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Abstract

Modelling wildland fire spread stochastically is an important way to in-
corporate the uncertainty associated with this phenomenon. Fitting such a
model to data from remote-sensed images could be used to provide accurate
fire spread risk maps. We study a particular model from this perspective.
One objective of this thesis is to verify the model on data collected under
experimentally controlled conditions. We present the analysis of data from
small-scale experimental fires that were digitally recorded. Data extraction
and processing methods and issues are discussed, along with an estimation
methodology. A critical part of the estimation methodology revolves around
the smoothing of observed counts of burning and burnt out pixels as func-
tions of elapsed time. We employ nonparametric regression for this purpose
and consider two bias reduction strategies as possible ways to obtain more
accurate estimates of the parameters underlying the stochastic fire spread
model. An argument for partial validation of the model is also provided.
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Chapter 1

Introduction

In this era of uncertainty due to climate change and other human
impacts on the environment, it is as important as ever to quantify
the risks associated with wildland fires. The risk of large catastrophic
wildland fires appears to be increasing in many countries as evidenced
by recent devastating wildfires in Europe, Australia and the United
States, not to mention the 2016 Fort McMurray fire in Canada.

Risk due to wildfire has been studied in the past, for example, by
Braun et al. [BJL+10], where the fire risk was studied in a localized area
using the Burn-P3 fire growth simulator of Parisien et al [PKH+05].
This simulator is an attempt to incorporate uncertainty into the de-
terministic fire spread model, Prometheus, which was developed un-
der the direction of Tymstra [Tym05]. Deterministic models such as
Prometheus and its American counterpart, Farsite (Finney, [Fin04]),
are the end result of large amounts of research into wildfire behaviour.
However, as fires such as the one at Fort McMurray demonstrate, more
work needs to be done. Modelling uncertainty more effectively is one
aspect of this. The stochastic lattice spread model of Boychuk et al.
[BBK+07] was proposed as a possible way to approach uncertainty in
fire spread directly. Although the model has certain intuitive appeal,
its use operationally is still a long way off, largely because it has not
been validated on real fire data. The kind of data that would be ideal
for this is not yet widely available, since direct observation of grow-
ing wildfires is not straightforward, even with remote sensing. On the
other hand, we can take the viewpoint that biological and medical re-
searchers often take when they cannot study human subjects directly;
they consider animal models, realizing that not all observations and in-
ferences made on these models are transferable to the human context,
but rather, particular features and trends might be applicable.

Some typically measured factors in fire data are slope aspect, wind
speed, wind direction, hourly precipitation, temperature, relative hu-
midity, type of fuel, and so forth. However, there also exists some
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Chapter 1. Introduction

sources of uncertainty. It might be the cases that the measured factors
are not known at a very precise resolution or at the appropriate time or
location; and there may be considerable heterogeneity in fuel structure,
for instance, different sized trees, differences in understory, and so on.

In this thesis, then, we study a fire smouldering experiment that
produces data that can be used to calibrate a stochastic fire growth
model, and to quantify model performance. This small-scale experi-
ment is our version of a “mouse model”. Not all characteristics of this
model carry over to the wildfire context, but certain insights might be
drawn from these kinds of experiments.

Videos of smouldering wax paper, treated with potassium nitrate,
are studied and processed into data that can be analyzed using stochas-
tic forest fire model. Each experiment will have controlled and uncon-
trolled conditions. The controlled conditions are elevation, wind speed,
wind direction, and ignition location. An uncontrolled condition can
be non-uniformly coating potassium nitrate on wax paper. The effects
of the uncontrolled conditions are to be captured in the uncertainty of
the stochastic model. After the movies of smouldering wax paper have
been collected, an image processing algorithm will be used to convert
the videos to snapshots, similar to remote sensing data obtained by
satellites. The snapshots are converted into data images with three
regions; unburnt fuel, burning fuel, and burnt out fuel.

The objectives of this thesis are twofold. The first goal is to study
the Boychuk model from the point of view of data analysis, and show
that the results from the experiments validate the stochastic models
performance. Given data from a fire, is it possible to fit the model to
the data, and is it possible to do model assessment? The second goal
is to apply modern smoothing techniques to assist in the fitting of the
stochastic model and to determine whether some previously proposed
bias reduction strategies in nonparametric regression lead to improved
parameter estimates in this setting. Chapter 2 will provide a litera-
ture review on fire behaviour and models, as well as the background of
local polynomial regression that we employ when fitting the stochas-
tic model under study. The experimental design and apparatus used
are described in Chapter 3, along with the data extraction and image
segmentation procedure. Chapter 4 will argue that it is possible to
show that the parameters for the simplest special case of the stochastic
model can be estimated from a sequence of pictures of a single fire.
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Chapter 5 outlines the application of two bias reduction techniques,
double-smoothing and data sharpening, to the fitting of the stochastic
fire spread model. Results and conclusions will be provided in Chapter
6 with a discussion of some possible further work.
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Chapter 2

Literature Review

2.1 Wildland Fire Behaviour and Models

Weber and Stocks [WS98] postulated that increasing temperatures
could lead to increased numbers of wildland fire ignitions, a longer
fire season and numbers of days with severe fire-weather. In some re-
gions of Canada, fire seasons are getting longer (Albert-Green et al.
[AGDMW12]) and fire risk has been shown to be increasing (Woolford
et al., [WCDM10], [WDM+14]). Annual area burned has increased and
has been connected to human-induced climate change (Gillett et al.,
[GWZF04]). Studies that analysed data output from climate model
scenarios have suggested increased severity ratings [FvW], area burned
[FLA+05], ignitions [WNF10] and a longer fire season [WF93]. Con-
sequently, the development of accurate, spatially explicit fire spread
models is of crucial importance for understanding aspects of fire be-
haviour and forecasting fire spread risk. Such models can be used at
the incident level for individual fire management, or be coupled to fire
occurrence and fire duration models in a simulation-based approach for
longer-term strategic planning by wildland fire management agencies.

Deterministic fire spread models, such as PROMETHEUS [Tym05]
and FARSITE [Fin04], play an important role in this arena. Although
these simulators are well established and used frequently in Canada,
the United States and in several other countries, their chief weakness
is that they are not stochastic. Fire managers would benefit from
probability maps to indicate where a currently burning fire may spread.
Burn-P3 [PKH+05] is an ensemble-type simulation procedure which
randomizes weather sequences in order to induce randomness, but this
kind of procedure may be more appropriate for studying fire risk on
large temporal and spatial scales; modelling the uncertainty associated
with a single fire requires a different approach.

The paper by Garcia et al. [GBBT08] attempts to introduce stochas-
ticity to the PROMETHEUS model via a block bootstrap procedure,
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2.2. The Boychuk Fire Spread Models

and Han and Braun [HB14] incorporate uncertainty through introduc-
ing an error component into the underlying model for rate of spread
(ROS), as a parametric bootstrap. Much work remains to be done in
order to make these procedures operational.

2.2 The Boychuk Fire Spread Models

A stochastic lattice-spread model of Boychuk et al. [BBK+07] was
studied by Braun and Woolford [BW13]; in the latter paper, an inter-
esting variant was introduced as well. As in [BW13], we refer to the
original version of the model as Model A and the variant as Model B.
According to the simplest special case of Model A, the landscape is as-
sumed to be flat, the weather conditions are constant, and it assumed
that there is no wind. The fuel type and density is also assumed to
be homogeneous. On this landscape, a regular square n×m lattice is
imposed. Each of the grid cells can be in one of three possible states:

– unburned fuel (F)

– burning fuel (B)

– burnt out (O).

Transitions between these states occur as follows: initially (i.e. at time
t = 0), the grid cell at some location (i, j) is in state B, while all
other cells are in state F; the fire burning in cell (i, j) will spread to
each of its four nearest neighbours (i.e. north, south, east and west) in
random amounts of time T0,1, T0,−1, T1,0, and T−1,0, provided it does not
burn out first; specifically, at time T0,1, the cell at (i, j + 1) makes the
transition from state F to B, if the cell is not already in state B. Similar
transitions are made by cell (i, j− 1) at T0,−1, cell (i+ 1, 0) at T1,0 and
cell (i − 1, 0) at T−1,0. These times are assumed to be independent
and exponentially distributed with mean 1/λ. Once a cell has made a
transition to state B, fire spreads from that cell to the sites of its nearest
neighbourhood at a new set of independent exponential random times.
Each burning cell waits an exponentially distributed amount of time
until burning out, entering state O. The burn-out rate parameter is µ.
Once in state O, a grid cell will make no further transitions.

Note that because of the minimum property of independent and
identically distributed exponential random variables, when there are k
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burning cells, the time until the first of these sites burns out is expo-
nentially distributed with rate kµ. This, together with the memoryless
property of the exponential distribution, provides an equivalent way of
specifying the burn-out rule for Model A: a cell is randomly selected
from the set of k sites that are burning at the time of the last event
and that cell makes the transition to O after the expiry of a simulated
exponential kµ time period. Under Model B, a site is chosen to burn
out at this same time, but not at a randomly selected site; instead,
the site which has been burning longest is chosen to burn out. This
may be a more realistic rule. This innovation had not been considered
prior to [BW13]. The authors demonstrated that Model A has some
deficiencies. In particular, its burn out rule can lead to simulations
with large numbers of unburnt “islands”, a phenomenon that does not
occur in the actual micro fire experiments.

2.3 Wildfire and Experimental Data

The data requirements for modelling wildland fire risk are mas-
sive, and the current available databases are limited in both the time
and spatial dimensions for a thorough examination of the accuracy of
stochastic fire spread models. The relevant weather data, including
wind speed, wind direction, relative humidity, temperature and precip-
itation, are often only available at a sparse network of weather stations.
Data available from remote sensing is limited in its accuracy and fre-
quency. Topographical information is of somewhat limited accuracy as
well. Satellite observations of evolving wildfires are occasionally avail-
able, but again, temporal frequency is low, and spatial resolution is
limited.

In recent years, laboratory experiments have been conducted in
order to study wildfire behaviour on a small-scale. A typical exam-
ple of such a “burning-table” experiment is described in the paper of
Martinez-de-Dios et al. [MdDAG+06] where the fire behaviour of dif-
ferent fuel types are studied under various scenarios. Such experiments
are important because they provide physical models of wildfire where
the same types of fuels are burned; of course, such models do not cap-
ture all aspects of a wildfire, such as spotting behaviour, and scaling
the results is difficult. Larger scale experiments have been conducted
in fire-proof wind tunnels and these, again, provide important insights
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into fire behaviour, but there are, again, limitations. The paper by
Zhang et al. [ZZAL92] provides another type of physical model, using
ordinary bond paper, coated with potassium nitrate, to reduce flam-
ing; the authors argue that the fibers of the paper relative to the size of
the fire are roughly proportional to the stems of trees in an actual for-
est, providing more satisfactory scaling properties. [BW13] conducted
some experiments using wax paper because it burned more cleanly than
bond paper. The experimental data that [BW13] analyzed came from
31 small fires under identical conditions except the measured factor -
slope. The results from previous experiments showed that smouldering
wax paper, coated in potassium nitrate, exhibited similar patterns to
what was observed in forest fires [BW13].

We adopt a similar physical modelling approach to that of [ZZAL92]
and [BW13] in this thesis. In order to examine a numerical fire spread
model on real data, a fire smouldering experiment, described in Chapter
3, will be configured to control variables important in estimation of fire
growth rates and the implementation of the Boychuk lattice spread
model.

2.4 Nonparametric Regression

Nonparametric or kernel regression represents a set of techniques
for smoothing data. An important subset is local polynomial regres-
sion which is frequently used to estimate unknown regression functions.
The underlying idea is premised on the use of a nonnegative symmetric
density function K(x) which is used to assign weights to observations
upon applying least-squares polynomial regression. By assigning low
weights to observations distant from the region of interest, one is able
to obtain reasonable approximations to arbitrary functions using rel-
atively low order polynomials. The bandwidth, often denoted by h,
controls the amount of smoothing, through its effect on the kernel
weights.

We are given n independent observations (X1, Y1), (X2, Y2), . . .,
(Xn, Yn) from the model:

Y = g(X) + σ(X)ε, (2.1)

where g(·) is an unknown function that has at least k derivatives, σ(X)
is a positive valued function of X, X and ε are independent, and ε has
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mean 0 and variance 1.
The basic definition of local kth degree polynomial regression esti-

mator of g(x), which follows from a local least-squares argument, is:

ĝLP (x) = eT1

β̂(x)︷ ︸︸ ︷
{X(x)TW (x)X(x)}−1X(x)TW (x)Y , (2.2)

where e1 = (1, 0, ...0)T , W = diag(Wi(x)), Y = (Y1, ..., Yn)T ,

Wi(x) = K

(
Xi − x
h

)
(2.3)

and

X(x) =

 1 (X1 − x) · · · (X1 − x)k

...
... · · · ...

1 (Xn − x) · · · (Xn − x)k

 .
Since e1 is the (k+1)-vector with 1 in the first position and 0 elsewhere,
it ensures that only β0 is obtained from equation (2.2). Details of the
argument giving rise to the least-squares estimator, based on Taylor
Series are given below for the special case of k = 1. (See Section 2.4.2.)

Nadaraya-Watson (NW) regression (k = 0) is one of the popular
kernel regressions as it is relatively easy to construct. Local linear
regression (k = 1) is often used, as well, since it has better asymptotic
properties, but higher order local polynomial regressions suffer from
sparse data issues.

Kernel regression estimates of an unknown non-linear function are
subject to bias. Therefore, methods have been developed to reduce
bias while attempting to maintain the order of the asymptotic variance.
This thesis will focus on “double-smoothing” and “data sharpening”
as proposed in [HH09] and [CHR00], respectively.

Four estimators are considered in [HH09]. They include the lo-
cal linear estimator, local cubic estimator, and the proposed double-
smoothing local linear estimator as well as a previously proposed esti-
mator of Choi and Hall [CH98]. We summarize this literature in the
next few subsections. The methods for bias reduction will be intro-
duced in detail in Section 2.5.
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2.4.1 Nadaraya-Watson Estimator

Suppose independent vectors Xi and Yi are from a multivariate
distribution for 1 ≤ i ≤ n. Xi’s are p-vectors and Yi’s are scalars. The
goal is to estimate g(x) = E[Y |X = x], which is the expected value of
Y given X is x. The Nadaraya-Watson estimator offers the simplest
approach to nonparametric regression. It estimates g(x) as a locally
weighted average, using a kernel as a weighting function. Let ĝNW (x)
denote the conventional Nadaraya-Watson estimator:

ĝNW (x) =

∑n
i=1 YiWi(x)∑n
i=1Wi(x)

, (2.4)

where the weights Wi(x) are defined at (2.3).

2.4.2 Local Linear Estimator

In contrast to the Nadaraya-Watson estimator, the local linear es-
timator preserves linear data. It fits locally a straight line instead of
constants, given n independent observations (X1, Y1), (X2, Y2), ... ,
(Xn, Yn) from the model:

Y = g(X) + σ(X)ε, (2.5)

where g(·) is an unknown function that has at least one derivative, X
and ε are independent, and ε has mean 0 and variance 1. The goal is
to find g(X) that minimizes:

n∑
i=1

{Yi − E[Yi|Xi]}2 =
n∑
i=1

{Yi − E[g(Xi) + σ(Xi)εi]}2 (2.6)

=
n∑
i=1

{Yi − g(Xi)}2. (2.7)

Without further assumptions, it’s difficult to determine g(X). How-
ever, Taylor’s Theorem suggests that g(Xi) ≈ g(x) + g′(x)(Xi−x). By
substituting the Taylor Expansions for g(Xi) in (2.6)) and including
a symmetric kernel function K(·)1, (2.6) becomes a local least squares

1In [HH09], the Epanechnikov kernel: K(u) = 3
4
(1 − u2), where |u| ≤ 1 is used for all

the estimators.
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objective:

n∑
i=1

[
Yi −

(
g(x) + g′(x)(Xi − x)

)]2
K
(Xi − x

h

)
. (2.8)

The minimizer to (2.8) is the local linear estimator, which is obtained
by minimizing

n∑
i=1

[
Yi −

(
β0 + β1(Xi − x)

)]2
Wi(x), (2.9)

where β0 is the regression mean g(x), as given in the definitions at (2.2)
and (2.3), and β1 is its first derivative g′(x).

2.4.3 Local Cubic Estimator

In a very similar fashion, the local cubic estimator can be obtained
by using the Taylor Expansions of g(Xi) and minimizing the local least
squares as below:

n∑
i=1

[
Yi −

(
β0 + β1(Xi − x) +

β2(Xi − x)2

2!
+
β3(Xi − x)3

3!

)]2
Wi(x), (2.10)

where β2 is the second derivative of g(x) and β3 is its third derivative.
Another related method that we mention in passing, due to Choi

and Hall [CH98], is a weighted average of three local linear estimators.
Since this method is not a focus of the thesis, it is not described further
here.

2.5 Bias Reduction Strategies

2.5.1 Double-smoothing Local Linear Estimator

By generalizing [CH98], [HH09] came up with the idea of double-
smoothing. Instead of three local linear estimators as in [CH98], double-
smoothing weighted-averages all the local linear estimators. It is named
double-smoothing because it involves two steps of smoothing. The first
step of smoothing is to calculate the local linear estimator and its first
derivative (i.e., β0 and β1). The second step is to obtain the weighted
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average of the Taylor Expansions of the estimator. Its mathematical
expression is as follows:

ĝ(t) =

∫ [
β̂0(x) + β̂1(x)(t− x)

]
K
(t− x

h

)
dx. (2.11)

Double-smoothing is developed to estimate the regression mean with
a bias reduction without changing the order of the asymptotic vari-
ance. The motivation behind this new estimator was to make use of
information from both the intercept (β0) and the slope (β1), while LL
considers only the intercept (β0). In addition to this intuitive reason,
LL has relatively large bias and LC is susceptible to sparse data issues
when the sample size is small [HH09]. DS is, therefore, a compromise
method between LL and LC as it reduces asymptotic bias and it is less
likely to be affected by sparse data. [HH09] suggest that LC and DS
are comparable as they all reduce the asymptotic bias by two orders of
magnitude to h4 from h2, but it’s hard to determine which one is a bet-
ter estimator than the others since the orders of variance are the same
[HH09]. That is why He and Huang compared the relative variability
for the estimators in their paper using simulation.

2.5.2 Data Sharpening

Another important procedure is data sharpening. In [CHR00],
Choi, Hall and Rouson introduced some techniques to move the data in
such a way that the fume hood methods have reduced bias. Although a
wide selection of conventional estimators are available, Choi, Hall and
Rousson considered two estimators in detail in their paper: NW and
LL. Let ĝLL(x) denote the conventional local linear estimator.

[CHR00] introduced three versions of data sharpening for Nadaraya-
Watson estimator. The first version involves moving the design vari-
ables (Xi’s) so that they become more concentrated in places where the
design density is high and more sparse in places where it is relatively
low [CHR00]. Let ĝNW,1(x) denote the first data sharpening version of

ĝNW . By replacing the design points Xi’s with X̂j =
∑

iXiWi(Xj)∑
iWi(Xj)

, we

can obtain

ĝNW,1(x) =

∑
i YiK

(
X̂i−x
h

)
∑

iK
(
X̂i−x
h

) .
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The second version adjusts the response variables (Yi’s) and keeps

the explanatory variables unchanged. Set Ŷj = ĝNW (Xj), and Ỹj =

2Yj − Ŷj = Yj + ej, where ej are the residuals. We replace Yi with

their sharpened form Ỹj. That is, the second data sharpening version
of ĝNW is

ĝNW,2(x) =

∑
i ỸiWi(x)∑
iWi(x)

.

The third version alters both design and response variables. We
take the sharpened X̂j from version one and put Y̌j = 2Yj − ĝLL(Xj)
as the new sharpened response points. Therefore,

ĝNW,3(x) =

∑
i Y̌iK

(
X̂i−x
h

)
∑

iK
(
X̂i−x
h

) .

On the other hand, there are two versions of data sharpening for
the local linear estimator. Version one is to move both variables. Set
X̃j = 2Xj − X̂j. Each (X, Y ) is replaced by (X̃, Ỹ ), as defined
previously, and

ĝLL,1(x) = eT1 {X̃(x)T W̃ (x)X̃(x)}−1X̃(x)T W̃ (x)Ỹ .

However, in contrast to the Nadaraya-Watson estimator, this time we
slightly shift the design points so that they are a little more closer
together in places where the design density is relatively low and a little
further apart where the concentration is high [CHR00]. This is an
attractive feature when dealing with sparse data.

The second data sharpened local linear estimator is similar to ĝNW,2(x).
By replacing Y by Y̌ , which is previously defined, we obtain

ĝLL,2(x) = eT1 {X(x)TW (x)X(x)}−1X(x)TW (x)Y̌ .

Correspondingly, ĝLL,1(x) and ĝLL,2(x) have the definition of ĝLL.
To conclude this chapter, both double-smoothing and data sharp-

ening are ways to reduce bias while maintaining a similar level of vari-
ability. There is always a trade-off between bias and variance.
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2.5.3 Choice of Bandwidth

The performance of local polynomial regression estimates depends
critically on the bandwidth h, and much has been written on the subject
of bandwidth selection. A standard reference is [WJ95]. Among the
methods that have been proposed are leave-one-out cross-validation
and so-called direct plug-in methods.

The method that we will use is the plug-in method, available in
coded form in the R package KernSmooth as dpill. This function
attempts to balance the asymptotic bias with the asymptotic variance
in an optimal way for local linear regression. It is not optimized for the
data sharpening or the double-smoothing applications, but it provides
a reasonable balance between speed of computation and accuracy.

2.5.4 Boundary Correction

Another problem associated with nonparametric regression, partic-
ularly with local constant regression, is boundary bias. This is due
to the use of symmetric kernels in the determination of the regression
weights.

Without some form of adjustment, estimates of the regression func-
tion at the boundaries can be quite distorted, due to a lack of data
beyond those boundaries. Double-smoothing, in particular, is suscep-
tible to such boundary effects.

In this thesis, “mirroring” is employed as a boundary adjustment. It
is a simple technique that reflects the data points through the bound-
ary, on both sides. The mirroring approach mitigates the problems
seen in double-smoothing.

A number of other approaches have been suggested to handle such
boundary issues, including asymmetric boundary kernels but these lie
outside the scope of this thesis.
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Chapter 3

Smouldering Experiments

In this chapter, we describe the experimental set-up and design used
to collect video data for small micro-fires. In this case, the fires were
prevented from open flaming, for safety reasons. A number of different
factors were considered in the actual experiments, but our subsequent
analysis will be confined to the simplest case – where the fire burns on
a flat horizontal surface. The other cases were recorded for a larger
study to be carried out by other members of the lab.

3.1 Apparatus

The apparatus used for the smouldering experiment is one sided
wax paper, a laboratory scale to weigh the potassium nitrate, a walled
tray to soak wax paper, a flat tray to smolder the wax paper, a hot
plate to dry the wax paper, a metal breadboard (as the base) and a
few metal pegs to hold and fix the flat tray, a fume hood for a steady
and safe experimental environment, a camera to film the experiment,
and an ignition device. The one-sided wax paper is chosen so that it
does not absorb potassium nitrate, and it is still easy to ignite. The
potassium nitrate-to-water ratio in the solution is 1:10. The dimensions
of the flat tray are approximately 38.74×26.04×1.91 cm. It is painted
black (by non-flammable spray) to minimize reflected light. There are
holes drilled on the pan to allow for the attachment to the breadboard,
as well as for ignition from below. The ignition device is a barbeque
lighter with a bendable head. Metal pegs are screwed into the base,
and the camera is attached at a fixed position, 48cm high from the
base so that it can record the experiments from the top. The camera
model is the Olympus Stylus 600, manufactured in 2010.

The experiments are conducted to investigate the impact of environ-
mental effects, such as elevation and wind velocity, to fire spread rate.
There are four groups of experiments: “flat”, “sloped”, “wind-flat”,
and “wind-sloped”. There are three steps involved in the experimen-
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tal design. In the first step, wax paper is soaked in potassium nitrate
solution for an hour, with 30 minutes for each side, in the walled tray.
Then it is dried on a hot plate with the target temperature at 60◦C.
The soaking and drying steps are identical for all the experiments. The
last step is to burn the dried wax paper. During the smouldering, wax
paper is fixed on the flat tray by tape with some space in between to
allow enough oxygen for burning. Four pegs of the same length are
used to hold the corners of the pan for “flat” experiments. The wax
paper is ignited at the center from below by the bendable lighter. For
the “sloped” experiments, different lengths of pegs are used to create
the angles. Using pegs, two slope angles are accomplished for different
slopes, 11◦and 32◦. The ignition spot is also at the center. Differ-
ent slopes allow us to investigate the effect of elevation on fire rate of
spread. “Wind-flat” and “wind-sloped” experiments are same to “flat”
and “sloped” experiments, respectively, except including the effect of
wind velocity by using a fan. The camera attached from the top starts
filming the experiments before the ignition and stops when the smoul-
dering is out of scope or when the boundary of the paper has been
reached.

It is worth mentioning that all the “flat” experiments are conducted
in the dark. This gives easier analyses than the crude estimate of fire
rate of spread taken by [BW13]. By conducting the experiments in the
dark, problems with segmenting the images are avoided since the visible
light camera detects only the light from the fire. Thus, only black and
non-black are registered for each movie frame. Tracking the colour of
each pixel through time results in a sequence of blacks at or near zero,
followed by a clearly nonzero value at the time the pixel burns. A return
to zero occurs when the pixel is burnt out. Segmenting follows easily
because each pixel is classified as “fuel” (green), followed by :“burning”
(red), and then “burnt out” (black). No further processing is needed.
Once the data collection step is done, it is necessary to smooth the data
in terms of both estimating the regression function and its derivative
for bias reduction. The nonparametric methods discussed in Chapter
2 play a role here.
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3.2 Data Extraction and Segmentation

The open source program ffmpeg [dev13] was used to freeze-frame
each movie at approximately half-second intervals to obtain clear image-
captures with time-stamps. These captured images were then saved as
JPEG files, readable into the R system [Tea16]. For illustrative pur-
poses, the images for the third experimental run are shown in Figure
3.1. The original images were a combination of several colours: yel-
low, red, grey, black, etc. In order to convert the image matrices into
a usable form, conversion to three colours red (burning), green (fuel),
black (burnt out) was necessary.

Figure 3.1: A sequence of burn patterns on a sheet of wax paper observed
at times: 1s, 6s, 11s, 16s, 21s, 26s, 31s, 36s, 41s, 46s, for the third micro-fire.
Time increases from left to right, and then down.

Figure 3.2: Thresholded patterns for the third micro-fire. Unburned areas
are coded as the light grey (green, if in colour), burning regions are at an
intermediate grey shade (or red), and burnt regions are black.
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This image segmentation problem was greatly simplified because
of the use of darkness in the experimental setup. Each grid cell is
unburned until it burns (and is lit up in the video footage) and is
burnt out for all remaining time. Therefore, the time(s) at which each
grid cell burns can be identified from the time series of the red, green
and blue (rgb) measurements. The series corresponding to red is most
useful for this purpose; prior to burning, the values are at or near 0;
thus all images corresponding to these times can be set to “green”;
after burning, the values are again at or near 0; these can be set to
“black”. The values at the time(s) of burning can be set to “red”.
The resulting patterns, corresponding to the images in Figure 3.1 are
displayed in Figure 3.2.

Finally, the colour-coded images were converted to a numeric matrix
corresponding to the green, red, and black pixels of the image array.
We assigned the colour green to the value 0, red to the value 1, and
black to the value 2. The numbers of 0, 1, and 2’s were counted which
gave the numbers of unburned fuel sites, the number of burning and
the number of burnt out sites. In addition, the number of fuel sites
neighbouring burning sites at each time point were also counted, at
half-second intervals for the entire duration of each fire.

For illustration purpose, the counts for each of these statistics are
listed in Table 3.1 for the third micro-fire, corresponding to the first
30 seconds of the fire. The data for the other fires were collected in
a similar manner, but not recorded here in tabular form, in order to
save space, but graphical summaries of the 6 statistics for each of the
6 fires are displayed as heavy black curves in the figures contained in
the Appendix.
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Table 3.1: Record of six statistics for the third micro-fire at a sequence
of times (in the column headed by “elapsed time”), measured in seconds.
Statistics include burning site counts, burnt out site counts and the nearest
neighbour counts: N refers to the number of unburned fuel sites that are
nearest neighbours of currently burning sites in the northerly direction; S
refers to the corresponding number of unburned fuel sites to the south; W
refers to the corresponding counts of western nearest neighbours; and E
refers to the corresponding counts of eastern nearest neighbours.

elapsed time number burning number burnt out N S W E

0 1 0 1 1 1 1
1 11 1 5 4 4 3
2 7 9 5 4 2 4
3 13 13 6 7 6 6
4 30 17 8 9 7 7
5 15 31 5 10 6 6
6 21 39 6 10 9 9
7 33 46 10 13 10 11
8 30 67 12 14 9 11
9 34 77 11 14 7 12
10 33 97 13 15 9 13
11 29 115 12 14 9 11
12 34 131 17 17 9 13
13 39 145 17 17 13 15
14 45 157 16 19 13 17
15 55 176 18 22 16 21
16 56 201 16 21 16 22
17 56 225 15 21 17 23
18 65 249 23 23 19 22
19 59 284 17 24 18 23
20 57 313 18 22 18 23
21 65 349 19 23 26 23
22 62 385 20 25 24 23
23 63 417 23 26 23 22
24 70 444 21 25 28 26
25 79 470 24 27 28 27
26 72 518 28 29 30 25
27 92 553 30 33 31 30
28 81 598 31 34 32 33
29 89 632 32 39 31 35
30 83 682 27 33 30 36
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Chapter 4

Fitting a Stochastic Fire
Growth Model to Data

This chapter proceeds as follows. In Section 4.1, we describe a
method to estimate the two parameters of the basic interacting parti-
cle model using data on numbers of burning grid sites and numbers of
neighbouring unburned sites. The use of the nonparametric regression
estimates in a continuous least-squares framework is described in Sec-
tion 4.2. Section 4.3 summarizes the results from the experiments, and
then provides specific tools to assess the fit of the model to the data.
We conclude the chapter with our observations and our ideas about
future work on related problems.

4.1 Model Fitting

The methodology required was developed [BW13] to fit the grid-
based fire spread model to the data extracted from a sequence of images
of a growing fire. Referring to data such as in Table 3.1, let X(t) denote
the number of burning sites at time t, and Y (t) denote the number of
sites that are burnt out by time t. In addition, let BN(t), BS(t), BW (t)
and BE(t) denote the number of burning sites with unburnt fuel in the
site immediately above (north), below (south), on their left (west) or
right (east), respectively. Also, let

x(t) = E[X(t)],

y(t) = E[Y (t)],

bN(t) = E[BN(t)],

bS(t) = E[BS(t)],

bW (t) = E[BW (t)],
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and
bE(t) = E[BE(t)].

According to the model rules and arguing as in Braun and Kulperger
[BK93], we have the relations

y′(t) = µx(t), (4.1)

x′(t) = −µx(t) + λ (bN(t) + bS(t) + bW (t) + bE(t)) , (4.2)

and initial conditions of y(0) = 0 and x(0) = 1.
These equations hold for both the original Boychuk model, Model

A, as well as the variant, Model B. This result seems surprising, since
Model B is non-Markovian, while Model A is. It is important to note
that the differential equations are for population level quantities. They
are also only a partial description of the process dynamics. However,
they contain enough process information to allow for construction of
moment estimators for the process parameters, which we now demon-
strate.

The notation in the ensuing discussion can be simplified by making
the substitution

g(t) = bN(t) + bS(t) + bW (t) + bE(t).

Then
x′(t) = −µx(t) + λg(t). (4.3)

By adding (4.1) and (4.3), we obtain:

x′(t) + y′(t) = λg(t). (4.4)

4.2 Moment and Continuous Least-Squares
Estimation

We can estimate the functions x(t) and y(t) using X(t) and Y (t),
respectively. In fact, improved estimates of these functions can be
obtained by applying a local linear kernel smoother to the (t,X(t))
data, and (t, Y (t)) data respectively. Similarly, estimates of g(t) can be
improved by a local constant smoother. We used the locpoly function
in the KernSmooth package [Wan15] with the automatically selected
smoothing parameter. The software also allows for estimation of the
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first derivatives x′(t) and y′(t) from the same data sets (see [WJ95], for
example).

Continuous least-squares can then be applied to the estimate of
equation (4.1) to estimate µ. That is,

µ̂ = arg min
µ

∫ tn

t1

(ŷ′(t)− µx̂(t))2dt (4.5)

where ŷ′(t) and x̂(t) are the smoothed estimates described in the pre-
ceding paragraph. An estimator for λ can be obtained from the esti-
mated version of (4.4) similarly:

λ̂ = arg min
λ

∫ tn

t1

(x̂′(t) + ŷ′(t)− λĝ(t))2dt. (4.6)

4.3 Results

As noted earlier, the sequence of fire images are displayed in Figure
3.1 for one of the micro-fires. The corresponding thresholded images are
displayed in Figure 3.2. Based on these images, counts of the various
statistics (discussed in Section 4.1) were taken, at a number of different
grid resolutions (scale factors). Table 3.1 displays the counts at one of
the resolutions, and the third row of Table 4.1, that is Replicate 3,
contains the resulting parameter estimates and the amount of scaling
done to increase the pixel size.

Table 4.1: Parameter estimates from the smoothing/DE-based estimation
scheme on 6 experimental data sets. The grid cell sizes used in the spread
model were taken as the camera pixel size multiplied by the given scale
factor.

Replicate scale factor µ̂ λ̂

1 2.9 0.339 0.301
2 2.6 0.481 0.391
3 2.8 0.490 0.383
4 2.4 0.347 0.287
5 2.1 0.409 0.365
6 2.2 0.445 0.376

The remaining rows of Table 4.1 contain the parameter estimates
and scalings required for the other 5 micro-fires. We see that the fires
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required different amounts of scaling, and the estimates of µ range from
0.34 per second to 0.49 per second. The estimates of λ range from 0.29
to 0.39. In all cases, the burn out parameter exceeds the spread rate
parameter.

Figure 4.1: Comparisons of parameter estimates between simulations and
observed data for the third microfire. The side-by-side boxplots represent
samples of estimates for burn out rate µ (left) and burning rate λ (right)
based on 30 simulations of the fitted stochastic spread model. The green
solid horizontal line represents the estimated value of µ and the blue dashed
horizontal line represents the estimate of λ, based on the observed data.

4.3.1 Parameter Estimation Bias and Variability

By simulating from the fitted model and re-estimating the param-
eters, it is possible to assess bias and variability of the parameter es-
timates. All simulations are done using Model B. We have chosen to
display the results of this assessment for the third micro-fire in Figure
4.1 using side-by-side boxplots to graphically summarize the distribu-
tion of the estimates of µ and λ for the simulated data sets. Horizon-
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tal lines have been drawn to indicate the locations of µ (solid) and λ
(dashed). What is immediately evident from the graphs is that both
µ and λ appear to be underestimated in the simulations: the medians
of the estimates from the simulated data are both about .02 less than
the values used to produce the simulated data.

The side-by-side boxplots also show that the distributions of the
parameter estimates are approximately symmetric, and the amount of
variability is in the same order as the bias. That is, if these simula-
tions were viewed as a parametric bootstrap, the standard errors (SE)
for the two estimators are approximately .01. Thus, the bias domi-
nates the MSE (MSE = bias2 + SE2), and the root-MSE (RMSE) is
approximately .022 for both estimators.

Boxplots for the other five fires (shown in the Appendix) are quite
similar to what appears in Figure 4.1. All six fires exhibit the same
degree and direction of bias. Table 4.1 contains information on the
medians for the estimates of λ and µ from simulations of each of the
six fitted models. In all cases, the medians of the parameter estimates
from the simulated data are slightly below the observed parameter
values used in the simulations.

Table 4.2: Parameter estimates from data simulated from the stochastic
spread model (Model B) using µ and λ as given in columns 2 and 4. Columns
3 and 5 give the medians of the estimates of µ and λ for 30 simulated data
sets.

Experiment µ median µ̂sim λ median λ̂sim
1 0.359 0.333 0.321 0.301
2 0.501 0.474 0.411 0.394
3 0.510 0.492 0.403 0.395
4 0.367 0.343 0.307 0.288
5 0.429 0.398 0.385 0.360
6 0.465 0.439 0.396 0.376

4.3.2 Model Assessment

To assess the adequacy of the grid-based fire spread model for this
particular data set, we again simulated realizations of fire spread at the
estimated parameter values, using the chosen grid resolution. For all
simulations, we used the variant Model B.
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Since a bias of .02 has been observed in both parameter estimates,
we add this quantity to the observed estimates of both µ and λ and use
the resulting values as the “truth” in our simulation validation study.

Table 4.2 lists the true parameter values together with the medi-
ans of estimates coming from 6 simulation experiments, each using a
different pair of values for µ and λ. Each experiment involves 30 sim-
ulation runs. What is clearly evident from the table is the consistent,
but slight, underestimation of each parameter. Further examination is
required before we can make firm conclusions about the model and the
fitting technique.

The results from one simulation run are displayed in the sequence of
pictures in Figure 4.2. The images have been plotted at approximately
5 second intervals. We see from these pictures that the fire size and the
thickness of the fire perimeter are similar to the analogous quantities
for the thresholded images at corresponding times. The boundary is
somewhat less smooth in the simulation pictures than in the actual fire,
but the overall shapes are fairly similar. The simulated fire appears to
have grown somewhat larger than the observed fire. However, Figure
4.3 shows the results of another simulation run where similar qualitative
behaviour is evident but where the fire sizes tend to be somewhat
smaller than the observed.

Figure 4.2: A sequence of images based on a simulation of the stochastic
spread model (Model B) using µ = .510 and λ = .403. Colour coding is as
in Figure 3.2.

Such plots are limited in their usefulness. In this case, we can
see that there are differences between the simulated pictures and the
actual data, but it is difficult to tell if these differences are due to the
variability we are trying to model, or if these are failures of the model
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Figure 4.3: A second simulation run using the same parameters as in Figure
4.2.

itself.
As another check on the appropriateness of the model, we can com-

pare the burning cell counts, burnt out cell counts and nearest neigh-
bour statistics for the original data with simulated data from the fitted
model (using data from the third micro-fire only). Figure 4.4 shows the
results of 30 simulated realizations (plotted in grey) with the observed
counts for all other fires (plotted in blue) against time; the observed
data for the third micro-fire is plotted in black.

What is evident from this set of plots is that the range and distribu-
tion of simulated counts of burning sites (based on the observed data
from one fire) matches the observed range and distribution of burning
sites for other fires very well. Except for a location-shift in the distri-
bution of simulated burnt out sites and neighbourhood statistics, we
also see similarities in the range and distribution in these cases. The
location shift is likely due to the estimation bias discussed earlier. Note
that by increasing both µ and λ slightly, we will not see much change
in the total number of burning sites over time, but we will see many
more burnt out sites, for example. It is also noteworthy that for one
of the actual fires, there were instances of flaming which distorted the
camera images at two time points, reflecting in the anomalous spikes
in Figure 4.4.

These observations provide strong evidence that the model is doing
well at capturing distributional behaviour in these dimensions. The
corresponding count graphs for the other five micro-fires are attached
in the Appendix.
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Figure 4.4: Comparisons between data from 30 simulation runs and observed
data from 6 micro-fires. Top left: number of simulated (grey) and observed
(blue) burning sites versus time; middle top: Number of simulated (grey)
and observed (blue) burnt out sites versus time; remaining panels: num-
bers of simulated (grey) and observed (blue) neighbourhood counts versus
time. The black curve on each panel corresponds to the observed data from
the third micro-fire, upon which the estimates of µ and λ underlying the
simulated data are based.
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Chapter 5

Applying Bias Reduction to
the Fitted Stochastic Model

In the previous chapter, we applied kernel regression techniques to
the problem of estimating the mean counts of burning and burnt out
sites, as well as the derivatives of these functions. The resulting func-
tions were used to obtain estimates of the parameters of a stochastic
fire spread model. It is of interest to see what, if any, effect bias reduc-
tion techniques would have on the estimates of these parameters. To
this end, we consider the double-smoothing local linear estimator and
data sharpening, applying them to the estimation of the mean counts
and subsequently applying least-squares, as in (4.5) and (4.6) to obtain
estimates of µ and λ. Application to derivative estimation is outside
the scope of this thesis.

5.1 Double-smoothing

We apply the double-smoothing local linear (DSLL) regression es-
timator with mirroring to the (t,X(t)) data to obtain x̂DSLL(t). Sim-
ilarly, ĝDSLL(t) is obtained from the time series of nearest-neighbour
statistics.

Continuous least-squares is then applied to the estimating equation
(4.1) to estimate µ. That is,

µ̂DSLL = arg min
µ

∫ tn

t1

(ŷ′(t)− µx̂DSLL(t))2dt (5.1)

where ŷ′(t) remains as described in Chapter 4. An estimator for λ can
be obtained from the estimated version of (4.4) similarly:

λ̂DSLL = arg min
λ

∫ tn

t1

(x̂′(t) + ŷ′(t)− λĝDSLL(t))2dt. (5.2)
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5.2 Data Sharpening

In a similar fashion, we want to apply data sharpening (DS) to solve
4.5 and 4.6 instead of conventional local linear estimator.

Again, only g(t) and x(t) are sharpened and smoothed. The first
version of data sharpening for local linear estimator is used (see the
definition of ĝLL,1(x) in Section 2.5.2). The number of burning sites
(x(t)) and the sum of the burning sites in neighbourhood (g(t)) are first
smoothed using the Nadaraya-Watson estimator, individually. These
estimated counts are then “sharpened” by adding the residuals to the
observed data. The next step is to apply local linear regression to ob-
tain the estimated expected counts based on an equally spaced gridsize.
Although the boundary effect in this case does not have a large impact,
“mirroring” is also applied for data sharpening to ensure that the re-
sults can be compared across all methods. The resulting estimates are
referred to as x̂DS(t) and ĝDS(t)

Continuous least-squares is then applied to the estimating equation
(4.1) to estimate µ. That is,

µ̂DS = arg min
µ

∫ tn

t1

(ŷ′(t)− µx̂DS(t))2dt (5.3)

where ŷ′(t) remains as described in Chapter 4. An estimator for λ can
be obtained from the estimated version of (4.4) similarly:

λ̂DS = arg min
λ

∫ tn

t1

(x̂′(t) + ŷ′(t)− λĝDS(t))2dt. (5.4)

5.3 Results

Table 5.1 provides the estimates of the parameters for the six micro
fires, based on the three approaches: conventional local linear, double-
smoothing local linear and data sharpening.

According to the table, the estimates tend to be quite similar, but
without a notion of standard error, it is not possible to make firm
conclusions.
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Table 5.1: Estimates of stochastic spread model parameters, µ and λ, based
on data from each of 6 micro-fires. The grid cell sizes used in the spread
model were taken as the camera pixel size multiplied by the corresponding
scale factors listed in Table 4.1.

Replicate µ̂LL µ̂DSLL µ̂DS λ̂LL λ̂DSLL λ̂DS
1 .3387 .3419 .3420 .3010 .3016 .2974
2 .4808 .4807 .4806 .3911 .3908 .3902
3 .4897 .5008 .5012 .3833 .3855 .3836
4 .3467 .3481 .3479 .2872 .2874 .2849
5 .4090 .4092 .4086 .3650 .3648 .3635
6 .4452 .4482 .4480 .3757 .3769, .3715

5.3.1 Assessing the Estimators by Simulation

In Section 4.3, we learned that the observed µ and λ are both un-
derestimated by .02 when compared with estimates based on data sim-
ulated from the fitted model. In order to obtain the bias and MSE of
µDSLL, µds, λDSLL, and λds we use the true values listed in Table 4.2 to
conduct an additional simulation check. Again, 30 simulation runs are
conducted at each parameter setting.

For each set of simulated data, we obtain new estimates ˆ̂µDSLL,
ˆ̂µDS,

ˆ̂
λDSLL and

ˆ̂
λDS using the double-smoothing local linear and data

sharpening based estimators.

5.3.2 Median and Spread Comparisons

Tables 5.2 and 5.3 contain simple summaries of the results from
the 6 simulation experiments, for the double-smoothing local linear
estimates and the data sharpening estimates, respectively. For each
experiment, the median of the estimates of µ is recorded as is the
median of the estimates of λ.

What we see in the tables is that when estimating µ, there is not a
lot of difference among the estimators in terms of median performance,
though the data sharpening estimator might be very slightly better
than the others.

In terms of λ, the median of data sharpening estimates is clearly
closer to the true value than either of the other estimates, for all 6
experiments.
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Table 5.2: Performance of the smoothing/DE-based estimation scheme on
6 simulated data sets, using Double-smoothing. True values of µ and λ
are listed together with the medians of the corresponding estimates from 30
simulated data sets generated according to the stochastic spread model rules.
The true values of µ and λ were chosen to match the observed estimates for
the 6 micro-fires. The grid cell sizes used in the spread model were taken as
the camera pixel size multiplied by the given scale factor.

Experiment scale factor µ median µ̂DSLL.sim λ median λ̂DSLL.sim
1 2.9 0.359 0.336 0.321 0.303
2 2.6 0.501 0.476 0.411 0.394
3 2.8 0.510 0.487 0.403 0.392
4 2.4 0.367 0.346 0.307 0.290
5 2.1 0.429 0.400 0.385 0.362
6 2.2 0.465 0.439 0.396 0.377

Table 5.3: Performance of the smoothing/DE-based estimation scheme on 6
simulated data sets, using Data Sharpening. True values of µ and λ are listed
together with the medians of the corresponding estimates from 30 simulated
data sets generated according to the stochastic spread model rules. The
true values of µ and λ were chosen to match the observed estimates for the
6 micro-fires. The grid cell sizes used in the spread model were taken as the
camera pixel size multiplied by the given scale factor.

Experiment scale factor µ median µ̂DS.sim λ median λ̂DS.sim
1 2.9 0.359 0.336 0.321 0.309
2 2.6 0.501 0.476 0.411 0.398
3 2.8 0.510 0.487 0.403 0.392
4 2.4 0.367 0.346 0.307 0.294
5 2.1 0.429 0.398 0.385 0.360
6 2.2 0.465 0.439 0.396 0.381
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To help visualize the distributions of the parameter estimates, three
side by side boxplots are provided in Figure 5.1. The boxplots represent
samples of estimates based on 30 simulations for the third simulation
experiment. The green solid horizontal line represents the true value
of µ and the blue dashed horizontal line represents true λ. Techniques
used from left to right are conventional local linear, double-smoothing,
and data sharpening. We can immediately see from the graph that the
spread of the interquartile range and the range is decreasing from left
to right, which indicates a decreasing variance. Boxplots of simulated µ
and λ for the other five experiments (shown in the Appendix) are quite
similar. Most fires exhibit the same degree and direction of median
bias and spread.

Figure 5.1: Boxplots for comparisons of parameter estimates between simu-
lations and truth for the third simulation experiment. The boxplots repre-
sent samples of estimates based on 30 simulations. The green solid horizontal
line represents the true value of µ and the blue dashed horizontal line rep-
resents true λ. Techniques used from left to right: conventional local linear,
double-smoothing, and data sharpening.
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5.3.3 Bias and MSE Comparisons

The absolute value of bias is calculated by taking the absolute value
of the difference between the true parameter values and the mean of
the estimates from the simulations. In Figure 5.2, the absolute value
of the bias in the estimates of µ is plotted for each of the 6 simulation
experiments, for each of the three estimation techniques: local linear,
double-smoothing local linear and data sharpening.

Figure 5.2: Bias for µ based on each technique used in each experiment.

Within each experimental group of estimates, the three techniques
are represented by a different colour - conventional local linear smoother,
double-smoothing, and data sharpening are presented in dark green,
red, and blue, respectively.

The graph shows that in most cases, double-smoothing and data
sharpening result in reduced bias, and these two techniques are com-
petitive with each other since the blue dot and the red dot in each
group are always close to each other. It is noticeable from the range of
x-axis that the bias for µ is between .02 and .03 rather than exact .02.
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Hence, bias depend on actual values of parameter estimates.
Figure 5.3 the absolute value of the bias in the estimates of λ is

plotted for each of the 6 simulation experiments, for each of the three
estimation techniques: local linear, double-smoothing local linear and
data sharpening. The colour coding is the same as in Figure 5.2.

Figure 5.3: Bias of λ based on each technique used in each experiment.

The graph confirms that data sharpening does an excellent job at
bias reduction as the blue dots are much closer to zero than the other
two. Double-smoothing also provides reduced bias in general, compared
to the conventional local linear estimator. The range of x-axis exhibits
that the bias for λ is between .01 and .02, which is slight smaller than
the bias for µ.

In order to take the variability of the different estimates into con-
sideration, the root-mean-square error (RMSE) is also computed. The
definition of RMSE for µ that we use here is (for 30 simulation runs)

RMSE =

√∑30
j=1(µ− µ̂j)2

30
.
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RMSE for λ is in a similar fashion. Figures 5.4 and 5.5 illustrate the
RMSE for µ and λ, respectively, for each experimental group. Colour-
coding in these figures also follows the scheme used in Figure 5.2.

Figure 5.4: RMSE of µ based on each technique used in each experiment.

The two bias reduction techniques are very competitive in terms of
RMSE for µ in Figures 5.4; data sharpening provides the best perfor-
mance in terms of RMSE reduction in most cases, followed by double-
smoothing. In Figure 5.5, we see that data sharpening outperforms
both of the other techniques very clearly. Also, double smoothing pro-
vides an improvement over the conventional approach, though not as
spectacularly.
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Figure 5.5: RMSE of λ based on each technique used in each experiment.
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Chapter 6

Conclusions and Future
Work

This work is part of an ongoing investigation into the suitability of
a simple grid-based interacting particle system for stochastically mod-
elling forest fire spread. Ultimately, we wish to fit such a model to
sequences of satellite-based photographs of wildfires. Then, simula-
tions of the model could be used to produce the maps of fire spread
risk that are in demand by forest fire managers.

What can be firmly concluded is that the parameters for the sim-
plest case of the model can be estimated from a sequence of pho-
tographs from a fire, using differential equations for the moments of
certain statistics derivable from a video clip of a fire.

We have developed some goodness of fit methods. A simple visual
assessment based on comparing burn patterns simulated from the fitted
model with the observed pattern is a useful, if limited, first step. This
method of assessment gives some assurance that the model appears to
reasonably fit the data. However, such a comparison is highly subjec-
tive, and will not necessarily generalize to cases where, for example,
the assumption of isotropy is invalid. The very nature of a stochastic
model leads to different possible patterns under the same conditions.
Hence, the following question arises: how different can the patterns be
from the observed pattern before one might conclude that the model
has failed?

What is needed, in general, is a metric for scoring burn pattern
maps in terms of their shape and boundary characteristics. This thesis
has proposed the four nearest-neighbourhood statistics as belonging to
such a set of measures. On the basis of an informal bootstrap procedure
applied to these statistics, we have a fair degree of confidence that the
model is capturing much of the stochastic behaviour of the actual fire.

In terms of smoothing, it seems, from Chapter 5, that the bias
reduction techniques work impressively well in variance reduction as
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well. We can now draw the conclusion with confidence that double-
smoothing and data sharpening can indeed provide improved perfor-
mance in terms of bias reduction for standard nonparametric estimators
of a regression mean. In the few cases where we do not see reduced
bias, variability is dramatically smaller than when we do not apply bias
reduction techniques. There is always a trade off between having small
bias and variance. Double-smoothing and data sharpening are simple
to implement, and data sharpening has a wide application to many
estimators.

In the Introduction, reference was made to the use of “mouse” mod-
els in medical research; now, the question could be posed: how could
this smouldering “mouse” model be used in fire research? We have
now demonstrated a possible methodology that could be used to fit
this model to large-scale fires given appropriate remote-sensing data,
at least for homogeneous fuel types on relatively flat landscape under
constant weather conditions. We also have provided a methodology
for checking the accuracy of such a fitted model. With the estimated
µ and λ parameters for a given fuel type and calm weather, we can
use simulations from the model, after checking its validity, to compare
probabilities of burning at given locations and times, assuming a fire
has ignited in such an area. For fires in sloped and more windy environ-
ments, a slightly more complicated model is needed, involving spread
rate parameters such as λN , λS, λW and λE associated with the four
different nearest neighbour statistics. Extensions of our model fitting
and assessment methodologies are needed, but once in hand, this model
could be used in practice.

Another goal is to apply double-smoothing and data sharpening
to the estimation of the derivative of the regression functions. The
combination of these two techniques can also be investigated for bias
or variance reduction; however, more variability might be introduced.
Bandwidth selection is crucial and should be optimized in future work.
Various combinations of estimators and l-fold data sharpening (i.e., ap-
ply data sharpening l times) can be investigated to determine whether
better performing estimators can be found.
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Appendix A

Figures

Figure A.1: Experiment 1: side-by-side boxplots for comparisons of parame-
ter estimates between simulations and observed data for the third microfire.
The boxplots represent samples of estimates for burn out rate µ (left) and
burning rate λ (right) based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and the
blue dashed horizontal line represents true λ, based on the observed data.
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Figure A.2: Experiment 2: side-by-side boxplots for comparisons of parame-
ter estimates between simulations and observed data for the third microfire.
The boxplots represent samples of estimates for burn out rate µ (left) and
burning rate λ (right) based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and the
blue dashed horizontal line represents true λ, based on the observed data.
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Figure A.3: Experiment 4: side-by-side boxplots for comparisons of parame-
ter estimates between simulations and observed data for the third microfire.
The boxplots represent samples of estimates for burn out rate µ (left) and
burning rate λ (right) based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and the
blue dashed horizontal line represents true λ, based on the observed data.
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Figure A.4: Experiment 5: side-by-side boxplots for comparisons of parame-
ter estimates between simulations and observed data for the third microfire.
The boxplots represent samples of estimates for burn out rate µ (left) and
burning rate λ (right) based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and the
blue dashed horizontal line represents true λ, based on the observed data.
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Figure A.5: Experiment 6: side-by-side boxplots for comparisons of parame-
ter estimates between simulations and observed data for the third microfire.
The boxplots represent samples of estimates for burn out rate µ (left) and
burning rate λ (right) based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and the
blue dashed horizontal line represents true λ, based on the observed data.
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Figure A.6: Boxplots for comparisons of parameter estimates between sim-
ulations and observed data for the first microfire. The boxplots represent
samples of estimates based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and
the blue dashed horizontal line represents true λ, based on the observed
data. Techniques used from left to right: conventional local linear, double-
smoothing, and data sharpening.
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Figure A.7: Boxplots for comparisons of parameter estimates between sim-
ulations and observed data for the second microfire. The boxplots represent
samples of estimates based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and
the blue dashed horizontal line represents true λ, based on the observed
data. Techniques used from left to right: conventional local linear, double-
smoothing, and data sharpening.
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Appendix A. Figures

Figure A.8: Boxplots for comparisons of parameter estimates between sim-
ulations and observed data for the fourth microfire. The boxplots represent
samples of estimates based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and
the blue dashed horizontal line represents true λ, based on the observed
data. Techniques used from left to right: conventional local linear, double-
smoothing, and data sharpening.
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Appendix A. Figures

Figure A.9: Boxplots for comparisons of parameter estimates between sim-
ulations and observed data for the fifth microfire. The boxplots represent
samples of estimates based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and
the blue dashed horizontal line represents true λ, based on the observed
data. Techniques used from left to right: conventional local linear, double-
smoothing, and data sharpening.

51



Appendix A. Figures

Figure A.10: Boxplots for comparisons of parameter estimates between sim-
ulations and observed data for the sixth microfire. The boxplots represent
samples of estimates based on 30 simulations of the fitted stochastic spread
model. The green solid horizontal line represents the true value of µ and
the blue dashed horizontal line represents true λ, based on the observed
data. Techniques used from left to right: conventional local linear, double-
smoothing, and data sharpening.
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Appendix A. Figures

Figure A.11: Conventional local linear: comparisons between data from
30 simulation runs and observed data from the first micro fire. Top left:
number of simulated (grey) and observed (blue) burning sites versus time;
middle top: Number of simulated (grey) and observed (blue) burnt out sites
versus time; remaining panels: numbers of simulated (grey) and observed
(blue) neighbourhood counts versus time. The black curve on each panel
corresponds to the observed data from the third micro-fire, upon which the
estimates of µ and λ underlying the simulated data are based.
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Appendix A. Figures

Figure A.12: Conventional local linear: comparisons between data from 30
simulation runs and observed data from the second micro fire. Top left:
number of simulated (grey) and observed (blue) burning sites versus time;
middle top: Number of simulated (grey) and observed (blue) burnt out sites
versus time; remaining panels: numbers of simulated (grey) and observed
(blue) neighbourhood counts versus time. The black curve on each panel
corresponds to the observed data from the third micro-fire, upon which the
estimates of µ and λ underlying the simulated data are based.
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Appendix A. Figures

Figure A.13: Conventional local linear: comparisons between data from 30
simulation runs and observed data from the fourth micro fire. Top left:
number of simulated (grey) and observed (blue) burning sites versus time;
middle top: Number of simulated (grey) and observed (blue) burnt out sites
versus time; remaining panels: numbers of simulated (grey) and observed
(blue) neighbourhood counts versus time. The black curve on each panel
corresponds to the observed data from the third micro-fire, upon which the
estimates of µ and λ underlying the simulated data are based.
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Appendix A. Figures

Figure A.14: Conventional local linear: comparisons between data from
30 simulation runs and observed data from the fifth micro fire. Top left:
number of simulated (grey) and observed (blue) burning sites versus time;
middle top: Number of simulated (grey) and observed (blue) burnt out sites
versus time; remaining panels: numbers of simulated (grey) and observed
(blue) neighbourhood counts versus time. The black curve on each panel
corresponds to the observed data from the third micro-fire, upon which the
estimates of µ and λ underlying the simulated data are based.
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Appendix A. Figures

Figure A.15: Conventional local linear: comparisons between data from
30 simulation runs and observed data from the sixth micro fire. Top left:
number of simulated (grey) and observed (blue) burning sites versus time;
middle top: Number of simulated (grey) and observed (blue) burnt out sites
versus time; remaining panels: numbers of simulated (grey) and observed
(blue) neighbourhood counts versus time. The black curve on each panel
corresponds to the observed data from the third micro-fire, upon which the
estimates of µ and λ underlying the simulated data are based.
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