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Abstract

While Majorana fermions remain at large as fundamental particles, they
emerge in condensed matter systems with peculiar properties. Grover et al.
[1] proposed a Majorana-Ising chain model, or the GSV model, where the
system undergoes a tricritical Ising transition by tuning just one parameter.
In this work, we generalize this model to a ladder with inter-chain Majorana
couplings. From a mean field analysis, we argue that the tricritical Ising
transition will also occur with inter-chain couplings that allow the system
to be gapless in the non-interacting case. More crucially, based on analysis of
the interacting chain model and the non-interacting ladder model, we expect
the tricritical Ising modes to appear on the edges, a feature that might
persist when going to 2d. We carry out extensive DMRG calculations to
verify the theory in the ladder model. Finally, we discuss possible numerical
probes of a 2d model.
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Lay Summary

In solid state systems, particles that do not exist in vacuum can emerge,
with interesting properties and possible applications to new materials and
devices. Furthermore, one can assembly these particles in a sophisticated
way that allows even more bizarre behaviors. In this work we propose such a
model, which has a configuration of a ladder, and its properties are studied
both analytically and numerically.
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Preface

This thesis is original, unpublished, independent work by the author, Cheng-
shu Li.
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Chapter 1

Introduction

In this chapter we discuss the background and main concerns of the thesis.
We first introduce the Majorana-Ising chain model, or the GSV model, which
motivates our work. A more technical discussion is detailed in Chapter 2.
Then we discuss the features of the model that motivates a generalization to
a ladder/2d model. We also briefly discuss possible experimental realizations
of the models.

1.1 The GSV model

Grover, Sheng and Vishwanath[1] came up with a Majorana-Ising chain
model in 2014. For a background discussion on Majorana fermions, see Ap-
pendix A. We postpone the detailed analysis of the model till Chapter 2 and
only sketch the physics in this section. The model is shown in Fig. 1.1. The
nearest neighbor couplings between the Majorana fermions are modulated
by an Ising spin field, which in turn has nearest neighbor longitudinal anti-
ferromagnetic Ising couplings and experiences a transverse magnetic field h.

αj αj+1

µj µj+1

Figure 1.1: Majorana-Ising chain model, or the GSV model.

In this model, if one fixes all other parameters and tunes h, there will
be three different phases. For small h, the system is gapped, while for large
h the system is gapless and in a critical Ising phase. For a particular value
of h, a tricritical Ising (TCI) transition will occur. The phase diagram is
shown in Fig. 1.2.

Compared with other known models, this is the first model where a TCI
is obtained by tuning only one parameter. Moreover, it is known that the
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1.2. The TCI edge mode and the ladder/2d model

TCI is supersymmetric in an algebraic sense[2], which means that super-
symmetry, a long-expected but elusive ingredient of various grand unified
theories, is realized in a condensed matter system.

h
gapped TCI Ising

Figure 1.2: The phase diagram of the GSV model.

1.2 The TCI edge mode and the ladder/2d model

Now we focus on the TCI point. From the low energy field theoretic point
of view, there is a left-moving mode and a right-moving mode. A natural
question is, can we separate the left- and right- movers into different edges?
Behaviour of this kind is familiar in various quantum Hall effects and give
rise to interesting phenomena, e.g. the quantized conductance. A separation
of left- and right- movers will keep them from being gapped out by local
couplings, and will in turn stabilize the edge modes. Thus we expect a
stable TCI phase when we go to 2d.

As a first step to constructing a 2d model, we consider coupling two
chains to form a ladder model. We resort to the non-interacting model for a
coupling scheme, see Section 3.2 for a thorough discussion. It is known that
if one introduces a direct coupling t1 and a diagonal coupling t2 between two
chains, as in Fig. 3.2, we will have edge modes when t1 = 2t2. We introduce
this coupling scheme to the Majorana-Ising model, and expect that a TCI
edge mode will emerge with appropriate parameters. In this work we show
that this indeed is the case by both analytical and numerical argument.

A logical generalization is then a 2d model. However, the numerical
technique used in the chain and ladder model, the density matrix renormal-
ization group (DMRG), is not applicable in 2d. In the last part of this thesis,
we discuss a possible numerical approach and apply it to the non-interacting
system.

1.3 Possible experimental realizations

In the original GSV model, Grover et al. proposed a potential realization
at the surface of a slab of He3-B, where Majorana modes are expected to

2



1.3. Possible experimental realizations

emerge. The phase transition is driven by a magnetic field parallel to the
surface. We expect that our model can also be realized in this setup.
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Chapter 2

The GSV model

In this chapter we discuss the model and relevant technical background. We
first give a detailed discussion of the GSV model in Section 2.1. Then we
introduce in Section 2.2 the conformal field theory, a powerful and versatile
tool that we rely on heavily throughout the work. We briefly review the nu-
merical technique, DMRG, in Section 2.3. Finally, we present the numerical
results of the GSV model in Section 2.4.

2.1 A detailed discussion of the model

The Hamiltonian of the GSV model is

H = HM +HIsing +Hg

HM = it
∑
j

αjαj+1

HIsing = J
∑
j

µzjµ
z
j+1 − h

∑
j

µxj

Hg = −igt
∑
j

αjαj+1µ
z
j

(2.1)

We examine each term in detail. HM is a tight binding model for Majorana
fermions, where the i guarantees hermiticity. For reasons that will become
clear shortly, we consider a slightly more general Hamiltonian

H ′M = it1
∑
j

αjβj + it2
∑
j

βjαj+1 (2.2)

4



2.1. A detailed discussion of the model

where t1, t2 > 0, and H ′M = HM when t1 = t2 = t. The bulk spectrum is
readily obtained by going to momentum space

αk =

√
1

2N

∑
j

eikjαj

αj =

√
2

N

∑
k

e−ikjαk

βk =

√
1

2N

∑
j

eikjβj

βj =

√
2

N

∑
k

e−ikjβk

(2.3)

where N is the size for α and β (thus the total size is 2N). We have set the
lattice constant to be 1 for simplicity and chosen a normalization so that

{α†k, αk′} = {β†k, βk′} = δkk′ (2.4)

In momentum space the Hamiltonian is

H ′M =
∑
k

i(t1 − eikt2)α†kβk − i(t1 − e
−ikt2)β†kαk (2.5)

We obtain the spectrum upon diagonalization

E =
√
t21 + t22 − 2t1t2 cos k =

√
(t1 − t2)2 + 4t1t2 sin2 k

2
(2.6)

The spectrum is gapped when t1 6= t2, and becomes gapless at t1 = t2. Inter-
estingly, the gaplessness is related to the phase transition of the transverse
field Ising model. To see that we perform a Jordan-Wigner transformation

αj = σxj
∏
k<j

σzk

βj = σyj
∏
k<j

σzk
(2.7)

and the Hamiltonian now reads

H ′M = −t1
∑
j

σzj − t2
∑
j

σxj σ
x
j+1 (2.8)

5



2.1. A detailed discussion of the model

Majorana

Spin
t1

t2

gapped gapless gapped

ferro. para.

Figure 2.1: Phase diagram of the t1-t2 model. In the Majorana representa-
tion (up), t1 = t2 is the gapless point. In the spin representation (down),
t1 < t2 and t1 > t2 corresponds to ferromagnetic and paramagnetic phases,
respectively.

We can interpret t1 as the transverse magnetic field and t2 as the ferromag-
netic Ising coupling. Now the two phases of t1 > t2 and t1 < t2 correspond to
the paramagnetic and the ferromagnetic phase, respectively, and the phase
transition is equivalent to an Ising one.

HIsing is a transverse field antiferromagnetic Ising model. We can map
it into the familiar ferromagnetic one by rotating the spins on the even sites
by π around the x-axis

U =
∏

even j

exp
(
i
π

2
µxj

)
U−1HIsingU = −J

∑
j

µzjµ
z
j+1 − h

∑
j

µxj

(2.9)

Thus the phase transition occurs at J = h.
Finally, Hg couples the spin and Majorana degrees of freedom. This

term breaks the Z2 symmetry of HIsing.
The interaction term Hg thwarts an exact solution, and as a first step

toward understanding we resort to a mean field theory (MFT) analysis.
Fortunately, much of the physics is already captured from this very simple
approach.

The assumption we make is that the spin degree of freedom in Hg, µz, is
not dynamical, but enters only as a parameter, which is in turn determined
by HIsing. In other word, we make the MFT substitution

Hg = −igt
∑
j

αjαj+1µ
z
j → HMFT = −igt

∑
j

αjαj+1〈µzj 〉 (2.10)

Now we go to the two limiting cases of h→∞ and h→ 0. When h→∞,
all the spins align in the x-direction, leaving 〈µzj 〉 = 0. Thus the interacting
term vanishes, and HM is in a gapless phase of the Ising class.

When h → 0, the spins are antiferromagnetically ordered, with 〈µzj 〉 =

(−1)j . Then HM + HMFT is equivalent to the t1-t2 model discussed in the
previous section, and the spectrum is gapped.

6



2.2. Conformal field theory in 1 + 1D

h
c = 0 c = 7

10 c = 1
2

Figure 2.2: Phase diagram from MFT analysis. To make contact with the
numerical results in Section 2.4, we have label the three phases with the
central charge c, also see Table 2.1.

When tuning h from 0 to∞, the system evolves from a gapped phase to
an Ising phase, thus we expect a TCI phase transition in between. Numerical
results are shown in Section 2.4.

2.2 Conformal field theory in 1 + 1D

(a) (b) (c)

(d) (e) (f)

Figure 2.3: Conformal invariance and phase transitions. (a)(b) and (a)(c)
show two conformal transformations z → w1 = 2z and z → w2 = z2.
(d)(e)(f) Under these transformations the configuration of a critical Ising
model is “invariant”, the definite meaning of which is clarified in CFT.

At second-order phase transitions, the correlation length diverges, and
an emergent scaling invariance is realized. In the critical regime, one can
further assume conformal invariance, an even larger symmetry to be defined

7



2.3. DMRG algorithm

shortly[3][2][4]. Conformal field theory (CFT) is developed to fully exploit
the conformal invariance in the formulation of field theory. In 1 + 1D or
2 + 0D in particular, conformal invariance is so restrictive that quite a lot
of results can be deduced based on only a few assumptions. We utilize only
1 + 1D CFT in this work.

Conformal transformation is defined by

gµν(x)→ g′µν(x′) = Ω(x)gµν(x) (2.11)

where gµν(x) is the metric tensor and Ω(x) is a scalar field. In 1 + 1D, this
corresponds to all analytic coordinate transformations z → f(z), where we
have gone to complex coordinates z = x+iy and we measure space and time
coordinates in the same unit by setting v = 1. A system can be described
by CFT if there exist fields called primary fields which transform according
to

Φ(z, z̄)→
(
∂f

∂z

)h(∂f̄
∂z̄

)h̄
Φ
(
f(z), f̄(z̄)

)
(2.12)

where h and h̄ are real numbers known as conformal weights.
An important parameter in CFT is the central charge c, defined through

the radially ordered operator product expansion (OPE)

R (T (z)T (w)) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) (2.13)

Here, T (z) is the stress-energy tensor, and R denotes radial ordering. Impos-
ing a unitary condition on the theory, one can show that only a few discrete
values of c are allowed, each can be identified with some phase transition
classes. Thus, c provides an easy probe for the identification of a phase
transition. In this work we focus on the tricritical Ising transition (TCI),
with central charge c = 7

10 .

2.3 DMRG algorithm

Interacting systems are notoriously hard to solve numerically, mainly due to
the fact that the dimension of the Hilbert space grows exponentially with
the system size. As a classical example, the Hilbert space of the Hubbard
model is 4N and is as large as 4800 ' 10480 for a moderate system size of
20×20×20. As a result, only systems of relatively small sizes can be solved
by brute force.

Fortunately, for (quasi-)1D system, a good ansatz known as the matrix
product state (MPS)[5] turns out to give an almost accurate ground state

8



2.4. DMRG results

wavefunction. The basic idea is to rewrite the wavefunction in terms of
products of matrices by singular value decomposition (SVD)

ψi1,i2,··· ,in =
∑

j1,j2,··· ,jn−1

Aj1i1A
j1,j2
i2
· · ·Ajn−2,jn−1

in−1
A
jn−1

in
(2.14)

Within each step, we truncate the matrix by keeping only the dominant
singular values. From the modern view, the density matrix renormalization
group (DMRG) is a variational method based on MPS. The computational
cost is only O(Lm3), where L is the system size and m is the bond dimension
of MPS, typically 102 ∼ 103. The efficiency comes from the fact that in
1D the entanglement between two subsystems grows only logarithmically, a
special case of the area law. In this work we carry out extensive DMRG
calculations to obtain the ground state with a cutoff error as small as 10−6.

2.4 DMRG results

We apply finite DMRG algorithm to calculate the ground state wavefunction
of the full Hamiltonian with periodic boundary condition using ITensor[6].
We have again performed Jordan-Wigner transformation so that the Hamil-
tonian is spin-1

2 only, which is easier for numerical simulations. The Hamil-
tonian is

H = −t
∑
j

(σxj σ
x
j+1 − σzj ) + gt

∑
j

(σxj σ
x
j+1µ

z
j,a − σzjµzj,b)

+ J
∑
j

(µzj,aµ
z
j,b + µzj,bµ

z
j+1,a)− h

∑
j

(µxj,a + µxj,b)
(2.15)

Figure 2.4: The pure spin model after Jordan-Wigner transformation.

As discussed in Section 2.2, the main weapon at our disposal is the central
charge c. The central charges of some common CFTs are shown in Table 2.1.
In order to extract the central charge, we measure the entanglement entropy

9



2.4. DMRG results

CFT central charge c

vacuum 0

free fermions/Ising 1
2

free bosons 1

tricritical Ising 7
10

Table 2.1: A dictionary for the central charges of some common CFTs.

SA of subsystems of various sizes from the ground state wavefunction. SA
is defined from the reduced density matrix ρA

SA = Tr(ρA ln ρA) (2.16)

where ρA = TrBρ. SA is related to central charge c by the famous formula[7]

SA =
c

3
ln

[
L

πa
sin

(
πlAa

L

)]
+ S0 (2.17)

where lA and L are lengths of the subsystem and the whole system, respec-
tively, a is the lattice constant, and S0 is a constant independent of lA. A
typical fitting is shown in Fig. 2.5.

Our main results are shown in Fig. 2.6, in agreement with Grover et al.’s
results.

10



2.4. DMRG results

Figure 2.5: A typical fitting of the central charge with Eq. 2.17. We omit
the points lA ∼ 1 because the CFT prediction works at long distances.

11



2.4. DMRG results

Figure 2.6: DMRG result of the Majorana-Ising chain model. Here we have
L = 80, g = 1, J = 0.3.

12



Chapter 3

Majorana-Ising ladder

In this chapter the main results of this research project are presented. We
provide some general remarks in Section 3.1, motivating the generalization
to a ladder and eventually to 2d. Then in Section 3.2 we discuss the non-
interacting Majorana ladder model, which, while serving as the MFT ap-
proximation of the fully interacting model, is of great interest on its own.
The fully interacting model is introduced and analyzed in Section 3.3, where
we argue the existence of the TCI chiral edge modes, the key result of this
work. Finally, the numerics we perform to support the analytical argument
are summarized in Section 3.4.

3.1 General remarks

Based on the discussions so far, we want to generalize the model to 2d,
where richer physics is expected. We briefly discuss two aspects therein.

Edge physics and edge-bulk correspondence. The edge-bulk corre-
spondence is an echoing feature in topological phases. It appears already
in 1d systems such as the Su-Schrieffer-Heeger model[8], where the edge
charge is determined by the bulk phase. In 2d an archetypal example is the
quantum Hall effect (QHE), one of the first and most thoroughly studied
topological phases. In QHE the experimentally observed quantized conduc-
tance boils down to the chiral edge modes, or equivalently a topological
invariance of the bulk states, a surprising connection bridged by Thouless,
Kohmoto, Nightingale and Den Nijs[9]. While in QHE the bulk is exactly
solvable, in the current situation the edge is more easily probed thanks to
CFT. We thus expect an investigation of the edge physics interesting and
informative.

Anyons in 2d. In 1d, particles can not pass through each other, and there
is no difference between bosons and fermions. In d ≥ 3, there is only one
topologically (more precisely, homotopically) equivalent way of exchanging
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3.2. From a chain to a ladder: non-interacting model

two identical particles, and thus the unitary transformation of exchanging N
particles is given by the representation of the permutation group SN . Indeed,
bosons correspond to the trivial representation and fermions correspond to
another 1-d representation. In 2d, however, when particles exchange the
worldlines can braid in an infinite number of different ways. The symmetry
group for N identical particles is therefore the braid group BN , and anyons
emerge as the representations of the group.

(a) (b) (c) (d) (e)

Figure 3.1: Braids and anyons. We consider five kinds of exchanges of
identical particles, whose worldlines are shown in (a) ∼ (e). In d ≥ 3, (a),
(d), (e) and (b), (c) are two kinds of topologically equivalent exchanges. In
2d, all five exchanges, or braids, are different, and the representation of the
braid group determines the type of the anyons.

3.2 From a chain to a ladder: non-interacting
model

As a first step towards 2d, we couple two chains and consider a ladder model.
Again, before plunging into the full interacting model, we first examine a
non-interacting one. We note that for a 2d Majorana system there is a
consistency condition on the coupling parameters, known as the Grosfeld-
Stern rule[10], which requires that the accumulated phase φ along a closed
loop is related to the number of vertices n by

φ =
π

2
(n− 2) (3.1)

The sign convention we choose is shown in Fig. 3.2, and the Hamiltonian

14



3.2. From a chain to a ladder: non-interacting model

αj αj+1

βj βj+1

Figure 3.2: Majorana ladder model. The arrows denote the sign of each
coupling, in agreement with the Grosfeld-Stern rule.

is

H = i
∑
j

(
t+m(−1)j

)
(αjαj+1 − βjβj+1) + it1

∑
j

βjαj

+ it2
∑
j

(αjβj+1 − βjαj+1)
(3.2)

where t ±m are the intra-chain couplings and t1,2 are the inter-chain cou-
plings. Note that t1,2 have a different meaning in the previous chapter, and
their role is played by m here. We go to the momentum space using Eq. 2.3

H =
∑
k

Ψ†kHkΨk

Ψk = (αk,even, βk,even, αk,odd, βk,odd)T

Hk = i


0 0 0 0
t1 0 0 0

−(t+m) + (t−m)e−ik t2(1 + e−ik) 0 0
−t2(1 + e−ik) (t+m)− (t−m)e−ik t1 0

+ h.c.

(3.3)
In general, diagonalizing a 4 × 4 hermitian matrix is quite laborious, and
useful information is hard to extract. (It is always possible since the problem
reduces to a quartic equation, whose root formula is known.) Fortunately,
for certain matrices there is a nice trick. A hermitian matrix can always be
expanded by (I,σσσ) ⊗ (I, τττ), where σσσ and τττ are Pauli matrices. If there are
not too many terms, upon squaring and rearranging the matrix a few times
it will become proportional to unit matrix, with the cross terms cancelled
out by the anticommutation relations. In the current situation, we have

Hk = t1σ
y − t2(1 + cos k)σyτx + t2 sin k σyτy

+ ((t−m) cos k − (t+m))σzτy

+ (t−m) sin k σzτx
(3.4)
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3.2. From a chain to a ladder: non-interacting model

and the spectrum is

E =

(
t21 + t22(1 + cos k)2 + t22 sin2 k +

(
(t−m) cos k − (t+m)

)2
+(t−m)2 sin2 k ± 2t2

(
t21
(
(1 + cos k)2 + sin2 k

)
+
(
(1 + cos k) ((t−m) cos k − (t+m)) + sin2 k(t−m)

)2 ) 1
2

) 1
2

(3.5)

This result is rather complicated and we discuss the two cases m = 0 and
m 6= 0 separately. We also formulate a low-energy field theory to obtain
more insights.

3.2.1 The m = 0 case

Now the energy spectrum can be further simplified to

E =

√
4t2 sin2 k

2
+

(
t1 ± 2t2 cos

k

2

)2

(3.6)

The system is gapped for general t, t1 and t2, but becomes gapless when
t1 = 2t2. To see this, we note that both terms under the square root must
be 0 in order that the system is gapless. The first term is 0 only when
sin k

2 = 0, and thus t1 ± 2t2 = 0. The phase diagram is shown in Fig. 3.3.

t1

t2

gapless

gapped

Figure 3.3: Phase diagram of the m = 0 Majorana ladder model. The
gapless region is the line t1 = 2t2.

3.2.2 The m 6= 0 case

The spectrum is more complicated. To proceed, we restrict out attention to
not too large m, so that the spectrum does not change too much. A corollary
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3.2. From a chain to a ladder: non-interacting model

is that the E is small only around k = 0. We also note that ∂E
∂k

∣∣
k=0

= 0,

since only cos k and sin2 k are present in E. Combining this with the fact
that E ≥ 0 and E is smooth, we expect E = 0 can only occur at k = 0

E|k=0 =
(
t21 + 4t22 + 4m2 ± 4t2(t21 + 4m2)

1
2
) 1

2

=

∣∣∣∣2t2 ±√t21 + 4m2

∣∣∣∣ (3.7)

and the gapless condition follows

t2 =

√(
t1
2

)2

+m2 (3.8)

The upshot is that the gapless region is not removed, but shifted. While
this does not pose a problem in the ladder model, when we go to 2d things
become tricky. The discussion is postponed to Chapter 4.

2

1

0
1 2 3 t1

t2

m = 0

m = 1

m = 2

Figure 3.4: Phase diagram of the Majorana ladder model. The gapless
region is shifted as one turns on m.

3.2.3 Low-energy field theory

To gain more insight into the relation between the ladder and the chain,
we now adopt a low-energy field theoretic view. To do so we assume the

17



3.2. From a chain to a ladder: non-interacting model

operators on even/odd sites change slowly so that∑
j

→
∫

dx

α2j → α1(x)

α2j+2 → α1(x) + 2
∂α1

∂x
α2j−1 → α2(x)

α2j+1 → α2(x) + 2
∂α2

∂x

(3.9)

and similar for β’s. The low-energy Hamiltonian reads

H = 2i

∫
dx
(
mα1α2 + (t+m)α1α

′
2 − (α↔ β)

)
+ it1

∫
dx (β1α1 + β2α2)

+ it2

∫
dx
(
α1β2 + α2β1 + 2α1β

′
2 − (α↔ β)

)
(3.10)

We further define

αR/L = (α1 ± α2)/2

βR/L = (β1 ∓ β2)/2
(3.11)

and in terms of these operators the Hamiltonian finally becomes

H = 2i

∫
dx
(
2mαLαR + (t+m)(αRα

′
R − αLα′L) + (α↔ β)

)
+ 2it1

∫
dx (βRαL + βLαR)

+ 4it2

∫
dx (αRβL − αLβR − αRβ′R + αLβ

′
L)

(3.12)

where we have ignored the total derivative or boundary terms. In the iso-
lated chain limit, t1 = t2 = 0, the Hamiltonian reduces to the sum of two
chains, of which the physical meaning is clear: within each chain there is a
right-moving mode and a left-moving mode, with velocity ±2t. A nonzero
m couples both modes, just like a mass term in the high-energy context,
hence the nomenclature. For m = 0, the two modes contribute to the low
energy states and explains the gaplessness of each chain.

When m = 0, a general inter-chain coupling t1 and t2 couples all the four
modes and thus gap out the spectrum. However, from Eq. 3.12 it is easy
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3.3. From a chain to a ladder: interacting model

to see that if one chooses t1 = 2t2, only two out of four modes are coupled,
and we are left with two chiral gapless modes on the edge. This analysis
is readily generalizable to a 2d model, where a similar coupling scheme will
gap out all the bulk modes but leave two edge modes untouched, as we will
discuss in detail in Chapter 4.

3.3 From a chain to a ladder: interacting model

Equipped with the insights from the non-interacting model, we now explore
the full interacting model, Fig. 3.5, with intra-chain spin-spin and spin-
Majorana couplings. The Hamiltonian is

H = it
∑
j

(αjαj+1 − βjβj+1)− igt
∑
j

(
αjαj+1µ

z
j,a − βjβj+1µ

z
j,b

)
+ it1

∑
j

βjαj + it2
∑
j

(αjβj+1 − βjαj+1)

+ J
∑
j

(µzj,aµ
z
j+1,a + µzj,bµ

z
j+1,b)− h

∑
j

(µxj,a + µxj,b)

(3.13)

αj

βj βj+1

αj+1
µj,a

µj,b

Figure 3.5: Majorana-Ising ladder model. The sign convention is the same
as in Fig. 3.2 and we suppress the arrows for clarity.

We expect the success of MFT in the chain model will persist in the
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3.3. From a chain to a ladder: interacting model

ladder model, with the MFT Hamiltonian

HMFT = it
∑
j

(αjαj+1 − βjβj+1)

− igt
∑
j

(
αjαj+1〈µzj,a〉 − βjβj+1〈µzj,b〉

)
+ it1

∑
j

βjαj + it2
∑
j

(αjβj+1 − βjαj+1)

+ J
∑
j

(µzj,aµ
z
j+1,a + µzj,bµ

z
j+1,b)− h

∑
j

(µxj,a + µxj,b)

(3.14)

By the same argument as in the chain model, the limiting cases h → 0,∞
correspond to m 6= 0 and m = 0 in the non-interacting model, respectively.
If we fix t1 = 2t2, they further correspond to a gapped phase and an Ising
phase. Crucially, there is only one copy of Ising CFT in the latter. Thus, as
we tune h from 0 to ∞, we expect a TCI transition in between, where the
number of TCI CFT is also one. Furthermore, as the Ising CFT is chiral,
so should be the TCI CFT. We illustrate the argument in Fig. 3.6.

gapped
c = 0

TCI
c = 7

10

gapped
c = 0

gapped
c = 0

single chain

two decoupled chains

ladder with t1 = 2t2

h = 0 h = hc h =∞

Ising
c = 1

2

2×TCI
c = 7

5

2×Ising
c = 1

chiral TCI
c = 7

10

chiral Ising
c = 1

2

Figure 3.6: From a chain to a ladder. We are interested in the chiral TCI
CFT in the red box. A comparison between the first and the third row
implies a TCI CFT, while one between the second and the third column
suggests that it is chiral. This argument is verified by the DMRG calcula-
tions.
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3.4. DMRG results

3.4 DMRG results

We perform extensive DMRG simulations to confirm the analytical analysis
in the previous section. For bookkeeping we copy here the spin-version
Hamiltonian

H = −t
∑
j

(σxj σ
y
j+1 + σyj σ

x
j+1) + gt

∑
j

(
σyj σ

x
j+1µ

z
j,a + σxj σ

y
j+1µ

z
j,b

)
− t1

∑
j

σzj + t2
∑
j

(σxj σ
x
j+1 + σyj σ

y
j+1)

+ J
∑
j

(µzj,aµ
z
j+1,a + µzj,bµ

z
j+1,b)− h

∑
j

(µxj,a + µxj,b)

(3.15)

where αj and βj become σj under the Jordan-Wigner transformation, as
shown in Fig. 3.7.

µj,a

µj,b

αj

βj

αj+1

βj+1

σj σj+1

µj,a µj,b

Figure 3.7: The spin model after Jordan-Wigner transformation.

First, we take t1 = t2 = 0, i.e. the case of two isolated chains. We
expect the central charge to be twice of a single chain. The result is shown
in Fig. 3.8.

Next, we take t1 = 2t2 = 2, 1, 0.4. We expect that only one pair of chiral
edge modes survive. The result is shown in Fig. 3.9.

We also explore the case t1 6= 2t2. We take t1 = 1 and t2 = 0.8. Since
the Majorana degrees of freedom are gapped out, we expect the system
is dominated by the spin ladder, and an Ising transition lies between two
gapped phases. The result is shown in Fig. 3.10.
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3.4. DMRG results

Figure 3.8: Decoupled Majorana-Ising ladder. The central charge is twice
that of a chain. We take L = 24, g = 1, J = 0.3 here.
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3.4. DMRG results

Figure 3.9: Majorana-Ising ladder with g = 1, J = 0.3, t1 = 2t2 =
2 (blue), 1 (red), 0.4 (green). All three cases exhibit a TCI transition.
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3.4. DMRG results

Figure 3.10: Majorana-Ising ladder with L = 60, g = 1, J = 0.3, t1 =
1, t2 = 0.8. There is a Ising transition between two gapped phases.
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Chapter 4

From a ladder to 2d

As motivated in Chapter 3, the ultimate goal is to probe a 2d model. Unfor-
tunately, DMRG is impeded by the area law and a direct simulation is out
of the question. In this chapter we first analytically discuss the 2d model
from various aspects in Section 4.1. Then we introduce a useful concept,
known as the entanglement spectrum, and discuss its relevance to the edge
gapless modes in Section 4.2. We also discuss the numerical techniques.
An application of the approach to the non-interacting model is shown in
Section 4.3.

4.1 The 2d model

4.1.1 The non-interacting model

The Hamiltonian of the 2d non-interacting Majorana model is

H = i
∑
ij

(
(−1)it−m

)
γi,jγi+1,j − it1

∑
ij

(−1)iγi,jγi,j+1

+ it2
∑
ij

(γi,jγi−1,j+1 − γi,jγi+1,j+1)
(4.1)

The advantage of studying a ladder model is that we have direct access
to the edge states in the analytical solution, which is unfortunately not the
case for a 2d model. Here, we can only solve the bulk spectrum. As usual
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4.1. The 2d model

t

t1 t2

Figure 4.1: The 2d non-interacting model. Note that we have use a different
convention than in the previous chapter to have a minimun unit cell.

we go to the momentum space

αkx,ky =

√
1

2N

∑
ij

eikx2i+ikyjγ2i,j

βkx,ky =

√
1

2N

∑
ij

eikx(2i+1)+ikyjγ2i+1,j

γ2i,j =

√
2

N

∑
kxky

e−ikx2i−ikyjαkx,ky

γ2i+1,j =

√
2

N

∑
kxky

e−ikx(2i+1)−ikyjβkx,ky

(4.2)

In momentum space the Hamiltonian reads

H =
∑
kkk

Ψ†kkkHkkkΨkkk

Ψkkk = (αkkk, βkkk)
T

(4.3)

with

Hkkk = 2

(
−t1 sin ky it cos kx − (m+ 2t2 cos ky) sin kx

−it cos kx − (m+ 2t2 cos ky) sin kx t1 sin ky

)
= −2 sin kx(m+ 2t2 cos ky)σ

x − 2t cos kxσ
y − 2t1 sin kyσ

z

(4.4)
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4.1. The 2d model

and we immediately get the bulk spectrum

E = 2
√

sin2 kx(m+ 2t2 cos ky)2 + t2 cos2 kx + t21 sin2 ky (4.5)

It is straightforward to see when the bulk spectrum is gapless. The three
terms are all zero only when

cos kx = sin ky = m+ 2t2 cos ky = 0

⇒ kx = ±π
2
,
{ m = 2t2
ky = π

or
{ m = −2t2
ky = 0

(4.6)

We can calculate the Chern number of the system from the low energy points
in the Brillouin zone[11], where the Hamiltonian is

H(−π2 ,0)
= 2(m+ 2t2)σx − 2tqxσ

y − 2t1qyσ
z

H(−π2 ,π)
= 2(m− 2t2)σx − 2tqxσ

y + 2t1qyσ
z

H(π2 ,0)
= −2(m+ 2t2)σx + 2tqxσ

y − 2t1qyσ
z

H(π2 ,π)
= −2(m− 2t2)σx + 2tqxσ

y + 2t1qyσ
z

(4.7)

and the Chern number follows

n =
1

2

∑
sign(vxvy∆) =

{ 0 if |m| > 2t2
2 if |m| < 2t2

(4.8)

m
−2t2 2t2

n = 2 n = 0n = 0

Figure 4.2: The phase diagram of the 2d non-interacting model. A non-
zero Chern number n signifies a topological phase and a chiral edge mode.
Note that since we “double” the Hilbert space in a Majorana system, the
Chern number we get is twice the real value. Also, the values of t and t1 are
irrelevent as long as they remain positive.

The upshot of this calculation is that, the edge of the 2d system is
similar to the ladder case, with a gapless phase and a gapped phase, which
is determined by m. However, there are two noteworthy differences between
the 2d and the ladder case. In the latter, an infinitesimal m will gap out the
spectrum, while in the former the transition happens at m = 2t2, a finite
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4.1. The 2d model

value. Moreover, in 2d the bulk spectrum becomes gapless at the transition
point, a fact obscured in the ladder case, as there is not a well-defined “bulk”
for a ladder.

The edge mode is best understood from the low-energy theory. We recall
that when m = 0 there is a left-moving mode and a right-moving mode
within each chain, and the t1 and t2 terms gap out these modes except
when t1 = 2t2, in which case only a pair of modes are gapped out and
another pair is left untouched. As we introduce more chains, the new t1 and
t2 terms will successively gap out the bulk modes, and leave a pair of edge
modes gapless. As the edge modes become macroscopically separated, we
can relax the constrain of t1 = 2t2 and the gapless modes will persist, as
seen from the Chern number calculation.

We now convert the analysis into equations. We perform the substitution∑
i

→ 1

2

∫
dx

γ2i,j → (−1)iα1
j

γ2i+1,j → (−1)iα2
j

(4.9)

and define
α
R/L
j = (α1

j ± α2
j )/2 (4.10)

Then the Hamiltonian becomes

H → 2i
∑
j

∫
dx
(
−mα1

jα
2
j + (t+m)α2

jα
1′
j

)
− it1

∑
j

∫
dx (α1

jα
1
j+1 − α2

jα
2
j+1)

+ 2it2
∑
j

∫
dx
(
− α1

jα
2
j+1 + α2

jα
1
j+1 + α1

jα
2′
j+1 + α2

jα
1′
j+1

)
= 2i

∑
j

∫
dx
(
2mαRj α

L
j + (t+m)(αRj α

R′
j − αLj αL

′
j )
)

− 2it1
∑
j

∫
dx (αRj α

L
j+1 + αLj α

R
j+1)

+ 4it2
∑
j

∫
dx (αRj α

L
j+1 − αLj αRj+1 + αRj α

R′
j+1 − αLj αL

′
j+1)

(4.11)

When m = 0 and t1 = 2t2, the αRj α
L
j+1 terms vanish while the αLj α

R
j+1 terms
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4.1. The 2d model

gap out all the gapless modes except αR1 and αLN . Thus this pair of edge
modes remains gapless.

Figure 4.3: The edge modes from the low-energy theory. While the bulk
modes are gapped out, the edge modes are left gapless.

4.1.2 The interacting model

The Hamiltonian of interacting model is

H = it
∑
ij

(−1)i
(
1− gµzij

)
γi,jγi+1,j − it1

∑
ij

(−1)iγi,jγi,j+1

+ it2
∑
ij

(γi,jγi−1,j+1 − γi,jγi+1,j+1)

+ J
∑
ij

µzijµ
z
i,j+1 − h

∑
ij

µxij

(4.12)

and the corresponding MFT one is, as before,

H = it
∑
ij

(−1)i
(
1− g〈µzij〉

)
γi,jγi+1,j − it1

∑
ij

(−1)iγi,jγi,j+1

+ it2
∑
ij

(γi,jγi−1,j+1 − γi,jγi+1,j+1)

+ J
∑
ij

µzijµ
z
i,j+1 − h

∑
ij

µxij

(4.13)

At h = ∞, we again obtain a non-interacting, m = 0 Majorana model.
We expect the edge modes to be an Ising CFT, a story we are familiar up to
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4.2. Entanglement spectrum, edge modes and infinite DMRG

now. As h → 0, however, there are two possible scenarios. If g is not large
enough and thus m is not large enough either, the system will stay in the
original phase. For a large g, a large m will gap out the edge modes. Thus,
we can still expect a TCI point in between the two limits of h.

Based on the ladder model calculation, we can also formulate a “coupled-
chain” analysis. As we couple two TCI chains with appropriate coupling
parameters, we have seen that a pair of right and left movers are gapped
out and the other pair left untouched. If we further introduce more TCI
chains, we expect the bulk movers will be consecutively gapped out with
the edge modes gapless. As we have seen from the previous section, this
analysis works well for the non-interacting model with Ising CFT.

To sum up, we expect a TCI edge mode to occur as we tune the h from
0 to ∞, while, on the other hand, the bulk is gapped, as hinted from the
MFT and the coupled-chain analysis. There is another possibility that is
not so interesting, though. As h = 0 and h =∞ correspond to topologically
different phases, there might be just a “common” phase transition in be-
tween, where the bulk is gapless and edge modes are ill defined. Due to lack
of numerical probes, we can not assert which one is correct at this point.

4.2 Entanglement spectrum, edge modes and
infinite DMRG

In order to numerically explore the nature of the edge modes, new techniques
are necessary. For our present purpose, a measurement of the entanglement
spectrum with infinite DMRG seems to be most promising.

Back in Section 2.4, we defined the entanglement entropy from a bipar-
tition of a system

SA = Tr(ρA ln ρA) (4.14)

Apparently, much information stored in ρA is lost in this quantity, and this
motivates the definition of the entanglement spectrum, first proposed by Li
and Haldane[12]

Eα = − log ρA,α (4.15)

where ρA,α’s are the eigenvalues of ρA. People then realize that, generally,
the entanglement spectrum resembles the edge states spectrum of a topo-
logical phase, up to a shift and rescaling [13].

The infinite DMRG algorithm turns out to be a powerful method of
extracting the entanglement spectrum[14]. Instead of the truly 2d model
that is beyond the capacity of DMRG, one considers a cylinder geometry,
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4.3. The non-interacting model revisited

with Lx . 10 and Ly = ∞. By choosing an appropriate DMRG path, the
entanglement spectrum is easily obtained from the MPS. We will elaborate
this idea in the next section using a concrete example.

4.3 The non-interacting model revisited

We go back to the non-interacting model with a cylinder geometry and
measure the entanglement spectrum. We consider the ∞ × 4 and ∞ × 8
cases. Upon a Jordan-Wigner transformation, the spin models have sizes of
∞× 2 and ∞× 4, respectively. The DMRG paths are shown in Fig. 4.4.

A

A

A

B

B

B

C

C

C

D

D

D

· · ·

· · ·

A

A

A

B

B

B

· · ·

· · ·

(a) (b)

Figure 4.4: The DMRG paths for the non-interacting model with a cylinder
geometry, with the size of (a) ∞× 4 and (b) ∞× 8 in the Majorana basis,
or (a) ∞× 2 and (b) ∞× 4 in the spin basis.

For the ∞ × 4 case, the entanglement spectrum is readily identified
with the Ising CFT result, see Fig. 4.5. The spectrum follows a pattern
of “1101111122223”. The ∞ × 8 case is more complicated. Now there is
more than one copy of Ising CFT on the edge, and we need to calculate the
transverse lattice momentum to tell them apart and identify the pattern.
To do so we follow the methods in [14] and find the (diagonal) fixed point
of the “twisted transfer matrix” (TTM), whose diagonal elements are the
corresponding spacial translation phases eika, where the momentum k can
be extracted. The construction of the TTM is shown diagrammatically in
Fig. 4.6 We shift the k’s by a multiple of 2π so that the pattern is clearly
visible. The result is shown in Fig. 4.7.
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4.3. The non-interacting model revisited

E

h = 0 h = 1
2 h = 1

16

Figure 4.5: The CFT towers and the entanglement spectrum. The lines are
given by the Ising CFT which contains three conformal towers. The dots are
the entanglement spectrum from infinite DMRG upon a shift and rescaling.
We see an almost perfect match here.

Finally, we briefly discuss the difficulties of applying this technique to the
interacting model. As can be already seen from the∞×8 case, the conformal
towers are mixed together, and resolving each tower becomes even harder
for a TCI CFT where there are five possible towers. In [14] and other works
adopting this method, there exists an additive conserved quantum number,
e.g. total spin in z direction Sz or total particle number n, that helps to
distinguish between different towers, a feature we unfortunately lack in our
model. This drawback might be compensated for by more sophisticated
considerations of CFT, a direction worth exploring.
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4.3. The non-interacting model revisited

R

A B C D

A B C D

TTM

U R=

A B

A B

U

C D

C D

Figure 4.6: The twisted transfer matrix (TTM) and the transverse momen-
tum. The twisted transfer matrix is constructed by multiplicating the MPS
with a unitry transformation U which rotates the cylinder by a lattice con-
stant. The fixed point R is diagonal and the diagonal elements are eika.
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E

Transverse momentum k/2π

Figure 4.7: The entanglement spectrum of the ∞ × 8 case. Here to tell
apart different conformal towers the transverse momentum is measured and
translated by a multiple of 2π for clarity. We can see that the pattern
“110111112” holds for every tower.
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Chapter 5

Conclusion

In this thesis, the main result is the generalization of the GSV model to a
ladder model and the identification of the TCI edge mode.

In the GSV model, a TCI transition is obtained by tuning only one
parameter. By examining the chain model, we establish a mean field theory
that agrees with the limiting cases of the full interacting model, which hints
a TCI transition as we tune the parameter. The mean field theory is readily
generalized to a ladder and further to 2d.

Based on the results from the interacting chain model and the MFT
ladder/2d model, we expect a TCI edge mode in the interacting ladder/2d
model. We carry out extensive DMRG calculation of the interacting ladder
model and the results agree with the analytical argument. To the best of
our knowledge, this is the first work where a TCI edge mode is identified.

The DMRG calculations are not applicable in 2d models. Thus so far
we can not assert whether the analysis in the interacting ladder model still
holds in the interacting 2d model. We discuss a possible numerical probe
of the latter using infinite DMRG which has access to the entanglement
spectrum, which might give some interesting results in future research.
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Appendix A

Majorana fermions

Majorana fermions were first proposed by E. Majorana in 1937[15]. He
realized, as stated here in a modern way[16][17], that it is possible to define
a charge conjugation symmetric solution of the Dirac equation in the sense
that

C−1ΨC = Ψ (A.1)

where C denotes the charge conjugation operator and Ψ is the second-
quantized field operator. By choosing a representation known as Majo-
rana representation where the charge conjugation matrix C = 1 and thus
C−1ΨC = CΨ∗ = Ψ∗, the condition translates to

Ψa† = Ψa (A.2)

and Ψa’s, with the fermionic condition {Ψa
i ,Ψ

b
j} = 2δabδij satisfied, are

known as Majorana fermion operators. From now on we will use the let-
ter γ(a) instead to denote Majorana fermions to emphasize the difference
between Majorana and Dirac. Indeed, while the equation of motion is the
same, i.e. the Dirac equation, the Lagrangians are different. The relation be-
tween the two is analogous to the real and complex scalar fields in the bosonic
case[16]. In nonrelativistic systems, we are free from the spin-statistics the-
orem, and it is legitimate to regard γ’s as spinless Majorana operators with
no spin indices. Below we will mainly focus on spinless operators.

A few comments are in order. We first note that the Majorana operators
can be related to Dirac fermion operators by defining pairwise

γ1 = c† + c, γ2 = i(c† − c) (A.3)

Using this transformation, we can always map a fermionic Hamiltonian into
a Majorana one, and vice versa. Thus, paired Majorana fermions are abun-
dant in electronic systems, giving an equivalent, though not interesting,
representation. What we are interested in, as a result, are only the unpaired
ones. Another scenario where Majorana fermions appear “trivially” is in
ordinary superconductors. In the BdG mean field approach, Cooper pairing
are accounted for by a bilinear pairing term ∆c†c†+ h.c. A sage and almost
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Appendix A. Majorana fermions

unique choice of field operator for Hamiltonians of this kind is the Nambu

spinor, defined as Ψ =
(
c↑, c↓, c

†
↓,−c

†
↑

)T
. The fact that excitations in this

system are Majorana fermions follows from CΨ∗ = Ψ, where C = τyσy and
σσσ and τττ are Pauli matrices in spin and Nambu spaces, respectively. While
this is conceptually interesting, the Majorana excitations are not local and
further manipulations are hindered.

Recently people realize[17] that, unlike the two cases discussed above,
zero-energy Majorana excitations typically bound with edges or defects in
topological phases, or Majorana zero modes (MZM), have a few nice prop-
erties. Apart from being localized in space, they also behave as non-Abelian
anyons[18] when braided against each other, allowing potential applications
in topological quantum computation[19]. An prototypical realization of
MZM is the Kitaev chain model[20]. The Hamiltonian is

H =
∑
j

(
−tc†jcj+1 + ∆c†jc

†
j+1 + h.c.− µc†jcj

)
(A.4)

The ∆ = 0 case is the familiar tight binding model, and with an appropriate
µ it is a topologically trivial insulator. This can be seen from the fact that
the phase is connected to the isolated atom limit without closing the gap by
continuously decreasing t to 0. Interesting physics appears if we take ∆ = t
and µ = 0. In this case, we have

H = it
N−1∑
j=1

γj,2γj+1,1 (A.5)

where we have used Eq. A.3 for each site to rewrite the Hamiltonian using
Majorana operators. Now the bulk Hamiltonian is in a gapped phase, as can
be seen by recombining γj,2 and γj+1,1 into Dirac operators. What is crucial,
however, is that γ1,1 and γN,2 do not enter the Hamiltonian, and thus rep-
resent two MZMs. Combining these two operators into f = (γ1,1 + iγN,2)/2,
we can further identify the degenerate ground states |0〉 and |1〉 by f |0〉 = 0
and |1〉 = f † |0〉. Since there is only one zero energy state, it is robust against
perturbation as long as the particle-hole symmetry is preserved. Note that
the Majorana operators are localized at the two edges of the chain. While
immune from decoherence induced by local perturbation, the MZMs can
be braided by, e.g., introducing a T-junction, allowing potential quantum
computational operations.
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Figure A.1: The Kitaev chain model can be written in Dirac fermion oper-
ators (a) or Majorana fermion operators (b)(c). (b) The trivial phase can
be continuously connected to the isolated atom limit without closing the
gap. (c)(d) In the topological phase, there is a topologically protected zero
energy state.
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