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Abstract

Many interesting phenomena, such as high-temperature superconductivity
and the quark-gluon plasma, still lack a satisfyingly predictive theoretical
description. However, recent advances have revealed a curious connection
between quantum field theories at strong coupling and classical gravity. This
correspondence, known as the gauge/gravity duality or holographic corre-
spondence, offers a promising perspective for investigating strongly corre-
lated systems. In this thesis, we focus on using these new tools to examine
the consequences of breaking translational invariance in such systems.

We first use this duality to study the holographic realization of a spatially
inhomogeneous condensed matter device known as a Josephson junction. We
do so by constructing the gravitational equivalent of two superconductors
separated by a weak metallic link, from which we then extract various field-
theoretic quantities of interest. These include the spontaneously generated
Josephson current, the superconducting order parameter, as well as a novel
quantity we refer to as edge currents, which are indicative of gapless chiral
modes localized at the interfaces between phases.

We then investigate the more abstract construct of entanglement en-
tropy in holographic theories. We model the fast local injection of energy
in a 2+1 dimensional field theory and study the resulting thermalization of
quantum entanglement. We achieve this objective by numerically evolving
the geometry dual to a local quench from which we then compute the area of
various minimal surfaces, the holographic proxy for entanglement entropy.
We observe the appearance of a lightcone featuring two distinct regimes of
entanglement propagation and provide a phenomenological explanation of
the underlying mechanisms at play.

Finally, we turn our attention to spatial inhomogeneities in gravitational
systems themselves. We use an approximation of general relativity in which
the number of spacetime dimensions is infinite to investigate the Gregory-
Laflamme instability of higher-dimensional charged black branes. We argue
that charged branes are always unstable in this new language, and push the
approximation to next-to-leading order to compute the critical dimension
below which the instability results in horizon fragmentation. We also ex-
amine the stability properties of two-dimensional black membranes and find
that the triangular lattice minimizes brane enthalpy.
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Lay Summary

Black holes are mysterious gravitational objects that have long captivated
the collective imaginary. The rules that govern them, however, are highly
reminiscent of the mathematics describing the quantum dynamics of strongly-
correlated electrons. This curious connection, dubbed the gauge/gravity
duality, has allowed us to study unconventional materials such as high-
temperature superconductors through a new lens with the hope of over-
coming the stagnation currently impeding on theoretical progress.

In this thesis we use the gauge/gravity duality to study spatially inhomo-
geneous systems using the language of black holes. We examine the trans-
port properties of arrays of superconductors and investigate the dynamics of
entanglement propagation after a system is locally injected with energy. We
also explore the spatial instabilities experienced by higher-dimensional black
holes in a new framework where the number of spacetime dimensions is infi-
nite. Our goal: understanding black holes better to harness their predictive
power more effectively.
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A version of chapter 2 has been published. Moshe Rozali & Alexandre
Vincart-Emard, Chiral edge currents in a holographic Josephson junction, A.
J. High Energ. Phys. (2014) 2014: 3. My responsibilities were to establish
the notation used in the manuscript, to numerically investigate the model,
and to communicate the technical results of sections 3 and 4 with the help of
accompanying figures. Moshe Rozali fleshed out the physical interpretation
of these results and contextualized them by writing the introduction and
conclusion.

A version of chapter 3 has been published. Mukund Rangamani, Moshe
Rozali & Alexandre Vincart-Emard, Dynamics of holographic entanglement
entropy following a local quench, A. J. High Energ. Phys. (2016) 2016: 69.
My main contributions were to conduct and summarize the numerical imple-
mentation of the local quench as described in sections 2 and 3, and to lead
the exploration of the model that resulted in section 4, which was drafted
by all three authors. I also wrote the material found in the appendices
to outline the least obvious details of the implementation. Moshe Rozali
provided efficient code for the computation of extremal surfaces as well as
analytical and technical guidance throughout. Our collaborator Mukund
Rangamani was responsible for providing context to our results by writing
the introduction and conclusion.

A version of chapter 4 is currently undergoing peer-reviewing. I was re-
sponsible for the numerical exploration and optimization of the new model
under consideration, and wrote sections 2 and 3 as well as the appendix,
which has been merged with the one from chapter 2 in this thesis for con-
ciseness. Moshe Rozali helped draft the results of section 3 and provided
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Chapter 1

Introduction

1.1 Motivation

Quantum field theory (QFT) is the perfect union between special relativity
and quantum mechanics. Originating in the 1920s in an attempt to quantize
the electromagnetic field, the resulting theory – quantum electrodynamics
(QED) – quickly became the most accurate predictive framework that the-
oretical physics had ever produced. Besides its high-precision predictions
(today’s best theoretical and experimental values for the fine structure con-
stant agree to eight significant figures, an unprecedented achievement in all
of science), QED also initiated a paradigm shift in our understanding of
fundamental physics by introducing and formalizing important notions like
that of particles/antiparticles, renormalizability and symmetry breaking, to
name only a few. Work in condensed matter, particle and statistical physics
all highly benefited from leveraging quantum field theory’s computational
power, which helped establish it as the definite language of nature.

Quantum field theories are generally formulated in terms of their under-
lying symmetries. A particular type of symmetry, namely gauge symmetry,
was found to have a profound impact in the way it dictates and limits the
scope of possible physical theories. Unlike physical symmetries like those
arising from Noether’s theorem, gauge symmetries do not describe the prop-
erties of physical systems. Rather they are indicative of a redundancy in the
description of physics; two states related by a gauge transformation are to be
understood as the same physical state. The consequence of requiring gauge
invariance is a constraint on the form of the interactions between particles.
In the case of a U(1) gauge theory like QED, the electron and the photon
may only interact in the way prescribed by

LQED = −1

4
FµνF

µν − ψ
(
iγµ(∂µ − iAµ)−m

)
ψ (1.1)

in order for the theory to be invariant under local U(1) rotations ψ →
e−iα(x)ψ.

The new machinery of gauge invariance ultimately led to quantum chro-
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modynamics (QCD), a theory of strong interactions used to model composite
particles known as hadrons, which include the proton and the neutron. Con-
ceptually QCD is simply a field theory with fermionic fields named quarks
taken to be invariant under SU(3) gauge transformations. These funda-
mental constituents interact via an octet of gauge bosons known as gluons
subjected to the quarks’ three gauge degrees of freedom (i.e. three types
of charges) known as colours. However, QED and QCD are vastly differ-
ent theories. Whereas QED is a weakly-coupled theory (the fine structure
constant is small enough to allow a perturbative expansion of scattering
amplitudes), the theory of QCD is one of strong interactions1 where per-
turbative methods fail miserably. This property greatly hinders our ability
to make predictions with traditional approaches, thus other techniques need
to be used to expand our understanding of quantum dynamics in this new
regime.

Quantum chromodynamics is not the only theory that suffers from limi-
tations due to strong interactions. In the realm of condensed matter physics,
many new metallic materials discovered since the 1980s were found to ex-
hibit thermodynamic and transport properties not described accurately by
Fermi liquid theory, which is widely used to model most interacting systems
of fermions, including metals, insulators, conventional superconductors and
superfluids. All Fermi liquids have two things in common: their ground
states are characterized by a Fermi surface, and their low-energy excitations
about that Fermi surface behave as weakly interacting quasiparticles and
quasiholes of same electric charge and statistics. Non-Fermi liquids (NFL),
in contrast, are strange metals made up of electrons so strongly correlated
that they cannot propagate long enough to show their particle-like proper-
ties. In other words, the decay rate of excitations in a NFL is too large for
a quasiparticle interpretation of its dynamics. Novel phases of matter that
fall in that category, such as high-Tc cuprate superconductors and fermions
near quantum critical points, have so far eluded a satisfactory theoretical
description and remain largely misunderstood.

Alternative methods thus need to be developed. In practice Monte Carlo
methods are often used to estimate the system’s partition function and its
derivatives. This is done by discretizing spacetime on a finite lattice, eval-
uating the (real) Euclidean action via random sampling, and then extrap-
olating the results to the infinite volume, vanishing lattice spacing limit.
Unfortunately this approach has a few limitations. For one the lattice sizes

1QCD is an asymptotically free theory, meaning that it becomes free at very high
energies but remains strongly interacting for energies below ΛQCD ≈ 220 MeV.
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that can be simulated are very small [1]: a 483 × 64 lattice in QCD cor-
responds approximately to a (4 fm)3 volume, which precludes the study
of long-wavelength physics. Such simulations also require prohibitively ex-
pensive computational resources. Another conceptual issue known as the
fermion sign problem arises when considering theories at non-zero fermion
density. Such systems are described by a chemical potential that induces
a highly-oscillatory behaviour in the partition function (i.e. the Euclidean
action becomes complex), which effectively invalidates the use of Monte
Carlo methods. In addition, lattice methods are limited in scope since they
are only applicable to compute quantities derived from the partition func-
tion, therefore prohibiting the study of transport coefficients and far-from-
equilibrium dynamics.

In both cases, progress has been largely inhibited by the failure of the
field theory framework to be predictive when the fundamental constituents
interact strongly with one another. As such different tools need to be de-
veloped. In 1974, ’t Hooft had an idea: What if we considered an SU(N)
gauge theory for some large value of N? Could it be that an expansion in
1/N might yield satisfactory predictions for QCD when evaluated at N = 3?
He showed that the gauge theory greatly simplified under the assumption
N → ∞, under which the relevant Feynman diagrams are sorted accord-
ing to their degree of planarity [2]. Despite this simplification an analytical
large N field-theoretic solution is still lacking, but progress was made on an
entirely different front in 1997 when Maldacena used string theory to for-
mulate the AdS/CFT correspondence [3]. Surprisingly, lingering questions
about strongly coupled field theories would instead find their answers within
classical general relativity.

Maldacena’s conjecture, also known as the gauge/gravity duality, is a
statement that relates the physics of conformal field theories (CFT) at large
N with the gravitational dynamics of anti-de Sitter (AdS) spacetimes in one
more dimension. The field theory is said to exist on the boundary of AdS,
and the extra radial dimension which extends in the bulk is understood as
its energy scale. Since both theories describe the same physics, they share
the same fundamental degrees of freedom despite the field theory living in
one fewer dimension. It is then said that the AdS/CFT correspondence is a
realization of the holographic principle, which has warranted the use of the
qualificative holographic in regards to the wealth of results obtained within
this framework.

The correspondence’s perhaps most important property is that it is a
strong/weak duality that provides a computational bridge between the two
theories: when the field theory is at strong coupling and calculations are

3



notoriously difficult, they can instead be carried out in the much friendlier
setup of classical gravity. For instance, the computation of expectation val-
ues is instead mapped to the more approachable problem of solving the
Einstein equations with appropriate boundary conditions, whereas quanti-
ties like entanglement entropy are assigned a geometrical interpretation as
the area of a minimal surface. Put simply the two theories are two different
faces of the same coin, and every physical phenomena on one side has a dual
description on the other.

The scope of application of the gauge/gravity duality is also quite vast.
Systems at zero temperature correspond to pure AdS spacetimes with no IR
cutoff (so as not to introduce a temperature scale), whereas the presence of
a black hole horizon in the gravitational bulk encodes the thermodynamics
of the boundary theory. Similarly, theories at finite charge density possess
gravitational duals in the form of charged black holes. The addition of
matter fields in such backgrounds has led to the study of strongly-correlated
systems, including but not limited to NFL as a dual description of Dirac
fermions in AdS, quantum phase transitions via scalar condensation in the
bulk, and holographic QCD.

The gauge/gravity framework has also succeeded in relating fluid flow
in the boundary theory to the dynamics of inhomogeneous dynamical black
holes in AdS, giving rise to what is now known as the fluid/gravity corre-
spondence [4]. This holographic hydrodynamics point of view has proven
particularly useful in shaping our physical intuition about matter interac-
tions given the absence of quasiparticle concept at strong coupling. More-
over, it is possible to go beyond the long-wavelength approximation to study
far-from-equilibrium dynamics directly by solving the time-dependent Ein-
stein equations in all their glory. This regime is often inaccessible to current
theoretical approaches (as in the case of lattice QCD), thus further adding
to the duality’s usefulness and predictive potential.

Finally the AdS/CFT correspondence has provided physicists with new
tools to address fundamental questions about the nature of spacetime. Is-
sues regarding the black hole information paradox and the properties of
entanglement entropy, to name only a few, are readily framed and studied
in this new language. The new geometric insights now possible thanks to
the duality have stimulated creativity and productivity in these areas more
than ever.

All in all, the gauge/gravity duality has been a proficient tool for improv-
ing our understanding of field theories in the strong coupling regime. Most
of the early results were found for static, spatially homogeneous settings in
which only the radial dynamics was relevant. The reason, beyond developing
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our intuition with simple toy models, was mainly that the dual gravitational
description amounted to solving ordinary differential equations that posed
no significant computational challenge. However many interesting things
start to happen once we consider spatially inhomogeneous setups and time-
dependence. For instance, in quantum mechanics the finite well potential
already leads to novel phenomena like scattering and quantum tunnelling.
On account of the complexity of interactions in large N gauge theories, it
follows that richer situations should arise when studying spatially inhomoge-
neous systems. On the gravity side, the trade-off is the need to solve systems
of coupled non-linear partial differential equations numerically, a daunting
task if one is not acquainted with effective techniques to do so.

In this dissertation we undertook a numerical study of spatial inhomo-
geneities in hopes of discovering the richer dynamics underlying strongly
coupled field theories via the tools of the gauge/gravity duality. Our first
foray led us to study the properties of chiral holographic Josephson junc-
tions and the various currents that flow spontaneously as a consequence of
broken translation invariance. We then took on the ambitious project of
generalizing the physics of global quenches – rapid injections of energy in
a system – by considering variations of finite spatial extent, as well as the
resulting dynamics of holographic entanglement entropy that characterizes
this non-equilibrium process. Finally, we veered away from the AdS/CFT
framework to study gravity as an object of its own rather than as a proxy tool
by investigating the stability properties of higher-dimensional black branes
in asymptotically flat space.

We start by motivating the validity of the correspondence in Section 1.2
via a series of mostly qualitative arguments from string theory, the unifying
framework from which it initially emerged. The literature review of Section
1.3 then serves to bring the reader up to speed in regards to the many top-
ics present in this thesis. These topics include expositions to the physics
of holographic superconductors, to the holographic formulation of entangle-
ment entropy, to an approximation of general relativity where the number
of spacetime dimensions is taken to be large, and to the many numerical
methods we have used throughout our analysis of these various systems.

1.2 Introducing the Gauge/Gravity Duality

The gauge/gravity duality is a statement about the equivalence between cer-
tain classes of quantum fields theories and theories of quantum gravity with
an additional spacetime dimension. The first realization of this equivalence
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was found in 1997 by Maldacena, who used string theory to argue that

N = 4 SU(N) SYM in 4D ←→ Type IIB SUGRA on AdS5 × S5.

A few comments are now in order before proceeding further. First, despite
being initially formulated in four spacetime dimensions, the conjecture has
since then been extended to unite d-dimensional QFTs and AdS gravity
in d + 1 dimensions. Second, supersymmetry, which relates the N = 4
multiplet of super-Yang-Mills to the compact manifold S5 in the particular
example above, is not an essential ingredient of the correspondence and may
be relayed to the background without affecting its validity. Although super-
symmetry is useful in constraining the scope of possible interactions and
by providing various quantitative checks on both sides, in this dissertation
we adopt a bottom-up approach to the gauge/gravity duality in which we
only consider the universal subsector of supergravity, namely the one that
determines the dynamics of Einstein gravity with a negative cosmological
constant

Suniversal =
1

16πGN

∫
dd+1x

√−g (R− 2Λ) , (1.2)

with possible inclusions of matter fields. Despite being exempt of supersym-
metric fields, the action (1.2) is always a consistent supergravity truncation
and its solutions may be uplifted to the full string theory if need be. As
such we will restrict our attention to the study of this decoupled subsector,
whose dynamics are understood to be universal across field theories with
gravitational duals. Last, we seek not to prove the conjecture in what fol-
lows but merely to motivate and justify its validity so that the reader may
feel confident in the predictions made with this novel theoretical approach,
while still being aware of its limitations.

1.2.1 Statement of the Duality

In this section we lay out the necessary ingredients to understand the cor-
respondence at a qualitative level via the unifying physics of D-branes. In
particular, we clarify what it means for a gauge theory to be strongly coupled
and review the conditions under which the stringy and quantum corrections
of supergravity are suppressed.

Gauge theories at large N

Consider a Yang-Mills theory with gauge coupling gYM and composed of
matrix-valued fields Φ that transform in the adjoint representation of U(N).
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b c

dh�a
b�

c
di = �a

d�
c
b =

Figure 1.1: The propagator of a U(N) matrix gauge theory in the double-line
notation. Each Kronecker δ represents a flow of colour.

A schematic Lagrangian for this theory would be of the form

L ∼ Tr
[
(dΦ)2 + Φ2 + gYMΦ3 + g2

YMΦ4 + · · ·
]
. (1.3)

The fields Φ, which may include scalars, fermions and/or gauge fields, are
understood to be N × N matrices. Under these assumptions, the index
structure of the propagator is found to be

〈Φa
bΦ

c
d〉 = δadδ

c
b , (1.4)

which can be thought of as encoding colour flow between a fundamental-
antifundamental pair2, as shown in Figure 1.1.

Looking at vacuum-vacuum Feynman diagrams reveals something in-
teresting about matrix-valued gauge theories: double-line graphs can have
non-planar topologies [2]. In fact, every graph can be thought of as the
triangulation of a two-dimensional surface with genus g, which intuitively
corresponds to the number of “handles” a surface possesses. It can be shown
that the coefficient of a vacuum-vacuum diagram with genus g and 2k ver-
tices is N2−2gλk, where we have introduced the ’t Hooft coupling λ ≡ g2

YMN .
In the case where λ is kept fixed but N is taken to be large, diagrams with

higher genus become suppressed, leaving only planar graphs at leading order
O(N2). In fact planarity affects the number of loops present in a diagram,
with non-planar diagrams allowing for fewer colour loops, as illustrated in
Figure 1.2. This observation suggests that the theory greatly simplifies when
taking the ’t Hooft limit (also called the planar limit)

N →∞ and gYM → 0 with λ = g2
YMN kept fixed. (1.5)

We remark that the ’t Hooft limit is neither classical nor free despite the
gauge coupling gYM going to 0; it can be seen that the diagrammatic ex-

2Note that for SU(N) theories, the propagator instead reads 〈ΦabΦcd〉 = δadδ
c
b − δab δcd/N

to account for the tracelessness of the matrix fields (Φaa = 0). However in the large N
limit the dynamics of SU(N) is equivalent to that of U(N).
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/ g2
YMN3 = �N2

(a) A planar diagram.

/ g2
YMN = �N0

(b) A non-planar diagram.

Figure 1.2: An illustration of power-counting for planar and non-planar dia-
grams. Figure (a) shows a planar diagram made with 2 three-point vertices
each contributing gYM, and 3 colour loops each contributing a factor of N .
In contrast, figure (b) also has 2 three-point vertices but only 1 colour loop,
which affects its power of N only.

pansion for the partition function includes an infinite number of modes. In
theory one may use perturbation theory if λ is small enough, but the regime
of interest of AdS/CFT is when the coupling is strong, λ� 1, and quantum
loop corrections of all orders are included.

The low-energy limit of D-branes

Let us now move on to the topic of Dp-branes, which are topological defects
extended in p spatial dimensions in string theory (with string coupling gs)
on which string endpoints can end [5]. D-branes also act as sources for closed
strings, which in this context are best thought of as the excitations of the
vacuum. In what follows we adopt two different but equivalent points of view
regarding the low-energy limit of D-branes, meaning at energies lower than
the one naturally set by the string length `s. For concreteness we consider
the case where p = 3 on which Maldacena’s conjecture was initially based,
but note that the analysis can be extended to different brane configurations
as well.

We first consider N coincident D3-branes in Type IIB string theory at
weak coupling gsN � 1. At low energies, where only massless string states
can be excited, gravity in the bulk decouples entirely from the dynamics on
the branes. This leaves us with massless closed strings, which are identified
as the sources for Type IIB supergravity in flat space, as well as with open
strings. As shown in Figure 1.3, the latter can end on any of the N coinci-
dent D3-branes. It is argued in [6] that the resulting effective action on the
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Figure 1.3: The low-energy limit of a theory of N coincident D3-branes is a
theory of massless strings. The closed strings are responsible for flat space
gravity, whereas the open strings give rise to an SU(N) gauge theory.

branes is that of a ten-dimensional SU(N) (supersymmetric) gauge theory
dimensionally reduced to the p + 1 worldvolume of the Dp-branes. Equiv-
alence between the couplings on the field theory side and in the D-brane
description identify g2

YM = 4πgs. We therefore conclude that when gsN � 1

D3-branes = Free gravity +N = 4 SU(N) SYM in 3+1 dimensions.

On the other hand, we can also think of Dp-branes as black p-brane solutions
of classical supergravity when the coupling is strong gsN � 1 [7]. The
geometry of the D3-branes is given by the metric

ds2 =
ηµνdx

µdxν

f(r)1/2
+ f(r)1/2(dr2 + r2dΩ2

5), f(r) = 1 +
4πgsN`

4
s

r4
, (1.6)

where xµ denotes the 4 coordinates along the worldvolume of the branes and
dΩ2

5 is the metric of a unit five-dimensional sphere S5. For this solution to
be valid, a self-dual 5-form F5 = (1 + ∗)dtdx1dx2dx3df with flux on the S5∫

S5

∗F5 = N (1.7)
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is required. Again there are two types of low-energy excitations that decou-
ple from each other. The first corresponds to long-wavelength excitations
in the bulk, i.e. free gravity in flat space. The second corresponds to fi-
nite energy excitations that become increasingly red-shifted (as seen from
an observer at infinity) as they approach the horizon r = 0. The latter are
captured by the near-horizon geometry

ds2 =
r2

L2
ηµνdx

µdxν +
L2

r2
dr2 + L2dΩ2

5, L4 = 4πgsN`
4
s, (1.8)

which corresponds to AdS5 × S5, with L acting both as the AdS radius of
curvature and the radius of the unit 5-sphere. Thus we conclude that when
gsN � 1

D3-branes = Free gravity + Type IIB supergravity on AdS5 × S5.

We therefore have two descriptions of D-brane physics in two distinct regimes.
The low-energy limit of the D3-brane system corresponds to an SU(N)
gauge theory when gsN � 1, whereas it can be described by supergravity
on AdS5 × S5 when gsN � 1. However we have seen that the gauge theory
description is valid for all values of the ’t Hooft coupling. It is not too big
of a leap then to think of D-branes as the fundamental object that unifies
supergravity and gauge theories, regardless of their defining regime. In other
words, the two theories are equivalent representations of the same physics,
valid for all values of gs and N , as illustrated in Figure 1.4. This is embodied
in the famous duality

N = 4 SU(N) SYM in 4D ←→ Type IIB supergravity on AdS5 × S5

which is most useful when gsN � 1 on both sides.
We have already reasoned that the gauge theory greatly simplifies when

N � λ � 1, which also implies gYM → 0. On the gravity side, this is
equivalent to

L4

`4s
= 4πgsN = λ� 1, (1.9)

which is a statement about stringy corrections to the geometry being sup-
pressed since the string scale `s is much smaller than the AdS radius L.
Similarly, to suppress quantum corrections one needs to look at the ratio
L/`P , where `P is the Planck length, which can be related to the string
length via `4P = gs`

4
s in ten-dimensional string theory. We thus obtain the
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condition
L4

`4P
=

L4

gs`4s
=

(
L4

`4s

)
N

gsN
∼ N � 1, (1.10)

which is saying that quantum corrections to the geometry are akin to 1/N
corrections in gauge theory.

SUGRA 3-brane

N = 4 SYM (�⌧ 1) N = 4 SYM (�� 1)

⇥ S5

,
SU(N)

low-energy

low-energy

strong coupling

strong coupling

Figure 1.4: This diagram illustrates how the AdS/CFT correspondence was
first derived. The starting point is a stack of N coincident D3-branes, in
the upper-left corner. The low-energy limit of this fundamental object re-
sults in an SU(N) super-Yang-Mills theory at weak coupling, which is as-
sumed valid at any value of the coupling λ. The strong coupling limit of
D3-branes instead yields a 3-brane solution of classical supergravity whose
near-horizon/low-energy limit yields Type IIB string theory on AdS5 × S5.
Assuming that the low-energy and strong coupling limits commute, we iden-
tify the two theories in the lower-right corner, resulting in the first known
example of a field theory with a gravitational dual.
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In this section we have argued that SU(N) super-Yang-Mills gauge the-
ories at large N and strong coupling λ� 1 describe the exact same physics
as supergravity on AdS5 × S5 provided it is classical, i.e. provided both
stringy and quantum corrections are suppressed. It is interesting to note
that the duality can be broadened to include spacetimes that are asymptot-
ically AdSp+2×χ8−p, where χ8−p is an 8− p dimensional compact manifold
subject to string theoretical constraints. The conjecture still stands even
if the bulk contains a black hole, with the only difference being that the
dual field theory becomes thermal. Moreover, we mentioned that the choice
p = 3 in the argument above was for the sake of simplicity; similar analyses
for other brane configurations reveal that, when applicable, strongly cou-
pled gauge theories in d dimensions admit a dual gravitational description
in d+1 dimensions. In other words, the gauge/gravity duality is at its heart
a particular realization of the holographic principle, a notion we will define
in more detail in the next section.

1.2.2 Holographic Dictionary

We now provide evidence supporting the validity of the AdS/CFT corre-
spondence. By exploring the geometry of AdS, we show that its symmetries
are in perfect agreement with those of a CFT. We then explore the idea that
the correspondence is in fact a realization of the holographic principle by
matching the degrees of freedom on both sides. We finish by formulating
the field/operator correspondence to establish a direct relationship between
dual quantities. All of these non-trivial checks that form the holographic
dictionary give strong foundations to the conjecture.

Anti-de Sitter geometry

Symmetries play an important and central role in our understanding of
quantum field theories. They constrain the form of interactions, impose the
existence of force carriers as gauge bosons, give us a powerful tool to classify
elementary particles, and so on. In fact, if two theories share the same
symmetries, then there are good reasons to believe that their underlying
mechanisms may well be the same. An early check of the gauge/gravity
duality was to identify the symmetries of anti-de Sitter spacetimes with the
conformal symmetries of the boundary theory.

Let us start by examining d-dimensional conformal field theories, which
are invariant under coordinate transformations that preserve angles. Such
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transformations effectively rescale the metric by an arbitrary positive factor

gµν(x)→ Ω2(x)gµν(x). (1.11)

In the particular case of Minkowski space, conformal transformations include
translations, Lorentz transformations, dilatations xµ → axµ, and inversions
xµ → xµ/x2. It is a straightforward but tedious exercise to extract the
conformal symmetry group from the generators of infinitesimal transforma-
tions. It can nonetheless be shown that the conformal algebra obeyed by
these generators is isomorphic to the algebra of SO(2, d) [8].

As it turns out, the conformal group SO(2, d) is precisely the symmetry
group of anti-de Sitter spacetimes, which is easy to verify. The variation of
the Einstein-Hilbert action with a negative cosmological constant

S =
1

16πGN

∫
dd+1x

√−g (R− 2Λ) , Λ = −d(d− 1)

2L2
(1.12)

yields the Einstein equations for which pure d+1 dimensional anti-de Sitter
space, AdSd+1, is a solution. The most straightforward way to study the
symmetries of this spacetime is by considering its defining hyperboloid with
radius L

X2
0 +X2

d+1 −
d∑
i=1

X2
i = L2, (1.13)

embedded in a flat d+ 2 dimensional geometry with two timelike directions
R2,d

ds2 = −dX2
0 − dX2

d+1 +
d∑
i=1

dX2
i . (1.14)

Its symmetries are therefore described by the group SO(2, d) by construc-
tion, which is what we sought in the first place. We however note that the
hyperboloid contains closed timelike curves that need to be unwrapped for
the space to be causal, as illustrated in Figure 1.5. Thus the equivalence
applies only when we consider its universal cover, for which X0 ∈ R.

There are many coordinate patches that satisfy the defining equation
(1.13) (see Figure 1.6). One such solution is known as global AdS, whose
metric is given by

ds2 = −
(

1 +
r2

L2

)
dt2 +

(
1 +

r2

L2

)−1

dr2 + r2dΩ2
d−1 (1.15)
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X0

Xd+1

~X

Figure 1.5: The defining hyperboloid of AdSd+1. The red circle illustrates
an acasual closed timelike curve.

t

r

r

R1,d�1

Sd�1

Figure 1.6: On the left is a representation of global AdS, which has a cylin-
drical boundary topology. On the right is a representation of the Poincaré
patch, which can be viewed as a collection of warped Minkowski spacetimes
connected along a radial direction.

and whose coordinates cover the entire hyperboloid. Its boundary, located
at r → ∞, is spatially compact and has topology R × Sd−1. Alternatively,
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the Poincaré patch

ds2 =
L2

r2
dr2 +

r2

L2
ηµνdx

µdxν (1.16)

is the set of coordinates {(r, t, ~x)| r > 0, x ∈ R1,d−1} that cover only half
of the defining hyperboloid (1.13). In contrast to the global chart, the
boundary is simply a warped version of Minkowski spacetime R1,d−1. Both
charts are equally valid, and the choice of which one to use depends solely
on the topology that we require of the boundary theory. Without loss of
generality, throughout this thesis we will focus on the non-compact Poincaré
patch (1.16), whose metric makes manifest the decomposition of the isometry
group SO(2, d) of AdS into its subgroups ISO(1, d− 1) (Poincaré transfor-
mations acting on (t, ~x)) and SO(1, 1) (rescaling symmetry). These symme-
tries underlie many field theories of interest, whereas the compact nature of
global AdS is mathematically attractive but feels physically artificial.

The rescaling symmetry of AdS actually provides us with an invaluable
insight in how to think of the extra radial dimension from a field theory
perspective. Indeed, notice how dilatations xµ → axµ on the boundary are
balanced with the bulk radial coordinate scaling as r → a−1r for a > 0.
Since energy is conjugate to time, a process with energy E on the boundary
field theory would necessarily scale as E → a−1E under this symmetry,
i.e. exactly like the bulk radius r. This equivalence under rescaling tells us
that r can be interpreted as an energy scale from the field theory point of
view; high-energy/short-distance phenomena is mapped unto gravitational
dynamics at large radius r, whereas low-energy/long-wavelength physics is
described by the near-horizon (r = 0) geometry. We examine this general
property of AdS spacetimes further in the next section.

Counting and matching the degrees of freedom

It is a straightforward exercise to show that the degrees of freedom on the
field theory side of the duality match with the ones allowed in a theory
of quantum gravity. Let us start investigating the latter situation with a
simple thought experiment showing that a black hole is the most entropic
configuration of space.

Without loss of generality [9], consider the smallest spherical region of
spacetime with area A that completely encloses a matter system with mass
m right below the threshold M required for it to become a black hole. Also
assume that the system has entropy Sm. Let there be a thin shell located
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outside the region of interest with total mass δm = M−m such that a black
hole with area A would form upon collapse. The total initial entropy of the
matter system is Sinitial = Sm+Sδm, whereas upon collapse the final entropy
is that of a black hole, Sfinal = A/4GN , where GN is Newton’s constant. In
order for the second law of thermodynamics to hold, the initial entropy of the
matter system cannot exceed that of the associated circumscribed black hole:
Sm + Sδm ≤ A/4GN . We thus learn that the maximal entropy associated
with a region R of space is proportional to the area of its boundary ∂R

Smax(R) =
Area(∂R)

4GN
. (1.17)

Equation (1.17) is known as the Bekenstein bound [10], and it is a funda-
mental property of gravitational systems in that we have not considered the
microscopic properties of matter in deriving it. The Bekenstein bound is at
the core of the holographic principle since it states that, counter to intuition,
any stable region of spacetime can be described by the degrees of freedom
on its boundary rather than the ones in its volume.

We can now make use of (1.17) to compute the degrees of freedom allowed
in the AdS5×S5 geometry. Without loss of generality, let us work in the
Poincaré patch

ds2 = L2dz
2 + ηµνdx

µdxν

z2
+ L2dΩ2

5, (1.18)

which has a boundary at z = 0. The area of this boundary formally diverges,
but we can regularize it by introducing an IR cutoff3 at z = δ � 1 which
acts as a boundary-like surface with a well-defined area. We find

S =
1

4GN

∫
z=δ

dΩ5d
3x
√−g

∣∣∣
t fixed

=
Vol(R3)Vol(S5)L8

4GNδ3
∼ Vol(R3)N2

δ3
,

(1.19)
where we have used the fact that the ten-dimensional Newton constant is
related to the Planck length via GN = `8P , by definition.

In contrast, the degrees of freedom in a general quantum field theory
scale like the volume of the region of interest. Let’s consider a discretized
version of an SU(N) matrix field theory by introducing an UV cutoff δ
defining the length of the discretized volume cells. There are approximately
Vol(R3)/δ3 such lattice sites, each with N(N − 1) degrees of freedom that
follow from the dimension of the adjoint representation of SU(N). We can

3The new coordinate z is inversely proportional to the radial coordinate r of (1.8):
z = L2/r. As such z = δ corresponds to a large distance regularizer in the bulk.
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therefore estimate the total number of degrees of freedom in the volume to
be

S ∼ Vol(R3)N2

δ3
, (1.20)

in complete agreement with (1.19) up to numerical factors.
This matching of degrees of freedom in the two theories suggests that

the gauge theory living on the boundary of AdS5 is sufficient to describe
the gravitational dynamics inside the bulk and vice-versa. The introduction
of δ as a cutoff in the derivation above shows that the short-distance (UV)
physics of the gauge theory is implemented near the boundary (IR) of AdS5,
a phenomena known as the UV/IR relation [11]. Similarly, we may extend
this argument by considering geodesics and minimal surfaces anchored on
the boundary of AdS5 (see Figure 1.7). Geodesics that have endpoints close
to each other stay relatively close to the boundary and probe high-energy
phenomena from the field theory point of view. Conversely, geodesics with
endpoints distanced further apart and thus associated to long-wavelength
physics on the boundary necessarily go deeper in the bulk, effectively map-
ping the UV of the gravity side to the IR of the field theory. In addition
to our previous discussion regarding the rescaling symmetry, this mapping
serves as an additional argument for interpreting the extra radial dimension
as an energy scale.

Figure 1.7: The gravitational dynamics deeper in the bulk influence the
lengths and areas of geodesics and minimal surfaces with larger spatial sup-
port on the boundary. Larger regions are associated with coarse-grained
long-wavelength physical phenomena, which leads to the interpretation of
the AdS radius r as an energy scale for the dual boundary theory.
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Observables and correlation functions

Perhaps the most remarkable aspect of the gauge/gravity duality is the nat-
ural prescription it provides for calculating gauge theory correlators. Cor-
relation functions are notoriously difficult to compute without the help of
perturbation theory, which fails in the strong coupling regime we are inter-
ested in. In the case of conformal field theories, conformal invariance is a
valuable asset in determining the natural scaling of n-point functions, but
the conformal toolbox also fails when new scales that deform the CFT are
introduced. However, we have argued that the physical content of super-
gravity on asymptotically anti-de Sitter spacetimes can be described entirely
by the gauge theory living on its boundary. As such, classical supergravity
should — and does — offer an equivalent framework in which to compute
gauge theory correlators at strong coupling. The prescription is implemented
via

ZCFT[φ0(x)] = ZSUGRA

[
lim
r→∞

φ(r, x) ∼ φ0(x)
]
, (1.21)

which is a statement about the equivalence of the partition functions, and
therefore of the physical content, on both sides of the duality. It asserts
that every field in the bulk of the gravitational theory acts as a source for
a local operator in the field theory. The sources themselves correspond to
the leading, usually non-normalizable falloff in the asymptotic behaviour
of the bulk fields, in agreement with the fact that local operators describe
short-distance physics.

Further simplifications occur when we consider the limit 1 � λ � N .
The supergravity action is inversely proportional to the 10-dimensional New-
ton constant GN and thus scales proportionally to N2. Ignoring quantum
and stringy corrections therefore allows us to use the saddle-point approxi-
mation, yielding

ZSUGRA ' extremum e−ISUGRA , (1.22)

where ISUGRA is the on-shell supergravity action on AdS5 × S5. As such
only the classical equations of motion derived from the on-shell supergravity
action are relevant in the description of field theory physics at leading order
in N .

On the other hand, for a CFT governed by an action S[O], the partition
function acts as the generating functional of correlation functions

ZCFT[φ0(x)] =

∫
DO e−S[O]+

∫
ddx φ0(x)O(x) =

〈
e
∫
ddx φ0(x)O(x)

〉
CFT

.

Thus a theory with Z[φ0(x)] corresponds to a deformation of the pure CFT
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Z[0] by a source φ0(x). At strong coupling, where perturbation theory does
not apply, one may instead compute expectation values, Green’s functions
and higher-order connected correlators in gauge theory by taking functional
derivatives of the generating functional of connected correlation functions

W [φ0(x)] = − log
〈
e
∫
ddx φ0(x)O(x)

〉
CFT
' ISUGRA, (1.23)

subject to appropriate boundary conditions.
In particular, an important lesson one can learn from (1.23) is that ex-

pectation values of sourced operators in the field theory can be recovered
easily by looking at the asymptotic falloff of the bulk fields themselves. For
illustrative purposes, consider a scalar field φ = φ(r) in AdSd+1 subject to
the Klein-Gordon equation

− 1√−g∂µ
(√−ggµν∂νφ)+m2φ = 0. (1.24)

Near the boundary, the ansatz φ ∼ r−∆ reveals that the above equation is
satisfied only if the condition

∆(∆− d) = m2L2 ⇐⇒ ∆± =
d±
√
d2 + 4m2L2

2
(1.25)

is met. Defining ∆ = ∆+ as the largest root, we learn that the scalar field
has two independent falloffs near the boundary

φ ∼ φ0

rd−∆
+
φ1

r∆
. (1.26)

We thus identify the coefficient of the leading mode φ0 as the source (on
which we impose Dirichlet boundary conditions in AdS), whereas holo-
graphic renormalization [12, 13] informs us that φ1 measures the response
〈O(x)〉 to that source on the boundary. In terms of the dual field theory,
∆ (and thus the mass m) corresponds to the conformal dimension of the
operator O. Moreover, nothing prohibits m2 from taking negative values in
AdS spacetimes since the normalizable mode proportional to φ1 decays in
the limit z → 0 instead of becoming unstable. In fact, taking m2L2 < 0
corresponds to taking ∆ < d, thereby making O a relevant operator, and
the only requirement is that the mass squared is above the Breitenlohner-
Freedman (BF) bound, m2 ≥ m2

BF = −(d/2L)2, otherwise the dimension
∆ becomes unphysically complex [14]. Note that the above discussion is
general in that non-normalizable modes correspond to sources, normaliz-
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able ones are related to operator expectation values, and mass dictates the
conformal dimension of the dual field theory operators4.

Equation (1.23) therefore arms us with a useful prescription to easily
compute correlation functions of strongly interacting fields with geomet-
ric bulk constructs. It also provides a non-trivial check on the correspon-
dence since both quantities can be calculated on both sides. The agreement
between the CFT calculations, where conformal symmetry constrains the
structure of n-point functions, and their counterpart in anti-de Sitter space
was of great help in affirming the validity of the correspondence initially.

The above prescription also yields a way to identify which bulk fields act
as sources for which boundary operators. Let’s consider a charge density
deformation for concreteness. The introduction of a vector field aµ coupled
to a current jµ in the boundary theory amounts to inserting a term

δS = −
∫
ddx aµ(x)jµ(x) (1.27)

in the CFT action

ZCFT =

∫
DOe−

∫
ddx(L−aµjµ). (1.28)

The vector field aµ = (µ, ~νs), whose components are the chemical potential
µ and the superfluid velocity ~νs, is associated with the conserved Noether
current jµ due to the invariance of the theory under global U(1) rotations
O → e−iαO. Thus we identify j0 = ρ(x) as being the charge density of the
boundary theory with conserved charge Q =

∫
dd−1x ρ(x), and ji as the

electric currents. It can be shown that for matter fields O

S[O, ∂µO]− aµjµ ∼ S[O, DµO] (1.29)

with Dµ = ∂µ − iaµ. In other words, the chemical potential and the super-
fluid velocities enter the CFT as the components of a U(1) gauge field despite
actually being related to a global symmetry. This can be mimicked on the
gravity side by introducing a bulk gauge field having aµ as its asymptotic
value. The corresponding supergravity deformation

δI = −1

4

∫
dd+1x

√−gFµνFµν , Fµν = ∇µAν −∇νAµ (1.30)

4Note that both falloffs for the scalar field are normalizable for −d2/4 < m2L2 <
−d2/4 + 1, leading to two different CFTs with operators of dimensions ∆± depending on
our choice of boundary conditions [15].
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with the boundary condition Aµ(r →∞) = aµ satisfies this condition natu-
rally. In this case the U(1) symmetry, previously associated to a conserved
electric current on the boundary, now has the interpretation of a gauge
symmetry in the bulk.

The identification between bulk gauge invariance and global symmetries
on the boundary is in fact general and applies to all bulk gauge fields and
their associated conserved currents, as long as both possess the same Lorentz
structure and quantum numbers. A particularly interesting instance of this
property is the natural coupling between the bulk metric and the bound-
ary energy-momentum tensor, which effectively maps the diffeomorphism
invariance of the metric to global symmetries arising from Lorentz invari-
ance. This is a deep connection that we will revisit in more detail when we
introduce the characteristic formulation of general relativity in AdS space-
times.

1.3 Literature Review

Now that we have provided arguments that support the validity of the
gauge/gravity, we turn our attention to specific applications. In particular
we examine the holographic realization of unconventional superconductors
and discuss entanglement propagation in strongly interacting many-body
systems via the lens of gauge/gravity. We also introduce the perturbative
framework of general relativity when the number of spacetime dimensions
is large, and end with a short discussion on the numerical methods used
throughout this thesis.

1.3.1 Holographic Superconductors

Chapter 2 initiates the study of holographic p + ip Josephson junctions.
Josephson junctions are quantum devices constructed by inserting a thin
layer of normal metal or insulator between two superconducting electrodes
and exhibit various interesting properties that arise as a consequence of bro-
ken gauge invariance in the superconducting phase. In this section we show
how to use the gauge/gravity duality to build a superconductor and then
discuss interesting properties of Josephson junctions and their holographic
realization.
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Conventional superconductors

Conventional superconductors, which undergo a phase transition between
metallic and superconducting states at low temperatures, are best under-
stood from the BCS theory point of view [16]. Consider a gas of electrons on
a lattice made of positive ions. At high temperatures, the dominating force
between electrons is their Coulomb repulsion, resulting in a metalling state.
However, as the temperature is lowered the interaction between electrons
close to the Fermi surface becomes attractive due to phonon interactions
from the lattice, resulting in the binding of electrons in Cooper pairs. The
key discovery of [16] was to show that these pairs, being composite bosons,
are prone to condense, which in turn changes the electronic behaviour and
opens up a band gap Eg in the energy spectrum. It is this gap which is
responsible for superconductivity, effectively preventing electron scattering
and other small energy excitations to ensure non-dissipative electronic flow.

At the level of symmetries, it is commonly said that the Cooper pair con-
densate acquires a vacuum expectation value and spontaneously breaks the
local U(1) electromagnetic gauge symmetry down to the Z2 of particle-hole
symmetry, in accordance with the Anderson-Higgs mechanism [17, 18]. Put
differently, the Higgs mechanism causes the electron phase to be absorbed
inside a massive vector field aµ whose gauge-invariant components are the
chemical potential and superfluid velocities [19]. This situation is reminis-
cent of our earlier treatment of global U(1) symmetries in AdS/CFT, which
we summarized via the equivalence

S[O, ∂µO]− aµjµ ∼ S[O, DµO]. (1.31)

This similarity strongly suggests that spontaneously breaking gauge invari-
ance in the bulk could generate superconductivity on the boundary. and it
was only a matter of time until all of the ingredients were assembled in the
gauge/gravity duality to build a holographic superconductor.

Holographic superconductors

The model that we introduce in what follows provides a microscopic de-
scription of superconductivity at strong coupling via its dual gravitational
interpretation. Indeed, holographic superconductivity arises without the
need for quasiparticles; the onset of superconductivity below a critical tem-
perature is diagnosed via the condensation of a charged scalar operator, and
the theory is formulated entirely in terms of conserved charges, currents, and
expectation values. The hope is that this first-principle model of supercon-
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ductivity may help elucidate the more elusive properties of unconventional
materials, such as the high-Tc cuprates.

A simple Abelian Higgs model in asymptotically anti-de Sitter space-
time was first proposed in [20] to show that, under certain conditions, the
necessary symmetry-breaking ingredients could be achieved in the bulk to
reproduce superconductivity on the boundary theory [21, 22]. Consider the
Lagrangian

L = R− 6

L2
− 1

4
FµνF

µν − |∂µψ − iqAµψ|2 −m2|ψ|2. (1.32)

The first two terms correspond to the Hilbert-Einstein action for asymptot-
ically AdS4 spacetimes, while the remaining terms correspond to the Higgs
sector, composed of a charged scalar field ψ = ψ(r) and an Abelian gauge
field A = φ(r) dt. Let’s simplify things further by taking m2 = −2 and
considering the probe limit. Taking q →∞ while keeping both ψ = qψ and
φ = qφ fixed in the equations of motion resulting from (1.32) results in both
of them dropping out of Einstein’s equations, yielding the Schwarzschild-
AdS4 black hole solution

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2), f(r) =

r2

L2

(
1− r3

0

r3

)
(1.33)

with Hawking temperature

T =
3r0

4πL2
(1.34)

and effectively preventing matter fields from backreacting on the geometry.
Note that we can use scaling symmetries to set L = r0 = 1, which we do
now. For their part, the Maxwell and Klein-Gordon equations

φ′′ +
2

r
φ′ − 2ψ2

f
φ = 0 (1.35a)

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

(
φ2

f2
+

2

f

)
ψ = 0 (1.35b)

remain unchanged, and the asymptotic behaviour of ψ and φ reveals the
properties of the boundary field theory. Asymptotic analysis shows that

φ = µ− ρ

r
+ · · · (1.36)

ψ =
ψ(1)

r
+
ψ(2)

r2
+ · · · (1.37)
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as r →∞. We choose not to source the scalar field by setting ψ(1) = 0; this
ensures that solutions with 〈O〉 ≡

√
2ψ(2) 6= 0 (and thus ψ 6= 0) sponta-

neously break gauge invariance in the bulk and thus the U(1) symmetry on
the boundary, as is expected from Cooper pair condensation in conventional
superconductors. Given the isotropy of the scalar operator in the boundary
theory, such symmetry-breaking solutions correspond to s-wave holographic
superconductors.

As it turns out, the solutions to equations (1.35) do depend on the dimen-
sionless ratio T/µ of the black hole solution. Note that there are only two
inequivalent temperatures in a conformal field theory: zero and non-zero. In
our case the chemical potential deforms the dual field theory by introducing
a new scale, and maintaining scale invariance requires that all equilibrium
quantities depend uniquely on T/µ. Thus changing µ amounts to changing
the temperature of the boundary theory, which we can do continuously. To
identify the critical temperature Tc at which the phase transition occurs, it
is possible to use either µ or ρ since Tc ∝ µ ∝ √ρ.

At higher temperatures, which we control by keeping T = 3/4π and
taking µ small, the only solution to (1.35) is

φ = µ

(
1− 1

r

)
, ψ = 0, (1.38)

which corresponds to a normal metal in the dual theory. However, low-
ering the temperature yields a second-order phase transition in the order
parameter 〈O〉, as shown in Figure 1.8.
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Figure 1.8: The normalizable falloff ψ(2) ∼ 〈O〉 serves as an order parameter
for the superconducting phase transition of an s-wave superconductor.
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The underlying mechanism explaining why ψ 6= 0 involves the effective
mass of the scalar due to its coupling to the gauge field via covariant deriva-
tives

m2
eff = m2 + gttq2φ2. (1.39)

Very close to the horizon, there is a competition between gtt → −∞ and
φ → 0. A stability analysis of black hole perturbations showed that the
effective mass (1.39) is driven below the BF bound at low enough tempera-
tures due to the near-horizon profile of the gauge field, in such a way that
the theory becomes unstable to scalar condensation. Thus not only does
this gravitational solution provide a dual description of superconductivity
at strong coupling, it also acts as one of the few counterexamples to the
long-standing conjectures that black holes cannot have stable hair.

Indeed, it is worth mentioning that it is a remarkable discovery for solu-
tions with ψ 6= 0 to exist in the bulk. In general relativity, such uncommon
solutions are called hairy black holes, where hair is defined as the free pa-
rameters of a black hole not subject to a Gauss law [23]. In fact most black
hole solutions with hair were known to be unstable, including neutral AdS
black holes with neutral scalar hair [24], until [20] showed that Reissner-
Nordstrom black holes in AdS are stable (i.e. are a minimum of the free
energy) under condensation of highly charged scalars.

We now turn attention to the study of the electric conductivity of the
dual field theory to show that the above setup is indeed a holographic realiza-
tion of a superconductor. This is done by linearizing the Maxwell equations
about a perturbation Ax, for which we allow a time dependence e−iωt. The
conductivity can then be calculated from Ohm’s law (see Figure 1.9)

σ(ω) =
〈Jx〉
Ex

= − iA
(1)
x

ωA
(0)
x

, where Ax = A(0)
x +

A
(1)
x

r
+ · · · (1.40)

An interesting observation is the presence of an infinite DC conductivity
(ω = 0) for T < Tc, as is expected from a superconducting phase. A gap
frequency ωg can be extracted from the electric conductivity by looking at
where Re(σ) stops being exponentially suppressed. Note that the real part
of the conductivity is related to dissipative processes, and the presence of
a gap signals non-dissipative electric currents for ω . ωg and implies the
presence of an energy gap in the band spectrum.

A surprising feature of holographic superconductivity is the regularity
ωg ≈ 8Tc across all masses m2 > m2

BF for both d = 3 and 4 [25]. Comparing
to the BCS theory result ωg ≈ 3.5Tc, we conclude that holographic supercon-
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Figure 1.9: This image shows the formation of a conductivity gap in the
dissipative part of the conductivity. This gap increases as the temperature
is lowered; from left to right, these curves have µ = 5, 7, 9, 11.

ductors are indeed strongly coupled as they require more energy to overcome
the conductivity gap. We also note that the relation ωg = 2Eg between the
conductivity and band gaps is only applicable for weakly coupled systems in
which there is a pairing mechanism at work. The band gap for holographic
superconductors may be extracted via the relation Re(σ) ≈ e−Eg/T at small
frequencies, and we generally observe a non-integer proportionality between
the two gaps, indicative of the absence of a quasiparticle interpretation [22].

In addition to the symmetry breaking condensate and the properties of
the conductivity, this gravitational model shares other similarities with real
superconductors, namely in its behaviour when exposed to magnetic fields
(generation of screening currents, existence of a magnetic penetration depth,
formation of superconducting droplets, etc.) [22].

Other symmetry-breaking solutions have also been found for which the
order parameter exhibits different symmetries (for a review, see [26]). For
instance, rather than introducing a scalar charged under a U(1) gauge field,
it was instead proposed to consider an SU(2) Yang-Mills theory in the bulk
where the U(1) subgroup of SU(2) is identified with the electromagnetic
gauge symmetry [27, 28]. The generators of SU(2) satisfy the relation
[τ b, τ c] = εabcτa, where τa are related to the Pauli matrices and εabc is the
antisymmetry tensor. Choosing τ3 as the generator of the electromagnetic
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U(1), the gauge field ansatz A = Aaµτ
adxµ with

A = φ(r)τ3dt+ w(r)τ1dx (1.41)

breaks rotational invariance by picking the x direction as special, thereby
giving rise to a px-wave superconductor when the order parameter w con-
denses. Similarly, the ansatz

A = φ(r)τ3dt+ w(r)
(
τ1dx+ τ2dy

)
(1.42)

preserves a combined gauge and spatial rotation such that the resulting
holographic superconductor is of p+ip-type symmetry. Both solutions break
time-reversal invariance since the condensate w appears as a magnetic field
in F 3

µν . These additional features allow us to make more precise statements
about the connection between holographic models and real-life materials
such as the cuprates, which exhibit similar properties [29, 30].

In light of all the above, attempts to study exotic theories with the tools
of the gauge/gravity duality indeed look promising. Despite the deceivingly
simple nature of the models considered, one can hope that the underlying
foundational principles may reveal generic features of strongly coupled field
theories.

Josephson junctions and their holographic realizations

We now turn our attention to Josephson junctions [31], a quantum device
made of two superconductors (S) separated by a weak link, typically an
insulator (I) or a normal metal (N). SIS and SNS junctions exhibit a pecu-
liar phenomenon called the Josephson effect in which a supercurrent may
flow from one superconducting electrode to the other even in the absence
of an externally applied voltage. This phenomena is due to the proximity
effect, explained microscopically at weak coupling by a charge-transfer pro-
cess known as Andreev reflection whereby the electrons in the weak link
transfer the order of the superconducting condensate across the interface,
giving rise to a supercurrent. The proximity effect can be thought of as a
macroscopic quantum tunnelling of charge [32].

Josephson junctions thus provide a clear example that lowering the de-
gree of symmetry in a system can lead to novel phenomena. The consequence
of spontaneously breaking U(1) gauge invariance is that superconductors
“pick up” a particular phase, and it is precisely the gauge-invariant phase
difference ∆ϕ between the two superconducting layers that is responsible
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for the Josephson current, whose magnitude is

J = Jmax sin(∆ϕ). (1.43)

At the level of symmetries, the Josephson effect occurs as a consequence
of spatial discontinuity of the superconducting material. Given that holo-
graphic duals are sensitive to the underlying symmetry structure, the holo-
graphic realization of such a junction should be possible.

As a matter of fact, a holographic Josephson junction was first con-
structed in [33] by letting the chemical potential of the Abelian Higgs model
vary spatially in such a way that two superconducting regions would be sep-
arated by a normal metal. The resulting system of equations can be solved
numerically; an asymptotic analysis of Ax, whose presence is required since
translation invariance is broken, reveals that the behaviour (1.43) can be
reproduced with remarkable precision. Moreover, it was found that the
magnitude of the maximal current Jmax decayed exponentially with the size
of the metallic link as the proximity effect weakens. Now then how does
having an order parameter with different symmetry properties affect the
physics of Josephson junctions? We answer this question in more detail in
chapter 2.

1.3.2 Entanglement Entropy

We now steer away from the condensed matter applications of the holo-
graphic duality to take a deeper look at a quite remarkable entry in the
AdS/CFT dictionary, which relates the entanglement entropy of a subregion
in the dual field theory to the area of a bulk extremal surface anchored on
its boundary. In what follows we define the notion of entanglement entropy,
outline how to compute its value geometrically, and discuss constraints on
entanglement propagation in the context of holography.

Holographic entanglement entropy

When investigating the properties of a quantum field theory, a physicist’s
first instinct is to look at the correlation functions of its local operators. The
motivation is simple: all dynamical quantities describing the system, such
as scattering cross sections and decay rates of particles, can be derived from
these correlators. However, lessons from QFT at strong coupling teach us
that some non-local quantities are crucial in characterizing a theory’s phase
structure. For instance, the confinement-deconfinement transition of QCD
employs gauge-invariant Wilson loops as an order parameter.
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Entanglement entropy is another example of a non-local physical quan-
tity of great interest. As its name suggests, the entanglement entropy of a
region gives a measure of how the degrees of freedom localized within are
entangled with the rest of the system. Beyond determining the number of
operative degrees of freedom in a QFT, entanglement entropy is also used
as an order parameter for characterizing topological states of matter not
readily described by the symmetry breaking paradigm. Understanding this
quantity better may thus provide new perspectives in the methods we use
to investigate field theories.

Consider a system described by a pure quantum state |Ψ〉, with density
matrix ρ = |Ψ〉〈Ψ|. The von Neumann entropy of the total system

S = −Tr ρ log ρ (1.44)

is necessarily zero, by virtue of |Ψ〉 being a pure state. We now divide the
system into two regions, A and its complement B. This partitioning amounts
to separating the total Hilbert space of the system as H = HA ⊗ HB. As
a result, one may describe the state of the degrees of freedom within A
with total ignorance of what goes on in B via the reduced density matrix
ρA = TrB ρ, where the trace is taken over HB. The bipartite entanglement
entropy is thus defined as the von Neumann entropy of the reduced density
matrix

SA = −TrA ρA log ρA. (1.45)

For purely quantum system, SA = SB, whereas the above measure mixes
both entanglement and thermal entropies at finite temperature and SA 6=
SB. Entanglement entropy in d dimensional QFTs is also known to obey an
area law5 [35, 36]

SA = α
Area(∂A)

εd−2
+ finite terms, (1.46)

where α is a context-dependent constant and the UV cutoff ε is introduced to
model the divergence of entanglement entropy in the continuum limit. This
non-extensive property has an intuitive interpretation: the quantum entan-
glement between A and its complement B is strongest at their boundary ∂A
and thus scales as the area of the boundary rather than with the volume
within. It also evokes a curious connection with the Bekenstein-Hawking

5In the case of a 1+1 CFT at criticality, entanglement entropy scales logarithmically
with the size of A [34].
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entropy for black holes

SBH =
Area of horizon

4GN
. (1.47)

Indeed, a black hole can be thought of as the inaccessible region B whose
degrees of freedom are traced out when computing the reduced density ma-
trix ρA. However issues related to the microscopic origin of entanglement,
namely the dependence of entanglement entropy on the number of matter
fields and on an ultraviolet cutoff, prevent the full realization of this in-
triguing connection [37]. Despite these subtletites, the intuitive similarity
between entanglement entropy and black hole entropy still served as a strong
motivation for the holographic proposal of Ryu-Takayanagi (RT), which we
now discuss.

For time-independent d+ 1 dimensional asymptotically AdS spacetimes,
it was first proposed in [38, 39] that the entanglement entropy of a boundary
region A is proportional to the area of the minimal surface γA anchored on
its boundary ∂A

SA =
Area(γA)

4G
(d+1)
N

. (1.48)

The minimal surface γA is a codimension-2 surface in the bulk that acts
as the holographic screen6 with the most severe entropy bound on the lost
information [40]. The Ryu-Takayanagi proposal has been very successful
in reproducing the analytical results found for the entanglement entropy of
1+1 dimensional CFTs. As for higher dimensional CFTs, the computation
of entropy is usually complicated and not amenable to analytic results, in
which case the alternative method (1.48) is of great help in uncovering some
of the more elusive properties typical of strongly coupled systems.

Calculating entanglement entropy from the area of minimal surfaces is a
notion that makes sense in static spacetimes, but the generalization to time-
dependent settings is not an immediate one. Minimal surfaces are an ill-
defined concept in Lorentzian spacetimes since perturbations in the timelike
direction can be made to decrease their area indefinitely. This difficulty
can be avoided in the static case by either Wick-rotating time to obtain a
Euclidean geometry, or by restricting our attention to slices of constant time.
In other words, the notion of time on the boundary can be seen to extend
naturally in the bulk for static spacetimes such that there exists a canonical
foliation by codimension-1 spacelike surfaces containing the minimal surfaces

6By holographic screen we mean a bulk surface γ whose boundary ∂γ = ∂A isolates
region A from its complement, “shielding” it from the latter’s degrees of freedom.
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of interest. The addition of time-dependence is trivial from the field theory
point of view since there still exists a natural Hamiltonian notion of time
for dynamical QFTs in fixed backgrounds. However, from a gravitational
perspective we need to ensure that the geometric construction (1.48) can be
generalized in a covariant way to account for diffeomorphism invariance in
the bulk.

A covariant holographic entanglement entropy proposal was first outlined
in [41]. In Lorentzian spacetimes, the concept of minimal surface is instead
replaced by that of extremal surface, i.e. a saddle point of the area functional

Area(E) =

∫
E
dd−1y

√
det g̃, (1.49)

where g̃αβ is the induced metric on E described by coordinates yα. The con-
struction proposed in [41] involves light-sheets, which are trapped manifolds
corresponding to congruences of null geodesics with non-positive expansions
(expansions measure the fractional rate of change of a geodesic congruence’s
cross-sectional area [42]) (see Figure 1.10). The extremal surface EA is then
simply the intersection of future- and past-directed light-sheets with van-

Figure 1.10: Depiction of a light-sheet. A codimension-2 spacelike surface
on the boundary (in blue) necessarily has four congruences of null geodesics:
future/past directed outgoing/ingoing geodesics. The converging (i.e. non-
positive expansion) light rays shown above form a light-sheet in the bulk.
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ishing expansions, a condition that results in a stationary point of (1.49).
With EA constructed this way, we obtain the time-dependent covariant en-
tanglement entropy

SA(t) =
Area(EA)

4G
(d+1)
N

. (1.50)

Initially formulated as conjectures, the Ryu-Takayanagi proposal and its
covariant analogue have since both been derived from AdS/CFT first prin-
ciples [43, 44], thereby firmly cementing their presence in the holographic
dictionary. Furthermore, holographic entanglement entropy satisfies many
non-trivial properties, such as consistency with field theory causality [45] in
the covariant case, positivity, continuity, sub-additivity (SA1 +SA2 ≥ SA for
A = A1 ∪ A2) and many other inequalities that follow from the properties
of density matrices [46]. All of these results reveal intriguing connections
between quantum information and geometry, and further investigation on
both sides of the duality are bound to reveal additional insights about the
fundamental nature of entanglement.

Far-from-equilibrium physics and entanglement propagation

With a time-dependent prescription to compute entanglement entropy in
hand, we now find ourselves in a position to ask interesting questions about
the thermalization of entanglement for strongly coupled field theories in non-
equilibrium settings. Methods for driving a system out of equilibrium that
can be reproduced both in experimental setups and in holographic models
include quantum quenches, which are deformations of the theory occurring
over a relatively short timescale. In a field theory, one may quench a system
by modifying the Hamiltonian and letting the former eigenstate evolve to
its new equilibrium. Alternatively, one may excite the ground state of a
system by turning on a collection of sources for a short period of time. The
work done by the sources will drive the system into an excited state that
will eventually return to equilibrium according to the initial Hamiltonian’s
dynamics.

Understanding the dynamics of quantum matter out of equilibrium is
no easy task, yet holography provides a simple toy model that may of-
fer a universal characterization of non-equilibrium processes. One of the
most common type of holographic quench in the AdS/CFT literature is a
global quench modelled after the time-dependent Vaidya metric written in

32



Eddington-Finkelstein coordinates

ds2 =
L2

z2

(
−f(v, z)dv2 − 2dvdz + d~x2

)
, f(v, z) = 1−Θ(v)g(z). (1.51)

The Θ(v) function is such that spacetime is pure AdS for v < 0, whereas it
is determined by the black hole geometry dictated by g(z) for v > 0. The
Vaidya-AdS metric models an infinitely thin shell of null dust collapsing into
a black hole and is thus dual to a thermal quench where a field theory is
uniformly and rapidly injected with energy from an external source.

This setup has been studied extensively [47–61] in a wide variety of con-
texts, including but not limited to the study of dynamical correlation func-
tions and Wilson loops, observations of universal scaling laws of boundary
observables, quenches with charged matter, thermalization of mutual and
tripartite information, and generalizations to non-relativistic theories. In
particular, [47, 61] thoroughly investigated the thermalization of entangle-
ment entropy in the Vaidya-AdS geometry and found a universal characteri-
zation of entanglement growth. For a spatial region bounded by a surface Σ
of size R, an analysis of entanglement entropy at macroscopic scales R� `eq

reveals that
∆SΣ(t) = seq (VΣ − VΣ−vEt) + · · · , (1.52)

which suggests that entanglement propagates locally, carried by a wave-front
dubbed entanglement tsunami travelling at velocity vE as in Figure 1.11.

⌃⌃� vEt

Figure 1.11: Illustration of entanglement growth via the entanglement-
carrying wavefront ∆SΣ(t) = seq (VΣ − VΣ−vEt), also dubbed entanglement
tsunami. The yellow region is entangled with the exterior of Σ while the
white region has not been affected yet. Figure adapted from [47].
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In this scenario, `eq ∼ zh ∼ s
−1/(d−1)
eq denotes the time scale after which

production of thermal entropy ceases to occur locally post-perturbation at
the microscopic level, and the condition R � `eq effectively precludes the
study of narrow entangling regions, instead focusing on macroscopic regions
whose extremal surfaces probe the deepest part of the IR geometry.

The tsunami velocity can be extracted from the metric (1.51); it is equal
to

vE =

(
zh
zm

)d−1√
−g(zm), (1.53)

where zm minimizes g(z)z−2(d−1). Note that vE is a property of the field
theory at equilibrium since it is derived from the black hole geometry. As
such, it is independent of the details of the initial state. Moreover, it is
natural to expect that the addition of matter sources reduces the efficiency
of equilibration processes. In the bulk, this translates into the statement

that for general black hole geometries, vE ≤ v
(S)
E , where the latter is the

tsunami velocity of a Schwarzschild black hole. Thus v
(S)
E effectively acts

as an upper bound of entanglement growth in strongly coupled systems,
which intuitively makes sense since entanglement generation in a gapless field
theory is most efficient in the limit of infinite coupling, which corresponds
to the Schwarzschild geometry in the language of the correspondence.

Nonetheless, the tsunami picture does not provide a description of the
underlying microscopic mechanisms responsible for the spread of entangle-
ment in generic field theories. Consider for instance a 1+1 CFT, for which
the entanglement entropy of an interval of length R grows linearly until it
saturates after a time t = R/2. This behaviour can be understood by con-
sidering free-streaming quasiparticles carrying entanglement [62]; the satu-
ration time is then understood to be the time required until all EPR pairs
produced locally within the interval meet, thus inducing correlations be-
tween local observables (see Figure 1.12). Consequently, interactions may
be disregarded since the long-range entanglement of the final state finds its
origins from the spread of short-distance correlations.

The free-streaming model can be generalized to higher dimensions and
compared to the entanglement tsunami picture [63], but fails to capture im-
portant aspects of entanglement growth for strongly interacting systems. In-
deed, the tsunami wave-front is found to propagate faster than entanglement-
carrying quasiparticles travelling at the speed of light

v
(streaming)
E =

Γ(d−1
2 )

√
πΓ(d2)

≤ v(S)
E < 1. (1.54)
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Figure 1.12: The free-streaming model asserts that entanglement is spread
via quasiparticles (in blue) propagating at the speed of light. Saturation for
a subregion of size R (in red) occurs at t = R/2, corresponding to the time
it takes for all quasiparticles to correlate with one another.

This observation suggests that the simplified model of [63], despite repro-
ducing many of the scaling behaviours of entanglement found in the Vaidya-
AdS setup, is not an appropriate description of entanglement spread in the
strong coupling regime because it neglects the crucial role played by inter-
actions. This result is not very surprising considering that the field theories
under consideration are not amenable to a quasiparticle description. On
that account, the model of [47, 61] only provides predictions rather than ex-
planations of the principles responsible for entanglement propagation, which
calls for a closer inspection of entanglement thermalization in holographic
setups, which we investigate in chapters 3 and 4.

1.3.3 Large D Limit of General Relativity

The theory of general relativity is, at its heart, a geometric description of
gravitational dynamics. The Einstein equations

Rµν −
R

2
gµν + Λgµν =

8πGN
c4

Tµν (1.55)

relate the curvature of spacetime, captured by the Ricci tensor Rµν and its
trace R, to the presence of matter, embodied by the energy-momentum ten-
sor Tµν . Despite their concise appearance, the Einstein equations are second-
order coupled non-linear hyperbolic-elliptical partial differential equations –
in other words, very hard to solve. Known analytical solutions usually boast
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a high degree of symmetry, which in turn greatly simplifies the equations.
However, a myriad of phenomena not prone to such simplifications are also
encoded within (1.55), and analytical approaches are far and few between.

Additionally, we have so far used gravity as a tool to study strongly
coupled field theories. Occasionally this programme led to novel discoveries
about the physics of black holes, such as the possibility of supporting stable
scalar hair in AdS spacetimes, but most of the insights were nonetheless
gained the other way around. In this section we introduce a new formal-
ism, the large D limit of general relativity, as an attempt at providing an
analytical framework to study gravitational systems themselves. Gravity is
interesting in its own right but its secrets are generally well-guarded, thus
the hope is that this new approximation may yield universal predictions
about the classical physics of black holes.

Large D formalism

The large D formalism, which gives a description of gravity when the number
of spacetime dimensions tends to infinity, is an approximation that greatly
simplifies gravitational dynamics by decoupling the near-horizon region from
the rest of spacetime. As a result, large D black holes essentially behave like
non-interacting particles of vanishing collision cross-section [64]. Although
unrealistic, taking D →∞ allows us to make a simplifying expansion in 1/D
about non-perturbative solutions of Einstein’s equations (e.g. black brane
solutions) with the expectation that sensible results may be obtained for
intermediate values of D.

Let us now examine some of the consequences of taking D to be large.
One of the main considerations of this formalism is the introduction of a
hierarchy of scales. Take for instance the Schwarzschild-Tangherlini solution
with a horizon radius r0

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2, f(r) = 1−
(r0

r

)D−3
. (1.56)

Letting D →∞ results in a spacetime that is asymptotically flat everywhere
outside the horizon. Expanding f(r) in the neighbourhood of r = r0 for D
large, we obtain

lim
D→∞,r→r0

f(r) =
D

r0
(r − r0), (1.57)

informing us that the gravitational field is strongly localized in the near-
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horizon region

r − r0 .
r0

D
≡ `κ (1.58)

and essentially non-existent outside. The new scale `κ is in fact related to
the black hole’s gravitational gradient

∂f

∂r

∣∣∣∣
r=r0

→ D

r0
= `−1

κ (1.59)

as well as to its surface gravity.
This separation of scale is effectively responsible for the decoupling of the

near-horizon dynamics from the far-region’s; solving the Einstein equations
in the overlap region `κ � r − r0 � r0 simply involves the matching of
asymptotic expansions. This is done by requiring regularity at the horizon,
which in turn yields effective boundary conditions on large-distance fields
from imposing continuity. In spirit, this matching procedure amounts to
integrating out the degrees of freedom at scales < `κ.

In addition to this curvature length `κ, black holes are also characterized
by scales due to their geometry. The area of a unit SD−2 in the large D
limit is

ΩD−2 ∼
D√
2π

(
2πe

D

)D/2
, (1.60)

which leads us to define an area/entropy length scale `A related to the event
horizon’s area

`A ∼ A1/(D−2)
H ∼ r0√

D
. (1.61)

We thus find a hierarchy: `κ � `A � r0. A surprising aspect of the large D
formalism is that the notion of short distances arises from the parametric
dependence of these length scales on D rather than from the usual compar-
ison of distances with the horizon radius. This hierarchy is important since
each scale, once fixed, defines what physical regime we home in as we take D
to infinity. We can see this concretely by comparing the Gregory-Laflamme
instability with black hole quasinormal modes. On one hand, when D is
large black branes are unstable to perturbations with wavelengths larger
than

λGL =
2π

kGL
=

2πr0√
D

(
1 +O(D−1)

)
. (1.62)

Consequently an appropriate rescaling of the spatial directions along the
brane d~x → d~x/

√
D is necessary to capture the physics of interest since

the degrees of freedom < λGL are effectively irrelevant. On the other hand,
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black hole quasinormal modes are characterized by very large frequencies

Re ΩQN ∼
D

r0
, (1.63)

which is an entirely different regime from the Gregory-Laflamme spectrum
ΩGLr0 ∼ O(D0). As such a study of quasinormal modes at large D will
simply ignore black brane instabilities.

These geometric considerations need to be kept in mind when investigat-
ing gravitational dynamics of large D systems, or else we might miss effects
we might be interested in. A similar argument applies in the presence of
matter fields. For example, the addition of a U(1) gauge field necessarily
introduces a new length scale – in this case a “charge radius” – which mea-
sures the gravitational reach of electromagnetism away from the horizon.
A corollary of this discussion is that non-geometric quantities like mass or
angular momentum are not natural in the large D language; conversion con-
stants such as Newton’s constant are needed to assign a conceptually clear
meaning to them.

Finally, an important aspect of this formalism is that it makes no claim
about the range of validity and the accuracy of this expansion for interme-
diate values of D. Such questions are best answered on a case-by-case basis.
However, this approximation is surprisingly successful in capturing some
robust features of higher-dimensional black holes, such as their quasinor-
mal modes and the generic Gregory-Laflamme instability that afflicts them,
even at low values of D. In fact the largest deviations in the unstable black
string’s spectrum when D = 7 is about 4%, decreasing to 1% when D = 8
and much lower as D is increased [64, 65]. Such optimistic results are of
course encouraging the pursuit of new knowledge in this direction.

Gregory-Laflamme instability

We now conclude this section with a short introduction to the Gregory-
Laflamme instability [66, 67], a surprising phenomenon found in higher di-
mensional (D > 4) gravity.

As we have already discussed, four-dimensional static black holes in flat
space are stable to linearized perturbations and uniquely determined by
their mass, charge and angular momentum. Their topology is also fixed;
only spherical event horizon are allowed. These constraints are easily re-
laxed when considering higher-dimensional black holes, as we can see from
comparing two equally valid solutions when D = 5. The Schwarzschild
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solution can be generalized to

ds2 = −V5(r)dt2 +
dr2

V5(r)
+ r2dΩ2

3, V5(r) = 1− r2
5

r2
. (1.64)

This black hole has an event horizon located at radius

r2
5 =

8G
(5)
N M

3π
. (1.65)

We can alternatively consider the view where we add an extra linear di-
mension z to the four-dimensional Schwarzschild solution. Assuming that
nothing depends on this new dimension, the D = 4 black hole solution is
also a solution to R5a = 0, by construction. This is the so-called black string

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2dΩ2

2 + dz2, V (r) = 1− r0

r
, (1.66)

and r0 = 2G
(4)
N M .

Already we see that the topology of black holes can be much richer when
D > 4. Solution (1.64) features an hyperspherical horizon whose topology is
S3, whereas the black string (1.66) is topologically R× S2, i.e. cylindrical.
Moreover, the black string solution formally has infinite mass. To remedy
this, we take the direction z to be compactified over a circle of length L
such that we have a string of finite length and mass, in accordance to the
principles of Kaluza-Klein theory.

Still, it is possible for these two solutions to have the same energy (in con-
trast with the uniqueness theorem that prevent this in the four-dimensional
case), which prevents us from using the principle of least energy to de-
termine which configuration is the likeliest. Instead we look at states of
highest entropy. The entropy of a black object is related to the area A of its
event horizon in Planck units via S = A/4GN . At this point, an important
subtlety of Kaluza-Klein theory needs to be taken into consideration. Com-
pactifying extra dimensions always results in an effective change in Newton’s
constant, which we need to account for if we are to make sensible compar-
isons between the black hole and black string. Indeed, dimensional analysis
of the gravitational constant in D dimensions reveals that[

G
(D)
N

]
= lengthD−2. (1.67)

39



In particular, we have G
(5)
N = LG

(4)
N . Thus the black hole (1.64) has entropy

SBH =
2π2r3

5

4G
(5)
N

=
π2r3

5

2LG
(4)
N

(1.68)

whereas the black string’s (1.66) is

SBS =
4πr2

0L

4G
(5)
N

=
πr2

0

G
(4)
N

. (1.69)

Assuming both configurations have the same mass M and setting G
(4)
N = 1

without loss of generality, we find

SBH =

√
8L

27πM
SBS. (1.70)

This thermodynamic argument shows that the black hole’s entropy surpasses
that of the string for large enough L, which suggests that the latter is subject
to a long-wavelength instability. This instability has been investigated in the
seminal papers [66, 67] by Gregory and Laflamme in which they solved the
linearized Einstein equations numerically and confirmed the existence of a
spectrum of exponentially growing modes near the horizon.

The perturbative nature of this calculation reveals information about the
onset of the instability, yet it remains unclear what its endpoint should be.
Simply put, there are two possible scenarios: deformation into a non-uniform
black string (NUBS), or fragmentation of the event horizon. Arguments pro-
posed in [68] claim that an event horizon can never classically pinch-off and
should settle the critical string into a NUBS. However, computer simulations
showed evidence to the contrary: the authors of [69] discovered that the
late-time numerical evolution of the five-dimensional black string instabil-
ity tended towards a fractal-like distribution of spherical black holes along
ever-thinning string regions. The singularity therefore becomes “naked”,
thus providing the first counter-example of a classical process that violates
the cosmic censorship conjecture.

Whether quantum mechanical processes take over and prevent the un-
cloaking of the singularity as the black string pinches off remains unknown
to this day. However it was later discovered that the fate of the black string
is more complex than previously thought as it depends on the number of
spacetime dimensions [70]. Perturbative NUBS solutions close to the critical
point of the instability were found to be thermodynamically favoured over
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the critical string for D > 13, having both lower energy and higher entropy.
In contrast, perturbative NUBS with D ≤ 13 are too massive and not en-
tropic enough in comparison to be the final state of the evolution, and the
fragmentation scenario is still the most likely candidate of the black string’s
(classical) fate.

In the large D formalism of general relativity, we thus expect the final
state of the Gregory-Laflamme instability to be a NUBS at leading order [71].
In fact, the procedure of matched asymptotic expansions described in the
previous section succeeded in reproducing the critical dimension D = 13.5
of the instability for neutral strings [72] as well as its spectrum to surprising
accuracy [64]. In light of these results, there is hope that we can learn much
more about brane instabilities analytically by performing a perturbative
expansion in 1/D at subleading order, which is the topic of chapter 5.

1.3.4 Numerical Methods

Throughout this thesis, we will encounter various non-linear boundary value
problems and systems of initial value ODEs that do not admit an analytic
solution and therefore require a numerical approach. In this section, we
discuss spectral methods for solving boundary value problems when the
domain is bounded by regular singular points; we outline the celebrated
Newton-Raphson root-finding algorithm to deal with non-linear equations;
we introduce the characteristic formulation of general relativity, a framework
particularly well-suited for the time-evolution of Einstein’s equations in the
presence of a negative cosmological constant; finally, we present the Runge-
Kutta-Fehlberg time-stepping algorithm of order 5, ideal for solving non-stiff
initial value problems.

Spectral Methods

Due to its nature as a “confining box”, the equations of motion for matter
fields in asymptotically AdS static spacetimes are classified as elliptic partial
differential equations, which require the imposition of boundary conditions
on the edges of the domain of dependence. The two radial boundaries,
namely the AdS boundary and the horizon, are typically regular singular
points of the differential equations around which finite differences method
usually perform badly. Spectral methods, on the other hand, have special
convergence properties not affected as much by such singularities.

Spectral methods assume that the solution to a differential equation can
be approximated as a sum of Chebyshev polynomials Tn(x) (well-suited for
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non-periodic domains)

u(x) ≈ uN (x) =
N∑
n=0

αnTn(x), (1.71)

where the coefficients αn are chosen such that the error made by using this
approximation is minimized. However, in practice it is much simpler to work
with a collocation grid {xi}Ni=0 and to find the unknowns {u(xi)}Ni=0 directly
instead of solving the system of equations for the αn. The two concepts are
equivalent and can be related with the help of Lagrange interpolation, which
we denote symbolically as

{αn}Nn=0 ⇐⇒ {u(xi)}Ni=0. (1.72)

It can be proven that Lagrange interpolation is optimal, i.e. that its Cauchy
error

u(x)− uN (x) =
1

(N + 1)!
u(N+1)(ξ)

N∏
i=0

(x− xi) (1.73)

is minimized, when the collocation points are chosen to be the maxima of
TN+1(x)

xi = cos

(
iπ

N

)
, i = 0, · · · , N. (1.74)

Notice how these points are denser near the endpoints x = ±1 than at
the center, as shown in Figure 1.13. This non-uniform choice of grid turns
out to cure the Runge phenomenon afflicting Lagrange interpolation with
equidistant interpolation points. In fact, many of the important properties
of spectral methods are a consequence of this non-uniform density of points,
although the related proofs are beyond the scope of this section. The lesson
to bear in mind however is that uniform discretization is in fact the worst
choice one can make when it comes to numerical accuracy, and spectral
methods offer an optimal alternative.

Now that we are in possession of a collocation grid, it is a straightfor-
ward task to define differentiation matrices acting on discretized functions
~u with components {u(xi)}Ni=0. Indeed, the same way a centered difference
approximation for first derivatives

u′(x) ≈ u(x+ h)− u(x− h)

2h
(1.75)

may be written in matrix form as D · ~u, where the components of D are
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Figure 1.13: The maxima of TN+1(x) (shown at the bottom for N = 15) are
uniformly distributed along the unit circle, which results in the boundary-
dense grid xi = cos(iπ/N) when projected on the x-axis.

Di,i±1 = ±1/2h (with all other entries 0 if we assume periodicity), the
spectral grid (1.74) leads to an (N+1)× (N+1)-dimensional differentiation
matrix DN whose components are

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
(1.76)

(DN )ii =
−xi

2(1− x2
i

, i = 1, · · · , N − 1, (1.77)

(DN )ij =
ci
cj

(−1)i−j

xi − xj
, i 6= j, i, j = 1, · · · , N − 1, (1.78)

where ci = 2 if i = 0 or N , and ci = 1 otherwise.
DN may be thought of as a global differentiation matrix in the sense

that it uses the information at every grid point to compute each deriva-
tive u′(xi). This may result in poor accuracy when applied to non-analytic
functions since local divergences may propagate and “infect” the derivative
everywhere. However in practice spectral methods are most useful when
smooth functions are involved. As a matter of fact, perhaps the most re-
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(a) Numerical differentiation of f(x) = e−x sin(πx).
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(b) Numerical convergence of order parameter ψ(2) for µ = 9.

Figure 1.14: The upper plot illustrates the spectral accuracy of numerical
differentiation for a smooth function, with error measure εN = |f ′(x)−DNf |.
The lower plot shows the exponential convergence of the numerical solution
of the holographic superconductor differential equation (1.35). The error

measure in this case is εN = |ψ(2)
N − ψ

(2)
N−1|, the difference in the order pa-

rameter for successive values of N . In both cases machine precision prevents
further improvements starting around N = 20 and N = 40 respectively.
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markable property of these differentiation matrices is their spectral accuracy,
the very rapid decrease of the error made from numerical differentiation as
the grid size increases (illustrated in Figure 1.14). The convergence rate of
spectral methods typically goes like O(N−m) ∀m for smooth functions, and
as fast as O(cN ) for 0 < c < 1 for analytic functions. This is to be contrasted
with the convergence rate of finite difference and finite element schemes, for
which the error decreases like O(N−m) for a specific m depending on the
order of approximation and smoothness of the function under consideration.
As a result, spectral methods can reach an accuracy on the level of machine
precision for moderate values of N , which make them very powerful when
employed on modest desktop computers.

Newton-Raphson Method

The equations of general relativity are generally coupled and non-linear and
often require a numerical approach. After discretizing differential equations
on a collocation grid, they effectively become systems of algebraic equa-
tions for which many root-finding techniques already exist. The easiest and
most widely used technique is the Newton-Raphson method, which we now
proceed to describe.

Consider the algebraic system of equations

F(u) = 0, (1.79)

which for our purposes includes both the discretized differential equation(s)
and boundary conditions of interest. The Newton-Raphson method is an
iterative process in which an initial guess is improved repeatedly until a
convergence condition is met. For the sake of the argument, let’s assume
that u + ∆u is one of the solutions to (1.79), in which case

F(u + ∆u) = 0 = F(u) + J(u) ·∆u +O(∆u)2, (1.80)

provided that the displacement ∆u away from u is small enough. Note that
we have introduced the Jacobian matrix, whose components are given by

Jab =
∂Fa
∂ub

. (1.81)

Equation (1.80) informs us about the optimal direction ∆u towards a root.
The Newton-Raphson algorithm simply turns the information contained in
this displacement into an iterative process that works even if we are (mod-
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erately) far away from a root, as each iteration takes us closer to a solution.
Given an initial guess u0, improved iterates are found according to

ui+1 = ui − J−1(ui) · F(ui), i ≥ 0, (1.82)

and progress is stopped when a root is found.
There are two ways to determine convergence. We may look at |F(ui)|

directly, which should approach zero as the algorithm converge. It is also
possible to monitor the norm of each individual displacement; if |ui+1−ui| <
δ for a specified tolerance parameter δ, then successive iterates no longer
change significantly and we conclude that convergence has been reached.

Convergence depends strongly on the guess provided initially; different
initial guesses may converge towards different solutions. If so, we say that
u0 is in the basin of convergence of a root. In practice, the choice of u0 is
often informed by our physical intuition or our understanding of the prob-
lem at hand, with better choices resulting in a significant improvement in
performance.

Despite its simplicity, this root-finding algorithm is very powerful. In
the case of spectral methods, Newton-Raphson’s quadratic convergence rate
together with spectral accuracy add up to compensate for the cost of invert-
ing a dense Jacobian, thus yielding an efficient way to solve coupled elliptic
PDEs at high precision with modest computational resources.

Characteristic Formulation

Gauge theories with gravitational duals have been used in a wide array of
applications so far, mostly in systems found in or near equilibrium. For in-
stance, they have been most useful in extracting the transport coefficients of
strongly interacting theories via linear response theory, and have also given
rise to an hydrodynamic approach when studying their IR physics. The
gauge/gravity duality also provides a framework making it possible to go be-
yond these limited regimes, enabling us to describe the far-from-equilibrium
dynamics of quantum field theories by investigating gravitational infall in
AdS. The most interesting problems usually involve the evolution of non-
trivial inhomogeneous boundary conditions resulting in a non-static geom-
etry, which in turn require the Einstein equations to be solved numerically
in all their glory. As one would expect, this is no easy task; nevertheless
framing the AdS initial value problem in a characteristic formulation allows
for a systematic and stable approach to this problem, even in the absence
of a high degree of symmetry.
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The characteristic formulation of general relativity requires one to frame
the gravitational infall problem in a coordinate system based on a null slicing
of spacetime along infalling null geodesics. The resulting metric ansatz is a
generalization of ingoing Eddington-Finkelstein coordinates

ds2 =
r2

L2
gµν(x, r)dxµdxν − 2 ωµ(x)dxµdr. (1.83)

In the above r is a radial coordinate such that the AdS boundary is located at
r =∞, {xµ} denote the d boundary coordinates where t = x0 is a null time
coordinate in the bulk which coincides with field theory time at r =∞, and
the vector ωµ is assumed to be timelike and physically represents fluid flow
on the boundary. This is indeed a null slicing of spacetime since keeping all
coordinates but r fixed results in ds2 = 0, and we say that ∂r is a directional
derivative along infalling null geodesics.

The metric (1.83) restricts diffeomorphism invariance by allowing only
two types of residual diffeomorphisms, which are easily fixed. The metric is
invariant under d-dimensional changes of coordinates as well as under radial
shifts

xµ → x̄µ = f(xµ), (1.84)

r → r̄ = r + λ(x). (1.85)

The former can be used to set ωµ(x) = −δ0
µ, whereas the latter can be used

to gauge-fix the apparent horizon’s location7. This is important because
gravitational infall problems involve excitations falling into a black hole, thus
creating ripples on the horizon such that its location varies in time and space:
rh = rh(t,x). The radial shift field λ(x) encodes the dependence on x of
these deformations, and gauge-fixing radial diffeomorphisms lets us lock the
IR boundary of the radial domain in place throughout the time-evolution.
Doing so not only eases numerical implementation since the computational
domain of the Einstein equations remains fixed in size, but also lets us avoid
stability issues by excising the unphysical region behind the horizon.

The ansatz (1.83) provides suitable coordinates throughout the domain
as long as coordinate singularities do not develop in the bulk, and provided
the apparent horizon remains planar. On one hand gravity’s attractive na-
ture may result in the focusing and intersection of infalling radial geodesics,

7The event horizon of a black hole depends on the full history – including both past
and future – of the spacetime geometry and as such cannot be determined locally, but the
apparent horizon can. See Appendix A for details.
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a phenomenon called caustic formation. Caustics are coordinate singulari-
ties for which an event (x, r) is not uniquely determined anymore, and the
null foliation of spacetime breaks down. As a result, the ansatz (1.83) in
the presence of caustics requires different coordinate patches for different re-
gions in order to preserve regularity. On the other hand apparent horizons
are defined as the boundary of trapped outgoing null geodesic congruences.
If such a compact trapped surface formed inside the bulk, it would invalidate
the global regularity of our ansatz and potentially lead to caustic formation
as well. As shown in Figure 1.15, it is possible to cure these singularities in
both cases simply by increasing the IR cutoff in a way such that the caustics
form behind it, at the cost of losing information on low-energy physics on
the boundary. Thankfully such pathologies do not arise often, if at all, in
practice.

Let us now turn our attention to the special structure of Einstein’s equa-
tions under the metric ansatz (1.83), which we may rewrite as

ds2 = Gij(X)dxidxj + 2dt [dr − Eµ(X)dxµ] , Eµ = (A,Fi), (1.86)

where X = (r, t, xi) denotes all bulk coordinates. Under radial shifts (1.85),
the components of Eµ transform as a gauge field

Eµ(r, x)→ Eµ(x, r̄) = Eµ(x, r̄ − λ) + ∂µλ(x). (1.87)

It is natural to implement this gauge invariance in the Einstein equations
by defining the derivatives

d+ = ∂t +A(X)∂r, (1.88a)

di = ∂i + Fi(X)∂r, (1.88b)

which transform covariantly under radial shifts and d-dimensional diffeomor-
phisms. The modified temporal derivative (1.88a) is a directional derivative
along outgoing null geodesics, whereas (1.88b) has an analogous geometri-
cal interpretation as a derivative along spacelike directions orthogonal to
ingoing and outgoing radial null geodesics.

An extensive analysis reveals that rewriting the Einstein field equations
in terms of the new time derivative d+ effectively separates them into two
classes. The first contains radial equations for auxiliary fields, which can be
solved sequentially on each t = constant slice, whereas the second contains
the dynamical equations that let us evolve the geometry from one null time
slice to the next. This distinction however is not unique and different choices
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(a) On the left: the region of spacetime coloured in grey focuses infalling geodesics
(in blue), leading to caustic formation in the bulk. On the right: the caustics form
behind the apparent horizon (in red).
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(b) On the left: a compact trapped surface discontinuously develops in the bulk.
On the right: the apparent horizon maintains its planar topology. Note: lighter
shades correspond to later times.

Figure 1.15: These figures, adapted from [73], illustrate the two types of
pathologies leading to the breakdown of the characteristic formulation.
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result in different schemes of variable stability. Nonetheless, the sequential
nature of the different equations involved is what makes the characteristic
formulation powerful. Expressing the field equations in terms of ingoing and
outgoing null vectors, namely ∂r and d+, allows the repackaging of their non-
linearities in a sorted sequence of radial ODEs easily handled by spectral
methods.

All we need to complete our discussion is a set of initial conditions that
encode the phenomenon of interest. Initial conditions for this type of grav-
itational infall problem in AdSd+1 are provided partly from the particular
details of the modelization and partly from boundary data, namely from
the boundary stress tensor. In particular, the asymptotic behaviour of the
spatial part Gij of the metric (1.86) ultimately determine the initial state
of the system (e.g. anisotropy, shape of colliding shockwaves, etc.) whereas
A and Fi fix the energy and momentum densities of the field theory and
need to be specified on each time slice. To extract this information, we first
rewrite the metric in Fefferman-Graham form

ds2 =
L2

ρ2

(
gµν(x, ρ)dxµdxν + dρ2

)
(1.89)

with

gµν(x, ρ→ 0) ∼ ηµν +

∞∑
n=d

g(n)
µν (x)ρn. (1.90)

In these coordinates, holographic renormalization tells us that part of the
metric at order d remains undetermined by the equations of motion and
requires additional information from the CFT via the identification (up to
a normalizing constant)

〈Tµν(x)〉 ∼ g(d)
µν (x), (1.91)

plus possible additions depending on the matter content of the theory [12,
13]. With this information put in by hand, the evolution scheme can then
be implemented straightforwardly due to its sequential nature. We have
found that the Runge-Kutta-Fehlberg time-stepping algorithm of order 5
was particularly useful in evolving the geometry along null time. As such it
is the topic of the following section.
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Runge-Kutta-Fehlberg with Adaptive Step Size

The Runge-Kutta (RK) methods are powerful explicit time-stepping algo-
rithms useful in solving initial value differential equations of the form

dy

dt
= f(t, y); y(t0) = y0. (1.92)

The key idea behind RK-type algorithms is to express the solution y(t) in
terms of derivative terms f(t, y) sampled at many intermediate values in a
way that minimizes truncation error. The standard, most used method is by
far the fourth-order method known as RK4, which uses the time-evolution
scheme

y(t0 + h) = y(t0) +
h

6
(f1 + 2f2 + 2f3 + f4) , (1.93)

where

f1 = f(t0, y0);

f2 = f(t0 +
h

2
, y0 +

h

2
f1);

f3 = f(t0 +
h

2
, y0 +

h

2
f2);

f4 = f(t0 + h, y0 + hf3). (1.94)

This algorithm performs wonderfully in many cases, but keeping the step
size h fixed may be inefficient. Consider for instance a solution with both
slow- and fast-changing regions. If one were to employ RK4 to solve the
corresponding differential equation, one would have to set h equal to the
smallest numerical resolution required in regions of most rapid variations
to maintain accuracy throughout the domain. Doing so may prove wasteful
in better-behaved regions, where a larger step size would yield an equally
satisfying error.

The easiest way to resolve this issue would be to compute the solution
twice with step sizes h and h/2, and then evaluate the difference as a measure
of the error. However this comparison involves twice the amount of compu-
tational work and is thus an inefficient solution to our efficiency problem.
The insight of Fehlberg was to realize that the fourth- and fifth-order RK
methods both use the same intermediate function evaluations f(t, y), but
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weighted differently. They are given respectively by

y(4)(t0 + h) = y0 + h ~b
(4)
i · ~f, ~b(4) =

(
25

216
, 0,

1408

2565
,
2197

4104
,−1

5
, 0

)
, (1.95)

y(5)(t0 + h) = y0 + h ~b
(5)
i · ~f, ~b(5) =

(
16

135
, 0,

6656

12825
,
28561

56430
,− 9

50
,

2

55

)
,

(1.96)

in which the function samples are sequentially given via

fi = f

t0 + cih, y0 + h
6∑
j=1

aijfj

 , 1 ≤ i ≤ 6 (1.97)

with

~c =

(
0,

1

4
,
3

8
,
12

13
, 1,

1

2

)
(1.98)

and

a =



0 0 0 0 0 0
1
4 0 0 0 0 0
3
32

9
32 0 0 0 0

1932
2197 −7200

2197
7296
2197 0 0 0

439
216 −8 3680

513 − 845
4104 0 0

− 8
27 2 −3544

2565
1859
4104 −11

40 0

 . (1.99)

The error can then be evaluated by taking the difference between the two
approximations

E = |y(5) − y(4)| = h |~r · ~f |, ~r =

(
1

360
, 0,− 128

4275
,− 2197

75240
,

1

50
,

2

55

)
.

(1.100)
Our last task is to determine a condition for the step size to continuously
adapt to our error tolerance. The truncation error of the difference between
fourth- and fifth-order RK methods is

|y(5) − y(4)| ≈Mh5 (1.101)

for some constant M . If we denote ε as our tolerance in the derivative’s
error, then the function itself must have an error E ∼ hε. We can then
find an optimal step size h̄ that sets the truncation error to be equal to the
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prescribed tolerance by imposing the condition

h̄ε = Mh̄5 =
h̄5

h5
E (1.102)

and therefore obtain the improved step size

h̄ = h 4

√
ε

|~r · ~f |
. (1.103)

If the calculated error E is higher than the tolerance, then we deduce that
h > h̄ and a smaller step size is required. The prior step then needs to be
rejected and calculated anew with hnew < h. Conversely, if the calculated
error is lower than the tolerance, then it is possible to take larger steps
without any penalty. In that case h offers a good estimate of the next
iteration’s step size. As a result, the time-stepping algorithm is always
adjusting h in a way that optimizes both resources and errors.
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Chapter 2

Chiral Edge Currents in a Holo-
graphic Josephson Junction

We discuss the Josephson effect and the appearance of dissipationless edge
currents in a holographic Josephson junction configuration involving a chiral,
time-reversal breaking superconductor in 2+1 dimensions. Such a supercon-
ductor is expected to be topological, thereby supporting topologically pro-
tected gapless Majorana-Weyl edge modes. Such modes can manifest them-
selves in chiral dissipationless edge currents, which we exhibit and investi-
gate in the context of our construction. The physics of the Josephson current
itself, though expected to be unconventional in some non-equilibrium set-
tings, is shown to be conventional in our setup which takes place in thermal
equilibrium. We comment on various ways in which the expected Majorana
nature of the edge excitations, and relatedly the unconventional nature of
topological Josephson junctions, can be verified in the holographic context.

2.1 Introduction and Summary

The physics of topological insulators and superconductors has become a
central topic in modern condensed matter physics (for reviews see [74, 75]).
Many of the interesting phenomena exhibited in such materials follow from
the existence of topologically protected gapless edge modes. For topological
superconductors, these are expected to be chiral Majorana modes. The
search for such Majorana excitations in various condensed matter systems
is currently an intense experimental effort (for a review see [76]).

Topological superconductivity is expected to arise in time-reversal break-
ing superconductors, with a “p+ip” order parameter symmetry, which we
refer to here as chiral superconductors. Experimentally, such topological
superconductivity might arise intrinsically, for example in the Strontium
Ruthenate Sr2RuO4 (see e.g. [29, 30] for reviews), or by proximity effect
(following the suggestion of Fu and Kane [77]). That system was analyzed
by Green and Read [78], who demonstrated the existence of Majorana-Weyl
fermions propagating on the edges of a two-dimensional chiral superconduc-
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tor1. A particularly clear construction of the edge modes as Andreev bound
states can be found in [80].

In this note we use the tools of gauge-gravity duality to investigate the
topological nature of the holographic superconductor. As we will see, the
manifestation of topology comes in the form of chiral edge excitations which
manifest themselves as chiral currents localized at edges of the superconduc-
tor. To this end, we construct a gravity solution that exhibits the basic phe-
nomena associated with topological superconductivity, namely topologically
protected edge modes and spontaneously generated edge currents. Indeed,
after the observation of [20] that black holes can be unstable to scalar con-
densation, an s-wave superconductor was constructed in [22]. Holographic
duals to p-wave superconductors were constructed in [27], and the model
we are using here, an holographic dual to a chiral superconductor, was con-
structed in [81]. We review that construction in section 2 below2.

Since much of the new interesting physics associated with topological su-
perconductivity has to do with edges and interfaces, we construct a Joseph-
son junction involving the holographic chiral superconductor. Holographic
Josephson junctions were constructed first in [33] (see also [82–84] for other
configurations). Our work will focus on building an S-N-S holographic
Josephson junction for the holographic chiral superconductor (S) for which
the weak link is a normal metal (N). The construction of the gravity solu-
tion involves the numerical solution of a set of partial differential equations,
details of which are presented in section 2.

One of the dramatic manifestations of the topologically protected gap-
less modes are spontaneously generated dissipationless currents, localized
at the edges of a topological superconductor. The relation between the
edge currents, edge states and gauge invariance is explained in [80]. Since
Josephson junctions involve two such interfaces between topological and
non-topological materials, we expect to find counter-propagating currents,
one on each interface. Such currents are clearly visible in our setting and
we discuss their features in section 3 below. We find that up to small cor-
rections, the strength of the edge currents is determined by the jump of the
order parameter amplitude across the interface between the superconducting

1See however [79] for a recent null experimental result in Sr2RuO4.
2The model we discuss here supports competing orders, indeed the p-wave order pa-

rameter [27] is thermodynamically preferred in this model. Our Josephson junction is
therefore an idealized configuration, but is nevertheless an interesting probe of the time-
reversal breaking holographic superconductor. We expect that the features we uncover
here, to do with topological structures, are insensitive to the phase structure of the full
model.
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material and the weak link.
The counter-propagating edge currents we observe are independent of

each other (for wide enough junctions), and would exist for a single isolated
interface as well. They are indicative of chiral gapless edge modes localized
on such interfaces3. The full Josephson junction has a pair of these modes,
a feature which is speculated to be responsible for some unusual properties
of the topological Josephson junction. Therefore, in section 4 we turn to
examine the Josephson current in our junction.

Anomalies in the current-phase relation in such “unconventional” Joseph-
son junctions were reported in [85], but a more recent direct measurement
reveals a conventional relation [86]. While the physics of such junction is
expected to be unconventional, in that it is 4π periodic in the phase across
the weak link [87], equilibrium configurations might still exhibit the conven-
tional 2π periodicity. Other attempts to discover unconventional periodicity
as a signature of the aforementioned pair of Majorana bound states include
the AC Josephson effect [88], Josephson junctions in magnetic fields [89],
current noise measurements [90] or unconventional Shapiro steps [91].

In section 4 we exhibit the details of the Josephson effect in our holo-
graphic construction. We find conventional results, fairly similar to the
s-wave case reported in [33]. The current-phase relation is 2π periodic and
the maximal current decays exponentially as the width of the junction in-
creases (as opposed to the power law decay observed in [85]). Furthermore,
the temperature dependence of the critical current and the coherence length
are also found to be fairly conventional. We conclude that our setup, which
takes place in thermal equilibrium, is thus insensitive to the unconventional
features expected to arise from the presence of gapless Majorana modes.

We conclude in section 5 with outlook and directions for future work.
In particular, we outline some calculations that would verify the existence
of gapless Majorana modes and exhibit the expected doubled periodicity of
the physics in the Josephson junction. We hope to report on such results in
the near future.

2.2 Setup and Solutions

Our discussion of the time-reversal breaking holographic superconductor [81]
follows the conventions of [28]. Let us consider the following action:

3For the existence of a charge current, at least two Majorana-Weyl fermions are re-
quired.
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S =

∫
d4x
√−g

[
R+

6

L2
− 1

4g2
(F aµν)2

]
(2.1)

where F aµν = ∂µA
a
ν − ∂νAaµ + εabcAbµA

c
ν is the field strength tensor for an

SU(2) gauge field, and εabc is the totally antisymmetric tensor, with ε123 = 1.
The gauge field can be conveniently expressed as a matrix-valued one form:
A = Aaµτ

adxµ, where τa = σa/2i, σa being the usual Pauli matrices. It

follows that [τa, τ b] = εabcτ c.
We will be working in the probe approximation, thereby neglecting the

backreaction of the gauge field on the metric. In the current model, the
probe approximation, controlled by the ratio of the Newton’s constant to
the gauge coupling, breaks down at sufficiently low temperatures. However,
though adding backreaction should be straightforward, this is unnecessary
for the effects we are interested in, and we will restrict ourselves to working
in a fixed gravitational background.

Specifically, we choose the metric to be the asymptotically AdS4 planar
Schwarzschild black hole: and L and r0 are the AdS and horizon radii,
respectively. Such a black hole has Hawking temperature

T =
1

4π

dh

dr

∣∣∣∣
r=r0

=
3r0

4πL2
(2.2)

Scaling symmetries further enable us to work in units in which L = 1 and set
r0 = 1. This corresponds to measuring all dimensional quantities in units of
temperature.

To understand the symmetry structure of our ansatz, it is useful to define
complex coordinates

ζ =
x+ iy√

2
and τ± =

τ1 ± iτ2

√
2

(2.3)

The ansatz for the spatially homogeneous p+ ip superconductor is given by
[28, 81]

A = Φ τ3dt+ wτ−dζ + w∗τ+dζ̄ (2.4)

Here Φ breaks the SU(2) symmetry explicitly to an Abelian subgroup at the
short distance scale of the chemical potential µ, and w is the order parameter
which breaks the U(1) symmetry spontaneously at a much longer distance
scale. Note that in these conventions a U(1) gauge transformation is a phase
rotation of the complex order parameter w. In the homogeneous case w can
be chosen to be everywhere real, but with inhomogeneities this is no longer
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the case. In particular the phase difference across the Josephson junction is
an interesting gauge-invariant quantity directly responsible for driving the
Josephson current.

The order parameter w is invariant under a combination of spatial rota-
tions and gauge transformations, thus the superconductor is isotropic. Since
w is complex, time-reversal is broken spontaneously. As we see below, this
has interesting consequences for the physics probed by the Josephson junc-
tion in this system.

In order to build a holographic Josephson junction, the fields must have
spatial dependence. We model a Josephson junction by choosing an appro-
priate profile for the chemical potential µ(x), as described below. The fields
then all depend on the spatial coordinate x and the radial coordinate r. Our
ansatz for a p+ ip Josephson junction is then

A = Φ τ3dt+ wτ−dζ + w∗τ+dζ̄

+Axτ
3dx+Myτ

3dy +Arτ
3dr (2.5)

We are using a somewhat mixed notation for the spatial directions, where
the chiral nature of the order parameter is most clearly exhibited using the ζ
coordinate defined in (2.3). Note the presence of the field My which, unlike
other instances of holographic Josephson junctions, cannot be eliminated
using symmetries. This field will encode the presence of dissipationless edge
currents, which we discuss below.

Following [33] we choose to work in terms of gauge invariant combina-
tions. If w = |w|eiθ, those are w ≡ |w|, My and Mµ = Aµ−∂µθ for µ = x, r.
Our ansatz yields the following system of 5 coupled non-linear elliptic PDEs,

∂2
rΦ +

2

r
∂rΦ +

∂2
xΦ

r2h
− 2w2Φ

r2h
= 0

∂2
rw +

h′

h
∂rw +

∂2
xw

2r2h
− 3w∂xMy

2r2h
+
wΦ2

h2
− w3

r2h
−

(M2
x +M2

y )w

2r2h
−M2

rw = 0

∂2
rMx +

h′

h
(∂rMx − ∂xMr)− ∂r∂xMr −

Mxw
2

r2h
= 0

∂2
rMy +

h′

h
∂rMx +

∂2
xMy

r2h
+

3∂x(w2)

2r2h
− Myw

2

r2h
= 0

∂2
xMr − ∂r∂xMx − 2Mrw

2 = 0
(2.6)
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and an additional constraint:

∂r
(
hMrw

2
)

+
1

2r2
∂x
(
w2Mx

)
= 0 (2.7)

We thus need to choose boundary conditions such that the constraint is
satisfied at the boundaries of the integration domain.

Next we discuss the boundary conditions satisfied by our fields. The
boundary conditions at the horizon are determined by requiring regularity
and satisfying the constraint. That is, when expanding the equations of mo-
tion and constraint near the horizon, divergent terms arise which we require
to cancel. At the spatial boundaries we impose Neumann boundary condi-
tions on all fields. Near conformal infinity the fields behave asymptotically
as

Φ(r, x) = µ(x)− ρ(x)

r
+ · · ·

w(r, x) = w(1)(x) +
w(2)(x)

r
+ · · ·

Mx(r, x) = vx(x) +
Jx
r

+ · · ·

My(r, x) = vy(x) +
Jy(x)

r
+ · · ·

Mr(r, x) = O

(
1

r3

)
We will input µ(x) to model a Josephson junction, and choose the conden-
sate w to be normalizable, w(1)(x) = 0. The current in the x-direction Jx
is constant by the continuity equation and we choose it to be one of the
parameters of our solutions. The conjugate quantity vx(x) is then read from
the solution and encodes the phase difference across the junction. Finally,
we set vy(x) = 0 as there is no applied voltage in the transverse direction y,
and read off the spontaneously generated transverse current Jy(x) from the
solution.

To model a Josephson junction we need to choose the profile µ(x) appro-
priately. In the case of homogeneous superconductors, the scale invariant
quantity to consider is T/µ, i.e. changing the temperature is equivalent
to changing µ. This is no longer the case in the spatially inhomogeneous
case: while our chemical potential is spatially varying, the temperature is
still constant. Instead, to measure the temperature in a scale invariant way
we use the scale invariant quantity T/Tc, where the critical temperature
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Tc is proportional to µ∞ ≡ µ(∞). Our simulations set the proportionality
relation to be

Tc ≈ 0.065 µ∞ (2.8)

Since we now change the temperature by varying µ, there is a corresponding
critical chemical potential µc below which the condensate vanishes. We thus
need a profile with the following features:{

µ(x) < µc in the normal metal phase, − `
2 < x < `

2 ;

µ(x) > µc otherwise for the superconducting phases.

As in [33], a profile that satisfies these conditions is

µ(x) = µ∞

[
1− 1− ε

2 tanh( `
2σ )

{
tanh

(
x+ `

2

σ

)
− tanh

(
x− `

2

σ

)}]
(2.9)

where µ∞ > µc is the maximal height of the chemical potential. The pa-
rameter σ controls the steepness of the profile, whereas ε controls its depth
– the chemical potential inside of the normal phase is typically µ0 ≡ εµ∞.
Moreover, it is convenient to work with compactified variables z = 1/r and
x̄ = tanh( x

4σ )/ tanh( p
4σ ), where p is the length of the x-direction.

Pseuso-spectral collocation methods on a Chebyshev grid were used to
discretize the above equations. The resulting equations were solved using
the Newton iterative method. One key characteristic of the pseudo-spectral
methods is their exponential convergence in the size of the grid used, which
we have confirmed explicitly for our solutions. The solutions used in this
paper were produced using a grid of 41 points in both the radial and spatial
direction, yielding an estimated maximal error of about 10−4 in the local
value of all functions.

2.3 Chiral Edge Currents

We start by discussing the phenomenon unique to the time-reversal breaking
chiral superconductor: the existence of edge currents. The existence of
dissipationless chiral edge currents is indicative of gapless chiral modes living
on an interface between the superconductor and the normal state. In a
Josephson junction configuration there are two such interfaces and therefore
two independent counter-propagating modes. In this section we focus on
aspects of these modes that are localized at each interface separately, which
would exist in a simpler domain wall geometry. In the next section we
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turn to discuss aspects of the physics more specific to a Josephson junction
configuration with two such interfaces.

To be more concrete, the introduction of a gauge field M3
y makes it

possible to measure a current Jy(x) propagating in the y-direction. We have
specified M3

y (r =∞, x) = 0 so that the system has no applied voltage that
would drive a current in the y-direction, thus this is a dissipationless current
flowing without resistance. Under such conditions, the fieldM3

y would vanish
everywhere for a p-wave order parameter, but has a non-trivial profile in
the p + ip case. As shown in figure 2.1, this current is localized at the
interfaces of the superconducting and normal phases, travelling in opposite
directions with equal magnitude. We have checked that the strength of the
current is independent of the Josephson phase (or equivalently, the strength
of the Josephson current) and the width of the junction (for sufficiently
wide junctions). Therefore the currents on both interfaces are local effects
independent of each other.

The quantity of interest is the total current per unit area, defined as
follows:

Jedge ≡
∫ ∞

0
Jy(x)dx (2.10)

We focus on this quantity as it is independent of details of the interface
profile such as the steepness, parametrized by σ above. Furthermore, we find
that the edge current is essentially constant when the weak link is a normal
metal, independent of the relative depth parameter ε. However, when the
weak link becomes superconducting, the current decreases as we increase ε,

-10 -5 0 5 10

-1.0

-0.5

0.0

0.5

1.0

x

J y
HxL

Figure 2.1: The left plot displays the solution for the gauge field M3
y . The

right plot shows the resulting boundary current Jy(x) (in blue), as well
as the rescaled chemical potential profile µ(x)/µ∞ (in red). The solution
corresponds to µ∞ = 7, ` = 4, σ = 0.6 and ε = 0.3.
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eventually vanishing when the solution is perfectly homogeneous.
This dependence on the relative depth is shown in Figure 2.2. It indicates

that the current is controlled by the jump in the amplitude of the order
parameter across the interface between the superconducting material and the
weak link. Indeed, in Figure 2.3 we plot the dependence on the edge current
on the order parameter in the superconducting phase 〈OS〉 (choosing ε such
that the weak link is always at the normal state, i.e. has approximately
zero condensate). The edge current depends on the magnitude of the order
parameter through a power law relationship Jedge ∼ 〈OS〉α with α ranging
between 2.04 and 2.12 for different choices of parameters.

It is also natural to examine the temperature dependence of the edge
current, which we plot in Figure 2.4. We see that the dominant change in
the edge current as we change the temperature comes through the change in
the amplitude of the order parameter. As expected the edge current vanishes
at the critical temperature Tc.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

e

J e
dg
eêT c

S-N-S S-S’-S

Figure 2.2: The data above corresponds to µ∞ = 10. As we increase the
depth ε, we observe a linear decrease in the edge current value happening
around the dashed line at εc = µc/µ, which is the critical depth at which
the weak link becomes superconducting. At ε = 1, Jedge goes to 0 since µ(x)
becomes homogeneous.
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Figure 2.3: This plot illustrates the dependence of the edge current on the
amplitude of the order parameter in the superconducting phase for ` = 4,
σ = 0.6 and ε = 0.3. The curve fits Jedge ∼ 〈OS〉α with α ' 2.
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Figure 2.4: The temperature dependence of the edge current is pictured for
` = 4, σ = 0.6 and ε = 0.3.

2.4 Josephson Currents

The Josephson effect is a macroscopic quantum phenomenon in which a
dissipationless current flows across a weak link between two superconducting
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electrodes, in the absence of an external applied voltage. Rather, it is the
gauge invariant phase difference across the junction that is responsible for
the current. Following [33], we will consider S-N-S Josephson junctions, for
which the weak link is a non-superconducting (“normal”) metal, as described
above. We also make some comments on the S-S’-S case, in which the weak
link is superconducting. For a discussion of an S-I-S weak link, see [84].

The Josephson current flowing across the junction has the expected form

Jx = Jmax sin γ (2.11)

where the gauge invariant phase difference across the junction is obtained
from the solution as

γ = −
∫ ∞
−∞

dx [vx(x)− vx(±∞)] (2.12)

Figure 2.5 has been obtained by computing γ for multiple solutions corre-
sponding to different inputs Jx; it clearly demonstrates the expected depen-
dence of the Josephson current on the phase difference.

Another interesting feature of the critical current Jmax is that it decays

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.0004

-0.0002

0.0000

0.0002

0.0004

Γ

J x
�T
c2

Figure 2.5: This graph, produced with µ∞ = 10, ` = 4, σ = 0.4 and
ε = 0.05, shows the agreement of our data with the expectation (2.11). The
solid line, describing the best fit curve to our data (in red), is the curve
Jx = 5.2× 10−4 sin(0.9986γ).
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Figure 2.6: The relationship of the critical current and of the order parame-
ter as the weak link length grows larger is illustrated in these two plots. Both
sets of data are fitted to a decaying exponential and independently yield the
same coherence length, up to a difference of 1.8%. We used µ∞ = 10, σ = 0.4
and ε = 0.05 for both plots.

exponentially when the width ` of the weak link increases, i.e. it obeys a
relation of the form4

Jmax

T 2
c

= AJe
− `
ξ (2.13)

for ξ � `. Additionally, the order parameter at the center of the junction
has a similar behaviour:

〈ON 〉
T 2
c

= AOe
− `

2ξ (2.14)

where 〈ON 〉 is the magnitude of the order parameter in the normal phase

4Note that we have switched from the numerically convenient conventions of measuring
dimensional quantities in units of the (varying) temperature T , to the more physical
conventions of measuring those quantities in terms of the fixed temperature Tc.
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Figure 2.7: The dependence of the coherence length ξ, expressed through
the critical current or order parameter 〈ON 〉 (in the inset), on temperature.
Near the critical point, the critical current follows a power law characteristic
of the S-N-S junction, but with fairly large corrections. The parameters for
the chemical potential used to produce these figures are ` = 4, σ = 0.6 and
ε = 0.3.

(x = 0), and the junction has no current. Both of these relations are due
to the proximity effect, the leakage of the superconducting order into the
normal state. Note then that the coherence length ξ should be the same in
both cases. The results of our numerics show remarkable precision, yield-
ing ξ ≈ 0.4547 for the Josephson current, and ξ ≈ 0.4468 for the order
parameter: a difference of only 1.8%. See for instance Figure 2.6.

The coherence length has an interesting temperature dependence, plot-
ted in Figure 2.7. While the plot does not have a simple fit, it has the
expected behaviour at T → Tc, where it vanishes due to the disappearance
of superconductivity. Near the critical temperature the critical current is
expected to vanish as [92]:

Jmax(T ) ∝ (Tc − T )β near Tc (2.15)

For a conventional s-wave superconductor, and junctions wide compared
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to the coherence length, a quadratic dependence (β = 2) is characteristic of
the S-N-S junction, whereas different critical exponent are expected for other
types of weak links (for example for the S-I-S junction β = 1). Interestingly,
our results presented in Figure 2.7 indicate that β ∼ 2.52; furthermore the
exponent β also depends on the steepness and depth of the chemical poten-
tial profile. While β is closest to the critical exponent of the S-N-S junction,
the corrections are fairly large. Those corrections are probably related to
our setup having a varying chemical potential. It would be interesting to re-
produce the expected scaling with a more conventional setup of a Josephson
junction for which the chemical potential is spatially homogeneous.

2.5 Conclusions

In this paper we have started the investigation of Majorana bound states in
the holographic context. We have discussed the dissipationless edge currents
which are an indirect evidence for such modes. Additionally, we have con-
structed a Josephson junction involving a topological chiral superconductor,
and probed the physics of the Josephson effect. The results we obtained are
consistent with a conventional effect, with 2π periodic current-phase rela-
tion, and exponential decay of the current with the junction width.

These results support the expectation that though the physics is 4π
periodic, an unconventional periodicity will not be visible in thermal equi-
librium. The presence of Majorana modes corresponds to having two states
which are exchanged upon a 2π phase rotation. However, in equilibrium the
Josephson current receive contribution from both states, weighted according
to their Boltzmann weight. This, thermal equilibrium results are expected
to exhibits conventional periodicity, consistent with what we find,

It would be interesting to continue this investigation with the goal of
displaying more direct signatures of the Majorana bound states. One such
direct signature would be in the Andreev scattering off a superconducting
interface – bound states can be then seen in analyzing the phase shift. Fur-
thermore, one can construct holographically a non-equilibrium configuration
which is expected to exhibit the unconventional periodicity associated with
Majorana bound states. We hope to report on the result of such investiga-
tions in the near future.

67



Chapter 3

Dynamics of Holographic En-
tanglement Entropy Following
a Local Quench

We discuss the behaviour of holographic entanglement entropy following a
local quench in 2+1 dimensional strongly coupled CFTs. The entanglement
generated by the quench propagates along an emergent light-cone, remi-
niscent of the Lieb-Robinson light-cone propagation of correlations in non-
relativistic systems. We find the speed of propagation is bounded from below
by the entanglement tsunami velocity obtained earlier for global quenches
in holographic systems, and from above by the speed of light. The former
is realized for sufficiently broad quenches, while the latter pertains for well
localized quenches. The non-universal behaviour in the intermediate regime
appears to stem from finite-size effects. We also note that the entanglement
entropy of subsystems reverts to the equilibrium value exponentially fast, in
contrast to a much slower equilibration seen in certain spin models.

3.1 Introduction

In recent years we have seen enormous progress in qualitative and quanti-
tative understanding of out-of-equilibrium quantum dynamics. Theoretical
and numerical methods have been very effective to unearth the generic be-
haviour of a variety of observables in such systems. Coupled with the rapid
growth of experimental techniques in cold atom and many-body systems
to probe such dynamics, one can furthermore ratify our theoretical under-
standing. Motivated by these considerations we continue our explorations
of dynamics of strongly coupled non-equilibrium quantum systems using
holographic methods.

One simple scenario of interest in many circumstances is a situation
where we start with a QFT in global equilibrium and deform it by turning
on external sources for relevant operators. The sources provide external dials
which can serve to do work on the system and drive it out of equilibrium.
We could consider sources that act homogeneously in space (but localized
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in time), which is often referred to as global quench, or have it act locally in
spacetime, which corresponds to a local quench. Both types of protocols are
well studied in literature in the past decade or thereabouts. In either case
we are considering deformations of the form

SQFT 7→ SQFT +

∫
ddxJ (x)O(x) , (3.1)

where O(x) is a (composite) operator of the QFT and J the classical source
we dial. The distinction at this level between local and global quenches is
simply in the spacetime support of the source J (x).

Much of the analytic progress in this front has been in 1+1 dimensional
CFTs, where the quench protocols of the form (3.1) can be incorporated into
a Euclidean path integral, and studied efficiently by computing correlation
functions of the deforming operator O(x) in the unperturbed state of the
CFT, cf., [62, 93] for the original discussion and [94] for a review.

Our primary interest is in exploring the dynamics of strongly coupled
QFTs subject to such protocols in higher dimensions. A natural framework
to explore this question is provided by the holographic AdS/CFT duality
which maps the QFT problem onto the dynamics of a gravitational system
in asymptotically AdS spacetime. For concreteness we will focus on 2+1
CFTs which are originally in global thermal equilibrium and subject them
to a quench by a local scalar operator O of dimension ∆. The gravitational
problem then comprises of Einstein-Hilbert gravity coupled to a massive
scalar, whose mass m is related to the conformal dimension by the standard

formula, viz., ∆ = 3
2 +

√
9
4 +m2 `2AdS.1 The initial global equilibrium state

maps onto a planar Schwarzschild-AdS4 black hole and the problem at hand
involves analyzing the deformation of this said black hole consequent to
turning on a boundary source for the scalar field. This then amounts to a
gravitational infall problem. The pulse of scalar on the boundary propagates
into the bulk and dissipates through the black hole horizon. Of interest to
us are the observables in the interim process.

While there are many quantities that could be, and indeed have been
[41, 47, 49–53, 55–59, 61, 95–121], studied in this context, we will for def-
initeness focus our attention on entanglement entropy. While strictly not
an observable, the entanglement entropy for a particularly chosen spatial
region of the QFT captures important aspects of the field theory dynam-
ics. Not only does it provide a measure of how correlations in the system

1 We will only consider deformations by operators which are well separated from the
unitarity bound – our focus will be on conformally coupled scalars with ∆ = 2.
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evolve following the quench, but it furthermore is also a simple quantity to
compute in the holographic context. The holographic entanglement entropy
proposals of [38, 39] and their covariant generalization [41] provide an ex-
tremely simple route to its computation. All we are required to do is solve a
classical problem of finding areas of extremal surfaces anchored on the said
region of interest.

In what follows we will explore how holographic entanglement entropy
evolves following a local quench. We will restrict our attention to a very
specific scenario, wherein we quench a CFT3 with a ∆ = 2 operator. The
disturbance will be taken to be localized in space and time – we pick expo-
nential damping in space and an inverse Pöschl-Teller switch on/off in time,
cf., (4.26). We retain translational invariance in one spatial direction, break-
ing homogeneity in the other. We study entanglement entropy for strip-like
spatial regions that are aligned with the symmetry we retain, so that the
problem of finding extremal surfaces can be mapped to effectively finding
geodesics in an auxiliary three dimensional spacetime. Of interest to us are
how the entanglement entropy growth is correlated with the position and
size of the strip relative to the quench location.

To appreciate the question, let us recall some well known facts. The
classic analysis of [62] of entanglement entropy growth following a global
quench in CFT2 has spurred lots of activity on the subject. While the two
dimensional case can effectively be described by a quasiparticle picture, since
the entanglement growth is linear due to left and right movers decoupling
(following an initial quadratic ramp up [47, 61, 103]), the holographic models
present a much different picture in higher dimensions.2

The results of various analyses of global quenches have been beautifully
encapsulated in the ‘entanglement tsunami’ picture developed by Liu-Suh in
[47, 61] and further explored recently in [63]. Following an initial quadratic
growth in time, the entanglement entropy for any region grows linearly at
a rate dictated by the tsunami velocity vE . To define this quantity unam-
biguously the authors chose to normalize the local value of entanglement
entropy relative to the final thermal entropy expected for the same region
once equilibration is complete. This does leave a single parameter which

2 We note here that oftentimes global quenches are holographically modeled by con-
sidering a Vaidya-AdS geometry (see [41, 122] for early discussions) that corresponds to
infalling null matter in the bulk, which does not accord a clean CFT interpretation. A
cleaner perspective is offered by either solving the non-linear dynamics of gravity cou-
pled to realistic matter like a scalar field, or more simply by implementing an end of the
world brane boundary state [106] explicitly in holography. The results for the growth of
entanglement entropy are however independent of the particularities of the modeling.
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is the aforementioned velocity. It was found not only vE ≤ 1 as required
by causality with equality in d = 2 consistent with the CFT2 analysis, but
one could further bound it by a universal dimensional dependent constant
v∗E(d).3 This upper bound on velocity was attained holographically for mat-
ter that collapsed into a Schwarzschild-AdSd black hole at late times.

Given this rather clear situation for global quenches, we are interested
in ascertaining the behaviour when we localize the quench protocol to a fi-
nite spatial domain. We in principle could focus on deformations by sources
delta-function supported at point. This is natural when studying this prob-
lem in QFT as one can map the computation to that of computing corre-
lation functions on some background, however for our purposes of carrying
out numerical investigations we choose to smear out the source. We expect
firstly that the underlying locality of the QFT forces entanglement entropy
to behave causally; as explained in [45, 123] this means that the source makes
its presence felt only when it acts in the causal past of the entangling sur-
face (the boundary of the region of interest). This is indeed what one sees
in explicit computations in CFT2. The entanglement entropy only starts
changing after a time lag set by the time it takes for the quench disturbance
to propagate between the region of interest and its complement. As long as
the quench front is localized either in the region or in the complement, we
only have the initial state entanglement.

Previous analyses of holographic local quenches by [104] involved mod-
eling the system by the infall of a massive particle – this is effectively an
eikonal approximation wherein one is assuming that the wavepackets of the
quench are tightly collimated. Moreover, the authors chose to work with
very heavy operators ∆� 1 which could then be approximated in terms of
worldlines of a small black holes. The relevant geometry can be obtained by
applying a suitable symmetry transformation to the global Schwarzschild-
AdS black hole and with it in hand properties of holographic entanglement
entropy were explored. This picture was further supported by field theory
analysis of such deformations at large central charge [124, 125]. Our aim to
tackle this problem from a different perspective by studying the entangle-
ment evolution in a quenched gravitational background as explained above.
We will recover most of the results mentioned above in our analysis.

We can moreover explore quantitative features of the entanglement evo-

3 This statement as far as we are aware is robust for QFTs whose holographic duals
are given in terms of two derivative Einstein-Hilbert gravity coupled to sensible matter.
There is a-priori no reason for them to hold when the gravitational dynamics includes
higher derivative corrections and we in particular are not aware of any statement of this
kind.
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lution. We see that the propagation of entanglement is confined to an effec-
tive light-cone. We extract an entanglement velocity vE from this emergent
causal structure. Unlike the case of the global quench, the velocity depends
on the details of the quench. It appears to grow monotonically with increase
in the amplitude of the quench source as well as with the increase of the
initial temperature. For a certain range of parameters is appears to track
the tsunami velocity bound v∗E(3) of [47], while for others it reaches close to
the speed of light.

There is a somewhat annoying fact that the tsunami velocity v∗E(3) =
0.687 in three spacetime dimensions is marginally lower than the speed of
sound vs = 0.707, making it somewhat hard to convincingly point to precise
origin of the effect. We also see contamination from edge effects both from
finite size of A and the finite width of the quench source. We have not
examined the detailed non-linear effects that cause the velocity to grow from
the tsunami bound towards the speed of light, but display some examples
which illustrate the pattern.

While our numerical results are constrained to probing small spatial re-
gions relative to thermal scale,4 we nevertheless are able to extract both
this entanglement velocity as well as examine the return to the equilibrium.
In contrast to studies in lattice models in low dimensions which display a
logarithmic return of entanglement entropy to its equilibrium value after the
quench, we find that the holographic systems prefer to equilibrate exponen-
tially.

The outline of the paper is as follows. In §4.2 we describe the basic set-up
for holographic local quenches, describing the general methodology and the
determination of entanglement entropy from the gravitational background.
In §3.3 we give the basic numerical results for the quench spacetime and
extremal surfaces therein. The key statements regarding the behaviour of
entanglement entropy in a locally quenched CFT are then extracted in §3.4,
where we describe the growth velocity vE and the return to equilibrium.
We end with some open questions in §3.5. Some details of the numerical
methods are collected in Appendices A and B.

4This constraint arises because our numerical solutions only determine the geometry
to the exterior of the apparent horizon. For small regions A the extremal surfaces stay in
this domain, but for larger regions, they do penetrate the apparent horizon – see [50, 126].
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3.2 Preliminaries: Holographic Local Quench

We are interested in the behaviour of entanglement entropy in a 2 + 1 di-
mensional field theory that has been driven out of equilibrium locally by an
inhomogeneous relevant scalar operator. Holographically, this amounts to
solving the gravitational dynamics of a 3+1 dimensional asymptotically AdS
spacetime and its consequences for the area of extremal surfaces anchored
on the boundary.

3.2.1 Metric Ansatz

In order to dynamically evolve a spacetime geometry following a local quench,
it is convenient to choose our metric ansatz to be a generalization of the in-
falling Eddington-Finkelstein coordinates for black holes. We choose to work
in an asymptotically AdS4 spacetime, dual to a 2 + 1 dimensional CFT,

ds2 = −2Ae2χ dt2 + 2 e2χ dt dr − 2Fx dtdx+ Σ2
(
eB dx2 + e−B dy2

)
,

(3.2)

where r denotes the radial bulk coordinate, with the boundary lying at
r =∞, and t is a null coordinate that coincides with time on the boundary.
We have chosen our quench to be localized in the x-direction and transla-
tionally invariant in the y direction. Hence all the fields appearing above
{A,χ, Fx,Σ, B} depend only on the coordinates {r, t, x} with ∂y being an
isometry.

This choice for the metric has many advantages: it provides us with
coordinates that remain regular throughout the entire domain as the space-
time equilibrates, it leads to a characteristic formulation of our gravitational
infall problem, and it comes with a residual radial diffeomorphism that is
of great computational help [73]. Indeed, the metric (3.2) remains invariant
under radial shifts,5

r → r = r + λ(xµ) . (3.3)

On physical grounds, we anticipate that the black hole’s horizon will grow
locally as the effects of matter from the boundary are felt in the interior of
the bulk. Hence a sensible gauge choice is to dynamically determine λ so
that the coordinate location of the black hole’s apparent horizon6 remains

5 For notational clarity, we use upper case Latin indices {M,N, ...} to represent bulk
coordinates, and lower case Greek indices {µ, ν, ...} to refer to boundary coordinates.

6 See Appendix A for further details about our numerical scheme

73



fixed. This keeps the calculational domain simple.
Einstein’s equations in the presence of a scalar field are given by

RMN −
R

2
GMN −

d(d− 1)

2 `2AdS

GMN = TMN

TMN = ∇MΦ∇NΦ +GMNLΦ, LΦ = −1

2

(
GMN∇MΦ∇NΦ +m2Φ2

)
.

(3.4)

For simplicity, we restrict our attention to m2 `2AdS = −2 so that the asymp-
totic expansion of the scalar field near the boundary is analytic in powers
of 1/r:

Φ(r, t, x) =
φ0(t, x)

r
+
φ1(t, x)

r2
+ · · · (3.5)

We note that since t is a null coordinate, φ1(t, x) will have contributions
coming from both the source and the response of the scalar field, as will be
explained below.

3.2.2 Asymptotic Geometry

In a theory of gravity on asymptotically AdS spacetimes, asymptotic analysis
alone is not sufficient to determine the bulk metric [13]. Indeed, the missing
piece in the asymptotic analysis is the boundary stress tensor, determined
by solving the full bulk equations:

Tµν ∼ g(3)
µν , (3.6)

where g
(3)
µν is the part of the metric undetermined by the equations of motion

for d = 3.
While our infalling coordinate chart (3.2) differs from the standard

Fefferman-Graham chart typically used for asymptotic expansions, it is a
straightforward exercise to carry out an asymptotic analysis. Demanding
that the field equations are obeyed in the near-boundary r →∞ domain we
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find

A(r, t, x) =
(r + λ(t, x))2

2
− ∂tλ(t, x)− 1

4
φ0(t, x)2 +

a(3)(t, x)

r
+ · · · (3.7)

χ(r, t, x) =
c(3)(t, x)

r3
+ · · · (3.8)

Fx(r, t, x) = − ∂xλ(t, x) +
f (3)(t, x)

r
+ · · · (3.9)

Σ(r, t, x) = r + λ(t, x)− 1

4
φ0(t, x)2 + · · · (3.10)

B(r, t, x) =
b(3)(t, x)

r3
+ · · · . (3.11)

One may also show that the explicit map to the Fefferman-Graham coordi-
nates {τ, ρ, ξ} takes the asymptotic form

τ(r, t, x) = t+
1

r
− λ(t, x)

r2
+ · · · , (3.12)

ρ(r, t, x) = r + λ(t, x)− 1

4

φ0(t, x)2

r
+ · · · , (3.13)

ξ(r, t, x) = x+O(r−3). (3.14)

Additional care needs to be taken when dealing with scalar fields in a theory
of gravity formulated in terms of null coordinates. Indeed, the falloff of
scalar fields with m2`2AdS = −2 is known to behave in Fefferman-Graham
coordinates as:

Φ(ρ, τ, ξ) =
φsource(τ, ξ)

ρ
+
φresponse(τ, ξ)

ρ2
+ · · · (3.15)

as we approach ρ→∞. By using the coordinate expansion above, we obtain

Φ(r, t, x) =
φsource(t, x)

r

+
φresponse(t, x) + ∂tφsource(t, x)− λ(t, x)φsource(t, x)

r2
+ · · · ,

(3.16)

thus confirming our earlier claim that φ1 = φresponse + ∂tφ0−λφ0 mixes the
source and the expectation value of the scalar.
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3.2.3 Boundary Stress Tensor

In order to solve Einstein’s equations as efficiently as possible, we found
it useful to use the boundary stress tensor and its conservation equations
to find and propagate the undetermined fields a(3) and f (3) accurately in
time (in our scheme, b(3) and c(3) need to be read off from the solutions
directly). For asymptotically AdS4 spacetimes, the boundary stress tensor in
the presence of a scalar field of mass squared m2`2AdS = −2 can be expressed
in the Brown-York form as

Tµν = Kµν −Kγµν + 2 γµν −
(
γRµν −

1

2
γRγµν

)
+

1

2
γµν φ

2, (3.17)

where we have introduced some boundary data: γµν is the induced metric
on the boundary, Kµν ,K ≡ γµνKµν its extrinsic curvatures, and γRµν ,

γR
its intrinsic curvatures. Explicitly in terms of the asymptotic expansion
coefficients we find that the energy-momentum tensor takes the form

T00 = 2a(3) + 4c(3) + φ0φresponse, (3.18)

Ttx =
3

2
f (3) − 1

2
φ0∂xφ0 , (3.19)

while the conservation equations in the presence of the scalar source φ0(x, t)
read

∂tT00 = ∂xTtx + ∂tφ0 φresponse, (3.20)

∂tTtx =
1

2

(
∂xT00 − 3 ∂xb

(3) + ∂xφ0 φresponse − φ0 ∂xφresponse

)
. (3.21)

We take our initial state to be in thermal equilibrium, which translates
to an initial condition on the bulk metric, which is then the planar static
Schwarzschild-AdS4 black hole spacetime with temperature

T =
3M

1
3

4π
. (3.22)

The initial boundary stress tensor is then simply Tµν = diag{1, 1
2 ,

1
2}. To

model our local quench, we simply need to specify a source function φ0(t, x)
and let the system evolve according to the Einstein equations, all while mak-
ing sure that λ is gauge-chosen to fix the location of the apparent horizon.
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3.2.4 Holographic Entanglement Entropy

Once we have obtained solutions for the local quench, we can study the
subsequent dynamics of the entanglement entropy of a region A on the
boundary using the covariant holographic entanglement entropy prescription
[41]. The latter requires us to determine extremal surfaces anchored on the
entangling surface on the boundary.

For simplicity, we exploit the translational invariance, and restrict our
attention to a strip-region

A = {(x, y) | x ∈ (−L,L), y ∈ R} , ∂A = {(x, y) | x = ±L, y ∈ R} .
(3.23)

The extremal surfaces EA anchored on ∂A are straightforwardly determined
by solving a set of ODEs. Using coordinates adapted to the ∂y isometry, we
parameterize the surface by coordinates y, τ . Consequentially, EA is then
obtained by solving the geodesic equations in an auxiliary three dimen-
sional spacetime with metric g̃MNdX

N dXM = gyy gMN dX
N dXM , with

the restriction to y = constant understood, i.e., XM (τ) = {t(τ), r(τ), x(τ)}.
Equivalently we solve the Euler-Lagrange equations obtained from the La-
grangian L = gyy gMNẊ

MẊN .
While we have phrased the determination of EA as a boundary value

problem, it is practical to switch to an initial value formulation. We param-
eterize the solutions by specifying the turning point, or tip, of the geodesic
in the bulk, XM

∗ (τ) = {t∗, r∗, x = 0}, and evolve towards the boundary
using an ODE solver (for instance the Matlab solver ode45 ) until both ∂A
and a specified UV cutoff are reached.

To this end, we have chosen to transform our system of 3 second order
ODEs into a system of 6 first order ODEs in the variables{

t, Pt ≡ Σ2 ṫ, r, P+ ≡ e2χ
(
ṙ −A ṫ

)
, x, Px ≡ Σ2 ẋ− e−BFx ṫ

}
.

(3.24)

With these new variables,7 L = 2P+Pt + P 2
x . The boundary conditions at

the turning point are

{t = t∗, Pt = 0, r = r∗, P+ = 0, x = 0, Px = ±1} . (3.25)

The conditions on Pt and P+ are a consequence that, because of symmetry,

7 These definitions for the momenta ensure that all quantities are of order O(1) for
numerical stability.
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we expect ṫ = ṙ = 0 at X∗, whereas the condition for Px has been chosen
to normalize the action by setting L = 1. The sign determines whether the
geodesic will go towards the positive or negative x-axis.

To translate from the length of the geodesic to the actual entanglement
entropy SA we pick an IR regulator Ly along the translationally invariant
direction and a UV cutoff ε. We choose to present the results for the regu-
lated entanglement entropy by subtracting off the corresponding answer in
the unperturbed theory. There are two natural regularizations we can use:
Regulator 1: We subtract the entanglement in the ‘instantaneous thermal
state’ obtained by taking the Schwarzschild-AdS4 metric with a horizon
located at r+(x, t) = M

1
3 +λ(t, x). This choice allows clean matching of the

asymptotic coordinate chart.
Regulator 2: We alternately can choose to subtract of the vacuum entangle-
ment entropy for the same region, with a dynamical UV cut-off εvac(x, t).
This gives

∆SA = Ly

∫ dτ − 2

ε
− 2λ(t, x) +

4π

L

(
Γ(3

4)

Γ(1
4)

)2
 . (3.26)

The two regulators differ by a finite amount that is invariant temporally,
allowing us to cross-check our numerical results. In what follows we will
simply quote ∆SA normalized by Ly.

3.3 The Quench Spacetime and Extremal
Surfaces

We now turn to describing the results of solving Einstein’s equations sources
by the scalar field boundary condition. We then describe properties of the
extremal surfaces of interest in these geometries.

3.3.1 Numerical Solutions

We use the characteristic formulation of Einstein’s equations resulting from
the null slicing of spacetime outlined in [73] to numerically find the geome-
try. Even though we start with a complicated set of PDEs, the characteristic
formulation simplifies the equations of motion into two categories: the equa-
tions for the auxiliary fields that are local in time and reduce to a nested
set of radial ODEs, and the equations for dynamical quantities that encode
the evolution of the geometry.
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To numerically integrate the Einstein and Klein-Gordon equations, we
discretize the radial direction using a Chebyshev collocation grid. This
choice of discretization for the extra dimension is particularly well suited
to find smooth solutions to boundary value problems while ensuring their
exponential convergence as the grid size is increased. We opted to choose
a rational Chebyshev basis to deal with the non-compact spatial direction.
The main advantage of working with a rational Chebyshev grid is that the
boundary conditions at x = ±∞ are already implemented behaviourally ; as
long as the solution decays at least algebraically fast or asymptotes to a con-
stant, we can avoid specifying the boundary conditions explicitly [127]. We
use a grid of 41 points in both directions. To propagate in time, we use an
explicit fifth-order Runge-Kutta-Fehlberg method with adaptive step size.
We also avoid aliasing in both the radial and spatial directions by applying a
low-pass filter at each time step that gets rid of the top third of the Fourier
modes.

We chose the source function to be φ0(t, x) = f(x)g(t) with

f(x) =
α

2

[
tanh

(
x+ σ

4s

)
− tanh

(
x− σ

4s

)]
, g(t) = sech2

(
t− tq∆
tq

)
.

(3.27)

With it, we can ramp up the scalar field to reach its maximum value α
at time t = tq∆ before it vanishes again. The parameters {s, tq,∆} are
chosen to facilitate the numerics, whereas σ determines the width of the
perturbation. In practice, we found s = 0.15, tq = 0.25 and ∆ = 8 to give
us satisfying accuracy for the late-time behaviour of the scalar field while
preserving a nicely localized shape for the pulse. So we therefore study the
quench protocols parametrized by two parameters: an amplitude α and a
width σ. Along with the initial temperature of the system which we take to
be parametrized by M , we have three parameters at our disposal.

φ0(x, t) =
α

2

[
tanh

(
5

3
(x+ σ)

)
− tanh

(
5

3
(x− σ)

)]
sech2 (4 t− 8) ,

Protocol parameters: {α, σ,M}
(3.28)

The evolution of the spacetime following our quench is fairly simple.
The injection of local excitation results in hydrodynamical evolution almost
from the very beginning (cf., [95, 96] for analogous statements with spatial
homogeneity). Since our perturbation excites the sound mode of the system,
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(a) λ(t, x) (b) T00(t, x)

Figure 3.1: Evolution profile of the (a) radial shift λ(x, t), and (b) T00(x, t)
component of the stress tensor, for α = 0.5, M = 0.1, σ = 2. The field λ
determines the evolution of the entropy in our solution.

we have the initial energy-momentum perturbation dispersing at the speed
of sound. The presence of shear viscosity results in entropy production,
manifested in the solution by the local growth of the horizon area element.
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Figure 3.2: Evolution of the total energy on the boundary E =
∫
T00 dx

after a quench described by parameters α = 0.5, M = 0.1, σ = 2.

In Figure 3.1a we display the spatial and temporal profile of the function
λ(x, t), related to the area element of the horizon. We see that the initial
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perturbation indeed results in entropy production, as expected. Curiously,
the initial perturbation splits to two localized perturbations after some time;
those follow the expected hydrodynamic evolution. Figure 3.1b shows the
equivalent evolution of the energy density for the same set of parameters.
Finally, Figure 3.2 shows that following the conclusion of the quench the
total energy is conserved. These features verify the intuitive picture of hy-
drodynamical evolution following a local excitation of the system.

To quantify the entropy production, we can monitor the growth of the
area of the apparent horizon as a function of time. In order to express the
result in physical units, we need to convert from the natural time scale on
the horizon to the time measured in the boundary. Recall that our solutions
for the metric components are obtained on a slice of constant ingoing time
coordinate t. We could, following [128], map the horizon data along ingoing
null geodesics to the boundary. We will refrain from doing so explicitly
and instead work directly in the chosen coordinates leaving implicit this
translation.8

Using the induced metric hab on a constant t slice we obtain the area
element on the horizon which can be integrated directly. Since the naive
answer is infinite, we regulate it by removing the contribution from the initial
equilibrium state (i.e. subtract off the static Schwarzchild-AdS answer) to
obtain:

∆Areah = Ly

∫
r=rh

(
Σ2
√

1 + 2λ′e−2χ−B − r2
h

)
dx (3.29)

The numerical results are expressed in Figure 3.3, where we also show the
total energy for comparison. Notice the striking resemblance of the horizon’s
area evolution with that of the total energy injected into the system by the
quenching scalar field. This seems to indicate that the growth of the horizon
is dictated by processes governed by the speed of sound, such as energy and
momentum transport. This is indeed the intuition we would have from the
hydrodynamic regime of slow variations and it is a reassuring check of the
set-up that this indeed is upheld.

3.3.2 Extremal Surfaces

Having the solution at hand we can compute the extremal surfaces as de-
scribed in §3.2.4. In Figure 3.4 we display the radial depth of the turning
point for the extremal surfaces, as function of (boundary) time. Different

8 We also note that λ(t, x) is defined on a constant ingoing time slice, and as such the
radial shifts affect the horizon “instantaneously” rather than causally.
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Figure 3.3: I The growth of the apparent horizon (in blue) as a function of
boundary time, for α = 0.3 and M = 0.1. We also overlay the plot for the
total energy

∫
T00dx produced by quenching the system in red for direct

comparison.

points correspond to different extremal surfaces, which contribute to entan-
glement entropy of surfaces of varying lengths. We have plotted the radial
depth both in the computational coordinate (in which the horizon is at fixed
radial distance) and in coordinates in which the horizon grows.

Since our computational domain ends at the apparent horizon, we cannot
probe extremal surfaces that extend past into the trapped region. These are
known to exist in various explicit simulations (cf., [126] for a comprehensive
survey in Vaidya-AdS spacetimes). Pragmatically, this restricts our atten-
tion to small regions A. We will nevertheless see that despite this restriction
we can still extract interesting physical features of SA using surfaces that
lie outside the apparent horizon.

One of the interesting features to notice from Figure 3.4 is that the
geodesics never go beyond their initial depth in the bulk when we consider
their position in the ungauged radial coordinate, i.e., where the radial depth
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Figure 3.4: Evolution of the geodesics’ radial depth for a quench; α = 0.5,
M = 0.1, L = 0.8, σ = 2. The blue data points represent the radial depth u∗

in the fixed, gauged coordinate system, whereas the red data points represent
the ungauged radial depth U∗.

is

U∗ ≡ u∗

1 + λ(t∗, x = 0)u∗
, (3.30)

with u∗ = 1/r∗ being the radial position of the tip in the coordinate system
where the apparent horizon is at a fixed coordinate locus.

3.4 Propagation of Entanglement Entropy

Armed with the numerical results for the spacetime geometry and the ex-
tremal surfaces therein, we are now in a position to extract some physical
lessons for the evolution of entanglement entropy following a local quench.
We restrict our attention to regions A centered around the source of the
initial excitation which is taken to be w.l.o.g. at x = 0. We will examine
the behaviour of ∆SA as a function of the width L of the strip and time t
after the quench.

We note that the region of parameter space that we can explore numer-
ically is limited. The amplitude α of the scalar field cannot be too large,
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otherwise the time-evolution of the quench solution does not converge. Sim-
ilarly, the evolution code becomes unstable if the spatial discretization falls
below a critical grid size, which has for consequence that we cannot resolve
quenches with width σ below a certain threshold. The width L of the en-
tangling surface is in turn constrained by the initial values we can pick for
M , which determines the position of the event horizon of the initial configu-
ration: if M is taken to be large, then we cannot find extremal surfaces that
go deep enough in the bulk to probe larger regions A, whereas if M is taken
too small, then it becomes increasingly harder to quench the spacetime with
a scalar source. We found that using quenches with width σ = 2, together
with M ranging from 0.005 and 0.2 and α between 0.1 and 0.5, yielded in-
teresting results that remained mostly the same, albeit delayed in time, as
those with σ chosen larger.

Before proceeding we remind the reader that for regions A which are
much wider than the width of the quench source profile, there is a time
delay before the entanglement entropy starts to change. This is consistent
with the causal properties one would required of entanglement. Only when
the quench can affect both the region and its complement (by being in the
past of the entangling surface) would we expect a change in the entanglement
for A. This is clearly borne out in our simulations and is used to benchmark
that we are on the right track.

3.4.1 An Emergent Light-cone

We first note that the entanglement generated by the local quench is linearly
dispersing, i.e., it traces an effective light-cone. This is quite reminiscent of
the Lieb-Robinson bound [129] in non-relativistic theories, where correla-
tions follow an effective information light-cone. The speed of entanglement
propagation is then denoted by vE below.

The velocity vE we find is bounded from below. A-priori one might
guess whether the lower bound is given by the speed of sound, which is the
speed in which the initial pulse spreads, thereby further exciting the system
and generating additional entanglement on larger scales. The true speed
is however a bit lower, as we shall see, suggesting that the mechanism of
entanglement propagation differs from that which drives physical transport
of energy and other conserved charges in the system.9

9 A-priori this statement statement appears reasonable, since the propagation of energy
in the system is governed by the ability of the system to homogenize, which per se is not
the same as becoming quantum entangled. There is thus far no clear mechanism for
intuiting entanglement transport in quantum field theories, though the attempts of [63]
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We therefore interpret the velocity vE as the speed in which the initial
entanglement, generated locally by the quench, propagates in time. The
entanglement velocity can be extracted from the emergent light-cone defined
along the curve where ∆SA(t) reaches a maximum for every L in the L− t
plane. We remark that unlike the results of [104], the height of this peak
does not remain constant in our setup. Instead, we find that the maximum
value of SA(t) increases as we increase L.

This behaviour of the entanglement entropy can be quantified rather
explicitly. We find that dependence is strongest when the amplitude of
the scalar field is varied. For small sizes L, the maximum of SA increases
linearly with L. If we denote the slope of these curves by s, then we find
the interesting relation

∂

∂L
SA(L, tmax, α) = s(α) ∼ α2 for small/intermediate regions. (3.31)

The actual scaling for the slopes obtained from our numerical data are:

• s(α) ∼ α1.92 for α = {0.1, 0.2, 0.3, 0.4, 0.5} and M = 0.1

• s(α) ∼ α2.0043 for α = {0.05, 0.1, 0.15, 0.2} and M = 0.01

In the first case, the linear behaviour is shown in Figure 3.5. In the second
instance (not pictured), while the linear nature breaks down when L is large,
the slopes for small to intermediate regions still depend quadratically on the
amplitudes. The dependence on temperature is less interesting. When the
temperature M changes, the maximum of the entanglement entropy shifts
slightly, as can be seen in Figure 3.6.

For general values of parameters, the entanglement velocity vE changes
with parameters, always bounded from below by the tsunami velocity (4.31),
and above by the speed of light. We do however find two universal results
which we now turn to.

Universal Behaviour at High Temperature

In the limit of an approximate global quench where the region A is contained
within the local quench, i.e., L . σ, and at high temperatures, we find a
universal light-cone velocity vE = 1 (to very high accuracy), regardless of the
amplitude of driving scalar field (including values well within the non-linear
regime)10. This is depicted in Figure 3.7. We note that for some values of

suggest potentially interesting mechanisms for the same.
10 It is worth noting that previous results for global quenches could not have seen this

feature since the entanglement entropy saturates for strip geometries.
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Figure 3.5: Maximum of the entanglement entropy SA(t) as a function of L,
for α = {0.1, 0.2, 0.3, 0.4, 0.5} starting from the bottom, and M = 0.1. The
slopes of these curves depend quadratically on the amplitude α of the scalar
field.

parameters, this universal behaviour can be affected by edge effects of the
local quench, and is seen for small enough surfaces only.

As we decrease the black hole temperature, the velocity at the small sur-
faces becomes lower than 1. This confirms that vE = 1 is a high temperature
effect only.

Wide Quench Profiles

An interesting feature of the emergent light-cone is the abrupt change of
velocity as the width of the region A, L, is increased. When the size of the
region A becomes of the same order as the width of the local quench, the
curve traced by the peak of the entanglement entropy goes from one linear
regime to another, as shown in Figs. 3.8a, 3.8b, and 3.8c.

Interestingly, for the first two data sets (for which α = 0.1, M =
{0.005, 0.01, 0.02}, σ = 2), the light-cone velocities vE = {0.678, 0.688, 0.706}
are very close to the tsunami velocity of a Schwarzschild-AdS4 black hole
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Figure 3.6: Maximum of the entanglement entropy SA(t) as a function of L,
for a range of masses of the initial black hole M = {0.005, 0.01, 0.02, 0.1},
starting from the top, and α = 0.1. Lowering the temperature (decreas-
ing M) slightly increases the maximum of SA(t). The same phenomena is
observed for α = 0.2.

found in [47], given by

v∗E(3) =
(η − 1)

1
2

(η−1)

η
1
2
η

∣∣∣∣∣
d=3

=

√
3

2
4
3

= 0.687, with η =
2(d− 1)

d
. (3.32)

We note that temperature does not seem to have an effect on vE , which
is consistent with the above formula. For these parameters, the evolution is
described by linear response to good approximation, and in that regime the
tsunami velocity seems to capture the spatial propagation of entanglement
to very good accuracy.

This behaviour should be anticipated on physical grounds. When the
region A is completely immersed in the quench source, we are back to the
case where we may approximately think of the situation as a global quench
problem. The fact that the source is not homogeneous in Ac is irrelevant
because all that matters is that the excitations produced by the quench
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Figure 3.7: Position of the maximum of SA(t) in the L−t plane for a quench
described by α = 0.5, M = 0.1. The light-cone velocity extracted from the
slope of this line is vLC = 1, and is independent of the value of α.

are in the causal past of the entangling surface ∂A. With this in mind we
immediately anticipate that the results for the Vaidya quench explore in
[47, 61] should apply and one see a linear growth with the tsunami velocity.

The story of the local quench however should be a lot richer than the
homogeneous global quench. For one, we can encounter an interplay between
the size of A and the width of the pulse. We also expect that the non-
linearities of gravity will play a role as we try to increase the amplitude.
Indeed we see that velocity vE increases as we increase the strength of the
non-linearities in the bulk evolution – this is illustrated in Figs. 3.9a and
3.9b (where the scalar field amplitude was doubled from 0.1 to 0.2). This
goes against the idea of the tsunami velocity as an upper bound on the speed
propagation of the entanglement propagation, at least when that evolution
is spatially resolved. Coupled with the earlier observation regarding the
upper bound on vE ≤ 1, we find it natural to conjecture that

v∗E(3) = 0.687 ≤ vE ≤ 1 (3.33)

The details of deviation from the two extreme limits appear to depend on
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(a) M = 0.005, vE = 0.678(0.818)
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(b) M = 0.01, vE = 0.688(0.834)

3.0 3.5 4.0 4.5 5.0

0.5

1.0

1.5

2.0

tmax

L
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Figure 3.8: Position of the maximum of SA(t) in the L − t plane for a
quenches described by α = 0.1, starting from different initial states param-
eterized by M shown above. The light-cone velocities for large L for the
three scenarios are also indicated, as are the corresponding values for small
region sizes (in parenthesis). While we give the values of the velocity vE
for small regions, this data should be interpreted with care, for we typically
find that edge effects contaminate the data, and these slopes should not be
taken at face value in the small L regime.

various effects which we have not yet disentangled. While the upper bound
follows form causality, it is unclear at present whether the tsunami velocity
encountered (herein and before) is a fundamental bound on information
processing in strongly coupled systems. It would be interesting to come up
with a model which allows us to explore the different propagation velocities
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Figure 3.9: Position of the maximum of SA(t) in the L − t plane for a
quenches described by α = 0.2, starting from different initial states parame-
terized by M shown above. The light-cone velocities for large L for the three
scenarios are also indicated. Conventions are the same as in Figure 3.8.

perhaps along the lines of [63].

3.4.2 Entanglement Decay

The process of return to equilibrium is characterized by universal behaviour
and critical exponents. Therefore, an interesting quantity in our model is the
decay of the entanglement entropy after it has reached a local maximum. To
our knowledge this is the first time this decay has been calculated in either
holographic theories or in higher dimensional conformal field theories.

From our numerical data we find that the profile for the decay is best
fitted by an exponential damping

∆SA(t) ∼ a1e
−a2(t−a3) + a4 , (3.34)

where the parameters ai depend on the specifics of the sources chosen to
implement the quench protocol. In Figure 3.10 we depict the behaviour
for a particular simulation (parameters in the caption). Note also the time
delay in the initial growth, which illustrates the causality feature discussed
earlier.

It is interesting to contrast our result for the exponential return to equi-
librium against a more slow return seen in some spin chain models. For
instance, in [130] the authors study free electrons in a half-filled chain and
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Figure 3.10: Exponential decay of the entanglement entropy evolution at
late times; α = 0.5, M = 0.1, L = 0.8. The fit parameters for the particular
choice of quench parameters turns out to be a1 = 2.5335, a2 = 0.5277,
a3 = 0.6049, and a4 = 0.0454. Note that we evolve the solution for late but
finite time, which explains why a4 6= 0. In the infinite time limit we expect
a4 = 0.

determined the growth and decay of the entanglement entropy after a local
quench. In that set-up they find a very slow return to the unperturbed
value. In two dimensions the decay is characterized by SA(t) ∼ a1 log(t)+a2

t
as t → ∞. The parameters a1, a2.are again obtained by fitting and depend
on the specific details of the quench.

It is somewhat intriguing that the holographic computations relax much
faster. This is reminiscent of features of scrambling in black hole physics,
which we comment on in our discussion §3.5.

3.5 Conclusions and Future Directions

The main focus of the present paper was to describe the dynamics of the
holographic entanglement entropy following a local quench. While this prob-
lem has been studied in the past using various known exact solutions to
model the quench, we have carried out a full numerical simulation of Ein-
stein’s equations in the presence of a perturbing external source on the
boundary of AdS. Given the explicit numerical solution to the quench ge-
ometry, we can study the dynamics of entanglement entropy by exploring
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the behaviour of extremal surfaces that are anchored on the boundary.
The upshot of our analysis was a clear signal that entanglement entropy

disperses linearly, in a manner reminiscent of the Lieb-Robinson light-cone.
The dispersion velocity appears to depend on the details of the quench,
though we were able to bound the result between two interesting bounds that
have been discussed in the literature earlier. On the one hand we found that
for wide quench profile, the propagation speed saturated a putative lower
bound, given by the entanglement tsunami velocity obtained by [47] in the
context of global quenches (modeled using the Vaidya-AdS spacetime). On
the other hand well localized quenches appear to propagate entanglement
at the speed of light. It is rather curious that we have results very similar
to the Vaidya-AdS quench, for the geometry we construct is not the same.
This lends support to thesis of [47, 61] that the holographic tsunami velocity
ought to be a generic phenomenon.

The second aspect of holographic entanglement entropy which is inter-
esting in our study is the rather rapid reversion of result to the equilibrium
value. In various simulations we have tested, the reversion is exponentially
fast, in contrast to the much slower logarithmic decay seen in spin models.
This suggests again, as has been suspected in the past, that black holes are
very efficient at information processing, cf., [131, 132].

There are many other interesting areas for further investigation. It would
be interesting to study other quench protocols and other theories, includ-
ing massive models, primarily to extract a more detailed dependence of
the entanglement velocity and the rate of equilibration. A particularly in-
teresting direction is the study of (global and local) quenches past critical
points, generalizing the results of [133] to higher dimensions. It would also
be interesting to study other non-local measures besides the entanglement
entropy, which are more sensitive to the spatial structure of entanglement
in quantum field theory, and to the differences between strongly coupled
holographic CFTs and CFTs of small central charge. In particular, the mu-
tual information of disjoint intervals would be interesting to calculate in our
setup for local quenches. Finally, one can make a direct connection to the
study of entanglement entropy following a local quench in two-dimensional
CFTs, for which we have analytic results to explain the behaviour at large
central charge [124]. We hope to report on these results in the near future
[134].
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Chapter 4

Comments on Entanglement
Propagation

We extend our work on entanglement propagation following a local quench
in 2+1 dimensional holographic conformal field theories. We find that entan-
glement propagates along an emergent lightcone, whose speed of propagation
vE seems distinct from other measures of quantum information spreading.
We compare the relations we find to information and hydrodynamic veloci-
ties in strongly coupled 2+1 dimensional theories. While early-time entan-
glement velocities corresponding to small entangling regions are numerically
close to the butterfly velocity, late-time entanglement velocities for large
regions show less regularity. We also generalize and extend our previous
results regarding the late-time decay of the entanglement entropy back to
its equilibrium value.

4.1 Introduction

The generation and propagation of quantum information is a fascinating
subject, bringing together insights from quantum information theory, many-
body physics and perhaps most surprisingly, studies of the quantum mechan-
ics of black holes. Here we focus on entanglement as a measure of quantum
information.

One way to generate entanglement is by quenching the system, i.e. start-
ing the evolution from an atypical excited state of the Hamiltonian, usually
generated as the ground state of another, closely related Hamiltonian. The
quenching process generates short range entanglement which then evolves
and propagates as the system reaches the typical, thermal state1.

1We note in passing that much of the work on holographic quenches has been done
at finite temperature, for example quenching past thermal critical points. Such studies
mix quantum entanglement and classical correlations. To directly probe the quantum
entanglement of the ground state one needs to work at zero temperature, for example
quenching past quantum critical points. While some work in that direction has been
done, much more remains to be explored. On the holographic side, the bulk geometry at
zero temperature does not involve a regular horizon, which makes both the mechanics and
physics quite different from the thermal case.
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In the holographic context, quenching the system can be achieved by
starting at equilibrium and turning on external sources (non-normalizable
modes) for marginal or relevant operators, which drive the system out of
equilibrium for a finite duration of time. Much attention has been given
to global, i.e. spatially homogeneous, quenches. In this case the time-
dependence of the entanglement entropy is the observable of interest, and
many insights have been gained both in the holographic context, as well as in
more traditional approaches to many body physics. Models of entanglement
evolution, based on those results, are put forward in [47, 61, 63, 135, 136].
It would be interesting to incorporate the spatially-resolved holographic re-
sults, discussed here and in [137], into such models.

Indeed, the setup of local quenches, whereby the system is excited locally
in the spatial domain, provides a spatially-resolved probe of the generation
and propagation of entanglement. In [137] we initiated the study of such
quenches, and here we continue that study in a more general set of holo-
graphic theories involving a charged black hole horizon, corresponding to
strongly coupled conformal field theories in 2+1 dimensions at finite charge
density. We focus on testing our previous results concerning entanglement
propagation in this more general, yet quite similar, context. We are thus
able to generalize and improve our original discussion, to test which of our
previous results are robust, and to investigate which of our conjectures hold
in a more general context2.

Similarly to our previous work, we find that entanglement propagation
defines an emergent lightcone structure for the theory. The maximal value
of entanglement defines a lightcone, except for narrow transition regimes.
We typically find two associated lightcone velocities, one to do with short
times, and one with longer times3. The associated lightcone velocity vE in
those regimes depends on various parameters, and we have previously found
some regularities in the neutral quenches.

Here we extend that analysis: we find that the early-time velocity seems
to be related to the butterfly velocity, while late-time velocities have more
complicated phenomenology. We discuss the phenomenology of vE in this
more general setup, and compare our results to other measures of entangle-
ment propagation in that regime. We also discuss the return of the entan-
glement entropy to its equilibrium value, where we are able to give more
precise results than previously due to improved numerics.

2This is similar in spirit to [138, 139], where it was found that breaking conformal
invariance has only a limited effect on holographic results.

3Due to numerical limitations, these not asymptotically long times.
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The outline of this paper goes as follows: In Section 4.2 we discuss our
setup for local quenches in charged spacetimes, our numerical integration
strategy using the characteristic formulation of general relativity, and our
holographic calculation of the extremal surfaces encoding the entanglement
entropy of regions on the boundary. Section 4.3 contains analysis of the dy-
namics of holographic entanglement entropy. We continue our investigation
of the emergent lightcone structure that encodes the spatial propagation
of entanglement entropy, by including the effects of charge and discussing
various mechanisms that may underlie the phenomenology of entanglement
dynamics. We also extend our description of entanglement thermalization,
for which an improved numerical implementation of the quenches’ evolution
at late times reveals a logarithmic return to equilibrium rather than an ex-
ponential damping. We provide a brief summary of our results in Section 4.4
as well as further details on the numerical aspects of this work in Appendix
B.

4.2 Holographic Local Quenches

In this section we introduce our setup for local quenches in charged space-
times. The local quench is generated by an inhomogeneous scalar source
which is turned on for a finite duration. The resulting bulk solution is found
numerically, and the extremal surfaces in that geometry encode the dynam-
ics of the entanglement entropy. Here we describe that setup, before turning
to the results in the next section. We focus mostly on differences from [137],
and the reader may wish to consult that reference for additional details.

4.2.1 Setup for Charged Quenches

We choose our metric to be a generalization of the infalling Eddington-
Finkelstein coordinates for black holes in an asymptotically AdS4 spacetime
[73, 140]

ds2 = −2Ae2χ dt2 + 2 e2χ dt dr − 2Fx dtdx+ Σ2
(
eB dx2 + e−B dy2

)
,

(4.1)

and we introduce a gauge field V in the radial gauge

V = V0 dt+ Vx dx. (4.2)

The coordinate r denotes the radial bulk coordinate, with the boundary
located at r = ∞, and t is a null coordinate that coincides with time on
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the boundary. Our quench, controlled by a relevant scalar on the bound-
ary, will have local support in x while being translationally invariant in the
y direction. Hence all the fields under consideration depend only on the
coordinates {r, t, x} with ∂y being an isometry.

This null slicing of spacetime, known as the characteristic formulation,
is well adapted to treat gravitational infall problems since the coordinates
remain regular everywhere as the quench propagates through the bulk. Our
ansatz also provides us with a residual radial diffeomorphism

r → r = r + λ(xµ) , (4.3)

which we use to fix the coordinate location of the apparent horizon and thus
keep the computational domain rectangular.

The Einstein-Maxwell equations in the presence of a scalar field are given
by

RMN −
R

2
GMN −

3

`2AdS

GMN = TΦ
MN + T VMN , (4.4)

∇MFMN = 0 (4.5)

where the matter stress tensors are given by

TΦ
MN = ∇MΦ∇NΦ +GMNLΦ, LΦ = −1

2

(
GMN∇MΦ∇NΦ +m2Φ2

)
,

(4.6)

T VMN = GABFMAFNB −
1

4
F 2GMN , F = dV. (4.7)

Before the quench, the spacetime geometry obeys the vacuum Maxwell-
Einstein equations and is described by the RNAdS4 black hole of mass M
and charge Q

ds2 = −r2f(r) dt2 +2 dt dr+r2
(
dx2 + dy2

)
, f(r) = 1−M

r3
+
Q2

2r4
, (4.8)

and the time-component of the gauge field is

V0 = µ− Q

r
, µ ≡ Q

r+
. (4.9)

The chemical potential µ is chosen so that V0 vanishes at the event horizon.
In fact, RN black holes typically possess two horizons r±, which correspond
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to the two real solutions of f(r) = 0. The black hole’s Hawking temperature
is given by

T =
r2

+f
′(r+)

4π
, (4.10)

and extremality occurs when T = 0, i.e. when Q =
√

3Mr+/2 and the two
horizons coincide.

4.2.2 Asymptotic Analysis

We now turn our attention to the asymptotic behaviour of our system. We
first make a simplifying choice and take m2 `2AdS = −2 in order to ensure
that the near-boundary expansion of the bulk scalar field is in integer powers
of 1/r

Φ(r, t, x) =
φ0(t, x)

r
+
φ1(t, x)

r2
+ · · · . (4.11)

Requiring that the Einstein-Maxwell equations in the presence of Φ are
satisfied as r →∞ informs us that the gauge field behaves like

V0(r, t, x) = µ(t, x)− ρ(t, x)

r
+ · · · (4.12)

Vx(r, t, x) = µx(t, x) +
jx(t, x)

r
+
V

(2)
x (t, x)

r2
· · · (4.13)

whereas the metric components have the asymptotic expansion

A(r, t, x) =
(r + λ(t, x))2

2
− ∂tλ(t, x)− 1

4
φ0(t, x)2 +

a(3)(t, x)

r
+ · · ·

(4.14)

χ(r, t, x) =
c(3)(t, x)

r3
+ · · · (4.15)

Fx(r, t, x) = − ∂xλ(t, x) +
f (3)(t, x)

r
+ · · · (4.16)

Σ(r, t, x) = r + λ(t, x)− 1

4
φ0(t, x)2 + · · · (4.17)

B(r, t, x) =
b(3)(t, x)

r3
+ · · · . (4.18)

The functions G
(3)
µν are undetermined by the equations of motion and require

the input of boundary data via the stress tensor Tµν [13], defined in its
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Brown-York form as [141]

Tµν = Kµν −Kγµν + 2 γµν −
(
γRµν −

1

2
γRγµν

)
+

1

2
γµν φ

2
0, (4.19)

where γµν is the induced metric on the boundary, Kµν ,K ≡ γµνKµν its
extrinsic curvatures, and γRµν ,

γR its intrinsic curvatures. It is straightfor-
ward to show that

T00 = 2a(3) + 4c(3) + φ0φresponse, (4.20)

Ttx =
3

2
f (3) − 1

2
φ0∂xφ0 , (4.21)

and that these components obey the conservation equations

∂tT00 = ∂xTtx + ∂tφ0 φresponse − (∂tµx − ∂xµ)2 − jx(∂xµ− ∂tµx), (4.22)

∂tTtx =
1

2

(
∂xT00 − 3 ∂xb

(3) + ∂xφ0 φresponse − φ0 ∂xφresponse

)
+ ρ(∂xµ− ∂tµx). (4.23)

In addition to energy and momentum, the electric charge and current are
also conserved

∂tρ = − jx − ∂2
xµ+ ∂t∂xµx, (4.24)

∂tjx = V (2)
x + jxλ−

1

2
∂xρ. (4.25)

4.2.3 Integration Strategy

The characteristic formulation of the Maxwell-Einstein and Klein-Gordon
equations conveniently reorganizes the coupled PDEs in two simpler cate-
gories: equations for auxiliary fields that are local in time and that obey
nested radial ODEs, and equations for dynamical fields that propagate the
geometry from one null slice to the next [73, 140]. Here we outline our
numerical integration strategy, and refer the reader to Appendix B for a
discussion on the more technical aspects of our implementation.

We modelled the quench source function as φ0(t, x) = f(x)g(t), with

f(x) =
α

2

[
tanh

(
x+ σ

4s

)
− tanh

(
x− σ

4s

)]
, g(t) = sech2

(
t− tq∆
tq

)
.

(4.26)
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We let the scalar field profile reach a maximum value α at time t = tq∆. We
set tq = 0.25 and ∆ = 8, and chose the steepness s according to the width
σ of the perturbation in order to have a smooth profile. By t = 3, φ0 ≈ 0,
and the quench has concluded.

We performed domain decomposition in the radial direction, using 4 do-
mains each discretized by a Chebyshev collocation grid containing 11 points.
In doing so, errors located near the boundary or near the apparent horizon
remain localized within their respective subdomain [127], thus improving the
solutions for auxiliary fields over the entire radial domain. We discretized
the spatial direction using a uniformly-spaced Fourier grid over the interval
[−30, 30] and used 121 points for σ = 2, and 173 points for σ = 0.5 to
maintain an acceptable spatial resolution as the quench profile propagates
further away at later times.

As for the time evolution, we used an explicit fifth-order Runge-Kutta-
Fehlberg (RKF) method with adaptive step size to propagate dynamical
quantities. Note that we evolved each quench until t = 20, the approximate
time at which the fields perturbations reach the spatial boundaries. We also
got rid of high-frequency modes that contaminated our solutions by applying
a smooth low-pass filter that discarded the top third of the Fourier modes.
However, we remark that it is important not to filter the bulk scalar field
Φ if we want its RKF-propagated boundary profile to agree with the source
φ0 at all times.

4.2.4 Holographic Entanglement Entropy

The next step after obtaining numerical solutions for our local quench is
to study the evolution of the holographic entanglement entropy (HEE) of a
region A on the boundary. For simplicity, we consider a strip that extends
infinitely in the y direction

A = {(x, y) | x ∈ (−L,L), y ∈ R} , ∂A = {(x, y) | x = ±L, y ∈ R} .
(4.27)

The covariant HEE prescription [41] tells us that the entanglement entropy
is determined by the area of extremal surfaces anchored on ∂A. It is natural
to use the quench’s translational invariance to parametrize the extremal
surfaces by the coordinates τ and y. The extremal surfaces we are looking
for will also be translationally invariant in y, and the problem of calculating
their area reduces to that of calculating the proper length of the geodesics
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XM (τ) = {t(τ), r(τ), x(τ)} arising from the Lagrangian

L = Gyy GMNẊ
MẊN . (4.28)

The resulting system of 3 second order ODEs can be transformed into a
system of 6 first order ODEs in the variables{

t, Pt ≡ Σ2 ṫ, r, P+ ≡ e2χ
(
ṙ −A ṫ

)
, x, Px ≡ Σ2 ẋ− e−BFx ṫ

}
,

(4.29)

for which L = 2P+Pt + P 2
x .

Keeping in mind that the length of a geodesic in an asymptotically AdS
spacetime is formally infinite, we introduce a UV cutoff r = ε−1 and use
a regularization scheme in which we subtract the entanglement entropy of
a RNAdS4 geometry expressed with the radial coordinate r̄ = r + λ(t, x),
thus effectively matching asymptotic coordinate charts in both setups and
setting ∆SA = 0 prior to the quench4.

To solve the Euler-Lagrange equations derived from (4.28), we adopt an
initial value problem point of view in which the initial conditions at the
turning point are

{t = t∗, Pt = 0, r = r∗, P+ = 0, x = 0, Px = ±1} , (4.30)

and we use a shooting method in r∗ so that x = L when r = ε−1. Note that
the tolerance parameters of the ODE solver must be chosen so that L = 1
along the geodesic, which in turn provides us with a safety check for our
solutions.

4.3 Results

Having described our setup and methods of calculation, we now turn to
summarizing the patterns observed in our extended framework. In each
case, we provide context by starting our discussion with a brief reminder of
our observations for neutral local quenches before broadening the scope of
our analysis to account for the effects of charge.

4This regularization procedure is equivalent to subtracting the vacuum entanglement
entropy for the region A with a dynamical cutoff εvac(t, x) related to the radial shift λ(t, x).
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4.3.1 Emergent Lightcone and Entanglement Velocity

Entanglement lightcone

The local nature of the quenches (having finite energy at infinite volume, i.e.
zero energy density) implies that the entanglement entropy of any region A
initially grows with time, reaching a maximum, before inevitably decaying
to its pre-quench value as the perturbation dissipates away. Much of our
analysis has to do with the spatial structure of that maximum, as a function
of the spatial extent L of A and the time t. We find that, except for narrow
transition ranges, the curve traced by the maximum in the L − t plane
is linear: the spatial propagation of entanglement defines a new lightcone
structure, distinct from the causal structure of both bulk and boundary
theories.

We note that a similar observation was made in [104], in which local
quenches are implemented as a perturbative approximation to the backreac-
tion caused by a massive infalling particle in pure AdS. In that context, the
trajectory traced by ∆SA(tmax, L) in the L− t plane always follows a slope
of vE = 1 (additionally, the amplitude of that maximum remains constant
throughout).

It turns out that the structure of our results is much richer since our
numerical scheme accounts for the full backreaction of the quench on the
geometry. While our data reveals the appearance of an emergent lightcone,
this result emerges from the analysis rather than being one of the assump-
tions put in by hand. Indeed, as we will detail below, we typically find two
linear regimes separated by a narrow transition, with distinct velocities at
early and late times.

The slope of the curve traced by the maximum, vE , is a natural measure
of how fast entanglement propagates spatially. Much of our analysis has to
do with analyzing this velocity vE . We find a rich structure in the depen-
dence of the emergent lightcone velocity on parameters. In particular, while
it is conceptually similar to other measures of quantum information spread-
ing such as the butterfly or tsunami velocities, we find that it is numerically
distinct from them under most circumstances.

Let us now turn to describing the regularities found in the entanglement
velocity vE .
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Entanglement velocity

As is expected from a relativistic theory, we found that vE was bounded from
above by the speed of light, with the bound being saturated universally in
the high temperature regime.

Perhaps more interesting was the discovery of a lower bound on vE dif-
ferent from the speed of sound of a three-dimensional CFT, vsound = 1/

√
2 =

0.707. Indeed, the speed of sound, which underpins the thermalization of
energy and momentum on the boundary theory, seemed a likely candidate to
track the generation and propagation of entanglement. However, our initial
analysis showed that this lower bound lied slightly below vsound, and in fact
was consistently very close to v∗E(3), the tsunami velocity of a Schwarzschild-
AdS4 black hole [47]

v∗E(d = 3) =
(η − 1)

1
2

(η−1)

η
1
2
η

∣∣∣∣∣
d=3

=

√
3

2
4
3

= 0.687, with η =
2(d− 1)

d
.

(4.31)
The tsunami velocity is a holographic measure of how fast entanglement
propagates spatially when spacetime is globally quenched and depends uniquely
on a black hole’s conserved charges. Given the naturalness of this velocity in
matters related to entanglement entropy propagation, we conjectured that
vE should be found within the bounds

v∗E(3) = 0.687 ≤ vE ≤ 1. (4.32)

This situation is in a way reminiscent of quantum spin systems, which admit
an upper Lieb-Robinson bound on the speed at which information can travel
despite the absence of relativistic constraints [129]. However our holographic
calculation also provides us with an unexpected lower bound on information
processing based on the properties of spacetime itself.

We now extend our analysis of the structure of the entanglement light-
cone and the velocity vE by including the effects of charge. Our main result
persists: in all the cases we examined, the entanglement traces a lightcone
structure. We can therefore look more closely at the relation between the
entanglement propagation velocity vE defined by our emergent lightcone
structure, and other closely related velocities. We note that while those
velocities are conceptually similar, and numerically close to each other for
neutral black holes, their dependence on charge is distinct. We can therefore
hope to make better distinction between them by examining our results for
different parameter ranges, in particular focussing on the charge dependence.
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Relation to other velocities

In our simulations for wide quenches we find two stages for entanglement
propagation, both exhibiting a lightcone structure, and a narrow transition
regime between them. For the early-time results, governing the evolution
of small entangling surfaces, it is natural to suspect some relation to the
butterfly velocity, quantifying the spatial spread of chaos [142–144]. We
note that the presence of charge does not affect its value: vbutterfly =

√
3/2 =

0.866.
Indeed, this velocity seems to play a role in our results for the spatial

propagation of entanglement entropy: early-time velocities are in the range
vE ∈ [0.8, 0.9], numerically close to the butterfly velocity. In fact, it was
shown that the butterfly velocity naturally characterizes the saturation time
for large strip regions in the case of global quenches [145]. Since the L < σ
regime under consideration approximates a global quench for which tmax

can be thought of as the saturation time’s counterpart, vbutterfly seems a
likely candidate to quantify the initial spread of quantum information that
we observe.

For the late-time velocities, governing the evolution of larger entangling
surfaces, we had previously found a relation to the tsunami velocity, which
appears as a lower bound of entanglement propagation in the neutral case.
It turns out that the tsunami velocity of RNAdS4 black hole decreases as its
charge increases, ultimately vanishing at extremality. If the tsunami veloc-
ity serves as a lower bound for all values of the charge, then the addition of
charge should change the measured slopes vE in a predictable way. In partic-
ular, we should find that the spatial propagation of the entropy significantly
slows down near extremality.

Note however a subtle order of limits issue. Our numerics, performed
outside the apparent horizon, are restricted to sufficiently narrow entangling
surfaces. This is sufficient for discovering the emergent lightcone structure,
which we investigate here. However, the asymptotic IR limit L → ∞ is a
priori distinct and may exhibit different regularities. In particular, even in
the extremal limit, the entangling surfaces relevant for the emerging light-
cone are not deformed much in the near-horizon region. It may be the case
that infinitely wide surfaces are more sensitive to the near-horizon geometry,
and thus exhibit a more dramatic behaviour in the near-extremal limit.

As it turns out, the inclusion of charge does not affect our results in a
dramatic way, in this regime. Figure 4.1 shows the small effect charge has
on the lower bound for entanglement propagation speeds; the slopes vE all
fall within the same range for all charged configurations. In the case where
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Figure 4.1: The curves traced by the maximum of ∆SA(t) in the L−t plane.
Note that all charged configurations have been included in the same figure
to illustrate the weak dependence of the lightcone behaviour with respect to
charge. In both cases, the early-time velocities are found in close proximity
to the butterfly velocity (vE ∈ [0.8, 0.9]), whereas the late-time velocities
are found within vE ∈ [0.65, 0.71], an interval containing various velocities
of interest.

the minimal surfaces can penetrate deeper in the bulk, we still observe two
linear regimes (as in Fig. 4.1b) corresponding approximately to L < σ and
L > σ. The tsunami velocity originally appeared in the large L limit, and
we observe that charge only marginally decreases the slope vE .

The range of the lightcone velocities found at large L in our simula-
tions, vE ∈ [0.65, 0.71], is also fairly close to other hydrodynamic velocities:
vsound = 0.707 and vshear = 0.665. The latter is obtained from second-order
hydrodynamics results interpreted in terms of the phenomenological Muller-
Israel-Stewart theory. This shear velocity, which encodes the velocity of the
wavefront of momentum relaxation, is defined as [146]

vshear =

√
Dη

τΠ
≈ 0.665, (4.33)

where Dη is the effective shear “diffusion” constant obtained from an anal-
ysis of the sound pole, and the hydrodynamic parameter τΠ is the shear
relaxation time, which can be calculated from AdS/CFT [147]

Dη =
1

4πT
, and τΠ =

3

4πT

[
1− 1

2

(
log 3− π

3
√

3

)]
. (4.34)
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As this velocity has to do with entropy production, it can naturally affect
the evolution of holographic entanglement entropy in our setup.

In summary, it remains unclear exactly what phenomena come into play
to influence entanglement propagation in the late-time regime, where we find
an emergent lightcone. On one hand, we have seen that the slope traced
by ∆SA(tmax, L) does not decrease as we approach extremality, which sug-
gests that the charged tsunami velocity does not provide an appropriate
description of the lower bound for vE . Additionally, our analysis remains
inconclusive as to the relevance of the neutral tsunami velocity v∗E(3). We
also see that the entanglement velocity is fairly close to hydrodynamical ve-
locities, related to entropy production. As such we are unable to disentangle
the various effects which may influence entanglement propagation, and it is
entirely possible that different mechanisms may compete to influence the
shape of the entanglement lightcone in the late-time regime, resulting in the
variations observed in vE .

4.3.2 Entanglement Maximum

In the neutral case, we found that the value of the entanglement entropy
maximum ∆SA(tmax) increased linearly with the size L of the entangling
region for small L. This increase was also quantified as a function of the
scalar source’s maximal amplitude α

∂

∂L
∆SA(tmax, L;α) ∼ α2. (4.35)

For fixed amplitudes, we observe that the maximum ∆SA(tmax) was not
affected by the addition of charge for small L, and increased marginally
when changing Q, even as we approach extremality (see Figure 4.2). Thus,
our previously discovered regularities seem robust to the addition of charge.

4.3.3 Entanglement Decay

We now turn our attention to the late-time behaviour of holographic entan-
glement entropy. Our earlier work on neutral quenches showed evidence that
the process of return to equilibrium was best described by an exponential
damping

∆SA(t) = a1e
−a2(t−a3) + a4. (4.36)

The parameters ai depended on the particular features of the quench but
did not seem to follow any discernible pattern. However, our analysis was

105



0.5 1.0 1.5 2.0
0.00

0.02

0.04

0.06

0.08

L

DSAHtmaxL

(a) M = 0.1, σ = 2

0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

L

DSAHtmaxL

(b) M = 0.01, σ = 2

Figure 4.2: The maximum of ∆SA(t) as a function of strip width L for
α = 0.1. Note that all charged configurations have been included in the
same figure to illustrate the weak dependence of the entanglement entropy
with respect to charge.

limited by the quality of our numerical quench solutions. In particular, the
bulk fields could not be propagated past t = 9 without loss of accuracy
at large x and large memory requirements. We managed to evolve the
quenches up until t = 20 in a reasonable time by making a few modifications,
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including increasing the spatial resolution by discretizing the x direction
with a uniform Fourier grid and by solving the radial ODEs for the auxiliary
fields independently for each discretized xj .

These improvements allowed us to investigate the late-time behaviour of
the entanglement entropy over much larger time intervals. This additional
information revealed that the exponential decay we observed previously was
due to fitting the late-time data over too short of a time interval. In fact,
the new data instead suggests that

∆SA(t) ∼ a1 log t+ a2

tδ
, (4.37)

is a much better fit, as illustrated in Figure 4.3. This result is more in line
with those derived from spin chain models [130].
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Figure 4.3: The late-time behaviour of the entanglement entropy closely
follows the logarithmic decay (4.37) for L = {1, 2, 3}, from top to bottom,
for α = 0.1, M = 0.01, σ = 2 and Q = 0.04. In this particular case, the best
fit exponents are, respectively, δ = {1.36, 1.48, 1.49}.

Interestingly, the best-fit exponents δ, obtained by a least-square fit, are
generally clustered around either δ = 1 or δ = 1.5, which marks a departure
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Figure 4.4: The decay of ∆SA(t) and its best logarithmic fit for Q =
0.99 Qext and α = 0.1. The sizes L have been chosen such that the ex-
tremal surfaces probe the near-horizon geometry at one point during the
quench’s evolution, i.e. L is taken as large as the quench allows it to be. We
find δ = 1.5 for the figure on the right.

from the prediction ∆SA(t) ∼ t−6 made in the perturbative analysis of [104].
Our findings show that there is a complex interplay between the size L, the
initial energy density M , the initial charge density Q, and the amount of
injected energy in the characterization of entanglement entropy’s return to
equilibrium. When M = 0.1, the logarithmic decay fits the data with δ = 1.5
at low Q and small L for both σ = 0.5 and σ = 2. However, (4.37) becomes a
bad fit as either the charge and/or the size of A are increased, as showcased
in Figure 4.4a. We find that the breakdown occurs around Q ∼ Qext/2.

In contrast, the logarithmic return to equilibrium fits the data for all
values of Q and L when M = 0.01. When σ = 0.5, thermalization is
dominated by δ = 1 except for near-extremal black holes Q = 0.99 Qext, for
which δ = 1.5 no matter the size of the entangling surface. Taking σ = 2
reveals an even richer picture in which we observe a sharp transition between
decays characterized by δ = 1 and δ = 1.5. As illustrated in Figure 4.5, the
late-time evolution of holographic entanglement entropy in the neutral, large
size limit is fitted best with δ = 1. The exponent δ = 1.5 appears either as
extremality is approached, as in the σ = 0.5 case, or in the small L limit, as
in the M = 0.1 case.

These observations lead us to believe that the late-time behaviour of
∆SA(t) is influenced not only by the parameters characterizing the geodesics
and the geometry of the unquenched spacetime, but also by the amount
of energy injected by the scalar quench. As such it is hard to disentangle

108



and generalize our findings when the underlying competing processes harbor
inherently different length scales.

Figure 4.5: This figure illustrates the sharp transition between δ = 1 and
δ = 1.5 in the logarithmic decay of the HEE as a function of Q and L for
M = 0.01 and σ = 2.

4.4 Summary

We have studied the spatial propagation of entanglement entropy following
a local excitation of the system. We find that the entanglement generically
propagates along an emergent lightcone, whose velocity may change over
a narrow transition regime. In our simulation we find early and late-time
velocities, and look at their dependence on parameters and relation to other
interesting information and hydrodynamical velocities.

The early-time entanglement velocity for small strips seems similar to
the butterfly velocity. As both have to do with the initial propagation of
quantum information, we find that relation plausible, especially as it mirrors
an analytical result derived in an analogous global quench scenario. We are
however unable to disentangle the various effects that could influence the
late-time entanglement velocity: the propagation in that regime seems likely
to be controlled by a combination of many mechanisms.
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We are also able to exhibit some universality in the logarithmic return
of the entanglement to its equilibrium value. In particular, the relation to
known results for spin chains in 1+1 dimensional CFTs is intriguing.

There are very few avenues to investigate the propagation of quantum
information in higher-dimensional strongly coupled conformal field theories.
We hope that the phenomenology we present can illuminate that difficult
subject: in particular it would be instructive to have a simple model in-
corporating the regularities we find in the holographic results. We hope to
return to these issues in the future.
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Chapter 5

On Brane Instabilities in the
Large D Limit

Using an expansion in large number of dimensions, taken to subleading
orders, we discuss several issues concerning the Gregory-Laflamme instabil-
ities. We map out the phase diagram of neutral and charged black strings,
and comment on the possible transition in the nature of the final state of the
instability at higher order in the 1/D expansion. We also discuss unstable
black membranes, and show that in certain limits the preferred shape of the
non-uniform phase is a triangular lattice.

5.1 Introduction

Since its discovery, the Gregory-Laflamme instability [66, 67] has been a
source of many insights into General Relativity and its extended black brane
solutions in higher dimensions. The fate of the instability for a string is
much studied (for a comprehensive review, see [148]): there is now strong
evidence that the end-point of the black string instability depends on the
number of spacetime dimensions. It was shown in [70] that there exists a
critical dimension D∗ = 13.5 above which non-uniform black strings (NUBS)
become stable and have larger horizon areas than their uniform counterparts,
thus making them natural candidates as the end-point of the GL instability.
BelowD∗, numerical simulations [69, 149] have presented evidence that black
string horizons bifurcate in a self-similar cascade of black holes pinching off
to arbitrary small scales along the string direction, thus violating the cosmic
censorship hypothesis (despite the arguments proposed by [68]). A numerical
evolution beyond the critical dimension would be a welcome addition, but
the high-performance computing resources required would be an obstacle to
this endeavour.

A different approach — general relativity in the limit where the number
of dimensions is large [64] — offers a promising framework in which one
can address such questions analytically, or numerically with only modest
resources. Despite the theory being formally valid only when D → ∞, its
potential even at finite D was highlighted in a range of applications, ranging
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from the striking agreement of large D black holes quasinormal modes for
both large and small values of D, to the alternative derivation of the critical
dimension D∗ found in [72].

In this paper we discuss different aspects of the phase structure of the
non-uniform black objects. Following in the footsteps of [71, 150], we per-
form our analysis by promoting the mass, charge and momentum densities
on the string to be collective variables, and solve the resulting equations
numerically, observing their conserved charges at asymptotic infinity. Us-
ing this approach, we discuss several issues concerning the end-state of the
Gregory-Laflamme instability of extended black objects.

Discussing the general charged black string, we find that the entropy dif-
ference between the non-uniform configuration and its uniform counterpart
remains finite and positive for all such charged black strings, even in the
extremal limit. Indeed, in the extremal limit we are able to show that fact
analytically. Thus we conclude that there is a second order transition to a
non-uniform phase for all charged NUBS, which are entropically favoured
despite the weakening of the GL instability due to the addition of electric
charge.

We also investigate the physics of the neutral string to next-to-leading
order (NLO). Our goal is to find the signal, in the large D expansion, of the
transition of the instability end-point from a non-uniform black string to a
pinch-off scenario. Indeed, below the critical dimension D∗ where the NUBS
have lower entropy than the uniform string, there is a different end-point
to the instability, which is expected to be a pinch-off. While we find signs
that this is indeed the case, we are unable to find a universal value for the
associated critical dimension (which may be different from D∗) from our
analysis.

Lastly, we turn our attention to the phase structure of two-dimensional
unstable membranes on oblique lattices. By comparing brane solutions of
different shapes, we find that the triangular lattice configuration is the one
that minimizes the corresponding thermodynamic potential for localized 2-
branes.

The outline of the paper is as follows: In Section 5.2, we summarize how
to obtain charged (and neutral) black string solutions in the characteristic
formulation of general relativity, at leading order in D. This serves to set
up our notations and explains our numerical method. In Section 5.3, we
discuss the phase structure of charged black string. To that end, we find the
subleading corrections to the metric and gauge field, necessary to discuss
the entropy difference (in the micro-canonical ensemble) between the uni-
form and non-uniform solutions. We find that a charged non-uniform string
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always have a larger horizon area than uniform configurations, even in the
extremal limit. We also obtain the equations governing the dynamics of the
1/D corrections to the mass and momentum densities, and discuss stabil-
ity conditions of the neutral string to next-to-leading order, and the signals
that there may be a transition to pinch-off as the final state as we lower D.
Lastly, we explore the thermodynamics of unstable two-dimensional branes
on general oblique lattices in Section 5.4. We find that the preferred shape
of the lattice is triangular, up to small deviations, likely due to finite size
effects.

5.2 Charged p-brane Solutions

We start our analysis by finding static charged black string solutions. Keep-
ing in mind that we are interested in finding non-uniform black string solu-
tions, we must allow redistribution of mass and charge to occur along the
spatial direction. To this end, we introduce a local Galilean boost velocity
and promote the mass and charge densities to vary along the string. We
then solve the Einstein-Maxwell equations at leading and subleading orders,
from which we extract the effective equations that describe the nonlinear
fluctuations of the string horizon.

5.2.1 Uniformly Charged p-Branes

The equations of motion that charged, spherically symmetric p-branes satisfy
in the limit where D → ∞ can be obtained by considering the Einstein-
Maxwell action in D = n+ p+ 3 dimensions,

IEM =

∫
dDx

√
G

(
RG −

F 2

4

)
, (5.1)

where F = dV is a Maxwell potential. Performing dimensional reduction on
(5.1) so that the metric becomes of the form

ds2
G = gµν(x)dxµdxν + eφ(x)dΩ2

n+1, (5.2)

where the coordinates xµ = (t, r, zA) span a p + 2 dimensional space, we
obtain the action (see Appendix C for details)

IEM =

∫
dp+2x

√
g e

(n+1)φ
2

(
Rg + n(n+ 1)e−φ +

n(n+ 1)

4
(∇φ)2 − F 2

4

)
.

(5.3)
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The equations of motion that follow from (5.3) are [151]

Rµν −
n+ 1

2
∇µ∇νφ−

n+ 1

4
∇µφ∇νφ

−1

2

(
FµαF

α
ν −

1

2(n+ p+ 1)
F 2gµν

)
= 0

∇αFαµ +
n+ 1

2
∇αφ Fαµ = 0

n e−φ − n+ 1

4
(∇φ)2 − 1

2
∇2φ+

1

4(n+ p+ 1)
F 2 = 0.

(5.4)

The solution to these equations is known [152]: non-dilatonic black p-branes
in the presence of an electric potential have the metric

ds2 = − f

h2
dt2 + hB

(
dr2

f
+ r2dΩ2

n+1 + d~z 2

)
, (5.5)

where

f(r) = 1−
(r0

r

)n
, h(r) = 1 +

(r0

r

)n
sinh2 α, B =

2

n+ p
, (5.6)

whereas the gauge field V has solution

V = −
√
N

h

(r0

r

)n
sinhα coshα dt, N ≡ B + 2. (5.7)

In these coordinates, the outer horizon is located at r = r0, whereas the
inner horizon coincides with the singularity at r = 0.

5.2.2 Characteristic Formulation for a Charged Black
String

To describe a non-uniform charged black string, we start by a more gen-
eral ansatz where the black string is locally boosted along its worldvolume
za = (t, zA). Doing so is easier in the characteristic formulation of general
relativity, where the metric is expressed in terms of the ingoing Eddington-
Finkelstein (EF) coordinates. For a general Lorentz boost ua, the EF coor-
dinates σa = (v, xA) take the form [153, 154]

σa = za + uar∗, r∗(r) = r +

∫ ∞
r

f − hN/2
f

dr. (5.8)
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The boosted metric for the charged string becomes

ds2 = hB
(
− f

hN
uaubdσ

adσb − 2h−N/2uadσ
adr + ∆abdσ

adσb + r2dΩ2
n+1

)
,

(5.9)
where ∆ab = ηab + uaub is the orthogonal projector defined by the boost
vector. Similarly, the gauge potential V becomes

V = −
√
N

h

(r0

r

)n
sinhα coshα uadσ

a, (5.10)

and we take the radial gauge in order to set Vr = 0.
Our aim is to find solutions to the Einstein-Maxwell equations in which

the black string’s energy and charge densities, as well as the boost velocity
along the string, are promoted to collective coordinates that vary in time
along the x-direction. Given the hierarchy of scales present in the large D
limit of black holes, we must specify the length scale relevant to the physics
we wish to explore. It is known that black branes are unstable when sub-
jected to perturbations of wavelength ∼ r0/

√
D. As such, we need to rescale

the direction x along the string, dx→ dx/
√
n, thus making the boost non-

relativistic. Additionally, the quasinormal modes under consideration scale
like ω ∼ O(D0), implying that the dynamics of the near-horizon geometry is
decoupled from the asymptotic region [155]. Consequently, we will require
the metric components to be asymptotically flat and the potentials to vanish
at infinity at all orders in the perturbative expansion.

We write the metric and the gauge potential in terms of unknown fields

ds2 = −Adv2 + 2uvdvdr + 2uadx
adr − 2Cadx

adv +Gabdx
adxb, (5.11)

V = V0 dv + Va dx
a, (5.12)

for which we allow the following 1/n expansion:

A =
∑
k≥0

A(k)(v, x,R)

nk
, uv =

∑
k≥0

u
(k)
v (v, x,R)

nk
, Ca =

∑
k≥0

C
(k)
a (v, x,R)

nk+1
,

(5.13)

Gab =
1

n

1 +
∑
k≥0

G
(k)
ab (v, x,R)

nk+1

 , ua =
u

(0)
a

n
+
∑
k≥1

u
(k)
a (v, x,R)

nk+1
, (5.14)
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V0 =
∑
k≥0

V
(k)

0 (v, x,R)

nk
, Va =

∑
k≥0

V
(k)
a (v, x,R)

nk+1
, (5.15)

where the new radial coordinate R = (r/r0)n is well-suited for near-horizon
analysis. For the scalar field, we make the choice to keep φ = log

(
r2hB

)
at all orders in the expansion in order to maintain the spherical symmetry
of the solution. Also note that demanding ua to be a constant at leading

order is simply a gauge choice; we will set u
(0)
a = 0 to fix the rest frame of

the black string.

5.2.3 Solutions and Effective Brane Equations at Leading
Order

At leading order, the solutions to the Einstein-Maxwell equations are given
by

A(0) = 1− m

R
+

q2

2R2
, C(0)

a =

(
1− q2

2mR

)
pa
R
, u(0)

v = 1, (5.16)

G
(0)
ab =

(
1− q2

2mR

)
papb
mR

− log

(
1− R−

R

)(
2δab + ∂a

pb
m

+ ∂b
pa
m

)
, (5.17)

V
(0)

0 = − q

R
, V (0)

a =
qpa
mR

. (5.18)

Note that the radial coordinate appearing above has been shifted so that
the outer and inner horizons of the charged black hole are now located at

R± =
1

2

(
m±

√
m2 − 2q2

)
. (5.19)

The collective variables m and q are directly related to the energy and charge
densities M and Q of uniform p-branes

M = rn0 (n+ 1 + nN sinh2 α), Q = n
√
Nrn0 sinhα coshα. (5.20)

The large n expansion of these conserved quantities shows a correspondence
between the old and new effective fields on the branes at leading order:

m ≡ rn0 cosh 2α and q ≡ rn0√
2

sinh 2α. (5.21)

As for p, it is related to the momentum density on the black brane; the gauge

choice u
(0)
a = 0 ensures that the total momentum on the brane vanishes.
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The equations that govern the dynamics of the collective variables for
general p-branes are1 [150]:

∂tm− ∂i∂im = −∂ipi, (5.22a)

∂tq − ∂i∂iq = −∂i
(
piq

m

)
, (5.22b)

∂tpi − ∂j∂jpi = ∂i (R+ − R−)− ∂j
[pipj
m

+ R−

(
∂i
pj
m

+ ∂j
pi
m

)]
. (5.22c)

These equations, which describe the fluctuations of black branes on the
compactified string directions xi in the large D limit, can also be written as
conservation equations ∂µτ

(0)µν = 0 for a quasilocal stress tensor at R→∞,
whose components are

τ
(0)
00 = m, τ

(0)
0i = ∂im− pi, (5.23)

τ
(0)
ij = ∂i∂jm− (R+ − R−) δij +

pipj
m
− (∂ipj + ∂jpi)

(
1− R−

m

)
. (5.24)

These equations are very easy to solve numerically. In doing so we dis-
cover the stable end-point of the charged string instability, as well as the
time-dependent process leading to that end-point. To discuss the thermo-
dynamics, to which we turn next, we need to discuss the next order in the
large D expansion.

5.3 Phase Structure of the NUBS

Having set up our equations and non-uniform solutions, we now turn our
attention to the phase structure of the charged black string, compactified
along x ∈ [−L/2, L/2]. A proper analysis first requires us to examine the
properties of NUBS to subleading order in the large D expansion.

1In the large n limit, ∂t = ∂v and the dynamics of the collective variables take place
in Schwarzschild time.
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5.3.1 Solutions and Effective Brane Equations at
Subleading Order

At subleading order for the charged black string (p = 1), we find the solutions

A(1) = − δm

R
+
qδq

R2
− q2

2R2
+ log

(
1− R−

R

)[
−m

R
+

q2

2R2

]( p
m

)′
− log R

[
p′

R
− q

R2

(pq
m

)′]
(5.25)

V (1) = − δq

R
− q

R
log

(
1− R−

R

)( p
m

)′
− log R

R

(pq
m

)′
(5.26)

u(1)
v =

p2

2m2

[
−m

R
+

q2

2R2

]
−
(

1− R−
R

)−1 R−
R

( p
m

)′
(5.27)

where a prime denotes differentiation with respect to x. It is straightfor-
ward to verify that δm(σ) and δq(σ), which appear as integration constants,
indeed correspond to the 1/n corrections to the mass and charge densities
by computing the ADM mass M and the electric flux at infinity via

M = −
∮
Sn+1
∞

∇µξν(v)dSµν =

∫ (
m(σ) +

δm(σ)

n
+ · · ·

)
dx, (5.28)

Q =
1

2

∮
Sn+1
∞

FµνdSµν =

∫ (
q(σ) +

δq(σ)

n
+ · · ·

)
dx, (5.29)

where ξµ(v) = δµv is a timelike Killing vector, and the integration is performed

over Sn+1 at spatial infinity. Some ambiguity remains when using (5.28)
and (5.29) to define the mass and charge density corrections since a shift in
either quantity by the derivative of a periodic function results in identical
ADM mass and electrix flux. We thus examine the multipole expansion of
g00 and V0 about asymptotic infinity to identify δm(σ) and δq(σ) as the
appropriate corrections. Let us remark that M and Q remain conserved
at all orders in the 1/n expansion, and as such the corrections δm(σ) and
δq(σ) have vanishing integrals over the string direction.

The above solutions will be useful in Section 5.3.2. For the remainder
of this section, we will focus our efforts on the neutral case. The string’s
momentum correction is found in the dvdx component of the metric

C(1)
x =

δp

R
+

log R

R

(
p2

m

)′
; (5.30)
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it is a quantity associated with the asymptotic Killing vector ξµ(x) = δµx

P =

∮
Sn+1
∞

∇µξν(x)dSµν =

∫ (
p(σ) +

δp(σ)

n
+ · · ·

)
dx. (5.31)

The equations that govern the dynamics of δm and δp are2

∂tδm − δm′′ + δp′ = F ′δm, (5.32a)

∂tδp − δp′′ −
[(

1 +
p2

m2

)
δm− 2p

m
δp

]′
= F ′δp, (5.32b)

with the source functions Fδm and Fδp given by

Fδm = p+

(
m+ 2p′ − 3

2

p2

m

)′
, (5.33)

Fδp = F0 logm+
F0

2
− p2

m
− 3

2

(
p3

m2

)′
+

4pm′

m
− 2p2m′′

m2
+

4pp′′

m
, (5.34)

and

F0 = 2m

[
1 +

( p
m

)′]( p
m

)′
. (5.35)

As is the case at leading order, these equations can also be rewritten as
correction terms for the asymptotic stress tensor τij :

τ
(1)
00 = δm, τ

(1)
0x = δp− δm′ − Fδm, (5.36)

τ (1)
xx = − F0(logm− 3) +m− δm

(
1 +

p2

m2

)
+ 2δp

p

m

+

(
δm+ 4m+ 4p′ − 7

p2

m

)′′
− 2

(
δp+ 3p− 3

2

p3

m2

)′
. (5.37)

The left-hand sides of equations (5.32) correspond to the differential opera-
tors one would find at order 1/n by letting m→ m+δm/n and p→ p+δp/n
in the collective equations (5.22). However, the presence of the source terms
breaks Galilean invariance. Moreover, whereas the leading order equations
are invariant under a rescaling of the mass and momentum, the collective

2The large D equations at NLO were first obtained in [156] for asymptotically AdS
spacetimes, albeit in a gauge different from ours. We have confirmed that the equations we
obtain agree with their AdS counterpart up to a redefinition of the momentum correction
and a few sign flips.
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equations for the correction terms are not. This can be understood as a
consequence of the dependence of the black string temperature on its mass
density m0 at NLO. Indeed, when the NUBS is stationary, one can calculate
the surface gravity κ via the relation

κ2 =

√
−1

2
∇µξν(v)∇µξ(v)ν , (5.38)

and evaluation at the Killing horizon is understood. Rescaling the surface
gravity such that the temperature is of O(1) at leading order, we obtain

T =
κ

2πn
=

1

4π
− 1

4πn

(
logm− (m′)2

2m2
+
m′′

m

)
= T (0) +

T (1)

n
, (5.39)

with T (1) = − 1

4π

(
logm− m′2

2m2
+
m′′

m

)
. (5.40)

As a consequence of this, we find that the shapes of δm and δp depend
on the additional parameter m0. However, m0 should not be regarded as
an independent parameter of our solutions. The initial state of our system
is uniquely characterized by D and the ratio L/r0, and as such mass and
momentum profiles at different initial temperatures contain the same in-
formation packaged differently. It is easier to work in units where r0 = 1
(for which m0 = 1 also), but we can equivalently rescale all dimensionful
quantities by an appropriate power of r0 to obtain the same information.

Let us now turn our attention to the next-to-leading order correction
to the dispersion relation for the black string. Linearized perturbations
around the uniform black string solution m(x) = m0 + ∆me−iωt+ikx, with
momentum k = 2π/L aligned along the string direction x, allow for a non-
trivial solution only if the condition∣∣∣∣∣ −k2 + iω − k2

n −ik + ik(1−2k2)
n

ik −k2 + iω − k2(1+2 logm0)
n

∣∣∣∣∣ = 0 (5.41)

is satisfied. Letting Ω = −iω, the dispersion relation for the black string
reads

Ω(k) = k − k2 − k

2n

(
1 + 2k + 2k logm0 − 2k2

)
+O(n−2). (5.42)
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This yields the corrected threshold mode Ω(kGL) = 0 to be

kGL = 1− 1 + 2 logm0

2n
+O(n−2). (5.43)

Rewriting the above equations as Ω̂(k̂) ≡ Ω(kr0)r0 so that they become
dimensionless eliminates the dependence on the mass density m0

Ω̂(k̂) = k̂ − k̂2 − k̂

2n

(
1 + 2k̂ − 2k̂2

)
+O(n−2), k̂GL = 1− 1

2n
+O(n−2),

(5.44)
and thus we recover the expected result [64], regarding the shift of the critical
wavelength of the Gregory-Laflamme instability at subleading order.

5.3.2 Charged Black String Phase Diagram

When k < kGL, neutral NUBS always have a lower event horizon surface
area than uniform string solutions. Since the addition of charge weakens the
GL instability of black strings, it is natural to wonder if the NUBS remains
entropically favoured, especially as we approach extremality.

The entropy S of a black string is related to the area of its horizon

S =
Ω(n+1)

4G

∫
horizon

√
gxxe

(n+1)φ
2 dx =

Ω(n+1)

4G
√
n

(
S0 +

S1

n
+ · · ·

)
. (5.45)

At leading order, the area of a boosted string is given by the integral of the
outer horizon radius

S0 =

∫
R+ dx. (5.46)

Due to conservation of energy and charge, this integral is the same for the
UBS and NUBS, and we need to examine S1 to witness an entropy difference
between the two phases. However, it does not suffice to know the expansion
of
√
gxx at subleading order; one also has to take into consideration the 1/n

correction to the Killing horizon. We obtain the latter by requiring

g00 = A(0)(v, x,Rh) +
A(1)(v, x,Rh)

n
= 0, with Rh = R+ +

R
(1)
h

n
. (5.47)

Thus we find

S1 = R
(1)
h + R+ log (R+ − R−) +

R+

2
G(0)
xx (R+) (5.48)
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At equilibrium, charge density diffuses until it becomes proportional to the
mass profile of the non-uniform black string, which enables us to write q =
ρm, with ρ = q0/m0 being the (conserved) charge-to-mass ratio of the black
string. This yields

SNUBS
1 =

∫
1 +

√
1− 2ρ2

2

{(
m′′ +m

)
log
(

(1 +
√

1− 2ρ2)
m

2

)
+

1

2

(
2ρ2

1− 2ρ2 +
√

1− 2ρ2
m+

m′2

m

)}
dx (5.49)

SUBS
1 =

2π

k
(1 +

√
1− 2ρ2)

{
m0

2
log
(

(1 +
√

1− 2ρ2)
m0

2

)
(5.50)

+
ρ2

1− 2ρ2 +
√

1− 2ρ2

m0

2

}
(5.51)

where we have taken advantage of the fact that the coefficients multiplying
δm and δq were constant to integrate them away. It is easy to check that
the difference in the two phases’ horizon area ∆S1 ≡ SNUBS

1 − SUBS
1 is

always positive no matter the ratio ρ. In particular, the entropy difference
at extremality is half that of neutral strings

∆S1|ρ= 1√
2

=
1

2
∆S1|ρ=0 = −2πm0

k

(
T

(1)
NUBS − T

(1)
UBS

)
> 0. (5.52)

This result indicates that the NUBS is always the preferred phase, and thus
the instability persists for all charged brane configurations (as illustrated in
Figure 5.1). However, despite the effective theory (5.22) admitting a smooth
limit when ρ → 1√

2
, we need to keep in mind that the large D expansion

formally breaks down at extremality. Nevertheless, this result corroborates
the ones obtained via hydrodynamics [154]. This and the exact cancellation
in (5.52) of the pathologic divergences typically encountered at extremality
both offer a positive outlook on the validity of results beyond the limits of
our approximation.

We note that the numerical results of this section and the next have been
obtained by evolving small periodic perturbations around a uniform black
string solution using a Runge-Kutta-Fehlberg method on a periodic Fourier
grid made of 41 points. The conserved quantities M, Q and P, as well
as the charge-to-mass ratio ρ, all remained constant during the evolution.
Likewise, the integrals of δm and δp along the string direction were both
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Figure 5.1: Entropy difference per unit length as a function of the charge
density for k = {0.75, 0.85, 0.95}, starting from the top. The numerical
evolution breaks down at extremality, hence we use a star plot marker to
distinguish the analytical result at ρ = 1/

√
2 from the others.

zero to very good numerical accuracy until the final state was reached.

5.3.3 Pinch-Off?

Let us now turn our attention back to the mass and momentum corrections
δm and δp. In principle, the contents of equations (5.32) should provide
us with a method for identifying the critical dimension D∗ below which the
black string would pinch-off, rather than settle on a smooth non-uniform
final state. Such a transition in the nature of the final state is expected at
low enough D. It is interesting to see how this manifests itself in the large
D expansion.

Below we present criteria we impose on the solutions, and the time evolu-
tion towards those solutions, to investigate that question. While the various
criteria we impose clearly indicate a tendency towards a pinch-off, we were
not able to find a universal value for the critical dimension D∗.

To determine the critical dimension n∗, we first define the total corrected
mass density

Mn(x) = m(x) +
δm(x)

n
, (5.53)
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Figure 5.2: The critical curves n∗ for m0 = {1, 3, 5}, from top to bottom,
obtained at NLO. Black strings with parameters above the critical curves
correspond to stable NUBS, whereas we conjecture a pinch-off scenario for
the those below, which exhibit negative tension.

and the corrected tension

Tn = −
∫ (

τ (0)
xx +

τ
(1)
xx

n

)
dx, (5.54)

which are both gauge invariant quantities.
One attempt at diagnosing the stability of the black string at subleading

order using our knowledge of m(x) and δm(x) is to find n∗ such that Mn∗(x)
becomes locally negative. One can do so either by looking at the dynamical
evolution, or by examining the properties of the final state only. It turns out
that the dynamical evolution of the collective variables is highly sensitive to
the size of the initial perturbations around the uniform solution m(x) = m0.
As such, this method does not provide a reliable stability diagnostic. As
for the shape of the end-point of the dynamical evolution, the final shape of
δm(x) does depends solely on the static profile m(x). This makes it possible
to find n∗ such that Mn∗(x) < 0 locally, but this method has not yielded
accurate results.
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An alternate, more successful, method to identify the critical dimension
n∗ uses the corrected tension (5.54). Indeed, it is possible to find a critical
curve n∗ as a function of the dimensionless wavenumber k/kGL by assuming
that the fate of a NUBS with negative tension is to pinch-off. Our results
are summarized Figure 5.2 for three different initial configurations m0. Note
that as we vary m0 we change kGL, so this is an alternate way to scan the
the “thickness” k/kGL . However, while the qualitative features are similar,
we still see slight differences between the three curves, which are either an
artifact of early truncation in the 1/n expansion or a sign that negative
brane tension is a sufficient but not necessary condition for pinching-off.
Indeed, nothing stops a pinch-off from happening at positive tension, and
as such our critical curves may be thought of as an approximate probe until
further investigation.

While the results we obtain preclude us from assigning an unambiguous
value for the critical dimension, it can serve as a bound on the dimension
in which the final state pinches off, and it illustrates the dependence of the
critical dimension on the brane thickness. It is interesting to note that the
dimensions near the critical point k = kGL are quite close to the expected
value n∗ = 9.

5.4 Two Dimensional Non-Uniform Phases

We now move to discuss the case of unstable membranes, for which there
are two independent modes of Gregory-Laflamme instabilities. Similar to
the one-dimensional case we find that in the leading order in the large D
limit, the final state is a smooth and non-uniform configuration which we
call a lattice. Using the tools developed above, we study the phase diagram
and determine the preferred size and shape of this lattice configuration.

In two dimensions, it is possible to construct periodic black brane config-
urations over oblique lattices. The lattices can be described by two vectors,
describing the periodicities of the system:

kx =
2π

Lx
(cosα,− sinα), ky =

2π

Ly
(0, 1), with 0 ≤ α ≤ π/2. (5.55)

Thus we parametrize possible non-uniform solutions solutions by the three
parameters (Lx, Ly, α). Furthermore, since we are mostly interested in the
preferred shape of the non-uniform configuration, we take Lx = Ly = L.
The angle α characterizes then the shape: special cases include α = 0 for
checkerboard lattices, α = π/6 for triangular lattices, and α = π/2 for
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Figure 5.3: The change of coordinates from (x, y) to (u, v) maps oblique
lattice cells (a) to rectangular ones (b). Their area is Acell = LxLy secα.

stripes.
For the purpose of constructing the solutions, it is easier to work with

the coordinates (u, v) defined by

u = x cosα− y sinα, v = y. (5.56)

In these coordinates (illustrated in Figure 5.3), periodic boundary conditions
are simply

(u, v) ≡ (u+ Lxnx, v + Lyny). (5.57)

for any integers nx, ny.
In order to make meaningful comparison between lattices of different

size and shape, we need to work with the right thermodynamic potential.
Instead of fixing the size and the shape of the unit cell, we instead fix the
conjugate variables: the tensions in different directions. See [157] for a
general discussion, and [158] for a recent application closely related to the
current discussion.

The first law of black brane dynamics, in the micro-canonical ensemble,
can be written as

dM = κdA+ T abdVab, (5.58)

where T ab are related to the tensions along brane directions, and Vab is a
matrix of periodicities. To fix the conjugate variables instead of the size and
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shape of the brane configuration, we define the “enthalpy” H of the brane3

as the Legendre transform

H ≡M − T abVab. (5.59)

Our goal is to minimize this new potential. But first, we need to find an ex-
pression for the tensions T ab. These are usually obtained from the quasilocal
stress tensor at R→∞, which we have already found in (5.24):

τab = ∂a∂bm−mδab +
papb
m
− (∂apb + ∂bpa) . (5.60)

We identify this boundary stress tensor as the source for the tensions, such
that

T ab = 〈τab〉 =

∫∫
cell

τabdxdy
/∫∫

cell
dxdy =

1

L2

∫∫
cell

τabdudv. (5.61)

In the orthogonal coordinates (u, v), only the pressures T uu and T vv should
contribute, and as such we take Vmn = L2δmn for m,n = u, v. Since we are
working at constant mass, the quantity we must minimize is the tension β
given by

β(α) = − T mnδmn (5.62)

= − 1

L2

∫∫
cell

(
cos2 α τxx − 2 cosα sinα τxy + (1 + sin2 α) τyy

)
dudv.

(5.63)

As expected, the enthalpy of oblique lattices includes contributions from the
shear components of the stress tensor τxy.

It is straightforward to apply the change of variables (5.56) to (5.22) in
order to find the inhomogeneous solutions on the oblique lattice numerically.
For that purpose we discretize the lattices on a 31×31 periodic Fourier spec-
tral grid, and we used the fifth order Runge-Kutta-Fehlberg time-stepping
algorithm to perform the time evolution towards the stable inhomogeneous
solution.

Once we obtain the solutions for different shapes, we can find which
shape is preferred — our results are illustrated in Figure 5.4 for two different
choices of lattice size. We find that the minimum of H is reached for lattices
with opening angles close to α = π/6, which corresponds to the triangular

3The conventional entalphy is obtained by Legendre transform with respect to the total
volume, to work with fixed pressure instead.

127



lattice. Unsurprisingly, the position of the minimum depends on the size
of the cell. Based on these results, we expect that for asymptotically large
lattices the triangular lattice is the preferred configuration, and the slight
deviations we see are due to finite size effects.

One can repeat the exercise with respect to the size of the preferred
configuration. Indeed, in the one-dimensional case, where there is a size but
not shape parameter, the tension β of a black string with mass density m0

decays exponentially with the string length L

β(L) = −〈τxx〉 ∼ m0 e
−a(L−2π), with a ≈ 1.827, (5.64)

meaning that the size of the preferred configuration is asymptotically large.
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Figure 5.4: The enthalpy of the Bravais lattices reaches its minimum closer
to α = π/6 ≈ 0.524 as the size of the cell increases. Note that the numerical
evolution becomes unstable for large α and large L, thus preventing us from
probing larger oblique cells.

5.5 Conclusion

The principal focus of our work was to determine the fate of extended black
objects, in the approximation where the number of dimensions is large. The
tools of general relativity at large D have proven useful at unveiling robust
properties of higher dimensional black holes to surprising accuracy, and our
hope is that likewise the results presented in this paper hold up beyond the
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asymptotic limit of that approximation.
The main loose end left in this work is determining whether negative

brane tension is an appropriate test to accurately determine the fate of the
black string instability. While we see indications that the pinch-off scenario
is likely as the final state at sufficiently low D, as well as a non-trivial
dependence of the associated critical dimension on the string thickness, we
have not obtained a precise unambiguous result nor succeeded in reconciling
these features of our solution with the current results in the literature. We
hope to return to this in the future.

It would also be an interesting endeavour to explore the dynamics of
charged dilatonic Kaluza-Klein black holes given the existence of exact uni-
form solutions. Such a direct comparison would expand our understanding
of the effects of charge on the stability of black strings in more general
scenarios.
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Chapter 6

Conclusion

6.1 Summary and Future Directions

In this dissertation we investigated the consequences of breaking spatial
translation invariance in gravitational systems. We used the tools of the
gauge/gravity duality to construct a Josephson junction holographically and
to examine entanglement propagation in strongly coupled systems. We also
made use of the so-called large D approximation of general relativity to
address black brane instabilities at next-to-leading order for asymptotically
flat spacetimes.

6.1.1 AdS/CMT

In chapter 2 we constructed the holographic equivalent of a chiral Josephson
junction as part of the AdS/CMT (condensed matter theory) programme.
Chiral superconductivity occurs at low temperatures when an operator with
p + ip-wave symmetry acquires a vacuum expectation value that explicitly
breaks the U(1) subgroup of SU(2), which we identified with electromag-
netism. To model a Josephson junction, we considered a chemical potential
varying spatially in such a way that the order parameter was non-zero every-
where except for a narrow region in the centre, effectively corresponding to
a metallic weak link surrounded by two infinite p+ip-wave superconductors.

Our setup showed the expected current-phase sinusoidal relation known
as the Josephson current as well as various relationships obeyed by this crit-
ical current and the order parameter. However, the p+ ip symmetry of our
setup revealed a curious feature absent from p- and s-wave superconduc-
tors: gapless chiral counter-propagating currents localized at the boundary
between phases. We found that the intensity of these edge currents re-
mained approximately constant for S-N-S junctions regardless of the charge
density of the normal phase, whereas it decreased linearly as a function
of the chemical potential for S-S′-S junctions. In addition we observed a
quadratic relationship between the edge currents and the magnitude of the
order parameter.

Gapless chiral signatures such as these edge currents are usually indica-
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tive of Majorana topological modes, albeit indirectly. Our holographic setup
is unfortunately insensitive to other unconventional features of topological
superconductivity, such as the 4π-periodicity of the Josephson current. In
the condensed matter literature this 4π-periodicity anomaly is typically ob-
served in the AC Josephson effect, which can be constructed holographically
by having a time-dependent phase for the bulk order parameter. Such a
setup should be relatively easy to study now that we have developed the
tools to treat with non-static geometries effectively.

Alternatively, the presence of Majorana zero-modes may be revealed by
investigating fermion scattering across a chiral interface. The conventional
Josephson effect is attributed to Cooper pair tunnelling, but is believed to
be transported by single electrons in topological superconductors. As such
studying a fermionic action with a Majorana mass term [159]

Sη =

∫
dd+1x

√−gφ∗ψc(η∗ + η∗5Γ5)ψ + h.c. (6.1)

in the presence of a chiral superconductor is akin to studying Andreev re-
flection at strong coupling, which has the potential to reveal unconven-
tional signatures indicative of topological zero-modes. Complications aris-
ing from studying the Dirac equation in curved spacetimes with spatial
inhomogeneities prevented a preliminary analysis to be carried out, but we
nonetheless believe that (6.1) may hold answers to address topological su-
perconductivity with the gauge/gravity duality.

The AdS/CMT programme is also quite vast and offers various other op-
portunities to investigate spatial inhomogeneities. For instance, holographic
systems intrinsically lack the lattice structure responsible for momentum
relaxation in conventional systems. Indeed, translation invariance in field
theories at finite density results in the appearance of an anomalous delta
function in the optical conductivity at zero frequency. This infinite metal-
lic Drude peak is due to the inability for charge carriers to dissipate their
momentum in homogeneous holographic theories. The introduction of a
symmetry-breaking lattice in the form of a periodic neutral scalar field that
can backreact of the geometry broadens this Drude peak [160], a feature
more in line with experimental observations. An alternate method for in-
corporating momentum dissipation without compromising the homogeneity
of bulk solutions is to introduce spatially-dependent massless scalar sources
that effectively act as a channel for relaxation [161]. Such a model also
results in a widened Drude peak at zero frequency.

Regardless of the method, the addition of momentum dissipation can

131



help broaden our understanding of current models: the transport properties
of holographic superconductors may change in the presence of a lattice; the
phonon spectrum of the field theory may be calculated via the fluctuations
of the bulk field responsible for the lattice; Fermi surfaces calculated from
probe fermions may have more realistic features, etc. Breaking translation
invariance invariably results in a more accurate description of the models
at the cost of computational complexity, but holography makes this cost
bearable compared to traditional methods. It is our hope that the numerical
techniques used throughout this thesis help bridge the complexity gap in
addressing this type of problem in the future.

6.1.2 Holographic Entanglement Entropy

Chapters 3 and 4 were devoted to the study of entanglement propagation in
field theories admitting a gravitational dual. Entanglement was produced
by the intermediary of a scalar source responsible for a localized injection of
energy into a system in thermal equilibrium. The resulting thermalization
of spacetime was then probed via the dynamics of bulk extremal surfaces an-
chored on the boundary whose area acts as a dual measure of entanglement
entropy. The two most striking results were the appearance of an entan-
glement lightcone structure in the L− t plane and the logarithmic decay of
entanglement entropy.

The emergent lightcone featured two distinct regimes of entanglement
propagation: early-time propagation for wide quenches (L < σ), and late-
time propagation for large entangling surfaces (L > σ). Our analysis sug-
gests that the mechanisms responsible for the spatial spread of chaos in holo-
graphic theories, characterized by the butterfly velocity vbutterfly =

√
3/2 =

0.866, are very likely to influence the thermalization of entanglement degrees
of freedom at early-times. This result also echoes those found in the liter-
ature for global quenches, where entanglement saturation occurs at times
t ∼ L/vbutterfly for large strip regions. Local quenches for large entangling
surfaces were instead characterized by a lightcone velocity vE ∈ [0.65, 0.7],
an interval that comprises many velocities of interest. These include the
speed of sound, the shear velocity, and the tsunami velocity. Our initial
analysis suggested that the latter could play a role in quantifying the spread
of entanglement at late-times given that it is an intrinsic property of the
equilibrium thermal state, but the addition of charge quickly dispelled this
notion. Extremal black holes are characterized by a vanishing tsunami ve-
locity, but vE was found to be robust against the addition of charge, which
led us to speculate that the mechanisms underlying momentum diffusion in
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the sound and shear channels would be responsible for entanglement prop-
agation instead.

As for the decaying behaviour of entanglement entropy, improved nu-
merics helped us revise our initial conclusions indicative of an exponential
damping at late-times. Modifications including domain decomposition in
the radial direction, higher spatial resolution, and other “under the hood”
changes, allowed us to extend the evolution of the quench for twice as long
in a reasonable computational time. This extra data instead revealed that a
logarithmic decay ∼ log t/tδ provided a much better fit. This result mirrors
similar conclusions obtained in the context of spin chains in two-dimensional
CFTs (which have δ = 1), but we also found evidence for a transition be-
tween the δ = 1 and δ = 1.5 regimes as a function of charge and strip width,
indicating a richer story that we have yet to discover.

These two projects were very ambitious but technical limitations com-
plicated the analysis. For instance the space of parameters that could be
explored was huge; the scalar quench amplitude and width, the strip width,
the initial mass density and the initial charge density could all be varied
independently, and each typically introduced an inherent length scale of its
own. Given the competition between these different scales and our reliance
on a numerical approach, it became difficult to thoroughly characterize the
defining regimes in order to compare and contrast our results with those
in the literature. We were also confronted to an order of limits issue when
studying theories at finite charge densities. The near-horizon geometry of
extremal black holes is AdS2×R2, which indicates an emergent scale invari-
ance in the IR. Our original motivation for studying RN backgrounds was
then to investigate the dynamics of extremal surfaces as we progressively
changed the near-horizon topology. Unfortunately our numerics restricted
us to the study of narrow entangling surfaces, which did not allow for deep
enough probes of the geometry. As such the L → ∞ and extremal limits,
as well as their potentially distinct regularities, remained out of reach with
this setup.

A proper numerical analysis of large entangling regions and their IR
dynamics in near-extremal backgrounds would be a welcome addition to
the current analysis. Moreover, the technology we have developed to solve
the dynamical Einstein and geodesic equations could be used to investigate
shapes other than the infinite strip, such as spherical regions or off-center
geometries. Other measures of quantum information would also be interest-
ing to compute in our setup. In particular, the mutual information between
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two regions A and B, defined as

I(A,B) = SA + SB − SA∪B, (6.2)

is UV-finite and provides a measure of the total quantum correlations be-
tween A and B without contributions from thermal entropy [162].

The connection between the gauge/gravity duality and quantum infor-
mation is only just starting to be unraveled. Recent developments have
shown that AdS/CFT provides a natural setting to study tensor networks
working as encoders for quantum error-correction code [163, 164]. More-
over, a tensor network known as Multi-scale Entanglement Renormalization
Ansatz (MERA), used to estimate the ground state of quantum systems
with long-range entanglement, was found to resemble the hyperbolic geom-
etry of anti-de Sitter spacetimes, suggesting there might be an underlying
AdS/MERA correspondence at work [165]. Work in that direction has the
potential to provide answers to fundamental questions about the nature of
entanglement.

Lastly, other future directions include studies of thermalization in strongly
coupled field theories far-from-equilibrium. The gauge/gravity duality al-
lows us to investigate QCD-like theories, which may reveal insights about
the dynamics of the quark-gluon plasma and the confinement/deconfine-
ment phase transition characteristic of asymptotic freedom. The power of
numerical relativity has already been harnessed to model heavy ion collisions
and jet quenching, and the gauge/gravity duality has provided a language
to discuss hydrodynamic quantities such as shear viscosity at strong cou-
pling [166]. The current models boast a high degree of symmetry, and more
realistic features are bound to be extracted by considering inhomogeneous
settings as we have done throughout this dissertation.

6.1.3 Large D Limit of General Relativity

In chapter 5 we set our sights on brane instabilities in asymptotically flat
spacetimes. Solving the full dynamics of the inhomogeneous Einstein equa-
tions is typically very difficult in flat space, but the formalism of general
relativity when the number of dimensions D is large reduces the computa-
tion to an asymptotic matching problem. This simplification occurs because
the gravitational field of a black hole becomes localized within a distance
∼ 1/D of the horizon, thus decoupling it from the outside dynamics.

The effective conservation equations describing the fluctuations in the
brane’s energy, momentum and charge densities at leading and next-to-
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leading order in a 1/D expansion were both easily solvable numerically and
amenable to a linearized perturbation analysis. Examining these equations
in turn allowed us to recover the instability spectrum at next-to-leading
order and improved our understanding of the black string’s phase struc-
ture. In particular, we confirmed that unstable branes remain unstable at
extremality, established a novel condition to determine the critical dimen-
sion below which the string is prone to fragmentation, and discovered that
two-dimensional membranes minimize their enthalpy on triangular lattices.
Our investigation thus adds to the wealth of results already supporting the
validity of the large D approximation.

A notable aspect of this formalism is its hydro-elastic complementarity,
which describes the equivalence between the black branes’ elastic theory
description and their hydrodynamical features at large D. To paraphrase the
authors of [150], ripples on a black brane can be interpreted both as pressure
waves on a fluid and as wrinkles on a membrane. The equivalence is manifest
in that the effective equations can be described in terms of curvatures and
surface gravity (the elastic point of view), as well as via the dynamics of
a stress tensor with a truncated gradient expansion (as in hydrodynamics).
Note however that the large D formalism has more predictive power than
a naive hydrodynamical approach since it captures phenomena the latter
cannot (e.g. static NUBS) and typically remains valid even when gradients
become steep. We made use of this alternative point of view to compute
brane tension in our work, which provided us with a novel criteria to predict
brane instability. However a proper analysis of the effective equations and
their hydro-elastic formulation at next-to-leading order is still lacking and
would definitely be worth pursuing.

The large D approximation can also be used in anti-de Sitter geome-
tries, which opens up endless possibilities when combining it with the tools
of the gauge/gravity correspondence. In fact holographic superconductors
have already been subjected to this formalism [167], and an analysis of the
dynamics between rarefaction waves and shockwaves using the tools of the
fluid/gravity correspondence at large D was conducted in [156]. Problems
due to backreaction of matter on the geometry are trivialized in this con-
text, and extensions to include different symmetries and conserved charges
could be pursued straightforwardly. We could also investigate condensed
matter systems admitting a gravitational dual and their properties robust
to taking D →∞, extract the generic features of thermalization of strongly
coupled field theories in a 1/D expansion, and so on. The large D formalism
is highly flexible and its many applications have the promising potential to
unravel the mysteries of black hole dynamics further than ever before.
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6.2 Concluding Remarks

The principal contribution of the work presented in this dissertation is the
study of gravitational systems with a reduced degree of symmetry due to
the presence of spatial inhomogeneities. The loss of translation invariance
adds a layer of complexity compared to the homogeneous case since the
physical content of general relativity comes packaged in coupled non-linear
partial differential equations requiring a numerical approach. We have how-
ever repeatedly seen that this compromise in complexity typically results
in richer dynamics. Indeed, through the lens of the gauge/gravity duality
we were able to reproduce the physics of Josephson junctions and observed
unconventional gapless chiral currents at the normal metal/superconductor
interface. We also observed an entanglement lightcone by studying local
quenches in holographic theories, which allowed us to speculate about the
mechanisms responsible for entanglement propagation. This structure had
not been fully appreciated in the study of global quenches due to entan-
glement entropy saturation, an issue that we circumvented by injecting a
finite amount of energy via a localized excitation. Finally, we succeeded in
reproducing many salient features of black string dynamics with the formal-
ism of general relativity with infinite dimensions. Technical issues, such as
numerical instabilities typically found in asymptotically flat spacetimes and
gauge redundancies in gravity perturbation theory, were eschewed in favour
of simpler effective brane equations that captured many universal aspects of
non-uniform black strings. In view of all this, the central lesson from chap-
ters 2 through 5 is that there is still much to learn by adding more realistic
features to the current models.

Despite its technical challenges, numerical holography is currently one of
the most promising tools at our disposal to learn about phenomena defying
our current understanding. It offers surprising connections between vastly
different systems via the unifying language of black holes and provides a
wealth of opportunities to study systems of reduced symmetry without the
severe limitations of more standard approaches. Similarly to the large N
limit of strongly coupled field theories, the large D limit of general relativity
brings about important simplifications of gravitational dynamics, which in
turn provides a method to investigate a wide variety of higher-dimensional
black objects without relying on prohibitively expensive simulations. It is
our hope that the various numerical approaches presented and developed in
this thesis will soon become a standard part of the professional toolkit used
in modelling phenomena of increasing realism.
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Appendix A

Apparent Horizons

In chapters 3 and 4 we used the residual radial reparametrization freedom of
the metric to fix the coordinate location of the black hole’s apparent horizon.
Here we provide some details on the process we used.

The notion of apparent horizon depends on the existence of trapped
surfaces, which in turn depends on the chosen foliation of spacetime. Given
a spacelike surface S, a trapped surface on S corresponds to the region
where both ingoing and outgoing future-directed null geodesic congruences
orthogonal to S have non-positive expansions. The apparent horizon is
then defined as the boundary of this trapped region, on which the geodesic
congruences have vanishing expansions.

In our case, a planar spacelike surface like the apparent horizon can
be parametrized by the two orthogonal vector fields spanning the x and y
directions:

eMx = (0, 0, 1, 0), eMy = (0, 0, 0, 1). (A.1)

We now construct future-directed null geodesic congruences orthogonal to
both ex and ey. Ingoing geodesic congruences can be parametrized by the
tangent null vector field kM = (0,−1, 0, 0), whereas outgoing geodesic con-
gruences have

NM = e−2χ

(
1, A+ e−2χ e

−B F 2
x

2 Σ2
,
e−B Fx

Σ2
, 0

)
. (A.2)

The normalization is chosen such that gMN k
M NN = −1. Since we are

interested in the rate of change of the cross-sectional area of null geodesic
congruences along their transverse directions, we need to define the trans-
verse metric

hMN = gMN + kMNN +NMkN . (A.3)

With this in hand, we can calculate the expansion1 θ ≡ hMN∇MNN . Setting

1The expansion for the ingoing geodesic congruences is always negative, so we need
only worry about the congruences along N .
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θ = 0 yields a condition on the dynamics of the field Σ:[
d+Σ− e−B

2 Σ

(
Fx ∂xB − ∂xFx − e−2χ F 2

x

∂rΣ

Σ

)]
r=rh

= 0 , (A.4)

where d+ ≡ ∂t +A ∂r. In addition, taking a time derivative of this relation
yields a stationarity condition that ensures that the horizon condition holds
for all times. One can show that the resulting constraint can be expressed
as a second order spatial ODE that determines the value of A(r, t, x) at the
(fixed) apparent horizon.
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Appendix B

Numerical Implementation of
Characteristic Formulation

The characteristic formulation of Einstein’s equations in the presence of
matter reorganizes all the fields into two categories: auxiliary fields obeying
radial ODEs that can be solved sequentially, and dynamical fields which
are used to evolve the geometry from one null slice to the next. This sep-
aration of fields can be achieved by expressing time derivatives in terms of
the directional derivative along outgoing null geodesics, d+ = ∂t + A ∂r,
thereby completely eliminating the presence of A from the auxiliary equa-
tions. Changing to a compact variable u = 1/r, we rewrite the fields ap-
pearing in our equations as

Φ(u, t, x) ≡ φ(u, t, x)u,

Er(u, t, x) ≡ er(u, t, x)u2,

Σ(u, t, x) ≡ 1 + λ(t, x)u

u
− 1

4
φ(u, t, x)2u,

B(u, t, x) ≡ b(u, t, x)u2,

χ(u, t, x) ≡ c(u, t, x)u2,

Fx(u, t, x) ≡ − ∂xλ(t, x) + fx(u, t, x),

d+Σ(u, t, x) ≡ (1 + λ(t, x)u)2

2u2
+ Σ̃(u, t, x),

d+Φ(u, t, x) ≡ − 1

2
φ(u, t, x) +

(
Φ̃(u, t, x) +

1

2
∂uφ(u, t, x)

)
,

d+B(u, t, x) ≡ B̃(u, t, x)u2,

A(u, t, x) ≡ (1 + λ(t, x)u)2

2u2
+ a(u, t, x),

(B.1)

in order to subtract the divergent parts. The field Er(r, t, x) above is defined
as

Er = ∂rV0 +
e−B

Σ2
Fx ∂rVx ∼ F tr (B.2)
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in order to decouple the radial equations satisfied by V0 and Fx. However
we note that the equations for d+B and d+Vx form a linear system of radial
ODEs that cannot be decoupled.

Given initial conditions specified by φ, λ, b and Vx all being 0, as well as
the CFT data T00 and Ttx, we can solve the radial ODEs for the auxiliary
fields c, er, fx, V0, Σ̃, Φ̃, and for the coupled system B̃ and d+Vx, in that
order. These fields obey the boundary conditions

∂uc(u = 0) = − 1

12
λφ2

0 +
1

6
φ0φ1, (B.3)

er(u = 0) = ρ, (B.4)

fx(u = 0) = 0 and ∂ufx(u = 0) = f (3) =
2

3
Ttx +

1

3
φ0∂xφ0, (B.5)

V0(u = 0) = µ, (B.6)

Φ̃(u = 0) = − φ1 − λφ0 + ∂tφ0, (B.7)

B̃(u = 0) =
1

6

(
(∂xφ0)2 − 1

2
φ0∂

2
xφ0 − ∂xTtx

)
− 1

2
jx

(
∂tµx − ∂xµ−

1

2
jx

)
− 1

2
∂2
ub
∣∣∣
u=0

, (B.8)

d+Vx(u = 0) = ∂tµx −
1

2
jx. (B.9)

There are two options when treating with the field Σ̃, one of which is to
impose the condition[

d+Σ− e−B

2 Σ

(
Fx ∂xB − ∂xFx − e−2χ F 2

x

∂rΣ

Σ

)]
r=rh

= 0, (B.10)

which determines the location of the apparent horizon as the boundary of
trapped surfaces, as derived in Appendix A. Our second option is to set

∂uΣ̃(u = 0) =
1

2
T00 −

1

3
φ0φ1 −

1

12
λφ2

0 (B.11)

on the boundary, as required by self-consistency of the equations of mo-
tion. Either conditions imply the other; imposing the latter should yield
the former and vice-versa, and we can use this as a safety check for our
numerics.

Now that we have solved for the necessary auxiliary fields, we have to
propagate the solutions along null slices. In order to propagate λ, we re-
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quire a horizon stationarity condition, obtained by differentiating (B.10)
with respect to time, thus ensuring that the location of the apparent hori-
zon remains fixed on all null slices. This procedure yields a boundary value
problem in x for the field A(uh, t, x). We can then extract ∂tλ from the
relation

d+Σ = ∂tλ+A− d+

(
1

4
φ2

)
(B.12)

evaluated at the horizon. The same equation in turn enables us to solve
for A everywhere in the bulk since λ does not depend on the radial coordi-
nate. With A in hand, it now becomes straightforward to extract the time
derivatives for b, φ and Vx from the solutions for d+B, d+Φ and d+Vx, and
from the definition of d+ = ∂t +A ∂r. At this point, all that is left to do is
propagate these fields with a time-stepping algorithm, along with T00, Ttx
and ρ using the conservation equations (4.22), (4.23), and (4.24), and to
repeat the process on new null time slices until satisfied with the evolution
of the quench.
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Appendix C

Dimensional Reduction

The framework of general relativity when the number of spacetime dimen-
sions D is large is a novel way to investigate non-perturbative objects like
black branes in a 1/D expansion that trivializes the gravitational dynamics
away from their event horizons. For this expansion to take place, the de-
pendence on D needs to be extracted explicitly from Einstein’s equations.
For a spherically symmetric spacetime described by

ds2 = gµν(x)dxµdxν + eφ(x)dΩ2
d, (C.1)

where gµν(x) is the metric of the object of interest and dΩ2
d the one on the

unit d-sphere, the dependence on d can be made explicit via dimensional
reduction.

Cartan’s formalism is particularly well-suited for the task at hand [168].
The first step is to reexpress the coordinate basis metric (C.1) in terms of
a vierbein basis eα(x) by relating the basis vectors via dxµ = eµαeα, where
eµα denotes the (coordinate-dependent) transformation matrix between the
two basis. This leads us to rewrite1

gµν(x)dxµdxν = ηab ea(x)eb(x), (C.2)

and
eφ(x)dΩ2

d = δij ei(x, θ)ej(x, θ), (C.3)

where we have used the inner-product constraint gµν(x)eµa(x)eνb(x) = ηab
(or equivalently gµν(x) = e a

µ (x)e b
ν (x)ηab) that defines the vierbein fields

eµa(x) as the square root of the metric. Also note that ei(x, θ) = eφ(x)/2eiγ(θ),

with eiγ(θ) our basis on Sd.
Another important element of this formalism is the spin connection ω,

1We use lowercase latin letters (a, b, ...) at the start of the alphabet to denote the basis
associated with the sector described by gµν , and the letters in the middle (i, j, ...) to identify
that of the d-sphere. These latin indices are raised and lowered by the corresponding flat
metric.
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which plays the role of the affine connection in the vierbein basis

∇µ,cXa = ∂µ,cX
a + (ωµ,c)

a
bX

b, (C.4)

∇µ,cXa = ∂µ,cXa − (ωµ,c)
b
aXb. (C.5)

In non-coordinate form, ωab = (ωµ)abdx
µ = (ωc)

a
be
c. Additionally, the spin

connection is antisymmetric: ωab = −ωba.
We now have all the necessary elements to compute the Riemann tensor

in the vierbein basis, which is more tractable analytically. Our first task is to
find the spin connection for the metric (C.1) by making use of Cartan’s first
structure equation, which relates the exterior derivatives2 of the vierbein
basis de with the spin connection on the manifold via the antisymmetric
wedge product

deα = −ωαβ ∧ eβ. (C.6)

On the d-sphere, we expect the spin connection to act separately on both
sectors because of the scale factor eφ

dei = −ωi a ∧ ea − ωi j ∧ ej . (C.7)

Extracting the dependence on φ explicitly leads us to

dei = d
(
eφ(x)/2eiγ

)
= d(eφ/2) ∧ eiγ + eφ/2deiγ (C.8)

=
1

2
φ,a ea ∧ ei − eφ/2

(
ω i
γ j ∧ ejγ

)
(C.9)

= − 1

2
φ,a ei ∧ ea − ω i

γ j ∧ ej , (C.10)

from which we learn that ωi a = 1
2φ,a ei.

In contrast, the gµν sector is self-contained

dea = −ωab ∧ eb − ωai ∧ ei = −ωab ∧ eb, (C.11)

where we have used the fact that the wedge product is antisymmetric, ei ∧
ei = 0.

With the spin connection in hand, we can use Cartan’s second structure
equation to compute the Riemann tensor R

Rαβ = dωαβ + ωαρ ∧ ωρβ. (C.12)

2The exterior derivative of a scalar function is simply dφ = φ,ae
a.
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Note that its components may be read from the vierbein basis

Rαβ =
1

2
Rαβρσ eρ ∧ eσ. (C.13)

It is useful to separate the calculation in three:

• For the Riemann tensor pertaining to the metric gµν only,

Rab = R a
g b (C.14)

since this sector is self-contained. The corresponding Ricci scalar is
then simply R1 = Rg, the one computed from the metric gµν by usual
means.

• For the Riemann tensor pertaining to the d-sphere only,

Ri j =
(
dωi j + ωi k ∧ ωkj

)
+ ωi a ∧ ωaj (C.15)

= R i
γ j + ωi a ∧

(
−ηabωjb

)
(C.16)

= R i
γ j −

1

4
(∇φ)2 ei ∧ ej (C.17)

=
1

2

(
R i
γ jmn −

1

4
(∇φ)2 (δimδjn − δinδjm)

)
em ∧ en. (C.18)

Note that we have explicitly antisymmetrized the term proportional
to (∇φ)2, in accordance to the Riemann tensor’s definition.

To compute the Ricci scalar, we sum the Riemann tensor over its first
and third indices and then take the trace

R2 = Rγ + δijRmimj (C.19)

= Rγ −
1

4
(∇φ)2 (δmmδij − δmjδim)δij (C.20)

= Rγ −
d(d− 1)

4
(∇φ)2 . (C.21)

For a sphere of radius eφ, the Ricci scalar is simply Rγ = d(d+ 1)e−φ.
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• For the mixed sector,

Ri a = dωi a + ωi b ∧ ωba + ωi j ∧ ωja (C.22)

= d

(
1

2
φ,a ei

)
+

(
1

2
φ,b ei

)
∧ ω b

g a + ω i
γ j ∧

(
1

2
φ,a ej

)
(C.23)

=
1

2
φ,ab eb ∧ ei +

1

4
φ,aφ,b eb ∧ ei − 1

2
φ,a ω

i
γ j ∧ ej (C.24)

+
1

2
φ,b ei ∧ (ωc)

b
ae
c +

1

2
φ,a ω

i
γ j ∧ ej (C.25)

=
1

2
∇a∇bφ eb ∧ ei +

1

4
φ,aφ,be

b ∧ ei (C.26)

= − 1

2

(
∇a∇bφ+

1

2
φ,aφ,b

)
δimem ∧ eb. (C.27)

The components of the Riemann tensor are already antisymmetric in
m and b since ∇mφ = 0.

The associated Ricci scalar is therefore

R3 = ηabRi aib = −d
(
∇2φ+

1

2
(∇φ)2

)
. (C.28)

Not forgetting that
√
−G = edφ/2

√−g for the total metric Gµν , the
Einstein-Hilbert action S can be rewritten as

S =

∫
dDx
√
−G (R1 +R2 +R3) (C.29)

=

∫
dDx
√−g edφ/2

[
Rg + d(d+ 1)e−φ − d(d− 1)

4
(∇φ)2

− d
(
∇2φ+

1

2
(∇φ)2

)]
(C.30)

=

∫
dDx
√−g edφ/2

[
Rg + d(d+ 1)e−φ +

d(d− 1)

4
(∇φ)2

]
, (C.31)

where we have used integration by parts in the last step.
With the dependence on d now explicit, the Einstein equations can be

obtained straightforwardly by varying (C.31) with respect to both the metric
and φ. In the presence of an Abelian gauge field A, the dimensionally-

159



reduced action instead reads [152]

S =

∫
dDx
√−g edφ/2

[
Rg + d(d+ 1)e−φ +

d(d− 1)

4
(∇φ)2 − 1

4
F 2

]
(C.32)

with F = dA, and the Maxwell equations can be obtained in the usual way
by varying the above with respect to A.
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