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Abstract 
 

Photovoltaic systems for solar energy harvesting have seen accelerated growth over the past few 

decades. Crystalline silicon based photovoltaic systems are one of the most widespread photovoltaic solar 

cell technologies in use today. Such increased penetration of the photovoltaic systems creates new 

opportunities but also raises challenges, for photovoltaic manufacturers that are tasked with making their 

product more reliable and of good quality. As a final step during the fabrication of photovoltaic solar cells 

or modules, the current-voltage characteristics corresponding to each finished product, are measured 

under standard testing conditions. Measurement of electrical characteristics of the finished product is 

important for qualification purposes. For quality assessment purposes, certain metrics associated with 

the current-voltage characteristics, such as open-circuit voltage, short-circuit current, maximum current, 

maximum voltage, etc., are used based on a chi-by-the-eye method in adjudicating as to whether a given 

photovoltaic device is of “good” quality. In doing so, only a few of the salient points in the current voltage 

characteristic are utilized, while detailed information, inherent in the current-voltage characteristic, is not 

considered. In this thesis, means whereby empirical models of photovoltaic solar cells or modules may be 

used to fit the experimentally measured current-voltage characteristics is proposed. Accordingly, model 

parameters that can be used to characterize photovoltaic solar cells or modules are extracted from their 

measured current-voltage characteristics. These model parameters include photo-generated current, 

reverse saturation current, diode ideality factor, series resistance, and shunt resistance. For the realization 

of this objective, one of the most commonly used models to predict the current-voltage characteristic of 
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a photovoltaic solar cell or module is adopted. A curve fitting approach is proposed based on a non-linear 

optimization technique to extract model parameters associated with given current-voltage 

characteristics. In this thesis, computational solutions are developed for accurately extracting model 

parameters. The presented research spans from performance modeling, parameter estimation methods, 

to application of an optimization algorithm. Both experimental and standard data are used to investigate 

the accuracy of the extracted model parameter results obtained to validate the optimal performance of 

the proposed technique. The possible applications of this approach are discussed. 
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Chapter 1  Introduction 

1.1 Overview 

Modern industrial societies require energy in order to function. Energy is needed in order to 

power our industries, heat and air-condition our homes, and allow for our places of business, leisure, and 

recreation to function. During the 20th Century, fossil fuels have supplied much of our energy needs.  At 

present, nearly 80% of global electrical energy demand is supplied from fossil fuels, such as oil, natural 

gas, and coal; 14% of global electrical energy demand is supplied from renewable sources of energy, the 

remaining 6% being from nuclear sources [1]. With the Earth’s population expected to grow to nearly 10 

Billion by the middle of 21st Century, the global demand for electrical energy is expected to increase by 

more than two-fold by that time [2]. In recent years, concerns about global warming and the 

environmental degradation that accompanies the use of fossil fuels have motivated researchers to 

consider alternate sources of energy. With society’s ever increasing demand for electrical energy, coupled 

with the current rate of depletion of the world’s fossil fuel reserves, renewable sources of energy, in their 

various forms, are being looked at as being a possible solution to the world’s pressing energy supply needs 

[3, 4]. 

There are various types of renewable energy. For the purposes of this thesis, the focus is on 

renewable energy sources that are harnessed from natural processes. The U.S. Energy Information 

Administration (EIA), an agency within the U.S. Department of Energy, classifies mainstream renewable 

energy sources  into five broad categories [5];  
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• biomass energy,  

• hydropower,  

• geothermal,  

• wind energy, and  

• solar energy.  

Figure 1.1 stylistically illustrates the most common sources of renewable energy in use as of today. Many 

forms of renewable energy are themselves derived, either directly or indirectly, from the Sun. Biomass 

energy, for example, arises from the consumption of materials arrived at through photosynthesis. Hydro-

electric energy, which ultimately stems from the natural cycle of evaporation, precipitation, and 

hydrological flow, is also being powered by the Sun. Wind energy, which arises from the differential 

heating of the Earth’s surface, is another example of an energy source which is a product of the Sun’s 

influence. Finally, solar (thermal or photovoltaic) energy stems from the Sun, albeit in a much more direct 

manner. In addition to these forms of solar derived energy, there is geothermal energy, which 

corresponds to the harvesting of energy from within the Earth itself. Although the classification of 

geothermal energy as a renewable source of energy is sometimes questioned, the fact that sources of 

geothermal energy, i.e., heat generated within the Earth, is continuous and unlikely to run out, supports 

this classification. A distinct advantage of renewable sources of energy is that in addition to being 

sustainable, such sources offer the advantage of not contributing to the emission of  

  

http://www.eia.gov/energyexplained/?page=biomass_home
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Figure 1.1: The most common forms of renewable energy in use today, drawn in illustrated form. The 

online version of this figure is in color.  
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green-house gases (GHG)1, this being a pressing issue facing the modern world today. Therefore, such 

sources of energy are often termed as clean forms of energy. 

Of the aforementioned sources of renewable energy, solar energy is currently viewed as one of 

the most promising sources of renewable energy for the generation of electrical energy [6]. Solar energy 

is converted directly into electrical energy via photovoltaic solar cells that are made up of semiconductor 

materials. An individual photovoltaic solar cell typically generates a voltage of just under 0.6 V at 25°C and 

1000 Watts per meter squared of incident solar radiation [7]. In order to generate higher voltages and 

current levels, photovoltaic solar cells are connected electrically in series and/or parallel configurations. 

This ensemble of photovoltaic solar cells is packed together in an environmentally protective laminate, 

thus forming a photovoltaic solar module. Any number of photovoltaic solar modules connected in series 

and/or parallel configurations form a complete power generation unit referred to as a photovoltaic 

system that may be used to produce commercial or utility scale currents and voltages.  

The genesis of photovoltaic technology dates back to the 19th Century when Edmond Becquerel, 

in 1839, observed the photovoltaic effect using platinum electrodes in a conductive solution exposed to 

light, as noted in [8]. Since then, a great amount of effort had been invested in order to understand the 

interaction of light and materials (metals and semiconductors) and how such processes can be used for 

the generation of electrical energy. The commercial age of photovoltaic solar cells, however, began in 

                                                           
1   The combustion of biofuels releases CO2 which is more or less equivalent to what would have been released 
naturally as the organic matter decomposed. Therefore, there is no net increase in global green-house gas accrued 
as a result of the combustion of biomass [71].  
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1954, when Chapin,  Fuller, and Pearson, of Bell Telephone Laboratories, developed the first crystalline 

silicon-based photovoltaic solar cell with a conversion efficiency of 6% [9]. A tremendous amount of effort 

has been devoted ever since towards improving the conversion efficiency of photovoltaic solar cells. 

Factors, such as the need for the use of photovoltaic solar cells in space applications and the oil embargo 

of 1973, created a favorable atmosphere for the steady growth of photovoltaic technology, with gradual 

improvements in conversion efficiency being noted [10, 11]. By the late 1980s, photovoltaic technology 

was being considered for general urban and suburban applications and mainstream grid connected 

applications for utility power generation [10]. Well established semiconductor industries during the initial 

days, and mature processing and manufacturing technologies available for electronic grade silicon favored 

the growth of the photovoltaic industry with silicon being the preferred semiconductor material of choice 

for fabrication [12]. To date, commercial mono-crystalline silicon based photovoltaic solar cells, with 

efficiencies as high as 24.1 %, have been reported  [13, 14], while researchers have recently reported 

tandem concentrator solar cells with efficiencies as high as 42.3 % [15]. Figure 1.2 illustrates the 

improvements in the efficiency of different technologies of photovoltaic solar cells that have been 

achieved thus far. 

Figure 1.3 shows the growth of photovoltaic installed capacity. Note the annual additions 

between 2005 and 2015 [16]. This growth has been further complemented by the gradual decline in 

manufacturing costs of semiconductor materials [17]. Favorable energy policies implemented by  
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Figure 1.2: Best research solar cell efficiencies recorded between 1975 and 2015. This plot is courtesy of the National Renewable Energy 

Laboratory, Golden, CO. 
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Figure 1.3: Solar PV global capacity and annual additions, 2005-2015. This figure is after Renewable 2016 

Global Status Report [16]. The online version of this figure is in color. 
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different governments around the world in order to encourage investment in renewable energy, has 

resulted in a significant growth of both small-scale residential and  grid connected large-scale photovoltaic 

power plants [18].  

The European Photovoltaic Industry Association has forecast that utilizing the full potential of 

sunbelt countries translates into a potential for global energy production capacity in the range of 400  

GWp by 2030, based on an accelerated growth forecast [19].  Figure 1.4 depicts a map representing annual 

global horizontal irradiance [20].  The increasing use of photovoltaic systems for electrical generation 

entails a detailed understanding of such systems and their operation. Figure 1.5 illustrates a typical 

photovoltaic system with the various components connected related to energy generation and 

conditioning. A robust understanding  of the interaction of photovoltaic solar cells, which form the core 

of such a system, with the balance-of-system, which includes pieces of equipment, such as the wiring, 

switches, a mounting system, inverters, a battery bank, battery  charger, etc.,  is  essential  for  the  

efficient  design  and  operation  of  complete photovoltaic  systems.   

The modeling of a complete photovoltaic system assists in the development of efficient 

converter/controller systems by matching the control and drive requirements of the converter system to 

the characteristics of the photovoltaic system [21]. These controllers ensure that photovoltaic systems 

are being operated in an optimal manner so as to produce the maximum possible electrical energy in a 

rather dynamic condition of operation and are therefore termed as Maximum Power Point Controllers. 

The amount of energy generated by a photovoltaic system relies heavily on meteorological  

https://en.wikipedia.org/wiki/Solar_cable
https://en.wikipedia.org/wiki/Photovoltaic_mounting_system
https://en.wikipedia.org/wiki/Solar_inverter
https://en.wikipedia.org/wiki/Rechargeable_battery
https://en.wikipedia.org/wiki/Battery_charger
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Figure 1.4 : Global horizontal irradiation. GHI Solar Map © 2016 Solargis, used under Creative Commons 

Attribution-Share Alike 3.0 Unported License. The online version of the figure is in color. 
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Figure 1.5 : Schematic of a typical photovoltaic system used for the generation of electrical energy. The 

figure is adapted from Dufo-Lopez et al. [22]. The online version of this figure is in color. 
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factors; therefore, the designer of such systems must be able to predict the system performance subject 

to a range of environmental conditions. Such studies are not just essential during the initial design phase, 

but also for the preventive maintenance and troubleshooting of such systems.  Accurate models that can 

simulate and predict the behavior of photovoltaic systems will help with performance optimization.   

1.2 Motivation of thesis 

At present, photovoltaic systems seem destined to play an important role in supplying our future 

energy needs.  Our understanding of the performance of photovoltaic systems and their interaction with 

other units will influence the efficient operation of such systems, thereby influencing their power 

generation capabilities.  From a commercial perspective, the electrical (power) performance of 

photovoltaic devices, i.e., photovoltaic solar cells or modules, are typically characterized through 

measurement of their current-voltage characteristics under standard testing conditions defined with the 

air-mass 1.5 (AM1.5) spectrum of incident solar radiation and a device temperature of 25°C. This is done 

to ensure uniformity in the evaluation and comparison of photovoltaic devices (solar cell or modules) from 

different manufacturers. The actual operating conditions, however, seldom reflect standard test 

conditions of a laboratory. Standards, such as IEC 60891, have been established, that define components 

and processes involved in power measurements, for standardization across the industry. An appliance, 

called a flash tester, also known as a solar simulator, measures the current-voltage characteristics by 

exposing a given photovoltaic device to a short and bright flash of artificial light which is as close to the 

solar spectrum as possible. The qualification of the tested photovoltaic device is based on the measured 
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power with respect to a calibrated reference cell (or module).   

1.3 Thesis objective 

A common quality-control step that is performed in photovoltaic device manufacturing is the 

determination of the current-voltage characteristics corresponding to each photovoltaic device produced; 

this is achieved using the aforementioned solar simulator. In standard analysis, metrics associated with 

this measured current-voltage characteristic, such as, the open-circuit voltage, the short-circuit current, 

the maximum power point, the fill-factor, etc., are used to adjudicate as to whether a given photovoltaic 

device is adequate or not. In such traditional approach, for the assessment of quality of the solar 

photovoltaic device, such performance metrics are determined from the measured current-voltage 

characteristics of the device under test. Certain thresholds defined for these performance metrics, for 

example, a threshold for peak power generated by the photovoltaic device under test, are then used as a 

reference to accept or reject the product during such test and further to classify the qualifying products 

into different product categories. 

It is noted that this approach to quality-control uses few selective performance metrics 

determined from the measured current-voltage characteristics of the device under test and neglects the 

full-range of data included in the corresponding current-voltage characteristic, i.e., an entire current-

voltage characteristic is reduced to a number of salient points. It might be expected that an alternate 

approach to quality-control, that takes into account the full-range of data in a current-voltage 

characteristic, would involve the extraction of model parameters corresponding to a given current-voltage 
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characteristic and the assessment as to whether or not the obtained model parameters fall into the range 

of values expected for a “good-quality” photovoltaic device.  

In this thesis, an empirical model that accurately describe the nonlinear electrical characteristics 

of the photovoltaic device, often termed as single-diode equivalent circuit model, will be adopted to 

describe the photovoltaic device performance. This empirical model describes the electrical 

characteristics of photovoltaic devices based on the fundamental material and device properties such as 

inherent parasitic resistances, non-linear diode properties etc. which vary according to the model 

employed to characterize the photovoltaic device. These fundamental parameters collectively define the 

electrical performance of the photovoltaic device.  The aim of this thesis is to extract these fundamental 

model parameters from the experimentally measured current-voltage characteristics of the photovoltaic 

device under test and use such model parameters to ascertain the quality of the photovoltaic device. The 

extracted model parameters may further be utilized to categorize each photovoltaic device into different 

product categories based in the extracted model parameters. Figure 1.6 depicts this process conceptually. 

The n-dimensional hyperspace represents the subset of the acceptable values corresponding to each of 

the “n” model parameters such that devices with model parameters within the subset are deemed 

acceptable while those with model parameters outside the range of acceptable values are rejected. 

The extraction of the fundamental model parameters from current-voltage characteristics 

constitutes a challenging task, especially due to the non-linear nature of the current-voltage 

characteristics of such device. In this thesis, this problem is addressed by formulating the model  
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Figure 1.6 : Traditional approach versus an illustration of an n-dimensional hyper-space for the model 

parameter search.  The model parameters selections that fall within the “good-quality” hyper-sphere are 

deemed to correspond to good-quality photovoltaic solar cells or modules. Those that fall outside are 

considered poor-quality photovoltaic solar cells or modules. The online version of this figure is in color. 
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parameter extraction as a multivariate optimization problem and a means whereby such model parameter 

extraction may be pursed, is developed. In particular, within the framework of a single-diode circuit 

model, representing the current-voltage characteristic of a photovoltaic device, using a least-squares 

fitting approach based on a trust region optimization, formal means of model parameter extraction are 

developed. This approach represents an improvement over the status quo, wherein model parameters 

are usually determined through a visual process, i.e., the so-called chi-by-the-eye approach.  The use of 

this approach for quality-control applications lies beyond the scope of this particular thesis, in particular, 

due to the lack of control that was exercised over the composition of the constituent components and 

processes involved in the fabrication of the samples of the photovoltaic device used in the study for 

measurement of current-voltage characteristics. The focus of this study is on accurate parameter 

extraction based on curve-fitting techniques which have been implemented via an optimization algorithm 

scripted in MATLAB®. 

1.4 Thesis outline 

The thesis is organized into five individual chapters. Chapter 2 begins with details related to device 

physics, especially the structure and principle of operation of a photovoltaic solar cell. It then proceeds to 

present a review of the literature available with regards to model parameter extraction for the modeling 

of a photovoltaic device. Building upon the contents of Chapter 2, Chapter 3 first presents empirical 

models of photovoltaic devices. It then discusses the sensitivity of the current-voltage characteristics with 

respect to the variations in the underlying model parameters. Then, the algorithm, whereby model 
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parameters may be extracted from a measured current-voltage characteristic, is presented. Chapter 4 

provides further details related to the model parameter extraction process for photovoltaic devices, based 

on measured current-voltage characteristics. In this regard, both experimental data and standard data, 

available in the literature, are used. Chapter 5 concludes by presenting the main contributions of the 

thesis. It also discusses possible future work that builds upon these results. 
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Chapter 2  Background 

2.1 Introduction 

For the informed modeling of a photovoltaic system, awareness of the underlying physics is 

crucial. Photovoltaic systems are comprised of an ensemble of photovoltaic solar cells, these being 

fabricated from semiconductor materials. Certain semiconductor materials possess properties which 

enable them to convert sunlight into electrical energy. A detailed presentation of the underlying 

semiconductor material physics is an elaborate exercise, beyond the scope of this particular thesis. 

Therefore, only a brief introduction to semiconductor materials is presented here together with a 

discussion on how such materials interact with sunlight. Readers are encouraged to refer to the scientific 

literature for more detailed studies into this subject matter [23].  

In this chapter, I begin by presenting some of the fundamental physics concepts that are needed 

in order to perform the subsequent research. In particular, the material structure and the basic properties 

associated with the semiconductors used within photovoltaic solar cells, are discussed, and the interaction 

of light with photovoltaic solar cells is presented, light-material interactions being at the heart of the 

performance of a photovoltaic solar cell.  The typical structure of a photovoltaic solar cell, its 

characteristics, and the process of manufacturing such cells, are then presented. The concept of the solar 

spectrum, and its interaction with a photovoltaic solar cell, is then featured. This is followed by a brief 

discussion of the various circuit models used to describe the current-voltage characteristics of a 

photovoltaic solar cell and a review of the literature corresponding to model parameter extraction from 

such characteristics is featured. 
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This chapter is organized in the following manner. In Section 2.2, a selection of important 

semiconductor characteristics is presented. In Sections 2.3 and 2.4, a discussion on the structure and 

operating principles of photovoltaic solar cells are presented, followed by the study of the solar spectrum 

in Section 2.5. In Section 2.6, a typical commercial photovoltaic solar cell and its characteristics are 

presented.  The process of commercial fabrication and the testing of photovoltaic solar cells are discussed 

in Sections 2.7 and 2.8, respectively.  Sections 2.9 through 2.11 is where the electrical models of the 

photovoltaic solar cells is discussed and some of the established approaches used for extracting model 

parameters corresponding to such cells is looked into. 

 2. 2 Semiconductors materials 

For the fabrication of photovoltaic solar cells, silicon (Si) is the dominant semiconductor material 

[24]. Besides silicon, compound semiconductors, such as gallium arsenide (GaAs), cadmium telluride 

(CdTe), copper indium gallium selenide (CIGS), and gallium indium phosphide (GaInP), may also be used 

for photovoltaic solar cell fabrication. Semiconductors are materials with electrical properties that lie 

between those associated with insulators and conductors, in the sense that the conduction of charge 

carriers, through a semiconductor material, can be controlled in some manner. The control of the 

conductive processes within a semiconductor is usually achieved through the application of a voltage, 

current, light, or mechanical stress.  

For the case of crystalline Si (c-Si), each Si atom bonds with four neighboring Si atoms. The atoms 

within c-Si are laid out in a periodic and ordered fashion, i.e., there is long-range order.  Si is a group IV 
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element in the periodic table and the electronic configuration of Si is 1s22s22p63s23p2; this can 

alternatively be expressed as [Ne]3s23p2.  Each Si atom has four valence electrons in its outermost shell, 

and shares these electrons with four of its nearest neighboring atoms, thereby forming covalent bonds.  

This arrangement results in a tetrahedral structure, wherein each covalent bond is directed as far away 

from the others as possible, i.e., at an angle of approximately 109.5° with respect to each other. The 

repetition of such a structure in all directions around any given silicon atom allows for the formation of 

the ideal c-Si lattice. Figure 2.1 shows the unit cell associated with a Si crystal lattice, where the Si atoms 

are represented by the solid spheres while the covalent bonds, comprised of two valence electrons, are 

represented with solid lines joining the neighboring Si atoms.  This resulting unit cell of a diamond crystal 

structure possesses a unit cell lattice constant, a, of 5.43 Å.  

In two-dimensional form, the arrangement of silicon atoms within c-Si can be pictorially 

represented, as depicted in Figure 2.2.  Here, the two lines between each pair of silicon atoms represent 

the covalent bonds between two neighboring Si atoms, each line representing a valence electron.  Figure 

2.2 suggests that the covalent bonds between all silicon atoms are completely satisfied and that there are 

no free electrons within the crystal. This representation is only valid at absolute zero temperature, with 

no impurities, any sort of defect, and thermal vibrations being present within the crystal.  

An isolated atom will have a discrete spectrum of energy levels associated with it, these energy 

levels corresponding to the electron energy levels associated with the different quantum states with an 

atom. As atoms are brought together in order to form a solid, however, the situation changes and the  
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Figure 2.1: The unit-cell associated with c-Si. The silicon atoms are represented with the spheres, while 

the covalent bonds are depicted with the thick solid lines joining the silicon atoms. The figure is adapted 

from Hu [25]. 
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Figure 2.2: A two-dimensional representation of the crystalline silicon (c-Si) crystal structure. This figure 

is adapted from Kasap [23]. The online version of this figure is in color. 

 

 

 

 

 



22 
 

energy levels change owing to the wave functions overlapping between the neighboring atoms. For an 

isolated Si atom, all such electrons occupy discrete energy levels. When N isolated Si atoms are brought 

together into close proximity, however, these discrete energy levels overlap and are replaced with bands 

of energy states separated by gaps between the bands. The dependence of the energy level locations on 

the inter-atomic separation distance, d, for the case of crystalline Si, is depicted in Figure 2.3. This 

broadening of the energy levels into bands occurs because, with the close proximity of any two Si atoms, 

each discrete energy level splits into two levels. For the case of N atoms in close proximity, the discrete 

energy levels split into N energy levels, whereas N goes to infinity, the discrete energy levels become a 

continuum, i.e., a band. This phenomenon is related to the Pauli exclusion principle which does not allow 

electron energy levels to be the same so that a set of very closely spaced energy levels is formed when a 

large number of atoms are confined into a small volume. These closely spaced energy levels appear as a 

band of energy levels, as shown in Figure 2.3.  The electron energy levels associated with the core 

electrons also experience broadening but over smaller inter-atomic distances owing to the limited extent 

over which their wavefunctions range.  Here we are focusing on the two outermost orbitals (3s and 3p) 

corresponding the highest energy levels. The other energy levels, especially the lower energy levels, are 

completely filled and do not take part in inter-atomic interactions. Hence, only the 3s and 3p orbital are 

shown in the Figure 2.3 to demonstrate the splitting of energy levels of each of the N Si atoms brought 

together into close proximity. The properties of a material vary critically based on how the bands 

associated with the material are occupied. Bands can be completely or partially filled or unoccupied.  
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Figure 2.3: The formation of energy bands when N isolated Si atoms are brought together into close 

proximity at absolute-zero temperature (0K). This figure is after Kasap [23]. 
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Hence, of the different energy bands associated with a semiconductor, we are particularly interested in 

the two highest energy level bands, i.e., the valence band and the conduction band. 

At absolute-zero temperature, all of the lower energy bands are completely filled while the higher 

energy bands are completely empty, i.e., the valence band is completely full of valence electrons while 

the conduction band contains empty energy states. The gap between the valence band and the 

conduction band is referred to as the energy band gap, 𝐸𝑔 , and is a material property of the 

semiconductor in question. With the valence band completely filled with electrons and the conduction 

band completely devoid of electrons, there is no net velocity of electrons, and hence, no electrical 

conduction at absolute-zero. 

 At temperatures above absolute-zero, the atoms within the crystal begin to vibrate due to the 

absorption of thermal energy. This lattice vibration will result in the stretching of the covalent bonds 

between the Si atoms. In response to thermally generated vibrations, some of the covalent bonds may 

become over-stretched, resulting in a rupturing of that covalent bond and the release of a “free” electron 

into the conduction band. Figure 2.4 illustrates how thermally generated vibrations lead to the generation 

of electron-hole pairs. The amount of charge carriers generated based on thermal vibrations depends 

critically on the temperature.  The “free” electron or conduction electron, as it is commonly referred to, 

is free to drift through the crystal lattice. With the absorption of additional thermal energy, the conduction 

electron is promoted into the conduction band where it can contribute to the electrical conduction under 

the influence of an applied electric field. The breaking away of the conduction electron results in a void  
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Figure 2.4: Thermal vibrations of Si atoms as a result of the absorption of thermal energy, above absolute 

zero temperature, rupturing some of the covalent bond due to the overstretching of the bonds.  This 

figure is adapted from Kasap [23]. The online version of this figure is in color. 
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with a net positive charge in an otherwise neutral region of the crystal. This vacancy, or the absence of 

the electron, results in an empty electronic state within the valence band and is referred to as a hole, an 

entity with a net positive charge.   

Similar to conduction electrons, holes, with a positive charge, drift under the influence of an 

applied electric field, and therefore also contribute to the electrical conduction of the crystal.  The 

movement of a hole in a crystal lattice is essentially another electron ”jumping” or tunneling from a 

neighboring bond to occupy the void left by the conduction electron in the original bond.  This is effectively 

equivalent to the hole moving in the opposite direction within the crystal. This process can repeat itself. 

As a result, the hole appears to be a positive charge carrier that can drift within the crystal lattice, thereby 

contributing to the electrical conduction. Therefore, electrons and holes are the two charge carriers within 

the semiconductor crystal that contribute to the electrical conduction. 

The thermal vibration of the Si atoms within the crystal is one of the processes resulting in the 

generation of charge carriers (electron-hole pair) but it is not the only one. An electron in the valence 

band can also gain additional energy from an incident photon to become a conduction electron at a higher 

energy level and therefore contribute to the electrical conduction. In fact, the creation of electron-hole 

pairs (EHP) in semiconductors due to the absorption of the incident sunlight is the driving principle 

underlying photovoltaic solar cells. The valence band consists of electrons at an energy level, lower by an 

amount of at least the energy band gap, 𝐸𝑔, with respect to the higher energy empty electronic states in 

the conduction band.  The excitation of valence electrons into the conduction band where the electron 
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occupies one of the empty electronic states and becomes a conduction electron requires a minimum 

amount of energy equivalent to 𝐸𝑔. This is achieved when a photon of energy, ℎ𝑓 > 𝐸𝑔, is incident on the 

electron in the valence band, where ℎ is Planck’s’ constant and 𝑓 is the frequency of the incident photon. 

The electron absorbs the incident photon and gains sufficient energy to overcome the energy band gap, 

𝐸𝑔, and move into the conduction band, leaving behind a hole in the valence band. This results in the 

generation of charge carriers or electron-hole pairs that contribute to the electrical conduction. Figure 2.5 

illustrates the process of charge carrier generation when a photon, with energy greater that the energy 

band gap, 𝐸𝑔, is incident within the crystal. Figure 2.6 shows the change in the energy band diagram due 

to the excitation of an electron from the valence band to the conduction band leaving behind a hole. 

2.2.1 Doping of semiconductors 

For a pure semiconductor, the density of the thermally generated charge carriers is small at room 

temperature, for example, 1010 cm-3 for Si and 107 cm-3 for GaAs. Such a pure semiconductor is typically 

referred to as an intrinsic semiconductor. Figure 2.7 illustrates an intrinsic Si semiconductor with a 

representative energy band diagram at room temperature. Such lower concentrations of charge carriers, 

which results in a lower conductivity of the intrinsic semiconductor, may not be useful in solid state 

electronics and necessities increases in the concentration of charge carriers so as to improve the 

conductivity. The conductivity of a semiconductor may be increased by intentionally adding impurities, or 

foreign atoms, to an intrinsic semiconductor. This process is referred to as doping and the resulting 

semiconductor is referred to as an extrinsic semiconductor.  
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Figure 2.5:  The breaking of “free” electron (e-) and thereby leaving a net positive charge entity called hole 

(h+), within a Si crystal due to thermal energy absorption, which breaks some of the covalent bonds. This 

figure is adapted from Kasap [23]. The online version of this figure is in color. 
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Figure 2.6:  Energy band diagram showing the excitation of an electron from the valence band into the 

conduction band due to the absorption of an incident photon of energy with hf > Eg. This figure is adapted 

from Kasap [23]. 
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Figure 2.7: Intrinsic Si semiconductor and its typical energy band diagram at room temperature. This figure 

is adapted from Hu [25]. 
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When a pentavalent element, such as phosphorus (P), is added in small quantities to the crystal lattice of 

Si, the P atoms displace some of the Si atoms in the crystal.  The small amount of impurity atoms (one P 

atom for every million Si atoms) ensures that the P atom bonds with the Si atoms in the same diamond 

crystal lattice. While four of the five valence electrons of the P atom are shared with four neighboring Si 

atoms, thus forming a covalent bond, the fifth valence electron escapes and becomes a mobile electron 

orbiting around the P nucleus. This results in an excess of electrons in the crystal lattice which is loosely 

bound to the P atom. The excess electron gains sufficient energy and become free to move within the 

crystal lattice. The creation of such free electrons around immobile P+ ions forms an n-type Si 

semiconductor with a typical energy band diagram at room temperature, as shown in Figure 2.8. The 

energy required to release the “free” electrons orbiting around the P+ ion into conduction band is very 

small (32 meV for Si at room temperature). This small energy, also referred to as the binding energy, can 

be readily supplied by the average energy of a thermal vibration at room temperature, which is typically 

70 meV.  By controlling the concentration of impurity atoms, the required concentration of the free or 

mobile electrons for the desired electrical conductivity, can be obtained. In this process, there is no hole 

creation associated with the process of the creation of electrons and the semiconductor thus formed is 

referred to as an n-type semiconductor, which has an excess of one type of charge carrier, i.e., electrons. 

Similarly, when a trivalent element, such as boron (B), is used to replace the silicon atoms in the 

crystal lattice, three valence electrons of the impurity B atom (B) form covalent bonds with three of the  

four neighboring Si atoms. This results in one of the bond missing one electron to complete the bond.  
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Figure 2.8: An n-type Si semiconductor and its typical energy band diagram at room temperature. This 

figure is adapted from Hu [25]. 
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This void or absence of an electron, created in the lattice, is termed as a hole, which is a positive charge 

entity. It refers to an empty electronic state in the valence band. With the hole thus formed, an electron 

from the nearest neighboring Si atom can tunnel and occupy the empty state, which is equivalent to the 

hole being displaced in the opposite direction.  This hole orbits around the negatively charged B ion before 

gaining sufficient energy, through the absorption of thermal energy, to move away from the B ion. The 

binding energy is very small (for example, 50 meV for Si at room temperature) and is therefore easily 

supplied by the average energy of lattice vibration due to the thermal energy.  Figure 2.9 shows p-type Si 

semiconductor formed by doping it with B atom and the associated typical energy band diagram at room 

temperature. 

2.2.2 Carrier concentration and Fermi Function 

The electrical conductivity of the semiconductor material can be ascertained based on knowledge 

of concentration of the charged carriers (electrons in the conduction band and holes in the valence band). 

The conduction band of a semiconductor can be thought of as being comprised of number of allowed 

empty energy levels. The concentration of electrons is related to the density of these available states, 

𝑔(𝐸), and the probability that each of these states is occupied. i.e., the number of allowed energy levels 

in the conduction band and the likelihood of these states being populated by an electron. This likelihood, 

or the probability, of a given energy state being occupied by an electron is given by the Fermi-Dirac 

distribution function, 𝑓(𝐸).  The product of the density of states and the Fermi–Dirac probability function 

gives the number of electrons per unit energy per unit volume in the conduction band. Integrating this 
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Figure 2.9: A p-type Si semiconductor and its typical energy band diagram at room temperature. This 

figure is from Hu [25]. 
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product over the entire conduction band gives the concentration of electrons.  As for the density of holes, 

i.e., empty state in the valence band, the probability of having a hole equals the probability that a 

particular state is not filled. Hence, the product of the probability of the state being empty and the density 

of the state in valence band gives the concentration of holes in the valence band. 

For intrinsic Si, since the electrons and holes are generated in pairs, there is an equal 

concentration of electrons in the conduction band and holes in the valence band. Furthermore, for a 

symmetric distribution of parameters, at the edge of the conduction and valence bands, there will be 

equal number of states. This suggests that the probability of finding an electron in a conduction band state 

is equal to the probability of finding a hole in a corresponding valence band state.  Therefore, the Fermi 

level, 𝐸𝐹, for the case of intrinsic Si, appears at the middle of the band gap, as depicted in Figure 2.10 (a).  

For n-type Si, there are more electrons in the conduction band than there are holes in the valence band, 

which suggests that the probability of finding an electron near the conduction band edge is greater than 

the probability of finding a hole at the valence band edge. Therefore, the Fermi level is closer to the 

conduction band in an n-type Si, as depicted in Figure 2.10 (b). For p-type Si, however, there are more 

holes in the valence band than there are electrons in the conduction band, suggesting that the probability 

of finding an electron near the conduction band edge is less than the probability of finding a hole near the 

valence band edge. Therefore, the Fermi level is closer to the valence band edge in a p-type 

semiconductor, as depicted in Figure 2.10 (c). 
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(a)  

 

(b)   (c) 

Figure 2.10: Energy band diagram with the Fermi level indicated for (a) intrinsic, (b) n-type, and (c) p-type 

Si. This figure is after Kasap [23]. 
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2.2.3 p-n junction 

A p-n junction is formed when an n-type semiconductor is interfaced with a p-type semiconductor 

forming the very basic building block of modern day electronics.  Figure 2.11 shows the formation of a p-

n junction due to the interfacing of n-type and p-type semiconductors and the associated energy band 

diagram of the p-n junction. The metallurgical junction thus formed possesses rectifying properties in the 

sense that current can flow in one direction easily while the flow of current in the opposite direction is 

limited to a very small leakage current.  As a result of doping, there are large numbers of electrons on the 

n-side, but very few on the p-side. Similarly, there are large numbers of holes on the p-side with very few 

holes on the n-side. When these two types of semiconductor are brought together to form the p-n 

junction, electrons from the n-side diffuse to the p-side due to the concentration gradient resulting in a 

depletion of electrons on the n-side near the junction. With this, the conduction band edge,  𝐸𝐶 , moves 

away from 𝐸𝐹 at the n-region towards the metallurgical junction. Similarly, holes diffuse from the p-side 

to the n-side due to the concentration gradient, depleting the p-region near the junction of holes. This 

causes the valence band edge, 𝐸𝑉 , to move away from 𝐸𝐹 towards the junction. At the junction, the Fermi 

level, 𝐸𝐹, is close to neither 𝐸𝐶   nor 𝐸𝑉, indicating that the charge carrier concentrations are much less 

than that in the neutral region. 

The diffusion of electrons from the n-side towards the p-side leaves behind positively charged 

immobile ions near the metallurgical junction on the n-side.  Similarly, holes in the p-type region diffuse 

towards the n-type side, leaving behind negatively charged boron ions. This forms a region depleted of  
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Figure 2.11: A p-n junction and the corresponding energy band diagram associated with such a junction. 

This figure is adapted from Kasap [23]. 
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charge carriers, referred to as the depletion region, near the junction. The fixed ions left behind set up an 

electric field at the junction, resulting in a “built-in” potential across the junction. Under the influence of 

“built-in” electric field, some of the electrons and holes to drift in the opposite direction to the flow caused 

by diffusion, i.e., electrons or holes near the junction are swept back into its original volume.  Thus, at the 

junction, there are two effects occurring; electrons diffusing from the n-side to the p-side due to the 

concentration gradient and electrons drifting under the influence of the “built-in" electric field back into 

the n-side. A similar argument applies to the holes, but in the opposite direction. Eventually, the current 

component due to diffusion of electrons is balanced by the current component due to the drift of 

electrons under influence of the “built-in” potential, resulting in a zero-net current.  

When the p-n junction is forward-biased with the application of positive voltage to the p-side, 

current can flow, which depends on the magnitude of the applied bias voltage.  With this, the applied 

electric filed is in opposition to the "built-in" electric field, so that the resultant field at the junction is 

smaller. The electrons on the n-side can now easily overcome the potential barrier and diffuse to the p-

side. In silicon, this occurs at about 0.6 V forward bias. When a negative voltage is applied to the p-n 

junction, to reverse-bias the junction, the “built-in” electric field and the applied field are in the same 

direction such that the resultant field is at the junction is large. In this case, a negligible reverse saturation 

current will flow across the junction. Solar cells operate as p-n junctions under forward-bias conditions.  

2.3 Structure of photovoltaic solar cell 

Doped semiconductors are used to fabricate photovoltaic solar cells which as suggested earlier  
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consist of n-type silicon interfaced with p-type silicon, effectively forming a p-n junction. The choice 

semiconductor material to be used for the fabrication of a photovoltaic solar cell is governed by two 

factors; how well the semiconductor absorbs light and how economical the cost of fabrication is. 

Therefore, silicon (Si), with fairly good absorption characteristics and well developed and a cost effective 

fabrication technology, is a predominantly used semiconductor for photovoltaic solar cell fabrication, 

albeit other semiconductors, such as gallium arsenide, and cadmium telluride, etc.,  with better 

absorption characteristics, are available [7]. The ability of semiconductor materials to absorb photons 

incident from the sunlight and generate free charge carriers (electrons and holes) for electrical 

conductivity is a key concept underlying the operation of photovoltaic solar cells. Figure 2.12 illustrates 

the structure of a typical photovoltaic cell.   

Photovoltaic solar cells are large area p-n junction diodes formed by interfacing a layer of p-type 

silicon with another layer of n-type silicon, with the n-layer on top (sun facing side) of the p-layer. The n-

layer and p-layer are selectively formed on a single bulk Si wafer through doping to form a metallurgical 

junction (p-n junction), which separates the charge carrier pairs, i.e., electrons and holes, generated by 

the sunlight. The top surface of the photovoltaic cell is exposed to solar radiation for the absorption of 

incident energy. A thin metallic grid on the top surface forms the front electrode, which allows for the 

maximum amount of sunlight to be absorbed into the diode and carry the electrical current, thus 

generated, into the preferred direction. The top surface (between the metallic grids) has a layer of anti- 

reflective coating to minimize surface reflection.  A metallic layer, deposited on the back of the  
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Figure 2.12: Cross-section of a typical photovoltaic solar cell. This figure is adapted from Kasap [23]. 
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photovoltaic solar cell, forms the back electrode. The two electrodes, when connected to the load through 

external wiring connection, complete the circuit. 

2.4 Operation of a photovoltaic solar cell 

As the photovoltaic solar cell is basically a p-n junction, at finite temperature, in the region near 

the junction, the diffusion of charge carriers from either side of the junction leaves behind positively 

charged ions on the n-side and negatively charged ions on the p-side. The immediate vicinity of the 

metallurgical junction is depleted of charged carriers, and thus, is appropriately termed the depletion 

region or the space-charge region. The “built-in” electric field developed across the space-charge region 

deters further diffusion of charge carriers and separates them on either side of the junction.  When such 

a p-n junction is illuminated with electromagnetic radiation, such as sunlight, it results in the generation 

of electron-hole pairs in the bulk of the silicon. Solar radiation is comprised of discrete packets of energy, 

known as photons; these photons are absorbed resulting in the generation of electrons and holes. The 

amount of energy within each photon depends on the wavelength of the radiation.  The motion of these 

generated charge carriers generates an electric current when the two terminals are connected externally. 

For the generation of such charge carriers, the energy in the incident photon has to be greater than the 

energy band gap, 𝐸𝑔,  such that it can break “free” electrons from the covalent bonds. Any photon with 

energy less than the energy band gap simply passes through the bulk and does not contribution to the 

electrical current. For the case of photons with energy greater than the energy band gap, the excess 

energy is dissipated as heat in the crystal lattice. The thickness of the n-type and p-type layer within the 
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photovoltaic solar cell is optimized for the maximum absorption of photons and subsequent charge carrier 

generation. A typical photovoltaic solar cell, with incident photons and charge carriers generated as a 

result, is depicted in Figure 2.13. 

2.5 Solar Spectrum 

The spectral distribution of the incident solar radiation dictates the energy conversion capability 

of the photovoltaic solar cell.  The energy generated by a photovoltaic solar cell depends on the amount 

of photon flux incident on it and the energy associated with such photons.   As sunlight can be thought of 

as streams of photons of different wavelength, the energy associated with each photon, Eλ, is given by Eq 

(2.1), as, 

𝐸𝜆 =
ℎ𝑐

𝜆
                                                                                                         …….. (2.1) 

where ℎ is Planck’s constant, 𝑐 is the speed of light, and 𝜆 is the wavelength of the associated radiation. 

The emission of radiation from the Sun, which has a surface temperature of about 5300 K, can be 

approximated by  black body radiation at the surface temperature.  The distance travelled (150 million 

kilometers) to reach the Earth and the influence of the Earth’s atmosphere alters the radiation intensity 

of the sunlight. The solar radiation intensity at just above the Earth’s atmosphere is defined as 

extraterrestrial solar radiation while the radiation intensity that reaches Earth’s surface, after passing 

through the atmosphere, is termed as terrestrial solar radiation. The difference in the spectral 

distributions is characterized with a coefficient referred to as the “air-mass (AM)”, which basically defines 

the influence of the atmosphere on the spectral content and the change in the spectral distribution with  
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Figure 2.13: A typical photovoltaic solar cell with p-n junction between front and back electrical contact. 

The incident photons generate electron-hole pairs within the solar cell which are then collected by the 

electrodes. This figure is adapted from Kasap [23]. 
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respect to the optical path length.  The air-mass (AM) number can be given by Eq. (2.2), 

𝐴𝑖𝑟 𝑀𝑎𝑠𝑠 (𝐴𝑀) =
1

𝑐𝑜𝑠𝜃
                                                                         …….. (2.2) 

where 𝜃 is the angle of incidence with respect to zenith. 

In extraterrestrial space, the intensity of the radiated solar energy is 1.353 kW·m-2 and the 

spectrum is referred to as air-mass 0 (AM0) [7]. Photovoltaic solar cells designed for space applications, 

such as satellites, are generally characterized using AM0. Similarly, the spectral content at sea level, when 

the solar radiation has traversed through the Earth’s atmosphere with the Sun exactly at zenith, is 

characterized by air-mass 1 (AM1) with an angle of incidence of 0°. For all practical purposes for terrestrial 

applications, the solar spectrum is defined by the standard air-mass 1.5 (AM1.5) spectral distribution with 

an integrated power density of 1 kW·m-2. AM1.5 has two spectral distributions defined to account for 

direct sunlight and the diffused component of sunlight.  For the sake of uniformity in comparison and 

evaluation, the electrical (power) output of commercial photovoltaic solar cells is generally measured 

under standard testing conditions. Standard testing conditions are industry-wide standards to rate the 

performance of photovoltaic cells or modules and are described by the cell temperature of 25°C and 

an irradiance of 1 kW·m-2 with an air-mass 1.5 (AM1.5) spectrum. Figure 2.14 shows the spectral 

distribution of a black body radiation along with that of extraterrestrial solar radiation and terrestrial solar 

radiation. 
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Figure 2.14: Spectral distribution of black body radiation, at the top of the Earth’s atmosphere and sea 

level. Image by Robert A. Rohde, used under Creative Commons Attribution-Share Alike 3.0 Unported. 

The online version of this figure is in color. 
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2.6 Photovoltaic solar cell and I-V characteristic curve 

Photovoltaic solar cells are grouped together in special arrangements of series and parallel 

connections to form a photovoltaic module (panel). The module delivers required voltages and currents 

to its terminals. Many such photovoltaic modules are connected in a special arrangement of series and 

parallel connections to form photovoltaic arrays.  They can be directly connected to drive DC loads or 

through inverters for the requirement of AC transmission or usage. Under illumination, a photovoltaic cell 

(or module or array) produces an electrical current and dc voltage at its terminal. The currents and 

voltages thus generated can be represented by the current-voltage characteristic curve, which gives ideas 

about the photovoltaic solar cell power generation capacity and efficiency. The amount of current and 

voltage depends upon the amount of incident sunlight and temperature of the photovoltaic solar cell. 

Similarly, the product of current and voltage at each point, which translates to the power output, can be 

represented by similar curves, called the power-voltage characteristic curve.  

Photovoltaic devices exhibit a non-linear current-voltage characteristic, and consequently, a non-

linear power-voltage characteristic, as illustrated in Figure 2.15, results. The current-voltage characteristic 

describes the current as a function of the voltage corresponding to a given photovoltaic device, giving a 

detailed description of its solar energy conversion ability and efficiency. The current-voltage characteristic 

of a photovoltaic device is strongly influenced by the device temperature and the intensity of the solar 

radiation, particularly, the output voltage being strong function of the temperature and the output 

current being a strong function of the incident irradiance.  A typical current-voltage characteristic of a  
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Figure 2.15: Representative current-voltage and power-voltage characteristic curves corresponding to a 

photovoltaic device i.e., solar cell or module. The online version of this figure is in color. 
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photovoltaic device, as shown in Figure 2.15, exhibits three significant points: the short-circuit point, the 

open-circuit point, and the maximum-power point. These significant points are figures-of-merits upon 

which the energy conversion ability and efficiency of a photovoltaic solar cell may be characterized. The 

open-circuit voltage, 𝑉𝑜𝑐 ,  is the maximum voltage that the photovoltaic device provides when the 

terminals are not connected to any load, i.e., when the photovoltaic device is in an open- circuit condition. 

The short-circuit current,  𝐼𝑠𝑐, corresponds to the current provided by the photovoltaic device when its 

terminals are shorted together, i.e., under a short-circuit condition. When short-circuited, the voltage 

across the photovoltaic device is at zero, and the current flowing out of the photovoltaic device is referred 

to as the short-circuit current. Independent of these two extremes in the current-voltage characteristic, 

i.e., 𝑉𝑜𝑐  and 𝐼𝑠𝑐 ,  respectively, neither of these two conditions corresponds to the generation of any 

electrical power. In between these two points, however, there is a point, referred to as the maximum-

power point (MPP), where the power supplied by the photovoltaic device, connected to a load, is at its 

maximum value. The voltage and current corresponding to the maximum power point are referred to as 

the voltage at the maximum power point, 𝑉𝑚𝑝, and the current at the maximum power point, 𝐼𝑠𝑐 , 

respectively. 

Two additional figures-of-merit, namely the fill-factor and the efficiency, are also used to describe 

the performance capability of a photovoltaic device. The fill-factor, 𝐹𝐹, is the ratio of the maximum power 

delivered by the photovoltaic device and the product of the open-circuit voltage times the short-circuit 

current (𝑉𝑜𝑐  x 𝐼𝑠𝑐). It is a measure of how well the photovoltaic device is capable of converting the 
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available energy supplied by the Sun into electrical energy. It may be expressed as 

𝐹𝐹 = 
𝐼𝑚𝑝𝑉𝑚𝑝

𝐼𝑠𝑐𝑉𝑜𝑐
.                                                                           …… (2.3) 

The efficiency, 𝜂, is the ratio of the maximum electrical power produced compared to the 

total solar energy incident on a given photovoltaic device, i.e., it provides for the fraction of the 

incident solar power that may be delivered to the load. The efficiency may be expressed as a 

percentage, i.e., 

𝜂(%) = 
𝐼𝑚𝑝𝑉𝑚𝑝

𝑃𝑖𝑛
×100 ,                                                             …… (2.4) 

where 𝑃𝑖𝑛 is the incident solar irradiance on the surface area of the photovoltaic device. 

2.7 Commercial manufacturing and performance testing 

Photovoltaic solar cells are grouped together in series and parallel combinations in order to form 

a solar module which outputs a certain level of voltage and current that is used for practical applications. 

Parallel combinations of photovoltaic solar cells increase currents while a series combination of 

photovoltaic solar cells increases voltages. In the process of solar module assembly, multiple photovoltaic 

solar cells (36, 54, 60, 72 being popular combinations) are soldered together to form a string. A string of 

photovoltaic solar cells is laid out in between two layers of encapsulants, such as EVA (Ethylene Vinyl 

Acetate), which provides optical and electrical transmissivity and keeps out moisture. This ensemble is 

then laminated with a toughened glass on top and a polymer backsheet on the back. Metal (often 
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aluminum) frames are fixed along the edge in order to support the mounting on the panel and provide 

mechanical strength. Figure 2.16 shows the steps of the solar module assembly process within a 

representative solar module manufacturing plant. 

2.8 Post production performance rating (flash tester or solar simulator) 

After the final stage of production, every photovoltaic solar module must be tested for output 

performance by measuring its current-voltage characteristics, under standard testing conditions. For 

uniformity across the industry,  photovoltaic solar modules are tested in standard testing conditions, 

which translates to 25°C of device temperature and an irradiance intensity set to 1000 W·m-2 with an air-

mass 1.5 spectrum. This test is conducted by means of a solar simulator (or what is more commonly known 

as a flash-tester) wherein the photovoltaic solar modules is exposed to a short pulse of light produced by 

an artificial source, such as a xenon arc lamp, whose spectrum is close to that of solar radiation. A typical 

flash-tester setup is depicted in Fig 2.17. The bias voltage across the photovoltaic solar module is varied, 

and the corresponding current generated as a response to the incident light, is measured.  In addition to 

the current, voltage, and power levels, the measurement results of the flash tester also record the 

maximum rated power, open-circuit voltage, short-circuit current, maximum-power voltage, maximum-

power current, temperature coefficient, fill-factor, efficiency, etc. Module parameters, thus measured 

under standard testing conditions, are then printed on a label on the back of the module for future 

reference. 
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Figure 2.16: A flash tester (Class AAA solar simulator) measuring the current-voltage characteristics of 

photovoltaic devices. The online version of this figure is in color. 
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2.9 Models of photovoltaic solar cell and equivalent electrical circuit 

As is evident from Figure 2.15, photovoltaic devices exhibit nonlinear current-voltage 

characteristics. Typically, the electrical characteristics of a photovoltaic device are represented by an 

equivalent circuit model, as shown in Figure 2.18. This particular equivalent circuit model is known as the 

single-diode circuit model of a photovoltaic device. The circuit model consists of a current source driven 

by sunlight in parallel with an ideal diode with a shunt and series resistance [26]. Mathematically, the 

current-voltage characteristics associated with this circuit model can be represented as, 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 (𝑒𝑥𝑝 (
𝑞𝑉

 𝑛𝑘𝐵𝑇
) − 1) −

(𝑉+𝐼𝑅𝑠)

𝑅𝑠ℎ
,                                                   …….. (2.5) 

where  𝐼 is the output current at the terminals, 𝑉 is the output voltage across the terminals, 𝐼𝑝ℎ is the 

photo-generated current, 𝐼𝑠𝑎𝑡  is the diode reverse saturation current, representing the diffusion 

mechanism, 𝜂  is the diode ideality factor, 𝑅𝑠  is the series parasitic resistance, and 𝑅𝑠ℎ  is the shunt 

parasitic resistance, 𝑘𝐵 is Boltzmann’s constant (1.38 x 10-23 joules per Kelvin ), 𝑇 is the temperature for 

the p-n junction (normally set to room temperature, i.e., 298 K), and 𝑞  is the charge of the electron          

(1.9x10-19 C). Within the framework of this circuit model, the current-voltage characteristic may be 

specified through knowledge of the parameters, such as 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡 , 𝑛, 𝑅𝑠, and 𝑅𝑠ℎ .  

Increased accuracy in modeling the behavior of photovoltaic device can be achieved with models 

with increased complexity. Including a second diode, for example, in order to account for  the 

recombination of charge carriers, is often used [27]. Such a circuit model is termed as the double-diode 
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Figure 2.17: A single diode circuit model representing the current-voltage characteristic associated with a 

photovoltaic device. 
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circuit model. Figure 2.19 shows the equivalent circuit model representing the double-diode circuit model. 

Mathematically, the corresponding current-voltage relationship may be expressed as 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡1 (𝑒𝑥𝑝 (
𝑞𝑉

 𝑛1𝑘𝐵𝑇
) − 1) − 𝐼𝑠𝑎𝑡2 (𝑒𝑥𝑝 (

𝑞𝑉

 𝑛2𝑘𝐵𝑇
) − 1) −

(𝑉+𝐼𝑅𝑠)

𝑅𝑠ℎ
,         …….. (2.6) 

where,  

• 𝑅𝑠 is the series resistance of the solar cell, 

• 𝑅𝑠ℎ is the shunt resistance of the solar cell resulting from defects within cell’s crystal structure, 

• 𝐼𝑝ℎ is the photo-generated current, 

• 𝐼𝑠𝑎𝑡1 is the reverse saturation current for diode 1 to represent the diffusion mechanism,  

• 𝐼𝑠𝑎𝑡2 is the reverse saturation current for diode 2 to represent the recombination mechanism,  

• 𝑛1 and 𝑛2 are the ideality factors associated with diodes 1 and 2, respectively.  

From a modeling perspective, the accuracy achieved by the single-diode model is often viewed as being 

adequate; therefore, the double diode model will not be considered for the purposes of this analysis. 

It is evident from Eqs. (2.5) and (2.6), that the behavior of a photovoltaic solar cell may be 

represented by a non-linear equation, with five parameters, for the case of the single-diode model, or the 

seven parameters, for the case of double-diode model. Therefore, modeling of a photovoltaic solar cell 

(or module) becomes a two-step process. The first step is to identify the five parameters (single-diode 

model) depending on the type of model used and, in the second step, use those estimated parameters to 

get the corresponding current-voltage characteristics.  This can be done in two ways. The problem can be 
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Figure 2.18: Double-diode circuit model representing the current-voltage characteristic associated with a 

photovoltaic device. 
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either solved through numerical methods, which rely on powerful mathematical tools, such as iterative 

methods, to solve the implicit nonlinear equations, or by analytical methods, which introduces a round of 

simplifications and approximations, and produces simpler solutions to the model with acceptable 

accuracy [28]. 

2.10 Analytical Approach 

Ample literature is available that suggests the use of various forms of approximations and 

simplifications to arrive at a reasonably accurate estimation of the parameters for the solutions of the 

non-linear implicit transcendental equation. The analytical approach of parameter extraction offers 

relatively simple and convenient computational steps towards the solution. Such approaches use certain 

significant data points of the current-voltage curves, such as the open circuit voltage (𝑉𝑜𝑐), the short circuit 

current (𝐼𝑠𝑐), the maximum power voltage (𝑉𝑚𝑝), and the maximum power current (𝐼𝑚𝑝) to solve a system 

of equations. This scheme of solution is computationally fast but the accuracy of the extracted parameters 

depends on the selected points on the current-voltage curve [29]. Many authors have adopted the 

analytical approach for the modeling of photovoltaic systems. 

Building upon the five sets of equations, suggested by Kennerud [26], obtained by evaluating the 

single-diode equation with values of  𝑉𝑜𝑐 , 𝐼𝑠𝑐 , 𝑉𝑚𝑝, 𝐼𝑚𝑝, 𝑅𝑠𝑜 and, 𝑅𝑠ℎ𝑜, Phang et al. [30] suggested using 

typical parameters values of a standard photovoltaic solar cell at standard testing conditions, to make 

inference and approximations that can be made to arrive at simple analytical expressions for the five 

parameters. Using the typical parameter values of a standard 3” photovoltaic solar cell at standard testing 
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conditions, the authors arrived at five simplified analytical expressions for the parameters based on the 

approximations deduced. The authors examined the error associated with the estimated values for the 

five parameters, i.e.,  𝑅𝑠, 𝑅𝑠ℎ  𝐼𝑝ℎ, 𝐼𝑜,  and 𝑛  based on a numerical approach to that of the analytical 

approach, for two different cells. For suitably selected values of 𝑅𝑠 and 𝑅𝑠ℎ, the authors claim that the 

error contours (within the error grid of 𝑅𝑠 and 𝑅𝑠ℎ ) of the extracted parameters, were within 1% and 4% 

for the two cells using experimental data retrieved from Charles et al. [31]. The authors claim that this 

approach offers a simple and rapid determination of parameters. 

Furthermore, Phang et al. [27], in order to improve the accuracy of the extracted parameters, 

suggest adopting a double-diode model instead of the single-diode model in their analysis.  Here again, 

the double-diode equation was evaluated at significant points, and the derivative of the double-diode 

equation were expressed at the 𝑉𝑜𝑐 , 𝐼𝑠𝑐 , and 𝑃𝑚𝑝  points. Based on typical values of a standard 

photovoltaic solar cell, some approximations were made by the various authors, which helped deduce 

four expressions for four of the parameters, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡1,  and 𝐼𝑠𝑎𝑡2 . Additionally, for the series 

resistance, 𝑅𝑠,  further manipulation of such expressions produced a non-linear equation in terms of the 

series resistance, 𝑅𝑠. Quadratic or cubic solutions of the expression thus obtained were used to solve for  

𝑅𝑠. With 𝑅𝑠 known, the remaining four parameters were identified using the analytical expressions. 

Villalva et al. suggest one approach to finding the parameters of a photovoltaic solar module by 

adjusting the current-voltage curve at  three significant points: the open-circuit voltage, the short-circuit 

current,  and maximum power point [32].  The authors suggest that for only one pair of series and shunt 
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resistances, the modeled power will be the same as the experimental power within a defined tolerance. 

The author uses expressions derived from the single-diode equation to obtain the values of three 

parameters, 𝐼𝑝ℎ , 𝐼𝑠𝑎𝑡, and 𝑛 , while values of 𝑅𝑠  are varied starting, from 0, with small steps and the 

corresponding 𝑅𝑠ℎ is calculated. Current-voltage and power-voltage characteristics generated for every 

combination of the five parameters, 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡,  and 𝑛 , thus calculated, is produced, and the 

combination of parameters that produced the least error between the modeled and experimental power 

is extracted as the optimal parameter set. Weixiang et al, adopted a double-diode model to arrive at a 

mathematical model comprising of analytical expressions for all the other parameters while reasonably 

ignoring the shunt resistance [33].   

 2.11 Numerical or iterative approach 

The approximation and simplification used in the analytical approach may result in errors as one 

chooses to ignore the effort of either single or multiple parameters. Numerical approaches, on the other 

hand, use complex mathematical tools for the analysis and give superior accuracy as compared to 

analytical approaches. Researchers have suggested numerous approaches of finding analytical solutions 

in terms of parameter estimation of photovoltaic modules. While it will be an extensive review work to 

go through all the available numerical approaches that researchers have followed, the review here will be 

limited to select literatures which in a broad sense, covers the essence of all of the approaches defined so 

far.  
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Kennerud suggest approximating five sets of equations, comprising of the five unknown 

parameters 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡 , and 𝑛, and solving them simultaneously for the solution [26]. Three of these 

equations were obtained by evaluating the single-diode equation at the open-circuit point (𝑉𝑜𝑐), the short-

circuit point (𝐼𝑠𝑐), the maximum power point (𝑉𝑚𝑝, 𝐼𝑚𝑝), while the remaining two equations were obtained 

by differentiating the single-diode equation at 𝑉𝑜𝑐 and (𝑉𝑚𝑝, 𝐼𝑚𝑝). These five sets of equations with five 

unknown parameters were solved by the Newton-Raphson iterative approach to extract the five unknown 

parameters, 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡 , and 𝑛. 

Charles et al. suggest deriving four sets of equations to solve for the four parameters 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 

and 𝐼𝑠𝑎𝑡, using the experimental values of 𝑉𝑜𝑐 , 𝐼𝑠𝑐 , 𝑉𝑚𝑝, 𝐼𝑚𝑝, 𝑅𝑠𝑜 and, 𝑅𝑠ℎ𝑜, of the two cells differing in size 

[31]. For the given set of values of ideality factor, 𝑛, these four equations are solved numerically and those 

set of five parameters that produced the least deviation from the experimental and calculated currents is 

chosen. Additionally, with the knowledge of the four parameters, a modified form of the single-diode 

equation at the maximum power point, is solved using the Newton-Raphson method to find the optimal 

value of the ideality factor, 𝑛. 

Chan et al., present an analytical method, using the Newton-Raphson method, to estimate the 

parameter using significant data points on the I-V curve of a commercial photovoltaic solar module and 

the slope of the current-voltage characteristic at the open-circuit and the short-circuit point [27]. Similarly, 

the numerical approach involves a complex algorithm which uses all points in the current-voltage 

characteristics to provide for more accurate model parameters. This approach, however, requires 
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extensive computational effort and the accuracy of the extracted parameters are highly influenced by the 

initial values selected for the extracted parameters [29].  Studies suggest that the convergence of such an 

algorithm depends on the accurate selection of the initial guess values [34]. 

Manning et al. proposes using a heuristic approach for parameter estimation followed by the 

application of a Newton-Raphson method for the solution of the implicit nonlinear double-diode equation 

[21]. The authors suggest that the model could be used for circuit based simulation platform, available 

such as SABER and SPICE. For actual modeling, using the Levenberg Marquardt approach, they proposed 

to estimate the five parameters 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡1,  and 𝐼𝑠𝑎𝑡2 , while keeping the ideality factor, 𝑛, at a 

constant value of 2 for the double-diode model. They define a set of five equations representing 

approximation of 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡1,  and 𝐼𝑠𝑎𝑡2 ,  to serve as initial values for the parameters for the 

Levenberg-Marquardt approach and another set of five equations to iteratively find the optimal 

parameter based on curve fitting with experimental current-voltage data points data. Although the 

authors were able to predict parameters with acceptable accuracy for the fit, this approach required the 

definition of 10 sets of independent equations just for the parameters. The heuristic approach made is 

computationally complex when the initial values assigned were not a close guess of the parameters.  

Al Qahtani suggest, using the MATLAB® built-in function, fsolve, for the simultaneous solution of 

system of non-linear equations to extract the five parameters [35]. The three sets of equations are derived 

by evaluating the single-diode equation at three significant points, i.e., the open-circuit voltage, the short-

circuit current, and the maximum power point.  For the remaining two equations, the author suggests 
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using the derivation of power with respect to current and voltage at the maximum power-point and 

equating each to zero.  The author claims using the derivative of power, as opposed to the common 

technique of using the derivative of current with respective to voltage at the open-circuit voltage point 

and equating to negative reciprocal of the shunt resistance, 𝑅𝑠ℎ, results in a less complex calculation, less 

iterations, and less model adjustments for the estimation of the parameters. 

El Tayyan, suggests using Lambert W function to derive an explicit analytical expression for the 

current and voltage using the single-diode equation [36].  The analytical expressions were evaluated with 

experimental values of 𝑉𝑜𝑐 , 𝐼𝑠𝑐 , 𝑉𝑚𝑝, 𝐼𝑚𝑝  etc., to arrive at three analytical expressions. Furthermore, 

differentiating power with respect to voltage and current and equating to zero produced the remaining 

two expressions. The author suggests extracting the five parameters, 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, and , 𝑛,  of the 

single-diode equation by simultaneously solving these five equations. To make the simultaneous solution 

more manageable, the author suggests solving any four subsets of the five equations, while increasing the 

value of one of the parameters, 𝐼𝑝ℎ, in steps. Parameters set, which produce the least- root measured 

squared error (RMSE), are used as the extracted parameters, and the results showed a higher degree of 

agreement with values expressed in other literature. The modeling was implemented in the MAPLE 

software using one of the in-built function, “fsolve”, for simultaneous solution of (any) four equations. 

Azab suggest using an evolutionary computational approach, such as particle swarm optimization 

(PSO) followed by a least-squares curve fitting algorithm based on knowledge of three significant points, 

namely,  the open-circuit voltage, the short-circuit current, and the maximum power point, to extract the 
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parameters of a single diode equation [37]. The author defines an objective function, comprising of the 

nameplate data of 𝑉𝑜𝑐 , 𝐼𝑠𝑐 , 𝑉𝑚𝑝 and 𝐼𝑚𝑝 of the photovoltaic solar module and used PSO technique to find 

optimal values for the model parameters.  Particle swarm optimization uses the social interaction of 

particles, which represent the vector of the parameters to be identified, within a defined search-space, 

wherein the individual particle’s position and velocity is updated with every iteration, followed by an 

evaluation of the objective function. In order to increase the accuracy, the extracted parameters were fed 

to the least-squares curve fitting algorithm to produce a final optimal set of the parameters. This was 

implemented using a specific function in the optimization toolbox of MATLAB®.  

Additionally, several meta-heuristic based optimization techniques have also been employed for 

parameter extraction corresponding to photovoltaic solar devices. As opposed to the aforementioned 

general analytical and numerical approaches, heuristic based optimizations use complex evolutionary 

algorithms for curve fitting of the entire current-voltage characteristics corresponding to a given 

photovoltaic device, resulting in parameter extraction with improved accuracy. In this regard, El Naggar 

et al. suggest using an algorithm based on simulated annealing which emulate the physical cooling process 

(annealing)  to produce high quality crystals, resulting from a state with the minimum energy [38]. Hamid 

et al. use algorithms based on particle-swarm, which as mentioned earlier, is based on social interaction 

of solutions represented by a set of particles that swim through a multi-dimensional space with the 

velocity updated iteratively [39]. Wei et al. also suggest using chaos particle swarm optimization, which is 

a modified form of particle swarm optimization [40]. Bouzidi et al. suggest representing the output voltage 
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as function of the current and determining resulting factors of such a function that provide for the 

determination of the parameters [41]. Similarly, Al Rashidi et al. have  used optimization based on  pattern 

search [42, 43] and Askarzadeh et al. suggest using optimization based on artificial-bee swarm [44]. In 

general, these optimization algorithms have been developed based on observations of some form of 

behavior (physical or social) of processes and entities. 
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Chapter 3 : Methodology 

3.1 Overview 

The performance of a given photovoltaic device, i.e., a photovoltaic solar cell or module, may be 

characterized in terms of its current-voltage characteristic. This characteristic defines the current 

delivered by the device as a function of the applied voltage across its terminals. Following fabrication, the 

current-voltage characteristic of the photovoltaic device in question is often acquired under standard 

testing conditions, i.e., a specific set of conditions pertaining to the intensity and spectral distribution of 

the incident radiant energy and the device temperature. This measurement is performed within the 

framework of the guidelines defined by the relevant national and international photovoltaic device 

standards [45, 46]. The testing of photovoltaic devices is aimed at achieving a measure of quality-control, 

i.e., rejecting the devices that do not meet the required minimum performance standard, and, for the 

devices that are deemed to be acceptable, classifying such devices in terms of their device performance. 

From the measured current-voltage characteristics, three device performance metrics are often employed 

in order to characterize the performance of such a photovoltaic device: (1) the open-circuit voltage, 

𝑉𝑜𝑐 , (2) the short-circuit current, 𝐼𝑠𝑐 ,  and (3) the maximum power point, (𝐼𝑚𝑝, 𝑉𝑚𝑝), corresponding to the 

point on the current-voltage characteristic where the delivered power achieves a maximum. Any deviation 

in these parameters from the “norm”, as defined by the particular manufacturing process being 

considered, may arise owing to variations in the preparation conditions and the materials employed. 

Photovoltaic devices that are deemed to have a performance that is deemed insufficient can be rejected 
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prior to shipping. This testing and evaluation process, which is employed in order to guarantee the quality 

of the shipped products, is detailed by the International Electrotechnical Commission (IEC) [47, 48]. 

The focus of this chapter is twofold. First, the methodology associated with measurement of the 

current-voltage characteristic of a typical photovoltaic device is presented. Second, means whereby 

model parameters may be extracted from such a measured current-voltage characteristic based on a 

proposed optimization algorithm is featured. Towards this requirement, I begin by presenting the current-

voltage characteristic of a typical photovoltaic device and figures of merit associated with it which are 

used in order to characterize the device. Following this, means, whereby measurements of the current-

voltage characteristics of a given photovoltaic devices are performed under standard testing conditions 

using a solar simulator, are presented. For the realization of the second goal of this chapter, the empirical 

models, used to describe the current-voltage characteristic of a typical photovoltaic device, are presented 

in detail. The discussion on photovoltaic device behavior is cast within the framework of the equivalent 

circuit models that were introduced in Chapter 2 and highlights the model parameters of interest for the 

purposes of this particular study. A study of the sensitivity of the current-voltage characteristics, with 

respect to the model parameters, is then pursued in order to further understand the impact of each model 

parameters on the corresponding current-voltage characteristic; this is in anticipation that such 

knowledge may be utilized during the course of the model parameter extraction based on the proposed 

optimization algorithm. Finally, the task of model parameter extraction, from the measured current-
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voltage characteristic, is formulated as a non-linear least-squares fitting problem and trust region based 

optimization algorithm. 

The chapter is organized in the following manner. Section 3.2 discusses how current-voltage 

characteristic measurements are performed and highlights the principles and processes involved in the 

measurement of the current-voltage characteristics of photovoltaic devices, in particular, for the case of 

solar modules. In Section 3.3, empirical models, associated with photovoltaic device current-voltage 

characteristics, are presented. Section 3.4 discusses the model parameters of interest based on the 

discussed empirical models, and the sensitivity of the current-voltage characteristics with respect to such 

modeling parameters is explored. Sections 3.5 and 3.6 detail the task of model parameter estimation 

based on the current-voltage characteristic of a typical photovoltaic device; I  formulate the approach as 

a non-linear least-squares optimization problem and the application of a proposed trust region 

optimization algorithm for such model parameter extraction from the measured current-voltage 

characteristic is pursued. 

3.2 Current-voltage characteristic measurement 

Measurement of the current-voltage characteristic is one of the most fundamental 

characterization techniques used for photovoltaic devices. In a manufacturing environment, this serves 

as a verification step for the quality of photovoltaic devices and will allow for a sorting out of the finished 

product, i.e., photovoltaic solar cell or module, according to its power and efficiency. The solar simulator, 

often referred to as a flash-tester, is used in order to characterize the photovoltaic device performance 
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based on well-established standards that define the measurement components and processes. These 

standards, designed by standardization bodies, such as International Electrotechnical Commission, 

provide guidelines that regulate different aspects of photovoltaic energy systems, ranging from device 

production, testing, and measurement.  

In order to ensure measurement uniformity, a given photovoltaic device performance is 

measured under standard test conditions or standard rating conditions. The standard testing conditions 

correspond to an irradiance level of 1000 W·m-2 of AM1.5 solar spectrum,  the photovoltaic solar cell 

temperature being set to 25°C [49]. The solar simulator comprises of an artificial light source that can 

generate illumination closely approximating natural sunlight, along with the required optics and filters 

used to modify the output spectrum of the light source to fit the classification requirement for the test 

involved, such as AM0 and AM1.5, and the associated power supply. The photovoltaic device post 

production is tested using the solar simulator, wherein the device is exposed to a flash of light from the 

light source in the solar simulator. Its response, in terms of the voltage and current, is then measured in 

order to obtain the current-voltage characteristic for the device under test. For the purposes of this thesis, 

the current-voltage characteristics of representative mono-crystalline and poly-crystalline silicon solar 

modules were measured and recorded. These measurements were performed in the solar module 

manufacturing plant of our industrial partner using Endeas’ QuickSun® (AAA) solar simulator. Figure 3.1 

illustrates the measurement principle of a typical pulsed solar simulator (flash tester).  

The working of a pulsed light solar simulator, used for measurements of the current-voltage 
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Figure 3.1: Four wire measurement setup for current-voltage measurements using a flash-tester. This 

figure is adopted from [50]. The online version of this figure is in color. 
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characteristics, is explained as follows [50]; when the flash is triggered, the irradiance level is measured 

within a monitor cell. The pulse reaches its peak and then gradually decays. The measurement is typically 

started at an irradiance level a little over 1000 W·m-2 so that for the following short duration of the 

measurement time, all current-voltage measurements being taken around an irradiance level of 1000 

W·m-2. Each measurement point is then corrected or transposed to the required irradiance level of 1000 

W·m-2. In this case, when the target irradiance, which is typically at 1150 W·m-2 for the onset of the 

current-voltage measurement is reached, the photovoltaic module is swept from the short-circuit 

condition to the open-circuit condition, and the voltage, current, and irradiance signals are recorded for 

approximately 2 ms of measurement time. 

As illustrated in Figure 3.1, the QuickSun® solar simulator (flash-tester) uses a four-wire 

measurement in order to minimize the influence of the probe contact resistance. When measuring the 

current-voltage characteristics of a crystalline silicon based photovoltaic module, the contact pins of the 

measurement units are connected directly to the ribbons on the rear side of the module, which are housed 

in a protective box, referred to as a junction box. The resistive loss, caused by current flow through the 

ribbons, will influence the measured fill-factor, which is closer to the actual operating conditions of the 

photovoltaic solar cell in a photovoltaic system. Once the contact pins are in contact with the ribbon, a 

flash is triggered, and the operating current and voltage of the device can be obtained by changing an 

electronic load resistance, which is swept from short-circuit to open-circuit.  
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The measurement time depends on the measurement device electronics, and can vary from 2 to 

30 ms, depending on the manufacturer. The measurement electronics of the QuickSun® (AAA) solar 

simulator, measured at 4096 individual data points of voltage, current, and irradiance signal, within the 2 

ms interval.  These data points are then averaged in groups of eight in order to obtain 512 current-voltage 

data points. The averaged measured data is then corrected for temperature and irradiance conditions as 

per the IEC 60891 standard, which is a standard published by the IEC that defines the procedures for 

temperature and irradiance corrections to the measured current-voltage characteristics of crystalline 

silicon photovoltaic devices. This standard basically defines the procedure to mathematically transpose 

the current-voltage characteristics measured at one irradiance and temperature level to different 

irradiance and temperature levels. Figure 3.2 illustrates the snapshot of the irradiance trace, which 

illustrates the onset of measurements of the voltage, current, and irradiance signals near the required 

level and continues for approximately 2 ms. Additionally, Figure 3.3 shows the user interface of Endeas’ 

QuickSun® measurement systems used to perform the I-V measurement. Figure 3.4 shows the actual test 

apparatus, Endeas’ QuickSun® Class AAA solar simulator (flaster tester), used for the current–voltage 

measurements.  

3.3 Empirical model of photovoltaic device 

The current-voltage characteristic of a photovoltaic device is modeled based on the underlying 

physics of the charge-carrier generation within the semiconductor material as a consequence of the 

absorption of solar energy. For modeling purposes, a photovoltaic device will be considered in its  
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Figure 3.2: Modified snapshot of the flash trace of a typical trigger of flash in QuickSun® solar simulator.  

The online version of this figure is in color. 
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Figure 3.3: User interface of the measurement system of the QuickSun® solar simulator.  The online 

version of this figure is in color. 
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Figure 3.4: The Endeas Flash tester (Class AAA solar simulator) used for measuring the current-voltage 

characteristics of a solar module on the premises of our industrial partner. The online version of this figure 

is in color. 
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elemental form, i.e., a photovoltaic solar cell, and then expand the model to cover solar modules. 

Essentially, a photovoltaic solar cell is a large area p-n junction, formed by interfacing two dissimilarly 

doped layers of semiconductor materials, i.e., n-type and p-type. The high density of charged carriers, i.e., 

electrons on the n-side of the junction and holes on the p-side of the junction, create a potential difference 

across the p-n junction. Exposing such a p-n junction to solar radiation results in the generation of excess 

electron-hole pairs, i.e., excess charge carriers (electron and holes), in response to the absorption of 

incident photons from the sunlight by the atoms within the semiconductor crystal. These light generated 

electron-hole pairs are separated under the action of the developed built-in potential (and the associated 

electric field) across the junction. These excess charge carriers drift under the action of this electric field, 

and are ultimately collected by the contacts, which interface the interior of the device with the peripheral 

circuitry. 

3.3.1 Ideal Model 

Ideally, an illuminated photovoltaic solar cell can be represented by an equivalent electrical 

circuit, as depicted in Figure 3.5 [32].  In this circuit model, the photovoltaic solar cell is viewed as being 

comprised of a constant-current source operating in parallel with a p-n junction diode.  Here, the constant 

current source models the charge carrier generation mechanism while the diode models the separation 

of such charge carriers under the influence of the built-in electric field. Kirchhoff’s current law suggests 

that the output current, I, of the equivalent circuit may be expressed as 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 ,                                                                                                         …….. (3.1) 
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where 𝐼𝑝ℎ and 𝐼𝑑 are the photo-generated and diode current of the illuminated photovoltaic solar cell, 

respectively. The photo-generated current, 𝐼𝑝ℎ, is proportional to the intensity of the solar irradiance and 

the diode current, 𝐼𝑑, is given by the Shockley equation [51], i.e., 

𝐼𝑑 = 𝐼𝑠𝑎𝑡 [𝑒𝑥𝑝 (
𝑞𝑉

 𝑛𝑘𝐵𝑇
) − 1],                                                                                  …….. (3.2) 

where 

o 𝐼𝑠𝑎𝑡 : is the diode reverse saturation current, representing the diffusion mechanism, 

o 𝑛: is the diode ideality factor, 

o 𝑘𝐵: is Boltzmann’s constant,  

o 𝑇 : is the temperature for the p-n junction, and  

o 𝑞 : it the fundamental charge of the electron. 

Substituting Eq. (3.2) into Eq. (3.1), the output current of an ideal photovoltaic solar cell, 𝐼 , may be 

expressed as 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡  (𝑒𝑥𝑝 (
𝑞𝑉

 𝑛𝑘𝐵𝑇
) − 1 ).                                                                       …….. (3.3) 

The thermal voltage, 𝑉𝑡 , is a term that is often employed in the analysis of the performance of a 

photovoltaic solar cell. The thermal voltage is given by,  

𝑉𝑡 =
𝑘𝐵𝑇

𝑞
,                                                                            ........ (3.4)  
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Table 3.1 : The values for the fundamental constants introduced in Eq.(3.2) 

Parameters Values [unit] 

𝑘𝐵 1.38 x 10-23 [J·s] 

𝑞 1.9 x 10-19 [C] 

 

 

 

Figure 3.5: The equivalent electrical circuit model representing the behavior of an ideal photovoltaic solar 

cell. This model is in the single-diode form; the parasitic resistances associated with the typical single-

diode are not present. 
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where the terms 𝑘𝐵 and 𝑞 in Eq (3.4) are as previously defined and 𝑇 represents the device temperature. 

Table 3.1 provides standard values for the constants introduced in Eq. (3.2). 

3.3.2 Single-diode equivalent model 

Photovoltaic solar cells, in practice, however, exhibit a number of non-idealities on account of the 

inherent parasitic resistances that are present within such a cell [52]. In order to account for the power 

losses that occur within such cells due to such parasitic resistances, an equivalent circuit model, which is 

a generalization of that depicted in Figure 3.5, is presented in Figure 3.6. This circuit model is termed the 

single-diode equivalent model, as only one-diode is included [27]. Like the ideal case, the single-diode 

equivalent circuit of a photovoltaic solar cell consists of a constant current source in parallel with a single 

p-n junction diode. In this case, however, series and shunt (or parallel) parasitic resistances are included 

in order to account for the non-idealities that are present [26, 32].  In the equivalent circuit of the single-

diode model, the constant current source, 𝐼𝑝ℎ, represents the photo-generated current and the current 

through the single diode, 𝐼𝑑 , represents the diffusion within the p-n junction. The series resistance is 

mainly due to the contact resistance on the front and back surfaces between the interface of the metal 

and the semiconductor layers and the ohmic resistances of the n and p diffused layers within the 

photovoltaic solar cell itself [53].  Power losses due to series resistances are dissipated in the form of 

thermal energy. Shunt resistances, on the other hand, arise from defects within the semiconductor that 

provide alternative paths for leakage currents, resulting in power losses, especially due to leakage currents 

along the edges of the photovoltaic solar cell [53].  
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Figure 3.6: The single-diode photovoltaic equivalent electrical circuit model of a photovoltaic solar cell 

including the parasitic resistances. 
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The output current of the photovoltaic cell, 𝐼, can be represented in terms of the photo-generated 

current, 𝐼𝑝ℎ, the current through the diode, 𝐼𝑑, and the leakage current through the shunt resistance, 𝐼𝑅𝑠ℎ, 

, i.e., 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑅𝑠ℎ,                                                                                             …….. (3.5) 

where, in addition to 𝐼𝑝ℎand 𝐼𝑑, the leakage current, 𝐼𝑅𝑠ℎ, 

𝐼𝑅𝑠ℎ =
𝑉+𝐼𝑅𝑠

𝑅𝑠ℎ
,                                                                                                        …….. (3.6) 

is added, where 𝑅𝑠 is the series resistance and 𝑅𝑠ℎ is the shunt resistance. Hence, the output current, 𝐼, 

of the photovoltaic cell, as suggested by the equivalent circuit single-diode model, may be expressed as, 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 (𝑒𝑥𝑝 (
𝑞( 𝑉+𝐼𝑅𝑠)

 𝑛𝑘𝐵𝑇
) − 1) −

(𝑉+𝐼𝑅𝑠)

𝑅𝑠ℎ
.                                                  …….. (3.7) 

3.3.3 Double-diode equivalent model 

In the single-diode model, the recombination of charge carriers in the space-charge region is 

neglected. If greater accuracy is required, more complex models, incorporating additional diodes, 

representing the recombination of charge carriers in the space-charge region, have been suggested 

[27,33, 54,55]. The first-order variant of this model is referred to as the double-diode circuit model, and 

is presented in Figure 3.7. The double-diode circuit model of a photovoltaic solar cell is comprised of a 

constant-current source in parallel with two diodes, one diode accounting for the current due to charge 

carrier diffusion, the other accounting for recombination processes within the space-charge region; 
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Figure 3.7: The double-diode photovoltaic equivalent electrical circuit model of a photovoltaic solar cell 

including the parasitic resistances. 
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parasitic resistances are also included. Hence, the output current, 𝐼, of the photovoltaic cell,  based on 

the double-diode circuit model, comprised  with an additional diode, is given by Eq. (3.8) as, 

𝐼 = 𝐼𝑝ℎ − 𝐼𝑑1 − 𝐼𝑑2 − 𝐼𝑅𝑠ℎ.                                                                                             …….. (3.8) 

The two diode currents, 𝐼𝑑1and 𝐼𝑑2, are  as given by the Shockley equation for each diode [51], where 

𝐼𝑑1 = 𝐼𝑠𝑎𝑡1(𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑛1𝑘𝐵𝑇
) − 1),                                                                                  …….. (3.9) 

and 

𝐼𝑑2 = 𝐼𝑠𝑎𝑡2(𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑛2𝑘𝐵𝑇
) − 1),                                                                                …….. (3.10) 

where 

o 𝐼𝑠𝑎𝑡1: is the diode reverse saturation current used to represent the diffusion mechanism 

o 𝐼𝑠𝑎𝑡2 : is the diode reverse saturation current used to represent the recombination 

mechanism 

The ideality factor, 𝑛1, corresponding to the first diode accounts for the diffusion current, while 

the second ideality factor, 𝑛2, corresponding to the second diode, accounts for the recombination current.  

The diode ideality factors,  𝑛1  and 𝑛2, may be approximated as being numerically equal to 1 and 2, 

respectively [51]. Placing Eqs. (3.9) and (3.10) into Eq. (3.8), the corresponding output current, 𝐼, of the 

photovoltaic cell, based on the double-diode equivalent circuit model, is seen to yield, 
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𝐼 =  𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡1 (𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑅𝑠)

𝑛1𝑘𝐵𝑇
) − 1) −  𝐼𝑠𝑎𝑡2 (𝑒𝑥𝑝 (

𝑞(𝑉+𝐼𝑅𝑠)

𝑛2𝑘𝐵𝑇
) − 1) −

(𝑉+𝐼𝑅𝑠)

𝑅𝑠ℎ
.                 …….. (3.11) 

Although, the double-diode equivalent circuit model is considered to offer superior accuracy, the 

single-diode equivalent circuit model is found to adequately fit the current-voltage characteristics while 

offering less computational complexity with respect to the required parameterization, and is thus, the 

widely adopted model for photovoltaic solar cell (or module) performance [35, 55–57]. Therefore, for the 

purposes of this thesis, the single-diode equivalent circuit model for the photovoltaic solar cell is adopted.  

For commercial purposes, photovoltaic solar cells seldom are used individually but instead are grouped 

together to form solar modules, in appropriate series and parallel configurations. Therefore, the model 

equations (single or double diode model) are modified to describe the characteristics of these generalized 

forms of device. This modification is discussed in the following section. 

3.3.4 Cell to module characteristics change 

An individual crystalline silicon based photovoltaic solar cell typically generates a voltage of just 

under 0.6 V at 25°C when subjected to 1000 Watts per meter squared of incident solar radiation. In order 

to generate higher voltages and current levels for commercial applications, such cells are connected in 

series and/or parallel configurations, and are encapsulated with an environmentally protective laminate, 

thus forming a photovoltaic module. A number of such photovoltaic modules, connected together in 

series and/or parallel configurations form a complete power generation unit, referred to as a photovoltaic 

array, that will produce commercial or utility scale currents and voltages. This is illustrated in Figure 3.8.  
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Figure 3.8: Illustration of a photovoltaic solar cell, a module, and an array. The online version of the figure 

is in color.  
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To attain higher voltages, photovoltaic modules are connected in series, and for the requirement of a 

higher level of current, the photovoltaic modules are connected in parallel. To be able to extract model 

parameters corresponding to an individual photovoltaic solar cell, module, or array, a generalization of 

the single-diode equation for photovoltaic solar cells connected in series, as was suggested by Tian et al., 

will be employed [58]. For a photovoltaic module, comprised of 𝑁𝑠 cells connected in series, the model 

equation, based on the single-diode expression, may be expressed as 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 (𝑒𝑥𝑝 (
𝑞(𝑉+𝐼𝑁𝑠𝑅𝑠1)

 𝑛𝑁𝑠𝑘𝐵𝑇
) − 1) −

(𝑉+𝐼𝑁𝑠𝑅𝑠1)

𝑁𝑠𝑅𝑠ℎ1
.                                    …… (3.12) 

where  𝐼 and 𝑉 are the output current and voltage of the photovoltaic module, respectively, and the five 

model parameters are as defined earlier. Figure 3.10 illustrates the modified single-diode equivalent 

strings connected in parallel required to build a large module (or array). In this case, the model equation 

based circuit is for the case of a series connection of 𝑁𝑠 photovoltaic solar cell to form a photovoltaic solar 

module. This model can be further adjusted, for the case of 𝑁𝑠 cells (or modules) connected in series on 

a string, and 𝑁𝑝 such identical units on the single-diode expression, which may be cast as [58], 

𝐼 =  𝑁𝑝𝐼𝑝ℎ − 𝑁𝑝𝐼𝑠𝑎𝑡 (𝑒𝑥𝑝(
𝑞(𝑉+

𝑁𝑠
𝑁𝑝

𝐼𝑅𝑠1)

𝑛1𝑁𝑠𝑘𝐵𝑇
) − 1) −

(𝑉+
𝑁𝑠
𝑁𝑝

𝐼𝑅𝑠1)

𝑁𝑠
𝑁𝑝

𝑅𝑠ℎ1

 ,                        …… (3.13) 

where 𝐼 and 𝑉 are the output current and voltage of the photovoltaic module (or array), respectively. 
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3.4 Model parameters 

The empirical model of a photovoltaic device in its elementary form, suggested by Eq. (3.7), or its 

generalization given by Eq. (3.15), is comprised of five model parameters (coefficients), which collectively 

define the current-voltage characteristic. As indicated earlier, these model parameters include the shunt 

resistance, the series resistance, the diode saturation current, the diode ideality factor, and the photo-

generated current corresponding to a single-diode model. With the knowledge of these parameters, the 

behavior of the photovoltaic device can be simulated for a variety of different operating conditions. Prior 

to the extraction of model parameters corresponding to the current-voltage characteristics of a given 

photovoltaic device, it is instructive to examine the sensitivity of the current- voltage characteristic of a 

photovoltaic solar cell (or module) with respect to each of the model parameters. In this regard, the 

analysis of the sensitivity of a given current-voltage characteristic with respect to these model parameters 

is expected to help develop a strong intuition about how the computational approach adopted will fare 

during its implementation. The sensitivity will be examined through means of a nominal synthetic 

parameter set assumed for a photovoltaic solar cell. The current-voltage characteristic is studied through 

the selection of the aforementioned five model parameters. The influences of these parameters are 

studied individually by examining the effects on the current-voltage characteristics through variations of 

one model parameter of interest while holding the remaining model parameters constant. It is worth 

mentioning that the accuracy of the magnitude of the parameters considered here may be overlooked 

since the intent here is to understand the degree of influence of the respective parameters on the current-
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voltage characteristics. Hence, nominal values corresponding to a typical photovoltaic device, i.e., a 

photovoltaic solar cell, have been used in this case. Ultimately, the extraction of model parameters, as is 

shown in the next chapter, from experimentally measured current-voltage characteristics curve, will be 

used. 

3.4.1 Effect of series resistance 

As is evident from the series of current-voltage characteristics generated for a wide variety of 

series resistance value, illustrated in Figure 3.9, an increase in the series resistance will affect the fill-factor 

of the photovoltaic cell. The open-circuit voltage and the short-circuit current are not influenced by the 

variation in series resistance, however.   Power loses due to series resistance are the result of the limited 

conductivity of the metal contacts, the metal-semiconductor contact resistance, the substrate resistance, 

and the emitter sheet resistance [59]. Resistance to the flow of charge carriers, through the bulk of the 

semiconductor lattice is the predominant factor determining the series resistance. Besides this, the quality 

of the metallization also has a significant impact on the series resistance, and any physical damage to the 

metal contacts, such as broken fingers (metal electrodes), will further increase the series resistance, 

thereby causing power losses, and ultimately, leading to a reduction in the corresponding fill-factor. 

3.4.2 Effect of shunt resistance 

Ideally, the shunt resistance should be as high as possible.  From the series of current-voltage 

characteristics generated over a wide variety of shunt resistance values, shown in Figure 3.10, it is  
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Figure 3.9: The sensitivity of the current-voltage characteristics to variations in the selection of series 

resistance, 𝑹𝒔. All other parameters are set to their nominal values, i.e., 𝑹𝒔𝒉   =  𝟏𝟎 𝜴, 𝒏 =  𝟏, 𝑰𝒔𝒂𝒕  =

 𝟏× 𝟏𝟎−𝟏𝟎  𝑨, and  𝑰𝒑𝒉   =  𝟏𝟎 𝑨 . The direction of the arrow indicates increase in the magnitude of 

respective model parameter of interest. The online version of this figure is in color. 
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Figure 3.10: The sensitivity of the current-voltage characteristics dependence to variations in the selection 

of shunt resistance, 𝑹𝒔𝒉. All other parameters are set to their nominal values, i.e., 𝑹𝒔   =  𝟑 𝒎𝜴, 𝒏 =

 𝟏,  𝑰𝒔𝒂𝒕  =  𝟏× 𝟏𝟎−𝟏𝟎  𝑨, and  𝑰𝒑𝒉   =  𝟏𝟎 𝑨 . The direction of the arrow indicates increase in the 

magnitude of respective model parameter of interest. The online version of this figure is in color. 
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observed that a decrease in the shunt resistance reduces the fill-factor significantly. Significant reductions 

in the shunt resistance will decrease the short-circuit current and the open-circuit voltage of the 

photovoltaic solar cell. Shunt resistances of the photovoltaic solar cell originate from manufacturing 

defects, especially at the cell edges, which provide an alternative path for the current to flow, thereby 

decreasing the delivered power. Furthermore, defects, such as metal particles at the cell surface, cracks, 

and holes, etc., also reduces the current flowing through the junction.  

3.4.3 Effect of photo-generated current 

Based on the series of current-voltage characteristic curves shown in Figure 3.11, in response to 

the changes in the photo-generated current, 𝐼𝑝ℎ, it can be said that the current-voltage characteristics of 

a photovoltaic solar cell are linearly proportional to the photo-generated current. Linear increases in the 

photo-generated current, 𝐼𝑝ℎ , translate into increases in the intensity of the solar irradiance, which 

increases all factors, such as the fill-factor, the peak-power, the short-circuit current, and the open-circuit 

voltage. The change in short-circuit current is larger than that of the open-circuit voltage. 

3.4.4 Effect of diode reverse saturation current 

Figure 3.11 shows a series of current-voltage characteristics corresponding to changes in the 

reverse saturation current. Increases in the saturation currents result in a decrease in the peak power, the 

fill-factor, and the open-circuit voltage. Since the reverse saturation current and the diode ideality factors 

influence each other, it is difficult to analyze the change in the current-voltage characteristics based on 

the change in the reverse saturation current while the diode ideality factor is kept constant.  
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Figure 3.11: The sensitivity of the current-voltage characteristics to variations in the selection of the 

photo-generated current , 𝑰𝒑𝒉 . All other parameters are set to their nominal values, i.e.,  𝑹𝒔   =

 𝟑 𝒎𝜴,  𝑹𝒔𝒉   =  𝟏𝟎 𝜴, 𝒏 =  𝟏,  and 𝑰𝒔𝒂𝒕  =  𝟏× 𝟏𝟎−𝟏𝟎  𝑨. The direction of the arrow indicates increase 

in the magnitude of respective model parameter of interest. The online version of this figure is in color. 
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Figure 3.12: The sensitivity of the current-voltage characteristics to variations in the selection of reverse 

saturation current, 𝑰𝒔𝒂𝒕. All other parameters are set to their nominal values, i.e.,  𝑹𝒔   =  𝟑 𝒎𝜴,  𝑹𝒔𝒉   =

 𝟏𝟎 𝜴, 𝒏 =  𝟏,  and  𝑰𝒑𝒉  =  𝟏𝟎 𝑨. The direction of the arrow indicates increase in the magnitude of 

respective model parameter of interest. The online version of this figure is in color. 
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3.4.5 Effect of diode ideality factor 

For understanding the influence of the diode ideality factor on the current-voltage (I-V) 

characteristics of a photovoltaic solar cell, the influence of changing the ideality factor on the other 

parameters has to be considered carefully. Figure 3.13 shows a series of the current-voltage 

characteristics corresponding to changes in the diode ideality factor, 𝑛. The series of the current-voltage 

characteristics appears to suggest that as the p-n junction’s behavior moves away from the ideal diode 

behavior, indicated by the increase in the diode ideality factor, the peak power and the fill-factor increase 

with the diode ideality factor. This is because, in this case, the ideality factor is changed while keeping all 

other parameters, including, especially the reverse saturation current, constant.  However, it should be 

noted that any changes in the diode ideality factor are bound to have an influence on the reverse 

saturation current. More specifically, an increase in the diode ideality factor is associated with increases 

in the reverse saturation current. Therefore, as the characteristic of the diode moves away from ideality, 

i.e., the ideality factor increases, the power and the fill-factor may be expected to decrease.  Therefore, 

for this case, considering the variation of diode ideality factor and associated influence on the reverse 

saturation current, Figure 3.14 correctly represents the current-voltage characteristics. 

3.5 Model Parameter Extraction 

Depending on the adopted equivalent electrical model, either five or seven model parameters 

(unknowns) are required to be extracted. Since the model equations are non-linear transcendental 

equations, obtaining an exact solution on the basis of elementary algebraic manipulations is simply not 
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Figure 3.13: The sensitivity of the current-voltage characteristics to variations in the selection of ideality 

factor, 𝒏. All other parameters are set to their nominal values, i.e.,  𝑹𝒔   =  𝟑 𝒎𝜴,  𝑹𝒔𝒉   =  𝟏𝟎 𝜴, 𝑰𝒔𝒂𝒕 =

𝟏×𝟏𝟎−𝟏𝟎𝑨,  and  𝑰𝒑𝒉  =  𝟏𝟎 𝑨 . The direction of the arrow indicates increase in the magnitude of 

respective model parameter of interest. The online version of this figure is in color.  
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Figure 3.14: The sensitivity of the current-voltage characteristics to variation in the selection of ideality 

factor, 𝒏, and the reverse saturation current, 𝑰𝒔𝒂𝒕. All other material parameters are set to their nominal 

values, i.e., 𝑹𝒔   =  𝟑 𝒎𝜴, 𝑹𝒔𝒉 =  𝟏𝟎 𝜴, and 𝑰𝒑𝒉  =  𝟏𝟎 A. The direction of the arrow indicates increase in 

the magnitude of the respective model parameters of interest. The online version of this figure is in color.  
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possible [26]. Analytical methods, based on certain approximations and subsequent simplifications to 

obtain the model parameters, have been adopted [32,60]. Owing to reduced complexity with acceptable 

accuracy, numerous researchers have used the single-diode equivalent model for the simulation of the 

photovoltaic device performance [32, 61, 62]. 

Towards more complex approaches, for better fits, complex mathematical tools, such as iterative 

or numerical analyze, may be used in order to extract the model parameters that had best be used [26, 

63]. Furthermore, evolutionary optimization techniques, such as the genetic algorithm, particle swarm, 

etc., have also been proposed to extract parameter for better fits [29, 64].  The accuracy with which the 

model parameters will be extracted from the current-voltage characteristics is very important, especially 

for the purpose of device and materials characterization. Least-squares fitting of the experimental data, 

with the desired current-voltage model, is an obvious choice for such data fitting requirement. In this 

regards, to ensure an optimal fit,  the specific case of trust-region optimization approach is explored to 

work out the computational scheme for model parameter extraction based on the least-squares fit of the 

measured current-voltage characteristics of a given photovoltaic device.  

3.6 Least-squares optimization based on trust-region method 

In most applications,  complex system behavior is often described in terms of a model created via 

certain relationships such as 

𝑦 = 𝑓(𝑧; 𝑥1, 𝑥2, … , 𝑥𝑛),                                                                           … (3.14) 
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where  𝑓  defines the model or relationship between the variables,  𝑥1, 𝑥2, … , 𝑥𝑛  being the model 

parameters (also referred to as design variables),  𝑧 is the control variable or input, and 𝑦 is the expected 

response or output to 𝑧. Such a model often defines certain objective functions as a measure of the 

performance of the system that one wishes to optimize, which based on requirements, may either mean 

minimizing or maximizing the objective function, for example, maximizing the profit in business, 

minimizing the overall system energy function, etc. Thus, optimization is the minimization (or 

maximization) of an objective function subject to constraints (if applicable) on its model parameters and 

can be expressed as  

min 
𝑥̅ ∈ 𝑅𝑛

𝑓(𝑧; 𝑥̅),   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  {
𝑐𝑖(𝑥̅) = 0, 𝑖 ∈ 𝐸

𝑐𝑖(𝑥̅) ≥ 0, 𝑖 ∈ 𝐼
 ,                                  … (3.15) 

where  𝑥̅   is the vector of model parameters or variables, 𝑓(𝑧; 𝑥̅)  is the objective function in real 

coordinate space of  𝑛 dimensions, i.e.,  𝑓: 𝑅𝑛  → 𝑅,  𝑐𝑖(𝑥̅) is the constraints that the model parameters 

must satisfy,  𝐸  is the set of equality constraints, and 𝐼 is the set of inequality constraints. Such problems 

form the class of multivariate optimization problems which are very common in a variety of disciplines, 

such as economics, manufacturing, medicine, engineering, and science, etc.   

A crucial step in optimization is to classify the optimization problems since algorithms used to 

solve such optimization problems are often designed to suit the particular type of problem at hand. 

Accordingly, depending on the nature of the objective functions and/or constraints functions, the 

optimization problems can be classified as being linear and non-linear, unconstrained and constrained, 

discrete and continuous, deterministic and stochastic optimization problems, etc. For our requirements 
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of parameter estimation of photovoltaic device, the associated model functions and constraints functions 

constitutes differentiable non-linear functions which can be appropriately bounded within certain 

constraints, and hence can be formulated as continuous non-linear optimization problems.  

Before proceeding with the parameter estimation of a photovoltaic device, it is intuitive to 

formulate the optimization problem based on the mathematical model that represents the electrical 

characteristics of the photovoltaic device. For this requirement, the single diode equivalent model 

represented by Eq. (3.12) will be employed. As is evident from Eq. (3.7), or its generalized form Eq. (3.12), 

the defining equation of the model are implicit non-linear transcendental functions with the output 

current appearing on both sides of the equation. Hence, there is no explicit analytical solution for the 

output current. The parameter estimation problem can be formulated as a nonlinear least squares 

optimization problem in order to estimate the parameters by minimizing a pre-selected objective 

function. The error function or the objective function to be minimized can be defined as the sum of the 

squared differences between the measured current value and the modeled current value for the range of 

voltages considered. Expressed mathematically, one wishes to determine the model parameters 

𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡 , 𝑛, 𝑅𝑠, and 𝑅𝑠ℎ , such that the sum of the squared errors is minimized, i.e., 

min
𝐼𝑝ℎ,𝐼𝑠𝑎𝑡,𝑛,𝑅𝑠,𝑅𝑠ℎ

𝑓 =  ∑ (𝐼𝑚𝑜𝑑𝑒𝑙𝑖(𝑉𝑚𝑒𝑎𝑠𝑖
; 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, 𝑛, 𝑅𝑠, 𝑅𝑠ℎ) − 𝐼𝑚𝑒𝑎𝑠𝑖)

2𝑚
1 ,       … (3.16) 

where 𝑚 is the number of experimental data points,  𝐼𝑚𝑒𝑎𝑠𝑖
 and 𝑉𝑚𝑒𝑎𝑠𝑖

  are 𝑖𝑡ℎ measured current and 

voltage pairs, respectively, 𝐼𝑚𝑜𝑑𝑒𝑙𝑖
  is the modeled current, 𝑓 is the objective function to be minimized 

that provides for  the squares of the difference between the measured current modeled current. Explicitly, 
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this objective function may be written as, 

min
𝐼𝑝ℎ,𝐼𝑠𝑎𝑡,𝑛,𝑅𝑠,𝑅𝑠ℎ

𝑓 =  ∑({𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 [exp(
𝑉𝑚𝑒𝑎𝑠𝑖

+ 𝐼𝑚𝑒𝑎𝑠𝑖
𝑅𝑠

𝑛𝑉𝑡
) − 1] −

𝑉𝑚𝑒𝑎𝑠𝑖
+ 𝐼𝑚𝑒𝑎𝑠𝑖

𝑅𝑠

𝑅𝑠ℎ
} − 𝐼𝑚𝑒𝑎𝑠𝑖)

2

.

𝑚

1

 

… (3.17) 

While a variety of approaches are available for solving such an optimization problem, the gradient 

based optimization technique is proposed due to the continuous nature of the model functions associated 

with the photovoltaic parameter estimation. In general, for the case of an objective function that takes in 

a vector of model parameters and returns a scalar, the solution of an unconstrained optimization problem 

is a point  𝑥̅∗  ∈ 𝑁 such that 

x̅∗ = argmin 
𝑥̅ ∈ 𝑁

𝑓(𝑥̅), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   𝑓(𝑥̅∗)  ≤ 𝑓(𝑥̅),    ∀ 𝑥̅  ∈ 𝑁.                   …(3.18) 

In this case, such a point  𝑥̅∗ ∈ 𝑅𝑛
  is a local minimizer for a neighborhood  𝑁 of  𝑥̅∗ ∈ 𝑅𝑛  where the 

neighborhood of  𝑥̅∗  constitutes an open set which contains  𝑥̅∗, a local minimizer. These algorithms begin 

with an initial but sub-optimal guess, 𝑥̅0, and generate a sequence of iterations  {𝑥̅𝑘}  𝑘 = 1,2, 𝑁 to get 

closer to optimal solution with every iteration. The sequence is terminated when either an approximated 

solution with the desired accuracy is achieved or no further appreciable progress can be made. Different 

algorithms make different decisions in determining the direction of the search, i.e., how to move from 

current iterate 𝑥̅𝑘 to the next iterate 𝑥̅𝑘+1. In gradient based algorithms, the information of the first and 

second order partial derivatives of the objective functions is used to find the next iteration. The first order 

derivative of the objective function at a given point gives the gradient (slope) denoted as  ∇𝑓 (𝑥̅) ∈ 𝑅𝑛. 
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The second order derivative of the objective function at a point gives the Hessian (curvature) denoted as  

∇2𝑓 (𝑥̅). The gradient and Hessian are expressed as, 

Gradient,  ∇𝑓 = [
𝜕𝑓

𝜕𝑥1

𝜕𝑓

𝜕𝑥2
⋯

𝜕𝑓

𝜕𝑥𝑛
]
𝑇

,                                 … (3.19) 

Hessian,   ∇2𝑓 =  

[
 
 
 
 

𝜕2𝑓

𝜕𝑥1
2 ⋯

𝜕2

𝜕𝑥1𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕2𝑓

𝜕𝑥𝑛𝜕𝑥1
⋯

𝜕2𝑓

𝜕𝑥𝑛
2 ]

 
 
 
 

.                                … (3.20) 

The gradient and Hessian of the objective function are used to define the two sufficient conditions for the 

convergence to a solution, often referred to as first order and second order optimality conditions, 

respectively. These conditions are defined as; 

1. First order optimality: If 𝑓 (𝑥̅∗) is a local minimizer and 𝑓  is continuously differentiable in an open 

neighborhood of  𝑥̅∗, then   

                                                                              ∇𝑓 (𝑥̅∗) = 0.                                                                        … (3.21) 

2. Second order optimality: If 𝑓 (𝑥̅∗) is a local minimizer of 𝑓 and ∇2𝑓 (𝑥̅∗) is continuous in an open 

neighborhood of  𝑥̅∗, then ∇𝑓 (𝑥̅∗) = 0 and  

                                                             ∇2𝑓 (𝑥̅∗) is positive semi-definite (i.e., ∇2𝑓 (𝑥̅∗) ≥ 0).           … (3.22) 

These are sufficient conditions for a solution, i.e., if 𝑥̅∗ is a minimum, then the two conditions 

must hold. The first order condition ensures that 𝑥̅∗ is a minimum. The second order sufficient conditions 

guarantees that 𝑥̅∗ is a local minimizer of 𝑓 and the convexity of 𝑓 guarantees that any local minimizer is 

a global minimizer. Gradient-based optimization algorithms find a minimizer by searching for points that 



101 
 

satisfy these optimality conditions. Such algorithms use one of the two fundamental strategies for finding 

the next iterate, which are;  

1. Line Search Method: These algorithms reduce the n-dimensional optimization problem, 

min
𝑥̅ ∈𝑅𝑛

𝑓(𝑥̅),                                                 

to a one-dimensional problem 

min
𝛼>0

𝑓(𝑥̅𝑘 +  𝛼𝑠̅𝑘),  

where 𝑠̅𝑘 is the search direction of choice. This search direction is the descent direction, typically given 

by the negative of the gradient vector, i.e., − ∇𝑓 (𝑥̅∗)  at the current iteration,  𝑥̅𝑘. In each iteration, 

a line search controlled by step length 𝛼, is employed in the search direction of 𝑠̅𝑘 to find the next 

iteration. The approach employed to select 𝑠̅𝑘 determines how the algorithm progresses. 

2. Trust region method: The trust region method works in a different manner, wherein instead of 

searching along a line, the next iteration is computed by searching in a “trust region”, which is in the 

neighborhood of the current iteration. With respect to nonlinear parameter estimation, trust region 

strategies are a relatively new optimization technique that has matured in recent years [65]. 

Leverberg’s pioneering work on modifying the Hessian [66] and the subsequent contribution of 

Marquardt in controlling the step length [67], are some of the early works that laid the foundation for 

trust region algorithms. The trust region concept was suggested by Powell for the convergence of an 

unconstrained optimization problem [68]. Trust region strategies have gained significant attention 
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from researchers and have been used extensively in many software packages, including MATLAB, R, 

Wolfram, Python, etc.  

These algorithms use information about the objective function, gradient, Hessian, etc., to 

generate simpler models for the objective function around a given point (current iteration). This simple 

model function, 𝑚𝑘, that approximates the behavior of the objective function, 𝑓, in a neighborhood of a 

point,  𝑥̅𝑘 , may be given by a Taylor expansion as 

𝑚(𝑥𝑘 +  𝑠) =   𝑓(𝑥̅𝑘) + 𝑠̅𝑇∇𝑓(𝑥̅𝑘) + 
1

2
 𝑠̅𝑇𝐻𝑘𝑠̅ ,                             … (3.23) 

where 𝐻𝑘 is either the full Hessian ∇2𝑓 (𝑥̅) which is expensive to produce or some clever approximation 

for the Hessian. The choice of the model function is kept simple, such as, the quadratic approximation for 

the objective function, so that the optimization sub-problem  

min
𝑠 ∈ 𝑁(𝑥𝑘)

𝑚𝑘(𝑥̅𝑘 + 𝑠̅𝑘), 

can be solved with little effort. The neighborhood 𝑁(𝑥̅𝑘) of 𝑥̅𝑘 specifies the region in which the model is 

trusted to represent the local behavior of the objective function more or less adequately. This 

neighborhood is referred to as the “trust region”, and is typically a ball of radius ∆𝑘 in 𝑅𝑛 i.e., 

𝑁(𝑥̅𝑘) =  {𝑠̅ ∶  ‖𝑠̅ − 𝑥̅𝑘‖  ≤ ∆𝑘}.                                             … (3.24) 

Depending on the optimization problem, the trust region occasionally can be elliptical or box-shaped trust 

regions.  The trust region sub-problem thus formed is solved to determine the trial step, 𝑠̅𝑘, in the search 

direction [69]. Towards minimizing the trust region sub-problem, i.e., solving for  𝑠̅𝑘,  the sub-problem can 

be differentiated and set equal to 0, i.e., 
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∇𝑚𝑘(𝑥̅𝑘 + 𝑠̅𝑘) =  ∇𝑓(𝑥̅𝑘) +  𝑠̅𝑘𝐻𝑘 = 0  

⇒ 𝑠̅𝑘 = 𝐻𝑘
−1∇𝑓(𝑥̅𝑘) .                                                                     … (3.25) 

The search direction is computed from the dot product of inverse of the Hessian matrix (or some 

approximate form of Hessian) and the gradient vector. When the full Hessian information is used for the 

computation of the trial step, the algorithm is called the Newton’s algorithm, used in conjunction with the 

trust region strategy. Thus, starting with the initial sub-optimal solution, 𝑥̅𝑘 , the algorithm uses 

information about the slope (gradient) and curvature (Hessian) to solve for the trial step, 𝑠̅𝑘, that is 

expected to produce a sufficient decrease in the model. For a decision regarding the success or failure of 

the computed trial step, the objective function at  𝑥̅𝑘+1  is evaluated and a comparison is made between 

the achieved reduction in the objective function and the predicted reduction in the model. This 

comparison is defined via a merit function given as, 

𝜌𝑘 = 
𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛
=  

𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+ 𝑠𝑘)

𝑚𝑘(0)− 𝑚𝑘(𝑠𝑘)
.                                         … (3.26) 

In the above expression, the predicted reduction is always non-negative, since the trial step, 𝑠̅𝑘, is within 

the trust region. The merit function, 𝜌𝑘 , can thus yield a negative value only when the function evaluated 

at the next iteration is greater that the function value at current iteration, i.e.,  𝑓(𝑥𝑘 + 𝑠𝑘) > 𝑓(𝑥𝑘), a 

condition that is not desired. The decision on the size of the trust region, and whether to accept or reject 

the next computed trial step, is taken based on the state of the merit function, 𝜌𝑘 , depending on the 

following decision criteria; 

If 𝜌𝑘 < 0, it is referred that the model is not a good approximation for the objective function and  
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hence, the trial step is rejected and the size of the trust region is reduced. 

If 𝜌𝑘 ≈ 0, it suggests that the model is still a poor approximation, and therefore, the trial step 

may or may not be accepted; however, the size of the trust region is reduced. 

If 𝜌𝑘 > 0 𝑏𝑢𝑡 𝑛𝑜𝑡 ≈ 1,  it suggests that the model is reasonable. Therefore, the trial step may be 

accepted while keeping the size of the trust region unchanged. 

If 𝜌𝑘 ≈ 1, it is inferred that the model is a good approximation to the trust region, and hence, the 

trial step is accepted and the size of the trust region is increased.  

This is repeated for each iteration until convergence is achieved.  Figure 3.15 illustrates the 

scheme of convergence of trust region algorithm for a representative multivariate optimization problem 

𝑓(𝑥1, 𝑥2) consisting of two design variables, 𝑥1 and 𝑥2. From the above discussion, it is clear that the most 

important part of a trust region algorithm is in finding the solution of the trust region sub-problem, which 

generates the trial step. The trust region trial step, 𝑠𝑘  is computed by solving the trust-region sub-

problem, i.e.,  

min
‖𝑠𝑘‖≤∆𝑘

𝑓𝑘 + ∇𝑓(𝑥̅𝑘)𝑇𝑠𝑘 +
1

2
𝑠𝑘

𝑇𝐻𝑘𝑠𝑘. 

Different trust region strategies are available to solve for the trust region sub-problem. The choice of the 

algorithm is governed by the condition of the Hessian of the objective function. One of the fundamental 

approaches to calculate the trial step is to minimize the model function along the steepest descent 

direction, − ∇𝑓(𝑥𝑘), which is termed the Cauchy point. The Cauchy point is readily computed from a 

vector of length ∆𝑘 in the steepest descent direction, i.e.,  
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Figure 3.15: Illustration of the scheme of convergence of a representative multivariate (two variables for 

this case) optimization problem based on trust region optimization algorithm. The online version of this 

figure is in color. 
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𝑠𝑘
𝑠  =  

− 𝛻𝑓(𝑥𝑘) 

‖𝛻𝑓(𝑥𝑘) ‖
∆𝑘  .                                                                 … (3.27) 

where 𝑠̅𝑘 is the steepest descent point. The Cauchy point, in explicit form, can be given by 

𝑠𝑘
𝑐  =  𝜏𝑘𝑠𝑘

𝑠,                                                                              … (3.28) 

where the choice of 𝜏𝑘 is based on the condition of the Hessian, so that the trust region condition of the 

trial step being within the trust region, i.e.,  ‖𝑠𝑘
𝑐‖ ≤  ∆𝑘 , is satisfied. Typically, 𝜏𝑘  is chosen based on 

following condition;   

𝜏𝑘 = {
1, when the Hessian is positive definite 

𝑚𝑖𝑛 (1,
‖𝛻𝑓(𝑥𝑘)‖3

∆𝑘𝛻𝑓(𝑥𝑘)𝑇𝐻𝑘𝛻𝑓(𝑥𝑘)
) , otherwise

.                … (3.29) 

The Cauchy point is essentially a line search in the steepest descent direction within the trust region which 

results in slower convergence. The convergence can be improved using what is known as the Dogleg 

method when the Hessian is positive definite [68]. In this method, the solution of the trust region sub-

problem is sought along a path consisting of two-line segments; a step along the steepest descent 

direction and a full step, or Newton step. The solution of the trust region sub-problem, when traced as a 

function of the radius of the trust region, indicates that for smaller radii, the search direction is 

approximately given by – 𝛻𝑓(𝑥𝑘), which is a step in the steepest descent direction. For a larger radii trust 

region, the solution is the minimum of the quadratic model given by the full step, i.e., –𝐻𝑘
−1𝛻𝑓(𝑥𝑘).  

Dogleg algorithms attempt to optimize the model 𝑚𝑘(𝑥𝑘) along this approximate path (formed by the 

two-line segments in the shape of a dog leg) subject to the trust region constraint. Along the steepest 

descent, the unconstrained minimum of 𝑚𝑘(𝑥𝑘) is given by  
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𝑠𝑘
𝑈 = 

∇𝑓(𝑥𝑘)𝑇∇𝑓(𝑥𝑘)

∇𝑓(𝑥𝑘)𝑇𝐻𝑘∇𝑓(𝑥𝑘)
.                                                                    … (3.30) 

The global minimizer of the quadratic model is given by  

𝑠𝑘
𝐵 = −𝐻𝑘

−1∇𝑓(𝑥𝑘).                                                                      … (3.31) 

The Dogleg path, 𝑠𝑘(𝜏 ), 𝜏 ∈ [0,2], is defined by  

𝑠(𝜏) =  {
𝜏𝑠𝑘

𝑈 , 0 ≤ 𝜏 ≤ 1

𝜏𝑠𝑘
𝑈 + (𝜏 − 1)(𝑠𝑘

𝐵 − 𝑠𝑘
𝑈), 1 ≤ 𝜏 ≤ 2

.                            … (3.32) 

The optimum along the Dogleg path is achieved at the point where this approximate path exits in the 

trust-region (if it does), otherwise the full step is allowed and optimal. Improvements to the Dogleg 

method can be achieved when, instead of searching for the optimal solution along the approximate 

(Dogleg) path in one-dimension, the solution can be extended to search for the optimal over the entire 

two-dimensional plane spanned by the steepest descent vector, 𝑠𝑘
𝑈, and the full step vector, 𝑠𝑘

𝐵 [69]. This 

approach is called two-dimensional subspace optimization. For a positive definite Hessian, the optimum 

is computed by minimizing the following sub-problem 

min
𝑠𝑘

[𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘)𝑇𝑠𝑘 + 
1

2
𝑠𝑘

𝑇𝐻𝑘𝑠𝑘] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑠𝑘‖ ≤ ∆𝑘 ,  𝑠𝑘 ∈ 𝑠𝑝𝑎𝑛[∇𝑓(𝑥𝑘),𝐻𝑘
−1∇𝑓(𝑥𝑘)]   

A distinct advantage of this approach is that it can be extended to cases where the Hessian is indefinite. 

For an indefinite Hessian with negative eigenvalues, the two-dimensional subspace is modified as 

  𝑠𝑘 ∈ 𝑠𝑝𝑎𝑛[∇𝑓(𝑥𝑘), (𝐻𝑘 + 𝛼𝐼)−1∇𝑓(𝑥𝑘)],   𝛼 ∈  (−𝜆1, −2𝜆1),   

where 𝜆1 is the most negative eigenvalue of 𝐻𝑘. There are other similar optimization algorithms within 
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the trust region strategies that have been used for computing the trial step. For our requirement of 

parameter estimation, a two-dimensional subspace approach will be employed to compute the search 

direction. 

Having established the trust region strategy to be employed, now the problem of formulating the 

optimization problem of parameter estimation from the current-voltage characteristics of a photovoltaic 

device is examined. The discussion so far considered that the objective function takes in a vector (of model 

parameters) and returns a scalar value. Often the model parameters and the input variable may be 

vectors, so that the output function is also a vector. This is especially true when the effects of 

measurement error are included or when the measurement is taken at different instances of input 

variable, which produces a different output for each measurement. In such a case, the optimization 

problem may be given as, 

 min
𝑥̅ ∈ 𝑅𝑛

𝑓𝑖(𝑧𝑖; 𝑥̅), 𝑖 = 1,2, . . 𝑚,   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  {
𝑐𝑗(𝑥̅) = 0, 𝑗 ∈ 𝐸

𝑐𝑗(𝑥̅) ≥ 0, 𝑗 ∈ 𝐼
 ,                                  …(3.33) 

where (𝑧𝑖, 𝑓𝑖(𝑧𝑖, 𝑥̅ )) is the set of input-output data pairs corresponding to each 𝑖𝑡ℎ measurement. Such 

specialized forms of the objective function are common in data fitting where the requirement is to find 

the optimal model parameter set that best fits some observed data and prior information. The objective 

function is essentially a measure of misfit or prediction error between the observed data and the values 

predicted by the model. The optimization problem is to find the model parameter values that satisfy the 

constraints and results in the smallest misfit, or prediction error, with the observed data. As suggested by 

Eqs. (3.18) and (3.19), parameter estimation, corresponding to the current-voltage characteristics of a 
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given photovoltaic device, can therefore be formulated as a non-linear least squares optimization 

problem.  

In nonlinear least-squares optimization problems, given 𝑚 observed data points is, 

(𝑧𝑖 , 𝑦𝑖), 𝑖 = 1,2, …𝑚,                                                                 … (3.34) 

where  𝑧𝑖  is the input variable and 𝑦𝑖  is the observed output or response, the vector, 𝑥̅𝑛  of  𝑛 model 

parameters, gives the “best fit” in the least squares sense to the model function 

𝑦𝑖 =  𝑔(𝑧𝑖; 𝑥̅𝑛),                                                                        … (3.35) 

where 𝑔 is a nonlinear function of 𝑥̅𝑛.  In such optimization problems, the objective function may be given 

by a sum of large number of squared residuals, 

𝑓(𝑥̅𝑛) =   ∑ (𝑔(𝑧𝑖; 𝑥̅𝑛) − 𝑦𝑖)
2𝑚

𝑖=1 = ∑ 𝑟𝑖(𝑥̅𝑛)2 𝑚
𝑖=1 .                                   … (3.36)  

Here, each residual, 𝑟𝑖(𝑥̅𝑛), is non-linearly dependent on the model parameters, 𝑥̅𝑛, and the minimization 

of 𝑓(𝑥̅𝑛) thus forms a nonlinear least squares problem. The objective function 𝑓(𝑥̅𝑛) has a special form  

𝑓(𝑥̅𝑛) =  
1

2
∑ 𝑟𝑖(𝑥̅𝑛)2,     𝑥̅𝑛  ∈ 𝑅𝑛,𝑚

𝑖=1                                                 … (3.37) 

where the problem is scaled by 
1

2
  to make the derivatives (to be used subsequently) less cluttered. Here 

𝑚 ≥ 𝑛 so that there are more residuals (equations) than dimensions (model parameters or variables) and 

hence is referred to as an over-determined problem. This special form of the least-squares-objective 

makes it easier to solve than general non-linear minimization problems. For this, the residual vector can 

be represented as 

𝑟(𝑥̅𝑛) =  [𝑟1(𝑥̅𝑛), 𝑟2(𝑥̅𝑛),  𝑟3(𝑥̅𝑛),… , 𝑟𝑚(𝑥̅𝑛)]𝑇 .                                      … (3.38) 
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The objective can thus be written as 

𝑓(𝑥̅𝑛) =  
1

2
𝑟(𝑥̅𝑛)𝑇𝑟(𝑥̅𝑛) =  

1

2
‖𝑟(𝑥̅𝑛)‖2

2,                                            … (3.39) 

where ‖. ‖2 is the Euclidean norm. The derivative of the objective function, 𝑓(𝑥̅𝑛), may be expressed in 

terms of Jacobian of 𝑟(𝑥̅𝑛) which is an 𝑚×𝑛 matrix of the first order partial derivatives, given as 

𝐽(𝑥̅𝑛) =  [
𝜕𝑟𝑗(𝑥̅𝑛)

𝜕𝑥𝑖
]
𝑗=1,2,…,𝑚
𝑖=1,2,…,𝑛

= 

[
 
 
 
𝜕𝑟1

𝜕𝑥1
⋯

𝜕𝑟1

𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑟𝑚

𝜕𝑥1
⋯

𝜕𝑟𝑚

𝜕𝑥𝑛]
 
 
 

 ,                                  … (3.40) 

where 𝐽(𝑥̅𝑛) is the Jacobian of the objective function. Using the Jacobian notation, the gradient, ∇ 𝑓(𝑥̅𝑛),  

can be expressed as 

                                   Gradient, ∇ 𝑓(𝑥̅𝑛)  =  ∑ 𝑟𝑗(𝑥̅𝑛)
𝜕𝑟𝑗(𝑥̅𝑛)

𝜕𝑥𝑖
, 𝑖 = 1,2, … , 𝑛𝑚

𝑗=1  

                                                                     =  ∑ 𝑟𝑗(𝑥̅𝑛)∇𝑟𝑗(𝑥̅𝑛)𝑚
𝑗=1   

                                                                     =  𝐽(𝑥̅𝑛)𝑇𝑟𝑗(𝑥̅𝑛).                                                                       … (3.41) 

The gradient ∇𝑓(𝑥̅) can thus be easily computed using the Jacobian. Similarly, the Hessian, ∇2 𝑓(𝑥̅𝑛), of 

the objective function can be expressed as                     

                                     Hessian, ∇2 𝑓(𝑥̅𝑛) =    ∑ ∇𝑟𝑗(𝑥̅𝑛)∇𝑟𝑗(𝑥̅𝑛)𝑇 + 𝑚
𝑗=1 ∑ 𝑟𝑗(𝑥̅𝑛)∇2𝑟𝑗(𝑥̅𝑛)      𝑚

𝑗=1  

                                                                       =   𝐽(𝑥̅𝑛)𝑇𝐽(𝑥̅𝑛)  + ∑ 𝑟𝑗(𝑥̅𝑛)∇2𝑟𝑗(𝑥̅𝑛)𝑚
𝑗=1 .                             … (3.42) 

It is evident that the second part of the Hessian is the product of the residuals 𝑟(𝑥̅𝑛) and its second-order 

derivatives. In many applications, the residuals are typically small, and for a very good fit, can be 

equivalently taken to be 0. For this reason, the second-order term can be ignored and hence, an explicit 
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computation of the full Hessian can be avoided. Thus, the Jacobian gives us the first “half” of the Hessian 

∇2𝑓(𝑥̅) without the need of computing any second order derivatives. With this, it can be approximated 

that ∇2𝑓(𝑥̅) =  𝐽(𝑥̅)𝑇𝐽(𝑥̅)  so that a good approximation for the Hessian, without computing any second 

derivatives which can often be computationally challenging can be determined. This algorithm is termed 

as a Gauss-Newton algorithm, which exploits the special structure of the gradient and Hessian and, as 

such, can only be used for the case of minimization of sum of squared function values.  

In summary, parameter estimation for photovoltaic devices can be explained as follows; the 

information of the gradient and Hessian computed based on the Gauss-Newton algorithm is used to 

minimize the quadratic approximation of the objective function, i.e., computation of the trial steps, 𝑠𝑘. 

For this, the Jacobian 𝐽(𝑥̅) of the objective function 𝐹(𝑥̅𝑘) is used to help define the two-dimensional 

subspace. In this regard, calculations of the second derivatives of the residual function 𝑟𝑖(𝑥̅𝑘) are not 

used. Based on the computed trial step, 𝑠𝑘 , the state of the merit function, 𝜌𝑘 , is evaluated. Depending 

on the merit function, 𝜌𝑘 , the trust region radius is either expanded or shrunk and similarly the next 

iteration is accepted or rejected. The algorithm is given below; 

1. Given the initial guess, 𝑥̅0,  set, current iteration number  𝑘 = 1,  the maximum allowed trust 

region radius  ∆𝑚𝑎𝑥> 0, trust region radius for initial iteration  ∆0 ∈ (0, ∆𝑚𝑎𝑥) and constant 𝜂 ∈

 (0,
1

4
 ). 

2. While the optimality condition is not satisfied, continue with the following steps. 

3. Formulate a trust region sub-problem using non-linear residual functions.  
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4. Form the Jacobian and Hessian approximation to get 𝑠𝑘
′ , i.e., approximate the Gauss-Newton 

solution. 

5. Use the Gauss-Newton solution to define the two-dimensional subspace, 𝑆,  spanned by the 

steepest descent and full-step. 

6. Optimize the approximate model in the two-dimensional subspace, 𝑆. 

7. Evaluate,  𝜌𝑘 =  
𝑓(𝑥𝑘)− 𝑓(𝑥𝑘+ 𝑠𝑘)

𝑚𝑘(0)− 𝑚𝑘(𝑠𝑘)
. 

8. If 𝜌𝑘 <
1

4
,  then reduce the trust region radius for the next iteration 

               ∆𝑘+1= 
1

4
  

Else, if 𝜌𝑘 <
3

4
, and ‖𝑠̅𝑘‖ ≤  ∆𝑘, then increase the trust region radius 

               ∆𝑘+1=  min (2∆𝑘, ∆𝑚𝑎𝑥) 

Else, keep the trust region radius unchanged 

                ∆𝑘+1= ∆𝑘  

9. If 𝜌𝑘 > 𝜂, then accept the computed trial step to go to next iterate 

                𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 

Else reject the computed trial step 

                 𝑥𝑘+1 = 𝑥𝑘 

10. Update the iteration counter and repeat until convergence is achieved. 

  



113 
 

Chapter 4 Analysis 

4.1 Overview 

Photovoltaic devices, i.e., solar cells or modules, can be characterized using a variety of different 

means. The approach employed is often tied with the level of abstraction within which the analysis is to 

be pursued. At the materials level, the materials found within such devices can be characterized in terms 

of the microscopic phenomena that occur within them. Accordingly, the charge-carrier generation rate, 

the charge-carrier recombination rate, the quantum efficiency, and other material related properties, 

become the performance metrics of interest. From these basic material parameters, the performance of 

a photovoltaic device may be predicted. At the device level, however, photovoltaic performance metrics, 

such as the maximum output power, the efficiency, the fill-factor, and other device performance metrics, 

become the priority.  While material characteristics are extensively used in the research activities pursued 

during the design of a new photovoltaic device, for commercial applications, device characteristics are 

more often considered. This is because device characteristics are more closely related to the commercial 

applications envisaged for photovoltaic devices. For the purposes of this thesis, the macroscopic 

performance metrics corresponding to the photovoltaic devices, will be considered. The device 

performance of a given photovoltaic device is often ascertained through the measurement of the current-

voltage characteristic at a specific set of controlled operating conditions, referred to as standard testing 

conditions. For the purposes of such a test, a solar simulator is often employed, such a simulator imitating 

the solar spectrum corresponding to the Sun. 
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The current-voltage characteristic associated with a given photovoltaic device, i.e., a solar cell or 

module, carries a wealth of information. Certain key features, embodied within the current-voltage 

characteristic, are commonly used in characterizing the performance of such a photovoltaic device, 

especially its electrical power generating capabilities. Photovoltaic device manufacturers usually perform 

quick measurements of the current-voltage characteristics corresponding to their mass produced 

photovoltaic devices, and then use these measurements as a quality-check for their finished products. 

This quality check may be used in order to reject photovoltaic devices that are deemed inadequate, or as 

a means of categorizing adequate photovoltaic devices into various groupings based on their 

performance, as determined from the corresponding current-voltage characteristics. Key features, in 

particular, the open-circuit voltage, the short-circuit current, and the maximum power output, are 

identified from the measured current-voltage characteristics, these values being used for this quality-

control step. Quality control is ensured by selecting a minimum threshold of performance, as judged by 

the aforementioned photovoltaic performance metrics, rejecting any device that is judged to be less than 

the “minimum” standard, as defined by the application at hand. This approach utilizes a few salient 

features of the corresponding current-voltage characteristic in order to characterize a given device. It, 

however, does not utilize the full range of information that can be extracted from the current-voltage 

characteristic; this may be viewed as a weakness in the quality-control that is currently commonly used in 

the photovoltaic device fabrication processes.  

In this analysis, an alternative approach is pursued. Rather than determining performance metrics 
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directly from the current-voltage characteristic, the modeling parameters corresponding to each acquired 

current-voltage characteristic will be extracted instead. These modeling parameters correspond to an 

empirical model for the current-voltage characteristic. In this thesis, a technique, whereby this parameter 

extraction process may be pursued, is developed, this technique offering an advantage over that 

commonly employed in the field. The eventual goal of this work is to be able to extract current-voltage 

modeling parameters directly from a given current-voltage characteristic, and to be able to ascertain, 

based on these modeling parameters, as to whether or not such a photovoltaic device meets the minimum 

required for the photovoltaic device application being considered. Categorizing photovoltaic devices 

based on the results of this parameter extraction approach could potentially be pursued building upon 

these results. We suspect that many of these empirical modeling parameters are directly related to the 

fundamental material properties of the materials being employed within photovoltaic devices, and thus, 

present parameter extraction as offering an opportunity to perform materials characterization, albeit 

indirectly. For the purposes of this particular analysis, however, parameter extraction in of itself will be 

the focus, which will be pursued within the framework of the elementary single-diode model defined in 

Chapter 3. In the single-diode model, the empirical model parameters to be considered include the photo-

generated current, the reverse saturation current, the diode ideality factor, the series resistance, and the 

shunt resistance, these parameters being introduced in Eq. (3.3).  

This chapter is organized in the following manner. Section 4.2 presents the experimental data at 

hand that is to be examined using the proposed parameter extraction process. In Section 4.3, the aim and 
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scope of the proposed work is defined. In Section 4.4, the computational scheme, through which the 

model parameters, corresponding to a given photovoltaic device, may be extracted from the 

experimentally measured current-voltage characteristic is featured. Section 4.5 discusses the conditioning 

of the measured data needed to provide an initial guess for the model parameters with respect to the 

requirements of the adopted algorithm so as to find an optimal solution. In Section 4.6, the application of 

the optimization algorithm is presented through use of the current-voltage characteristic corresponding 

to a representative sample photovoltaic module from the pool of the measured data at hand. In this 

regard, the intermediate results, that show the workings of the algorithm and the trend of convergence, 

are discussed along with the extracted parameters based on the optimization. A benchmark analysis, 

based on standard photovoltaic device experimental data, is then pursued in Section 4.6. Finally, building 

upon the findings of Section 4.6, in Section 4.7, the extracted model parameters corresponding to the 

experimental data is analyzed and discussed in its entirety. 

4.2 Discussion of the experimental data 

The current-voltage characteristics, corresponding to a variety of photovoltaic devices, are 

considered in this analysis. These characteristics have been acquired at the facility of our industrial 

partner, who wishes to remain anonymous. For every photovoltaic module considered, after the final 

stage of assembly, the current-voltage characteristics were acquired through the use of a solar simulator. 

Within this solar simulator, every module is exposed with a bright flash pulse discharged from a xenon arc 

lamp for a brief period of time. Simultaneously, the module is swept, from short-circuit to open-circuit 
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conditions via an electronic load, and the corresponding voltage and current signals are recorded. The 

details of the measurement process have been presented in Chapter 3. It should be noted that for the 

experimental measurements of the current-voltage characteristics, no control over the constituent 

components/materials used for the production of the photovoltaic modules under study was possible; 

these were determined solely by our industrial partner. That is, there was no option to choose the type 

of photovoltaic solar cells (or the number of cells connected in series) to be used in the photovoltaic 

modules under study. However, by aligning the schedule for the measurement of the current-voltage 

characteristics with the production schedule, current-voltage characteristics, corresponding to different 

categories of the photovoltaic product, were acquired, so as to include different semiconductor materials 

used and different device configurations (size) in the study. For this, the modules, made up of both mono-

crystalline and poly-crystalline photovoltaic cell, were measured. Furthermore, since the photovoltaic 

modules come in different configurations or sizes based on the number of photovoltaic cells connected in 

series, in this study, modules of the two most popular sizes (configuration), i.e., 60 solar cells and 72 solar 

cells, are included. Therefore, in totality, the current- voltage characteristics, corresponding to the ten 

samples of each 60 cell modules with mono-crystalline and poly-crystalline photovoltaic cells, and eleven 

samples of 72 cell modules, with mono-crystalline cells, were recorded. Due to limitations on time, the  

current-voltage characteristics corresponding to 72 cell modules with poly-crystalline photovoltaic solar 

cells could not be measured. Table 4.1 tabulates the different photovoltaic modules, whose current-

voltage characteristics were determined. For ease of identification, each module is labeled based on the 
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nomenclature indicated in Table 4.1. The label is a combination of alphanumeric characters beginning 

with either M for mono-crystalline or P for poly-crystalline, followed by two digits indicating the number 

of cells connected in series (size). This is followed by 3 digits indicating the rated peak power of the sample, 

while the alphanumeric series of 3 characters is an acronym for the sample, followed by a serial number 

indicated by the next 1 or 2 digits. Thus, the modules are classified based on the both types of 

semiconductor material (type of cell) and the number of cells connected in series.  Figure 4.1 presents the 

current-voltage characteristic corresponding to one such representative photovoltaic module sample, 

M60-275-SMP1. For the purposes of this analysis, first this particular current-voltage characteristic, 

corresponding to the  sample M60-275-SMP1 will be used. The same procedure is then used with the 

current-voltage characteristic corresponding to the other photovoltaic modules.  It is worth mentioning 

that this analysis is equally applicable for the case of current-voltage characteristics of photovoltaic solar 

cells. For the purposes of describing the proposed algorithm, the following analysis will focus on the 

current-voltage characteristics associated with sample M60-P275-SMP1, which is a 60-cell mono 

crystalline silicon solar module.   

4.3 Approach employed 

In this chapter, the focus is on developing a computational approach that may be used 

for the extraction of model parameters corresponding to a given current-voltage characteristic.  
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Table 4.1: Classification of the different modules, whose current-voltage characteristics have been 

measured. 

S.No. Type of 
semiconductor 
material used 

Number of 
Cells 

(connected 
in series) 

Power category 
(peak Watts) 

Sample Nomenclature 
 

1  
 
 
 
 
Poly-Crystalline 
 

 
 
 
 
 

60 

 
 
 
 
 

255 
 

P60-P255-SMP1 

2 P60-P255-SMP2 

3 P60-P255-SMP3 

4 P60-P255-SMP4 

5 P60-P255-SMP5 

6 P60-P255-SMP6 

7 P60-P255-SMP7 

8 P60-P255-SMP8 

9 P60-P255-SMP9 

10 P60-P255-SMP10 

11  
 
 
 
 
 
 
 
Mono-Crystalline 

 
 
 
 
 

60 

 
 
 
 
 

275 

M60-P275-SMP1 

12 M60-P275-SMP2 

13 M60-P275-SMP3 

14 M60-P275-SMP4 

15 M60-P275-SMP5 

16 M60-P275-SMP6 

17 M60-P275-SMP7 

18 M60-P275-SMP8 

19 M60-P275-SMP9 

20 M60-P275-SMP10 

21  
 
 
 
 

72 

 
 
 
 
 

330 

M72-P330-SMP1 

22 M72-P330-SMP2 

23 M72-P330-SMP3 

24 M72-P330-SMP4 

25 M72-P330-SMP5 

26 M72-P330-SMP6 

27 M72-P330-SMP7 

28 M72-P330-SMP8 

29 M72-P330-SMP9 

30 M72-P330-SMP10 

31 M72-P330-SMP11 
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Figure 4.1:  The current-voltage characteristic corresponding to the M60-P275-SMP1 sample (a 60-cell 

mono-crystalline silicon solar module) under standard testing conditions (defined as 1000 W·m-2 of 

irradiance of AM1.5G solar spectrum at a device temperature of 25°C). The online version of this figure is 

in color. 
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As discussed in Chapter 2, there are numerous techniques that have been employed for the 

extraction of model parameters corresponding to the current-voltage characteristics of a given 

photovoltaic device. These range from simple analytical methods that introduce a series of simplifications 

and approximations, resulting in a simpler solution using a reduced set of experimental data, to 

computationally demanding techniques that use powerful numerical tools. In recent years, many have 

adopted different advanced meta-heuristic optimization algorithms for curve fitting of the entire current-

voltage characteristic, such techniques allowing for parameter extraction with improved accuracy. 

Optimizations, based on simulated annealing [38], particle-swarm [39] , pattern search [42], artificial-bee 

swarm [44], and other such approaches, represent the range of meta-heuristic optimization algorithms 

that have been used for photovoltaic parameter extraction of photovoltaic devices in the past. These 

optimization algorithms have been developed based on observations of some form of behavior (physical 

or social) of processes and entities.  These algorithms will be compared and contrasted with the proposed 

algorithm based on an analysis of benchmark photovoltaic device experimental data.   

The approach pursued within the framework of this thesis is based on a non-linear least-squares 

fitting with the measured current-voltage characteristic of a given photovoltaic device based on a simple 

trust-region optimization algorithm, the details of which are presented in Chapter 3. Using the proposed 

algorithm, parameter extraction will be performed corresponding to thirty photovoltaic devices based on 

their measured current-voltage characteristics. In this regard, as per the requirements of the adopted 

algorithm, an initial guess for the five model parameters based on the measured current-voltage data is 



122 
 

used. Since the adopted algorithm of the trust-region is an unconstrained optimization algorithm, a 

specific property of the algorithm will be utilized to constrain the search space of the model parameters 

to produce a feasible solution so that any possibility of unrealistic values of fitting parameters being 

extracted may be avoided. The progress of the algorithm is then traced through the analysis of a series of 

intermediate results. Finally, the optimal solution, i.e., the constellation of model parameters that 

corresponds to the least-squares error, is interpreted and contrasted with that obtained through the use 

of other approaches. 

4.4 Non-linear least square optimization 

Least-squares curve fitting approaches are widely used in statistical analyzes. The idea behind this 

approach is finding the set of model parameters which results in the least possible error between the 

modeled and experimentally measured values. For a least-squares fit of an experimentally acquired 

current-voltage characteristic corresponding to a photovoltaic device, i.e., the extraction of model 

parameters, one aims to minimize the least-squares sum of errors, i.e., the difference between the 

measured and modeled current values over the range of voltage values considered. For the purposes of 

this particular analysis, the trust-region reflective least-squares algorithm is employed, which is an 

iterative optimization approach that aims to minimize a given objective function. 

For this optimization problem, the error function, or the objective function, to be minimized is 

defined as the sum of the squared differences between the measured current value and the modeled 

current value for the range of voltage values considered. Expressed mathematically, within the framework 
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of the single-diode model, one wishes to determine the model parameters, 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, and 𝑛, such 

that the sum of the errors is minimized. That is, 

min
𝐼𝑝ℎ,𝐼𝑠𝑎𝑡,𝑛,𝑅𝑠,𝑅𝑠ℎ

𝑒𝑖 = ∑(𝐼𝑚𝑜𝑑𝑒𝑙𝑖
(𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡, 𝑛, 𝑅𝑠, 𝑅𝑠ℎ) − 𝐼𝑚𝑒𝑎𝑠𝑖

)
2

𝑚

1

,  

    … (4.1) 

where  𝐼𝑚𝑜𝑑𝑒𝑙𝑖
 is the model current based on the single-diode equivalent circuit model of the photovoltaic 

devices, as defined in Chapter 3, 𝑒𝑖 is the objective function to be minimized, which provides for  the sum 

of squares of the difference between the measured current, 𝐼𝑚𝑒𝑎𝑠𝑖
  and the modeled current, 𝐼𝑚𝑜𝑑𝑒𝑙𝑖

,  𝑚 

corresponding to the number of experimental data points. Explicitly, this objective function may be 

written as, 

min
𝐼𝑝ℎ,𝐼𝑠𝑎𝑡,𝑛,𝑅𝑠,𝑅𝑠ℎ

𝑒𝑖 = ∑({𝐼𝑝ℎ − 𝐼𝑠𝑎𝑡 [exp (
𝑉𝑚𝑒𝑎𝑠𝑖

+ 𝐼𝑚𝑒𝑎𝑠𝑖
𝑅𝑠

𝑛𝑉𝑡
) − 1] −

𝑉𝑚𝑒𝑎𝑠𝑖
+ 𝐼𝑚𝑒𝑎𝑠𝑖

𝑅𝑠

𝑅𝑠ℎ
} − 𝐼𝑚𝑒𝑎𝑠𝑖)

2

   .

𝑚

1

 

… (4.2) 

where 𝑅𝑠, 𝑅𝑠ℎ , 𝐼𝑝ℎ, 𝐼𝑠𝑎𝑡 , and 𝑛 are the five empirical model parameters introduced in Chapter 3. 

  4.5 Initial estimates of model parameters 

The optimization algorithm, to be employed for the purposes of this analysis, requires a user-

supplied initial estimate for the model parameters to initiate the iterative process. In our case, good 

starting estimates for the five model parameters to fit the measured current-voltage characteristic are 
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required. The five model parameters to be considered are the photo-generated current, the diode reverse 

saturation current, the diode ideality factor, the series resistance, and the shunt resistance. Initial 

estimates for the model parameters may be acquired directly from the current-voltage characteristics 

themselves. It is well known that the slope of the current-voltage characteristic at two distinct regions of 

the characteristic, namely, the short-circuit point and the open-circuit point, can be used to estimate the 

shunt and series resistance of a given photovoltaic device [28]. In particular, the negative of the reciprocal 

of the slope at the short-circuit point corresponds to an estimate of the shunt resistance, 𝑅𝑠ℎ𝑜, and the 

negative of the reciprocal of the slope at the open-circuit point corresponds to an estimate of the series 

resistance, 𝑅𝑠𝑜. That is, 

 Estimate of the  shunt resistance, 𝑅𝑠ℎ𝑜 = − 
𝑑𝑉

𝑑𝐼
 │𝐼𝑠𝑐

 ,                                     … (4.3)   

 Estimate of the  series resistance, 𝑅𝑠𝑜 = − 
𝑑𝑉

𝑑𝐼
 │𝑉𝑜𝑐

.                                      … (4.4) 

For a given measured current-voltage characteristic, i.e., the 60-cell mono-crystalline silicon 

photovoltaic device (M60-P275-SMP1), illustrated in Figure 4.2, it can be seen that this characteristic 

exhibits two distinct gradients in the vicinity of the short-circuit and open-circuit points. To extract an 

initial estimate of the shunt resistance, linear regression is employed on the current-voltage characteristic 

over the linear region near the short-circuit point of the current-voltage characteristic, as depicted in 

Figure 4.3. Linear regression yields a negative slope of 0.00198 siemens over the linear region of the 
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Figure 4.2:  Current-voltage characteristics corresponding to M60-P275-SMP1 sample (a 60-cell mono-

crystalline silicon solar module) under standard testing conditions. The section of the curve near the short-

circuit point and the open-circuit point have been emphasized to indicate their correlation with the 

parasitic resistances. The online version of this figure is in color. 
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current-voltage characteristic.  The negative reciprocal of this characteristic can be used to estimate the 

initial value of the shunt resistance, yielding a shunt resistance estimate of 505.051 Ω (standard regression 

error, R2 = 0.72109). Similarly, another important deduction can be from the Figure 4.3 regarding the 

short-circuit current which is the fact that the short-circuit current of the photovoltaic device can be 

estimated through an extrapolation of the data based on the slope calculated from linear regression. 

Based on the obtained regression, it can be said that the short-circuit current through the photovoltaic 

device when the voltage is zero is calculated to be 9.10276 A (standard regression error, R2 = 0.72109). 

Since the short-circuit current corresponds to the no-load condition, the photo-generated current is 

considered to be equivalent to the short-circuit current. Therefore, the initial estimate for the photo-

generated current is set equivalent to the short-circuit current calculated from the earlier regression. 

To extract an estimate for the series resistance, 𝑅𝑠𝑜, employing a second-order polynomial fit to 

the current-voltage data points over the region near the open-circuit voltage of the current-voltage 

characteristic, yields better results as compared with linear fitting. Figure 4.4 shows a second-order 

polynomial fit to the current-voltage characteristic near the open-circuit voltage point, 𝑉𝑜𝑐, in the current-

voltage characteristics. The solution of the second-order polynomial fit for the current-voltage data points 

can be used to extrapolate the data and gives the open-circuit voltage, which in this particular case was 

found out to be 37.342 V (standard regression error, R2 = 0.999). Furthermore, the derivative of the same 

second-order polynomial evaluated at the open-circuit point yields the slope of the curve at the open-

circuit voltage.  This yields a negative slope of 2.07713 siemens over the region near the open-circuit point  
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Figure 4.3: Linear regression applied on the measured current-voltage data points in the vicinity of the 

short-circuit point of the current-voltage characteristics of M60-P275-SMP1 sample for estimation of the 

initial value of shunt resistance. The online version of this figure is in color. 
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Figure 4.4: Second-order polynomial fits applied on the measured current-voltage data points in the 

vicinity of the open-circuit point of the current-voltage characteristics of the M60-P275-SMP1 sample for 

an estimation of initial value of the series resistance. The online version of this figure is in color. 
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of the current-voltage characteristic. Therefore, the negative reciprocal of the slope near the open-circuit 

voltage can be used to estimate the initial value of the series resistance, which in this case yields a series 

resistance estimate of 481.43 mΩ (with a standard error R2 = 0.999). 

Acquiring an estimate for the diode reverse saturation current, 𝐼𝑠𝑎𝑡, and the diode ideality factor, 

𝑛, presents a challenge. Due to the lack of a computational scheme aimed at directly arriving at an initial 

guess for these two parameters, an attempt to identify a suitable range of values so as to limit the search 

space and find a relatively centered starting point for the individual model parameters is pursued. In this 

regard, based on the fact that the diode ideality factor for silicon takes any value between 1 and 2 and 

depends on the material properties, a nominal value may be used as an initial estimate for the ideality 

factor. For most mono-crystalline silicon photovoltaic devices, the typical value for n ranges from 1 to 1.5 

[35]. For this requirement of the ideality factor, a nominal value of 1.3, which is often referred to as a 

typical value for mono-crystalline silicon, is used. Based on this estimate for the ideality factor, a special 

case of the single-diode equivalent model, evaluated at the open-circuit point, is used in order to make 

an educated guess about the reverse saturation current, based on the following expression, 

𝐼𝑠𝑎𝑡 =
𝐼𝑠𝑐−

𝑉𝑜𝑐
𝑅𝑠ℎ𝑜

exp(
𝑞𝑉𝑜𝑐
𝑛𝑘𝐵𝑇

) 
 ,                                                                             … (4.5) 

where 𝐼𝑠𝑎𝑡 denotes the saturation current, 𝑉𝑜𝑐 represents the open-circuit voltage, 𝐼𝑠𝑐 is the short circuit 

current, 𝑅𝑠ℎ𝑜  is the estimated initial values for the shunt resistance, 𝑞  is the electron charge                     

(1.6021×10-19 C), 𝑘𝐵  is Boltzmann’s constant (1.3806485×10−23 Joule per Kelvin), and 𝑇  is the ambient 
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temperature. Once the initial estimates for the model parameters have been selected, the next step is 

used in order to define a suitable search space for the model parameters, i.e., definitions for the 

constraints associated with the parameters so as to avoid the possibility of the algorithm returning 

unrealistic values for the model parameters.   

Assuming that these initial estimates are realistic “good” estimates, the search space or bounds 

on the model parameters is defined around the estimated values for the different model parameters. The 

bounds for the series resistance, 𝑅𝑠, the shunt resistance, 𝑅𝑠ℎ , and, the photo-generated, 𝐼𝑝ℎ, current 

may be defined so that they cover values within a certain percentage range around the respective initial 

estimates. As for the diode ideality factor, the bound was defined to cover reasonable values 

corresponding to mono-crystalline silicon, i.e., these values have been observed to range between 1 and 

1.5. Furthermore, utilizing the relation defined through Eq. (4.5), two extremes for the diode ideality 

factor may be used in order to calculate the range of values expected for the corresponding reverse 

saturation current. Table 4.2 lists the initial estimates employed and the upper and lower bounds used for 

the case of the selected mono-crystalline 60 cell photovoltaic solar cells used in this analysis. These initial 

parameter selections, and their respective bounds, correspond to a particular 60 cell mono-crystalline 

silicon solar module. In a general sense, the same initial estimates and bounds may be used for modules 

from the same product category for the extraction of parameters. However, for a better result, it is 

advisable to use initial estimates calculated based on the above procedure using the respective current-

voltage characteristics for each module. 
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4.6 Extraction of the model parameter from the current-voltage characteristics 

Using initial estimates for the five-aforementioned single-diode model parameters and their 

respective bounds, in conjunction with the measured current-voltage data, non-linear least squares 

optimization may be employed for the purposes of parameter extraction. In this optimization process, 

one aims to minimize an objective function, which in our case is the error function, defined by the 

difference between the modeled and measured current values for the range of voltage values provided, 

as is set by Eq.(4.2). For such a problem, a trust region optimization algorithm can be employed, wherein 

the idea is to approximate the objective function, 𝑓, at 𝑥 with a simpler function, 𝑚, that is valid in the 

neighborhood 𝑁  around the point 𝑥 . The simpler function is usually a quadratic approximation of 𝑓, 

defined by a Taylor approximation of 𝑓 around  𝑥, and in the neighborhood defined as the trust region.  A 

trial step, 𝑠, is computed by minimizing the model approximation over 𝑁. Once the trial step is computed, 

the current point is updated, and a decision, regarding the refinement of the trust-region, is made. The 

resultant least-squares fit, with respect to the current-voltage characteristic corresponding to the 

representative sample M60-P275-SMP1 module, along with intermediate fits, is shown in Figure 4.5.  The 

obtained (optimal) model parameters, corresponding to the least-squares fit, are tabulated in   Table 4.3, 

along with the initial estimates that were fed to the algorithm. The “goodness” of the fit is also traced 

quantitatively through the root-mean squares error of the optimal fit, tabulated in Table 4.4, along with 

the modeled peak power point, measured peak power point, and the percentage error between the two.   
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Table 4.2: List of initial estimates for the model parameters and the corresponding lower and upper 

bounds for the case of M60-P275-SMP1 sample. 

Module 60 cell Mono-crystalline Module (M60-P275-SMP1) 

Parameters Estimated Values Lower bound Upper bound 

Shunt Resistance, 𝑅𝑠ℎ   500 Ω 400 Ω 600 Ω 

Series Resistance, 𝑅𝑠   0.49 Ω 0.3 Ω 0.65 Ω 

Diode Ideality Factor, 𝑛 1.15 1 1.5 

Diode Reverse Saturation Current, 𝐼𝑠𝑎𝑡  4×10-9 A 1.7×10-12 A 9×10-6 A 

Photo-generated Current, 𝐼𝑝ℎ  10 A 8 A 11 A 
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Figure 4.5: The intermediate current-voltage characteristics corresponding to successive iterations for the 

least-squares fitting process. The online version of this figure is depicted in color. 
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Table 4.3: List of initial estimates for the model parameters and the optimal modeling parameters 

extracted based on the least-squares fit corresponding to M60-P275-SMP1 sample. 

Module 60 cell Mono-crystalline Module (M60-P275-SMP1) 

Parameters Estimated Values Extract Parameters 

Shunt Resistance, 𝑅𝑠ℎ   500 Ω 598.70 Ω 

Series Resistance, 𝑅𝑠   0.49 Ω 0.31 Ω 

Diode Ideality Factor, 𝑛 1.15 1.084 

Diode Reverse Saturation Current, 𝐼𝑠𝑎𝑡  4×10-9 A 1.095×10-9  A 

Photo-generated Current, 𝐼𝑝ℎ  10 A 9.603 A 

 

 

Table 4.4: Metrics to indicate “goodness” of least-squares fit. 

Module 
60 cell Mono-crystalline silicon photovoltaic solar cell Test 
Module # 1 

Measured Peak Power Point 276.43 Watts 

Modeled Peak Power Point   273.99 Watts 

Error in Peak Power Point 0.885 % 

Root Mean Square Error  0.047 
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Figures 4.6, 4.7, 4.8, and 4.9 depict the speed for convergence of the algorithm. Two metrics, 

namely the norm of the residual and the root mean squares error during successive iterations, are plotted 

as a function of the number of iterations. The convergence rate of the trust-region least-squares is 

observed to be fast.  
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Figure 4.6: Speed of convergence based on the evaluation of objective function given by the norm of the 

residual during successive iterations, on a linear scale. The online version of this figure is in color. 
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Figure 4.7: Speed of convergence based on the evaluation of objective function given by the norm of the 

residual during successive iterations, on a semi-logarithmic scale. The online version of this figure is in 

color. 
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Figure 4.8: Speed of convergence based on the evaluation of root mean square error function during 

successive iterations, on a linear scale. The online version of this figure is in color. 
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Figure 4.9: Speed of convergence traced based on the evaluation of root mean square error function 

during successive iterations, on a semi-logarithmic scale. The online version of this figure is in color. 
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4.7 Calibration for the parameter extraction algorithm 

In order to measure the performance of the proposed algorithm employed for parameter 

extraction, it is instructive to compare the various algorithms that have been employed in the field with 

that employed by us. For the purposes of this analysis, benchmark current-voltage characteristic data, 

measured by Easwarkhanthan et al., in 1986 are employed [70] . These data sets correspond to a 57 mm 

diameter commercial (RTC France) crystalline silicon photovoltaic solar cell measured at 33°C (for an 

irradiance set to 1000 W·m-2) and a 36 cell poly-crystalline silicon solar module (Photowatt-PWP 201) 

measured at 45°C (for an irradiance set to 1000 W·m-2). These case studies data are commonly used by 

others in order to test the effectiveness of the model extraction procedures and comparison of the 

extracted parameters. 

For the first case, the measured current-voltage characteristic, corresponding to a 57-mm poly-

crystalline silicon RTC France photovoltaic solar cell, was used to extract the modeling parameters based 

on the least-squares fitting algorithm, as discussed. Figure 4.10 shows the optimal least-squares fitting 

along with the intermediate fitting results as the optimization progresses through successive iterations. 

As is evident from the plot depicted in Figure 4.11, the least-squares fit appears to be very accurate, since 

the two plots are practically indistinguishable, i.e., as they overlap with each other nearly perfectly. This 

demonstrates the strength of the adopted optimization algorithm with respect to the estimation of model 

parameters.  The root mean square error corresponding to the least-squares fitting proposed is compared 
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with those reported in literature, in Figure 4.12. The comparison shows that the proposed least-squares 

fitting approach based on trust region algorithm yields the least error producing the most optimal fit. 

Initial estimates, corresponding to the model parameters and bounds that limit the search space 

in order to implement the algorithm, are tabulated in the Table 4.5. Based on these, the least-squares 

fitting of the measured current-voltage data corresponding to the RTC France photovoltaic solar cell, the 

optimal parameters set are extracted, and are tabulated in Table 4.6. Table 4.6 also includes the extracted 

model parameters corresponding to the same data set, as reported by other different authors based on 

different optimization approach. It is observed that the least-squares optimization algorithm, based on 

trust-region method, yields superior accuracy compared with the other optimization approaches listed in 

Table 4.6. 

The speed of convergence for the optimization approach, with respect to the least-squares fitting 

of the measured current-voltage characteristic corresponding to RTC France photovoltaic solar cells, are 

traced based on the minimization of the objective function and the root mean square error as a function 

of the number of iterations. This is depicted in Figures 4.13 and 4.14, respectively. 
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Figure 4.10: The intermediate current-voltage characteristics corresponding to the RTC France 

photovoltaic solar cell during successive iterations corresponding to the least-squares fitting process. The 

online version of this figure is depicted in color. 
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Table 4.5: List of the initial estimates of parameters and lower and upper bounds for the RTC France 

photovoltaic solar cell. 

Module Cell Poly-Crystalline RTC France Cell 

Parameters Lower bound Upper bound Estimated Values 

Shunt Resistance, 𝑅𝑠ℎ   40Ω 70 Ω  60 Ω 

Series Resistance, 𝑅𝑠   0.02Ω 0.095 Ω 0.06 Ω 

Diode Ideality Factor, 𝑛 1.03 1.75 1.35 

Diode Reverse Saturation Current, 
𝐼𝑠𝑎𝑡  

1×10-10 A 9.06×10-6 A 5×10-8 A 

Photo-generated Current, 𝐼𝑝ℎ  0.74 A 0.80 A 0.78 A 
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Figure 4.11: The measured and the modeled current-voltage characteristics corresponding to RTC France 

photovoltaic solar cell reproduced using the optimal model parameters. The online version of this figure 

is depicted in color. 
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Table 4.6: Estimated parameters of 57 mm poly-crystalline silicon RTC France photovoltaic solar cell measurement data based on different 

optimization approaches. 

Parameters Least-Squares 
Hamid et al. [39] Askarzadeh et al. 

[44] 
Huang et al. [40] 

Shunt Resistance, 𝑅𝑠ℎ   44.992836 Ω 53.6894 Ω 52.2903 Ω 59.012 Ω 

Series Resistance, 𝑅𝑠   0.038408 Ω 0.03638 Ω 0.03659 Ω 0.0354  Ω 

Diode Ideality Factor, 𝑛 1.477108 1.48107 1.47583 1.5033 

Diode Reverse Saturation Current, 𝐼𝑠𝑎𝑡  2.09395×10-7  A 0.32267 ×10-6  A 0.30623 ×10-6  A 0.4000 ×10-6  A 

Photo-generated Current, 𝐼𝑝ℎ  0.761026 A 0.76078 A 0.76080 A 0.7607 A 

Root Mean Square Error, RMSE  8.7×10-4   9.86024×10-4   9.9124×10-4   0.00139 

 
Parameters 

Easwarakhanthan Bouzidi AlRashidi El Naggar  

et al. [70] et al. [41] et al. et al. 
  

[43] [38] 

Shunt Resistance, 𝑅𝑠ℎ   53.7634 Ω 60.2410 Ω 64.1026 Ω 43.1034 Ω 

Series Resistance, 𝑅𝑠   0.0364 Ω 0.0364 Ω 0.0313 Ω 0.0345 Ω 

Diode Ideality Factor, 𝑛 1.4837 1.4816 1.6 1.5172 

Diode Reverse Saturation Current, 𝐼𝑠𝑎𝑡  3.223×10-7  A 3.267×10-7  A 9.980×10-7  A 4.798×10-7  A 

Photo-generated Current, 𝐼𝑝ℎ  0.7608 A 0.7607 A 0.7617 A 0.7620 A 

Root Mean Square Error, RMSE  0.6251 0.3161 0.2863 0.0017 
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Figure 4.12: Comparison of the root mean squares error corresponding to the optimal least square fitting of current-voltage characteristic of RTC 

France cell based on different optimization algorithms. The online version of this figure is depicted in color. 
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Figure 4.13: Speed of convergence based on the evaluation of the objective function given by the norm of 

the residual during successive iterations with respect to the least-squares fitting of the measured current-

voltage data corresponding to RTC France photovoltaic solar cell, on a linear scale. The online version of 

this figure is in color. 
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Figure 4.14: Speed of convergence based on the evaluation of the root mean square function during 

successive iterations with respect to the least-squares fitting of the measured current-voltage data 

corresponding to RTC France photovoltaic solar cell, on a linear scale.  The online version of this figure is 

in color. 
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Following an analogous approach, the model parameter set, corresponding to the 36-cell poly-

crystalline silicon solar module (Photowatt-PWP 201), was extracted and compared to verify the 

application of the algorithm with respect to current-voltage data corresponding to the modules 

considered in this analysis. Figure 4.15 shows the optimal least-squares fit, along with the intermediate 

fitting results for the optimization approach as it progresses through successive iterations. As is evident 

from the plot depicted in Figure 4.16, the least-squares fits appear to be very accurate, since the two plots 

are practically indistinguishable as they overlap with each other near perfectly. This finding concurs with 

the result obtained for the case of the RTC France solar cell current-voltage characteristic, as discussed 

previously.  

The initial estimates, corresponding to the model parameters and the bounds to limit the search-

space used to implement the algorithm, are tabulated in Table 4.7. Based on these parameters, the least-

squares fit for the measured current-voltage data corresponding to the 36-cell poly-crystalline silicon solar 

module (Photowatt-PWP 201), the optimal parameters set are extracted, and are tabulated in Table 4.8. 

Similarly, the model parameters, extracted for this particular case, as reported by others based on 

different optimization approaches, are tabulated in Table 4.8.  This shows that the least-squares 

optimization algorithm based on the trust-region method performs equally well for both cell and module 

data.  

The speed of convergence for the optimization approach with respect to the least-squares fit for 

the measured current voltage data of 36 cell poly-crystalline silicon solar module (Photowatt-PWP 201)  
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Figure 4.15: The intermediate current-voltage characteristics corresponding to 36 cell poly-crystalline 

silicon solar module (Photowatt-PWP 201) during successive iterations corresponding to the least-squares 

fitting process. The online version of this figure is depicted in color. 
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Figure 4.16: The measured and the modeled current-voltage characteristics corresponding to 36 cell poly-

crystalline silicon solar module (Photowatt-PWP 201) reproduced using the optimal model parameters. 

The online version of this figure is depicted in color. 
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Table 4.7: List of initial estimates of parameters and bounds for the 36-cell poly-crystalline silicon solar module (Photowatt-PWP 201). 

Module 36 Cell Poly-Crystalline RTC France Module 

Parameters Lower bound Upper bound Estimated Values 

Shunt Resistance, 𝑅𝑠ℎ   100Ω 1000 Ω 700 Ω 

Series Resistance, 𝑅𝑠   1.1Ω 2.8 Ω 2.5 Ω 

Diode Ideality Factor, 𝑛 1.03 1.5 1.25 

Diode Reverse Saturation Current, 𝐼𝑠𝑎𝑡  1×10-10 A 9×10-6 A 1.5×10-6 A 

Photo-generated Current, 𝐼𝑝ℎ  1.02 A 1.04 A 1.03 A 

 

Table 4.8: Estimated parameters 36 cell poly-crystalline silicon solar module (Photowatt-PWP 201) module measurement data based on different 

optimization approaches. 

Parameters Least-Squares 

Easwarakhanthan 
et al. 
 [70] 

Bouzidi 
et al. 
[41] 

AlRashidi 
et al. 
[43] 

El Naggar  
et al. 
[38] 

Shunt Resistance, 𝑅𝑠ℎ   891.174657 Ω 714.2857 Ω 555.5556 Ω 555.5556 Ω 833.3333 Ω 

Series Resistance, 𝑅𝑠   1.210525 Ω 1.2053 Ω 1.2030 Ω 1.2057 Ω 1.1989 Ω 

Diode Ideality Factor, 𝑛 1.431209 1.3414 1.3385 1.3458 1.3561 

Diode Reverse Saturation 
Current, 𝐼𝑠𝑎𝑡  

3.18036×10-6  A 3.1756×10-6  A 3.0760×10-6  A 3.2875×10-6  A 3.6642×10-6  A 

Photo-generated Current, 𝐼𝑝ℎ  1.031043 A 1.0313 A 1.0339 1.0318 1.0331 

Root Mean Square Error, RMSE  0.002101 0.0118 0.6130 0.7805 0.0027 
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Figure 4.17: Speed of convergence based on the evaluation of the objective function given by the norm of 

the residual during successive iterations with respect to the least-squares fitting of the measured current-

voltage data corresponding to a 36-cell poly-crystalline silicon solar module (Photowatt-PWP 201), 

depicted on linear scale. The online version of this figure is depicted in color. 
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Figure 4.18: Speed of convergence based on the evaluation of the root mean square error function during 

successive iterations with respect to the least-squares fitting of the measured current-voltage data 

corresponding to a 36-cell poly-crystalline silicon solar module (Photowatt-PWP 201), depicted on a linear 

scale. The online version of this figure is depicted in color. 
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are traced based on minimization of the objective function and an additional metric of root-mean squares 

error as a function of the number of iterations. They are depicted in Figures 4.17 and 4.18, respectively. 

4.8 Model Parameter Extraction Analysis 

The least-squares optimization algorithm based on the trust-region method for parameter 

extraction is then employed to extract model parameters corresponding to the remaining twenty-nine 

sample photovoltaic modules (from Table 4.1) from their respective measured current-voltage 

characteristics, and similar results are acquired for each case.  Depicting the results for model parameter 

estimation for all thirty samples of photovoltaic modules (from Table 4.1) through plots corresponding to 

the progression from intermediate result of fitting leading up to the optimal fit, and plots corresponding 

to the objective function, would require numerous plots. Since every ten samples of these thirty 

photovoltaic module samples are associated with the three classes of the product groups, which are 

similar in terms of the types of cells used and processes involved, it is reasonable to believe that 

parameters for these photovoltaic modules will behave more or less similarly for each class.  Figures 4.19 

through 4.23 depict the five parameters extracted corresponding to the thirty modules. Any significant 

outliers, especially below the relatively uniform cluster of the parameter values, corresponding to similar 

modules, can indicate the relative performance for the different modules. 
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Figure 4.19: Extracted shunt resistance corresponding to the each of the all photovoltaic modules based 

on least-squares fitting of the measured current-voltage data. The online version of this figure is depicted 

in color. 
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Figure 4.20: Extracted series resistance corresponding to the each of the test modules based on least-

squares fitting of the measured current-voltage data. The online version of this figure is in color. 
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Figure 4.21: Extracted diode reverse saturation current corresponding to the each of the test modules 

based on least-squares fitting of the measured current-voltage data. The online version of this figure is in 

color. 
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Figure 4.22: Extracted diode ideality factor corresponding to the each of the test modules based on least-

squares fitting of the measured current-voltage data. The online version of this figure is in color. 
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Figure 4.23: Extracted photo-generated current corresponding to the each of the test modules based on 

least-squares fitting of the measured current-voltage data. The online version of this figure is in color.  
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Chapter 5 Conclusions 

 In this thesis, an approach has been developed wherein the model parameters corresponding to 

a photovoltaic solar device, may be extracted from the measured electrical characteristics of the device. 

An empirical model, based on a single-diode equivalent electrical circuit, was adopted for the analysis of 

photovoltaic devices in their elementary form as individual solar cells and as commercial units fabricated 

using collection of solar cells to form of solar modules. This analysis was rooted in the current-voltage 

characteristics associated with such device, modeled based on a p-n junction behavior of the solar cells in 

conjunction with associated non-idealities of the device. The impact of individual model parameters on 

the overall electrical characteristics of the device were also demonstrated through a sensitivity analysis. 

Further to this, the collective impact of all model parameters on current-voltage characteristics may be 

further explored to get a better understanding of how the device performance is related to model 

parameters.  

As part of the computational approach proposed, the problem of model parameter extraction 

from the measured current-voltage characteristics of photovoltaic device was formulated as a 

multivariate optimization problem based on a least-squares fitting approach using a trust region 

optimization strategy. Through a comparison with other approaches that have been used for parameter 

extraction corresponding to a set of benchmark data, it was demonstrated that the proposed approach 

based on the trust-region based optimization algorithm, produces results which are improved over those 

employed by others. The proposed extraction approach resulted in the most accurate fit of the 
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experimental current-voltage data to the model resulting in accurate extraction of the model parameters. 

This was demonstrated through fitting of benchmark current-voltage data associated with a silicon solar 

cell (57 mm RTC France solar cell) which resulted in the root means squares error of 8.7 × 10-4 A, a figure 

which is the lowest among the other extraction schemes. Similar results were obtained for the case of 

benchmark current-voltage data corresponding to a photovoltaic solar module. Finally, the parameter 

extraction approach was then applied to experimental current-voltage characteristics corresponding to 

thirty-one different samples of crystalline silicon based photovoltaic solar module produced by our 

anonymous industrial sponsor, and the resultant model parameters were determined based on this 

parameter extraction process. As expected, the extraction approach resulted in model parameter 

extraction with an average root mean square error of 0.0459 A among the thirty-one sample modules 

studied. Variations in these parameter values were observed according to the different categories of the 

product samples tested.  

This parameter extraction is viewed as offering a first step to a new quality-control approach. If 

the range of model parameters corresponding to “good-quality” photovoltaic solar cells can be defined, 

then it may be possible to reject and classify solar modules based on parameter extraction in of itself. 

Unfortunately, given that no control on the deposition and materials were exercised and were performed 

by the industrial partner of this project, this was not possible for this project itself. This thesis represents 

a preliminary step towards a deeper research question. Control over the constituent material and 

composition would facilitate the task of defining the subset of the values (extent of the envisioned n-
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dimensional hyperspace) for each model parameters that could be used for pass/fail criterion in quality 

assessment. In addition to material characterization, the use of extracted model parameters may be 

expanded to explore the power engineering aspects of the field especially with regards to power 

conditioning applications such as its use in maximum power tracking controllers, inverters, etc. Clearly, 

this work will have to be performed in the future. 
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