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Abstract 

 

 Rapid urban densification and an enhanced understanding of the health consequences of 

intra-urban air pollution exposure variability has led to a need for accurate estimation of traffic-

related air pollution (TRAP) exposures, including temporal and spatial variability. To address 

this goal, a wireless real-time air pollution monitor was evaluated and the effect of street canyon 

geometry on TRAP levels was assessed. The AQMesh wireless monitor (with sensors for CO, 

NO, NO2, O3 and SO2)—was evaluated in a co-location study with regulatory air quality 

monitoring stations in London, England and Vancouver, Canada. The amount of variability (R
2
) 

explained by AQMesh sensors (algorithm version 3.0) ranged from 0.02% to 34.5% in 

Vancouver and 1.5% to 82.3% in London. Sensors for NO2 and O3 displayed the highest 

accuracy while the CO sensor accuracy was much weaker. AQMesh, as examined in this co-

location, was not sufficiently robust for use in regulatory applications. 

 A simple GIS-based model for the identification of potential street canyons where TRAP 

levels may be elevated was created using 3D building information, aspect ratio and the 

prevailing wind direction. The model was evaluated in a mobile monitoring campaign in which 

particulate matter smaller than 2.5 micrometers (PM2.5) and particle number concentration (PNC) 

were measured along 4 road segments: canyon high traffic (C HT), canyon low traffic (C LT), 

non-canyon high-traffic (NC HT) and non-canyon low traffic (NC LT). A linear mixed effects 

model found the effect estimates for C LT (i.e. the effect of canyon) to be 8% higher for PM2.5 

and 17% higher for PNC when compared to the reference road segment category, NC LT. In 

comparison, the effect estimates for NC HT (i.e. the effect of traffic) was 16% higher for PM2.5 

and 34% higher for PNC when compared to NC LT. This research suggests that the impact of 
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traffic may be greater than the impact of street canyons in determining TRAP exposures.  
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Lay Summary 

 

Traffic-related air pollution (TRAP) exposure is associated with numerous 

cardiopulmonary health outcomes. With rising urbanization, greater populations residing in city 

centers may be exposed to spatially and temporally varying TRAP; one factor that may increase 

pollution concentrations is urban street canyons—regions with narrower roads bound by taller 

buildings. Newly marketed air pollution instruments capable of deployment in higher density 

networks may better capture nuances in spatiotemporal trends than existing measurement and 

monitoring approaches.  

This research evaluated the performance of one wireless sensor technology against gold-

standard instrumentation in Vancouver and London and determined it was not sufficiently 

developed at the time of study to enhance understanding of spatiotemporal air quality patterns.  

To further examine TRAP in urban settings, a simple model was generated to identify 

potential street canyons in downtown Vancouver. Measurements along canyon segments suggest 

traffic density may be a more important determinant of TRAP levels than street canyons. 

 



 

v 

 

Preface 

 

This thesis was designed to evaluate the near-roadway sensor performance of AQMesh in 

co-location studies next to reference stations in Vancouver and London. This project also 

investigated the impact of urban street canyons on the intra-urban variability of TRAP exposures. 

A simple model for street canyon identification was developed as this may be integrated into 

land use regression models for exposure quantification. The model was appraised using mobile 

monitoring techniques to determine if canyons were indeed important predictors of within-city 

TRAP levels. A. Wang conducted all work from conception to completion under the supervision 

of Dr. Michael Brauer who offered input on study design, field work and written composition. 

Chapter 1 of this thesis is derived in part from Wang, A., Brauer, M., 2014. Review of 

Next Generation Air Monitors for Air Pollution. Available from: 

https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0132

725.  

The installation, maintenance and removal of AQMesh units in Vancouver was 

completed by author, A. Wang, with assistance from Ben Weinstein, Robert Tsin, Aaron Birch 

and Jeff Yeo. Dr. Ben Barratt and the Environmental Research Group at King’s College London 

devised and implemented the London AQMesh co-location. This data was provided to A. Wang 

for analysis.  

The street canyon model was conceptualized by A. Wang and Dr. Brauer. The model was 

built by A.Wang in consultation with Dr. Brian Klinkenberg and Joseph Lee from UBC’s 

Department of Geography. The spatial analysis as described in Chapter 3 is in part a reappraisal 

of a student project submitted by A.Wang and Bonny Ho for a UBC course - Advanced Issues in 

https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0132725
https://open.library.ubc.ca/cIRcle/collections/facultyresearchandpublications/52383/items/1.0132725
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Geographic Information Science. All data collection necessary for the mobile monitoring 

campaign was performed by A. Wang, with the support of volunteers from the UBC School of 

Population and Public Health (Robert Tsin, Martha Lee) and M’hammed Bensahal.  
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Chapter 1: Introduction 

 

1.1 Air pollution background 

 Air pollution is an unavoidable exposure for all populations and has been considered both 

an environmental and health problem for centuries. (1) The Global Burden of Disease 2015 

attributed 4.2 million (95% uncertainty interval 3.7 million to 4.8 million), 2.9 million (2.2 

million to 3.6 million) and 0.3 million (0.1 million to 0.4 million) deaths to the exposure of 

ambient particulate matter, household air pollution and ambient ozone pollution, respectively. (2) 

These three air pollutant categories accounted for 103.1 million (90.8 million to 115.1 million), 

85.6 million (66.7 million to 106.1 million) and 4.1 million (1.6 million to 6.8 million) global 

disability-adjusted life years. (2) 

 Air pollution is comprised of a complex mixture of pollutants that are classified as: 1) 

primary (directly emitted) or secondary (produced in the atmosphere by chemical and physical 

reactions) by their formation; 2) gaseous or particulate by their state; and 3) biogenic, geologic, 

or anthropogenic by their emission mode. (1,3) An important source of air pollution in many 

urban areas and a key factor in spatial variability of pollutant levels within cities is traffic-related 

air pollution (TRAP).  

 Primary pollutants emitted in TRAP include nitrogen monoxide (NO), carbon monoxide 

(CO), heavy metals (e.g. cadmium, mercury), volatile organic compounds (VOCs), and 

particulate matter (PM). Anthropogenic sources of environmental NOx and CO include motor 

vehicle emissions and combustion processes for power and heat. (4,5) VOCs are a class of 

carbon-containing gases that can be precursors for fine particulate matter and ozone. (6) 

 Particulate matter is composed of liquid, solid and/or a mixture of the two suspended in 
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air where the size fraction dictates its penetration into the respiratory airways. (4) Primary PM 

can be derived from industrial sources (e.g. construction, agriculture), wind erosion, biogenic 

sources (e.g. forest fires) and vehicular exhaust and non-exhaust emissions. (7,8) Mechanical 

abrasion from brake and tire wear, road surface wear, road dust re-suspension and construction 

and quarrying activities act as sources of non-exhaust emissions of especially coarse PM (i.e. 

PM2.5-10 or particles with aerodynamic diameters less than 2.5 µm to particles with aerodynamic 

diameters less than 10 µm). (9,10) Smaller aerodynamic diameters of primary PM can include 

PM2.5 (fine PM i.e. less than 2.5µm) and ultrafine particles (UFP i.e. PM less than 0.1µm). 

Ultrafine particles can be emitted from petrol and diesel engines alike; they are produced at high 

temperatures in the engine, exhaust pipe or immediately after release into the ambient air. (11) 

 Examples of secondary TRAP pollutants include nitrogen dioxide (NO2), ozone (O3), 

VOCs, secondary PM, and secondary organic aerosols (SOAs). Tropospheric ground level ozone 

is produced by photochemical reactions with VOCs and NO. (12) Suburban concentrations of 

ozone tend to exceed levels in city centers as NO from traffic can react with O3 to form NO2. 

(4,13) Secondary PM is created from precursor gases (nitrogen oxides, sulfur oxides and 

ammonia) and produces nitrates, sulfates and ammonium salts. (7) SOAs are low-volatility 

compounds that evolve from the chemical transformation of organic species. (14)  

 The body of evidence suggests that TRAP is causally linked to asthma exacerbation, 

while childhood onset of asthma is classified as borderline ―suggestive but not sufficient‖ and 

―sufficient‖ with respect to causality; the remaining health effects are suggestive, inadequate or 

insufficient to assume causation. (15,16) Epidemiological studies have revealed that TRAP may 

lead to adverse effects in the cardiovascular system such as elevated risk of stroke, (17–19) 

atherosclerosis, (20–23) and related mortality. (24,25) Respiratory effects from ambient air 
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pollution and TRAP include chronic obstructive pulmonary disease, (26–28) asthma, (85–92) 

rhinoconjunctivitis, (37) wheeze, (38–40) and bronchiolitis. (41–43) In addition, TRAP has been 

linked to unfavorable pregnancy and developmental outcomes (44–50) as well as cancers of the 

lung, (19,51–53) prostate, (54) and breast. (55) All cause mortality has also been associated with 

TRAP exposure. (24,56,57) Moreover, associations have been reported between TRAP and 

Parkinson’s Disease, (58) cognition, (59,60) and diabetes. (61–63) 

 The significance of TRAP and its consequential health impacts are further exacerbated by 

the world’s rapid urbanization. Implications of urbanization include deteriorating air quality and 

increased exposure as pollution sources (e.g. vehicular combustion, power generation, and 

human activity) aggregate in close proximity to populations and energy consumption rises to 

meet the demands of these growing cities. (64) Financially, the burden of urban air pollution is 

substantial for both developed and developing nations (an estimated 2% and 5% gross domestic 

product, respectively). (65) The United Nations predicts that sixty-seven percent of the world’s 

population will be urbanized by 2050 (66); hence, motivating experts and policymakers to 

review transportation and urban planning to abate the impacts of poor outdoor air quality. (16) 

 

1.2 Intra-urban air pollution variability 

 Capturing intra-urban spatiotemporal trends is critical to understanding TRAP exposures 

across time and space. Air pollution research in the urban setting has primarily relied on a 

number of point measurements (from traditional air quality monitoring in combination with 

passive monitoring) as a basis for deriving long-term average concentration models (e.g. land-

use regression models) in order to depict spatial variability. Temporal variability is 

underrepresented in most TRAP models (despite inclusion in dispersion models) and is best 
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described by traditional networks. Logistically, traditional air quality monitoring at a high level 

of spatial resolution (~100-500 meters) is not feasible (discussed further in Section 1.3) and 

hence limits the ability to holistically represent outdoor air pollution spatial trends. This section 

identifies factors that contribute to within-city spatial and temporal patterns.  

 Many variables can affect the spatiotemporal extent of a pollutant such as meteorological 

conditions (i.e. temperature, precipitation, wind speed, wind direction and turbulence), (1,67–69) 

pollutant characteristics (e.g. particle size, reactivity), (13,70) source type (i.e. industrial, 

vehicular), (71) infrastructure (i.e. street canyons (72–76) or elevated highways (77,78)), 

temporal patterns in emissions and meteorology (i.e. daily, weekly, seasonal), (79–82) 

topography, (83) source strength (84), and emission rate. (13) 

 Temporal variations in urban air pollution are possible at a diurnal, hebdomadal, and 

seasonal level. (85) Daily variability in traffic emissions can be explained by rush hour traffic. 

Morning rush hours have shorter and sharper emission profiles than the broader afternoon rush 

hours. (86) One study showed that traveling outside rush hours decreases concentrations and thus 

exposures by 10-30% for primary pollutants and 5-20% for secondary pollutants, with more 

pronounced reductions during the morning. (86) Nitrogen oxides have a noticeable double wave 

diurnal trend with peaks linked to rush hours, though this is more prominent for reactive NO 

when juxtaposed with NO2 (possessing a longer lifespan). (82,87) NO concentrations during the 

morning rush hour are higher because the atmosphere near-ground is unstable compared to the 

evening when mixing is greater. (87) As photochemical O3 is produced, the daily concentrations 

rise with solar intensity formation until the afternoon maximum is reached. (87)  

 Some pollutants, like ozone and nitrogen oxides, exhibit predictable weekly patterns. For 

example, ozone increases during weekends and nitrogen oxides increases on mid-weekdays. 
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(82,88) The ozone weekend effect occurs when mobile source emissions (particularly, heavy-

duty vehicles) diminish on weekends but create a condition that favors ozone formation since the 

ratio of VOCs to NOx is greater. (89,90) Other geophysical determinants (e.g. sunlight intensity, 

clouds, temperature, wind speed, transport, and mixing), besides the formation and destruction of 

O3, can alter the weekend maxima of O3. (82,87,89) Additionally, ozone has a characteristic 

seasonal pattern with peak concentrations during the spring and summer months in southern 

British Columbia. (91,92) An example of a seasonal behavioral factor that would affect the 

spatial representativeness in urban areas is the practice of residential wood burning during winter 

months. (93–95)  

 Spatial factors pertinent to within-city TRAP include pollutant type and presence of 

roadway features. Pollutant type (inert or reactive) can substantially change spatial ―zones of 

influence‖. A meta-analysis of daytime near roadway studies showed individual TRAP 

concentrations could require distances of 115 m to 570 m (edge of road normalized) to decay to 

background levels. (96) Inert pollutants (e.g. CO, PM mass) have longer atmospheric lifetimes, 

resulting in more homogeneous spatial patterns within urban areas. (13) In contrast, reactive 

components (e.g. NO, NO2, UFP) depend not only on ambient air dilution, but also on their 

chemical reaction rates in the atmosphere. (13,97) Consider the interplay between NO and NO2 

with increasing distance from the emission source: NO concentrations diminish rapidly 

downwind as O3 is scavenged by NO to form NO2; on the other hand, NO2 levels decrease 

gradually since formation slows down dilution by air. (13) By and large, primary pollutants 

possess a greater spatial variation than do secondary pollutants. (85)  

 Roadway features including vegetative and structural (noise) barriers between roads and 

nearby buildings may cause a trade-off between the benefits of blocking pollutants from 
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concentrating in the vicinity of inhabitants, and the undesirable restriction of airflow causing 

elevated on-road concentrations for commuters. (16) Other roadway features such as tunnels and 

street canyons can result in pollutants becoming enriched within these constructs. (16,98,99)  

 Spatial factors can be influenced by temporal changes. For example, meteorological 

conditions including temperature inversions, (100) solar radiation, (16) precipitation, (101) and 

wind can all impact the spatial trends of pollutants. (13) Temperature inversions describe the 

situation when temperatures increase with altitude. (100) Inversion conditions are present in the 

morning or in instances where air from higher altitudes descend and results in minimal pollutant 

dispersion. (100) Solar radiation (16) and precipitation (and the resulting wet roads) will impact 

air pollution levels. (101) Wind speed is inversely related to concentration, and can influence 

initial dilution rates, travel time to measurement sites, coagulation of UFP and vertical 

dispersion. (13) Wind direction—upwind or downwind, and whether it is parallel or 

perpendicular to roadways—will considerably alter spatial patterns of pollutant distribution. (13) 

 In TRAP studies, emission rates increase with higher traffic counts (i.e. rush hours) 

leading to greater spatial effects. (13,102,103) In a study on road vehicle emissions, it was 

discovered that low driving speeds and transient driving modes (i.e. acceleration, deceleration) 

were far more polluting than steady-speed modes (i.e. cruising, idling). (104) While trends 

discussed thus far contribute to intra-urban variability, time activity patterns in differing 

microenvironments and infiltration into indoor environments will also modify personal 

exposures; host factors like socioeconomic status, behavioral habits (e.g. smoking), pre-existing 

conditions, age, and susceptibility can all affect the onset of a health outcome. (85) 
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1.2.1 Street Canyons 

 One infrastructure variable that can largely impact personal exposures is the presence of 

street canyons. Street canyons are defined by their aspect ratio— a ratio of the building height to 

the road width. (105) Aspect ratios above 0.7 may be at risk of pollutant accumulation, as the 

relatively stagnant air at the base of the canyon cannot adequately exchange with airflow passing 

above building tops. (106–108) For example, assuming a typical 4-lane roadway is 15 m wide, if 

the buildings lining the street are taller than 4 stories (measuring over 10.5 m in height), the 

street canyon effect might be present. When the incident wind speed is 4 m/s or greater and 

perpendicular to the canyon, a vortex forms within the canyon; on the other hand, if the wind is 

parallel to the canyon, the airflow runs in the canyon along the canyon axis. (108,109)  

 Street canyons are sometimes classified by their aspect ratio. For instance, canyons can 

be referred to as ―regular‖ if the aspect ratio measures approximately one and few openings are 

present. If the aspect ratio is 2, it can be called a ―deep canyon‖. Canyons may also be sorted into 

3 categories: short canyons (L/H ~3), medium canyons (L/H~5) and long canyons (L/H~7) 

where L is the road distance between the flanking major intersections and H is the height of the 

canyon. Finally, canyons can be symmetric or asymmetric depending on the differential between 

building heights. (74) 

 In describing canyons, it is important to highlight two different regions; these are the 

obstructed sub-layer, also referred to as the urban canopy sub-layer and the free surface layer, 

also referred to as the urban boundary layer. The former runs from the ground surface to the 

building height while the latter extends above the building rooftops. Wind flow within the 

obstructed sub-layer is normally much lower than the undisturbed wind flow. This layer is 

further subjected to the impacts of local topography, building geometry and dimensions, 
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roadways, traffic, green space and diurnal patterns. (108,110,111) 

 Personal exposure calculations are the cumulative effect of different exposures to 

pollutant levels and the duration spent in each microenvironment; thus, understanding the 

location of potential street canyons becomes critical in personal exposure estimates. Johansson et 

al. (112) found PNC and PM10 concentrations within canyons were more than 5 times greater and 

2 times higher than background, respectively. A measurement study in Leipzig, Germany found 

that the number fraction of externally mixed soot particles (80 nm particles on working summer 

days) decreased from a street canyon (60%) to an urban background (22%) to a rural site (6%). 

(113) In another canyon study, Tsai and Chen (114) measured and modeled 64-107% higher 

concentrations of gaseous pollutants on the leeward side when compared with the windward side 

in an urban street canyon.   

 Research by Spadaro and Rabl (111) suggest adverse health impacts (e.g. increased 

respiratory hospital admissions) may be greater as a result of the canyon effect, more 

specifically, the reduced ventilation within the urban infrastructure causing a delay in pollutants 

mixing with the free surface layer. In characterizing personal exposures within a canyon, a 

vertical profile should also be considered as dilution and dispersion effects can be quite large; 

Väkevä et al. (115) reports that within a street canyon, pollutant concentrations decreased by 5 

fold at height of 25 m when compared to street level. 

 Mathematical and physical dispersion modeling of street canyons can be separated into 

groups— 1) source-oriented models (generally Gaussian plume models or a modification of 

one), 2) receptor models, 3) computational fluid dynamics models and 4) reduced-scale (or 

physical) models (e.g. performed in a wind tunnel). (74) These models are typically produced to 

quantify air pollution within the microenvironment of a street canyon configuration. Dispersion 
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model predications rely largely on the input quality of variables including traffic data, vehicle 

emissions, meteorological data, street geometry and background concentrations. (74) These 

variables are not always readily available for the monitoring area; hence, a simplistic screening 

model may help focus the regulatory monitoring efforts on canyon environments. (74) More 

importantly, a model across a larger spatial scale that can discern potential street canyons versus 

non-canyons can progress the estimates of personal exposures to air pollution in urban models.  

 While street configurations are commonly included in dispersion modeling, they are 

seldom incorporated into land use regression (LUR) models. (116,117) However, some research 

has suggested the characterization of street canyons and urban morphology may be important 

and can boost the explanatory power of models for exposure assignment. (118) Su et al. (105) 

determined increases in the predictive power of LUR models from 56% to 67% for NO2 and 

from 72% to 85% for NO once an aspect ratio surface was added to the analysis. Similarly, 

Eeftens et al. (116) found that enhancing LUR models with a street canyon indicator (i.e. 

SkyView Factor measuring the fraction of visible sky) led to a greater explained variability (82% 

for NO2 and 78% for NOx) when compared with basic LUR models (80% for NO2 and 76% for 

NOx).  

 

1.3 Air quality measurement 

Air quality measurements are an integral part of providing data to the public, researchers 

and policymakers. Historically, air pollution management initiatives have focused on urban and 

regional air quality by relying solely on fixed-site monitoring networks with a limited number of 

monitoring sites within a designated area. These networks lay the groundwork for the current 

understanding of pollution trends and their associated health effects; they inform compliance 
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with standards, provide the public with air quality health risks (e.g. Air Quality Health Index, 

AQHI), (119) and are the basis for evaluating impacts associated with regulatory changes and air 

quality management programs.  

In Canada, two federal air pollution-monitoring networks gather air quality data—the 

National Air Pollution Surveillance (NAPS) network (with 289 sites across 216 communities) 

and the Canadian Air and Precipitation Monitoring Network with 30 rural stations. (120) The 

NAPS monitors long-term ambient air quality indicators (CO, NO2, SO2, O3 and PM2.5) using 

nation-wide standards assuring measurement accuracy, precision, comparability and 

representativeness. (119,120) These networks contain a limited number of monitoring sites (e.g. 

1-30 sites within an urban area), which operate continuously to provide pollutant concentrations 

at high temporal resolutions.  

On a regional scale, the Lower Fraser Valley network is composed of monitoring stations 

focused on visual air quality (i.e. visibility, haze) and airborne contaminants—both gaseous (O3, 

CO, NO2, SO2) and particles (PM2.5, PM10). (121) Despite having 28 stations (22 in Metro 

Vancouver and 6 in Fraser Valley Regional District) in the network stretching between 

Horseshoe Bay and Hope, spatial gaps are still present. (121) 

A shortcoming of these fixed-site monitoring networks is the limited capture of 

significant spatial patterns in common air pollutants; this is a threefold problem. Firstly, these 

monitoring sites are stationary and their arrangement is governed by restrictive siting criteria that 

consequently limit the number of suitable locations. (122) Siting considerations include the 

availability of electrical power, accessibility, local emissions sources, pollution transport, 

security, installation and shelter specifications, and land use characteristics. (123,124) Secondly, 

because these stations have high costs and maintenance requirements (i.e. electrically powered 
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temperature-controlled facilities requiring security), (125) the networks cannot be setup with 

adequate density or distribution to capture fine spatial variability. For instance, Vancouver has a 

monitor density of approximately one station per 160,000 individuals, or 5 monitoring sites per 

1000 square kilometers. (126) Rather, these parsimonious fixed-sites are operated to generate 

data on urban background concentrations, regional air quality or intercity differences, with a 

strong focus on larger urban centers. Thirdly, NAPS locations have traditionally been chosen to 

avoid local pollution sources. (16) For example, Hystad et al., (122) applied the NAPS data to 

derive national air pollution models for PM2.5, NO2, benzene, ethylbenzene and 1,3-butadiene, 

but revealed in the process, the scarce availability of NAPS monitors near major roads (35 

monitors within 500 m) and industrial emission sources (7 monitors within 500 m).  

Traditional networks are fundamental and irreplaceable; nevertheless, provisions are 

being made to expand these networks to include additional near-road sites for TRAP and to 

improve spatial resolution. (16) Although this network expansion will provide valuable new 

information, these networks are still available to few organizations (e.g. government) and 

industries. (118,127) Due to the limited accessibility of these monitoring devices, the current 

state of air quality exposure monitoring cannot feasibly solve all the new and complex research 

questions that have arisen.  

 With an increased awareness of spatial variability in air pollution within cities and a 

better understanding of pollution gradients from traffic and neighborhood sources, such as 

residential wood combustion, (15,16) there is recognition of the need to also evaluate air 

pollution variability at local or neighborhood scales. TRAP can be surveyed in numerous ways 

though the most critical exposure data may be missing and/or unattainable due to an absence of 

air monitoring at certain positions.  
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Improved knowledge of spatial gradients in air pollution has informed the understanding 

of air pollution health impacts. For example, numerous studies have reported relationships 

between TRAP with a wide array of health effects including birth outcomes, (46,128) childhood 

and adult respiratory disease, (30,35,37,41,44,129–132) and cardiovascular effects. (24,133–135) 

In Canada, approximately 10 million individuals, an estimated 32% of the population, are prone 

to elevated TRAP exposure because they reside within 100 m of a major roadway or 500 m of a 

highway. (16) Of these 10 million people, 2 million live within 50 m of a major road. (16) 

Furthermore, an estimated 16% to 36% of Canadian elementary schools within the 10 largest 

cities are located in high traffic zones (within 75 m or 200 m of major roads, respectively). (136) 

Taken together, the magnitude of TRAP exposure and the evidence of health impacts in Canada, 

suggests TRAP is one of the most important air quality issues facing the country.  

A meta-analysis by Zhou and Levy (13) estimated the spatial extent of various air 

pollutants from their source based on four categories: 1) reactive pollutants formed in the 

atmosphere (350 m); 2) reactive pollutants removed from the atmosphere (175 m), 3) inert 

pollutants with low background (140 m) and 4) inert pollutants with high background (1000 m or 

more). (13) Another systematic review by Karner et al. (96) confirmed similar results showing 

edge-normalized TRAP pollutants require distances between 115 m to 570 m to decay to 

background levels. Pollutants displayed either no trend with distance (e.g. particle mass 

concentrations), a consistent decay with distance (e.g. NO2, benzene) or a rapid initial decay of at 

least 50% by 150 m, followed by gradual decay (e.g. CO and some particle number 

concentrations). (96) Besides proximity to pollutant sources, other variables such as 

meteorological conditions, topography and landscape, and infrastructure can all shape spatial air 

pollution patterns.  
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As spatial monitoring improves, pollution sources, hotspots, dispersion patterns and 

health effects can all be better addressed while reducing the reliance on predictive models (i.e. 

proximity, interpolation, land use regression (LUR), and dispersion models). Thus, there is a 

need to supplement conventional spatially dispersed air quality monitoring networks with 

alternative approaches that capture this fine level of variability. Passive sampling arrays, mobile 

monitoring, and emerging sensor technologies are all approaches that have been used to address 

spatial coverage. Overall, additional spatial monitoring can help advance model building and 

augment existing government monitoring networks to provide more reliable evaluations of 

TRAP. 

 

1.3.1 Passive samplers 

Passive or diffusive sampling has been employed in urban and rural ambient monitoring 

since the 1970s to measure gaseous pollutants. (137) Diffusive samplers can be distributed at 

numerous locations (including remote regions) because they are unobtrusive, relatively 

inexpensive (excluding lab charges), lightweight, small, practical, and not burdened by power 

requirements. (137,138) The versatility of these monitors is demonstrated in their ability to 

provide information on both coarse-resolution temporal changes (typically 0.5 or more days) if 

used in succession, and spatial patterns (if deployed simultaneously). (139) Passive samplers are 

able to quantify cumulative air pollutant exposures (i.e. total or average levels) with low 

detection limits given a sufficiently long sampling period. (131)  With their low cost, large 

numbers of samplers can be deployed within an area of interest to give a snapshot of the air 

quality over a particular time.  
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Despite these strengths, passive samplers are inherently limited in providing information 

on short-term pollutant concentrations (less than a few hours) and are inadequate for accurately 

addressing regulatory compliance.  

Krupa and Legge (138) contended that co-locating passive samplers may enable their use 

as calibration points for continuous monitors at discrete locations to assist air quality distribution 

mapping on variable spatiotemporal scales. Besides serving as calibration points for spatial 

mapping, the use of passive samplers has been influential in LUR model development for many 

Canadian cities. For example, in the LUR model created for Windsor, Ontario, a deployment of 

passive samplers (for 2 week durations in all seasons) was used to model and map concentrations 

of NO2, SO2 and VOCs. (140) 

While diffusive samplers are, by definition, only applicable to gaseous or semi-volatile 

pollutants, there are some examples in which particle sampling has been conducted passively. 

Guéguen et al. (141) used a network of passive coarse PM samplers to determine chemical and 

isotopic signatures from ambient traffic and industrial pollution over a long collection period. In 

another study, Wagner et al. (142) monitored the distance, and downwind and upwind effects of 

agricultural burns with passive PM monitors.  

Passive samplers are a good option for networks because they are portable, low in cost 

and simple to operate. Therefore, even operators with limited experience (including citizen 

scientists and mailed survey participants) can employ these monitors to conduct spatial sampling 

campaigns for gaseous pollutants with few to no restrictions on location. Important caveats, 

however, are that these samplers will generally exhibit low precision compared to active 

monitoring approaches and their requirements for increased sampling durations of hours to days. 

(138) 
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1.3.2 Mobile monitoring 

Mobile monitoring relies on a mobile platform (typically a vehicle) equipped with 

continuous air pollution monitors and a global positioning system (GPS) to relate high-density 

measurements to precise locations within an area of interest. (143) Mobile sampling capitalizes 

on the ability to be in motion while gauging pollution concentrations at proximal or distal 

distances from sources. (144) Mobile sampling is efficient due to the capacity to traverse large 

distances in a confined timeframe with limited real-time instrumentation collecting at high 

frequencies. (57,59) As long as there is a continuous monitor for the specific pollutant(s) of 

interest, sampling is not constrained by what can be measured. In order to account for temporal 

changes due to meteorology or emission patterns, repeated samples can be collected and a 

mobile campaign can include a fixed-location reference site. (143) For example, Larson et al. 

(93) applied temporal adjustments from fixed-site data to their mobile measurements to develop 

a highly resolved composite map of wintertime woodsmoke in Vancouver.  

This measurement approach is highly malleable and based on the objective of a study, it 

can be adapted to characterize spatial patterns in road dust, (146) woodsmoke, (147) conditions 

associated with temperature inversions, (83) and within street canyons. Mobile monitoring can 

more accurately communicate the exposures of traveling inhabitants by participating in urban 

traffic flow in vehicles, (148–150) on bicycles (150,151) or attached to pedestrians. 

(148,149,152) Hankey et al. (153) modeled non-motorized traffic (pedestrian and cycling) with 

negative binomial and ordinary least squares regression to estimate 12-hour non-motorized 

traffic counts in Minneapolis. As mobile units instantaneously integrate data, finer temporal 

variations like those noticed during vehicular acceleration, deceleration, cruising and idling 

might be acquired. (154) In Boston, a community-based approach involving high school students 
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carrying mobile monitors in backpacks showed that urban neighborhood spatiotemporal 

variability was more prominent for UFP compared to PM2.5. (155) Mobile monitoring campaigns 

using bus and truck chasing tactics were at the heart of investigations of on-road transportation 

emissions (CO, BC, UFP) in Beijing leading up to the 2008 Olympic games. (156,157) 

Alternatively, mobile monitors can be stationed at designated locations (e.g. a high traffic 

intersection) for a predetermined time period on the scale of hours to days to act as a pseudo 

monitoring station. (143) An example of the latter function of mobile monitoring is the use of a 

mobile air monitoring station to collect data on NO, NO2, SO2, PM2.5 and PM10 at a site near the 

cruise ship terminal. (158) In another application, mobile monitoring data revealed patterns in 

pollution resulting from beach fires and regional wildfires. (159) 

By employing mobile air quality monitors to enhance the information obtained from 

isolated fixed monitors, spatial resolution is enriched (160,161) and hotspot detection becomes 

possible for pollutants varying across small spatial scales. In the course of monitoring, mobile 

platforms may perhaps provide data for model development or evaluation. (143) Isakov et al. 

(162) demonstrated a method to depict spatiotemporal varying air toxic levels. In Los Angeles, 

mobile monitoring equipment for BC, UFP, PM2.5, particulate matter-phase polycyclic aromatic 

hydrocarbons, NOX, CO and CO2 established concentration differences among freeways, arterial 

roads, and residential streets. (163) Bowker et al. (164) verified a Quick Urban and Industrial 

Complex model for studying the effects of roadside barriers on pollution patterns from a 

highway through mobile monitoring of UFP spatial distributions. 

Despite all the benefits of mobile monitoring, drawbacks do exist. Firstly, this technique 

is not appropriate for routine use as it is very resource intensive. Secondly, confirmation of 

temporal trends can be difficult, since temporal coverage is incomplete. This results from the 
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discontinuity of the sampling campaigns. Thirdly, if monitoring is performed in vehicles, the 

measurements are restricted to roadways which overestimates human exposures as populations 

spend the majority of their time further from the on-road environment (e.g. in homes with 

setback distances and on sidewalks). Fourthly, inconsistent GPS signals may negatively impact 

uncertainty. (165) Finally, if the goal of sampling is to evaluate a specific pollutant source (e.g. 

wood smoke), then the sampling strategy must either be carefully tailored to meet those needs 

(e.g. cold, winter nights when ambient traffic is less of a confounder), or a more source-specific 

measurement approach should be used. (143) 

 

1.3.3 Intra-urban air pollution modeling 

In addition to the use of mobile monitoring and passive samplers to provide information 

on fine-scale spatial variability, modeling approaches have also proved to be useful. 

LUR models have gained popularity since their initial development by Briggs et al. in the 

1990's. (166) LUR models assimilate traffic and geographic covariates in the context of a 

geographic information system (GIS) to predict ambient air concentrations that are measured as 

part of a spatial monitoring campaign. (167) With stochastic modeling, the ambient 

concentration serves as the dependent variable in a multivariate regression with numerous 

independent variables (e.g. road type, elevation, traffic count, population density and land cover) 

to explain the spatial distribution. (143,167,168) Once the model is developed, pollutant 

concentrations can be predicted for unmeasured locations falling within the study domain since 

values of predictive variables are available at all locations. (167–169) 

 These empirical models are cost-effective, (169,170) and support efforts to identify 

hotspots or regions where robust monitoring is necessary. (171) Monitoring data can be gathered 
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routinely (i.e. by traditional fixed networks); however, unless these characterize the full 

distribution of pollutant concentrations and predictor variables, the model applicability will be 

limited. Models developed with purpose-designed monitoring (normally passive samplers for 

gases, active samplers for PM, or mobile monitoring campaigns) are preferred, as monitoring 

locations can be selected to ensure they are representative of the full spatial extent of ambient 

pollution and the predictive variables. (143,169) Purpose-designed monitoring tends to integrate 

data from one to four campaigns lasting one to two weeks each while continuous routine 

monitoring provides annual averages; consequently, the costs associated with LUR model 

creation are higher than routine monitoring alone. (169) The major shortcoming of LUR 

modeling is the inability to resolve meaningful short-term temporal trends though small-area 

spatial patterns can be determined. (171,172)  To preserve the predictive power of LUR models, 

calibrations and/or adjustments may be necessary, especially if the model is applied 

retrospectively in temporally unstable environments. (173) 

At present, published LUR models for TRAP have been developed and applied in nine 

Canadian cities for use in epidemiological studies. (16) In Vancouver, LUR models have been 

generated for pollutants including BC, (174) PM2.5, (172) UFP, (175) and NOx. (172,173) A 

recent review describes 25 LUR models from North America and Europe for pollutants such as 

NOx, PM2.5, and VOCs. (169) National LUR models have been generated for 5 pollutants (NO2, 

PM2.5, benzene, ethylbenzene and 1,3-butadiene) in Canada to capture both between-city and 

within-city variability. (122) In the United States, a national LUR model for NO2 has also been 

developed. (176) Within Canada, researchers have assessed the intercity transferability of LUR 

models and concluded that it is feasible; however, the predictions will largely depend on 

consistencies between the urban designs of these cities. (177,178) A study in the Greater 
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Vancouver Regional District compared 3 methods (LUR modeling, spatial interpolation and a 

chemical transport model: the Community Multi-scale Air Quality (CMAQ) model) for assessing 

spatiotemporal variability. (126) The results implicated LUR models as having the finest spatial 

resolution (neighborhood-scale) compared to the other approaches (representing urban-scales). 

(126) 

 Dispersion models calculate receptor level concentrations based on idealistic Gaussian 

pollutant dispersion from their source. (179) The parameters incorporated into the model include 

emissions inventory databases (e.g. traffic volume, street configurations, vehicle makeup), 

atmospheric conditions, topography, source-receptor distances and time. (143,170,179) Emission 

inventories are fashioned by totaling the contributions of primary pollutants by source type: point 

source (e.g. power stations, industrial sites), line source (e.g. road links) or area sources (e.g. 

domestic space heating boilers in a grid square). (3) These models have been applied to both 

urban (e.g. episodic pollution events) and regional scales (e.g. pollution migration events). (170) 

Although regulatory uses are possible, dispersion models are constrained by a demand for high-

quality input data and in some applications the need for high-power computing. (180) 

Comparisons between LUR and dispersion models indicate similar success in explaining 

variability in measured concentrations of air pollutants. (181) New approaches of hybrid models 

have been developed to combine the desirable features of both LUR and dispersion models to 

complement one another. (182–184) 

Although their spatial resolution is defined by the availability of monitoring data, spatial 

interpolation methods (e.g. kriging), can be applied to construct continuous surfaces for pollution 

across large areas (180) when monitor placement is sufficiently dense. (170,185) In many 

instances, a high temporal resolution is achieved with accompanying measures of standard error 
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to estimate uncertainty. (170) A concern is that artifacts may result from interpolation, especially 

edge effects and poor characterization of pollutant sources and sinks. (170) One study in Los 

Angeles showed that universal kriging and an ad-hoc 2-step approach consistently outperformed 

LUR modeling in summer, autumn and winter months. (186) 

 Proximity models are straightforward and simple (typically depicting the proximal 

distance between a pollution source and a subject); nonetheless, the weaknesses in exposure 

classification have resulted in this approach being phased out in favor of more sophisticated 

methods mentioned earlier. These limitations might include: an incomplete characterization of 

exposures by disregarding secondary locations; ignoring time-activity patterns; neglecting 

vehicular fleet composition; and violating the principle assumption of isotropic dispersion by 

overlooking wind and topographic effects. (170) 

As conventional monitoring sites only provide a partial representation of air pollution 

with limited spatial coverage, modeling supported by additional monitoring, can assist in 

extrapolations to un-sampled locations.  

 

1.4 New sensor designs and applications 

Until now, the discussion has centered on air pollution monitoring and modeling 

methodologies. New sensor technologies, largely driven by the enhancement of modern 

communication (e.g. cellular, Wi-Fi), have the potential to improve air pollution monitoring by 

filling some of the spatiotemporal gaps. 

The sensor market has flourished in recent years resulting in economical (reduced 

purchase and maintenance costs), low powered, miniaturized, autonomous (and typically 

wireless) air quality monitoring units. Although these units may be less precise when first 
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marketed, later generations will likely demonstrate improved reliability and rigor. The merits of 

these instruments include the collection of real-time, location-specific, open-access data. Outputs 

may be utilized by the public as an educational tool in promoting air quality awareness while 

assisting individuals in time-activity pattern modifications to reduce harmful exposures to air 

contaminants. Included among the new technologies are smartphone applications, real-time data 

from solar-powered systems—such as the Village Green Project, remote and passive fence-line 

monitors, wearable sensors and wireless sensors. This revolution in sensors and related 

applications may afford sustainable solutions for applications in personal monitoring, education, 

hotspot screening, community-based monitoring, air monitoring network supplementation, 

ambient air monitoring networks or even compliance assessments. (187) 

New sensor designs offer potential solutions to the inability of traditional air monitoring 

networks to fully characterize spatial variability. Moreover, these innovations, which act as 

dispersed continuous monitors, should experience no problems in capturing time-varying 

components of air pollution. In fact, it is this feature that is absent in LUR models and 

oversimplified in dispersion models. Unlike passive sampling, mobile monitoring, and ambient 

pollution modeling, these new sensors can communicate in real-time (much like routine 

monitoring networks) to a central data-processing server. This is advantageous since these sensor 

arrays can in theory instantaneously deliver high-resolution spatiotemporal data.  

As new sensor technologies appear, major organizations are actively contributing to and 

paying close attention to the development and maturation of this growing research field. A 

European Union partnership project called CITI-SENSE is focused on evaluating the use of 

sensors in community directed environmental monitoring. (188) Likewise, the United States 

Environmental Protection Agency’s (EPA) (187) ―Draft Roadmap for Next Generation Air 
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Monitoring‖ presented several strategies to assist technology advancement and testing while 

articulating some goals to overcome gaps in these rapidly emergent sensing systems. A 

publication by the US EPA, Air Sensor Guidebook, offers considerations and assistance to 

developers and users of lower cost consumer-based (typically ranging from $100 to $2500) air 

quality sensor technologies. (189) 

New measurement technologies can be envisioned for use in four main avenues including 

fixed network augmentation, source or industrial site monitoring, personal exposure monitoring 

and participatory sensing. (125,165) The first strategy is to supplement static air quality 

monitoring networks by increasing sensor density to enhance spatiotemporal assessment in areas 

where fixed measures are unavailable. In this way, micro-sensors can be fixed at specified 

locations (e.g. schools, intersections) or be secured onto mobile platforms (to systematically 

resolve spatial patterns). (165) An example of this hybrid network was deployed in the Lower 

Fraser Valley to study neighborhood-scale ozone. (190,191) This network of low-cost devices 

and traditional monitors demonstrated a capacity to produce reliable data; the traditional 

monitors were able to complement unstable low-cost sensors embedded in the network. 

(190,191)  

A second approach surveys source emissions or industrial pollutants (within the facility 

or around the perimeter). (125) Sensor response is likely better at or near sources due to the 

higher concentrations. (165) Condensed monitoring networks (e.g. AQMesh (Environmental 

Instruments Ltd., UK) and Cairpol CairNet (Environnement S.A, France)) can thus be used to 

detect contributions from automotive exhaust, (192) industrial accidents, or fugitive emissions. 

(125) Fujita and Campbell (193) suggest that sensor networks may prove useful for early 

warnings of high releases at refineries. Wan et al. (194) have proposed the use of sensor 
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networks in natural gas pipeline monitoring. Recently, Bennett et al. (195) applied an 

electrochemical gaseous sensor array to assess the effect of baffles on aircraft exhaust plumes at 

an airport perimeter. Mobile mounted platforms have also been used to test for the impact of ship 

emissions. (196,197) These examples illustrate the broad scope of applications that are 

conceivable with new sensor arrays. 

In view of the fact that people are constantly on the go, moving between environments 

and changing their time-activity patterns, fast-response sensors can be used to improve estimates 

of individual-level exposures and the parameters that predict them. For instance, information 

from smartphone embedded sensors can be gathered to make better estimates of travel patterns 

(e.g. Personal Environmental Impact Report), locations visited, and hence, exposures. (198) 

Body-worn sensors (e.g. Sensorcon Sensordrone (Sensorcon, USA), universal serial bus 

pluggable sensors (e.g. Cairpol CairClip (Environnement S.A, France)), and Bluetooth 

transmissible sensors for cellular devices (e.g. CITI-SENSE) all facilitate personal exposure 

monitoring. (163)  These sensors may be beneficial to sensitive populations, such as asthmatics. 

(165) 

Finally, citizen science (also called crowdsourcing, citizen observation or participatory 

monitoring) is the notion that data accumulated by individuals (scientists and non-scientists 

alike) can be pooled to produce distributed datasets on personal, regional or global scales. This 

shift from restricting monitoring to professional organizations (e.g. researchers or government) 

to everyday people is made possible by cheaper and easy-to-operate instruments. Participant 

sensing initiatives have even begun projects to build and operate do-it-yourself sensors and 

sensor networks (e.g. Air Quality Egg (Kickstarter, USA) and AirCasting (HabitatMap, USA). 

However, citizen science can also be a source of concern as it is prone to issues in data quality, 
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data consistency, data interpretation and user privacy. To avoid such uncertainties, efforts should 

be made early on to educate users on the use and potential limitations of crowd-sourced data. 

(165,187) 

Before new technologies are introduced in the following sections, it is important to 

emphasize the difference between sensors, and the devices and networks that contain them. Air 

pollution units, nodes, monitors, devices and systems may include one of two (or both) 

categories of sensors in their designs. Individual sensors can be created in-house by the vendor of 

the device (to match the needs of the monitor, i.e. purpose-driven designs) or they can be 

purchased from other manufacturers as ready to install, off-the-shelf sensors. Few sensing 

systems seem to integrate new purpose-designed sensors (e.g. Cairpol CairNet (Environnement 

S.A, France) and Sensorcon Sensordrone (Sensorcon, USA)); instead, monitors tend to depend 

on commercially available sensors.  

 

1.4.1 Sensor operation 

The abundant sensor technologies available today have exciting implications for 

personalized air quality monitoring, community-led sensing initiatives, network 

supplementation, and source and facility management as the devices are shrinking in size and 

becoming more affordable. Regardless of how they are applied, these new sensors and their use 

in distributed networks have the potential to improve spatial resolution of air pollution research, 

and boost public awareness. (187) 

Most sensor development has focused on measurement of gaseous criteria pollutants; 

however, sensors for hazardous air pollutants (HAPs) and particles to aid enforcement and 

compliance regulations are also in need. (187) There is also a deficiency in devices to measure 
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the chemical speciation of PM, with the exception of the micro-Aethalometer (AethLabs, USA) 

for BC measurements. (125,199) Finally, HAPs detectors are few and far between; yet, the 

available ones tend to not be actively tested when exposed to complex mixtures of HAPs. (125) 

As most of the sensors discussed are gas sensors, a brief overview of the qualities and 

limitations of electrochemical, metal oxide semiconductor (MOS) and infrared (IR) sensors are 

provided. Appendix A provides more details on their principles of operation. 

Electrochemical sensors measure analyte concentrations related to changes in redox 

potential after the gas undergoes an electrochemical reaction with the sensing electrode. (200) 

Electrochemical sensors tend to be used to measure common air pollutants such as NO, NO2, CO 

and O3. (165,201) New miniaturized sensors (roughly 20 mm) are low in cost and power (i.e. in 

the hundreds of milliwatts range) consumption. (165) Mead et al. (201) demonstrated the ability 

of new electrochemical sensors to achieve low detection limits to the parts per billion level, 

while providing low noise and high linearity. Fairly consistent deviations in linearity of 2-5% 

(sometimes up to 10%) can occur in electrochemical gas sensors. (165) To maintain long-term 

stability of 2-15% per year, oxygen exposure is continually needed. (165) Interference cannot be 

eliminated (165); however, optimizing the sensing electrode’s selectivity, integrating electrolytes 

efficient in carrying charge, and installing chemical scrubber filters (e.g. activated charcoal) 

above the sensing electrode can all reduce cross sensitivity. (200) 

On the other hand, if an electrochemical sensor is highly sensitive, the capillary (the 

opening through which the gas enters) is generally less restricted and the membrane is typically 

more porous, thereby compromising sensor signal and operating life as it deteriorates with faster 

electrolyte evaporation. Life expectancy is generally 1-3 years but differs with gas exposure and 

environmental conditions. Temperature sensitivities are managed with internal temperature 
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compensation mechanisms. Humidity fluctuations change the ability of water vapor to pass the 

hydrophobic barrier; if a sensor is compatible for measuring low gas concentrations, the barriers 

are more porous and can pose a greater problem. (200) 

MOS sensors measure gas concentrations by monitoring resistance or conductivity 

changes in the metal oxide sensing layer when gases undergo electrochemical reactions at this 

boundary. (165) These sensors weigh a few grams and are roughly a dozen millimeters in size. 

(165) MOS sensors are used frequently as a result of their low cost, short response time, and long 

lifetime. (202,203) In addition to this, they respond to a wide range of gas concentrations (few 

ppb to thousands of ppm). (165) 

MOS sensors suffer from poor selectivity and high cross-sensitivity. (203) A limitation of 

this sensing method occurs when temperatures digress too far from the optimal sensing 

temperature, thus allowing non-target gas components to be more reactive than the desired gas. 

(203) On the other hand, if two gases had a large enough gap separating their optimal sensing 

temperatures, then one sensor could be adapted with a thermostatic cycle (for the sensing 

element) to relay between the temperatures in order to detect both constituents. (203) To 

compensate for drift in MOS sensors, recalibration efforts are necessary. (165) 

Because some resistive sensors need elevated temperatures for measurement, power 

consumption moderation is important. One solution incorporates micro-heaters (with mixed tin 

dioxide particles and multi-walled carbon-nanotubes) and uses temperature pulsed methods with 

brief heating intervals. (204,205) Finally, prolonged recovery times may render MOS sensors 

impractical for certain devices when gas concentrations vary suddenly. (203) 

In an IR sensor, when an IR light source is incident on a gas, the radiated energy is 

absorbed and the detector converts the electromagnetic energy or temperature changes into 
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measurable electrical signals. (206) Increases in availability of IR sensors have occurred in 

parallel with the advances in powerful amplifiers and electronic components. (206) IR gas 

detectors are small (often a few millimeters in size) and consume only a few hundred milliwatts 

of power. (165) 

As gases are frequently reactive and/or corrosive, they may shorten sensor lifetime and 

induce drift. (206) This is prevented in IR instruments, since the target gas does not interact 

directly with the detector; instead, it only contacts the light beam and the chamber’s entrance 

(which can be made anticorrosive or replaceable). (206) Therefore, sensor life expectancy is 

more than 10 years. (206) IR sensors do not experience loss of sensitivity since they are created 

to recognize gas molecules by their unique absorption peaks. (206) Cross sensitivities can occur 

in hydrocarbon detection with IR sensors because they share similar absorption characteristics 

(for the carbon-hydrogen bond). (165) Conversely, CO2 detection is highly sensitive as these 

molecules have distinctive absorption bands. (165) By performing zero calibration checks, 

accuracy is preserved. (206) 

Concerns with IR gas sensors include time dependent light intensity changes from 

contamination leading to a zero drift. One way to guard against this is to use a two-detector 

arrangement where one acts as an active detector and the other as a reference. Because IR 

detectors sense temperature, they are susceptible to ambient temperature fluctuations and 

perform even worse with sudden changes. Ambient temperatures are slow to alter, so 

performance outdoors is not severely hindered. If water vapor condenses on the optics or 

detector, the units may become faulty. For this reason, the sensors are run at temperatures 

marginally above surrounding temperatures. IR analyzers can die if humidity is especially high, 

as contamination and corrosion become serious issues. (206) 
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1.4.2 Wireless Sensor Networks 

Wireless sensor networks (WSNs) can provide real-time communication while gathering 

and processing massive amounts of data. WSNs have been applied to environmental monitoring 

as well as agriculture (e.g. monitoring temperature, humidity, animal behavior and movement 

patterns), indoor living (e.g. home security systems and fire detection), industry (e.g. power grid 

and oil and gas pipeline sensing), medicine (e.g. body area sensor networks for monitoring vital 

signs in patients), and the military (e.g. ad-hoc deployment to detect and track enemy intrusion). 

(207–212) Their environmental applications include monitoring and management of traffic 

conditions, weather, and air quality. Sensors integrated in these networks are typically small, 

inexpensive, and power efficient. Battery-powered sensor nodes have four components: 1) 

sensors and microcontrollers that accomplish the task of pollutant measurement and data 

processing; 2) memory which stores data; 3) transceivers that transmit and receive data; and 4) a 

power unit. Because sensor nodes are densely deployed, they can rely on cooperative multi-hop 

communication to selectively transmit partially processed, pertinent data. This multi-hop 

communication to the sink node for data fusion expends less power than single hop 

communications. Remote control of these nodes is possible by users via the Internet once all 

sensor nodes communicate with one another and the sink node. (207,213) 

Wireless sensor arrays have the potential to form the foundation of dynamic, real-time, 

dense monitoring networks for use in a wide variety of applications. Because these devices are 

inexpensive compared to traditional fixed-site regulatory stations, it is feasible to complement 

existing networks by placing wireless sensors at new locations. Additionally, a wireless 

dispersed sensor array can augment the power of public communications tools such as the AQHI 

to support the public in conscientious decision-making (e.g. route planning) based off of fine-
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scale spatially resolved air pollution levels; this aligns well with the goals of air quality 

management agencies such as Metro Vancouver’s Integrated Air Quality and Greenhouse Gas 

Management Plan which includes an aim to increase public understanding and engagement on 

the topic of air quality. (214) The portability and ease of use of these sensors can also allow 

researchers the opportunity to study horizontal and vertical spatial patterns in pollutant 

dispersion, which may in turn provide insight to exposure mitigation.  

 The primary concerns for WSNs are sensor performance (i.e. data validity and data 

quality). (215,216) While much of the available and emerging WSNs are accessible to 

consumers, only a limited number have undergone evaluations. (217) In addition, signal 

connectivity, reliable maintenance, hardware failure, and flexibility in adding, removing or 

changing the number of stations may also limit their performance. (207) Other limitations may 

surface such as the sensor’s energy efficiency (that could compromise network lifetime), 

usability, standardization, security, and area coverage (dependent upon the number of deployed 

sensors). (215,216) A summary of other next generation air monitors is available on UBC 

cIRcle. (218)  

 

1.4.3 Sensor performance and characterization 

Presently, there is a lack of testing to ensure adequate sensor performance prior to 

marketing such instruments. While manufacturers and sales representatives are able to provide 

detailed specification sheets, there is little guarantee that the specifications can actually be met in 

a real-world setting. (202) In comparison, existing reference stations housed in proper enclosures 

can be fairly exact when it comes to meeting monitor descriptions. (226) Data quality is a 

pertinent concern as poor or unknown quality may be worse than a lack of data and can lead to 
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incorrect or inappropriate decisions. (125) The US EPA (187) recognizes that data from new 

monitors may not be on par with data generated by reference instruments; however, they expect 

that reliability will grow with time.  

In 2013, the US EPA proposed that next generation air monitoring could be classified 

into 5 tiers by cost of instrument and anticipated user group. (187) Since 2014, the classification 

scheme has evolved to include suggested performance goals for i) precision and bias error and ii) 

data completeness. (189) The five tiers now target applications in: I) Education and Information 

(for all pollutants: requiring precision and bias error <50%, data completeness ≥50%), II) 

Hotspot Identification and Characterization (all pollutants: <30%, ≥75%), III) Supplemental 

Monitoring (criteria pollutants, air toxics (including VOCs): <20%, ≥80%), IV) Personal 

Exposure (all pollutants: <30%, ≥80%) and Regulatory Monitoring (requiring precision and bias 

error <7% for O3, <10% for CO and SO2, <15% for NO2, and <10% for PM2.5 and PM10 while 

requiring data completeness ≥75%). (189) 

Snyder et al. (125) argue that monitoring objectives may not demand that sensors meet 

robust monitoring benchmarks; rather, users need to acknowledge the uncertainty and 

performance specifications. By using sensors in larger arrangements, confidence in 

measurements may be improved; this is the concept of ―do more – less well‖. (125,187) Because 

of this, it is critical to match data quality requirements to sensor performance and network scope. 

The discussion below focuses on two phases of data quality assessment (laboratory and field 

evaluations). Afterwards, there is an examination of calibration, data integration and processing. 
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1.4.3.1 Laboratory evaluations 

Controlled laboratory testing of sensors is a necessary step; so, standardized protocols 

should be developed to evaluate next generation air monitors. According to the EPA, most 

sensors have not undergone validation and few developers have air quality expertise; therefore, 

they advocate the creation of tables to help developers and users understand pollutants (e.g. 

sources, health effects, ambient ranges, acceptable detection limits), performance objectives (e.g. 

accuracy, precision, detection limit), the frequency of monitoring specific pollutants, and how 

appropriate mobile or stationary monitoring may be with the application on hand. (187) 

Currently, no lower cost sensors evaluated by (or formally submitted to) the US EPA was 

able to meet the strict requirements for regulatory monitoring using the 2014 Tier V criteria. 

(189) Other field and lab assessments are available from the Air Quality Sensor Performance 

Evaluation Center. (219) 

Parameters that should be evaluated include accuracy, which measures how exact values 

are (in comparison to reference instruments or known concentrations) and precision (assessing 

inter-sensor correlations in high density networks). The closeness of agreement between 

successive measurements at same conditions (repeatability) and at different conditions 

(reproducibility) should also be determined. (200) Selectivity, sensitivity and interference all 

describe the ability of a sensor to discriminate a constituent within a mixture.  

Certainly, for a sensor to be valuable, the detection limit and range needs to encompass 

the concentrations found in ambient air. (202) Response and recovery times are particularly 

important during mobile campaigns because the measurements need to keep pace with the 

travelling monitor. Drift (the change in a zero or span calibration with time) and operating 

temperature and humidity conditions are also important for proper sensor function. (200) 
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Controlled exposure facilities may provide an environment for sensor designers to test 

parameters like the ones listed above. (187) 

Examples of some in-house, bench experiments that can be performed include bump 

tests, step tests and stability tests. In a bump test, the sensors are dosed with a gas concentration 

for a nominal time interval, followed by a no exposure period. This is then repeated. From this 

iterative testing protocol, sensor response, response rate and hysteresis (or the dependence of 

system on recent history) can be checked. Step tests are performed by successively increasing 

gas concentrations in phases (with or without intermediate zero air exposures). By this test, 

response time, and saturation can be determined. Alternating gases between step tests without air 

exposures verifies cross-sensitivities that may exist. Stability or drift tests are accomplished by 

letting the system respond to a stable gas concentration over a prolonged time. (202) 

Other criteria to assess prior to enrolling sensors into the real-world testing phase should 

filter based on size, power, communications and data storage, cost, and availability. Systems 

should be of portable size for deployment on persons and ought to be suitable for setup in areas 

that are not enclosed with heating or cooling requirements. Having a battery powered option 

lasting several hours is preferable. These sensors need to provide real-time data communication 

or store data locally for subsequent export. Regarding cost, for feasible application in spatial 

arrays (i.e. near-road), a cost of a few hundred dollars per unit is preferred. Finally, sensing 

systems need to be commercially available or be adaptable for monitoring purposes. (202) 

The US EPA’s Sensor Evaluation Report describes an initiative to compare nine 

institutions (O3 and NO2 sensors) using extensive laboratory-based sensor performance trials 

against reference analyzers at the National Exposure Research Laboratory. Overall, sensors 

exhibited excellent linearity (typically R
2
 > 0.9) across a large challenge range (upper testing 
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conditions of > 200 ppb) and displayed low ppb range sensitivity with good to excellent 

precision. In addition, the trailed sensors often displayed short rise and lag times (~ 1 min) with 

little evidence of hysteresis indicating usability in non-static environments (i.e. continuous or 

near-continuous monitoring). However, exposure to relative humidity and temperature extremes 

showed a wide range of performance including sensors failing to report the challenge 

concentration. Similarly, susceptibility to interference from mixtures of O3, NO2 or SO2 varied 

largely (from <3 ppb interfering responses to a failure to report an output). (220) 

In another US EPA lab study, five next generation air monitors for VOCs were subjected 

to known concentrations of benzene that are environmentally relevant (<25 ppb). If the response 

was adequate for the first test, a secondary exposure to a tri-mix (including benzene, 1,3-

butadiene, and tetrachloroethylene) was conducted. Coefficients of determination for the benzene 

test were found to be 0.90 for UniTec SENS-IT and 0.78 for APPCD-PID while the three-

component coefficients of determination were 0.93 and 0.79, respectively. The 3 other sensors 

(ToxiRAE- PRO, CanAirIT and CairClip) failed to properly detect benzene concentrations below 

25 ppb. (221) 

The South Coast Air Quality Management District performed a number of laboratory 

chamber co-locations compared to Federal Reference Methods, Federal Equivalent Methods, or 

the Best Available Technology instrument on sensors with successful field evaluations. At 

conditions of 20ºC and 40% relative humidity, PM sensors (R
2
 of 0.87-0.99) and gas sensors (R

2
 

of 0.82-0.99) both yielded comparable results (R
2
) to their reference counterparts. (219) 
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1.4.3.2 Field evaluations 

Once performance is deemed appropriate in controlled environments, a second stage of 

assessment should involve real world testing, as laboratory tests and performance cannot emulate 

field conditions entirely. (165) With small, focused field studies, operational issues that may 

arise during deployments may be evaluated beforehand. (202) Hence, it is advised that sensors be 

appraised next to reference monitors in a range of unknown environments to safeguard its 

performance.  

Apart from the usual set of sensor parameters mentioned (to be tested in the lab), key 

elements for field investigations include linearity, environmental sensitivity and short-term 

responsiveness. Linearity between sensor pairs is typically appraised using ordinary least-squares 

regression models and coefficients of determination (for precision) and root mean squared error 

(for accuracy). (222) Real-world studies are scarcer than laboratory tests and sensors often show 

less convincing results in ambient conditions because of extraneous factors (e.g. meteorological 

conditions, real emission sources) that can influence performance. (165) In a paper by Holstius et 

al. (222), instrument sensitivity to three external factors—temperature, humidity and ambient 

light— were explored in their field testing strategy. The examiners also mentioned the logistic 

challenges of setting up observational calibration since it requires access to a monitoring site for 

an extended time period in close proximity to the co-located sensor. Short-term responsiveness 

of sensors should be measured in the real-world as sensor deviations from expected readings are 

possible (Figure 1.1). This parameter may be expressed as a number of deviations greater than or 

less than a percentage range (around the real concentration, as measured by the standard 

method).  
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Figure 1.1 Co-location results from a field test for an ozone sensor (grey) against an ozone monitor (red). The 

red arrow indicates one instance of sensor deviation from the reference. Reprinted with permission from 

Mykhaylova et al. (223) 

 

Other considerations that call for attention are data analysis and interpretation given the 

sensor platforms’ variable responses to environmental conditions (e.g. temperature and relative 

humidity). Data privacy should also be an area of concern since confidential data must be 

secured (e.g. password protected access). With respect to user privacy, citizen science initiatives 

should be addressed since reverse engineering of data has the potential to expose private 

information (e.g. location). (224) To deploy sensors, usability is also a major concern. Here, 

issues such as the ease of installation, operation, data management, having a user-friendly 

interface and sufficient quality wireless communication need to be factored into the examination 

of sensors. 

The US EPA’s Air Climate & Energy research program has engaged in efforts to evaluate 

an array of low cost sensor technologies; summarized below are some of the key findings from 

this program. A month-long co-location of eight PM devices on a PM monitor test platform 

found that most sensors displayed short duration responses (on the order of 1 sec); however, 

results weighted over 1 to 5 minutes better depicted general ambient conditions (rather than 

instrument noise). These studied sensors showed linearity less than 0.8 (R
2
) with some sensors 
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having little to no statistical significance (R
2
<0.1). Both particle counters and algorithm-based 

particles mass concentration sensors had comparable results. A wide variability was noticed in 

the response of sensors to temperature and relative humidity extremes. Six of the eight devices 

had a relative humidity limit of 90% or 95% meaning the instruments no longer produce reliable 

measurements beyond that relative humidity level. (225) 

More recently, the US EPA evaluated two PM sensor technologies, Carnegie Mellon 

Speck and the PerkinElmer Elm (formerly, Airbase CanarIT) in a 45-day winter co-location next 

to a field reference instrument. Sensor agreement was poor for Speck (R
2
 = 0.04) and no 

relationship was discerned for Elm (R
2
 = 0.0001). Once again, relative humidity greater than 

95% had a poor impact on sensor output. (226) 

The South Coast Air Quality Management District tested sensors in side by side field 

deployments with Federal Reference Methods, Federal Equivalent Methods, or the Best 

Available Technology instruments. The sensors were housed in custom-made aluminum 

enclosures to protect against elemental conditions (e.g. windblown rain, sunlight, animals). 

Results of the 30 to 60 day co-locations show PM (R
2
 of 0.0-0.98) and gas (R

2
 of 0.0 -1.00) 

sensor performance varied dramatically depending on the technology tested. (219) 

 

1.4.3.3 Calibration, data integration and processing 

Quality control and quality assurance of data integration and processing begins with 

calibration. Calibrations are important to alleviate sensor aging effects, humidity effects and 

interference effects. Low-cost sensors are often purchased as uncalibrated or factory calibrated 

units not intended for low concentration (or ambient) measurements. Normally, manufacturer 



 

37 

 

calibrations rely on 2-3 gas concentration measurements at one temperature and humidity; thus, 

users should re-calibrate devices to suit their needs. (227) 

To tackle the problem of sensor calibration, one remedy is to use two nearby sensors. If 

two sensors are exposed in similar environments at similar times and experience similar gas 

concentrations, the sensors can improve one another’s calibration quality. To do this, temporal 

and spatial filtering preserves relevant calibration sequences for input into calibration algorithms 

to compute calibration parameters. Hasenfratz et al. (227) proposed two novel on-the-fly 

calibration algorithms besides the traditional forward calibration based on measurements of a 

perfect sensor (a single-hop calibration). ―Forward calibration‖ is completed with recent sensor 

readings to estimate new calibration parameters, ―backward calibration‖ re-evaluates the latest 

calibrated sensor readings offline (causing a delay) to estimate calibration parameters, and 

―instant calibration‖ gains similar accuracies to backward calibration without delay by 

continually adjusting calibration parameters based on new calibration sequences and earlier 

calibration sequences stored in calibration memory. Instant calibration can reduce measurement 

error by a factor of 2 compared to forward calibrations. (227) 

Multi-hop calibrations are used to calibrate sensors that are rarely or never near perfect; 

instead, they depend on unreliable sensor readings. Essentially, a concentration is computed by 

weighting measurements of unreliable sensors by the calibration age (i.e. time elapsed since most 

recent calibration and the quality of the reference used in that calibration). In short, accuracy can 

be maintained so long as the total number of calibration hops is limited. (227) 

Three potential methods for data integration and processing are possible and will be 

outlined here. The first method is data fusion; it is implemented by sensor node cross-

communication when tuning sensors within networks. (228) By aggregating sensed data from 
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multiple nodes, the decision quality at the base station is improved. (228) Data fusion can be 

parallel, where all nodes send raw data to the base station directly, or serial, where routing is 

used, or hybrid. (228) Sensor fusion is complementary (sensors are independent but data is 

pooled to give a holistic perspective), cooperative (using independent sensors to get data that 

would not be acquired by a single node) or competitive (redundant measurements made with 

independent sensors). (228) Tan et al. (229) have suggested a two-tiered architectural framework 

where the first tier is a local calibration and the second tier is a system-level calibration.  

The second method uses a ―sensor array detection‖ whereby sensor replicates are 

incorporated into a single monitor. The underlying premise is that using redundant and 

multidimensional sensors for each pollutant of interest can increase sensitivity (by correcting for 

drift) all while detecting multiple pollutants and mixtures. From calibrations and near-road inter-

comparison of instruments, Mykhaylova et al. (223) noted increasing correlation in ozone 

measurements (at ambient conditions) with increasing numbers of ozone sensor replicates 

(especially when 2 types of ozone sensors were used). When temperature and humidity sensors 

were added to further correct ozone measurements, the associations strengthened still. (223) 

A third method relies heavily on server-based post-processing (e.g. AQMesh 

(Environmental Instruments Ltd., UK)). This means there is a black box of algorithms that is run 

on the inputs prior to presenting the outputs to the user. When a cloud network processes data, 

two advantages are seen. First, the system may conserve power, as the processor requires less 

power. Secondly, sensor specific parameters are assimilated in the calculations during cloud 

computing to correct for gas responses. In the case of AQMesh, field measurements from each 

individual sensor undergoes correction factors specific to that sensor as documented at the time 

of production. These inherent corrections maintain accuracy and include temperature sensitivities 
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and calibration coefficients. Another integral correction factor depends on the cross-sensitivities 

of gas sensors; this means the algorithm may be using the response of one gas to smooth the 

response of another gas. (230) 

 

1.4.4 AQMesh 

 The AQMesh technology is discussed in more detail as this instrument was selected for 

use in this thesis.  

AQMesh battery-powered wireless units were designed in partnership with the University 

of Cambridge to monitor five gaseous pollutants with Alphasense sensors. Table 1.1 outlines the 

technical specifications of the AQMesh units that were used. Newer generations of AQMesh 

have additional sensors for particulate matter (PM1, PM2.5, PM10 and particle count), noise and 

NOx. (231)  

 

Table 1.1 AQMesh specifications. Reprinted with permission from Geotech. (232) 

Electrochemical 

Gas Sensors 

Range 

(ppb) 

Accuracy 

(ppb)
2
 

Limit of Detection 

(ppb) 

NO 0-20000 ±5 <3 

NO2 0-200 ±5 <5 

O3
1 

0-200 ±5 <5 

CO
3
 0-50000 ±10 <5 

SO2
3
 0-100000 ±10 <5 

Other Sensors Range Accuracy
2
 Limit of Detection 

Pod Temperature 

(°C) 

-20 to 100 ±2 0.1 

Pressure (mb) 500-1500 ±5 1 

Humidity (%RH) 0-100 ±5 1 
1
Reading given using digital signal processing, thus needs a number of data points to give comparable readings to 

reference instruments; last readings will be projected in a straight line. Data is retrospectively corrected with new 

input data.  
2
Under stable temperature and humidity, without interference at 20 °C and 80% RH. 

3
Optional sensors 
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The small size (150 x 180 x 200 mm), light weight (< 2 kg) and battery operation of 

AQMesh devices makes them adaptable to urban hotspot and traffic monitoring, fence-line 

monitoring, or industrial plant fugitive emissions monitoring. AQMesh units are well suited for 

installations on lampposts, signposts, fences or walls and can function in network arrays with 

hundreds of units. This technology incorporates electrochemical gas sensors with a fourth 

electrode to increase stability and combat drift. Precision is maintained by reducing noise levels 

in the circuit to a few parts per billion. According to the manufacturer, it also uses proprietary 

catalyst loading and stack structure to certify steady operation at low concentrations. Relying on 

mobile general packet radio service (GPRS) technology limits signal access, but roaming with 

modern telecom networks can overcome this problem. Battery trickle charging gives short power 

bursts to connect the wireless GPRS link for data transmission. The data is uploaded to a multi-

user, password controlled web browser-based server where data is processed, accessed, and 

downloaded. Algorithms correct for temperature sensitivities, calibration coefficients and factors 

for each sensor pod. (230,232–234)  

The AQMesh system had undergone some field-testing against reference air quality 

monitors. Figure 1.2 shows the results from a Version 3.0 comparison conducted by Geotech in 

November 2012. (230,233)  
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Figure 1.2 AQMesh (Version 3.0) co-location test results for nitrogen monoxide, nitrogen dioxide and ozone. 

Reprinted with permission from Geotech. (230) 
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1.5 Rationale 

 Rapid urban densification and an enhanced understanding of the health consequences of 

air pollution exposure has placed an urgency on the need to understand intra-urban TRAP as 

populations gather and pollution sources aggregate. Currently, characterization of TRAP relies 

heavily on the use of traditional air quality monitoring, passive badge monitoring, mobile 

monitoring and spatial modeling. However, gaps in outdoor pollution monitoring persist due to 

weaknesses in the ability to discern pollution trends across time and space. Manufacturers of air 

pollution equipment and citizen scientists alike are introducing new instruments and methods 

(e.g. crowd-sourcing) to meet the challenge of gathering spatiotemporal air pollution data in 

cities.  

 This research focuses on evaluating the near-roadway sensor performance of a new 

technology—AQMesh. AQMesh was selected for two reasons. Firstly, a side-by-side 

comparison was already underway in London, so it was decided that concurrent monitoring in 

another location would better capture its usability elsewhere. Dr. Ben Barratt of the 

Environmental Research Group at King’s College London led this effort in London. 

Secondly, the AQMesh air monitors aligned well with the criteria for 2013 Tier IV instruments 

as outlined by the United States EPA in the ―Draft Roadmap for Next Generation Air 

Monitoring‖. Tier IV instruments should be: 1) between $5,000 and $10,000 in cost and 2) 

designed for regulators (the anticipated user group) to enable supplementation of existing 

ambient and source monitoring. (187) Thus, AQMesh may be used to supplement present 

regional (Metro Vancouver) and national (Environment Canada NAPS) air quality monitoring 

networks. 

 Intra-urban air pollution varies depending on pollutant sources, meteorology, and 
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infrastructure; one important cause of this variability is the street canyon effect. Presently, it is 

understood that street canyons can elevate TRAP; however, this avenue of research is still 

emerging and the bulk of street canyon studies focus on the microenvironment within a canyon. 

This study designed a model to identify potential urban street canyons. The model can be applied 

to various metropolitan areas using relatively accessible data sources.  

 

1.6  Objectives 

 Specifically, this thesis aims to address these two objectives: 

1. To evaluate a wireless sensor technology, AQMesh, (with CO, NO, NO2, O3 and SO2 

sensors) in a field study by co-locating these units in Vancouver and London with 

traditional reference monitors. 

2. To create a simple model for identifying potential urban street canyons and to appraise this 

model using mobile monitoring techniques to determine if canyons are an important 

predictor of intra-urban TRAP concentration variability.  
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Chapter 2: Comparing AQMesh air quality monitors to traditional air quality 

monitoring stations 

 

2.1 Methods 

2.1.1 Instrument setup and data collection 

 This study tested the comparability of gaseous air quality measurements made by an 

autonomous system, AQMesh (Figure 2.1), when co-located with two regulatory air quality 

monitoring stations situated in London, England and Vancouver, Canada.  

 

Figure 2.1 AQMesh unit (left) equipped with the solar shield and the pipe clamps (right) 

 

 In Vancouver, three instruments (pods 45150, 239150, 240150) were deployed near the 

Robson Square Metro Vancouver fixed air quality monitoring station. Instruments were setup 

after gaining approval from Al Luongo, the Manager of the Utilities Management Branch at the 
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City of Vancouver. Instruments were fixed to the lamp post using circular pipe clamps and 

fabricated cross beams. 

 In London, the four instruments (pods 157150, 160150, 163150, 165150) were secured to 

pipes with smaller diameters with cable ties as pictured in Figure 2.2.  

 

Figure 2.2 Six AQMesh pods attached to the pipe railing using cable ties. Reprinted with permission from 

Barratt, B. (235) 

 

2.1.2 Site details 

 In Vancouver, the AQMesh instruments (measuring CO, NO, NO2, O3 and SO2) were co-

located near the Vancouver-Downtown Station (Station ID: T1) of the Lower Fraser Valley Air 

Quality Monitoring Network. The Vancouver-Downtown Station (49.2823° N, 123.1219° W) in 
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Robson Square Complex is situated below ground in a concrete walled room with an air intake 

that extends upwards to 3.8 m above ground (Figure 2.3). This station is located in a heavily 

trafficked area with varied multiple-story and high-rise residential and commercial buildings. 

The air intake is 15-20 m from the one-way road, Hornby Street, which has two lanes, a parking 

lane and a divided bike lane. Due to the station’s underground construction, no AQMesh units 

could be located immediately beside the air intakes. Instead, the three AQMesh units were 

installed approximately 25 m from the air intake on the nearest lamppost (post reference number: 

4/8). The units were mounted on the post at 120-degree angle offsets from one another (i.e. 0°, 

120° and 240° if viewed from above). These instruments were fixed at heights between 3 m and 

4 m aboveground. For clarity of the AQMesh positioning, refer to Figure 2.3. (236) 

 

Figure 2.3 Curved air intake of the Vancouver-Downtown Station (in silver) and the lamppost (in black) on 

which the AQMesh were attached (left). Left image reprinted with permission from Doerksen et al. (236). 

Two of the three units installed on the lamppost (right). 
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 Unlike the below ground configuration of the Vancouver-Downtown Station, the London 

co-location site (UK-AIR ID: UKA00315) is housed in a ground level air-conditioned cabin a 

meter from Marylebone Road, which has six lanes of urban traffic (Figure 2.4). This Marylebone 

Road Station (51.522530° N, 0.154611° W) is part of the King’s College London Automatic 

Urban and Rural Network (AURN) and will be referred to by its abbreviation, MY1 from this 

point onward. The four AQMesh units (measuring CO, NO, NO2 and O3) were positioned on top 

of the reference site so each unit was within 100 cm of the gas inlet (Figure 2.2 and Figure 2.4). 

(237) 

 

Figure 2.4 Marylebone Road AURN Station (left) and the view from the North (right). Reprinted with 

permission from the Department for Environment Food & Rural Affairs. (237) 

 

2.1.3 Study duration 

 The instrument co-location was conducted between May 16, 2014 and April 21, 2015 in 

Vancouver and between January 1, 2014 and December 31, 2014 in London. The shorter co-

location time period in Vancouver was a result of unforeseen delays in instrument acquisition. 
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In Vancouver, two units (pods 239150 and 240150) were setup on May 16, 2014 and the 

third unit (pod 45150) was deployed to the same location at a later date, June 13, 2014, as a 

result of a delay in shipping the mounting bracket for the demo unit. Solar shields were fixed on 

the units on August 16, 2014; this date also marks the end of the co-location for pods 45150 and 

240150. 

In London, two units (pods 157150 and 163150) were deployed on January 1, 2014 and 

two more instruments (pods 160150 and 165150) were deployed at a later date, May 1, 2014.  

 

2.1.4 Data downloads, quality and conversions 

 Co-location analyses were conducted using the 15-minute (or hourly) averaged AQMesh 

―final readings‖ which were exported from the online user platform, Envirologger 

(http://www.envirologger.net/login.aspx?ReturnUrl=http%3a%2f%2fwww.envirologger.net%3a

80%2fdefault.aspx). The comparisons were performed on these final readings rather than another 

data form (i.e. raw, pre-scaled or scaled readings) as the proprietary AQMesh Version 3.0 

algorithms (used until December 2014) were applied to the pre-processed data to arrive at the 

final estimates of outdoor pollutant levels. Moreover, the final outputs were assessed since the 

raw outputs may not be readily available to all AQMesh users. Downloaded data had no applied 

user offsets. An exception to this was the deleted data recovered from the backend server for a 

demo unit in Vancouver, AQMesh 45150, which had variable user offsets indicated. 

 Three operating statuses were automatically flagged in the data export: below LOD (limit 

of detection <5 ppb), rebasing (period when pods are calculating a baseline and determining the 

cross-gas correction algorithms) and stabilizing (period lasting up to 5 days post pod re-location 

to a different climate). Occurrences of these statuses were recorded but omitted in subsequent 

http://www.envirologger.net/login.aspx?ReturnUrl=http%3a%2f%2fwww.envirologger.net%3a80%2fdefault.aspx
http://www.envirologger.net/login.aspx?ReturnUrl=http%3a%2f%2fwww.envirologger.net%3a80%2fdefault.aspx
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analyses, as measurements taken under these conditions were deemed sub-optimal for co-

location comparisons.  

 Reference data for Vancouver and London were obtained from Envistaweb 

(https://envistaweb.env.gov.bc.ca/) and London Air 

(https://www.londonair.org.uk/london/asp/datadownload.asp), respectively. For ease of analysis 

in R, the Vancouver reference data was converted to Greenwich Mean Time from Pacific 

Standard Time. Hourly averaged reporting of Metro Vancouver data was used because this was 

the smallest time base available. All of the data was reported as being preliminary; that is, quality 

assurance had not been completed at the time of analysis. Ken Reid at Metro Vancouver was 

able to provide validated gas data for 2014 for the Vancouver-Downtown Station (T1). As T1 

lacks meteorological monitoring, data from Richmond-Airport (Station ID: T31) was used to 

address this gap. Ideally, meteorological parameters from Vancouver-Kitsilano (Station ID: T2) 

would be applied to downtown Vancouver because of the proximity, but this site was out of 

commission throughout the study duration.  

 The 15-minute averaged AURN gas sensor data for London Marylebone Road Station 

(MY1) had already undergone a rigorous ratification procedure while the local temperature data 

was indicated to be provisional. Other London-scale meteorological conditions were obtained 

from the hourly-based import KCL command in the openair R Package (Version 1.1-0): Tools 

for the Analysis of Air Pollution Data. The MY1 concentration data (expressed in μg/m
3
) was 

converted to ppb for comparison with AQMesh data using standardized factors at a temperature 

of 293K and a pressure of 101.3 kPa. (238,239) The applied conversion factors were 1 ppb = 

1.1642 μg/m
3
 for CO, 1 ppb = 1.2473 μg/m

3
 for NO, 1 ppb = 1.9125 μg/m

3
 for NO2 and 1 ppb = 

1.9957 μg/m
3
 for O3. (238,239) 

https://envistaweb.env.gov.bc.ca/
https://www.londonair.org.uk/london/asp/datadownload.asp
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2.1.5 Statistical analysis 

 Hourly or 15-minute averaged AQMesh concentrations were compared with the 

corresponding concentrations measured by reference stations (T1 for Vancouver and MY1 for 

London) using descriptive and evaluation statistics. The descriptive statistics included count, 

mean, standard deviation, minimum, median and maximum. Evaluation statistics were calculated 

to explain the correlation between AQMesh and standardized instruments. The statistics for 

assessing accuracy and precision/repeatability were root mean square error (RMSE) and the 

coefficient of determination (R
2
), respectively. Percent bias was also computed to characterize 

the tendency for the various AQMesh gas sensors to bias measurements in a predictable direction 

(e.g. overestimate or underestimate true concentrations). Formulas for these statistical parameters 

are presented in Table 2.1. No spatial or temporal adjustments were required since the 

instruments were co-located. 

 

Table 2.1 Formulas for evaluation statistics 

Statistic Abbreviation Formula Optimal Value 

[Range] 

Coefficient 

of 

determination 

R
2 

     
∑ (  

    
   

      )
  

   

∑ (  
    

  ̅    )
 

 
   

 

       ̅     
 

 
∑  

    

 

   

 

1 [0, 1] 

Root mean 

squared error 

RMSE 

     √
 

 
∑   

         
    

  
 

   

 

0 [0, +∞] 

Percent bias % Bias 
       

∑    
         

    
  

   

∑    
     

    
        

0 [-∞, +∞] 
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 Visual representation of data quality for co-located AQMesh instruments, such as 

accuracy and precision in tracking fluctuating pollutant concentrations, were illustrated using 

time series and scatter plots. As certain meteorological states are expected to impact ambient 

pollutant levels (e.g. temperature, relative humidity, wind speed, seasonality), further 

investigations were completed through the generation of correlation matrices. 

 Computer software used in the analyses included: R, Version 3.2.1 (© R Foundation for 

Statistical Computing, 2015), RStudio, Version 0.99.903 (RStudio, Inc., 2016) and Microsoft 

Excel 2011 (Microsoft® , Redmond, WA, 2011). 

 

2.2 Results 

2.2.1 Descriptive statistics 

 Instrument modes of operation that were flagged and omitted across the 15-minute time 

averaged concentrations are summarized in Table 2.2 and Table 2.3. Server errors led to 

AQMesh 45150 reportedly having no flagged statuses after data retrieval; however, this anomaly 

is likely not representative of the real dataset judging by the number of flagged statuses on co-

located pods.  
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Table 2.2 Summary statistics for flagged modes of operation in Vancouver AQMesh pods. n is the total 

number of flagged statuses while N is the total number of records. 

AQMesh 

ID 

Gas 

Sensor 

Operation Status Omitted Data 

Below 

LOD 

Rebasing Stabilizing n n/N 

(%) 

45150 

(N=6096) 

CO – – – 0 0.0 

NO – – – 0 0.0 

NO2 – – – 0 0.0 

O3 – – – 0 0.0 

SO2 – – – 0 0.0 

239150 

(N=32608) 

CO 3051 388 484 3923 12.0 

NO 24997 388 484 25869 79.3 

NO2 4475 – – 4475 13.7 

O3 13829 – 484 14313 43.9 

SO2 15 – – 15 0.1 

240150 

(N=8800) 

CO 679 196 – 875 9.9 

NO 6506 196 – 6702 76.2 

NO2 1282 – – 1282 14.6 

O3 146 – – 146 1.7 

SO2 – – – 0 0.0 
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Table 2.3 Summary statistics for flagged modes of operation in London AQMesh pods. n is the total number 

of flagged statuses while N is the total number of records. 

AQMesh 

ID 

Gas 

Sensor 

Operation Status Omitted Data 

Below 

LOD 

Rebasing Stabilizing n n/N 

(%) 

157150 

(N=35040) 

CO 2622 202 – 2824 8.1 

NO 9586 196 6 9788 27.9 

NO2 6535 – – 6535 18.7 

O3 4212 – – 4212 12.0 

160150 

(N=23483) 

CO 1861 186 – 2047 8.7 

NO 5344 186 – 5530 23.5 

NO2 841 – – 841 3.6 

O3 1404 – – 1404 6.0 

163150 

(N=35040) 

CO 2634 192 – 2826 8.1 

NO 11654 186 6 11846 33.8 

NO2 4968 – – 4968 14.2 

O3 10485 – – 10485 29.9 

165150 

(N=23482) 

CO 1778 192 – 1970 8.4 

NO 3971 186 6 4163 17.7 

NO2 8385 – – 8385 35.7 

O3 54 – – 54 0.2 

 

 Table 2.4 and Table 2.5 outline the descriptive statistics for all the co-located AQMesh 

and the air quality reference instruments. From these tables, it is clear that the AQMesh 

instruments in Vancouver were inadequately flagging the limits of detection as 6 of the 15 

AQMesh sensors reported minima below the recorded limit of detection (5 ppb). This trend was 

not apparent in the London dataset and hence can explain some of the difference in performance 

between London and Vancouver. A possible explanation for the high frequency of flagging 

limits of detection in Vancouver is negative sensor drift. Both London and Vancouver AQMesh 

relied on the same processing algorithm (Version 3.0). In general, the results from London 

showed a higher degree of consistency when compared with the results from Vancouver. This is 
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true for both situations: between pairs of AQMesh sensors and between AQMesh sensors and the 

nearby reference sensors. 

 

Table 2.4 Descriptive statistics of CO, NO, NO2, O3, and SO2 concentrations for co-located AQMesh pods and 

the T1 Vancouver reference station. N is the total number of hourly averaged records. Mean, standard 

deviation (SD), minimum (Min), median and maximum (Max) are in ppb. 

Gas Instrument N Mean ± SD Min Median Max 

C
O

 

T1 Ref. 7833 348.3 ± 175.3 90.0 300.0 1560.0 

45150 1524 269.8 ± 130.9 5.4 265.8 1514.2 

239150 7641 544.1 ± 1945.0 5.1 116.0 18392.9 

240150 2110 111.3 ± 231.0 5.1 88.7 9794.6 

N
O

 

T1 Ref. 7918 24.4 ± 24.9 0.2 16.8 196.2 

45150 1524 10.2 ± 15.3 0.0 1.5 114.9 

239150 2114 196.0 ± 1552.4 -723.9 30.5 25958.3 

240150 681 23.2 ± 18.9 5.0 17.6 179.3 

N
O

2
 

T1 Ref. 7918 17.2 ± 6.1 2.0 16.9 44.2 

45150 1524 15.6 ± 11.0 0.0 15.3 50.9 

239150 7245 39.5 ± 15.4 5.0 40.4 102.2 

240150 2006 18.1 ± 8.6 5.0 17.0 51.0 

O
3
 

T1 Ref. 7896 6.9 ± 7.4 -0.6 4.1 39.9 

45150 1524 15.3 ± 9.2 0.0 15.2 46.3 

239150 4759 18.9 ± 10.5 -60.6 18.1 52.0 

240150 2171 26.3 ± 9.2 5.3 25.7 59.2 

S
O

2
 

T1 Ref. 7892 1.5 ± 1.3 0.0 1.2 18.8 

45150 1524 4.4 ± 5.1 0.0 3.1 68.3 

239150 8152 45.6 ± 36.4 5.5 42.7 1781.4 

240150 2200 42.3 ± 27.1 16.4 38.2 1057.5 
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Table 2.5 Descriptive statistics of CO, NO, NO2 and O3 concentrations for co-located AQMesh pods and the 

MY1 London reference station. N is the total number of 15-minute averaged records. Mean, standard 

deviation (SD), minimum (Min), median and maximum (Max) are in ppb. 

Gas Instrument N Mean ± SD Min Median Max 

C
O

 

MY1 Ref. 33323 450.1 ± 241.7 0.0 429.5 3951.2 

157150 32216 200.7 ± 169.0 5.0 155.2 2004.0 

160150 21436 166.2 ± 136.2 5.0 132.1 1463.5 

163150 32214 171.2 ± 144.9 5.0 138.3 3959.4 

165150 21512 174.2 ± 141.1 5.0 137.6 1424.2 

N
O

 

MY1 Ref. 33908 124.7 ± 94.6 1.1 99.0 705.7 

157150 25258 105.7 ± 89.9 5.0 78.2 721.6 

160150 17953 106.7 ± 93.8 5.0 75.2 625.1 

163150 23200 108.7 ± 95.8 5.0 78.9 651.6 

165150 19325 103.7 ± 90.3 5.0 73.6 649.6 

N
O

2
 

MY1 Ref. 33907 49.3 ± 22.3 4.0 45.8 201.7 

157150 28505 32.8 ± 20.2 5.0 29.1 151.1 

160150 22642 39.8 ± 23.5 5.0 34.5 146.0 

163150 30072 41.6 ± 23.8 5.0 37.7 177.3 

165150 15097 28.5 ± 18.6 5.0 23.8 114.7 

O
3
 

MY1 Ref. 32771 7.0 ± 6.3 -0.4 4.8 38.5 

157150 30828 31.0 ± 12.4 5.0 31.1 97.0 

160150 22079 37.6 ± 14.2 5.0 37.3 107.2 

163150 24555 23.1 ± 11.7 5.0 21.7 79.2 

165150 23428 1157.4 ± 2777.3 5.0 47.5 10053.9 

 

 

 

2.2.2 Evaluation statistics 

 Figure 2.5 and Figure 2.6 show the hourly averaged concentrations from AQMesh pods 

and reference stations for Vancouver and London, respectively. One pollutant is displayed per 

panel for viewing considerations. The portion of the plots where no data is presented relates 

primarily to periods when the AQMesh pods were not co-located. Some of the data gaps could 

also be due to data exclusion from suboptimal operating statuses. These graphs visually describe 

the trends seen in the descriptive tables earlier on. 
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Figure 2.5 Hourly averaged time series plots for the concentration of pollutants as measured by AQMesh and 

the T1 Vancouver reference station. The black dots indicate concentrations that exceeded the y-axis cutoff. 
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Figure 2.6 Hourly averaged time series plots for the concentration of pollutants as measured by AQMesh and 

the MY1 London reference station. The black dots indicate concentrations that exceeded the y-axis cutoff. 
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In Table 2.6 and Table 2.7, the evaluation statistics and the simple linear regression 

equations are summarized for Vancouver and London, respectively. In each entry, the statistics 

are calculated for the AQMesh sensor using the appropriate reference sensor. The coefficients of 

determination (R
2
) highlight the stronger correlation of London AQMesh sensors to their 

reference (MY1) when compared with the R
2
 results from Vancouver AQMesh sensors to their 

reference (T1). This is illustrated in Figure 2.7 and Figure 2.8.  

 

Table 2.6 Evaluation statistics for co-located AQMesh pods as compared to T1 Vancouver reference station. 

Gas Instrument R
2
 RMSE 

(ppb) 

% 

Bias 

Regression Equation 

C
O

 45150 0.186 141.4 -2.5 T1[CO] = (AQ45[CO] x 0.438) + 159 

239150 0.021 1964.2 57.5 T1[CO] = (AQ239[CO] x 0.013) + 347 

240150 0.016 295.0 -56.0 T1[CO] = (AQ240[CO] x 0.0648) + 252 

N
O

 45150 0.091 18.4 -37.5 T1[NO] = (AQ45[NO] x 0.273) + 13.6 

239150 0.001 1589.6 639.5 T1[NO] = (AQ239[NO] x -0.000484) + 27.4 

240150 0.001 25.0 27.7 T1[NO] = (AQ240[NO] x 0.0311) + 17.3 

N
O

2
 45150 0.021 11.7 8.2 T1[NO2] = (AQ45[NO2] x 0.0789) + 13.3 

239150 0.006 27.8 133.6 T1[NO2] = (AQ239[NO2] x 0.0311) + 15.7 

240150 0.058 9.9 23.6 T1[NO2] = (AQ240[NO2] x 0.169) + 11.6 

O
3
 45150 0.099 12.0 85.7 T1[O3] = (AQ45[O3] x 0.249) + 4.42 

239150 0.219 14.1 117.3 T1[O3] = (AQ239[O3] x 0.341) + 2.26 

240150 0.345 18.0 158.9 T1[O3] = (AQ240[O3] x 0.529) + -3.74 

S
O

2
 45150 0.004 5.9 157.1 T1[SO2] = (AQ45[SO2] x 0.0205) + 1.62 

239150 0.010 57.5 2856.0 T1[SO2] = (AQ239[SO2] x 0.00339) + 1.39 

240150 0.000 49.2 2377.4 T1[SO2] = (AQ240[SO2] x 0.000953) + 1.67 
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Table 2.7 Evaluation statistics for co-located AQMesh pods as compared to MY1 London reference station. 

Gas Instrument R
2
 RMSE 

(ppb) 

Bias 

(%) 

Regression Equation 

C
O

 

157150 0.517 312.0 -56.7 MY1[CO] = (AQ157[CO] x 1.03) + 258 

160150 0.481 314.7 -61.7 MY1[CO] = (AQ160[CO] x 1.17) + 238 

163150 0.293 349.6 -62.4 MY1[CO] = (AQ163[CO] x 0.906) + 300 

165150 0.479 307.3 -59.7 MY1[CO] = (AQ165[CO] x 1.13) + 235 

N
O

 

157150 0.711 66.7 -27.1 MY1[NO] = (AQ157[NO] x 0.929) + 47.1 

160150 0.805 52.9 -22.3 MY1[NO] = (AQ160[NO] x 0.911) + 40.3 

163150 0.671 72.5 -28.1 MY1[NO] = (AQ163[NO] x 0.841) + 60.2 

165150 0.823 49.0 -21.0 MY1[NO] = (AQ165[NO] x 0.953) + 32.8 

N
O

2
 

157150 0.336 28.3 -38.5 MY1[NO2] = (AQ157[NO2] x 0.631) + 32.6 

160150 0.516 19.1 -17.3 MY1[NO2] = (AQ160[NO2] x 0.668) + 21.6 

163150 0.504 19.9 -18.1 MY1[NO2] = (AQ163[NO2] x 0.659) + 23.5 

165150 0.436 28.9 -45.0 MY1[NO2] = (AQ165[NO2] x 0.764) + 30.2 

O
3
 

157150 0.139 26.5 322.0 MY1[O3] = (AQ157[O3] x 0.191) + 1.44 

160150 0.166 33.1 416.1 MY1[O3] = (AQ160[O3] x 0.178) + 0.602 

163150 0.072 19.1 184.1 MY1[O3] = (AQ163[O3] x 0.15) + 4.7 

165150 0.015 3028.9 16501.0 MY1[O3] = (AQ165[O3] x -0.000268) + 7.35 
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Figure 2.7 Scatter plots for the highest coefficients of determination (R
2
) per pollutant in Vancouver. Three 

reference lines are included: the 1:1 solid line and the 1:0.5 and 1:2 dashed lines. The line of best fit is drawn 

as a dashed line with the 95% confidence interval shaded in grey. 
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Figure 2.8 Scatter plots for the highest coefficients of determination (R
2
) per pollutant in London. Three 

reference lines are included: the 1:1 solid line and the 1:0.5 and 1:2 dashed lines. The line of best fit is drawn 

as a dashed line with the 95% confidence interval shaded in grey. Please note the confidence interval is 

narrow. 
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 Four meteorological factors including temperature, relative humidity, wind speed and 

seasonality were investigated to determine the impacts on correlation for co-located sensors. 

These variables were selected as changes in them may cause significant differences in sensor 

performance and hence the measured pollutant levels (Appendix B). All but the last 

meteorological variable was numeric, so the correlation between air pollutant concentrations 

measured by reference and AQMesh sensors were analyzed by quantiles of each meteorological 

condition. Pre-stratified correlation matrices for concentrations for Vancouver and London are 

plotted below (Figure 2.9 and Figure 2.10). These plots show better alignment of measurements 

between AQMesh sensors (referred to as AQMesh-AQMesh correlation) than between AQMesh 

sensors and the reference sensors (referred to as AQMesh-reference correlation). Table 2.8 

outlines the descriptive statistics for the local meteorological conditions experienced throughout 

the period of co-location.  
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Figure 2.9 Correlation matrices for Vancouver. The shape, color and numeric value indicate the degree of 

correlation. 
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Figure 2.10 Correlation matrices for London. The shape, color and numeric value indicate the degree of 

correlation. 
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Table 2.8 Descriptive statistics of local meteorological conditions for Vancouver (data from Richmond-

Airport station) and London during the study. N is the total number of hourly averaged records. 

Location Meteorological Variable N Mean ± SD Min Median Max 

 

V
an

co
u
v
er

 Temperature (ºC) 7957 12 ± 6 -6.5 11.8 28.7 

Relative Humidity 

(%RH) 

7957 79.8 ± 14.1 21.8 82.4 99.9 

Wind Speed (km/hr) 7957 9.3 ±5.4 1.1 8.2 40.9 

Rain (mm) 7957 0.1 ± 0.5 0 0 8.0 

 

L
o
n
d
o
n

 

Temperature (ºC) 6141 14.3 ± 5.5 0.2 14.6 31.7 

Relative Humidity 

(%RH) 

8222 76.2 ± 16.6 29.8 79.6 99.9 

Wind Speed (km/hr) 8760 5.8 ± 4.3 0 5.0 30.6 

Rain (mm) 8015 0.02 ± 0.1 0 0 2.0 

 

 

 

2.3 Discussion 

 The descriptive statistics for data omission are highlighted in Table 2.2 and Table 2.3. In 

general, the NO2, O3 and SO2 sensors were quite resilient and did not require extra periods of 

rebasing or stabilizing. On the contrary, the NO and CO sensors experienced the greatest flags of 

these types irrespective of the geographical locale. As anticipated, the flagged modes of 

operation for AQMesh 239150’s NO sensor corresponded well with the sensor change out. On 

the other hand, AQMesh 239150’s CO sensor replacement on the same day, December 2, 2014, 

did not seem to trigger any flagged statuses. In sum, the indicated statuses represented 0% to 

79.3% of all the recorded concentrations data. 

 Taken together, the statistics for mean, standard deviation, median and range in Table 2.4 

and Table 2.5 show a stronger degree of correlation between co-located instruments in London 

than in Vancouver. A few plausible explanations can be offered for this effect. A major factor 

would be the substantially shorter distance between the AQMesh instruments and the reference 

station sensors in London as compared to Vancouver. Furthermore, it appears the AQMesh units 



 

66 

 

failed to flag certain suboptimal statuses in Vancouver when compared to London (e.g. below 

LOD). Also noteworthy, is the fact that AQMesh was designed and tested by Geotech in London 

(230). As such, the instruments may be better conditioned or optimized to London’s ambient 

environment and meteorological conditions. Table 2.8 summarized 4 local meteorological 

variables (temperature, relative humidity, wind speed and rain). The results indicate that 

Vancouver experienced more wind and rain than London during the co-location; this may 

partially explain the difference in instrument performance.  

 Visually, time-series plots for each co-located sensor type and location depict how 

agreeable or disagreeable the AQMesh sensors traced the outdoor air pollutant concentrations 

when compared to the traditional monitors. The Vancouver results (Figure 2.5) illustrate multiple 

instances where hourly-averaged pollution data was seen to spike on the AQMesh where the 

Vancouver T1 data showed little to no increase. The London data (Figure 2.6) displayed far 

fewer occurrences of this type. 

 The amount of variability (R
2
) explained by co-located AQMesh in the two cities varied 

from 0.02% to 34.5% in Vancouver to 1.5% to 82.3% in London (Table 2.6 and Table 2.7). 

Overall, accuracy, as reflected in RMSE values, was found to be lowest for CO sensors and 

highest for NO2 and O3 sensors. Only ozone sensors showed a consistent direction of bias (i.e. 

positive bias) in both locations when compared to their reference sensor counterparts. In 

Vancouver, NO2 and SO2 sensors veered towards overestimating concentrations while CO and 

NO sensors showed no evident bias trends. With the exception of O3, the remaining pollutant 

sensors in London (CO, NO and NO2) had a tendency to underestimate concentrations. 

 Notable trends from meteorological analysis include improved sensor performance (both 

AQMesh-AQMesh and AQMesh-reference linearity) at higher temperatures (Appendix B.1) and 
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non-winter months (Appendix B.4). No clear trends could be discerned from Vancouver’s 

seasonal dataset as most measurements were obtained in spring and summer months. It was 

discovered that some sensors (CO, NO, SO2) performed best at higher relative humidity, while 

O3 sensors preformed best at lower relative humidity. Nitrogen dioxide sensors exhibited 

consistent linearity across the relative humidity strata. For relative humidity stratified NO 

measurements in London, the AQMesh-AQMesh Pearson correlation coefficient was near 

perfect (ranging between 0.98 and 1.00, see Figure B.4).  

 Wind speed results were the most interesting. In Vancouver, at higher wind speed 

quantiles, the correlation coefficients decreased for CO, NO, NO2 and SO2, but increased for O3. 

In London, at higher wind speed quantiles, the correlation coefficients decreased for CO and O3 

(for AQMesh-reference correlation) but remained relatively constant for NO and NO2. The 

highest Vancouver wind quantile was 12.2 to 40.9 km/h while the highest London wind quantile 

was 2.33 to 8.5 m/s (equivalently, 8.388 to 30.6 km/h). Since wind speeds in London never 

reached the maximum wind speeds in Vancouver, the lighter winds in London may have resulted 

in stagnant conditions. The wind speed variable likely played a role in the difference in sensor 

performance between the two cities. 

 Weaknesses of this study include logistical co-location restrictions and data proxy 

decisions. An advantage of the London Marylebone Road co-location over the Vancouver 

Hornby Street one was the proximity of AQMesh to the gas inlets (within 1 m rather than 25 m). 

However, the distance between the AQMesh units and the reference stations can only partially 

explain the disparity in AQMesh-reference correlations between Vancouver and London; this 

distance does not explain the AQMesh-AQMesh correlation discrepancies. The co-location in 

Vancouver was guided by security considerations and the prospective use of AQMesh in the 
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mobile monitoring campaign should the co-location demonstrate high comparability. On a 

smaller magnitude, the AQMesh instruments in Vancouver were offset vertically and angled 

120° from each other on the lamppost during sampling. Because the Vancouver-Downtown 

reference station did not measure meteorological conditions, the Richmond-Airport station was 

used as a proxy for standard climatic data. 

 The power of this AQMesh comparison is this is the first documented appraisal of the 

data quality against gold-standard instrumentation used for regulatory purposes. Furthermore, 

this study spanned a prolonged duration of approximately one year in two urban hubs that are 

prone to TRAP exposures.  

 A data authentication step permitted us to ensure the comparisons were grounded in the 

highest quality AQMesh data. Removal of data collected during substandard instrument function 

was possible owing to the status indicators (e.g. below LOD, rebasing, stabilizing) in AQMesh 

data exports. The aforementioned step also led us to use the post-processed output in all 

comparisons. Where available, ratified reference data was used (i.e. London MY1 gas data and 

2014 Vancouver T1 data).  

 All in all, the co-located instruments showed a limited potential for use in Vancouver as 

the single best sensor explained 34.5% (O3) of the variation in the reference method. Interpreting 

data from instruments with low R
2
 values can be misleading, as they may not fully explain the air 

pollution variability. The London co-location showed a higher degree of precision (R
2
 of 0.67 – 

0.82) for its best gas sensor type (NO). Following the conclusion of this study, AQMesh 

published a series of co-location comparisons on their web platform. The coefficients of 

determination and accuracy measured were far improved compared to the values obtained in 

these co-locations. Because these co-locations were based on later versions of the algorithm 
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(v4.0, v4.1 and v4.2), where both the Vancouver and London co-locations depended on v3.0 

outputs, further reassessments are required to confirm sensor performance. (240) 

An AQMesh co-location study by Jones (241) for AQMesh at an AURN site with ratified 

data found a R
2
 of 0.65 and 0.74 for NO and NO2, respectively. Another field assessment by 

Borrego et al. (217) identified a comparable performance of AQMesh sensors when compared to 

a standard reference: O3 (R
2
: 0.70), NO2 (R

2
: 0.89), CO (R

2
: 0.86) and NO (R

2
: 0.80). (217) 

These results are consistent with the London co-location study for NO which had R
2
 of 0.67 - 

0.82. However, the other research reported a higher R
2
 for NO2, CO and O3 than what this study 

concluded for London (NO2: 0.34 - 0.52, CO: 0.29-0.52, O3: 0.02-0.17). 

In October 2014, the 1st EuNetAir Air Quality Joint Intercomparison Exercise tested 

different microsensors against reference methods; the initiative observed R
2
 values in the range 

of 0.12–0.77 for O3, 0.53–0.87 for CO, 0.02–0.89 for NO2, 0.09–0.20 for SO2 and 0.07–0.36 for 

PM. The researchers propose this experimental campaign is essential for the research and 

development of air quality technologies and emphasize the need to further address sensitivity, 

selectivity, sensor stability, data validation, calibration and evaluation using field testing. (217)  

To confidently justify AQMesh use in regulatory applications, accuracy improvements 

are needed so comparisons can be made with air quality benchmarks. To ensure sensors within 

network deployments are comparable to one another, precision levels must be developed further.  
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Chapter 3: Creation and evaluation of a prototype model to identify street 

canyons 

 

3.1 Methods 

3.1.1 Site details 

 The aim of this component was to develop a simple geospatial model to identify potential 

street canyons based on readily available inputs (building height, street widths, and prevailing 

wind direction) and to then assess whether such locations were associated with higher 

concentrations of traffic-related air pollutants. In this chapter, the term ―potential street canyons‖ 

is applied. Although geometry and wind direction act as predictors of street canyons; without 

measurement, one cannot guarantee these structures behave as canyons. The downtown 

Vancouver core was selected as the desired study location because of its prevalence of high-rise 

residential and commercial buildings. Unique to downtown Vancouver is the presence of lower 

story buildings in addition to built-up complexes. The structural composition of streets is seen to 

vary drastically between narrow, single-lane roads in housing zones to multi-lane roads in busy 

corridors. Finally, located in the heart of downtown is a Lower Fraser Valley Air Quality 

Monitoring Network station: Vancouver-Downtown Station (Station ID: T1). This station was 

described in detail in Chapter 2, Section 2.1.2. 

 

3.1.2 Model components and data acquisition 

 The goal of creating a model to detect potential street canyons was realized using two 

equally weighted components: 1) aspect ratios and 2) the predominant wind direction. Aspect 
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ratios were determined by the ratio of building heights to street width. Dr. Rory Tooke from The 

University of British Columbia’s Faculty of Forestry provided primary building footprints with a 

height attribute for Vancouver in December 2013. Secondary buildings such as garages and 

sheds were excluded in this dataset. Public street data and local area boundaries were 

downloaded from the City of Vancouver Open Data Catalogue. (242) 

 These two components were selected for the following reasons. The likelihood of street 

canyon formation increases with aspect ratio; with 0.7 being the level beyond which one can 

assume there is a risk of pollutant accumulation - as relatively stagnant air is present near the 

base of the canyon. (106) 

 Prevailing wind direction also plays a critical role in street canyon formation. If wind 

direction runs perpendicular to the length of the street, the likelihood of there being a canyon 

increases as the airflow above building tops is unable to adequately exchange with air trapped 

within the canyons. Therefore, aspect ratio and wind direction are cumulatively accounted for in 

the model (using multi-criteria analysis). Historical Vancouver wind data for 2013 was obtained 

from an Environment Canada webpage. (243).  

 

3.1.3 Prototype model formation 

 Prior to any analyses, all of the input data (except prevailing wind) was geo-referenced to 

the Universal Transverse Mercator (UTM) projection system using zone 10N of the North 

American Datum of 1983 (NAD 1983). Computer software used in the analyses included: 

ArcMap, Version 10.1 (ESRI, Redlands, CA, 2012), R, Version 3.1.0 (© R Foundation for 

Statistical Computing, 2014), RStudio, Version 098.1056 (RStudio, Inc., 2013) and Microsoft 

Excel 2011 (Microsoft® , Redmond, WA, 2011). The basic three-step structure of this model 

http://data.vancouver.ca/datacatalogue/cityStreets.htm
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development is shown in Figure 3.1.  

 

Figure 3.1 Flowchart showing the three steps of model development 

 

3.1.3.1 Step 1: Determining aspect ratio 

 The first step in the analysis was to construct a polygon that covered the area of interest 

(downtown Vancouver) using the local area boundary layer. This polygon was used to truncate 

the public streets, right-of-way street widths, and building footprints layers to the area of interest. 

(Figure 3.2) 

Step 1: Determining Aspect Ratio 

Step 2: Determining Ideal Street Bearing 
with Respect to Wind Direction  

Step 3: Multi-criteria Analysis  
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Figure 3.2 Streets and buildings in area of interest 

 

Some data cleanup was performed on the street widths layer as metrics used in the raw 

file included both feet and meters. Individual road segments on the public streets layer were 

made continuous and buffers were applied. This ensured adequate spatial joining to the right-of-

way widths layer. Further manipulations created a polyline street layer containing street width 

information as an attribute. 
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 This layer served as the input for all further analysis. All fields in which the street width 

values were ―0 m‖ were deleted since street width is the denominator in the aspect ratio 

calculation (Equation 3.1). The ―0 m‖ streets corresponded to bike lanes along the Seawall and 

streets that no longer existed.  

 Before moving on to the next step, it was necessary to determine the street bearings in 

order to find buildings that were perpendicular to the street. This was accomplished using an 

Easy Calculate Add-In. (244) 

 The ―generate near table‖ tool was applied to the new layer to search for the 5 nearest 

neighbors (i.e. close by buildings from the building footprint layer) falling within a suitable 

search radius (i.e. 35 m). The tabulated data was spatially joined to the street segments and 

exported for manipulations in Microsoft Excel and R. The street bearings coordinate system 

(0°=North, 90°=East, 180°=South, 270°=West) from the previous step was converted to the polar 

coordinate system to match the way in which nearest-distance angle data (0°=east, 90°=north, 

±180°=west, -90°=south) was reported. Conditional nested ―if‖, ―and‖ and ―or‖ statements were 

used to select the 2 nearest perpendicular buildings (falling within 90°± 5° of the street bearing) 

from the 5 potential nearest neighbors. The output from this analysis (building identification 

numbers) was sorted into 2 columns using R. The ―index‖, ―match‖, ―if‖ and ―sum‖ functions in 

Microsoft Excel helped compile the street width data for each street segment centroid (by 

summing the shortest distance between the centroid and the 2 nearest perpendicular neighbors). 

In instances where a centroid only had 1 near neighbor, the right-of-way street width was used as 

a proxy for street width. 

 This information was saved and added to ArcMap. By spatially joining this layer based 

on building identification number, up to 2 corresponding building heights were extracted as 2 
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new attribute columns (one height for each near building). Aspect ratio was determined with the 

―Field Calculator‖ following Equation 3.1. Details of the ArcMap procedure are outlined in 

Table 3.1.  

 

Equation 3.1 Aspect Ratio  

             

     

 

 
 

h1, h2 = heights of perpendicular buildings (m) 

w = street width (m) 

 

Table 3.1 Summary of steps to determine aspect ratio 

Step Input Layer Tool Used Output Layer 

1 local_area_boundary 

(raw data file) 

Dissolve, Edit and Merge 

―Downtown‖ and ―West End‖  

DT_Crop 

2 Van_FP_Primary 

(raw data file) 

Select Layer by Location using 

DT_Crop 

DT_FP_Primary has FIDs 

for each building 

(polygon) and a building 

height field. 

3 public_streets 

(raw data file) 

Select Layer by Location using 

DT_Crop 

DT_public_streets  

4 right-of-way_widths 

(raw data file) 

Select Layer by Location using 

DT_Crop 

DT_row_widths  

5 DT_row_widths Add Field, Select by Attributes 

and Field Calculator to convert 

widths to meters in a new field 

titled WIDTH_m 

DT_row_widths 

6 DT_public_streets Add Field, Split Function and 

Field Calculator to transfer 

HBLOCK’s street names to a new 

field titled STREET 

DT_public_streets 

7 DT_public_streets Dissolve based on STREET field DT_dissolved_streets  

8 DT_dissolved_streets Buffer (5 m, full sides, round 

ends)  

DT_buffered_streets 
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Step Input Layer Tool Used Output Layer 

9 DT_buffered_streets Spatial Join (average) with 

DT_row_widths  

DT_buffered_widths 

10 DT_buffered_widths Feature to Point (inside) DT_buffered_centroid 

11 DT_buffered_centroid Buffer (5 m) DT_centroid_5m 

12 DT_dissolved_streets Spatial Join (average) with 

DT_centroid_5m  

DT_street_widths 

13 DT_street_widths Densify (distance: 0.5 m)  DT_street_widths 

14 DT_street_widths Dice (vertex limit: 10) DT_dice_stwdth  

15 DT_dice_stwdth Add Field and use 

―polyline_Get_Azimuth‖ from an 

Easy Calculate Add-in to 

determine street bearing.  

DT_dice_stwdth has FIDs 

for each street (polyline). 

Other fields include street 

width and street bearing. 

16 DT_dice_stwdth Generate Near Table (search 

radius: 35 m, include angle, 

maximum number of closest 

matches: 5) with DT_FP_Primary  

DT_near_analysis (table 

output) has OIDs for each 

street (polyline) - building 

(polygon) pair, IN_FIDs 

for streets and 

NEAR_FIDs for near 

buildings. Other fields 

include nearest distance 

and nearest angle.  

17 DT_near_analysis 

(table output) 

Select by Attributes 5 subsets of 

data using this query: 

SELECT*FROM 

DT_near_analysis WHERE: 

MOD (―OID‖,5)=0. Repeat with 

(―OID‖,5)=1, (―OID‖,5)=2, 

(―OID‖,5)=3, and (―OID‖,5)=4. 

Export tables. 

DT_near_0 

DT_near_1 

DT_near_2 

DT_near_3 

DT_near_4 

(table outputs) 

18 DT_dice_stwdth Join (keeping all records) with 

table outputs (DT_near_0, 

DT_near_1, DT_near_2, 

DT_near_3, and DT_near_4) 

using street (polyline) FIDs. Then 

export. 

DT_near_poly  

(table output) shows 

streets (with width and 

bearing) and the FIDs of 

the 5 nearest buildings 

and the angle and distance 

to them. 
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Step Input Layer Tool Used Output Layer 

19 DT_near_poly 

(table output) 

In Excel and R: determine up to 2 

closest perpendicular neighbors 

using nested conditional ―if‖, 

―and‖, ―or‖ statements. Data 

cleanup (using  ―index‖, ―match‖, 

―if‖ and ―sum‖ statements) prior 

to export. 

Near_Dist   

(table output) shows 

streets (with width) and 

the FIDs of the 2 

perpendicular neighbors 

and the distance to each 

neighbor. 

20 DT_dice_stwdth Join (keeping all records) with 

table output (Near_Dist) using 

street (polyline) FIDs.   

DT_dice_stwdth shows 

streets (with width) and 

the FIDs of the 2 

perpendicular neighbors 

and the distance to each 

neighbor. 

21 DT_FP_Primary Export DT_FP_Primary2 

22 DT_dice_stwdth Join (keeping all records) with 

DT_FP_Primary using building 

(polygon) FIDs to include height 

information for a nearest 

neighbor. Repeat with 

DT_FP_Primary2 to include 

height information for the second 

nearest building.  

DT_dice_stwdth shows 

streets (with width) and 

the FIDs of the 2 

perpendicular neighbors 

(with heights) and the 

distance to each neighbor. 

23 DT_dice_stwdth Add Field and Field Calculator to 

define aspect ratio. 

DT_dice_stwdth 

 

 

 

3.1.3.2 Step 2: Determining ideal street bearing with respect to wind direction 

 For the purposes of this study, the dominant wind direction from the previous year (i.e. 

2013) was chosen. According to Environment Canada data, the dominant direction was easterly. 

(243) This model employs regional weather station data rather than data specific to the study 

area of interest. Extrapolating this weather monitoring data to the study area involves making an 

assumption that weather conditions remain stable and are applicable to the entire downtown area. 

Street bearings indicative of canyon conditions (i.e. 0º and 180º) should run perpendicular to the 

wind direction (i.e. East=90º) and are dealt with in the normalization step (explained in the next 
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section).  

 

3.1.3.3 Step 3: Multi-criteria analysis 

 The final step was to perform a multi-criteria analysis. First, the aspect ratio and street 

bearings were normalized so they can be compared with one another. The normalization tool 

used was ―fuzzy membership‖. Only aspect ratios exceeding 0.7 were exported for this stage of 

assessment. After converting the aspect ratio shapefile into a raster using the ―point to raster‖ 

tool, this layer was assigned values from 0 to 1 based on a ―linear‖ membership type. The 

highest aspect ratio was assigned a value of 1, and the lowest aspect ratio (0.7) was assigned a 

value of 0, because higher aspect ratios indicate greater likelihood of street canyon formation. 

 Normalizing street bearings required a more complicated method as there was more than 

one ideal bearing. In addition, 0º and 360º indicated the same bearing (North), so a ―linear‖ 

membership type would not suffice. To overcome this problem, all street bearings that fell 

between 0º and 89º were selected, and 360º were added to each entry. Then the streets layer was 

separated into two distinct layers: one for street bearings between 90º and 269º and the other for 

street bearings between 270º and 449º. This way, an ideal value of 1 can be assigned to two 

bearings (i.e. 180º = South and 360º = North)–those streets that run perpendicular to wind 

direction. A non-ideal value of 0 was assigned to those streets that run parallel to wind direction 

(i.e. 90º = East and 270º = West). This is depicted in Figure 3.3. 

 The street bearing layers were converted into raster format. Then, the "fuzzy 

membership" tool was applied to both street bearing layers, this time using the "Gaussian" 

membership type with a spread of 0.0001. For the 90º to 269º and 270º to 449º layers, the 

assigned midpoints were 180º (South) and 360º (North), respectively. The ―Gaussian‖ 
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membership type was chosen since two ideal bearings (180º and 360º) had to be assigned. Street 

bearings falling on either side of these ideals would gradually decrease in importance as a 

smaller spread (0.0001) was selected. 

 

Figure 3.3 Wind direction 

 

After normalizing the aspect ratios and street bearings, a multi-criteria analysis was 

performed by adding the normalized values together using the ―raster calculator‖. Equal 

weighting of the aspect ratio and the wind direction was done. In theory, the best street canyons 

would hence have a total value of 2 while the worst canyons would have a value of 0. 
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3.1.4 Mobile monitoring evaluation 

3.1.4.1  Route selection 

 Through the development of the multi-criteria analysis model, probable street canyon 

locations were mapped. To assess whether such locations are areas of higher pollutant 

concentrations, particulate matter (PM2.5 and PM10) and particle number concentrations (PNC) 

were measured in potential street canyon and non-canyons locations with both high and low 

levels of traffic. As a preliminary means of characterizing streets of variable traffic (high and 

low), the traffic count data from the City of Vancouver was visually inspected on the online 

platform. (245) To qualitatively confirm regions of higher and lower traffic, multiple 

walkthroughs were completed. In the end, a route measuring approximately 4 km in length was 

chosen as it contained four roughly equidistant complementary street segment classes. These are 

pictured in Figure 3.6 as non-canyon low traffic (NC LT), non-canyon high traffic (NC HT), 

canyon low traffic (C LT) and canyon high traffic (C HT).  

 

3.1.4.1  Instrument setup and data collection 

 The selected 4 km route was walked a total of 46 times (lasting 1.5 to 2 hours per walk) 

between July 14, 2014 and August 11, 2014 according to the sampling schedule (Appendix C.1). 

The sampling campaign hoped to capture concentrations at variable times throughout the week. 

Regrettably, two of the sampling runs were omitted in subsequent data analyses as a flow error 

occurred in a mobile device. Overall, 23 runs were completed during rush hours (7:00 – 9:00 am 

or 4:00 – 6:00 pm) and 21 runs were completed in non-rush hour periods (ranging from 9:00 am 

– 4:00 pm and 6:00 pm – 11:00 pm).  
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 Prior to starting each run, the walking direction (clockwise or counterclockwise) and the 

side of the street (left or right) was randomly determined. This information was recorded in the 

sampling form (Appendix C.1). The instruments, summarized in Table 3.2, were setup following 

manufacturer guidelines (i.e. daily zero calibrations for the CPC 3007 and DustTraks, flow 

calibrations to 3 L/min for the DustTraks) and synced with the same world clock. Once this was 

completed, the two DustTraks—the fixed background instrument (desktop DustTrak) and the 

mobile instrument (handheld DustTrak)—were placed side-by-side for a 10-minute co-location 

as a quality control measure. This was repeated again at the end of the run. The following 

methods sections outline how these co-locations were used, in part, to determine a between-

instrument correction factor. 

 

Table 3.2 Mobile sampling instruments 

Function Instrument Monitors 

Fixed Desktop: DustTrak™ DRX Aerosol Monitor 8533EP 

(TSI® , Shoreview, MN) 

PM (Mass and Size 

Fraction) 

Mobile Handheld: DustTrak™ DRX Aerosol Monitor 8534 

(TSI® , Shoreview, MN) 

PM (Mass and Size 

Fraction) 

Condensation Particle Counter (CPC) 3007 

(TSI® , Shoreview, MN) 

PNC 

Kestrel®  4500 Pocket Weather Tracker 

(Nielsen-Kellerman, Boothwyn, PA) 

Meteorology (Wind 

Direction) 

DG-200 GPS Data Logger 

(GlobalSat Technology Corporation, Chung Ho City 

Taipei Hsien, Taiwan) 

Latitude and Longitude 

 

 All 5 instruments were operated at a sampling frequency of 10 seconds; the Kestrel was 

only run for 3-minute intervals at 8 labeled stop points (refer to Figure 3.6). While the Kestrel 

was monitoring for the 3 minutes, a manual counter was used to record traffic counts. 
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 Throughout the sampling campaign, one individual would remain with the desktop 

DustTrak stationed at the fixed site on Bute St. (labeled as a yellow square in Figure 3.6) while 

the other individual walked the route with the portable instruments. The handheld DustTrak and 

CPC 3007 were carried in a backpack while the GPS and traffic counter were worn around the 

neck. Additional equipment included an Optex DPT175 Digital Pro Compact Tripod (for Kestrel 

mounting) and a clipboard attached sampling form; both of these were carried in hand. 

Instrument and battery charges (Powerex MH-C899S Eight Cell Smart Charger/ Powerex 

Rechargeable NiHM AA and AAA Batteries) were completed overnight.  

 

3.1.4.2 Data downloads, quality and conversions 

 Instrument data was downloaded daily using TrakPro™ Data Analysis Software, v. 

4.6.1.1 (TSI® , Shoreview, MN), TSI Aerosol Instrument Manager®  Software (TSI® , 

Shoreview, MN), DG-200 PC Utility (GlobalSat Technology Corporation, Chung Ho City Taipei 

Hsien, Taiwan) and the Kestrel®  Communicator Interface Software, v 2.1.1 (Nielsen-Kellerman, 

Boothwyn, PA).  

 To better detect the true differences in PM and PNC for the 4 street segment 

classifications: C LT, C HT, NC LT and NC HT, corrections were applied. Correction factors 

(CFs) were incorporated as a means of removing the effect of variability between DustTraks 

(CF1), within runs (CF2) and between days (CF3). Since the study design had 2 co-located 

continuous monitors of the same type (DustTraks) at the start and end of each run, and no co-

located standard reference instrument, Wallace et al.’s (246) approach to calculate instrument 

bias using instrument inter-comparison measurements as the ―true‖ value was adopted. In this 

case, the mean measurement was used as the ―true‖ value to determine relative between-
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instrument bias; 258 sets of 10-minute averaged co-locations (from in-lab co-locations and pre- 

and post-run co-locations) were included in the calculation of CF1 (Equation 3.2). Equations for 

the latter two temporal corrections, CF2 and CF3, are displayed in Equation 3.3and Equation 3.4, 

respectively.  

 

Equation 3.2 Between-instrument correction factor (CF1) uses desktop or handheld DustTrak bias 

(calculated from 258 sets of 10 min lab and field co-locations) to correct instrument variability. 
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CF1 = Correction Factor 1 

A = reading on DustTrak of interest (desktop or handheld) 

D = desktop DustTrak reading 

H = handheld DustTrak reading 

o = observation number (1-60); 60 observations = 10 min since the sampling frequency is 10 sec 

m = number of 10 min bias calculations (1-258) 

 

 

 

 

 



 

84 

 

Equation 3.3 Within-run correction factor (CF2) uses the 15-min desktop DustTrak’s rolling average divided 

by the desktop DustTrak’s overall run average to correct the Handheld DustTrak and CPC 3007 (corrected 

using the CF2 values for PM2.5). The CF1 corrected desktop DustTrak readings are used in this calculation. 

     

 

  
∑   
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CF2 = Correction Factor 2 

D = desktop DustTrak reading  

i = i
th

 desktop DustTrak reading in the sampling run of interest 

n = total number of Desktop DustTrak readings in the sampling run of interest 

x = 45
th

 observation within the 90 observations; 90 observations = 15 min since sampling 

frequency is 10 sec 

 

Equation 3.4 Between-day correction factor (CF3) uses the daily Burnaby South Station PM2.5 concentration 

(or PM10 concentration where PM2.5 is unavailable) divided by the average PM concentration across all 

sampling days to correct the Handheld DustTrak and CPC 3007. 

     
  

 

  
∑   

  
   

 

CF3 = Correction Factor 3 

B = Burnaby South Station’s daily average PM2.5 (or PM10) concentration 

d = day of sampling (1-23) 

 

3.1.4.3 Statistical analysis 

 Outdoor air pollution typically follows a lognormal distribution; as such, histograms of 

the untransformed and log-transformed PM2.5, PM10, and PNC were plotted. Descriptive statistics 
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including count, minimum, maximum, mean, standard deviation, median, geometric mean, 

geometric standard deviation, skewness and kurtosis were also evaluated to confirm the need to 

log-transform the dataset. Values below the DustTrak’s limit of detection (LOD) of 0.001 mg/m
3 

were substituted with LOD divided by the square root of 2 to minimize the effect of missing 

values. (247,248) After the substitution, the three correction factors were applied prior to the 

logarithmic transformation.  

 Descriptive statistics summarized the differences in traffic counts from the eight 

sampling locations. In every run, each set of 3-minute traffic counts within the street segment 

categories (C LT, C HT, NC LT, NC HT) were averaged and divided by three to calculate the 

mean vehicles per min. This was done to confirm the decision to classify road segments as low 

or high traffic. 

 To investigate the statistical relationship (significance level, α = 0.05) between log-

transformed concentration of PM2.5 or log-transformed PNC and the four street segment 

classifications, a linear mixed effects model was used (Equation 3.5). An advantage of the linear 

mixed effects model is the ability to account for repeated air quality measures within runs. The i 

and j indices refer to i
th

 measurement in the j
th

 run. The β1 intercept signifies the fixed effect of 

the street segment category on the log-transformed outcome variable while β2 intercept signifies 

the fixed effect of rush hour on the outcome. A random intercept accounts for repeated 

measurement by runs while an overall random error term is denoted by eij. 
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Equation 3.5 Linear mixed effects model  

                                               

logYij = log-transformed PM or PNC  

β = intercepts 

i = i
th

 measurement 

j = j
th

 run (1-44) 

          
   = overall random error term 

 

3.2 Results 

3.2.1 Multi-criteria evaluation model 

The final multi-criteria evaluation model for potential street canyons in downtown 

Vancouver is presented in Figure 3.4. Building heights in the downtown area ranged from 3 m to 

193 m in height. In considering only aspect ratios greater than 0.7 and the predominant wind 

direction, locations were designated a value between 0 and 2 for their ability to theoretically act 

as street canyons. From the multi-criteria analysis, the range of outputs were 0.45 - 1.82. The 

multi-criteria analysis is superimposed on the mobile monitoring route in Figure 3.5. In 

visualizing this, the choice to designate the canyon and non-canyon segments becomes quite 

clear. These are pictured in Figure 3.6 as NC LT, NC HT, C LT and C HT.  
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Figure 3.4 Multi-criteria analysis classified by natural breaks 
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Figure 3.5 Mobile sampling route overlaid with the multi-criteria analysis outcome. The thick black line 

denotes the path for mobile model evaluation. Where any color is present on the black route, a canyon is 

expected. Warmer tones show stronger canyons while cooler tones show weaker canyons. 
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Figure 3.6 Mobile monitoring route classification scheme: C HT [MCE value = 1.9], C LT [MCE value = 1.0], 

NC HT [MCE value = 0.2] and NC LT [MCE value = 0.3]. Red stars labeled A through H denote 

measurement locations for traffic count and meteorological conditions. The fixed site is represented by the 

yellow square and the starting point is shown as a green arrow. 
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Table 3.3 summarizes the aspect ratios entered into the multi-criteria model (grouped by 

street segment classifications). Bearing this in mind, and taking into account traffic patterns, 

Figure 3.6 was constructed to illustrate the four road classifications. The four road segments 

were divided as:  

1) NC HT: Denman St./Pendrell St. to W. Georgia St./ Cardero St., 

2) C HT: W. Georgia St./ Cardero St. to W. Georgia St./ Thurlow St., 

3) C LT: W. Georgia St./Thurlow St. to Jervis St./ Comox St., and  

4) NC LT: Jervis St./ Comox St. to Denman St./ Pendrell St.  

 

Table 3.3 Aspect ratio summary statistics for the four street segment classes. The total number of aspect ratio 

inputs is represented by n. Mean, standard deviation (SD), minimum (Min), and maximum (Max) are all 

dimensionless parameters. 

Statistic Classification 

C HT C LT NC HT NC LT 

n 299 243 233 196 

Min 0 0 0 0 

Max 5.1 4.5 1.3 1.6 

Mean 1.88 1.04 0.20 0.33 

SD 1.64 1.22 0.26 0.35 

 

 Care was taken to verify the lognormal distribution of PM and PNC data. Histograms in 

Figure 3.7 suggest the data were lognormally distributed as the transformation caused the right-

tailed distribution to better approximate a Gaussian spread. Notice how the positively skewed 

untransformed data (skewness of 76.11 for PM2.5, 67.38 for PM10 and 6.45 for PNC) tends 

toward a zero for skewness once log-transformed (skewness of -0.56 for log-transformed 

PM2.5, -0.59 for log-transformed PM10 and -0.25 for log-transformed PNC); this is a sign of an 
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asymmetric distribution balancing out. The large, critically non-normal kurtosis values in the 

pre-transformed dataset (7989.71 for PM2.5, 6543.99 for PM10 and 81.46 for PNC) imply a taller 

and skinnier y-axis distribution than a normally distributed dataset (i.e. post-transformation 

values of 2.37, 2.21 and 2.00, respectively). Further justification is available in Table 3.4. 

Regardless of the pollutant measured, the mean was always greater than the median value. 

Additionally, the median and geometric mean were very close. These are all characteristics of 

lognormal distributions.  
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Figure 3.7 Untransformed (left) and log-transformed (right) histograms for corrected and LOD/√2 

substituted PM2.5 and PM10 [top panel] and PNC [bottom panel]. Note: the untransformed corrected PM2.5 

and PM10 [top left] is shown with a truncated x-axis. 
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Table 3.4 Summary statistics for untransformed, corrected, and LOD/√2 substituted PM2.5, PM10 and PNC. 

The total number of measurements is represented by n. Mean, standard deviation (SD), 5
th

 percentile, 95
th

 

percentile, median and geometric mean (Geo. Mean) are measured in µg/m
3
 for PM results and particles/cm

3
 

for PNC results. Geometric standard deviation (Geo. SD), skewness and kurtosis are all dimensionless 

parameters. The averaging time was 10 seconds. 

Statistic PM2.5 PM10 PNC 

n 32119 32119 30900 

5
th

 percentile 2.92 3.44 3271 

95
th

 percentile 43.84 50.56 42986 

Mean 21.13 23.71 17798 

SD 63.54 58.20 18475 

Median 16.51 18.88 12998 

Geo. Mean 14.80 16.90 12963 

Geo. SD 2.27 2.27 2.23 

Skewness 76.11 67.38 6.45 

Kurtosis 7989.71 6543.99 81.46 

 

 In dealing with the left-censored lognormal data, the geometric standard deviations 

(GSDs) were analyzed for the raw (i.e. uncorrected and pre-substituted) DustTrak datasets. The 

GSDs of the handheld DustTrak for PM2.5 and PM10 were 1.79 and 1.78, respectively; similarly, 

the GSDs of the desktop DustTrak for PM2.5 and PM10 were 1.50 and 1.51, respectively. 

Hornung and Reed (248) recommend a substitution of LOD/√2 as the LOD/2 replacement should 

only be used when the data are highly skewed with a GSD of 3.0 or greater. 

 Three correction factors were applied to the instrument readings. These corrected for 

inter-instrument (DustTrak) variability (CF1), within-run variability (CF2), and between-day 

variability (CF3). CF1 was determined to be 1.104 and 1.117 for desktop DustTrak PM2.5 and 

PM10, respectively. For handheld DustTrak PM2.5 and PM10, CF1 was 0.914 and 0.905, 

respectively.  
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 The within-run adjustment factors utilized the desktop DustTrak to correct the handheld 

DustTrak PM2.5 or PM10 readings (with PM2.5 or PM10 CF2s) and the CPC 3007 PNC readings 

(with PM2.5 CF2s). CF2s ranged from 0.370 - 2.730 for PM2.5 and from 0.333 - 2.571 for PM10. 

The CF2 mean and standard deviation for PM2.5 was 0.987 and 0.192, respectively. The CF2 

mean and standard deviation for PM10 was 0.983 and 0.190, respectively.  

 Burnaby South Station’s PM2.5 and PM10 daily averages were used to calculate CF3 to 

adjust handheld DustTrak and CPC 3007 measurements. Since a high correlation (r = 0.84) 

existed between the PM2.5 and PM10 estimated correction factors (Figure 3.8), the daily PM10 

CF3s were used as a proxy for PM2.5 CF3s for the last four sampling days (August 5
th

, 9
th

, 10
th

 

and 11
th

). During this period, the reference PM2.5 monitor was removed for unexpected 

instrument servicing. The third correction factor (CF3) ranged from 0.39 to 1.64 with a mean of 

1.01 and a standard deviation of 0.33 (Appendix C.2). 
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Figure 3.8 Between-day correction factor (CF3) for PM10 and PM2.5. The black line shows a 1:1 relationship 

and the red line is the line of best fit. 

 

 Of the 44 mobile runs, 23 were performed during rush hours while 21 were performed 

during non-rush hours as defined earlier. Rush hour and non-rush hour stratified runs produced 

the following per-minute traffic counts corresponding with each of the 4 road segment 

classifications (Figure 3.9). Rush hours were found to have 0.8 ± 1.8 (NC LT), 3.6 ± 1.5 (C LT), 

36.5 ± 8.9 (NC HT) and 8.3 ± 3.2 (C HT) vehicles/min. Non-rush hours were found to have 0.8 ± 

0.4 (NC LT), 3.7 ± 1.3 (C LT), 32.6 ± 5.6 (NC HT) and 6.0 ± 1.9 (C HT) vehicles/min. As 

reported here, the variability in traffic counts was always lower in non-rush hours. Moreover, the 
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traffic counts were consistently greater in ―high traffic‖ areas compared to ―low traffic‖ areas. 

This analysis affirms the initial differentiation of high and low traffic.  
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Figure 3.9 Boxplots for the average traffic counts during all hours sampled, non-rush hours, and rush hours. 

The horizontal lines within the box visualize the 25
th

 percentile, the median and the 75
th

 percentile. The upper 

and lower whiskers from the boxplot represent values of 1.5 times the interquartile range; outliers are plotted 

as points. 



 

98 

 

 As one would expect, the descriptive statistics in Table 3.4 conveyed the likenesses 

between PM2.5 and PM10 as both size fractions were measured simultaneously using one 

instrument (handheld DustTrak). And so, the remainder of the results focus on PM2.5, as it is a 

better indicator of adverse health effects. Table 3.5 and Table 3.6 enable the stratified assessment 

of particulate pollution under forecasted rush hour and non-rush hour intervals. In non-rush 

hours, the roads experience an elevated variability in pollutant levels.  

 

Table 3.5 Descriptive statistics for rush hour (RH)/ non-rush hour (NRH) stratified PM2.5 in the 4 road 

segments. The total number of measurements is represented by n. Mean, standard deviation (SD), minimum 

(Min), maximum (Max) and geometric mean (Geo. Mean) are measured in µg/m
3
. Geometric standard 

deviation (Geo. SD) is a dimensionless parameter. The averaging time was 10 seconds. 

Time of Day Parameter n Min Max Mean SD Geo. Mean Geo. SD 

RH 

C LT 5983 0.43 874.98 18.12 20.49 13.55 2.19 

NC LT 3099 0.52 728.71 18.31 26.98 13.65 2.16 

NC HT 3582 0.48 4208.29 20.51 74.78 14.59 2.10 

C HT 4303 0.68 306.04 19.67 16.39 14.96 2.14 

NRH 

C LT 5500 0.22 722.76 21.03 23.71 15.90 2.21 

NC LT 2721 0.52 7805.20 22.50 151.48 13.70 2.53 

NC HT 3239 0.52 3257.67 29.33 90.94 16.63 2.74 

C HT 3692 0.36 2500.21 22.60 54.86 16.01 2.25 
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Table 3.6 Descriptive statistics for rush hour (RH)/ non-rush hour (NRH) stratified PNC in the 4 road 

segments. The total number of measurements is represented by n. Mean, standard deviation (SD), minimum 

(Min), maximum (Max) and geometric mean (Geo. Mean) are measured in particles/cm
3
. Geometric standard 

deviation (Geo. SD) is a dimensionless parameter. The averaging time was 10 seconds. 

Time of Day Parameter n Min Max Mean SD Geo. Mean Geo. SD 

RH 

C LT 5524 1072 247648 15089 12838 11138 2.24 

NC LT 2957 0 189813 13217 10828 9864 2.21 

NC HT 3408 0 175225 18284 14937 13917 2.24 

C HT 4119 1091 266661 23479 26079 15744 2.43 

NRH 

C LT 5240 0 188062 17803 12905 13931 2.09 

NC LT 2721 1494 112195 15177 12069 11913 2.01 

NC HT 3239 1557 184184 19051 15483 14474 2.14 

C HT 3692 2146 404351 19559 30406 13321 2.20 

 

 

 

3.1.1 Linear mixed effects model 

 Two categorical variables were included in the final linear mixed effects model for PM2.5 

(AIC = 46761) and PNC (AIC = 50014) as outlined in Table 3.7 and Table 3.8, respectively. The 

street segment category was treated as a categorical variable with four levels (C HT, C LT, NC 

HT and NC LT) while rush hour was treated as a categorical variable with two levels (NRH = 0, 

RH = 1). Random effects for repeated measurements within runs were accounted for in the error 

term.  

 

Table 3.7 Effect estimates for geometric mean concentrations of PM2.5 (µg/m
3
) and the corresponding 95% 

confidence intervals when compared to the reference category (NC LT). 

 Effect Estimate 95% CI p-value 

Intercept (NC LT) - - < 2 x 10
-16

 * 

C HT 1.11 [1.09, 1.13] < 2 x 10
-16

 * 

C LT 1.08 [1.06, 1.09] < 2 x 10
-16

 * 

NC HT 1.16 [1.14, 1.18] < 2 x 10
-16

 * 

Rush Hour 0.92 [0.62, 1.36] 0.67 
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Table 3.8 Effect estimates for geometric mean of PNC and the corresponding 95% confidence intervals when 

compared to the reference category (NC LT). 

 Effect Estimate 95% CI p-value 

Intercept (NC LT) - - < 2 x 10
-16

 * 

C HT 1.36 [1.34, 1.39] < 2 x 10
-16

 * 

C LT 1.17 [1.15, 1.19] < 2 x 10
-16

 * 

NC HT 1.34 [1.31, 1.36] < 2 x 10
-16

 * 

Rush Hour 0.94 [0.66, 1.34] 0.72 

 

 Table 3.7 indicates the PM2.5 concentrations in the C HT, C LT and NC HT road 

segments were 1.11 fold, 1.08 fold and 1.34 fold greater than concentrations recorded in the NC 

LT road segment, respectively. Table 3.8 indicates the PNC concentrations in the C HT, C LT 

and NC HT road segments were 1.36 fold, 1.17 fold and 1.34 fold greater than concentrations 

recorded in the NC LT road segment, respectively.  

 

3.2 Discussion 

The downtown Vancouver multi-criteria evaluation model was established from the 

previous year’s predominant wind direction and the aspect ratios of each road segment. Although 

these variables were given equal weighting when entering the analysis, the outcome of the multi-

criteria evaluation (MCE values of 1.9, 1.0, 0.2 and 0.3 for C HT, C LT, NC HT and NC LT, 

respectively) remained largely driven by the aspect ratio variable (1.88, 1.04, 0.20 and 0.33 for 

the corresponding segments). Ideally, the MCE values for the street canyons in the mobile 

evaluation (C HT and C LT) would be more comparable so as to reduce uncertainty in 

downstream data interpretation.  

 A straightforward explanation for this phenomenon is that the Easterly wind direction 

evenly impacts pollutant removal in the downtown core’s diagonally oriented road network. 
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With southwest-northeast and southeast-northwest roads alike, an Easterly wind will not be 

perfectly perpendicular to any roadway, thereby reducing the impact of wind in the model.  

 The street segment classifications of C HT, C LT, NC HT and NC LT were based in part 

on the ability to characterize traffic density as high or low. The appeal of the approach taken— 

that is, to combine traffic levels with the canyon characterization allowed an assessment of the 

impact of rush hour conditions on high and low traffic canyon and non-canyon road segments.  

 Traffic rates in vehicles/minute during rush hour were 8.3 ± 3.2 for C HT, 3.6 ± 1.5 for C 

LT, 36.5 ± 8.9 for NC HT and 0.8 ± 1.8 for NC LT. Traffic rates in vehicles/minute during non-

rush hour were 6.0 ± 1.9 for C HT, 3.7 ± 1.3 C LT, 32.6 ± 5.6 NC HT and 0.8 ± 0.4 NC LT. 

These measurements act as affirmation that roads classified as ―high traffic‖ did indeed 

experience greater traffic levels on average than those roads classified as ―low traffic‖ 

throughout both rush hour and non-rush hour conditions (Table 3.5 for PM2.5 and Table 3.6 for 

PNC). Notably, large differences in traffic were experienced between the NC HT and C HT road 

segments. This makes it less likely that any canyon effects can be observed. Another trend that 

was observed was the lower variability (as expressed by standard deviation) in non-rush hour 

conditions compared to rush-hour conditions. This reduced variability is likely a function of 

fewer vehicles traveling on the same road segments during non-rush hour conditions.  

 When comparing the final linear mixed effect models with the null models which 

excluded the rush hour fixed effect, rush hour effects were not statistically significant (α = 0.05) 

in the final PM2.5 (p = 0.66) and PNC (p = 0.72) models despite a slight improvement in model 

fit. Rush hour conditions resulted in an 8% reduction (95% CI: -38% to 36%) in the geometric 

mean of PM2.5 concentrations and a 6% reduction (95% CI: -34% to 34%) in the geometric mean 

of PNC when compared with non-rush hour conditions. The effect of rush hour on particulate 
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matter concentrations is counterintuitive as the expected outcome should indicate higher 

concentrations during rush hours; however, the large confidence intervals around the effects 

estimates make these results difficult to interpret.  

The street segment category levels were statistically significant predictors of PM2.5 mass 

concentration and PNC in both final models. In the final model for PM2.5, the estimates for the 

effects of C HT, C LT, and NC HT were an increase of 11%, 8%, and 16%, respectively, on the 

geometric mean of PM2.5 concentrations compared with NC LT. Similarly, the final model for 

PNC showed C HT, C LT, and NC HT were associated with a 36%, 17% and 34% increase, 

respectively, on the geometric mean for PNC compared with NC LT. These outcomes clearly 

depict the street segment effect sizes were greater in the PNC model over the PM2.5 model. This 

may demonstrate that PNC is a more sensitive metric of road traffic pollution than PM2.5. 

The finding that C LT had greater concentrations of PM2.5 and PNC than NC LT in the 

linear fixed effects model is consistent with the study by Chau et al. (249) which found that 70% 

of the variability in PM10 concentration along a canyon is attributed to the aspect ratio of the 

road. This reinforces the underlying principle of using aspect ratios to define potential canyons.  

Spadaro and Rabl (111) contend that the canyon effect is more pertinent for primary 

pollutants as secondary species have shorter residence times in canyons compared to the 

chemical reaction times. Given this, the effect estimates in the PNC model may more accurately 

represent the changes in local TRAP concentrations (when compared with the PM2.5 model) as 

PNC is emitted as a primary pollutant whereas PM2.5 can be emitted in a primary and secondary 

form. This is consistent with what other researchers have found. (150,250) The street canyon 

evaluation did not have the capabilities to distinguish the relative contribution of primary versus 
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secondary particulate matter pollution. Perhaps further investigations of primary TRAP 

pollutants in a street canyon (e.g. NO) will illustrate more apparent canyon effects.  

 For the street segment variable, the reference category was defined as NC LT as this 

segment was anticipated to experience the lowest concentrations among the four levels. Indeed, 

the results corroborate this reference category selection. Contrary to the expectation that the C 

HT level would show the largest fold-difference in particles concentration, this result was only 

evident in the more responsive PNC model. From the road segment effect estimates, the findings 

reveal C LT resulted in the smallest effect on concentration in both models (8% greater than NC 

LT for PM2.5 and 17% greater than NC LT for PNC). Comparatively, the fixed effects of NC HT 

as compared with NC LT (i.e. the effect of traffic) showed an effect estimate increase of 16% 

and 34% for PM2.5 and PNC, respectively. This noteworthy observation suggests it is not the 

classification as canyon/non-canyon that primarily influences the hypothesized increase in 

particulate matter concentrations, but more so the impact of traffic density as there is a doubling 

of the effect estimates. The larger effect estimate of traffic density is likely in part a result of 

elevated traffic causing turbulent conditions and road dust resuspension. 

 Collectively, the interaction analysis uncovers potential insufficiencies in the initial 

categorization of the street segment variable, as the effect estimate directionality is not consistent 

between the PM2.5 and PNC models. The primary classification was motivated by field 

constraints and the best way to sort road types. The constraints included the necessity to select 

four roughly equidistant segments to capture predominantly canyon or non-canyon areas while 

accounting for low and high traffic patterns given limited traffic count data and instrument 

battery life. Future studies may benefit from a design that maintains canyon/ non-canyon, low 
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traffic/ high traffic, rush hour/ non-rush hour as three separate explanatory variables to further 

examine the underlying relationships.  

 This study was mainly constrained by the raw data limitations. Some inaccuracies in the 

public street data found in the City of Vancouver catalogue may have hindered precise aspect 

ratio calculations. In view of the fact that buildings are often setback from property lines, where 

possible, the street width was estimated using the addition of the shortest distance between the 

street segment centroid and the two nearest perpendicular neighbors. For street segments that 

only had one building nearby (within 35 m), the right-of-way street width was utilized as a 

substitute. A degree of uncertainty is inserted into the model due to these restrictions.  

 Another deficiency is the lack of finer-scale (e.g. downtown Vancouver) historical wind 

data as this model was limited to the regional scale (i.e. Vancouver). Unsuccessful attempts were 

made to secure more relevant wind data. Wind data collected during sampling was not inputted 

into the linear mixed effects model since the wind roses illustrated the tendency for the local 

wind direction to align with the traffic flow at the sampling positions.  

 As a whole, this street canyon study possesses a number of strengths. This work is among 

the first to characterize street canyons in a geographical area using a simple GIS-based model for 

aspect ratio and prevailing wind direction. This research stands out as it aims to assess a measure 

of urban morphology for an entire city center whereas the bulk of current canyon investigations 

explore the pollution differentials within a short stretch of road deemed a canyon as compared 

against a non-canyon.  

 In the mobile evaluations of the model (n = 44), measures were taken to ensure 

randomized sampling; the mobile monitoring direction and the side of the street were 

randomized using two successive coin tosses at the onset of each sampling run to minimize 
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systematic and predictable data influences. To obtain a representative sample of temporal 

variability, the sampling scheme was arranged to acquire equal runs of rush hour (7:00 – 9:00 

and 16:00 – 18:00) and non-rush hour conditions. Furthermore, all hours between 7:00 and 23:00 

were sampled to describe the temporal variation in concentrations that may develop during 

daytime traffic hours. Lastly, dataset normalization was accomplished by incorporating pre- and 

post-sampling co-locations of the DustTraks to correct for both inter-instrument correction (CF1) 

and within-run adjustment (CF2). A third correction factor smoothed the day-to-day variability 

(CF3).  

 Taken together, this model can be easily adapted to another geographical region. The 

model withstood the mobile monitoring evaluation indicating some achievement in correctly 

identifying canyons and non-canyons. Additional strategies worthy of consideration include 

generating more definitive explanatory variables to re-appraise this model. 
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Chapter 4: Conclusion 

 

The thesis objectives of 1) evaluating AQMesh performance via co-location and 2) 

creation and appraisal of a street canyon model were accomplished throughout this body of 

work.  

 Our project outcomes suggest that AQMesh, as assayed in the side-by-side London and 

Vancouver comparison requires further improvement to data quality before its incorporation into 

robust monitoring applications. Nonetheless, promising co-location comparisons since this 

project indicate that post-processing adjustments may have improved data output for these 

instruments. In order to move the state of air quality technologies (e.g. AQMesh) forward, the 

research community should continue to develop standardized assessments for data quality, data 

validation, calibration and field evaluations to support the successful integration of novel 

instrumentation into the industry. This is consistent with the recommendation of the 1st 

EuNetAir Air Quality Joint Intercomparison Exercise. (217,241)  

 A basic street canyon model was built using GIS-sourced building footprints, building 

heights, street width and predominant wind direction. This basic model has laid some of the 

framework for future iterations of canyon prediction modeling and may support efforts to better 

define personal exposures in intra-urban LUR models. In addition, a simplistic model with fewer 

inputs can help select potential canyons for more detailed analyses. (74) TRAP in the form of 

PM2.5 and PNC concentrations were shown to increase in C HT, C LT and NC HT street 

segments when compared to the reference level, NC LT. More specifically, the effect estimates 

suggest that traffic density plays a greater role in the determination of TRAP exposures than 

street canyons. Although the results of this study indicate that traffic level characterization 
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requires more attention than street canyon identification, further investigations are needed to 

confirm which of the two variables is indeed more important in personal exposure classification.
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Appendices 

 

Appendix A  Principles of operation for gas sensors 

A.1 Electrochemical sensors 

Electrochemical gas sensors determine the concentration of a target gas by measuring the 

electrical signal in an electrochemical cell. Electrochemical cells house two electrodes (the anode 

and cathode) each contacting an electrolyte. Reduction-oxidation (redox) reactions guide 

electron transfer between electrodes via the wire connection. Oxidation and reduction reactions 

occur at the anode and cathode, respectively. Electrons are lost at the anode and transferred to the 

cathode so the latter gains electrons. Electric potential energy drives the directionality of the 

redox half-reactions. The reaction with the higher potential will proceed in the forward direction 

(i.e. reduction) while the reaction with the lower potential proceeds in reverse (i.e. oxidation). 

(200) 

 In practice, a gas must first pass a small capillary-like opening before diffusing across a 

gas permeable membrane (or hydrophobic barrier) with a specific pore size to reaching a sensing 

electrode. The barrier has a twofold function: to allow a suitable amount of gas to pass through 

and to counteract electrolyte leaks. At the contact surface, the analyte reacts by oxidation or 

reduction with the sensing electrode (designed for the gas of interest). The resister joining this 

electrode with the counter electrode has a measurable current proportional to the gas 

concentration flow between the electrodes. As current generation follows, this sensor is called 

amperometric. The reference electrode is maintained at a constant potential to fix the voltage of 

the nearby sensing electrode. Figure A.1 provides a visual for that described above. (200) 
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Figure A.1 Hydrophobic membrane and electrochemical sensor schematic. Reprinted from Chou (200) with 

permission from McGraw-Hill Global Education Holdings, LLC. 

 

A.2 Infrared sensors 

IR sensors use the IR region of the electromagnetic spectrum to detect gases, as energy 

absorption in this range is both selective and unique. Gas molecules have unique fingerprints or 

absorption peaks in the 2-15 µm range such that molecules with more atoms have more 

absorption bands. Interatomic bond vibrations, specific for a molecule and structure, occur at the 

gas’ natural frequency. Smaller gas molecules have fewer natural frequency modes. (206) 

Components of an IR system include: an IR source; an optical filter; a gas cell and a 

detector (Figure A.2). The IR source is typically a heated wire filament or an electronically 

produced source. Positioning of optical filters, either before the light source of in front of the 

detector, is detector dependent. Filters may be made dispersive with prisms or grating or 

nondispersive with bandpass filter. In nondispersive infrared (NDIR) sensors, the bandpass filter 

is responsible for target gas selectivity. The gas cell has an inlet and an outlet for light passage; 

the light path length is directly related to the radiation absorbed. Finally, the detector converts 

received electromagnetic energy or temperature displacements into electrical signals. (206) 
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Figure A.2 A basic infrared gas detector and a two-detector layout. Reprinted from Chou (206) with 

permission from McGraw-Hill Global Education Holdings, LLC. 

 

Two detection methods are possible stemming from the same premise: energy from the 

radiation matching the gas’ natural frequency is absorbed whereas the rest is transmitted. When 

gases absorb radiation, the molecules vibrate more vigorously causing proportional temperature 

increases that are detectable. Conversely, the wavelength at which the gases absorbed radiation 

will show diminishing radiation energy that is measurable. (206) 

 

A.3 Metal oxide semiconductor sensors 

 MOS sensors detect gases by redox reactions taking place between the gas and the oxide 

surface. (203) Metal oxides are the sensing layers in semiconductor sensors and are deposited by 

thick- or thin-film methods. (251) Tin oxide is frequently selected as the metal oxide because it 

is reactive with various gases and has large deflections in resistance. (165) As gases adsorb and 

desorb, the resistance of the metal oxides are altered. (194) Ideally, these reactions are reversible. 

(251) Environmental oxygen and water vapor-related species could be adsorbed at the surface of 

the sensing layer at ambient conditions. (252) Reducing gases (e.g. CO, H2) react with these 

species to decrease the resistance. (252) In contrast, oxidizing gases (e.g. NO2 and O3) react with 
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these species to increase resistance. (252) At large, the relationship between a sensor’s resistance 

and target gas concentration obeys a power law. (252)
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Appendix B  Meteorological correlation matrices 

B.1 Temperature 

 

Figure B.1 Correlation matrices for co-located Vancouver sensors stratified by temperature (°C). 
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Figure B.2 Correlation matrices for co-located London sensors stratified by temperature (°C). 

  



 

136 

 

B.2 Humidity 

 

Figure B.3 Correlation matrices for co-located Vancouver sensors stratified by relative humidity (%RH). 
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Figure B.4 Correlation matrices for co-located London sensors stratified by relative humidity (%RH). 
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B.3 Wind speed 

 

Figure B.5 Correlation matrices for co-located Vancouver sensors stratified by wind speed (km/h). 
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Figure B.6 Correlation matrices for co-located London sensors stratified by wind speed (m/s). 
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B.4 Season 

 

Figure B.7 Correlation matrices for co-located Vancouver sensors stratified by season. 
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Figure B.8 Correlation matrices for co-located London sensors stratified by season. 
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Appendix C  Mobile campaign supplementary information 

C.1 Sampling schedule 

 July August 

Time 
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Figure C.1 Mobile monitoring sampling schedule. Rush hour periods (between 7:00 - 9:00 and 16:00 – 18:00) were coded in green while non-rush hour 

periods were coded in pink. Routes in yellow had flow errors so similar day of week and time of day re-runs were conducted in purple. Cancellations (in 

red) on August 2
nd

, 2014 through August 4
th

, 2014 as a result of the Celebration of Lights, Vancouver Pride Parade and British Columbia Day. 
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Direction: Clockwise or Counter Clockwise 

Side of Street: Right or Left 

Date: 

Run Number:  

Weather Conditions: 

 
Figure C.2 Mobile monitoring data collection form 
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C.2 Between-day correlation factors (CF3) 

Table C.1 Between-day correction factors based on PM2.5 (and PM10 proxies) from the Burnaby South 

Station. 

Date CF3 

Monday, 14 July, 2014 1.24 

Tuesday, 15 July, 2014 1.13 

Wednesday, 16 July, 2014 1.13 

Thursday, 17 July, 2014 0.84 

Friday, 18 July, 2014 1.12 

Saturday, 19 July, 2014 0.58 

Sunday, 20 July, 2014 0.49 

Monday, 21 July, 2014 0.39 

Tuesday, 22 July, 2014 1.13 

Wednesday, 23 July, 2014 0.97 

Thursday, 24 July, 2014 0.48 

Friday, 25 July, 2014 0.72 

Saturday, 26 July, 2014 0.93 

Sunday, 27 July, 2014 1.18 

Monday, 28 July, 2014 1.28 

Tuesday, 29 July, 2014 1.42 

Wednesday, 30 July, 2014 1.27 

Thursday, 31 July, 2014 1.45 

Friday, 1 August, 2014 1.25 

Tuesday, 5 August, 2014 0.80 

Saturday, 9 August, 2014 0.89 

Sunday, 10 August, 2014 0.96 

Monday, 11 August, 2014 1.64 

 


