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Abstract

This study examines the structure and frequency of free seiche modes in
fjord-type multi-armed lakes in order to generalize features of the response
of those lakes. The effect of multiple arms on seiches within a lake is not
easy to predict. To do so, this study develops a simplified analytical model
(SAM) based on idealized lake geometries. In addition, a characterization of
surface (barotropic) modes is compared for two “Y-shaped” lakes: Quesnel
Lake in Canada, and Lake Como in Italy. Lake Como and Quesnel Lake
are studied through a combination of field observations and modelling, both
numerically using a Finite Element Method (FEM) scheme and using SAM.

SAM demonstrates that multi-armed lakes are subject to two classifica-
tions of behaviour: a full-lake response, in which all arms are active; and
a decoupled response, in which seiching is constrained to only two arms of
the lake. A geometric parameter in each arm, which represents the travel
time of a progressive shallow-water wave in that arm, determines the range
of behaviours expressed: each lake will either experience only a whole-lake
response or it will exhibit alternating whole-lake and decoupled modes.

The behaviour predicted by SAM is consistent with modes observed
and predicted in both Quesnel Lake and Lake Como. Modal periods are
identified from observed water level measurements using spectral analysis.
FEM predicted periods agree with observations. SAM correctly reproduces
the periods of the lowest frequency modes in both lakes when a constant depth
is used for each arm. Mode-shapes predicted by SAM qualitatively match
those given by the FEM model. While all modes of Quesnel Lake are whole-
lake modes, some of the modes in Lake Como exhibit a decoupled response.
The results given here also support generalization of the fundamental mode
as being inherently the same structure as Merian-type modes in simple
elongated lakes.

While the study focusses on barotropic modes, SAM can be similarly
applied to internal (baroclinic) modes, and so the general behaviours ob-
served here are appropriate for describing both the barotropic and baroclinic
responses of multi-armed lakes.
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Lay Summary

Wind forcing along the surface of a lake pushes water to the downwind end.
When the wind forcing is released, this water mass rocks back and forth in a
motion called seiching. Accompanying this oscillation of the water surface
are oscillations of the currents within the lake, which are important for the
overall transport of material. While these oscillations can be described very
well in simple lakes, when lakes have multiple arms we can no longer make
general statements about this seiching. This study uses a combination of
theoretical work and case studies to better describe seiching in multi-armed
lakes. The results of the study identify that for certain geometries the seiche
response will be constrained to only a subset of arms of the lake.
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Preface

The work presented here represents original research carried out by the
author under the supervision of B. Laval (University of British Columbia).
The thesis is presented as two manuscripts (Chapters 2 and 3), with Chapter
1 providing relevant background and motivation for both. Chapter 4 provides
overall conclusions and identifies opportunities for further work. A second
reader, G. Lawrence (University of British Columbia), provided valuable
comments on drafts of this work. The contributions of co-authors are as
follows:

A version of Chapter 2 is being prepared for submission to a peer-
reviewed journal as “Development of an analytical solution for seiche modes
in fjord-type multi-armed lakes” by S. Brenner, and B. Laval. I was the
lead investigator for this work, and completed all manuscript preparation. B.
Laval is acting in a supervisory role and is providing critical feedback and
ongoing editing of the manuscript.

Portions of Chapter 3 will also be submitted for publication; however,
additional work will need to be completed before this is possible. As such,
the final title and author list is still under discussion. In its current form, all
analysis and manuscript preparation in Chapter 3 was completed by myself.
The field study of Quesnel Lake presented in Chapter 3 was developed and
deployed by B. Laval and S. Vagle (Institute of Ocean Sciences) as part
of a wider study before the onset of this thesis work; however, I assisted
with retrieval of field data and performed all relevant analysis for this work.
B. Laval is acting in a supervisory role in this endeavour and was involved
throughout the project in concept formation and manuscript edits. An
additional researcher, J. Shore (Royal Military College of Canada), performed
modelling work of Quesnel Lake. That work is not presented in the current
document, but comparisons have been made with the relevant observations
and modelling presented in Chapter 3 and so her work has helped to verify
the results here.
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Chapter 1

Introduction

1.1 Motivation

Basin-scale standing wave oscillations in enclosed or semi-enclosed basins are
a ubiquitous feature in both natural and man-made water bodies. Standing-
wave oscillations (or “seiches”) occur on both the water surface and the
internal temperature distribution, and both are accompanied by out-of-phase
oscillations of the horizontal velocity field. Many early studies in the field
of physical limnology were attempts to better understand and explain the
phenomenon of seiching. From the end of the 19th and beginning of the 20th

century, a number of publications on the subjects of both surface and internal
seiching (at that time called “temperature seiching”) in the Scottish Lochs
were produced by the Scottish Lake Survey (e.g. Murray, 1888; Watson,
1904; Wedderburn, 1907). These came at a time when oceanographers were
working to better understand tidal waves in semi-enclosed seas (e.g. Defant,
1918; Proudman, 1915). The connection between these problems allowed
for a great deal of understanding of these processes, and formed a basis for
the current theory of seiches. With modern computer technology and the
advancement of fully three-dimensional hydrodynamic models, researchers
now have the ability to accurately resolve many aspects of lake motion,
including the seiche response. As a result, questions about seiches have
largely shifted from understanding the shapes and periods of these seiches to
understanding their impacts on the processes such as mixing and transport
of materials within lakes.

Nonetheless, there are still aspects of seiching that are not fully under-
stood. Despite being able to fully resolve wave modes and periods using two-
and three-dimensional models, there is not always a satisfying explanation
of why some features exist in the response of complex lakes. The early
studies by the Scottish Lake Survey developed mathematical explanations
for seiche motions in glacially-carved “fjord-type” lakes. These lakes are
typically steep-sided and deep, and, importantly, they are long and narrow.
This simple geometry allows for the equations of motion to be applied along
the longitudinal axis of the lake so transverse motions can be ignored. The
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1.2. Review of relevant literature

resulting reduction of dimension allows for the governing partial differen-
tial equations (PDEs) to be converted to a more tractable set of ordinary
differential equations (ODEs), which are simpler to both solve and explain.
For basins whose surface geometry cannot be readily approximated as one-
dimensional, the seiche response is necessarily predicted by a set of PDEs
that do not provide results that are intuitive, nor are they easy to generalize.
The study of lakes that have features such as bays, sub-basins, or multiple
arms are thus described in a case-by-case approach that doesn’t necessarily
provide any predictive power or understanding of other lakes with similar
features.

Here, a particular class of complex lakes is investigated: multi-armed fjord-
type lakes. By considering fjord-type lakes specifically, this study will restrict
the range of possible motions to focus on the impact on the lake response
of multiple arms alone without having to consider transverse or rotational
motions. In so doing, some generalized behaviours of this geometric feature
can be described. Before proceeding with the study, the following section
provides a review of literature describing the background and mathematical
formulation of the processes discussed through the remainder of the thesis.

1.2 Review of relevant literature

1.2.1 Standing waves in basins of simple geometry

Seiching in lakes was perhaps first seriously described by Forel’s 19th century
works on Lake Geneva (Defant, 1960; Hutter et al., 2010; Wilson, 1972).
However, this phenomenon was previously measured as far back as the 16th
century (Wilson, 1972) and throughout both Europe and North America
from the 17th century onwards (Chrystal, 1905). Since these early accounts,
seiching (particularly baroclinic seiching) has been considered to be one of
the primary mechanisms for mass transport in lakes and has been the subject
of numerous studies. In addition to the many journal publications on the
topic, this physical process is also featured in sections of textbooks on the
subjects of both limnology (e.g. Wetzel, 1983) and oceanography (e.g Defant,
1960; LeBlond and Mysak, 1978; Proudman, 1953), and in one case is the
subject of an entire textbook volume (Hutter et al., 2011). Given the history
and volume of work on this subject, it is infeasible to provide a full account
of all of these works. Presented in the sections below is a description of the
physical process and a summary of seminal works on both barotropic and
baroclinic seiching.

Seiching refers to the standing-wave response of an enclosed or semi-
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1.2. Review of relevant literature

enclosed basin to some pressure imbalance. After the driving mechanism
that creates this imbalance is removed the lake attempts to return to some
equilibrium position, but instead this position is overshot and a new pressure
imbalance appears. This process repeats and the lake oscillates. In the case of
surface (barotropic) seiching, this takes the form of an oscillation of the free
surface accompanied by an out-of-phase oscillation of the mean horizontal
velocity (Figure 1.1a). Most lakes exhibit seasonal thermal stratification
with a sharp temperature gradient (the thermocline) separating the surface
(epilimnion) and deep water (hypolimnion). This temperature interface
responds to a surface pressure imbalance by deflecting the opposite direction;
when the pressure imbalance is allowed to relax, standing wave oscillations
of the interface occur. The out-of-phase two-layer circulation generated by
these internal (baroclinic) seiches creates a shear flow with mean epilimnetic
and mean hypolimnetic velocities having opposite sign (Figure 1.1b). In
describing these processes, we first consider these oscillatory motions in lakes
of “simple” geometry, which refer to lakes that are sufficiently long and
narrow such that transverse motions and effects from the Earth’s rotation
are negligible compared to longitudinal motions, and these lakes are devoid
of complicating factors such as bays, sub-basins, or multiple arms.

u∗

(a) Barotropic seiching

u∗

(b) Barolinic seiching

Figure 1.1: Schematic of the evolution of (a) a surface (barotropic) seiche in a homoge-
neous water body, and (b) an internal (baroclinic) seiche in two-layer system. After the
forcing is removed, the surface/interface deflection and the water column velocity both
oscillate, but are out of phase both spatially and in time
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1.2. Review of relevant literature

Barotropic seiches

While barotropic seiching is a response to some pressure imbalance or exci-
tation, the driving force that creates the imbalance is not strictly defined.
Defant (1960) lists a number of possible forcing mechanisms for seiches:

1. The sudden return to its equilibrium of a surface previously disturbed
by the passage of an atmospheric disturbance over a section of the lake

2. The sudden oscillation back to a state of equilibrium of a watermass
previously piled up by wind

3. Sudden or rapid receding of an accumulation of water produced by an
extremely rapid influx across a section of the lake (violent rainfalls).

4. Shocks of rain drops falling on the water surface.

5. Sudden changes in air pressure.

6. Shock pressures of wind gusts on the lake surface.

7. Subsiding of the electrical attraction on the surface by thunder clouds.

These are roughly the same set of mechanisms previously identified by
Wedderburn (1922, conveying the findings of various works by Chrystal),
though his list does not include mechanism (7) and it separates mechanism (6)
into: “the effect of squalls”, “impact of wind gusts”, and periodic fluctuations
in the wind. Aside from it’s inclusion in the list, Defant (1960) provides no
information for mechanism (7), and this does not appear in other prominent
works. In addition to the list provided by Defant (1960), other set-up
mechanisms exist:

8. Seismic activity (suggested by Chrystal (1905, 1908), and shown defini-
tively in more recent works (e.g Barberopoulou, 2008; Pieters and
Lawrence, 2014))

9. Landslides (e.g. Balmforth et al., 2009; Kulikov et al., 1996)

10. Tidal forcing (especially in large lakes; e.g. Hamblin, 1974)

Chrystal (1908) agrees with an earlier statement by Forel (as cited in Defant,
1960) that changes in atmospheric pressure (mechanisms 1 and 5) are the most
frequent causes of seiching, with the influence of wind (mechanisms 2 and 6)
being less important. Wedderburn (1922) states that there is no evidence
of piling up of water at the downwind of the lake as would be required for
(2), except for very shallow lakes. Despite this claim, modern theory often
supports mechanism (2) as the cause of surface seiching. This shift in view
may be due to the relationship of this mechanism to understanding of the
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1.2. Review of relevant literature

set-up of baroclinic seiching (Mortimer, 1952; Stevens and Imberger, 1996).
The driving force determines which of the possible seiche modes are excited,
but otherwise does not define the characteristic shapes or periods of those
modes. The mode characteristics are a property of the lake geometry itself.

Merian (1828, as cited in Chrystal, 1905) developed a formula for the
periods of longitudinal free oscillations in a rectangular basin of length L
and constant depth H:

Tn =
2L

n
√
gH

(1.1)

where it is recognized that the term
√
gH in the denominator is the wave

speed of a shallow water wave. However, this formula was not connected to
seiching until Forel (1876, as cited in Chrystal, 1905) suggested that it could
be applied to predict the resonant periods of lakes. Merian’s formula is now
ubiquitous in modern works.

In the early part of the 20th century, many advances in the understanding
of seiching were made by Chrystal working with the Scottish Lake Survey (e.g
Chrystal, 1905, 1908; Chrystal and Murray, 1907; Chrystal and Wedderburn,
1905). In particular, Chrystal sought to describe the influence of cross-
sectional variation on the sequence of modal periods and the location of
nodes. To this end, Chrystal (1905) presented an equation to describe the

free evolution of the depth-integrated horizontal velocity (q =
∫ H

0 udz) of a
lake in terms of variations in cross-sectional area, S(x), and width at the
surface, b(x):

∂2Ξ

∂t2
= gσ(χ)

∂2Ξ

∂χ2
,

where

Ξ = S(x)q(x, t), χ =

∫ x

0
b(s)ds, and σ = S(x)b(x).

He called the graph with χ on the x-axis and σ on the y-axis the “normal
curve” of a lake. In the case of constant width b(x) = b, and varying depth
H(x), this reduces to the more familiar

∂2q

∂t2
= gH(x)

∂2q

∂x2
. (1.2)

A corresponding equation can be developed for the deflection of the free
surface h(x, t):

∂2h

∂t2
= g

∂

∂x

[
H(x)

∂h

∂x

]
(1.3)
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1.2. Review of relevant literature

These equations rely on the assumption that h� H, and are thus “linearised”.
For barotropic motions, this assumption is typically valid; however, it may
not be so for baroclinic motions.

Chrystal (1905) then developed a series of mathematical functions which
he named “Seiche-sine”, “Seiche-cosine”, and the “Lake Function” which solve
Equation 1.2 for certain analytically defined bottom profiles. Halm (1905)
shows that these functions are a part of a broader class of hypergeometric
functions, and are not only of value in understanding lakes but can be used
to help solve other equations in the field of applied mathematics.

Despite Chrystal’s success in solving Equation 1.2 for analytically defined
profiles, it was found that many lake geometries can not be easily defined by
such profiles. As a result, researchers such as Proudman (1915) and Defant
(1918, as cited in Defant, 1960; Mortimer, 1979) developed numerical methods
to solve Equations (1.2) and (1.3) for arbitrary profiles. Defant (1960)
presents these together with the analytical method developed by Chrystal
(1905) and a number of similar methods proposed by other researchers.
Between these methods, reasonably accurate approximations for the periods
of free modes can be made for these basins.

Equations (1.2) and (1.3) represent the free barotropic response of the
lake with neither damping nor forcing considered. As mentioned at the
beginning of this section, there are many potential excitation mechanisms
for barotropic seiching. Some of these can be expressed as additional terms
in Equation (1.2). A derivation of this equation from the basic equations
of motion and continuity gives rise to terms that represent two forcing
mechanisms: wind shear on the lake surface, τs, and atmospheric pressure
deviations, pa (Wilson, 1972). If damping is assumed to act linearly with
damping coefficient K (e.g. Defant, 1960), then the governing equation for
the depth-integrated velocity becomes:

∂2q

∂t2
+K

∂q

∂x
− gH(x)

∂2q

∂x2
= Fs(x, t) (1.4)

where the forcing term,

Fs(x, t) =
1

ρ

(
τs −H

∂pa
∂x

)
.

Equation (1.4) reduces to Equation (1.2) for K = Fs = 0. In the case of a
basin of uniform depth, the free solutions (i.e. Fs = 0) to Equation (1.4) are
given by

q = Ae−Kt/2 sin(kx) sin(γt+ ε),
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1.2. Review of relevant literature

where the resonant frequencies are

γn = ωn

√
1− K

2ωn

and ωn = knc = nπcL−1, n ∈ Z+, with the wave speed c =
√
gH. In the

undamped case (K = 0), then γ = ω and the modal periods T = 2πγ−1

are consistent with Merian’s formula. In real basins, K 6= 0, but damping
of barotropic seiching is typically small (Defant, 1960, Table 25) and the
modal frequencies obtained by solving the free case (Equation 1.2) provide
reasonable estimates of the damped frequencies, i.e. γ ≈ ω.

For a broader account of the subject of barotropic seiching, readers are
directed to the work of Wilson (1972) who provides a thorough summary
on the history of the subject as well as providing a great deal of detail on
the relevant mathematics (including the derivation of Equation 1.4 from
the equations of motion, and a full treatment of the forcing term Fs for
atmospheric pressure disturbances). While now more than a century old,
Chrystal (1905) similarly provides a summary of early works on the subject
dating as far back as 1755, including a very thorough annotated bibliography
containing 136 separate entries.

Baroclinic seiches

In addition to studying oscillations of the free surface of lakes, the early studies
by the Scottish Lake Survey found evidence that the internal temperature
field of Loch Ness also exhibits periodic motions (Murray, 1888). Watson
(1904) recognized these oscillations as seiching of the interface between the
epilimnion and hypolimnion and interpreted the forcing mechanism as an
internal reaction to a surface wind shear. Due to their added complexity,
their increased likeliness to exhibit non-linear behaviour, and their arguably
greater importance compared to barotropic seiching, these baroclinic motions
dominate modern literature in the subject of wind-induced oscillatory motion
in lakes. Nonetheless, the present study will largely focus on barotropic
rather than baroclinic seiching. As such, this section will only present one
major result: the decoupling of vertical modes.

While a number of authors worked to build a mathematical framework
for baroclinic seiching (e.g. Aichi, 1918a,b; Priestley, 1909; Wedderburn
and Williams, 1911), major advances were made by Longuet-Higgins (1952)
and Heaps and Ramsbottom (1966). In particular, Longuet-Higgins (1952)
developed linearised equations for the free oscillations of deflections of both
the water surface and the interface between density layers by starting from the

7



1.2. Review of relevant literature

basic equations of motion and continuity. His work showed that as a result of
the small density differences between layers (∆ρρ−1

2 ∼ O(10−3)), barotropic
and baroclinic motions can be effectively separated. The barotropic modes
then respond as the modes of the equivalent homogeneous body of water,
whereas for a two-layered system the interface deflection of the baroclinic

modes (η
(2)
n ) is given by

η(2)
n = cos(knx)[An cos(ω(2)

n t) +Bn sin(ω(2)
n t)]

where ω
(2)
n = knc

(2) = nπc(2)L−1, n ∈ Z, and the baroclinic wave speed c(2)

is

c(2) =

√
g′
(

H1H2

H1 +H2

)
. (1.5)

The gravitational restoring force acts on density differences, so the wave
speed of internal modes depends on the “reduced gravity”, g′, which is
expressed in terms of the upper and lower layer densities ρ1,2:

g′ = g

(
ρ2 − ρ1

ρ2

)
.

Longuet-Higgin’s results produce a formula for modal periods analogous to
Equation (1.1), and consistent with the one suggested by Watson (1904)
much earlier.

Compared with barotropic motions, the reduced gravity of baroclinic
modes results in these motions having amplitudes and periods that are
typically 2 to 3 orders of magnitude greater than barotropic modes. For a
sharp interface between layers, the two-layer circulation created by baroclinic
motions (Figure 1.1b) leads to the generation of considerable shear between
layers. This shear can act to dampen the baroclinic response (e.g. Horn et al.,
2001; Imam, 2012; Imam et al., 2013b, 2017), or can lead to the growth of
features such as Kelvin-Helmholtz instabilities or non-linear bores (Horn
et al., 2001).

Longuet-Higgins (1952) actually considered a three-layered medium and
showed a total of three “vertical” modes (one set of surface modes, and
one set of modes for each of the two density interfaces). In general, the
number of vertical modes present in a model will correspond to the number
of density layers considered, with a theoretical infinite number of modes for
a continuously stratified water column. Provided the effects of the Earth’s
rotation are unimportant and ignoring damping, the interface deflection of
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the ith vertical mode (h(i)) is governed by

∂2h(i)

∂t2
=
[
c(i)
]2 ∂2h(i)

∂x2

where c(i) is the wave speed of the corresponding mode (e.g. c(2) given by
Equation (1.5)), and in the form presented here c(i) is independent of x.
Considering that the barotropic wave speed c(0) =

√
gH, this formula is

consistent with Equation (1.3).
Imam (2012, Chapter 1) provides more detailed review of the baroclinic

seiche process, and the variety of models (analytical and numerical) that
have been developed to consider both free and forced responses.

Effects of the Earth’s rotational

For basins that are large enough or of high enough latitude, the rotation of
the Earth becomes important. This is reflected in the addition a Coriolis
term in the equations of motions. Csanady (1975) provides a detailed review
on the modifications this term has on the seiche response of the lake. The
importance of this term to the surface/internal seiche can be determined by
considering the external/internal Rossby radius of deformation,

R =
c

f
, (1.6)

where c is the wave speed of either barotropic or baroclinic waves, and f is
the Coriolis parameter, and comparing it to the transverse horizontal length
scale of the lake. If R is much larger than the lateral horizontal scale of the
basin then rotational effects are unimportant, whereas if it is much smaller
then rotational effects dominate the response.

In the classification of lakes that this study considers (fjord-type lakes),
rotational effects are typically unimportant for barotropic seiching and while
they may play a role in the baroclinic response, they rarely dominate that
response. With this in mind, no further review of this subject is presented.

1.2.2 Influence of complex geometry on seiching

The simplicity of the geometry of the Scottish Lochs allowed for studies
that provided a great deal of insight into the relevant mechanisms of both
barotropic and baroclinic seiching. Of course, many basins don’t conform
to the geometric constraints of narrow, elongated lakes devoid of islands,
bays, sub-basins, or multiple arms. In most cases, studies of complex lakes

9
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occur on a case-by-case basis and so it is difficult to make generalizations
about the impact of specific geometric features unless many studies have
been completed. A body of literature exists regarding the seiche response of
lakes with multiple basins that are separated by shallow sills or constrictions
(e.g. Appt et al., 2004; Dorostkar and Boegman, 2013; Farmer, 1978; Imam
et al., 2013a; Laval et al., 2008; Van Senden and Imboden, 1989), and so
some general concepts are understood in those geometries. Theory also
exists for seiching in small bays and harbours of large lakes (e.g. Schwab
and Rao, 1977; Wilson, 1972), but rarely are these considered in conjunction
with the response of the whole lake (Kirillin et al., 2014, provides a notable
exception). For other geometric features such as islands or multiple arms,
far fewer studies exist.

The lack of literature concerning seiching in multi-armed lakes may
be due in part to the added difficulty in providing a full explanation for
the spatial variability of the observed periods combined with the need to
employ some form of numerical solver to determine both periods and mode-
shapes. Malinina and Solntseva (1972, as cited in Rudnev et al., 1995),
among others, attempted to explain the barotropic periodicities observed
in Lake Onega by applying Merian’s formula along some extent of the lake;
however, as explained by Rudnev et al. (1995), this methodology incorrectly
predicts higher modes and fails to explain periodicities that seem to occur
only in specific arms. To fully describe this response, Rudnev employed a
numerical method to solve the 2-dimensional depth-varying wave equations
(see Section 1.2.3 below for more details). Numerical solvers are the norm
for predicting seiche modes in multi-armed geometries. Similar techniques
to those employed by Rudnev were used to study barotropic seiching in
Lake Como by Buzzi et al. (1997), and later baroclinic seiching in the same
lake by Guyennon et al. (2014). Carter and Lane (1996) applied a similar
method in a few New Zealand Lakes, including multi-armed lake Te Anua.
In a study of multi-armed Clear Lake, (Rueda and Schladow, 2002) present
the relevant mathematics behind this method as applied on an unstructured
grid, and in an online supplement provide their code for download; however,
in studying internal wave dynamics, the same authors instead employed a
fully 3-dimensional hydrodynamic model (Rueda and Schladow, 2003). A
3-dimensional hydrodynamic model was similarly employed in a study of
wind-forced baroclinic waves in two basins of Nechako Reservoir (Imam, 2012;
Imam et al., 2017), though based on only the longest extent of the lake, a
semi-analytical model also produced favourable results (Imam et al., 2013b).
A two-dimensional, non-linear, forced model was applied to understand the
seiche response to seismic activity in “Y”-shaped Lake Union (Barberopoulou,
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2008). Of the multi-armed lakes mentioned, only in Lake Como (Buzzi et al.,
1997; Guyennon et al., 2014) and Nechako Reservoir (Imam, 2012; Imam
et al., 2017) is characterization of mode periods and shapes for the fjord-
like morphotype of interest given, and no relevant results were found with
analytical methods.

Based on these few studies, little can be said about the general response
of multi-armed lakes. One interesting behaviour is evident in lakes with
complex geometries when wave modes are developed in a 2-dimensional
domain: many of these lakes have modes that are localized to individual
bays or arms of a lake. In Flathead lake, where subsections of the lake are
distinct bays, a hydrodynamic model applied to the whole lake finds modes
that act as bay-modes with modal periods close to those predicted using an
open-mouthed application of Merian’s formula (Kirillin et al., 2014). In Lake
Onega many higher modes act primarily within a single arm, with near-zero
deflections of the surface in the remainder of the lake (Rudnev et al., 1995);
however, in this lake, the distinction between “arms” and “bays” is unclear,
and these modes may be more in line with those predicted by (Kirillin et al.,
2014). Lake Como is distinctly multi-armed, and both the barotropic and
baroclinic responses show an exaggerated form of this behaviour: the second
horizontal mode has one arm that is essentially decoupled from the other two
(Buzzi et al., 1997; Guyennon et al., 2014). However, multi-armed Natalkuz
Lake does not show a similar behaviour (Imam, 2012; Imam et al., 2017).

Neumann (1944, as cited in Defant, 1960) developed a method for studying
interconnected basins using the concept of impedance borrowed from the
study of electrical circuits. In this method, the impedance of a system is
defined as

Z =
amplitude of pressure

area× amplitude of velocity
,

and the modal frequencies are found by minimizing the impedance Z. For
an undamped system, this minimum is Z = 0. To account for the separate
basins, each basin is assigned an impedance factor, Zi based on its connections
to other basins. For example, for a basin open at both ends,

Z =
iρc

A
tan

(
ωL

c

)
,

and for a basin closed at one end

Z =
iρc

A
cot

(
ωL

c

)
.

These impedances are added using rules similar to adding the resistors in
electrical circuits. For basins configured in series, S =

∑
Zi, for those
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configured in parallel, P−1 =
∑
Z−1
i . Then total resistance Z is the sum of

all basins connected in parallel or series. Both Wilson (1972) and Defant
(1960) show examples of this method being applied to both fully and semi-
enclosed basins with branched arms. This method provides perhaps the only
methodology for predicting the seiche periods of a multi-armed lake without
using a numerical technique. However, despite the potential usefulness of this
method, this author has been unable to find any example of it being applied
to a multi-armed lake. Furthermore, as will be discussed in Chapter 2, the
impedance method is unable to predict certain features of the response.

1.2.3 Finite Element Method for solving the wave equation
in an arbitrary two-dimensional domain

Given the prevalence of this technique and also due to it’s employment in
Chapter 3 of this thesis, I will briefly describe the development of a Galerkin-
type Finite Element Method (FEM) numerical technique. Specifically, this
section will describe the use of this technique on an unstructured grid. This
can be seen as a summary of Rueda and Schladow (2002), though the use of
this technique in describing seiche modes in lakes pre-dates that publication
(e.g Carter and Lane, 1996; Hutter et al., 1982).

In an arbitrary shaped 2-dimensional domain Ω with boundary ∂Ω,
Equation (1.3) and the “no-flow” boundary condition become

∇ · (H∇η) +

(
ω2

g

)
η = 0,with (1.7a)

∇η · n̂ = 0 on ∂Ω, (1.7b)

where the operator ∇ is defined in along the two horizontal dimensions:
∇ = (∂x, ∂y), and n̂ is the outward unit normal vector on ∂Ω.

For simplicity, let Λ = ω2g−1. Then the weak formulation of Equa-
tion (1.7) is attained by multiplying Equation (1.7a) by a test function ψ,
integrating over Ω, expanding with Green’s first identity, and using Equa-
tion (1.7b) to eliminate boundary terms. The result is

−
∫

Ω
(∇ψ) · (H∇η) dA+ Λ

∫
Ω
ψηdA = 0. (1.8)

While Equation (1.8) is still exact, it is referred to as the weak form of
Equation (1.7) because it only satisfies the equation in an integral sense.
While any solution of Equation (1.7) will satisfy Equation (1.8), the reverse
is not true. To ensure that solutions to Equation (1.8) satisfy Equation (1.7),
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we need to satisfy Equation (1.8) with ψ(x, y) = δ(x, y) for every (x, y) ∈ Ω
(which is an infinite number of test functions).

The standard Galerkin procedure is to discretize Equation (1.8) onto the
finite dimensional subspace Sn of dimension N . In particular, we consider
a subspace Sn that can be described by an unstructured triangular mesh.
Then each set of (x, y) coordinates maps to a single numbered node n
(see Figure 1.2). In this discrete space, the continuous function η(x, y) is
approximated by η̃(xn, yn). If the set of basis functions {Ψj(x, y)}Nj=1 span
Sn where N is the total number of nodes in Sn, then η̃ can be represented
as a linear combination of those basis functions:

η̃(xj , yj) =
N∑
j

η̃jΨj .

1

2
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4

5

6

7

8

9

10

11
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Figure 1.2: Schematic of the type of unstructured triangular mesh used in the FEM
analysis. Each set of (x, y) coordinates at each node is defined by a single number n.

By choosing appropriate functions in the discrete subspace for the test
functions ψ, the the solution to Equation (1.7) on the continuous domain Ω
is approximated on a discrete domain by the matrix problem

Kη̃ = ΛM

where the matrices K and M, called the “stiffness” and “mass” matrices
respectively. Taking the basis functions for the test functions ψ = Ψi, these
matrices are given by

Kij =

∫
Ω
H(∇Ψi)(∇Ψj)dA,

Mij =

∫
Ω

ΨiΨjdA,
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and are dimension N ×N . In the simplest case, the basis functions are the
“pyramids”:

Ψk(xl, yl) =

{
1 if k = l

0 if k 6= l
k, l = 1, . . . , N.

Then the matrices K and M can be constructed using simple geometric
arguments (e.g. Alberty et al., 1999).

The eigenvalues Λ of the original problem are then the eigenvalues of
the matrix M−1K, and the modeshapes are given by the corresponding
eigenvectors. In general, both M and K will be sparse, and a number of
techniques exist for approximating the eigenvalues of M−1K, such as the
Lanczos procedure (Schwab, 1980). Some modern computer programs, such
as Matlab have inbuilt solvers for this (in Matlab, the eigenvalues of this
matrix can by found by using the eigs function).

1.3 Objectives and organization

This study examines the impact of surface geometry of a lake on the expected
modes of the free oscillatory response. In particular, focus is placed on
fjord-type multi-armed lakes. Fjord-type lakes are typically elongate and
narrow, so considering this classification of lakes allows for the study to
address the importance of multiple arms without having to address additional
complexities associated with rotational effects or interactions with transverse
modes. Rather than present a single case, the study attempts to make general
statements about the impact of this geometric feature.

The remainder of this document is organized as follows:
Chapter 2 takes a theoretical approach to develop a simplified analytical

model that can predict mode shapes and periods for standing waves in
multi-armed lakes with an arbitrary number of arms. The implication of
model parameters on the solution space is discussed.

Through a combination of observations and modelling, Chapter 3 de-
scribes the barotropic seiche response of two multi-armed lakes of similar
geometry. Both Quesnel Lake (located in British Columbia, Canada) and
Lake Como (located in the Lombardy region of Italy) are “Y”-shaped fjord-
type lakes. By comparing the responses of these two lakes, further insight
is gained into the impact of this geometric feature. The analytical model
discussed in Chapter 2 is considered in the context of these lakes.
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Chapter 2

Development of an analytical
solution for seiche modes in
fjord-type multi-armed lakes

2.1 Introduction

Despite the broad analytical work in the subjects of both barotropic and
baroclinic seiching done by oceanographers and limnologists studying simple
lakes (e.g. Chrystal, 1905; Defant, 1960; Longuet-Higgins, 1952; Wedderburn
and Williams, 1911), the application of their techniques to more complex
geometries has required the use of numerical techniques (e.g. Rudnev et al.,
1995; Schwab and Rao, 1977). While these numerical solvers are valuable
tools and may be simple to use (Rueda and Schladow, 2002), they must still be
applied on a case-by-case basis. Thus, in order to understand the behaviour
inherent in a particular geometric feature, a wide enough body of literature
needs to be established to make inferences from those results. Because many
types of geometric complexity are fundamentally two-dimensional features
(e.g. constrictions, bays, or multiple arms), it is difficult to approach these
problems using an analytical framework.

This chapter focuses on the development of a simplified analytical model
for predicting the free mode periods and mode shapes for fjord-type multi-
armed lakes. The model will consider only the defining geometric consid-
eration of these lakes: their multi-armed nature. The oscillatory response
of real lakes will be modified by many factors; by removing all of these
complexities except the fundamental geometric feature, understanding can
be gained about which behaviours can be attributed the interaction of the
arms of the lake.
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2.2. Model Development

2.2 Model Development

2.2.1 Governing equations

We consider the linearised equations of motion and continuity for a hy-
drostatic, homogeneous fluid, ignoring the Coriolis terms, frictional effects,
and external forcing. Further, motion is assumed to primarily along the
longitudinal axis of the lake, so transverse motions are neglected. Then the
equations of motions are:

Momentum:
∂q

∂t
+ gH

∂h

∂x
= 0 (2.1a)

Continuity:
∂h

∂t
+
∂q

∂x
= 0 (2.1b)

where H(x) is the still water depth, h(x, t) is the surface deflection (the
total depth is given by H + h), and q(x, t) is the depth-integrated horizontal

velocity (q =
∫ H

0 udz). To arrive at these we have assumed a constant
width b(x) = b and that deflections are small compared to total depth
h(x, t)� H(x). Moving forward, it will be useful to non-dimensionalize x
and H(x) as follows:

x∗ =
x

L
H∗ =

H(x)

H0

In general we will consider these equations within the domain x ∈ [0, L], so
x∗ ∈ [0, 1]. H0 is some characteristic depth so H∗ is O(1).

Making these substitutions, we combine Equations (2.1a) and (2.1b) and
assume an oscillatory response q(x, t) = φ(x)eiωt, and h(x, t) = η(x)eiωt.
This results in two ordinary differential equations for the mode shapes:

d

dx∗

(
H∗

dη

dx∗

)
+ λ2η = 0, (2.2a)

H∗
d2φ

dx∗2
+ λ2φ = 0 (2.2b)

where the non-dimensional eigenvalue λ is given by λ = ωL(gH0)−1/2. It
will be convenient to define a parameter, called “wave travel time”, as
τ = L(gH0)−1/2, so λ = ωτ .

From Equations (2.1a) and (2.1b) we have that the mode shapes η and φ
are related by

φ = i

(√
gH0

λ

)
H∗

dη

dx∗
, and η = i

(
1

λ
√
gH0

)
dφ

dx∗
(2.3)
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where the inclusion of the imaginary number i =
√
−1 simply indicates that

h and q are 90o out of phase in time.

Sturm-Liouville Boundary Value Problems

Before considering the solutions, it will be useful to place Equations (2.2a)
and (2.2b) in the context of a broader mathematical theory which allow us to
mention some known properties of these equations. Through the early 19th
century, a number of advances were made in understanding a classification
of boundary value problems that often arise in when considering separable
PDEs. These problems are now called “Sturm-Liouville” (SL) problems
(Boyce and DiPrima, 1986) and have the form

d

dx

[
p(x)

dy

dx

]
+ [λw(x)− q(x)]y = 0 (2.4)

over the finite interval [a,b] together with the boundary conditions

α1y(a) + α2
dy

dx
(a) =0 (2.5a)

β1y(b) + β2
dy

dx
(b) =0 (2.5b)

for some prescribed constants α1, α2, β1, β2. The theory also requires that

p(x), w(x) > 0 on (a, b), p−1, q, w ∈ L1
loc([a, b])

In these equations, non-null solutions are only allowed for certain discrete
values of the parameter λ. These eigenvalues, λn, are found by solving

Π(λ) = 0

Where Π(λ) is the equation obtained by substituting the general solution
to Equations (2.4) and (2.5a) into Equation (2.5b). If Y (x, λ) solves Equa-
tions (2.4) and (2.5a), then

Π(λ) = −
(
β2

β1

)(
1

Y (b, λ)

dY

dx
(b, λ)

)
The central theorem of Sturm’s first memoir (Everitt, 2005; Hinton, 2005)
gives that

d

dλ

(
p

y

dy

dx

)
(x, λ) < 0 (2.6)
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where y is a solution to Equations (2.4), (2.5a) and (2.5b).And so

sign

(
dΠ

dλ

)
= −sign

(
β2

β1

)
.

Following from this, the theorem predicts the following two properties of SL
equations that we will make use of.

1. Eigenvalues are real and form an infinite sequence of increasing magni-
tude:

λ1 < λ2 < . . . < λn < . . .→ +∞

2. Eigenvalues are simple. That is, for each eigenvalue λn, there is a single,
unique (up to a constant), eigenfunction yn that satisfies Equation (2.4).
These functions can be written as

yn(x) = Any(x, λn)

for some mode-dependant constant An.

A great number of other properties of these equations are also known (for
a list of theorems see Hinton, 2005), but these will not be invoked in the
present study.

2.2.2 Description of the multi-armed model

While there are a number of different geometries that can fall under the
description of “multi-armed lakes”, we consider the case of N arms radiating
outward like spokes from one central confluence point. To solve for the
wave response, a coordinate system is set up in each arm such that the
local x-axis, x∗i , coincides with that arm’s primary longitudinal direction.
Some of the algebra will be simplified by using a coordinate system with
positive x∗i moving inwards towards the confluence (see Figure 2.1). Thus, the
two-dimensional domain is converted to a set of N coupled one-dimensional
domains, and Equations (2.2a) and (2.2b) are used to predict the longitudinal
variation in ηi and φi along each arm.

Equations (2.2a,b) are applied in each arm with boundary conditions
applied at the endpoints x∗i = 0, 1 as follows:

BC1: φi(0) = 0 (i.e. no flow condition),

BC2: ηi(1) = ξi, and

BC3: φi(1) = σi,
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0

0

0

x∗1

x
∗ 2

x ∗3

Figure 2.1: Schematic representation and coordinate definitions of the multi-armed
system being considered in the present study for the case N = 3.

where ξi and σi are prescribed constants (however, the values of these
constants will be found through the coupling procedure discussed below
rather than strictly prescribed). Making use of Equation (2.3) allows the
combination of BC2 and BC3 into a boundary condition in SL form:

ξiφi(1) +

(
σi

λ
√
gH0,i

)
dφi
dx∗i

(1) = 0. (2.7)

A similar result can be shown for ηi. Here, the eigenparameter λ exists in the
boundary conditions, along with σi and ξi which will be shown to both be
mode-dependant values. While this is not necessarily consistent with classic
SL problems, Schneider (1974) has shown that the relevant SL properties
still hold.

The set of N ODEs is coupled at the junction by imposing conditions on
ξi and σi. Strictly, these conditions act as a set of boundary conditions on
Equations (2.1a) and (2.1b), but we will refer to them separately as “coupling
conditions”. They are given as follows:

CC1: Continuity of surface height: ξ1 = ξ2 = . . . = ξN

CC1: Conservation of mass:
∑N

i=1 biσi = 0

for bi the width of the ith arm at the junction. For simplicity, for the
remainder of this document we will assume b1 = b2 = . . . = bN , and so
drop the bi from this condition

CC1: Preservation of these properties through time: ω1,n = ω2,n = . . . = ωN,n

.
Within each arm, the solutions to Equations (2.2a,b) depend on the form

of H∗. Nonetheless, the conditions necessary to couple the equations can be
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applied for the general form and thus the derived solutions and behaviour
become largely independent of the actual form of H∗.

We take advantage of the SL property (2) that eigenfunctions are simple
and write the eigenfunctions for each mode, n, and arm, i, as

ηi,n = Ai,nη(x∗i , λi,n)

φi,n = αi,nφ(x∗i , λi,n)

where the functions η(x∗i , λi,n) and φ(x∗i , λi,n) are known, and determined
by satisfying Equations (2.2a) and (2.2b) together with BC1, and Ai,n and
αi,n are some mode dependant constants for each arm that are yet to be
determined. These constants will be linearly related through Equation (2.3),
so αi,n = CiAi,n, where Ci are also known. In general Ci depend on the form
of H∗, but for all the situations considered in the present study, Ci =

√
gH0,i.

To apply BC2, we set the value of ηi,n at the confluence to be equal to
the defined constant ξi, so ξi = Ai,nη(1, λn). To proceed, it is necessary to
consider two cases for ξi: either ξi 6= 0 or ξi = 0. As we will show immediately,
the former condition allows for the mode shapes to be determined with ease,
but creates a more complicated expression to determine the frequencies. In
the latter case, the expression for ωn is straightforward, but more effort must
be applied to arrive at the mode shapes.

Case 1: ξi 6= 0

For the case where ξi 6= 0, BC2 can be rearranged to give Ai,n in terms of
ξi. Because Ai,n is a mode dependant constant based on initial conditions,
ξi is also mode dependant: ξi = ξi,n. Furthermore, the application of CC1
indicates that ξi,n is independent of which arm it is being applied to: ξi,n = ξn.
Thus, we obtain the following expressions for η and φ:

ηi,n(x∗i ) = ξn
η(x∗i , λi,n)

η(1, λi,n)
,

φi,n(x∗i ) = ξnCi
φ(x∗i , λi,n)

η(1, λi,n)
.

Then BC3 gives:

σi = ξnCi
φ(1, λi,n)

η(1, λi,n)
. (2.9)

The values λi,n can be determined by solving this equation if ξn and σi are
prescribed. However, these values are not prescribed but instead given by
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imposing the “coupling conditions”. Substituting Equation (2.9) in CC2,
and factoring out ξn yields

f(ωn) =

N∑
i=1

Ci
φ(1, ωnτi)

η(1, ωnτi)
= 0. (2.10)

If τ1 6= τ2 6= . . . 6= τN (denoted the TNE case), the modal frequencies
ωn are found by finding values of ω that satisfy f(ω) = 0. However, if
τi = constant = τ (denoted the TE case), Equation (2.10) simplifies to

f(ωn) = φ(1, ωnτ) = 0

If zφn are the roots of φ(1, z), then the modal frequencies ωn are given by

ωn = zφnτ−1.

Case 2: ξi = 0

In the second case that ξi = ξn = 0, BC2 demands that Ai,nη(1, λi,n) = 0, so
to avoid trivial solutions, we require that η(1, λi,n) = 0. The results presented
for ξi 6= 0 would thus imply division by zero and are invalid. Instead, if zηn
are the roots of η(1, z), then ωn are given simply by ωn = zηnτ

−1
i . However,

if τi conform to the TNE case (τ1 6= τ2 6= . . . 6= τN ), then this will produce
different frequencies for each arm. In order to satisfy Equations (2.1a,b) for
all time, ωn must be equal for all arms (CC3). This indicates that ξn cannot
equal zero except in the TE scenario that τi = constant.

Then BC3 gives σi,n = αi,nφ(1, zηn). Recognizing that φ(1, zηn) are equal
across all arms and can be factored out, CC2 is reduces to

N∑
i=1

αi,n = 0.

There are an infinite number of values of αi,n that satisfy this condition,
but if we separate αi,n into a mode-dependent component, ζn, and an arm-
dependent component, γi, so that αi,n = ζnγi, then we can construct γi so
that it forms a basis. For γi given by

γi =


1 if i = j and i 6= k

−1 if i = k

0 otherwise

j = 1, . . . , (N − 1)

k = (j + 1), . . . , N
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2.2. Model Development

then all αi,n can be expressed as a linear combination of ζnγi, and CC2 is
satisfied. Then equations ηi,n and φi,n are given by

ηi,n(x∗i ) =
ζnγi
Ci

η(x∗i , z
η
n)

φ(1, zηn)
(2.11a)

φi,n(x∗i ) = ζnγi
φ(x∗i , z

η
n)

φ(1, zηn)
(2.11b)

Physically, the values of γi indicate that in these modes all the flow
exiting one arm will enter exactly one different arm (for each mode, exactly 2
arms will be active all the others will be quiescent). Here, each eigenvalue is
repeated with multiplicity given by the number of possible combinations of
γi, which is given by the binomial coefficient NC2 (i.e. for a three armed lake,
eigenvalues will have multiplicity 3C2 = 3; for a four armed lake, eigenvalues
will have multiplicity 4C2 = 6; etc.). This presents difficulties in determining
the values ζn; in order to solve for these values using the initial conditions,
the values of γi will need to be specified. Without this specified, there may
be no unique solution for ζn. Indeed, this set of basis functions are not
uniquely defined and other bases can also produce viable results; however,
if another set of basis functions was specified then a linear combination of
those functions would yield eigenfunctions that match the current choice and
so this decoupled response is not an artefact of the choices made here.

If Equation (2.10) is naively used when the wave travel times for each
arm are equal, then the zηn wave modes and their repetitions will be missed.
Thus, having τi = constant leads to two separate equations that define ωn:

ωn =
zηn
τ

(2.12a)

ωm =
zφm
τ
. (2.12b)

Equation (2.12a) corresponds to a node existing at the confluence (and has
the multiplicity discussed above), and Equation (2.12b) corresponds to a
anti-node existing at the confluence (and has no multiplicity). As a result
of the first SL property, the function η(1, λ) is oscillatory in λ and will
have an infinite number of roots. Sturm’s oscillation theorem then gives
that the roots of dη(1,λ)

dλ will occur between subsequent roots of η (Boyce
and DiPrima, 1986). By using Equation (2.3) it can be shown that for the

geometries considered in Section 2.2.4, φ(1, λ) ∝ dη(1,λ)
dλ , so the roots zφm will

occur between subsequent values of zηn (e.g. zη1 < zφ1 < zη2 ), and zηn 6= zφm for
all m,n.

22



2.2. Model Development

Following the methods described in this section, it can be shown that the
mixed case (denoted TM) where there are a total of M arms with the same
value of τi (i.e. τi = τi+1 = . . . = τM ), but M is fewer than the total number
of arms (1 < M < N), then there will be a repetition of the eigenvalues
associated with only those arms with equal values of τi, and so eigenvalues
that correspond to ωn = zηnτ

−1
M will have multiplicity of MC2, and all other

eigenvalues will have multiplicity 1. To calculate the full set frequencies
ωn of the TM case, it is necessary to take both the frequencies predicted
by Equation (2.10), and an additional set of frequencies predicted using
Equation (2.12a) with τ = τM . As before, the set of frequencies calculated
with Equation (2.12a) will be those that exhibit decoupled behaviour.

2.2.3 Alternate method for calculating ωn

In the case that τi = constant, the modal frequencies ωn are determined
simply by ω = {zηnτ−1, zφnτ−1}, n ∈ Z+. When τi 6= constant, there is no
closed form solution for ωn but the values zηn still have a bearing on the
solution. When ωnτi = zηn, then the function η(1, λi,n) = 0. Because this

appears in the denominator of Equation (2.10), any time ωnτi → zηn
±

then
f(ω)→ ±∞. By using Equation (2.6), it can be shown that

d

dω
f(ω) > 0.

So between each set of asymptotes, there will be a single root of f(ω).
Consider a sequence Ω constructed as

Ω = sort
(
zηnτi

−1 : i = 1, . . . N, n ∈ Z+
)

where the operator sort arranges elements monotonically from smallest to
largest, and the sequence retains repeated values. Then the values of Ω
correspond to subsequent ω such that f(ω) diverges (i.e. Ω are the ordered
sequence of asymptotes of f(ω)). Then the values of ωn are constrained by
the values of Ω:

Ωn ≤ ωn ≤ Ωn+1.

In fact, this behaviour is retained in the case that τi = constant and in the
TM case.

Because f(ω) diverges rapidly away from ω = ωn, these modal frequencies
can be approximated by

ωn ≈
Ωn + Ωn+1

2
. (2.13)
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2.2. Model Development

The advantage to this methodology is that if τi = τj (repetition of one or
more values of τ), then for some n, we will have Ωn = Ωn+1 = zηnτ

−1
(i,j), so

the correct value of ωn will be calculated. In addition, this method will yield
the correct multiplicity of eigenvalues.

As will be discussed further in Sections 2.3.1 and 2.3.2, by considering
this pattern, additional insight can be gained into response of the lake.

2.2.4 Solutions for analytically defined bottom profiles

The solution to Equations (2.2a) and (2.2b) depend on the form of H∗.
For certain analytically defined bottom depth profiles these equations have
functional solutions. The model developed here will be applied for the two
simplest geometries of depth variation: a constant bottom profile (H(x) =
H0), and a linearly varying profile (H(x) = (H0/L)x). Solutions can similarly
be developed for a limited number of more complicated functions H∗ (e.g.
Chrystal (1905) considers a parabolic bottom profile1: H(x) = H0[1 −
(2xL−1)2]).

The general solutions to Equations (2.2a) and (2.2b) for a constant
bottom are given simply by trignometric functions:

η(x∗) = A cos(λx∗) +B sin(λx∗)

φ(x∗) = α sin(λx∗) + β cos(λx∗).

For linear bottom variation of the form H(x) = (H0/L)x, a variable substi-
tution χ = 2λ

√
x∗ will convert Equation (2.2a) to Bessel’s equation, so the

functions η and φ are given in terms of Bessel functions:

η(x∗) = AJ0

(
2λ
√
x∗
)

+BY0

(
2λ
√
x∗
)

φ(x∗) = α
√
x∗J1

(
2λ
√
x∗
)

+ β
√
x∗Y1

(
2λ
√
x∗
)
.

In order to satisfy BC1 we require B = β = 0 for both cases of depth

1Chrystal (1905) solved Equation (2.2b) using a standard power series expansion of the
form φ(χ) = a0 + a1x + a2x

2 + . . ., and found two linearly independent series solutions
for φ which he named “Seiche-cosine” and “Seiche-sine”. In this case, a transformation of
Equation (2.2a) yields Legendre’s equation, so a closed form solution exists in terms of
Legendre Polynomials which are closely related to the functions Chrystal developed.
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2.2. Model Development

variation. Then Equation (2.10) becomes

Constant Bottom:
N∑
i=1

√
gH0,i tan(ωnτi) = 0, (2.14)

Linear Bottom:

N∑
i=1

√
gH0,i

J1(2ωnτi)

J0(2ωnτi)
= 0, (2.15)

2.2.5 Solutions for an arbitrary bottom profile

A general solution for the SL equation does not exist (Hinton, 2005). To solve
Equations (2.2a) and (2.2b) for an arbitrary function H∗ it is necessary to
use some approximate approach. The most accurate approximate approach is
the use of a numerical scheme which will produce solutions of arbitrarily high
precision provided a small enough step size, but such an approach defeats
the spirit of the present study and so it will not be employed here. Other
methods of approximation include breaking the bathymetry into smaller
sections which can each be fitted with an polynomial curve (Chrystal, 1905;
Chrystal and Wedderburn, 1905), or the use of an asymptotic approach.

The WKB method is one such asymptotic approach appropriate for
equations of this form. This approach gives approximate solutions to the
equation

d2y

dx2
+ λ2f(x)y = 0

accurate for large eigenvalues, as λ → ∞+ (Bender and Orszag, 1999).
While the approach is perhaps more popular in fields such as optics, it
has nonetheless been applied to understanding the nature of water waves
(LeBlond and Mysak, 1978), and in a theoretical framework has even been
applied to the problem of seiches (Ortiz et al., 2013). The method is
occasionally referred to as the Liouville-Green (LG) method for work that
those mathematicians did in the 19th century; in fact, the work of Green
(1837) in developing ideas associated with this approach involved wave
propagation in an elongated channel with varying depth and width.

The WKB method assumes a solution of the form y(x) ∼ eλS(x) and,
following the standard perturbation approach, S(x) is expanded in an infinite
series around a small parameter (chosen to be λ−1):

S(x) =
∞∑
n=0

1

λn
Sn(x).
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2.2. Model Development

This expansion is substituted back into the original equation and the S0(x)
and S1(x) terms are retained and computed. Then, if f(x) > 0 for all x the
result is

y(x) ∼ α

[f(x)]1/4
sin

(
λ

∫ x√
f(s)ds+ θ

)
for arbitrary amplitude α and phase θ. This formula can be applied to
Equation (2.2b) directly to find the asymptotic behaviour of φ. A leading
order solution for η can be found by either applying Equation (2.3) to the
result, or using a variable substitution η = Y (x∗)(H∗)−1/2 in Equation (2.2a)
and thus converting it to a form that the WKB approximation can be
applied. Both methods produce the same result, but first it is necessary to
neglect some additional higher-order terms. We obtain the following WKB
approximations for φ and η

φn(x∗) ∼ αn(H∗)1/4 sin [λnΨ(x∗) + θn] (2.16a)

ηn(x∗) ∼ An

(H∗)1/4
cos [λnΨ(x∗) + θn] (2.16b)

where Ψ(x∗) =
∫ x∗

0 [H∗(s)]−1/2ds, and αn = −An
√
gH0.

To apply the multi-armed model, Equations (2.16a) and (2.16b) are
substituted into Equation (2.10) to give

N∑
i=1

√
gHi(1) tan

(
ωnτi

∫ 1

0

ds√
H∗i (s)

+ θn

)
= 0 (2.17)

where the value of θn is found by applying BC1 Equation (2.16a). If
H∗(0) 6= 0, then θn = 0; however, if H∗(0) = 0 then x∗ = 0 is a singular
point and additional work is necessary to determine θn and ensure consistency.

Endpoint singularities

For H∗(0) = 0, the point x∗ = 0 is a singular point. If this singularity is
integrable, then a modified turning point analysis can be used for φ (see
Hinch, 1991, p. 133-134). An “inner solution”, φI, is developed near the
singular point, while an “outer solution”, φII (given by Equation (2.16a)),
exists through the rest of the domain. Then these solutions are matched by
setting

lim
x∗→∞

φI(x
∗) = lim

x∗→0
φII(x

∗).

26



2.2. Model Development

To find the inner solution, H∗(x∗) is expanded in a Taylor series about
x∗ = 0. The first non-zero term

H∗(x∗) ∼ x∗
[
dH∗

dx∗

]
x∗=0

as x∗ → 0 (2.18)

is substituted into Equation (2.2b), and φI is the solution to the resulting
ODE. Here, this gives φI(x

∗) in terms of the zero-order Bessel function, J0(z).
The behaviour lim

x∗→∞
φI(x

∗) is given by the ‘large argument’ expansion of

J0(z).
The x∗ → 0 behaviour of φII(x

∗) is given by substituting Equation (2.18)
into Equation (2.16a) and calculating the corresponding function Ψ. Matching
these solutions results in θn = −π/4 for all n. Because Equation (2.16b)
can be derived from Equation (2.16a), this value of θn can be used in
both equations, and so the multi-armed model can be used with the WKB
approximation accounting for endpoint singularities by using Equation (2.17)
with θn = −π/4. However, with this approximation, η(x∗) is still singular at
x∗ = 0. While this doesn’t necessarily invalidate the use of Equation (2.17),
it would be desirable to have η bounded as x∗ → 0. To account for this
behaviour it is necessary to construct a higher order approximation for η(x∗).

If η = Y (x∗)(H∗)−1/2, then Equation (2.2a) becomes

d2Y

dx∗2
+

(
λ2

H∗
+

1

4H∗2

)
Y = 0.

In Equation (2.16b), the final term Y (4H∗2)−1 was neglected as λ→∞+,
but if H∗(0) = 0, then the two coefficients of Y can be of comparable order
near x∗ = 0 and so that term should not be neglected. Retaining this term
gives

ηII ∼
An(

λ2H∗ + 1
4

)1/4 cos

(∫ x∗

0

√
λ2

H∗(s)
+

1

4H∗(s)2ds+ ψn

)
(2.19)

in the outer region. To determine ψn, a similar matching procedure as above
can be employed. However, the integral inside of the cosine in Equation (2.19)
will not converge if H∗ ∝ x∗ as x∗ → 0, so the expansion Equation (2.18)
cannot be used. Instead, assume

H∗(x∗) ∼ H∗1/2
√
x∗as x∗ → 0

where H∗1/2 is some constant. Making this substitution in Equation (2.2a)

allows for solutions in terms of Bessel functions of order 1/3. Then matching
gives ψn = −5π/12 as λ→∞. However, for small λ (which is the scenario
of interest) the inner and outer solutions do not match.
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2.3. Discussion

2.3 Discussion

2.3.1 The use of Merian’s formula in multi-armed lakes

It is the intuition of some researchers that a first approximation of modal
periods in a multi-armed lake can be made by applying Merian’s formula
along the longest longitudinal extent of the lake and ignoring other arms (e.g.
Caloi and Spadea, 1958; Imam et al., 2013b; Laval et al., 2008; Malinina and
Solntseva, 1972). While Rudnev et al. (1995) suggests that this approach
may be inaccurate for higher modes, the present model indicates that in
some cases this formula may approximate the correct results for the first
mode. Given the TE conditions on τ , the first mode will exhibit a decoupled
response in which only two of the arms of the lake are active in the response;
in this case it is clear that Merian’s formula applied along those active arms
should produce modal periods that agree with this simplified model.

Surprisingly, a case can also be made for the “first-guess” accuracy of
Merian’s formula in the TNE or TM cases. To explain the success of this
approach, consider the behaviour described in Section 2.2.3: frequencies
ωn will be located between successive asymptotes of Equation (2.10) when
considered over a range of ω. For example, for the flat bottomed case,
asymptotes will be located at all (2n − 1)π(2τi)

−1, n ∈ Z+, so the the
location of the first mode will be constrained to

π

2τ1
< ω1 <

π

2τ2
(2.20)

where τ1,2 are the two largest values of τi. Consider the case H0,1 = H0,2 =
H0, then τ1 > τ2 implies L1 > L2. The frequency predicted by Merian’s
formula applied along total length L = L1 +L2 (the longest extent of the lake)
is ω = π

√
gH0(L1 + L2)−1. Substituting these values into Equation (2.20)

produces
π
√
gH0

2L1
<
π
√
gH0

L1 + L2
<
π
√
gH0

2L2
,

or equivalently
2L1 > L1 + L2 > 2L2.

We see that for L1 > L2 this is consistent, and so the frequency predicted
by Merian’s formula provides a good approximation of the fundamental
frequency predicted given by Equation (2.14).
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2.3.2 The impact of cross-sectional variation

Depth variation

The classic approach to estimating modal periods using Merian’s formula
suggests that modal periods, Tn, follow a harmonic progression given by

Tn = T1

(
1,

1

2
,
1

3
,
1

4
, . . .

)
=
T1

n
.

Chrystal (1905) showed that in simple lakes, these ratios of modal periods
do not follow this harmonic sequence when depth variation is accounted for.
However, his work did not explicitly discuss the impact of depth variation on
the fundamental mode. By considering an approach similar to that employed
in Section 2.3.1, it is possible to investigate the impact of depth variation in
multi-armed lakes.

As described in Sections 2.2.3 and 2.3.1 The frequency of the fundamental
mode is constrained between the first two asymptotes: Ω1 ≤ ω1 ≤ Ω2. By
comparing the constant bottom (subscript C) model and the linearly varying
(subscript `) models, it is evident that the locations of these asymptotes
(Ω1,2 = zη1τ

−1
1,2 where τ1,2 are the two largest values of τi) are relatively

insensitive to changes in depth variation. If

Hi =
H`

Li
x

then

(H0,i)` = H`

(H0,i)C =
1

Li

∫ L

0

H`

Li
xdx =

1

2
H`

and

(τi)` =
Li√
gH`

(τi)C =
Li√

g
(

1
2H`

) =
√

2(τi)`

As in Section 2.3.1, for the constant bottom (zη1)C = π/2; for the linearly
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varying bottom (zη1 )` is the first zero of J0(2z), so (zη1 )` ≈ 1.202. So

(Ω1,2)` ≈
1.202

(τ1,2)`

(Ω1,2)C =
π

2
√

2(τ1,2)`
≈ 1.111

(τ1,2)`
.

Thus, (Ω1,2)C ≈ (Ω1,2)`. Because the first modal frequency ω1 will be con-
strained by these asymptotes, we see that the prediction of the fundamental
mode is not overly sensitive to depth variation.

In contrast, as predicted in simple lakes by Chrystal (1905), higher modes
are expected to be much more sensitive to depth variation. The harmonic
sequence of modal periods predicted by Merian’s formula is a result of the
even spacing between successive zeros zφm when a constant bottom bathymetry
is used. For lakes of varying depth, these zeros will not be uniformly spaced
and so the periods of higher modes deviate from the harmonic sequence. In
multi-armed lakes modal periods are predicted based on an interaction of
the zeros zηm and so the impacts of depth variation will compound.

The spatial structure of the mode-shapes of higher modes will also be
impacted by depth variation. Specifically, for forms of H∗ that shoal towards
the ends of the lake (H∗(0)→ 0 and dH∗

dx∗ > 0), such as the linearly-varying
depth case, the amplitude of the mode-shape function η decreases with
increasing distance from the origin. This is visible in the analytically defined
solution to the linearly varying depth case (η(x) ∝ J0(λ

√
x∗)), but also in

the case of arbitrary depth variation Equation (2.16b) (η(x) ∝ [H∗]−1/4).
As a result, the highest predicted peak in η occurs at x∗i = 0 (i.e. at the
ends of the arms), and as the mode number increases more of the domain
is governed by lower amplitude waves. This will lead to a behaviour where
deflections are increasingly localized to only the very tips of the domain.

The WKB approximation that was put forward as a way of estimating
the response in lakes of arbitrary depth variation allows for some further
insight into the impact of depth variation on the response of the lake. The
model presented here indicates that relative values of the parameter τi =
Li(gH0,i)

−1/2, called the “wave travel time” predicts which of the the two
classes of behaviour will be exhibited: either a whole-lake response or a
decoupled response. When considering an arbitrary bottom profile along
each arm, the WKB approximation (Equation (2.17)) suggests that the
condition τi = constant is replaced by∫ Li

0

ds√
gHi(s)

= constant. (2.21)

30



2.3. Discussion

In fact, this change in condition confirms the intuition that the time of travel
of a progressive wave in a given arm has an influence on whether or not a
decoupled response should be expected. In a channel of varying depth, the
barotropic wave speed is c(x) =

√
gH(x). If a wave in such a channel travels

a distance dx with a speed c(x), then the time of travel is dt = dx[c(x)]−1,
and the total travel time over the domain x is t =

∫
dt =

∫
dx[c(x)]−1,

which is the quantity described by Equation (2.21). This indicates that
Equation (2.21) generalizes the condition τi = constant to an arbitrary depth
profile.

Unfortunately, the WKB method faces limitations in it’s ability to cor-
rectly predict the modal periods of multi-armed lakes. In simple systems
the WKB approximation can provide very good estimates of the eigenvalues
of an ODE, particularly for higher modes (Bender and Orszag, 1999). For
multi-armed lakes, both η and φ need to be estimated. While Equation (2.2b)
is in a form compatible with the WKB approximation, in order to approx-
imate the solution to Equation (2.2a) additional steps must be taken. η
has to be determined either from φ through Equation (2.3), or through a
variable substitution to convert Equation (2.2a) into a WKB form. In both
of those cases, the λ→∞+ condition is used to neglect higher-order terms
in order to produce a tractable result. In the variable substitution method,
additional terms can be retained to preserve accuracy (Equation (2.19)),
but if H∗(0) = 0 (i.e. if there are endpoint singularities), then an additional
approximation must still be made in the η equation in order to match the
inner and outer solutions near the singular point. Because of the additional
approximations necessary for the η function, the level of accuracy of the
equations for φ and η will not match. Modal periods are predicted based on
a ratio of these functions (Equation (2.10)) so this accuracy mismatch indi-
cates that the condition CC2 is unable to guarantee total mass conservation
across the lake; this effect will be most pronounced for lower modes. The
functions φ and η may provide independently good approximations for the
mode-shapes if the correct frequencies ωn are supplied, but it is unlikely that
the WKB method will accurately predict those frequencies for the lowest
modes.

Width variation

As developed, the model assumes a constant width along arms of the lake
b(x) = b, so cross-sectional variability occurs solely due to variations in
lake depth. In many fjord-type lakes, this is a reasonable approximation for
barotropic modes as arm width may vary much more gradually than total
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depth. However, it is trivial to re-write Equation (2.2a) (and similarly Equa-
tion (2.2b)) in terms of the total cross-sectional variation S(x) (Proudman,
1953):

d

dx

(
S(x)

dη

dx

)
+ λ2b(x)η = 0. (2.22)

Accounting for total cross-sectional variation in the model developed in
the present study would likely increase accuracy of the results, and could be
done with minimal adaptation. However, it is expected that the behaviour
and important parameters predicted by such a modified model would not
change from the present results. And while adapting the mathematically
description may be relatively simple, defining physical parameters such as
cross-sectional area in the vicinity of the confluence may be difficult in actual
lake systems.

2.3.3 Extensions of this model

More complex geometries

Of interest is the application of the techniques described here to more complex
geometries. For example, more complex branching multi-armed lakes can
also be thought of as a series of one-dimensional reaches that are coupled by
using boundary conditions at a variety of connection points. Unfortunately,
the solutions for these more systems can quickly become cumbersome. For an
“H”-shaped geometry (Figure 2.2), the equation analogous to Equation (2.14)
is

1√
gH0,11 tan(ωnτ11) +

√
gH0,12 tan(ωnτ12)

+
1√

gH0,21 tan(ωnτ21) +
√
gH0,22 tan(ωnτ22)

+
√
gH0,M tan(2ωnτM ) = 0 (2.23)

Predictably, in this case it is not straightforward to understand possible
decoupled responses (which might occur if there are nodal lines at either of
the two confluences). So while these ideas may have merit, it would likely be
easier to predict the response of branched multi-armed basins using numerical
methods.

In complex geometries other than multi-armed lakes, some analogous
procedure as discussed here may be appropriate. If Equations (2.2a,b) (or
their two-dimensional equivalents) can be simplified by considering only the
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Figure 2.2: Schematic representation of an “H”-shaped multi-armed geometry

overriding geometric feature then insight may be gained into the impact of
that feature on the response. In the present study, no other geometries are
considered.

Baroclinic Modes

Longuet-Higgins (1952) (among others) have shown that for a perfectly
two-layer system, the barotropic and baroclinic modes can be effectively
separated. The barotropic modes will respond as per the modes of an
equivalent homogeneous body of water. The baroclinic modes will be governed
by a set of equations of the same form as the barotropic modes, but with a
modified wave speed given by c(2) = (g′Heff)1/2. Here, the “reduced” gravity,
g′, is dependent on the relative densities of the upper and lower layers, ρ1,2

respectively:

g′ = g

(
ρ2 − ρ1

ρ2

)
.

The “effective depth”, Heff, is given by the harmonic mean of the upper and
lower layer thicknesses H1,2 (which add to the total depth H1 +H2 = H(x)):

Heff(x) =
H1H2

H1 +H2
= H1

[
1− H1

H(x)

]
.

For baroclinic seiching, if the non-dimensional depth H∗ and eigenvalues
λn are defined as H∗ = Heff(x)(H0)−1 and λn = ωnL(g′Heff)−1/2, then
Equations (2.2a) and (2.2b) can be used to describe the mode shapes of
interface deflection η = η(2) and bottom-layer flow φ = φ(2), and so the
model described in this study can be applied to predict the frequencies and
mode-shapes of baroclinic modes.

Fjord-type lakes are typically very deep with steep side-walls, so the
total depth H(x)� H1 through most of the lake, and therefore Heff ∼ H1.
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This is important because, while barotropic seiching is sensitive to the
depth variation H(x), the effective depth Heff used in the formulation of the
baroclinic wave equations is essentially constant except near the shore. A
choice for the characteristic depth H0 to be equal to the upper layer thickness,
H0 = H1, results in H∗ ∼ 1. This suggests that using a constant bottom
depth variation in the simplified analytical model should be appropriate
for most cases of baroclinic seiching, regardless of the actual form of H(x).
Adapting Equation (2.14) to the parameters that describe baroclinic modes
gives

N∑
i=1

tan

(
ωnLi√
g′Heff

)
= 0 (2.24)

The lack of variation in Heff has an additional effect on the application
of this model. Because H0 = Heff ∼ H1, and H1 is typically spatially
constant, H0,i = constant. So the TE condition of τi = constant simplifies
to Li = constant for the decoupling of baroclinic waves.

In contrast to barotropic modes, whose higher horizontal modes are
difficult to predict due to sensitivity to depth variation, it is expected that
Equation (2.24) will accurately represent higher baroclinic modes. Of course,
those modes are still modified by variation of the cross-sectional area along
the thalweg (Mortimer, 1979), so a truly accurate representation of those
higher modes would have to modify the model to consider width variation.

2.3.4 Similarity to Neumann’s impedance method

As discussed in Section 1.2.2, the impedance theory developed by Neumann
(1944, as cited in Defant, 1960) provides an analytical methodology for
calculating modal frequencies of connected basins in lakes and bays. Defant
(1960) includes an example of this method using a three-armed geometry
analogous to that investigated here (see Figure 76 of his text). For the
closed system, this results in the following equation for predicting the modal
frequencies:

b1c1 tan

(
ωL1

c1

)
+ b2c2 tan

(
ωL2

c2

)
+ b3c3 tan

(
ωL3

c3

)
= 0,

where ci is the wave speed in arm i, ci = (gHi)
1/2, and bi is the width of

arm i. If b1 = b2 = b3, this is identical to Equation (2.14). This technique
similarly reproduces Equation (2.23) for the geometry described by Figure 2.2.
However, the impedance method does not properly account for the possibility
of nodal lines positioned at the location of the confluence. Because of this
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limitation, the impedance method is unable to reproduce the decoupled
modes predicted by the present model, which is one of the central results.

Due to the simplicity of the impedance method, for multi-armed or
interconnected basins of any geometry in which a decoupled response is not
suspected to occur this method will likely yield a reasonable approximation
of the longest mode periods without the need of a numerical approach. The
sensitivity of higher modes to depth variation (which is not included in this
method) would still preclude accurate predictions of those modes. However,
through this model, both depth and width variation can be accounted for by
splitting a single basin into a number of sub-basins each with it’s own depth
and width (i.e. assuming a “stepped” bottom bathymetry); such a procedure
does increase the complexity of the resulting equation for determining ωn.

2.4 Conclusions

This chapter develops a simplified analytical model to identify the key
geometric parameters responsible for the sieche response of fjord-type multi-
armed lakes. In simple elongated lakes, the period of the fundamental
mode is given by Merian’s formula, in which the length of the basin and
the shallow-water wave speed are both key parameters. As expected, these
parameters are similarly important in multi-armed lakes; however, they are
taken individually for each arm of the lake. The model suggests two different
classes of behaviour based on the relative values of a parameter τ , defined
as τi = Li(gH0,i)

−1/2, which represents the time of travel of a progressive
shallow-water wave moving longitudinally in the ith arm of the lake. These
behaviours differ based on the case of τi = constant (denoted the TE case)
or τi 6= constant (denoted the TNE case).

The TNE may be expected to be more common in real water bodies.
In this scenario, all of the arms of the lake are active in every mode; the
behaviour observed by Buzzi et al. (1997) and Guyennon et al. (2014) in
Lake Como in which the eastern arm does not act for some modes, is not
present for the TNE case. Due to this structure, this case is referred to as
a “whole-lake mode”. In this case, the modal frequencies ωn are given by
the solution to a transcendental formula, Equation (2.10), whose specific
form is based on the form of depth variation of the arms. In contrast, two
equations exist for the modal frequencies for the TE case, both of which
are simple and analytic provided that the zeros zη,φn are known. The set of
modal frequencies given by these two formula correspond to either a node
or an anti-node appearing at the confluence point. The modes that have
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Table 2.1: Summary of modal frequency equations for the TE and TNE cases, as developed
in Section 2.2.2. In the TE model, the ξn = 0 case corresponds to nodes located at the
confluence point, while ξn = 0 corresponds to anti-nodes being located at the confluence
point. In the TNE model, ξn must be non-zero.

TE TNE

ξn = 0 ωn =
zηn
τ

-

ξn 6= 0 ωn =
zφn
τ

N∑
i=1

Ci
φ(1, ωnτi)

η(1, ωnτi)
= 0

a node occurring at the confluence exhibit a decoupled behaviour in which
only 2 of the arms of the lake are active, while the remainder of the lake is
quiescent. These “decoupled modes” have an eigenvalue multiplicity given
by the binomial combination NC2, where N is the total number of arms of
the lake. If a subset of the arms have equal wave travel times, a “mixed-case”
(TM) can occur, which is an amalgamation of the two results. The whole-lake
modes will be calculated as normal using Equation (2.10) while additional
decoupled modes are calculated using Equation (2.12a) and exist for only the
arms with repeated τi. The equations for determining the modal frequencies
for the TE and TNE cases are summarized in Table 2.1.

The whole-lake versus decoupled behaviour is developed for the general
form of the underlying equations, and so is independent of the actual form
of the depth variation of the lake. While general solutions do not exist
for an arbitrary bottom profile, the WKB asymptotic method is used to
approximate solutions in this case. While limitations of the WKB method
may prevent accurate prediction of lower modes, this method reiterates that
the ratios of the wave travel time along the longitudinal extents of each of
the arms is the parameter of interest in predicting a decoupled or whole-lake
response.

Interestingly, despite the complexities associated with having multiple
arms, this model suggests that the first fundamental period can still be
estimated with reasonable accuracy by assuming a constant depth in each
arm and applying Merian’s formula along the two arms that create the
longest extent. More strictly, the formula should be applied across the arms
that have the two highest values of τi. This behaviour is retained for both
the TE and TNE cases of τi. Contrary to the fundamental mode, which
appears to be relatively independent of depth variation, the periods of higher
modes are very sensitive to the form of H(x).
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While developed for barotropic motions, the separation of vertical modes
suggests that this model is equally valid for baroclinic seiching. In fact, in an
idealized two-layered system, the limited spatial variability in Heff suggests
that it suffices to take only the constant-bottomed variation of this model.
Then the changes in wave travel time between arms of the lake is determined
by the length of arm, so the condition that determines whether a decoupled
response is expected is simply if Li = constant. While additional complexity
may exist for baroclinic modes (such as the influence of the Coriolis force,
or the increased likelihood of non-linear effects), the present model should
still improve on the current ability to make quick, rough estimates of modal
periods and shapes

The present model predicts behaviours only for a specific type of surface
geometry. Nonetheless, it exemplifies the level of additional insight that can
be gained through the application of a simplified approach. Before now, there
was no consensus on whether a decoupled response was a general feature of
multi-armed geometries. Now, not only is this decoupling explained, but a
criteria exists to predict if it may happen in a given lake. By reducing the
two-dimensional domain of the lake into a set of coupled one-dimensional
domains, the model considers only the defining geometric feature of multi-
armed lakes. A similar approach may be taken to consider the influence of
other geometric features in different lake classifications.
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Chapter 3

Barotropic seiche modes in
two fjord-type Y-shaped
lakes

3.1 Introduction

In lakes with low hydraulic throughflow, water quality is modulated by
physical processes that induce currents and mixing in the lake. Given the
importance of seiching in driving currents that lead to the transport of mass
and materials through the lake, these events are of particular importance in
lake systems. For complex or multi-armed lakes, prediction of seiche mode-
shapes and periods typically relies on case-by-case application of numerical
models or detailed field studies, and so generalizations are difficult to make.
The simplified analytical model developed in Chapter 2 provides a framework
for understanding the role of geometry in fjord-type multi-armed lakes which
can be used to provide context for observed or numerically modelled results.

One behaviour Chapter 2 predicts is that the first mode of a multi-armed
lake should conform to simple linear oscillation of the longest extent of the
lake which could be roughly estimated by applying Merian’s formula along
that extent. This justifies the assumptions made by Malinina and Solntseva
(1972, as cited in Rudnev et al., 1995) in Lake Onega, Laval et al. (2008)
in Quesnel Lake, Caloi and Spadea (1958) in Lake Como, and Imam et al.
(2013b) in Nechako Reservoir. However, the model indicates that additional
arms and complexities cannot be neglected for higher modes.

Perhaps the most interesting result in Chapter 2 is that it is possible
for multi-armed lakes to exhibit a response in which one or more arms are
decoupled from the main body of the lake and do not oscillate. A combination
of field and numerical study of internal (baroclinic) seiching within Lake
Como found such a result, where for some modes the eastern arm of the
lake is inactive in the response (Guyennon et al., 2014). A numerical scheme
used by Buzzi et al. (1997, hereafter BGS) showed that the same holds true
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for surface (barotropic) seiche modes in Lake Como. Rudnev et al. (1995)
finds that barotropic oscillations in some arms or bays of Lake Onega act in
isolation, with near-zero deflection in the remainder of the lake; however, it
is difficult to commensurate the geometry of Lake Onega with the system
studied in Chapter 2. In contrast, Imam (2012) and Imam et al. (2017) find
no such decoupling in multi-armed Nechako Reservoir, nor do Carter and
Lane (1996) find any decoupling in multi-armed Lake Te Anau. For radial
multi-armed lakes (where all of the arms meet at a single confluence point)
such as “Y”-shaped lakes, the model in Chapter 2 provides a geometric
criteria to predict whether a decoupled behaviour is possible; however, the
model is developed only for an idealized case. It will be instructive to consider
the application of the simplified model to real lake geometries.

This chapter investigates two “Y”-shaped lakes: Lake Como, located in
Northern Italy; and Quesnel Lake, located in Western Canada. While the
lakes are different sizes, they have a number of similarities. Both lakes are
fjord-type lakes with a three-armed geometry. As is typical of fjord-type
lakes, the arms of both of these lakes are narrow and elongated with steep
side walls. In the context of the model developed in Chapter 2, these two
lakes exemplify two different classes of behaviour. As identified by BGS and
Guyennon et al. (2014), Lake Como appears to exhibit decoupling of the
eastern arm. Similar studies have not been conducted in Quesnel Lake and
so it is not yet known if a decoupled behaviour exists; however, based on the
significant differences in length and depth of the arms, the simplified model
predicts only whole-lake modes. The two classifications allow for verification
of the parameters and behaviours predicted in Chapter 2. The results will
be validated using a combination of field observations, and a Finite Element
Method (FEM) numerical scheme (see Section 1.2.3). A comparison of the
predicted response of both lakes will provide further ability to make general
statements about standing wave modes in multi-armed lakes.

3.2 Methods

3.2.1 Site descriptions

Quesnel Lake

Quesnel Lake (Figure 3.1a) is a fjord-type lake, and consistent with that
morphotype, it is narrow-armed and deep, with a mean depth of 157 m and
a maximum depth of 511 m (Laval et al., 2008). It has an east-west span of
81 km and a north-south span of 36 km. The lake is roughly “Y”-shaped,
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Figure 3.1: (a) Map of Quesnel Lake showing the locations of the moorings ( ); (b) Map
of Lake Como showing the locations of the communities of Lecco (where the limnograph
discussed in Section 3.2.2 was deployed) and Como. In both maps, contour lines are shown
every 100 m, and red dashed lines indicate the local thalweg for each arm used in the
model discussed in Section 3.3.3. The distance bar in (b) applies to both figures, which
are presented to the same scale.
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with three arms (the North, East, and West Arms) extending outward from
a central junction. At the end of the West Arm, Cariboo Island creates a
constriction and shallow sill that separates a distinct sub-basin, the West
Basin. This sill is an important feature for understanding baroclinic seiching,
and the exchange of deep water between the basins Laval et al. (2008).

Quesnel Lake follows a seasonal stratification pattern consistent with
dimictic lakes, modified slightly by pressure effects on the temperature of
maximum density due to the great depth of the lake Laval et al. (2012).
During summer, the lake is strongly stratified with a warm eplimnion overly-
ing a cold (∼ 4◦C) hypolimnion; in the winter it experiences weak reverse
stratification with cold (< 4◦C) water overlying warmer (∼ 4◦C) water. De-
spite some subtle details caused by the pressure effects, the lake experiences
regular seasonal turnovers of the entire water column occurring roughly in
December (“fall” turnover), and May (spring turnover) (Laval et al., 2012).

Lake Como

Lake Como (Figure 3.1b) is located in the Lombary Region of Northern Italy,
and extends into the southern edge of the Alps. It is smaller than Quesnel
Lake, with an east-west span of 26 km and a north-south span of 40 km.
Like Quesnel Lake, Lake Como is also “Y”-shaped and fjord-like. One of
its three arms extends north from the confluence point, while the other two
bifurcate into south-east and south-west pointing arms. The city of Lecco is
located near the tip of the western of these two arms while the city of Como
is located near the tip of the eastern arm, so these are occasionally referred
to as the “Lecco Branch” and the “Como Branch”. Despite its smaller size
compared to Quesnel Lake, Lake Como is also very deep with a maximum
depth of 425 m and a mean depth of 151 m (Guyennon et al., 2014).

In contrast to Quesnel Lake, Lake Como does not experience full seasonal
turnover; instead it is considered oligiomictic and fully turns over only
occasionally (Guyennon et al., 2014; Morillo et al., 2009; Salmaso and Mosello,
2010). Typical winter turnover only extends to ∼150 m depth (Morillo et al.,
2009).

3.2.2 Field study

Surface seiching is characterized by consistent oscillations of the water surface.
The natural periods of the oscillatory modes in a lake can be determined
through spectral analysis of these water level signals. Peaks in spectral
energy will correspond to modal periods.
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In evaluating and characterizing the barotropic response of Lake Como,
this study builds on the work of BGS, and will draw on the results presented
by those authors; no additional field study has been performed. BGS collected
water level readings in Lake Como using a limnograph mounted near the
community of Lecca (on the south-east arm; see Figure 3.1b). The limnograph
recorded water levels on three separate dates: Feb. 17, Feb. 18, and Mar. 1,
1996. The recording intervals were ∼9.5 hours, ∼7.5 hours, and ∼11.7 hours,
respectively, and and the limnograph measured water elevation at a rate
of 1 sample per minute. With these data BGS were able to identify modal
periods using spectral analysis.

To identify surface seiche modes in Quesnel Lake, data are presented from
four moorings that were installed in the lake in Nov. 2014 (see Figure 3.1a).
Each of the moorings was equipped with an RBR duo T.D. in the upper
water column. These instruments recorded total pressure at a sampling
period of 4 seconds then these data were averaged over 1-minute. In order to
perform frequency analysis, the longest continuous pressure record between
mooring servicing was used, which extends from Oct. 2, 2015 to Sept. 15,
2016.

The pressure sensors installed at the moorings measured total pressure;
in order to relate total pressure to water level through hydrostatic pressure,
the barometric pressure signal must first be subtracted. However, the
spectral analysis considers the periodicity of data fluctuations, and so actual
water level depth is unimportant. Provided that the barometric pressure
fluctuations do not have an oscillatory signature that can be confused with
the barotropic response, the identification of seiche modes from total pressure
will be relatively insensitive to the barometric pressure. A weather station
installed at the Quesnel River Research Centre (QRRC), approximately
1.4 km downstream from the outflow of Quesnel Lake, has intermittent
measurements of barometic pressure throughout the period of record of the
moorings. These data are available at a 15-minute sampling period so they
can be used to rule out the effects of barometric pressure on any oscillatory
motion with a period greater than 30 minute (corresponding to the Nyquist
frequency).

3.2.3 Modelling

Following convention, we investigate the free-response by considering the
homogenous linear shallow-water (LWS) equations. Based on mean depth,
the external Rossby radius at Quesnel Lake (latitude 52.5◦ N) is ∼340 km.
The Rossby radius at Lake Como (latitude 46.2◦ N) is ∼370 km. These
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values are both much larger than the scale of each of the lakes, so Coriolis
effects are neglected. In the absence of Coriolis forces, the LSW equations
are given in a two-dimensional domain as (e.g. Rudnev et al., 1995):

Momentum:
∂q

∂t
+ gH∇h = 0 (3.1a)

Continuity:
∂h

∂t
+∇q = 0 (3.1b)

where H(x, y) is the still water depth, h(x, y, t) is the surface deflection (the
total depth is given by H + h), q(x, y, t) is the depth-integrated horizontal

velocity (q(x, y, t) =
∫ H

0 udz), and the operator ∇ is defined in along the
two horizontal dimensions: ∇ = (∂x, ∂y).

Assuming an oscillatory response, q(x, y, t) = φ(x, y)eiωt and h(x, y, t) =
η(x, y)eiωt, Equations (3.1a) and (3.1b) are combined to give the Helmholtz-
like equations:

∇ · (H∇η) +

(
ω2

g

)
η = 0, (3.2a)

∇2φ+

(
ω2

gH

)
φ = 0. (3.2b)

Equations (3.2a) and (3.2b) are eigenvalue problems and as such have
an infinite number of eigenfunction solutions. These solutions represent
the undamped free response modes of the lake surface deflection (η) and
horizonal current (φ). The true response of a lake to some external forcing
will be composed of these free response modes and, because damping of
barotropic seiching is small (Defant, 1960), the observed oscillatory periods
should match the predicted periods to a high degree of accuracy.

Two methods are used to determine the solutions to these equations: a
numerical solver, and the simplified analytical model developed in Chapter 2.
For clarity, this study will present the mode-shapes ηn obtained by solving
Equation (3.2a) using these models. While the φn will not be shown, these
are obtained from ηn through Equation (3.1a); that is φn = −iωngH∇ηn
where the imaginary number i =

√
−1 simply indicates that h and q occur

90◦ out of phase in time. Thus the mode-shape deflections have corresponding
horizontal velocities.

Numerical Solver

In a two-dimensional domain, Equation (3.2a) can be solved numerically
using the Finite Element Method (FEM; see Section 1.2.3). In FEM, the
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modal frequencies and shapes are given by solving for the eigenvalues and
eigenvectors of the discretized problem:

Kη̃ = ΛM.

The matrices K and M that result from from discretization are large and
sparse, so the matrix M−1K is large and dense. While the exact eigenvalues
and eigenvectors can be computed for such matrices, the size of these matrices
may lead to computer memory constraints that limit the ability to solve
for them exactly. In this case, approximation methods such as the Lanczos
method are employed to estimate eigenvalues (Schwab, 1980). The accuracy
of this approximation is determined by the number of iterations (and therefore
also has a computational cost).

The numerical scheme employed by BGS used a regular rectangular
grid, and considered grid spacings of both 250 m and 500 m. The domain
was defined by 2399 active elements in the case of the 250 m grid spacing,
and 596 active elements in the case of 500 m grid spacing. The study also
considered different values for the “truncation number”, NF, used in the
Lanczos procedure. The results show that the modal periods are sensitive to
both grid size and NF (see Table 10 in their paper), with the fundamental
mode seeing a 2.8 minute change from the lowest predicted result (38.9 min)
to the highest (41.7 min). Given the increase in computational power now
available since BGS studied barotropic seiching on Lake Como, we repeat
the numerical experiments in an attempt to increase the accuracy of the
results and reach numerical stability.

As described in Section 1.2.3, the method employed in the present study
uses an unstructured grid made up of triangular elements. These elements
range in size, with small side-lengths and close spacing where the surface
geometry changes more rapidly, and larger side-lengths farther from the
boundaries. The FEM method is used for predicting the barotropic periods
of both Lake Como and Quesnel Lake. In each lake, the FEM was run on
two different mesh densities (“low-density” denoted LDM, and “high-density”
denoted HDM) to demonstrate stability of the results. Details of these
meshes can be found in Table 3.1. Eigenvalues of the resulting mass and
stiffness matrices are determined using the inbuilt Matlab function eigs,
which approximates eigenvalues using Arnoldi iteration (a generalization of
the Lanczos method).
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Table 3.1: Details of the two different mesh geometries (LDM and HDM) used in the
FEM analysis for Lake Como and Quesnel Lake.

Lake Como Quesnel Lake

Low-Density Mesh (LDM)
nodes 16051 26143

triangular elements 28580 45744
min. side-length 5.26 m 1.0 m
max. side-length 451.3 m 665.1 m

median side-length 76.4 m 75.6 m

High-Density Mesh (HDM)
nodes 31796 43205

triangular elements 56655 78150
min. side-length 3.61 m 0.64 m
max. side-length 394.2 m 530.4 m

median side-length 50.3 m 58.9 m

Simplified Analytical Model

In addition to the numerical model, we employ the simplified numerical
model (SAM) developed in Chapter 2. The basis of this model is that each
of the arms of the lakes is considered to be a one-dimensional domain, with
seiche motions occurring only along the longitudinal extent of that arm.
This conversion transforms the the two-dimensonal vector φ(x, y) into a
one-dimensional scalar quantity φi(xi) in each arm, with direction given
by the geometry of the arm; similarly η(x, y) → ηi(xi) (i = 1, 2, 3). Thus,
the PDEs in Equations (3.2a) and (3.2b) are converted into a set of ODEs
coupled at the junction of the three arms. This coupling is achieved by
imposing the following boundary conditions:

1. continuity of surface height: η1(L1) = η2(L2) = η3(L3); and

2. conservation of mass:
3∑
i=1

φi(Li) = 0.

SAM’s ability to accurately predict the solutions to Equations (3.2a)
and (3.2b) is limited by the simplification of the two-dimensional domain
as coupled one-dimensional domains, and by the methods by which depth
variation is accounted for (discussed further in Chapter 2 and below). This
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model is not expected to predict the solutions with the same level of accuracy
as the numerical solver (Section 1.2.3), but will instead provide additional
context for those results.

The model predicts two different classes of behaviour dependent on the
relative values of a parameter, τi, within each arm of the lake. This parameter
is defined as τi = Li(gH0,i)

−1/2, where Li is the along-thalweg length of
each arm i and H0,i is some characteristic depth for that arm; physically,
τi represents the time of travel of a progressive shallow-water wave in the
ith arm of a lake. The model predicts two different set of formulae for
determining both the modal frequencies (ωn) and their spatial structure
(ηi, φi) for the two conditions: τ1 = τ2 = . . . = τN (denoted TE) and
τ1 6= τ2 6= . . . 6= τN (denoted TNE). In the TE case alternate modes have
a multiplicity of eigenvalues and a response in which some arms can be
effectively decoupled from the remainder of the lake. In the TNE case all
arms are active in each response. A mixed case (denoted TM) is also possible
when τi is equal only across some of the arms. In this case a subset of
the modes can exhibit arm decoupling and need to be predicted using an
additional formula.

In the present study we will consider two approximations of depth vari-
ation within each arm of each of the lakes: a constant depth in each arm
(SAM-CB), and a linearly varying depth in each arm (SAM-LB). In SAM-CB,
the characteristic depth for each arm is given by the mean along-thalweg
depth of that arm:

H0,i =
1

Li

∫ Li

0
Hi(xi)dxi

In SAM-LB, the characteristic depth for each arm is given by a least-squares
fit of the equation HLB = (H0,iL

−1
i )xi to the depth variation Hi(xi). Based

on the values of H0,i determined in each of these methods, the values of τi are
given in Table 3.2. As shown in the table, for Quesnel Lake, the behaviour is
given by the TNE case and so no decoupled response is expected. However,
in Lake Como the North Arm and the Lecco Branch (i = 2, 3) share the
same value of τi for both the SAM-CB and SAM-LB models, so we need to
consider the TM response.

3.3 Results

3.3.1 Lake Como

The limnographs employed by BGS show oscillations with amplitudes of
∼ 1−2 cm (see their Figure 5). We report the results of only the limnograph
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Table 3.2: Values of τi for each i arm for the SAM-CB and SAM-LB models for Lake
Como and Quesnel Lake.

Lake Como Quesnel Lake

i Arm τi Arm τi

SAM-CB 1 Como Branch 560 s West Arm 1203 s
2 Lecco Branch 505 s North Arm 965 s
3 North Arm 505 s East Arm 900 s

SAM-LB 1 Como Branch 474 s West Arm 847 s
2 Lecco Branch 373 s North Arm 688 s
3 North Arm 373 s East Arm 716 s

that measured surface displacement on Feb. 17, 1996, which had both the
most energetic and also the most distinct spectral peaks. The periods
measured on the other dates are tabulated in their work and show a high
level of agreement.

The FEM analysis was applied to Lake Como using both the LDM and
HDM meshes (see Table 3.1). The modal periods predicted by the two
meshes differed by ≤ 0.1 minutes so these results are views as numerically
stable,and we will report only the results of the FEM applied with the HDM.
Table 3.3 compares the modal periods predicted using the FEM and SAM to
those observed and predicted by BGS.

As seen in Table 3.3, the numerical predictions given by BGS are greater
than the modal periods predicted by the FEM analysis performed here, with
the most pronounced effect in the fundamental mode. Compared to the
observed periods for modes greater than two, the present FEM analysis
performs better than BGS’s results. It is worth noting that despite the
apparent improvement in results given by the present model, the analysis
of BGS is still a reasonable measure of the observed periods. The first and
second modes can not be spectrally distinguished in the observational data
due to the width of the spectral peak centred at ∼35 minutes. BGS predict
a mode-2 period of 35.3 minutes so they conclude that this peak simply
obfuscates the fundamental mode. Considering the results of the present
FEM, we believe that the peak cannot be attributed to either one of the
first two modes more strongly than the other and represents a combination
of the energy of both modes. Re-analysis of the water level time series
using different spectral techniques (such as different choices in windowing
or pre-whitening) may help improve the separation between these signals,
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but given the similarity between the two periods (36.8 min and 32.1 min), it
is unlikely that it would be possible to resolve them completely without a
much longer time series or higher frequency recording.

Table 3.3: Modal periods, Tn, in minutes for Lake Como. The periods observed by
BGS correspond to the measurement period on Feb. 17 and the period modelled by BGS
correspond to the 250m grid spacing with NF=2000. SAM-CB and SAM-LB periods
marked with an asterisks (n = 2, 5) correspond to periods estimated using the TM response
so these modes have some decoupled behaviour. The wide spectral peak in observed data
makes it impossible to separate the modal periods of the first and second mode; the n = 2
value of 35.3 min was attributed by BGS to the second mode, but this may be inaccurate.

Buzzi et al. (1997) FEM SAM

n Observed Modelled HDM SAM-CB SAM-LB

1 - 40.8 36.8 35.6 37.9
2 35.3 35.7 32.1 33.7∗ 32.5∗

3 20.9 22.4 20.3 17.7 22.3
4 15.8 17.0 15.5 11.9 16.4
5 12.8 13.7 12.3 11.2∗ 14.2∗

6 10.2 10.8 9.9 8.8 12.3

Because the limnograph measured water elevation at only one location
on the lake, it is not possible to verify the mode-shapes predicted by the
models. Instead, the consistency between observed and FEM predicted
periods is taken as an indicator of the success of the model. This criterion
is typically sufficient for studies of this nature (e.g. Carter and Lane, 1996;
Hutter et al., 1982) and so the mode-shapes predicted by the FEM are taken
as correct. Figure 3.2 shows the normalized surface deflections in Lake Como
corresponding to the first four modes as predicted by both the FEM and
SAM (-CB and -LB) analyses.

Notwithstanding the slight difference in predicted modal periods between
the present FEM model and the numerical model employed by BGS, there is
high fidelity between the mode-shapes of the first two modes predicted with
each of these methods (compare Figure 3.2a, n = 1, 2 with Figures 3 and 4
from BGS). However, whereas it is clear from the present FEM results that
the second mode, T2, has two nodal lines in its response, BGS only labels
one of these as a nodal line in their results. The second nodal line is shown
but misrepresented as a surface displacement contour. Interestingly, there is
also good agreement between the present mode-shapes and the V1 baroclinic
modes presented by Guyennon et al. (2014).
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Figure 3.2: Mode-shapes in Lake Como predicted by (a) The FEM model, (b) SAM-CB, and (c) SAM-LB corresponding to the
labelled mode numbers, n. Deflections are normalized between -1 (blue) and 1 (red), and nodes are indicated by black contours or dots.
The plain black lines in the western arm in (b) and (c) for n = 2 represents to the decoupling of that arm for the second mode.49



3.3. Results

As seen in Table 3.3, in Lake Como both SAM-CB and SAM-LB produce
reasonable values of the modal periods when compared to the FEM or
observed results. For SAM-CB, these results become increasingly inaccurate
for higher modes, whereas SAM-LB is able to retain some level of accuracy in
that range. Because higher modes are more sensitive to depth variation, it is
not expected that SAM-CB would be accurate for those modes. Despite the
error in predicted periods, both SAM-CB and SAM-LB produce qualitatively
reasonable mode-shapes (see Figure 3.2). For modes 1, 3, and 4, the correct
number of nodal lines, and their approximate locations are well represented.

The mode-2 response in Lake Como corresponds to the decoupled mode
predicted by the TM response of SAM. SAM predicts that this mode is a
co-oscillation of the North Arm with the Lecco Branch, with a single node
at the confluence point and zero deflection in the Como Branch. As seen
in the FEM results, this prediction is a reasonable representation of the
response. The FEM predicted mode-shape has two nodal lines, both very
near each other and in the vicinity of the confluence point. The maximum
deflection (normalized to range from -1 to 1) between these nodes is ∼+0.05
before entering the eastern arm. The deflection at the tip of the Como Arm
is ∼-0.06. Due to the very small deflections in this arm, Guyennon et al.
(2014) and BGS both describe the second horizontal mode as exhibiting a
decoupled response of the Como Branch. The mode-shapes predicted by
Guyennon et al. (2014) show that the fifth mode also shows decoupling of
the Como Branch. In SAM, an additional decoupled response also occurs for
the fifth mode (see Table 3.3).

Despite the success of SAM in predicting the decoupled response in the
Como Arm, the actual choice of the location of the confluence point (and thus
the values of τi) is subjective. An alternate choice of confluence point in Lake
Como results in a complete TNE case, where the values of τi in each arm
are similar but unequal. This indicates that the criterion that determines
whether or not decoupling is expected to occur is sensitive to choices made by
the individual researchers. Fortunately, the results predicted by SAM were
not overly sensitive to this choice. When this analysis was repeated with
a different confluence point, the predicted modal periods did not shift by
any greater than 1 minute and the mode-shapes were not strongly affected.
While the Como Branch no longer experienced a zero-deflection, it did have
very small values for deflection (similar to the FEM model). This indicates
a robustness of SAM to such subjective choices.
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3.3. Results

3.3.2 Quesnel Lake

Pressure signals from all stations across Quesnel Lake show consistent high-
frequency, low amplitude (less than approximately 0.05 dbar) oscillations for
the entire period of record. Larger, transient surface displacements (pressure
variations up to approximately 0.15 dbar that last from 12-24 hours) occurred
occasionally throughout the record. Both types of oscillatory signals are
attributed to surface seiching; however, the transient oscillations are likely
triggered by wind storms and are more consistent with the typical schematic
representation of seiching. Spectral analysis of these pressure and water level
data (Figure 3.3) reveal a number of distinct peaks, which are tabulated in
Table 3.4.

Spectral analysis was also performed on the barometric pressure signal
(not shown). This analysis showed peaks at the diurnal and semi-diurnal
frequencies with a steady decay towards the Nyquist frequency. A small
peak at the third harmonic of the diurnal signal (T = 8 hr) appears but is
not statistically significant. No energetic peaks exist within the frequency
range corresponding to barotropic motions in the lake.

As with Lake Como, the difference in the periods predicted by the FEM
analysis using either the HDM or LDM grids were ≤ 0.1 minutes and so only
the HDM results are presented. The FEM predicted periods correspond to
the peaks in spectral response; however, in all cases the solver overestimates
the periods compared to the observations (see Table 3.4). This may be due,
in part, to a more limited spatial coverage of bathymetric data available for
Quesnel Lake compared to Lake Como, particularly in the deeper sections of
the lake (such as the East Arm). Despite these differences, the FEM appears
successful in its ability to identify the observed periods.

Table 3.4: Modal periods, Tn, in minutes for Quesnel Lake as measured from observational
data, and model results.

Observed FEM SAM

n HDM SAM-CB SAM-LB

1 75.3 79.0 75.1 70.9
2 61.1 62.4 63.2 60.6
3 46.0 47.8 33.3 40.6
4 33.5 35.4 24.8 30.8

There are a number of significant peaks in Figure 3.3 at all mooring
stations at higher frequencies (30-minute periods and below). The periods of
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these modes are less than the 30-minute period corresponding to the Nyquist
frequency of the barometric pressure signal. While there is no reason to expect
that the atmospheric pressure would have any oscillatory structure with
frequencies in this range, it is not possible to separate hydrostatic pressure
from atmospheric pressure for these frequencies. Furthermore, higher modes
are much more sensitive to bathymetic variation and so prediction of these
modes can be less accurate; note that for the modes presented in Table 3.4 the
FEM model has errors of ∼ 2− 4 min, and the difference between periods of
these higher modes can be < 1 min. For these reasons, the present discussion
will focus only the lowest frequency modes.

The η-eigenmodes predicted by the FEM are shown in Figure 3.4, where
they are compared to those predicted using both SAM-CB and SAM-LB.

The spatial coverage of mooring data in Quesnel Lake is insufficient to
deduce the spatial structure of the mode-shapes from observational data
alone. However, the number of moorings and their distribution does permit
some validation of the predicted mode-shapes. Table 3.5 compares the energy
associated with the spectral peaks at the different station locations and
the associated energy at the same locations from the numerical predictions.
These results show a good level of agreement between observed and modelled
mode-shapes.

Table 3.5: The energy associated with each n mode, relative to the energy measured at
station M1. The observed values are taken from the spectral peaks shown in Figure 3.3.
The predicted values are taken from the displacements given by the FEM analysis shown
in Figure 3.4; energy is proportional to displacement squared. No observed value is given
for M5 for n = 2 because there is no evident spectral peak to measure

Observed FEM

n M1 M3 M5 M10 M1 M3 M5 M10

1 1.00 0.73 0.09 0.02 1.00 0.71 0.06 0.01
2 1.00 0.63 - 3.36 1.00 0.56 0.01 3.07
3 1.00 0.37 0.31 0.01 1.00 0.32 0.36 0.00
4 1.00 0.11 0.86 0.57 1.00 0.02 0.86 0.60

In Quesnel Lake, SAM-CB provides a good estimate of the first two
periods of oscillation, but is unable to accurately predict the periods of
higher modes (Table 3.4). While SAM-LB does improve on the accuracy of
the results for modes 3 and 4, the increase is only marginal and is offset by
a decrease in accuracy in modes 1 and 2. Along-thalweg depth variation in
Quesnel Lake is poorly described by a linear model, particularly in the East
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Figure 3.3: Spectral energy computed for pressure recorded at the moorings. For clarity,
the lowest signal (M1) is shown with true values, while subsequent signals are each shifted
vertically by a factor of 103. Significant energy is also contained in periods longer than 500
minutes but no peaks of significance or interest are contained in that range; the choice
of axis limits is made to highlight the spectral peaks associated with barotropic modes.
Vertical grey bands highlight the peaks tabulated in Table 3.4 and discussed through the
text. 95% confidence bounds are shown by dashed lines along the bottom of the panel.
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(c) SAM-LB
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Figure 3.4: Mode-shapes in Quesnel Lake predicted by (a) The FEM model, (b) SAM-CB, and (c) SAM-LB corresponding to the
labelled mode numbers, n. Deflections are normalized between -1 (blue) and 1 (red), and nodes are indicated by black contours or dots.
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3.3. Results

Arm.
As with Lake Como, SAM does produce qualitatively accurate mode-

shapes with both SAM-CB and SAM-LB depth variations in Quesnel Lake
(Figure 3.4), though these are less accurate within Quesnel Lake than they
were in Lake Como. Whereas in Lake Como, there was very little difference
between the positions of the nodes between the FEM, SAM-CB, and SAM-
LB models, in Quesnel Lake the node locations do experience some travel
between models, particularly in the second mode. The FEM model predicts
that the second mode has one node that is located on the sill near Cariboo
Island, and a second node near the entrance of the East Arm. In both
SAM-CB and SAM-LB, the Cariboo Island node has moved eastward and is
located midway along the West Arm; in SAM-CB the movement of the node
near the entrance to the East Arm has caused it to shift around the corner
into the entrance of the North Arm, thus incorrectly predicting the phase
relationship between the terminus of the North and West Arms.

The differences between observed and predicted modal periods and mode
shapes suggest that the modelled response of Quesnel Lake is more sensitive to
depth variation than Lake Como. One possible explanation for this increased
sensitivity is the influence of the sill and constriction at Cariboo Island.
Partial wave reflections at this location may act to modify the standing wave
modes of the lake. The present study does not have a mechanism to directly
investigate the impact of a sill on the barotropic response, but it is noted
that neither of the instances of SAM (-CB or -LB) include the influence
of the sill, whereas the FEM does. Additionally, the second mode, where
SAM and FEM mode-shape results have the greatest difference, the nodal
line predicted by the FEM is directly over the sill; it is unclear if this is a
coincidence or not.

3.3.3 Accuracy of the simplified analytical model

Despite the fact that predictions are less accurate in Quesnel Lake than they
are in Lake Como, overall the mode-shapes predicted by SAM showed good
agreement with the FEM model in both lakes. In most cases, SAM accurately
predicted the phase relation between arms, and the number and approximate
location of all nodal lines. The primary difference between mode-shapes
predicted by SAM-CB versus SAM-LB is the amplitude of the deflections
away from the terminus of the arms. In both lakes, SAM-LB predicted
lower deflections away from the ends of the arms which more accurately
captured the variation in deflection amplitude exhibited by the FEM predicted
mode-shapes when compared to SAM-CB model. This behaviour can be

55



3.4. Discussion

attributed to the spatially decreasing amplitude of oscillations in the functions
η when the lake depth H(x) is increasing away from the ends of the arms
(see Section 2.3.2 in Chapter 2 for more details). Note in particular the
differences between the results of SAM-CB and SAM-LB in the deflection at
the anti-nodes in the third and fourth modes in both lakes. The fact that
SAM reproduces this mode localization is taken as another indicator of its
success.

As expected, SAM was also able to predict the periods of the lowest
modes, which are relatively insensitive to depth. The inability of SAM-CB
to predict the periods of higher modes is a reflection of the simplifications
made to account for depth variation. It is expected that a model that is able
to include depth variation would more accurately predict mode-shapes and
periods of higher modes; however, energy is typically contained in the lowest
modes and so accurate representation of higher modes may not be a major
concern in most lakes.

3.4 Discussion

3.4.1 General behaviours of multi-armed lakes

There are a number of strong similarities between the barotropic mode-shapes
predicted for both Lake Como and Quesnel Lake. From theses similarities,
some general statements are made about the response of fjord-type multi-
armed lakes.

In both lakes, the first mode is governed by high deflection and a single
node in the arm with the largest value of τi (the i = 1 arm; coincidentally, the
western arm of each lake). Out-of-phase deflections are distributed between
the remaining two arms of the lake. In Quesnel Lake, the value of τ1 in the
West Arm is greatest because that arm is relatively shallow compared to the
other two; the much longer extents of the East and North Arms (i = 2, 3)
results in low deflections in those arms in order to conserve mass. In Lake
Como, where all of the arms have similar lengths, the negative deflection
in each of the North and East Arms (i = 2, 3) accounts for roughly half of
the positive deflection in the Como Branch (i = 1). The horizontal angles
formed by the arms as they extend from central junction slightly obfuscates
the fact that in both of these lakes the fundamental behaviour is roughly an
east-west rocking of the surface.

Section 2.3.1 suggests that the period of the fundamental mode can be
estimated with Merian’s formula applied along the longest extent of the lake.
This implies that the fundamental mode should be largely described as a
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simple oscillation of the two arms that form that extent, though other arms
will still be included in the response. The nodal line for the first mode is
expected to occur in the arms with the highest value of τi which is consistent
with the results in both Lake Como and Quesnel Lake. This mode is can be
thought of as a linear co-oscillation of that arm out-of-phase with the rest of
the lake.

A similar response is seen in the first horizontal mode for other multi-
armed and complex lakes. In a three-layer model, both the V1H1 and
V2H1 baroclinic responses of Nechako Reservoir are characterized by linear
oscillations in which Natalkuz Lake is out-of-phase from Knewstubb Lake
(an overall east-west oscillation). In Lake Onega the first mode is marked by
a high deflection in Povenetskiy Bay with a nodal line in that arm. All other
arms and bays of the lake oscillate together with the main body of the lake
(Rudnev et al., 1995). The oscillation appears to be a simple north-south
rocking of the entire lake. Lake Te Anau (Carter and Lane, 1996) and Clear
Lake (Rueda and Schladow, 2002) have first modes that are also described
as simple linear oscillations despite the complex shape of those lakes.

In Lake Como, the second mode corresponds to the mixed TM type
response predicted by SAM, in which only the North Arm and the Lecco
Branch are active. Because Quesnel Lake is not expected to have a decoupled
response, we don’t necessarily expect strong agreement between the two
lakes for this mode. Indeed, in Quesnel Lake the second mode has non-zero
deflections across all arms of the lake; however, the overall response is still
largely characterized as an oscillation of only two arms. For both Lake
Como and Quesnel Lake, the two arms that characterize the second mode
are i = 2, 3; that is, the two arms most active in the mode-2 response are
the ones that were not dominant in the mode-1 response. It is further noted
that in both lakes, the two nodal lines appearing in the second mode do not
occur within the same arm.

The third mode in both lakes is a radial mode with an anti-node near
the geometric centre of the lake. For a lake with a geometry that conforms
to the TE case, SAM predicts that the first whole-lake mode will have an
anti-node at the confluence point. Neither of these lakes is described by the
TE case, and the anti-node is not directly at the confluence point. Given
that within each of the two lakes, all of the arm lengths are of the same order
of magnitude, it is unsurprising that a response with a central anti-node
may appear as the third mode. Nechako Reservoir, on the other hand, does
not seem to have any radial mode of the same structure (Imam, 2012; Imam
et al., 2017). In Nechako Reservoir, sidearms are relatively short compared
to the total east-west extent of the lake so the mode-2 radial-like response is
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simply analogous to the mode-2 response in simple elongated lakes.
In the fourth mode (and higher modes not shown), deflections become

more complex and harder to describe. In both Lake Como and Quesnel Lake,
the fourth mode has four nodal lines, and in both cases the distribution of
these nodes is consistent: two nodes exist in the i = 1 arm (with the highest
value of τi), and one node exists in each of the other two arms. An additional
feature of these higher modes is that deflections are increasingly localized
to the tips of the arms. This localization is actually expected, and can be
explained in terms of the analytical model (see Section 2.3.2 in Chapter 2).

In simple elongated lakes, there is an expected one-to-one correspondence
between mode number and the number of nodal lines. For the lakes described
above, this is true for the first mode which contains a single nodal line in each
case. For some complex geometries, this one-to-one correspondence is not
true for higher modes. For example, Rudnev et al. (1995) labels two nodal
lines in both the second and third modes of Lake Onega, and only three
nodal lines exist in the fourth mode. However, the geometry of Lake Onega
should not be classified strictly as a multi-armed lake due the the ambiguity
between “arms” versus “bays”, so the modes predicted may represent the
influence other geometric features. In Nechako Reservoir, which conforms to
the classification of fjord-type multi-armed geometry, the number of nodal
lines observed in each baroclinic mode matches the horizontal mode number
for the majority of modes shown (the only exception being the upper interface
in the V1H5 response) (Imam, 2012; Imam et al., 2017) . In the present
study, the one-to-one correspondence also holds.

The results suggest predictability of the locations of these nodes in lakes
of this geometric class. As described, we observe that the first mode is a
general Merian-type oscillation with a single node located in the the arm
with the highest value of τi. The N th-mode response of an N -armed lake
will be a radial mode with a single modal line in every arm. The results here
further suggest that the modes numbered 1 ≤ n ≤ N seem to have 0 − 1
nodes per arm, and modes numbered N ≤ n ≤ 2N will have 1− 2 nodes per
arm, etc. These patterns likely arise because the values of τi are unequal but
of the same order of magnitude for all arms. It is likely that in a case where
one arm is disproportionately long or small, these descriptions would not
be valid; in those cases, the longest extent of the lake may behave similarly
to a simple elongated lake with limited modification by the smaller arm(s).
Furthermore, in a fully decoupled case (the TE case), the placement and
number of nodes will not follow this pattern; however, in that case it will be
reasonably easy to predict where these nodes will occur. For high enough
mode numbers it is expected that transverse modes and harbour-constrained
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modes may erode these patterns just as they would in simple geometries.

3.4.2 The activation of higher modes

In both the FEM and SAM results, the distribution of barotropic seiche
amplitude within the lake has considerable spatial variation. While the
highest deflections are always present at one extremity of the lake for each
of the modes, the distribution of out-of-phase deflections between arms of
a lake may result in relatively low deflections in certain arms, even if a
decoupled response is not present. For example, in the first mode of Lake
Como the FEM predicts a maximal normalized deflection of +1 at the tip of
the Como Branch, but the deflections at the tips of the Lecco Branch and the
North Arm are only -0.39 and -0.52, respectively. Similar results are shown
in Quesnel Lake. This energy distribution creates interesting questions in
terms of which of the modes will be active in the lake response. In simple
lakes, the dominant response is typically consistent with the fundamental
mode for both barotropic and baroclinic modes (Mortimer, 1952). While
this result has been attributed to resonance between temporal fluctuations
of the wind forcing and the V1H1 period (e.g. Hutter et al., 1983) or the
minimal damping of the V1H1 mode (e.g. Mortimer, 1952), Imam et al.
(2017) suggests that instead, it is the spatial uniformity of the wind field
that results in that mode being activate. In general, it is expected that the
energy imparted to a given mode is related to the similarity of that mode
to the spatial structure of the forcing mechanism (Guyennon et al., 2014;
Shimizu et al., 2007). As a result, for multi-armed lakes in which the local
topography may result in non-uniform wind fields, higher modes may become
the dominant response.

An extension of this result is that wind storms localized to a single arm of
a multi-arm lake have the potential to generate currents and displacements
in other arms. The linearized problem is an initial-condition eigenvalue
problem, so any initial wind set-up, F0(x, y), will be constructed by a linear
combination of eigenmodes:

F0(x, y) =
∞∑
n=1

Anηn(x, y).

When forcing subsides and the surface is allowed to relax, these modes will
oscillate with their distinct frequencies ωn. In the TNE case, all modes
ηn(x, y) have deflections across the entire domain; at t = 0 these deflections
may add to zero in some sub-domain, but because the modes all oscillate
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with different frequencies, at some time t > 0 the modes will separate and so
h(x, y, t) 6= 0 everywhere.

While not a general feature of multi-armed lakes, we speculate that the
constriction near Cariboo Island may also contribute to the activation of
higher modes in Quesnel Lake. In a study of Lake Winnipeg, Einarsson and
Lowe (1968) discuss the impact of constrictions in that lake on barotropic
set-up. Those authors suggest that constrictions in Lake Winnipeg induce a
time-lag on the steady-state set up of the lake. The transient set-up would
include a state in which each individual basin of the lake undergoes its
own set up (see Figure 3.5). Imam et al. (2017) notes similar local tilts of
the metalimnion of separated basins in Nechako Reservoir. The processes
described by both Einarsson and Lowe (1968) and Imam et al. (2017) have
the potential to lead to an initial set-up condition in Quesnel Lake that
matches Figure 3.5. Relaxation of a set-up that consists of basin-specific tilts
of the water surface is likely to impart energy to higher modes in the same
manner that those modes are activated when their mode-shapes reflect the
spatial variation of forcing. This may account for the high energy is modes
with periods ≤ 30 minutes observed in Figure 3.3.

West Basin

Main lake body

Sill

Figure 3.5: Schematic representation of a possible transient set-up of Quesnel Lake. The
solid black line represents the undisturbed water surface, while the dashed line shows the
initial stage of set-up.

3.5 Conclusions

By comparing the spatial structure of the mode-shapes of both Quesnel
Lake and Lake Como, we’ve been able to infer some general patterns in the
structure of the modes in Y-shaped lakes, or multi-armed lakes with any
number of arms. The results justify the use of a simplified analytical model
(SAM). As seen here, the first fundamental mode in these lakes does not
differ substantially from simple elongated lakes and acts as a simple linear
oscillation between the arm with the highest value of τi and the remainder
of the lake. However, due to the varied directions at which arms radiate
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from the confluence point, it may be difficult to recognize this mode as a
simple co-oscillation without considering the results of SAM. The locations
of nodes and corresponding spatial distribution in surface deflection in higher
modes may not be easy to intuit, but the SAM provides a relatively easy
method by which to predict these mode-shapes. The results show that the
one-to-one correspondence between mode number and the number of nodal
lines observed in elongated lakes appears to also be a feature of multi-armed
lakes of the TNE and TM classes, though the inclusion of harbour-type
modes and transverse modes will degrade that pattern at high enough mode
numbers. Numerical modelling shows the localization of deflections to the
terminus of arms at higher mode numbers for both lakes. This behaviour is
explained analytically by SAM, and is expected to be a general feature of
both simple and multi-armed lakes.

One important result of SAM is the possibility of a decoupled response in
one or more arms of the lake. Specifically, the relative values of a parameter
τi = Li(gH0,i)

−1/2, which is the travel time of a shallow water wave in the
ith arm, determines if such a behaviour will occur. If τ1 6= τ2 6= τ3 (called
the TNE case), then no decoupling will occur, and all modes will act as
whole-lake modes. Alternatively, if τi = τj for a given subset of arms of the
lake (called the TM case) then there will be some modes that act only across
the arms i and j with a node at the confluence point, and all other arms
will be decoupled from the response. When all arms have equal values of
τi (τ1 = τ2 = τ3, called the TE case), multiple sets of decoupled modes will
occur. In Lake Como, the wave-travel-times in the North Arm and Lecco
Branch are equal, and the mode-2 response is an oscillation of only these
two arms with the Como Branch absent from the response. No decoupling
is observed in Quesnel Lake which corresponds to a TNE case. Because
SAM provides a geometric criterion to predict the possibility of decoupled
arms, such predictions are possible for a given lake before a more detailed
numerical analysis is completed.

Even in lakes where decoupling or arms is not expected to occur, this
study shows that seiche modes in multi-armed lakes do exhibit considerable
spatial variation in modal amplitudes (and corresponding velocities). This
spatial heterogeneity of mode-shapes of both barotropic and baroclinic modes
has implications for water quality within multi-armed lakes due to the role
of horizontal velocity in both resuspension and transport. Due to their short
periods, horizontal velocities generated by the barotropic response can be
comparable in magnitude to those caused by baroclinic seiches (Lemmin and
Mortimer, 1986), and both have the capacity to resuspend bottom sediments
in lakes (Bloesch, 1995; Chung et al., 2009; Gloor et al., 1994). These bottom
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sediments are able to act as stores of nutrients or of harmful toxins (Chung
et al., 2009), so resuspension is an important for both water quality and
ecology. The spatial variation of seiche-induced horizontal velocities in multi-
armed lakes (with decoupling of arms being an extreme example of spatial
variation) can then lead to localized areas of resuspension. Baroclinic seiching
is responsible for the transport of material through a lake (Hodges et al.,
2000; Mortimer, 1952), so if there is a localized nutrient or pollution loading
into a lake (i.e. from a river inflow or due to localized areas of resuspension),
the spatial variation in internal currents and the decoupling of arms will
determine whether that loading has the ability to impact the entire lake or
only some subsection. In an extreme case, high loadings into an arm that is
decoupled from the rest of the lake in the seiche response can limit mixing
or flushing in that arm, and create localized pollution or eutrophication
concerns.
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Chapter 4

Conclusions

4.1 Summary and contributions

This study examined the free oscillatory response of lakes with multiple
narrow, elongated arms. This was achieved through the use of an analytical
description in an idealized case (Chapter 2), and a comparison of case studies
conducted to two Y-shaped lakes (Chapter 3). The results of the study allow
for some general statements to be made about this response.

Chapter 2 presents the development a simplified analytical model (SAM)
for idealized, multi-armed lakes. This model considered bathymetric variation
by describing the results in the cases of a constant bottom and a linearly
varying bottom, and presenting the results of an asymptotic approximation
for an arbitrary bottom. It was found that regardless of the specific form of
depth variation being considered, the relative values of a single parameter τi,
which represents the travel time of a progressive shallow-water wave along
the ith arm of the lake, can be used to classify the lake into two behavioural
regimes: lakes with decoupled modes, and lakes with only whole-lake modes.

While these idealized results were valuable, it was also necessary to exam-
ine realistic bathymetries. Chapter 3 compared both field results, numerically
modelled results, and SAM results of two Y-shaped lakes: Quesnel Lake and
Lake Como. The results provide justification of the ability of the SAM to
both predict and explain the seiche modes of these lakes.

Of particular interest in this study is the explanation in Chapter 2 of the
potential decoupled response in multi-armed lakes. While this behaviour was
previously observed in Lake Como (Buzzi et al., 1997; Guyennon et al., 2014),
it was absent from Knewstubb and Natalkuz Lakes (Imam, 2012), leading
to questions about when such a behaviour might be expected to occur in
general, or whether Lake Como presented an a-typical case. Not only does
the SAM provide an explanation for why this decoupling happens, but also
gives a criteria for predicting whether it will occur in a given lake. If the
wave travel time, τi, is equal in two arms of a multi-armed lake, the resulting
standing wave mode produced by those two arms will have a node at the
confluence point of all of the arms. With zero-deflection at the junction,
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all other arms will be absent (decoupled) in the response for that mode.
When applied to Lake Como in Chapter 3, this prediction is consistent with
observed behaviour; conversely, consistent with the SAM predictions, Quesnel
Lake is not expected to exhbit any decoupled behaviour.

The results of this study also provide some basis for predicting the mode-
shape of the fundamental mode. As demonstrated by Malinina and Solntseva
(1972), Laval et al. (2008) and Imam et al. (2013b), the intuition of some
researchers in trying to predict the fundamental period of a multi-armed
lake is to apply Merian’s formula along the longest continuous extent of the
lake. The results of the SAM suggest that even for lakes in which none of
the arms are decoupled, applying Merian’s formula as suggested may provide
a reasonable “first guess” of the fundamental seiche period. This first mode
will then conform to a general “linear” oscillation in which the arm with the
highest value of τi exhibits motion out-of-phase from the remaining arms
of the lake in a back-and-forth rocking analogous to simple elongated lakes.
The studies of Lakes Como and Quesnel in Chapter 3 confirm that the first
mode is well described by this general linear oscillation, with a single nodal
line in the arm that has the highest value of τi.

An additional interesting result of this study is the observations in
Chapter 3 of the localization of deflections for higher modes. In this geometry
where motions are primarily longitudinal, this localization resulted in high
deflections near the terminus of different arms, with a relatively inert lake
body. The SAM provides an analytical explanation for this in terms of
the structure of mode-shapes attributed to shoalling bathymetries versus
flat-bottomed. An extension of the SAM to include width variation (see
Section 2.3.2) would cause an exaggeration of these results. In more complex
two-dimensional domains, this mode localization may be related to the bay
and harbour modes observed in locations such as Lake Onega (Rudnev et al.,
1995), or Flathead Lake (Kirillin et al., 2014).

4.2 Future work

4.2.1 Additional study of Quesnel Lake and Lake Como

Barotropic modes

Buzzi et al. (1997) provides a detailed study of barotropic modes within
Lake Como. The modelling work performed by those authors is repeated
in Chapter 3 with a higher mesh density, and more context is provided to
explain the structure of the predicted modes. While this study appears
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consistent with the modes observed by Buzzi et al. (1997) during a field
study, the width of the spectral band centred near 35-minutes in the observed
data obstructs the ability to differentiate between the first and second modes.
Furthermore, because of the the lack of spatial coverage of field data, it is not
possible to verify the predicted mode-shapes. In order to fully validate the
model output, it would be valuable to perform an additional field study of
Lake Como. Such a study would entail a spatial array of water level sensors
(at minimum, one at the terminus of each arm); these sensors would need to
record at a high enough frequency and for a long enough interval to allow
for the separation of these modes in the spectral response.

The present work provides a characterization of the barotropic modes in
Quesnel Lake that is consistent with both the observed oscillatory periods
and the spatial distribution of spectral energy signals. Nonetheless, there
are still unanswered questions regarding the barotropic response of the lake.
In particular, it would be interesting to better understand the role of the
constriction at Cariboo Island on seiche modes. Chapter 3 provides some
circumstantial evidence that the form of the free modes is modified by the
inclusion of the constriction, possibly due to partial reflections. A more robust
analysis of this effect can be undertaken using the finite element method
(FEM) numerical model used in Chapter 3. An artificial lake bathymetry can
be constructed in which Cariboo Island is removed and the sill is smoothed
out, effectively removing the constriction; a comparison of the appliction of
the FEM model to this constructed bathymetry with the results presented
in Chapter 3 would help explain the impact of the sill on the mode-shapes
and periods of the free modes.

As described in Chapter 3, the sill may also have an impact on the
activation of higher barotropic modes. Given that the observed spectral
response of Quesnel Lake agrees with the periods predicted by the FEM model,
this time lag may be negligible compared to the period of the barotropic
modes. Even if the time lag does not impact the periods of the barotropic
modes, the transient form of the set-up depicted in Figure 3.5 may occur in
reaction to short-duration wind gusts. Some of the energetic peaks at higher
frequencies in the spectral response of Quesnel Lake (Figure 3.3) may be
attributed to a reaction to such a partially set-up surface.

Baroclinic modes in Quesnel Lake

Chapter 3 provides a characterization of barotropic modes in Quesnel Lake.
While these are interesting in explaining the behaviour of multi-armed lakes,
barotropic motions may not contribute to mass transport to the same degree
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as baroclinic motions. Laval et al. (2008) found that baroclinic motions can
have a profound impact on the exchange of deep water between basins of
the lake, but as of yet no characterization has been made of these internal
modes. While it would be of interest to apply the FEM and SAM models
discussed in the present study to the baroclinic response of Quesnel Lake
directly, it may first be necessary to further understand the role of the sill at
Cariboo Island in modifying baroclinic modes.

The transient surface set-up in lakes that contain constrictions described
by Einarsson and Lowe (1968), and depicted schematically in Figure 3.5 may
similarly apply to the baroclinic set-up. The so-called “split layer” observed
in Lake Constance by Appt et al. (2004) is likely an extreme example of
such a set-up, in which non-linear effects cause the interface to surface in the
vicinity of a sill. Imam (2012, Chapter 6) further discussed the possibility of
a split layer in Knewstubb and Natalkuz lakes, and argues that the condition
to describe it’s occurrence should be Wd < 1 < Wu, where Wu,d are the
Wedderburn numbers in the upwind (u) and downwind basins (d). In Lake
Constance, the subsistence of the wind forcing during the split layer event was
associated with the generation of an internal surge. It would be instructive
to consider that result in the context of the degeneration regimes described
by Horn et al. (2001); it is possible that if the upwelling was less drastic, the
set-up would have relaxed instead into a decoupled set of standing waves
constrained to each of the two basins of the lake. If the existence of a
constriction can lead to the decoupling of baroclinic seiche modes between
basins, it would have a strong impact on the choices of geometry used in
predicting the free response modes.

4.2.2 Forced response of multi-armed lakes

In basins of simple geometry, energy is primarily contained in the fundamental
horizontal mode for both barotropic and baroclinic seiching (Mortimer, 1952).
In more complex lakes, this may not be the case. It is believed that for
lakes of complex geometry, the energy imparted to a particular barotropic
mode will be based on the similarity of the corresponding mode-shape to the
spatial distribution of the forcing pattern (Guyennon et al., 2014). Imam
(2012) suggests that the activation of baroclinic modes will be related to
resonance conditions between the wind timeseries and the free modes of the
lake. His study, however, did not account for the full spatial variation of the
wind field.

Whether through a hydrodynamic model such as ELCOM (Hodges et al.,
2000) for FVCOM (Chen et al., 2003) or a semi-numeric model such as the
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impulsively forced TVC developed by Imam (2012); Imam et al. (2013b), it
would be interesting to evaluate the the forced response of a multi-armed lake
with the specific goal of understanding the role of the different arms on the
response and activation of different modes. Such a study would likely rely on
a more complete picture of the spatial variability of the wind forcing. Laval
et al. (2008) suggests that the mountainous terrain surrounding Quesnel
Lake acts to channel the wind along the local thalweg of each arm. As
part of the present study, this author did attempt to analyse data collected
at lakeshore meteorological stations at Quesnel Lake in an effort to better
describe the spatial and temporal variation of the wind forcing, and link
those results to observed temporal variation in the spectral energy of different
barotropic modes within the lake. While those results provided evidence
that agreed with the assertions of Laval et al. (2008), the lack of wind data
that was coincident with recordings of water level in the lake prevented a
robust analysis. No definitive conclusions were made.

Given that fjord-type lakes typically sit in deep valleys carved by the
same glaciers that formed the lakes themselves, the impact of topography
on local wind patterns is likely to be an underlying question in all force-
response models of these lakes. Using an array of meteorological stations,
Ludwig et al. (2004) provides one framework for evaluating these data
using Empirical Orthogonal Functions (EOFs), which may be of value in
describing topographic channelling. A more complete study of topographic
wind channelling over a lake and the resulting effects on baroclinic circulation
has recently been completed on Lake Iseo (Valerio et al., 2017). Those
authors simulated the wind field using the Weather Research and Forecasting
(WRF) atmospheric model, and their results indicate spatial variation of the
wind field had an impact on the energy imparted to baroclinic modes.

In multi-armed lakes, a more complete understanding of the spatial
variation of the wind (through modelling or field study) may reveal wind
forcing that is locally constrained or may be channelled in different directions
along different arms of the lake. Such patterns could result in some mode
other than the fundamental mode being the primary energetic mode of the
lake.
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4.2.3 The use of simplified analytical models in predicting
seiche response

Appliction of the SAM to other lakes

It would be very interesting to apply the SAM to other multi-armed lakes.
Two potential contenders for which the SAM may provide valuable insight
are Shuswap Lake in British Columbia, and Keuaka Lake in New York.

Shuswap Lake has four arms extending from a central junction. A
constriction at the junction separates the lake into two connected longitudinal
extents. Assuming that depth doesn’t vary drastically through the lake, the
lengths of the arms can be used to infer whether τi would be expected to be
equal (the TE case) or unequal (the TNE case), or a mixture of the two (the
TM case). In fact, a cursory investigation suggests a TM case may occur.
Given the constriction, and the potential for some arms decoupled from the
response, it would be interesting to see if all of the possible free modes are
realized in the lake.

Like Lake Como and Quesnel Lake, Keuka Lake is Y-shaped. The lake
has two shorter arms that extend continuously in a roughly north-south
direction, and a longer arm that branches out almost perpendicular to the
other two before turning in a north-east direction. While the SAM does not
consider the relative angles of the arms as they extend from the junction, it
is reasonable to expect that response of the lake may favour the activation
of a mode along a continuous extent, compared to one that needs to turn
a corner. Based on the results presented in Chapter 3, one might expect
that the fundamental mode in Kueka Lake would be a co-oscillation of the
north-east arm with the main body of the lake in an overall east-west rocking
motion. However, a field study may find that the second mode, which is
likely a north-south oscillation of the two shorter arms with relatively low
deflection in the north-east arm (possibly even a a fully decoupled north-east
arm), may be the dominant mode within the lake.

Development of models for other geometric features

The present SAM considers the effects of multiple arms on the seiche response
of a lake. While this is of interest, there are other geometric features that
may be of similar interest to other researchers. By considering the process
used to develop the model described in Chapter 2, it may be possible to
construct SAM’s for other geometries as well.

Ultimately, the development of the SAM for multi-armed lakes is limited
in its application by the number of multi-armed lakes of interest or importance.
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Nonetheless, the success of this model in providing context and understanding
for the barotropic modes observed in Lake Como and Quesnel Lake, and the
framework it provides for understanding those modes in other multi-armed
lakes shows the value in using simple models to describe the important
geometric features in isolation.
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