ∈ (0,1) to (0,x∗), in the
sense that, u( f (r)) = r. This function can be used to show the continuity of u at
the point x∗.
Finally, the function u can be easily normalized to have ux∗(M) = 1. (By dividing
the function from before by ux∗(M).)
Now, consider Uδ = {ux∗() : x∗ ∈ (0,M]}. By construction of the functions, it
must be that

(x, t)% (y,0) ⇐⇒ δ
tu(x)≥ u(y) ∀u ∈Uδ

(x, t)∼ (y,0) ⇐⇒ δ
tu(x)≥ u(y) ∀u ∈Uδ

and δ
tuy(x) = uy(y) for some uy ∈Uδ

For any (z,τ), consider the sets {(y,0)∈X×T : (y,0)% (z,τ)} and {(y,0)∈X×T :
(z,τ) % (y,0)}. Both are non-empty, as (z,0) belongs to the first one and (0,0) in
the second one. Both sets are closed in the product topology. Their union is con-
nected, and hence there exists an element in their intersection, i.e, there exists a
y1 ∈ X such that (y1,0) ∼ (x, t). By monotonicity this y1 must be unique. There-
fore there must exist a continuous present equivalent utility representation for %.
We show this formally in the next two paragraphs.
Given % is complete, transitive and satisfies continuity, there exists a continuous
function F̄ :X×T→ R such that F̄(a)≥ F̄(b) if and only if a% b for a,b∈X×T.
(Following Theorem 1, Fishburn and Rubinstein [1982]).
We define G : X→ R as G(x) = F̄(x,0). The function G would be strictly mono-
tonic and continuous. Also define F : X×T→ R as F(x, t) = G−1(F̄(x, t)). As
any alternative has a unique present equivalent, F is well defined, is a monotonic
continuous transformation of F̄ (hence represents %) and F(x,0) = x for all x ∈X.
By definition the function F assigns to every alternative its present equivalent as
the corresponding utility. Therefore, the present equivalent utility representation is
continuous.
We will show that the function W defined below also assigns to every alternative
(z,τ) an utility exactly equal to its present equivalent.

W (x, t) = min
u∈Uδ

u−1(δ tu(x)) = F(x, t)

Consider any (z,τ) ∼ (y1,0). By definition of Uδ and by construction of its con-
stituent functions, it must be that for all u ∈Uδ , δ τu(z)≥ u(y1) and there exists a
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function uy1 such that δ τuy1(z) = u(y1). This is equivalent to the following state-
ment: For all u ∈ Uδ , u−1(δ τu(z)) ≥ y1 and there exists a function uy1 such that
u−1

y1
(δ τuy1(z)) = y1.

Therefore, W (z,τ) = minu∈Uδ
u−1(δ τu(z)) is continuous utility representation of

the relation %.

Proof for the case of T={0,1,2, ...}.
This proof would be more technical and we will break down the proof of this
case into the following Lemmas.

Lemma 23. Under Axioms A0-A4, for a fixed x0, and any xt and t such that (xt , t)∼
(x0,0), there exists a continuous strictly increasing function u such that δ tu(xt) =
u(x0) and δ tu(z1)≥ u(z0) for all (z1, t)% (z0,0). Further, u(0) = 0, u(M) = 1.

Proof. By the Discounting axiom, we know that there exists a smallest integer
n≥ 1 such that (x0,0)% (M,n). Choose x∗0 = x0. For 0 < t < n , find x∗t such that
(x∗0,0)∼ (x∗t , t) . If (x0,0)� (M,n), choose xn = M.
We define x∗−1 in the following way

x∗−1 = min{x ∈ X : (x,0)% (x∗j , j+1), j = 0,1,2, ...n}

The idea is to look at the present equivalents of (x∗j , j+1) and take the maximum
of those present equivalents. The alternative way to express the same is to look at
the intersection of the weak upper counter sets of (x∗j , j+1) on X×{0}, and then
take the minimal value from that set.
Next we will use this to define x∗−2, then use x∗−1 and x∗−2 to define x∗−3. In general,
for i ∈ {−1,−2,−3...} define x∗i recursively as the minimum of the set

{x ∈ X : (x,0)% (x∗j , j− i), j = i+1, i+2, ...n}

The definition uses the same idea as before. We consider the intersection of the
weak upper counter sets of (x∗j , j− i) on X×{0} and take its minimum. The set is
non-empty (x∗0 belongs to it, for example), closed and the minimum exists due to
the continuity, monotonicity and discounting properties.
Next we show that for every x∗i with i≤−1, there exists j ∈ {0,1, ..n} such that
(x∗j , j− i) % (x∗i ,0). The proof is by induction. For i = −1, it is immediate from
the definition. Suppose, it holds for all i ≥ −m. Consider x∗−i−1. By construc-
tion, there must exist k ∈ {−m,−m+ 1, ..n} such that (x∗−i−1,0) ∼ (x∗k ,k+ i+ 1).
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If k ∈ {0,1, ..n} we are done already. If not, by the induction hypothesis, there
exists j ∈ {0,1, ..n} such that (x∗j , j− k) % (x∗k ,0), which gives, (x∗j , j + i+ 1) %
(x∗k ,k+ i+1), and hence, (x∗j , j+ i+1)% (x∗−i−1,0), completing the proof.
Next we will show that the sequence {...x∗−2,x

∗
−1,x

∗
0,x
∗
1,x
∗
2, ..} is converges below

to 0. Suppose not (we are going for a proof by contradiction), that is there exists
w > 0 such that xi ≥ w for all i ∈ Z. As, M > z > 0, there must exist t1 big enough
such that (z,0)� (M, t1). Consider the element x∗−t1 from the sequence in consider-
ation. Using the result from the previous paragraph, it must be true that there exists
j ∈ {0,1, ..,n}, such that (x∗j , j+ t1) % (x∗−t1 ,0). Now, as M ≥ x∗j , we must have,
(M, t1)% (x∗−t1 ,0)� (z,0), which provides a contradiction.
Consider any y0 ∈ (x∗0,x

∗
1).

We are going to find a y1,y2, ..yn−1 recursively.
Finding y1: For each point y ∈ (x1,x2], take reflections of length 1, i.e, find xy

such that (y,1)∼ (xy,0). Note that, (x∗1,0)� (y,1)� (x∗0,0). Hence, xy ∈ (x∗0,x
∗
1).

Let, xx2 be the reflection for the point x2. For any y ∈ (x∗1,x
∗
2], f (y) = x∗0 +(xy−

x∗0)
(x∗1− x∗0)
(xx2− x∗0)

. Now, for y0 ∈ (x∗0,x
∗
1), define y1 as f−1(y0).

We can check that this method satisfies the 2 following conditions:
1) Consider two such sequences, one starting from y1

0, and another from y2
0,

with y1
0 > y2

0. We will have y1
1 > y2

1.
2) All points in intervals (x∗1,x

∗
2) are included by some y1 from the sequence.

This follows from monotonicity and discounting too.
Now, the recursive step:
For each point y ∈ (x∗i ,x

∗
i+1], take reflections of length j ∈ {i, i−1..,1} conditional

on those reflections being in the corresponding (x∗i− j,x
∗
i+1− j] intervals. For any y,

at least one of these reflections must exist, and in particular the one with length i
always exists, as (x∗1,0)� (x∗i+1, i)% (y, i) and (y, i)� (x∗i , i)∼ (x∗0,0).
Now, for each such reflection, find the corresponding sequence of {y0,y1, ..yi−1}
it belongs to, and denote the smallest y0 from that collection of sequences as xy ∈
[x∗0,x

∗
1]. Note that xxi+1 ≤ x∗1. Define the 1 : 1 strictly increasing function f from

(xn−1,xn] to (x∗i ,x
∗
i+1] in the following way: For any y ∈ (x∗i ,x

∗
i+1] , f (y) = x∗0 +

(xy− x∗0)
(x∗1− x∗0)
(xxi+1− x∗0)

. Now, define yi as f−1(y0). The conditions mentioned above

are still satisfied for the extended sequence.
For i ≤ −1, define yi recursively in the following way. Start by finding y′i as the
minimum of the set

{y ∈ X : (y,0)% (y j, j− i), j = i+1, i+2, ...n}

Define x′−i as the minimum of the set
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{y ∈ X : (y,0)% (y j, j− i), j = i+1, i+2, ...n−1}

Finally, define

yi = x∗i+1− (x∗i+1− y′i)
(x∗i+1− x∗i )
(x∗i+1− x′i)

(A.4)

Given y1
0 > y2

0 determines the order of y1
t > y2

t , for t ∈ {1,2, ..n−2}, our inductive
procedure make sure this holds true for all t ≤−1 too.
One can check for covering properties of the sequences by induction. Suppose all
points in the intervals (x∗i ,x

∗
i+1) are covered by yi for some sequence, for i ≥ j for

some integer j. We are going to show that all points in (x∗j−1,x
∗
j) are also cov-

ered by y j−1 for some sequence. Take any point y ∈ (x∗j−1,x
∗
j), and consider its

corresponding y′ as defined in Equation A.4. Consider the reflections from point
y′ of sizes 1, ..n− j + 1, i.e, the points at those temporal distances which are in-
different to it, conditional on being in the corresponding intervals. By the induc-
tion hypothesis, each of those reflection end points must be coming from some
y0 ∈ (x∗0,x

∗
1). Take the sequence with smallest y0, and that sequence would result

in having y ∈ (x∗j−1,x
∗
j) as its next element.

Now, define u on X as follows: Set u(x∗n)= u(x∗n)= 1. For the sequence ...,x∗−2,x
∗
−1,x

∗
0,x
∗
1, ..

, let u(x∗i ) = δ i−n for all positive and negative integers i. Next, let us define u on
(x∗n−1,x

∗
n) as any continuous and increasing function with inf(x∗n−1,x

∗
n)

u(x) = δ =
u(x∗n−1) and sup(x∗n−1,x

∗
n)

u(x) = 1 = u(M). We can extend each dual sequence with
some as u(yi) = δ i−nu(y0). This finishes the construction of a u that satisfies the
conditions mentioned in the Lemma.

Lemma 24. Under Axioms A0-A4, there exists a continuous present equivalent
utility function F :X×T→ R that represents %. Moreover, for δ ∈ (0,1) , F(z,τ)=
minu∈Uδ

u−1(δ τu(z)) for some set Uδ of strictly monotonic, continuous functions,
u(0) = 0 and u(M) = 1 for all u ∈Uδ .

Proof. Consider the set Uδ of all strictly monotonic, continuous functions u such
that δ tu(z1)≥ u(z0) for all (z1, t)% (z0,0), u(0) = 0 and u(M) = 1. By the previous
Lemma, this set is non-empty, and for any (z1, t) ∼ (z0,0) includes a function u,
such that δ tu(z1) = u(z0). By construction of the functions, it must be that

(x, t)% (y,0) ⇐⇒ δ
tu(x)≥ u(y) ∀u ∈Uδ

(x, t)∼ (y,0) ⇐⇒ δ
tu(x)≥ u(y) ∀u ∈Uδ

and δ
tuy(x) = uy(y) for some uy ∈Uδ
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For any (z,τ), consider the sets {(y,0)∈X×T : (y,0)% (z,τ)} and {(y,0)∈X×T :
(z,τ) % (y,0)}. Both are non-empty, as (z,0) belongs to the first one and (0,0) in
the second one. Both sets are closed in the product topology. Their union is con-
nected, and hence there exists an element in their intersection, i.e, there exists a
y1 ∈ X such that (y1,0) ∼ (x, t). By monotonicity this y1 must be unique. There-
fore there must exist a continuous present equivalent utility representation for %.
We show this formally in the next two paragraphs.
Given % is complete, transitive and satisfies continuity, there exists a continuous
function F̄ :X×T→ R such that F̄(a)≥ F̄(b) if and only if a% b for a,b∈X×T.
(Following Theorem 1, Fishburn and Rubinstein [1982]).
We define G : X→ R as G(x) = F̄(x,0). The function G would be strictly mono-
tonic and continuous. Also define F : X×T→ R as F(x, t) = G−1(F̄(x, t)). As
any alternative has a unique present equivalent, F is well defined, is a monotonic
continuous transformation of F̄ (hence represents %) and F(x,0) = x for all x ∈X.
By definition the function F assigns to every alternative its present equivalent as
the corresponding utility. Therefore, the present equivalent utility representation is
continuous.
We will show that the function W defined below also assigns to every alternative
(z,τ) an utility exactly equal to its present equivalent.

W (x, t) = min
u∈Uδ

u−1(δ tu(x)) = F(x, t)

Consider any (z,τ) ∼ (y1,0). By definition of Uδ and by construction of its con-
stituent functions, it must be that for all u ∈Uδ , δ τu(z)≥ u(y1) and there exists a
function uy1 such that δ τuy1(z) = u(y1). This is equivalent to the following state-
ment: For all u ∈ Uδ , u−1(δ τu(z)) ≥ y1 and there exists a function uy1 such that
u−1

y1
(δ τuy1(z)) = y1.

Therefore, W (z,τ) = minu∈Uδ
u−1(δ τu(z)) = F(z,τ) is a continuous utility repre-

sentation of the relation %.

Proposition 1: Given the axioms A0-4, the representation form in (1.3) is unique
in the discounting function ∆(t) = δ t inside the present equivalent function.

Proof. We start with the case where ∆(t) is such that
∆(t + t1)

∆(t)
< ∆(t1) for some
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t, t1. Consider any singleton U = {u}.

(y, t) ∼ (x,0)

=⇒ u−1(∆(t)u(y)) = x

=⇒ ∆(t)u(y) = u(x)

=⇒ ∆(t + t1)u(y) =
∆(t + t1)

∆(t)
u(x)< ∆(t1)u(x)

=⇒ u−1(∆(t + t1)u(y)) < u−1(∆(t1)u(x))

=⇒ (x, t1) � (y, t + t1)

Hence, the relation implied by the representation contradicts Weak Present Bias.

Now assume the opposite, let there exists some t, t1 > 0 such that
∆(t + t1)

∆(t)
>

∆(t1) . Now suppose we started with a relation % which has (y, t) ∼ (x,0) as well
as (y, t + t1)∼ (x, t1) for all t, t1 and some x,y. (This does not necessarily mean that
the person’s preferences satisfy stationarity in the broader sense as we do not ask
this from all x,y.) We will show below that such preferences cannot be represented
by the functional form we started with for any set of functions U .

(y, t) ∼ (x,0)

=⇒ min
u∈U

(u−1(∆(t)u(y))) ≥ min
u∈U

(u−1(u(x))) = x

=⇒ ∆(t)u(y) ≥ u(x) ∀u ∈U

=⇒ ∆(t + t1)u(y) ≥
∆(t + t1)

∆(t)
u(x)> ∆(t1)u(x) ∀u ∈U

=⇒ u−1(∆(t + t1)u(y)) > u−1(∆(t1)u(x)) ∀u ∈U

=⇒ min
u∈U

(u−1(∆(t + t1)u(y))) > min
u∈U

(u−1(∆(t1)u(x)))

=⇒ (y, t + t1) � (x, t1)

This completes our proof.

Proposition 2: If U ,U ′ ⊂F are such that c̄o(U ) = c̄o(U ′), and the func-
tional form in (1.1) allows for a continuous minimum representation for both of
those sets, then, minu∈U u−1(δ tu(x)) = minu∈U ′ u−1(δ tu(x)).

Proof. We will prove this in 2 steps.
First we will show that for any set A, minu∈A u−1(δ tu(x)) = minu∈Ā u−1(δ tu(x)),
where Ā is the closure of the set A.
It is easy to see the direction that minu∈A u−1(δ tu(x))≥minu∈Ā u−1(δ tu(x)).
We will prove the other direction by contradiction. Suppose, minu∈A u−1(δ tu(x))>

82



A.1. Appendix to to Chapter 1

minu∈Ā u−1(δ tu(x)). This would imply that there exists v ∈ Ā\A and some ε >
0, such that v−1(δ tv(x)) + ε < u−1(δ tu(x)) for all u ∈ A. By definition of the
topology of compact convergence and given that v belongs to the set of limit
points of A, there must exist a sequence of functions {vn} ⊂ A which converges
to v in the topology of compact convergence , i.e, for any compact set K ⊂ R+,
limn→∞ supx∈K |vn(x)−v(x)|= 0. It can be shown that under this condition, v−1

n (δ tvn(x))
would also converge to v−1(δ tv(x)) where vn ∈U .55 This constitutes a violation of
v−1(δ tv(x))+ε < u−1(δ tu(x)) for all u∈A. Hence, it must beminu∈A u−1(δ tu(x))=
minu∈Ā u−1(δ tu(x)).
As a second part of this proof, we will show that for any set A, minu∈A(u−1(δ tu(x)))=
minu∈co(A)(u−1(δ tu(x))).
It is easy to see that minu∈A(u−1(δ tu(x)))≥minu∈co(A) u−1(δ tu(x)), as A⊂ co(A).
We will again use proof by contradiction to show the opposite direction. We as-
sume that there exists a ū ∈ c̄o(A) and (x, t) ∈ X×T, such that ū = ∑

n
i=1 λiui,

∑
n
i=1 λi = 1 and ū−1(δ sū(y))<mini u−1

i (δ sui(y)). This would imply that ui(ū−1(δ sū(y)))<
δ sui(y) for all i.
Now,

δ
sū(y) = δ

s
∑

i
λiui(y)

= ∑
i

λiδ
sui(y)

> ∑
i

λiui(ū−1(δ sū(y)))

= ū(ū−1(δ sū(y)))

= δ
sū(y)

This gives us a contradiction. Note that the equality right after the inequality comes
from the definition of ū.
Hence, we have, minu∈A u−1(δ tu(x)) = minu∈co(A) u−1(δ tu(x)).

Proposition 3: i) If there exists a concave function f ∈U , and if U1 is the sub-
set of convex functions in U , then minu∈U u−1(δ tu(x)) = minu∈U \U1 u−1(δ tu(x)).

ii) If u1,u2 ∈U and u1 is concave relative to u2, then, minu∈U u−1(δ tu(x)) =
minu∈U \{u2} u−1(δ tu(x)).

55As, vn→ v in the topology of compact convergence, vn→ v point wise, hence, δ tvn(x)→ δ tv(x).
Now, as v−1

n → v−1 compact convergence (proof later in the appendix), v−1
n (δ tvn(x))→ v−1(δ tv(x)).
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Proof. If a function u is convex,

u−1(δ tu(x)) = u−1(δ tu(x)+(1−δ
t)u(0))

≥ u−1(u(δ tx+(1−δ
t)0))

= δ
tx

Similarly for concave f , we would have, f−1(δ t f (x))≤ δ tx which completes the
proof of part (i). Note that this result is expected given concave functions give rise
to more conservative present equivalents.
For part (ii), note that

u−1
1 (δ tu1(x)) = u−1

1 (δ tu1(u−1
2 (u2(x))))

≤ u−1
1 (u1(u−1

2 (δ tu2(x))))

= u−1
2 (δ tu2(x))

Where the inequality arises from the fact that u1 is concave relative to u2.

Proposition 25. Eventual stationarity is satisfied by β -δ discounting, but not hy-
perbolic discounting.

Now for any x > z > 0 ∈ X , choose t1 > log 1
δ

(
u(x)
u(z)

)
.

t1 > log 1
δ

(
u(x)
u(z)

)
⇐⇒

(
1
δ

)
t1 >

u(x)
u(z)

=⇒ u(z) > δ
t1u(x)> βδ

t1u(x)

=⇒ βδ
tu(z) > βδ

t+t1u(x)

(z, t) � (x, t + t1)

Also, (x,0)∼ (xt , t) implies, u(x) = βδ tu(xt), which implies,

u(z) > δ
t1u(x) = βδ

t+t1u(xt)

(z,0) � (xt , t + t1)

This shows that β −δ does indeed satisfy A5.
Now consider the simple variant of Hyperbolic discounting model when α = γ = 1.
Fix any felicity function u and x > z > 0 ∈ X . We will show that there does not
exist t1,such that (z, t)� (x, t + t1) for all t ≥ 0.
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(z, t) � (x, t + t1) for all t ≥ 0

⇐⇒ u(z)
1+ t

>
u(x)

1+ t + t1
for all t ≥ 0

⇐⇒ 1+ t + t1
1+ t

>
u(x)
u(z)

for all t ≥ 0

⇐⇒ 1+
t1

1+ t
>

u(x)
u(z)

for all t ≥ 0

Note that the last statement is not possible, as for fixed t1 the LHS↓ 1 as t ↑ ∞,
whereas, the RHS is always a fixed number, that is strictly greater than one. Hence,
hyperbolic discounting does not satisfy A5.

Theorem 6: The following two statements are equivalent:
i) The relation % satisfies properties A0-A6.
ii) There exists a set Uδ of monotinically increasing continuous functions such

that
F(x, t) = min

u∈U
u−1(δ tu(x))

represents the binary relation %. The set U has the following properties: u(0) = 0

for all u∈U , supu u(x) is bounded above, infu u(x)> 0 ∀x, infu
u(z)
u(x)

is unbounded

in z for all x > 0.
Proof : Going from (ii) to (i) :

That (ii) implies Monotonicity, Discounting, Weak Present Bias and Continuity has
already been shown in the proof of Theorem 3.
Showing Eventual Stationarity: Given supu u(x) is bounded above and infu u(x)> 0
, for any choice of x,z > 0 and δ ∈ (0,1) there exists t1 > 0 big enough such that
infu u(z)> δ t1 infu u(x). This would imply that, for all u ∈U ,

u(z) > δ
t1u(x)

and, hence, (z,0)� (x, t1).
Now, for t > 0 consider xt such that (xt , t) ∼ (x,0). By the representation, this
implies that there exists u1 ∈U such that

δ
tu1(xt) = u1(x)

=⇒ δ
t+t1u1(xt) = δ

t1u1(x)< u1(z)

=⇒ min
u

u−1(δ t+t1u1(xt)) ≤ u−1
1 (δ t+t1u1(xt))< u−1

1 (u1(z)) = min
u

u−1(u(z))
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Hence, (z,0)� (xt , t + t1).
Similarly, for all u ∈U ,

δ
tu(z) > δ

t+t1u(x)

=⇒ min
u

u−1(δ tu(z)) > min
u

u−1(δ t+t1u(x))

Hence, (z, t)� (x, t + t1).

Showing Non-triviality: We have that infu
u(z)
u(x)

is unbounded in z for all x > 0.

Therefore, for any x, and t ∈ T, there exists z, such that

inf
u

u(z)
u(x)

> δ
−t

=⇒ u(z)
u(x)

> δ
−t ∀u ∈U

=⇒ δ
tu(z) > u(x) ∀u ∈U

=⇒ u−1(δ tu(z)) > u−1(u(x)) ∀u ∈U

=⇒ min
u

u−1(δ tu(z)) > min
u

u−1(u(x))

(z, t) � (x,0)

To go from the direction (i) to (ii) of Theorem 6, one needs to follow Lemma 26-28.

Lemma 26. Under Axioms A1-A6, for any (x0, t),(xt ,0) such that (x0, t) ∼ (xt ,0)
in the original relation, there exists u∈U such that δ tu(xt) = u(x0) and δ tu(z1)≥
u(z0) for all (z1, t) ≥ (z0,0). Moreover, u is strictly monotonic, continuous, and
u(0) = 0, u(1) = 1.

Proof. We will prove it for t = 1, x0,xt > 0 and then show the general guideline
for a general t.
We define the following procedure: Choose x∗0 = 1. Find x∗1 such that (x∗0,0) ∼
(x∗1,1) . We can do it because of the Non-Triviality assumption. Clearly, x∗1 = x1.
Next find x∗−1 = max{x−1,x′−1} where (x∗0,1) ∼v (x−1,0) and (x∗1,2) ∼v (x′−1,0).
The value x−1 > 0 exists because, (x∗0,0) � (x∗0,1) � (0,1), coupled with the fact
that % is continuous. Same with x′−1.
Note that x∗0 > x∗−1 by discounting. Next going in the opposite direction, we find
x∗2 = min{x2,x′2,x

′′
2}, where, (x∗1,0) ∼v (x2,1), (x∗0,0) ∼v (x

′
2,2) and (x∗−1,0) ∼v

(x′′2 ,3). Next we find x∗−2,x
∗
3,x
∗
−3,x

∗
4, ... sequentially. Thus one can find a sequence

...x∗−3 < x∗−2 < x∗−1 < x∗0 < x∗1 < x∗2...
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We will show that this sequence is unbounded above and converges below to 0 .
Consider any z < x∗0. By A5, there must exist t1 such that (z,0)� (x∗0, t1). and given
for any t > 0, (x0,0)% (x∗t , t), by monotonicity, it must hold that (z,0)� (x∗t , t+t1).
By definition of x∗−1, either (x∗−1,0)∼ (x∗0,1) or (x∗−1,0)∼ (x∗1,2), if not both. So,
by WPB, either (x∗0, t1) % (x∗−1, t1− 1) or (x∗1, t1 + 1) % (x∗−1, t1− 1), and hence,
either (z,0) � (x∗−1, t1− 1) . One can use the construction of the sequence, and
induction, here on, to show that, for any general 0 < i < t1, (z,0) � (x∗−i, t1− i).
Hence, it must be that x∗−t1 ≤ z, which proves that the sequence converges below
to zero. To show that the sequence is unbounded above, one uses a similar trick.
Consider z > x∗0. There must exist t2 such that (x∗0, t)� (z, t + t2) for all t ≥ 0, and
given for any t > 0, (x∗−t ,0)% (x∗0, t), by monotonicity, it must hold that (x∗−t ,0)%
(x∗0, t) � (z, t + t2). By definition of x∗1, (x∗1,1) ∼ (x∗0,0) � (z, t2). So, by WPB, it
must be that (x∗1,0) � (z, t2− 1). (z < x∗1 is trivial and hence neglected). One can
use the construction of the sequence, and induction, here on, to show that, for any
general 0 < i < t2, (x∗i ,0)� (z, t2− i). Hence, it must be that x∗t2 ≥ z, which proves
that the sequence diverges to infinity.
Consider any y0 ∈ (x∗0,x

∗
1). We find y′−1 such that (y′−1,0)∼ (y∗0,1). Finally,

y∗−1 = x∗0− (x∗0− y′−1)
(x∗0− x∗−1)

(x∗0− x−1)
∈ (x∗−1,x

∗
0).

The upper bound on y∗−1 comes from the fact that (x∗0 > y′−1) and the lower bound
comes from the fact that y′−1 is bounded below by x−1. Note that for y∗0, ŷ0 ∈
(x∗0,x

∗
1), y∗0 > ŷ0 if and only if y∗−1 > ŷ−1. And finally, for any y∗−1 ∈ (x∗−1,x

∗
0) there

exists a y∗0 ∈ (x∗0,x
∗
1) corresponding to it.

Next we will define an inductive procedure to find the other points in such se-
quences. Let S be the set of all such sequences. The induction hypothesis is that
for every y∗0 ∈ (x∗0,x∗1) we have already defined a corresponding chain56 Si = y∗−i <
...y∗−3 < y∗−2 < y∗−1 < y∗0 < y∗1 < y∗2.. < y∗i−1, i≥ 2 such that i) y∗n ∈ (x∗n,x

∗
n+1) for all

the elements of all the chains. ii) If we compare the nth elements of 2 chains they
are always similarly ranked, regardless of the value of n. iii) If the last element
constructed is y∗i for i ∈ N then, any point in (xn,xn+1) for n ∈ {−i, ..i−1} is part
of exactly one chain in Si.
Finding y∗i where i≥ 1: Note that we can write x∗i = min{x1

i ,x
2
i ,x

3
i ...x

2i
i }57, where

(x1
i ,1)∼ (x∗i−1,0),(x

2
i ,2)∼ (x∗i−2,0)..,(x

2i−1
i ,2i−1)∼ (x∗−i+1,0). Similarly, x∗i+1 =

min{x1
i+1,x

2
i+1,x

3
i+1...x

2i+1
i+1 }. Define, x′i+1 = min{x1

i+1,x
2
i+1,x

3
i+1...x

2i
i+1}≥ x∗i+1. De-

56A set paired with a total order.
57We are using one extra comparison than that existed in the original construction of the sequence,

and this is to make sure that x∗i has 2i comparisons in its construction, just like y∗i . Given the struc-
ture of the sequence we can always add more comparisons than the original, but never have fewer
comparisons.
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fine y′i = max{y1
i ,y

2
i ,y

3
i , ...y

2i
i } where (y1

i ,1) ∼ (y∗i−1,0),..,(y
2i
i ,2i) ∼ (y∗−i,0). Fi-

nally, y∗i = x∗i +(y′i− x∗i )
(x∗i+1− x∗i )
(x′i+1− x∗i )

∈ (x∗i ,x
∗
i+1). By monotonicity, yn

i ∈ (xn
i ,x

n
i+1)

for all n ∈ {1,2, ..,2i}. Therefore, y
′
i ∈ (x∗i ,x

′
i+1). Therefore, y∗i ∈ (x∗i ,x

∗
i+1), the

upper bound comes from the fact that x′i+1 > y′i and the lower bound comes from
the fact that y′i is bounded below by x∗i . Note that for y∗0, ŷ

∗
0 ∈ (x∗0,x

∗
1), y∗0 > ŷ∗0 if

and only if y∗i > ŷ∗i . And finally, for any ŷ∗i ∈ (x∗i ,x
∗
i+1) there exists a ŷ∗0 ∈ (x∗0,x

∗
1)

corresponding to it. The last part can be shown constructively.
Finding y∗−i−1 where i ≥ 1: Note that x∗−i = max{x1

−i,x
2
−i,x

3
−i...x

2i+1
−i }58, where

(x1
−i,0)∼v (x∗−i+1,1),(x

2
−i,0)∼v (x∗−i+2,2)..,(x

2i
−i,0)∼v (x∗i ,2i). Similarly, x∗−i−1 =

max{x1
−i−1,x

2
−i−1, .. x2i+1

−i−1,x
2i+2
−i−1}.

Define, x′−i−1 = max{x1
−i+1,x

2
−i+1,x

3
−i+1, ...x

2i+1
−i+1}≤ x∗−i−1.

Define y′−i−1 = max{y1
−i+1,y

2
−i+1,y

3
−i+1, ...y

2i+1
−i+1} where (y1

−i+1,0)∼v (y∗−i+2,1), ..

..,(y−i+1,0) ∼v (y∗i ,2i+ 1). Finally, y∗−i−1 = x∗−i− (x∗−i− y′−i−1)
(x∗−i− x∗−i−1)

(x∗−i− x′−i−1)
∈

(x∗−i−1,x
∗
−i). By monotonicity, yn

−i−1 ∈ (xn
−i−1,x

n
−i) for all n∈{1,2, ..,2i+1}. There-

fore, y
′
−i−1 ∈ (x

′
−i−1,x

∗
−i). Therefore, y∗−i−1 ∈ (x∗−i−1,x

∗
−i), the upper bound comes

from the fact that x∗−i > y′−i−1 and the lower bound comes from the fact that y′−i−1
is bounded below by x′−i−1. Note that for y∗0, ŷ0 ∈ (x∗0,x

∗
1), y∗0 > ŷ0 if and only if

y∗−i−1 > ŷ−i−1. And finally, for any ŷ−i−1 ∈ (x∗−i−1,x
∗
−i) there exists a ŷ0 ∈ (x∗0,x

∗
1)

corresponding to it. The last part can be shown inductively. Fix ŷ′−i−1. Find the
points (whenever possible) zn ∈ (x∗n,x∗n+1) for n ∈ {−i,−i+1,−i+2, ..i} such that
(ŷ′−i−1,0) ∼v (zn,n+ i+ 1). Note that we can always find atleast one such zn.59

Next, using the induction hypothesis we can map all the zn’s to a y∗0 ∈ (x∗0,x
∗
1). We

take the maximum of all such y∗0s and define it as ŷ∗0. One can check that start-
ing from this (ŷ−i+1, ..ŷ0, ŷ1..ŷi) would indeed result in ending with the ŷ′−i−1 we
started with. 60

Now, define u on X as follows: Set u1(x∗0) = 1. For the sequence ..,x∗−1,x
∗
0,x
∗
1, .., let

u(x∗i ) = δ i for all positive and negative integers i. Next, let us define u! on (x∗−1,1)
as any continuous and increasing function with inf(x∗−1,1)u1(x) = δ = u(x∗−1) and

58As before, we are using one extra comparison than that existed in the original construction of
the sequence.

59There exists k such that (x∗−i,0) ∼v (x∗−i+k,k). In general, (x∗−i,0) %v (x∗−i+k,k).This implies
(ŷ′−i,0) �v (x∗−i+k,k) and (x∗−i+1+k,k) �v (ŷ′−i,0). Hence, there exists z−i+k ∈ (x∗−i+k,x

∗
−i+k+1)

such that (ŷ′−i,0)∼v (zn,n+ i).
60Suppose not. Given our definition of ŷ0, starting from this (ŷ−i+1, ..ŷ0, ŷ1..ŷi) would give us

ŷ′′−i ≥ ŷ′−i. Let, ŷ′′−i > ŷ′ and (ŷ′′−i,0)∼ (ŷ−i+k,k) for ŷ−i+k ∈ (x−i+k,x−i+k+1), this being the relation
that binds while defining ŷ′′−i. Given, (ŷi+k,k)�v (ŷ′−i,0) and (ŷ′−i,0)� (x′−i,0)%v (x∗−i+k,k), there
would exist (ŷ′′−i,0)∼ (ŷ∗−i+k,k) for ŷ−i+k ∈ (x∗−i+k,x

∗
−i+k+1) and ŷ−i+k < ŷ′−i+k which would be a

contradiction.
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sup(x∗−1,1)
u1(x) = 1 = u(1). We can extend each dual sequence with some y0 ∈

(x∗−1,1) as u(yi) = δ iu(y0). Finally, define U(x, t) = δ t u1(x)
u1(1)

to ensure u1(1) = 1

(note that u1(1)> 0).
It is important to note here that the utility defined retains all the monotonicity, dis-
counting and present bias properties. Consider any (y, t) % (x,0) in the original
relation. The element x must belong to one of the sequences defined above. If xt

is the corresponding element to the right in that sequence separated by a distance
of t, then, by construction we must have u(x) = δ tu(xt) and (x,0) % (xt , t). By
monotonicity, it would be true that y > xt and hence, u(x)< δ tu(y).
Now we will extend the logic above to a more general case of (x0, t),(xt ,0) such
that (x0, t)∼ (xt ,0) for t > 1.
For i ∈ {1, ..t}, let xi be such that (x0,0) ∼ (xi, i). We define the following pro-
cedure: Choose x∗0 = x0, the same x0 that was provided in the statement of this
Lemma. Find x∗1 such that (x∗0,0) ∼ (x∗1,1) . Of course, x∗1 = x1. Next use the
iterative format used in Lemma 2 to find x∗2,x

∗
3, ..x

∗
t .

At each of these steps, by WPB, one would get, x∗i = xi, ending with x∗t = xt . We
provide a brief outline for this, the proof requires induction.
Let, x∗2 = min{x2,x′2}, where, (x2,2)∼v (x∗0,0) and (x′2,1)∼v (x∗1,0). By WPB, the
latter implies, (x′2,2)%v (x∗1,1). By definition of x∗1, (x∗0,0)∼v (x∗1,1). Putting it all
together,

(x′2,2)%v (x∗1,1)∼ v(x∗0,0)∼v (x2,2)

Hence, x′2 ≥ x2, and x∗2 = x2.
Similarly, let x∗3 = min{x3,x′3,x

′′
3}, where, (x3,3) ∼v (x∗0,0), (x

′
3,2) ∼v (x∗1,0) and

(x′′3 ,1)∼v (x∗2,0).

(x′3,3)%v (x∗1,1)∼ v(x∗0,0)∼v (x3,3)

Also,

(x′′3 ,3)%v (x∗2,2)∼ v(x∗0,0)∼v (x3,3)

And so on. Note that the sequence in which the elements are being found till now
has been different that that in Lemma 2. Here on, find the sequence elements in the
following order x∗−1,x

∗
t+1,x

∗
−2,x

∗
t+2, .... using the iterative procedure as Lemma 2.

For any y0 ∈ (x∗0,x
∗
1), find similar sequences in the same order as we derived the

sequence x∗.
Now, define u on X as before to finish the proof. Note that any u such constructed
is strictly monotonic, continuous, and u(0) = 0, u(1) = 1.
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Lemma 27. Under Axioms A1-A6, there exists a set of functions U such that,
for all u ∈ U , u is strictly monotonic, continuous, and u(0) = 0, u(1) = 1, and
δ tu(z1) ≥ u(z0) for all (z1, t) ≥ (z0,0). Moreover, i) for any (x, t) ∼ (y,0), there
existsu∈U such that δ tu(xt)= u(x0). ii) For x> 0, infu∈U u(x)> 0, supu∈U u(x)<
∞

Proof. Consider the set U consisting of all functions u constructed from all the
indifference relations ∼ in (26). It would suffice to show that infu∈U u(x) > 0,
supu∈U u(x)< ∞.
First we will show that infu∈U u(x) > 0. This is trivial for points above x = 1.
Consider 0 < x < 1. Suppose we are constructing a function that would respect the
relation (x0,0)∼ (xt , t).
By A5, there exists t1 such that (x, t) � (1, t + t1) for all t ≥ 0 and for any yi such
that such that (1,0) ∼ (yi, i) for i ≥ 0, (x,0) � (yi, t1 + i). Consider the following
cases:

CASE 1: Consider x0 < x < 1. By A5, there exists t ≥ 1, such that in the se-
quence constructed, xt−1 < x≤ xt . Note that given the construction of the sequence
for (x,0)∼ (xi, i), it must be that for any (xp,xq), p < q, (xp,0)% (xq,q− p)). By
monotonicity, using xt−1 < x ≤ xt , for any point xi in the sequence , |i| ≤ t, one
has (xi,0)% (xt , t− i)% (x, t− i) . Hence, for any element xi of the sequence with
i≤ 0, (xi,0)% (x, t− i)� (1, t1+ t− i), with the last inequality coming from A5.61

Hence, the x(t+t1)th element of the sequence must be weakly to the right of 1. Thus,

u(x)≥ 1
δ t1+1 .

CASE 2: Consider x< x0 < 1. By construction of the dual sequence {..x−1,x0,x1, ..},
it must be that x−t1 ≤ x and xt1 ≥ 1. Thus, u(x)≥ 1

δ 2t1
. 62

Hence, u(x)≥ 1
δ 2t1

for all u ∈U .

Now, showing that supu∈U u(x) < ∞. This is trivial for points x ≤ 1. Consider
x > 1. By A4, there exists t1 such that (1,0) � (x, t1) and for any y such that
(x,0) ∼ (y, i), i ≥ 0 ,(1,0) � (y, t1 + i). Suppose we are constructing a function
that would respect the relation (x0,0) ∼ (xt , t), and in the process construction a
dual sequence {..x−1,x0,x1, ..}. There are two cases as before.

CASE 1: Consider x0 > x > 1. By A4, there exists t ≥ 1, such that in the
sequence constructed, one has x−t ≤ x < x−t+1. As before, given the construction
of the sequence for (x,0)∼ (xi, i), it must be that for any (xp,xq), p < q, (xp,0)%

61The property we are using implicitly without proving is the following: In our constructed se-
quences, xi always is a direct reflection from {x0,x−1,x−2, ..} when i is positive, and a direct reflec-
tion of {x0,x1,x2..}when i is negative. This follows from WPB.

62One can make the bound tighter.
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(xq,q− p).) By monotonicity, using x−t ≤ x, for any point xi in the sequence ,
|i| ≤ t, (x,0) % (x−t ,0) % (xi, i+ t) . Hence, for any element xi of the sequence

with i≥ 0, (1,0)� (xi, t1 + i+ t). Thus, u(x)≤ 1
δ t1+1 .

CASE 2: Consider x> x0 > 1. By construction of the dual sequence {..x−1,x0,x1, ..},
it must be that x−t1 ≤ 1 and xt1 ≥ x. Thus, u(x)≤ 1

δ 2t1
.

Hence, u(x)≤ 1
δ 2t1

for all u ∈U .

Lemma 28. Under Axioms A1-A6, there exists a continuous present equivalent
utility function F : X×T→ R that represents %. F is monotonically increasing in
x and monotonically decreasing in t.

Proof. The first part of this proof is very similar to Lemma 24, and we will omit it
here. By construction of the set U , V (x, t) = minv∈U v−1(δ tv(x)). Moreover, for
all u ∈U , u(0) = 0, u(1) = 1, infu∈U u(x)> 0, supu∈U u(x)< ∞ for x > 0.
Finally, from A6, for any x > 0, and t ∈ T, there exists z such that (z, t)� (x,0).

δ
tu(z) > u(x) ∀u ∈U

=⇒ u(z)
u(x)

> δ
−t ∀u ∈U

=⇒ inf
u

u(z)
u(x)

≥ δ
−t ∀u ∈U

But we had started with arbitrary t. Hence, infu
u(z)
u(x)

is unbounded above for any

x > 0.

Theorem 8: The following two statements are equivalent:
i) The relation % satisfies properties B0-B5.
ii) There exists a continuous function F : X×P×T→ R such that (x, p, t) %

(y,q,s) if and only if F(x, p, t) ≥ F(y,q,s). The function F is continuous, in-
creasing in x, p and decreasing in t ∈ T. There exists a unique δ ∈ (0,1) and
a set U of monotinically increasing continuous functions such that F(x, p, t) =
minu∈U u−1(pδ tu(x)) and u(0) = 0 for all u ∈U .

Proof. Showing that (ii) implies (i) :
Continuity and monotonicity of % follow from the continuity and monotonicity of
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F . Weak Present Bias follows as before.
B5 can be shown in the following way:

(x, pθ , t) % (x, p, t +D)

=⇒ min
u

u−1(pθδ
tu(x)) ≥ min

u
u−1(pδ

t+Du(x))

=⇒ θ ≥ δ
D

=⇒ min
u

u−1(qθδ
su(y)) ≥ min

u
u−1(qδ

s+Du(y))

=⇒ (y,qθ ,s) % (y,q,s+D)

We will prove the direction (i) to (ii) in the following three steps.
Step 1: Recall the Probability Time Tradeoff axiom: for all x,y ∈ X, p,q ∈

(0,1],and t,s ∈ T, (x, pθ , t)% (x, p, t +∆) =⇒ (y,qθ ,s)% (y,q,s+∆).
This axiom has calibration properties that we will use. Given Monotinicity, (x,1,0)�
(x,1,1) � (x,0,0) for any x ∈ X. By continuity, there must exist δ ∈ (0,1) such
that (x,δ ,0)∼ (x,1,1). Note that Probability-Time Tradeoff Axiom helps us write
(x,δ ,τ + 1) ∼ (x,1,τ) for all x ∈ X and τ ∈ T, and further extend it to (x,q, t) ∼
(x,qδ t ,0). For integer t’s this follows by induction.

For any integer b > 0, there exists ∆(1
b) = δ1 ∈ P such that (x,δ1,0) ∼ (x,1,

1
b
).

Now applying Probability Time Tradeoff (PTT) repeatedly b times, (x,1,1) ∼
(x,δ b

1 ,0), which implies, δ1 = δ
1
b . For any ratio of positive integers (rational num-

ber) t =
a
b

, ∆(a
b) = δ

a
b . This argument can be extended to all real t > 0. This

crucially helps us pin down δ as the discount factor.
Henceforth, we are going to concentrate on finding a representation of the reduced
domain of X× [0,1]. Note that this reduced domain can also be conceptually seen
as the set of all binary lotteries that have zero as one of the outcomes.

Step 2: The rest of the proof will have a similar flavor to the ones the reader has
already encountered. For every x∗ ∈X, we are going to provide an increasing utility
function u on [0,M] which would respect all the relations of the form (x, p)% (y,1),
i.e, have pu(x)≥ u(y) and also have pu(y) = u(x∗) for all (x∗,1)∼ (y, p).
Fix x∗, u(0) = 0 and u(x∗) = 1. For x ∈ (x∗,M], define

u(x) = {1
p

: (x, p)∼ (x∗,1)} (A.5)

and,

xq = {x : (x,q)∼ (x∗,1)} (A.6)

The expressions in (A.5) and (A.6) exist due to the continuity of %.
Now, for x ∈ (0,x∗), define
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u(x) = inf{p(q) : (xq,qp(q))∼ (x,1),q≤ 1} (A.7)

First, we will show that the infimum in (A.7) can be replaced by minimum. Con-
sider a sequence of probabilities {pn} that converge below to p∗, and (xqn , pnqn)∼
(x,1). Note that qn ∈ [qmax,1] where (x∗,1) ∼ (M,qmax). Hence, {qn} must be
bounded by this closed interval, and must have a convergent subsequence {qnk}.
Let q∗ be the corresponding limit, and we know that q∗ ≥ qmax. Similarly, xq can be
considered continuous in q (this also follows from the continuity of %). Therefore,
xqnk
→ xq∗ as qnk → q∗. Also, it must be that pnk → p∗ as qnk → q∗. Thus, we have

(xqnk
, pnk qnk) ∼ (x,1) for all elements of {nk}. Then, using the continuity of %,

(xq∗ , p∗q∗)∼ (x,1).

u(x) = inf{p : (xq, pq)∼ (x,1)}= min{p : (xq, pq)∼ (x,1)}= p∗

Now we will show that the utility defined in (A.5) and (A.7) has the following
properties : 1) It is increasing. 2) p1u(x1)= u(y1) 3) (x, p)% (y,1), implies pu(x)≥
u(y) 4) u is continuous. The first two properties are true by definition of u. We will
show the third in some detail. Consider (x, p) % (y,1). In the case of interest,
p < 1 and hence, x > y. Now let x > y > x∗. Let, u(y) = 1/p1, which means,
(y, p1)∼ (x∗,1) . Given (x, p)% (y,1), we must have

(x, pp1)% (y, p1)∼ (x∗,1)

Hence,

u(x) ≥ 1
pp1

⇐⇒ pu(x) ≥ 1
p1

= u(y)

If, x > x∗ > y, the proof follows from the way the utility has been defined.
Let y < x < x∗. Let, u(x) = p1, which means, (xq, p1q)∼ (x,1) for some xq. Given
(x, p)% (y,1), we must have

(xq, p1qp)% (x, p)% (y,1)

Hence, u(y)≤ pp1.
Now we turn to proving the continuity of u. The continuity at x∗ from the right is
easy to see.
Next, for any r ∈ (0,1), define

f (r) = sup{x ∈ [0,x∗) : (xq,qr)∼ (x,1)} (A.8)
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The supremum can be replaced by a maximum, and the proof is similar to the one
before. Suppose there is a sequence of {xn} that converges up to a value x̂, and,
(xq(n),q(n)r) ∼ (xn,1). Note that q(n) lies in a closed interval, and hence has a
convergent subsequence that converges to a point in that interval. Let us call this
point q̂. Now, x is continuous in q (in the usual sense), and hence, xn and xq(n) also
has a convergent subsequence. The convergent subsequence {xq(n)} and {xn} must
have the same limit point, let us call it xq̂, a point in [x∗,M]. Hence, the supremum
in (A.8) must have been attained from xq̂, and hence the supremum can be replaced
by a maximum. The f function is well defined, strictly increasing and is the inverse
function of u over r ∈ (0,1). This function can be used to show the continuity of u
at the point x∗.
Finally, the function u can be easily normalized to have u(M) = 1.
Step 3: In this step, we construct the U set as in Theorem Theorem 3, to complete
the proof.

Theorem 10: The following two statements are equivalent:
i) The relation % on [0,∞)T satisfies properties D0-D5.
ii) For any δ ∈ (0,1), there exists a set Uδ of monotinically increasing contin-

uous functions such that

F(x0,x1, ..,xT−1) = x+
T−1

∑
1

min
u∈Uδ

u−1(δ tu(xt))

represents the binary relation %. The set Uδ has the following properties: u(0) = 0
and u(M) = 1 for all u ∈Uδ . F(.) is continuous.

Proof: Going from (ii) to (i), we will show how the representation satisfies D5
and the second property in D2.
Suppose, (x0,x1, ..,xT−1) and (y0,y1, ..,yT−1) are orthogonal. Therefore,

F(x0 + y0,x1 + y1, ..,xT−1 + yT−1) = F(x0,x1, ..,xT−1)+F(y0,y1, ..,yT−1)

= F(z0,0, ..,0)+F(z′0,0, ..,0)

= z0 + z′0
= F(z0 + z′0,0, ..,0)

To see how Discounting can be derived, start by assuming y0 > x > 0, and choose
a function u1 ∈U . As δ ∈ (0,1), there must exist t such that δ tu1(y0)< u1(x) and
hence, u−1

1 (δ tu1(y0)) < x. For any sequences (y1,y2,y3, ..ym) and (n1,n2, ..,nm),
where, (0, ..0, yi−1︸︷︷︸

in period ni

,0..,0)% (yi,0, ..,0) ∀i∈{1,2, ...,m}, one must have δ niu1(yi)≥
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u1(yi−1) ∀i ∈ {1,2, ...,m}.
Multiplying all these inequalities gives us,

δ ∑niu1(y0) ≥ u1(ym)

⇐⇒ ym ≤ u−1
1 (δ ∑niu1(y0))

= u−1
1 (δ tu1(y0))

< u−1
1 (u1(x))

= x

=⇒ ym ≤ x

Now to show the proof for the direction (i) to (ii), we start by following the
same steps we used in the proof of Theorem 3 to derive the set Uδ . There are
two points to be noted during the construction of functions in Uδ . First, only
comparisons upto lengths of T −1 periods need to be considered. Secondly, in the
construction of each function u∈Uδ , the fact that the interative construction spans
over R≥0 is guaranteed by the second part of the Discounting axiom. The additive
representation across periods follows from using induction and the D5 axiom.

Theorem 5: Let %1 and %2 be two binary relations which allow for minimum
representation w.r.t sets Uδ ,1 and Uδ ,2 respectively. The following two statements
are equivalent:

i) %1 allows a higher premium to the present than %2.
ii) Both Uδ ,1 and Uδ ,1∪Uδ ,2 provide minimum representations for %1.

Proof. The direction from (i) to (ii): Consider any (x, t)∈X×T such that (x, t)∼1
(y,0). Using (i), we must have, (x, t)%2 (y,0).
Hence,

min
u∈Uδ ,2

u−1(δ tu(x)) ≥ y

=⇒ min
u∈Uδ ,1∪Uδ ,2

u−1(δ tu(x)) = y

Hence,

min
u∈Uδ ,1∪Uδ ,2

u−1(δ tu(x)) = min
u∈Uδ ,1

u−1(δ tu(x)) (A.9)

To go in the opposite direction, let us assume, (x, t)%1 (y,0).
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Given, (A.9), it must be that

min
u∈Uδ ,1∪Uδ ,2

u−1(δ tu(x)) = min
u∈Uδ ,1

u−1(δ tu(x))≥ y

=⇒ u−1(δ tu(x)) ≥ y ∀u ∈Uδ ,1∪Uδ ,2

=⇒ u−1(δ tu(x)) ≥ y ∀u ∈Uδ ,2

=⇒ min
u∈Uδ ,2

u−1(δ tu(x)) ≥ y

Hence, (x, t)%2 (y,0), which completes the proof.

Proposition 29. Let fn be a set of bijective, increasing, continuous functions. Let
fn → f “locally uniformly”/ compactly (equivalent notions in Rn.), where f is
bijective, increasing, continuous. Then, f−1

n → f−1 compactly.

Proof. Consider the composite function gn = fno f−1. Note that gn is also bijec-
tive, increasing, continuous. As fn converges locally uniformly to f , gn converges
locally uniformly to the identity function g(x).
To see this, note that for any ε1 > 0

sup
x∈[c,d]

|gn(x)−g(x)| = sup
x∈[c,d]

| fn( f−1(x))− f ( f−1(x))|

= sup
y∈[ f−1(c), f−1(d)]

| fn(y)− f (y)|

≤ ε1

for n≥ N0 for some N0.
Choose an interval [a,b]. Now, there would exist n1,n2 such that gn(a−1)≤ a and
gn(b+ 1) > b for n ≥ n1 and n ≥ n2 respectively. Similarly, there exists n3 such
that supx∈[a−1,b+1] |gn(x)−g(x)|< ε for n≥ n3.
Finally, for N ≥ max{n1,n2,n3}

sup
x∈[a,b]

|g−1
n (x)−g(x)| ≤ sup

x∈[gn(a−1),gn(b+1)]
|g−1

n (x)− x|

= sup
t∈[a−1,b+1]

|g−1
n (gn(t))−g(t)|

= sup
t∈[a−1,b+1]

|t−g(t)|

< ε

Therefore, g−1
n = f o f−1

n converges locally uniformly to the identity function. There-
fore, f−1

n converges locally uniformly to f−1.
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A.2 Appendix to Chapter 3

A.2.1 Diminishing Impatience does not imply the Certainty Effect

We start by providing a basic intuition of why DI as characterized by (3.4) fails
to imply the certainty effect. To complete a proof in the direction from DI to
certainty effect one is required to approximate arbitrary probabilities used in lot-
teries by the total hazard rate of termination over one or multiple periods. More

specifically, one needs to approximate the ratio of probabilities
g(p)
g(pq)

,
g(1)
g(q)

in the

relation (3.2) by the relative hazard rates between two consecutive time-periods

in (3.4),
g((1− r)t)

g((1− r)t+1)
,

g(1)
g(1− r)

respectively, for some hazard rate r. Given (3.4),

we are restricted to establishing the certainty effect relation for p,q combinations
which can be approximated as integer exponents of each other, hence the result
does not generalize to the certainty effect. Under DISDI we are approximating
g(p)
g(pq)

,
g(1)
g(q)

by the relative hazard rates between arbitrarily spaced time-periods

in (3.4),
g((1− r)t)

g((1− r)t+k)
,

g(1)
g((1− r)k)

. Hence, we are allowed to approximate p,q by

different integer exponents of the hazard rate and hence rational exponents of each
other (for example, when, p = rk,q = rt , then p = q

k
t ). Given the rationals are

dense in reals (and the integers are not!), a sequence of
k
t

’s can approximate lnq p
and this allows the relation from time to risk be established for general p,q and
continuous g. The following counter-example provides the vital step that DI does
not imply DISDI.

If (3.4) implied (3.2), then (3.4) would also imply that ∀r ∈ (0,1) and ∀m,n∈N

g(rm+n)> g(rm)g(rn) (A.10)

We rewrite this problem in an additive form by defining f (x) =−log(g(e−x))⇐⇒
g(x) = e− f (−logx). Then f : (0,∞)→ (0,∞) is differentiable and increasing, just
like the function g. The inequalities under consideration are now:

∀t ∈ N and∀r ∈ (0,1), g(rt+1) > g(r)g(rt)

⇐⇒ e− f(−log(rt+1)) > e− f (−log(rt))e− f (−log(r))

⇐⇒ f (−(t +1)log(r)) < f (−tlog(r))+ f (−log(r))

Now, defining x :=−log(r) ∈ (0,∞) for r ∈ (0,1).

f ((t +1)x)< f (tx)+ f (x) (A.11)
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Further, the boundary conditions g(0) = 0 and g(1) = 1 translate to f (0) = 0 and
f (∞) = ∞.63

Similarly, (A.10) converts to

f (mx+nx)< f (mx)+ f (nx) ∀x ∈ (0,∞)and ∀m,n ∈ N (A.12)

Summing it up, (3.4) implies (A.10), if and only if (A.11) implies (A.12). The
next step is to propose a function f which would satisfy (A.11) on all points of its
domain, but violate (A.12) for some x ∈ R and some m,n ∈ N.

Instead of providing the function f , we propose it’s derivative h, so f can be
calculated as f (x) =

∫ x
0 h(x)dx.64 Let, k = 20

1+sin(π/2−.0001) and δ = 50kπ cos(π/2−
.0001)≈ .157.

Let,

h(x) =



11+(1− x)δ For x < 1
1+ k

2 +
k
2 sin100π(1+ π/2−.0001

100π
− x) For 1≤ x≤ 1.005+ π/2−.0001

100π

1 For 1.005+ π/2−.0001
100π

< x < 2− .005
4+3sin100π(x−2) For 2− .005≤ x≤ 2+ .005
7 For 2+ .005 < x < 2.5− .005
4+3sin100π(2.5− x) For 2.5− .005≤ x≤ 2.5+ .005
1 For 2.5+ .005 < x < 3− .005
4+3sin100π(x−3) For 3− .005≤ x≤ 3+ .005
7 For 3+ .005 < x < 5− .005
4+3sin100π(5− x) For 5− .005≤ x≤ 5+ .005
1 For x > 5+ .005

f is increasing, twice differentiable and f (∞) = ∞. h(x) is plotted in Figure A.1.

We next show that (A.11) holds.

Lemma 30. ∀t∈ N, ∀x ∈ R,
∫ x

0 h(x)dx >
∫ (t+1)x

tx h(x)dx.

Proof. The most intuitive way to check the claim would be to notice that the sinu-
soids introduced hardly perturb the area under the curve. Figure A.2 illustrates the
point in a more clear fashion by considering the function h for a small part of the
real line. For all practical purposes, one could go about checking the inequalities
by replacing the sinusoid (in black) in Figure 1 by a corresponding discontinuous

63Using the extended real line (R∪∞)
64Recall that f (0) = 0.
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Figure A.1: The function h.

function(h̄(x) = 7 for x ≤ 2.5, h̄(x) = 1 for x > 2.5 as drawn in red). The area
between the two curves in [2.495,2.5] is only (.005∗3− 3

100π
)≈ .005. Therefore,

as long as the inequalities hold with a large enough margin, this intuitive method
of approximating sinusoids with flat lines works fine. The area between the two
curves in [2.5,2.505] is also (.005 ∗ 3− 3

100π
). Thus, the two approximations in

[2.495,2.505] are equal and opposite in direction, and the areas under the red and
black curves in this region are equal. During our analysis, in some cases there
will be multiple approximations in opposite directions which would partially or
completely cancel each other out.

Figure A.2: Function h approximated in a sinusoidal region

Utilizing this intuition more rigorously, one can create upper bounds and lower
bounds on

∫ (t+1)x
tx h(x)dx and

∫ x
0 h(x)dx respectively to complete the proof.

For 0 < x ≤ 1,
∫ x

0 h(x)dx >
∫ (t+1)x

tx h(x)dx is obvious, as [0,x] contains the highest
values obtained by h(x) on the real line.
For, 1 < x ≤ 5

3 ,
∫ x

0 h(x)dx =
∫ 1

0 h(x)dx+
∫ x

1 h(x)dx > 1
2(11+ 11+ δ )+ (x− 1) =
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10 + δ

2 + x.65 The inequality holds because h(x) ≥ 1 with strict inequality for
1≤ x < 1.005+ π/2−.0001

100π
, and hence

∫ x
1 h(x)dx > x−1. In the interval [tx,(t+1)x],

h(x) ≤ 7 and after mutual canceling out there are no more than 3 sinusoidal per-
turbations which could increase the area under the curve. Hence,

∫ (t+1)x
tx h(x)dx <

7x+3(.015− 3
100π

) = 6x+x+3(.015− 3
100π

)≤ 6(5
3)+x+3(.015− 3

100π
) = 10+

x+3(.015− 3
100π

).
For 5

3 ≤ x≤ 2,
∫ x

0 h(x)dx > 10+ δ

2 +x as before. On the other hand, using the same
line of logic as before,

∫ 2x
x g(x)dx< 1.x+6[(4−3)+(2.5−2)]+3.(.015− 3

100π
) =

9+x+3.(.015− 3
100π

). Similarly,
∫ 3x

2x h(x)dx≤ 1.x+6[5−2.5
3 ]+3.(.015− 3

100π
)=

10+ x+3.(.015− 3
100π

).
Similarly for larger values of x, it can be shown that

∫ x
0 h(x)dx >

∫ (t+1)x
tx h(x)dx.

(follows trivially for x≥ 5.)

Now complete the counter-example:∫ 2

0
h(x)dx< 12+

δ

2
+{.01∗10+(.015− 3

100π
)}< 14−2(.015− 3

100π
)=

∫ 5

3
h(x)dx

The first inequality follows from setting an upper bound on the sinusoidal pertur-
bation introduced around 1.66 Therefore, f (5) > f (2)+ f (3), which provides us
with the counter-example to equation (A.12) and hence, to equation (A.10). In
other words, as (A.11) does not imply (A.12), (3.4) does not imply (A.10), and
hence, (3.4) does not imply (3.2).
That is, even if for all t ∈N and for all r ∈ (0,1) : g((1−r)t+1)> g((1−r)t)g((1−
r)) it does not imply that ∀p,q ∈ (0,1): g(pq)> g(p)g(q) .

A.3 Appendix to Chapter 4

Cooperation in low δ treatments

The high and low discount factors would have different predictions under reputa-
tion equilibrium. First consider, δ ≤ 3/8. Any egoistic player who believes that the
other player conditionally cooperates till first defection with probability ρ0, con-
templates the following before making a choice in the first period of the game:
Suppose the subject is in Period 1. The lowest possible payoff from Defecting right
away in this game is

65δ = 50kπ cos(π/2− .0001) = .157 (approximately)
66This particular sinusoid dies down after 1.005+ π/2−.0001

100π
< 1.01 and never rises above the

h(x) = 1 line by more than 6 units.
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Table A.2: Cooperation by treatment and period, split by order of treatments

Period1 Period2 Period3 Period4 Period5 Average
1 39.19 29.05 27.03 23.65 12.16 26.22
2 34.46 18.24 15.54 10.14 4.73 16.62
3 22.30 13.51 15.54 15.54 10.81 15.54
4 14.86 7.43 12.16 14.86 14.19 12.70
1 26.72 21.55 18.10 12.07 6.90 17.07
2 15.52 14.66 15.52 12.93 7.76 13.28
3 17.24 12.93 13.79 18.97 15.52 15.69
4 20.69 16.38 16.38 17.24 19.83 18.10
The first 4 rows are from sessions run in decreasing order of δ .

The last 4 rows are from sessions run in increasing order of δ

ΠD = ρ0.2600+(1−ρ0)1200+1200(δ +δ
2 +δ

3 +δ
4)

The highest possible payoff from Cooperating is bounded above by 67

ΠC = ρ0.2000+(1−ρ0)200+ 2000(δ +δ
2 +δ

3)+2600δ
4︸ ︷︷ ︸

payoff from cooperating all the way and defecting on Period 5

Now,

ΠD > ΠC

⇐⇒ ρ0.2600+(1−ρ0)1200+1200(δ +δ
2 +δ

3 +δ
4) > ρ0.2000+(1−ρ0)200

+2000(δ +δ
2 +δ

3)+2600δ
4

⇐⇒ ρ0.600+(1−ρ0)1000 > 800(δ +δ
2 +δ

3)

+1400δ
4

The LHS is atleast 600. The RHS is increasing in δ and the maximum possible
value of RHS is 482 for δ ≤ 3/8. Hence, any rational player should Defect right
away under δ ≤ 3/8. The same argument would hold if the subject was in any other
period of the game.
Now, instead assume δ ≥ 3/4. If ΠC is the highest possible return from Cooperting

67Under the considered δ range, this does strictly better that defecting earlier.
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in the present, then,

ΠC ≥ ρ0.2000+(1−ρ0)200+ 2600δρ0 +1200δ (1−ρ0)︸ ︷︷ ︸
minimum second round payoff given beliefs

+ 1200(δ 2 +δ
3 +δ

4)︸ ︷︷ ︸
minimum continuation payoff from last 3 periods

For reasonably large ρ0, Πc > ΠD. A similar analysis holds for later periods also.
In general, when beliefs about the other player being a cooperative behavioral type
is high, Cooperation is always justifiable for δ ≥ 3/7.
A similar analysis would show that there exist no possible beliefs on the partner
that should induce an egoist to cooperate in any period of the δ = 1/4 treatment. The
easiest wat to see it is to note that the lowest possible one time gain from defection
vs cooperation in any period, overpowers any possible future gains, irrespective of
the beleifs held over the other player’s action.
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