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Abstract

The pipelines used in the offshore extraction of oil and gas are connected by threaded
joints. Any geometrical error or vibration marks left on the thread surface during
the machining process can lead to stress concentration and fatigue failure of the
joint. Such instances in the past have led to massive oil leakage and environmental
disasters.

Threading is a form cutting operation resulting in wide chips with complex ge-
ometries. Multi-point inserts used in mass production can have different custom
profiles on each tooth. The chip thickness as well as the effective oblique cutting
angles, cutting force coefficients, and direction of local forces vary along the cut-
ting edge. Since the tool moves one thread pitch over each spindle revolution, the
vibration marks left by a tooth affect the chip thickness on the following tooth.
Threading of oil pipes imposes additional complexities due to the flexural vibra-
tions of thin-walled pipes, which lead to severe chatter instability.

This thesis develops a novel and generalized model to formulate, simulate, and
optimize general multi-point threading processes. A systematic semi-analytical
methodology is first proposed to determine the chip geometry for custom multi-
point inserts with arbitrary infeed strategies. A search algorithm is developed to
systematically discretize the chip area along the cutting edge considering the chip
flow direction and chip compression at the corners. The cutting force coefficients
are evaluated locally for each element, and the resultant forces are summed up over
the engaged teeth.

Multi-mode vibrations of the tool and pipe are projected in the direction of
local chip thickness, and the dynamic cutting and process damping forces are cal-
culated locally along the cutting edge. A novel chip regeneration model for multi-
point threading is developed, and stability is investigated in frequency domain using
Nyquist criterion. The process is simulated by a time-marching numerical method
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based on semi-discretization. An optimization algorithm is developed to maximize
productivity while respecting machine’s limits. The proposed models have been
verified experimentally through real scale experiments.

The algorithms are integrated into a research software which enables the indus-
try to optimize the process ahead of costly trials.
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Lay Summary

Pipelines used in offshore oil extraction are subject to severe loads and abrasive
environment, making them susceptible to failure and leakage. Investigations have
shown that the thread connection between the pipes is the weakest point in the
pipeline. The accuracy and surface quality of the threads have direct impact on the
reliability of the connection.

The threads are generated by incrementally removing material from the pipe
to get the final thread shape. This thesis studies the threading process of oil pipes
and develops mathematical and physical models to explain the behaviour of this
operation. The developed models can simulate the process ahead of costly trials
and recommend conditions to achieve highest quality, productivity, and safety of
the process.
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Ût ,Ûw mass-normalized mode shape matrix of tool and workpiece
Up,i mass-normalized mode shape vector of point p in mode i
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Chapter 1

Introduction

Threaded connections are widely used in industry in making impermanent joints.
Internal and external threads are generated either by forming (plastic deforma-
tion) [2] or thread cutting (tapping [3], machining [4]). While higher surface hard-
ness can be achieved in thread forming, cutting operations are more suitable for
precision applications. In contrast to conventional tapping, thread machining such
as turning and milling operations provides easier chip removal and more control
over the cutting parameters, thus results in improved accuracy, surface quality, and
productivity.

Drill pipes, tubes, and casings used in the exploration and extraction of oil and
gas from deep offshore reservoirs are connected through threaded joints as illus-

a)

b)

Buttress
Profile

310

147'

1.58
mm

2.98
mm

R=0.5 mm

60

V60
Profile

c)

F
AFR F

T

Figure 1.1: a) Threaded connection between oil pipes, b) schematic thread
turning operation, c) sample API buttress and API V60 profiles.
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Chapter 1. Introduction

trated in Figure 1.1.a. The pipelines must typically reach few kilometres deep in
the ocean where they are subject to high pressure, torque, cyclic stresses, varying
internal pressure, and severe abrasive wear. Based on finite element and exper-
imental investigations, the threaded joints are the weakest point in the pipelines.
The threads are cut using turning operations (Figure 1.1.b) on large scale indus-
trial lathes. Any form error or chatter marks on the thread surface left during the
machining operation can initiate fatigue failure and leakage of the joint.

Thread specifications and tolerances are regulated mainly based on Spec 5B of
American Petroleum Institute (API) standard [5]. Figure 1.1.c shows two types of
threads commonly used in oil and gas industry: API V60 profile for shouldered
connections, and API Buttress profile for casings and tubes. These two profiles
are extensively used in this thesis for demonstrations, but the developed models are
generalized and can be used for any custom profile.

As shown in Figure 1.1.c, the depth of the thread is typically around 1.5 mm to
3 mm. Due to the limited power of machines, structural flexibilities of the setup,
and chip removal problems, the entire depth of the thread cannot be cut in one
axial travel (pass) of the cutting tool along the pipe axis. Normally, the thread is
cut over 6-12 passes, the first few of which are for roughing, and the final passes
are for finishing. As illustrated in Figure 1.2.a for a V-profile thread, there are
four main strategies which determine how much and in which direction the cutting
tooth penetrates into the thread over each pass. The arrows in the figure represent
the infeed direction. Each of these strategies, also called Infeed Plans, has certain
advantages and disadvantages. Radial infeed is the simplest strategy and can be
performed by all conventional lathes. It also results in cancellation of axial forces
due to equal chip thickness on side edges. Figure 1.2.b shows the cross section of
the actual chip for the first, intermediate, and final passes when threading with a
V-profile insert at radial infeed of 0.15 mm/pass. It can be seen that towards final
passes, a long section of the tooth is engaged in the cut, which leads to poor chip
formation.

Flank infeed, on the other hand, cuts with only one side of the tooth. Even
though the thickness of the chip is twice as the one in radial infeed (assuming same
chip area), the cutting section has a smaller width and a more straight profile. The
problem, however, is that not only the insert wears out unevenly but also the two
sides of the finished thread will have different surface characteristics. Alternate
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Radial Infeed Flank Infeed Modified Flank

3°- 5°

a)

b) c)

Alternate Flank

Figure 1.2: a) Different types of infeed plans, b) cross section of actual chip
(microscope image), c) sample multi-point threading insert (Ningbo
Sanhan).

flank infeed is designed to mitigate this problem by alternating between the sides
of the tooth and cut surface.

The main issue in both flank and alternate is that over each pass one side of the
cutting edge (free edge) is constantly rubbing against the thread surface, resulting
in elevated temperatures, faster tool wear, and degraded surface quality. Modified
flank solves this problem by combining the advantages of the other three strategies;
due to cutting with both edges, the wear and surface quality is relatively even on
both sides. Since the chip on one side is very thin and easy to deform, the chip
evacuation is also superior to radial infeed. Most modern machine tools can auto-
matically perform all these infeed strategies. Similar infeed plans can be defined
for other types of profiles to change the chip load distribution. In this thesis, a
generalized model has been developed which can systemically determine the chip
geometry for any custom profile and arbitrary infeed strategy.

In order to improve the productivity of threading operations, especially in mass
production such as oil and gas industry, it is common to use multi-point inserts
(Figure 1.2.c). In one axial travel of the tool along the workpiece, the first few
teeth perform rough cutting and the final teeth gradually finish the surface. In some
cases, more than one pass might be still needed. Unlike single-point threading,
multi-point inserts are designed for only a specific pitch. Custom infeed strategies
can be integrated in the design of multi-point inserts by shifting each tooth in the
axial (feed) direction relative to its previous tooth. This axial shift does not change
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Figure 1.3: Local forces at different locations along a threading chip.

the pitch of the thread since the insert still travels one pitch per spindle revolution.
Figure 1.3 illustrates a sample threading chip and the local cutting forces. The

chip thickness as well as the cutting force coefficients, oblique cutting angles, and
the direction of local forces can vary significantly along the cutting edge. In this
thesis, a systematic chip discretization method is proposed which allows local eval-
uation of cutting forces. The developed technique can form the elements based
on the local chip flow direction while considering the chip compression at sharply
curved segments.

Due to the structural flexibilities of the tool and workpiece, any change in the
cutting forces can cause the setup to vibrate. As illustrated in Figure 1.4, the current
vibrations and the vibration marks left from the previous cut lead to variation in
the instantaneous chip thickness. The closed loop interaction between the cutting
forces and the structure can lead to unstable chip regeneration (regenerative chatter).
Dynamics and stability of multi-point threading is different than regular turning in
that each tooth is affected by the previous vibration marks left by a different tooth.
Due to the variation of local approach angle in threading inserts, the effect of current
and previous vibrations must be analyzed locally at each point along the cutting
edge.

Relative vibrations between the tool and workpiece also result in additional
damping in the system. The effect of process damping is especially more signif-
icant when the rotation frequency of the spindle is considerably smaller than the
structural vibration frequency. Thread turning operations are often run at low spin-
dle speeds (below 1000 rpm) since the tool has to move one thread pitch over each
spindle revolution. Process damping has therefore a significant effect on chatter
stability limits in threading operations. Threading of oil pipes imposes additional
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Figure 1.4: Chatter vibrations and the resultant surface finish in threading.

complexities due to the shell dynamics of thin-walled pipes. This thesis develops
a generalized dynamic model and predicts the chatter stability diagrams for thread
turning with custom multi-point inserts subject to three-dimensional flexibilities of
the tool and workpiece. The model is extended to threading thin-walled cylindrical
shells as well.

The rest of this thesis is structured as follows. Chapter 2 reviews some of the
previous literature related to threading operations. Chapter 3 presents the mechan-
ics of multi-point threading process. A generalized methodology is first proposed
to determine the chip boundaries for custom multi-point inserts. The chip is dis-
cretized along the cutting edge, and the cutting forces are evaluated locally for each
chip element. The mechanics model is validated experimentally.

Generalized dynamics of multi-point threading is developed in Chapter 4. The
dynamic equation of motion is derived in time and frequency domains, and the
stability of the process is investigated. An optimization algorithm is presented to
find the optimum infeed settings subject to user-defined constraints.

The model is extended in Chapter 5 to threading thin-walled workpieces with
dominant shell vibrations. The proposed dynamic model is validated experimen-
tally through extensive tests on real scale oil pipes. The thesis is concluded in
Chapter 6 by summarizing the research contributions and possible future directions.
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Chapter 2

Literature Review

2.1 Overview
This chapter reviews some of the past research related to threading operations.
Section 2.2 discusses the effect of machining parameters on mechanical charac-
teristics of threaded connections. Section 2.3 presents the previous methodologies
proposed for calculation of chip geometry and cutting forces in general form cut-
ting operations. Dynamics and chatter stability of turning and threading operations
are discussed in Section 2.4, followed by more specific application to thin-walled
cylindrical workpieces in Section 2.5. The chapter is concluded by the summary in
Section 2.6.

2.2 Mechanical Behaviour of Threaded Connections
Researchers have extensively studied mechanical characteristics of threaded joints
in the pipelines. Using finite element analysis, Shahani and Sharifi [6] showed that
the threads near the shoulder and free end of drill pipes bear the maximum load. Lu
and Wu [7] carried out fractographic analysis on the joints between drill pipes, and
observed that fatigue cracks nucleated mostly at the root of the first thread. Yuen
et al. [8] studied stress distribution in the thread connection during the make and
break process of oil pipes and showed that the reliability of the connection can be
improved by decreasing the local stress concentration and improving the rigidity of
thread surface. Abrahmi et al. [9] analyzed the effect of threading process on the
mechanical and tribological behaviour of triangular threads. They concluded that
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compared to machining operations, rolling processes lead to improved mechanical
resistance of the thread joints. However, the accuracy and efficiency of rolling
process is not satisfactory for oil and gas applications.

Researchers have also studied the effect of machining parameters on thread per-
formance. Fetullazade et al. [10] carried out several sets of thread turning experi-
ments on SAE 4340 steel at different values of cutting speed, depth of cut, and tool
wear. They measured the residual stresses at the root of the machined thread us-
ing electro-chemical layer removal technique, and observed residual stress ranging
from 600MPa to 1450MPa as compared to the material tensile strength of 850MPa.
They also found strain hardening in the range of 320HV-430HV at the thread root
as compared to the base hardness of 260HV. Akyildiz and Livatyali [11] inves-
tigated the effect of machining parameters on fatigue strength of test specimens
threaded on a turning machine. They analyzed the endurance limit of the threaded
parts using a rotary fatigue test machine, and concluded that higher cutting veloc-
ity and larger tool wear improves the fatigue strength of the threads due to strain
hardening.

2.3 Mechanics of Form Cutting Operations
The toothed profile of the cutter in form cutting operations such as threading, hob-
bing and gear shaping can generally result in multi-flank chips. Klocke et al. [12]
developed a finite element-based machining simulation to model the chip forma-
tion, thermal and stress distribution, and tool wear along the cutting edge in multi-
flank form cutting. Cutter-workpiece engagement can be obtained using solid or
discrete geometric modelling kernels [13]. Bouzakis [14] used a solid kernel in
SolidWorks R© to model the chip geometry in hobbing. Although solid modelling
provides highly accurate representation due to its analytical approach, the compu-
tational load is intensive. Discrete representation of the engagement using meshed
geometries, on the other hand, can provide fast yet reliable approximate solutions.
Brecher et al. [15] modelled the chip geometry in bevel gear cutting using the dis-
crete volume representation of the tool and workpiece. Erkorkmaz et al. [13] used
multi-dexel volume representation to extract the cutter-workpiece engagement at
each time step during gear shaping operation. Unlike the methods used in the re-
search cited above, this thesis uses the kinematics of the process and geometry of
the tool to semi-analytically determine the boundaries of the chip on each tooth in
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threading with multi-point inserts.
Thread milling is used mainly in generating internal threads especially for appli-

cations involving asymmetrical workpieces or hard-to-cut materials. Araujo et al. [4]
simplified thread milling as a common end milling operation by ignoring the feed-
ing motion of the tool along the hole axis (z-direction). Fromentin and Poulachon
[16, 17] derived a mathematical model to describe the tool envelope profile, cutting
angles, and uncut chip thickness in thread milling. Jun and Araujo [18] developed
a force model for “thrilling” operation, which performs drilling and threading with
the same tool. Wan and Altintas [19] studied the mechanics and dynamics of thread
milling processes, and modelled the varying cutter-workpiece engagement based
on the kinematics of the process. They also predicted process stability along the
helical threading path using semi-discretization method [20]. Arajuo et al. [21]
presented geometrical and cutting force analysis for thread milling of API threads,
and analyzed the surface roughness at different vertical positions for different fee-
drates. Unlike for thread milling and other form cutting operations, the mechanics
of general thread turning processes have not been studied systematically before.

Researchers have used different approaches for modelling the chip geometry in
typical turning operations. Eynian and Altintas [22] divided the chip area based on
the linear and curved edges of the insert. Reddy et al. [23], Lazoglu et al. [24], and
Ozlu and Budak [25] obtained a more accurate approximation through discretiza-
tion of the chip along the cutting edge. The chip geometry in thread turning is more
complicated and cannot be modelled using the approaches cited above. Akyildiz
and Livatyali [26] presented a force calculation method for thread turning based on
chip discretization, but their method is limited to V-profile with radial infeed. In ad-
dition, they used a linear cutting force coefficient model, and observed considerable
discrepancy between the simulated and measured forces especially towards the final
passes. Akyildiz [27] reported the change in the shear angle [28] over subsequent
threading passes as the main source of this discrepancy. Kafkas [29] carried out an
experimental study on cutting forces in thread turning, and observed an increase in
the cutting force coefficients over deeper passes; chip interference was claimed to
be the reason for this behaviour.

This thesis develops a generalized systematic model which can determine the
chip geometry and predict the cutting forces for thread turning with custom multi-
point inserts and arbitrary infeed plans.
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2.4 Process Dynamics and Chatter Stability
Instability of machining processes due to self-excited vibrations, known as chatter,
was first recognized and modelled by Taylor [30], Tobias [31], Tlusty [32], and
Meritt [33]. They described the dynamics of the process as delay differential equa-
tions. Fundamentals of machining dynamics have been summarized by Schmitz
and Smith in [34]. Researchers have developed numerous methods to solve the
process dynamic equations and predict chatter stability for different operations, as
reviewed by Altintas and Weck [35]. Minis and Yanushevsky [36] proposed a fre-
quency domain solution based on Fourier analysis and Floquet’s theory. Altintas
and Budak [37] approximated the direction factors by their average, and proposed
an analytical zero-order solution. Insperger and Stepan [20, 38] developed a time
domain semi-discretization method which approximates the delay differential equa-
tion by a series of ODEs. In this method, the delay state and the time-varying
coefficient matrices are approximated numerically. Ding et al. [39, 40] proposed
full-discretization and numerical integration methods to analyze the stability of the
process. Asl and Ulsoy [41] solved the linear delay differentials using Lambert
functions while Butcher et al. [42] employed Chebyshev polynomials and collo-
cation methods. Mann et al. [43] used Temporal Finite Element Analysis (TFEA)
for simultaneous prediction of stability and surface location error in milling opera-
tions. Eksioglu et al. [44] implemented an extended version of semi-discretization
method to predict the stability and surface location errors in machining thin-walled
workpieces. Honeycutt and Schmitz [45] proposed a metric for automated stability
identification in time domain simulations based on periodic sampling of signals.
Frequency domain solutions provide a faster stability prediction model while time
domain solutions can provide both stability and time simulation of the process.
This thesis uses frequency domain and semi-discretization methods to analyze and
simulate the dynamics of multi-point threading process.

Dynamics of typical turning operations have been extensively studied by re-
searchers. Ozlu and Budak [25] developed an analytical chatter stability model for
turning and boring operations based on a simple chip discretization method. In
their proposed technique, all chip elements are formed parallel to the feed direc-
tion even at the curved nose of the insert. Dynamics of multi-point threading has
some similarities to parallel turning in that more than one cutting edge is engage
simultaneously. Lazoglu et al. [46] derived the dynamic model for parallel turning
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when the two tools cut different surfaces of the workpiece. Budak and Ozturk [47]
developed a frequency domain stability model for parallel turning on the same sur-
face. In both [46] and [47], the two cutting tools were positioned on the opposite
sides of the workpiece (180◦ apart), and it was shown that if the natural frequencies
of the two tools are close, chip regeneration can be altered and productivity can be
improved compared to single turning. Brecher et al. [48] modelled the dynamics of
parallel turning as a function of the circumferential angle between the two turrets
(cutting tools). They showed that in the cases where the two tools are dynamically
coupled, the circumferential angle can be used to optimize the process stability.

One of the main challenges in stability prediction for turning operations such
as thread turning is the accurate modelling of process damping effect. Researchers
have used indentation models along with experimental calibrations to quantify the
process damping contribution. Albrecht [49] considered the roundness of the cut-
ting edge and modelled the ploughing under the clearance face of the tool. Sisson
and Kegg [50] analyzed the effect of edge radius on additional damping at low
speed cutting. Shaw and DeSalvo [51] studied the plastic flow under the flank
face of worn tools, and suggested that process damping force in the feed direc-
tion is proportional to the volume of the indented material. Chiou and Liang [52]
modelled the volume of the compressed material as a function of the ratio of the
vibration velocity to cutting velocity, and calculated the process damping forces
using an experimentally identified damping coefficient. Clancy and Shin [53] fur-
ther extended this model and presented a three-dimensional mechanistic frequency
domain chatter stability for face turning processes including the flank wear effect.
Altintas et al. [54] used a fast piezo actuator to generate controlled vibrations and
identified the process damping coefficients. Budak and Tunc [55] presented an iden-
tification method based on the results of stable and chatter tests, and Ahmadi and
Altintas [56] proposed a technique using output-only modal analysis. Ahmadi [57]
further expanded the process damping terms by considering the nonlinearities of
the damping effect. Tyler et al. [58] proposed an analytical multi-degree of free-
dom process damping model for turning operations which considers the effect of
both depth of cut and cutting velocity. They were able to predict the stability lim-
its using only one empirical coefficient. They also concluded that identification of
process damping coefficients in multi degree of freedom systems must be carried
out based on the most flexible vibration mode.
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While typical turning operations have been extensively studied in the past, the
developed models cannot be used for multi-point thread turning processes. Not
only is the chip geometry more complicated, but also the regeneration mechanism
is different in that the effect of previous vibrations left by each tooth is seen by
another tooth over the next spindle revolution. This thesis develops a novel model
to describe the dynamics of multi-point threading with custom profiles.

2.5 Turning Thin-walled Workpieces
Turning of thin-walled workpieces imposes additional complexities due to the non-
linear low-damped shell modes of the tube. Flexural vibrations in shells have been
extensively studied in the past as summarized by Meirovitch [59] and Leissa [60].
Several nonlinear models have been proposed based on Love’s equations for elas-
ticity [61] and Donnell’s shallow shell theory [62]. The case of cylindrical shell,
in particular, involves greater complexity due to the cross coupling of different ax-
ial and circumferential modes, as studied by Evensen [63, 64] and Dowell [65].
However, analytical models become impractically complex when considering the
boundary conditions and varying geometry of the workpiece in turning operations.
Rahman and Ito [66] and Lai and Chang [67] showed that the frequency and di-
rection of mode shapes can change significantly as a function of the contact length
between the three-jaw clamping chuck and the workpiece. Finite element models
along with experimental measurements have been the main practice in analyzing
the dynamics of thin-walled workpieces.

Lai and Chang [67] studied chatter stability in turning thin-walled cylindrical
shells and showed that tubes allow smaller depth of cut compared to solid bars even
if they have the same moment of inertia. Dospel and Keskinen [68] derived the
equations of motion for a rotating cylindrical shell subject to machining operations.
Chanda et al. [69] analyzed the stability in turning cylindrical shells using semi-
discretization method [38]. Chen et al. [70] employed optimization techniques
to find the optimum cutting conditions in turning thin-walled workpieces. Fischer
and Eberhard [71] designed an adaptronic chisel retrofitted with vibration sensors
to damp out the shell vibrations in real time and achieved higher stability limits.
Mehdi et al. [72, 73] presented a numerical model to simulate the turning process of
thin-walled workpieces. Lorong et al. [74] considered the varying dynamics of the
thin-walled workpiece during turning operation using finite element and numerical

11



Chapter 2. Literature Review

simulation. They showed that the pattern and angle of vibration marks change along
the tube axis due to varying dynamics.

There has not been any research in the past focused on the dynamics of threading
of thin-walled workpieces. This thesis employs finite element and experimental
modal analyses combined with the proposed dynamic models to investigate chatter
stability in threading real scale oil pipes.

2.6 Summary
Chip geometry and regeneration mechanism in multi-point threading are very dif-
ferent than those in typical turning operations. There is currently no research avail-
able on the generalized mechanics and dynamics of thread turning. This thesis
aims at filling this gap and proposes novel generalized models for calculation of
chip boundaries, cutting forces, and chatter stability in multi-point threading. Ap-
plication to thin-walled oil pipes is studied.
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Chapter 3

Chip Geometry and Cutting Forces

3.1 Overview
This chapter proposes a semi-analytical generalized model which can systemat-
ically determine the chip geometry and cutting forces for any given multi-point
threading insert and infeed settings. The chip is first discretized along the cutting
edge using a systematic technique. The local chip thickness and cutting force co-
efficients are determined for each element, followed by the calculation of the local
and total cutting forces.

Unlike most CAD/CAM software packages which calculate the tool-workpiece
engagement (chip geometry) based on the intersection of the full CAD models,
the proposed method integrates the kinematics of the process and the mathematical
representation of the geometries. As a result, not only is the algorithm stand-alone
and more accurate, but also the processing time is significantly shorter than full
intersection methods.

3.2 Discrete Representation of the Cutting Edge
In the proposed methodology, all curves including the cutting edge and chip bound-
aries are represented by a series of discrete points laid evenly along the curve. As
illustrated in Figure 3.1, two coordinate systems (CS) are used to define the setup
geometry. These two CSs share the same origin, which is chosen arbitrarily at any
location on the insert. The XY Z axes of the tool CS (global) are aligned with the
axial, radial, and tangential directions of the workpiece, respectively. In order to
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Figure 3.1: Tool and insert coordinate systems.

match the helix angle of the thread path, shims are used to rotate the insert around
the radial (Y ) axis equal to the helix angle

ρ =−tan−1(hp/πdw) (3.1)

where hp is the thread pitch and dw is the workpiece diameter. The minus sign in Eq.
(3.1) is to account for the negative rotation based on the defined CS (Figure 3.1).
The transformation from the insert CS to the global CS is thus obtained as:

TIG =

 cosρ 0 sinρ

0 1 0
−sinρ 0 cosρ

 (3.2)

Consider the custom multi-point insert shown in Figure 3.2.a. Assume that the
cutting edge of the insert has been designed using custom linear, circular, and spline
curve segments. As the first step, the entire cutting edge is continuously interpolated
by discrete points at constant intervals of du, which has been chosen as 10 µm in
this thesis based on the cutting edge length (1 mm-5 mm) in common threading
operations.

The geometry of the cutting edge represented in the insert CS is stored as an
array of Np number of points with ascending values of x′:

PIC =


Px′

Py′

Pz′


IC

=


{

x′1 x′2 × × x′Np

}{
y′1 y′2 × × y′Np

}{
z′1 z′2 × × z′Np

}


IC,(3×Np)

(3.3)
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The edge points PIC are transformed from the insert CS to the global CS using the
TIG transformation in Eq. (3.2)

PGC =


Px

Py

Pz


GC

= TIGPIC (3.4)

Hereafter, all geometric parameters are represented in the global CS unless other-
wise stated.

3.3 Chip Geometry for General Engagement
This section presents the general chip calculation methodology based on the as-
sumption that each tooth cuts a fresh profile and does not intersect with the pre-
vious thread surface. In other words, both sides of the cutting tooth intersect with
the outer cylinder of the workpiece surface (Figure 3.2.b). The case of partial root
engagement is presented in Section 3.4 as an extension to this general procedure.

Figure 3.2.b illustrates the tool-workpiece engagement for a sample threading
tooth. The chip geometry is determined as the area confined between the upper
and lower bands. The upper band is formed during the current cut thus follows
the shape of the current tooth. The lower band consists of several segments; the
two linear edges on the left and right correspond to the workpiece surface, and
the middle segment is the thread surface generated by the previous tooth. In case
of single-point inserts, the middle segment is the thread profile from the previous
pass. Assume the multi-point threading insert shown in Figure 3.2.a has Nt number
of teeth with custom profiles. The tip of the final tooth, which performs the deepest
cut, has radial coordinate of Yt = max(Py). In order to carry out the threading
operation over pass np, the radial penetration of the final tooth into the workpiece
is incremented by infeed value of ∆a relative to the previous pass. The tool travels
parallel to the workpiece axis (X) at the axial feed rate of fa. The achieved thread
depth after pass np is calculated as:

a(np) = a(np−1)+∆a(np) (3.5)

where a(np−1) is the thread depth at the previous pass, and ∆a(np) is the current
radial infeed. The outer surface of the workpiece can be represented in the current
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Figure 3.2: a) Definitions of radial infeed and depth of cut, b) discrete repre-
sentation of the cutting edge and chip boundaries.

CS as a horizontal line (Figure 3.2.a):

yw = Yt−a(np) (3.6)

In order to determine the engagement points between the cutting edge and the work-
piece surface, all the points on the cutting edge, P(k), are swept from smallest to
largest x values, and every time two consecutive points lie on the two sides of the
workpiece surface, it marks an intersection point. The engagement point on the left
( jpsc) and right ( jpec) of tooth j are located using the sign change in Py− yw:

i f
Py(k)− yw < 0
Py(k+1)− yw > 0

}
→ jpsc lies between P(k) and P(k+1)

(left engagement point)

i f
Py(k)− yw > 0
Py(k+1)− yw < 0

}
→ jpec lies between P(k) and P(k+1)

(right engagement point)

(3.7)

The exact location of the intersection points are obtained by interpolating between
P(k) and P(k+1) and knowing that psc,y = pec,y = yw. In Figure 3.2.b, psp and pep

mark the intersection points over the previous cut, and are assumed to be known
from similar analysis.

The discrete point representation of the upper band on tooth j over pass np,

i.e. j
npPu =

[
j
npPux,

j
npPuy,

j
npPuz

]T
, is obtained by extracting part of the cutting edge

which lies between the current intersection points jpsc and jpec (Figure 3.2.b). Cal-
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Figure 3.3: Calculation of lower band for different cases, a) first pass, first
tooth, b) next teeth, c) next passes for single insert, d) next passes for
multi-point insert.

culation of the lower band j
npPl , on the other hand, depends on the tooth number,

pass number, and whether the insert is single-point or multi-point. All the possible
combinations can be categorized into four cases shown in Figure 3.3. The lower
band in each case is calculated as follows.

Case 1 – First Tooth ( j = 1), First Pass (np = 1), Single- or Multi-Point Insert

As illustrated in Figure 3.3.a, the lower band of the chip in the first cut is a straight
line corresponding to the workpiece surface. The discrete representation of the
lower band is obtained by linear interpolation between the left (psc) and right (pec)
intersection points using Nl = round( |psc−pec|/du) number of points, where du is
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the discretization length and chosen the same as for the upper band, i.e. du= 10 µm.

Case 2 – Next Teeth ( j > 1), Any Pass (np ≥ 1), Multi-Point Insert

As shown in Figure 3.3.b, the lower band of the chip has three segments: left
( j
npPlL), middle ( j

npPlM), and right ( j
npPlR). The middle lower band is obtained by

shifting the upper band of the previous tooth ( j−1
np Pu) in the X direction equal to one

thread pitch hp:

j
np

PlM =


j−1
np Pux +hp
j−1
np Puy
j−1
np Puz +hp tanρ


j,np

j > 1
np ≥ 1

(3.8)

Note that due to the inclination angle ρ around Y axis (Figure 3.1), the z component
of the shifted upper band has been adjusted using the term hp tanρ .

The left segment, which corresponds to the workpiece surface, is obtained by
linear interpolation between psc and psp using du = 10 µm. The right segment is
similarly interpolated between pep and pec, and the complete lower band on tooth
j is obtained by combining all three segments, i.e j

npPl =
[

j
npPlL,

j
npPlM,

j
npPlR

]
.

Case 3 – Subsequent Passes (np > 1), Single-Point Insert

After finishing the first pass, the tool retracts and moves back to the starting position
(tip of the workpiece). Before cutting the new pass, the radial depth and axial
shift of the tool must be set based on the infeed plan (Figure 3.3.c). Since the
coordinate system is attached to the insert, the middle lower band 1

np
PlM is obtained

by transforming the upper band of the previous pass (1
np−1Pu) from the previous CS

to the current CS:

1
np

PlM =


1
np−1Pux +

[
ε f x(np)− ε f x(np−1)

]
1
np−1Puy−∆a(np)
1
np−1Puz +

[
ε f x(np)− ε f x(np−1)

]
tanρ


j,np

Nt = 1
np > 1

(3.9)

where ∆a(np) = a(np)−a(np−1) is the radial infeed relative to the previous depth,
and ε f x(np) is the axial shift of the tool in pass np measured relative to the axial
start position of the tool in the first pass (Figure 3.3.c). ε f x(np) can be calculated
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for different infeed plans as (see Figure 1.2.a):

Radial Infeed: ε f x(np) = 0 (np > 1)
Flank Infeed: ε f x(np) = a(np). tan(θFl)

Alternate Flank Infeed: ε f x(np) = (−1)np.a(np). tan(θFl)

Modified Flank Infeed: ε f x(np) = a(np). tan(θFl−θM)

(3.10)

where θFl is the flank angle and equals to half of the nose angle in V-profile. θM ∼
3◦-5◦ is the deviation angle in Modified Flank (Figure 1.2.a). In Eq. (3.9), the term[
ε f x(np)− ε f x(np−1)

]
calculates the axial shift (x component) of the tool in the

new pass relative to the previous pass, and the term
[
ε f x(np)− ε f x(np−1)

]
tanρ

adjusts the z component due to the inclination (shim) angle of the insert.
Similar to Case 2, the left and right linear segments are interpolated between the

current and previous intersection points, and the complete lower band is obtained
by combining the three segments.

Case 4 – First Tooth ( j = 1), Subsequent Passes (np > 1), Multi-Point Insert

In this case, the lower band on the first tooth is formed by the the final tooth
( j = Nt) during the previous pass. As illustrated in Figure 3.3.d, the last upper band

( j=Nt
np−1Pu =

[
j=Nt
np−1Pux,

j=Nt
np−1Puy,

j=Nt
np−1Puz

]T
) is shifted onto the first tooth and trans-

formed from the previous CS to the new CS:

j=1
np

PlM =


j=Nt
np−1Pux− (Nt−1)hp +

[
ε f x(np)− ε f x(np−1)

]
j=Nt
np−1Puy−∆a(np)
j=Nt
np−1Puz− (Nt−1)hp tanρ +

[
ε f x(np)− ε f x(np−1)

]
tanρ


j,np

j = 1
Nt > 1
np > 1

(3.11)
where Nt is the total number of teeth engaged in the cut during the previous pass.
The term (Nt−1)hp shifts the previous upper band in the axial direction onto the
first tooth, and (Nt−1)hp tanρ adjusts the z component due to the shim angle. The
terms ∆a(np) and

[
ε f x(np)− ε f x(np−1)

]
adjust the radial and axial shift of the

current CS relative to the previous CS, and
[
ε f x(np)− ε f x(np−1)

]
tanρ corrects

for the insert’s inclination angle.
Similar to Cases 2 and 3, the linear segments on the left and right are interpo-

lated between the current and previous intersection points, and the complete lower
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band is obtained by combining the three segments.

3.4 Chip Geometry for Partial Root Engagement
As illustrated in Figure 3.4, multi-point inserts are commonly designed such that
few teeth perform rough cutting of the root, and the following teeth finish the thread
profile. Partial engagement is especially common for buttress threads as the side
edges are nearly parallel to the infeed (radial) direction; cutting the sides with all
teeth may lead to impractically small chip load thus severe ploughing and poor
surface finish.

In the case of partial root engagement, at least one side of the tooth cuts inside
the previous thread profile (Figure 3.4.a). Partial engagement on each tooth can be
detected using the following conditions:

1) psc,x > psp,x (left)
and/or

2) pec,x < pep,x (right)

→ Partial Engagement (3.12)

where psc, pec, psp, and psp are the intersection points calculated based on the
assumptions of general engagement (Eq. (3.7)). If the conditions in Eq. (3.12)
hold, psc and/or pec must be re-evaluated to find the correct engagement points
between the tooth and workpiece.

3.4.1 Re-evaluation of The Left Engagement Point (psc)

The following steps must be taken to find the correct left engagement point (con-
vexity of the profile is assumed):

Step 1. Calculate the upper and lower bands of the chip assuming complete en-
gagement as explained in Section 3.3.

Step 2. Find the first and second far left points (smallest x coordinates) on the
upper band, marked as ps,u1 and ps,u2 in Figure 3.4.c.

Step 3. Construct the equation of the line connecting ps,u1 and ps,u2.

Step 4. Find the point ps,l on the lower band which has smallest x coordinate and
satisfies ps,l(x)> ps,u1(x).
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Figure 3.4: Determining the chip boundaries and thread profile in the case of
partial root engagement.

Step 5. Project ps,l in the Y direction onto the line (ps,u1,ps,u2) from Step 3. Check
if ps,l is located under this line segment (or its extension) and also between
ps,u1 and ps,u2 in the Y direction, i.e.

ps,l(y)<
ps,u2(y)−ps,u1(y)
ps,u2(x)−ps,u1(x)

(x−ps,u1(x))+ps,u1(y)

and
ps,u1(y)< ps,l(y)< ps,u2(y)

(3.13)

If both conditions in Eq. (3.13) hold, psc = ps,u1 is chosen as the correct left
intersection point, and the search is completed. Otherwise, ps,u1 is deleted
from the upper band, and ps,u2 becomes the new ps,u1. The search restarts
from Step 2 with the new ps,u1 and continues until the correct intersection is
found.
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3.4.2 Re-evaluation of The Right Engagement Point (pec)

The procedure follows similar steps presented above but the conditions must be
adjusted for the right side edge. As marked in Figure 3.4.d, assume pe,u1 and pe,u2

are the first and second far right points (largest x coordinates) on the upper band.
pe,l is the point on the lower band with the largest x coordinate which satisfies
pe,l(x)< pe,u1(x). pe,l is projected in the Y direction onto the line connecting pe,u1

and pe,u2. If 
pe,l(y)<

pe,u2(y)−pe,u1(y)
pe,u2(x)−pe,u1(x)

(x−pe,u1(x))+pe,u1(y)

and
pe,u1(y)< pe,l(y)< pe,u2(y)

(3.14)

the search is completed and pec = pe,u1 is chosen as the correct right intersection
point (Figure 3.4.e); otherwise, pe,u1 is deleted and the search restarts with the new
points.

3.4.3 Updating the Upper and Lower Bands

Once the correct intersection points are found using the above procedure, part of
the previously calculated upper band (based on Section 3.3) which lies between
the updated psc and pec is extracted as the tooth-workpiece engagement (upper
band). Calculation of the lower band requires knowing the previous thread profile;
as shown in Figure 3.4.f, in case of partial engagement, the resulting profile consists
of several segments corresponding to the current and one or more of the preceding
cuts. The following section presents a general methodology to obtain the thread
profile.

3.4.4 Thread Profile After Each Cut

For each of the four cases defined in Section 3.3 (Figure 3.3), the previous thread
profile is shifted from the previous tooth (or pass) onto the current tooth. The new
profile, j

npP f , follows the shape of the current tooth in the engaged sections (upper
band) and keeps the previous profile for the uncut parts (Figure 3.4.f). Calculation
of the thread profile for each case is presented below.

Case 1. – First cut ( j = 1,np = 1)
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The thread profile in this case is the same as the upper band of the first tooth,
i.e. (

j=1
np=1P f

)
=
(

j=1
np=1Pu

)
(3.15)

Case 2. – Next teeth ( j > 1)

The thread profile is shifted from the previous tooth to the current tooth (see
Figure 3.3.b):

j
npP f =

j−1
np P f +

 hp

0
hp tanρ

 C1←−

∀k : psp(x)<
(

j−1
np

P f ,x(k)
)
<psc(x)

or pec(x)<
(

j−1
np

P f ,x(k)
)
<pep(x)

j
npP f =

j
npPu

C2←− ∀k : psc(x)<
(

j−1
np P f ,x(k)

)
<pec(x)

(3.16)
where hp is the thread pitch and ρ is the shim angle. C1 is the condition
for the uncut segments, and C2 corresponds to the engaged segments (Figure
3.4.f).

Case 3. – Next passes (np > 1), single-point insert

The thread profile from the previous pass is transformed from the previous
CS to the current CS based on the radial and axial infeed settings (see Fig-
ure 3.3.c):

1
np

P f =
1
np−1P f +

 ε f x(np)− ε f x(np−1)
−∆a(np)[

ε f x(np)− ε f x(np−1)
]

tanρ

 ←C1

1
np

P f =
1
np

Pu ←C2

(3.17)

where C1 and C2 are the conditions defined in Eq. (3.16), and ∆a and ε f x are
the radial and axial infeed settings defined in Section 3.3.

Case 4. – Next passes (np > 1), first tooth ( j = 1), multi-point insert

In this case, the thread profile from the previous pass is shifted from the final
tooth onto the first tooth and transformed from the previous CS to the current
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CS (see Figure 3.3.d):
1
np

P f =
Nt
np−1P f +

 −(Nt−1)hp +
[
ε f x(np)− ε f x(np−1)

]
−∆a(np)(
−(Nt−1)hp +

[
ε f x(np)− ε f x(np−1)

])
tanρ

 ←C1

1
np

P f =
1
np

Pu ←C2
(3.18)

where Nt is the total number of teeth engaged in the cut during the previous
pass, and C1 and C2 are the conditions defined in Eq. (3.16).

3.4.5 Lower Band in Partial Engagement

In the case of partial engagement, the lower band follows part of the previous thread
profile engaged in the current cut (see Figure 3.4.a,f), i.e.

j
np

Pl = P f s←∀k : psc(x)<P f s,x(k)<pec(x) (3.19)

where P f s is the shifted previous profile calculated in the first equation (without
condition) in Eqs. (3.16), (3.17), and (3.18) corresponding to each case.

It should be noted that the chip evaluation procedure presented in this section
can be readily used for the cases where one side of the insert is intersecting with the
workpiece surface and the other side is cutting inside the thread profile.

3.5 Systematic Chip Discretization
Figure 3.5.a illustrates the chip flow lines in cutting a buttress profile. It can be
seen that around the corners where two edges meet, the flow lines overlap. This is
due to chip interference and happens when the material removed by different edges
compress into each other. Figure 3.5.b shows a sample case of stress distribution
(using AdvantEdge) in cutting a V-profile thread. It can be seen that there is higher
stress concentration at the nose due to chip interference.

Remark. The chip flow angle at the corners is also affected by the chip interfer-
ence. However, since the cutting forces are generated very close to the cutting zone,
the change in the chip flow angle due to interference causes less than 1% error in
the force modelling, and thus has been ignored in this thesis.

The following sections present a systematic discretization method which forms
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a) b)

Figure 3.5: a) Overlapping of chip flow lines due to chip interference, b) stress
distribution in cutting V60◦ thread.

the chip elements along the cutting edge taking into account the chip flow direc-
tion and chip interference. The proposed method draws the discretization lines
by running a search algorithm which pairs proper points on the upper and lower
bands. Since the procedure is carried out for each tooth individually, the super-
script j (tooth number) and subscript np (pass number) are dropped in the following
derivations for simplicity.

As illustrated in Figure 3.6, at every point Pu(k) on the upper band, where k =

1,2, ...,Nu, the local vector Lu(k) tangent to the upper band is calculated as:

Lu(k) = Pu(k+1)−Pu(k) (3.20)

Similarly, at every point Pl(i) on the lower band, where i = 1,2, ...,Nl , the local
tangent vector is Ll(i) = Pl(i+ 1)−Pl(i). For a fixed point Pu(k) on the upper
band and for any point Pl(i) on the lower band, vector h̃(k, i) which connects Pu(k)

to Pl(i) is calculated as (Figure 3.6):

h̃(k, i) = Pl(i)−Pu(k) (3.21)

Scalar projection of h̃(k, i) on the upper band is obtained using inner product as

Su(k, i) = L̄u(k) · h̃(k, i) (3.22)

where L̄u(k) is the unit average tangent vector at Pu(k):

L̄u(k) =
Lu(k−1)+Lu(k)
|Lu(k−1)+Lu(k)|

=
Pu(k+1)−Pu(k−1)
|Pu(k+1)−Pu(k−1)|

(3.23)
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The unit average vector L̄l(i) tangent to the lower band at Pl(i) is calculated similar
to Eq. (3.23). Projection of h̃(k, i) on the lower band is obtained by inner product
as Sl(k, i) = L̄l(i) · h̃(k, i). The angles βu (on the upper band) and βl (on the lower
band) between the discretization line h̃(k, i) and the positive direction of L̄u(k) and
L̄l(i), respectively, are calculated as:

βw(k, i) = cos−1

(
Sw(k, i)∣∣h̃(k, i)∣∣

)
, w = u, l →

{
−180◦ < βu < 0

0 < βl < 180◦
(3.24)

where βu lies in the third or forth quadrants of the trigonometric circle, and βl lies
in the first or second quadrants. In order to have the discretization lines normal
to both the cutting edge and lower band, βu and βl must be ideally −90◦ and 90◦,
respectively. In this case,

βs(k, i) = βu(k, i)+βl(k, i) = 0 (3.25)

However, due to the varying curvature of the edge profile as well as chip interfer-
ence in the corners, satisfying the condition in Eq. (3.25) may not be possible. The
value of |βs(k, i)| quantifies the deviation of the discretization line from orthogonal-
ity, and thus can be used as a pairing criterion; every point Pu(k) on the upper band
is paired with a point Pl(i) on the lower band which results in the smallest absolute
value of βs(k, i).

In order to improve the reliability of the discretization scheme, additional con-
straints are imposed on the angles βu and βl; the discretization lines are allowed to
have maximum deviation of 30◦ from orthogonality to the upper band and 60◦ from
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orthogonality to the lower band. The pairing criteria can therefore be summarized
as:

Pu(k)→ Pl(i) :


min{|βu(k, i)+βl(k, i)|}
|βu(k, i)+90|< 30◦

|βl(k, i)−90|< 60◦
(3.26)

Since for every point Pu(k) on the upper band, the proper point Pl(i) on the lower
band is expected to be found at a close vicinity of Pu(k), the search algorithm is run
only over a moving window as illustrated in Figure 3.6. This window extends 5%
1 of the length of the lower band around Pl(im), where im is the index of the point
which divides the lower band at the same ratio that Pu(k) divides the upper band,
i.e.:

im
Nl

=
k

Nu
→ im =

Nl

Nu
k (3.27)

where Nu and Nl are the total number of points on the upper and lower bands,
respectively. In order to avoid intersection of the discretization lines, the search
algorithm skips the points of the lower band which lie before the last paired point
Pl(ip). The moving window can therefore be described as:

Pu(k)→ Pl(i) : max(ip, im−0.05Nl)< i < im +0.05Nl (3.28)

where ip is the index of the last paired point on the lower band, and im is defined in
Eq. (3.27).

The procedure presented above is run for each point Pu(k) on the upper band,
and connects it to a proper point on the lower band. As a result, the number of
discretization lines (and thus chip elements) is equal to the number of points on the
upper band. Depending on the geometry of the chip and curvature of the thread
profile, several discretization lines might be connected to the same point on the
lower band, and on the other hand, some points of the lower band might not be
connected to any discretization line.

Figure 3.7 shows sample results for the multi-point V-profile and buttress inserts
with the discretization length of du = 10 µm. It can be seen that the chip has been
uniformly discretized even at the highly curved segments where chip interference is
significant. For verification, the total area calculated as the summation of individual

1Due to the convex shape of thread profiles, the proper discretization line always lie within the
5% moving window. Hence, further extension of the window does not improve the accuracy.
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Figure 3.7: Sample chip discretization results (du = 10 µm).
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Figure 3.8: Sensitivity of chip modelling to the discretization length (du) (In-
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chip elements (Eq. (3.42)) has been compared against the CAD models in NX (by
intersecting the cross sections of the insert and the workpiece). In all cases, the error
is below 0.5%. Figure 3.8 shows the sensitivity of the calculated chip area to the
discretization length (du) for the three-point V-profile insert shown in Figure 3.7. It
can be seen that reducing the discretization length below 10µm does not affect the
accuracy significantly, thus is not practical.

3.6 Cutting Force Calculation
This section presents a systemic methodology to calculate the local and total cutting
forces.
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3.6.1 Local Oblique Cutting Angles

Mechanics of oblique cutting is illustrated in Figure 3.9.a. The rake angle α is
defined as the angle between the rake face and the vector normal to the cut surface.
Inclination λ is the relative angle between the cutting edge and the vector normal
to the cutting velocity in the plane of cut. Clearance γ is the angle between the
clearance face and the cut plane. η is the chip flow angle, which is assumed to be
the same as inclination, i.e. η = λ , as suggested by Stabler [75].

As illustrated in Figure 3.9.b, the cutting velocity in thread turning consists
of two components corresponding to the rotation of the workpiece (Vw) and axial
feedrate of the cutting tool (V f ):

Vt = Vw +V f ←

{
Vw = [0,0,−(πdwn)/60]T (circumferential)
V f = [hp. n/60,0,0]T (axial)

(3.29)

where dw is the diameter of the workpiece, n [rev/min] is the spindle speed, and hp

is the thread pitch. In most regular turning operations, the axial feed (Vf ) is rela-
tively small and can be ignored compared to the circumferential velocity. In thread
turning, however, the tool has to travel axially one pitch over each spindle revo-
lution; depending on the workpiece diameter, pitch of the thread, and the spindle
speed, the axial feedrate can be considerable in thread turning. Both components
are considered in this thesis for generality.
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As illustrated in Figure 3.9.b, the angle between the velocity vector Vt and the
cutting planes varies along the threading tooth. In order to calculate the effective
oblique angles systematically, three orthogonal unit vectors have been defined lo-
cally at each point along the cutting edge: vector L̄ tangent to the cutting edge,
vector ᾱ normal to rake face, and vector γ̄ normal to the clearance face. At each
point Pu(k) on the cutting edge (Figure 3.6), the unit tangent vector L̄(k) is obtained
as (repeated from Eq. (3.23)):

L̄(k) =
Pu(k+1)−Pu(k−1)
|Pu(k+1)−Pu(k−1)|

(3.30)

The rake and clearance unit vectors are calculated from their projections on the XY

plane and Z axis:

Γ̄(k) = TIG.Γ̄IC(k) = TIG.
Γ̄xy(k)+ Γ̄z(k)∣∣Γ̄xy(k)+ Γ̄z(k)

∣∣ , Γ̄ = ᾱ, γ̄ (3.31)

where  ᾱxy(k) = (sinα0)
[

cosθ(k),−sinθ(k),0
]T

ᾱz(k) =
[

0,0,(cosα0)
]T (3.32)

 γ̄xy(k) = (cosγ0)
[
−cosθ(k),sinθ(k),0

]T

γ̄z(k) =
[

0 0 (−sinγ0)
]T (3.33)

where α0 and γ0 are the nominal rake and clearance angles of the insert, and TIG is
the insert-to-global coordinate transformation matrix defined in Eq. (3.2). θ(k) is
the local approach angle defined in Figure 3.6.b and calculated as:

θ(k) = tan−1
(

Pu,y(k+1)−Pu,y(k)
Pu,x(k+1)−Pu,x(k)

)
(3.34)

considering the four quadrants of the trigonometric circle. Based on the geometric
definitions in Figure 3.9.a, the effective local oblique angles at each point Pu(k)

along the threading tooth are calculated as:

rake angle: α(k) =−π

2
+ cos−1

(
ᾱ(k) ·

(
L̄(k)× Vt

|Vt |

))
(3.35)
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thread pitch: 5 mm, clearance angle: 5◦)

inclination angle: λ (k) =−π

2
+ cos−1

(
L̄(k) · Vt

|Vt |

)
(3.36)

clearance angle: γ(k) =
π

2
− cos−1

(
γ̄(k) · Vt

|Vt |

)
(3.37)

where (·) and (×) denote inner and cross products, respectively.
Figure 3.10 shows the calculated oblique angles along sample V-profile and

buttress inserts (dimensions given in Figure 1.1.c). The diameter of the workpiece
and the thread pitch are assumed to be 40 mm and 5 mm, respectively, and the
inserts have nominal clearance angle of 5◦. The oblique angles have been calculated
for two values of rake angle: α0 = 0◦ and α0 = 3◦. It can be seen that the effective
angles vary considerably along the cutting edge.
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3.6.2 Local Cutting Force Coefficients

Figure 3.11.a illustrates the local tangential, feed, and radial cutting forces exerted
on the tool at two locations along the cutting edge. For each chip element k, the unit
vectors defining the direction of the local forces can be calculated as (Figure 3.11.b):

Utc(k) =
Vt

|Vt |
(3.38)

U f c(k) =
Vt× L̄(k)∣∣Vt× L̄(k)

∣∣ (3.39)

Urc(k) =
(
Utc(k)×U f c(k)

)
· sgn

(
U f c,x(k)

)
(3.40)

where Vt and L̄(k) are the velocity and local edge vectors defined in Eqs. (3.29)
and (3.30), respectively. The magnitudes of the local force components are:
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Ftc(k)

Ff c(k)

Frc(k)

=

 Ktc(k)

K f c(k)

Krc(k)

 ·Ac(k) (3.41)

where Ac(k) is the area of the chip element k, and Ktc, K f c, and Krc are the local
cutting force coefficients. As illustrated in Figure 3.12, the area of the chip element
k can be calculated using the cross product of the element’s edge vectors:

Ac(k) =
1
2
{|h(k)×bl(k)|+ |h(k+1)×bu(k)|} (3.42)

where h(k) and h(k+1) are the thickness vectors, and bl(k) and bu(k) are the width
vectors on the upper and lower bands, respectively. These vectors are calculated as
(Figure 3.12):

h(k) = Pl(ik)−Pu(k) (3.43)

h(k+1) = Pl(ik+1)−Pu(k+1) (3.44)

bu(k) = Pu(k+1)−Pu(k) (3.45)

bl(k) = Pl(ik+1)−Pl(ik) (3.46)

where ik is the index of the point (on the lower band) paired with the point Pu(k)

of the upper band (see Section 3.5). As marked in Figure 3.12, the cross products
in Eq. (3.42) give the area of the lower and upper triangles, respectively. Using
this approach, the area is calculated accurately even in the case of distorted or three
edge elements.

For each chip element k, the local cutting force coefficients in Eq. (3.41) are
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obtained as: 
Ktc(k)

K f c(k)

Krc(k)

= Tob(k)

[
Ku(k)

Kv(k)

]
(3.47)

where Tob(k) is the local orthogonal-to-oblique transformation, and Ku and Kv are
the friction and normal cutting force coefficients, respectively ([76]). Tob(k) maps
the parameters from the UV to TFR coordinates shown in Figure 3.9. Due to the
variation of oblique angles along the cutting edge, this transformation must be cal-
culated locally for each chip element k as:

Tob(k) =

 cosλ (k) sinλ (k) 0
−sinλ (k) cosλ (k) 0

0 0 1


 cosα(k) 0 sinα(k)

0 1 0
−sinα(k) 0 cosα(k)


 0 1

sinη(k) 0
cosη(k) 0



=

 sinλ (k)sinη(k)+ cosλ (k)sinα(k)cosη(k) cosλ (k)cosα(k)

cosα(k)cosη(k) −sinα(k)

−cosλ (k)sinη(k)+ sinλ (k)sinα(k)cosη(k) sinλ (k)cosα(k)


(3.48)

where α(k) and λ (k) are the local effective rake and inclination angles calculated
in Eqs. (3.35) and (3.36), respectively; η(k) is the local chip flow angle, which is
assumed equal to the inclination angle, i.e. η(k) = λ (k) [75].

Figure 3.13 illustrates the cutting edge and the chip removal mechanism. Typ-
ical threading inserts have edge radius of around 50 µm 2. During the cutting pro-
cess, some of the material is compressed under the round section of the cutting
edge, resulting in higher friction and normal forces. The effect of ploughing be-
comes more significant when the chip thickness is equal to or smaller than the edge
radius. In threading buttress profile, the chip thickness on the sides is typically
few microns while the chip load at the root can be as large as 0.5 mm. Therefore,
linearization of cutting force coefficients is not a realistic assumption. This thesis
uses nonlinear Kienzle force model [77]; the friction (Ku) and normal (Kv ) cutting
coefficients are modelled as (see Figure 3.15):

Ki = kc1,i (h̄)−mc,i , i = u,v (3.49)

2Measured by the author for several inserts during his industrial internship at Sandvik Coromant,
Sweden, 2014.
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where kc1 and mc are the Kienzle coefficients, and h̄ is the average chip thickness
calculated for each element k as:

h̄(k) =
1
2
(|h(k)|+ |h(k+1)|) (3.50)

where h(k) and h(k+ 1) are defined in Eqs. (3.43) and (3.44), respectively. The
cutting coefficients Ku and Kv in Eq. (3.49) depend on the workpiece material, insert
coating, edge radius, chip thickness, cutting speed, and other tool-workpiece char-
acteristics. Finite element modelling can be used to predict these coefficients semi-
analytically using slip line field [78]. In this thesis, however, in order to minimize
the errors originating from the cutting coefficients, Ku and Kv have been identified
experimentally as presented in Section 3.7.1.

3.6.3 Total Cutting Forces

The local static cutting forces for each chip element k are obtained from Eqs. (3.41)
and (3.47):

Fs,L(k) =


Ftc(k)

Ff c(k)

Frc(k)

= Tob(k)

[
Ku(k)

Kv(k)

]
.Ac(k) (3.51)
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where Ac(k) and [Tob(k)]3×2 are defined in Eqs. (3.42) and (3.48), respectively.
The local forces are projected in the global coordinates as:

Fs(k) =


Fs,x(k)

Fs,y(k)

Fs,z(k)

= TLG(k)


Ftc(k)

Ff c(k)

Frc(k)

 (3.52)

where [TLG(k)]3×3 is the local-to-global transformation at the location of element
k:

TLG(k) =
[
{Utc(k)},{U f c(k)},{Urc(k)}

]
(3.53)

where Uic, i = t, f ,r, are the local unit direction vectors (Figure 3.11.b) defined in
Eqs. (3.38)-(3.40). The resultant cutting force vector on each tooth j is calculated
by summing all the elemental forces on the tooth, i.e:

jFs =


jFs,x
jFs,y
jFs,z

=

jNe

∑
k=1

jFs(k)=
jNe

∑
k=1

{
Ftc(k)Utc(k)+Ff c(k)U f c(k)+Frc(k)Urc(k)

}
j

(3.54)
where jNe =

jNu is the number of chip elements (points on the upper band) on
tooth j. Finally, the total cutting forces exerted on the insert are obtained as:

Fs =
Nt

∑
j=1

( jFs
)

(3.55)

where Nt is the total number of teeth engaged in the cut.

3.7 Experimental Validation of Mechanics Model
In order to validate the proposed force prediction model, numerous sets of threading
experiments have been conducted using different inserts and infeed plans. Sample
results are presented in this section. 3

3All experiments in this section were carried out at Sandvik Coromant in Sweden during the
author’s industrial internship in 2014.
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3.7.1 Semi-Orthogonal Identification Tests

In order to identify the cutting force coefficients, a set of semi-orthogonal cut-
ting tests have been performed using a V-profile threading insert. As shown in
Figure 3.14.a, a workpiece with concentric tubes of 1.95 mm wall thickness has
been prepared by opening circular slots on the face of a solid cylinder. The work-
piece material is AISI 1045, and the insert is Sandvik Coromant 22V401A0503E
V-profile (60◦). The cutting tool has been positioned such that only one straight
edge of the insert cuts the workpiece, and the round nose is out of cut. Each tube
has been cut at different values of axial feedrate fa in the range of 0.056-0.615
mm/rev. Cutting speed in all experiments is 150 m/min.

As illustrated in Figure 3.14.b, the width (b) and thickness (h) of the chip in
each test is calculated as:

h = fa sinθ , b = tw/sinθ (3.56)

where tw = 1.95 mm is the wall thickness and θ = 60◦ is the approach angle 4.
The forces have been measured using a 3-axis Kistler 9121 turning dynamometer,
and data acquisition has been implemented in CUTPRO R© MALDAQ software [79].

4Due to the fixed orientation of the tool and dynamometer, positioning the cutting edge normal
to the feed direction was not possible
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Table 3.1: Parameters and measured forces in the semi-orthogonal identifica-
tion tests (material: AISI 1045, cutting speed: 150 m/min, insert: Sand-
vik Coromant V-profile.

fa [mm/rev] h [mm] b [mm] Fx [N] Fy [N] Fz [N] Fu [N] Fv [N]

0.056 0.048 2.252 274 161 383 318 383
0.063 0.055 2.252 297 173 417 343 417
0.080 0.069 2.252 356 208 509 412 509
0.098 0.085 2.252 396 233 582 460 582
0.126 0.109 2.252 453 268 708 527 708
0.154 0.133 2.252 502 302 826 585 826
0.196 0.170 2.252 528 322 970 618 970
0.252 0.218 2.252 586 367 1184 691 1184
0.308 0.267 2.252 754 458 1465 882 1465
0.392 0.339 2.252 782 495 1776 925 1776
0.615 0.533 2.252 954 617 2562 1135 2562

The axes of the dynamometer are aligned with the global coordinates, i.e. XY Z in
the axial, radial, and tangential directions, respectively. The normal force (Fv) and
friction force (Fu) (Figure 3.14.c) are determined as:

Fu = Fx sinθ +Fy cosθ , Fv = Fz (3.57)

Table 3.1 provides the settings and the measured forces.
For each test, cutting force coefficients Ku and Kv are obtained by dividing the

corresponding forces by the chip area, i.e. Ki = Fi/(bh), i = u,v. Figure 3.15 shows
the cutting force coefficients plotted as a function of chip thickness. It can be seen
that the trend is highly nonlinear due to the effect of ploughing (Figure 3.13) espe-
cially below 50 µm. Least square method has been used to fit a nonlinear Kienzle
model (Eq. 3.49) to this data, resulting in:

kc1,u = 1204.3MPa , mc,u = 0.384

kc1,v = 691.6MPa , mc,v = 0.534
(3.58)

These coefficients are used in all the threading experiments presented in the next
section.
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Figure 3.15: Experimentally identified cutting force coefficients (material:
AISI 1045, cutting speed: 150 m/min).

Figure 3.16: Setup for the threading experiments. Workpiece material: AISI
1045, diameter: 176 mm, cutting speed: 150 m/min.

3.7.2 Validation of Threading Force Prediction

Figure 3.16 shows the setup used for the threading tests. The workpiece is AISI
1045 solid cylinder with diameter of 176 mm; it has been restricted by a tailstock
at the end to avoid deflections and chatter vibrations. The cutting speed and thread
pitch in all experiments are 150 m/min and 5 mm5, respectively. The forces have
been measured using a 3-axis Kistler turning dynamometer with the load capacity
of 25 KN, and data acquisition has been implemented in CUTPRO R© MALDAQ
software [79].

5More accurately, the pitch is 5 TPI (thread per inch), i.e. 25.4/5=5.08 mm (API Standard [5]).

39



Chapter 3. Chip Geometry and Cutting Forces

V-Profile

For this set of experiments, Sandvik Coromant 266RG-22V401A0503E V-profile
insert with nose angle of 60◦ and nose radius of 0.5 mm has been used. Fig-
ure 3.17.a compares the predicted and measured cutting forces in the tangential,
radial, and axial directions for 14 passes of 0.15 mm/pass radial infeed. The chip
thickness at the nose is equal to the infeed, i.e. 0.15 mm, and the chip load on the
sides is 0.15 sin(30◦) = 0.075 mm. The axial forces are relatively small due to the
symmetry of the insert profile. It can be seen that all the predicted forces agree
with the measurements within 95% accuracy. Figure 3.17.b shows the results for
the same operation but using 6 passes of 0.3 mm/pass. The accuracy of predictions
in this case lies within 80% for all passes. The details are provided in Tables 3.2
and 3.3.

It can be observed that in both Figures 3.17.a and b, the discrepancies between
the predicted and measured forces grow as the insert penetrates deeper into the
thread. This is caused by two main reasons:

1. At deeper passes, a longer part of the tooth is engaged in the cut resulting in
wider chip and more severe chip interference.

2. Due to severe ploughing of material under the cutting edge in the preceding
passes, surface hardness increases incrementally as a result of strain hard-
ening, which has not been modelled in this thesis. Chip thickness (infeed)
is particularly smaller in deeper passes (to limit the forces), leading to sev-
erer ploughing in deeper passes. The strain hardening effect can be included
by updating the cutting force coefficients over each pass based on the new
characteristics of the cut surface. This can be done by predicting the surface
hardness using finite element simulations. Alternatively, the cutting force
coefficients subject to strain hardening can be identified experimentally by
repeated orthogonal cutting tests on the same surface.

The accuracy of the proposed mechanics model can be improved by modelling the
effect of stain hardening.

Figure 3.17.c compares the simulated and measured forces for the same insert
with flank infeed of 0.15 mm/pass. The resultant chip load is 0.15 mm on one side
of the insert and zero on the other side. The detailed infeed parameters and forces
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Figure 3.17: Simulated and measured cutting forces for threading with single
V-profile insert (Sandvik Coromant 22V401A0503E, workpiece mate-
rial: AISI 1045, diameter: 176 mm, thread pitch: 5 mm, cutting speed:
150 m/min)

are provided in Table 3.4. Even though the simulation and experiment still agree
within 90%, the discrepancy is slightly larger compared to the same operation with
radial infeed (Figure 3.17.a). This is due to the fact that in flank infeed plan, one
side of the insert is constantly rubbing on the thread surface, resulting in higher
forces.

Figure 3.17.d shows the simulated and measured forces for the case of alternate
flank infeed with 0.15 mm/pass. The details are provided in Table 3.5. The axial
offset has been set in the same direction as the feed for even pass numbers, and
opposite to feed for odd passes (see Figures 1.2.a and 3.3.c). It can be seen that
there is a close agreement over even passes; for odd pass numbers, however, the
simulation predicts relatively large axial forces (due to single-edge cutting) while
the measured axial forces are almost zero. This means that the free side of the insert,
which is supposed to be sliding freely on the thread surface, is in fact experiencing
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Table 3.2: Simulated and measured forces in threading with V-profile insert;
radial infeed plan at 0.15 mm/pass (Figure 3.17.a).

Infeed Depth Simulation Experiment
Pass ∆a [mm] a [mm] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N]

1 0.15 0.15 5 153 208 -2 153 199
2 0.15 0.30 8 213 335 0 208 333
3 0.15 0.45 10 249 421 3 245 423
4 0.15 0.60 12 284 506 7 291 520
5 0.15 0.75 14 320 591 9 321 597
6 0.15 0.90 16 355 675 9 364 695
7 0.15 1.05 18 391 760 10 405 774
8 0.15 1.20 20 426 845 11 450 873
9 0.15 1.35 21 461 929 13 492 963

10 0.15 1.50 23 497 1014 14 535 1052
11 0.15 1.65 25 533 1099 16 572 1130
12 0.15 1.80 27 568 1183 17 607 1206
13 0.15 1.95 29 603 1268 17 651 1289
14 0.15 2.10 31 640 1353 26 675 1355

Table 3.3: Simulated and measured forces in threading with V-profile insert;
radial infeed plan at 0.3 mm/pass (Figure 3.17.b).

Infeed Depth Simulation Experiment
Pass ∆a [mm] a [mm] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N]

1 0.3 0.3 5 227 478 5 255 416
2 0.3 0.6 9 330 816 17 362 750
3 0.3 0.9 12 422 1101 29 483 1059
4 0.3 1.2 15 514 1386 40 612 1370
5 0.3 1.5 18 606 1671 51 738 1676
6 0.3 1.8 22 699 1955 63 861 1977
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Table 3.4: Simulated and measured forces in threading with V-profile insert;
flank infeed plan at 0.15 mm/pass (Figure 3.17.c).

Infeed Depth Simulation Experiment
Pass ∆a [mm] a [mm] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N]

1 0.15 0.15 5 153 208 -1 160 196
2 0.15 0.30 -9 213 330 -17 208 322
3 0.15 0.45 -46 238 400 -49 225 400
4 0.15 0.60 -86 263 466 -92 261 477
5 0.15 0.75 -128 287 532 -130 300 599
6 0.15 0.90 -169 312 598 -168 330 631
7 0.15 1.05 -209 336 664 -208 365 716
8 0.15 1.20 -251 361 730 -237 396 779
9 0.15 1.35 -292 385 796 -269 422 853

10 0.15 1.50 -333 410 862 -309 454 932
11 0.15 1.65 -374 435 928 -344 481 1008

Table 3.5: Simulated and measured forces in threading with V-profile insert;
alternate flank infeed at 0.15 mm/pass (Figure 3.17.d).

Infeed Depth Simulation Experiment
Pass ∆a [mm] a [mm] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N]

1 0.15 0.15 1 140 219 -2 160 201
2 0.15 0.30 -14 193 349 -21 210 364
3 0.15 0.45 53 218 423 -6 258 435
4 0.15 0.60 -82 243 496 -86 269 483
5 0.15 0.75 128 267 567 -2 335 620
6 0.15 0.90 -155 292 643 -147 364 665
7 0.15 1.05 204 316 712 -13 440 809
8 0.15 1.20 -226 340 785 -185 450 845

severe rubbing. The rubbing force counteract the cutting forces of the engaged
side, resulting in smaller total axial force. The friction and normal rubbing forces
cause an increase in the tangential and radial forces as well. Flank rubbing must
be reduced through insert design and has not been modelled in this thesis. The
agreement between the simulation and experiment over even pass numbers still
prove that the model can predict the cutting forces accurately if rubbing is avoided.
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Single Buttress Insert

In the second set of threading experiments, Sandvik Coromant single buttress in-
sert (266RG-22BU01A050E) has been used to cut 17 passes at radial infeed of
0.075 mm/pass. The resultant chip thickness on the left and right sides of the tooth
are 13 µm and 4 µm, respectively (see Figure 1.1.c). Figure 3.18.a compares the
simulated and measured forces, and Table 3.6 provides the detailed data. While
there is a close agreement over the first half of passes, the deviation grows towards
the end. The insert was examined after the experiment, and large shiny patches
were found on the side flank faces. These shiny areas are caused due to the severe
grinding between the flank face and the thread surface, which result in additional
forces. Rubbing must be reduced through insert design and is not modelled here.

Twin Buttress Insert

In the final set, a Sandvik Coromant Tmax Twin-Lock two-point API buttress insert
(R166.39G-24BU12-050) has been used to cut the same buttress profile but using
two teeth. The radial depth of the second tooth with respect to the first tooth is
0.26 mm, and the infeed values over the first, second, and third passes are 0.46 mm,
0.44 mm, and 0.40 mm, respectively. Based on the insert design, the first tooth
mainly performs rough cutting of the root, and the second tooth performs finishing
of the thread profile (see Figure 3.4.a). Figure 3.18.b compares the simulated and
measured forces, and Table 3.7 provides the detailed data. It can be seen that the
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Figure 3.18: Simulated and measured cutting forces for threading with single
and two-point API buttress inserts (Sandvik Coromant API Buttress
Full Form and Twin, material AISI 1045, cutting speed: 150 m/min,
workpiece diameter: 176 mm, thread pitch: 5 mm)
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Table 3.6: Simulated and measured forces in threading with single buttress
insert; radial infeed at 0.075 mm/pass (Figure 3.18.a).

Infeed Depth Simulation Experiment
Pass ∆a [mm] a [mm] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N]

1 0.075 0.075 8 326 374 2 313 295
2 0.075 0.150 13 436 569 8 490 521
3 0.075 0.225 18 441 588 17 524 597
4 0.075 0.300 21 442 596 27 518 610
5 0.075 0.375 23 443 602 31 513 627
6 0.075 0.450 26 444 608 33 511 646
7 0.075 0.525 29 446 614 33 503 662
8 0.075 0.600 32 447 620 28 504 671
9 0.075 0.675 35 448 626 42 517 695

10 0.075 0.750 37 449 632 47 527 720
11 0.075 0.825 40 450 638 38 537 750
12 0.075 0.900 43 451 645 32 540 768
13 0.075 0.975 46 452 651 23 547 795
14 0.075 1.050 48 453 657 20 551 817
15 0.075 1.125 51 454 663 12 569 842
16 0.075 1.200 54 456 669 17 566 860
17 0.075 1.275 57 457 675 21 578 887

Table 3.7: Simulated and measured forces in threading with twin buttress in-
sert (Figure 3.18.b).

Infeed Depth Simulation Experiment
Pass ∆a [mm] a [mm] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N]

1 0.46 0.46 7 1463 2289 -45 1226 2204
2 0.44 0.90 81 1517 2546 27 1350 2660
3 0.40 1.30 164 1480 2569 57 1405 2881

simulation and experiment agree within 85% accuracy for all passes.

3.8 Summary
This chapter presents a generalized and semi-analytical approach to model the chip
geometry and predict the cutting forces in thread turning with custom multi-point
inserts. The boundaries of the chip are determined based on the insert geometry,
infeed settings, and kinematics of the process. A systematic search algorithm has
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been proposed to discretize the chip area along the cutting edge considering the lo-
cal chip flow direction and the effect of chip interference. Cutting force coefficients
are evaluated locally for each chip element, and the total cutting forces are deter-
mined by summation of the element forces. The proposed mechanics model has
been verified experimentally for V-profile, single buttress, and twin buttress inserts
with different infeed plans; the methodology and results have been published in [1].
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Chapter 4

Dynamics of Multi-Point Threading

4.1 Overview
This chapter investigates the general dynamics of multi-point thread turning op-
erations. Section 4.2 studies the chip regeneration mechanism, followed by mod-
elling the dynamic forces in Section 4.3 to 4.5. Equations of motion in frequency
and time domain (modal space) are derived in Sections 4.6 and 4.7, respectively.
A time-marching numerical simulation method based on semi-discretization and
Simpson’s integration rule is presented in Section 4.8, followed by sample results
in Section 4.9. The proposed mechanics and dynamics models are used to develop
a process optimization algorithm in Section 4.11, and the chapter is concluded in
Section 4.12.

4.2 Chip Regeneration Mechanism
The static cutting force vector Fs in Chapter 3 has been derived based on the nom-
inal (planned) infeed settings. Relative vibrations between the tool and workpiece
result in two additional components: 1) dynamic cutting force Fd due to chip thick-
ness variation, 2) process damping force Fp due to dynamic indentation of the flank
face into the cut surface. The total force vector exerted on the tool at time t is:

{Fc(t)}3×1 = Fs(t)+Fd(t)+Fp(t) (4.1)

where the static forceFs(t) has been written as a time-dependent variable to account
for the transient condition at the start of the operation (see Section 4.5 for details).
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Assume that the deflection of the tool and workpiece at the cutting point due
to the structural flexibilities are represented in the three-dimensional coordinates as
{qt(t)}3×1 and {qw(t)}3×1, respectively. Relative vibration between the tool and
workpiece is obtained as:

q(t) = qt(t)−qw(t) =


qt,x(t)−qw,x(t)

qt,y(t)−qw,y(t)

qt,z(t)−qw,z(t)

=


qx(t)

qy(t)

qz(t)

 (4.2)

It is assumed that the width of the insert is considerably smaller than the length
of the workpiece, hence q(t) is the same for all teeth. The vibration vector at
one spindle revolution before is represented as q(t−T ), or in Laplace domain as
q(s)e−T s, where T is the spindle period.

Figure 4.1.a illustrates the effect of current and previous vibrations on the chip
thickness. Regeneration mechanism in multi-point threading is different than reg-
ular turning in that the vibration marks left by each tooth affect the chip thickness
on a different tooth. It involves additional complexities due to the fact that the
teeth may have different profiles (see Chapter 3). The closed loop dynamics of chip
regeneration in each pass is illustrated in Figure 4.1.b. ∆a and ε f x are the infeed
settings for the pass, q(s) is the relative vibration vector in Laplace domain, and
G(s) represents the structural dynamics of the tool-workpiece setup.

Dynamic chip thickness and the resultant dynamic forces are derived in the
following section.

4.3 Calculation of Dynamic Cutting Forces
Figure 4.2 illustrates a sample threading chip and the effect of current and previous
vibrations. At each point along the cutting edge, only the vibration component in
the local feed direction affects the chip thickness. A systematic methodology is
proposed in this section to calculate the dynamic forces along the threading insert.

4.3.1 Dynamic Chip on The Upper Band

As illustrated in Figure 4.2, the upper band of the chip corresponds to the current
tooth-workpiece engagement. For each chip element k along the cutting edge, the
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Figure 4.1: Chip regeneration mechanism in multi-point thread turning.

unit vector in the local feed (chip thickness) direction can be obtained as:

U f u(k) =
bu(k)×Vt

|bu(k)×Vt |
(4.3)

where× denotes cross product, bu(k) is the element’s edge vector on the upper band
(Eq. (3.45)), and Vt is the total velocity vector calculated in Eq. (3.29). The local
dynamic chip thickness on the upper band, i.e. hdu(k, t), is obtained by projecting
the relative vibration vector in the direction of local chip thickness:

hdu(k, t) = q(t) ·U f u(k) =U f u,x(k)qx(t)+U f u,y(k)qy(t)+U f u,z(k)qz(t) (4.4)

49



Chapter 4. Dynamics of Multi-Point Threading

X

Y

Pu

Pl

Vt

X

Y

current
vibrations

 
vibrations

previous
vibrations

h

h

local effective
chip thickness

Vt

b l(k
)

Uf l
(k)

hdl(k,t)

Adl(k,t)

b u
(k

)

hdu(k,t)

Adu(k,t)

q(t)

q(t)

U
fu

(k
)
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or in matrix form:
hdu(k, t) = {U f u(k)}Tq(t) (4.5)

Note that hdu(k, t) can take negative values when the tool and workpiece deflect
away from each other. The dynamic chip area on the upper band (Figure 4.2) can
be calculated as:

Adu(k, t) = |bu(k)|hdu(k, t) = |bu(k)|{U f u(k)}Tq(t) (4.6)

where bu(k) is the width vector on the upper band (Eq. (3.45)). Negative dynamic
chip thickness results in negative dynamic chip area until the cutter disengages from
the workpiece due to large vibrations (see Section 4.8.1). Using Eq. (3.51), the
dynamic cutting force vector on chip element k due to the current vibrations is
obtained as:

Fdu(k, t) = [Tob(k)]3×2

[
Ku(k)

Kv(k)

]
.Adu(k, t) (4.7)

where Tob(k) is the local orthogonal-to-oblique transformation (Eq. (3.48)), and
Ku(k) and Kv(k) are the local friction and normal cutting force coefficients (Eq. (3.49)),
respectively.

Remark: Based on Kienzle model (Eq. (3.49)), Ku and Kv are functions of
instantaneous chip thickness. This means that vibrations affect not only the chip
area but also the cutting force coefficients. As a result, Ku and Kv in Eq. (4.7)
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are time dependent. In order to reduce the numerical computation, it is assumed
in this thesis that vibrations are sufficiently smaller than the static (nominal) chip
thickness. Hence, the dependency of cutting force coefficients on dynamic chip
thickness is neglected.

4.3.2 Dynamic Chip on The Lower Band

As illustrated in Figures 4.1 and 4.2, the effect of previous vibrations appear as
dynamic chip on the lower band. Since these vibration marks are generated by the
profile of the previous tooth, q(t−T ) must be projected in the local feed direction
at each point along the previous tooth. Since the lower band on the current tooth
matches the cutting edge of the previous tooth, the dynamic chip thickness due to
previous vibrations can be calculated as (Figure 4.2):

hdl(k, t) =−{U f l(k)}Tq(t−T )

=−
[
U f l,x(k)qx(t−T )+U f l,y(k)qy(t−T )+U f l,z(k)qz(t−T )

] (4.8)

where the minus sign is to account for the fact that positive vibrations over the
previous cut (overcutting) result in reduction in the chip thickness on the current
tooth. U f l(k) in Eq. (4.8) is the unit vector in the local feed direction on the lower
band:

U f l(k) =
bl(k)×Vt

|bl(k)×Vt |
(4.9)

where bl is the width vector defined in Eq. (3.46). For each chip element k along the
cutting edge, the dynamic chip area due to the previous vibration marks (Figure 4.2)
can be calculated as:

Adl(k, t) = |bl(k)|hdl(k, t) =−|bl(k)|{U f l(k)}Tq(t−T ) (4.10)

and the corresponding dynamic cutting force vector on the lower band is:

Fdl(k, t) = [Tob(k)]3×2

[
Ku(k)

Kv(k)

]
.Adl(k, t) (4.11)
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4.3.3 Dynamic Chip on The First Tooth

The first tooth has a different chip regeneration mechanism. Assume that the pre-
vious pass was stable with relatively small vibrations. As illustrated in Figure 4.3,
if the current pass causes large vibrations, the resultant marks appear on both the
lower and upper bands of all teeth except the first tooth. Vibration marks from the
previous pass act as disturbance on the first tooth (Figure 4.1.b), but they do not
contribute to the closed loop chip regeneration in the current pass.

In this thesis, the dynamics and stability is analyzed based on the assumption
that the previous pass has been stable with small vibrations. As a result, the dynamic
chip on the first tooth is generated by only the current vibrations (upper band), as
presented in Section 4.3.1.

Remark: Note that since all teeth are rigidly connected to each other, the chip on
the first tooth is still indirectly affected by the chip regeneration on the other teeth.
Large dynamic forces on even one tooth can lead to large vibrations on all teeth.

4.3.4 Total Dynamic Cutting Forces

The local dynamic cutting force vector is calculated for each element k by adding
the components of the upper and lower bands derived in Eqs (4.7) and (4.11), re-
spectively:

Fd(k, t) = [Tob(k)]3×2

[
Ku(k)

Kv(k)

]
. (Adu(k, t)+Adl(k, t)) (4.12)
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The local force vectors are projected in the global coordinates and summed up over
each tooth j:

jFd(t) =
jNe

∑
k=1
{TLG(k)Fd(k, t)}

=

jNe

∑
k=1
{TLG(k)Tob(k)Kuv(k) [|bu(k)|hdu(k, t)+ |bl(k)|hdl(k, t)]}

(4.13)

where Kuv = [Ku,Kv]
T , and transformation matrix TLG is defined in Eq. (3.53).

Using Eqs. (4.5) and (4.8), the dynamic force vector can be written in terms of the
current and previous vibrations as:

jFd(t) =
[ jKdc(t)

]
3×3{q(t)}3×1−

[ jKdd(t)
]

3×3{q(t−T )}3×1 (4.14)

where jKdc(t) and jKdd(t) are the equivalent current and delayed dynamic force
coefficients:

[ jKdc(t)
]

3×3 =

jNe

∑
k=1

[
TLG(k)Tob(k)Kuv(k) |bu(k)|U f u(k)

]
[ jKdd(t)

]
3×3 =


[0]3×3 if j = 1
jNe
∑

k=1

[
TLG(k)Tob(k)Kuv(k) |bl(k)|U f l(k)

]
if j > 1

(4.15)

and jNe is the number of chip elements on tooth j. Note that the first tooth has been
excluded from the delayed term.

4.4 Calculation of Process Damping Forces
As illustrated in Figure 4.4.a, process damping forces are generated due to the in-
dentation of the flank face of the tool in the undulated cut surface when the tool
is vibrating in the direction of chip thickness. As modelled by Shaw and DeSalvo
[51], the component in the feed direction, Fp f , is proportional to the volume of the
compressed material (Vcm) under the flank face of the tool:

Fp f = KspVcm (4.16)
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where Ksp is the material-dependent indentation force coefficient obtained experi-
mentally. The normal force, Fp f , induces a dynamic friction force in the tangential
direction:

Fpt = µFp f (4.17)

where µ is the Coulomb friction between the tool and work material, which is
assumed as 0.3 for typical metal cutting operations.

Figure 4.4.b illustrates the local process damping forces on a threading tooth.
Similar to the static and dynamic cutting forces, the direction and magnitude of pro-
cess damping components vary along the cutting edge. As proposed by Chiou and
Liang [52], the volume of the compressed material is proportional to the vibration
velocity in the direction of chip thickness (feed). The relative vibration velocity
between the tool and workpiece is obtained from Eq. (4.2) as:

q̇(t) =
dq(t)

dt
= q̇t(t)− q̇w(t) (4.18)

For each element k along the cutting edge, q̇(t) is projected in the direction of local
chip thickness as:

{
U f u(k)

}T {q̇(t)}=U f u,xq̇x +U f u,yq̇y +U f u,zq̇z (4.19)

where U f u(k) is calculated in Eq. (4.3). The cross section of the indented material
at the location of element k is obtained using the projected vibration velocity ([52]):

Acm(k) =
Lw

2(k)
2|Vt |

U f u(k)
T q̇(t) (4.20)
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where Vt is the total cutting velocity vector, and Lw(k) is the local width of the
wear land on the flank face (Figure 4.4.b). The process damping model is sensitive
to Lw, therefore Lw is normally measured with a microscope before and after the
experiments. Lw is around 100 µm in typical inserts. The local volume of the
indented material is calculated as:

Vcm = |bu(k)|Acm(k) (4.21)

where bu(k) is the width of the element on the cutting edge (Eq. (3.45)). Hence,
the local process damping forces in the feed and tangential directions are:

Fp f (k) = Ksp|bu(k)|
Lw

2(k)
2|Vt |

U f u(k)T q̇(t)

Fpt(k) = µFp f (k)
(4.22)

where Ksp and µ are the indentation and Coulomb friction coefficients, respec-
tively. Considering the directions of these two components (Figure 4.4.b), the pro-
cess damping force vector represented in the local TFR coordinate system can be
written as:

Fp,L(k) =


Fpt(k)

Fp f (k)

0


T FR

=


µ

1
0

Fp f (k) (4.23)

Fp,L(k) is projected to the global coordinates using TLG(k) transformation matrix
(Eq. (3.53)). The total process damping force vector on tooth j is then obtained by
summation of the element forces:

jFp(t) =


jFp,x
jFp,y
jFp,z

=

jNe

∑
k=1

(
[TLG(k)]3×3Fp,L(k)

)
=
[ jCp

]
3×3{q̇(t)}3×1 (4.24)

where jCp is the equivalent process damping coefficient matrix for tooth j:

[ jCp
]

3×3 =

jNe

∑
k=1

Ksp|bu(k)|
Lw

2(k)
2|Vt |

TLG


µ

1
0

U f u(k)
T

 (4.25)

55



Chapter 4. Dynamics of Multi-Point Threading

4.5 Total Forces on The Insert
In order to model the transient condition at the start of the operation when the teeth
arrive in the cut one by one, a boolean (unit step) function g j is defined for each
tooth j as:

g j(t) = 1(t− ( j−1)T ) =

{
1 if t ≥ ( j−1)T
0 otherwise

(4.26)

where T is the spindle period. Reference time t = 0 is when the first tooth engages
in the workpiece, after which a new tooth comes into the cut upon each spindle
revolution. Since most machines perform a rapid retract at the end of the threading
cycle, the transient condition at the exit has not been considered in this thesis.

Assuming that the width of the threading insert is considerably smaller than
the length of the workpiece, the total forces on the tool can be calculated by lump
summation of the static, dynamic, and process damping forces on all teeth j =

1,2, . . . ,Nt :

{Fc(t)}[3×1] =
Nt

∑
j=1

{
g j(t)

[ jFs +
jFd(t)+ jFp(t)

]}
(4.27)

Using the expressions obtained for these components in Eqs. (3.54), (4.14), and
(4.24), the total force vector can be summarized and re-written in terms of vibration
vector q(t) as:

Fc(t) = Fs(t)+ [Kdc(t)]q(t)− [Kdd(t)]q(t−T )+ [Cp(t)] q̇(t) (4.28)

where

Fs(t) =
Nt

∑
j=1

g j(t).
jNe

∑
k=1

[TLG(k)]3×3[Tob(k)]3×2

{
kc1uh̄(k)−mcu

kc1vh̄(k)−mcv

}
︸ ︷︷ ︸

Ke(k)

As(k)




(4.29)

[Kdc(t)]3×3 =
Nt

∑
j=1

(
g j(t)

jNe

∑
k=1

(
Ke(k) |bu(k)|U f u(k)

T
))

(4.30)
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[Kdd(t)]3×3 =
Nt

∑
j=2

(
g j(t)

jNe

∑
k=1

(
Ke(k) |bl(k)|U f l(k)

T
))

(4.31)

[Cp(t)]3×3 =
Nt

∑
j=1

g j(t).
jNe

∑
k=1

Ksp|bu(k)|
Lw

2(k)
2|Vt |

TLG


µ

1
0

U f u(k)
T



(4.32)

where Kdc, Kdd , and Cp are the equivalent dynamic coefficient matrices corre-
sponding to the current, delayed, and process damping forces on the whole insert.

4.6 Stability Analysis in Frequency Domain
Assume the three-dimensional frequency response functions (FRF) of the tool (Gt)
and workpiece (Gw) at the cutting location are expressed in Laplace domain as:

Gi(s) =

 Gxx,i(s) Gxy,i(s) Gxz,i(s)
Gyx,i(s) Gyy,i(s) Gyz,i(s)
Gzx,i(s) Gzy,i(s) Gzz,i(s)


3×3

, i = t,w (4.33)

where the terms on the main diagonal correspond to the direct FRFs, and the off-
diagonal terms account for the cross couplings. All the FRFs are obtained either by
FE modal analysis or experimental hammer tests (see Section 5.5). Critical stability
of the process is analyzed based on the most severe loading, which happens when all
teeth are engaged in the cut. In this case, g j(t) = 1 for all teeth, and the coefficient
matrices in Eqs. (4.30)-(4.32) become constants. Hence, the total force vector
calculated in Eq. (4.28) can be represented in Laplace domain as:

Fc(s) = Fs/s+[Kdc]q(s)− [Kdd]e−T sq(s)+ [Cp]sq(s) (4.34)

where T is the spindle period. Force Fc exerted on the tool and the reaction force
−Fc exerted on the workpiece result in the three-dimensional vibrations of the tool
and workpiece:

qt(s) = [Gt(s)]3×3{Fc(s)}3×1 (4.35)

qw(s) = [Gw(s)]3×3{−Fc(s)}3×1 (4.36)
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Relative vibration vector is calculated as (Eq. 4.2):

q(s) = qt(s)−qw(s) = [G(s)]3×3Fc(s) (4.37)

where G is the relative structural dynamics between the tool and workpiece:

G(s) = Gt(s)+Gw(s) (4.38)

The closed loop equation of chip regeneration is obtained by substituting Fc(s)
from Eq. (4.34) into Eq. (4.37):

q(s) = G(s)
(
[Kdc]− [Kdd]e−T s +[Cp]s

)
q(s) (4.39)

where the static force Fs has been dropped as it does not contribute to chip regener-
ation (perturbation theory). The characteristic equation of the process is therefore:

∣∣I3×3−G(s)
(
[Kdc]− [Kdd]e−T s +[Cp]s

)∣∣
s= jω = 0 (4.40)

where I3×3 is the identity matrix and j is the unit imaginary number. Stability of
the process is analyzed in frequency domain using Nyquist criterion; for a given
tool-workpiece setup, pass number, infeed settings, and spindle speed, the coeffi-
cient matrices are calculated from Eqs (4.30)-(4.32). The value of the characteristic
function Λ( jω),

Λ( jω) = I3×3−G( jω)
(
[Kdc]− [Kdd]e−T jω +[Cp] jω

)
(4.41)

is then calculated for different frequencies (ω) and plotted on the Real-Imaginary
plane. Stability is determined based on the encirclement of the origin (Nyquist
criterion). Sample results and numerical discussions are presented in Section 4.9.

Remarks

1. If the structural dynamics of the workpiece (G(s)) varies along the axial di-
rection, critical stability must be analyzed based on the most dynamically
flexible point.

2. Stability analysis is performed for each pass individually; if the structural
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dynamics of the workpiece changes due to material removal, the updated
FRFs can be used for the next passes.

4.7 Dynamic Equation of Motion in Time Domain
In order to simulate the response of the system during the entire operation, this
section sets up the dynamic model in time domain. The equations are derived in
modal space since the resultant matrices are decoupled and sparse. In order to
decrease the computation load, the structural dynamics of the tool and workpiece
are approximated using mt and mw number of dominant modes, respectively. The
reduced transfer functions (FRFs) of the tool and workpiece can be constructed in
Laplace domain as [44]

Gi(s) = Ûi
(
Is2 +2ζiωn,is+ωn,i

2)−1 ÛT
i , i = t,w (4.42)

where I[mi×mi] (i = t,w) is the identity matrix, and ζi[mi×mi] and ωn,i[mi×mi] are the
diagonal damping ratio and natural frequency matrices, respectively. Ûi[3×mi] (i =
t,w) is the mass-normalized mode shape matrix of the tool and workpiece at the
cutting location:

Ûi =




ux,1,i

uy,1,i

uz,1,i




ux,2,i

uy,2,i

uz,2,i

 · · ·


ux,mi,i

uy,mi,i

uz,mi,i




3×mi

, i = t,w (4.43)

where each column is a mode shape vector showing the relative displacements of
the cutting point in the three directions (global XY Z) when the system vibrates in
that mode. Vibrations of the tool and workpiece can be transformed to the modal
space as:

{qi(t)}[3×1] =
{

Ûi
}
[3×mi]

{Ψi(t)}[mi×1] , i = t,w (4.44)

where qi and Ψi are the displacement vectors in the physical and modal spaces, re-
spectively. The relative vibration vector between the tool and workpiece (Eq. (4.2))
is:

q(t) = qt(t)−qw(t) = ÛtΨt(t)− ÛwΨw(t) (4.45)
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Using Eq. (4.28), the total force vector is written in terms of modal displacements:

Fc(t) = Fs(t)+ [Kdc(t)]
(
ÛtΨt(t)− ÛwΨw(t)

)
− [Kdd(t)]

(
ÛtΨt(t−T )− ÛwΨw(t−T )

)
+[Cp(t)]

(
ÛtΨ̇t(t)− ÛwΨ̇w(t)

)
(4.46)

Dynamic equations of motion for the tool and workpiece (in Laplace domain) are
obtained by combining Eqs. (4.35), (4.36), (4.42), and (4.44):{ (

Is2 +2ζtωn,ts+ωn,t
2)Ψt(s) = ÛT

t Fc(s)(
Is2 +2ζwωn,ws+ωn,w

2)Ψw(s) =−ÛT
wFc(s)

(4.47)

The modal displacement vectors of the tool and workpiece are put together in a
single vector

Γ (t) =

{
Ψt(t)

Ψw(t)

}
mt+mw

, (4.48)

and the force expression from Eq. (4.46) is substituted into Eq. (4.47). The com-
bined modal dynamic equation of the tool and workpiece in the time domain and in
matrix form is:

Γ̈ (t)+(Cm,1+Cm,2(t))Γ̇ (t)+(Kmc,1+Kmc,2(t))Γ (t)+Kmd(t)Γ (t−T ) =Fsm(t)

(4.49)
where

Cm,1 =

[
2ζtωn,t 0[mt×mw]

0[mw×mt ] 2ζwωn,w

]
, Cm,2(t) =−

[
ÛT

t

−ÛT
w

]
[Cp(t)]

[
Ût −Ûw

]
Kmc,1 =

[
ω2

n,t 0[mt×mw]

0[mw×mt ] ω2
n,w

]
, Kmc,2(t) =−

[
ÛT

t

−ÛT
w

]
[Kdc(t)]

[
Ût −Ûw

]
Kmd(t) =

[
ÛT

t

−ÛT
w

]
[Kdd(t)]

[
Ût −Ûw

]
Fsm(t) =

[
ÛT

t

−ÛT
w

]
Fs(t)

(4.50)
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Cm,i, Kmc,i (i=1,2), and Kmd are square matrices of size (mt +mw)× (mt +mw),
and Cp, Kdc, and Kdd have 3× 3 dimensions; mode shape matrices Ûi,(i = t,w)

are of size 3×mi, and Fsm(t) and Fs(t) are column vectors of size (mt +mw)× 1
and 3×1, respectively.

It is numerically more efficient to solve the equation of motion in state space. If
the state vector is defined as:

Ω(t) =

{
Γ (t)

Γ̇ (t)

}
2(mt+mw)×1

, (4.51)

Eq. (4.49) can be transformed to state space as:

Ω̇(t) = A0Ω(t)+Bc(t)Ω(t)+Bd(t)Ω(t−T )+S(t) (4.52)

where A0, Bc(t), and Bd(t) are the constant, current, and delayed state matrices
(each of size 2(mt +mw)×2(mt +mw)), respectively, and column vector S(t) is the
piecewise1 static forcing function (length 2(mt +mw)):

A0 =

[
0 I

−Kmc,1 −Cm,1

]
, Bc(t) =

[
0 0

−Kmc,2(t) −Cm,2(t)

]

Bd(t) =

[
0 0

−Kmd(t) 0

]
, St(t) =

[
{0}[(mt+mw)×1]

{Fsm(t)}[(mt+mw)×1]

] (4.53)

where all the 0 and I entries are of size (mt +mw)×(mt +mw), and the other entries
are defined in Eq. (4.50). Since the static force (S(t)) has been included, the
solution of Eq. (4.52) consists of the vibrations as well as the static deflections of
the tool and workpiece. Hence, the time domain solution allows us to predict not
only the stability of the process but also the accuracy and surface location errors in
the machined threads.

4.8 Time-Marching Numerical Simulation
In order to simulate the full time history of the process, this section presents a time-
marching numerical method to solve Eq. (4.52) consecutively at each time step.
Semi-discretization technique proposed by Insperger and Stepan [20] is combined

1Due to the transient condition at the beginning of the process.

61



Chapter 4. Dynamics of Multi-Point Threading

t i-m
t i-m+1

t i+1t it i-m+2

T

i-m

i-m+1

Ω

Ω

Ω

i-m+2Ω

iΩ

i+1Ω

t

Figure 4.5: Semi-discretization of delay differential equations [20].

with the Simpson’s three-point integration rule to numerically evolve the solution
over time. As demonstrated in Figure 4.5, each spindle revolution (period T ) is
divided into m intervals of ∆t = T/m. In each time interval t0 < t < t0 +∆t, the
last three terms in Eq. (4.52) are approximated by their values at t = t0. The delay
differential equation (DDE) then turns into an ordinary differential equation (ODE)
over the interval, the solution of which can be obtained analytically. Since A0 is a
time-invariant matrix, the solution to the ODE in the current interval can be written
as [40]:

Ω(t) = eA0(t−t0)Ω(t0)+
∫ t

t0
eA0(t−τ)H(τ)dτ

H(τ) = Bc(τ)Ω(τ)+Bd(τ)Ω(τ−T )+S(τ)
(4.54)

whereΩ(t0) is the state value at initial time t0. The integral in Eq. (4.54) is approx-
imated using Simpson’s integration rule; at each time step ti = t0 +(i− 1)∆t,(i =

2,3, ...), the state value Ω(ti) is obtained from the available function values H at
three integration points (ti−2, ti−1, ti):

Ω(ti) = eA0(ti−ti−2)Ω(ti−2)+
∫ ti

ti−2

eA0(ti−τ)H(τ)dτ

= e2A0∆tΩ(ti−2)+
(2∆t)

6

{
e2A0∆tH(ti−2)+4eA0∆tH(ti−1)+H(ti)

}
(4.55)

Equation (4.55) is an implicit relation sinceH(ti) requires the valueΩ(ti) (Eq. 4.54).
If all the H functions in Eq. (4.55) are expanded using Eq. (4.54), Ω(ti) can be
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obtained explicitly as:

Ω(ti) =
(

I− ∆t
3

Bc(ti)
)−1 [

e2A0∆tΩ(ti−2)

+
∆t
3

e2A0∆t {Bc(ti−2)Ω(ti−2)+Bd(ti−2)Ω(ti−2−m)+S(ti−2)}

+
4∆t
3

eA0∆t {Bc(ti−1)Ω(ti−1)+Bd(ti−1)Ω(ti−1−m)+S(ti−1)}

+
∆t
3
{Bd(ti)Ω(ti−m)+S(ti)}

]
(4.56)

where m = T/∆t is the number of time steps in one spindle revolution, and I is the
identity matrix of size 2(mt +mw)×2(mt +mw). For simulation of the first spindle
revolution, all the delay states (initial conditions) are assumed to be zero, i.e.

∀i,0≤ i≤ m−1 : Ω(ti−m) = {0}[2(mt+mw)×1] (4.57)

Equation (4.56) cannot be used for calculation of Ω(t1) since coefficient matrices
are not defined at t < 0. The time-marching simulation is initialized by calculating
a dummy stateΩ(t0 +∆t/2) using two-point trapezoidal integration:

Ω(t0 +
∆t
2
) = eA0∆t/2Ω(t0)+

(∆t/2)
2

{
eA0∆t/2H(t0)+H(t0 +

∆t
2
)

}
, (4.58)

which along with Eq. (4.57) leads to the following explicit expression:

Ω(t0 +
∆t
2
) =

(
I− ∆t

4
Bc(t0 +

∆t
2
)

)−1 [
eA0∆t/2Ω(t0)

+
∆t
4

eA0∆t/2 {Bc(t0)Ω(t0)+S(t0)}+
∆t
4

{
S(t0 +

∆t
2
)

}] (4.59)

Ω(t1) is then calculated by three-point Simpsons rule using the function values at
times t0, t0 +∆t/2, and t1:

Ω(t1) = eA0∆tΩ(t0)+
∆t
6
{eA0∆tH(t0)+4eA0∆t/2H(t0 +

∆t
2
)+H(t1)} (4.60)

63



Chapter 4. Dynamics of Multi-Point Threading

or in explicit form:

Ω(t1) =
(

I− ∆t
6

Bc(t1)
)−1 [

eA0∆tΩ(t0) +
∆t
6

eA0∆t {Bc(t0)Ω(t0)+S(t0)}

+
4∆t
6

eA0∆t/2
{

Bc(t0 +
∆t
2
)Ω(t0 +

∆t
2
)+S(t0 +

∆t
2
)

}
+

∆t
6
{S(t1)}

]
(4.61)

Once the state vector Ω(ti) is calculated, the vibration vector of the tool and work-
piece can be extracted from Eqs. (4.44), (4.48), and (4.51). The resultant forces at
each time step are simulated using Eq. (4.28).

Remark. The time domain solution can be used to determine the stability of the
process by simulating the vibrations. It is important to ensure that instability of the
predicted vibrations is due to the instability of the process and not the numerical
method. In this thesis, the minimum required time discretization for numerical
stability has been found by trial and error, but the stability region can be found
analytically using advanced theories of numerical methods.

Comparison With Euler Solution

In order to examine the efficiency and stability of the presented numerical method,
the equation of motion (Eq. (4.49)) has been solved using Euler numerical method
as well. If the derivative terms are approximated as:

Γ̈ (ti) =
Γ (ti+2)−2Γ (ti+1)+Γ (ti)

∆t2 (4.62)

Γ̇ (ti) =
Γ (ti+1)−Γ (ti)

∆t
, (4.63)

and substituted in Eq. (4.49), the explicit time-marching expression for the state
vector is obtained as:

Γ (ti+2) = E3Γ (ti+1)+E2Γ (ti)+E1Γ (ti−m)+E0 (4.64)
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Figure 4.6: Simulation setup: a) sample multi-point V-profile insert, b) FRF
of the workpiece in the radial direction.

where 
E3 = 2I−∆t(Cm,1 +Cm,2(ti))

E2 =−I+∆t(Cm,1 +Cm,2(ti))−∆t2(Kmc,1 +Kmc,2(ti))

E1 =−∆t2Kmd(ti)

E0 = ∆t2Fsm(ti)

(4.65)

All the initial conditions are assumed to be zero.

4.8.1 Remarks: Cutter Disengagement Due to Large Vibrations

In the case of large vibrations, one or more teeth can disengage from the workpiece
for part of the vibration cycle. At each time ti, if the vibrations separating the tool
and workpiece are larger than the chip thickness on tooth j, the boolean function
g j(ti) (Eq. (4.26)) is set to zero until the tooth comes back in the cut. In the case
when all teeth jump out of cut, all the forcing coefficients in Eq. (4.50) become zero
except the structural matrices Cm,1 and Kmc,1. In this case, both the tool and work-
piece undergo free vibration state until they engage again. A sample simulation
involving out-of-cut jumps is presented in the next section (Figure 4.7.e).

4.9 Sample Simulation Results and Discussions
This section highlights important technical and numerical remarks in modelling and
simulation of multi-point threading operations. A sample V-profile insert shown in
Figure 4.6.a has been used for the simulations. The pitch of the thread is 5mm,
and all passes are performed at 1850 rpm spindle speed. The workpiece material
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Table 4.1: Dynamic parameters of the workpiece used in simulations.

ωn [Hz] ζ ks [N/m]

Mode 1 300 2% 1.5×108

Mode 2 700 1% 3.0×108

is AISI1045 steel with cutting force coefficients identified in Section 3.7.1. The
indentation coefficient used in the process damping model is Ksp = 4×1013 N/m3.
As shown in Figure 4.6.b, it is assumed that the structural dynamics of the work-
piece is dominated by two modes in the radial direction. Table 4.1 provides the
dynamic parameters for these two modes.

Nyquist criterion in frequency domain has been used to analyze the stability of
the process for each pair of infeed value (∆a) and spindle speed (n). Figure 4.7.a
shows the predicted stability chart for the first pass, where the area below the lobes
represent the stable region. In order to capture the shape of the lobes with more
details, a grid of 100 infeed values and 500 spindle speeds has been used. On a PC
with i5 core and 3.10 GHz CPU, it takes about 10 minutes to generate this chart
with such a dense grid (50,000 points). In practice, however, the absolute stability
limits can be detected reliably in less 30 seconds using a coarser grid.

In order to verify the frequency domain stability chart in Figure 4.7.a, the time-
marching numerical method presented in Section 4.8 has been used to simulate the
relative displacement between the tool and workpiece over 50 spindle revolutions.
Figures 4.7.b-d show the results for three infeed values close to the stability limit
at 1850 rpm spindle speed. It can be seen that the point below the lobes (1.6 mm,
1850 rpm) results in decaying vibrations while the point above (2.0 mm, 1850 rpm)
leads to instability. The process is marginally stable at (1.8 mm, 1850 rpm), which
fully agrees with the frequency domain lobes. Figure 4.7.e shows the system re-
sponse to an aggressive infeed of 3 mm. Even though the process is unstable, the
vibrations cannot grow indefinitely due to cutter disengagement (Section 4.8.1).

It can be observed in Figure 4.7.b that in addition to the high frequency vibra-
tions, there is a 0.02 mm average offset in the simulated displacements. This is
due to the static deflection of the workpiece under the cutting forces, and results
in undercutting the thread profile over the current pass. The uncut material adds
to the chip load and cutting forces in the following pass; the static deflections over
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Figure 4.7: Stability charts and time simulations for threading with three-
point V-profile insert (material: AISI 1045).
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the final pass directly translates to defects and inaccuracy in the thread profile. In
practice, the infeed value over the final pass is chosen relatively small to reduce
these errors.

Stability over each pass depends on the previous thread depth. As marked by
small circles in Figures 4.7.a and f, assume that the infeeds for both the first and
second passes are chosen as 0.7mm (to avoid large cutting forces). The stability
charts for the third and fourth passes are shown in Figures 4.7.g and h, respectively.
The absolute stability limit at 1850 rpm is only 0.6mm, which means cutting with
only two teeth (#2 and #3); engaging tooth #1 leads to instability for any infeed
value. Considering a safety margin, the infeeds for both third and fourth passes
are chosen as 0.5mm. Assume that the desired final depth for this application is
2.6mm. Figure 4.7.i shows the stability chart for the final pass with the previous
depth of 2.4mm. The final infeed is thus 0.2mm, which leads to cutting with only
tooth #3.

4.10 Numerical Remarks

4.10.1 Efficiency of Time-marching Numerical Methods

Semi-discretization and Euler’s methods (Section 4.8) have been used to simulate
the stable point (1.6 mm, 1850 rpm) in Figure 4.7.b over 50 spindle revolutions.
The two methods have been compared based on two criteria:

1. Stability: Minimum number of discretization intervals m (per spindle revolu-
tion) required to correctly predict the stability of the threading process.

2. Convergence: Minimum number m such that further increase in m does not
change the amplitudes and shape of the simulated vibrations considerably.

Table 4.2 summarizes the comparison results, and the simulated vibrations are
shown in Figure 4.8. It can be seen that SD method is stable with m = 70 while
Euler’s method requires at least m = 57,000. For convergence, SD method requires
m = 115 and can simulate the process over 50 spindle revolutions in 0.06 seconds.
Euler’s method, on the other hand, requires at least m = 230,000 and 35 seconds
to simulate the same process. This is due to the fact that SD technique solves
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Figure 4.8: Comparison of Semi-discretization and Euler’s methods for time-
marching numerical simulation (structural frequencies: 300 Hz and
700 Hz, spindle speed: 1850 rpm, infeed: 1.6 mm).

Table 4.2: Minimum discretization intervals for stability and convergence of
time-marching simulations.

Stability Convergence Simulation Time
m m (50 rev, convergence)

Semi-discretization 70 115 0.06 s
Euler’s method 57,000 230,000 35 s

the approximated ODEs analytically in each time step while Euler’s method solves
algebraic equations by approximating all the derivative terms numerically.

In conclusion, not only SD method is faster than Euler discretization (by a factor
of 500 in this example) but also it requires significantly less memory due to smaller
number of time steps.

Remark 1. Since the presented numerical method in Section 4.8 is used to de-
termine the instability of the machining process, it is important to ensure that the
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numerical method itself is not unstable. Hartung et al. [80] proved mathematically
that there exist a minimum discretization number (m) which guarantees the stabil-
ity and convergence of the semi-discretization method. The minimum m depends
on the process parameters and cannot be determined analytically. The suggested
approach is to first simulate the vibrations for low infeed values where the pro-
cess is stable, find the minimum discretization number for stability of the numerical
method, and then generate the stability charts.

Remark 2. Sensitivity of the predicted stability lobes (Figure 4.7.a, three-point
V-profile insert) to the discretization number m is analyzed in Figure 4.9. The ’ex-
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Figure 4.9: Sensitivity of the stability lobes to numerical semi-discretization,
a) stability lobes for the three-point V-profile insert, material:
AISI 1045, b) comparison for different number of discretization m.
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act’ stability chart has been generated using m = 2000 points. The stability charts
for m = 100 and m = 200 are also shown in Figure 4.9. It can be seen that while
there is a slight difference between the exact solution and the lobes for the case
with m = 100, using m = 200 gives nearly identical stability lobes as m = 2000.
Therefore, using m > 200 has no practical effect on the predicted stability charts in
this operation.

4.10.2 Frequency Resolution in Nyquist Stability Analysis

As presented in Section 4.6, stability of the process is analyzed by plotting Λ( jω),
(repeated from Eq. 4.41)

Λ( jω) = I3×3−G( jω)
(
[Kdc]− [Kdd]e−T jω +[Cp] jω

)
(4.66)

for ω ∈ (ω1 : ∆ω : ω2), where ∆ω is the frequency resolution (increment). If ∆ω

is not sufficiently small, Nyquist criterion may lead to false stability prediction.
To demonstrate this, consider a sample point (3 mm, 1500 rpm) in Figure 4.7.a.
Figure 4.10.a shows Λ( jω) for ω in the range of 0-1000 Hz with 0.1 Hz increments.
It can be seen that Λ( jω) forms a spiral shape with varying diameter; the circling
is mostly due to the phase contribution of the complex exponential term

e−T jω = cosT ω− j sinT ω, (4.67)

which has a periodic frequency equal to the spindle frequency

ωsp =
2π

T
(4.68)

where T is the spindle period. This means that as ω is swept over the range of
frequencies, Λ( jω) completes a full circle over each spindle frequency. The diam-
eters of the circles are mainly determined by the FRF of the structure (G( jω)) at
each frequency. The bigger circles, which determine the stability of the process, are
formed as ω approaches the resonance of the structure. It is therefore crucial that
the swept frequencies include all the dominant structural modes.

Figure 4.10.b and c show the plotted Λ( jω) for the same range of frequencies
but with resolutions of 2 Hz and 5 Hz, respectively. It can be seen that despite
the undulations, the plot with ∆ω = 2 Hz still encircles the origin, thus correctly

71



Chapter 4. Dynamics of Multi-Point Threading

−0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Im
ag

Real

FrequencyIResolution:I0.1IHz

−0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Im
ag

Real

FrequencyIResolution:I2IHz

−0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

Im
ag

Real

FrequencyIResolution:I5IHz

a)

b) c)

ModeI1
(300IHz)

ModeI2
(700IHz)

Figure 4.10: Nyquist plots with different frequency resolutions (structural fre-
quencies: 300 Hz and 700 Hz, spindle speed: 1500 rpm, infeed: 3
mm).

implies instability. However, if 5 Hz resolution is used (Figure 4.10.c), Λ( jω) no
longer crosses the negative side of the imaginary axis, and the process is falsely
predicted as stable.

In order to capture the shape of the circles reliably, at least 10 to 20 data points
are required along each circle. Hence, the frequency resolution must be smaller
than

∆ωmax =
ωsp

10
=

2π/T
10

(4.69)

where T is the spindle period. If the measured FRF of the structure has been
recorded with a coarser resolution, it must be numerically interpolated before us-
ing Nyquist analysis. In the presented example with spindle speed of 1500 rpm,
ωsp = 157 rad/s = 25 Hz, thus ∆ωmax = 2.5 Hz. In analyzing low speed threading
of oil pipes (120 rpm), the frequency resolution has to be as low as 0.2 Hz.
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4.11 Process Optimization
One of the main capabilities of the integrated systematic model developed in this
thesis is that not only can it simulate the process for a given condition, but also
it can work backwards and help with process planning. An iterative optimization
engine has been developed to automatically determine the number of passes and
infeed values for maximum productivity while respecting user-defined constraints.
For a given tool-workpiece setup, the operator selects the desired final thread depth
and the cutting speed. The following practical constraints can be imposed:

• Minimum chip thickness: to avoid severe ploughing

• Maximum chip thickness: to avoid chip evacuation issues

• Tangential force on tooth: to avoid tooth breakage

• Radial force: to limit workpiece deflections

• Axial force: to avoid pulling the workpiece out of the chuck

• Spindle torque/power: to avoid machine stall

• Stability margin: e.g. 20% below the marginal stability limit

The optimization module uses a binary search algorithm to find the maximum in-
feed which satisfies the defined constraints. Optimization starts with the first pass,
and for the first iteration, the lower and upper limits are set equal to the minimum
and maximum allowed infeed values, respectively. The resultant chip thickness,
forces, torque, and power are then calculated for the upper limit. If any of these
outputs violate the constraints, the solution is rejected, and the upper limit is up-
dated to the average of the previous lower and upper limits. The search continues
until the size of the search window is smaller than few microns. Considering the
typical infeed values in threading (smaller than 1 mm), the solution can always be
found in less than 10 iterations (210 > 1000). The converged value for the infeed is
then compared to the predicted stability limit (at the desired spindle speed) in the
current pass. If it is unstable, the stability limit (minus the user-defined margin)
must be chosen as the optimized infeed. After the first pass, new passes are added
and optimized one by one until the desired thread depth is reached.
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Table 4.3: Optimization constraints for the case study with three-point V-
profile insert (material: AISI 1045).

Chip Thickness Forces Spindle Stability
Min Max Axial Radial Tangential Torque Power Margin

0.04 mm 0.3 mm 1000 N 2000 N 5000 N 80 Nm 20 KW 20%

Table 4.4: Optimization results and the limiting factors (material: AISI 1045,
insert: three-point V-profile).

Pass 1 Pass 2 Pass 3 Pass 4

Selected Infeed 0.9 mm 0.8 mm 0.48 mm 0.42 mm
Limiting Factor Max Chip Thickness Max Torque Stability Final Depth

The case study presented in Section 4.9 (Figure 4.6) has been optimized to
achieve final thread depth of 2.6 mm subject to the constraints defined in Table 4.3.
The selected infeed values and their corresponding limiting factors are provided
in Table 4.4. Figure 4.11 shows the calculated values and stability charts for the
optimized process. As marked by LF1 in Figure 4.11.a, the first pass has been
limited by the maximum allowed chip thickness (0.3 mm), resulting in total infeed
of 0.9 mm. The second pass has been capped at infeed of 0.8 mm based on the
maximum spindle torque (Figure 4.11.e). For the third pass, stability is the limiting
factor; based on Figure 4.11.i, infeed values up to 0.6 mm are stable. Considering
the required 20% stability margin, the infeed for the third pass has been determined
as 0.48 mm. Finally, the desired thread depth can be achieved over the fourth pass
using infeed of 0.42 mm, which satisfies all the constraints. On a PC with i5 core
and 3.10 GHz CPU, optimization of each pass takes less than 10 seconds.

4.12 Summary
This chapter studies the dynamics and stability of multi-point thread turning oper-
ations. Chip regeneration model for custom multi-point inserts has been developed
by studying the effect of current and previous vibrations. Dynamic cutting forces
and process damping forces have been calculated by projecting the vibrations in the
direction of local thickness at each point along the cutting edge. Dynamic equation
of motion has been derived in the time and frequency domains, and stability of the
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process is predicted using Nyquist criterion. A time-marching numerical method
has been presented to simulate the process during the entire operation. Finally, the
developed models have been implemented in an optimization engine to maximize
productivity while respecting user-defined constraints.
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Chapter 5

Threading Thin-Walled Oil Pipes

5.1 Overview
This chapter extends the dynamic model developed in Chapter 4 to threading thin-
walled workpieces. Structural dynamics of clamped cylindrical shells are briefly
discussed in Section 5.2, and the dynamic equation of motion for thin-wall thread-
ing is derived in Section 5.3. The remainder of the chapter is dedicated to experi-
mental validation of the proposed dynamic model. Extensive threading tests have
been conducted on real scale oil pipes in TenarisTAMSA, Veracruz, Mexico1. The
experimental setup is first introduced in Section 5.4, followed by finite element and
experimental modal analysis of the pipes in Section 5.5. Sample chatter experi-
ments are presented and compared against simulations in Section 5.6. Section 5.7
presents approaches for chatter suppression, and the developed threading simula-
tion engine is presented in Section 5.8. The chapter is summarized in Section 5.9.

5.2 Structural Dynamics of Cylindrical Shells
Figure 5.1 illustrates different vibration modes associated with a clamped cylindri-
cal workpiece. The dominant vibration pattern depends on the ratio of the diame-

1Process planning, measurements and analyses have been carried out by the author during his
industrial visit in August 2016.
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Figure 5.1: Vibration modes of a clamped thin-walled workpiece.

ter (dw) to wall thickness (tw) as [81]:

dw

tw


< 5 → beam mode
> 60 → shell mode
≈ 30 → beam + shell

(5.1)

For a cylindrical shell with the length of L, the instantaneous radial vibration at
each point on the workpiece surface can be written in general form as [65]:

qr(x,ϕ, t) =
∞

∑
jl=1

∞

∑
ic=2

A jl ,ic(t)cos(icϕ)sin( jl
x
L

π +θ jl)

+
∞

∑
jl=1

∞

∑
ic=2

B jl ,ic(t)sin(icϕ)sin( jl
x
L

π +θ jl)

(5.2)

where t denotes time, and 0≤ x≤ L and 0≤ ϕ ≤ 2π are the axial and circumferen-
tial coordinates of the point, respectively (Figure 5.1); ic = 2,3, ... is the number of
waves (lobes) in the circumferential pattern, and jl = 1,2, ... is the number of half-
waves in the axial pattern. A jl ,ic , B jl ,ic , and θ jl are determined from the boundary
conditions.

Dynamic response of thin-walled workpieces during machining operation is dis-
cussed in the following section.

5.3 Response of Cylindrical Shells to Threading Loads
The dynamic threading model developed in Chapter 4 is based on the assumption
that the workpiece behaves as a cantilever beam. The model is extended in this
section to threading thin-walled workpieces by addressing the following two main
differences:
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• In machining cylindrical shells, radial flexibilities of the workpiece are the
most dominant source of regenerative vibrations. All other flexibilities can
be neglected.

• Due to the low-damped shell mode patterns, cutting forces result in different
vibration amplitudes around the circumference of the workpiece. These resid-
ual vibrations affect the chip thickness when the corresponding point arrives
in the cutting region. In order to model the process, instantaneous vibrations
at all points must be determined.

The dynamic model presented below evaluates the shell vibrations in each cross
section individually based on the local structural dynamics.

5.3.1 Dynamic Equation of Motion

As illustrated in Figure 5.2, assume that the circumference of the workpiece is dis-
cretized by m number of points. The instantaneous radial vibration at each point k

is denoted by scaler qk(t) (k = 1,2, ...,m), where outward vibrations are considered
positive. The generalized radial vibration vectorQr(t) is formed by stacking all the
point vibrations:

Qr(t) =


q1(t)

q2(t)

:
qm(t)


[m×1]

(5.3)

At each time t, the radial vibration at the cutting point can be obtained as:

qcr(t) =Nc(t)Qr(t) (5.4)

Z

Y

q 
cr

q2

q3

q4

q
1=

q 
m

q 
m-1

...

...

t=0

Figure 5.2: Response of cylindrical shells to machining loads.
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where the row vector {Nc(t)}[1×m] is the instantaneous shape function at the cutting
point. All entries of Nc(t) are zero except for the entry corresponding to the point
in the cutting zone, which is set to one. If necessary, higher order continuity can
be achieved by interpolating (weighted average) over few points around the cutting
region. Based on the defined tool coordinate system shown in Figure 5.2 (same in
previous chapters), the three-dimensional vibration vector of the workpiece at the
cutting location can be represented as:

qw(t) =


0

−qcr(t)

0

 (5.5)

Since the tool is considered rigid, qt(t) = {0,0,0}T . The three-dimensional relative
vibration vector between the tool and workpiece is (Eq. 4.2):

q(t) = qt(t)−qw(t) =


0

qcr(t)

0

= er qcr(t) (5.6)

where er = {0,1,0}T is the unit vector in the radial direction at the cutting point.
Combining Eqs. (5.4) and (5.6) yields:

q(t) = erNc(t)Qr(t) (5.7)

The resultant three-dimensional cutting forces on the tool is obtained by substituting
q(t) in Eq. (4.28):

Fc(t)=Fs(t)+Kdc(t)erNc(t)Qr(t)−Kdd(t)erNc(t)Qr(t−T )+Cp(t)erNc(t)Q̇r(t)

(5.8)
where the static force vector Fs and dynamic matrices Kdc, Kdd , and Cp are de-
fined in Eqs. (4.29)-(4.32), respectively. The reaction force −Fc is exerted on the
workpiece but only the radial force component, denoted as fcr(t), affects the chip
regeneration process:

fcr(t) =−{0,1,0}{Fc(t)}=−eT
r Fc(t) (5.9)
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The generalized force vector {FGr(t)}[m×1], which consists of the instantaneous
radial forces at all m discrete points around the circumference, can be obtained
using the shape functionNc:

{FGr(t)}[m×1] =N
T
c (t) fcr(t) (5.10)

which combined with Eq. (5.9) yields:

FGr(t) =−NT
c (t)e

T
r Fc(t) (5.11)

All entries of {FGr(t)} are zeros except for the entry corresponding to the point
(or points, depending on the chosen shape function) at the cutting region. The
generalized vibration and force vectors are related to each other in Laplace domain
as:

Qr(s) = Gr(s)FGr(s) (5.12)

where [Gr(s)][m×m] is the generalized structural dynamics of the workpiece in the
radial direction. Each entry i j (i, j = 1,2, ...,m) in Gr(s) matrix contains the FRF
from the radial force at point j to the radial vibrations at point i. Assume that
the structural behaviour of the workpiece can be approximated by mw number of
circumferential shell modes. Similar to Eq. (4.42), the reduced generalized matrix
Gr(s) can be constructed in Laplace domain as [44]

Gr(s) = Ûr
(
Is2 +2ζ ωns+ωn

2)−1 ÛT
r (5.13)

where I[mw×mw] is the identity matrix, and ζ[mw×mw] and ωn[mw×mw] are the diagonal
damping ratio and natural frequency matrices, respectively. Ûr[m×mw] is the mass-
normalized radial mode shape matrix:

Ûr =




u1,1

u2,1

:
um,1




u1,2

u2,2

:
um,2

 · · ·


u1,mw

u2,mw

:
um,mw




m×mw

(5.14)

where each column corresponds to a circumferential shell mode. As illustrated
in Figure 5.1, each circumferential pattern with ic (ic = 2,3, ...) number of waves
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(lobes) has an arc wavelength of 2π/ic with the corresponding mode shape vector:

Û(ic) = |Aic|cos(icϕ +ϕ0,ic), 0≤ ϕ ≤ 2π

= |Aic|cos
(

ic(k−1)
2π

m
+ϕ0,ic

)
, 1≤ k ≤ m

(5.15)

where |Aic| is the mass-normalized amplitude, and ϕ0,ic is a constant determined
based on the boundary conditions. Extraction of mode shapes using FE and experi-
mental methods is discussed in Section 5.5.

The generalized radial vibration vectorQr(t) is transformed to the modal space
using the mode shape matrix Ûr as:

Qr(t) = ÛrΨr(t) (5.16)

where {Ψr(t)}[mw×1] is the modal radial displacement vector. Combining Eqs (5.12),
(5.13), and (5.16), and following similar derivations presented in Eqs. (4.47)-(??),
the dynamic equation of motion in terms of the modal displacement vector can be
written in Laplace domain as:

(
Is2 +2ζ ωns+ωn

2)Ψr(s) = ÛT
r FGr(s) (5.17)

The generalized force vector FGr is written in terms of modal displacement vector
(Ψr) by combining Eqs. (5.8), (5.11), and (5.16):

FGr(t) =−NT
c (t)e

T
r Fc(t)

=−Tsc(t)TFs(t)−Tsc(t)T Kdc(t)Tsc(t)ÛrΨr(t)

+Tsc(t)T Kdd(t)Tsc(t)ÛrΨr(t−T )−Tsc(t)T Cp(t)Tsc(t)ÛrΨ̇r(t)

(5.18)

where
[Tsc(t)][3×m] = {er}[3×1]{Nc(t)}[1×m] (5.19)

is defined as the equivalent transformation from the generalized shell coordinates
(in the radial direction) to the three-dimensional tool CS at the cutting point. Fi-
nally, the dynamic equation of motion for the instantaneous response of the cylin-
drical shell under the threading loads can be written in time domain modal space by
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combining Eqs. (5.17) and (5.18):

Ψ̈r(t)+(Cm,1+Cm,2(t))Ψ̇r(t)+(Kmc,1+Kmc,2(t))Ψr(t)+Kmd(t)Ψr(t−T )=Fsm(t)

(5.20)
where

Cm,1 = [2ζ ωn][mw×mw] , Cm,2(t) = Tsc(t)T Cp(t)Tsc(t)

Kmc,1 = [ω2
n ][mw×mw] , Kmc,2(t) = Tsc(t)T Kdc(t)Tsc(t)

Kmd(t) =−Tsc(t)T Kdd(t)Tsc(t)

Fsm(t) =−Tsc(t)TFs(t)

(5.21)

where the static force vector Fs and dynamic matrices Kdc, Kdd , and Cp are defined
in Eqs. (4.29)-(4.32), respectively.

Since Eq. (5.20) has the exact form as Eq. (4.49), all the state space deriva-
tions and time-marching numerical simulation techniques presented in Section 4.8
can be readily used to solve for Ψr(t). Once the modal displacement vector Ψr(t)

is obtained, the radial vibrations at each point k (k = 1,2, ...,m) can be calculated
using Eq. (5.16). The resultant axial, radial, and tangential forces, which include
both the static and dynamic components, are evaluated from Eq. (5.8). The instan-
taneous radial vibration at the cutting point, which generates the finish surface, can
be obtained using the shape function in Eq. (5.4).

Remark 1. Due to the time dependency of the shape function Nc(t) (and thus
Tsc(t)), the stability of the process cannot be analyzed in frequency domain using
Nyquist criterion. Instead, time domain techniques such as semi-discretization [20]
and full-discretization [39] can be implemented by stacking all the state vectors
over one spindle revolution. The stability of the process is then analyzed based on
the eigen values of the augmented matrix [44], which has a size of [2(m×mw)×
2(m×mw)]. However, if the vibration frequency is significantly greater than the
spindle rotation frequency, a large discretization number (m) is required to capture
the wave length of the vibrations on the workpiece surface. In this case, the re-
sultant augmented matrix becomes impractically large, and the eigen values cannot
be evaluated using normal computers. If this is the case, full time history of the
process must be simulated using the numerical time-marching techniques (Section
4.8), and stability is investigated based on the decay or growth of the vibrations.
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Remark 2. If the vibration frequencies are at least two order of magnitudes
greater than the spindle rotation frequency, the effect of residual shell vibrations
on stability may be neglected. In this case, the vibration marks are densely packed
around the circumference, and instability can occur locally. For these systems,
frequency domain stability analysis developed in Chapter 4 can be used along with
the FRF at the most dynamically flexible point around the circumference.

5.3.2 Sample Time Simulation Results

In order to demonstrate the response of cylindrical shells under threading loads, the
case study presented in Section 4.9 is revisited here. Assume that the three-point
V-profile insert shown is Figure 4.6.a is used to thread a thin-walled workpiece
with diameter of dw = 70 mm. The structural dynamics of the workpiece in the
radial direction at the most dynamically flexible point around the circumference is
provided in Figure 4.6.b and Table 4.1. Assume that modes 1 and 2 have two-lobe
(ic = 2) and three-lobe (ic = 3) circumferential patterns, respectively (see Figure
5.1). The maximum amplitude of each mass-normalized mode shape vector i can
be calculated based on the dynamic parameters in Table 4.1 as:

|Ûi|=
1
√

mi
=

ωn,i√
ks,i

(ωn in rad/s) (5.22)

which gives 0.154 and 0.254 for modes 1 and 2, respectively. Using Eq. (5.15), the
mode shape vectors can be obtained as:

Û1(ic = 2) = 0.154 cos
(
(k−1)

4π

m

)
, 1≤ k ≤ m

Û2(ic = 3) = 0.254 cos
(
(k−1)

6π

m

)
, 1≤ k ≤ m

(5.23)

where m = 10,000 discretization points have been used for the simulations in this
section.

The process has been simulated using the same cutting conditions as in Fig-
ure 4.7.b, i.e. radial infeed of 1.6 mm and spindle speed of 1850 rpm. Figure 5.3.a
shows the simulated vibrations at the cutting point (Eq. (5.4)) over the first 50
spindle revolutions. It can be seen that while the operation is stable, the vibrations
continue to exist even after the process reaches “steady” condition. The generated
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Figure 5.3: Simulated shell response under threading loads, a) vibrations at
the cutting point, b) generated surface over the first revolution, c) sam-
ple instantaneous shell deformation (scaled, spindle speed: 1850 rpm,
ωn,1 = 300 Hz, ωn,2 = 700 Hz).

surface over the first spindle revolution along with the corresponding shell defor-
mation (Eq. (5.3)) at few instances are shown in Figure 5.3.b and c, respectively.
It can be seen that the deformations continuously vary through the mixed two-lobe
and three-lobe patterns.

5.4 Application: Threading Oil Pipes
In order to validate the dynamic models developed in Chapters 4 and 5, extensive
threading experiments have been conducted on real scale oil pipes. The remainder
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160" (4.064 m)

86.25" (2.205 m)

~12" (~304.8 mm)

a) Rear chuck b) Front end

c)

Figure 5.4: Experimental setup: a,b) front and rear clamping chucks in Mazak
SLANT-TURN 60 lathe, c) distance between clamping locations.

of the chapter is dedicated to presenting the results and discussions.

5.4.1 Experimental Setup

Figures 5.4 shows a clamped pipe on Mazak SLANT-TURN 60 machining centre.
The pipe is 4 m long, and it is held by two three-jaw chucks, one close to the front
end and the other one between the centre and the rear end. Two types of pipes with
diameters of 7′′ (177.8 mm) and 133

8
′′

(339.7 mm) have been used for the experi-
ments2. For simplicity, these pipes are referred to as D7 and D13, respectively. The
wall thickness is originally 0.5′′ (12.7 mm), which is tapered down to 0.43′′ (10.9
mm) with a small taper angle of 3

4
′′

per ft (1◦47′) before threading. The pipe mate-
rial is custom steel with hardness in the range of 240-250 BHN (23-25 HRC). As
shown in Figures 5.5.a and b, the clamping jaws for these two pipes have different
contact length, resulting in different structural behaviour and mode shapes of the
pipes. Two types of inserts have been used in the experiments (Figures 5.5.c and
d):

• 5-point buttress (Ceratizit, 4.371-CE-LP025) with pitch of 5 TPI (5.08 mm)
and depth of 0.062′′ (1.57 mm).

2Imperial units are more common in oil and gas industry. The dimensions in this chapter are
presented in inches, and the equivalents in millimetres (rounded) are provided in the parentheses.
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a)cClampingcofcpipecD13 b)cClampingcofcpipecD7

3-pointcV-profile
(SandvikcCoromant)

5-pointcbuttress
(Ceratizit)

c)

d)

Figure 5.5: Pipes and the cutting inserts used in the experimental tests.

• Three-point V-profile (Sandvik Coromant R166.39G-24RD13-080) with pitch
of 8 TPI (3.175 mm) and depth of 0.071′′ (1.8 mm).

The measurement setup is shown in Figure 5.6. The eccentricity of the pipe
is measured using a dial gage and has been kept below 0.030′′ (0.76 mm) during
the initial set up. An instrumented hammer and accelerometers have been used
for modal analysis, and sound data during chatter tests have been collected with a
microphone. A laser displacement sensor has been mounted normal to the pipe axis
to measure the dynamic eccentricity and vibrations.3.

a)

c)

b)

d)

Figure 5.6: Measurement devices: a) laser displacement sensor, b) dial gauge,
c) microphone, d) instrumented hammer and accelerometer.

3The laser sensor was not used during the machining operation due to chip entangling concerns.
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5.4.2 Dynamic Behaviour Across Clamping Chucks

In order to investigate the effect of chucks on vibration isolation, pipe D7 has been
hit at the tip with an instrumented hammer. The vibrations have been measured at
three points along the pipe axis (Figure 5.7.a): P1 and P2 right in front and behind
of the front chuck, and P3 behind the rear chuck. Figure 5.7.b and c compare the
measured FRFs at these three points. It can be seen that the vibrations behind the
front chuck (P2) are even larger than those at P1. This is due to the axial pattern
of the dominant mode shape, which is analyzed in more details in Section 5.5.2.
Nevertheless, this observation confirms that the three-jaw chucks cannot effectively
restrict the flexibilities of the pipe at the clamping location. Similar conclusions
were deduced from the hammer tests on pipe D13.
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5.4.3 Effect of Jaw Configuration

During the threading operation and as the spindle rotates, the structural dynamics of
the pipe at the cutting location can vary as a function of jaw positioning (boundary
conditions). In order to investigate the significance of jaw configuration, hammer
tests have been performed at two extreme cases shown in Figures 5.8.a and b. The
measured FRFs at the tip of pipe D7 are compared in Figures 5.8.c and d. It can
be seen that case 1, in which one jaw aligns with the cutting point, results in the
lowest stiffness. This is due to the fact that in case 1 there is minimum support at
the opposite side of the cutting point to limit the deflections. The measured FRFs
for pipe D13 led to the same conclusion. Hence, all the stability charts presented in
this chapter have been generated based on case 1 configuration, which is the most
flexible setup.

In order to determine the source of flexibilities leading to chatter vibrations,
structural behaviour of the pipe is studied in the next section.
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Figure 5.8: Effect of jaw configuration on pipe dynamics: a) Case 1: jaw
aligned with the measurement point, b) Case 2: measurement point be-
tween two jaws, c) direct FRFs at the tip, d) comparison of FRFs at the
dominant mode.
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5.5 Mode Shape Analysis of Oil Pipes
Casings and tubes used in pipelines have diameter-to-thickness ratios typically in
the range of 15-40, which makes them exhibit dominant shell modes. Finite element
analysis of sample pipes is presented in the following section.

5.5.1 Finite Element Mode Shape Extraction

Pipe D13 with thickness of 0.5′′ (12.7 mm) and clamping stickout of 12′′ (304.8
mm) has been modelled in ANSYS using 8-node SHELL93 elements with six de-
grees of freedom at each node. The nodes corresponding to the contact area between
the jaws and the pipe have been fixed, and modal analysis based on Block Lancoz
method has been performed. Figures 5.9.a-c show the first three mode shapes of the
clamped pipe.

Assume that each node p has six degrees of freedom denoted as pk, (k= x,y,z,θx,θy,θz).
For each mode i, the mass-normalized mode shape vector corresponding to DOFs
of node p, i.e.

Ûp,i =



upx,i

upy,i

upz,i

upθx ,i

upθy ,i

upθz ,i


, (5.24)

can be extracted from ANSYS using the script provided in Appendix A. Consider
two arbitrary nodes p and q, each having six degrees of freedom represented re-
spectively as pk and qn (k,n ∈ x,y,z,θx,θy,θz). If the first mw number of modes are
extracted from the FE analysis, the cross FRF between the arbitrary DOFs pk and
qn can be approximated by summing the contribution of all mw modes as

Gpk,qn( jω) =
mw

∑
i=1

[
upk,i ·uqn,i

(ωn,i2−ω2)+2 jζiωn,iω

]
(5.25)

where ζi and ωn,i are the damping ratio and natural frequency of mode i. ζi must
be estimated (or identified experimentally) and cannot be modelled from FE modal
analysis. In Eq. (5.25), if pk = qn, the resultant frequency function (Gpk,pk) is called
the direct FRF at point p in the direction of DOF k.
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Figure 5.9: Finite element modal analysis of pipe D13 (stickout: 12′′

(304.8 mm), thickness: 0.5′′ (12.7 mm)): a-c) first three mode shapes,
d) comparison of the FE and measured radial FRFs at the tip.

Figure 5.9.d compares the FE and measured direct FRFs in the radial direction
at the tip of pipe D13 with stickout of 12′′ (304.8 mm). The finite element FRF has
been constructed using the first 10 modes and with assigned damping ratio of 0.5%
(Eq. (5.25)). It can be seen that there is a considerable discrepancy between the FE
and measured FRFs. This is mainly due to the fact that the jaws in the actual setup
cannot fully restrict the pipe at the clamping points, as discussed in Section 5.4.2.
Accurate FE modelling of the pipe dynamics requires advanced contact analysis,
which is not the focus of this thesis. In order to validate the proposed threading
models more accurately, the stability charts in this chapter are generated based on
the measured FRFs. Experimental modal analysis of the pipe is presented in the
following sections.

Remark 1. If the depth of the thread is considerable compared to the thickness of
the pipe, the dynamic parameters can change over each pass as a result of material
removal. The new FRF after each pass can be obtained using advanced analytical
FRF updating methods [82]. Alternatively, if the pipe is modelled in FE using
solid elements, the geometry after each threading pass can be re-meshed, and the
new FRFs can be extracted. The stability model proposed in Chapters 4 and 5 can
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accept different FRFs for different passes. However, it is assumed here that the pipe
dynamics do not change considerably over the threading process. This assumption
is discussed in more details in Section 5.6.4.

Remark 2. Stability limit for each pass is determined based on the most dynam-
ically flexible point along the pipe axis, which can happen at a location other than
the tip due to the shell behaviour of pipes.

5.5.2 Experimental Mode Shape Extraction

As illustrated in Figure 5.10, the circumference of the pipes D7 and D13 have been
marked at every 45 degrees at several locations along the pipe axis including few
points behind the chuck. The pipes have been hit with an instrumented hammer at
each grid point, and the resultant vibrations at the tip have been measured with an
accelerometer (in the radial direction).

Assume that the grid point at the location of accelerometer is called point 1.
The direct FRF at this point can be approximated by contribution of mw number of
dominant modes as:

G11( jω) =
mw

∑
i=1

[
1/mi

(ωn,i2−ω2)+2 jζiωn,iω

]
(5.26)

where mi (i: mode number) is the modal mass, and ωn,i and ζi are the natural
frequency and damping ratio. These modal parameters are identified using least
square method [83] by fitting Eq. (5.26) to the measured direct FRF. Table 5.1
provides the identified parameters for the most dominant modes of pipes D7 and
D13.

X YZ

Z

Acc

5

4

3

2 1

Figure 5.10: Grids for experimental mode shape analysis.
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Table 5.1: Measured dynamic parameters of the dominant mode in pipes D7
(stickout: 11′′ (279.4 mm)) and D13 (stickout 12′′ (304.8 mm)), both
tapered.

natural frequency damping ratio modal stiffness modal mass
ωn [Hz] ζ ks [N/m] m [Kg]

Pipe D7 910 0.02% 1.2×109 36.7
circumferential mode shape: -0.435, -0.018, 0.399, 0.076, -0.487
axial mode shape (top): 0.435, 0.269, 0.081, -0.038, -0.045
axial mode shape (bottom): -0.433, -0.222, -0.037, 0.081, 0.088

Pipe D13 840 0.3% 2.9×108 10.5
circumferential mode shape: 0.356, -0.277, -0.023, 0.194, -0.332
axial mode shape (top): 0.356, 0.252, 0.172, 0.107, 0.083, 0.053, 0.034
axial mode shape (bottom): 0.332, 0.238, 0.165, 0.103, 0.074, 0.046, 0.022

The cross FRF between the hitting point k and the accelerometer (point 1) con-
sists of the same modes as G11 but with different amplitudes (contributions):

Gk1( jω) =
mw

∑
i=1

[
Rk1,i

(ωn,i2−ω2)+2 jζiωn,iω

]
(5.27)

where Rk1,i is called the residue of mode i in the FRF between points k and 1. Rk1,i

values are identified using least square method by fitting Eq. (5.27) to the measured
cross FRFs. Once the modal parameters and the residue values are known, the
mass-normalized mode shape vector (in the radial direction) for each mode i can be
obtained as:

Ûr,i =


u1,i

u2,i

:
ung,i

 (5.28)

where ng is the total number of grid points (FRFs), and the entries are calculated as
[83]:

u1,i =
1
√

mi

uk,i =
√

mi Rk1,i← 2≤ k ≤ ng

(5.29)
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where mi and Rk1,i are identified from the measured FRFs (Eqs. (5.26) and (5.27)).
The experimental mode shapes must be interpolated by m number of discretization
points before being used in time-marching simulations (Sections 4.8 and 5.3).

Figure 5.11 demonstrates the circumferential mode shape analysis at the tip of
pipe D13. Only half of the circumference is analyzed due to symmetry (the jaw
configuration is also symmetric). The magnitude and imaginary parts of the FRFs
at the dominant mode (840 Hz) are compared in Figures 5.11.c and d, respectively.
Relative displacements of the grid points in the radial direction can be compared
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Figure 5.11: Circumferential mode shape analysis of pipe D13 (at the tip):
a) measurement points, b) radial direct FRFs at all points, c-d) mag-
nitude and imaginary components of the FRFs at the dominant mode,
e-f) circumferential pattern of the dominant mode.
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from the magnitude plot, and the relative phase can be deduced from the phase plot.
For example, the points at the top (0 deg) and bottom (180 deg) have nearly same
magnitude but opposite phase. The identified mode shape components are provided
in Table 5.1 and plotted in a polar plane in Figure 5.11.e. It can be seen that pipe
D13 exhibits its highest dynamic flexibility in three-lobe (ic = 3) circumferential
pattern.

Axial mode shape analysis of pipe D13 is presented in Figure 5.12. The radial
FRFs have been measured along the top and bottom of the pipe at the locations
shown in Figure 5.12.a. The measured FRFs around the dominant mode (840 Hz)
are compared in Figures 5.12.b and c. It can be seen that all the grid points vibrate
in-phase, and the amplitudes of vibrations continuously decrease from the tip to-
wards the chuck. The FRFs along the bottom have nearly the same magnitude and
imaginary components, thus have not been plotted for conciseness. The identified
mode shapes along the top and bottom of the pipe are illustrated in Figure 5.12.d.
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It can be seen that the dominant mode of pipe D13 has 1st-bending ( jl = 1) axial
pattern.

Similarly, circumferential and axial mode shape analyses for pipe D7 are pre-
sented in Figures 5.13 and 5.14, respectively. Based on the identified parameters,
pipe D7 exhibits highest dynamic flexibility in 2-lobe (ic = 2) circumferential pat-
tern (Figure 5.13.e) and 2nd-bending ( jl = 2) axial pattern (Figure 5.14.f). The
mode shape components for the most dominant modes of pipe D7 and D13 are
provided in Table 5.1.

Remark. Since both pipes D7 and D13 exhibit highest dynamic flexibility at the

0

90 180

45

135

0Ndeg

135Ndeg

a. b.

c. d.

e. f.

PipeND7N8tapered.

1000 2000 3000 4000 5000
0

1

2

3
xN10

−6

M
ag

ni
tu

de
N[m

/N
]

FrequencyN[Hz]

PipeND7N8tapered.

970 975 980 985
0

0.5

1

1.5

2
xN10

−6

M
ag

ni
tu

de
N[m

/N
]

FrequencyN[Hz]

45Ndeg

180Ndeg

90Ndeg

970 975 980 985
−2

−1

0

1

2
xN10

−6

Im
ag

in
ar

yN
[m

/N
]

FrequencyN[Hz]

0Ndeg180Ndeg

90Ndeg

135Ndeg

45Ndeg

2.5
iNN=2c

Figure 5.13: Circumferential mode shape analysis of pipe D7 (at the tip):
a) measurement points, b) radial direct FRFs at all points, c-d) mag-
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tip, the stability charts presented in the next section have been generated based on
the FRFs at the tip.

5.6 Chatter Experiments
Figure 5.15 categorizes different parameters affecting process stability in threading
oil pipes. Stability limits subject to change in these parameters have been simulated
and validated experimentally. The cutting force coefficients identified in Eq. (3.58)
have been used in the simulations. The indentation coefficient and wear land in
process damping model (Eq. 4.25) have been estimated as Ksp = 4× 1013 N/m3

and Lw = 0.12mm, respectively [22]. The predicted and experimental results for
the threading tests are presented in the following sections.

Remark 1. Pipe D7 and D13 are machined at 120 rpm and 250 rpm, respectively.
This means that the spindle rotation frequency in all experiments is less than 5 Hz
while the vibration frequencies are around 1000 Hz. Hence, the frequency domain
stability analysis developed in Section 4.6 can be used to predict the stability limits.

Remark 2. Setting up a pipe for threading experiments required a time-consuming
procedure including mounting (with eccentricity control), surface cleaning, and ta-
pering. After each set of experiments, the threaded section (or layer) was machined
away, and if possible, the next tests were carried out on the same piece without
unclamping the pipe. As a result, the FRFs and the stability charts presented in the
following sections are different for different tests. In each case, the experimental
results have been compared against the corresponding stability lobes.

ParametersG
affectingGchatter

Flexibility

PipeG
Thickness

Stickout Clamping

InfeedG
zDepth)

SpindleG
Speed

InsertG
Geometry

5P-BUG 3P-VG
zSandvik)zCeratizit)

Figure 5.15: Parameters affecting chatter stability in threading oil pipes.
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5.6.1 Threading Over Several Passes

In the first set of experiments, pipe D13 with thickness of 0.43′′ (10.9 mm) has
been threaded at spindle speed of 120 rpm (cutting speed of 130 m/min). Three
passes with radial infeed of 0.020′′ (0.508 mm)/pass have been cut using Ceratizit
5-point buttress insert. The sound data was collected using a microphone inside the
machine. After finishing all three passes, the threaded layer was removed by axial
turning, resulting in smaller wall thickness. Similar to the first set, another two sets
of three passes at 0.020′′ (0.508 mm)/pass were cut on the same piece.

Figure 5.16 shows the radial FRF at the tip of the pipe before conducting each
threading set. The predicted stability chart for the first set is shown in Figure 5.17.a,
where the experiment point (120 rpm, 0.508 mm) has been marked by a star. Sta-
bility lobe for each pass has been capped at the infeed value where the maximum
thread depth for the insert is reached. Figures 5.17.b and c show the measured
sound signal and its frequency contents, and the resultant surface finish is shown
in Figure 5.17.d. Same plots for the second and third sets are presented in Figures
5.18 and 5.19, respectively. The predicted and experimental stability conditions for
all passes are compared in Table 5.2. The dominant natural frequency (before each
set) and the observed chatter frequency (if any) during each pass are also provided.

Based on the predicted stability lobes, all passes of set 1 are stable, and all
passes of set 3 are unstable (heavy chatter). These predictions agree with the exper-
imental results. The threading passes over set 2 exhibited marginal stability or light
chatter; it can be seen in Figure 5.18 that the model predicts similar behaviour as
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Figure 5.17: Experimental results for threading test Set 1 (pipe D13, 120 rpm,
infeed: 0.020′′ (0.508 mm)/pass, insert: Ceratizit 5-point buttress):
a) stability charts and the experiment point (star), b-c) recorded sound
signal and its frequency contents, d) surface finish.

the experiment point is very close to the stability lobes, especially over the first and
second passes of set 2.

Remarks: Ploughing Pockets in Stability Chart

The number of engaged teeth at each infeed value has been provided in the stability
chart in Figure 5.17.a. It can be seen that at spindle speeds over 300 rpm, engaging
more than one tooth leads to instability. Due to the large engagement length, cutting
with multiple teeth is only feasible at lower spindle speeds where process damping
significantly increases the stability limits. However, spindle speed must be above
100 rpm to avoid chip shearing problems.

As illustrated in Figure 5.17.a, at infeed values where an additional tooth en-
gages in the cut, the stability lobes show a deep unstable pocket, which are marked
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Figure 5.18: Experimental results for threading test Set 2 (pipe D13, 120 rpm,
infeed: 0.020′′ (0.508 mm)/pass, insert: Ceratizit 5-point buttress):
a) stability charts and the experiment point (star), b-c) recorded sound
signal and its frequency contents, d) surface finish.

Table 5.2: Comparison of experimental and predicted stability conditions for
different passes (pipe D13, 120 rpm, infeed: 0.020′′ (0.508 mm)/pass, in-
sert: Ceratizit 5-point buttress) (S: stable, MS: marginally stable, C: chat-
ter, LC: light chatter)

Pass 1 Pass 2 Pass 3
ωn [Hz] sim exp ωc [Hz] sim exp ωc [Hz] sim exp ωc [Hz]

Set 1 1395 S S - S S - S S -
Set 2 1180 S LC 1173 MS MS - C C 1140
Set 3 1004 C C 1001 C (heavy chatter) C (heavy chatter)
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Figure 5.19: Experimental results for threading test Set 3 (pipe D13, 120 rpm,
infeed: 0.020′′ (0.508 mm)/pass, insert: Ceratizit 5-point buttress):
a) stability charts and the experiment point (star), b-c) recorded sound
signal and its frequency contents, d) surface finish.

as “ploughing pockets”. This is mainly due to the large ploughing forces as a result
of small chip thickness on the added tooth. Since cutting force coefficients in this
thesis have been calculated using nonlinear Kienzle model (Eq. (3.49)), the effect
of ploughing has been reflected in the stability charts.

5.6.2 Threading at Different Infeed Values

The effect of infeed value on chatter stability has been examined on pipe D13 us-
ing Ceratizit 5-point buttress insert. Three experiments at infeed values of 0.020′′

(0.508 mm), 0.025′′ (0.635 mm), and 0.035′′ (0.889 mm) have been conducted at
120 rpm (cutting speed of 130 m/min). Only one pass has been cut at each infeed
value, and the threaded layer has been removed after each pass. Based on the insert
geometry, the first two infeed values engage two teeth while the final experiment
cut with three teeth.

Figure 5.20.a shows the measured radial FRFs at the tip before conducting each
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120 rpm, insert: Ceratizit 5-point buttress): a) measured FRFs be-
fore each set, b) stability chart and the corresponding experiment point
(star) for each set, c-d) sound signals and their frequency contents.

experiment. The predicted stability charts are shown in Figure 5.20.b. The arrows
connect the experiment points (marked by stars) to their corresponding stability
lobes. It can be seen that the model predicts the process to be stable at infeed values
of 0.020′′ (0.508 mm) and 0.025′′ (0.635 mm), and unstable at 0.035′′ (0.889 mm).
The recorded sound signals and their frequency contents are shown in Figures 5.20.c
and d. As compared in Table 5.3, the predicted and experimental stability conditions
agree at all three infeed values.

Remark. Due to the excessively large cutting forces in the third test (infeed of
0.035′′ (0.889 mm)), the structural mode of the clamping chuck has been excited
as well. The frequency contents in Figures 5.20.c show chatter frequencies due to
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Table 5.3: Experimental and predicted stability conditions at different infeed
values (pipe D13, 120 rpm, insert: Ceratizit 5-point buttress) (S: stable,
C: chatter)

Pass 1
Infeed ωn [Hz] sim exp ωc [Hz]

Set 1 0.020′′ (0.508 mm) 1395 S S -
Set 2 0.025′′ (0.635 mm) 849 S S -
Set 3 0.035′′ (0.889 mm) 808 C C 383, 773

both chuck mode (383 Hz) and pipe mode (773 Hz).

5.6.3 Threading With V-profile Insert

In order to verify the chatter stability model for V-profile threads, several tests have
been conducted on pipe D7 with thickness of 0.3′′ (7.6 mm) using Sandvik Coro-
mant three-point V-profile insert. One pass with infeed value of 0.025′′ (0.635 mm)
has been cut at 250 rpm (cutting speed of 140 m/min). The original stickout of the
pipe was 11′′ (279.4 mm). After the first test, the threaded section was cut away,
leaving 9′′ (228.6 mm) stickout. A threading pass with the same infeed was cut
on the new section. The procedure was repeated once more at 7′′ (177.8 mm) pipe
stickout.

Figure 5.21.a shows the radial FRF at the tip of the pipe before conducting
each test. The predicted stability charts are shown in Figure 5.21.b, where the
experiment point (250 rpm, 0.635 mm) is marked by a star. The sound signals and
their frequency contents are shown in Figures 5.21.c and d.

The simulation and experimental results are compared in Table 5.4. It can be
seen that the model correctly predicts the stability conditions in all three tests with
V-profile insert.

5.6.4 Remarks: Change in Pipe Dynamics During Threading

In order to investigate the effect of material removal on pipe dynamics, hammer
tests have been conducted on pipe D13 before and after a threading operation. The
original pipe thickness is 0.43′′ (10.9 mm), and the final thread depth (buttress) is
0.035′′ (0.89 mm). Figure 5.22 compares the FRF at the dominant mode for the
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Figure 5.21: Experimental results with three-point V-profile insert at differ-
ent pipe stickout (pipe D7, 250 rpm, infeed: 0.025′′ (0.635 mm), in-
sert: Sandvik Coromant 24RD13-080): a) measured radial FRFs be-
fore each set, b) stability charts and the experiment point (star), c-d)
recorded sound signals and their frequency contents.

Table 5.4: Experimental and predicted stability conditions for three-point V-
profile insert (pipe D7, infeed: 0.025′′ (0.635 mm)) (s: stable, C: chatter).

Pass 1
Pipe Stickout ωn [Hz] sim exp ωc [Hz]

Set 1 11′′ (279.4 mm) 896 C C 860
Set 2 9′′ (228.6 mm) 968 C C 963
Set 3 7′′ (177.8 mm) 1003 S S -
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Figure 5.22: Change in the FRF of pipe D13 after a threading pass (thread
depth: 0.035′′ (0.889 mm), buttress profile)

Table 5.5: Dynamic parameters of pipe D13 before and after threading (wall
thickness: 0.43′′ (10.9 mm), thread depth: 0.035′′ (0.889 mm), buttress).

natural frequency damping ratio modal stiffness modal mass
ωn [Hz] ζ Ks [N/m] m [Kg]

Before 849 0.16% 3.0×108 10.5
After 839 0.16% 2.3×108 8.0

original and threaded pipe, and the modal parameters are compared in Table 5.5.
It can be seen that even though the depth of the thread is less than 10% of the
wall thickness, the dynamic stiffness at the dominant mode has decreased by nearly
40% after threading. This is mainly due to the sensitivity of shell modes to wall
thickness. The natural frequency has shifted only about %1.

Based on the experimental investigations, the pipe dynamics can change at least
10%-20% over each pass. Advanced FRF updating methods [82] can be employed
to further improve the stability predictions especially over deeper passes.

5.7 Chatter Suppression Strategies
Thread turning is a restrictive operation in that the width of cut is dictated by the
thread profile. Assuming that the insert and workpiece are already chosen, the only
process parameters which can be selected by the operator are the spindle speed
and infeed values. In multi-point inserts, however, the infeed settings affect the
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chip geometry on the first tooth only. It is more effective to integrate the infeed
strategies into the insert design; for example, the total width of cut can be reduced
by implementing flank infeed or partial root engagement on some teeth (Figure 3.4).

Strategies which enhance the dynamic stiffness of the system or disrupt the
chip regeneration process can effectively increase the stability limits in threading
operations. Two sample approaches are presented in the following sections.

5.7.1 Effect of Additional Damping

As shown in Figure 5.23.a, a rubber ring has been mounted tightly inside pipe D13.
The wall thickness of the pipe has been intentionally reduced to 0.25′′ (6.35 mm) to
amplify the flexibilities. The radial FRF at the tip with and without the rubber ring
are compared in Figure 5.23.b. Based on modal analysis of the FRFs, the modal
damping at the dominant mode (640 Hz) has increased from 0.06% to 0.95%, i.e.
more than 15 times. It can be seen in Figure 5.23.c that both FRFs have the same
values at lower frequencies, which means that the damping ring has not changed
the static stiffness.

A threading pass with infeed of 0.020′′ (0.508 mm) has been cut at 120 rpm
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Figure 5.23: Effect of the damping ring on pipe dynamics (pipe D13, wall
thickness: 0.25′′ (6.35 mm)): a) damping ring mounted inside, b) mea-
sured radial FRFs at the tip with and without the ring, c) comparison
of the FRFs at low frequency region.
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point buttress insert, 120 rpm): a) stability charts and the experiment
point (star), b-c) recorded sound signals and their frequency contents.

using Ceratizit 5-point buttress insert. Figure 5.24.a shows the predicted stabil-
ity lobes with and without the damping ring. The experiment point (120 rpm,
0.508 mm) is marked by a star. It can be seen that the damping ring significantly
increases the stability limits. The recorded sound signals and their frequency con-
tents are shown in Figures 5.24.b and c. The experimental results confirm that the
process becomes fully stable when the damping ring is included.

It should be noted, however, that additional damping affects the stability limits
only if it stiffens the dominant mode. This is the case when using the damping
ring since the dominant modes have shell behaviour. As shown in Figure 5.25.a,
instead of the damping ring, a thick layer of rubber has been placed between the
pipe and the clamping jaws. Figure 5.25.b compares the FRF at the tip with and
without the rubber. It can be seen that while some of the modes have been damped
out significantly (possibly beam modes), the added rubber has had very little effect
on the dynamic stiffness at the dominant mode. This is again due to the fact that
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with and without the rubber.

the dominant mode has a shell behaviour, and adding rubber at the chuck does not
absorb the shell vibrations at the tip.

5.7.2 Using Different Spindle Speeds For Subsequent Passes

In typical turning operations, chip regeneration can be disrupted by continuous spin-
dle speed variation. In threading processes, however, the axial feed is locked to the
spindle speed based on the thread pitch. Due to the limited bandwidth of servo
drives, change in the spindle speed can cause lead errors in the thread path. While
some modern machine tools claim to have achieved the required precision, spindle
speed variation during threading is still not recommended.

However, using a similar idea, the effect of vibration marks from the previous
passes can be attenuated by selecting slightly different spindle speeds for subse-
quent passes. The feasibility of this approach has been tested experimentally in
threading pipe D7 with Ceratizit 5-point buttress insert. In the first set, two passes
with infeed value of 0.020′′ (0.508 mm)/pass were cut both at spindle speed of
250 rpm. The first pass was stable and the second pass was unstable. The process
was repeated on a similar pipe with the same infeed values, but this time the second
pass was performed at 225rpm, which eliminated chatter. Figure 5.26 shows the
recorded sound signals and their frequency contents for the second passes in each
set. It can be seen that the process has not exhibited chatter vibrations in the case
of using different spindle speeds (Figure 5.26.c).

109



Chapter 5. Threading Thin-Walled Oil Pipes

12 13 14 15
−0.04

−0.02

0

0.02

TimeF[s]

PassF2

Different
9250/225Frpm6

Same
9250/250Frpm6

S
ou

nd
FS

ig
na

lF[
V

]
a6

1000 2000
0

2

4

xF10
−4

F
F

T
Fo

fFS
ou

nd
F[V

]

FrequencyF[Hz]

b6FFSameF9250/250Frpm6

1000 2000
0

2

4

xF10
−4

F
F

T
Fo

fFS
ou

nd
F[V

]

FrequencyF[Hz]

c6 DifferentF9250/225Frpm6F

9968FHz6

Figure 5.26: Effect of using different speeds for chatter suppression (pipe D7,
infeed: 0.020′′ (0.508 mm), Ceratizit 5-point buttress insert, Set 1: two
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225 rpm): a) recorded sound data during the second pass in each set,
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5.8 Threading Toolbox Simulation Software
The threading models developed in this thesis have been implemented in a simula-
tion engine along with a user interface in MATLAB. The research software, called
Threading Toolbox, has been released as one of the modules of CUTPRO R© Vir-
tual Machining software. It is currently being used by the collaborating company
(TenarisTAMSA) in analyzing the threading process of oil pipes.

Figure 5.27 shows the interface of the developed threading toolbox. The geom-
etry of the custom multi-point insert is imported as a DXF file directly from a CAD
model. The workpiece material can be selected from the available library, or the
cutting force coefficients can be directly entered based on linear or Kienzle force
models. The software operates in two modes: simulation and optimization. In the
simulation mode, the user selects the infeed settings, i.e. infeed strategy, number of
passes, and infeed per pass. The threading engine then simulates the following out-
puts for each tooth and over each pass: chip geometry (including engagement length
and chip area), axial/radial/tangential cutting forces, spindle torque and power. The
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numerical results can be exported as a CSV file to MS Excel for further analysis.
Alternatively, the software can be used in optimization mode for process plan-

ning. Instead of choosing the number of passes and infeed values, the user se-
lects the final thread depth and imposes optional constraints on minimum/maxi-
mum chip thickness, cutting forces, spindle torque/power, and stability margin (see
Section 4.11 for constraints). The threading engine then finds the required number
of passes and infeed values to achieve highest productivity while respecting all the
defined constraints.

The developed research software can be used not only for process planning in
manufacturing units but also as a design tool for optimization of threading inserts.

5.9 Summary
This chapter investigates the threading process of thin-walled workpieces with spe-
cific application to oil pipes. Dominant mode shapes of sample pipes have been de-
termined using finite element and experimental modal analysis. Extensive threading
experiments have been conducted on real scale oil pipes, and the results have been
compared against the predictions.

It has been shown that the proposed model can reliably predict the stability of
the process for different setup dynamics, cutting conditions, and insert geometries.
Sample approaches for chatter suppression have been suggested, and their effective-
ness has been demonstrated experimentally. All the developed models have been
implemented in a simulation engine which can be used for process planning and
insert design.
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Figure 5.27: User interface of the developed Threading Toolbox software package.
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Chapter 6

Conclusions and Future Directions

6.1 Summary and Contributions
Accuracy and surface quality of threads is crucial in applications such as offshore
pipelines where strong sealing is required. Geometrical errors and vibration marks
left during the machining process can lead to stress concentration, fatigue failure,
and leakage of the joint. A model which can predict the behaviour of the process
ahead of time provides a systematic tool to optimize the cutting tools and process
parameters without costly trials.

There are numerous challenges in modelling the mechanics and dynamics of
multi-point thread turning. Since threading is a form cutting operation, the resul-
tant chip can have complex geometries. Not only the chip thickness but also the
effective oblique cutting angles and direction of local forces can vary significantly
along the cutting edge. Due to varying local approach angle, relative vibrations
between the tool and workpiece can also have different effect on the local chip
thickness. Chip regeneration mechanism in multi-point threading is different than
regular turning; since the tool moves one thread pitch over each spindle revolution,
the previous vibration marks left by each tooth affects the chip thickness on a dif-
ferent tooth. Threading thin-walled oil pipes involves additional complexities due
to the structural beam and shell mode vibrations of the pipe.

This thesis develops a generalized model to determine the chip geometry, cut-
ting forces, and stability during threading of oil pipes. The main contributions can
be summarized as:
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• A novel semi-analytical methodology has been developed to model the chip
geometry for multi-point inserts with custom tooth profiles and arbitrary in-
feed plans. The proposed method categorizes possible cases of tool-workpiece
engagements, and uses the kinematics of the process and geometrical param-
eters of the insert to determine the boundaries of the chip. Special cases such
as partial root engagement can be modelled as well.

• A systematic discretization method has been developed to divide the chip
area along the cutting edge based on the chip flow direction. The algorithm
is efficiently run only on a small moving window, and can consider the effect
of chip compression (interference) at highly curved segments of the profile.

• A novel cutting force calculation model for threading inserts has been pro-
posed. The local effective oblique cutting angles are systematically deter-
mined by defining local coordinate systems and oblique vectors. Cutting
force coefficients are evaluated locally for each chip element using nonlin-
ear Kienzle force model and local orthogonal-to-oblique transformations.

• A generalized chip regeneration model for multi-point threading has been
developed. The three-dimensional vibrations of the tool and workpiece have
been projected in the local chip thickness direction at each point along the
cutting edge. The effect of current and previous vibrations on chip thick-
ness have been modelled for the general case where the teeth have different
profiles.

• The delay differential equation representing the three-dimensional dynamics
of multi-point threading has been developed. Process damping forces are cal-
culated locally by projecting the vibration velocity in the direction of chip
thickness at each point along the cutting edge. Dynamic cutting forces are
evaluated from chip thickness variation due to the current and previous vi-
brations. State space representation of dynamic equation of motion in modal
space has been derived. A time-marching numerical method based on semi-
discretization and Simpson’s integration rule has been presented to simulate
the vibrations and dynamic forces during the threading operation.

• A chatter stability model for multi-point threading has been developed. Given
the insert geometry and structural dynamics of the tool and workpiece, the
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model can generate stability diagrams for each pass showing the maximum
allowed infeed at each spindle speed.

• A novel dynamic model for threading thin-walled workpieces have been pro-
posed by modelling the effect of residual shell vibrations on chip thickness.
The circumference of the workpiece is discretized, and the dynamic equation
of motion is solved in modal space to find the instantaneous vibrations at each
point along the circumference.

• An optimization algorithm has been developed to plan the number of passes
and infeed settings for each pass. The algorithm can consider user-defined
constraints on: spindle torque/power, axial/radial/tangential forces on each
tooth, and minimum/maximum chip thickness on each tooth. The process is
optimized based on stability, productivity, uniform load distribution over dif-
ferent passes, tooth breakage avoidance, chip evacuation, and surface quality.

• As a practical application, threading real scale oil pipes has been investigated
experimentally. It has been shown that the developed models can predict the
stability of the process with reasonable accuracy.

• A threading simulation software (Threading Toolbox) has been developed for
industrial use. It can be used not only for process planning but also as a design
tool for optimization of the cutting inserts and tooling systems.

6.2 Future Research Directions
The models presented in this thesis are the first iteration in generalized modelling
of thread turning operations. There are still several aspects of this research which
can be further refined or extended:

• Cutting force coefficients in this thesis are identified mechanistically through
cutting experiments. Semi-analytical methods such as slip line field [78] and
finite element models can be used to predict the coefficients based on mate-
rial’s characteristics and cutting edge parameters.

• Chip evacuation is a serious issue in threading. While chip geometry and
discretization has been presented in this thesis, the three-dimensional chip
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flow [84] was not modelled. Finite element methods can be used to simulate
the chip formation process.

• The accuracy of cutting force prediction can be improved by including the
effect of strain hardening [10] over subsequent passes. Finite element models
must be developed to study the effect of ploughing on surface hardness and
cutting force coefficients.

• Thermal models [85] can be developed to investigate temperature distribution
and optimize the insert coating accordingly.

• Structural dynamics of thin-walled pipes were mainly identified experimen-
tally in this thesis. Finite element models can be developed by defining real-
istic contact conditions between the jaws and cylindrical workpiece.

• The effect of varying structural dynamics of the pipe as a result of material
removal has not been considered in this thesis. Online FRF updating methods
[82] can be used to re-evaluate the dynamic parameters during the threading
operation.

• Active damping control techniques along with magnetic actuators can be used
to suppress the vibrations in real time.

The ultimate goal would be to accurately model chip formation, stress and tem-
perature distribution, cutting forces, stability, surface finish, and tribological char-
acteristics of the final threads.
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Appendix A

Mode Shape Extraction From
ANSYS

After building the geometry and meshing, copy the following code in the Session
Editor of ANSYS

! SOLVE THE EVP

ANTYPE, 2 ! Modal ana l ys i s

MODOPT,LANB,20 ! Block Lancoz , number o f modes

EQSLV,FRONT ! F ron ta l Solver

MXPAND,20 ! Expand number o f modes

SOLVE

FINISH

/POST1

SET, LIST

! ! Output the eigen values

/ output , , f r q

set , l i s t

/ output , term

The following lines write the eigen values and the mass-normalized mode shape
vectors to the text file

nsel , s , node , , 2 ! TCP

nsel , a , node , , 4 ! Repeat f o r a l l nodes of i n t e r e s t

/ output , , e ig

∗do , i ,0 ,10 ! no of modes

set , , i

/ page , , ,200

prd isp

∗enddo

/ output , term
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