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Abstract

This thesis explores the concept of metamaterials; a fairly recent concept
in the literature which has attracted the attention of researchers due to their
abnormal electromagnetic properties. We will particularly consider one di-
mensional version of a metamaterial made of layers. At the first glance,
layered metamaterials are simply multi-layer thin films. The distinguish-
ing feature of layered metamaterials is that they usually incorporate metals
whereas most thin film structures in the past have only incorporated di-
electrics. The immense interest in certain layered configurations of metals
and dielectrics, particularly when the thicknesses are really thin compared
to the wavelength, is due to their exhibition of seemingly counter-intuitive or
impossible properties such as refraction to the same side of normal (negative
refraction), evanescent wave amplification, or light focusing with a flat in-
terface (flat lensing). The simple configuration of layered metamaterials and
their interesting properties are the prime motivations of this work. In this
thesis, we first start with a very generic electromagnetic description of the
optical properties of layered structures. This general description appears to
be novel due to presenting theory in new form. We use this understanding to
explain how and why certain layered structures can exhibit negative refrac-
tion or flat lensing. This investigation has also led to several new predictions
of new optical properties of layered metamaterial structures. We conclude
this work by various experimental studies which validate the predictions of
the work and also explore fabrication challenges in the making of layered
metamaterials.
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(10.0 Å/s, green). SPR measurements using a coher-
ent yellow λo = 594.0 nm a) b), and red λo = 632.8
nm c) d) He-Ne laser. . . . . . . . . . . . . . . . . . . 90

Figure 5.5 The quality factor bar charts with error bars for silver
(blue), copper (green), and gold (yellow) at different
deposition/slew rates using yellow a) b), and red c)
d) lasers. The deposition rates I, II, III, and IV re-
spectively correspond to 1.0 Å/s, 7.0 Å/s, 14.0 Å/s,
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Chapter 1

Introduction

Controlling light requires rigorous understanding of the behaviour of
electromagnetic waves in different media. In this thesis, we will study the
interaction between electromagnetic waves and layered metamaterials, a sim-
ple thin film structure that uses thin metal layers to achieve abnormal light
behaviour. The thickness of these layers is typically one tenth or less of
wavelength of light. In the first part of the thesis, we focus our attention to
the negative refraction property of such layered systems at optical frequen-
cies. We start by examining the fundamental principles of electromagnetics
to explain why and when a layered metamaterial can perform negative re-
fraction. We develop explicit wave equations that describe electromagnetic
wave propagation through thin film structures. The derived explicit solu-
tions provide clear physical insights and shed the light on the correlation
between the intrinsic electromagnetic properties and the external light be-
haviours. Based on this study, we develop two distinct methods to predict
the imaging capability of layered metamaterials. In the second part of the
thesis, we conclude the research with two experimental works. The first
explores spectral light filtering and light transmission enhancement using
bi-layer thin films of metal and dielectrics, and the second examines the in-
fluence of nano-film fabrication parameters on the surface optical resonances
of thin metal films. The outcomes of this thesis work are explicit analytical
solutions of the electromagnetic fields propagating through layered meta-
materials, new design methods for layered metamaterials, and experimental
investigations of enhancing light transmission and surface optical resonance
of layered metamaterials.

1.1 Electromagnetic Wave Theory

The electromagnetic wave theory of light was established in 1873 by
James Clerk Maxwell. In three dimensional vector notation, Maxwell’s equa-
tions relate six real functions dependent on the position vector (~r) and the
time variable (t); the electric field, ~E, the magnetic field, ~H, the electric dis-
placement, ~D, the magnetic flux density, ~B, the electric current density, ~J ,
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1.1. Electromagnetic Wave Theory

and the electric charge density, ρ. Maxwell’s equations in their differential
forms are given by

~∇ · ~D(~r, t) = ρ, (1.1)

~∇ · ~B(~r, t) = 0, (1.2)

~∇ × ~E(~r, t) = −∂
~B(~r, t)

∂t
, (1.3)

and

~∇ × ~H(~r, t) = ~J(~r, t) +
∂ ~D(~r, t)

∂t
. (1.4)

To solve for Maxwell’s equations, typically we assume to have a charge
free region where ρ is zero. However, still we have two independent equations
and five unknowns. To overcome this problem, we need more relations. The
two electric field vectors, ~E and ~D, and the two magnetic field vectors, ~H and
~B, can be often related to each other based on the electric and the magnetic
properties, ε and µ, of the medium. Moreover, the electric field ( ~E) and
the electric current density ( ~J) can be related to each other based on the
conductivity (σ) of the medium. These relations, known as the constitutive
relations, provide the required missing equations to solve for the electric and
magnetic fields in Maxwell’s equations.

In linear, isotropic, homogeneous and dispersionless media, the consti-
tutive relations are:

~D(~r, t) = εrεo ~E(~r, t), (1.5)

~B(~r, t) = µrµo ~H(~r, t), (1.6)

and
~J(~r, t) = σ ~E(~r, t), (1.7)

where ε and σ are the constant electric properties of the medium, and µ rep-
resents the medium’s constant magnetic property. These material properties
will be discussed in details over the next section. Using the constitutive re-
lation equations and assuming the region of interest is a charge free region
(ρ = 0), Maxwell’s equations can be re-written as:

~∇ · ~E(~r, t) = 0, (1.8)
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~∇ · ~H(~r, t) = 0, (1.9)

~∇ × ~E(~r, t) = −µrµo
∂ ~H(~r, t)

∂t
, (1.10)

and

~∇ × ~H(~r, t) = σ ~E(~r, t) + εrεo
∂ ~E(~r, t)

∂t
. (1.11)

The wave nature of light is not explicitly shown in Maxwell’s equations.
After few lines of manipulation, it can be shown that the electric field obeys
the wave equation

~∇2 ~E(~r, t)− µrεr
c2

∂2 ~E(~r, t)

∂t2
= σµ0µr

∂ ~E(~r, t)

∂t
, (1.12)

where c = 1√
µoεo

is the free-space speed of light. For complex electric fields

under the plane wave assumption, the general solution to the electric field
is

~E(~r, t) = E0 e
i(~k.~r−ωt), (1.13)

where ~k is the complex wave vector.
The magnetic field wave equation can be derived using a similar approach

where

~∇2 ~H(~r, t)− µrεr
c2

∂2 ~H(~r, t)

∂t2
= σµ0µr

∂ ~H(~r, t)

∂t
. (1.14)

1.2 Electromagnetic Wave Propagation

The propagation of electromagnetic waves through matter is governed by
three parameters: the conductivity, the permittivity, and the permeability.
Conductivity (σ) is the measure of material’s ability to conduct electric
currents and it can be approximated as a function of the current density
and the applied electric field ( ~J/ ~E). Materials are classified based on their
conductivity as metals, semiconductors or dielectrics. The conductivity of
a material usually depends on temperature and frequency.

Permittivity (ε) is the measure of material’s ability to resist an electric
field. It describes how much electric flux, electric field flow through a given
area, is generated per unit charge of a medium. The absolute permittivity
of a medium is defined as
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1.2. Electromagnetic Wave Propagation

ε = ε0εr = ε0(1 + χe), (1.15)

where ε0 is the permittivity in free-space, εr is the relative permittivity of
the medium, and χe is the electric susceptibility which indicates the degree
of polarization of the electric dipoles in response to an applied electric field.

As opposed to the constant electric field response of free-space, materi-
als are usually dispersive and their associated permittivities are dependant
on the frequency of the applied electric field. The frequency dependency of
permittivity indicates that the polarization response of dispersive materials
to an applied field is not instantaneous. To represent this response, permit-
tivity is defined as a complex function of the angular frequency (ω) of the
applied field

ε(ω) = ε
′
(ω) + iε

′′
(ω). (1.16)

To simplify the atomic-scale description of permittivity in dispersive ma-
terials, a classical kinetic model has shown to provide satisfactory results.
This simple model is based on describing the electromagnetic properties of
a material by considering the motion of its constituent atoms, electrons and
molecules using a harmonic oscillator model. In dielectrics, the total forces
acting on electrons can be written as

Ftotal = Fbinding + Fdamping + Fdriving, (1.17)

where Fbinding is the binding forces between electrons and molecules, Fdamping
is the force associated with the radiation of oscillating charges, and Fdriving
is the force due to an applied electromagnetic wave.

Eliminating the contributions of the binding forces on electrons yields a
very similar model that can be used for metals. This model, known as Drude
model, was originated in 1900 by Paul Drude [15, 16] and described the
electromagnetic properties of metals by considering a density of unbounded
motion-free electrons. Under the influence of a time-varying electric field,
the equation of motion of free electrons can be written as

qĒ0e
−iωt = mγ

dx̄

dt
+m

d2x̄

dt2
, (1.18)

where m and q are the effective mass and the charge of the electron, respec-
tively, x̄ is the electron displacement, and γ is the damping constant. The
electron displacement is a time harmonic vector (x̄ = x̄0e

−iωt), and Eq. 1.18
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can be re-written as

qĒ0 = mγ(−iωx̄0) +m(−ω2x̄0). (1.19)

Solving for x̄0, we get

x̄0 =
−qĒ0

mω(ω + iγ)
. (1.20)

Then, the electric dipole moment can be defined as

p̄ = qx̄0 =
−q2Ē0

mω(ω + iγ)
. (1.21)

The polarization density, which is the density of permanent or induced
electric dipole moments, is defined in general as

P̄ = Np̄ = lim
∆v→0

∑N
n=1Qndn

∆v
, (1.22)

where d is the distance vector from negative to positive chargeQ of the dipole
and N is the total number of dipoles in a volume ∆v. Invoking the electric
dipole moment definition (Eq. 1.21), the polarization can be re-written as

P̄ =
−Nq2Ē0

mω(ω + iγ)
. (1.23)

In linear, isotropic, and homogeneous media, the polarization is related
to electric field by

P̄ = ε0(εr − 1)Ē = ε0χeĒ. (1.24)

Solving for εr by substituting Eq. 1.23 in Eq. 1.24, we get

εr = 1−
−ω2

p

ω(ω + iγ)
, (1.25)

where ωp is the plasma frequency and it is defined as

ωp =

√
−Nq2

mε0
. (1.26)
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Solving for the real and imaginary components of permittivity, we get

ε(ω) = 1−
ω2
p

(ω2 + γ2)
+ i

ω2
p

ωγ(1 + ω2/γ2)
. (1.27)

Assuming γ ' 0, the permittivity can be simplified to

ε(ω) = 1−
ω2
p

ω2
, (1.28)

which will be negative when the frequency (ω) is less than the plasma fre-
quency (ωp), like silver and gold at visible frequencies. The plasma frequency
(ωp) and the damping constant (γ) of selected noble metals are shown in Ta-
ble 1.1. A common feature of these metals is their relatively low loss, where
damping constants are several orders of magnitude less than the plasma
frequency. Although Drude model showed to provide fairly accurate per-
mittivity values for metals when compared to the experimentally-measured
values, its predictions are found to be limited especially for the imaginary
parts of permittivity. To demonstrate such limitations, the Drude model
of silver (based on the parameters in Table 1.1) is plotted against its ex-
perimental data [17] (Fig. 1.1). These discrepancies in the Drude model
predictions can be attributed to the interband transitions which are not
considered in the Drude model.

Table 1.1: Plasma frequency ωp and damping constant (γ) of selected noble
metals [1]

Metal ωp(×1015Hz) γ (×1012s−1)

Silver (Ag) 2.186 5.14
Gold (Au) 2.15 17.14
Copper (Cu) 2.12 23.09

Permeability (µ) is the measure of material’s ability to support the mag-
netic field formation within itself. In other words, it is the material’s degree
of magnetization in response to an applied magnetic field. The absolute
permeability of a medium is defined as

µ = µ0 µr = µ0(1 + χm), (1.29)

where µ0 is the permeability in free-space, µr is the relative permeability,
and χm is the magnetic susceptibility which indicates whether a material is
attracted into or repelled out of an external magnetic field.
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1.2. Electromagnetic Wave Propagation

Figure 1.1: Real and imaginary components of the permittivity values of
silver predicted by the Drude model (blue) and obtained from measurements
(red). This Figure is published by permission from [2].

The combination of relative permittivity and permeability yields the
refractive index

n =
√
εrµr, (1.30)

which is a dimensionless number used in optics to describe how light propa-
gates through different media. It determines how much light is reflected or
transmitted (Fresnel equations), and the angle of refraction (Snell’s law) at
the interface between two media of different refractive indices. It also relates
the speed and the wavelength of light in vacuum (c, λ0) to the corresponding
ones in a different medium where v = c/n, and λ = λ0/n. For complex per-
mittivity and permeability, the resultant refractive index will be a complex
value where the sign of the refractive index can be determined according to
this equation [18]

n = sgn(<[ε]|µ|+ <[µ]|ε|)√εµ. (1.31)

Across the electromagnetic parameter space where the permittivity (ε)
is the x-axis and the permeability (µ) is the y-axis (Fig. 1.2), each quad-
rant represents a different set of materials based on their electromagnetic
responses. Simultaneously positive ε and µ results in having positive refrac-
tive index and consequently positive refraction. These materials are repre-
sented by the first quadrant. At the plasma frequency which was discussed
in the Drude model, the permittivity sign of metals switch from positive to
negative. Negative permittivity and positive permeability materials which
have complex refractive index are illustrated by the second quadrant. The
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1.2. Electromagnetic Wave Propagation

Figure 1.2: Parameter space of ε and µ.

plasma frequency of most metals reside over the ultraviolet and the visible
part of the electromagnetic spectrum. Metals with negative permittivity
can sustain an interesting phenomenon known as surface plasmon resonance
(SPR). The surface plasmon resonance occurs due to the rapid oscillation
of the electron densities at the surface of metals when they are exited by
electromagnetic waves at their resonance frequency (Fig. 1.3). The detailed
theoretical concept of SPR will be discussed in the Appendix. This phe-
nomenon allows to store energy and also manipulate the stored energy in
the form of surface waves, which has been proven to be the key ingredient
for realizing unusual optical properties.

Usually natural materials have neutral magnetic responses. However,
there are few materials that exhibit magnetic responses when they are ex-
posed to electromagnetic waves as in the third quadrant (ε > 0, µ < 0). The
fourth quadrant represents the most interesting and challenging case where
ε and µ are both negative resulting in a medium with negative refractive
index. In normal circumstances, most materials refract light positively (to
the opposite side of normal) and support forward waves defined by right
hand rule, where the phase velocity (directed along the wave vector) and
the group velocity (directed along the time averaged Poynting vector) point
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Figure 1.3: Schematic of the charge density oscillations and associated
electromagnetic fields in the SPR phenomenon at the interface of a metal
and dielectric.

to the same direction. In the double negative media (ε < 0, µ < 0), on the
other hand, it has been shown that light can be refracted negatively (to the
same side of normal) and backward waves described by left hand rule (phase
velocity and group velocity pointing in opposite directions) can be sustained
(Fig. 1.4). Although such media possess interesting unusual properties [19],
they are not naturally available. Therefore, artificial structures known as
metamaterials have been fabricated to imitate abnormal properties like dou-
ble negative property.

Figure 1.4: The schematic of negative refraction.
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1.3. Metamaterials

1.3 Metamaterials

Metamaterials are generally defined as materials with properties that are
not achievable with natural materials. In the field of electromagnetics, meta-
materials are engineered structures with inhomogeneity scale smaller than
the operational wavelength (sub-wavelength). They are designed to realize
electromagnetic behaviours that are not possible using bulk natural mate-
rials [20–23]. For instance, metamaterials can imitate the electromagnetic
properties of the double negative media and they can be effectively char-
acterized by negative refractive index. Some of the explored metamaterial
structures in the literature are shown in Figure 1.5.

Figure 1.5: Different metamaterial structures. a) double-fishnet negative-
index metamaterial with several layers, b) stereo or chiral metamaterial
fabricated through stacked electron-beam lithography. c) chiral metama-
terial made using direct-laser writing and electroplating, d) hyperbolic (or
indefinite) metamaterial, e) metaldielectric layered metamaterial composed
of coupled plasmonic waveguides, enabling angle-independent negative n for
particular frequencies, f) split ring resonators oriented in all three dimen-
sions, g) wide-angle visible negative-index metamaterial based on a coaxial
design, h) connected cubic-symmetry negative-index metamaterial struc-
ture, i) metal cluster-of-clusters visible-frequency magnetic metamaterial,
j) all-dielectric negative-index metamaterial composed of two sets of high-
refractive-index dielectric spheres arranged on a simple-cubic lattice. This
Figure is published by permission from [3]

Metamaterials were first proposed by Bose in 1898 to achieve an artificial
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chiral effect [24]. However, the term metamaterial first appeared in 1999 by
Rodger M. Walser [25], a physics professor from the University of Texas.
Few months later, the term metamaterial became more popular through
the pioneering work of Smith et al. [26] on materials with simultaneously
negative permeability and permittivity at microwave frequencies.

There are three ground-breaking works that can be counted as mile-
stones in the area of modern metamaterials. The first one is the Veselago’s
paper which conceptually laid down the theory of left-handed metamateri-
als, materials in which the wave vector ~k and the field vectors ~E, ~H form a
left-handed system [19]. The next outstanding work is the first experimen-
tal realization of Veselago’s left-handed medium by Smith et al. [26]. The
third exceptional work is Pendry’s work on perfect lensing, perfect imaging
beyond the conventional resolution limit, with a layered metamaterial com-
posed of a single layer of silver [27]. This single layer structure represents
the only route to realize artificial magnetism and left-handed behavior at
visible and UV frequencies.

Based on the targeted frequency range, the size and the achievable elec-
tromagnetic properties of metamaterials can be vastly different. While the
size of metamaterial structures will be centimeter-scale for microwave fre-
quencies, their size can drop down to nanometer-scale for optical frequencies.
In this thesis, we examine nano-scale metamterials that work over the ul-
traviolet and visible frequencies. Metals are the main building elements for
making such optical metamaterials. This is due to the interesting properties
associated with metals around the optical range such as negative permittiv-
ity and surface plasmon resonance. It has been shown that these properties
can contribute significantly towards realizing the unusual properties of op-
tical metamaterials [27–29].

The heterogeneity in metamaterials could be along one [7, 30, 31], two
[32, 33], or three [3, 34, 35] directions (Fig. 1.6), and it could be periodic
[7, 36, 37], or non-periodic [38–40]. Making optical metamaterials with nano-
scale inhomogeneity requires sophisticated nano-fabrication methods. Cur-
rently, nano-fabrication methods are mainly limited to one dimensional and
two dimensional fabrication techniques. Three dimensional nano-structure
fabrication with heterogeneity in three directions is possible by methods
like focused ion beam (FIB) and electron beam lithography (EBL). How-
ever, such 3-D fabrication methods require very delicate experimental setup
and alignment, which make them quite difficult and costly [20, 41]. In this
thesis, we restricted our work to the one dimensional nano-structure be-
cause it can be easily modeled, and its fabrication requires tools which are
well-controllable and accessible to our research group.

11



1.4. Layered Metamaterials

Figure 1.6: The schematic depiction of metamaterials with heterogeneity
along a) one, b) two, and c) three directions.

1.4 Layered Metamaterials

Materials with sub-wavelength one-dimensional heterogeneity can be
achieved by fabricating a structure made of a multitude of thin films. There
is a lot of overlap between layered optical metamaterial and classical thin
film structures [42]. Both systems are composed of thin films of metal and
dielectric. However, the design purposes and the complexity in terms of
thickness and number of layers are different. Layered optical metamateri-
als are usually more complex and designed to exhibit abnormal properties.
Over the last two decades, a vast variety of applications for layered meta-
materials have been proposed and implemented[20, 41]. In this thesis, we
particularly consider flat lens imaging [27], spectral light transmission [43],
and surface plasmon resonance sensing [44] applications. Here, we discuss
the recent achievements in the designated research fields, and we will thor-
oughly examine different methods to engineer and improve the performance
of these applications in the next chapters.

1.4.1 Flat Lens Imaging

Lenses are optical transmissive devices that are capable of reassembling
electromagnetic fields to a focus by correcting the phase of each Fourier com-
ponent of the fields. This phase correction feature is due to the curvature
shapes of the entrance and exit faces of conventional glass lenses (Fig. 1.7
a)). Flat lenses, on the other hand, are perfectly flat slabs with imaging
capabilities as a result of the optical properties of their material composi-
tion. Flat lenses can be made of materials with gradual variation of the
refractive index (graded-index lenses) [45], or artificially structured sheet
of materials with subwavelength-scaled patterns in the horizontal dimen-
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sions (electromagnetic metasurfaces) [46], or ultra-thin metasurfaces with
balanced loss and gain [47], or layered metamaterials [11, 13, 27, 48]. The
main distinguishing feature of layered metamaterial flat lenses is their per-
fect homogeneity along the front and back surfaces. This implies that the
imaging process is not associated with a principle optical axis which results
in the abnormal possibility of imaging with an infinite aperture if we assume
to have infinitely long flat lens [49].

In theory, imaging with a planar homogeneous slab (Fig. 1.7) is possi-
ble if the flat slab is constructed from either isotropic and negative index
medium, first proposed by Veselago [19], or anisotropic medium with a con-
stitutive tensor having diagonal components of opposite sign [23, 48, 49]. In
the absence of naturally-occurring negative-index or anisotropic materials, a
thin layer of silver (Fig. 1.7(d)) has been suggested by Pendry to work as flat
lens based on the electrostatic limit approximation. Pendry’s flat lens can
form a real image at a distance less than a wavelength from the lens (near-
field) using a transverse-magnetic (TM) polarized wave [27]. What makes
Pendry’s flat lens very interesting is the capability of this lens to perform
super-resolution imaging. The imaging resolution of traditional glass lenses
is limited by the applied wavelength since the produced images comprise
only the propagating waves. This image resolution limit is known as the
diffraction limit. To break this barrier and achieve super-resolution, evanes-
cent waves, which exponentially decay, should be restored alongside propa-
gating waves at the image location. Unlike propagating waves restoration,
which is possible by phase correction, evanescent waves restoration requires
amplitude amplification. Pendry showed that a solution to Maxwell’s equa-
tions demonstrates that ideal negative index slabs (Veselago lens) as well as
thin silver slabs can amplify evanescent waves by restoring wave amplitudes
in the image region and enable super-resolution imaging. He interestingly
showed that the condition required for super-resolution imaging (ε < 0) is
exactly the same condition needed for the existence of surface plasmon po-
laritons. This implies that these two phenomena are inherently interrelated.
The mathematical proof of evanescent wave amplification using a thin layer
of silver is discussed in the Appendix.

Since the first practical flat lens proposal (Pendry’s thin silver layer) [27],
several research works have been published investigating this phenomena
both numerically [6, 9] and experimentally [10, 50]. These works include
research on near-field [28] and far-field [7] flat lens imaging, where the far-
field flat lens can project the image apart from the lens at a distance greater
than the wavelength in the hosting medium. The introduced flat lenses are
composed of a single metallic layer [9–12, 50–54] and metal-dielectric multi-
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Figure 1.7: Optical ray visualization of imaging in (a) a standard plano-
convex lens, (b) a planar negative-index slab, and (c) a planar anisotropic
slab where the perpindicular permittivity value is negative. The red lines
and blue arrows respectively indicate the local power and phase flow. (d)
Imaging in a thin silver layer by evanescent wave amplification. [4]

layers [6, 7, 13, 28, 29, 55–63]. A variety of methods have been used to
design these systems. Some past flat lens designs are based on imitating
physical processes, such as evanescent wave amplification [10–12, 50, 54],
or electromagnetic properties, such as anisotropy [6, 28, 29, 56] or negative
index [7]. Some others employ transfer function calculations [57, 58, 60, 61]
or simulations [13, 59, 62]. In this thesis, we postulate a new criterion to
design flat lenses based on transfer function calculations and ray optics, and
then we investigate the proposed criterion numerically.

1.4.2 Spectral Light Transmission

Controlling and systematically manipulating light transmission through
transparent, semi-transparent, and naturally opaque lossy materials was a
subject of research since the early days of science. After the revolutionary
advances in science and technology over the last century, the significance
of engineering light transmission became more prominent due to its high
potential in various energy and optical applications. Metals are the basic
building block in making layered metamaterials, flat lenses and many light-
transmission-based implementations. Though metals have valuable proper-
ties such as conductivity, they are naturally opaque when they are thick
and semi-transparent when they are sufficiently thin. Therefore, researchers
since 1950s examined the possibility of boosting light transmission through
low-loss metallic films and they reported that such a light transparency
enhancement can be possible by coating the metallic film with a thin, high-
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index dielectric layer [64–68].
The investigations of thin film coating led to the next research on energy-

efficient heat-reflecting windows [69–73], cheap flexible transparent conduc-
tors [74–77] which are useful in making photovoltaics and displays, and
nanophotonic devices such as spectrally selective transmission filters [36, 78–
80], and flat lenses [6, 7, 81–83]. The applicability of the dielectric-coating
method in flat lens fabrication steered our research towards several light
transmission experiments that led to very interesting conclusions which will
be discussed in Chapter 4.

1.4.3 Surface Plasmon Resonance Sensing

The surface plasmon resonance phenomenon is sensitive to the refractive
index of the medium attached to the metal surface, which makes it appealing
for a wide range of physio-chemical sensing applications [44, 84–89]. The
best metals for SPR sensors are noble metals with low losses, such as silver,
gold, and copper [90, 91]. Of these three, silver attains the least optical losses
and the best SPR coupling [92]. Gold has an acceptable optical resonance
and copper has the worst [93]. Though gold is the most expensive, gold
SPR sensors are commercially preferred over silver ones due to the chemical
inertness of gold [94].

To enhance SPR coupling, usually the thickness of metal or the thickness
of the coating dielectric layer is optimized [95]. In more sophisticated works,
silver islands were deposited on copper films [96], silver thin films are de-
posited on a glass substrate with some attached SiO2 droplet residuals [97],
gold nano-particles were prepared on a glass slide [98], microhole arrays with
variable periodicity and diameter were fabricated [99], nano-textured metal
was incorporated into the cathode structure of solar cells [100], or a polymer
channel waveguide structure was coated by a passivated layer of copper [101]
for the purpose of SPR enhancement.

In a different approach, depositing at various deposition rates using e-
beam evaporation technique, the measured surface roughness and dielectric
values of very thin Au films show that dielectric values, which play the major
role in the SPR wave confinement and longer range SPR wave propagation,
are dependent on their deposition rates [102]. A recent work emphasizes
on the importance of deposition at the lowest possible vacuum pressure
and the fastest deposition rates to avoid metal-oxide contamination [103].
Varying the deposition rate and the base vacuum pressure in the deposition
chamber, they have been able to deposit high-quality plasmonic films of
aluminum, copper, gold, and silver using thermal evaporation. Investigating
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the influence of different deposition parameters on the SPR couplings of thin
metal films, we will introduce a new deposition method using the sputter
deposition in Chapter 5.

1.5 Homogenization Theory

Throughput the past years of metamaterial studies, two distinguishable
research fields had the major impact on the advances in metamaterials. The
first research field provided the technological platform for fabrication of com-
plex nanostructure systems and the second approach theoretically character-
ized the consequences of having bulk materials with abnormal electromag-
netic properties. Assigning effective material parameters to metamaterials
can bridge the gap between both fields where theory can be linked to the real
world implementations [104]. The process of defining the electromagnetic
properties of inherently heterogeneous systems by invoking the properties of
ideally homogeneous metamaterials, when the heterogeneity scales are one
tenth or less than a wavelength of light, is known as homogenization.

Homogenization of artificially fabricated heterogeneous structures was
a subject of research for several years and various approaches have been
proposed and investigated in the literature. Mainly working with periodic
systems, it has been shown that the elctromagnetic properties of the build-
ing blocks of metamaterials, the sub-wavelength periodic structures, can be
homogenized to express the electromagnetic responses of the entire structure
in terms of effective parameters [105].

The Nicholson-Ross-Weir (NRW) retrieval method or the scattering pa-
rameter extraction method (S-parameter) is one of the earliest and simplest
effective parameter retrieval methods, where the metamaterial structure is
homogenized by extracting its effective parameters from the experimentally
measured external light scattering of the system [106–111]. This simple ho-
mogenization method yields an infinite branch of solutions which raises the
concept of branch ambiguity as a clear disadvantage of this solution [112].

Other simple homogenization methods include assigning effective nega-
tive index parameter to a single thin layer of metal based on electrostatic ap-
proximation [27] and assigning the negative index parameter to a multi-layer
metal-dielectric system based on the geometric optic visualization of light
refraction and bulk propagation in the layered system [7]. These methods
are based on unrealistic assumptions and are only applicable to particular
layered metamaterials.

The more sophisticated homogenization methods are mainly based on
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theoretical calculations and a variety of averaging techniques, such as field-
averaging approaches [113–118], volumetric averaging of the local permittiv-
ity values based on the effective medium theory usually known as Maxwell-
Garnett method [119–121], and averaging the energy densities [122]. The
curve-fitting approach [123], and the dispersion equation method [33] have
been also reported for homogenizing metamterials. These methods are not
universal and they can lead to different solutions for the same heteroge-
neous system [124]. The detailed derivations of two common homogeniza-
tion methods, the S-parameter and Maxwell-Garnett methods, are provided
in the appendices.

One of the most rigorous homogenization methods is based on the Floquet-
Bloch theorem, usually used in crystals, where the electromagnetic fields in
a metamaterial is described by the dominant Floquet-Bloch harmonic [124–
129]. Although, this method was used based on unpractical assumptions
and suffers from branch ambiguities [31], we managed to circumvent the
drawbacks and invoke this theorem in our work. Here, we provide a general
introduction to this homogenization method and we will discuss the details
of our work in the next chapter.

1.5.1 Floquet-Bloch Theory

In 1928, Felix Bloch studied the quantum mechanics of electrons in three
dimensional periodic media [130] in which he unknowingly extended the
one dimensional theorem of Gaston Floquet published in 1883 [131]. Bloch
proved that wave functions of electrons in periodic media, e.g. crystals, are
governed by a periodic envelop function multiplied by a plane wave. Inter-
estingly, the first study of electromagnetic propagation in one dimensional
periodic structures was presented by Lord Realeigh before Bloch’s work in
1887, where he postulated the possibility of controlling light propagating
through periodic media [132]. In 1972, Bykov proposed that periodic struc-
tures can be particularly used to control the spontaneous emission while the
relation between the electromagnetic properties of periodic media and the
Floquet-Bloch modes have not been addressed yet [133]. It was not until
work by Pochi Yeh et. al. in 1977 that bridged the gap between classical
electromagnetism and solid-state physics and showed that Floquet-Bloch
method can be applied to electromagnetic waves propagating through crys-
tals [37].

Although Floquet-Bloch’s theorem is a solid state theorem for describ-
ing the energy states of electrons in natural crystals, it has been commonly
used for characterizing the electromagnetic properties of artificial electro-
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magnetic crystals, known as photonic crystals, since the photon behaviour
in a photonic crystal is quite similar to electron and hole behaviour in an
atomic lattice [134]. The term photonic crystal was first introduced in 1987
by Yablonovitch and John, where they expanded the concept of photonic
band gaps in two and three dimensions [135, 136].

Beside photonic crystals, Floquet-Bloch’s theorem has been also used to
analyze the electromagnetic properties of periodic stratified metamaterials.
Under the implicit assumptions of translational symmetry (infinite extent)
and no loss, the discrete Floquet-Bloch modes of electromagnetic waves in
periodic media were derived [37]. For lossy media, the Floquet-Bloch modes
are complex-valued [137–139] and no longer discrete [125].

Periodic thin films became popular after the developments in the crystal-
growing field in 1970s, especially with the advent of molecular beam tech-
nology. These fabrication methods enabled multilayer growing of very thin
layers, down to 10 Å, with well-controlled periodicity [37, 140]. Periodic lay-
ered metamaterials and photonic crystals are both periodic thin films with
abnormal electromagnetic properties, but they are fairly different. Pho-
tonic crystals are only made of dielectric materials with lattice periodicity
comparable to the operation wavelength, while periodic layered metamate-
rials can be composed of metal or dielectric materials with lattice constant
smaller than the wavelength. Over and above, the practical significance of
photonic crystals is mainly due to their associated photonic bandgaps, fre-
quency ranges where light cannot propagate through. This implies that the
abnormal electromagnetic properties of photonic crystals can be attributed
to the unusual refraction of light within their periodic lattices rather than
the microscopic electromagnetic resonance effects which are associated with
layered metamaterials. [134, 141, 142]

Considering a general periodic thin film system, the dielectric constant ε
depends on the spatial coordinate ~r and the angular frequency ω. Since ε is
a periodic function, Bloch’s theorem will be applicable for the electromag-
netic eigenmodes similar to electronic eigenstates in crystals. Hence, the
eigenfunctions of electric and magnetic wave equations can be expressed as

~Ek(~r) = uk(~r) e
i(~k.~r), (1.32)

~Hk(~r) = vk(~r) e
i(~k.~r), (1.33)

where uk(~r) and vk(~r) are the periodic envelope functions of electric and
magnetic fields respectively, and satisfy the following conditions:
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uk(~r + ~a) = uk(~r), (1.34)

vk(~r + ~a) = vk(~r), (1.35)

where ~a is the elementary lattice vector and ~k is the Bloch wave vector. If
the periodicity disappears, the periodic envelope functions uk(~r) and vk(~r)
become constant and the Bloch wave vector equals to the wave vector of the
plane wave of propagation. [140, 143]

1.6 Thesis Outline

The thesis presents rigorous electromagnetic solutions for practical im-
plementations of layered metamaterials for the purpose of engineering their
exotic electromagnetic properties. Chapter 1 discussed the fundamental con-
cepts of the electromagnetic wave theory. We also presented some more ad-
vanced concepts like metamaterials, homogenization theory, and the Floquet-
Bloch theory. Following the rapid pace of research on metamaterials, we
highlighted some of the most influential research in the field of layered meta-
materials focusing on three influential applications. Chapter 2 discusses the
derived analytical solutions and the corresponding band diagrams as a prac-
tical design tool for engineering the refractive properties of layered meta-
materials. The next three chapters then discuss three layered metamaterial
applications. A flat lens criterion is proposed and validated in Chapter 3.
The concept of spectral light transmission in bi-layer thin films and the
general conditions for light transmission boost with a series of experimen-
tal investigations will be presented in Chapter 4. Chapter 5 discusses a
new nano-film fabrication method for surface plasmon coupling enhance-
ment. We conclude the thesis by summarizing the contributions, shedding
the light on the limitations, and discussing the possible directions for future
work.
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Chapter 2

Electromagnetic Fields in
Layered Metamaterials of
Finite Extent

Layered structures are one of the simplest forms of a metamaterial, as it
has heterogeneity along just one direction. Solving for the electromagnetic
fields within and about a layered system is straightforward using methods
like the transfer matrix method, a method used to analyze the propagation
of electromagnetic waves through a stratified (layered) medium by account-
ing for all transmitted and reflected waves within the layers and formalizing
the problem in matrix form. However, analyzing the intrinsic electromag-
netic field interaction, which can provide physical insights and explain the
associated abnormal optical properties such as super-resolution imaging, is
fairly complex due to the contribution of surface plasmon modes in these sys-
tems. To provide a simple solution to this problem and to characterize the
properties of layered metamaterials, various homogenization methods have
been introduced. An overall view of these homogenization methods has been
provided in the introduction, and it has been shown that they are generally
either based on unpractical assumptions or encounter non-uniqueness. Even
the Floquet-Bloch method, which is a widely used homogenization method
in the literature, is limited to applications for lossless layered systems of
infinite extent.

Numerical simulations of the electromagnetic fields can directly calcu-
late the spatial fields and energy distributions based on Maxwell’s equations.
This is a commonly used approach to study light behavior in layered meta-
materials [6, 9, 51]. The numerical simulation approach can be adapted to
simulate the electromagnetic behaviour of any system. These simulations
provide data on field and energy distributions of almost any configuration
and graphically demonstrate the collective electromagnetic wave behaviour
in complex structures. The major drawback of the numerical simulation
methods in analyzing mutual multi-mode electromagnetic wave behaviours
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2.1. Light Scattering at a Single Plane Boundary

is their incapability of accurately identifying the constituting modes and the
influence of each mode.

As a compliment to these methods, we introduce a bottom-up approach
that rigorously analyzes the intrinsic electromagnetic fields of lossy finite
layered media in closed form. We start with the transfer matrix method
using the fundamental Maxwell’s equations with the least possible assump-
tions and without invoking any homogenization methods. Then, we apply
Fourier transformation to find the Fourier domain representations of the
transfer matrix method solutions. Through a series of mathematical manip-
ulations, we manage to derive a field expression which is a product of three
terms: a term explicitly dependent on the Floquet-Bloch modes, a term gov-
erned by reflections from the medium boundaries, and another term which is
dependent on layer composition. We use the new field expression to decom-
pose and analyze the wave function in single layer, bi-layer, and multi-layer
systems.

Knowing the spatial-frequency representations of the electric and mag-
netic fields in a layered medium, the spectral time-average Poynting vector
(the directional energy transfer rate of electromagnetic fields per unit area)
and its associated equipotential contours (the real wave-vector coordinate
contours at which the potential energy of the electromagnetic fields is con-
stant) can be directly calculated. Plotting the derived equipotential contours
(EPCs), we graphically describe a wide range of refractive properties asso-
ciated with layered metamaterials. In this chapter, we will illustrate the
EPC band diagrams of a wide range of layered metamaterials from simplest
configuration of a thin silver layer to complex periodic systems composed of
multi-layered unit cells. We will study some frequently reported abnormal
optical properties associated with layered metamaterials such as negative
phase velocity, super-resolution, canalization, and far-field imaging. We also
utilize EPC band diagrams as standard gauge to validate some conventional
homogenization methods.

2.1 Light Scattering at a Single Plane Boundary

We start with the simplest configuration of single interface where a plane
boundary surface separating two isotropic homogeneous semi-infinite media.
Assuming the boundary is at z = 0 and that it is infinite along positive
and negative lateral directions, a plane wave is obliquely incident upon the
boundary from the first medium (z > 0). The incident light will be par-
tially reflected back to the first medium and partially transmitted through
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the second medium (z < 0). The incident, reflected and transmitted wave
vectors are all lie in the plane of incidence which is determined by the inci-
dent wave vector and the normal to the boundary surface (Fig. 2.1). In such
configuration, the problem of solving for the reflected and the transmitted
field coefficients is a boundary value problem which is solvable based on a
set of constraints called boundary conditions. At z = 0, the boundary con-
ditions insist on the continuity of the tangential electric ( ~E) and magnetic
( ~H) fields for all x and y.

Figure 2.1: Light scattering of a TM wave at a plane boundary.

Invoking Maxwell’s equations 1.10 and 1.11, we calculate the total elec-
tric and magnetic fields in the first medium as the sum of the reflected
and incident components. Considering a TM-polarized plane wave inci-
dent at an angle θ from the upper semi-infinite half space onto the bound-
ary surface, the incident time-harmonic magnetic field can be written as
~H = H0e

i(kx,0x+kz,0z)e−iωt ŷ, where H0 is the magnetic field amplitude, ω
is the angular frequency, and the real-valued vectors kx,0 and kz,0 are the
wave-vector components of k0 along the x- and z-axes respectively, where

k0 =
√
k2
x,0 + k2

z,0. Solving for the fields at t = 0, the time-harmonic

term can be suppressed and the magnetic field can be expressed as ~H =
H0e

i(kx,0x+kz,0z)ŷ. Here, we are discussing the time-harmonic independent
plane wave equations with TM polarization in frequency domain. In case of
TE polarization, the principle of duality (~E → −~H, ~H → ~E, ε� µ) can be
applied to solve for the complimentary equations.
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For a TM wave, where the magnetic field vector is normal to the plane of
incidence (Fig. 2.1), the total magnetic and electric fields in the first medium
can be written as

H1y = (H0e
−ik1zz +RH0e

ik1zz)eikxx, (2.1)

E1x =
−k1z

ωε1
(H0e

−ik1zz −RH0e
ik1zz)eikxx, (2.2)

E1z =
−kx
ωε1

(H0e
−ik1zz +RH0e

ik1zz)eikxx, (2.3)

where R is the reflection coefficient, and k1z and ε1 are the wave-vector com-
ponent along z-axes and the permittivity in the first medium respectively.
The opposite sign of the z component is an indication of opposite propaga-
tion in ẑ direction. In the second medium, the electric and magnetic fields
correspond only to the transmitted wave and they can be written as

H2y = TH0e
−ik2zzeikxx, (2.4)

E2x =
−k2z

ωε2
TH0e

−ik2zzeikxx, (2.5)

E2z =
−kx
ωε2

TH0e
−ik2zzeikxx, (2.6)

where T is the transmission coefficient of the electric field. Based on the
boundary conditions of E and H fields, we can obtain the relations between
reflection and transmission coefficients as

R+ 1 = T, (2.7)

and
k1z

ε1
(R− 1) = −k2z

ε2
T. (2.8)

Solving for R and T coefficients, we get

R =
1− p
1 + p

, (2.9)

and

T =
2

1 + p
, (2.10)
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where p = ε1k2z
ε2k1z

. For TE wave, where the electric field vector is normal to the
plane of incidence, we have the same solutions for R and T coefficients where
p should be replaced by p = µ1k2z

µ2k1z
. The derived reflection and transmission

coefficients are equivalent to the Fresnel coefficients for normal incidence.

2.2 Transfer-Matrix Representation of the
Electromagnetic Field in a Layered Medium

We consider the general one-dimensional configuration of a layered pe-
riodic media bounded by two semi-infinite half spaces (Figure 2.2). The
infinitely long layered system is aligned parallel to the xy plane with het-
erogeneity along z direction. It is composed of M repeated unit cells of J
layers where the total number of layers is MJ . The layers within a unit cell
are referenced by the small letter j, where j = 1, ..., J , and the unit cells are
referenced by the small letter m, where m = 0, ...,M − 1. Consequently, the
label reference of any layer ` will be a function of m and j, where ` = mJ+j.
We label the half space before the first layer as ` = 0 and the half space
after the last layer as ` = MJ + 1. With layer thickness of d` for layer `, the
total thickness of the layered medium will be L =

∑MJ
`=1 d`. The interface

plane location between layer ` and ` + 1 is denoted by z`. Accordingly, if
the plane of the first interface is at z0 = 0, the plane of the last interface
will be at zMJ = L.

The associated dispersive electromagnetic properties of each layer are the
complex-valued relative permittivity ε`, the complex-valued relative perme-
ability µ

`
, and consequently the complex-valued refractive index n`. For

the defined multi-layer structure where the heterogeneity is just along one
direction, the electromagnetic fields in each layer are the result of the inter-
ference between the infinite reflected and transmitted waves bouncing back
and forth between the two consecutive interfaces. The convenient way to
account for all reflected and transmitted waves and the boundary condi-
tions is through the matrix form representation of the aggregated reflected
and transmitted coefficients. The transfer matrix representation was first
introduced in optics by Jones’ and Abels in 1950 [144]. Later, this method
has been extensively used to solve for light propagation in stratified media
[81, 119, 140, 145–149].

Here, we consider a TM-polarized plane wave incident at an angle θ from
the semi-infinite left half space (` = 0) onto the layered medium. Using the
transfer matrix method, the magnetic field in an arbitrary layer ` is the sum
of two counter-propagating waves, a forward wave and a backward wave.
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Unit cell index, :m

Layer index, :l
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Figure 2.2: Geometry under consideration consisting of a one-dimensional
periodic layered medium bounded by two semi-infinite half spaces and com-
posed of M repeated unit cells, each consisting of J layers. The medium
is excited from one half-space by an incident plane inclined at an arbitrary
angle θ in the xz plane. [5]

The matrix form representation of the magnetic field in an arbitrary layer `
can be written as

~H`(x, z) = H`(x, z)ŷ

= eikx,0x

(
eikz,`(z−z`)

e−ikz,`(z−z`)

)T (
A`
B`

)
ŷ,

(2.11)

where A` and B` are the wave coefficients of the forward and backward
waves in layer `. The wave-vector component kz,` in layer ` can be related
to the layer refractive index n`, and the tangential wave-vector component
kx,0 by

kz,` = n`

√
k2

0 −
(
kx,0
n`

)2

. (2.12)

Using the boundary conditions at the interfaces, the wave coefficients A`
and B` in layer ` and the wave coefficients A`+1 and B`+1 in the adjacent
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layer `+ 1 can be related by(
A`+1

B`+1

)
= T`P`

(
A`
B`

)
, (2.13)

where P` is the propagation matrix corresponding to layer `, and T` is the
transmission matrix corresponding to the interface between layer ` and `+1.
The propagation matrix P` is given by

P` =

(
eikz,`d` 0

0 e−ikz,`d`

)
, (2.14)

and the transmission matrix T` is given by

T` =
1

2

(
1 + p

`
1− p

`
1− p

`
1 + p

`

)
, (2.15)

with p
`

= (ε`+1kz,`)/(ε`kz,`+1). Eq. 2.13 implies that the wave coefficients
within a layer can be calculated knowing the wave coefficients of the previous
layer.

Wave coefficients across a single layer can be related by(
t
0

)
= T1P1T0

(
1
r

)
, (2.16)

and wave coefficients across an arbitrary multi-layer system can be related
by (

t
0

)
= T`P`T`−1 · · · T1P1T0

(
1
r

)
. (2.17)

This matrix yields two equations and two unknowns (t, r), since the normal
wave-vector component kz, the layer thickness d, and the permittivity ε of
each layer are known. This enable us to solve for the magnetic field ~H` in
each layer ` of the layered system. The total field distribution in the spatial
domain can be expressed as a piece-wise function subdivided into spatial
intervals corresponding to the layer regions

~H(x, z) = H(x, z)ŷ =

MJ∑
`=1

rect

(
z − zc,`
d`

)
H`(x, z)ŷ, (2.18)

where zc,` is the location of the center of layer `. The rect function is defined
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as

rect

(
z − zc,`
d`

)
=

{
1 zc,` − d`/2 ≤ z ≤ zc,` + d`/2

0 otherwise.

Equation (2.18) works well solving for sets of linear equations using nu-
merical routines, but there are at least two disadvantages that should be
taken in consideration. First, this form of solution does not provide physi-
cal insight into the overall behavior of the repeated sets of layers. Second,
the right and left-handed propagating modes cannot be distinctly identified
and analyzed using this time domain solution. To account for these con-
cerns, Fourier transformation is applied to the piece-wise wave solution in
the next section.

2.3 Isolating Floquet-Bloch Modes by Fourier
Transformation

We solved for the electromagnetic fields everywhere using the transfer
matrix method. Since we are interested in analyzing the electromagnetic
modes within the layered medium, here we apply Fourier transformation
to the obtained electromagnetic solutions within the layers only. Apply-
ing Fourier transformation, the magnetic field distribution in the spatial-
frequency domain will be

H(κx, κz) =

∫ zMJ

0

∫ ∞
−∞

H(x, z)e−iκxxe−iκzzdxdz, (2.19)

where κx and κz are the spatial-frequency variables along the respective x
and z directions. Using the well-known Fourier theorems and substituting
(2.18) into (2.19), the integrand yields

H(κx, κz) =(2π)2δ(κx − kx,0)

MJ∑
`=1

d` sinc

(
κzd`
2π

)
e−iκzzc,`

∗
(
e−ikz,`z`−1δ(κz − kz,`)
eikz,`z`−1δ(κz + kz,`)

)T (
A`
B`

)
,

(2.20)

where δ is the Dirac delta function, the symbol ∗ indicates having a convo-
lution, and the matrix superscript T denotes matrix transposition.

To produce a physically insightful Fourier-domain wave solution, we ap-
ply a series of mathematical manipulations to Equation (2.20). We start by
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re-writing Equation (2.20) as a nested double summation over the number
of layers in a unit cell and the number of unit cells in the layered system

H(κx, κz) = (2π)2δ(κx − kx,0)
M−1∑
m=0

J∑
j=1

dj sinc

(
κzdj
2π

)
e−iκzzc,mJ+j

∗
(
e−ikz,jzmJ+j−1δ(κz − kz,j)
eikz,jzmJ+j−1δ(κz + kz,j)

)T (
AmJ+j

BmJ+j

)
.

(2.21)

In equation (2.21), we substitute the variables d` with dj , and kz,` with kz,j ,
and replace the index ` by mJ + j. Solving the convolution yields

H(κx, κz) =(2π)2δ(κx − kx,0)
M−1∑
m=0

J∑
j=1

dje
−iκzzc,mJ+j

(
eikz,jdj/2 sinc[(κz − kz,j)dj/2π]

e−ikz,jdj/2 sinc[(κz + kz,j)dj/2π]

)T (
AmJ+j

BmJ+j

)
,

(2.22)

where zc,mJ+j − zmJ+j−1 = dj/2. If the discrete summation form for the
central position within the layer mJ + j is given by

zc,mJ+j = mD + zj−1 + dj/2, (2.23)

where D =
∑J

j=1 dj is the thickness of the unit cell and zj−1 is the position
of the interface between layer j − 1 and j within unit cell m = 0, Equation
(2.22) can be simplified as

H(κx, κz) = (2π)2δ(κx − kx,0)

J∑
j=1

dje
−iκzzj−1

(
e−i(κz−kz,j)dj/2 sinc[(κz − kz,j)dj/2π]

e−i(κz+kz,j)dj/2 sinc[(κz + kz,j)dj/2π]

)T
M−1∑
m=0

e−iκzmD
(
AmJ+j

BmJ+j

)
.

(2.24)

The spatial-frequency domain representation of the electromagnetic wave
solution in (2.24) provides little more physical insight over the spatial-
domain representation of the wave solution in (2.18). However, we can
further factorize and simplify the wave solution (2.24) knowing that the ma-
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trix relation between the wave coefficients in an arbitrary unit cell (AmJ+j ,
BmJ+j), and the wave coefficients in the first unit cell (Aj , Bj) is given by(

AmJ+j

BmJ+j

)
= Umj

(
Aj
Bj

)
, (2.25)

where Umj is the unit cell transfer matrix from layer j to mJ + j and is
determined from the transmission and propagation matrices by

Umj =

mJ+j−1∏
q=j

T qP q. (2.26)

Substituting (2.25) into (2.24), we get the wave solution in terms of Aj
and Bj wave coefficients

H(κx, κz) = (2π)2δ(κx − kx,0)
J∑
j=1

dje
−iκzzj−1

(
e−i(κz−kz,j)dj/2 sinc[(κz − kz,j)dj/2π]

e−i(κz+kz,j)dj/2 sinc[(κz + kz,j)dj/2π]

)T
(
M−1∑
m=0

(
e−iκzDU j

)m)( Aj
Bj

)
.

(2.27)

By matrix decomposition, the unit cell transfer matrix referenced from
layer 1, U1, will be

U1 = Q λ Q−1 (2.28)

where Q is the eigenvector of U1 and λ is the eigenvalue of U1 whose diagonal
elements are the corresponding eigenvalues λ1 and λ2. U1 can be related to
the referenced unit cell transfer matrix from layer j, U j , using the relation

Umj = W j,1 U
m
1 W−1

j,1

= W j,1Q λ Q−1W−1
j,1 .

(2.29)

Since the determinant of U1 is unity, the eigenvalues are inverses of each
other, λ2 = 1/λ1. These eigenvalues can be related to the Floquet-Bloch
mode, kFB, by
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λ =

(
λ1 0
0 λ2

)
=

(
e+ikFBD 0

0 e−ikFBD

)
. (2.30)

Substituting (2.29) into (2.27) and relating the wave coefficients in layer
j to the wave coefficients in the left half space, we arrive at the final form
of the magnetic field solution

H(κx, κz) =(2π)2δ(κx − kx,0)

J∑
j=1

dje
−iκzzj−1

(
e−i(κz−kz,j)dj/2 sinc[(κz − kz,j)dj/2π]

e−i(κz+kz,j)dj/2 sinc[(κz + kz,j)dj/2π]

)T
W j,1Q︸ ︷︷ ︸

Lj

M−1∑
m=0

(
e−iκzDλ

)m
︸ ︷︷ ︸

FB

Q−1T0

(
1
r

)
︸ ︷︷ ︸

C

,

(2.31)

where three distinctive matrix factors are highlighted - a layer matrix Lj
dependent on the thickness and wave vector in the jth layer of the unit cell,
a Floquet-Bloch matrix FB dependent on the eigenvalues of the unit cell,
and a weighting matrix C dependent on the reflection coefficient.

Deriving the factorized form of the magnetic field solution in equation
(2.31) is the major contribution of this work. It shows how the Floquet-
Bloch modes and the electromagnetic field in a lossy layered medium of finite
extent are inherently related. If the general magnetic field form (2.31), the
three factors can be simply re-written as

Lj =
(
L+
j L−j

)
, FB =

(
FB+ 0

0 FB−

)
, C =

(
C+

C−

)
, (2.32)

where the “forward” and “backward” elements of each matrix factor are
distinguished by the superscript “+” and “−”, respectively, the magnetic
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field solution can be written in a compact form as

H(κx, κz) = (2π)2δ(κx − kx,0)
J∑
j=1

Lj FB C

= (2π)2δ(κx − kx,0)
J∑
j=1

(
L+
j

L−j

)T (
FB+C+

FB−C−

)
.

(2.33)

Compared to the spatial-domain solution in (2.18), which does not in-
clude any clue to the Floquet-Bloch modes, the spatial-frequency domain
solution in (2.31) can distinctively describe the collective wave behavior
across repeated sets of unit cells through the elements of the Floquet-Bloch
matrix. For a medium of finite extent (M < ∞), the FB matrix elements
are given by

FB± =e−i(κz±kFB)M−1
2

DM∆ 2π
D

[κz ±<(kFB)]

∗ sinc

(
M [κz ± i=(kFB)]D/2

2π

)
,

(2.34)

where =(kFB) is the material loss, ±<(kFB) is the principal harmonic center,
and the Dirac comb ∆ 2π

D
[κz ± <(kFB)] is describing an infinite comb of

discrete spatial-frequency harmonics spaced by 2π/D and it is defined as

∆ 2π
D

[κz ±<(kFB)] =
∞∑

N=−∞
δ [κz − 2πN/D ±<(kFB)] . (2.35)

In equation 2.34, the principal Floquet-Bloch harmonics of the forward el-
ement FB+ and the backward element FB− are centered at <(kFB) and
−<(kFB), respectively. Due to the convolution of the Dirac comb and the
sinc function, the harmonic elements FB± are widened through the com-
bined effects of finite extent (M <∞) and material loss (=(kFB) 6= 0).

For a medium of infinite extent (M → ∞), the elements of the FB
matrix approach

lim
M→∞

FB± =

M∆ 2π
D

(κz ±<(kFB)) =(kFB) = 0

∆ 2π
D

[κz ±<(kFB)] ∗ 2

D
√
κ2z+=(kFB)2

=(kFB) 6= 0.
(2.36)

In the case of lossless materials (=(kFB) = 0), the FB± elements are discrete
spectra with peaks at harmonics of ±<(kFB). The resulting magnetic field
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solution will be equivalent to the classical Floquet-Bloch solution where the
field solution consists of discrete forward and backward Floquet-Bloch modes
with amplitudes that can be explicitly determined by (2π)2

∑J
j=1 L

+
j C

+ and

(2π)2
∑J

j=1 L
−
j C
−, respectively. In the case of lossy materials (=(kFB) 6= 0),

the FB± elements are continuous spectra with peaks centered about the
principal harmonics of ±<(kFB) and broadened due to the effect of =(kFB).

2.4 Analysis of Electromagnetic Fields in
Layered Metamaterials

We study the electromagnetic fields in a typical metal-dielectric layered
metamaterial structure illuminated by a normal-incidence TM-polarized plane
wave (kx,0 = 0). For a bi-layer unit cell system, the factorized Fourier-
domain magnetic field solution takes the form

H(κz) = (2π)2δ(κx − kx,0)

(
L+

1 + L+
2

L−1 + L−2

)T (
FB+C+

FB−C−

)
, (2.37)

where L+
1 , L+

2 and L−1 , L−2 are the forward and backward elements of layer
matrices, respectively. Applying the Fourier-domain solution in (2.37) to
analyze a practical design of layered metamaterial, we assume the layered
system is bounded by free-space and the bi-layer unit cell consists of a 30-nm-
thick Ag layer and a 30-nm-thick TiO2 layer. A layered combination of these
two materials has been modeled as a homogeneous left-handed medium [7].
We analyzed two distinct Ag-TiO2 bi-layer systems, a system composed of
two unit cells (M = 2) and another composed of ten unit cells (M = 10).
Exciting each system by a plane wave with the free-space wavelength of
λ0 = 365 nm, Ag is assigned the complex refractive index of 0.076 + 1.605i
(interpolated from experimental data [17]), and TiO2 is assigned the real
refractive index of 2.80 [7].

For the unit cell cases M = 2 and M = 10, the matrix elements of the
magnetic field solution and its modulus squared, besides the z-component
of the time-averaged spectral Poynting vector are highlighted in Figure 2.3.
The concourse of broad spectral envelopes defined by L±1 (Ag layer) and
L±2 (TiO2 layer), and finer spectral combs defined by FB+C+ and FB−C−

results in the magnetic field spectrum. The Floquet-Bloch mode of the unit
cell is kFB = 32.5 + 0.4i µm−1, corresponding to a Floquet-Bloch refractive
index nFB = 1.89 + 0.02i. In Figure 2.3 c) and f), FB+C+ and FB−C−

combs are offset; the former with a principal peak located at <(kFB) and
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the latter with a principal peak located at −<(kFB). Increasing number of
unit cells M from 2 to 10 narrows the peaks of the combs and consequently
narrows the peaks in the magnetic field spectrum. As a result, we will have
better defined wavevectors for additional number of unit cells.

Figure 2.3: Decomposition of the wave solution in a metal-dielectric bi-layer
system consisting of alternating layers of 30- nm-thick Ag and 30- nm-thick
TiO2, assuming a normally incident TM-polarized wave with a free-space
wavelength of λ0 = 365 nm. a) The forward and backward components of
the layer matrix |L1|2 corresponding to the 30- nm-thick Ag layer. b) The
forward and backward components of the layer matrix |L2|2 correspond-
ing to the 30- nm-thick TiO2 layer. c), d), and e) depict the forward and
backward components of |FB C|2, the magnetic field spectrum |H|2, and the
z-component of the time-averaged spectral Poynting vector, respectively, for
the case of 2 unit cells; f), g), and h) depict the same set of information for
the case of 10 unit cells. The horizontal gray lines in e) and h) correspond
to zero values of the spectral Poynting vector . [5]

Comparing the forward and backward magnitudes of FB for the M = 2
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and M = 10 cases, it can be noticed that the magnitude of FB+ C+ is
larger than that of FB− C− in both cases. This indicates that the for-
ward propagating components in the medium outweigh the backward prop-
agating components. Carefully considering the z-component of the time-
averaged spectral Poynting vector < Sz > shown in Figure 2.3 e) and h), it
is remarkable that these negative spatial-frequency components are forward-
propagating waves since they are characterized by a negative time-averaged
spectral Poynting vector. Plotting the forward and backward components
of the weighting matrix |C|2 versus the number of repetitions in Figure 2.4,
we show that forward propagating waves |C+|2 generally exceeds backward
propagating waves |C−|2 and as the number of repetitions increases the back-
ward component gradually approaching zero. To achieve negative refraction,
the system should support backward waves. Figure 2.4 shows that the exam-
ined layered system is mainly supporting forward waves which means most
of the waves will be refracted positively.

0 5 10 15 20 25 30
0.0

0.5

1.0

1.5

2.0

|C
|2

Number of repetitions

 forward
 backward

Figure 2.4: Forward and backward components of the weighting matrix |C|2
versus the number of repetitions. Here, we have assumed a metal-dielectric
bi-layer system with a unit-cell made from a 30- nm-thick Ag layer and 30-
nm-thick TiO2 layer, assuming a normally incident TM-polarized wave with
a free-space wavelength of λ0 = 365 nm. [5]

At frequencies near the bulk plasma frequency of metal, the real parts
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of the Floquet-Bloch refractive index in finely layered structures composed
of metal turn to be negative, particularly for TM-polarized illumination [7,
150]. Mimicking the refractive properties associated with negative-index
media, these finely layered media are shown to be capable of imaging with
a planar slab (flat lensing) [4, 7]. As a continuation of this work, different
metamaterial configurations composed of right-handed materials have been
analyzed and the right-handedness of these systems has been consistently
observed, where the positive and negative spatial-frequency components of
the wave are found to be both forward-propagating waves [151].

2.5 Elecromagnetic Field Band Diagrams in
Layered Metamaterials

Band diagrams are necessary for illustrating refractive properties. They
are usually obtained by leveraging the Floquet-Bloch theorem [130, 131] to
isolate discrete sets of real-valued wave vectors ~k and then use a linear eigen-
value equation derived from the Helmholtz equation [143] to solve for the
corresponding frequencies ω(~k). To provide graphical information on phase
and group velocity in the medium, equi-frequency contours (EFCs) are then
displayed as a function of real-valued wave-vector coordinates. This way of
solving for band diagrams is usually applied to photonic crystals and it is
based on Floquet-Bloch theorem and Helmholtz equation. However, the ap-
plication of Floquet-Bloch theorem is limited to lossless infinite systems, and
in case of dispersion the Helmholtz equation turns into a non-linear eigen-
value equation, which requires time-consuming iterative algorithms that are
sensitive to initial guesses. As a result, EFC band diagrams are rarely used
to describe the electromagnetic properties of layered metamaterials [152].
Recently, a finite-element method has been proposed to solve for complex-
valued wave vectors ~k as a function of frequency ω(~k) in order to derive
band diagrams for layered metamaterials [138, 139, 152, 153].

In this thesis, we present a new approach to obtain band diagrams for
any layered metamaterial. Using the derived spatial Fourier magnetic field
in Eq. 2.33, we solve for the corresponding x and z electric field components.
The factorized Fourier-domain electric field components can be consequently
written as

Ex(κx, κz) = (2π)2δ(κx − kx,0)
J∑
j=1

1

εjε0ω

(
kz,j
−kz,j

)
Lj FB C (2.38)
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and

Ez(κx, κz) = (2π)2δ(κx − kx,0)

J∑
j=1

1

εjε0ω

(
kx,0
−kx,0

)
Lj FB C, (2.39)

respectively. The spectral electric fields, as well as magnetic fields, are
defined as functions of kz, the spatial frequency along z, which exist for
a fixed kx. Varying θ results in sweeping over different values of kx and
consequently having a two-dimensional k-space distributions of the electric
~E(~k) and magnetic ~H(~k) fields as a function of the spatial-frequency variable
~k = kxx̂+ kz ẑ.

The electric and magnetic field distributions define a plane-wave com-
pletely described by the triad ~k-~E(~k)-~H(~k) [154–156]. For each plane wave
component, the time-averaged power flow is given by the spectral Poynting
vector

〈~S(κx, κz)〉 =
1

2
<
[
~E(κx, κz)× ~H

∗
(κx, κz)

]
. (2.40)

The scalar potential of the spectral Poynting vector is defined by

Φ(~k) =
1

4π

∫ ∇~k′ · 〈~S(~k′)〉d~k′

|~k − ~k′|
. (2.41)

Describing scalar potential as contour lines will form a diagram of bands
in k-space. In general, the spectral Poynting vector can be defined as

〈~S(~k)〉 = ∇Φ +∇× ~R. (2.42)

where ~R is the rotational component of the spectral Poynting vector. Based
on our observations working with layered systems, we found that solenoidal
components of 〈~S(~k)〉 are negligible. In this case the second term of Eq. 2.42
will be almost zero (∇× ~R ≈ 0) and the direction of the spectral Poynting
vector will be the gradient of the scalar potential (contour lines).

Based on the fundamental relationship of group velocity [157, 158]

~vg =
〈~S(~k)〉
〈U(~k)〉

, (2.43)

the spectral Poynting vector have the same direction of the group velocity.
Here, 〈U(~k)〉 is the time-averaged energy density which is the amount of
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energy stored in the system per unit volume and it is generally defined by

〈U(~k)〉 =
1

2
(ε|E(~k)|2 + µ|H(~k)|2). (2.44)

It can be noticed that the conventional EFC band diagrams defined by
frequency ω(~k) are similar to the EPC band diagrams defined by Φ(~k) since
both have gradients along the group velocity pointing to the direction of
the time-averaged power flow. However, EPC band diagrams are unique for
several reasons. First, like the optical density of states, the k-space energy
density distribution can be inferred from the density of EPCs, where a high
EPC density indicates high energy density. Second, unlike the EFCs which
are limited to the Floquet-Bloch theorem assumptions of periodic, lossless,
and infinite media, EPCs are applicable to any layered system since they
can be derived without invoking the Floquet-Bloch theorem.

Third, as opposed to discrete modes with complex wave vectors for lossy
materials, the material loss effect using EPCs can be captured by a con-
tinuum of plane-wave modes with real wave vectors endorsing EPCs to be
plotted as a function of real wave-vector coordinates. Here we have to ac-
knowledge that the presented EPC approach builds on the past studies of
the anomalous refraction in infinite, lossless photonic crystals [154–156].
These efforts are based on spatial-frequency decomposition of electric and
magnetic fields to examine phase and group velocity. In this work, we have
generalized the theory by incorporating finite, lossy media and introducing
a new method to extract EPCs.

To demonstrate the refraction consistency of the derived EPCs with ge-
ometric optics, we examine a positive and a negative index homogeneous,
isotropic slabs, whose interface are aligned along the z plane. For homo-
geneous slabs, the EPCs are semi-circular bands as shown in Figs. 2.5 (a)
and (b). When the slabs are lossless and infinite, the EPC bands collapse
to a semi-circular line emulating the plane-wave mode in a homogeneous
medium (ω = ck/n). The homogeneous, lossy and finite slab is illuminated
by an obliquely incident plane wave from free-space at an angle θ where the
plane wave can be described in k-space by a wave-vector ~k0 = kx,0x̂+ kz,0ẑ.
The wave vector component parallel to the interface (kx,0), visualized by the
vertical lines in Figs. 2.5 (a) and (b), is conserved based on the principal of
tangential field continuity.
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Figure 2.5: Light refraction at an interface described by EPCs. EPCs for
finite, lossy slabs of thickness 2λ0 having either (a) a positive refractive index
n = 1.5 + 0.1i or (b) a negative refractive index n = −1 + 0.1i. The bottom
panels depict the EPCs of an incident plane wave (λ0 = 400 nm) impinging
on the slab. The resulting phase (blue arrow) and time-averaged Poynting
vector (red arrow) are graphically derived in k-space from the EPCs and
then depicted in real-space in the insets. [8]

For the positive-index slab, the excited plane waves have parallel phase
and group velocities along a direction consistent with Snell’s law. For the
negative-index slab, the incident wave excites planes waves with anti-parallel
phase and group velocities, where the phase velocity is directed towards
the interface and the group velocity is directed away from the interface.
The anti-parallel phase and group velocities are hallmarks of a left-handed
electromagnetic response and they impose negative refraction to the same
side of the normal, as first presented by Veselago [19].

The spectral time-averaged Poynting vector in (2.40) is quite similar to
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the one proposed in Ref. [154, 155] to analyze energy propagation of discrete
Floquet-Bloch modes in infinite, lossless dielectric photonic crystals. How-
ever, now we have extended the work to accommodate a continuous range of
Fourier field components in a finite, lossy periodic system. Moreover, the di-
rection of the time-averaged power flow can be inferred based on the gradient
of the equipotential contours. We applied this concept to derive band dia-
grams which can be used to distinguish forward- and backward-propagating
components of the wave in a medium and provide intuitive visualization of
phase and power flow [8].

2.6 Band Diagram Analysis of Layered
Metamaterials

To evaluate the functionality of our proposed method, we will derive
EPCs for a variety of layered metamaterials, including a thin silver layer
sustaining surface plasmon polariton (SPP) mode, Pendry’s silver slab lens,
the Veselagos lens, and metal-dielectric multi-layered systems capable of
canalization and far-field imaging. EPCs are calculated based on spatial-
frequency representations for arbitrary lossy layered media of finite extent
under plane-wave illumination [5]. For accurate solutions, we check that the
solenoidal component of the spectral Poynting vector in each case is small
compared to its ir-rotational component. Besides the numerical methods,
such as the finite-element method, for analyzing the electric and magnetic
field solutions in lossy finite layered media, our proposed analytical expres-
sions yield an efficient analysis method and high-resolution solutions of the
internal field modes (up to 500 unique solutions versus kx).

To support the derived EPC predictions, Maxwell’s equations are solved
and the full-wave solutions are simulated using the finite-difference frequency-
domain (FDFD), a numerical technique to solve the frequency domain har-
monic form of Maxwell’s curl equations [159, 160]. These simulations are
suitable for laterally asymmetric two-dimensional geometries and they can
visually provide the spatial distribution details of fields and energy density
in and about the layered medium. The simulations are conducted using the
FDFD technique due to its superiority over other methods like the finite-
difference time-domain (FDTD) method in realistic modeling of lossy mate-
rials, where FDFD allows the direct use of tabulated complex permittivity
values generally available in Refs. [17, 161]. The basic implementation of
the FDFD simulation method starts with defining a spatial grid. Then, a
plane wave source is placed in the simulation space, the boundary condi-
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tions are defined, and the steady-state distribution of the fields at a single
frequency are calculated everywhere [162, 163]. The FDFD simulations in
this work are conducted over a discrete two-dimensional spatial grid with
the minimal spatial resolution of 1 nm. Simulating layered configurations,
the finite simulation spaces are defined wide enough to have laterally long
layered media and to minimize boundary effects. The used FDFD MATLAB
code is provided in the Appendix.

To excite the SPP modes, we utilize the standard prism configuration by
illuminating the layered system with a plane wave source from a high-index
dielectric medium to probe the surface plasmon modes of layered metama-
terials at high lateral spatial frequencies (where kx >> k0). For the pur-
pose of quantifying the imaging resolution of layered systems, an optically-
thick chromium mask with two λ0/15-wide openings and distance T apart
is placed between the light source and the layered system. The minimum
distance T between the two mask openings that can be clearly identified as
two high energy density spots in the image region can be considered as the
minimum resolvable feature by the layered system.

2.6.1 SPP Mode as a Window into the Negative-Index
World

Considering the simplest layered system that can sustain SPP modes, we
derive the EPCs of a thin silver layer under the Kretschmann configuration
to investigate the correlation between SPP modes and left-handed electro-
magnetic behavior. The examined layered system consists of a 40-nm-thick
silver layer placed between a semi-infinite dielectric medium (n = 2) and a
semi-infinite free-space. The light source is placed in the dielectric medium
where the thin silver layer is illuminated by a transverse-magnetic (TM)
polarized plane wave with free-space wavelength of λ0 = 400 nm where the
silver permittivity is characterized by ε = −4.4 + 0.2i [17].

Figure 2.6(a) shows the derived EPCs where the most prominent fea-
ture is the high density vertical line localized just beyond the free-space
cutoff spatial frequency k0, and it corresponds to the SPP mode, a sub-
wavelength guided mode propagating along the surface. we draw a vertical
line on the EPC diagram at kx ' 1.1k0 and a wave vector ~k from the ori-
gin to the point of highest line density along the vertical line to visualize
the SPP mode plane-wave excitation. While the phase velocity along ~k
points away from the origin, the group velocity along the spatial frequency
gradient points towards the origin. The anti-parallel phase and group veloc-
ities relation is the distinct characteristic of a left-handed medium which is
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achieved solely within the silver layer along the interface. The excited SPP
mode is inherently dispersive due to its near-resonance operation, requires
TM polarization, and occurs at a spatial-frequency that is inaccessible to
free-space plane-wave illumination. To show the polarization effect, we use
a transverse-electric (TE) polarized light source and we show the resulting
EPCs in Figure 2.6(b) where the potential gradient has been inverted and
the group velocity is generally directed away from the origin.

At surface plasmon resonance, an effective magnetic response is estab-
lished in the 40-nm-thick silver layer by microscopic circulation of its elec-
tric field as illustrated in the FDFD simulation 2.6(c), where the electric
fields are the blue arrows and the magnetic fields are the contour lines.
This phenomenon leads to a light behaviour analogous to the behavior of
a negative-index medium. The electric field circulation is coincided with
the background magnetic field. At the silver-air interface where the SPP
mode resides, this synchronization is more pronounced. Using homogeniza-
tion methods, an effective magnetic flux density can be determined and the
contributions from the in-plane electric field to the magnetic response can
be described by a negative permeability [122, 164]. In contrast to the shaped
split-ring resonators that can achieve artificial magnetism at microwave fre-
quencies, the silver layer with a smooth surface can enable electric circulation
and attain artificial magnetism and left-handed behavior at visible and UV
frequencies over the smallest possible size scales.

In multi-layer metal-dielectric systems, if the fill fraction of the dielectric
is sufficiently low, the SPP mode across the metal dielectric interfaces can
still support the left-handed behavior. To show the effect of adding dielectric
layers to the system, we use the plane wave illumination (λ0 = 400 nm, TM-
polarization) to excite a metal-dielectric five-layer waveguide made of three
40-nm-thick silver layers separated by two 10-nm-thick dielectric (n=2) lay-
ers where the dielectric fill fraction is 0.14. We then map out the derived
EPCs where the concentric elliptical contours are increasing close to the ori-
gin as shown in Figure 2.6(d). It can be noticed that in this Figure phase
and group velocities are nearly anti-parallel at the predetermined surface
plasmon resonance spatial frequeny in Figure 2.6(a) kx = 1.1k0. This ob-
served left-handed behavior is consistent with the theoretical investigations
of backward-propagating SPP modes [122, 164], as well as the experimen-
tal results of in-plane negative refraction of visible light in metal-dielectric
waveguides with fairly thin dielectric cores [165]. The FDFD simulation of
the electric and magnetic fields in the multi-layer metal-dielectric system at
the surface plasmon resonance shows that the left-handed response arises
from microscopic electric field circulation similar to the case of the single
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silver layer (Fig. 2.6(f)).

Figure 2.6: Band diagrams reveal interesting propagation characteristics of
the SPP mode. We first examine EPCs for a single 40-nm-thick silver layer
illuminated by a plane wave (λ0 = 400 nm) incident from a dielectric (n = 2)
prism for either (a) TM or (b) TE polarization. (c) depicts the electric (blue
arrows) and magnetic (contour lines) fields in the 40-nm-thick silver layer at
the surface plasmon resonance. The x and z scales are the same. Under TM-
polarized illumination at the same wavelength, we next examine EPCs for a
5-layer stack of silver and silicon nitride (n = 2) layers, where the silver layer
thickness is fixed at 40 nm and the thickness of the silicon nitride is either
(d) 10 nm or (e) 40 nm. (f) depicts the electric (blue arrows) and magnetic
(contour lines) fields in the multi-layer structure at the surface plasmon
resonance for the case of dielectric thickness 10 nm. The insets in the EPCs
depict the geometrical configuration for each case. The blue and red arrows
describe the phase and time-averaged Poynting vector, respectively, of the
most dominant mode excited at the spatial frequency kx ' 1.1k0. The
location of the dominant mode corresponds to the highest density of contour
lines intersected by the vertical line describing the conserved wave-vector
component of an incident plane wave.[8]

Investigating the sensitivity of left-handedness response to the dielectric
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fill fraction, we increase the thickness of the dielectric layers to 40 nm (di-
electric fill fraction of 0.40) where we observe that the EPCs dramatically
change and flatten out into a series of horizontal lines with an upward po-
tential gradient as shown in Figure 2.6(e). This is an indication that the
system is now supporting bulk mode propagation through the medium as
opposed to guided mode propagation along the surface.

2.6.2 Super-Resolving Silver Slab Lens and the Veselago
Lens

The capability of a thin silver layer for imaging beyond the diffraction
limit, which was first proposed by Pendry, has been demonstrated theoreti-
cally and experimentally in the literature. As in the Veselago lens, the per-
fect resolution capability of Pendry’s silver slab is considered to emerge from
the amplitude amplification of evanescent waves [27]. To excite evanescent
waves at special frequencies beyond the free-space cutoff, a thin planar air
region is adopted between the prism and the Pendry’s silver slab lens, as well
as the Veselago lens. Deriving the EPCs under evanescent wave illumination
conditions, we attempt to understand the origins of their resolving power.
Beyond the considerable studies in this field, our presented EPC approach
offers two novelties. First, the evanescent wave coupling into the lenses is
conducted using a realistic laboratory implementable prism-coupling con-
figuration. Second, using the EPC diagrams an intuitive imaging analysis
based on phase and power flow in the lens, similar to the classical imaging
analysis, is provided.

In Figures 2.7 and 2.8, we map out the EPCs for a Pendry’s silver lens
and a Veselago lens with equivalent thicknesses of 40 nm. The object plane
is placed close to the interface, 20 nm apart from the entrance of the lens,
between a dielectric prism and air. For high-k mode plane-wave excita-
tion with large lateral spatial frequencies, a prism with an unusually high
refractive index (n = 5) is used. Such prism configuration is a realistic em-
ulation of the evanescent wave illumination conditions used in Ref. [27], the
first propose of super-resolution imaging in these systems. The comparable
EPCs of the two lenses justifies their analogy under near-field conditions.
At large spatial frequencies, the behavior of both lenses is governed by the
dense vertical lines outside the free-space cutoff (surface modes) and poten-
tial gradients directed towards the origin (left-handed response).
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Figure 2.7: Band diagram analysis of Pendry’s super-resolving layer. EPCs
for (a) Pendry’s 40-nm-thick silver slab lens for TM-polarized illumination
at the wavelength of λ0 = 357 nm. The inset describes the geometrical
configuration. The red arrows trace out the time-averaged Poynting vector
along a frequency contour. Simulations of a test object imaged by Pendry’s
silver slab lens when the two point-like features of the object are spaced by
(b) λ0/2.5, (c) λ0/3.0 and (d) λ0/3.5. [8]

.

Examining the mapped out EPCs, several observations can be made.
First, more modes are supported by the single layers beyond the free-space
cutoff spatial frequency compared to the below cutoff. These modes are
the high-k modes which are the source of their super-resolution capabilities.
Second, the time-averaged Poynting vectors of the high-k modes along a
potential contour (group velocities) are mostly directed towards the normal
line kx = 0. This emphasizes the capability of these lenses to collect and
concentrate light across their extent. Third, the density of modes gradually
diminishes as k increases. This is an explicit indication that there is a finite

44



2.6. Band Diagram Analysis of Layered Metamaterials

limit to resolving capabilities of any layered system excited by the realistic
prism configuration, even the Veselago lens.

Figure 2.8: Band diagram analysis of Veselago super-resolving layer. EPCs
for (a) a Veselago lens (ε = µ = −1) of equivalent thickness for TM-polarized
illumination at the wavelength of λ0 = 357 nm. The inset describes the geo-
metrical configuration. The red arrows trace out the time-averaged Poynting
vector along a frequency contour. Simulations of a test object imaged by
the Veselago lens when the two point-like features of the object are spaced
by (b) λ0/4, (c) λ0/5, and (d) λ0/6. [8]

.

It is quite evident that the common EPC feature of Pendry’s silver
lens and Veselago lens is the left-handed guided modes, the prime cause
of sub-wavelength imaging. Here, we show how the resolution limits can
be quantified by estimating the spatial-frequency bandwidth over which the
left-handed modes exist. In Pendry’s silver slab, the EPC lines are dense
vertical lines just outside the free-space cutoff up to a spatial frequency
between 1.5k0 to 2.0k0. This implies that the minimum resolvable feature
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by Pendry’s silver lens can be just less than double the free-space diffrac-
tion limit (λ/2). The FDFD simulations of the lens (Figs. 2.7(b)-(d)) show
gradual disappearance of discrete lobes in the image region. This suggest
that the two objects become indiscernible and result in T = λ/3 as the
minimum resolution, which is consistent with the EPC estimations. On the
other hand, the left-handed modes in the Veselago lens stretch up to around
double the bandwidth of Pendry’s silver lens, between 3k0 to 4k0. This es-
timation is supported by FDFD simulations (Figs. 2.8(b)-(d)) which show
that the Veselago lens’s minimum resolvable feature is about twice smaller
than that for Pendry’s silver lens (TV L = λ/6). The arguable results of fi-
nite resolution for Veselago lens, which is theoretically shown to have perfect
resolution, can be attributed to the use of a lossy, two-dimensional object
in the simulation. These structural parameters are adequate to violate the
required subtle conditions for perfect imaging.

2.6.3 Canalization in Multi-Layered Structures

Metal-dielectric multi-layer systems can work as canal for light where the
light can pass across their extent with little to no diffraction as shown by the
simulations in the literature [6, 166]. Due to the complexity of multi-layer
systems, which can be made of 40 alternating layers, their electromagnetic
properties are commonly described by an effective permittivity tensor of
anisotropic form which is modeled based on the effective medium theory
(EMT). We nominate the configuration proposed in Ref. [6] as a case study,
where the layered system consists of 20 repetitions of a bi-layer unit cell
composed of a 7.2-nm-thick silver layer (ε = −15) and a 7.8-nm-thick silicon
layer (ε = 14), at the wavelength λ0 = 600 nm. In Figure 2.9(a), we show the
band diagram or the EPCs of this configuration derived from the internal
electric and magnetic fields besides the volumetric averaging of the local
permittivity using EMT which basically extracts an effective refractive index
for the metamterial configuration and yields a single horizontal line located
at kz ' 0.

The band diagram consists of flat elliptical contours which are roughly
symmetric about kz ' 0, with two distinguished bands of horizontal lines,
one centered at kz ' k0 (forward- propagating mode) and another centered
at kz ' −k0 (backward-propagating mode). Since the contours remain flat
beyond the free-space cutoff spatial frequency, an incident plane wave at any
angle of incidence can excite modes that pass energy across layers’ extent
in either forward or backward direction. Considering the EMT method, the
plotted EMT line show that EMT can precisely predict the dominant flat
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horizontal contours of EPC, particularly those ones below the free-space
cutoff frequency, but it shows to be unsuccessful to predict their locations
in k-space.

Figure 2.9: Band diagram for the metal-dielectric multi-layer systems stud-
ied in Ref. [6] for the case of TM-polarized plane-wave (λ0 = 600 nm) illumi-
nation from a high-index dielectric (n = 5) prism. The blue line depicts the
simplified EPC predicted from effective medium theory (namely, Maxwell-
Garnett theory). FDFD simulations of the multi-layers imaging a test object
when the two point-like features of the object are spaced by (b) λ0/8, (c)
λ0/9, and (d) λ0/10. [8]

.

This reveals the limitations associated with EMT compared to the rigor-
ously derived EPC values. The FDFD simulations shown in Figures 2.9(b)-
(d) visually illustrate the ability of the examined multi-layer system to chan-
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nel light straight through the medium even with light streams spaced λ/10
apart from each other. The high resolving power observed in the simula-
tions is due to employing the ideal lossless material parameters originally
used in Ref. [6]. In case of simulating light propagation through materials
with realistic losses, the resulting resolving power is expected to be reduced.

2.6.4 Far-Field Flat Lens Imaging

For better understanding of the electromagnetic field interactions that
enable far-field imaging (flat lensing) in a recently presented layered sys-
tem [7], we apply the introduced EPC as the fundamental field analysis
technique. The reported far-field flat lens is designed to work in free-space
and it is made of three repetitions of a five-layer unit cell with the layer
sequence Ag (33 nm) - TiO2 (28 nm) - Ag (30 nm) - TiO2 (28 nm) - Ag
(33 nm). To understand the external optical properties of this structure by
simple geometrical optics, it has been modeled as a homogeneous, isotropic,
negative-index medium. This model works for describing the structure’s ex-
ternal optical properties, but does not provide insight into the dynamic be-
haviour of the internal fields. This insight can be gained by analyzing EPCs
of the internal fields. The EPCs of the structure beside the derived band di-
agrams using two homogenization methods (S-parameter method [167] and
Floquet-Bloch modes [125]) are shown in Figure 2.10. The EPC has a promi-
nent upward concavity band feature similar to the observed band curvature
in the EPC of the negative-index slab in Figure 2.5(b). Such upward EPC
curvature in the medium opposes the downward wavefront curvature in free-
space and forces the exiting wavefront to re-form into a real image in the
transmitted region. Furthermore, the associated internal fields’ group veloc-
ity is directed towards the normal kx = 0 line, a feature that is important
for collecting and concentrating light to form a real image. Consistent with
past experiments, the imaging capability of this structure is fundamentally
limited to the free-space diffraction limit due to the absence of the EPC
upward concavity feature beyond the free-space cutoff.

S-parameter method and the Floquet-Bloch theorem are two of the
widely used homogenization methods for modeling metamaterials. They
yield an infinite number of potential solutions in k space (Fig. 2.10(b)), but
the position and concavity of the dominant EPC band can be accurately
described by only one of the solutions. It can be noticed that the best
matching solution from the S-parameter method is at the m = 2 branch and
the best one from the Floquet-Bloch theorem is at the m = 1 branch. In
this section, we show that EPCs are useful for linking internal and external
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light behaviors of layered structures as well as determining the best effec-
tive medium model [168] through recognizing the one that most accurately
describes EPC features.

Figure 2.10: (a) EPC for the flat lens structure shown in Ref. [7] to be
capable of far-field imaging in the UV. The EPC is derived for TM-polarized
plane-wave (λ0 = 365 nm) illumination from a dielectric (n = 5) prism. The
inset depicts the geometrical configuration of the flat lens. (b) shows the
simplified EPCs derived using two common homogenization techniques: S-
parameter method (blue solid) and Floquet-Bloch modes (red dashed). [8]

.

2.6.5 Far-Field Flat Lens with Less Metal

Using the EPC concept and considering the absorption losses, we manage
to engineer and design a metal-dielectric layered system that is capable of
far-field imaging with minimal use of metal. We begin with a tri-layer unit
cell template composed of a single TiO2 layer sandwiched by two silver
layers of identical thickness. While using the thinnest silver layers possible,
we design a far-field imaging layered system with the essential phase and
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power flow key features where the associated EPC should consist of a single
dominant band with an upward concavity.

Figure 2.11: (a) EPC of a new layered flat lens structure that is capable
of far-field imaging, yet possesses about half the metallic fill fraction of
the flat lens presented in Ref. [7]. The proposed structure consists of 8
repetitions of a unit cell with the layer sequence Ag (7.5 nm) - TiO2 (25
nm) - Ag (7.5 nm). The EPC is derived assuming TM-polarized plane-wave
(λ0 = 330 nm) illumination from a dielectric (n = 2) prism. (b) shows an
FDFD simulation of the proposed flat lens imaging a test object placed on
its surface. Tapering of the magnetic energy density in the image region at
a location spaced about a wavelength from the exit surface confirms that
the structure is capable of forming real images in the far field. [8]

Optimization of the layered system according to the specified design
objective and constraint yields an optimal design consisting of 8 repetitions
of the seed tri-layer unit cell with the sequence and thicknesses of Ag (7.5
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nm) - TiO2 (25 nm) - Ag (7.5 nm). The proposed far-field flat lens design
is operational at the UV wavelength of λ0 = 330 nm. Using less metals,
we fulfill the set design constraint where the metal fill fraction of the new
design (0.38) is about half the metal fill fraction of the structure discussed
in the previous section (0.63). The new flat lens design achieves a prominent
upward concavity EPC band feature as shown in Figure 2.11(a), the required
EPC feature for far-field imaging. The FDFD simulations of this system in
Figure 2.11(b) confirm its far-field imaging performance where a real image
of the apertures, though not distinct, is formed about a wavelength apart
from the exit surface. The introduced less metal far-field flat lens possesses
less internal losses due to lower metallic content and this yields a boost
in light transmission. Therefore, this flat lens design can be considered
as a small step towards more practical flat lenses that work for real-world
applications such as UV microscopy.

2.7 Summary

Considering a general layered system configuration with practical con-
strains of loss and finite extent, we developed a new representation of the
electromagnetic field solutions in the Fourier domain. We then used the new
field representation to derive and plot the band diagrams. The developed
Fourier domain solution is a compact product of three terms where each
term is dependent on a distinctive physical parameter of the layered system.
There are two main contributions in this work. The first is the manifesta-
tion of the Floquet-Bloch modes as one of the explicit terms of the Fourier
domain solution using only Maxwell’s equation and without invoking the
Floquet-Bloch theorem. This work shows the functionality of representing
the electromagnetic field solutions of a layered system in Fourier domain to
analyze its complex electromagnetic properties. The promising conclusions
of this work suggest that the Fourier domain analysis method can be ap-
plied to analyze the electromagnetic properties of more complex geometries.
The second is the introduction of band diagrams as useful tool for designing
practical layered systems as well as validating conventional homogenization
methods. We have used EPCs to design a layered system that mimic the
left-handed electromagnetic response, an anisotropic metamaterial that is
capable of canalization, and a far-field highly transmissive flat lens which
incorporates the minimum amount of metal.
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Chapter 3

Flat Lens Criterion by
Small-angle Phase

In this chapter, we introduce a quantitative method based on the classical
ray optics to analyze the imaging capability of any ultra-thin planar slab
made of homogeneous isotropic layers. Unlike the band diagram method
proposed in the previous chapter, this method use the small-angle phase
behavior as a criterion to predict the imaging capability of any planar slab
and to estimate the image plane location.

Here, we only consider the small-angle phase behavior and neglect the
large angle and evanescent plane wave components to develop a simple,
general and instant flat lens metric that can provide acceptable but not very
accurate estimations before conducting any extensive analysis. To validate
this method, we applied the flat lens criterion to some of the already studied
structures of near-field and far-field flat-lenses. Using this criterion, we
derive approximate analytical expressions to show when a single layer or a
multi-layer system can act as a flat lens. We ultimately demonstrate how
the introduced flat lens criterion is practical by effectively designing three
distinct flat lenses with novel functionalities.

3.1 Flat Lens Criterion

The imaging response of a flat lens can be described by the classical ray
optics using the concept of point spread function (PSF) and paraxial ap-
proximation. Flat lens analysis based on the PSF amplitude is a standard
approach [9, 28, 55, 58]. For a complete analysis, we also analyze the PSF
phase and we underline its potential as a flat lens indicator. Considering a
planar medium with the same geometry of the layered system illustrated in
chapter 2 (Fig. 2.2), we place a point source in the object region directly
on the entrance face of the medium at z = −d. We assume that the object
region (z < −d) and the image region (z > 0) are composed of generally
dissimilar, isotropic and homogeneous media. The transmitted light source
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in the image region can be decomposed in the xz plane as a uniform plane-
wave spectrum parameterized by the wave vector ~kt = kt,xx̂+ kt,z ẑ. Along
the z axis, we only need to evaluate the phase of the plane-wave components
( Φz) due to translational symmetry. The phase of the plane-wave compo-
nents exiting the slab Φz(z = 0), referenced to a common initial value at
the source, can trace out the wavefront and map out the loci of equi-phase
points in the image region.

At an arbitrary point z0, the phase of the PSF can be written as Φz(z0) =
Φz(z = 0) + kt,zz0. In case of ideal image formation at z0, the phase is in-
variant for all plane-wave components at z0 based on Fermat’s principle,
∂ Φz(z0)/∂ kt,z = 0. The image formation will suffer from spherical abber-
ations and we will not have an ideal image since the monochromatic light
phase is not invariant for all plane-wave components at any point.

Applying the concept of phase invariance on the small-angle plane-wave
components ( kt,x << kt,z ' kt), the paraxial image location in terms of
the PSF phase can be defined by

s = z0 ≡ −
∂ Φz(z = 0)

∂ kt,z

∣∣∣
kt,z= kt

, (3.1)

where image plane location s is the maximum working distance of the flat
lens and it can be positive for a real image in the image region or negative
for a virtual image in the slab or object regions. Hence, a planar medium
can be defined as flat lens if it is capable of producing a real paraxial image
(s > 0) of a point source located on its entrance face. The flat lens criterion
is defined for near zero numerical aperture (NA), the range of angles over
which the system can accept light. Usually, this criterion has been used to
describe conventional optical systems. However, we show that this condition
is applicable to any flat lens since it depends only on the phase profile at
the slab exit.

Considering the PSF interpretation as a transfer function relating the
iso-planatic field quantities along object and image planes perpendicular to
the optical axis, the amplitude of the PSF is commonly presented versus
the normalized lateral wave vector kt,x/ kt [169]. On the other hand, the
PSF phase is associated with spherical wavefront curvature and spherical
aberrations mapping onto high order terms which are difficult to distinguish
on a graph and eventually makes the PSF phase inconvenient to be displayed
versus kt,x/ kt. Knowing that Φz(z = 0) is dependant on kt,z in Eq. (3.1),
here we suggest to plot the PSF phase as a function of qt = 1 − kt,z/ kt =
1− cos θt, where θt is the angle of the transmitted light at the exit surface.
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Over the range 0 ≤ qt ≤ 1, qt describes propagating waves. Plotting the
PSF phase versus qt, several observations can be evolved (Fig. 3.1). Positive
slope will be an indication of flat lens behavior, the slope at the y-intercept
(∂ Φz(z = 0)/∂qt|qt=0) can be counted as an estimation for the paraxial
image location, and the departure from linearity will imply the occurrence
of spherical aberrations.
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Figure 3.1: Curvature of the wavefronts exiting a planar slab for the cases of
(a) virtual and (b) real image formation. By plotting the phase Φz(z = 0)
versus qt = 1 − cos θt, the possibility of a flat lens can be determined by
inspection from a positive slope. [4]

In this work, we have applied the flat lens criterion to analyze the imaging
of a point source located on the entrance face of the slab. Such analysis is
extendable to volumetric objects which can be treated as collections of point
sources along the lateral and longitudinal directions. As we scan over the
lateral direction along the translational symmetry of the slab, we will have
a shift in the image point towards the same lateral direction with no effect
on the location of the image plane. Contrary, the imaging capability of the
slab will distinctly change as we scan over the longitudinal direction along
the normal line to the slab. As long as the depth of an object is less than the
characterized image plane location s of a flat lens, a real image of the object
placed perfectly against the entrance face of the flat lens can be created.
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3.2 Methodology

Validating the proposed flat lens criterion as a general criterion to predict
flat lens behavior, we first visit some past flat lens implementations operating
in both the near- and far-fields and calculate the paraxial image location.
Then, we use this criterion as a metric to design new flat lens configurations.
The suggested flat lens criterion predict the paraxial image plane location
using the PSF derived from the transfer matrix method [170, 171].

For past and new flat lens designs, the predictions of the image plane lo-
cation have been compared with the full-wave electromagnetic simulations.
These simulations display the solutions of Maxwell’s equations over a two-
dimensional grid with pixel size of at most 1 nm using the finite-difference
frequency-domain (FDFD) technique. The utilized light source in simula-
tions is a TM or TE polarized light source with normal incidence plane wave
propagating along the +z direction. Based on the use of TM or TE polar-
ization, the simulation results are displayed in terms of the distribution of
magnetic or electric energy density, respectively.

To conduct near diffraction limit imaging simulations, an opaque chromium
masking layer with two λ0/10-wide openings spaced by λ0/2.5, which is
slightly below the diffraction limit, is placed between the flat lens and the
plane wave source. Such simulations reveal further information about the
flat lens resolution capabilities near the diffraction limit which is one of
the most appealing claimed features of metal-dielectric layered flat lenses.
The used permittivity values in the transfer matrix method calculations
and FDFD simulations are from [17] for silver and gold and from [161] for
chromium. The used permittivity values in the calculations of past published
flat lens implementations are taken from the original works.

3.3 Comparison with Past Flat Lens Results

3.3.1 Pendry’s Silver Slab Lens

We use the single silver layer flat lens configuration as the first test
platform for investigating the small-angle phase criterion. It has been shown
that a thin silver layer (Pendry’s silver slab) can work as a flat lens [27]
mimicking the electromagnetic properties of a perfect negative refractive
index slab (Veselago lens). Due to its evanescent wave amplification, this
single layer flat lens was suggested as a feasible tool to image beyond the
diffraction limit. Such super-resolution behavior is not directly predictable
using the small-angle phase which can only predict the existence and location
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of the paraxial image. Considering Pendry’s setup, a 40-nm-thick silver layer
with complex permittivity of ε = −1.0+0.4i at wavelength of λ0 = 356.3 nm
is placed 20 nm apart from an object. Applying the flat lens criterion, the
image plane location is predicted to be at s = 36 nm, which is comparable
to the reported image location of 20 nm in [27]. This disparity could be due
to accounting for large angle plane-wave components and assuming ideal
negative refraction in the reported image location by Pendry.
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Figure 3.2: (a) PSF phase for Pendry’s silver slab lens consisting of a 40-
nm-thick Ag layer with a permittivity of ε = −1.0 + 0.4i at a wavelength
of λ0 = 356.3 nm, where the object is 20 nm away from the entrance of the
slab. The phase has been calculated at the exit of the slab (z = 0 nm) and
the paraxial image location has been predicted at z = 36 nm. (b) FDFD-
simulated profile of the magnetic energy density at the image plane z = 36
nm for the cases where the near diffraction limit spaced objects are imaged
without (blue) and with (red) the silver slab lens. Simulated time-averaged
magnetic energy density distributions of the illuminated object are shown
(c) without and (d) with the 40-nm-thick Ag layer. The yellow dashed lines
in (d) show the positions where the PSF phase profiles have been calculated
in (a). [4]
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The phases of the transmitted light versus qt at the exit interface of the
silver layer, and at the paraxial image location are shown in Figure 3.2(a).
The former phase profile at the exit interface is a clear indication of the
existence of a real paraxial image due to its positive slope. The second
phase profile at the image location of s = 36 nm shows to be consistent with
the Fermat’s principle of real image formation where the phase profile is
flat at small angles. To investigate if the silver slab is capable of imaging
slightly below the diffraction limit λ/2, a comparative simulation of the
magnetic energy density at the image location (36 nm) is conducted using
an almost diffraction limit spaced object (λ/2.5) with and without the silver
slab (Fig. 3.2(b)).

For further highlight on imaging with resolution slightly below the diffrac-
tion limit using a thin silver layer, we show the spatial energy density distri-
butions for the two cases of with and without the silver slab in Figs. 3.2(c)
and 3.2(d) respectively. Although it is difficult to firmly locate the image
plane location using the energy density simulations due to the decay of the
energy density near the exit interface, the energy density profile at 36 nm
(Fig. 3.2(b)) is shown to be consistent with the small-angle phase prediction.

3.3.2 Near-field Imaging with Silver Layers

Imaging with flat lenses is usually confined to near-field due to the dif-
ficulties associated with satisfying the physical conditions for real image
formation at far-field using a flat slab. Here, we discuss the correlation be-
tween the predicted real paraxial image and the reported near-field super-
resolution image in some of the past UV imaging experiments on photoresist
using a silver layer.

Using the proposed flat lens criterion, we reasonably explain some of the
observed near-field imaging behaviours of the past flat lens implementations
by analyzing their paraxial image locations (Fig. 3.3). Imaging beyond the
diffraction limit or super-resolution imaging using very thin silver layers
of thicknesses down to 36 nm has been shown in several experiments [9,
10, 50, 54]. At UV wavelengths, the slope of the phase profiles of the past
implemented flat lenses using a 36-nm-thick silver layer [9] and a 50-nm-thick
silver layer [10] are both positive (Fig. 3.3(a)). The corresponding paraxial
image locations have been predicted to be at s = 10 nm and s = 22 nm,
respectively. Comparing the imaging capability of a metal layer versus a
dielectric layer of the same thickness, we examined the third [11, 53] and
the forth [12] flat lens configurations illustrated in Figure 3.3.
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Figure 3.3: Flat lens criterion applied to past implementations. (a) PSF
phase at the exit surface of lenses based on the 36-nm-thick silver layer
studied in Fang et al. [9], the 50-nm-thick silver layer studied in Melville
et al. [10], and the 120-nm-thick silver layer studied by Melville et al. in
[11, 12], along with the control used in [12] of a 120-nm-thick PMMA layer.
(b) PSF phase at the exit surface of lenses based on metal-dielectric multi-
layers studied by Belov et al. [6]. The inset in (b) shows a magnified view of
the data near normal incidence. (c) Paraxial image location as a function of
unit cell repetition for the periodic metal-dielectric layered system studied
by Kotynski et al. [13]. (d) PSF phase at the exit surface of the geometry
studied by Xu et al. [7] where the flat lens composed of metal and dielectric
layers. [4]
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At a wavelength of λ0 = 341 nm, the slope of the phase profile at the exit
face of the 120-nm-thick silver layer sandwiched between two 60-nm-thick
PMMA layers is negative, which is the sign of having a virtual paraxial image
(Fig. 3.3(a)). As predicted by the slope of the phase, the flat lens criterion
calculations located the image at s = −40 nm inside the flat lens region. On
the other hand, the single 120-nm-thick PMMA layer configuration forms
a virtual paraxial image at s = −150 nm. This insists that silver layer has
significantly improved the imaging performance bringing the image plane
location closer to the image region (s = −40 nm). The reported experimental
results in the literature are consistent with our real and virtual paraxial
image predictions.

The discussed comparative analysis results showed that the real paraxial
image formation using a thin film is fully dependant on the film thickness. To
form a real image, the film thickness should be sufficiently smaller than the
wavelength as stated before by Pendry. It can be also concluded that having
a real paraxial image within the image-capturing region is a prerequisite
for near diffraction limit resolution imaging. However, understanding and
affirming this postulation requires further work. In the next sections, we
will analytically discuss the film thickness effect on flat lens imaging.

3.3.3 Anisotropic Metamaterial Lenses

The periodic metal-dielectric bi-layer implementations of flat lens have
been proposed to mimic the properties of anisotropic metamaterial for the
purpose of imaging as theorized in previous works [23, 49]. A metal-dielectric
bi-layer system can be characterized by a flat wave vector diagram and
described by a highly anisotropic permittivity tensor, if the permittivity
and thickness values of the metal ( εM , dM ) and the dielectric ( εD, dD)
layers in the bi-layer composition satisfies the relations εM/ εD = − dM/ dD
and εM + εD = 1 [6, 57, 63]. The characterized flat wave vector relation
in bi-layer metal-dielectric flat lenses enables the front to back direct image
projection across the slab.

Considering three different multi-layer systems designed as anisotropic
metamaterial lenses [6, 13], we examine the consistency of the reported imag-
ing properties with the predicted paraxial image locations (Fig. 3.3(b)). At
the wavelength of λ0 = 600 nm, the calculated PSF phase of two lossless
20-unit-cell systems presented in [6] have been analyzed and yield the re-
spective paraxial image locations of s = 0.2 nm and s = −3 nm, where the
characterized unit cell parameters of the first layered system are εM = −1,
εD = 2, and dM/ dD = 1/2 and the second one are εM = −14, εD = 15,
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and dM/ dD = 14/15. The predicted paraxial image locations (s = 0.2 nm,
s = −3 nm) are quite close to the exit interface of the slab as reported in the
referred work [6]. At the wavelength of λ0 = 422 nm, a different study [13]
provided the detailed simulation data for a lossy multi-layer system with unit
cell parameters of εM = −5.637 + 0.214i, εD = 2.62 and dM/ dD = 10/12.
As the number of unit cell repetitions N increases from 1 to 50, the size of
the spot light expands and shrinks at a fixed plane near the output face.
Plotting the spot size versus N results in a consistently oscillating profile
with 6 evenly spaced local minima. We obtain identical oscillatory depen-
dence on N by calculating the paraxial image locations using the PSF phase
(Fig. 3.3(c)). This implies that the observed spot size variation in [13] is
partially due to image focusing and de-focusing at a fixed plane.

3.3.4 Negative-Index Metamaterial Lens

Emulating the perfect negative index flat lens proposed by Veselago [19],
a recent pioneer work introduced a metal-dielectric multi-layer flat lens as an
isotropic negative index metamaterial [7]. Operating at the wavelength of
λ0 = 364 nm, a far-field image at 360 nm apart from the flat lens exit inter-
face has been reported [7] which is found to be comparable to the predicted
paraxial image location of s = 370 based on the PSF phase calculations (Fig.
3.3(d)). The deviations from unity for the phase profile at the paraxial image
location can be attributed to the wavefront aberrations. The extrapolation
of these deviations demonstrates the occurrence of wavefront aberrations
lower than λ0/4 up to about unity NA.

3.4 Validation of Flat Lens Criterion by
Full-Wave Simulations

We use the electromagnetic full-wave FDFD simulations of past flat lens
configurations to validate the introduced flat lens criterion. This comparison
analysis shows moderate agreement between the simulated image locations
and the paraxial image locations across near-field and eminent consistency
across far-field regimes. We revisit four of the considered flat lenses in
the previous sections: 1) the 120-nm-thick silver layer presented in [11,
12], 2) the 50-nm-thick silver layer presented in [10], 3) the metal-dielectric
anisotropic metamaterial lens reported in [6], and 4) the metal-dielectric
negative-index metamaterial lens reported in [7]. We then conduct the full-
wave simulation for each flat lens system.
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Figure 3.4: Comparison of paraxial image locations predicted by PSF
phase and numerical simulations. FDFD-calculated time-averaged energy
density distributions for flat lenses consisting of (a) a 120-nm-thick silver
layer studied in [11, 12], (b) a 50-nm-thick silver layer studied in [10], (c)
metal-dielectric multi-layers studied in [6], and (d) metal-dielectric multi-
layers studied in [7]. In all cases, we use near diffraction limit spaced objects
consisting of two, λ0/10-wide openings spaced λ0/2.5 apart in an opaque
mask that is illuminated by a TM-polarized plane wave. The yellow dashed
line in each panel shows the corresponding paraxial image location calculated
from the slope of the output phase. [4]
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The simulations and the paraxial image locations, depicted by dashed
yellow lines, are shown in Figure 3.4. Except the first flat lens configuration
with the 120-nm-thick silver layer where the simulation of the energy density
distribution shows divergent behaviour in the image region (Fig. 3.4(a)),
the simulations of the other three flat lens systems show convergent energy
density distributions at certain spots in the image region (Fig. 3.4(b), (c),
(d)). The narrowest plane in the simulation of the 120-nm-thick silver layer
flat lens is located close to the predicted virtual paraxial image location
s = −40 nm which implies that this system is not capable of forming an
image of the object in the image region (Fig. 3.4(a)).

On the other hand, imaging by lenses made of 50-nm-thick silver layer
and anisotropic metamaterial is quite evident to provide imaging resolutions
slightly below the diffraction limit as it can be observed from the simula-
tions. Two high energy density spots appear in the simulations near lenses’
output faces at plane locations roughly match the estimated real paraxial
image locations calculated by the phase of the PSF [Figs. 3.4(b) and 3.4(c)].
Even though the predicted paraxial image location is determined without
accounting for the evanescent plane-wave components which are believed to
be the main contributor in super-resolution imaging, surprisingly we found
reasonable agreement between our predictions and the exact full-wave sim-
ulations.

Finally, a single high energy density spot well-separated from the output
face is observable in the full-wave simulation of the negative-index metama-
terial lens. This is a clear indication of having a diffraction-limited image at
a position that is again quite consistent with the predicted real paraxial im-
age location (Fig. 3.4(d)). Unlike the second and third considered lenses, the
negative-index metamaterial lens cannot resolve the defined near diffraction
limit spaced objects in the image region.

3.5 Flat Lens Condition for a Single Layer

To precisely determine when a single homogeneous layer can generate
a real paraxial image based on the expression (3.1), we develop compact
analytical expressions that can work as determinant conditions for imaging
with a flat slab. First, we define the most generic configuration where a
homogeneous, non-magnetic, isotropic layer of thickness d, characterized by
a permittivity of ε = ε′ + i ε′′ and a permeability of µ = 1, is placed in free-
space. For a point source with a plane-wave spectrum parameterized by the
wave vector ~ko in the free-space object region where ~ko = ko,xx̂ + ko,z ẑ,
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the transmitted plane waves through the single layer are modulated by a
transmission coefficient t where

t =
4 p

(1 + p)2e−ikzd − (1− p)2eikzd
. (3.2)

The parameter p is defined as kz/(ε ko,z) for TM polarization and as kz/ ko,z
for TE polarization, kz is the propagation constant within the layer where
kz = k0

√
n2 − sin θ2, k0 is the magnitude of the free-space wave vector, n

is the layer refractive index where n =
√
ε, and θ is the angle of incidence.

The derived transmission coefficient t accounts for all included losses due
to multiple reflection and propagation within the slab. The phase of t is
equivalent to the phase of the PSF at z = 0 ( Φz(z = 0)) from which the
paraxial image location can be calculated.

3.5.1 Flat Lens for TM Polarization

For TM polarization and under the thin-film and paraxial approxima-
tions, a lossy layer similar to Pendry’s silver slab yields a first order expres-
sion of k0d as

∂ Φz,TM (z = 0)

∂qt

∣∣∣
qt=0

.
= −k0d

(
1

2
( ε′ − 1) +

ε′

|ε|2

)
, (3.3)

which must be positive for real image formation. To keep the slope of the
phase positive, a purely permittivity dependant condition must be satisfied
( ε′ < |ε|2/(|ε|2 + 2)). Such condition can be fulfilled if the single layer is
made of metals.

The derived expression in Eq. (3.3) predicts a paraxial image location of
s = 1.86d for Pendry’s silver slab with ε = −1 + 0.4i [27]. This prediction is
almost double the theoretically expected image location for a Veselago lens
of equivalent thickness s = d [19]. Since the proposed method for prediction
of the paraxial image location using Eq. (3.3) is a function of the flat lens
thickness d, we investigate the dependence of the paraxial image location s
on d by calculating s of a point source placed directly on the entrance of
an ideal Veselago lens and Pendry’s silver slab lens for different thicknesses.
Figure 3.5 shows the thickness dependence of the paraxial image location.
Although it has been assumed by Pendry that Veselago lens and thin silver
slabs have identical paraxial image locations under electrostatic conditions,
in contrary Figure 3.5 demonstrates the differences between the paraxial
image locations of Veselago lens and Pendry’s silver slab.
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Figure 3.5: Paraxial image location versus thickness for an illuminated ob-
ject located at the entrance of the ideal Veselago lens (red) and Pendry’s
silver slab lens (blue) when illuminated at the wavelength of λ0 = 356.3 nm.
For the ideal Veselago lens, the image location is equivalent to the slab
thickness, s = d. [4]

Ignoring the flat slab losses based on the thin-film and paraxial approx-
imations, a more accurate flat lens criterion with higher order terms can be
derived. For TM polarization, the flat lens criterion up to the third order of
k0d is given by

∂ Φz,TM (z = 0)

∂qt

∣∣∣
qt=0

.
=− k0d

ε′2 − ε′ + 2

2 ε′

+ (k0d)3 ( ε′ − 1)2(3 ε′2 + 5 ε′ + 6)

24 ε′
,

(3.4)

which must be positive for real image formation. If we only consider
the first term in Eq. (3.4), negative permittivity of the slab ( ε′ < 0) will be
the only prerequisite condition for real image formation, which is possible
using metals such as silver at UV frequencies. However, considering the
higher order term with opposite sign in Eq. (3.4) denotes that the thickness
increase of a negative permittivity layer generally oppose the necessary phase
condition for making a flat lens. This correlation between the layer thickness
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and the real paraxial image formation explains why the thick silver layer in
[11, 53] did not achieve super-resolution imaging, whereas the thinner silver
layers in later attempts did [10, 50, 54].

3.5.2 Flat Lens for TE Polarization

Having the analytical expression of the transmission coefficient t for TE
polarization enables the derivation of another general flat lens condition for
a TE-polarized wave. Under the thin-film and paraxial approximations, the
flat lens criterion of a lossless layer for TE polarization is given by

∂ Φz,TE(z = 0)

∂qt

∣∣∣
qt=0

.
= −k0d

3− ε′

2
− (k0d)3 ( ε′ − 1)2(3 ε′ − 1)

24
. (3.5)

If we only consider the first term of Eq. (3.5), imaging with a single flat
layer would be possible when ε′ > 3, a condition that can be fulfilled by
many types of glasses and semiconductors. As TM polarization, the higher
order term for TE polarization (Eq. 3.5) plays a crucial role when the layer
is not sufficiently thin.

To investigate the new flat lens condition for TE polarization, we study
a high-index dielectric (n = 4) layer with the nominal thickness of 50 nm
placed in air and illuminated by a TE-polarized wave of free-space wave-
length λ0 = 365 nm. A real paraxial image location of s = 2 nm was pre-
dicted based on the PSF phase analysis. Figure 3.6(a) shows the phase at
the image plane location.

We then conduct two distinct FDFD simulations with and without the
dielectric layer for imaging near diffraction limit spaced objects. An image
of these objects at the paraxial image location is formed by adding the
dielectric layer as shown in Figure 3.6(b), where the electric energy density
profile for both configurations at the image plane location are plotted. The
full-wave FDFD simulations in Figs. 3.6(c) and (d) further demonstrate the
capability of a dielectric layer to form a near-field image of near diffraction
limit spaced objects in case of TE polarization. The yellow dashed line
in Figure 3.6(d) shows the consistency between simulation and small-angle
phase prediction.
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Figure 3.6: Flat lens for TE polarization based on a 50- nm-thick lossless
dielectric (n = 4) layer immersed in air and illuminated at a wavelength
λ0 = 365 nm. (a) PSF phase at the paraxial image location s = 2 nm. (b)
FDFD-simulated profile of the electric energy density at the paraxial image
location for the cases where the object is imaged without (blue) and with
(red) the dielectric slab. Simulated time-averaged electric energy density
distributions of the illuminated object are shown (c) without and (d) with
the 50-nm-thick dielectric layer. The yellow dashed line in each panel shows
the paraxial image location calculated by the PSF phase. [4]

3.6 Flat Lens Condition for Multi-layers

For a more general case of multi-layer system, we derive the condition
for flat lens imaging and we show that it is identical to the used condition
for making bi-layer anisotropic metamaterial lenses. The flat lens criterion
based on Eq. (3.3) for a multi-layer system using a TM-polarized wave is
approximately

∂ Φz,TM (z = 0)

∂qt

∣∣∣
qt=0

.
= −k0

∑
i

di

(
1

2
( ε′i − 1) +

ε′i
| εi|2

)
, (3.6)
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where di and εi = ε′i+ ε′′i are respectively the thickness and the permittivity
of the ith layer.

We now consider the simplest multilayer system with a single bi-layer
unit cell of metal and dielectric with dielectric parameters of dD and εD,
and metal parameters of dM and εM . If the metal permittivity is complex
where εM = ε′M + ε′′M , the required dielectric permittivity condition for
projecting a real image across the unit cell is given by

εD =
1

2
−
dM γ

M

dD
±

√(
1

2
−
dM γ

M

dD

)2

− 2 , (3.7)

where γ
M

= ( ε′M − 1)/2 + ε′M/| εM |2. Eq. (3.7) can be simplified to
εM/ εD = − dM/ dD and εM + εD = 1 when the metal permittivity is real
and large ( ε′M >> 1) and the thicknesses of the metal and dielectric layers
are comparable ( dM ≈ dD). These simplified conditions are identical to the
defined constraints based on the effective medium theory for designing a flat
lens made of metamaterial with an anisotropic permittivity tensor [6].

3.7 Broadband Flat Lens Designed by
Small-angle Phase

We systematically design a bi-layer system that can consistently project
the image at particular location using a TM-ploarized wave with broadband
wavelength spectrum of a large portion of the ultraviolet-visible. The design
is based on using the paraxial image location in Eq. (3.1) as a merit function
for an optimization routine.

Silver-gold bi-layer system is found to be a practical result of this design
process, where the thicknesses are 28 nm and 29 nm respectively. Over a
large spectral range (365 nm < λ0 < 455 nm), the paraxial image location
of the bi-layer flat lens stays comparatively stable between 35 nm and 37 nm
(Fig. 3.7 (a)). The amplitude and phase of the PSF at the paraxial image lo-
cation of s = 37 nm and for the wavelengths of λ0 = 365 nm and λ0 = 455 nm
are shown in Figure 3.7(b). The response modeling of the bi-layer system
at the lower and upper bounds of the considered wavelength range reveals
the analogy between the energy density concentrations near the predicted
paraxial image locations of 37 nm as shown by the full-wave electromagnetic
simulations in Figure 3.7(c) and (d). Unlike other near-field flat lenses, the
formed near-field image by the bimetallic broadband lens cannot resolve the
two openings of the near diffraction limit spaced objects. This loss of reso-
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lution can be attributed to the compounded light interference and metallic
losses due to the addition of the gold layer.
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Figure 3.7: Engineering a broadband flat lens. (a) Paraxial image location
over the ultraviolet-blue spectrum for a bi-layer flat lens consisting of a 28-
nm-thick silver layer and a 29- nm-thick gold layer immersed in air. (b) PSF
phase (red) and amplitude (blue) at the image plane location (s = 37 nm)
of the bi-layer flat lens at the wavelengths of λ0 = 365 nm (solid lines) and
λ0 = 455 nm (dashed lines). Time-averaged energy density distributions for
the bi-layer system under plane-wave illumination at (c) λ0 = 365 nm and
(d) λ0 = 455 nm. The yellow dashed line in each panel shows the paraxial
image location calculated by PSF phase. [4]

3.8 Far-field Immersion Flat Lens

One of the most challenging tasks in designing flat lenses is boosting
the paraxial image location and projecting the image at far-field, which is
essential for imaging three-dimensional objects . Here, we apply a simple
technique to further extend the image location of the multi-layer far-field
flat lens studied in [7] by increasing the dielectric permittivity of the image
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Figure 3.8: Enhancing the image plane location of the multi-layered flat
lens system previously studied in [7] by immersion of the image region in a
dielectric. (a) PSF phase (red) and amplitude (blue) at the paraxial image
location for the cases where the dielectric medium has refractive index n =
1.0, 1.3, 1.5, and 2.0. (b) Paraxial image location versus the refractive index
of the dielectric medium predicted by PSF phase (blue line) and FDFD
simulations (red circles). (c), (d), and (e) show FDFD-calculated magnetic
energy density distributions of the immersed flat lens system for n = 1.3,
1.5, and 2.0, respectively. The yellow dashed lines in panels (c)-(e) show the
paraxial image location calculated by PSF phase. [4]

As the dielectric permittivity or refractive index increases, the predicted
paraxial image location of the far-field flat lens system linearly escalates as
shown in Figure 3.8(b). The full-wave simulations in Figures 3.8(c), (d) and
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(e) visually demonstrate this effect where the separation distance between
the maximum energy density spot in the image region and the exit of the lens
increases as the dielectric permittivity of the image region is augmented. The
positions of the maximum energy density spot obtained from simulations are
quite consistent with the paraxial image locations predicted by the phase
of the PSF as shown in Figure 3.8(b). Although the dielectric immersion
method provides a premium method to enhance the working distance of flat
lenses, it increases abberations at the image plane location as shown by the
plotted PSF phase and amplitude at the paraxial image location for various
refractive index values (Fig. 3.8(a)).

3.9 Summary

We have promoted a general flat lens criterion based on the small-angle
phase behaviour for flat lens structures that are composed of a single or
multiple layers of homogeneous isotropic media. This criterion showed to be
consistent with the far-field flat lens implementation studied in [7], and more
interestingly the super resolution near-field flat lenses presented in [6, 10,
11, 13, 50]. The Analytical expressions of the flat lens criterion for single
and multi-layer systems provide a single metric for predicting real image
formation. Designing a flat lens for TE polarization which is capable of
imaging slightly below the diffraction limit, a broadband flat lens that works
over part of the UV-visible spectrum, and an immersion flat lens with an
adjustable far-field paraxial image location up to several wavelengths from
the exit surface are the novel outcomes of the proposed flat lens criterion.
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Chapter 4

Transparency of Thin Layers:
Light Transparency Boost by
Opposite Susceptibility
Coating

In this study, we examine optical light transmission through metal-
dielectric bilayer systems. It has been shown before that dielectric coating
of metallic films can enhance light transmission through metals. However,
here we show that in theory the transmission enhancement phenomenon
in metal-dielectric systems is reciprocal, where the transparency of a di-
electric layer can be increased by adding a very thin metallic layer. In a
general sense, coating a thin base layer with another thin layer of opposite
susceptibility sign can make the base layer more transparent. To experi-
mentally validate the proposed light transmission hypothesis, we measure
the transmitted light through dielectric-coated silver films and silver-coated
silicon nitride membranes and we found that experimental measurements
are favorably comparable to the theoretical calculations. We particularly
show that the optical transparency of a silicon nitride membrane can be en-
hanced over a narrow-band of the visible spectrum by the addition of a thin
silver layer. This study can be considered as the first work that demonstrate
the reciprocity concept with respect to light transmission enhancement in
metal-dielectric bilayer systems.

4.1 Theory

Considering the bi-layer configuration in Figure 4.1(a) and based on the
standard transfer matrix methods [42], the transmittance T of a normally
incident monochromatic plane wave from the left half-space onto the bilayer
at frequency ω has the general form
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T = f(k, εi, εt, ε1, ε2, d1, d2), (4.1)

where d1, ε1, χ
1
, and n1 are respectively the thickness, the complex per-

mittivity, the complex susceptibility, and the complex refractive index of
the first layer or the base layer. In the case of oblique light incidence, light
transmittance will be a function of the same parameters beside the angle of
light incidence and we will not get the maximum light transmission due to
the presence of surface waves.

Similarly, the properties of the second layer or the coating layer are
denoted by d2, ε2, χ

2
, and n2. The permittivity values of both layers are

allowed to be complex where they have the general form of ε = ε
′
+ iε

′′
. The

left and right half-spaces have the dissimilar real permittivity values of εi
and εt, respectively, and the free-space wave number is defined by k = ω/c
where ω is the angular wave frequency and c is the speed of light.

In the limit where the thickness of the coating layer d2 goes to zero, a
simplified condition for transmission enhancement can be derived from the
transmittance partial derivative with respect to d2. Assuming high figures
of merit for both base and coating layers where complex permittivities are

predominantly real such that

∣∣∣∣ ε′1ε′′1
∣∣∣∣ � 1 , and

∣∣∣∣ ε′2ε′′2
∣∣∣∣ � 1 , the transmission

enhancement condition will be given by

sgn

(
∂T

∂d2
|d2=0

)
≡ sgn

(
− (ε

′
1 − εi)(ε

′
2 − εt)

)
> 0. (4.2)

If the bi-layer is immersed in air (εi = εt = 1), the transmission enhance-
ment condition can be simplified to a function of the real susceptibilities of
the base and coating layers where χ1 χ2 < 0.

This condition distinctly shows that independent of the layer ordering
sufficiently thin bi-layers with opposite susceptibilities are more transparent
than the individual layers alone. To achieve the highest light transmission,
the optimal coating layer thickness should satisfy the following equation

tan(2ϕ2) =
2n1n2 sin(2ϕ1)(ε

′
1 − 1)

(ε
′
1 − ε

′
2)(1 + ε

′
1) + (1− ε′1)(ε

′
1 + ε

′
2) cos(2ϕ1)

, (4.3)

where any permittivity that satisfies Eq. 4.2 is permissible to be used in
Eq. 4.3, and the angle parameters ϕ1 and ϕ2 are defined as ϕ1 = n1kd1 and
ϕ2 = n2kd2, respectively.
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Figure 4.1: (a) Ideal configuration of a bi-layer immersed in two half-spaces,
illuminated at normal incidence from the left half-space. (b) Predicted
normal-incidence transmittance at a wavelength of 650 nm through a bi-
layer composed of a 50-nm-thick base layer of silicon nitride and a coating
layer of silver of variable thickness. A positive derivative of the transmit-
tance in the limit of zero coating layer thickness can be used as an indicator
of transmission enhancement. [14]

From Eq. 4.2, the permittivities of the base and coating layers should
satisfy either of the following inequalities

ε
′
1 < 1 < ε

′
2 or ε

′
1 > 1 > ε

′
2 (4.4)

The practical implementation of the first condition in (4.4) is the well-
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examined configuration of a metallic layer coated with a dielectric layer. The
second condition in (4.4) can be related to the configuration of a dielectric
layer coated with a metallic layer, which has not been investigated yet.

Although the metal-coating dielectric layer configuration for the purpose
of light transmission enhancement is counter-intuitive, here we show that it
can be described by a full solution of Maxwell’s equations. Assuming that
the dielectric base layer is a 50-nm-thick silicon nitride and the metal coating
layer is silver, we calculate and plot the percentage normal-incidence trans-
mittance of the bi-layer system at a wavelength of 650 nm as the thickness
of the silver coating layer is increased from 0 nm to 30 nm (Fig. 4.1(b)).
According to this illustration, a maximum transmission boost of 10% can
occur when the thickness of the silver layer is 6.1 nm.

In these calculations, the silicon nitride’s optical constants are taken
from [172]. Although the permittivity of very thin metals is affected by the
electron scattering at the surface, we used the complex optical constants
of bulk silver [17] in the illustrated calculations in Figure 4.1(b). For more
accurate results, the optical constants of thin metal films should be measured
and used in future works. The optimal silver layer thickness of 6.1 nm
obtained from Figure 4.1(b) is comparable to the optimal thickness of 6.4
nm extracted from Eq. 4.3. The slight discrepancy is due to the neglect of
silver layer losses in Eq.4.3.

In general, when we have a very thin dielectric layer with the base layer
thickness less than a quarter of a wavelength, the transmissivity of light
through the dielectric layer increases as we reduce the dielectric layer thick-
ness. This work introduces another way for light transmission enhancement
through thin positive susceptibility dielectric layers by addition of a negative
susceptibility (NS) layer. Pairing a thin dielectric layer with a NS layer can
reduce the effective optical path length of the dielectric layer and resulting
in increased transmission as if the layer thickness were reduced.

4.2 Methodology

We examine the optical transmission enhancements due to combinations
of metallic and dielectric layers by first fabricating thin film samples of dif-
ferent materials based on their properties in the visible region. We prepared
metal, metal-oxide, and elemental semiconductors samples using the mag-
netron sputter deposition (Angstrom Engineering Nexdep). The metal films
are made of silver with target purity of 99.99%, the metal-oxide films are
sputtered from a titanium dioxide target (99.9%), and the elemental semi-
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conductors are deposited using the targets of undoped silicon, boron-doped
p-type silicon, and germanium, where all the semiconductor targets have
the similar high purity of 99.999%. Silver has been selected among common
metals due to its highest figure of merit as well as its real negative suscepti-
bility. As for other materials, TiO2 has a high figure of merit, a real, positive
susceptibility, and high chemical stability; Si and Ge have modest figures of
merit, real, positive susceptibilities, and can be tuned by impurity doping.
All these materials are compatible with physical vapor deposition.

The films are made at room temperature when the base vacuum pressure
of the deposition chamber reaches at least ∼ 5.0× 10−5 torr and the argon
gas pressure is about 3.0 × 10−3 torr. Depositing at moderate rates, the
dielectric and silver films are deposited at 1.0 Å/s and 2.0 Å/s, respectively.
The rotating platform that holds the substrates is spaced about 20 cm above
the 5-cm-diameter targets.

To test transmission enhancement, two families of samples are made.
One for testing the transparency enhancement by dielectric coating and the
other one based on metallic coating. For the first family of samples, all
samples are sputtered on borosilicate glass substrates. The sputtered base
layers are made of silver and the sputtered coating layers are made of either
TiO2, Si, p-Si, or Ge. Five samples are made for each type of coating layer
where the dielectric coating layer thickness varies from 18 nm to 60 nm while
the silver base layer thickness is fixed. A well-established method for real-
izing transparent conductors is coating silver films with TiO2 [69], which is
considered as benchmark in this study. Although the effects of semiconduc-
tor coatings like Si or Ge on the transparency enhancement of silver films
have yet to be investigated, relevant studies have examined substrates of
optically-thick metals coated with very thin layers of Si and Ge from which
a wide range of reflected colors is visible [173–176].

For the other family of samples where a dielectric layer is coated with
metal, a free-standing silicon nitride membrane is used as the base layer
because transmission enhancements in a metal-coated dielectric layer are es-
timated to be most prominent when it is bounded by air. The free-standing
silicon nitride membrane is 50-nm-thick with the dimensions of 0.5 mm ×
0.5 mm, manufactured by SPI Supplies. According to the manufacturers
specifications, the surface roughnesses for all membrane samples are better
than 0.5 nm root mean squared, and the thickness variation between dif-
ferent membrane samples is less than 5 nm. The silicon nitride membrane
base layer is sputter-coated by a very thin silver layer.

The metal film growth process in general starts by the formation of small
islands that overlap as deposition continues. For very thin metal films, when
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the islands are just interfered, the metal films will have the maximum surface
roughness and the utmost surface contact area with atmosphere which can
significantly increase the oxidation rate of metals. Therefore, to prevent
atmospheric corrosion, in some cases, the ultra-thin silver coating layer is
passivated by an additional sputtered layer of TiO2.

The quartz crystal monitoring system in the sputtering deposition sta-
tion is calibrated and used to measure the thicknesses of the deposited films.
The calibration was conducted by using the stylus-based profilometer (KLA
Tencor Alphastep) to measure the thicknesses of a series of thin-film samples
of different materials with variable deposition thicknesses.

The visible and infrared light transmission measurements (400 nm to
1800 nm) of the dielectric-coated silver films is conducted using a Filmetrics
F20 analyzer system, while the visible spectrum transmission measurements
(400 nm to 750 nm) of the silver-coated membranes is performed in a con-
focal setups to suit the small aperture of the membranes using a Schott-
Fostec DDL fiber optic non-plane wave light source connected to an Ocean
Optics USB4000 spectrometer. Under the coherent laser illumination of
various wavelengths (365 nm, 470 nm, 590 nm), the microscopically zoomed
in transmission images of silver-coated membranes are collected by a Zeiss
Axioimager microscope and captured by a monochrome CCD camera.

4.3 Results and Discussion

Silver coated with a film of high-index, low-loss dielectric, such as TiO2,
have been shown to be the most pronounced recipe for light transmission
enhancement through silver. The photographs and the normalized trans-
mittance spectra of the TiO2-coated silver films and the uncoated sample
are shown in Figure 4.2(a). The measured spectral intensities transmitted
through the sample I(λ) are normalized to that of air Io(λ), where the nor-
malized transmittance spectra can be expressed as I(λ)/Io(λ). While bare
silver has the transmittance spectrum that consistently decays from blue
to red, addition of a TiO2 coating produce a transmittance peak within a
band known as transparency band at a wavelength dependent on the coating
thickness. Varying the coating thickness from 18 nm to 57 nm, the peak
wavelengths of the transparency bands shift from ∼400 nm to ∼780 nm.
The photographs of the fabricated samples visually exhibit group of colors
including light blue, greenish blue, yellow, and brown. This range of colors is
the consequence of the shift in the maximum light transmission peak along
the visible wavelengths as we increase the coating layer thickness.
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Figure 4.2: Changing the optical properties of semi-transparent silver by
sputtered TiO2 coatings. (a) Experimental and (b) calculated normal-
incidence transmittance spectra for 23-nm-thick silver layers that are either
uncoated or coated with a TiO2 layer ranging in thickness from 18 nm to 57
nm. The experimental spectra are obtained from the average of 5 indepen-
dent measurements, where each measurement is made from an average of
40 traces. Photographs of the samples placed on the printed UBC logo are
shown at the top of panel (a) to highlight the visible appearance changes
caused by the thin TiO2 layer. The leftmost photograph is of uncoated silver
and the adjacent images are of coated silver (in order of increasing coating
layer thickness from left to right). [14]
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Figure 4.3: Changing the optical properties of semi-transparent silver by
various sputtered elemental semiconductor coatings. Experimental normal-
incidence transmittance spectra for (a) 23-nm-thick silver coated with sput-
tered silicon, (b) 23-nm-thick silver coated with sputtered p-type silicon, and
(c) 18-nmthick silver coated with sputtered germanium. The experimental
spectra are obtained from the average of 5 independent measurements, where
each measurement is made from an average of 40 traces. Photographs of the
samples placed on the printed UBC logo are shown at the top of each cor-
responding panel to highlight the visible appearance changes caused by the
thin layers. [14]
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Figure 4.4: Experimental measurements of the transmission enhancement of
a 50-nm-thick silicon nitride membrane conferred by coating the membrane
with 10-nm-thick silver layers in three different configurations: single-sided
coating with silver, single-sided coating with silver followed by a 10-nm-thick
TiO2 passivating layer, and double-sided coating with passivated silver. (a)
shows tabulated the average normalized transmittance values for the bare
membrane and the three silver-coated membranes at the wavelengths of
400 nm, 420 nm, 440 nm, and 460 nm. Cells in the table corresponding
to transmission enhancement (beyond experiment error) are shaded green.
(b) shows the average transmittance spectra for the bare membranes (red
dashed), the membrane that is coated on a single side by silver (green line),
the membrane that is coated on a single side by passivated silver (orange
line) and the membrane that is coated on both sides by passivated silver
(blue line). The error has a magnitude comparable to the line widths and
has not been explicitly plotted for clarity of presentation. [14]

79



4.3. Results and Discussion

As shown in Figure 4.2(b), the experimental data are quite consistent
with our theoretical calculations which are based on solving the transfer
functions and calculating the transmitted light through ideally planar lay-
ered media with optical constants taken from [17] and [177] for silver and
TiO2, respectively. The nominal variations between the peaks of the mea-
sured and calculated transparency bands can be due to the discrepancies
between the actual and assumed optical constants of silver and TiO2, as
well as the surface roughness of the films which is neglected in the model.

We show that coating silver with semiconductors can also boost trans-
mission and form transparency bands. The photographs and the normalized
transmittance spectra of bare silver films and coated ones with sputtered Si,
p-Si, and Ge are shown in Figure 4.3. The induced visible-frequency trans-
parency bands of the sputtered Si samples are interestingly analogous in
magnitude and spectral position to those caused by sputtered TiO2. Hence,
in applications such as transparent conductors or metal-based heat-reflecting
windows, sputtered Si coating can be proposed as an alternative to sput-
tered TiO2. The transparency bands made by the sputtered p-Si samples lie
over the visible range between the free-space wavelengths of ∼600 nm and
∼1100 nm, while those made of sputtered Ge spread completely outside the
visible spectrum between ∼900 nm and ∼1800 nm. The distinct spectral
variations between Si-coated and Ge-coated samples are due to the large
index differences between bulk Si and Ge.

On the other hand, the evident spectral variations between Si-coated
and p-Si-coated samples can be surprisingly attributed to the slight index
differences between bulk Si and p-Si. This observation suggests further
investigation on the authenticity of using the optical constants of bulk p-Si
for the sputtered p-Si. The illustrated spectral transmittance in Figure 4.3
show the capability of tailoring the induced transparency bands of silver-
coated films across the entire visible and near-infrared using three different
types of semiconductors. Although this semiconductor coating method can
be useful for fabricating absorbers, optical filters, or solar cell coatings, the
accuracy of theoretically modeling such sputtered simiconductors (Si, p-Si,
Ge) is limited by the high dependence of their optical properties on growth
conditions [178, 179] which is not well-characterized.

In the next experimental part of this work, we examine the 50-nm-thick
silicon nitride membrane samples to show the capability of transmission en-
hancement through membranes by sputtered silver coating. The table of
average normalized transmittance of bare and coated silicon nitride mem-
brane samples in the blue and green parts of the visible spectrum is shown
in Figure 4.4. It includes the numerical transmittance of a bare membrane

80



4.3. Results and Discussion

as control spectra, a membrane with single-sided silver coating, a membrane
with single-sided silver coating passivated by TiO2, and a membrane with
double-sided passivated silver. The thickness of the silver coating layer is
chosen based on the deduced information from the scanning electron micro-
scope images which characterizes the minimum thickness at which sputtered
silver can form a continuous film around 10 nm.

Figure 4.5: Experimental transmittance change over the entire visible spec-
trum for a 50-nm-thick silicon nitride membrane coated with a 10-nm-thick
silver layer that is passivated by a 10-nm-thick TiO2 layer (red line with
error bars). Also shown are calculations of the transmittance change for the
three-layer system assuming various silver layer thicknesses. The error bars
in the experimental measurement represent one standard deviation. [14]

To mitigate sources of uncertainty, the spectra are averaged across many
measurements. To mitigate thickness variations across membrane samples,
the control transmittance spectra are averaged over measurements of three
distinct bare membranes. To mitigate local thickness variations of a given
membrane, the transmittance spectra are averaged over measurements taken
at 10 different locations on the membrane. To account for random noise from
the light source and spectrometer, the transmittance spectrum is averaged
over 150 measurements for all measurements at each location. As demon-
strated in Figure 4.4, the spectral measurements of all three silver-coated
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membranes show moderate transmission enhancements in the blue part of
the visible spectrum where all transmission boost peaks at 400 nm, the
lower wavelength bound of the measurement. The maximum measured en-
hancement of 6±1% is achieved by single-side silver coating. Silver coated
membranes passivated with TiO2 yields similar transmission enhancements
as the non-passivated one, except over a larger wavelength range and with
slightly smaller transmission enhancements around the peak values.

Comparing the experimental measurements and theoretical calculations,
Figure 4.5 shows the transmittance change measurements of the passivated
single-side silver-coated membrane over the full visible spectrum besides the
calculated transmittance change for various silver layer thicknesses. The
transmittance change describes the measured variations between the trans-
mitted spectral intensities of bare membrane (Ib(λ)) and silver-coated mem-
brane (Ic(λ)), where it is defined by [Ic(λ)−Ib(λ)]/Ib(λ). While similar pos-
itive transmittance changes can be observed at blue wavelengths between
measurements and calculations, they start to diverge at larger wavelengths.
This divergence can be attributed to the index differences between bulk and
sputtered materials, the consideration of perfectly smooth layers in theoret-
ical calculations, and the possibility of having sputtered layers with nano-
thickness variations. The theoretical model, which is based on the ideal
conditions of perfect layer planarity and sharp boundaries, predicts greater
than 10% transmittance change over the entire visible spectrum using a very
thin 7-nm-thick silver coating layer.

According to the model calculations of the silver coated membranes, the
enhancement effect is quite dependant on the silver layer thickness where
increasing the thickness from 7 nm to 16 nm is sufficient to completely
eradicate this effect. The most robust transmission enhancement predictions
as a function of the silver thickness are located around the blue part of
the spectrum. This observation explains why the measured transmission
enhancement is limited to the blue frequency range. Fabricating smoother
silver layers will most probably improve the experimental enhancement.

A strategy that can be explored in future for developing smoother silver
layers is the addition of a seed layer of germanium or nickel [180, 181] that
may also change the optical constants of silver. To show if the transmis-
sion enhancement conferred by thin silver coatings is visually observable,
comparative microscope images of a bare membrane and an identical mem-
brane coated with 10 nm of Ag and 10 nm of TiO2 are shown in Figure 4.6,
where the membrane samples are illuminated by a normal-incidence laser at
wavelengths of 365 nm, 470 nm, and 590 nm.
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Figure 4.6: Microscope images of (left column) an uncoated 50-nm-thick
Si3N4 membrane and (right column) an identical membrane coated with 10-
nm-thick Ag and 10-nm-thick TiO2 under laser illumination at wavelengths
of (a) 365 nm, (b) 470 nm, and (c) 590 nm. The images were collected
using a monochrome camera and have been false-colored to reflect the color
of laser illumination. The percentages on the images in the right column
indicate the percent change in the average image brightness relative to the
adjacent images in the left column. [14]
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At the wavelength of 365 nm below the spectral measurement wavelength
limit (400 nm), a modest image brightness increase of about 2% is measur-
able. In a good agreement with the spectral measurements in Figure 4.5,
the images turn dimmer by 9% and 28% at wavelengths of 470 nm and 590
nm.

4.4 Summary

We develop a theory based on Maxwell’s equations to generally describe
the well-known coating method, which is used specifically to enhance the
transmittance of metal films by dielectric coating. The theory include two
general conditions, one to determine the possibility of transmission enhance-
ment, and the other one to calculate the optimal thickness of the coating
layer. The proposed theory emphasizes that the transmission enhancement
effect is not limited to metal films coated with dielectric, but rather any
coated material can be made more transparent if the base layer and the
coating layer have opposite sign susceptibilities and the appropriate thick-
nesses.

We conducted two distinct series of experiments that confirm the validity
of the introduced theory. In the first set of experiments, we examined sil-
ver films coated with a well-explored dielectric (TiO2) and the less-explored
semiconductors (Si, p-Si, Ge). We show up to ∼70% light transmission en-
hancement in the coated silver films where the transmittance can be spec-
trally tailored depending on the type and thickness of the dielectric coating
over the visible and near-infrared part of the spectrum. In the second set of
experiments, we investigated the possibility of boosting light transmission
through a dielectric layer by metal coating. The transmission measurements
of silver-coated silicon nitride membranes show a modest light transmission
enhancement of 6±1% in the blue part of the spectrum. Similar transmission
enhancements are observed for the passivated single-side and double-side
silver-coated membranes.
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Chapter 5

Surface Plasmon Resonance:
Copper as Good as Gold

Surface plasmon resonance sensing is a well-established method in diverse
sensing applications. To enhance the sensitivity of SPR sensors, the SPR
coupling efficiency should be improved. For this purpose, various meth-
ods like metal thickness optimization [182], dielectric coating [95], nano-
structural modification [96, 98–100] and deposition process modulation [102,
103] have been implemented. It has been shown that metals with high fig-
ures of merit (low loss) are the best metals for making SPR sensors. Hence,
metals like silver, gold, and copper with fairly low loss have been widely
used for fabricating SPR sensors. Although copper has the modest price
among the three and gold is the most expensive (Cu≈ $2.7/lb, Ag≈ $237/lb,
Au≈ $17000/lb), gold continued to be the most preferable metal due to its
acceptable SPR performance and chemical stability.

In this work, we introduce copper as a cheaper alternative metal for
surface plasmon applications by enhancing the fairly poor SPR coupling
efficiency of copper thin films. We examine the influence of different deposi-
tion parameters on the SPR couplings of copper, silver and gold thin films,
and we find a new DC sputtering deposition recipe for making copper nano-
films with enhanced surface plasmon coupling. Using this deposition recipe,
we fabricated 40-nm-thick copper films that have optical resonances compa-
rable to gold. Our method significantly improves the quality factor of the
surface plasmon resonance of copper thin films (up to 200% improvement),
but shows minimal effect on silver and gold thin films.

5.1 Methodology

We fabricate silver, gold, and copper thin films using the magnetron
sputter deposition station (Angstrom Engineering Nexdep) at different slew
rates and deposition rates. SPR is measured by recording the intensity of
reflected light from a metal film at different angles of incidence. Over a nar-
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row range of angles, the reflected intensity shows a sharp and pronounced
dip that is an indicative of SPR. We measure the SPR of the fabricated
thin films using our home built SPR station which was made based on the
Kretschmann’s total internal reflection (TIR) coupling method [183], as il-
lustrated in Figure 5.1. The SPR measurements are then qualified based
on the SPR parameters: the sharpness and the depth of the SPR dip. The
sharper and deeper the dip, the more sensitive the SPR phenomenon be-
comes.

Figure 5.1: Schematic of light coupling to surface plasmon waves using
Kretschmann configuration.

The thin film fabrication process starts with a standard glass cleaning
method using RO water and acetone to clean the bare glass substrates [184].
The glass substrates are then mounted on a rotating platform spaced about
20 cm above the 5-cm-diameter material source (target). Thin-films of metal
are deposited on the cleaned glass substrates from 99.99% metal targets by
bombarding the target with Argon ions, as illustrated in Figure 5.2. The
magnets on the back of the target are used to discharge the ejected target
atoms and start film growth on the glass substrates. All thin films are
sputtered at room temperature, where the deposition base vacuum pressure
kept to be at least ∼ 5.0× 10−5 torr, and the argon gas pressure 3.0× 10−3

torr. For optimal SPR responses, we set the thicknesses of all depositions
to ∼40 nm for copper [95], and ∼50 nm for gold and silver [182].
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Figure 5.2: Schematic of the sputtering process in the vacuum deposition
chamber.

Examining the influence of modifying different deposition parameters on
the SPR couplings of copper, silver and gold thin films, we mainly varied
two nano-deposition parameters in this work: the deposition rate which is
the growth rate of thin films, and the slew rate which is the maximum power
change allowed per second controlling the rate of power change on the tar-
get. To increase the rate of deposition of our targets, the applied voltage
across the targets has to be increased. This will consequently increase the
applied power and heat up the target. The required power for reaching cer-
tain deposition rate varies from one target to another based on the targets
thermal conductivity, thermal coefficient of expansion, mechanical strength
characteristics, and melting point. We usually keep an eye on the power
applied to the target, but the critical quantity is really the power density,
which is the applied power divided by the target’s surface area. Since ar-
bitrarily increasing power can cause many adverse effects to the target, we
gradually increased the deposition rate of our 2 inch diameter targets to
find the maximum safe deposition rates of copper, silver and gold targets at
their maximum secure power density. Knowing the maximum safe deposi-
tion rates, we sputtered copper and gold at deposition rates as high as 10.0
Å/s, and silver at higher deposition rates upto 20.0 Å/s. All depositions
are conducted at both low (4.0 %/s) and high (99.9 %/s) slew rates.

87



5.2. Results and Discussions

The SPR station consists of a BK7 right-angle prism (n = 1.517) mounted
on a rotary platform, two HeNe laser sources with yellow (λo = 594.0 nm)
and red (λo = 638.2 nm) operational wavelengths, and a mobile silicon pho-
todetector (DET36A). These two independent laser sources with two differ-
ent wavelengths are used to confirm the consistency of the proposed method
for SPR coupling enhancement in copper films. The glass substrate with
metal coating is placed on the back of the prism. The light beam intensity
reflected by the installed thin film is detected at various incident angles.
A distinct dip in the reflected beam intensity at certain angles is a clear
indication of surface plasmon coupling. To account for the non-planarity
across metal films, we conduct six reflected intensity measurements at three
different sites on each sample.

To compare different SPR spectra measured from different samples, we
use the standard quality factor metric of the average reflected beam intensity.
The standard quality factor is defined by the ratio of the absorbed peak
energy to the peak linewidth, typically the full width at half-maximum [185].
Since we are measuring reflected light rather than absorbed light, the quality
factor (QF) will be given by

QF =
IR,min
FWHM

, (5.1)

where IR,min is the minimum reflected light intensity and FWHM is the full
width at half-maximum of the reflected beam intensity dip. To investigate
the morphological cause of the observed SPR enhancement measurements,
we take visual photographs, scanning electron microscope (SEM) images,
and atomic force microscopy (AFM) images of the silver, gold, and copper
films sputtered at different deposition parameters. The photographs are
captured in a dark room by a high resolution SLR camera from the same
viewing angle and under similar light conditions. The SEM images are
taken in high vacuum by a Field Emission Scanning Electron Microscope at
100000x magnification. The AFM images are taken by the Bruker Dimension
Icon AFM using the peak force tapping mode over the scan area of 5µm x
5µm.

5.2 Results and Discussions

The intensity measurements of the reflected red laser beam from the
fabricated 50-nm-thick silver and gold films at low and high deposition/slew
rates show that sputtering rates can play a small but not insignificant role
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in changing the SPR quality (Fig. 5.3). Conducting the same measurements
for the 40-nm-thick copper films fabricated at low and high deposition/slew
rates, we noticed fairly significant improvements in the quality of the SPR
dips (depth and acuteness). To clearly demonstrate this prominent SPR
response enhancement, we plot copper SPR measurements alongside gold’s
SPR responses (Fig. 5.4). The measurements are conducted using yellow
and red coherent laser sources. Comparing the SPR measurement curves of
copper and gold, it can be noticed that SPR responses of copper thin films
sputtered at high deposition rates are comparable to gold’s SPR responses.

Figure 5.3: Show the SPR measurements of the 50-nm-thick substrates de-
posited at low and high, deposition/slew rates, for a) silver, and b) gold,
using a coherent red He-Ne laser with free-space wavelength λo = 632.8 nm.

To quantitatively compare the SPR responses of silver, copper and gold
films made at different deposition/slew rates, we calculate the SPR dip
quality factors. We illustrate the calculated quality factors through side by
side bars in Figure 5.5. Silver thin films showed to sustain the sharpest dips
and the highest SPR quality factors at all deposition/slew rates. The SPR
quality factors of gold thin films demonstrate almost constant levels in all
situations, whereas the SPR quality factors of copper thin films interestingly
exhibit quite large improvements as deposition rate increases.
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Figure 5.4: Show how the SPR dips of the 40-nm-thick copper (blue lines)
become sharper and deeper comparable to the 50-nm-thick gold SPR dips
(red lines), when the deposition rate of copper is increased from low depo-
sition rate (1.0 Å/s, blue) to high deposition rate (10.0 Å/s, green). SPR
measurements using a coherent yellow λo = 594.0 nm a) b), and red λo =
632.8 nm c) d) He-Ne laser.

In general, it can be observed that the SPR quality factors of copper
become comparable to that of gold as we increase deposition rate. For the
particular case in which the copper films are made at low slew rate and very
high deposition rate and excited using a red laser beam, the SPR quality
factors improved by around 200% and reach the highest level (∼0.5), which
is better than the best quality factors achieved by gold. The detailed tables
of SPR parameters and quality factors are provided in the Appendix.
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Figure 5.5: The quality factor bar charts with error bars for silver (blue),
copper (green), and gold (yellow) at different deposition/slew rates using
yellow a) b), and red c) d) lasers. The deposition rates I, II, III, and IV
respectively correspond to 1.0 Å/s, 7.0 Å/s, 14.0 Å/s, and 20.0 Å/s for
silver, and 1.0 Å/s, 3.0 Å/s, 7.0 Å/s, and 10.0 Å/s for copper and gold.

To probe the cause of this phenomenon, visual photographs (Fig. 5.6),
SEM images (Fig. 5.7), and AFM images (Fig. 5.8) of silver, gold and copper
substrates sputtered at different deposition rates and fixed low slew rate are
investigated. Looking at the photographs, the two silver substrates (Fig. 5.6
(a), (b)), the two gold substrates (Fig. 5.6 (c), (d)) and the two copper
substrates (Fig. 5.6 (e), (f)) look visually identical. As for SEM, we would
expect to have different SEM images for copper films rather than silver or
gold films due to the differences in copper SPR responses. However, the
SEM images show featureless smooth surface for copper thin films (Fig. 5.7
(e), (f)), minimal surface roughness variation for gold thin films (Fig. 5.7
(c), (d)), and diverse surface roughness for silver thin films (Fig. 5.7 (a),
(b)) at low and high deposition rates.
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Figure 5.6: Photograph images at low and high deposition rates for the
50-nm-thick silver a) b), the 50-nm-thick gold c) d), and the 40-nm-thick
copper e) f) thin films deposited on glass substrates.

Figure 5.7: Scanning electron microscope (SEM) images at low and high
deposition rates for the 50-nm-thick silver a) b), the 50-nm-thick gold c) d),
and the 40-nm-thick copper e) f) thin films deposited on glass substrates.
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Figure 5.8: The atomic force microscopy (AFM) images at low and high
deposition rates for the 50-nm-thick silver a) b), the 50-nm-thick gold c) d),
and the 40-nm-thick copper e) f) thin films deposited on glass substrates.

The AFM images show fairly small surface roughness differences between
copper films deposited at low and high deposition rates (Fig. 5.8 (e), (f)),
and similar surface roughness features for silver (Fig. 5.8 (a), (b)) and gold
(Fig. 5.8 (c), (d)). The average surface roughness differences for silver, gold
and copper are 5.0 nm, 1.16 nm, and 0.12 nm, respectively. These quite
similar SEM and AFM results for copper films deposited at low and high
deposition rates suggest that the SPR enhancement effect can be attributed
to finer surface features or chemical composition variation. To analyze the
chemical composition of the sputtered thin metal films, we used the inte-
grated elemental analysis tool with SEM system (Energy Dispersive Spec-
troscopy). However, this chemical analysis method cannot provide accurate
results since it is based on analyzing the SEM back scattered electrons with
quite long penetration effects (around 1 µm), while the maximum thickness
of the thin metal films is only 50 nm. For accurate chemical analysis of these
thin films, we can try other methods like x-ray photolectron spectroscopy.

5.3 Summary

We have proposed a simple nano-film fabrication procedure to produce
copper films with surface plasmon quality factors comparable to gold films.
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The considered parameters in this work are the film thickness, the deposi-
tion rate and the slew rate. The film thicknesses are fixed to the optimal
reported values while the deposition rate and the slew rate are the variable
parameters. Experimental results showed significant improvement in surface
plasmon coupling performances for copper films deposited with higher depo-
sition rates, while minor enhancement is noticed for silver and gold using the
same fabrication process. As the deposition rate increases, the improvement
in the SPR quality factors of copper thin films are found to be more consis-
tent and prominent when the depositions are conducted at low slew rates.
The maximum measured quality factor improvement of 200% is achieved for
copper thin films deposited at low slew rate and the high deposition rate of
10 Å/s. We believe that replacing of gold films with our modified copper
films can significantly reduce the manufacturing cost of commercial SPR
sensors.
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Chapter 6

Conclusion

This thesis has investigated the interaction of light with sub-wavelength
layered systems made of metals and/or dielectrics. Ray optics and the elec-
tromagnetic wave theory of light in layered media has been deeply studied
before. However, reported observations of the abnormal electromagnetic
properties in sub-wavelength layered systems (layered metamaterials), such
as negative phase velocity, super-resolution, canalization, and far-field imag-
ing, highlight the necessity of further exploring the intrinsic electromagnetic
behaviours of layered metamaterials.

In this thesis, we have discussed the electromagnetic wave theory of lay-
ered systems with the practical constraints of loss and finite extent. We
have developed the theory and derived a new representation for the elec-
tromagnetic field solutions. The developed theory yields new criteria and
conditions that facilitate the design of new layered metamaterials. In Chap-
ter 2, we followed a bottom-up approach starting with Maxwell’s equations
to derive a new expression of the electromagnetic fields in Fourier domain.
The new representation is a compact product of three terms where each
term is dependent on a particular physical parameter of the layered system.
The Floquet-Bloch modes, which have been used before for modeling infi-
nite lossless systems, surprisingly show up in one of the three terms, without
invoking the Floquet-Bloch theorem.

This Fourier domain representation of the fields shows its capability of
decomposing the wave function to analyze complex electromagnetic prop-
erties. We extracted the corresponding band diagrams of the Fourier do-
main representation and used them to graphically describe a wide range
of refractive properties of layered metamaterials and to validate the con-
ventional homogenization methods. Although the derived Fourier domain
electromagnetic field solutions can be only used for planar flat systems, the
followed strategy in this electromagnetic study is not limited to layered meta-
materials and it is applicable to any metamaterial structure. Using band
diagrams, we analyzed and distinguished the abnormal intrinsic electromag-
netic behaviours that cause the external convergence of light. Analyzing
the external behaviour of light just after exiting the planar media, we have
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introduced a quantitative method in Chapter 3 based on the small-angle
phase behaviour to predict the image plane location and consequently the
imaging capability of single and multiple layer slabs made of homogeneous
isotropic media. Using the proposed flat lens criterion, we designed three flat
lenses with novel functionalities. Although the proposed flat lens criterion
provides new insights into the field of flat lens imaging and enables a new
method for flat lens design over large parameter spaces, it cannot supplant
the existing flat lens analysis methods due to several limitations.

A recognized limitation in the flat lens criterion derivations is the dis-
regard of the interactions between the object and lens, where the reflected
waves from the source or object have been neglected. However, the interac-
tion effect on calculations become more prominent when the object-to-lens
separation is small [61]. Accounting for these interactions would proba-
bly provide more accurate predictions but it will lead to object-dependent
predictions where the flat lens criterion is not general. Since the flat lens cri-
terion is based on the small-angle phase alone, the other limitation that can
be noticed is the lack of information provided by the flat lens criterion for
describing the resolution, contrast, or fidelity of the image. To study large-
angle plane-wave components with NA near unity or evanescent plane-wave
components with NA greater than one, alternative criteria can be developed
in future studies by calculating and analyzing the phase of large-angle and
evanescent plane-wave components. Another noteworthy limitation of flat
lens design is its associated restriction on configurations where the thickness
of the layered stack should be much smaller than the wavelength of the light
source. This limitation is due to the dependence of flat-lens imaging on the
interference of multiple reflected waves within the stack, which is best re-
alized using coherent laser light. However, imaging with partially coherent
light source from narrow-band light-emitting diodes, which are low-cost and
amenable to fluorescence imaging, should be possible using sufficiently thin
stacks. To investigate the compatibility of flat lenses with light sources of
different level of coherence, the impact of light coherence on imaging quality
should be further examined.

In future works, the correlation between the small-angle flat lens criterion
(NA near zero) and super-resolution imaging (NA greater than unity), which
has been shown to be accurately predicted by the small-angle criterion, has
to be fully understood and established by examining more case studies and
rigorously investigating the small-angle flat lens criterion limitations in pre-
dicting super-resolution imaging. Consequently, a flat lens aberration theory
that accommodates both propagating and evanescent components should be
developed. Future flat lens engineering will predominantly focus on practi-
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cal challenging features such as imaging over the entire visible spectrum or
simultaneously imaging with TM and TE polarizations.

Since light transmission through thin films with complex permittivity
is challenging due to the associated loss, we have discussed the theory of
optical light transmission through a single bi-layer unit cell made of metal
and dielectric in Chapter 4. For the first time, we have theoretically and
experimentally shown that transmission enhancement phenomenon in metal-
dielectric systems is reciprocal. We show that a thin coating layer on top of
a thin base layer can make the base layer more transparent when the two
layers have opposite sign susceptibilities. The developed theory can predict
the possibility of transmission enhancement and it can estimate the optimal
coating layer thickness for the most transparent bi-layer system. Although
we experimentally demonstrated that a thin silver coating layer can enhance
light transmission through a silicon nitride membrane, the achieved optical
transparency enhancements were limited to a narrow-band of the visible
spectrum with the maximum transmittance enhancement of 6±1%. Theo-
retically, enhancement factors greater than 10% is attainable using thinner
silver coatings. However, the experimental implementations of silver-coated
membranes are restricted by challenges in making perfectly planar and con-
tinuous silver films below 10 nm in thickness. In future, the use of seeding
layers to improve the smoothness of the silver layers and the consequences
of having bi-layers with opposing magnetic susceptibility can be explored.

Exploring the plasmonic properties of single layers of metals, we have
proposed an easy nano-film fabrication procedure for making copper nano-
films with enhanced surface plasmon coupling in Chapter 5. The deposition
method is based on the modification of two deposition parameters: the
deposition rates and the slew rates. We have been able to produce copper
films that have optical resonances comparable to gold films. Implementing
the introduced nano-film fabrication method, copper nano-films can work
as a cheaper substitute for gold nano-films in surface plasmon applications.
In future work, copper films could be passivated for making more sensitive,
robust and chemically stable SPR sensors.

Overall, this thesis provides a fundamental theoretical study of electro-
magnetic fields in layered metamaterials with a discussion of three common
applications. This work introduced a general method for characterizing and
communicating the electromagnetic properties of lossy finite layered meta-
materials. Moreover, the thesis proposed three engineering methods for
three practical implementations of layered metamaterials to achieve design-
ing new systems with new features. This work is a firm step towards a better
understating of electromagnetic fields in layered metamaterials.
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Surface Plasmon Polaritons

Surface plasmon polariton waves are a valid solution of Maxwell’s equa-
tions under certain conditions. Having two semi-infinite non-magnetic media
where the interface is at z = 0, the first and the second media are charac-
terized by the local complex relative permittivities ε1 and ε2, respectively.
Starting with a TM polarized wave, the electromagnetic fields propagating
about the interface along the +x-direction and decaying along the z direc-
tions are given by

Hy(z) =

{
H1e

ikxxekz1z z < 0
H2e

ikxxe−kz2z z > 0,
(A.1)

Ex(z) =

{
−ikz1H1e

ikxxekz1z/ωε0ε1 z < 0
ikz2H2e

ikxxe−kz2z/ωε0ε2 z > 0,
(A.2)

and

Ez(z) =

{
−kxH1e

ikxxekz1z/ωε0ε1 z < 0
−kxH2e

ikxxe−kz2z/ωε0ε2 z > 0.
(A.3)

where H1 and H2 are the complex amplitudes of the magnetic field in media
1 and 2, respectively, kx is the complex wave vector component along the
x axis, and kz1 and kz2 are the complex wave vector components along the
z axis in media 1 and 2, respectively. Due to continuity of the fields across
the interface, kx is the uniquely defined mode in both media.

Imposing the continuity of the tangential components of the electric fields
at z = 0, we get

kz1H1

ε1
+
kz2H2

ε2
= 0, (A.4)

and
H1 −H2 = 0, (A.5)
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which has a solution only if

kz1
kz2

= −ε1
ε2
. (A.6)

For positive real kz1 and kz2, surface waves can exist if the real parts of the
permittivities of the two media have opposite signs. Such condition can be
satisfied at the interface between a metal and a dielectric media.

Conducting the same exercise for TE polarization, the complex ampli-
tudes of the electric fields across the interface should satisfy

E1 = E2, (A.7)

and
E1(kz1 + kz2) = 0. (A.8)

As in the TM polarization case, kz1 and kz2 are positive and real. Therefore,
the only possible solution will be E1 = E2 = 0, which indicates that surface
electromagnetic waves cannot exist at the interface of non-magnetic media
for TE-polarization.
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Evanescent Wave
Amplification with a Thin
Silver Layer

From Maxwell’s equations, the general form of the wavevector kz for
propagating waves in free-space [27] is given by

kz = +
√
ω2c−2 − k2

x − k2
y, (B.1)

where ω2c−2 > k2
x + k2

y. For larger values of the transverse wavevector, kz
will be given by

kz = +i
√
k2
x + k2

y − ω2c−2, (B.2)

where ω2c−2 < k2
x+k2

y. Electromagnetic waves defined by the latter wavevec-
tor are known as evanescent waves where they decay exponentially with z. In
a medium defined by the electromagnetic properties ε and µ, the wavevector
of the evanescent waves is given by

kz = +i
√
k2
x + k2

y − ε µω2c−2, (B.3)

where ε µω2c−2 < k2
x + k2

y.

Working with a sub-wavelength thin layer of silver, the electrostatic limit
can be applied to decouple electrostatic and magnetostatic fields. For TM-
polarized fields, the transmission coefficient becomes independence of µ and
a function of ε, which is negative at optical frequencies. Based on the elec-
trostatic limit

ω � c
√
k2
x + k2

y. (B.4)
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The transmission coefficient T of the thin layer assuming the electrostatic
limit becomes

lim
k2x+k2y→∞

T = lim
k2x+k2y→∞

2ε kz
ε kz + k′z

2k
′
z

k′z + ε kz

× exp(ik
′
zd)

1− (k
′
z−εkz
k′z+εkz

)2 exp(2ik′zd)

=
4ε exp(ikzd)

(ε+ 1)2 − (ε− 1)2 exp(2ikzd)
.

(B.5)

Assuming that ε is becoming negative, the transmission coefficient becomes

lim
ε→−1

lim
k2x+k2y→∞

T = lim
ε→−1

4ε exp(ikzd)

(ε+ 1)2 − (ε− 1)2 exp(2ikzd)

= exp(−ikzd)

= exp(+d
√
k2
x + k2

y),

(B.6)

which means the thin silver layer does amplify evanescent waves.
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S-parameter Method

For a normally incident planewave, the effective wavevector kz(eff) within
the layered system along the z direction based on the S-parameter method [167],
is given by

kz(eff)d = ± arccos(
1− S2

11 + S2
21

2S21
) + 2mπ, (C.1)

where S11 is the reflection coefficient, S21 is the transmission coefficient, d
is the total thickness of the layered system, and m is an integer.
To derive the above expression, we first substitute the layered system with
a homogeneous medium that has identical scattering parameters. Applying
the boundary conditions at the front (z1 = 0) and back (z2 = d) interfaces,
we get

E+
l e

iklzzl+1 + E−l e
−iklzzl+1 = E+

l+1e
ik(l+1)zzl+1 + E−l+1e

−ik(l+1)zzl+1 , (C.2)

H+
l e

iklzzl+1 +H−l e
−iklzzl+1 = H+

l+1e
ik(l+1)zzl+1 +H−l+1e

−ik(l+1)zzl+1 , (C.3)

where E+ and H+ represents all wave components propagating towards
positive ẑ direction, and E− and H− represents those propagating towards
negative ẑ direction. The subscripts l and l+1 are used to denote the regions
on the left and right side of the interfaces, respectively.
Knowing that H = ±k

µωE, Eq. (C.3) can be rewritten in terms of electric field

E+
l e

iklzzl+1 − E−l e
−iklzzl+1

= pl(l+1)[E
+
l+1e

ik(l+1)zzl+1 − E−l+1e
−ik(l+1)zzl+1 ],

(C.4)

where

pl(l+1) =
µlk(l+1)z

µl+1klz
. (C.5)

The semi-infinite half spaces on both sides of the layered system are
assumed to be free-space and denoted by the subscript 0 from the front
side and t from the back side. Knowing the electric wave components, the
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reflection coefficient R and the transmission coefficient T are defined as

R =
E−0
E+

0

, (C.6)

T =
E+
t

E+
0

. (C.7)

After few lines of manipulations, we can re-write Eq. (C.2) and Eq. (C.4)
as

E+
l e

iklzzl+1 =
1

2
(1 + pl(l+1))

[E+
l+1e

ik(l+1)zzl+1 +Ql(l+1)E
−
l+1e

−ik(l+1)zzl+1 ],
(C.8)

E−l e
−iklzzl+1 =

1

2
(1 + pl(l+1))

[Ql(l+1)E
+
l+1e

ik(l+1)zzl+1 + E−l+1e
−ik(l+1)zzl+1 ],

(C.9)

where

Q(l+1)l =
1− p(l+1)l

1 + p(l+1)l
= −Ql(l+1). (C.10)

Taking the ratio of Eq. (C.8) and Eq. (C.9), after few manupulations we
obtaine

R =
E−0
E+

0

=
ei2k0zz1

Q01
+

[1− (1/Q2
01)]ei2(k1z+k0z)z1

(1/Q01)ei2k1zz1 +Q12ei2k1zz2

=
Q01 +Q12e

i2k1z(z2−z1)

1 +Q01Q12ei2k1z(z2−z1)
ei2k0zz1 .

(C.11)

Knowing that Q12 = Q10 = −Q01, k1z = nk0, z1 = 0 and z2 − z1 = d,
we get

R =
Q01(1− ei2nk0d)
1−Q2

01e
i2nk0d

= S11. (C.12)
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Recalling that,

E+
0 e

ik0zdt =
1

2
(1 + p01)

[E+
t e

ik1zz0 +Q01E
−
t e
−ik1zz0 ],

(C.13)

and

E+
1 e

ik1zdt =
1

2
(1 + p1t)

[E+
t e

iktzd +Q1tE
−
t e
−iktzd],

(C.14)

we can solve for E+
t

E+
t =

2

(1 + p1t)
[E+

1 e
i(k1z−ktz)d], (C.15)

and the transmission coefficient will be

T =
(1−Q2

01)eink0d

1−Q2
01e

i2nk0d
= S21. (C.16)

Using Eq. C.12 and Eq. C.16, we solve for Q2
01

Q2
01 =

eink0d − S21

eink0d − S21ei2nk0d
, (C.17)

and

Q2
01 =

S2
11

1− 2S21eink0d + S2
21e

i2nk0d
. (C.18)

Equating Eq. (C.18) and Eq. (C.17), we get

eink0d − S21

eink0d − S21ei2nk0d
=

S2
11

1− 2S21eink0d + S2
21e

i2nk0d
. (C.19)

After few lines of simplification, we obtain this expression

eink0d + e−ink0d

2
=

1− S2
11 + S2

21

2S21
. (C.20)

Since eink0d+e−ink0d

2 = cos(nk0d), we get the final expression for effective
wave vector as Eq. C.1.
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Maxwell-Garnett Method

Assume that a plane wave is incident on a metal-dielectric layered struc-
ture where the thicknesses tm and td are fairly small compared to the wave-
length and εm and εd are the dielectric constants of the metal and the
dielectric layers, respectively. For TE polarization where electric field is
perpindicular to the plane of incidence, the electric displacement D in the
layered medium can be considered to be uniform. The corresponding metal
and dielectric electric fields are Em and Ed, and related to the uniform elec-
tric displacement by

Em =
D

εm
, (D.1)

Ed =
D

εd
, (D.2)

The averaged mean field over the total volume is

E =
tm

D
εm

+ td
D
εd

tm + td
, (D.3)

The effective dielectric constant ε⊥ is:

ε⊥ =
D

E
=

(tm + td)εmεd
tmεd + tdεm

=
εmεd

fmεd + fdεm
, (D.4)

where fm = tm/(tm + td) and fd = td/(tm + td) = 1− fm are the metal and
dielectric filling factors, respectively.
For TM polarization where electric field is parallel to the plane of incidence,
the electric field E now is uniform. The corresponding metal and dielectric
electric displacements are

Dm = εmE, (D.5)
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and
Dd = εdE. (D.6)

The averaged mean field over the total volume is

D =
tmεmE + tdεdE

tm + td
, (D.7)

Therefore, the effective dielectric constant ε‖ will be:

ε‖ =
D

E
=
tmεm + tdεd
tm + td

= fmεm + fdεd, (D.8)

The expressions of introduced ε‖ and ε⊥ can be re-written as [186]

ε⊥ =
εdεm

(1− p)εm + pεd
, (D.9)

ε‖ = (1− p)εd + pεm, (D.10)

where f1 = p and f2 = (1− p), or as [81]

ε‖ =
εd + ηεm

1 + η
, (D.11)

ε⊥ =
εdεm(η + 1)

εm + ηεd
, (D.12)

where η = td/tm = p/(1− p).
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Finite Difference Frequency
Domain MATLAB Code

1 % This MATLAB code s imu la t e s two−dimens iona l o p t i c a l
s t r u c t u r e s us ing the

2 % f i n i t e −d i f f e r e n c e frequency−domain method .
3

4 f unc t i on [R,T,m, F , Dr1 , Dr2 , Dspp ] = fdfd2d ( lam0 ,UR2,ER2,
RES2 ,NPML, kinc , pol , nx1 , nx2 , ny4 , ny5 )

5

6 % INPUT ARGUMENTS
7 % lam0 i s the f r e e space wavelength
8 % UR2 conta in s the r e l a t i v e pe rmeab i l i t y on a 2X gr id
9 % ER2 conta in s the r e l a t i v e p e r m i t t i v i t y on a 2X gr id

10 % NPML i s the s i z e o f the PML on the 1X gr id
11 % RES2 = [ dx2 dy2 ]
12 % kinc i s the i n d i c e n t wave vec to r
13 % pol i s the p o l a r i z a t i o n ( ’E’ or ’H’ )
14

15 % OUTPUT ARGUMENTS
16 % R conta in s d i f f r a c t i o n e f f i c i e n c i e s o f r e f l e c t e d

waves
17 % T conta in s d i f f r a c t i o n e f f i c i e n c i e s o f t ransmit ted

waves
18 % m conta in s the i n d i c e s o f the harmonics in R and T
19 % F i s the computed f i e l d
20

21 %% HANDLE INPUT AND OUTPUT ARGUMENTS
22 c = 3e8 ;
23 % DETERMINE SIZE OF GRID
24 [ Nx2 , Ny2 ] = s i z e (ER2) ;
25 dx2 = RES2(1) ;
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26 dy2 = RES2(2) ;
27 % 1X GRID PARAMETERS
28 Nx = Nx2/2 ; dx = 2∗dx2 ;
29 Ny = Ny2/2 ; dy = 2∗dy2 ;
30 % COMPUTE MATRIX SIZE
31 M = Nx∗Ny;
32 % COMPUTE REFRACTIVE INDEX IN REFLECTION REGION
33 e r r e f = ER2( : , 1 ) ; e r r e f = mean( e r r e f ( : ) ) ;
34 u r r e f = UR2( : , 1 ) ; u r r e f = mean( u r r e f ( : ) ) ;
35 n r e f = s q r t ( e r r e f ∗ u r r e f ) ;
36 i f e r r e f <0 && urre f <0
37 n r e f = − n r e f ;
38 end
39 % COMPUTE REFRACTIVE INDEX IN TRANSMISSION REGION
40 e r t rn = ER2 ( : , Ny2) ; e r t rn = mean( e r t rn ( : ) ) ;
41 urtrn = UR2( : , Ny2) ; urtrn = mean( urtrn ( : ) ) ;
42 ntrn = s q r t ( e r t rn ∗ urtrn ) ;
43 i f e r t rn<0 && urtrn<0
44 ntrn = − ntrn ;
45 end
46

47 %% INCORPORATE PERFECTLY MATCHED LAYER BOUNDARY
CONDITION

48 % PML PARAMETERS
49 N0 = 376 .73032165 ; %f r e e space

impedance
50 amax = 3 ;
51 cmax = 1 ;
52 p = 3 ;
53 % INITIALIZE PML TO PROBLEM SPACE
54 sx = ones (Nx2 , Ny2) ;
55 sy = ones (Nx2 , Ny2) ;
56 % COMPUTE FREE SPACE WAVE NUMBERS
57 k0 = 2∗ pi /lam0 ;
58 % Y PML
59 N = 2∗NPML;
60 f o r n = 1 : N
61 % compute Y−PML value
62 ay = 1 + amax∗(n/N) ˆp ;
63 cy = cmax∗ s i n ( 0 . 5∗ pi ∗n/N) ˆ2 ;
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64 s = ay∗(1− i ∗cy∗N0/k0 ) ;
65 % inco rpo ra t e va lue in to PML
66 sy ( : ,N−n+1) = s ;
67 sy ( : , Ny2−N+n) = s ;
68 end
69 % X PML
70 f o r n = 1 : N
71 % compute X−PML value
72 ax = 1 + amax∗(n/N) ˆp ;
73 cx = cmax∗ s i n ( 0 . 5∗ pi ∗n/N) ˆ2 ;
74 s = ax∗(1− i ∗cx∗N0/k0 ) ;
75 % inco rpo ra t e va lue in to PML
76 sx (N−n+1 , :) = s ;
77 sx (Nx2−N+n , : ) = s ;
78 end
79 % COMPUTE TENSOR COMPONENTS WITH PML
80 ER2xx = ER2 . / sx .∗ sy ;
81 ER2yy = ER2 .∗ sx . / sy ;
82 ER2zz = ER2 .∗ sx .∗ sy ;
83 UR2xx = UR2 . / sx .∗ sy ;
84 UR2yy = UR2 .∗ sx . / sy ;
85 UR2zz = UR2 .∗ sx .∗ sy ;
86 % OVERLAY MATERIALS ONTO 1X GRID
87 ERxx = ER2xx ( 2 : 2 : Nx2 , 1 : 2 : Ny2) ;
88 ERyy = ER2yy ( 1 : 2 : Nx2 , 2 : 2 : Ny2) ;
89 ERzz = ER2zz ( 1 : 2 : Nx2 , 1 : 2 : Ny2) ;
90 URxx = UR2xx ( 1 : 2 : Nx2 , 2 : 2 : Ny2) ;
91 URyy = UR2yy ( 2 : 2 : Nx2 , 1 : 2 : Ny2) ;
92 URzz = UR2zz ( 2 : 2 : Nx2 , 2 : 2 : Ny2) ;
93 % CLEAR TEMPORARY VARIABLES
94 c l e a r N0 amax cmax p sx sy n N ay cy s ;
95 c l e a r UR2 ER2 ER2xx ER2yy ER2zz UR2xx UR2yy UR2zz ;
96

97 %% PERFORM FINITE−DIFFERENCE FREQUENCY−DOMAIN ANALYSIS
98 % FORM DIAGONAL MATERIAL MATRICES
99 ERxx = diag ( spar s e (ERxx ( : ) ) ) ;

100 ERyy = diag ( spar s e (ERyy ( : ) ) ) ;
101 ERzz = diag ( spar s e (ERzz ( : ) ) ) ;
102 URxx = diag ( spar s e (URxx ( : ) ) ) ;
103 URyy = diag ( spar s e (URyy ( : ) ) ) ;
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104 URzz = diag ( spar s e (URzz ( : ) ) ) ;
105 % COMPUTE DERIVATIVE OPERATORS
106 NS = [Nx Ny ] ;
107 RES = [ dx dy ] ;
108 BC = [−2 −2 0 0 ] ;
109 [DEX,DEY,DHX,DHY] = yeeder2d (NS, k0∗RES,BC, k inc /k0 ) ;
110 % At the end o f t h i s code , the func t i on code o f the

Yee g r id de r iva tove
111 % opera to r s on a 2D gr id i s inc luded
112

113 % COMPUTE FIELD MATRIX
114 switch pol
115 case ’E ’ ,
116 A = DHX/URyy∗DEX + DHY/URxx∗DEY + ERzz ;
117 case ’H ’ ,
118 A = DEX/ERyy∗DHX + DEY/ERxx∗DHY + URzz ;
119 otherwise ,
120 e r r o r ( ’ Unrecognized p o l a r i z a t i o n . ’ ) ;
121 end
122 % COMPUTE SOURCE FIELD
123 micrometers =1;
124 nanometers = micrometers /1000 ;
125 w0=1200 ∗ nanometers ;
126 xa = [ 0 : Nx−1]∗dx ;
127 ya = [ 0 : Ny−1]∗dy ;
128 [Y,X] = meshgrid ( ya , xa ) ;
129 f s r c = exp(− i ∗( k inc (1 ) ∗X+kinc (2 ) ∗Y) ) ; % plane wave

source
130 f s r c = f s r c ( : ) ;
131 % COMPUTE SCATTERED−FIELD MASKING MATRIX
132 Q = ze ro s (Nx,Ny) ;
133 Q( : , 1 :NPML+2) = 1 ;
134 Q = diag ( spar s e (Q( : ) ) ) ;
135 % COMPUTE SOURCE VECTOR
136 f = (Q∗A−A∗Q) ∗ f s r c ;
137 % PREPARE MEMORY
138 c l e a r NS RES BC DEX DEZ DHX DHZ;
139 c l e a r ya X Y f s r c ;
140 c l e a r ERxx ERyy ERzz URxx URyy URzz ;
141 % COMPUTE FIELD
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142 F = A\ f ; %backward d i v i s i o n i s used
here ! !

143 F = f u l l (F) ;
144 F = reshape (F , Nx,Ny) ;
145

146 %% COMPUTE DIFFRACTION EFFICIENCIES
147 % EXTRACT REFLECTED AND TRANSMITTED WAVES
148 Fre f = F ( : ,NPML+1) ;
149 Ftrn = F ( : , Ny−NPML) ;
150 % REMOVE PHASE TILT
151 p = exp(+ i ∗ kinc (1 ) ∗xa ’ ) ;
152 Fre f = Fre f .∗ p ;
153 Ftrn = Ftrn .∗ p ;
154 % COMPUTE SPATIAL HARMONICS
155 Fre f = f f t s h i f t ( f f t ( Fre f ) ) /Nx ;
156 Ftrn = f f t s h i f t ( f f t ( Ftrn ) ) /Nx ;
157 % COMPUTE WAVE VECTOR COMPONENTS OF THE SPATIAL

HARMONICS
158 m = [− f l o o r (Nx/2) : f l o o r (Nx/2) ] ’ ;
159 kx = kinc (1 ) − 2∗ pi ∗m/(Nx∗dx ) ;
160 kzR = conj ( s q r t ( ( k0∗ n r e f ) ˆ2 − kx . ˆ 2 ) ) ;
161 kzT = conj ( s q r t ( ( k0∗ ntrn ) ˆ2 − kx . ˆ 2 ) ) ;
162 x l e f t = round ( nx1 /2) −round ((1000∗ nanometers ) /dx ) ;
163 x r i g h t = round ( nx2 /2) + round ((1000∗ nanometers ) /dx ) ;
164 Dr1 yb = round ( ny5 /2) ;
165 Dr1 ya = round ( ny5 /2) + round (300∗ nanometers ) /dy ;
166 Dr1 y=Dr1 yb : Dr1 ya ;
167 Dr2 y=Dr1 ya ;
168 Dspp yb=round ( ny4 /2) − round ((50∗ nanometers ) /dy ) ;
169 Dspp ya= round ( ny5 /2) ;
170 Dspp y=Dspp yb : Dspp ya ;
171 F rad1 = F( x l e f t , Dr1 y ) .∗ conj ( F( x l e f t , Dr1 y ) ) ; %

f i e l d source
172 Dr1 = sum( F rad1 ) ;% f r e e space de t e c t o r l e f t

v e r t i c a l |
173 F rad2 = F( x l e f t : x r i gh t , Dr2 y ) .∗ conj (F( x l e f t :

x r i gh t , Dr2 y ) ) ; % f i e l d source H∗ conj (H)
174 Dr2 = sum ( F rad2 ) ;% f r e e space de t e c t o r top

h o r i z o n t a l
175 F spp = F( x l e f t , Dspp y ) .∗ conj ( F( x l e f t , Dspp y ) ) ;
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176 Dspp = sum( F spp ) ; % SPP
177 % COMPUTE DIFFRACTION EFFICIENCY
178 switch pol
179 case ’E ’ ,
180 R = abs ( Fre f ) . ˆ2 .∗ r e a l (kzR/ kinc (2 ) ) ;
181 T = abs ( Ftrn ) . ˆ2 .∗ r e a l (kzT∗ u r r e f / k inc (2 ) /

urtrn ) ;
182 case ’H ’ ,
183 R = abs ( Fre f ) . ˆ2 .∗ r e a l (kzR/ kinc (2 ) ) ;
184 T = abs ( Ftrn ) . ˆ2 .∗ r e a l (kzT∗ e r r e f / k inc (2 ) /

e r t rn ) ;
185 end

1 f unc t i on [DEX,DEY,DHX,DHY] = yeeder2d (NS,RES,BC, k inc )
2 % YEEDER2D Yee Grid Der ivatove Operators on a 2D

Grid
3 %
4 % [DEX,DEY,DHX,DHY] = yeeder2d (NS,RES,BC, k inc ) ;
5 %
6 % Input Arguments
7 % =================
8 % NS [Nx Ny ] 1X gr id s i z e
9 % RES [ dx dy ] 1X gr id r e s o l u t i o n

10 % BC [ x lo xhi y lo yhi ] boundary c o n d i t i o n s
11 % −2: pseudo−p e r i o d i c ( r e q u i r e s k inc )
12 % −1: p e r i o d i c
13 % 0 : D i r i c h l e t
14 % kinc [ kx ky ] i n c i d e n t wave vec to r
15 % This argument i s only needed f o r pseudo−

p e r i o d i c boundar ies .
16 %
17 % Note : For normal ized gr ids , use dx=k0∗dx and kinc=

kinc /k0
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 % VERIFY INPUT/OUTPUT ARGUMENTS
20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 % VERIFY NUMBER OF INPUT ARGUMENTS
22 e r r o r ( nargchk (3 , 4 , narg in ) ) ;
23 % VERIFY NUMBER OF OUTPUT ARGUMENTS
24 e r r o r ( nargchk (1 , 4 , nargout ) ) ;
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25 % EXTRACT GRID PARAMETERS
26 Nx = NS(1) ; dx = RES(1) ;
27 Ny = NS(2) ; dy = RES(2) ;
28 % DETERMINE MATRIX SIZE
29 M = Nx∗Ny;
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 % DEX
32 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
33 % INITIALIZE MATRIX
34 DEX = spar s e (M,M) ;
35 % PLACE MAIN DIAGONALS
36 DEX = spd iags (−ones (M, 1 ) ,0 ,DEX) ;
37 DEX = spd iags (+ones (M, 1 ) ,+1 ,DEX) ;
38 % CORRECT BOUNDARY TERMS (DEFAULT TO DIRICHLET)
39 f o r ny = 1 : Ny−1
40 neq = Nx∗(ny−1) + Nx ;
41 DEX( neq , neq+1) = 0 ;
42 end
43 % HANDLE BOUNDARY CONDITIONS ON XHI SIDE
44 switch BC(2)
45 case −2,
46 dpx = exp(− i ∗ kinc (1 ) ∗Nx∗dx ) ;
47 f o r ny = 1 : Ny
48 neq = Nx∗(ny−1) + Nx ;
49 nv = Nx∗(ny−1) + 1 ;
50 DEX( neq , nv ) = +dpx ;
51 end
52 case −1,
53 f o r ny = 1 : Ny
54 neq = Nx∗(ny−1) + Nx ;
55 nv = Nx∗(ny−1) + 1 ;
56 DEX( neq , nv ) = +1;
57 end
58 case 0 , %D i r i c h l e t
59 otherwise ,
60 e r r o r ( ’ Unrecognized x−high boundary cond i t i on . ’ )

;
61 end
62 % FINISH COMPUTATION
63 DEX = DEX / dx ;
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64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 % DEY
66 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
67 % INITIALIZE MATRIX
68 DEY = spar s e (M,M) ;
69 % PLACE MAIN DIAGONALS
70 DEY = spd iags (−ones (M, 1 ) ,0 ,DEY) ;
71 DEY = spd iags (+ones (M, 1 ) ,+Nx,DEY) ;
72 % HANDLE BOUNDARY CONDITIONS ON YHI SIDE
73 switch BC(4)
74 case −2,
75 dpy = exp(− i ∗ kinc (2 ) ∗Ny∗dy ) ;
76 f o r nx = 1 : Nx
77 neq = Nx∗(Ny−1) + nx ;
78 nv = nx ;
79 DEY( neq , nv ) = +dpy ;
80 end
81 case −1,
82 f o r nx = 1 : Nx
83 neq = Nx∗(Ny−1) + nx ;
84 nv = nx ;
85 DEY( neq , nv ) = +1;
86 end
87 case 0 ,
88 otherwise ,
89 e r r o r ( ’ Unrecognized y−high boundary cond i t i on . ’ )

;
90 end
91 % FINISH COMPUTATION
92 DEY = DEY / dy ;
93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
94 % DHX
95 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
96 % INITIALIZE MATRIX
97 DHX = spar s e (M,M) ;
98 % PLACE MAIN DIAGONALS
99 DHX = spd iags (+ones (M, 1 ) ,0 ,DHX) ;

100 DHX = spd iags (−ones (M, 1 ) ,−1 ,DHX) ;
101 % CORRECT BOUNDARY TERMS (DEFAULT TO DIRICHLET)
102 f o r ny = 2 : Ny
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103 neq = Nx∗(ny−1) + 1 ;
104 DHX( neq , neq−1) = 0 ;
105 end
106 % HANDLE BOUNDARY CONDITIONS ON XLOW SIDE
107 switch BC(1)
108 case −2,
109 dpx = exp(+ i ∗ kinc (1 ) ∗Nx∗dx ) ;
110 f o r ny = 1 : Ny
111 neq = Nx∗(ny−1) + 1 ;
112 nv = Nx∗(ny−1) + Nx ;
113 DHX( neq , nv ) = −dpx ;
114 end
115 case −1,
116 f o r ny = 1 : Ny
117 neq = Nx∗(ny−1) + 1 ;
118 nv = Nx∗(ny−1) + Nx ;
119 DHX( neq , nv ) = −1;
120 end
121 case 0 ,
122 otherwise ,
123 e r r o r ( ’ Unrecognized x−low boundary cond i t i on . ’ ) ;
124 end
125 % FINISH COMPUTATION
126 DHX = DHX / dx ;
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128 % DHY
129 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130 % INITIALIZE MATRIX
131 DHY = spar s e (M,M) ;
132 % PLACE MAIN DIAGONALS
133 DHY = spd iags (+ones (M, 1 ) ,0 ,DHY) ;
134 DHY = spd iags (−ones (M, 1 ) ,−Nx,DHY) ;
135 % HANDLE BOUNDARY CONDITIONS ON YLOW SIDE
136 switch BC(3)
137 case −2,
138 dpy = exp(+ i ∗ kinc (2 ) ∗Ny∗dy ) ;
139 f o r nx = 1 : Nx
140 neq = nx ;
141 nv = Nx∗(Ny−1) + nx ;
142 DHY( neq , nv ) = −dpy ;
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143 end
144 case −1,
145 f o r nx = 1 : Nx
146 neq = nx ;
147 nv = Nx∗(Ny−1) + nx ;
148 DHY( neq , nv ) = −1;
149 end
150 case 0 ,
151 otherwise ,
152 e r r o r ( ’ Unrecognized y−low boundary cond i t i on . ’ ) ;
153 end
154 % FINISH COMPUTATION
155 DHY = DHY / dy ;
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Quality Factor Tables

Table F.1: The dip properties of the reflected light intensities from 50 nm
of silver sputtered using different deposition parameters at two different
wavelengths

Ag (50 nm) λo = 594 nm λo = 632.8 nm

Slew rate
(%/s)

Dep. rate
(Å/s)

FWHM (o) Dip QF FWHM (o) Dip QF

4.0
1.0 0.65 ± 0.09 0.48 ± 0.01 0.75 ± 0.10 0.62 ± 0.09 0.44 ± 0.01 0.72 ± 0.10
20.0 0.71 ± 0.04 0.49 ± 0.02 0.70 ± 0.06 0.57± 0.06 0.39 ± 0.01 0.70 ± 0.07

99.9
1.0 1.01 ± 0.12 0.60 ± 0.02 0.60 ± 0.08 0.84 ± 0.09 0.57 ± 0.02 0.68 ± 0.08
20.0 0.94 ± 0.11 0.53 ± 0.02 0.57 ± 0.07 0.79 ± 0.08 0.37 ± 0.01 0.47 ± 0.05

Table F.2: The dip properties of the reflected light intensities from 50 nm of
gold sputtered using different deposition parameters at two different wave-
lengths

Au (50 nm) λo = 594 nm λo = 632.8 nm

Slew rate
(%/s)

Dep. rate
(Å/s)

FWHM (o) Dip QF FWHM (o) Dip QF

4.0
1.0 4.34 ± 0.08 0.93 ± 0.01 0.21 ± 0.003 2.44 ± 0.09 0.76 ± 0.01 0.31 ± 0.02
10.0 4.40 ± 0.44 0.85 ± 0.01 0.20 ± 0.02 2.51± 0.11 0.66 ± 0.01 0.26 ± 0.01

99.9
1.0 4.42 ± 0.43 0.84 ± 0.01 0.19 ± 0.02 2.41 ± 0.07 0.66 ± 0.01 0.27 ± 0.01
10.0 4.29 ± 0.32 0.80 ± 0.01 0.19 ± 0.01 2.60 ± 0.09 0.57 ± 0.01 0.22 ± 0.01

Table F.3: The dip properties of the reflected light intensities from 40 nm
of copper sputtered using different deposition parameters at two different
wavelengths

Cu (40 nm) λo = 594 nm λo = 632.8 nm

Slew rate
(%/s)

Dep. rate
(Å/s)

FWHM (o) Dip QF FWHM (o) Dip QF

4.0
1.0 4.60 ± 0.14 0.62 ± 0.01 0.134 ± 0.003 2.76 ± 0.11 0.46 ± 0.01 0.167 ± 0.005
10.0 3.06 ± 0.04 0.90 ± 0.01 0.29 ± 0.01 1.57 ± 0.08 0.82 ± 0.02 0.53 ± 0.04

99.9
1.0 4.08 ± 0.53 0.48 ± 0.02 0.12 ± 0.02 2.98 ± 0.09 0.61 ± 0.03 0.20 ± 0.01
10.0 4.87 ± 0.33 0.78 ± 0.02 0.16 ± 0.01 3.27 ± 0.13 0.81 ± 0.01 0.25 ± 0.01
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Experimental Tools

In the experiments of this thesis, we have used various experimental
tools to fabricate nano-layers, and conduct light transmission and reflection
measurements, thickness measurements, and morphological studies. This
appendix will briefly discuss the prominent features of the used experimental
tools.

Sputter Deposition System

Sputter deposition is a physical vapor deposition method based upon
vaporizing a source material (target) by bombarding the target with Argon
ions. To discharge the ejected atoms from the target and start film growth
on a substrate, the most common approach is to use a magnetron source on
the back of the target.

For the experiments in Chapter 4 and 5, we used an Angstrom Engineer-
ing Nexdep Deposition System to deposit different metals and dielectrics
with various film thicknesses onto microscope glass substrates and silicon
nitride membranes.

Atomic Force Microscope

Atomic-force microscopy (AFM) is a very-high-resolution type of scan-
ning probe microscopy to measure local properties, such as height, with a
probe. The demonstrated resolution of AFM is 1000 times better than the
optical diffraction limit, in the order of fractions of a nanometer.

The AFM images in Chapter 5 are taken by the Bruker Dimension Icon
AFM using the peak force tipping mode over the scan range of 5µm x 5µm.
The measured average surface roughness of silver, gold and copper films
fabricated using different deposition parameters are shown in the following
table.
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Table G.1: The measured average surface roughness of silver, gold and cop-
per films fabricated at different deposition and slew rates.

Slew rate
(%/s)

Dep. rate
(Å/s)

Average surface roughness (nm)
Ag (50 nm) Au (50 nm) Cu (40 nm)

4.0
1.0 7.210 0.702 0.575

10.0 / 20.0 2.210 0.727 0.458

99.9
1.0 7.050 0.525 0.478

10.0 / 20.0 2.990 1.680 0.545

Scanning Electron Microscope

Scanning electron microscopy (SEM) is a type of nano-imaging that uses
a focused beam of high energy electrons to produce high-resolution images
of solid specimens. The interaction of electrons with atoms in the sample
produces various signals that contain information about the sample’s exter-
nal morphology (texture), chemical composition, and crystalline structure.
A resolution better than 1 nanometer is achievable by SEM.

The SEM images in Chapter 5 are taken by the Tescan Mira3 XMU Field
Emission SEM using the high vacuum mode over various magnification levels
and at different sites of the samples. The presented SEM images in this
thesis are the best taken images at the highest magnification that provides
an acceptable resolution.

Profilometer

Profilometer is a measuring instrument used to measure the thickness
and the surface roughness of thin films. In Chapter 4, we used a mechanical
stylus-based high resolution profilometer (KLA Tencor Alphastep) to mea-
sure the thicknesses of a series of thin-film samples in order to calibrate the
quartz crystal monitoring system in the sputtering deposition station.

The stylus-based profilometers use a physically moving probe along the
surface to acquire the surface height as a function of position. This process
is performed by continuously monitoring the sample force pushing up the
probe as it scans along the surface. The acquired sample forces are then
used to reconstruct the surface. The probe’s shape and tip size can affect
measurements and restrict resolution. Typical profilometers are capable of
measuring small vertical features ranging from 10 nanometres to 1 millime-
tre.
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Spectrometer

Spectrometer is an instrument that measures the intensity of light as a
function of wavelength. In this work, we used the high-performance Ocean
Optics USB4000 spectrometer with a wavelength range, from 200 to 1100
nm for conducting the visible light transmission measurements of the silver-
coated membranes.

Filmetrics F20 Analyzer

Filmetrics are usually used to measure the thickness and optical con-
stants of dielectric and semiconductor thin films, where the measured films
must be optically smooth and within the thickness range set by the system.
Selecting the appropriate mode, filmetrics can also be used for reflection and
transmission measurements. In this work, we used the Filmetrics F20 ana-
lyzer with a wide wavelength range from 380 to 1700 nm for conducting the
visible and infrared light transmission measurements of the dielectric-coated
silver films.
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