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Abstract

Einstein’s theory of General Relativity tells us that gravity is not a force
but rather it is the curvature of spacetime itself. Spacetime is a dynamical
object evolving and interacting similar to any other system in nature. The
equivalence principle requires everything to couple to gravity in the same
way. Consequently, as a matter of principle it is impossible to truly isolate a
system—it will always be interacting with the dynamical spacetime in which
it resides. This may be detrimental for large mass quantum systems since
interaction with an environment can decohere a quantum system, rendering
it effectively classical. To understand the effect of a ‘spacetime environ-
ment’, we compute the Feynman-Vernon influence functional (IF), a useful
tool for studying decoherence. We compute the IF for both the electromag-
netic and linearized gravitational fields at finite temperature in a manifestly
gauge invariant way. Gauge invariance is maintained by using a modifica-
tion of the Faddeev-Popov technique which results in the integration over
all gauge equivalent configurations of the system. As an intermediate step
we evaluate the gauge invariant transition amplitude for the gauge fields
in the presence of sources. When used as an evolution kernel the transition
amplitude projects initial data onto a physical (gauge-invariant) subspace of
the Hilbert space and time-evolves the states within that physical subspace.
The states in this physical subspace satisfy precisely the same constraint
equations which one implements in the constrained quantization method of
Dirac. Thus we find that our approach is the path-integral equivalent of
Dirac’s. In the gauge invariant computation it is clear that for gauge the-
ories the appropriate separation between system and environment is not a)
matter and gauge field, but rather b) matter (dressed with a coherent field)
and radiation field. This implies that only the state of the radiation field
can be traced out to obtain a reduced description of the matter. We stress
the importance of gauge invariance and the implementation of constraints
because it resolves the disagreement between results in reported recent lit-
erature in which influence functionals were computed in different gauges
without consideration of constraints.
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Lay Summary

The macroscopic world is described well by classical physics. At a moment
of time you say i) where things are, ii) how fast they are moving, and
iii) how hard are they being pushed or pulled. This is all you need to
say where everything will be at a later time and how fast it will all be
moving. This description works well until you look at very small things like
electrons. We’ve seen experimentally that small things are better described
by quantum mechanics. In quantum mechanics things are more strange.
For example, an object can be in more than one place at a time. Since we
don’t see macroscopic objects behaving this way, we expect there to be some
sort of cross-over. In this thesis we build some mathematical tools which
will help to understand how fluctuations in the gravitational field may be
responsible for this cross-over.
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The idea to compute a gravitational influence functional was provided by
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Chapter 1

Introduction

Quantum systems are fragile and easily disrupted by interactions with en-
vironmental disturbances. Decoherence can occur when an environment
disturbs a quantum system even if energy is not exchanged [1]. It is the
same thing that makes quantum systems so rich that makes them so frag-
ile, they can build extraordinarily complex correlations. Counterintuitive
as it may be, in general an environment decoheres a quantum system not
by physically destroying it but by developing intricate correlations with the
state of the system. For a quantum system strongly correlated with its en-
vironment, a demonstration of its quantum behaviour requires the careful
control of the state of the environment in addition to the system. Thus if
the state of the environment is not carefully tracked then the system alone
may not exhibit quantum behaviour (interference for example). Quantum
correlation, referred to as quantum entanglement, was initially thought of
as a demonstration of the incompleteness of quantum theory [2] but is now
understood as such a fundamental feature of nature that there is an entire
field based around the idea that it might be the glue which holds spacetime
together [3].

To study quantum systems experimentally we try to isolate quantum
systems to avoid environmental interactions, but as a matter of principle
no system can be entirely isolated. Einstein’s theory of General Relativity
(GR) has taught us that gravity should not be thought of as a force between
objects but rather as a manifestation of the curvature of spacetime itself.
Spacetime is no longer a fixed background on which objects interact, it too
is a dynamical object. Since it provides the casual structure for all other
objects in nature, spacetime is necessarily interacting with everything;
nothing can be shielded from gravitational interaction. Spacetime itself is
an ever present environment which may cause the decoherence of quantum
systems.

Gravitational decoherence is a hard problem to properly define let alone
study and solve. In the typical discussion of decoherence one has two quan-
tum systems, commonly referred to as the central system and the envi-
ronment. A measurement/experiment involving only the central system is
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Chapter 1. Introduction

insensitive to not only the state of the environment but also the correlations
that exist between the environment and central system. Operationally this
ignorance is claimed by summing (or tracing) over all possible states of the
environment. Any information stored as correlations between the central
system and environment is lost, i.e. the entropy of the central system is in-
creased. It is then said that the central system has undergone decoherence.
In quantum mechanics (QM) alone this leads to a number of unresolved
questions related to the interpretation of the theory. For example, what
defines a measurement? Does the wavefunction/density matrix simply rep-
resent the information we have, or is it something physical? Typically such
questions are set aside because we can still use QM to predict probabili-
ties of and correlations between measurement outcomes without thinking
about the ontology of measurement operators and state vectors. This is the
FAPP (‘for all practical purposes’) approach, which has remained popular
because of how accurate quantum mechanical predictions can be regardless
of the chosen interpretation. Note, for example, the agreement between
theory and experiement of the anomalous magnetic moment of the elec-
tron to better than 1 part in 1011 [4]. However once gravitation is included
the foundational questions which could once be ignored FAPP now become
essential problems which make it unclear what/how computations can be
done in quantum gravity. For example, if spacetime is treated as a quantum
mechanical object then what constitutes an observer/measuring apparatus?
Even if spacetime is treated classically we can ask, if a central system in-
teracts with an environment that later gets thrown into a black hole, are
the correlations permanently lost? The latter question seeds the well know
black hole information paradox [5]. Questions of this type make it difficult
to formulate meaningful questions involving QM and gravity. The problem
is that we simply do not yet have a complete accepted theory incorporating
both quantum mechanics and general relativity.

There is not yet a unification of GR and QM, however there are a number
of different approaches to this unification. In the most popular approaches,
string theory and loop quantum gravity, QM holds at all scales however
at short distances the classical notion of spacetime is drastically modified,
i.e. general relativity breaks down. There are a number of alternative
approaches in which QM suffers a breakdown at macroscopic scales as a
result of gravitation. These theories predict new mechanisms which can
look like intrinsic decoherence of quantum states (as opposed to “environ-
mental decoherence” caused by interaction with environmental degrees of
freedom) [6–14]. For compatibility with previous experimental observations
the predicted decoherence rates must be negligible at microscopic scales,
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Chapter 1. Introduction

but they are expected to become appreciable around mesoscopic scales and
to completely suppress quantum effects on macroscopic scales. Recently
there has been much effort towards the development of “table-top” quan-
tum gravity experiments which aim to study quantum theory at mesoscopic
scales right where intrinsic decoherence mechanisms are expected to be seen.
To understand the results of such experiments it is essential to understand
how environmental decoherence may occur in conventional quantum gravity
(theories without modifications to QM). We can see the extreme sensitivity
to decoherence as providing an useful probe of quantum gravity. In this the-
sis, we develop tools which will be useful for the study of decoherence in the
effective field theory description of conventional quantum gravity. Specif-
ically we compute the Feynman-Vernon influence functional for a bath of
gravitons at finite temperature. As a warm-up for quantum gravity we first
study Quantum Electrodynamics (QED)1. As we will show, in the low en-
ergy limit which we are interested in the treatments of the two theories are
quite similar.

This thesis is organized as follows. This chapter provides an introduction
to the study of gravitational decoherence. In Section 1.1 we provide a brief
discussion of some previous work on gravitational decoherence in: classical
gravity, gravitationally induced intrinsic decoherence theories, and conven-
tional quantum gravity theories. In Section 1.2 we discuss how although
we lack a full theory of quantum gravity we can still make quantitative
predictions in a low energy limit. In Section 1.3 we provide a general intro-
duction to the Feynman-Vernon influence functional, the primary tool for
understanding decoherence in the path-integral formalism. In Section 1.4 we
discuss the additional subtleties in formulating an influence functional for
gauge theories. In Section 1.5 we discuss some subtleties regarding boundary
terms in quantum gravitational path integrals. In Chapter 2 we introduce
the gauge theories which we will be studying. En route to computing the
influence functional, we compute the gauge invariant propagator for these
gauge theories using a modification of the FP trick applied to transition
kernels. It must be understood that we are using the word propagator to
mean the amplitude for the system to evolve from one configuration to an-
other configuration in a given time, i.e. the Feynman transition kernel. The
word propagator in field theory has become synonomous with correlator,
but it should be clear that we are not discussing correlation functions. For

1By QED we are not specifically referring to the theory involving Dirac fermions cou-
pled to a U(1) gauge field but rather a quantum theory of a generic not-yet-specified
matter which is minimally coupled to a U(1) gauge field. Of course this includes Dirac
fermions but also e.g charged scalar fields and point particles.
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1.1. Previous Approaches to Gravitational Decoherence

instructive purposes we’ll first show how such a computation is done for
free U(1) theory, then for QED, and ultimately for linearized gravity with
matter. In Chapter 3 we compute the influence functional for both QED
and linearized gravity at finite temperature. We also discuss the result one
would obtain if the gauge invariance of these theories is not properly treated
and show that this matches a result reported in recent literature [15]. All of
these discussions and results are summarized in the conclusion, Chapter 4.
Supplementary materials are presented in the appendices.

Throughout we will use units in which (h̄ = c = kB = 1), and a mostly
positive metric convention (− + ++). We will use the shorthand notation∫ tf
ti
d4x =

∫ tf
ti
dt
∫
d3x. The letters i, f will be reserved to label initial and

final quantities. They will never be used as indices. We will use Greek
letters for spacetime indices and Latin letters in the middle of the alphabet
(except i, f) for spatial indices e.g. (j, k, l). Latin letters at the start of the
alphabet e.g. (a, b, c) will be used to label miscellaneous discrete quantities.
This being said, we will often suppress spacetime indices as well as the
arguments of functions to avoid cluttered expressions. It should be clear
from the context which objects are vectors and tensors.

1.1 Previous Approaches to Gravitational
Decoherence

Gravitational decoherence is a massive topic which receives both theoretical
and experimental interest from communities ranging from quantum infor-
mation to opto-mechanics to quantum cosmology. The idea that gravitation
may be responsible for the quantum to classical transition was present and
discussed in the early Sixties. Comments can be found in the Feynman
lectures on gravitation [16] as well as in the work of Rosen [17]. The first
actual model was soon after proposed by Karolyhazy [6]. Of course, since
we lack a full theory of quantum gravity, our understanding of gravitational
decoherence is still incomplete and it remains an actively studied topic.

In this section we will attempt to provide a bit of an overview of the
different ways in which gravitational decoherence has been studied. Our
aim is not to provide a comprehensive review but rather to help situate
our work in the appropriate historical context. More detailed summaries of
previous works are provided in [14, 18–20].
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1.1. Previous Approaches to Gravitational Decoherence

1.1.1 Decoherence in Modified Quantum Theories

As previously mentioned, theories incorporating both quantum mechanics
and gravity can separated into two groups: those which hold QM sacred,
and those willing to violate QM at macroscopic scales. Of the theories which
violate QM, there are different approaches distinguished by how gravitation
enters the theory.

The earliest ideas of this kind, as well as those popularized by Penrose in-
volve taking the Heisenberg uncertainty relations for quatum systems living
on a spacetime manifold and understanding this as leading to an inherent
fuzziness to spacetime. This fuzziness leads to the loss of phase relations
in the different branches of the matter wavefunction and thus a pure state
evolves into a mixed state [6, 7]. In these theories decoherence is an intrinsic
process in nature.

Another class of theories assume that gravity is inherently classical but
QM is necessarily modified. In particular Mielnik [21] emphasized that,
‘either the gravitation is not classical or quantum mechanics is not orthodox’.
These theories view QM as a linear approximation to a more complicated
non-linear theory where the non-linearities arise from gravitation [8–10].
This leads to a modification to the Einstein field equation where the RHS
of the equation is replaced by the expectation value of the stress-energy
tensor operator. The non-linear nature of these theories leads to a dynamical
collapse of the wavefunction which proceeds most rapidly for macroscopic
objects. While this is not necessarily decoherence, the inability to sustain
macroscopic superpositions is a feature common to both decoherence models
and collapse models. Without proper attention to detail an observation of
dynamical collapse could be misinterpreted as environmental decoherence.

In another approach the graviational field is treated as a classical fluc-
tuating stochastic variable. This is an example of a stochastic collapse the-
ory. Stochastic collapse theories propose that some new universal mecha-
nism is responsible for suppressing macroscropic quantum fluctuations [22].
They have been well studied outside of a gravitational context as a potential
means for understanding macrorealism and the collapse of the wavefunction
(see [19] and references therein). The idea that the underlying mechanism
may be related to gravitation was popularized by Diósi [11, 12]. In these the-
ories the corresponding evolution equation for the matter density matrix is
no longer the unitary von Neumann equation, but instead it is a Markovian
master equation describing the decoherence of pure states. Diósi’s approach
is limited for a number of reasons, the most obvious of which being that it
is not relativistic. In addition the theory has been criticized by Ghirardi et
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1.1. Previous Approaches to Gravitational Decoherence

al who claim it is not internally consistent [13].
The final intrinsic decoherence theory we’ll describe is that of correlated

worldlines (CWL theory) [14]. In CWL theory the linearity of QM is broken
in the path integral. In a conventional path integral computation one sums
up all paths (independent of one another) which a system can take to evolve
from one configuration to a later configuration. In CWL theory it is assumed
that the conventional path integral is the lowest order term in an infinite
series of multiple path integrals. The second order term includes a sum over
all pairs of paths, the third order goes over all triplets, and the n-th order
over all n-tuplets of paths. What distinguishes CWL theory from the con-
ventional path integral is that the paths are no longer independent from one
another, they are correlated. Arguments based on the equivalence principle
and indistinguishability in QM suggest that the correlations are generated
by gravitation. This leads to “path-bunching” where paths “gravitate” to-
wards each other. This suppresses quantum fluctuations for macroscopic
objects and thus predicts a quantum-to-classical crossover. This too is a
theory without decoherence, but again the experimental signature of this
crossover may be misattributed to environmental decoherence if we do not
take care to understand both effects well.

It is clear then that we can no longer naively attribute decoherence in
experiments to dirt/noise. Experimental signatures of the above theories
may already be lying in our data, but we don’t yet understand conventional
gravitational decoherence well enough to interpret the data and place bounds
on these theories. Since the Planck energy scale is far beyond present the
day energy frontier we cannot afford to dismiss potential experimental data
which probes theories of quantum gravity. In the next section we will review
some efforts to understand and model decoherence in conventional quantum
gravity.

1.1.2 Decoherence in Conventional Quantum Theory

Without a full theory of quantum gravity, the various approaches to deco-
herence in conventional quantum gravity have been rather ad hoc. Assump-
tions must be made about how to correctly describe spacetime, and many
different choices have been made. In most of the approaches we will discuss
the environment consists of small fluctuations about a classical background
spacetime metric (typically Minkowski, gµν = ηµν + hµν). Without fixing a
classical background it is unclear how to even describe the central system—
how can we possible describe a particle in a superposition of two locations
in a coordinate-independent way [7]? It has been argued that diffeomor-

6



1.1. Previous Approaches to Gravitational Decoherence

phism invariance is so strict that there are no local observables in quantum
gravity; the only observables are defined on the boundary of the spacetime
manifold [23, 24]. This is exemplifed by the ADM mass being a boundary
integral [25]. Indeed this is the spirit of the holographic principle [26, 27],
and is realized by the AdS/CFT correspondence [28–30]. Until we further
develop our understanding of quantum gravity we must assume a classical
background on which the central system and gravitational fluctuations can
live. This being said, since the gravitational fields created in any man-made
experiment will certainly be in the weak-field regime we can hypothesize
that this assumption is reasonable for all practical purposes.

Before we discuss the many approaches which are similar to ours (con-
sidering only small spacetime fluctuations) its worth mentioning some more
speculative ideas which do not involve a static classical background metric.
It was hypothesized that even conventional quantum gravity is inherently
non-unitary. This was an idea which recieved a lot of attention from Hawk-
ing as a potential resolution to the black hole information paradox. Some of
his ideas included: thermalization due to the formation and evaporation of
black holes [5], metric fluctuations destroying global hyperbolicity [31], and
the branching off of “baby universes” connected to ours by wormholes [32–
34]. It is notable that the wormhole computations suggest a crossover mass
scale above which macroscopic objects would rapidly decohere, but this cal-
culation was not performed within a controlled approximation and thus its
legitimacy is questionable.

Recent attention has been given to the idea that even static classical
gravitational fields may cause quantum decoherence. This idea was pro-
posed by [35] and has since been a hotly debated topic [36–40] (see also [20]
and refs. therein). The basic setup for this idea is a single object consist-
ing of many microscopic constituents (for example a large molecule). The
degrees of freedom of the system decompose into center-of-mass motion and
internal excitations. The claim in [35] is that the center-of-mass motion
becomes coupled to the internal degrees of freedom due to the gravitational
time dilation felt by the internal modes based on the trajectory of the center-
of-mass. The internal modes act as “internal clocks” and it is argued that if
these clocks register different proper time durations then they can no longer
constructively interfere. The gravitational field does not act as the environ-
ment but rather the internal modes constitute the environment while the
center-of-mass degree of freedom is the central system. This is an inter-
esting idea, but since it is still hotly debated (and a different flavour than
the gravitational decoherence we are interested in) we will not have more to
comment on it.
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1.1. Previous Approaches to Gravitational Decoherence

In the more common approaches a classical metric is fixed (typically
Minkowski) and the effect of linearized metric fluctuations on a central sys-
tem are studied. Such fluctuations occur in classical gravity where one
can assume that astrophysical or cosmological processes produce a stochas-
tic background of classical gravitational waves [41, 42]. More interesting
to the quantum gravity community is the effect of quantum fluctuations
associated with the zero-point motion of the metric field. The quantum
fluctuations have been modelled in a number of different ways. Many have
treated the metric perturbation as a stochastic variable with a gaussian
probability distribution. This was done for a non-relativistic particle cou-
pled to fluctuations of the conformal factor in [43], i.e. the scalar φ in
the metric expansion hµν = (2φ + φ2)ηµν . Such a metric ansatz does not
satisfy Einstein’s equations, but this was soon after remedied by including
shearing modes [44]. Isotropic pertubations were well studied, and it was
shown that a perturbation of the form hij = ξ(t)δij with mean 〈ξ(t)〉 = 0,
〈ξ(t)ξ(t′)〉 = M−1

P δ(t − t′) would lead to decoherence into the energy basis
with a rate Γ ∼ (∆E)2/MP [45, 46]. Here ∆E is the difference in energy of
the two states under consideration in the off-diagonal element of the density
matrix. In all of these models the correlation functions for the noise were not
derived but simply assumed. Their models contained free parameters which
were identified with the Planck constants of appropriate units (mass, time,
etc.). In the papers of Ford [47, 48], care was taken to perform a proper
QFT computation of the transverse-traceless graviton thermal corrleation
function for use in a stochastic model. The novelty in this model is that the
quantum particle was not coupled directly to the gravitons but rather the
walls confining the particle were. The background fluctuations then led to
fluctuations in the size of the container causing decoherence for the parti-
cle inside. Ford predicts a decoherence rate arising from interaction with a
graviton bath at temperature T , Γ ∼ T (∆E/MP ). This depends only lin-
early on the energy difference and, in contrast to the previous computations,
it vanishes at zero temperature.

The above models attempted to describe the quantum fluctuations of
the metric by treating it as a classical fluctuating variable. This can provide
some intuition but to truly directly understand quantum gravitational effects
we need to treat the metric perturbation quantum mechanically. This was
done in [15, 49–53]. In each of these references a decoherence rate for a
sample matter system was either computed or estimated. It is difficult to
directly compare the rates though because the different authors considered
quite different matter systems, e.g. massive scalar coherent states, point
particles in one-dimension, a point particle in an interferometer, and photon
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1.1. Previous Approaches to Gravitational Decoherence

wavepackets. We will later see that our computation is sufficiently general
that all of these examples could in principle be studied.

In each reference the computation was done differently and not all re-
sults agree quantitatively or even qualitatively. We’ll have more to say in
Chapter 3 about specifically how the results disagree and why this arises.
In all cases the Einstein-Hilbert action is linearized and the metric pertur-
bation is quantized either using the path-integral or canonical quantization.
The initial state of the metric pertubation and matter is assumed to be
uncorrelated. In all but [49] (where the initial state is vacuum) the metric
perturbation is assumed to be thermal. In references [15, 49, 50, 52] the
path-integral is used and the effect of the environment is captured in an
influence functional. The central system in [49, 50] is restricted to be a col-
lection of non-relativistic point particles. In [52] the generalization is made
to general matter coupling to the metric perturbation via the stress-energy
tensor Lint ∝ hµνTµν . In each of [49, 50, 52] transverse-traceless (TT) gauge
is assumed altough this is a gauge choice which cannot be consistently made
in the presence of matter [54]. Blencowe [15] chose an initially thermal state
and used the harmonic gauge fixing term (a valid choice), however there was
a drastic overcounting of the gravitational degrees of freedom. Although the
TT gauge choice cannot be consistently made in the presence of matter it
still remains true that the two TT polarizations are the only independent
degrees of freedom in the metric perturbation; the remaining components
of hµν are constrained variables. We will have much more to say about
this in the upcoming chapters, but for now it suffices to say that there has
not yet been a satisfactory quantum mechanical derivation of the influence
functional describing a thermal bath of gravitons. Certainly at high tem-
peratures this should be well approximated by the classical results, but a
proper QM calculation would allow one to interpolate between quantum and
classical regimes.

In the other two references [51, 53] the metric perturbation is quan-
tized canonically. They both make use of the ADM (3 + 1) decomposition
to describe the time evolution of a spatial 3-metric hij [25]. In the ADM
formalism (even at the linear level) one must explicitly deal with the con-
straints of general relativity. In [51] a gauge is fixed and the constraints are
imposed on the field operators, whereas in [53] they use Dirac constrained
system formalism [55, 56] to implement the constraints on the states and
describe the dynamics in a manifestly gauge invariant way. In both cases the
constraints are properly treated and as a result only the two independent
graviton degrees of freedom of the metric act as an environment. They both
assume an initially thermal state for the gravitons, and they both compute
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1.2. Quantum Gravity as a Low Energy Effective Field Theory

a master equation describing the evolution of the reduced density matrix for
the matter. It was not clear whether the results of [51] were gauge invariant,
but because the Dirac formalism is manifestly gauge invariant there is no
concern about the results derived in [53].

From the proper treatment of the constraints of the theory one learns
that it is not enough for a decoherence model to be relativistic. To quote [51],
since the Hamiltonian and momentum constraints of GR generate gauge
transformations which correspond to temporal and spatial reparameteriza-
tions, “Any postulate of dynamical or stochastic fluctuations that correspond
to space and time reparameterizations conflicts with the fundamental symme-
tries of GR”. This comment has direct bearing on all of the modified QM
theories, the convential theories with fluctuations modelled as stochastic
variables, as well as the fully quantum theories. In particular this statement
indicates that the results of Blencowe [15] cannot be correct since their result
was obtained by integrating over fluctuations of all components of the met-
ric perturbation hµν . In Section 3.3 we explicity show how Blencowe’s result
is obtained if the constraints/gauge-invariance of theory are not properly
accounted for.

It then seems as if the problem is solved and all that needs to be done
is to analyze the master equation derived in [53]. In principle this may be
correct but their master equation cannot be solved in general and it is not
immediately obvious how to implement different approximations. This is
why an influence functional is powerful—the path integral approach offers
new approximation schemes (semiclassical, eikonal, etc.). This is why we are
interested in computing the gravitational influence functional in a way which
satisfies the constraints of the theory and is manifestly gauge invariant.

1.2 Quantum Gravity as a Low Energy Effective
Field Theory

As previously mentioned, both string and loop approaches predict modi-
fications to GR at high energies. If we assume quantum theory holds at
all scales then there is a simple argument to suggest a breakdown of GR
at high energies. Einstein’s theory of general relativity is described by the
Einstein-Hilbert action2

SEH =
M2
P

2

∫
d4x
√
|g|R, (1.1)

2This excludes boundary terms. Such terms do not modify the current discussion but
we will later discuss how they are essential for a number of other reasons.
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1.2. Quantum Gravity as a Low Energy Effective Field Theory

where MP = (8πG)−1/2 is the Planck mass, g is the determinant of the met-
ric tensor, and R is the Ricci scalar. This action is extremized by a spacetime
metric satisfying Einstein’s equation. Classical general relativity has been
extraodinarily well tested (see [57–59] and references therein). Indeed the re-
cent discovery of gravitational waves emitted from a black hole merger event
has verified a long standing prediction of classical general relativity [60] and
has opened up a new paradigm in strong-field testing [61]. One can choose
to describe the metric in terms of a deviation from the Minkowski metric
gµν = ηµν + hµν/MP , and expand the Einstein-Hilbert action as an infinite
series in hµν/MP . The result is the gauge theory of a massless spin-2 parti-
cle (graviton) with an infinite number of interaction terms [62]. Every term
with n factors of h will be multiplied by M2−n

P . The lowest order terms in
the expansion n = 2 have no powers of the Planck mass and simply look like
standard kinetic terms for a relativistic field L0 ∼ ∂h∂h. In principle one
can take this theory and try to perform standard perturbative quantum field
theory (QFT) computations using Feynman diagrammatics [63–65]. This is
straightforward until loop diagrams are considered and one must contend
with the fact that the theory is non-renormalizable.

As in perturbative treatments of other quantum field theories the vari-
ous ultraviolet divergences that arise from loop diagrams are absorbed into
renormalized coupling constants and physical observables can be computed
in terms of these renormalized couplings. Of course the value of the renor-
malized couplings must still be measured experimentally. In a renormaliz-
able theory all ultraviolet divergences can be absorbed into a finite number
of renormalized coupling constants, and only a finite number of experiments
need to be performed before the theory can make unambiguous predictions.
Perturbative quantum GR is a non-renormalizable theory though; to ac-
count for all ultraviolet diverences an infinite number of counterterms must
be added, and thus infinitely many experiments must be performed to de-
termine all of the the renormalized couplings [66, 67]. These counterterms
extend beyond the Einstein-Hilbert action, in fact they include higher powers
of the Riemann tensor. Naively this spells disaster for the theory, suggesting
it has no predictive power.

One resolution to this apparent problem is quite simple; we should un-
derstand Einstein gravity as an effective field theory which is a low energy
approximation of an unknown microscopic “UV complete” theory. The ap-
propriate microscopic variables may be strings or loops for example. Recall
that higher order interaction terms in the Lagrangian were multiplied by
larger and larger powers of M−1

P . At low energies E � MP an nth order
interaction term Lint ∼ hn is suppressed by a factor (E/MP )n−2. From di-
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1.3. Feynman-Vernon Influence Functional

mensional grounds the same should be true of the higher order O(Rn) terms
parameterized by renormalized coulping constants. The renormalized cou-
pling constants should have the form of a dimensionless constant multiplying
an appropriate power of M−1

P where the power is determined by the number
of derivatives appearing in the term. Since the derivatives quantify the en-
ergy scale of a given process, we see that the higher order terms are supressed
by higher and higher order powers of E/MP . Although quantum GR is per-
turbatively non-renormalizable, the infinite number of undetermined renor-
malized couplings are all coefficients of interaction terms which are highly
suppressed at low energies. There has been significant work done study-
ing quantum GR as an effective field theory [68–72]. In principle one can
make predictions accurate to any finite order O ((E/MP )n) and only need
to measure a finite number of coupling constants. Since MP ∼ 1018 GeV is
an extraordinarily high energy in particle physics contexts these corrections
are indeed very small. Thus as a low energy effective theory perturbative
quantum gravity regains its predictive power. This approach is ignorant of
the details of the underlying high energy theory, which appear only in the
values of the renormalized couplings. Of course one can immediately see
that at the Planck scale E ∼ MP every interaction term becomes relevant
and the theory loses predictive power. This is the regime in which string
theory or loop quantum gravity may become the appropriate description of
nature.

A UV complete theory would be necessary to describe situations in which
the classical theory predicts extreme curvature, i.e. near black hole or cos-
mological singularities. Such extreme scales are however infeasible for man-
made experiments. As a result, if QM holds at all scales then the previously
mentioned table-top quantum gravity experiments should be very well de-
scribed by the effective field theory of quantum gravity. The lowest order
effective field theory predictions, involving no additional renormalized cou-
plings should be universal and independent of the UV completion of the
theory3.

1.3 Feynman-Vernon Influence Functional

The primary tool for studying decoherence in the path-integral formalism is
the Feynman-Vernon influence functional (IF) [73]. In this section we will
review the derivation of a general IF. In the next section we’ll discuss why

3At this order the cosmological constant is also relevant but we will assume it is negli-
gibly small.
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this simple derivation may be complicated in a gauge theory such as QED or
gravity. The primary result of this thesis is a resolution to these difficulties.

In what follows we will necessarily use density matrices rather than wave-
functions. When describing density matrices ρ(φ;φ′) the number of variables
doubles but the expressions often contain similar/identical factors for the
primed and unprimed variables. It is convenient to use the following con-
densed notation coming from the Schwinger-Keldysh formalism [74, 75]. For
a generic functional f we write f [φ] ≡ f [φ;φ′]. The action will always have
the special form S[φ;φ′] = S[φ]− S[φ′]. For path integrals we write∫ φ

f

φ
i

Dφ ≡
∫ φf

φi

Dφ
∫ φ′f

φ′i

Dφ′. (1.2)

Consider a bipartite quantum system. The two interacting quantum
subsystems will referred to as the “central system” and the “environment”.
The central system will have states labelled by φ and the environment by X.
These are collective variables written in compact notation, both the system
and environment can in principle have many degrees of freedom. The state
of the central system and environment at time ti is described by the density
matrix

ρ(φ
i
, Xi). (1.3)

Given the initial data, the density matrix at a later time tf ≡ ti + T can be
determined,

ρ(φ
f
, Xf ) =

∑
φ
i
Xi

K(φ
f
, Xf ;φ

i
, Xi)ρ(φ

i
, Xi), (1.4)

where the density matrix propagator is

K(φ
f
, Xf ;φ

i
, Xi) ≡ K(φf , Xf ;φi, Xi)K

∗(φ′f , X
′
f ;φ′i, X

′
i). (1.5)

The kernel K is just the usual propagator for the system and environment,
i.e.

K(φf , Xf ;φi, Xi) = 〈φf , Xf ; tf |φi, Xi; ti〉 (1.6)

Supposing only the central system was of observational interest and the
environment represented some unobserved degrees of freedom, the central
system can be fully described by the reduced density matrix obtained by
tracing over the environmental degrees of freedom

ρφ(φ
f
) ≡

∑
Xf

ρ(φf , Xf ;φ′f , Xf ). (1.7)

13



1.3. Feynman-Vernon Influence Functional

If the central system and environment are initially uncorrelated the total
density matrix factorizes,

ρ(φ
i
, Xi) = ρφ(φ

i
)ρX(Xi). (1.8)

As time proceeds the interactions between the two will generally lead to
correlations. The evolution of the system’s reduced density matrix is then
generally non-unitary since information describing the correlations with the
environment is lost when the trace is performed. We can describe this non-
unitary evolution of the system’s reduced density matrix using an effective
reduced density matrix propagator. The reduced density matrix evolves in
the usual linear way

ρφ(φ
f
) =

∑
φ
i

Kφ(φ
f
;φ

i
)ρφ(φ

i
), (1.9)

and the reduced density matrix propagator is

Kφ(φ
f
;φ

i
) ≡

∑
XfXi

δ(Xf −X ′f )K(φ
f
, Xf ;φ

i
, Xi)ρX(Xi). (1.10)

Using the path integral representation of the propagator we can proceed
to write a path integral representation for the reduced density matrix prop-
agator. We will assume the system and environment can be described by an
action of the form

S[φ,X] = S[φ] + S[X] + Sint[φ,X]. (1.11)

The propagator for the system is then

K(φf , Xf ;φi, Xi) =

∫ φf

φi

Dφ eiS[φ]

∫ Xf

Xi

DX eiS[X]+iSint[φ,X]. (1.12)

The reduced density matrix propagator can then be written as

Kφ(φ
f
;φ

i
) =

∫ φ
f

φ
i

Dφ eiS[φ]F [φ], (1.13)

where the entire effect of the environment on the system is contained within
the functional F [φ] called the influence functional [73]. The influence func-
tional has the path-integral expression

F [φ] ≡
∑
XfXi

δ(Xf −X ′f ) ρX(Xi)

∫ Xf

Xi

DX eiS[X]+iSint[φ,X]. (1.14)
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1.3. Feynman-Vernon Influence Functional

Note that the double path integral is just a product of propagators for the
environment subject to a “frozen” background configuration of the central
system. Without specifying the system dynamics S[φ] one can still eval-
uate the influence functional so long as the interaction Sint[φ,X] and the
environmental dynamics S[X] are known.

A initially thermal environment is commonly used, and is in fact the one
we will use in the next section. It will be useful to have an explicit expression
for the thermal density matrix. A thermal density matrix corresponding to
a canonical ensemble at temperature β−1 has the eigenfunction expansion

ρβ(X) =
∑
n

e−βEnψn(X)ψ∗n(X ′), (1.15)

where the ψn(X) are energy eigenfunctions of the Hamiltonian for the envi-
ronment alone. Of course this should be divided by the partition function
to ensure the density matrix is properly normalized. To keep the notation
compact we will not explicitly write overall normalizations. Ultimately the
normalization of the influence functional is determined by the fact that it
must equal 1 in the limit that the coupling vanishes. Compare the above
thermal density matrix with the eigenfunction expansion of the propagator
for the environment

K(X) =
∑
n

e−iEnTψn(X)ψ∗n(X ′). (1.16)

The thermal density matrix can then be seen as the analytic continuation
of the propagator to imaginary times if we make the identification T = −iβ.
Analytically continuing the path integral representation of the propagator
to imaginary times we can then write the path integral representation for
the thermal density matrix

ρβ(X) =

∫ X

X′
DX ′′ e−SE [X′′], (1.17)

where SE = −iS|T=−iβ is the Euclidean action. The integration is now over
paths from X ′ → X in imaginary time T = −iβ. The influence functional
for an initially thermal environment can then be written as the multiple
path integral

F [φ] =
∑
XfXi

δ(Xf −X ′f )

∫ Xf

Xi

DX
∫ Xi

X′i

DX ′′eiS[X]+iSint[φ,X]−SE [X′′]. (1.18)
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In many cases of interest the path integrals cannot be evaluated exactly
and approximate techniques must be used. There is one case of particular
relevance for which the influence functional can be evaluated exactly. This
is the case that the environment is described by a free action S[X] which is
quadratic in X and an interaction which is linear in X, Lint[φ,X] = Xg[φ],
for some functional of the system g[φ]. Assuming an initial state which
is gaussian, e.g. a vacuum or thermal state, both the path integrals and
the boundary integrals are gaussian and the influence functional can be
evaluated exactly. For a system minimally coupled to a U(1) gauge field,
thermal photons provide an environment precisely fitting the above criteria.
An analogous computation will show that the same is true in linearized
Einstein gravity.

1.4 Difficulty Defining an Influence Functional in
a Gauge Theory

Einstein gravity is a beautifully geometric theory. As motivated by the
equivalence principle, the theory is coordinate independent. Indeed the
Einstein-Hilbert action Eq. (1.1) is invariant under diffeomorphisms4 and
thus there is a redundancy in our description of the spacetime manifold.
Einstein gravity is then a gauge theory since two metrics which are related
by a coordinate transformation are considered physically equivalent. In this
section we will discuss how the above discussion of the influence functional
becomes complicated in gauge theories.

The above general discussion of the influence functional required a clear
divide between system φ, and environment X. In gauge theories, this divide
is not always straightforward because gauge theories are constrained theo-
ries. One says a theory is constrained if its Lagrangian L(φ, φ̇) is singular,
i.e. the generalized velocities φ̇a cannot be expressed in terms of the canon-

ical momenta πa = ∂L(φ,φ̇)

∂φ̇a
[55]. Classically this implies the existence of a

set of primary constraint equations relating the canonical variables,

ψm(φa, πa) = 0, (1.19)

m = 1, 2, ..., N . The number N of primary constraints depends on the the-
ory. Consistent time evolution, ψ̇m = 0, may require that additional “sec-
ondary” constraints be appended to the original set of primary constraints.
The secondary constraints are treated on the same footing as the primary,

4This is only true up to a boundary term which will be further discussed in Section 1.5.
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1.4. Difficulty Defining an Influence Functional in a Gauge Theory

so this process may be repeated and further tertiary constraints may be
required to ensure the secondary constraints are held throughout time evo-
lution. This process is to be repeated until a complete set of consistent
constraints is obtained.

The existence of constraints implies that not all of the canonical variables
are independent. Thus in a constrained theory we cannot always naively
partition the system into a central system and environment where some of
the generalized coordinates describe the central system and the remaining
coordinates describe the environment. A valid partition must respect the
constraints. A basic example of this is a particle constrained to move on
a surface defined by z = f(x, y). Obviously we could not divide the co-
ordinates x, y, z of the particle into a central system x, y and environment
z because knowledge of the state of the central system would uniquely de-
termine the state of the environment. Even if our measurement apparatus
could only see the shadow of the particle on the x, y plane and not its height
z, we could uniquely determine z. Although the Lagrangian may contain
the generalized coordinate variables x, y, z and λ (the Lagrange multiplier)
it would be completely incorrect to treat them all as independent quantum
operators unless a restriction is placed on the Hilbert space. Of course this
is a trivial example but it is a useful reminder of this essential idea.

In a theory of a gauge field interacting with matter, the constraints are
such that the state of the gauge field is fundamentally correlated with the
state of the matter. We will see how this comes about shortly. For now we
can see that in order to define an influence functional in a gauge theory one
must first identify the independent variables. Only then can a partition be
made between matter and environment and a partial trace performed.

The above considerations were general for constrained theories however
gauge theories are a particular subset of constrained theories. In a gauge
theory there is the additional complication that there is a redundancy in the
description of the system. The degrees of freedom which are invariant under
gauge transformation are called “physical” whereas the remaining degrees
of freedom are considered “unphysical”. The two approaches to studying
gauge theories are

1. Work in the full (extended) phase space but understand that observ-
ables must be gauge invariant quantities.

2. Impose a gauge condition which restricts the system to a reduced phase
space in which every degree of freedom is physical.

We will choose option 1, and work in the extended phase space with
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1.5. Quantum Gravity Path Integral - Boundary Terms

manifestly gauge invariant objects. This approach is beneficial because it
prevents any doubts about the gauge invariance of the results.

1.5 Quantum Gravity Path Integral - Boundary
Terms

1.5.1 Gibbons-Hawking-York Boundary Term

Before we can proceed to the quantize the linearized metric perturbations
there is a technical note which must be made about the Einstein-Hilbert
action Eq. (1.1); the Ricci scalar contains second derivatives of the metric.
This causes a problem which may seem purely academic at the classical
level, but will be very disruptive quantum mechanically.

To see how the problem arises classically consider a Lagrangian contain-
ing only first derivatives L(φ, ∂µφ). After integration by parts the variation
of the action is

δS =

∫
d4x

(
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

)
δφ+

∮
Σ
dSµ

∂L
∂(∂µφ)

δφ, (1.20)

where Σ is the boundary of the system. The boundary term which is gener-
ated by the necessary integration by parts depends linearly on the variation
at the boundary. One can assume the variation vanishes along the bound-
ary (Dirichlet conditions) and obtain a well defined functional derivative
δS/δφ = (equation of motion). Now consider a Lagrangian depending on
second derivatives L(φ, ∂2φ). After integration by parts the variation of the
action is

δS =

∫
d4x

(
∂L
∂φ

+ ∂2 ∂L
∂(∂2φ)

)
δφ−

∮
Σ
dSµ

(
∂µ

∂L
∂(∂2φ)

δφ− ∂L
∂(∂2φ)

∂µδφ

)
.

(1.21)
Now although the bulk term depends only on the the variation δφ, the
boundary term depends both the variation as well as the derivatives of the
variation normal to the boundary surface. To fix both δφ and ∂µδφ equal
to zero on the boundary would be equivalent to imposing both Dirichlet
and Neumann conditions. This cannot be consistently done if the equation
of motion is a second order differential equation. Thus the action is not
functionally differentiable, i.e. δS/δφ 6= (equation of motion). Classically
this feels like a purely academic problem because the equations of motion
are unaffected by the addition of a total derivative term to the Lagrangian.
A Lagrangian linear in ∂2φ can be made into a Lagrangian quadratic in ∂µφ
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1.5. Quantum Gravity Path Integral - Boundary Terms

by the addition of a suitable total derivative term. For example, there is
usually no concern when one writes the free scalar Lagrangian L = 1

2φ∂
2φ

since it is obviously equal to L = −1
2∂µφ∂

µφ up to the addition of a total
derivative 1

2∂µ(φ∂µφ).
At the quantum level, one is not free to simply add total derivatives to

the Lagrangian without affecting the results of the computation. Suppose
we had two Lagrangians L1 and L2, where L1 depended on first deriva-
tives, L2 on second derivatives, and the two are related by a total derivative
L2 − L1 = ∂µB

µ. Classically one would not distinguish between the two
since if one simply ignores boundary terms they produce the same equation
of motion. However in quantum mechanics one obtains different results de-
pending on which action they choose. Suppose one started with a classical
theory defined by the Lagrangian L2. Naively quantizing the theory one
would define the propagator as

K(φf ;φi) =

∫ φf

φi

Dφ ei
∫
V L2 =

∫ φf

φi

Dφ ei
∮
∂V dSµB

µ
ei
∫
V L1 . (1.22)

Although the bulk integrations are unchanged in the choice between L1 and
L2, i.e. the stationary phase path is the same in both cases, the phase
accumulated along the same path will depend on which Lagrangian was
chosen.

How then are we to decide which of the two Lagrangians is the appro-
priate one to use to define the propagator for the quantized theory5? This
question was addressed in quantum gravity by York as well as Hawking and
Gibbons [76–78]. The linearity of quantum theory implies that propagators
have the convolution property K(c; a) =

∫
dbK(c; b)K(b; a). If the action

along a path between φa and φb is denoted S[b, a], then this convolution
property holds if and only if

S[c, a] = S[c, b] + S[b, a]. (1.23)

If the action depends on the normal derivative on the boundary then it does
not satisfy this condition. Taking for example the constant time surfaces
ta,b,c. If φba(t) is a path between ta and tb, then we can impose the condition
that both φba(tb) = φb and φcb(tb) = φb, however for general paths the time
derivatives will not agree at tb. If the the boundary term in the action
depended only on the value of φ then it is clear that (1.23) would hold
whereas if the action depended on the time derivative of φ on the boundaries

5Furthermore, in general if we have a classical theory defined by a class of equivalent
Lagrangians, how are we to decide which is the correct one to use in the propagator?

19



1.5. Quantum Gravity Path Integral - Boundary Terms

it would not. As a result, in order to maintain the convolution property of
the propagator we must use classical actions containing only first derivatives.

Returning to the problem of interest, since the Ricci scalar contains both
first and second derivatives of the metric one must add an appropriate total
derivative to the EH Lagrangian to remove the second derivative terms. The
appropriate term to add is called the Gibbons-Hawking-York (GHY) term

SGHY = εM2
P

∮
Σ
d3y
√
|h|K, (1.24)

where Σ is the boundary hypersurface, h is the determinant of the induced
metric on Σ, K is the trace of the extrinsic curvature Kab of Σ, and ε = ±1
depending on whether Σ is timelike or spacelike. The correct (containing
only first derivatives) action to include in the path-integral for quantum GR
is thus

Sg = SEH + SGHY =
M2
P

2

∫
d4x
√
|g|R+ εM2

P

∮
Σ
d3y
√
|h|K. (1.25)

In the presence of matter one simply adds the covariant matter action6

SM =

∫
d4x
√
|g| LM (φ, gµν). (1.26)

1.5.2 Gauge Transformation Boundary Term

We are interested in making predictions for table-top quantum gravity exper-
iments. Such experiments will be well within the regime of weak curvature
(the length scales involved are far larger than the Schwarzschild radius of
the system). In this case we can treat the metric as a perturbation about
the Minkowsi metric gµν = ηµν + 2

MP
hµν , where hµν/MP is assumed much

smaller than 1. The factor of 2 is a matter of preference. We’ll be interested
in the time evolution of the system, which in quantum mechanics corre-
sponds to the amplitude to make a transition from an initial state defined
on an initial time slice to a final state defined on a later time slice. It is as-
sumed that all fields vanish sufficiently fast at spatial infinity so that we can
integrate by parts freely on spatial derivatives without picking up surface
terms. The relevant boundary Σ = Σi ∪ Σf then consists of two hypersur-
faces of constant time. To lowest order in hµν/MP the above action can be

6This excludes fermionic matter which couples directly to the connection, as well as
non-minimally coupled matter, e.g. scalar fields coupling directly to the curvature through
terms like φR.
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written as the sum of free terms and an interaction term,

S =

∮
Σ
d3xhijπ

(1)
ij −

∫ tf

ti

d4x

(
hµνG(1)

µν − LM (φ, ηµν)− 1

MP
hµνTµν

)
,

(1.27)
where

π
(1)
ij ≡ K

(1)
ij − δijK

(1) (1.28)

is the linearized conjugate momentum to hij ,

K
(1)
ij =

1

2
(∂0hij − ∂ih0j − ∂jh0i) (1.29)

is the linearized extrinsic curvature, and

G(1)
µν =

1

2
(−∂2hµν − ∂µ∂νh+ ∂ρ∂µhρν + ∂ρ∂νhρµ − ηµν∂σ∂ρhσρ + ηµν∂

2h)

(1.30)
is the linearized Einstein tensor. Indices are now raised and lowered with the
Minkowsi metric, and we use the shorthand notation for the trace h = hµµ.
The superscript ‘(1)’ is used to emphasize that these quantities are first-
order in hµν . In what follows we will drop the superscript ‘(1)’ since all
geometric objects are linearized. The stress-energy tensor Tµν is defined as
the right-hand side of Einstein’s equation

Tµν = −2
∂LM (φ, gµν)

∂gµν

∣∣∣∣
g=η

+ ηµνLM . (1.31)

It must be mentioned that to the same order in h/MP there is a graviton
self-interaction term of the form h

MP
(∂h)2. This three-graviton vertex term

is the lowest order contribution of the infinitely many non-linear graviton
self-interaction terms. Loosely speaking we can think of (∂h)2 as graviton
stress-energy and the three graviton interaction term as the metric per-
turbation coupling to its own stress-energy (as it should according to the
equivalence principle). By neglecting this term we are assuming that stress-
energy carried by the gravitons is negligible compared to that of the matter.
It is not yet clear if this is a valid approximation for the following reasons.
This term is responsible for a long-range interaction between gravitons and
matter whereas the hT term which we retain is a local interaction. It is the
long-range interaction which leads to a pole in the forward direction of 2→ 2
graviton-matter scattering amplitude analogous to the pole in Rutherford
scattering [79]. Unlike Rutherford scattering where this pole can be ignored
due to screening effects at long distances, there are no screening effects in
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gravity. It will be the topic of future work to assess the validity of ignor-
ing the 3-graviton vertex in this context. For now we will operate under the
hypothesis that for sufficiently small graviton energies this term is negligible.

The full gravitational action is invariant under diffeomorphisms ξ : xµ →
ξµ(x), gµν → gξµν which leave the boundaries unchanged [80]. Here gξ is
defined by

gµν(x) =
∂ξρ(x)

∂xµ
∂ξσ(x)

∂xν
gξρσ(ξ(x)). (1.32)

This symmetry still holds in the linearized theory so long as hµν/MP � 1
is preserved. These transformations are of the form xµ → xµ + 2

MP
ξµ,

hµν → hξµν = hµν + ∂µξν + ∂νξµ where ξ is of the same order as hµν . Under
a transformation of the above form which does not vanish on the constant
time surfaces the linearized action changes by a boundary term

S → S − 2

∮
Σ
d3x ξ0

(
2G00 +M−1

P LM
)
. (1.33)

Classically these terms are irrelevant but as we’ve previously discussed,
boundary terms cannot generally be discarded in quantum theory. Had
we not included the GHY term in the gravitational action we would not
have obtained this boundary term. We will soon see that this boundary
term is essential for the implementation of constraints in the path integral
formulation of the theory.
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Chapter 2

Transition Amplitudes in
Gauge Theories

As discussed in the previous section, to define and compute an influence
functional for a gauge theory we will need to take care of two additional
subtleties. Firstly, because the theory is constrained we must take care
distinguishing the central system from the environment so that a partial
trace can be performed. Secondly, we must be sure to that the results of
our computations are gauge invariant. In what follows we will see that
both of these points will be addressed naturally using the path integral
representation of the transition kernel.

Ultimately we are looking for an effective propagator for the reduced
density matrix of the central system, and it is clear from equations (1.9)
and (1.10) that one first needs the propagator for the joint system. One
advantage of the path integral formulation is that it uses the Lagrangian
rather than Hamiltonian. In the usual analyses of constrained systems one
starts with a singular Lagrangian, computes the Hamiltonian, determines
the constraints, and then proceeds to quantize the system. However all of
the information was contained in the Lagrangian from the start, so there
should be an equivalent formulation of the quantum theory involving only
the Lagrangian which still correctly handles the constraints.

The first system we will consider is a theory of matter φ, coupled to a
U(1) gauge field Aµ. We are using φ as shorthand notation for the matter
variables. If the matter were a complex scalar field φ would represent both
the field and its complex conjugate, if the matter were a Dirac fermion field
φ would represent a Dirac spinor, etc. The second system we will consider is
a theory of matter φ coupled to linearized Einstein gravity (1.27). Although
we are ultimately interested in gravity, the calculations will look similar for
the two theories so it will be instructive to study QED first.
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2.1 Quantum Electrodynamics (QED)

The action for a matter system minimally coupled to a U(1) gauge field can
be written as

S[φ,Aµ] =

∫ tf

ti

d4x

(
−1

4
FµνF

µν +AµJ
µ + LM

)
, (2.1)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor, Jµ is a global U(1)
current, and LM depends only on the matter variables. The amplitude for
the system to evolve from a configuration (φi, A

µ
i (x)) at time ti to configu-

ration (φf , A
µ
f (x)) at time tf ≡ ti + T is given by the propagator

K(Af , φf ;Ai, φi) =

∫ φf

φ1

Dφ eiSM [φ]

∫ Af

Ai

DAµ eiS0[A]+i
∫ tf
ti

d4xAµJµ . (2.2)

At first glance it is not clear whether this propagator is even well defined.
One possible objection is that in the Hamiltonian formalism one sees that
A0(x) is not a canonical variable and thus does not serve as a label for a
quantum state. Furthermore, the above path integral is formally infinite for
any choice of boundary data. We will see shortly that both of these issues
are handled naturally in the path integral formalism when gauge invariance
is treated carefully.

2.1.1 Free U(1) Theory

Before we compute the propagator for the full system including matter, we
will familiarize ourselves with the simpler case of free electrodynamics. In
this case the propagator for the free Maxwell field is

K(Af ;Ai) =

∫ Af

Ai

DAµ eiS0[A]. (2.3)

The propagator is manifestly gauge invariant because the action and measure
are gauge invariant. To verify this, consider independent transformations of
the boundary data, Ai,f → AΛ

i,f = Ai,f +∂Λi,f . The transformed propagator
is

K(A
Λf
f ;AΛi

i ) =

∫ Af+∂Λf

Ai+∂Λi

DAµ eiS0[A]. (2.4)
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2.1. Quantum Electrodynamics (QED)

Now simply change integration variables, A′ = A+ ∂Λ, where Λ(x) satisfies
Λ(x, ti,f ) = Λi,f (x). In terms of the primed variable the propagator is

K(A
Λf
f ;AΛi

i ) =

∫ Af

Ai

DA′µ eiS0[A′−∂Λ] =

∫ Af

Ai

DA′µ eiS0[A′] = K(Af , Ai),

(2.5)
and the propagator is thus invariant under independent gauge transforma-
tions on the boundary data.

We can use this gauge invariance to make contact with the canonical
formalism. Following [81] we can perform a spectral decomposition of the
propagator into energy eigenfunctions

K(Af ;Ai) =
∑
n

e−iEnTΨn[Af ]Ψ∗n[Ai]. (2.6)

The wavefunctionals Ψ[A] which comprise K will be called physical states.
Since the propagator is invariant under independent gauge transformations
of its boundary data, the physical states are gauge invariant Ψ[A] = Ψ[AΛ].
We can take this simple equation, and functionally differentiate both sides
with respect to Λ to obtain

0 = −i δΨ[AΛ]

δΛ(x)

∣∣∣∣
Λ=0

= i∂j
δΨ[A]

δAj(x)
= ∂jÊ

j(x)Ψ[A]. (2.7)

Thus physical states are wavefunctionals in the extended configuration space
which satisfy Gauss’ law as an eigenvalue equation. Actually this equation
was derived by only considering gauge transformations of the spatial com-
ponents, in the next section we will proceed more carefully and see that the
invariance of the physical state under timelike gauge transformations implies
the additional constraint Ê0Ψ[A] = 0. To obtain these equations we used
the operator representation of the canonical momentum

π̂µ =
∂̂L

∂(∂0Aµ)
≡ −i δ

δAµ
(2.8)

and the fact that the electric field Eµ is the (negative of the) conjugate mo-
mentum to Aµ. This functional derivative representation can be discussed
entirely within the path-integral formalism without passing to a canoni-
cal approach (see [82] or Appendix C for details). These physical states
are precisely the states which are considered in Dirac quantization [55, 56].
We’ve thus written down the path-integral representation of the propagator
between Dirac’s physical states. It is easy to check that this propagator
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2.1. Quantum Electrodynamics (QED)

projects arbitrary sates onto the space of physical states. As a consequence,
when evolving an initial state using the transition kernel we can always
first project the initial state onto the physical subspace. Thus we can work
exclusively with physical states without loss of generality.

The action is quadratic in the field, so the integral should be naturally
evaluated by shifting variables Aµ = Âµ + χµ where Âµ is a path which ex-
tremizes the action while subject to the boundary conditions Âµ(x, ti,f ) =
Aµi,f (x). This approach does not work though because there is no unique
solution to the classical equation of motion subject to these boundary con-
ditions. If Âµ is a solution then Âµ + ∂µΛ is also a solution satisfying the
boundary conditions so long as ∂µΛ → 0 as t → ti,f . As a result the inte-
gral is infinite. As identified by Faddeev and Popov (FP) this infinite gauge
group volume can be factored out as a constant overall normalization [83].
We will ignore such overall normalizations because the normalization of the
influence function will be fixed at the end of the computation anyways. The
FP trick is typically used in path integrals which do not have fixed boundary
data. A modification of the FP trick can be used if the boundary data is
properly treated, i.e. integrated over all gauge equivalent configurations, and
in fact this procedure implements the constraints which one would find in a
Hamiltonian framework. This idea was introduced and used in [80, 81, 84]
and we will generalize their approach in two ways. Firstly, we generalize
from their particular gauge choice (temporal gauge) to arbitrary gauge fix-
ing functions. Secondly, in the upcoming sections we generalize their results
to include gauge fields which are coupled to matter.

We start by multiplying the propagator by

1 =

∫
DΛ ∆(AΛ)δ(G(AΛ)), (2.9)

where Λ(x) is a smooth function vanishing at spatial infinity, G(AΛ) imposes

a gauge condition, and ∆(AΛ) = det
∣∣∣ δG(AΛ)

δΛ

∣∣∣ is the associated FP determi-

nant. We can then change variables AΛ = A′ write the path integral as

K(Af ;Ai) =

∫
DΛ

∫ A
Λf
f

A
Λi
i

DAµ ∆(A)δ(G(A)) eiS0[A]. (2.10)

Note that we had to use the gauge invariance of the action and measure to
obtain this expression. In the standard application of the FP trick (applied
to integrals without fixed boundary data) the gauge group volume integral
factors out as an overall normalization. In our case the boundary data
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2.1. Quantum Electrodynamics (QED)

ends up depending on the gauge group elements so we cannot immediately
factor out this volume. When the propagator is written in this form its
gauge invariance is obvious. The prescription for computing the propagator
involves first fixing a gauge and evaluating a gauge dependent integral, then
integrating the result over all gauge equivalent boundary data.

To proceed it is useful to look at the path integral as the limit of discrete
integrals on time slices

K(Af ;Ai) = lim
N→∞

N+1∏
n=1

∫
dΛ(tn)

∫ Ajf+∂jΛ(tN )

Aji+∂
jΛ(t1)

dAj(tn) (2.11)

×
∫ A0

f−
1
ε
(Λ(tN+1)−Λ(tN ))

A0
i−

1
ε
(Λ(t2)−Λ(t1))

dA0(tn)∆(A)δ(G(A))eiS[A],

where ε ≡=
tf−ti
N . Note that it was necessary to split the vector field into

spacelike and timelike components because the gauge transform of the time-
like component A0 depends on the time derivative of Λ. In a path integral a
time derivative is defined as the difference of a quantity evaluated on consec-
utive time slices whereas spatial derivatives are evaluated on a single time
slice. We can now see that the gauge group integrations for n 6= 1, 2, N,N+1
can be factored out immediately as an overall normalization since the inte-
grand is independent of Λ for intermediate times. The only dependence on
Λ(tN+1) and Λ(t2) is in the boundary data for the A0 integral. The inte-
grals over Λ(tN+1) and Λ(t2) can then be understood as integrals over the
boundary data for A0. The two remaining integrals are over Λ(tN ) ≡ Λf
and Λ(t1) ≡ Λi. The propagator can then be written as

K(Af ;Ai) =

∫
dΛfdΛi

∫
DA0

∫ Ajf+∂jΛf

Aji+∂
jΛi

DAj ∆(A)δ(G(A))eiS[A]. (2.12)

We now see that just as a Hamiltonian formalism would suggest, the propa-
gator is independent of A0. It serves as no more than a Lagrange multiplier.

We can take this expression further by decomposing the spatial vector
field into longitudinal and transverse components,

ALj =
∂j∂k
∇2

Ak, (2.13)

ATj =

(
δjk −

∂j∂k
∇2

)
Ak.
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2.1. Quantum Electrodynamics (QED)

We are using the shorthand notation for the Green’s function of the Lapla-
cian ∇−2(x). In this notation it is an integral operator,

∇−2(x)f(x) = −
∫
d3y

f(y)

4π|x− y|
. (2.14)

It is obvious that the transverse components are invariant under gauge trans-
formation. The integral over gauge equivalent boundary data is thus an
integral over the longitudinal part of the boundary data. We then arrive at
the expression for the propagator

K(Af ;Ai) =

∫
DA0DAL

∫ ATf

ATi

DAT ∆(A)δ(G(A))eiS[A]. (2.15)

This is precisely the Faddeev formula applied to free U(1) gauge theory
[85]. Faddeev derived his formula however by passing first to a canonical
Hamiltonian framework and then later constructing the path integral. In our
derivation the Lagrangian was used start to finish and the physical degrees
of freedom emerged naturally when we integrated over gauge equivalent
boundary data. For the specific choice of temporal gauge G(A) = A0 this
formula was obtained in a similar manner by [81].

It is convenient to choose the Coulomb gauge G(A) = ∂jA
j . In this case

both the timelike and longitudinal integrals can be done and their results
along with the FP determinant can be factored out as overall constants.
The kernel then takes the simple form in terms of only the transverse field
components (i.e. the radiation),

K(Af ;Ai) =

∫ ATf

ATi

DAT eiS[AT ], (2.16)

where the action for the transverse components is

S[AT ] = −1

2

∫ tf

ti

d4x(∂µA
T
j )(∂µAj T ) = −1

2

∫ tf

ti

d4xPµν∂σAµ∂
σAν . (2.17)

This is written in terms of the transverse projector Pµν =
∑

a ε
µ
aενa, here

written in terms of the two orthogonal transverse polarization vectors. Ex-

plicitly, P 0µ = 0, P ij =
(
δij − ∂i∂j

∇2

)
. Clearly this is not Lorentz invariant

but that is expected since Lorentz invariance was broken when we identified
preferred spacelike slices Σi,f .

The remaining integral is easily evaluated by shifting the integration
variable by the classical solution. The fluctuation determinant factors out
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2.1. Quantum Electrodynamics (QED)

as an overall constant and we’re left with the result given in terms of the
classical action for the transverse field evolving between ATi and ATf in time
T = tf − ti,

K(Af ;Ai) = eiScl[A
T
i →ATf ]. (2.18)

The expression for the classical action is presented in Appendix A.
Regardless of the longitudinal or timelike data we fix at the endpoints,

the gauge invariance of the action has made the propagator depend only
on the boundary data which lies in the gauge invariant subspace of the full
configuration space (i.e. the transverse components).

2.1.2 Interacting QED

Now that we have seen the simple example of free U(1) theory let’s see
how the computation of the propagator is changed when we include charged
matter. Of course we cannot perform the integral over the gauge field and the
matter variables but for the purposes of computing an influence functional
we only need to perform the gauge field integral. The QED propagator is

K(Af , φf ;Ai, φi) =

∫ φf

φi

Dφ
∫ Af

Ai

DAµ eiS[A,φ]. (2.19)

The action is invariant under the U(1) gauge transformation φ→ φΛ = eiΛφ,
Aµ → AΛ

µ = Aµ + ∂µΛ. As a result the propagator is invariant under
independent gauge transformations of the boundary data,∫ φ

Λf
f

φ
Λi
i

Dφ
∫ A

Λf
f

A
Λi
i

DAµ eiS[A,φ] =

∫ φf

φi

Dφ′
∫ Af

Ai

DA′µ eiS[(A′)−Λ,(φ′)−Λ] (2.20)

=

∫ φf

φi

Dφ
∫ Af

Ai

DAµ eiS[A,φ].

The first equality was merely a change of variables, φ′ = φΛ,A′µ = AΛ
µ ,

where the gauge transformation Λ(x) matches the gauge transformations on
the boundaries, Λ(x, ti,f ) = Λi,f (x). The second equality used the gauge
invariance of the action. Thus the propagator is indeed invariant under
independent gauge transformations of its boundary data,

K(A
Λf
f , φ

Λf
f ;AΛi

i , φ
Λi
i ) = K(Af , φf ;Ai, φi). (2.21)

This invariance implies that the physical states which comprise the prop-
agator are also gauge invariant,

Ψ[AΛ, φΛ] = Ψ[A, φ]. (2.22)
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2.1. Quantum Electrodynamics (QED)

This expression can be written in a more illuminating way if we use the
following functional identities,

f [φ+ g] = e
∫
d3xg δ

δφ f [φ], (2.23)

f [eiΛφ] = e
i
∫
d3xΛφ δ

δφ f [φ]. (2.24)

The first identity is a straightforward application of a linear shift operator,
while the second is a slight generalization from the group of translations to
the group of dilatations [86]. The second identity can be rewritten by noting
that the U(1) Noether charge is defined as

J 0 = −iφ ∂L
∂(∂0φ)

= −iφΠ, (2.25)

where Π is the conjugate momentum to the field φ. Writing the conjugate
momentum in its operator representation we can then see that the U(1)
transformation on a functional is generated by the charge density

f [eiΛφ] = e−i
∫
d3xΛĴ 0

f [φ]. (2.26)

With these identities we can write Eq. (2.22) as

exp

[∫
d3x ∂tΛ

δ

δA0
+ Λ

(
−∂j

δ

δAj
+ iφ

δ

δφ

)]
Ψ[A, φ] = Ψ[A, φ]. (2.27)

or equivalently[∫
d3x ∂tΛ

δ

δA0
+ Λ

(
−∂j

δ

δAj
+ iφ

δ

δφ

)]
Ψ[A, φ] = 0 (2.28)

Since ∂tΛ is a variable independent of Λ and this equation holds for arbitrary
values of these parameters, the coefficient of ∂tΛ and the coefficient of Λ
must vanish independently. Rewriting the functional derivatives in terms as
the operators which they represent we obtain two equations which physical
states satisfy

Ê0Ψ[A, φ] = 0 (2.29)

and (
∂jÊ

j − Ĵ 0
)

Ψ[A, φ] = 0. (2.30)

These are precisely the constraint equations one would impose in the canoni-
cal Dirac quantization of this system. As a consequence of gauge invariance,
physical quantum states still satisfy Gauss’ law as an eigenvalue equation.
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As in free U(1) theory, the path integral is formally divergent and again
the gauge group volume must be factored out using the modified FP trick.
Multiplying the above equation by (2.9) and changing variables as we did
previously we obtain

K(Af , φf ;Ai, φi) =

∫
DΛ

∫ φ
Λf
f

φ
Λi
i

Dφ
∫ A

Λf
f

A
Λi
i

DAµ ∆(A)δ(G(A))eiS[A,φ].

(2.31)
The gauge transformation on the matter boundary data can be rewritten in
an illuminating way if we use identity (2.24). The propagator can then be
written as

K(Af , φf ;Ai, φi) = (2.32)

=

∫
DΛ ÛΛ(tf )

∫ φf

φi

Dφ
∫ A

Λf
f

A
Λi
i

DAµ ∆(A)δ(G(A))eiS[A,φ]

 Û †Λ(ti),

where the operator which effects gauge transformations on the matter vari-
ables is

ÛΛ(t) = e−i
∫
d3xΛ(x,t)Ĵ 0(x,t). (2.33)

As we did in the above example of free U(1) theory, we will re-express this
path integral as the limit of discrete integrals on constant time slices,

K(Af , φf ;Ai, φi) = lim
N→∞

N+1∏
n=1

∫
dΛ(tn) (2.34)

× ÛΛ(tN )

∫ φf

φi

dφ(tn)

∫ A
Λf
f

A
Λi
i

dAµ(tn) ∆(A)δ(G(A))eiS[A,φ]

 Û †Λ(t1).

Again, the gauge transformations of the boundary data are of the form
Aµi,f + ∂µΛi,f . The spatial gradients are defined on a single time-slice, but
the time derivatives are are a difference between variables on consecutive
time-slices, ∂0Λ(t1) = 1

ε (Λ(t2)−Λ(t1)), and ∂0Λ(tN ) = 1
ε (Λ(tN+1)−Λ(tN )).

Since the integral depends only on Λ(tn) for n = 1, 2, N,N + 1 the gauge
group volume can be factored out for intermediate times. As well since the
only dependence on Λ(t2,N+1) is in the gauge transform of A0

i,f , the integrals

over Λ(t2,N+1) act as integrals over the boundary data for A0. Only two
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integrals remain, and the propagator can be written as

K(Af , φf ;Ai, φi) =

∫
dΛidΛf (2.35)

× ÛΛ(tf )

(∫ φf

φi

Dφ
∫
DA0

∫ Ajf+∂jΛf

Aji+∂
jΛi

DAj ∆(A)δ(G(A))eiS[A,φ]

)
Û †Λ(ti).

The simplest choice of gauge fixing function is Coulomb gauge G(A) = ∂jA
j .

In this case the FP determinant factors out as an overall constant. For
intermediate times this gauge choice fixes the longitudinal part of the field to
be zero. The gauge fixing delta functions for the boundary times δ(G(Ai,f ))

then impose the condition ∂jA
j
i,f = −∇2Λi,f which can be solved for Λi,f .

The integrals over Λi,f can then be performed using the Coulomb gauge
fixing delta functions and the resulting propagator is

K(Af , φf ;Ai, φi) = ÛC(tf )

(∫ φf

φi

Dφ
∫
DA0

∫ ATf

ATi

DAT eiS[A0,AT ,φ]

)
Û †C(ti).

(2.36)
Here we’ve introduced the notation

ÛC(t) = exp

(
−i
∫
d3xAj(x, t)Ĉj(x, t)

)
, (2.37)

where Ĉj(x, t) = − ∂
∂xj

∫
d3y 1

4π|x−y| Ĵ
0(y, t) is the Coulomb electric field cre-

ated by charge density Ĵ 0. The operator ÛC acts in a very intuitive way.
If we consider a state Ψ[φ] describing the matter then the state ÛCΨ[φ]
satisfies

Êj(x)ÛCΨ[φ] = i
δ

δAj(x)
exp

(
−i
∫
d3yAj(y, t)Ĉj(y, t)

)
Ψ[φ] (2.38)

=

(
− ∂

∂xj

∫
d3y

Ĵ 0(y)

4π|x− y|

)
ÛCΨ[φ].

Thus the action of the operator ÛC is to create a coherent Coulomb electric
field around the matter. The Coulomb electric field is the solution to the
Gauss law constraint equation, so ÛC makes a state satisfy Gauss’ law and
thus be gauge-invariant. As a result of Eqs. (2.29) and (2.30) physical states
are of the form

Ψ[A, φ] = ÛC ψ[AT , φ]. (2.39)
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Physical states consist of transverse photons and matter with its accompa-
nying Coulomb field. All of the dependence on the longitudinal part of the
field is in ÛC and the state does not depend on A0. The unconstrained part
of the wavefunctional ψ[AT , φ] can take on any form.

This is reminiscent of Dirac’s approach to gauge invariant QED [87].
He constructed gauge invariant fermion field operators which created an
a electron with an accompanying coherent gauge field. In his case it was
ambiguous what the accompanying field should be since any transverse field
could be added to the Coulomb field and the resulting field operator would
still be gauge invariant. We do not have this ambiguity since all of the
dependence on the transverse field lies in ψ[AT , φ]. It should be emphasized
that our results are indeed different. We are describing general dressed states
not dressed field operators.

Returning to the evaluation of the path integral, in Coulomb gauge the
action is

S[A0, AT , φ] = SM [φ]+Sγ [AT , φ]+

∫ tf

ti

d4x

(
1

2
A0∂j∂

jA0 +A0J
0

)
, (2.40)

where the action for transverse photons is

Sγ [AT , φ] =

∫ tf

ti

d4xPµν
(
−1

2
∂σAµ∂

σAν +AµJν
)
. (2.41)

The A0 integral can be immediately done and it merely adds a new interac-
tion term to the matter action corresponding to the Coulomb force between
the charge densities,∫

DA0 e
iS[A0,AT ,φ] = eiS[AT ,φ]+iSC [φ] (2.42)

where the instantaneous Coulomb interaction term is

SC [φ] = −1

2

∫ tf

ti

dt

∫
d3xd3y

J0(x, t)J0(y, t)

4π|x− y|
. (2.43)

With the timelike and longitudinal integrals done the final expression for
the propagator is written in terms of only the independent data

K(Af , φf ;Ai, φi) = ÛC(tf )

(∫ φf

φi

Dφ
∫ ATf

ATi

DAT eiS[AT ,φ]+iSC [φ]

)
Û †C(ti),

(2.44)
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or equivalently

K(Af , φf ;Ai, φi) = ÛC(tf )

(∫ φf

φi

Dφ eiSM [φ]+iSC [φ]

)
Û †C(ti) (2.45)

×
∫ ATf

ATi

DAT eiSγ [AT ,φ].

The latter form is convenient because the remaining path integral on the
gauge field has been separated from the matter integral and can be evaluated
as the integral for a transverse electromagnetic radiation field on a frozen
background source field.

The path integral for the transverse field can again be evaluated by sim-
ply shifting the integration variable by the classical solution. The fluctuation
determinant again factors out as an overall constant and the result is just
the classical action for the transverse field on a frozen background source
field,

K(Af , φf ;Ai, φi) = ÛC(tf )

(∫ φf

φi

Dφ eiSM [φ]+iSC [φ]

)
Û †C(ti) e

iScl[A
T
i →ATf ,φ],

(2.46)
where Scl[A

T
i → ATf , φ] is a straightforward to compute but lengthy expres-

sion which we present in Appendix A.
As a result of gauge invariance there are constraints implemented on

the system enforcing that i) the kernel is independent of A0 and ii) the
dependence of the kernel on AL is determined entirely by the charge density
of the matter (Gauss’ law). This implies that physical states are of the form
ÛC ψ[AT , φ]. Indeed the only components of the electromagnetic field which
are independent of the matter are the transverse components. Comparing
Eq. (2.46) to Eq. (1.12) we see that the natural partition into central system
and environment is not matter and gauge field, but rather matter (with its
coherent Coulomb field) and radiation field. A partial trace which results
in a physical state must then be only over the transverse photon degrees of
freedom since the longitudinal degrees of freedom are constrained by Gauss’
law. This will be used in Section 3 to compute the influence functional.

2.2 Linearized Quantum Gravity

Now that we have familiarized ourselves with the computation of a gauge
invariant propagation kernel in a simple gauge theory lets proceed to quan-
tum gravity. As mentioned in the introduction we will use the effective field
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theory approach to quantum gravity in the low energy linearized approxi-
mation.

The action for matter coupled to linearized Einstein gravity (including
the GHY term) is given in Eq. (1.27),

S[h, φ] =

∮
Σ
d3xhijπ

(1)
ij −

∫ tf

ti

d4x

(
hµνG(1)

µν − LM (φ, ηµν)− 1

MP
hµνTµν

)
.

(2.47)
The amplitude to evolve from an initial configuration (φi, h

µν
i ) to a later

configuration (φf , h
µν
f ) is given by the path integral representation of the

propagator

K(hf , φf ;hi, φi) =

∫ φf

φi

Dφ
∫ hf

hi

Dhµν eiS[h,φ]. (2.48)

Again, as with Eq. (2.2) one may take objection to this expression since we
know from the canonical formalism that h0ν are not canonical variables, as
well as the path integral being formally divergent. We’ve seen already in
Sections 2.1.1 and 2.1.2 that these issues were resolved naturally by carefully
factoring out the gauge redundancy from the integral. The same is true of
this gravitational path integral.

As emphasized in Section 1.5.2 this action is not invariant under gauge
transformations but rather it changes by a boundary term (1.33). Lets
see what this implies for the propagator. A gauge transformation of the
boundary data causes a change in the propagator

K(h
ξf
f , φ

ξf
f ;hξii , φ

ξi
i ) = (2.49)

= e
−2i

∫
Σf

ξ0
(

2Ĝ00+ 1
MP
L̂M

)
K(hf , φf ;hi, φi)e

2i
∫
Σi
ξ0
(

2Ĝ00+ 1
MP
L̂M

)
,

where φξ denotes the matter variables under the transformation xµ →
xµ + 2

MP
ξµ. The propagator is then invariant under (small) spatial dif-

feomorphisms but not under diffeomorphisms changing the initial and final
time coordinates. The physical states which comprise the propagator then
transform as

Ψ[hξ, φξ] = e
−2i

∫
d3x ξ0

(
2Ĝ00+ 1

MP
L̂M

)
Ψ[h, φ]. (2.50)

This expression can be rewritten in a more physically illuminating way.
Since ξ/MP � 1 we can write a functional f [φ] of the transformed variable
using a linear shift operator

f [φξ] = f

[
φ+

2

MP
ξµ∂µφ

]
= e

2
MP

∫
d3x ξµ(∂µφ) δ

δφ f [φ]. (2.51)
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The metric perturbation also transforms by a linear shift, so we can write

f [hξµν ] = e
2
∫
d3x(∂µξν) δ

δhµν f [hµν ]. (2.52)

We now rewrite the functional derivatives in terms of the operators which
they represent, −i δδφ = Π̂ and −i δ

δhµν
= π̂µν where Π = ∂LM

∂(∂0φ) and πµν =
∂Lg

∂(∂0hµν) . The definition of the stress-tensor as the Noether current associated

with spacetime translations is

Tµν = −(∂νφ)
∂LM
∂(∂µφ)

+ ηµνLM , (2.53)

so as an operator the 4-momentum density can be written

T̂ 0ν = i(∂νφ)
δ

δφ
+ η0νL̂M . (2.54)

The functional identities are then expressible as,

f [φξ] = e
−i 2

MP

∫
d3x ξµ(T̂µ0−ηµ0L̂M)

f [φ], (2.55)

f [hξµν ] = e2i
∫
d3x (∂νξµ)π̂µν (2.56)

Another useful formula is the relation between the conjugate momentum
to the metric perturbation and the Einstein tensor, −∂jπjk = 2G0k. Using
these relations we can rewrite Eq. (2.50) as

exp

[
2i

∫
d3x

(
(∂0ξν)π̂0ν + ξν

(
2Ĝ0ν −M−1

P T̂ 0ν
))]

Ψ[h, φ] = Ψ[h, φ],

(2.57)
or equivalently[∫

d3x
(

(∂0ξν)π̂0ν + ξν

(
2Ĝ0ν −M−1

P T̂ 0ν
))]

Ψ[h, φ] = 0 (2.58)

Since this equation holds for arbitrary ξµ and ∂0ξ
µ, and they are independent

parameters, their coefficients must independently vanish. We then obtain
two constraint equations which the physical states satisfy,

π̂0νΨ[h, φ] = 0, (2.59)

(
Ĝ0ν − 1

2MP
T̂ 0ν

)
Ψ[h, φ] = 0. (2.60)
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The first equation says that physical states do not depend on the time-
like components h0ν . The second equation can be identified as the (lin-
earized) Hamiltonian and momentum constraint equations of general rela-
tivity. These are precisely the constraint equations one would impose on
physical states in the Dirac canonical formalism [55, 56]. Just as we did
in QED, here we obtain these constraint equations as a consequence of the
gauge invariance of the propagator.

Now that we’ve seen how the gauge invariance of the propagator implies
that physical states satisfy certain constraint equations, we can proceed to
evaluate the path integral (for the metric variables). This proceeds com-
pletely analogously to the QED example. To factor out the gauge redun-
dancy we multiply by

1 =

∫
Dξ∆(hξ)δ(G(hξ)). (2.61)

Note that the integral is over ξµ including those which change the bound-
aries. We multiply by the above FP factor and change variables to obtain

K(hf , φf ;hi, φi) =

∫
Dξµ

∫ φ
ξf
f

φ
ξi
i

Dφ
∫ h

ξf
f

h
ξi
i

Dhµν (2.62)

×∆(h)δ(G(h)) eiS[h,φ]+2i
∮
Σ d

3x ξ0(2G00+M−1
P LM).

Using the identities Eq. (2.55) and Eq. (2.56) we can rewrite the propagator
in the convenient form

K(hf , φf ;hi, φi) = (2.63)

=

∫
Dξµ Ûξµ(tf )

∫ φf

φi

Dφ
∫ h

ξf
f

h
ξi
i

Dhµν ∆(h)δ(G(h)) eiS[h,φ]

 Û †ξµ(ti),

where we’ve defined the operator

Ûξµ(t) = e2i
∫
d3x ξ0(2G00−M−1

P T̂ 00)−M−1
P ξj T̂

0j
. (2.64)

The next step is to cut the path integral into discrete time slices. Recall
how the gauge transform of A0 depended on the time derivative ∂0Λ and
this allowed us to use rewrite the integrals

∫
dΛ(t2)

∫
dΛ(tN+1) as integrals

over the boundary data for A0. The same situation occurs here for h0ν . The
gauge transform of the spatial components hξjk depends only only spatial
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2.2. Linearized Quantum Gravity

derivatives and thus only on ξj at times t1,N ≡ ti,f . The gauge transform of
the timelike components is

hξ0ν(tf ) = h0µ(tf ) + ∂νξ0(tN ) +
1

ε
(ξν(tN+1)− ξν(tN )) (2.65)

hξ0ν(ti) = h0µ(ti) + ∂νξ0(t1) +
1

ε
(ξν(t2)− ξν(t1))

A simple change of variables allows us to write the integrals over ξν(tN+1)
and ξν(t2) as integrals over the boundary data for h0ν . Once this is done
the boundary data is independent of ξ0. In fact the only dependence on
ξ0 is in the boundary operator (2.64). The integrand in Eq. (2.63) doesn’t
depend on ξµ for intermediate times and thus the gauge group volume can
be factored out as an overall normalization. The resulting path integral is

K(hf , φf ;hi, φi) =

∫
dξjf

∫
dξji (2.66)

× δ(Ĥ)Ûξj

∫ φf

φi

Dφ
∫
Dh0ν

∫ h
ξf
f

h
ξi
i

Dhjk ∆(h)δ(G(h)) eiS[h,φ]

 Û †
ξj
δ†(Ĥ).

The operator

δ(Ĥ) ≡
∫
dξ0 e

4i
∫
d3x ξ0

(
G00− 1

2MP
T̂ 00

)
(2.67)

is the projector onto the kernel of the operator Ĝ00 − 1
2MP

T̂ 00. That is,
it projects onto the subspace of the Hilbert space satisfying the Hamilto-
nian constraint ĤΨ = 0. Since the overall normalization is irrelevant, we
can assume that δ(Ĥ) returns 1 when acting on a state which satisfies the
Hamiltonian constraint and returns zero otherwise.

To evaluate the path integral it is convenient to further decompose the
metric perturbation. Similar to the transverse and longitudinal decompo-
sition of a vector field, a symmetric tensor field can be decomposed into
longitudinal, transverse-trace, and transverse-traceless (TT) parts

hjk = hLjk + hTjk + hTTjk (2.68)

which satisfy ∂jhTjk = 0, ∂jhTTjk = 0, and δjkhTTjk = 0. Explicit expressions
are obtained using the transverse projector Pij ,

hLjk =
(
δaj δ

b
k − P aj P bk

)
hab, (2.69)

hTjk =
1

2
PjkP

abhab, (2.70)
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hTTjk =

(
P aj P

b
k −

1

2
PjkP

ab

)
hab. (2.71)

It is easy to check that only the longitudinal part transforms under gauge
transformation.

Along with this decomposition we must choose a gauge fixing function.
The most convenient choice is transverse gauge G(h) = ∂jh

jν = 0. With this
choice the FP determinant factors out as an overall constant. This gauge
choice sets the longitudinal part of the field to zero for intermediate times.
For times ti,f it enforces ∂jhLjk +∇2ξk + ∂j∂kξj = 0. This can be solved for

ξj(ti,f ) to find

ξj(ti,f ) = − 1

∇2

(
δja −

∂j∂a
2∇2

)
∂bh

ab
i,f . (2.72)

We are now able to evaluate the integrals over all of the different components
of the metric perturbation h00, h0j , h

T
jk, h

L
jk, and hTTjk . The h00 integral can

be done immediately since h00 appears only linearly in the action. It simply
produces a delta function enforcing the Hamiltonian constraint for every
intermediate time in the path integral. The Hamiltonian constraint fixes the
transverse-trace part of the metric perturbation in terms of the longitudinal
part and the matter stress tensor. Using the Hamiltonian constraint the
transverse-trace part can then be immediately integrated. Next the h0j

integral can be performed and it is a straightforward gaussian integral. The
result is an instantaneous gravitational interaction term added to the matter
action analogous to the A0 integration in QED generating the Coulomb
interaction term. The last remaining integral is the trivial integral is over
the longitudinal part.

The resulting path integral expression for the gravitational propagator
is

K(hf , φf ;hi, φi) =δ(Ĥ) ÛG

(∫ φf

φi

Dφ eiSM [φ]+iSSG[φ]

)
Û †Gδ

†(Ĥ) (2.73)

×
∫ hTTf

hTTi

DhTTjk eiSg [hTT ,φ].

We have defined the instantaneous gravitational self-interaction term

SSG[φ] = − 1

4M2
P

∫ tf

ti

d4x (2.74)

× 1

∇2

(
T 00T 00 − 4T 0jPjkT

0k + 2T 00PjkT
jk +

∂0T
00∂0T

00

∇2

)
.
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The first term is simply the Newton potential while the rest of the terms
are purely relativistic. This expression may seem unfamiliar but it is indeed
the correct gravitational analogue of the Coulomb interaction in QED. This
is demonstrated in Appendix B. The transverse-traceless action is

Sg[h
TT , φ] =

∫ tf

ti

d4xΠµναβ

(
−1

2
∂σhµν∂

σhαβ +
1

MP
hµνTαβ

)
, (2.75)

written in terms of the TT projector Πµναβ = 1
2

(
PµαP νβ + PµβP να − PµνPαβ

)
.

The operators ÛG are defined as

ÛG = exp

(
i

1

MP

∫
d3xhjkB̂jk

)
, (2.76)

where

B̂jk = − 1

∇2

(
δjl∂k + δkl∂j −

∂j∂k∂l
∇2

)
T̂ 0l. (2.77)

To see how ÛG acts consider a state Ψ[φ] describing only the matter.
The state ÛGΨ[φ] then satisfies

∂j

(
i
δ

δhjk

)
ÛGΨ[φ] = − 1

MP
∂jB̂

jkÛGΨ[φ] = T̂ 0kÛGΨ[φ]. (2.78)

This can be rewritten in terms of the conjugate momentum π̂jk and we can
see that the state ÛGΨ[φ] satisfies the momentum constraint

P̂kÛGΨ[φ] ≡
(
Ĝ0k − 1

2MP
T 0k

)
ÛGΨ[φ] = 0. (2.79)

In the same way the operator ÛC created a coherent Coulomb electric field
in QED (ensuring the that physical states satisfy Gauss’ law), the operator
ÛG creates a coherent gravitational field which ensures that physical states
satisfy the momentum constraint and are thus invariant under spatial gauge
transformations. As a result of the constraints Eq. (2.59) and Eq. (2.60),
physical states are of the form Ψ[h, φ] = δ(Ĥ) ÛG ψ[hTT , φ]. They are inde-
pedent of the timelike components h0ν , and the dependence on the longitu-
dinal field is entirely in ÛG. The unconstrained part of the wavefunctional
ψ[hTT , φ] can take on any form, since hTT and φ are the true independent
degrees of freedom. The only dependence on the transverse-trace part of the
field is through the projector δ(Ĥ). This projector ensures physical wave-
functions are non-zero only if the transverse-trace part of the field takes
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2.2. Linearized Quantum Gravity

on a value such that the Hamiltonian constraint is satisfied. This is quite
unlike the momentum constraint which is satisfied by dressing matter states
with coherent fields using the operator ÛG. The reason for this difference
is that the momentum constraint is a relation between the coordinates and
momenta (hjk, π

jk) whereas the Hamiltonian constraint is a constraint only
on the coordinates, G00 = 1

2(∂j∂k − δjk∇2)hjk. The Hamiltonian constraint
then restricts physical states to be wavefunctionals which only have support
on the kernel of Ĥ rather than wavefunctionals with support on the entire
space of three-metric configurations. This is a point argued by Kuchar [88]
which was imposed by hand in [89] and derived in a way very similar to us
in [80].

Finally, the path integral for the TT parts of the metric perturbation can
be done by shifting the integration variable by the classical solution. The
fluctuation determinant factors out as an overall constant and the result is
the classical action for the TT field on a frozen background source. The
final expression for the propagator, having evaluated the gravitational path
integral is

K(hf , φf ;hi, φi) = δ(Ĥ) ÛG

(∫ φf

φi

Dφ eiSM [φ]+iSSG[φ]

)
Û †G δ

†(Ĥ) eiScl[h
TT
i→f ,φ]

(2.80)
The classical action Scl[h

TT
i→f , φ] is presented in Appendix A.

As a result of gauge invariance, there are constraints implemented on the
system enforcing that i) the propagator is independent of h0ν ii) the depen-
dence of the propagator on hL is determined by the momentum density of
the matter (due to the momentum constraint) and iii) the dependence of the
propagator on the trace δjkhjk is constrained by energy density of the mat-
ter (due to the Hamiltonian constraint). As a result the only independent
degrees of freedom are the matter degrees of freedom and the transverse-
traceless graviton degrees of freedom. Physical states can then be written as
Ψ[h, φ] = δ(Ĥ) ÛG ψ[hTT , φ]. The appropriate partition into central system
and environment is then matter (dressed by appropriate coherent gravita-
tional field) and transverse-traceless gravitons. A partial trace resulting in
a state which is still physical must then be only over the transverse-traceless
graviton degrees of freedom.

We’ve now seen three examples of how the gauge invariance of the prop-
agator leads to the idea of gauge invariant physical states. These physical
states which comprise the propagator are annihilated by operators which
generate gauge transformation. Such equations are precisely the constraint
equations which one imposes in Dirac’s canonical quantization of constrained
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systems. We computed the path integrals for the gauge fields using a modi-
fication of the FP trick. The result is a manifestly gauge invariant propaga-
tor which is equivalent to the propagator one would obtain in the canonical
Dirac formalism (see [53]). As a result of our computations it is clear how to
divide the central system from the environment. In QED the environment
is the transverse (photon) part of the gauge field, while the rest of the gauge
field is constrained by the state of the matter. In linear quantum gravity
the environment is the transverse-traceless (graviton) part of the gauge field,
while the rest of the gauge field is constrained by the state of the matter.
The physical picture in QED is that of dressed charges (charges surrounded
by their associated Coulomb electric field) interacting with a field of trans-
verse photons. The picture in gravity is similar, there is matter dressed by
a gravitational field and the matter interacts with TT gravitons. In the
next chapter we will take these results and compute the influence functional
describing the interaction of these central systems with the radiation envi-
ronment in each theory.
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Chapter 3

Influence Functional in QED
and linearized Gravity

3.1 Thermal Photon Bath Influence Functional

In section 2.1.2 we showed that as a result of gauge invariance the propa-
gator is composed of physical states Ψ[A, φ] which have the form Ψ[A, φ] =
ÛC ψ[AT , φ], which makes it clear that the only independent degrees of free-
dom are that of the matter and transverse field components. It was also
mentioned that because the propagator projects onto the space of physical
states, we can work exclusively with physical states without loss of general-
ity. Physical density matrices are of the form

ρ[A, φ] = ÛC ρ̃[AT , φ] Û †C . (3.1)

We will use tilde to denote density matrices which only depend on matter
and/or transverse field components. The tilded density matrices describe
unphysical states but the appropriate physical state can be obtained simply
by conjugating ρ̃ with the operator ÛC . For brevity we can work with the
density matrices ρ̃.

The transverse field components can be traced out to obtain the reduced
density matrix for the matter

ρ̃φ[φ] =

∫
dAT δ(AT −AT ′)ρ̃[AT , φ]. (3.2)

For physical states it is possible that the transverse degrees of freedom are
uncorrelated with the matter, but obviously the longitudinal part of the field
must be correlated with the matter. A state in which the transverse field
components are uncorrelated with the matter is written as a product state
ρ̃[AT , φ] = ργ [AT ]ρ̃φ[φ].

Now we can return ourselves to the overarching question related to de-
coherence. Suppose the environment, i.e the transverse field components, is
initially uncorrelated with the matter. We can evolve the state forward in
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3.1. Thermal Photon Bath Influence Functional

time and trace out the environment to obtain the final (physical) state of
the matter. The reduced density matrix for the matter can then be written
as

ρφ[φ
f
] = ÛC

(∫
dφ

i
ρ̃φ[φ

i
]

∫ φ
f

φ
i

Dφ eiSM [φ]+iSC [φ]F [φ]

)
Û †C , (3.3)

and the influence functional is given by

F [φ] =

∫
dATf

∫
dATi δ(A

T
f −AT ′f )ρ[ATi ]

∫ ATf

ATi

DAT eiS[AT ,φ]. (3.4)

Equations (3.3) and (3.4) are of precisely the same form as Eqs. (1.13)
and (1.14) for an environment consisting of transverse photons. The upshot
of this manifestly gauge invariant computation is that it has become clear
that only the transverse photons can act as an environment in QED while
the timelike and longitudinal parts of the gauge field act to produce the
Coulomb interaction in the matter action and to dress the matter with a
coherent Coulomb electric field.

At this point it is straightforward to compute the influence functional
for an initially thermal photon bath. A state describing a thermal gauge
field is of the form

ρ̃[AT , φ] = ρ̃φ[φ]

∫ AT

AT ′
DAT ′′ e−SE [AT ′′]. (3.5)

The influence functional for a bath of thermal photons is then given by the
functional integral

F [φ] =

∫
dATf δ(A

T
f −AT ′f )

∫
dATi

∫ ATf

ATi

DAT
∫ ATi

AT ′i

DAT ′′ eiS[AT ,φ]−SE [AT ′′].

(3.6)
Each of the functional integrals is gaussian and can be evaluated immediately
by shifting the integration about the classical path. The remaining integrals
are gaussian as well and are done by direct integration. At this stage the
environment has been reduced to a collection of independent oscillators,
a well studied case [73, 90]. For a theory in which the U(1) current is
independent of Aµ (this excludes scalar QED for example) and the coupling
term is Lint = eAµJ µ the result is expressed conveniently in terms of an
influence phase,

F [φ] = eiΦ[φ]. (3.7)
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The influence phase is given by the expression

iΦ[φ] =i

∫ tf

ti

d4x

∫ x0

ti

d4x̃
[
Jµ(x)− J ′µ(x)

]
(3.8)

×
([
Jν(x̃) + J ′ν(x̃)

]
γµν(x− x̃) + i

[
Jν(x̃)− J ′ν(x̃)

]
ηµν(x− x̃)

)
.

The dissipation and noise kernels are respectively given by

γµν(x) =
e2

2

∫
d3p

(2π)3
eip·x Pµν(p)

sin px0

p
, (3.9)

ηµν(x) =
e2

2

∫
d3p

(2π)3
eip·x coth

(
βp

2

)
Pµν(p)

cos px0

p
, (3.10)

where β is the inverse temperature.
We can now finally write down the physical (gauge-invariant) reduced

density matrix for matter interacting with a thermal bath of photons,

ρφ[ALf , φf ] =

∫
dφ

i
ρ̃φ[φ

i
]

(
ÛC

∫ φ
f

φ
i

Dφ eiSM [φ]+iSC [φ]+iΦ[φ] Û †C

)
. (3.11)

It should be noted that the influence functional Eq. (3.8) is not a new
result, see [91]. The manifestly gauge invariant computation is new how-
ever. Regardless, the QED computation was considered a warm-up for the
quantum gravity computation which has had more debate in the literature.

3.2 Thermal Graviton Bath Influence Functional

The discussion for linear gravity is nearly identical to the above for QED.
We’ve seen in section 2.2 that as result of gauge invariance physical states
are of the form Ψ[h, φ] = δ(Ĥ)ÛGψ[hTT , φ]. The only independent degrees
of freedom are the TT gravitons and the matter. We can write physical
density matrices in the form

ρ[h, φ] = δ(Ĥ) ÛG ρ̃[hTT , φ] Û †G δ
†(Ĥ). (3.12)

All of the dynamics is described by the evolution of the unphysical tilded
density matrix, and the physical state can be obtained at the end of the
computation by replacing the operators δ(Ĥ) ÛG.
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A state in which the environment (TT gravitons) is initially uncorrelated
with matter as well as being thermal can be written as

ρ̃[hTT , φ] = ρ̃φ[φ]

∫ hTT

hTT ′
DhTT ′′ e−SE [hTT ′′]. (3.13)

Assuming an initial condition of this form is convenient from a calculational
perspective since it allows for an exact evaluation of the influence functional
integrals, but we must ask if it is physically reasonable. As we’ve previously
emphasized, gravity is unique because it cannot be screened. This implies
that the central system and graviton environment will always be correlated
to some degree. In our computation we will assume the above simple form
for the initial state, but this must be understood as an approximation, the
accuracy of which we cannot yet quantify since we do not have an answer
to the question, “How close to a product state can one prepare a bipartite
system composed of some type of matter and a collection of gravitons?”
This is a question of interest for future work.

The influence functional describing a bath of initially thermal gravitons
is then given by the functional integral

F [φ] =

∫
dhTTf

∫
dhTTi δ(hTTf − hTT ′f ) (3.14)

×
∫ hTTf

hTTi

DhTT
∫ hTTi

hTT ′i

DhTT ′′ eiSg [hTT ,φ]−SE [hTT ].

The integration can be done straightforwardly as again all integrals are
gaussian. The resulting influence phase iΦ[φ] for linear gravity is

iΦ[φ] = i

∫ tf

ti

d4x

∫ x0

ti

d4x̃
[
Tµν(x)− T ′µν(x)

]
(3.15)

×
([

Tσρ(x̃) + T ′σρ(x̃)
]
γµνσρ(x− x̃) + i

[
Tσρ(x̃)− T ′σρ(x̃)

]
ηµνσρ(x− x̃)

)
.

The dissipation and noise kernels are

γµνσρ(x) =
1

2M2
P

∫
d3p

(2π)3
eip·x Πµνσρ(p)

sin px0

p
, (3.16)

ηµνσρ(x) =
1

2M2
P

∫
d3p

(2π)3
eip·x coth

(
βp

2

)
Πµνσρ(p)

cos px0

p
. (3.17)
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The physical (gauge-invariant) reduced density matrix for matter interacting
with a thermal bath of gravitons is then

ρφ[hLf , h
T
f , φf ] =

∫
dφ

i
ρ̃φ[φ

i
] (3.18)

×

(
δ(Ĥ) ÛG

∫ φ
f

φ
i

Dφ eiSM [φ]+iSSG[φ]+iΦ[φ] Û †G δ
†(Ĥ)

)
.

These influence functionals, Eqs. (3.8) and Eq. (3.15) fully describe the
interaction between the environment and the central system, and thus form
the basis for a discussion of decoherence. With the IF one could derive a
master equation, or a quantum Langevin equation, or attempt to approx-
imate the functional integral itself. These next steps will be the subject
of future work when we choose a specific matter system and compute its
decoherence rate.

It must be noted that the above influence functional has been previously
derived in [52] however they incorrectly imposed TT gauge in the path-
integral. This is a gauge choice which can only be consistently made in
vacuum and not in the presence of matter. Moreover, as we will discuss
further in the following section, it is incorrect to simply impose a gauge con-
dition on the path integral without following the FP procedure as we have
and integrating over gauge equivalent boundary data. Naively imposing a
gauge condition leads to a gauge dependent result as evidenced by the dis-
agreement between [15, 49, 50, 52]. Mistakes aside, the influence functional
reported in [52] is indeed in agreement with ours (up to a factor of 2). To
understand why they obtain the correct influence functional while making
an incorrect gauge-choice we need to return to the evaluation of the path
integral expression for the propagator (2.63). The modified FP trick we
used forced us to integrate over gauge-equivalent boundary data. Given a
field hµν the only gauge invariant parts are the TT components7. Since the
only boundary data which is unaffected is that for the TT components, it is
the TT components which end up constituting an environment, and thus it
is the TT components which get traced over and it is the TT components
which contribute to the influence functional. Integrating over gauge equiva-
lent boundary data then implied that we integrate over the boundary data
for hµ0 and hLjk. Without fixed boundary data these variables were acting
simply as Lagrange multipliers in the action which generated the “gauge

7The transverse-trace part is also gauge invariant, however it is constrained by the
Hamiltonian constraint and thus cannot be considered as independent variable
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invariant dressing” operators and the self-gravity interaction terms. By in-
correctly enforcing TT-gauge the authors discarded the terms necessary to
make the matter state gauge invariant (i.e. the dressing operators) and
also discarded the terms which describe the self-gravitational interaction for
the matter, but they retained the essential terms which described the TT
radiation i.e the environment.

In the limit that the matter is a collection of point particles, Eq. (3.15)
has been reported in [49, 50] but in both of these situations it was assumed
that the metric perturbation was purely TT. As a result they missed out
on the part of the field constrained by the matter but still obtained the
correct influence functional. In neither reference are the gauge invariance
and constraints discussed. It is the manifestly gauge invariant computation
that we have done which makes it clear how this computation is to be
correctly done.

The constraints of the theory have indeed been properly treated in [51,
53], however both computations were done using the canonical linearized
ADM formalism rather than using the functional integral approach. The
computation done in [51] was in a fixed gauge, while the computation done
in [53] was manifestly gauge invariant. They ensured gauge invariance by
using the Dirac formalism. Since the path integral formalism developed
here has been demonstrated as equivalent to the Dirac formalism, we can
regard our result as the path integral equivalent of [53]. The strength of our
approach is that functional integrals make certain approximation schemes
much more convenient, e.g. semi-classical and eikonal techniques may be
employed.

3.3 Importance of Gauge Invariance

The requirement of gauge invariance led us to correctly identify the correct
independent degrees of freedom and separate them from the variables which
were constrained. This was essential because in a gauge fixed computation
one could mistakenly treat all components of the gauge field as the environ-
ment and arrive at a qualitatively different influence functional. A result
recently reported in the literature suffers from this error [15]. In this section
we will intentionally make this error and show that we reproduce the result
of [15].

Recall how gauge invariance was maintained in the path integral. When
we used the FP trick the integral over the gauge group for intermediate times
factored out as a constant. However it was an essential point that there
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were remaining integrals over all gauge equivalent boundary data. This is
a distinct difference from the way the FP trick is used in the computation
of a partition function or generating functional since in both cases there
is no fixed boundary data. In these situations, if the FP determinant also
factors out the result of the FP trick is to simply insert a gauge fixing delta
function in the path integral and this delta function is often rewritten as a
gauge fixing term in the action.

In [15] the author made an essential mistake which led to a prediction
that the influence functional depended on every component of the matter
stress tensor rather than just the TT components. They handled the gauge
invariance of the action by merely inserting the harmonic gauge fixing term
in the action. As a result they obtained a qualitatively different result from
ours. The addition of the harmonic gauge fixing term broke the gauge in-
variance of the theory making all components of hµν seemingly independent.

If we intentionally make this mistake we can reproduce their results. The
gravitational action Eq. (1.27) can be rewritten

S =

∫ tf

ti

d4x

(
−1

2
∂σhµν∂σhµν + ∂µh

µν
∂σhσν + LM +

1

MP
hµνTµν

)
,

(3.19)
where the overline denotes trace reversal hµν = hµν − 1

2ηµνh. The addition
of the harmonic gauge fixing term

Sgf = −
∫ tf

ti

d4x∂µh
µν
∂σhσν (3.20)

cancels the second term in Eq. (3.19). In this gauge fixed theory the prop-
agator is

K(hf , φf ;hi, φi) =

∫ φf

φi

Dφ
∫ hf

hi

Dhµν e
iSM+i

∫ tf
ti

d4x
(
− 1

2
∂σhµν∂σhµν+ 1

MP
hµνTµν

)
.

(3.21)
The path integral over hµν can be immediately evaluated,

K(hf , φf ;hi, φi) =

∫ φf

φi

Dφ eiSM+i(S+Sgf )[hµνi →h
µν
f ,φ]. (3.22)

Unlike the gauge invariant propagator Eq. (2.80) this propagator treats all
components of hµν on equal footing. Clearly this propagator maps between
states in the full configuration space ψ[hµν , φ] rather than projecting onto
the physical subspace. In the full configuration space all components of the
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gauge field are independent variables and a state in which the matter is
uncorrelated with the gauge field would be written as a product ρ[h, φ] =
ρg[hµν ]ρφ[φ]. Considering the matter as the central system the full gauge
field would then seem to be the environment, and a partial trace would be
over all of hµν . An uncorrelated state with a thermal gauge field would then
be of the form

ρ[h, φ] = ρφ[φ]

∫ h

h′
Dh′′µν e−(S+Sgf )E [h′′µν ]. (3.23)

For such an initial state the reduced density matrix at a later time is given
by the path integral

ρφ[φ
f
] =

∫
dφ

i
ρ[φ

i
]

∫ φ
f

φ
i

Dφ eiSM [φ]+iΦ[φ], (3.24)

where the influence phase for the gauge fixed theory is of precisely the
same form as in the gauge invariant theory Eq. (3.15) but with the es-
sential difference that in the dissipation and noise kernels Eq. (3.16) and
(3.17) the TT projection operator is replaced by the trace-reversal operator
Pµνσρ = 1

2(ηµσηµρ + ηµρηνσ − ηµνησρ). The noise and dissipation kernels
can then be written in terms of the scalar kernels, γµνσρgf = 2PµνσρD and

ηµνσρgf = 2PµνσρN , where

D(x) =
1

4M2
P

∫
d3p

(2π)3
eip·x

sin px0

p
, (3.25)

N(x) =
1

4M2
P

∫
d3p

(2π)3
eip·x coth

(
βp

2

)
cos px0

p
. (3.26)

To make contact with reference [15] we can take the path integral repre-
sentation of the reduced density matrix evolution and determine the master
equation. The process of passing from a path integral to a master equation
in this situation is computationally no different than the tetbook derivation
of the Schrödinger equation from the path integral in ordinary quantum me-
chanics [82]. See Appendix C for the derivation. To lowest order in M−1

P ,
the master equation satisfied by the reduced density matrix in Eq. (3.24) is

∂ρ

∂t
= −i[ĤM , ρ(t)] (3.27)

−
∫ t

ti

dx̃0

∫
d3xd3x̃

(
ηµνσρ(x− x̃)[T̂µν(x), [T̂σρ(x̃), ρ(t)]]

−iγµνσρ(x− x̃)[T̂µν(x), {T̂µν(x̃), ρ(t)}]
)
.
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If we choose the kernels from the gauge invariant theory, we reproduce equa-
tion (19) of [53] (up to a relative sign between the dissipation and noise
terms). However if instead we choose the kernels from the naively gauge
fixed theory the above master equation exactly reproduces equation (17) of
[15].

Rather than depending only on the TT components of the stress-tensor
the influence functional (and therefore the master equation) in this naively
gauge fixed theory depends on all of the components of the stress tensor.
The naively gauge fixed theory has thus made a qualitatively different pre-
diction from our manifestly gauge invariant theory. In the limit that the
matter is moving non-relativistically the (00) component of the stress ten-
sor dominates the other components. This component is essentially the
mass density of the system, and an influence functional which depends on
T 00 would suggest that systems with sufficiently large mass would decohere
regardless of the dynamics and shape of the object. This is the conclusion
drawn in [15] which we now claim to be incorrect due to the mistreatment
of the gauge invariance/constraints of the theory. The correct computation
of the decoherence rates of a number of example systems will be the topic
of future works. For now, a general statement can be made as a correc-
tion of this mistaken conclusion. Since the correct gauge invariant influence
functional depends on the TT part of the stress tensor rather than the (00)
components, it should be the change in the mass quadrupole moment not
the mass monopole moment which is most important in quantum gravita-
tional decoherence. Such a statement should not be surprising as the time
derivative of the mass quadrupole moment is a quantity which of central
importance in the classical theory of gravitational wave emission.
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Conclusion

In this thesis we developed a tool which will be useful to study decoherence
in quantum gravity. We used an effective field theory approach which is
expected to capture the universal low every behaviour of whatever the UV
completion of quantum gravity may be. In particular, we computed the
Feynman-Vernon influence functional for a matter system interacting with
a bath of thermal gravitons.

There have been a number of calculations of the influence functional (or
the related master equation) in linearized quantum gravity in the literature.
Of all these references only [51, 53] include an appropriate discussion of
the fact that quantum gravity is a constrained theory. Furthermore only
[53] has a manifestly gauge invariant computation. They use the canoni-
cal formalism to compute a master equation for the reduced density matrix
for matter interacting with a thermal bath of gravitons. The discussion
of constraints and gauge invariance is of essential importance because dif-
ferent gauge-fixed results have been reported in the literature and there
are qualitative disagreements between them depending on the gauge choice.
Until now it has not been clear which result to trust and why the differ-
ent results don’t agree. Although the master equation presented in [53] is
gauge invariant their approach is limited to the canonical quantization for-
malism which lacks clear approximation schemes. In this paper we studied
quantum gravitational decoherence using the functional integral formalism,
which invites future computations to use functional integral approximation
techniques such as diagrammatic, semi-classical, and eikonal expansions.

We presented the first manifestly gauge invariant computation of the re-
duced density matrix propagator for matter interacting with a thermal bath
of gravitons in a path integral representation. En route we developed a man-
ifestly gauge invariant representation of the transition amplitude between
gauge field configurations in the presence of matter. We also demonstrated
how the first-class constraints in both QED and linearized gravity emerge as
natural consequences of gauge invariance in the path integral representation
of the propagator. The entire approach was within the functional integral
framework, and we demonstrated that our approach is the path integral

52



Chapter 4. Conclusion

equivalent of the Dirac quantization of first-class constrained systems. Our
result verifies the validity of the influence functional and master equation
which depend only on the TT parts of the matter’s stress-energy tensor. Af-
ter obtaining this main result we explained the mistake made in [15] which
led the author to derive a master equation primarily depending on the mass
density T 00.

Our manifestly gauge invariant computation led to the following formal
statements which when actually applied to some specific examples provide
an illuminating physical picture. The theories we studied are gauge theories
so the physical states must be invariant under certain gauge transformations.
To be invariant under gauge transformations it is sufficient for the states to
be annihilated by the generators of gauge transformation. This condition
provides us with functional differential equations that the states must satisfy
which can be seen as the constraint equations of the canonical framework.
Thus the wavefunctionals for physical states cannot be arbitrary functionals
on the configuration space. Some of the gauge field degrees of freedom
are independent but there are other (constrained) degrees of freedom for
which the form of the wavefunctional is determined entirely by the constraint
equation, i.e. the requirement of gauge invariance.

In the QED example, the transverse part of the field is gauge invari-
ant and thus an independent degree of freedom whereas the dependence of
physical wavefunctionals on the longitudinal part of the field is determined
entirely by the Gauss law constraint. In order for physical states to sat-
isfy Gauss’ law, the charged matter is always dressed by a coherent state of
the electric field corresponding the appropriate Coulomb field. The physical
picture is not matter interacting with a vector boson field, but rather it is
matter with its accompanying Coulomb dressing that interacts with a field
consisting of two types of transverse polarized photons.

The gravity example is quite similar. The analogue of Gauss’ law (the
momentum constraint) constrains the dependence on the longitudinal part
of the field. This constraint similarly requires the matter to be dressed by
a coherent gravitational field. In gravity there is also the Hamiltonian con-
straint which constrains the configuration space variables, effectively elim-
inating the trace-part of the field. The remaining TT degrees of freedom
are independent. The physical picture is analogous to QED; we should not
think of matter interacting with a symmetric rank-2 tensor field but rather
as matter (dressed by its appropriate coherent gravitational field) interacting
with two fields corresponding to the two TT polarizations of the graviton.

In future works we plan to apply these results to problems of quantum
decoherence by considering specific physical systems and studying the dy-
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namics of their reduced density matrices and computing decoherence rates.
Interesting applications include the harmonic oscillator, an extended body
which consists of particles coupled via harmonic potentials, a uniformly ac-
celerated particle, as well as corrections to the 2 → 2 scattering of matter
excitations. Another further application of the influence functional is to the
resurging field of infrared gauge theory physics and its potential relation to
the black hole information paradox. It has recently been demonstrated that
the emission of soft gauge bosons from a scattering process can lead to an
outgoing state which is almost completely diagonal in the momentum ba-
sis [92]. This is inline with the idea that soft bosons may skirt the no-hair
theorem and resolve the black hole information paradox by storing informa-
tion holographically [93]. To obtain the influence functional we traced over
all outgoing states of the photon/graviton fields, including infinitely long
wavelength modes. The influence functional may then be used as a tool for
understanding information loss due to soft bremsstrahlung in addition to
the information loss expected from environmental fluctuations.
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Appendix A

The Classical Action in QED
and Linear Gravity

In Chapter 2 we evaluated path integrals over the gauge fields Aµ and hµν .
A major point of this thesis was that not all variables are independent and
as a result of the gauge invariance of the action we ended up integrating
over gauge equivalent boundary data. The only dynamical path integrals
which we had to evaluate were over the transverse components ATj and TT

components hTTj . The evaluation of these integrals is identical for the two
theories so here we will just evaluate the QED integral. The relevant integral
we are interested in evaluating is found in Eq. (2.45)∫ ATf

ATi

DAT eiS[AT ,φ]. (A.1)

The integrals for the free theory in both real time tf − ti and Euclidean time
iβ are special cases of the above.

As mentioned when this integral was first seen, it can be evaluated by
shifting the integration variable by a function which extremizes the action.
That is, the solution to the classical equation of motion subject to the bound-
ary condition that at times ti, tf the classical solution matches the boundary
data of the path integral. The integral over fluctuations is then independent
of the boundary data. Since the action is quadratic in the fields the integral
over fluctuations simply returns a functional determinant which is an overall
constant irrelevant for our purposes. The result of the integral is then just
exp iScl where Scl is the action evaluated for the classical path.

The action for the transverse photons is Eq. (2.41)

S[AT , φ] =

∫ tf

ti

d4xPµν
(
−1

2
∂σAµ∂

σAν +AµJν
)
. (A.2)

The transverse projector can be written as a sum over orthonormal trans-
verse polarization basis vectors, Pµν =

∑2
λ=1 ε

λ
µε
λ
ν . For a 4-vector vµ we
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Appendix A. The Classical Action in QED and Linear Gravity

define the transverse part vλ = ελµv
µ. The action for transverse photons can

then be written as

S[AT , φ] =
2∑

λ=1

∫ tf

ti

d4x

(
−1

2
∂σA

λ∂σAλ +AλJ λ
)
. (A.3)

The vector components are decoupled and the action is just the sum of
actions for two independent massless scalar fields Aλ coupled to their re-
spective sources J λ. Performing a Fourier decomposition on the spatial
variables the action can be written

S[AT , φ] =

2∑
λ=1

∫ tf

ti

∫
d3p

(2π)3

(
1

2
|∂tAλ|2 −

1

2
p2|Aλ|2 +Aλ(p)J λ(−p)

)
.

(A.4)
This is precisely the sum of actions for a continuum of decoupled harmonic
oscillators Aλ(p) with unit mass, frequencies ωλ(p) = |p|, each coupled to
a force J λ(p). The evaluation of the action and thus the path integral for
a harmonic oscillator is a textbook exercise but for completeness we will
briefly review it [82].

The classical equation of motion for a given mode is

(∂2
t + |p|2)Aλ = J λ. (A.5)

The general solution to this equation is the sum of a homogeneous solution
and an inhomogenous solution obtained by integrating J λ with the retarded
Green’s function. The coefficients of integration are fixed by requiring the
solution to satisfy the boundary conditions Aλ(ti,f ) = Aλi,f . The solution
satisfying these boundary conditions is

Aλcl(p) =
Aλf

sin pT
sin p(t− ti) +

Aλi
sin pT

sin p(tf − t) (A.6)

+

∫ t

ti

dsJ λ(s)
sin p(t− s)

p
− sin p(t− ti)

sin pT

∫ tf

ti

dsJ λ(s)
cos p(t− s)

p
,

where T = tf − ti. Substituting this solution into the action and summing
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over modes we obtain the expression for the classical action

Scl[A
T
i → ATf , φ] =

2∑
λ=1

∫
d3p

(2π)3

p

2 sin pT

(
(|Aλi |2 + |Aλf |2) cos pT − 2Aλ∗f A

λ
i

(A.7)

+
2Aλ∗i
p

∫ tf

ti

dtJ λ sin p(tf − t) +
2Aλ∗f
p

∫ tf

ti

dtJ λ sin p(t− ti)

− 2

p2

∫ tf

ti

dt

∫ t

ti

dsJ λ∗(t)J λ(s) sin p(tf − t) sin p(s− ti)
)
.

The generalization to gravity is obvious. The TT projector can be written
as a sum over orthonormal TT basis tensors Πµνσρ =

∑2
λ=1 ε

λ
µνε

λ
σρ. Defining

the TT part hλ = ελµνh
µν , the gravitational action decouples into that of two

scalar fields and the classical action is precisely the same as above if (A,J )
are replaced by (h, T ). The action for the free field is the J = 0 case of the
above action and the Euclidean action is obtained from the real time action
by SE = −iS|T=−iβ.
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Appendix B

Instantaneous Interaction
Terms

In the evaluation of the functional integral over the metric variables we found
that some of the integrals generated a new interaction term for the matter
Eq. (2.74) which is instantaneous. Such a term arose in a way completely
analogous to the Coulomb interaction term in QED. In what follows we will
show that this term is indeed the correct interaction potential analogous to
the Coulomb potential.

Consider the generating functional for the photon field

Z[J ] =

∫
DAµ eiS0[A]+i

∫
d4xAµJµ , (B.1)

where Jµ is a conserved classical current. The functional integral can be
performed and the result computes the vacuum energy

E0

(∫
dt

)
= i logZ[J ] =

1

2

∫
d4p

(2π)4
JµDµνJ

ν , (B.2)

where Dµν(p) = −ηµν/p2 is the time-ordered Green’s function for the elec-
tromagnetic field. For compactness we won’t write the pole prescription
explicitly but this does not affect the results. Now we will follow a proce-
dure done in [94].

We want to introduce a convenient orthonormal basis of vectors where
one is purely timelike nµ = (1, 0, 0, 0), one is longitudinal εµp = (0,p/|p|), and
the other two are transverse. We will call the transverse vectors εµr (r = 1, 2).
An explicit expression for εµp is

εµp =
pµ + (p · n)nµ

(p2 + (p · n)2)
1
2

. (B.3)

It can be checked that pµε
µ
p = |p| and pµε

µ
r = 0. The Minkowski metric can

then be written in terms of this orthonormal basis ηµν = −nµnν + εµp ενp +∑
r ε
µ
r ε
µ
r . Since we are interested in the contraction of ηµν with the conserved
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current pµJ
µ = 0 we can expand out these basis vectors and drop any terms

linear in pµ. Doing so, the Green’s function can be written as

Dµν = −η
µν

p2
= −

∑
r ε
µ
r ε
µ
r

p2
+

nµnν

p2 + (p · n)2
. (B.4)

Now we recognize the sum over transverse polarization basis vectors as the
transverse projector, and note that p2 + (p · n)2 = |p|2. With the Green’s
function rewritten in this way the log of the generating functional can be
written in the nice form

E0

(∫
dt

)
= −1

2

∫
d4p

JµPµνJ
ν

p2
+

1

2

∫
dt

∫
d3p

(2π)3

J0J0

|p|
(B.5)

= −1

2

∫
d4p

JµPµνJ
ν

p2
+

1

2

∫
dt

∫
d3xd3y

J0(x)J0(y)

4π|x− y|
.

What we’ve done is separate the contribution from transverse photons from
the interaction energy of the source. The first term describes transverse
photons and the second term can be identified as −SC , the Coulomb inter-
action potential. For a static source we simply find that the energy of the
configuration is given by the Coulomb potential energy.

We can repeat the same exercise for linearized gravity. The generating
functional for linearized metric perturbation is given by

i logZ[T ] =
1

2

∫
d4p

(2π)4
TµνDµνσρT

σρ, (B.6)

where Tµν is a conserved classical current and Dµνσρ = −Pµναβ/p2 is the
time-ordered Green’s function for the metric perturbation. The index struc-
ture Pµνσρ = 1

2(ηµσηµρ + ηµρηνσ − ηµνησρ) corresponds to the trace-reversal
operator. We can use the above decomposition again for each factor of the
Minkowski metric that appears in the trace-reversal operator, and again dis-
card all terms linear in pµ because pµT

µν = 0. Of course this still leaves
many terms. When contracted with the stress tensor many of these terms
can are seen to be duplicates of each other. Finally, the generating functional
may be written down in this orthonormal basis,

i logZ[T ] =− 1

2M2
P

∫
d4p

(2π)4

TµνΠµνσρT
σρ

p2
(B.7)

+
1

4M2
P

∫
dt

∫
d3x

1

∇2

(
T 00T 00 − 4T 0jPjkT

0k

+2T 00PjkT
jk +

∂0T
00∂0T

00

∇2

)
.
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Having separated off the contribution from TT gravitons we found a static
interaction potential. This term can readily be identified as−SSG, Eq. (2.74).
We then see that indeed the instantaneous gravitational interaction term is
precisely analogous to the Coulomb interaction in QED.
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Appendix C

Derivation of the Master
Equation from the Path
Integral

In this section we will review how one derives the Schrödinger equation
from a path integral representation of the propagator. We will then proceed
to make only a slight generalization to show how a master equation for
a reduced density matrix can be derived from a reduced density matrix
propagator.

To derive the Schrödinger equation we will need to quickly establish some
textbook results. Firstly, the derivative of the propagator with respect to
the final coordinate is

∂xfK =

∫ xf

xi

Dx
(
i
∂S

∂xf

)
eiS . (C.1)

Since we are taking the quantum average of ∂xfS Ehrenfest’s theorem allows

us to use the equation from classical physics ∂xfS = pf , where p = ∂L
∂ẋ is

the canonical momentum. Thus, we can write

−i∂xfK =

∫ xf

xi

Dx pf eiS . (C.2)

Secondly, the time derivative of the propagator is

∂tfK =

∫ xf

xi

Dx
(
i
∂S

∂tf

)
eiS , (C.3)

which can be rewritten using the classical equation ∂tfS = −H(xf , pf ),
where H = ẋp− L is the Hamiltonian of the system

∂tfK = −i
∫ xf

xi

DxH(xf , pf ) eiS . (C.4)
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Using the momentum relation to re-express pf as a derivative we obtain the
differential equation satisfied by the propagator

∂tfK = −iH(xf ,−i∂xf )K, (C.5)

which of course is precisely the Schrödinger equation. If the propagator
satisfies this equation then upon integrating with initial data we find that a
wavefunction at time tf satisfies the same equation

∂ψ(x, t)

∂t
= −iH(x,−i∂x)ψ(x, t). (C.6)

Rather than writing the state in position basis we could write the Schrödinger
equation as basis independent equation by introducing the abstract Hamilto-
nian operator. This gives the general expression of the Schrödinger equation

∂t|ψ(t)〉 = −iĤ(x̂, p̂)|ψ(t)〉. (C.7)

Now suppose we had two distinct particles with coordinate labels x1 and
x2, each having its own free action with corresponding free Hamiltonian
Hj(x

j , pj), and let the particles be coupled via a retarded interaction. The
propagator for such a system is

K(x1
f , x

2
f , tf ;x1

i , x
2
i , ti) = (C.8)

=

∫ x1
f

x1
i

Dx1

∫ x2
f

x2
i

Dx2 e
iS1[x1]+iS2[x2]+i

∫ tf
ti

dt
∫ t
ti
dsΦ(x1,ẋ1,x2,ẋ2;t,s)

.

The above derivation implies that the Schrödinger equation for such a system
is then

∂ψ(x1, x2, t)

∂t
=− i

(
H1(x1, p̂1) +H2(x2, p̂2)

)
ψ(x1, x2, t) (C.9)

−
(∫ t

ti

dsΦ(x1, ˆ̇x1, x2, ˆ̇x2; t, s)

)
ψ(x1, x2, t),

where the velocity operators are to be interpreted as functions of xj and p̂j . If
Φ is a function only of coordinates and not velocities then then the situation
is simple and the canonical momenta are just that of the free Hamiltonian
and the velocities can be solved for as usual. There is a difficulty however
if Φ is a function of velocities. In that case pj depends on the derivatives
of Φ, which in turn depends on pj through the velocities. The expression
of the velocities in terms of the momenta is then an iterative Born series.
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If the interaction is assumed small we can make a Born approximation and
truncate the iterative equation at lowest order. In this approximation the
canonical momenta are simply given by that of the free Hamiltonian. We’ll
call the Born approximated operator Φ0(x1, p̂1, x2, p̂2; t, s).

To bring us closer to an expression looking like a master equation lets
assume that the interaction has the form

Φ0(x1, p̂1, x2, p̂2; t, s) =
(
f̂1(t)− f̂2(t)

)
D(t, s)

(
f̂1(s) + f̂2(s)

)
(C.10)

+i
(
f̂1(t)− f̂2(t)

)
N(t, s)

(
f̂1(s)− f̂2(s)

)
where D(t, s) and N(t, s) are just functions of time and f̂j(t) = f(x̂j , p̂j , t).
If we also write Ĥj = H(x̂j , p̂j) then we can expand out the interaction and
write the Schrödinger equation as

∂ψ(x1, x2, t)

∂t
=− i

(
Ĥ1 + Ĥ2 −

∫ t

ti

dsD(t, s)
(
f̂1(t)− f̂2(t)

)(
f̂1(s) + f̂2(s)

)
(C.11)

− i
∫ t

ti

dsN(t, s)
(
f̂1(t)− f̂2(t)

)(
f̂1(s)− f̂2(s)

))
ψ(x1, x2, t)

Rather than working in position space this expression can be made more
compact if we invent some notation and write a basis independent expres-
sion. Let’s define the operators ρ and f̂(t) such that the position space
matrix elements are f̂1(t)ψ(x1, x2, t) = 〈x1|f̂(t)ρ|x2〉 and f̂2(t)ψ(x1, x2, t) =
〈x1|ρf̂(t)|x2〉. Depending on which side f̂ acts we can describe either parti-
cle. With this step, and the final assumption that H2 = −H1 we can write
the Schrödinger equation for this strange system in the basis independent
form

∂ρ

∂t
= i[Ĥ(t), ρ]−

∫ t

ti

ds
(
N(t, s)[f̂(t), [f̂(s), ρ(t)]]−iD(t, s)[f̂(t), {f̂(s), ρ(t)}]

)
(C.12)

Now, it would take a rather strange system of two particles to be described
by a Hamiltonian which has i) an interaction of this form as well as ii)
H2 = −H1. Luckily with this computation we were never really interested
in a system of two real particles. Instead we were interested in the equation
of motion satisfied by the reduced density matrix. In this case the two
coordinates x1, x2 do not label different particles, they label the ket and bra
part of the density matrix respectively. For a full density matrix there are
no terms which “couple” the two paths taken by these coordinates (i.e. the
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forward and backward in time paths). We’ve seen though that a generic
form of the influence functional is F [φ] = eiΦ[φ], and it certainly couples the
paths. The strange retarded interaction (C.10) is then nothing other than
the influence phase. We’ve thus seen that a reduced density matrix which
evolves according to a propagator of the form Eq. (C.8), will satisfy the
master equation Eq. (C.12). The generalization from a single coordinate x
to a generic set of coordinates φ is immediate.
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