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Abstract

Vaportrail is a privacy-preserving platform for personal data and applications. It

allows users to archive their personal data and safely expose it to untrusted third-

party applications. As a trusted hub for data sources like email, social updates,

location data, and health metrics it enables new types of applications that com-

bine several sensitive personal data streams. Through carefully designed isolation

mechanisms, the platform prevents applications from exfiltrating data and unbur-

dens developers of the fiduciary responsibility associated with handling personal

data. Vaportrail provides an open package format and APIs for building service

connectors that ingest data from external services, as well as a robust browser-

based sandbox that mediates application access to sensitive data.
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Lay Summary

Vaportrail is a software system that allows users to import their data from websites,

social networks, smart devices, and other services. It provides a safe platform for

exploring and leveraging personal data using third-party applications.
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Chapter 1

Introduction

A man cannot be comfortable without his own approval.
— Mark Twain

Social networking and cloud-based services have ushered in an era of unprece-

dented data creation, sharing, and interaction[12]. Apps and websites encourage

us to create, connect and share an increasingly intimate portrait of our daily lives

with everyone around us. We generate a continuous stream of personal content in

the form of pictures, videos, emails, documents, comments, likes, purchases and

GPS location data. Behind each page impression, click, and scroll event is a trail of

personal data. Detailed logs of every interaction are captured and stored, creating

a valuable, high-resolution history of what we view, like, dislike and search for.

With the advent of Internet of Things (IoT) a growing array of “smart” devices,

including everyday appliances and mundane household objects, are passively (and

in many cases actively[23][2][21]) listening: contributing enormous volumes of

personal data to our vaportrail in the cloud. In this thesis we present Vaportrail,

a self-contained and self-hosted appliance that enables users to leverage the data

they generate. Vaportrail has a plugin architecture that allows service connectors

to continuously load and store personal data from external services. To leverage

the data, it provides a browser-based sandbox in which untrusted third-party appli-

cations can operate without the ability to exfiltrate data over the network.
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1.1 Deployment model
Vaportrail is packaged as a virtual machine image (or virtual appliance) that can

be hosted on any public cloud or private infrastructure. All operational costs, in-

cluding compute and storage, are the responsibility of the user. There is no central

Vaportrail service: the appliance does not “phone home” or have dependencies on

any external services. Vaportrail is an entirely self-contained device. Although

this model imposes some cost and operational complexity beyond familiar cloud

services, it ensures that costs are explicit and mitigates the need for an exploitative

business model. The continued growth and maturity of public cloud infrastructure

has brought the cost of non-trivial compute and storage resources well within the

means of the hobbyist[22][5][14]. We believe that for privacy conscious users, the

control and transparency afforded by operating the appliance is preferable to other

deployment options.

1.2 Personal data warehousing
Inexpensive cloud storage and the expected (business) value of data has made col-

lecting and warehousing it, regardless of its immediate utility, standard practice

for Software as a Service (SaaS) providers[12]. We take inspiration from modern

consumer scale data warehousing to propose a form of personal scale data ware-

housing. Instead of archiving raw data to flat files or coercing various schemas into

a single traditional Relational Database Management System (RDBMS), we com-

bine several specialized data stores to support analytical queries across a range of

structured and unstructured personal data. The platform organizes the data stores

under a unified namespace and API.

1.3 Service connectors
Service connectors leverage platform APIs and a flexible execution environment to

authenticate with external services and load data into Vaportrail. The connectors

write to schemas that the user has explicitly granted them access to at install time.

Service connector developers can choose from various storage interfaces to suit the

nature of the data and or the expected access pattern. A Gmail[17] connector might

2



store attachments as binary objects in gmail.objects.inbox.attachments,

and messages as indexed text in gmail.nosql.inbox.messages.

1.4 Application sandbox
Applications are the primary way users interact with their Vaportrail. A browser-

based sandbox provides a safe execution environment for untrusted applications,

restricting their access to data and preventing them from exfiltrating it over the

network. Applications can use a rich set of platform APIs to query data, ren-

der GUIs, trigger platform-mediated sharing and save their state. There is a sub-

stantial amount of related work in JavaScript sandboxing, including AdSafe[1],

Treehouse[44], JS.JS[51] and others[52][39][38]. We build on this work to create

a robust application monitor that works in any modern web browser. In contrast

to related work, we have made trade offs in favour of security and reliability over

performance and backwards compatibility for existing applications.

1.5 A new class of applications
We hope to enable a new class of applications characterised by combining personal

data streams that were previously siloed and or too sensitive to share with untrusted

third-parties. Often we suffer from data lock-in: our data is trapped in the platform

in which it was created, limiting what we can do with it. When we can export it,

our data is often too sensitive to expose to any except the most credible, trustworthy

third-parties. Trust and credibility are rightfully difficult to attain, but this limits the

ability of independent developers to build applications that consume personal data.

With Vaportrail, we unburden the developer of traditional fiduciary responsibility,

and the user of the fear of their privacy being compromised, shifting trust onto the

platform and enabling a new application design space.

1.6 A simple trust model
With sensitive personal data at stake, a straightforward trust model is critical. To

that end, we state Vaportrail’s trust model here:

Trust the platform and infrastructure, but not applications or service connectors.
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We expect the number of service connectors to be small compared to the number

of applications, and rely on the community and trusted brands to endorse them. In

practice, an acceptable level of privacy can be achieved by deploying Vaportrail on

a reputable public cloud and using service connectors that have been vetted not to

interfere with the services they integrate with.

1.7 Sharing with intent
Vaportrail supports a limited form of sharing via platform-mediated intents[35].

We provide an API that applications can use to signal that an item (e.g. an image or

text) is shareable. The platform then provides the user with the option to share the

content using any service connector that has registered as a handler for the relevant

data type. Intents provide a mechanism to publish results out of the platform while

completely decoupling the application from the channel used to do so. Sharing is

currently limited to basic data types, but we imagine it could be extended to support

richer peer-to-peer sharing over WebRTC[36] or other protocols, with the platform

as a trusted broker. There is some risk of exfiltration inherent in sharing, which we

make explicit by requiring the user to grant an application permission to share.

1.8 Call for an open ecosystem
The success of Vaportrail depends on community adoption and a low-friction ex-

perience for developers and users. To foster the growth of an ecosystem we take

inspiration for the packaging and distribution model of service connectors and ap-

plications from the web browser extension model. Service connectors and appli-

cations are packaged as self-contained archives including their source code and a

manifest describing the permissions they require. Vaportrail is a decentralized plat-

form: there is no official “app store”, only simple packages that are easily created,

inspected and shared using familiar tools.

The aim of this thesis is to describe the design, prototype implementation and work

related to Vaportrail. We also explore the application design space enabled by such

a platform. The contributions of this thesis are threefold:

• We describe the design space for a modern, privacy-preserving platform for

4



personal data and summarize related commercial and academic work;

• We present Vaportrail, a prototype implementation and discuss the specific

challenges and tradeoffs encountered in its development;

• We discuss several examples of fun and useful apps enabled by the platform,

as well as consider the viability of Vaportrail’s deployment model as an al-

ternative to conventional SaaS.

At present the system is very much a research prototype, however enough of the

core functionality has been implemented to evaluate the design of key mechanisms

and APIs. In Chapter 2 we discuss the overall design of the system. In Chapter 3

we present the implementation. In Chapter 4 we summarize related work and in

Chapter 5 we conclude.
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Chapter 2

Design

Vaportrail is a self-contained platform for personal data and applications. It must

be inexpensive for users to operate, simple to maintain and extensible throughout:

from the appliance architecture, to the services it can ingest data from, and the core

isolation mechanisms and APIs exposed to applications. In addition to these goals,

we aim to prove that such a system can provide a modern and familiar web-based

user interface. We argue that user experience is a critical factor in the adoption

and success of a system like Vaportrail. We believe Vaportrail achieves these goals

through infrastructure-agnostic packaging that gives users a choice of hosting envi-

ronments, a plugin architecture for service connectors, modular design throughout,

and careful adherence to the principle that our implementation should not break the

familiar browser-based web experience. This chapter provides an overview of the

design space and specific considerations and trade-offs that were made in the pur-

suit of these design objectives. We provide a summary of the design requirements

at the end of the chapter.

2.1 A personal appliance
One of the guiding design goals for Vaportrail was that it should be a completely

self-contained appliance that a user can operate with minimal cost and effort. The

rise of Software as a Service has shifted user expectations toward a software de-

livery model in which the complexity (and cost) of providing sophisticated appli-
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cations is largely centralized and hidden. Using a new application usually requires

little more effort than pointing a web browser at a URL. While the centralised na-

ture of this model presents several challenges for privacy and data ownership, it has

a few attributes from a user experience perspective that are worth maintaining: ap-

plications are platform-independent JavaScript and HTML, execution is confined

to a trusted sandbox (the browser), and application lifecycle is managed through

familiar browser system primitives (tabs, history, bookmarks, etc.).

With Vaportrail we took the decision to make the costs of operating the system

explicit to the user by default, to ensure that the design did not depend on the

recovery of these costs through some form of business model. At the same time, we

embrace the merits of the SaaS model for application delivery and aim to provide

the “best of both worlds”: a standalone appliance that is simple and inexpensive to

deploy, with a familiar browser-based web application for interacting with services

and applications. The virtual appliance should support deployment without special

networking or storage configuration.

We acknowledge that because the appliance is self-hosted and maintained by

the user, it should be capable of long-term operation without intervention. To

achieve this, we use a modular, component-oriented architecture throughout the

system. Platform components are decoupled and isolated from one another. When

possible we choose proven software, protocols and isolation mechanisms over

newer or less stable options.

2.2 A modern user experience
The requirement that Vaportrail provide a familiar, browser-based UI presented

several challenges in balancing robust application sandboxing with a seamless user

experience. Specifically, it was important that it be possible to run several Vapor-

trail applications concurrently and that the sandbox not require multiple browser

tabs, page reloads, popups, or frames. We also set the requirement that Vapor-

trail should not depend on a custom browser extension to provide a trusted/priv-

ileged execution environment because extension semantics and APIs vary across

platforms and browsers. By restricting the design to standard browser APIs and

features that do not vary across platforms, Vaportrail is usable on a larger num-
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ber of devices, safer by not requiring elevated privileges, and provides a modern

single-page application experience.

2.3 Simple trust model
A simple and plainly stated trust model should be central to any device that consol-

idates highly personal data, and Vaportrail is no exception. It is important from a

practical perspective, in that the system should be simple to use and reason about.

It also gets to the heart of one of our broader goals with Vaportrail: to demon-

strate that there are architectural patterns that support familiar application prim-

itives without nebulous privacy implications, and that these patterns can be de-

ployed today. It is a choice, and not a technical necessity, to build software without

privacy controls. We state the platform’s trust model here and discuss the design

space and implications for each item below:

1. The user must trust the infrastructure that they choose to run their Vaportrail

instance on

2. The user must trust the core platform base that mediates access to their per-

sonal data

3. The user must grant service connectors a) access to the external service(s)

they integrate with, and b) platform-mediated write access to personal data

schemas

2.3.1 Trust the infrastructure

As a self-hosted virtual appliance, the user is at liberty to run the software on

any compatible infrastructure platform. This allows the user to balance cost and

privacy according to their own priorities. An extremely cautious user might deploy

the appliance on physical hardware that they own, while others might find a public

cloud server, or even an instance hosted by someone else acceptable. There is a

gradient of options between the two extremes. Whatever the case, the user must

trust that the underlying hardware and software will not compromise their data.

Verifying the low level safety and integrity of the environment is beyond the scope

8



of this project; we rely on the user to make a choice that is consistent with their

priorities.

2.3.2 Trust the platform

The user must trust the platform core, which together with the underlying infras-

tructure forms the Trusted Computing Base (TCB). The platform core consists of

the isolation mechanisms and APIs that mediate access to personal data by un-

trusted third-party applications and connectors. The platform will ensure that the

user is made aware of the specific data schemas and permissions that applications

and connectors request at install time. The fundamental guarantee of the platform is

that it will ensure data cannot be exfiltrated except through explicit, user-approved,

platform-mediated sharing mechanisms on a case-by-base basis.

2.3.3 Service connectors

The platform prevents service connectors from negatively impacting the stability

of the appliance or the integrity of the data stores, however it cannot police their

interactions with external services. The user must trust the connectors they install

to operate in good faith with respect to the API access granted to them and the

data that flows through them. We expect the number of service connectors to be

small compared to the number of applications. Our hope is that trusted service

providers will build their own connector integrations, and that the community will

vet third-party connectors based on developer reputation and code reviews.

2.4 Personal data warehousing
Vaportrail can be related to traditional information infrastructure. The platform is

conceptually similar to a data warehouse (the combination of an archive and an

analytical platform) but for a single individual’s data, instead of a large enterprise.

Service connectors could be framed as Extract Transform Load (ETL) jobs, and

applications as their analytical processing counterparts.

Although there are high-level comparisons to be drawn with traditional data

warehousing, Vaportrail is different in a couple of important ways: a) it is tailored

to a single individual’s data and not a large enterprise, and b) it leverages a com-
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bination of specialized modern data stores instead of either a monolithic RDBMS

or “lake” of unstructured data. Reducing the scope to a single individual alleviates

most performance and scalability concerns: the data is decidedly small by modern

standards. The relatively small scale allows us to consider more convenient row

and document-oriented databases that make storing and querying diverse schemas

easier.

Leveraging multiple specialized data stores simplifies the transformations re-

quired in service connectors and makes a richer application-facing query API pos-

sible. An important trade-off versus using a single SQL-driven column store or

similar, is that the query interface is more complex and applications will tend

to be more coupled to the design choices of upstream connectors. A potentially

significant limitation of this design is that schema migrations due to connector

changes are more likely to break downstream applications. Mitigating this through

a platform-managed schema migration mechanism was beyond the scope of the

design at this prototype stage. Our current solution is to recommend versioned

schema names.

Determining a set of data store interfaces that could meet the needs of a repre-

sentative group of service connectors was a key design goal. The database archi-

tecture for an IMAP connector will be substantially different from one that imports

videos from a social media service. As in other parts of the system, we aim for

an extensible data layer so that unforeseen use cases can be met by adding storage

and query interfaces as needed. Motivated by a thorough examination of the re-

quirements of a few example connectors (discussed in Chapter 3) we arrived at a

minimum set of storage interfaces for the initial prototype:

• SQL store providing efficient create, update, delete operations with column

indexes for highly structured, row-oriented data

• Object store with support for large binary objects for use as a bulk repository

for video, images, text blobs or other large files

• Memory Key/Value store for values that change frequently, caches, persistent

data structures and publish-subscribe functionality

• Document or “nosql” store for less structured data with variable or frequently
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changing schemas

We could imagine adding other potentially useful interfaces as future work (e.g.

a graph database for capturing networks and dependency graphs or a time series

database for event or other time-indexed data) but most use cases are reasonably

well served by a combination of the initial set of data stores.

By providing an abstraction layer on top of the native data store interfaces,

the platform can restrict connector and application access by putting authoriza-

tion logic on the data path and mapping platform permissions down to data store-

specific access control mechanisms, e.g. a database user with a specific set of

GRANTs, in the case of an SQL store. System resources can be managed simi-

larly by mapping high-level resource limits onto configuration options on the data

stores.

2.5 An open and extensible platform
A guiding principle of Vaportrail is that it should be an open and extensible plat-

form driven and owned by the community. It should invite extension and personal-

isation by individuals. This is more than a “feel good” design goal: for a platform

to succeed, developers need to build connectors, applications, and extend the core

platform capabilities. The existence of several SaaS products in this space suggests

there is broad interest in leveraging personal data. Our aim is to lay the foundation

for an open, privacy-preserving alternative to commercial offerings.

2.5.1 Service connectors

Service connectors provide the logic to connect to external services and load data

into Vaportrail. Each connector is a self-contained application that runs in an iso-

lated environment with limited system resources. The platform does not restrict

the outgoing network traffic of connectors or impose any requirements on how

they communicate with external services. Service connectors are third-party com-

ponents, and the wide array of protocols and authentication mechanisms used by

external services makes over-specifying their implementation impractical. Instead

we assume connectors are well intentioned and focus on insulating the platform
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from well meaning, but perhaps badly behaved or broken connectors. This is dis-

cussed in detail in Section YYY.

Connectors are shared and distributed using an open format inspired by browser

extensions: essentially an archive containing a manifest and the connector code.

The platform requires that the user accept the terms of the manifest during instal-

lation. This simple, open format is easy to read and write with existing tools, and

is easily distributed with no strings attached. We leave building a central package

manager or “app store” to the community.

2.5.2 Applications

Applications are untrusted third-party code that can be installed to provide fun and

useful new functionality built on personal data streams. Much like service connec-

tors, applications are distributed in a simple package format containing a manifest

and code, however there are important differences between connectors and ap-

plications. Applications are developed in any language that can be compiled to

JavaScript and can only use a very narrow platform API to query data, persist ap-

plication state, and render user interface (UI) elements. The runtime environment

for applications is extremely restricted compared to the standard browser Docu-

ment Object Model (DOM) and JavaScript APIs. While our aim for the Vaportrail

prototype was to demonstrate a sandbox that enables purpose-built applications,

and not to support running existing applications, we believe the sandbox could be

extended to support a complete virtual DOM and thus many popular libraries and

frameworks. We focus on providing a low-friction format for sharing applications,

and a robust, extensible browser-based sandbox.

2.5.3 Platform core

The applications we use to create and interact with the content we generate is a

diverse and ever evolving ecosystem. For Vaportrail to remain relevant in such a

dynamic environment, we acknowledge that even the core facilities of the platform

should be open and extensible. To this end, we imagine Vaportrail as a kind of per-

sonal data “hub” that should invite extension to the way service connectors and ap-

plications interact with the platform, including the isolation mechanisms and proto-
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cols governing those interactions. We design for extensibility throughout the plat-

form core by using a modular architecture that relies on simple, well-documented

API contracts between components, allowing entirely different implementations of

core facilities (e.g. the application sandbox) to be used interchangeably.

2.5.4 Intent-based sharing

Personal data does not exist in a vacuum and we argue that a viable platform for

leveraging personal data would not either. Vaportrail must reconcile the need for

robust privacy with the ability to intentionally share useful application results with

external services. The platform accomplishes this with Intents[35], a platform-

mediated sharing mechanism that is widely deployed in mobile operating systems.

An intent allows the platform to match an application provided share object (text,

image, or other data) with a target capable of publishing the object to an external

service. The content of each share is inspected by the user via a UI workflow

before being handed off to the selected target to be published. This mechanism

fully decouples the untrusted application from the sharing target and puts the user

in control of an approval process, making each instance of data leaving the platform

explicit. While sharing unavoidably creates the possibility of abuse by a malicious

application, we believe Vaportrail mitigates the risk of such an exploit in two ways:

1) the application cannot know to which external service the data will be published

and thus would need access to several possible targets in order to recover the data

for exploitation, and 2) the user must explicitly grant applications permission to

share. We believe that in practice the value of a sensible sharing mechanism will

outweigh the potential risk of its exploitation.

2.6 Enabling personal data applications
Applications that operate on even a single personal data stream (e.g. banking trans-

actions, or email) demand a degree of trust that is extremely difficult to attain. The

developer or service provider requires a level of credibility that is scarcely achieved

except by enormous corporations, entities in highly regulated sectors, or public

institutions. Consequently, our most personal data is siloed within these trusted

systems, making it extremely difficult for us to make our own copy, or to derive
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further value from it without unacceptable privacy risks. Services increasingly pro-

vide APIs or data export features that solve one aspect of the problem–allowing us

to make our own copy–but loading that data into any other software means placing

significant trust in a third-party.

Vaportrail enables a new breed of personal data-consuming applications by pro-

viding a platform that prevents untrusted applications from exfiltrating data. This

unburdens developers of the enormous cost and responsibility of being a legitimate

fiduciary, and the user from the fear of having their data exploited. An exciting

corollary of this is that multiple sensitive data streams can safely be exposed to

applications that we previously would not have trusted with any personal data. We

believe this opens up an entirely new design space for personal data applications,

and suggest that there are several new application archetypes in this space.

Watchdogs
Watchdogs passively monitor your data streams and alert you when something

good, bad or out of the ordinary happens. They might employ outlier detection

or other Machine Learning techniques to build a model of your activity and moni-

tor deviations from it.

Aggregators
Aggregators extend the features of external services (e.g. search) by combining

multiple data streams under a single UI. Imagine searching your emails and credit

card transactions in one place, perhaps plotted on a timeline alongside your heart

rate data.

Lifestyle
Lifestyle applications provide useful hints, insights and reminders by looking at

correlations in your data streams. Perhaps your location data and your fuel pur-

chases suggest that you could be achieving better fuel economy.

Productivity
Productivity apps will leverage your personal data to actively help you achieve

goals. They may suggest you purchase healthier food, find more time or cost effi-
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cient modes of transportation for common routes, or combine health metrics with

activity streams to determine your most productive times to work.

2.7 Summary
In this chapter we have reviewed the design objectives for Vaportrail and discussed

the key features, capabilities and trade-offs involved in meeting them. The major

design goals for Vaportrail include:

• Simple deployment and management for an individual

• A familiar, modern user experience

• A simple trust model

• An open and extensible platform

We believe the Vaportrail prototype achieves these goals. In Chapter 3 we discuss

the implementation in detail and in Chapter 4 we survey related work.
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Chapter 3

Implementation

In this section we discuss the prototype implementation of Vaportrail. The pro-

totype is a self-contained, standalone virtual appliance that provides a fully man-

aged platform for importing and archiving personal data. The platform serves as

a privacy-preserving runtime and mediator between personal data and untrusted

third-party applications.

The primary goal of the implementation is to provide a working proof of con-

cept that meets the design criteria set out in Chapter 2 and to demonstrate that even

a naive “reference” implementation of Vaportrail can be practical, useful and fun.

In particular, we aim to show that with a reasonable level of effort we can build

a platform with a modern user experience that is easy and inexpensive to operate

while providing strong, practical privacy guarantees. This implementation serves

to validate the basic architecture and appliance form factor, isolation mechanisms,

programming interfaces and cost expectations. We acknowledge that the true test

of a system like Vaportrail would depend on observing it in the hands of users and

developers over an extended period of time. Due to time constraints, we limit the

scope of our evaluation to discussion of how well the prototype meets the basic de-

sign goals, and aspects of the system that can be measured at the scale of a single

deployment.

Vaportrail was inspired by several privacy-preserving systems that came be-

fore it and our implementation builds on the lessons and tradeoffs articulated by

them. Specifically we credit Priv.io[52] with the basic idea that users might “bring
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their own infrastructure” to an application ecosystem, and Treehouse[44] with the

notion of repurposing WebWorkers as execution environments for untrusted code.

DataBox[42] provided a philosophical framework that guided the design specifica-

tion of Vaportrail as a personal data hub, and inspired the virtual “form factor” of

Vaportrail as a personal appliance.

Although there is a considerable amount of prior work in this area, we felt the

development a new system was justified by a few broad themes (limitations) in the

related work:

1. requiring modified environments (custom operating system extensions, browsers,

etc.) that are impractical for regular users,

2. depending on adoption by trusted service providers and or changes to their

business models and,

3. code isolation mechanisms that are difficult to verify or reason about in prac-

tice

We argue that in the development of privacy-preserving systems, practical usability

is tantamount to robust privacy controls. In many ways Vaportrail is only a novel

arrangement of existing good ideas with a focus on making them usable today.

We also take advantage of external factors like the declining costs, and increasing

reliability, of public cloud infrastructure to make a case for individuals operating

their own virtual appliances.

We believe the prototype implementation of Vaportrail successfully meets the

design criteria and demonstrates that, with further refinement, the system could be a

practical fiduciary and platform for our personal data. While we cannot extrapolate

from our findings to conclude that a broader ecosystem around Vaportrail would

be successful, we are hopeful that this initial work makes a compelling case for the

possibility of wider adoption.

3.1 The appliance
In this section we discuss the packaging and core components of the platform.

Vaportrail is designed as a personal appliance that can be operated by an individual

with minimal technical or operational intervention.
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3.1.1 System overview

The platform is packaged as a virtual machine image based on a standard Ubuntu

Server 16.04 LTS release. The LTS designation guarantees that the release is fo-

cused on stability for enterprise applications and will receive long term support and

upgrades. We chose Ubuntu largely for its familiarity, though a number of other

Linux distributions might have served equally well. Although the machine image

could easily be built for almost any virtualization environment, we chose to tar-

get the Amazon Machine Image (AMI) used by Amazon’s Elastic Compute Cloud,

for convenience. By providing a Vaportrail AMI users can create a virtual server

running Vaportrail with resources (storage, CPU, RAM) tailored to their needs and

budget. With a publicly visible IP attached to the server, the user can point their

browser at the platform as soon as the appliance is running.

Figure 3.1: The Vaportrail appliance runs on a trusted infrastructure provider.
Service connectors load and transform data which is then stored using
the platform API. A web dashboard allows the user to safely expose
their data to applications.

At a high level, the platform implementation is composed to two pieces: the

backend (components that run directly on the virtual machine) and the frontend
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(components that run in the browser). Backend components run in Linux contain-

ers managed by Docker[48] while the frontend components are served over secure

HTTP to the users browser and executed client side. Running backend components

(databases, service connectors, platform API servers, etc.) in containers affords

us a) fine grained and dynamic control over their isolation from one another b)

the ability to limit the system resources (CPU, memory) that any one component

can consume. Docker images provide us with an open, versionable and famil-

iar format for packaging and distributing Vaportrail components. By running the

components in isolated containers and having them communicate via (generally

narrow) API contracts, we achieve a highly modular design that facilitates test-

ing, upgrades and even wholesale replacement of component implementations if

the need arises. In order to orchestrate the various component containers, we run

a special platform service in a privileged mode that allows it to create, configure,

stop and start other containers. In keeping with the principle of least privilege,

even the platform service does not have full control of the system, only a limited

set of capabilities necessary to create containers at or below its own privilege level.

The platform dashboard that the user interacts with is served by a single web appli-

cation (vaportrail-wsgi) that both serves the static files (HTML, JavaScript

and CSS) and acts as a RESTful API server providing endpoints for authentica-

tion and all other platform operations: installing, updating, removing applications

and connectors, selecting data and persisting state. The frontend application is

similarly modular: a privileged monitor establishes a session with the backend

via the API and orchestrates the execution of sandboxed applications in isolated

WebWorker containers. The application sandbox traps platform API calls and for-

wards them to the monitor, which authorizes the operation and makes the necessary

calls into the backend before returning control (and any results) back to the sand-

boxed application. We achieve similar architectural benefits as in the backend by

imposing a strict separation of concerns within the frontend implementation: the

monitor, sandbox and API communicate only over asynchronous message-based

interfaces allowing them to evolve independently and for different implementa-

tions to be swapped in and out. Separation of components via an asynchronous

interface affords a particularly interesting opportunity for future work in which we

could imagine migrating running applications to the server (i.e. by migrating the
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sandbox) before the browser window is destroyed.

3.1.2 Threat model and security

Exposing any service on the internet is inherently risky, especially when that ser-

vice is a box containing all of your most sensitive, personal data. We take a number

of precautions in the Vaportrail architecture to minimize the network exposed sur-

face of the platform by locking down all but the necessary ports, using random ports

when a component needs to expose a service (e.g. to complete a third-party authen-

tication workflow in a service connector), rate-limiting API endpoints, and apply-

ing the principle of least privilege throughout the system. We also employ strong

password-based authentication over HTTPS and use techniques to prevent Cross

Site Request Forgery (CSRF), Cross Site Scripting (XSS) and Phishing by mali-

cious third-party applications (discussed in detail in Section 3.3). Beyond these

precautions, the user has a considerable degree of control (and responsibility) to

secure their appliance on the network. They might whitelist only a range of IPs or

MAC addresses from which they intend to access their appliance. They might em-

ploy circuit-breaking middleware between the appliance and the internet to protect

against denial of service attacks or to provide online traffic analysis and alerting.

Automating the provisioning of a more sophisticated, production-grade security

stack was beyond the scope of our initial prototype, but we could imagine provid-

ing a more comprehensive deployment template via Amazons CloudFormation[8]

(or similar) as future work.

3.1.3 Appliance lifecycle and costs

It is important to consider the entire lifecycle of the appliance in terms of mainte-

nance and costs. One of the advantages of centralized SaaS is that the costs and

maintenance are entirely absorbed by the service provider. With Vaportrail, we ex-

ploit the fact that cloud computing resources have become increasingly affordable,

and with the entrance of several new major competing providers (namely Google

and Microsoft, in addition to Amazon) we expect the downward trend to continue.

In 2017, a basic Vaportrail instance with 80GB of storage, a single CPU and 8GB

of memory can be operated for roughly $10US per month. In many cases, these
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resources fall under the limits of a free pricing tier. In general, Vaportrail is storage

capacity-bound as it acts as an archive, offloading much of the application comput-

ing to the browser. Adding 100GB of storage would cost less than $5US on most

cloud platforms[14][5][22] today.

Due to time limitations we were not able to complete a streamlined update

process for the prototype appliance, however that process would essentially in-

volve updating the operating system packages (e.g. apt-get upgrade all),

pulling the latest platform service container image from the Vaportrail registry, and

potentially restarting the appliance VM. Given that the supported lifetime of the

operating system release is five years, we imagine that a full re-spin of the appli-

ance would be necessary after that period of time. Data would be migrated either

by mounting the outgoing appliance’s root volume on the new appliance or by

exporting/importing data from one appliance to the other.

Backups can be achieved using conventional approaches, i.e. by snapshotting

the root volume of the appliance and storing those snapshots on secondary storage

(for example Amazon S3[32]). Interestingly, a Vaportrail service connector with

sufficient permissions could serve as a backup/export tool targeting external stor-

age services such as Dropbox[13], Google Drive[20] or even another Vaportrail

instance. Such a connector would require an uncommon degree of access and, as

discussed in Section 3.2, the user would be required to explicitly grant it.

3.1.4 Backend platform components

The backend of the appliance hosts several important components of the platform.

Each of these components runs in its own Docker container and is allocated a slice

of the system resources. In this section we describe each of the major components

as well as their communication and network topology within the appliance.

Container networking

The backend containers are network isolated from one another using virtual bridge

networks. Specifically, the trusted platform components run on one network (vplatform)

while third-party service components each run on their own private network. A

trusted platform API service is attached to both the platform network and each of
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the service connector networks as an “API gateway”, i.e. single point of entry, into

the platform services.

Figure 3.2: Platform components and service connector containers run on
isolated bridge networks. The platform API container is routable from
service connector networks using the DNS name platform.api.

All containers that share a network are IP addressable by one another and can

resolve container names (e.g. api.platform) using DNS to IP addresses. The

bridge network is a very lightweight abstraction that can easily accommodate thou-

sands of networks and containers on a single host. This approach to container net-

working allows us very fine grained programmatic control over network isolation

between components running on the appliance. It also alleviates a lot of challenges

around service port collisions and accidental exposure of services to the internet

(e.g. if a server binds to 0.0.0.0:80 inside of a container, it will not be bound

to the appliances public IP) that are common when running multiple services on
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a single host. Although we do not leverage them in the Vaportrail prototype, con-

tainers (which are essentially process groups) can also be run under AppArmor[3]

profiles to further restrict their egress network traffic, access to the filesystem, and

other capabilities.

Platform API

The platform API is the top-level web application that serves the static files (HTML,

JavaScript, CSS) that make up the Vaportrail dashboard UI as well as the JSON-

based REST endpoints that control the platform. The platform API is exposed as

the default web server (port 80 and 443) on the appliance to enable access from

the internet, as well as being discoverable as the DNS name api.platform

from within service connector containers. The API is implemented as a Python

web application and mounts several sub application modules at URL base paths

corresponding to their functions. For example, the authentication module is avail-

able at api.platform/api/v1.0/authn while the Data API is accessed at

api.platform/api/v1.0/data. All of the API endpoints expect JSON in-

put and produce JSON output, and all except for the static HTML endpoint require

a valid authentication token to be present in the request. A very basic rate-limiting

scheme wraps all endpoints to curtail intentional or accidental abuse.

Authentication and authorization

The platform API has two authentication mechanisms used by the Vaportrail dash-

board UI (frontend) and service connectors, respectively. The first mechanism is

a fairly standard password-based challenge in which the user submits a password

over a secure HTTPS form and receives a time-limited token with which to make

subsequent API requests. A production implementation would likely employ a

two-step authentication flow using a Time-based One-time Password in addition to

the fixed password, but this was beyond the scope of our prototype. The second

authentication mechanism, used by service connectors, exploits the container net-

work topology to verify the identity of the client based on an immutable container

name.

A service connector only needs to make a request to the authentication API in-
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Figure 3.3: Service connectors authenticate with the platform API by pre-
senting a secret the platform places in their environment at initializa-
tion. The connectors IP address and immutable container name are used
to establish the set of permissions that will be enforced for subsequent
requests.

cluding a random Universally Unique Identifier (UUID) Vaportrail instance secret

in order to receive a valid API token. The container name is then automatically used

to associate the session with the correct permission set for the connector. Once a

client is in possession of a valid API token, each API call is authorized based on the

permission set associated with the token. We implement both the authentication

and authorization steps as middleware between the incoming HTTP request and

the actual endpoint implementation, allowing endpoints to specify which autho-

rizations they require in a declarative style. Authorizations can also be performed

dynamically as needed: for example, if the permissions required vary between re-

quests to a single endpoint.
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Data stores

As discussed in Section 2.4, the platform is built around several specialized data

stores, each tailored to different types of data and access patterns. Each data store is

a standalone database server that provides at least one of the key storage interfaces

identified by the design. The databases run on the trusted platform network and ac-

cess to them is mediated by the platform API. None of the third-party components

that read or write data to the stores have direct network access to the database

servers; all operations go through the abstraction layer provided by the platform

API. While this implementation choice comes with significant performance over-

head (versus allowing clients to communicate directly over native protocols) the

value of having a trusted platform component on the data path justifies it, providing

both a single point of authorization for each operation and hiding the implementa-

tion backing each storage and query interface from clients. Because Vaportrail is a

single tenant, privacy-oriented platform, we prefer correctness over performance.

The relatively small, personal scale means that even a 200x throughput/latency

overhead does not impact the user experience noticeably.

Table 3.1: The data store implementations used by Vaportrail

Interface Implementation Notes

SQL store PostgreSQL[29] 8.4 Postgres is a flexible, perfor-
mant, modern row-store that
speaks an extended SQL variant.

Object store Riak CS[31] 2.0 Riak CS is an S3 compatible ob-
ject store built on the Riak KV
store.

Memory key/value store Redis[30] 3.0 Redis is an in-memory store
sometimes described as a data
structure server. It also provides
publish-subscribe functionality.

Document store MongoDB[27] 2.6 MongoDB is a schemaless
(”nosql”) document store with
a flexible JSON-based query
language.
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Each of the data stores has read-write access to a dedicated volume on the ap-

pliance’s filesystem. A special volume mount is necessary in order to persist data

across container restarts as the default container filesystem only lives as long as the

container itself. Table 3.1 gives an overview of the specific data store implementa-

tions chosen to meet the design requirements. In general we chose the latest stable

release of the most established system in each category. Many of the data stores are

designed to run at scale with configurable replication and failover policies for high

availability. For simplicity we run the data stores in their simplest single node con-

figuration. We did not implement health checks or any kind of watchdog process

for the data stores, which would be a wise addition in a production implementation.

Data API

The data API is an abstraction layer on top of the data stores and forms an inte-

gral part of the platform API. It provides a write interface with a driver tailored to

each data store that enables create, update, and delete operations with semantics

determined by the specific store. Similarly, the read (or query) interface provides a

driver for each data store that can map a user provided query down to a data-store-

specific request. All of the data stores are addressable under a single unified names-

pace with the structure <component>.<store>.<collection>.<schema>

which allows the data API to map each request to a specific store driver and

for that driver to apply whatever semantics it chooses to the (component, col-

lection, schema) tuple. For example, a Facebook service connector might write

to facebook.sql.timeline.comments to address a table named “com-

ments” in the “timeline” schema of the “facebook” database in the SQL (Post-

gresSQL) data store. For writers, the component portion of the namespace tuple is

fixed based on the identity of the writer. Unifying the data store namespace pro-

vides us with a convenient and familiar grammar for describing permissions across

datasets. An application might request access to facebook.*.*.* (all of the

users Facebook data) or only their images: facebook.blobs.timeline.images.

The platform itself stores most of its state in vaportrail.sql.metastore.{users,
applications, connectors} and vaportrail.blobs.metastore.code.

Although constructing data API requests by hand can be tedious (and is currently
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the only option), a well designed client SDK could abstract most of the complexity

away for the user.

Service connectors

Service connectors are third-party components that connect to external services and

load data into Vaportrail via the data API. Connectors can be built in any language

using any framework or libraries the developer chooses, which is crucial given the

degree of variation in the wider API ecosystem. Each connector runs in a container

on a dedicated bridge network. The only other container that is routable from

within the connector is the platform API service, which is discoverable through

DNS. The random API secret required to connect to the platform API is injected

into the container through an environment variable. Service connectors have un-

restricted access to the internet to facilitate diverse authentication workflows and

API access patterns. Service connectors are discussed in detail in Section 3.2.

3.1.5 Dashboard user interface

The dashboard (broady the frontend) of the appliance is the web application through

which the user interacts with Vaportrail. The dashboard is a modern “single page”

application composed of several JavaScript components. The entire application is

loaded when the user navigates to the Vaportrail instance, and subsequently makes

calls into the platform API from JavaScript. We provide an overview of the three

major components of the UI in this section, and delve into greater implementation

detail for each of them in subsequent sections. Throughout the frontend codebase

we use only standard JavaScript, HTML5 APIs and the Bootstrap[6] UI compo-

nent library. The platform components are largely decoupled from one another and

communicate asynchronously across a publish-subscribe bus, event handlers, or

the browsers postMessage() API.

Vaportrail dashboard. The dashboard is the first view the user sees when they lo-

gin to Vaportrail. The dashboard provides an overview of which service connectors

and applications are installed, as well as available storage capacity. The dashboard

view integrates with the application monitor to launch and monitor Vaportrail ap-

plications, providing a “dock” along the top of the frame for running applications.
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Figure 3.4: The Vaportrail dashboard provides an overview of installed com-
ponents, applications and available storage capacity.

Application monitor. The application monitor runs in the background and serves

as the trusted platform intermediary through which all platform API requests orig-

inating in sandboxed applications flow. It is also responsible for launching appli-

cations in the application sandbox, and hosts the engine that renders application

UI elements. The monitor is responsible for enforcing application access to data

stores via the data API.

Application sandbox. The sandbox provides a very restrictive runtime environ-

ment in which arbitrary JavaScript code can run completely isolated from the DOM

and browser APIs. Each running application has a dedicated instance of the sand-

box running in a browser thread separate from the application monitor and stream

view. The sandbox hosts the untrusted application code and traps platform calls in
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the guest code, routing them into the monitor.

3.2 Service connectors
Service connectors are an integral part of the Vaportrail platform, serving as the

conduits through which data is exported from external services and loaded into

the platform. Like applications, service connectors are developed by third-parties.

They integrate with external services using the SDKs and APIs provided by those

services. A typical service connector will complete an authentication workflow

with a service as part of its installation process and subsequently synchronize with

the service periodically or in real-time, depending on the nature of the service and

the application use cases imaged by the developer. Once a service connector is

installed, the user can install applications that know how to process data stored by

that connector.

3.2.1 Packaging and distribution

As discussed in Section 3.1.4, each service connector runs in a Docker container

on an isolated virtual network within the platform appliance. The Docker tool-

ing provides us with a very convenient format for efficiently distributing versioned

binary container images with built-in data integrity checks. We build on a packag-

ing convention that has become common for browser extensions to create our own

standalone service connector package format that consists of a gzipped tarfile con-

taining a JSON manifest and, optionally, the container image in the Docker image

format.

The manifest is a simple JSON file that specifies details about the connector

(name, author, version, etc.), the platform permissions it requires to run, any set-

tings that can be configured by the user, and a reference to the container image

either as a package-relative path, or a Docker registry URL where the image can

be downloaded from. This package format has a number of benefits:

• It is simple to inspect and construct using standard tools (vi, Docker, tar)

• It is built on an open, and increasingly standard, container image format

• The JSON manifest is extensible, human writable and machine readable
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Program 3.1 A JSON service connector manifest specifying package metadata
and platform permissions required by a Facebook connector.

{
"name": "Facebook Connector",
"author": "Kalan MacRow <kalanwm@cs.ubc.ca>",
"description": "Facebook for Vaportrail",
"version": "0.0.1",
"image": "assets/image.tar",
"permissions": [

{"type": "write", "schema": "facebook.*.*.*"},
{"type": "memory", "request": "1G"},
{"type": "share", "type": "image/*"},
{"type": "host_port", "port": 8080}

]
}

• It supports distribution either as a complete binary package, or as a lightweight

installer

Although we do not implement or enforce any particular cryptographic features

(e.g. package signing) the simple, self-contained, nature of the format invites the

use of existing tools (e.g. GnuPG[18]) for this purpose. We could imagine incorpo-

rating package singing directly into the platform tooling in the future. Building on

a simple, open package format is crucial to facilitating adoption in the open source

community, and we believe the Vaportrail package format meets this design goal.

3.2.2 Isolation and developer flexibility

Running service connectors in resource-restricted, network-isolated containers helps

us meet two important design goals: connectors are isolated from the core platform

services, data stores, and each other while also ensuring developers have the flex-

ibility to use whichever Linux distribution, frameworks, libraries, languages and

general program structure they prefer in implementing the connector. The con-

tainer environment provides a similar degree of self-determination as would a ded-

icated virtual machine, with the caveat that the operating system must be a flavour
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of Linux. Flexibility is critical because of the large degree of variation in how ex-

ternal services choose to expose APIs and data. There are a multitude of authenti-

cation protocols and workflows, some open standards (OAuth2[43], OpenID[49]),

and many proprietary. While SDKs are often made available in several languages,

the process of installing and configuring them usually involves installing depen-

dencies, updating or setting environment variables, and creating files at sensitive

filesystem locations. In short, restricting the service connector sandbox to a more

managed environment, as we do with applications, would significantly limit the

likelihood that many connectors are built. We believe implementing service con-

nectors this way balances the need for isolation, in accordance with the platform

trust model, with the need for developer flexibility in integrating with a highly

fragmented wider API ecosystem.

3.2.3 Permissions and capabilities

Service connectors are able to request required and optional permissions from the

user via the package manifest. The permissions are presented to the user upon

installation for explicit approval before the connector image is loaded into the ap-

pliance environment and scheduled to run. The permissions fall into two broad

categories.

System resources. Connectors can request specific memory, CPU slices and ap-

pliance port forwarding. These advanced permissions exist to accommodate con-

nectors that a) may perform non-trivial data transformations requiring more than

the default memory and CPU allocations, and b) authentication workflows or APIs

that involve “callbacks” (e.g. WebHooks) from external services. The platform UI

clearly identifies the gravity of these advanced permissions at install time so that

the user can make an informed decision.

Data store access. Connectors request access to the specific data store schemas

they need to read or write to. The schemas need not exist at install time: they will

be created on the first write operation, however, the user must explicitly approve the

connector access. The platform UI clearly identifies when a connector is request-
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ing a) read access to any schema, given the risk of exfiltration and b) any access to

a schema that already exists, given the risk of data corruption or exfiltration.

3.2.4 Connector lifecycle

The user can install connectors by uploading a package through the dashboard UI.

The platform API places the package in a staging location and returns the mani-

fest to the UI for the approval workflow. If the user approves the permissions and

settings for the connector, the manifest is stored in the platform metabase and the

connector image is imported into the appliance. The connector container is created

and started using either the default system resource limits or the (approved) re-

quested limits. If port forwarding is requested, the platform chooses a random free

port on the appliance and maps it to the requested port in the container. The host

IP address and forwarded port are then passed into the container in an environment

variable so that they can advertised as needed.

Figure 3.5: The installation flow for a service connector. A connector pack-
age is uploaded through the dashboard and unpacked to a staging lo-
cation on the appliance filesystem. The user then approves or rejects
the platform permissions required by the connector manifest via a UI
workflow.

Once the connector has started, the user is free to access its configuration page
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which can be used for changing settings or completing authentication workflows.

The configuration page is served by the service connector itself, and is available

through a random, temporarily mapped port accessible only from the users current

IP address. The connector then runs indefinitely, scheduling data ingestion as and

when it deems appropriate. If the user no longer wants the service connector,

it can be stopped and completely removed through the dashboard. Although the

connector software can be removed, we do not currently provide a mechanism for

wholesale deletion of any associated data store schemas.

3.2.5 Reading and writing data

The primary purpose of service connectors is to load personal data streams into

the platform. They accomplish this by writing into the data API endpoints of the

platform API. The API is accessed from within the container using the DNS name

api.platform. In the simplest case, the connector will load data from its up-

stream service(s) and write the objects or records directly to a schema that it has

access to, with minimal transformation. In some cases, the connector may need

to load some state (e.g. a checkpoint marker of some kind) from the data API or

its local filesystem, and or may perform some non-trivial operations or transforma-

tions (e.g. aggregation, rollup, deduplication, downsampling) before writing it into

the platform. The platform will automatically provide back-pressure in the form

of API rate limiting (communicated back to the connector as an HTTP 429 -

‘‘Too Many Requests’’ response) and enforce the schema access permis-

sions configured at install time. In general, connectors can “fire and forget” data

into the platform.

3.2.6 Example connectors

We implement three prototype service connectors for popular services to demon-

strate the capabilities of the platform, and to serve as test mules in evaluating the

design and implementation of the platform API and service connector runtime. We

planned the connector implementations by referring to the best practices prescribed

by the respective services, and without regard for any limitations that the platform

design might impose on us.
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Facebook

Facebook remains the dominant social network globally with over 1 billion active

users[40] in 2017. It is a significant personal data sink for many users, who gen-

erate a continuous stream of status updates, photo uploads, likes and comments

everyday. The company provides a comprehensive API that gives users the ability

to search, export and post content programmatically with nearly as much flexibil-

ity as the main Facebook website itself. Given its prominence and excellent API,

Facebook would be a canonical data source for Vaportrail and thus a good candi-

date for prototyping. The service connector is based on a standard Ubuntu 14.04

base image and uses the Python bindings for the Facebook Graph API[16] to query

the user’s posts every 10 minutes. The connector requests write access to three data

stores:

• facebook.sql.posts.status (status updates)

• facebook.sql.posts.comment (comments posted by the user)

• facebook.blob.posts.photo (photos posted by the user)

It creates the relational tables for statuses and comments using the data API

create table if not exists. The connector code simply waits until a file

is created at /var/auth token by completion of the OAuth authentication

workflow with Facebook and then enters an infinite loop, syncing new posts before

sleeping for 10 minutes. The connector only requests a very limited set of read-only

Facebook permissions: public profile, user posts and user photos.

Although our prototype only imports a small subset of the data available, it is suffi-

cient to validate our design goal that it should be simple and frictionless to develop

connectors that load diverse types of objects.

Twitter

Twitter is the world’s leading microblogging website in 2017 with over 320 million

active users globally[50]. For many users, their stream of Twitter updates (tweets)

represents an important personal log of daily activities and interactions. Like the

Facebook connector, we base the Twitter service connector on an Ubuntu 14.04
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base image and use the service connector configuration page to trigger an OAuth

flow with Twitter. We then use a Python script to access the Twitter User Stream

REST API[33]. The User stream is an HTTP long-polling endpoint that returns

a stream of JSON objects representing the activity of the authenticated user. We

filter the stream to only include the users updates. The connector only populates a

single data schema:

• twitter.nosql.stream.events

In this case we push all stream updates (tweets, retweets, likes) into a single un-

structured stream.events collection, which seemed more natural than routing

them into separate tables. At the time of writing, the User stream API is being

phased out in favour of a WebHook-based “push” model. We could readily support

this change by having the service connector request an appliance host port map-

ping into a small stateless HTTP handler that would write the JSON payload into

the stream.events collection.

Gmail

Email is a crucial archive of personal data in the form of personal correspon-

dences,purchase receipts, travel itineraries, photos, and documents. Googles Gmail

is one the leading free email services and offers a number of options for program-

matic access to the inbox, including traditional IMAP and RESTful APIs[19].

We built the Gmail connector in much the same way as the Facebook and Twit-

ter prototypes, and opted for the more convenient, modern RESTful API that pro-

vides high-level JSON interfaces to messages threads and message content. We

designed the data schema to align with the top level JSON objects:

• gmail.nosql.inbox.threads

• gmail.nosql.inbox.messages

• gmail.blobs.inbox.attachments

The unstructured data store allowed us to beginning storing data with a minimum

of table or schema design effort. To demonstrate the flexibility of the platform

service connector environment we elected to use the Gmail Java SDK to develop
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the connector. To accomplish this we install the open Java 8 runtime[28] in the

container and bundle the Gmail SDK JAR files. The connector runs a Java appli-

cation with a single threaded web server for configuration and authentication, and

the syncing logic on a separate thread. Currently the prototype only fetches mes-

sages that arrive after the connector is installed. We imagine a more sophisticated

implementation would allow the user to backfill messages for a period of time in

additional to capturing new ones as they are sent or received.

3.2.7 Summary

In this section we have discussed the implementation of service connectors includ-

ing how they are deployed and isolated within the platform, how they are packaged

for sharing and distribution, what permissions and capabilities they have at run-

time and how they read and write data into the platform. We have also discussed

the implementation of three non-trivial prototype connectors that demonstrate the

flexibility of the runtime environment and ability of the platform to accommodate

real-world data models.

3.3 Application Sandbox
In this section we discuss the implementation of the application sandbox, which

provides the isolation necessary to expose personal data streams to untrusted ap-

plications running in the browser. The sandbox hosts JavaScript code written by

third-party developers and works in an unmodified, modern HTML5 browser. Sev-

eral platform APIs are baked into the sandbox environment that allow applications

to query personal data stores, render UI elements, share results through intents and

persist state. Because our aim is foster an ecosystem of purpose-built Vaportrail

applications, and not to support existing web applications general, we trade emu-

lation of the standard browser environment (e.g. DOM and related APIs) for more

robust isolation through a completely virtualized JavaScript interpreter. We argue

that the straightline performance overhead incurred, while significant, is quite ac-

ceptable in practice; vaportrail applications tend to be I/O bound. We also hope

to demonstrate that even the limited set of APIs we implemented in the proto-

type are sufficient for building interesting applications. Furthermore, with some
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effort it would be feasible to fully emulate the DOM and native APIs in the hosted

JavaScript environment.

Figure 3.6: Vaportrail applications run in a dedicated JavaScript interpreter
within a WebWorker thread. A trusted broker marshals application API
calls over an asynchronous RPC interface and into the platform moni-
tor where authorization checks are made before updating the DOM, or
making requests into the platform API over the network.

3.3.1 WebWorkers as execution containers

Much like Treehouse[44], we exploit WebWorkers as a standard, natively sup-

ported execution container. The WebWorker provides a thread of execution (usu-

ally an OS thread, though it depends on browser implementation) and a JavaScript

context separate from that of the main web page. WebWorkers do not share mem-

ory or object references directly with the main page and can only communicate

with it via a very narrow message-based interface (postMessage()). Out of the box,

the worker provides a useful degree of isolation from the main page in that a) the
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DOM and window objects are not accessible from the worker context and, b) the

worker process can be monitored and terminated from the main page context. For

simply preventing guest code from modifying the visible page, the worker abstrac-

tion alone may be enough. However, although WebWorkers cannot manipulate the

DOM, they do have the ability to spawn child workers, make network requests

and import arbitrary JavaScript code. Other sandbox implementations (discussed

in Chapter 4) have attempted to limit access to these capabilities by overwriting or

interposing on native APIs before loading guest code, applying Content Security

Policy (CSP) or statically enforcing a safe subset of JavaScript. The multiplicity of

non-standard browser implementations and corner cases makes it difficult to argue

convincingly that solutions based on these approaches provide comprehensive iso-

lation. As in Treehouse, we initialize the WebWorker with a monitor (or broker)

module that prepares the environment for executing guest code. Instead of locking

or freezing native APIs, we embed a complete JavaScript engine and wire our plat-

form APIs into it so that they appear “native” to guest application code. When the

environment is ready, we hand control over to the application.

3.3.2 Hosted JavaScript runtime

The application sandbox is built on the js.js[51] runtime, which is a stripped down

version of Mozilla’s JavaScript engine compiled first to LLVM[25] and then to

asm.js[4] (a highly optimizable subset of JavaScript) using emscripten[15]. Js.js

is a complete JavaScript interpreter, equal in capability (if not performance) to

the interpreter hosting it in the browser. We use broadly the same interfaces to

“wire” our platform APIs into the interpreter as would a web browser to implement

the DOM and other standard native APIs. The platform broker initializes a new

instance of the JavaScript virtual machine, installs the platform APIs, and then

loads the guest code into the runtime. A platform-defined entrypoint triggers a

lifecycle event that the application code registers a handler on. The application-

defined handler serves as the application’s main() function.

Although compute-intensive code running in js.js is roughly two orders of mag-

nitude(200x) slower than the same code running in a native interpreter, we find

the overhead almost unnoticeable in practice: applications tend to be IO bound,
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and much of the heavy-lifting (animation, DOM updates) is offloaded to native

JavaScript through high-level platform APIs. Applications that apply machine-

learning algorithms, image processing or other tasks that require straightline per-

formance will be affected the most, however, the relatively small scale of personal

data and the promise of WebAssembly as a target replacement for asm.js helps

mitigate concerns looking forward. We could have taken the virtualization a step

further and provided a limited Linux environment within the browser, however,

this would have come with increased complexity and would completely divorce

the sandbox environment from the ergonomics of traditional web development.

The JavaScript virtual machine provides robust isolation at an acceptable per-

formance cost. We believe it achieves the design goal of building a practical system

based on mechanisms strong enough for users to trust with their personal data to-

day.

3.3.3 Application sandbox lifecycle

Each Vaportrail application instance runs in a dedicated WebWorker and JavaScript

virtual runtime created and managed by the platform monitor from the main page

context. When the user launches an application from their dashboard, a new tab is

created in the application dock and in the background the monitor creates a new

WebWorker based on the platform sandbox broker. When the new worker starts,

the broker code initializes its hosted JavaScript interpreter by installing references

to all of the global platform API objects. When the worker is ready to execute

guest (application) code, it notifies the monitor via the postMessage() interface.

The platform then responds with the application JavaScript code, which the broker

loads into the interpreter.

Any compilation errors are passed back to the monitor, which then terminates

the worker. If the application code compiles, the sandbox is placed in the ready

state for the monitor to start at any time. When the broker receives the start com-

mand, the control is handed over to the hosted interpreter, which executes some

bootstrapping code and triggers an application lifecycle event, ultimately entering

the application handler. The platform monitor pings the worker at regular intervals

to check for liveness, and will terminate the worker if it does not receive a re-
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Figure 3.7: When an application is launched, the monitor and the sandbox
broker coordinate to setup the new environment for the application in-
stance, creating a new DOM root in the dashboard and loading the ap-
plication code into the sandbox interpreter.

sponse. When the user quits the application from the dashboard, the monitor sends

an unload command to the broker, which then fires the unload application lifecycle

event inside the interpreter. The application can handle this event to persist any

state before exiting. Finally, the broker notifies the monitor that the application has

unloaded, and the monitor terminates the worker. As discussed in Section 3.3.4,

unauthorized API calls will also trigger termination of the application without no-

tice.
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3.3.4 Application monitoring

The Vaportrail monitor runs as a component within the dashboard and is responsi-

ble for launching applications (creating instances of the sandbox) and supervising

them at runtime via a) continuous health checks and b) authorizing platform API

calls made by application code and enforcing platform policies.

While an application is running, the monitor pings the application worker every

10 seconds and expects a response within 1 second that includes any error codes

from the sandbox interpreter. The purpose of the health check is to ensure that

the JavaScript context within the worker has not become wedged or halted unex-

pectedly, e.g. due to entering a tight infinite loop or an unhandled exception, re-

spectively. The WebWorker isolation ensures that a broken or misbehaving worker

cannot adversely affect the responsiveness of the main page or other Vaportrail ap-

plications, however, without a health check the application could crash or become

unresponsive without the platform (or the user) knowing.

The monitor is also responsible for authorizing platform API calls that originate

within sandboxed applications. If an application attempts to make an unauthorized

API call, we terminate it immediately, bypassing the normal unload lifecycle flow.

The reason for this is two-fold. First, we provide a platform permissions API that

allows an application to check whether it has permission to execute a particular

API call. This is necessary to support optional permission grants, and to allow

applications with pattern-based permission grants (discussed in Section 3.4) to test

specific access at runtime. Thus, there is no need for an application to issue an

unauthorized API call to probe for permission. Second, issuing unauthorized calls

strongly implies the app may be malicious, or at least broken. In either case, we

err on the side of caution by implementing a zero tolerance policy.

With relatively heavy-handed isolation of application code in place, it could be

argued that there is little need for limiting application access to data through fine

grained permissions: with no access to native APIs and only the small platform API

and mature JavaScript interpreter as an attack surface, data exfiltration is unlikely.

We argue that there are at least three compelling reasons to gate access to data and

sharing:

1. It is conceivable that in the future we would add permissions allowing ap-
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plications more access to the network, increasing exfiltration risks. Having

a framework in place that limits exposure to specific data sets will be impor-

tant.

2. As a design axiom of secure systems, we apply the principle of least privilege

throughout the platform. Restricting applications to only the data they need

is in keeping with this principle.

3. Clearly defined permissions allow the platform to maintain a dependency

graph of applications and data schemas, facilitating a better user experience

in the event that a service connector is being upgraded or removed, poten-

tially affecting the downstream application(s).

Although the application sandbox provides robust isolation, we implement these

additional layers of monitoring and authorization to further protect against broken

or malicious applications, and or the event of a sandbox escape.

3.3.5 Platform APIs

The application sandbox embeds a number of platform objects and APIs that ap-

plications can use to query data stores, trigger sharing intents, render UI elements

and persist application state. The platform APIs are broken into namespaces (ui,

net, sharing, query, etc.) and wired directly into the sandbox interpreter so that they

appear to guest code as “native” APIs along with other JavaScript standard library

classes and objects.

RPC mechanism

We implement a custom RPC protocol that transparently proxies operations on

platform API objects within the sandbox interpreter through the broker and across

the postMessage() interface to corresponding components in the monitor. In the

other direction, we route events from the monitor side into the application by re-

playing them on objects in the interpreter. The objects that the application code

interacts with inside the sandbox are little more than lightweight proxies instru-

mented to forward method calls and property accesses through the RPC mech-

anism. Component implementations sanitize all arguments and data originating
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within applications to protect against script injection.

Program 3.2 Method calls on remote objects are implemented by mapping a
(taskID, objectID) pair to a specific object instance and applying the method on
a set of wrapped arguments. Argument wrapping allows us to transparently sup-
port callbacks into the sandbox interpreter by hiding function pointer semantics in
simple callable functions.

rpc[’__method’] = (function(objId, method, args, rpc){
var task = this._tasks[rpc.taskId],

obj = task.objects[objId];
args = this.wrapMethodArgs(args, rpc);
obj[method].apply(obj, args);
return true;
});

platform.ui

The platform UI toolkit provides a number of user interface components that ap-

plications can use to render static or interactive UIs. The platform establishes a

DOM root node for the application and platform API classes based on Bootstrap

Components[6]. The components created by platform.ui toolkit are consistent in

form with the rest of the Vaportrail dashboard, but are styled to be visually dis-

tinct from trusted platform UI elements. Applications are given very little control

over the visual style of the elements which ensures a) applications cannot “dis-

guise” themselves as platform features and, b) a consistent visual style is main-

tained across applications. A complete listing of the available UI components is

available in Appendix A.

platform.net

The platform network API allows applications to interact with the network sub-

ject to very restrictive permissions. Currently the only network access available is

to fetch a pre-approved URL once every 24hrs. Construction of the actual HTTP

request is handled in the monitor; the application only passes an identifier corre-

sponding to a URL that was included in the application manifest and approved at
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install time. Preventing the application from fetching the URL more than once per

day mitigates the risk of the mechanism being abused (to any practical extent) as an

exfiltration channel. Providing a unidirectional mechanism to fetch a URL enables

a class of applications that rely on evolving external data sources (e.g. gas prices,

interest rates or machine-learning models).

platform.share

The platform sharing API allows applications to integrate with a platform medi-

ated sharing mechanism. The application signals that an item is shareable and the

platform matches the item with a list of installed service connectors capable of han-

dling it, based on the type of data. Currently platform.share supports only

two rudimentary forms of sharing, text/* and image/*, however we imagine

the API evolving to support more sophisticated, platform-managed channels. We

did not have time to implement a service connector with sharing support, although

the mechanism is supported. Service connectors can specify which share types

they support (based on MIME-type pattern) in their manifest. They can then poll a

platform API to receive shares that have been queued for them to handle.

platform.query

The platform query API allows applications to execute queries against the personal

data stores that they have permission to access. The API is read-only and presents

a unified interface to the various storage interfaces. In our prototype, applications

need to be aware of the query language used by the underlying data store. A more

sophisticated implementation might provide a unified, higher-level query language.

All results are returned as JSON, including binary objects. The exact format of the

JSON depends on the type of data store. For example, the SQL store will return a

list of lists representing a result set, while the document store will return a list of

objects. We do not support pagination or streaming for large result sets: the entire

response is returned for each query. Applications can implement streaming/pagi-

nation by making repeated queries with the appropriate filter clauses. Even once a

specific query API call has been authorized by the monitor for the application, the

monitor itself only has read-only access to non-platform data schemas through the
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data API.

platform.localStorage

We emulate the standard HTML5 LocalStorage[37] API (window.localStorage) in

the sandbox environment to provide applications with a general-purpose facility

for persisting state across runs. The LocalStorage API is implemented as a global

object with a getItem(key), setItem(key, value) interface. Any prop-

erties set on the global object are automatically relayed into the monitor and saved

to a platform-managed application state store. When the platform instantiates a

new application sandbox, the saved state is passed into the worker along with the

application code, and the LocalStorage is initialized before the application code

executes. All values are automatically converted to strings, as in the standard Lo-

calStorage implementation. We do not support the StorageEvent interface for

notifying other instances of the same application of changes to the storage object.

3.3.6 Summary

Vaportrail applications run in a robust and flexible sandbox environment based on

dedicated JavaScript interpreters using WebWorkers as execution containers. Our

implementation is cross-platform and runs in unmodified modern browsers. We

find the performance overhead imposed by the hosted JavaScript interpreter to be

acceptable in practice today, and we expect the performance of this approach to

improve with time. We leverage js.js’s interface for binding functions and objects

into the interpreter context to expose a range of platform APIs that developers can

use to build rich data-driven applications. The platform APIs available to applica-

tions are built on a simple RPC mechanism between the sandbox and the platform,

and are easily extend. We believe our prototype application sandbox meets the

design goals of providing robust isolation that is practical and works today, while

also providing a familiar developer and user experience that will foster adoption of

the platform.
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3.4 Applications
Vaportrail applications complement service connectors by providing the user with

a way to leverage their personal data in new tools, visualizations, and games de-

veloped by untrusted third-parties. In this section we discuss how applications are

packaged and distributed, general development using the platform-provided APIs,

permissions and capabilities, and finally we present three prototype applications

that demonstrate the flexibility of the platform.

3.4.1 Packaging and distribution

Much like their service connector counterparts, applications are packaged as a sim-

ple, self-contained format that facilitates sharing through conventional channels

(e.g. email or HTTP download). Like service connectors, application packages

can be built using standard, familiar tools like tar and a text editor. The package

is a gzipped tarfile containing an application manifest, the application code and

any assets (images or other dependencies). As with service connectors, the appli-

cation manifest is specified in JSON and describes the permissions the application

requires to run.

Vaportrail applications can be written in JavaScript, or any programming lan-

guage that can be compiled to JavaScript, e.g. TypeScript[34], CoffeeScript[9],

Dart[11], or Caja[7]. In our prototype implementation, all of the application code

must reside in a single file. This would be an unreasonable limitation for a re-

lease implementation, however, a standard form of module loading could easily be

added.

3.4.2 The application manifest

The application manifest is a machine (and human) readable JSON file that de-

scribes various properties of the application (name, version, author, release date,

etc.) as well as the platform permissions it requires. The manifest fully specifies

which data schemas the application requests access to, as well as which URLs it can

fetch data from, and which types of data it is capable of sharing. Any of these per-

missions can be marked as required or optional: an application cannot be installed

if one or more of its required permissions are not granted by the user. Whether
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Program 3.3 The JSON application manifest specifying package metadata and
the platform permissions required by the Radar application.

{
"name": "Radar App",
"author": "Kalan MacRow <kalanwm@cs.ubc.ca>",
"description": "Radar for Vaportrail",
"version": "0.0.1",
"code": "src/radar.js",
"permissions": [

{"type": "read", "schema": "facebook.*.*.*"},
{"type": "read", "schema": "twitter.*.*.*"},
{"type": "read", "schema": "gmail.*.*.*"},
{"type": "network_get", "url": "http://", "id": "SPAM_DB"},
{"type": "window_open", "*.facebook.com"},
{"type": "window_open", "*.twitter.com"},
{"type": "window_open", "*.gmail.com"}

]
}

or not optional permissions were granted can be discovered by the application at

runtime using the platform.permissions.can(permission) API. We

outline the application permission classes in Table 3.2. All applications have access

to all platform.ui components as well as platform.localStorage.

3.4.3 Application lifecycle

Vaportrail applications have an event-driven lifecycle that is closely related to the

platform sandbox lifecycle, and should be familiar to developers accustomed to

building browser-based software. When the user launches an application from the

platform dashboard, the monitor creates and initializes a new instance of the appli-

cation sandbox.

When the sandbox reaches the ready state, and the application code has suc-

cessfully been loaded into the interpreter, the application lifecycle begins. The bro-

ker managing the interpreter hands control over to the interpreter, which evaluates

all code in the global scope, including a synthetic (i.e. generated) bootstrapping
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Table 3.2: Application permission classes

Permission class Example Description

Query data {"type": "read":,
"schema":
"gmail.sql.inbox.messages"}

Request access to a data schema.
Wildcards can be used in any
component of the schema name.

Share content {"type": "share",
"content":
"text/plain"}

Request access to share content
by MIME-type. Wildcards can
be used.

Network access {"type":
"network get", "url":
"http://.../prices.json",
"id": "PRICE DB"}

Network access capabilities. We
only support fetching approved
URLs by name. Wildcard pat-
terns are not supported in URLs.

Navigation {"type":
"open window",
"domain":
"(.*).facebook.com"}

If enabled, the application can
use platform.open to open
browser windows to domains
that match the specified domain
pattern.

function that in turn fires the platform.onload event. The application code

should use platform.addEventListener(’load’) to register a handler

on the event. The onload handler is effectively the application’s “main” function,

and should be used to load state, issue queries and create UI elements.

Program 3.4 A “Hello, World!” Vaportrail application that stores the date of its
last run in localStorage, logs a message to the browser console, and creates a modal
dialog with a familiar salutation.

use strict;
!function(){
platform.addEventListener(’load’, function(e) {
localStorage[’lastRun’] = new Date() + ’’;
console.log(’Hello, log!’);
platform.ui.alert(’Hello, world!’);
});
}();
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Figure 3.8: The lifecycle of a Vaportrail application.

Nearly all interaction with the platform API is asynchronous. The application

may also register a handler on the platform.onunload event, which is fired

by the monitor when a) the user closes the application or, b) the browser window is

closed. The unload handler can be used to persist state using platform.localStorage.

As discussed in Section 3.3.4, the monitor will forcibly terminate the application

and sandbox (skipping the unload event) if an unauthorized API call is made.

The most important phase of life for a Vaportrail application happens between the

load and unload events, during which time it responds to events triggered by

the user (via UI components), processes data, and updates its UI.

3.4.4 Example applications

We implement three prototype applications to help motivate the design and imple-

mentation of the platform APIs, and to demonstrate the platforms ability to support

interesting, non-trivial applications. Each application consumes data from multiple

services, depends on persistent state and provides a simple UI.

Contrail

Contrail is a simple application that renders events from multiple services as icons

on a horizontal timeline. Each event (e.g. email, post, upload) is plotted as an icon

sized proportional to the “impact” of the event. The definition of impact depends

on the type of event: it corresponds to likes, retweets (replies for private messages)
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Figure 3.9: The Contrail timeline application.

and thread size for Facebook, Twitter and Gmail, respectively. The application

shows the current day’s events at hourly resolution, and the trailing week at daily

resolution. Contrail demonstrates a simple, but useful visualization that without

Vaportrail would have required granting a third-party application access to three

personal data sources.

Altitude

Altitude is a basic search engine that provides an aggregate free-form search across

several data sources. It leverages the native text search capabilities of the backend

data stores (i.e. SQLs LIKE % clause, and MongoDB’s $text operator) to com-

bine events, messages, email attachments and images into one result set. The appli-

cation uses platform.open() in the onclick handler of platform.ui.Link

components to link the user out of Vaportrail into the originating service’s view for

the item. Altitude demonstrates the flexibility of the platform APIs and the utility
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Figure 3.10: The Altitude search application.

of applications that provide a familiar primitive (in this case search) over a unified

view of personal data.

Radar

Radar is a rudimentary fraud detection application that leverages the network ac-

cess permission to periodically download a database of spam detection patterns

which it applies to all outgoing messages across Facebook, Twitter and Gmail.

The rationale is that if a spam message has been sent from a personal account, the

account has likely been compromised. Each monitored service appears in the UI

along with its current status (Green - all clear, Yellow - possible spam detected, or

Red - account compromised). When a message that is likely spam is detected, it is

shown in the UI with a direct link to view in the context of the originating service.

Radar uses a simple detection model based on a set of regular expressions, each

mapping to a score and human-readable reason that a match implies spam. Each
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Figure 3.11: The Radar account fraud detection application.

score is multiplied by the number of matches and then a subtotal is calculated for

the message. Alerts are raised based on two thresholds: warning and critical. At

less than 100 lines of code, Radar demonstrates that useful monitoring applications

can be developed for the platform with a minimum of effort.

3.4.5 Summary

The ability to run untrusted third-party applications on personal data is the core

contribution of the platform. In this section we have reviewed how applications

are packaged and shared, the high-level capabilities available to them, and their

runtime lifecycle within the sandbox. We have also presented three prototype ap-

plications that illustrate the flexibility of the platform APIs and the ability of the

platform to host interesting, non-trivial applications. We believe the application

packaging and runtime implementation balances the design requirements of open-

ness, flexibility and familiar development style with the need for robust privacy
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controls.

3.5 Summary
In this section we have discussed the implementation of the Vaportrail platform

prototype, including several example service connectors and applications. We have

implemented a self-contained personal appliance that leverages Linux containers to

isolate and network platform and third-party components within the appliance. We

discuss how this architecture provides an open, robust, extensible and maintainable

platform that is simple and inexpensive to operate. We argue that our choice of

industry-proven abstractions (containers, RESTful APIs, databases) and careful

decoupling of components will allow the appliance to operate without intervention

over long periods of time, though a long-term user study would be required to

verify this.

We discuss service connectors in Section 3.2, and the implementation chal-

lenges involved in ensuring developers have sufficient flexibility to integrate with a

diverse array of external services, while retaining enough platform control to safely

manage misbehaving connectors. We aim to balance safety and security with the

networking capabilities required to build non-trivial integrations.

In Section 3.3 we discuss our application sandbox in detail. We build on ideas

developed by Treehouse[44] and js.js[51] to implement a robust browser-based

application sandbox capable of hosting untrusted JavaScript applications and en-

forcing policies and permissions through a platform monitor. We implement APIs

in the sandbox environment that enable guest code to query data sources, render

UI components and persist application state.

Finally, we discuss the platform implementation from the perspective of ap-

plications: how they are packaged and distributed, the programming environment,

platform permissions and APIs. We present three example applications to demon-

strate the ability of the platform to support interesting applications that combine

personal data sources.

Although only a prototype, we believe the implementation succeeds in address-

ing the primary design goals of the system and would serve as a good starting point

for a more production-ready implementation.
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Chapter 4

Related Work

Vaportrail is a self-contained platform for personal data. The guiding philosophy

behind Vaportrail is that it should be simple and inexpensive to operate while pro-

viding a safe and practical environment for running untrusted applications. This is

largely in contrast to existing commercial products which may trade privacy for op-

portunities to monetize users, and also existing academic works that provide only

a call for solutions, or present implementations that limit the likelihood of wider

adoption by regular users.

4.1 Personal data platforms
There have been several commercially successful products that help a user aggre-

gate their personal data into a single location and provide some value in the form

of applications or integrations with other systems. If-This-Then-That[24] (IFTTT)

provides a fully-managed SaaS platform that allows a user to select from over 4,000

“applets” that connect to external services and trigger various platform-mediated

actions based on events in the data stream. Applets can have triggers on multiple

service streams and generally provide simple, stateless utilities such as automat-

ically re-posting content from one social network to another, or emailing a daily

digest of activity. Unlike Vaportrail, IFTTT makes no claims about privacy and

provides the service for free.

Cue[10] (formerly Greplin) allowed users to link several personal accounts into
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a single dashboard and provides search capabilities over multiple data streams at

once. Before being acquired by Apple, Cue did have a tiered pricing model in

which users could pay for more storage capacity. Like IFTTT, Cue made no partic-

ular claims about privacy or data ownership once it was loaded into the platform.

Loggacy[26] represents a special class of personal data platforms designed

specifically for establishing a digital legacy that can be shared across generations.

Loggacy does not provide an application runtime, however, long term personal data

archiving is a central capability of Vaportrail. We imagine establishing a digital

legacy in a format that invites exploration and discovery as an important use case

for Vaportrail. We also argue that as a self-hosted, privacy-preserving platform,

Vaportrail is much better positioned to fulfil this long-term responsibility than a

SaaS product that is subject to changeable business conditions.

The existence of several related products in this space, and indeed their ability

to attract venture capital and buyers like Apple demonstrate the potential business

value of consolidating personal data, as well as user interest in the capabilities it

enables. Although generally lacking in privacy controls, we have taken inspiration

from the user experience design, seamless integrations with the services people

use, and the types of applications (or applets) they have developed.

Databox[42] proposed a trusted personal data platform for collating personal

data, managing it, and providing controlled access to it. Although Databox did

not present a specific implementation, we take considerable inspiration from their

exploration of the design space and suggestions as to what a Databox should be.

Although our implementation diverges in a few important ways from the Databox

proposal (Vaportrail does not provide a mechanism for the user to monetize or bro-

ker their data out of the platform, nor does it allow applications to take copies of

data, or for external devices to access the data over the network) Vaportrail does

implement a subset of the Databox features. Furthermore, while the Databox au-

thors envision the Databox as a core piece of infrastructure for the user, acting

as a clearinghouse for sensitive data, we do not position Vaportrail on the user’s

critical path. Instead, Vaportrail is a trusted passive consumer of data providing a

largely offline means of interacting with it. Databox suggests that an implementa-

tion would provide a means for users to explicitly trade their data in exchange for

services, enabling targeted advertising as an incentive for developers. Coordinating
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with a multitude of of external service providers to broker data (or “take money”

as the Databox authors put it) is a much less tractable problem than building the

core platform in relative isolation. For this reason, we leave the ability to act as a

broker to future work.

4.2 Privacy-preserving web applications
PiBox[46] presents a privacy-preserving platform with design goals very similar to

Vaportrail but with a significantly different implementation. Like Vaportrail, PiBox

shifts the burden of establishing trust from applications to the platform itself, and

provides a sandbox with communication, storage and control primitives that restrict

application access to sensitive personal data. While Vaportrail employs a single

user-controlled virtual appliance for deployment, the PiBox sandbox spans a user

device and a virtual server hosted by one of a few trusted cloud providers. The

platform uses differential privacy techniques to expose anonymized usage patterns

to the application publisher to enable ad-driven revenue streams. We recognize

that systems do not exist in an economic vacuum, but have elected to make the

costs of hosting and application development as explicit as possible in Vaportrail:

we argue that cloud infrastructure for a personal appliance is already sufficiently

inexpensive for an individual, and that privacy-conscious users will pay for useful

applications. The differences in architecture have important implications for the

possibility of wider adoption as well. The PiBox sandbox is based on a modified

Android kernel that manipulates existing IPC, filesystem and network isolation

mechanisms to limit the capabilities of applications. It also assumes the willingness

of large trusted service providers (e.g. Google, Apple) to host the cloud portion of

the platform, acting as fiduciaries on the basis of their reputations. This is in stark

contrast to Vaportrails sandbox which is platform independent (runs in the browser)

and does not rely on adoption by large third-party vendors whose interests may not

be well aligned with those of the individual. Although the motivating philosophy,

trust model and types of applications that the platforms enable are very comparable,

we believe Vaportrail is better positioned for real-world adoption.

Priv.io[52] is a platform for building and running privacy-preserving web ser-

vices. In Priv.io, users pay for their share of cloud resources (storage, messaging
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and bandwidth) and all computing is performed by applications in a browser sand-

box. The authors argue that an always-on cloud server is too expensive for most

people, based on an analysis of how much users would pay for services like Face-

book and Twitter if they were built on Priv.io. Using strong encryption to ensure

that plain text personal data is never exposed to the infrastructure provider, Priv.io

can support a wide range of existing applications through a browser-based sand-

box and API. With Vaportrail we do not aim for a general alternative deployment

model for web services, nor to support existing services, but focus on a much nar-

rower class of applications specifically built around creating value from personal

data streams. Given the more specialized nature of Vaportrail as a tool for safely

exploring data generated on other platforms, and not to host those platforms with

stronger privacy controls as Priv.io does, we believe the Priv.io cost analysis does

not translate well to Vaportrail. In terms of sandbox implementations, Priv.io takes

an approach that balances the need for robust control over the flow of sensitive

data into and out of the hosted applications with the flexibility to support exist-

ing browser-based code. They use an HTML iframe to host the untrusted appli-

cation code and expose the platform API over the postMessage() interface while

restricting the network access using a browser-enforced CSP. The advantage of

this approach is that an iframe hosts a completely isolated and fully functional

DOM, enabling existing applications to be easily ported to function in the sand-

box. There are a couple of significant limitations: 1) the DOM is a very large and

complex API implemented differently across browsers, making the CSP suscepti-

ble to circumvention by clever use of JavaScript or Cascading Style Sheets (CSS)

DOM manipulations that trigger network requests. 2) as a complete web page, the

untrusted content of the iframe is very capable of mounting phishing attacks to sub-

vert the platform, i.e. by presenting UI that tricks the user into entering sensitive

information that can then be exfiltrated through (1). For these reasons, and others

discussed in Section 3.3, we prefer a more robust (albeit restrictive) approach that

involves complete virtualization of the JavaScript runtime in which untrusted code

runs. Consequently a successfull attack would require escaping a proven JavaScript

engine, or a very narrow platform API.
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4.3 JavaScript sandboxes
Treehouse[44] presents a JavaScript sandbox for running untrusted code that shares

a number of similar goals to ours, namely that it should work without browser

modifications and should be able to prevent guest code from directly manipulating

the DOM and using network APIs. We take considerable inspiration from Tree-

house, in particular the repurposing of WebWorkers as containers for executing

untrusted code, but take a stronger (albeit less performant) approach to isolating

guest code from the native browser APIs. Treehouse loads a “broker” into the Web-

Worker context that creates a virtual DOM and interposes itself on several sensitive

browser APIs before loading and executing guest code. The virtual DOM allows

sandboxed code to run largely unmodified as the broker asynchronously propa-

gates changes into the real DOM via the WebWorker postMessage() interface, and

routes events back into the virtual DOM. Fine-grained control over which browser

objects, methods and arguments the sandbox code can use is specified by the user

through policies, and enforced by the broker at runtime when the API is called.

This ensures better performance than running a virtualized JavaScript interpreter as

we do, but has an important limitation: the lack of standard API implementations

across browsers means that it is difficult to verify, even for a single browser, that

the broker has “locked down” and interposed on the entire API surface. Even if the

JavaScript API has been secured, syncing virtual DOM manipulations into the real

DOM enables an attacker to carefully construct DOM operations that, when ap-

plied outside the sandbox, could conceivably trigger network requests, inject code

or present misleading UI elements. Instead of engaging in an API isolation “arms

race”, we take advantage of highly performant modern JavaScript engines and opt

for a fully virtualized interpreter. Consequently Vaportrail cannot easily run un-

modified applications, though our approach does not preclude exposing a virtual

DOM compatibility layer as future work. Doing so would require very careful con-

sideration of the DOM syncing implementation for the same reasons that apply to

Treehouse.

Several other projects have investigated sandboxing or otherwise restricting the

capabilities of client-side JavaScript. AdSafe[1], Caja[7] and FBJS[16] identify a

“safe” subset of JavaScript that can be statically checked ahead of execution. There
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are a number of iframe-based sandboxing implementations including AdJail[47],

SMash[41] and Subspace[45]. These projects have provided inspiration for Va-

portrail but often make trade-offs in favour of supporting existing applications, or

supporting use cases (e.g. rendering ads) that are different from ours. JS.js[51],

which we build on in our sandbox implementation, compiles an existing JavaScript

interpreter to a subset of JavaScript, enabling it to run in modern browsers. JS.js

incurs non-trivial (though acceptable) overhead and completely isolates sandboxed

code from the browser JavaScript environment and APIs.

4.4 Summary
There is a considerable body of work related to aggregating and leveraging per-

sonal data streams, building privacy-preserving web applications and services, and

sandboxing client-side browser JavaScript. We note that the commercial success

of several personal data platforms (IFTTT, Cue, Loggacy) highlights the interest

and, we argue, the need for an alternative that makes the costs and privacy controls

explicit to the user. We review DataBox and its influence on our design of the Va-

portrail prototype, as well as PiBox and Priv.io which attempt to solve similar prob-

lems by leveraging centralized fiduciaries, and peer-to-peer infrastructure sharing

approaches, respectively. Finally we summarize client-side JavaScript sandboxing

work, and Treehouse in particular for its influence on our implementation.
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Chapter 5

Conclusions

We have described the design and implementation of Vaportrail, a platform for

personal data and applications. Vaportrail provides a self-contained network ap-

pliance that individuals can use to archive their own personal data and safely run

applications from untrusted third-party developers on their data. We have devel-

oped a simple trust model that puts the user in control of their data, as well as an

architecture that implements this model with modern web-based ergonomics. We

were inspired by several other privacy-preserving systems and built on them in an

effort to design a platform that is open, extensible and practical.

Our aim with Vaportrail was to build a platform for personal data that, unlike

commercial offerings, puts the user in control of their data and makes the operating

costs explicit. Our hope is that by building Vaportrail using standard, open tech-

nologies that are readily deployable today, we can demonstrate that an alternative

model to ad-driven Software-as-a-Service is practically feasible, and can deliver a

modern user experience. We acknowledge that the economics of Vaportrail (and

other privacy-conscious systems) are challenging: it remains to be seen whether

the public will pay for privacy, however, without viable privacy-preserving alter-

natives we may never know. We argue that the decreasing costs, and increasing

reliability, of cloud infrastructure are promising indications that at least storage

and computing resources may not be a significant barrier now and in the future.

Although the current implementation is only an early-stage prototype, it demon-

strates several of the core components of a personal data hub, as identified by
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projects such as DataBox before us. The concept of a networked hub for per-

sonal data is not new, and we believe it could be an important primitive in a more

privacy-aware future. Vaportrail is an attempt to refine these ideas in a modern

design context and, hopefully, provide inspiration for others to continue the de-

velopment of tools and systems to support privacy and personal data provenance.

We observe similarities with public key infrastructures, which have only recently

begun to enjoy wider consumer adoption as a result of ongoing refinement of the

user experience around them, and less so of the core technology and ideas.

The near-term next steps for Vaportrail would be to produce a sufficiently sta-

ble version of the platform software to conduct a user study. In the longer-term,

we would like to see Vaportrail extended to support private peer-to-peer data shar-

ing primitives (perhaps via WebRTC[36]), enabling direct social sharing and fully

decentralized services. We would also extend the application sandbox and runtime

with graphics APIs to support data-driven 3D games and visualizations. Porting the

js.js interpreter to run on WebAssembly would significantly improve the runtime

performance of applications.

Vaportrail is far from having all of the features and properties that we would

like from a personal data platform, however, we submit that building privacy-

preserving software is difficult on several broad fronts: technically, economically,

and socially. That being said, we feel that privacy is a worthwhile pursuit and that

Vaportrail is a step towards a platform that puts users in control of their data, and

gives developers the freedom to innovate using personal data sources.
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Appendix A

Platform APIs

In this section we provide a listing of platform APIs and components. The plat-

form API surface consists of methods facing service connectors, applications, and

internally (i.e. used only by the platform itself in the service of higher level APIs

or functions.

platform.authn
The authentication endpoints handle authenticating service connectors and the web

dashboard to establish a session that can be reused for subsequent requests.

• POST /authn/auth

– Requires password or VT CONNECTOR SECRET

– Returns access token that must be included in all subsequent requests

using a custom X-Auth-Token HTTP header.

platform.authz
The authorization module determines whether a given API request is authorized for

a previously authenticated client. Authorization logic wraps platform API server

HTTP handlers and permission-restricted calls in the application monitor.

• platform.permission.can(permission)

67



– Application facing API that allows applications to check whether the

platform monitor would allow calls related to a specific permission,

e.g. {"type": "share", "content": "image/png"}.

• POST /authz/can

– An equivalent connector-facing API takes a permission in the request

body.

platform.data
These APIs are used to write data to the platform data stores as well as query data

from applications. platform.query provides a slightly higher level application-

facing API.

• POST /data/write

– Takes a data store schema and store-type specific write request and

returns when the write is persistent or has failed.

• GET /data/read

– Takes a data store schema and store-specific query request and returns

data in a store-specific format (e.g. JSON list of rows, or a binary blob).

platform.meta
Platform metabase APIs are used largely internally for platform bookkeeping: stor-

ing and retrieving connector and application manifests, unpacking and parsing

packages, setting up internal networks and creating and managing containers.

platform.ui
The platform application UI components. Component colours are restricted to a

platform-defined palette. Similarly, sizing and positioning is restricted to prevent

components from being abused.

• Button - simple button with text
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• Checkbox - stateful checkbox button with label

• Dropdown - simple dropdown list of options

• Input - a text input field

• Image - static image label

• Layer - container that can be sized and styled within certain visual param-

eters

• Label - static text label

• Link - text label that appears as a clickable hyperlink

• Panel - a container with a heading and an outline

• TableLayout - grid-based layout container for other components

• Tooltip - simple tooltip with static text

platform.net
The platform application networking APIs.

• get(uri id)

– Fetches and returns content from a URI by ID specified in the appli-

cation manifest. Note that the sandbox interpreter does not have an

eval() function, making it very difficult to use this mechanism to

load code.

platform.localStorage
The platform sandbox implementation of window.localStorage used by applica-

tions to persist state.

• get(key) : String

• set(key, Object) : String
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platform.share
The application-facing APIs for triggering sharing intents. These largely wrap calls

into platform.data.

• share(type, content)

– Trigger a share request of content with content-type type.
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