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Maı̂tre de Conférences au LIRMM, Co-Directeur de thèse
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“Bien qu’on ait du cœur à l’ouvrage, l’art est long et le temps est court.”

Charles Baudelaire
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GRENOBLE ALPES UNIVERSITY

Abstract
EEATS doctoral school

Doctor of Philosophy

Reduction of electricity consumption peaks and optimization problems induced on the
demand side

by Chloé DESDOUITS

Keywords: Energy optimization, Real-time control, Scheduling, Linear Programming, Software
architecture.

While concerns about global warming have never been so important, one of its first causes:
global electricity consumption, is still growing. One way to stem the phenomenon could be to
better balance demand and production, in order to switch on less big production groups and
to allow the integration of more renewable production sources. The new paradigm of elec-
tricity market incites customers to reduce their electricity consumption peak and to shift their
consumption when the demand is lower, by introducing economical incentives. Thus, new op-
timization algorithms and methodologies are needed at the customers side to optimize power
usage over time. Schneider Electric has proposed, in the context of the Arrowhead European
project, to study three application use-cases: an elevator with multiple electricity sources, a
manufacturing plant, and a drinking water network. For each of these use-cases, a method-
ology to optimize power consumption peaks (sometimes through an electricity cost function)
is given, as well as optimization algorithms. For the multisource elevator case, two coupled
controllers are proposed: one at the strategic level solving a linear problem, the other one rule-
based at the tactical level. For the manufacturing plant, the methodology we used to monitor,
build energy models, and finally optimize is explained. Furthermore, three linear formulations
are given, as well as a simple local search procedure and a naive constraint satisfaction formu-
lation to handle the NP-hard scheduling problem. For the water network use-case, a quadrati-
cally constrained formulation is used to compare optimized pumping plans with the Business
As Usual tactic. The methods proposed bring between 10.9% to 114% savings on the energy
bill, depending on the context. Moreover, they allow electricity consumers to participate in the
demand-response market. Finally, the knowledge extracted from our three use-cases is sum-
marized, and guidelines are given to optimize the electricity bill of any electricity consumer
system.
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Résumé
École doctorale EEATS

Docteur en Philosophie

Réduction des pics de consommation d’électricité et problèmes d’optimisation induits pour
les consommateurs

par Chloé DESDOUITS

Mots clés : Optimisation énergétique, Contrôle en temps réel, Ordonnancement, Programmation
linéaire, Architecture logicielle.

Tandis que le réchauffement climatique devient de plus en plus préoccupant, l’une de ses
causes principales : la consommation d’électricité, continue à croître. Une des manières d’en-
diguer le phénomène pourrait être de mieux équilibrer la consommation et la production,
afin d’allumer moins de gros groupes de production, et de permettre l’intégration de plus de
sources renouvelables. Le nouveau paradigme du marché de l’électricité incite les consomma-
teurs à réduire leur pic de consommation, et à différer leur consommation quand la demande
est moindre, à l’aide d’incitations tarifaires. De nouveaux algorithmes d’optimisation, et de
nouvelles méthodologies sont donc nécessaires pour optimiser la puissance d’électrique utili-
sée par les consommateurs. Schneider Electric a proposé, à travers le projet européen Arrow-
head, d’étudier trois cas applicatifs : un ascenseur avec plusieurs sources énergétiques, une
usine manufacturière et un réseau d’eau potable. Pour chacune de ces trois applications, une
méthodologie pour optimiser les pics de puissance consommée (parfois à l’aide d’une fonction
de coût de l’électricité) est donnée, ainsi que des algorithmes d’optimisation. Dans le cas de
l’ascenseur multi-sources, deux contrôleurs couplés sont proposés : l’un au niveau stratégique
résolvant un problème linéaire, et l’autre à base de règles au niveau tactique. Dans le cas de
l’usine, la méthodologie que nous avons utilisée pour faire des mesures, construire des mo-
dèles énergétiques, et finalement optimiser est présentée. De plus, trois formulations linéaires,
ainsi qu’une procédure de recherche locale, et une formulation naïve de programmation par
contraintes sont données afin de résoudre le problème d’ordonnancement classifié NP-difficile.
Dans le cas du réseau d’eau, une formulation à contraintes quadratiques est utilisée pour com-
parer des plans de pompage optimisés avec la tactique utilisée habituellement dans le réseau.
Les méthodes proposées entraînent des gains sur la facture énergétique de 10.9% à 114%, dé-
pendamment du contexte. De plus, elles permettent aux consommateurs de participer au nou-
veau marché de l’énergie. Finalement, les connaissances retirées de l’étude de ces trois pilotes
sont résumées, et des lignes directrices sont données pour l’optimisation de la facture énergé-
tique d’un système quelconque consommant de l’énergie.
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Résumé long
Réduction des pics de consommation d’électricité et problèmes d’optimisation induits pour

les consommateurs

par Chloé DESDOUITS

Tandis que le réchauffement climatique devient de plus en plus préoccupant, l’une de ses
causes principales : la consommation d’électricité, continue à croître. Une des manières d’en-
diguer le phénomène pourrait être de mieux équilibrer la consommation et la production,
afin d’allumer moins de gros groupes de production, et de permettre l’intégration de plus de
sources renouvelables. Le nouveau paradigme du marché de l’électricité incite les consomma-
teurs à réduire leur pic de consommation, et à différer leur consommation quand la demande
est moindre, à l’aide d’incitations tarifaires. Cependant, seuls les gros consommateurs peuvent
participer au marché de l’énergie. Afin d’ouvrir cette possibilité aux petits consommateurs, de
nouveaux acteurs émergent : les aggrégateurs. Comme leur nom l’indique, ils agrègent la flexi-
bilité des nombreux petits consommateurs pour former des gros blocs d’énergie qu’ils peuvent
ensuite revendre. De nouveaux algorithmes d’optimisation, et de nouvelles méthodologies sont
donc nécessaires pour optimiser la puissance d’électrique utilisée par les consommateurs dans
le temps. Schneider Electric propose, à travers le projet européen Arrowhead, d’étudier trois
cas applicatifs : un ascenseur avec plusieurs sources énergétiques, une usine manufacturière et
un réseau d’eau potable. Le but de cette thèse est d’étudier différents moyens de résoudre ces
problèmes et de comparer les méthodes en terme d’efficacité et de généricité.

Ces travaux se sont déroulés au sein de l’entreprise Schneider Electric, de deux laboratoires
de recherche : le Gispa-lab et le LIRMM, et dans le cadre du projet européen Arrowhead. Claude
Le Pape, docteur en informatique et expert en ordonnancement, supervise cette thèse au sein
de Schneider Electric, le spécialiste mondial de la gestion de l’énergie et de l’automatisation. Le
directeur de cette thèse, Mazen Alamir, directeur de recherche et spécialiste du contrôle à base
des modèles non-linéaires, fait partie d’un laboratoire internationalement reconnu pour ses
recherches en contrôle et traitement du signal : le Gipsa-lab. Rodolphe Giroudeau, Maître de
Conférences HDR, spécialiste de l’approximabilité et de la complexité des problèmes d’ordon-
nancement au sein du LIRMM, est co-directeur. Enfin, cette thèse est partiellement financée par
le projet Arrowhead, qui fédère plusieurs dizaines de partenaires industriels et académiques, et
vise à permettre l’automatisation collaborative par des dispositifs embarqués communicants.

Dans le cadre de ce projet, trois pilotes devaient être développés. Le premier vise à l’opti-
misation de la facture énergétique d’un ascenseur multi-sources, sous contrainte de puissance
maximum. Le second concerne l’optimisation énergétique de la production dans une usine
d’armoires électriques. Le troisième et dernier a pour but la génération de plans de pompage
optimaux pour un réseau d’eau potable. Plusieurs façon de résoudre ces problèmes peuvent
être envisagées. La première consiste à oublier les détails physiques des processus industriels
pour se ramener à un problème d’ordonnancement sous contrainte de ressources (incluant
l’énergie). De tels problèmes sont connus pour être parmi les plus difficiles des problèmes NP-
difficiles. De nombreux travaux de recherches traitent de la résolution des problèmes d’ordon-
nancement sous contrainte de ressources, souvent à l’aide de méthodes de résolution mixtes.
Cependant la considération de l’énergie comme une contrainte de ressource, ou encore comme
un objectif économique est un axe de recherche plus récent, et moins étudié. La dimension
multi-critères du problème d’ordonnancement s’en trouve renforcée. Il peut donc s’avérer plus
efficace de décomposer le problème global en sous-problèmes à résoudre séparément. D’autre
part, coupler des modules d’optimisation et de simulation, ou encore utiliser du contrôle à base
de modèles (où le problème est résolu de nouveau à intervalles de temps réguliers) peut être
envisagé.
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En ce qui concerne le troisième problème de plans de pompage pour un réseau d’eau po-
table, une autre thèse a été lancée sur le sujet (suite au stage de Gratien Bonvin chez Schneider
Electric). Par conséquent, un premier modèle d’optimisation quadratique a été développé mais
aucun chapitre de ce manuscrit ne lui est consacré. Les premiers résultats prédisent une dimi-
nution de 15% de la facture énergétique.

Dans les bâtiments accueillant du public, plusieurs équipements doivent éviter de man-
quer d’énergie en cas de coupure de courant (éclairage d’urgence, ascenseurs dédiés à évacuer
les handicapés, . . . ). Dans ce contexte, des batteries doivent être installées dans les bâtiments
et peuvent être exploitées pour compenser une partie de la facture énergétique. En effet, elles
peuvent être connectés à des sources d’énergie du bâtiment pour être rechargées et peuvent
founir de l’énergie quand l’électricité est chère. Dans ce cas, un système électronique est néces-
saire pour connecter toutes les sources d’énergie aux consommateurs et assurer que la tension
nominale de chaque équipement soit respectée. Nous étudions un système où six équipements
sont connectés au même « concentrateur d’énergie » :

• Un ascenseur qui peut consommer ou produire de l’énergie, i.e. : qui s’il monte plein ou
descend vide, et produit dans le cas contraire.

• Une batterie qui a une grosse capacité énergétique mais une petite capacité en puissance.

• Une supercapacité qui a une petite capacité en énergie mais une grosse capacité en puis-
sance. Elle peut ainsi quasiment absorber les plus gros pics de puissance de l’ascenseur.

• Le réseau électrique, à qui nous considérons pouvoir acheter et revendre de l’énergie.

• Des panneaux solaires partiellement dédiés à l’ascenseur.

• Une résistance permettant de dissiper l’énergie en surplus, par exemple lorsque l’ascen-
seur produit alors que la batterie est pleine et la revente impossible.

Nous appelons « prosumers » les entités qui consomment et/ou produisent de l’énergie. Un
concentrateur d’énergie permet à chaque prosumer de consommer la puissance produite par
les autres prosumers au même instant. Étant donnés : un graphe en étoile de prosumers (enra-
ciné en le concentrateur d’énergie), une période de temps, un horizon de temps et un ensemble
de fonctions de coût de l’énergie, nous définissons le problème des sources d’énergie comme
suit. Quelle puissance le concentrateur doit-il attribuer à chaque prosumer, pour chaque pé-
riode temps dans l’horizon, de telle manière que les pics de puissance depuis le réseau restent
bornés par une constante et que la facture énergétique soit minimale?

Ce problème a été assez peu étudié dans la littérature pour le cas des ascenseurs multi-
sources. Il existe deux catégories de méthodes : celles à base de règles qui traitent le problème
en temps réel et les méthodes exactes (parfois probabilistes) qui calculent un plan minimi-
sant la facture énergétique. Les premières sont nécessaires pour assurer la gestion en puissance
du système mais ne peuvent pas prendre en compte d’objectif économique de manière opti-
male. Les secondes optimisent la facture énergétique mais ne peuvent pas prendre en compte
les contraintes temps-réel et modifier leur solution en cas d’imprévu. Par conséquent, nous
avons choisi de proposer le couplage d’un optimiseur stratégique et d’un contrôleur local pour
résoudre notre problème. Par ailleurs, un algorithme randomisé est utilisé pour trouver la
meilleure configuration du système (taille des batteries par exemple) et donner des garanties
probabilistes de gain économique.

Afin de gérer l’enjeu temps-réel, nous proposons un algorithme centralisé à base de règles
pour le concentrateur d’énergie, le « Contrôleur Local ». Il met à jour sa tactique toutes les se-
condes. De plus, une stratégie pour choisir les sources d’énergie est calculée par un « Optimiseur
Stratégique », qui envoie des instructions stratégiques au Contrôleur Local régulièrement. Cet
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optimiseur considère des périodes d’un quart d’heure et un horizon de vingt-quatre heures. Il
utilise des prédictions de consommation de l’ascenseur et de production des panneaux solaires.
Le problème d’optimisation stratégique est modélisé en programmation linéaire avec comme
variables de décision la quantité d’énergie injectée dans (ou consommée depuis) le concentra-
teur. Une contrainte d’état de charge minimum des batteries est prise en compte pour parer
à l’éventualité d’une coupure du réseau électrique. De plus, la somme des quantités d’éner-
gie produites et consommée par les prosumers doit être nulle à chaque instant. Les capacités
en énergie et en puissance de tous les prosumers doivent être respectées. Enfin, la quantité
d’énergie achetée et vendue au réseau électrique doit être lissée au court du temps si possible.
L’objectif est ensuite de minimiser la facture énergétique, ainsi que le coût de vieillissement des
batteries. Une fois ce problème résolu, une instruction stratégique contenant un état de charge
cible pour les batteries et une puissance moyenne à acheter (ou revendre) au réseau, est en-
voyée au Contrôleur Local. Le Contrôleur Local, quant à lui, établit une tactique en fonction
de : la dernière instruction stratégique reçue, un ordre de priorité sur les prosumers, et les flexi-
bilités des prosumers à l’instant considéré. Un arbre de recherche est construit avec un étage
par prosumer et autant de nœuds par étage que de flexibilités des prosumers. Une recherche en
profondeur dans cet arbre donne une tactique. Plusieurs paramétrisations possibles sont don-
nées pour le Contrôleur Local : l’une fait en sorte de minimiser les pics de puissance achetée au
réseau, une autre (dite opportuniste) de minimiser la quantité d’énergie dissipée, et la dernière
d’utiliser le moins possible les batteries, quitte à perdre de l’énergie.

Comme l’efficacité de la stratégie dépend de la précision des prédictions, une étude de la
robustesse de notre méthode envers les incertitudes doit être conduite. Et ce, afin d’identifier
les situations où utiliser notre solution plutôt complexe offre de meilleures résultats qu’utiliser
un simple contrôleur à base de règles. Pour cela, deux cas concrets sont considérés : un pre-
mier dans lequel un client souscrit à un tarif de l’électricité qui lui interdit de dépasser une
certaine limite de puissance et veut dimensionner ses batteries pour respecter cette limite ; un
deuxième dans lequel la paire (contrôleur, tarif) la plus rentable doit être indiquée à un client
pour son propre système, ainsi qu’un gain économique garanti. Afin de pouvoir garantir les
résultats avec une probabilité donnée, un algorithme randomisé est utilisé, ainsi qu’un modèle
statistique (à base de loi Gaussienne) des trajets de l’ascenseur. Différentes conceptions du sys-
tème (par exemple différents dimensionnements de batteries) sont comparées, et celle qui offre
la meilleure garantie de performances est conservée. L’ensemble des incertitudes considérées
comprend la consommation énergétique de l’ascenseur, la production solaire et l’état initial des
batteries. L’algorithme randomisé consiste à tirer un nombre N de scénarios aléatoires parmi
cet ensemble d’incertitudes, N étant calculé en fonction de niveaux de garantie que l’on sou-
haite obtenir et du nombre de conceptions envisagées. Puis la stratégie et la tactique sont simu-
lées pour toutes les conceptions, sur tous les scénarios, et nous vérifions que le résultat respecte
bien les contraintes que l’on souhaite. Parmi les conceptions respectant toujours les contraintes,
celle qui offre la meilleure garantie de performances sur le coût global est conservée.

Des expérimentations ont été menées pour évaluer les performances de la méthode de
contrôle proposée, ainsi que sa robustesse aux incertitudes. Dans un premier temps, un exemple
de stratégie sur un jour typique est commentée. Le tarif considéré étant un tarif heures creuses
/ heures pleines, la batterie est chargée la nuit avec de l’électricité bon marché et déchargée
le jour quand l’électricité est chère. L’expérience suivante concerne la perte d’information in-
duite par le fait que l’Optimiseur Stratégique considère l’énergie agrégée sur des périodes de
quinze minutes. Ce choix permet de lisser l’incertitude liée aux heures de trajet de l’ascenseur
mais induit le fait que l’Optimiseur Stratégique ne prévoit pas les pics de puissance. De ce fait,
les batteries doivent être utilisées beaucoup plus que prévu par la stratégie. Pour pallier ce
problème, la prédiction de consommation prise en compte par l’ascenseur doit elle-même tenir
compte du rendement des batteries. En effet, en considérant que toute l’énergie consommée par
l’ascenseur provient des batteries, nous obtenons un comportement légèrement pessimiste de
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l’Optimiseur Stratégique qui ne fausse pas trop sa vision de la quantité d’énergie nécessaire sur
une journée. L’attention est alors portée sur la différence de performances entre les contrôleurs
locaux proposés. Comme attendu, le seul parvenant à limiter les pics de puissance achetée au
réseau est le Contrôleur Local prévu à cet effet, couplé à l’Optimiseur Stratégique. Par contre,
celui-ci ne permet, dans les conditions considérées, d’améliorer la facture énergétique qu’à dé-
triment égal du coût de vieillissement des batteries. Le Contrôleur Local opportuniste, quant
à lui, permet d’améliorer un petit peu le coût total. Le dernier contrôleur n’utilise pas du tout
les batteries et sert de référence. Finalement, les deux dernières expériences visent à appliquer
l’algorithme randomisé présenté plus haut, et à déterminer le meilleur dimensionnement des
batteries, puis le meilleur couple contrôleur, tarif. Les premiers résultats indiquent qu’une su-
percapacité avec une capacité énergétique de 60 Wh est suffisante pour absorber tous les pics
de puissance depuis le réseau. De plus, une batterie de 3 kWh est suffisante pour profiter d’un
tarif heures creuses / heures pleines, et n’a pas un coût d’investissement trop haut. Gardant ces
choix de dimensionnement, sont ensuite comparés les contrôleurs proposés et différents tarifs
de l’électricité (constant, heures creuses / heures pleines, indexé sur spot). L’expérience montre
que si la revente est autorisée, le tarif indexé sur spot ainsi que le Contrôleur Local minimisant
les pics couplé à l’Optimiseur Stratégique est le meilleur choix. En effet, cette combinaison per-
met de tirer parti de la grande variabilité du tarif. Des gains supplémentaires (uniquement liés
au contrôle, pour une conception du système donnée) allant jusqu’à 0.67 e par jour peuvent
être garantis dans ce cas.

Nous nous penchons ensuite sur le cas de l’usine d’armoires électriques. La gestion actuelle
de l’usine de Schneider Electric est un gestion de type « pas de stock », introduite dans les an-
nées 70 au Japon. Afin de tirer parti des tarifs variables de l’énergie, il est nécessaire de changer
cette politique. Nous souhaitons vérifier s’il est possible d’optimiser la facture énergétique tout
en ne détériorant pas trop les coûts de retard et de stockage.

Nous avons tout d’abord dû installer des capteurs pour obtenir des données énergétiques
de l’usine. Des capteurs auto-alimentés de Schneider Electric ont été installés sur les trois
lignes de production, et deux passerelles ont été utilisées pour récupérer les données, les re-
échantillonner, et les envoyer dans une base de données. Une première analyse visuelle des
données a été effectuée, relevant que l’estampillage est l’activité qui consomme le plus d’éner-
gie mais que la soudure semble être celle dont la consommation varie le plus en fonction des
références produites. De plus, un ordre de grandeur de la consommation talon des lignes de
production a pu être extrait (environ 7,5 kW pour la ligne produisant les corps des armoires).
Ces données ont ensuite pu être utilisées pour construire un modèle énergétique des activités
de production. Pour ce faire, les données de production et d’énergie ont du être synchroni-
sées, puis une régression linéaire a été appliquée. Ce modèle a ensuite pu être utilisé dans le
problème d’ordonnancement.

Le problème d’ordonnancement est défini comme un problème de Flow-shop généralisé
avec arbre de précédence, dates d’échéances, délais minimums, et une ressource énergétique.
L’objectif et de minimiser les coûts de retard, d’électricité, et de stockage. Ce problème est plus
complexe que d’autres problèmes déjà démontrés NP-difficiles dans la littérature. La variante
préemptive que nous considérons également est, elle aussi, NP-difficile. De nombreux travaux
de recherche ont été menées concernant les Flow-shops, le RCPSP, et même les contraintes
énergétiques. Toutefois, il en existe peu concernant les fonctions de coût de l’énergie linéaires
par parties. Nous avons choisi d’étudier ce genre de fonctions en raison de leur utilité dans les
mécanismes d’incitation sur le marché de l’énergie.

Nous proposons trois programmes mathématiques permettant de modéliser le problème,
avec dans chacun une ou plusieurs approximations. Le premier modèle est orienté événements
mais ne modélise que des fonctions du coût de l’énergie linéaires. Le second modèle est orienté
temps, ce qui entraine une sous-optimalité dépendant du pas de temps choisi, mais prend en
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compte de façon exacte les fonctions de coût linéaires par parties. Le dernier modèle est éga-
lement orienté temps et produit des solutions préemptées. Il modélise les précédences comme
des contraintes liées au stock de produit disponible. Ce modèle donne comme solution les pas
de temps pendant lesquels sont effectués les activités, mais pas leur date de début. Par consé-
quent, il nécessiterait une heuristique pour construire un ordonnancement, et n’est pas exploité
dans les expérimentations. Enfin, une méthode de recherche locale a été implémentée, initiali-
sée par une solution d’un problème de satisfaction de contraintes, et avec comme opérateur la
formulation MILP orientée événements.

Les solutions des trois formulations MILP sur une même (petite) instance sont comparées
afin de mettre en exergue leurs différences. Puis un ensemble d’instances Benchmark de la litté-
rature est utilisé pour comparer les performances de trois des méthodes proposées, en présence,
puis absence d’objectif énergétique. Sans objectif énergétique, les trois méthodes se comportent
assez bien comparées aux meilleures solution de la littérature. La plus efficace étant la formu-
lation orienté événements, et la moins efficace la formulation orienté temps. Lorsque l’objectif
énergétique est pris en compte, les résultats sont plus mitigés. Pour les plus grosses instances,
la solution trouvée est souvent moins bonne que lorsque l’objectif énergétique n’est pas pris
en compte. Les instances améliorées ne le sont que de moins d’un pourcent (ce qui peut tout
de même représenter un gain économique important). Par ailleurs, la recherche locale amé-
liore le plus d’instances, la formulation orientée événements donne le meilleur gain moyen sur
les instances avec des précédences, et la formulation orientée temps donne le meilleur gain
moyen sur les instances sans précédence. Les méthodes sont ensuite comparées sur des ins-
tances construites à partir des données de l’usine de Schneider Electric étudiée. Pour l’instance
la plus grosse (une semaine de production), la recherche locale donne les meilleurs résultats :
environ 4.5% du coût total est économisé. Par conséquent, si nous devions proposer une mé-
thode d’aide à la décision pour la vraie usine, nous proposerions la suivante :

1. calculer une première solution avec le problème de satisfaction de contraintes,

2. initialiser la formulation orientée événements sans coûts énergétiques avec cette première
solution réalisable pour optimiser au mieux les coûts de retard,

3. lancer en parallèle les trois méthodes de résolution proposées initialisées avec la solution
précédemment calculée,

4. garder les quatre solutions résultantes et les présenter à l’utilisateur.

Le dernier chapitre de ce manuscrit est consacré aux enseignements que nous avons retiré
de ces trois pilotes, au regard de l’architecture logicielle. Tout d’abord, les composants néces-
saires pour optimiser la facture énergétique d’un système complexe quelconque sont : des cap-
teurs et l’architecture remontant les données, un modèle énergétique du système considéré, un
module de prédiction des données nécessaires à l’optimisation, un module d’optimisation haut
niveau (ordonnancement la plupart du temps), un contrôleur bas niveau pour gérer les enjeux
temps-réel. L’architecture logicielle et matérielle choisie doit refléter les besoins de chacun de
ces composants. En effet, les capteurs et le contrôleur local doivent être embarqués au plus près
du système alors que l’optimisation et la prédiction peuvent être exposés sous forme de web-
service. L’exemple de l’architecture implémentée dans le cas de l’ascenseur multi-sources est
donné.

En conclusion, nous avons proposé une ou plusieurs méthodes pour résoudre chacun des
trois problèmes posés initialement, ainsi que des lignes directrices générales pour résoudre
un problème d’optimisation énergétique d’un système de prosumers. Les économies obtenues
vont de 10.9% à 114% et d’environ 245 e par an à 109000 e par an, selon l’application.
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Introduction

Contents
1.1 Electricity Consumption Regulation: Norms and Market Laws . . . . . . . . . 1
1.2 Research Work Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1.1 Electricity Consumption Regulation: Norms and Market Laws

Nowadays, everybody knows about global warming and the responsibility of Human kind in
it. One of the main sources of CO2 emissions (and thus global warming) is electricity produc-
tion through combustion of fossil fuels, such as coal.

FIGURE 1.1 – Based on IEA data from IEA Statistics c© OECD/IEA 2014
(www.iea.org/statistics), Licence: www.iea.org/t&c; as modified by The World

Bank. (2014a). Electric power consumption (kWh per capita). The World Bank

One way to act on the electricity production impact on climate change, is to reduce electric-
ity consumption. But, despite of the successive Conferences Of the Parties (COP), the global
electricity consumption still grows. As it can be seen on Figure 1.1, it has been multiplied by
more than 1.4 between 1993 and 2013. Indeed, emerging countries consumption grows whilst
the access to electricity democratizes. Meanwhile, developed countries have to reduce their
electricity consumption, in order to limit the global consumption growth, and its impact on the
environment. We can see on Figure 1.1, that the Organisation for Economic Co-operation and
Development (OECD) members have succeeded to decrease their electricity consumption of
almost 4% from 2007. However, this is not sufficient to reverse the global trend.

Electricity efficiency norms are put in place to try fix this issue. For example, an objective
of energy efficiency for European countries, called the Directive 2006/32/EC of the European

http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC
http://data.europa.eu/eli/dir/2006/32/oj
http://data.europa.eu/eli/dir/2006/32/oj
http://data.europa.eu/eli/dir/2006/32/oj
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Parliament and of the Council of 5 April 2006 on energy end-use efficiency and energy services
and repealing Council Directive 93/76/EEC, was enforced in 2006. Similar initiatives are taken
all around the world either by subsidizing actors who act on their electricity efficiency, or by
taxing actors who do not. Thus, companies, and industries in particular, are more and more
constrained by these norms and taxes.

FIGURE 1.2 – Based on IEA data from IEA Statistics c© OECD/IEA 2014
(www.iea.org/statistics), Licence: www.iea.org/t&c; as modified by The World

Bank. (2014b). Electricity production sources. The World Bank

A second way to reduce the electricity production impact on climate change, is to use energy
sources that generate less CO2 and methane emissions. As said before, coal is the main source
of CO2 emissions, but we can see on Figure 1.2 that its usage is slowly increasing since 1993.
On the other hand, the usage of renewable electricity sources has also increased during those
past few years. Renewable sources induce far less CO2 emissions, but they are intermittent
power sources. Thus, electricity transmission system operators have to cope with the volatility
of those power sources. Indeed, countries electricity networks are managed by companies, that
are in charge of maintaining the network equilibrium. For example, RTE, the French electricity
transmission system operator explains its role in the following way.

Our roles and missions go way beyond the implicit meaning of the term “power
transmission”. Because electricity can only be stored in limited amounts, it needs
to be used as soon as it is generated. At the heart of the power system, we are
responsible for keeping the balance between supply and demand. By ensuring that
we have the ability to fulfill this role on a daily basis, we provide our customers
with economical, reliable and clean access to power supply. (RTE)

In order to balance the French power system (in terms of frequency and voltage), RTE relies
on three energy reserves. Each of them has an increasing response time: from fifteen seconds
to half an hour. All producers connected to the transmission system have to keep a portion
of their power unused, in order to contribute to the primary reserve. Big producers have to
contribute also to the secondary reserve. The tertiary reserve, called the balancing mechanism,
is used only when the secondary one is not sufficient. Participating in this tertiary reserve is
on a voluntary basis, assuming that at least 10MW are proposed. Contracts are concluded with
voluntary producers and remunerated monthly. They have to provide everyday power they
have promised. Consumers can also be solicited whenever it is needed. The most profitable
offers are kept by RTE to balance the network.

The above mechanisms are the example of the French network of energy, but everywhere
in the world the demand-response market emerges. Laws regulating this new market emerge
as well, like the European mechanism of internal market of energy: Directive 2009/72/EC of

http://data.europa.eu/eli/dir/2006/32/oj
http://data.europa.eu/eli/dir/2006/32/oj
http://data.europa.eu/eli/dir/2006/32/oj
http://data.europa.eu/eli/dir/2006/32/oj
http://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC
http://data.europa.eu/eli/dir/2009/72/oj
http://data.europa.eu/eli/dir/2009/72/oj
http://data.europa.eu/eli/dir/2009/72/oj
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the European Parliament and of the Council of 13 July 2009 concerning common rules for the
internal market in electricity and repealing Directive 2003/54/EC. In Albadi and El-Saadany,
2008, the possible kinds of demand-response programs, that balance a power network by play-
ing with incentive payments, are presented. They are ways to avoid power peeks while sav-
ing money at the transmission system operator side. But for customers to participate in the
demand-response market, they have 1) to be big customers (at least 10MW in France), and 2)
to be able to forecast and shift their consumption.

The keen interest of smaller customers in the demand-response market induces the emer-
gence of new actors: the aggregators. Aggregators incite small customers to shift their con-
sumption using the same incentive mechanisms as the transmission system operators. Then,
they aggregate multiple customers offers into a bigger block of energy that they can sell on
the demand-response market. For example, the Energy Pool company is an aggregator that
declares having a primary reserve and 2500 MW of flexible load.

In that context, customers are interested in how to reduce their power consumption peaks.
The optimization algorithms needed have to take into account a variable electricity tariff, but
also the other customer’s constraints and objectives. In practice, new optimization problems,
or even more complex versions of previous problems, have to be studied. The goal of this
PhD thesis is to study the different ways to solve these problems and to compare the different
methods in term of efficiency and genericity.

1.2 Research Work Context

This PhD thesis is realized within Schneider Electric, the global specialist in energy manage-
ment and automation, operating in over 100 countries with around 160,000 employees world-
wide. Schneider Electric develops connected technologies and solutions to manage energy and
process in ways that are safe, reliable, efficient and sustainable.

This PhD work was accomplished as part as the Analytics for Solutions team, under the su-
pervision of Claude Le Pape in Schneider Electric. Claude Le Pape, PhD in Computer Science
of the University Paris XI, is an expert of planning and scheduling. He is co-author of a hun-
dred of publications including a reference book and twenty papers in books and international
journals. Analytics for Solutions is a corporate Research and Development team, composed of
around twenty researchers and developers focused on the development of new techniques for
energy efficiency.

Moreover, this work was part of the Arrowhead European project. This ARTEMIS project
(2013-2017) federated several dozens of industrial and academic partners. It aimed to enable
collaborative automation by networked embedded devices. The application domains consid-
ered were (among others) the manufacturing industry, building management, electric mobility,
electricity production, and the effective implementation of the virtual energy market, that is
the interaction hub of these different application areas. Schneider Electric supervised the work
package one, dedicated to industrial applications. The main goal for Schneider Electric was
to realize three pilot applications with partners in the domains of: water distribution, manu-
facturing, and elevators. These pilots supposed the installation of the required infrastructure
(sensors, actuators, communication modules, etc.) and the development of optimization tools
allowing to reduce cost, energetic consumption, or environmental impact of the concerned ac-
tivities.

Three optimization problems taken from those applications are proposed by Schneider Elec-
tric to motivate and evaluate this PhD work. Each problem is declined in two versions: a de-
terministic version, considering that the different parameters value are known in advance; and
a stochastic version. The possibility to use or not the same models and methods for the 3 × 2

http://data.europa.eu/eli/dir/2009/72/oj
http://data.europa.eu/eli/dir/2009/72/oj
http://data.europa.eu/eli/dir/2009/72/oj
http://data.europa.eu/eli/dir/2009/72/oj
http://www.energy-pool.eu/en/
http://www.arrowhead.eu
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problems considered is one of the main contributions of this work. In order to support funda-
mental research in optimization and control needed for this thesis, two research laboratories
collaborate with Schneider Electric: the Gipsa-lab and the LIRMM.

Gipsa-lab is a mixed research unit in Grenoble, internationally recognized for the research
achieved in Automatic Control, Signal and Images processing, Speech and Cognition. For the
Control Department, the main challenge is to suggest tools for analysis, control and diagnos-
tics of dynamic systems in order to ensure an efficient, safe and reliable operation. Inside this
department, this PhD thesis is part of the SYSCO team (non linear systems and complexity),
composed of around forty permanent and non-permanent people. In particular, this PhD the-
sis is supervised by Mazen Alamir, CNRS Research Director. Mazen Alamir has a doctoral de-
gree in control from Grenoble-INP, an engineering degree in avionics from ENSICA-Toulouse,
and an engineering degree in mechanical engineering from Grenoble-INP. He is a specialist
of non-linear model predictive control under constraints, and particularly of its application,
in real-time, on fast dynamic systems. He is author of a hundred and fifty publications, in-
cluding fifty in international journals, two monographs and a dozen of patents from industrial
collaborations.

The LIRMM (laboratory of computer science, robotics and microelectronic of Montpellier)
is a mixed research unit, with a wide range of research domains from information technolo-
gies to systems passing by human interfaces. The MAORE team (algorithms and methods
for scheduling and networks) is composed of around fifteen permanent and non-permanent
members. These members use combinatorial optimization, graph theory, mathematical pro-
gramming, and constraint programming to solve discrete optimization problems exactly or
approximately. In this team, Rodolphe Giroudeau, Assistant Professor accredited to direct re-
search, supervises this PhD thesis. He obtained his doctoral degree in Computer Science from
University of Evry in 2000, and his HDR (authorization to supervise research) in 2012 from
University of Montpellier. He is specialized in approximability and complexity of schedul-
ing problems and is author of around fifty publications including twenty one in international
journals.

Now let us introduce more precisely the research work conducted during those three years.

1.3 Research Work Introduction

Let us first introduce briefly the optimization problems proposed by Schneider Electric to lead
this thesis research work. The corresponding systems are represented on Figure 1.3. The first
use-case studied is the optimization of the energy bill of a multisource elevator, under a maxi-
mum power peak constraint. A multisource elevator is an elevator plugged to multiple sources
of energy. The goal is to decide how much power has to be taken from each source over the
time horizon. The second problem considered is the energy optimization of a manufacturing
plant. There are production activities to schedule and the question is: can we shift them in time
to save on the electricity bill, without exceeding their due date? The third and last problem
concerns the computation of pumping plans for a drinking water network. There is a vari-
able water demand and the goal is to supply water towers by pumping water efficiently, while
minimizing the electricity cost.

Several ways to address the problems stated can be considered. A first one consists in for-
getting the physical details of the industrial processes considered, and to reduce to a scheduling
problem under resource constraints (including energy). The electricity is a renewable resource
and its usage cost is variable in time, and more or less known in advance.

Scheduling problems under resource constraints are known to be particularly difficult,
among the most difficult NP-hard problems (cf Garey and D. S. Johnson, 1979). Their reso-
lution can require the combination of multiple resolution methods, like Mixed Integer Linear
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FIGURE 1.3 – The three optimization problems studied.

Programming, Constraint Programming, Dynamic Programming, Local Search with or with-
out meta-heuristics, or even specific operational research algorithms (cf Brucker, 2007; Baptiste,
Le Pape, and Nuijten, 2001; Danna and Perron, 2003; Danna, Rothberg, and Le Pape, 2003; Mar-
avelias and Grossmann, 2004).

Energy and CO2 emission concerns add a new dimension to those problems, in term of
optimization criteria and constraints. Power resources (with a capacity expressed in Watt) and
energy resources (with a capacity expressed in Watt-hour), are available in limited quantities
and their cost is defined on time periods. The notion of energy reasoning, introduced by Er-
schler, Lopez, and Thuriot, 1991 is often used to enforce the treatment of classical resource con-
straints, and could be useful in this context. More recently, energetic considerations were taken
into account for: the management of co-generation systems and the scheduling of furnaces in a
still mill (cf Haït and Artigues, 2011); modeling chemical plants under energetic constraints (cf
Castro, Harjunkoski, and Grossmann, 2011).

The multicriteria dimension of the scheduling problems is obviously strengthened, due to
the impossibility to combine multiple criteria (like tardiness, production quality, or CO2 emis-
sion) into a single economical objective. The generation of multiple solutions (ideally Pareto-
optimal), and the capacity to let the final user making his own trade-off between different
criteria, are important elements of acceptance of such an optimization tool.

In all the cases mentioned above, classical scheduling formulations were expanded by
adding energy-related constraints and cost factors. In some cases, it could be more relevant to
decompose the global problem and to exploit existing optimization systems, developed with-
out any energy consideration, but whose the operators of the considered process are used to.
An open question is to know how much is it possible to decouple the already solved optimiza-
tion problem from the energy concern.

A related question is to determine whether optimization should be centralized or decen-
tralized. There are two good reasons to avoid defining an optimization problem centralized
and detailed in the same time: resolution efficiency when the global problem is too big and
too complex; and the robustness of the system. Indeed, a decentralized system in which sub-
problems are solved locally is intrinsically more robust to disturbances than a centralized sys-
tem. The best way to proceed in often to link optimization problems defined at different levels.
For example, an aggregated model can be used at the global system level to define the energy
consumption (or CO2 emission) limits for different sub-systems. Corresponding sub-problems
can then be solved under these constraints and the results obtained be used by the aggregated
model to modify the limits and iterate. Such an approach has been developed for the energy
consumption of a building and its “zones” in the context of a PhD thesis in the Gipsa-lab and
Schneider Electric (cf Lamoudi, Alamir, and Béguery, 2011).
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Reduction to a scheduling problem could be difficult or not sufficient when considered pro-
cesses are not discrete (as this is the case for the elevator and the water network). Several solu-
tions can be considered in such a case: coupling an optimization module approximating phys-
ical details of the process with a simulator (cf for example Veronique Boutin and Bergerand,
2013 for a water network); or defining the global optimization problem as a predictive con-
trol problem, solved repeatedly at regular time intervals (cf for example Lamoudi, Alamir, and
Béguery, 2011). The interest of such an approach, based on the explicit representation of the
considered process dynamic, is double: proposing easy-to-use set-points for (semi-)continuous
industrial processes; and increasing the robustness of a decision regarding the approximations
that have been made in the model, and the stochastic properties of the system studied.

Taking into account those stochastic properties becomes particularly crucial when real-time
strategies for energy consumption adjustments are considered. In the current model, an energy
provider or an aggregator asks (a few hours in advance) consumers to erase all (or a part of)
their consumption in exchange of an amount of money known in advance. When the produc-
tion scheduling of a plant, or the pumping plan of a water network is set, we do not know yet
if there is an interest in erasing consumption at a given time. Concepts of robust and stochastic
optimization (cf for example Benoist et al., 2001; Ben-Tal, El Ghaoui, and Nemirovski, 2009) can
be useful in that context. However, let us note that, regarding the potential impact of an erasure
decision and the lack of knowledge of the probability of erasure being useful, it is possible that
a simple management of possible scenarios or a tree of schedules answering some constraints
would be sufficient (cf for example Drummond, Swanson, and Bresina, 1994).

Based on those observations, we proposed different solving methods for each of the three
problems. Some work has also been done for handling the sensors data and building demon-
strators for each of the three Arrowhead generations.

Our work on solving the optimization problem of the multisource elevator is related in
Chapter 2. It was conducted jointly with Mazen Alamir, Rodolphe Giroudeau and Claude Le
Pape, my supervisors, but also with Véronique Boutin (Schneider Electric). It is partially based
on the internship of Laurent Billet in Schneider Electric before the beginning of this thesis.
Moreover, a demonstrator was built for the first two Arrowhead generations, coupling data
and an elevator simulation coming from Sodimas, our optimization modules and a graphical
interface allowing user interactions (cf Véronique Boutin et al., 2014). The data were transmit-
ted between software components in different places through the LINC middleware developed
in CEA (cf Louvel and Pacull, 2014). This demonstrator was designed conjointly by Véronique
Boutin and Julie Crouzet; a glimpse of the user interface is given on Figure 1.4. Software com-
ponents were developed by Maxime Louvel (CEA) and I.

For the manufacturing plant use-case, we had to put energy sensors in place, to handle
production and energy data, to build energy models and to compute energy-aware production
plans. All these aspects are discussed in Chapter 3. Research work on the scheduling problem
were conducted jointly with two of my supervisors (Rodolphe Giroudeau and Claude Le Pape)
and two Master students (Grigori German and Mustapha Haouassi). Data mining and energy
modeling were studied with the help of two of my colleagues in Schneider Electric: Jean-Louis
Bergerand and Dimitri Yanculovici, a Master student: Pierre-Alexis Berseneff, and Claude Le
Pape. Finally, a demonstrator has been built by Dimitri Yanculovici for the two last Arrowhead
generations. A view of the graphical interface developed is shown on Figure 1.5.

The third and last use-case, the drinking water network, has not been fully investigated
during this thesis. We focused on the two other subjects and the main results we have on
this subject come from two internships. Moreover, a former Schneider Electric trainee, Gratien
Bonvin, is currently doing a PhD thesis on the same subject. Thus we briefly recall the first
results below and point out Gratien Bonvin’s publications for the interested reader, but there
is no chapter in this PhD thesis dedicated to this subject. A first quadratic optimization model
was proposed to compute energy-aware pumping plans. Optimized plans are more stable
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FIGURE 1.4 – Multisource Elevator demonstrator.

and less costly than Business As Usual (BAU) ones, as they fully exploit pumps efficiency and
off-peak hours. These pumping plans are briefly discussed in Chapter 4. This approach has
been improved by Gratien Bonvin, in the context of his PhD thesis (cf Bonvin, Samperio, et
al., 2015; Bonvin, Demassey, et al., 2016). A second intern, Amaury Bonnemaison, developed
a simulation model of the studied water network. Amaury Bonnemaison, Alfredo Samperio,
and I, used this detailed model to evaluate the feasibility and accuracy of the pumping plans.
First results show that the electricity bill can be improved of 15% by using optimized pumping
plans.

Now, let us dig into the multisource elevator use-case, and the optimization methods we
propose to handle it.
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FIGURE 1.5 – Manufacturing plant demonstrator.



9

Chapter 2

Multisource elevator

Contents
2.1 Multisource Elevators: Why and How? . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Sourcing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Energy Sourcing for Elevators: State of the Art . . . . . . . . . . . . . . . . . . 14
2.4 Proposed Solution: Coupled Strategic and Tactical Optimization . . . . . . . 14

2.4.1 Data and Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 Strategic Optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

A Generic Formulation Depending on Prosumers Kind . . . . . . . . . . 16
The Multisource Elevator Formulation . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Local Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Principles of the Rule-based Algorithm . . . . . . . . . . . . . . . . . . . 20
Parameters Values and Objectives . . . . . . . . . . . . . . . . . . . . . . 20
Example of Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Convergence and Performances . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Robustness to Forecast Uncertainties and Performance Guarantee . . . . . . . 26
2.5.1 Data Generation and Forecasts . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Randomized Algorithm Principles . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6.1 A Typical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Forecast Period and Information Loss . . . . . . . . . . . . . . . . . . . . 33
2.6.3 Local Controller Parametrizations . . . . . . . . . . . . . . . . . . . . . . 35
2.6.4 Which Storage Units to Avoid Power Peaks? . . . . . . . . . . . . . . . . 37
2.6.5 Which Tactic and Tariff to Get Savings? . . . . . . . . . . . . . . . . . . . 38

2.7 Conclusion on Optimal Sourcing Strategies . . . . . . . . . . . . . . . . . . . . 40

The first use-case studied during this thesis concerns elevators connected to multiple sources
of energy. In this document, they are called “multisource elevators”. In Section 2.1, we explain
why multisource elevators make sense. Then, Section 2.2 provides a formal description of the
sourcing problem. In Section 2.3, a brief literature review is discussed. Section 2.4 introduces
our control method. Performance of this control method, depending on uncertainties, can be
guaranteed due to the method explained in Section 2.5. Finally, Section 2.6 presents experimen-
tal results and Section 2.7 concludes this chapter.

2.1 Multisource Elevators: Why and How?

In buildings intended to welcome public, several pieces of equipment have to keep a power
supply in case of grid failure (i.e.: emergency lighting, elevators dedicated to disabled people
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evacuation, etc). Power supply of emergency equipment is regulated by law. For example, in
France, Decree of 25 June 1980 approving the general dispositions of the safety regulation against the
risks of fire and panic in establishments open to the public states that batteries have to be used, and
can be coupled with one (or several) gensets.

In this context, batteries have to be installed in buildings and can be exploited to save a
part of the electricity bill. Indeed, they could be connected to devices that produce energy in
the building to be (re)filled and they could supply energy when the electricity is expensive. To
make this work, the system needs electronic components in order to connect all devices and
ensure that the voltage of each device is respected. Moreover, a relevant sizing of batteries
has to be performed in order to enable their use for savings without impacting their usage for
safety. Also, bigger batteries could be more expensive but could avoid the need of gensets.

In order to study the feasibility of using batteries in the way described above, we chose a
use case where an elevator is connected to batteries, and other sources (or sinks) of energy. The
“energy hub” also guarantees that the elevator can take disabled people out of the building
in case of fire, during power outage. The considered system is presented on Figure 2.1. We

Energy
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Elevator
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Solar
panels
π5

Grid
π4

Battery
π2

Supercapacitor
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Dissipation
resistor
π6
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FIGURE 2.1 – The multisource elevator use case.

consider six devices connected to the same energy hub, including the elevator. Each device can
consume and/or produce energy, depending on its physical capabilities. The energy hub, and
the devices connected to it, can be seen as a star graph, rooted in the energy hub. An arc from a
device to the energy hub means that the device can produce power up to pmax whereas an arc
from the energy hub to a device means the device can consume power up to −pmin (with pmin

negative).
Each of the devices connected to the energy hub is described below:

π1 the elevator An elevator can consume power, but also produce power by recovering energy
from braking. Indeed, most of the elevators work with a counterweight, and depending

https://www.legifrance.gouv.fr/affichTexte.do;jsessionid=06104650F782EF9C6F91CAA60E0C9BFF.tpdila23v_2?idSectionTA=LEGISCTA000020317502&cidTexte=JORFTEXT000000290033&dateTexte=20160629#LEGIARTI000021838291
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on the direction of the elevator, and on the ratio between the cabin mass and the coun-
terweight mass, the motor has to be started or the brakes have to be applied. Moreover,
applying brakes generates heat that can be converted to energy. As we can see on Fig-

FIGURE 2.2 – When energy can be recovered from an elevator.

ure 2.2, when the cabin is heaviest than the counterweight and the elevator goes down,
brakes have to be applied and energy can be recovered. At the opposite, when the cabin
is heaviest than the counterweight and the elevator goes up, the motor has to be used and
energy is consumed.

π2 the battery A battery is plugged to the energy hub to give autonomy to the elevator in case
of grid failure and to save a part of the energy bill, taking advantage of a non-constant
energy tariff. The battery should be big enough to achieve both goals. But the power
capabilities of the battery are in all the cases insufficient to activate the elevator.

π3 the supercapacitor Supercapacitors have great power capabilities but a small energy ca-
pacity. Thus, the supercapacitor ensures that the elevator can move at any time, in case
of power outage. Indeed, the battery cannot give enough power to allow the elevator
moving, while the supercapacitor can. On the other hand, the supercapacitor does not
contain enough energy to allow multiple elevator travels, while the battery does. This is
why a battery and a supercapacitor are both plugged into the energy hub. Moreover, the
supercapacitor is more expensive than the battery, while usage age both of them.

π4 the grid The grid is able to provide power as well as consume power when re-selling energy
is allowed.

π5 the solar panels We consider that solar panels are installed on the roof top and partially
dedicated to supplying the elevator.

π6 the dissipation resistor Finally, a dissipation resistor has to be added to the system in order
to convert electricity into heat when there is too much energy.
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Given such a multisource system, one has to decide from which source(s) electricity shall
be taken (and to which sink energy shall be given) over time. In the following section, the
“sourcing problem” is formalized, as well as its application to the multisource elevator.

2.2 The Sourcing Problem

We call “prosumers”, entities that consume and/or produce energy. An energy hub allows each
prosumer to consume power produced by all other prosumers at the same time.

Definition 1. Let P be a set of np prosumers, all connected to the same energy hub h.

We differentiate three kinds of prosumers: the set S of storage units, the set P of controllable
prosumers and the set E of the others. Thus, these sets form a partition of the whole set of
prosumers.

Definition 2. Let S = {πS1 , . . . , πSnS} be the set of storage units, P = {πP1 , . . . , πPnP} be the set of
controllable prosumers or consumers, and E = {πE1 , . . . , πEnE} be the set of the other prosumers. Then,
P = S ∪ P ∪ E.

Each prosumer can consume and/or produce power, depending on its physical capabilities.

Definition 3. For a given prosumer πi ∈ P , let pmini ≤ 0 (resp. pmaxi ≥ 0) be the minimum (resp. max-
imum) instantaneous power of πi. Then, at a given time t, let pmini ≤ pi[t] ≤ pmaxi be the instantaneous
power produced by πi if pi[t] is positive, or consumed by πi if pi[t] is negative1.

A system composed of an energy hub and its prosumers can be represented by a star ori-
ented graph.

Definition 4. Let G = (P ∪ h,A) be a star oriented graph rooted in h where P ∪ h are the nodes of the
graph and A are the weighted arcs. There is an arc (πi, h) if pmaxi > 0 and the weight of the arc is pmaxi .
In the same way, there is an arc (h, πi) if pmini < 0 and the weight of the arc is pmini .

We suppose that time can be sampled in a regular, uniform way 2.

Definition 5. Let τ ∈ R be the sampling period (expressed in hours), and H ∈ N be the number of
periods considered. Then time-steps are expressed in the following way: tl = tl−1 + τ = l × τ,∀l ∈
{0, . . . ,H}.

Finally, each controllable prosumer has a set of energy cost functions that give the price
associated to an energy consumption or production of this prosumer. There is a cost function
per time bucket; a time bucket being a time period during which the tariff does not vary. For
example, a peak/off-peak tariff (0h - 5h - 19h - 0h) can be represented by three linear cost
functions of the power used.

Definition 6. ∀πi ∈ P, let B be the set of time buckets and {∀b ∈ B, costbπi : R × [pmin, pmaxi ] → R}
be the energy cost functions associated to πi. We will note b(t) the time bucket containing time t. For
example, costb(t)πi (τ, p) is the cost incurred when the power is p over a period τ beginning at time t,
during the time bucket b. costb(t)πi (τ, p) is positive if p is negative and negative if p is positive.

1Power is expressed in Watts and energy in Watt hours.
2In practice, the models we have designed and used would be easy to generalize to time sampled in a given non

uniform way, e.g.: aggregating more time during the night when the elevator is seldom used
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Then, we can define the sourcing problem:

Instance: a set of prosumers P = P ∪ S ∪ E,

a graph G = (P ∪ h,A),

a period τ ∈ R,

a time horizon H ∈ N,

a set of cost functions:
⋃
πi∈P
{∀b ∈ B, costbπi}

Solution: S, a np ×H matrix of pi[t]

Question 1: given pmaxhub ∈ R the allowed quantity of power to be taken or given outside
of the energy hub, does a matrix S exist such that:

∀` ∈ {0, . . . ,H − 1},

− pmaxhub ≤
np∑
i=1

pi[t`] ≤ pmaxhub (2.1)

Can the energy hub be autonomous?

Question 2: given {∀πi ∈ P, pmaxPi ∈ R} the allowed power peak of each controllable
prosumer πi, does a matrix S exist such that:

∀πi ∈ P,
max

`∈{0,...,H−1}
pi[t`] ≤ pmaxPi (2.2)

Can power peaks purchased from controllable prosumers be upper
bounded?

Question 3: given costmaxhub ∈ R the allowed energy bill, does a matrix S exist such that:

H−1∑
`=0

∑
πi∈P

costb(t`)πi (pi[t`]× τ) ≤ costmaxhub (2.3)

Can the electricity bill be upper bounded?
The multisource elevator is an application of the sourcing problem where P = {π1, π2, π3, π4, π5, π6}

and the partition of P is the following: E = {π1, π5}, P = {π4, π6}, S = {π2, π3}. An illustration
of the partition of prosumers P is given on Figure 2.3.
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Super-
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FIGURE 2.3 – Prosumers of the elevator sourcing problem.
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As the multisource elevator problem was suggested by a real-world application, the three
objectives have to be achieved in that case. The energy hub autonomy becomes a constraint
and the question becomes: given data pmaxP ∈ R and costmaxhub ∈ R, can power peaks from and
to the grid and the energy bill remain bounded, respectively by pmaxP and by costmaxhub ?

2.3 Energy Sourcing for Elevators: State of the Art

In order to regulate the energy consumption of an elevator, the energy consumption itself can
be decreased, or energy can be recovered and stored into storage units to be reused later. In
(Sachs, 2005), smart ways to choose elevator physical components (motor, drive, etc) are sum-
marized, as well as appropriate sizing methods.

On the other hand, elevators coupled with supercapacitors have been studied by many re-
searchers and companies. Some of them investigate how to commute softly between the grid
and a supercapacitor, like in (Paire et al., 2010; Tominaga et al., 2002). In (Paire et al., 2010),
a physical multisource system is designed to power an elevator. Rules are used to charge or
discharge batteries depending on whether the electrical current is below or above a given ref-
erence. Likewise, (Tominaga et al., 2002) presents three rule-based methods to control a battery
coupled with an elevator. This method takes into account peak/off-peak tariffs and reduces
energy consumption cost by storing energy recovered from the elevator. These methods allow
to control the system in real-time, but cannot optimally take into account external considera-
tions such as the electricity tariff or the battery state of health. Therefore, these control methods
may not always be efficient regarding economical objectives.

Works have also been conducted on how to take into account future energy consumption to
minimize the energy bill, using storage units. In (Bilbao and Barrade, 2012), a General Energy
and Statistical Description (GESD) of the possible missions of an elevator is proposed, as well
as a dynamic programming-based energy manager. The energy manager is inspired by stock
management theory and minimizes the sum of energy (i) absorbed from the grid, (ii) dissipated
in the braking resistor and (iii) not provided to the elevator. The optimization is done off-
line. This method allows to find an optimal solution regarding economical objectives from
probabilities of consumption. But elevator usage is unpredictable by nature and what is to be
done when the strategy is unfeasible is not investigated.

We study the sourcing problem introduced in Section 2.2, where several energy sources are
supposed to be available to be used by the elevator and the problem is to choose between them
over time. Our resolution method is composed of two coupled controllers: one for handling
real-time issues and a second to compute a long-term sourcing strategy. In this chapter, advan-
tages and drawbacks of each of these controllers are investigated, as well as their interactions.
In addition, a Certification Framework (presented in Section 2.5) is used to guarantee customer
savings on the energy bill and a limit on the power peak consumed from the grid.

2.4 Proposed Solution: Coupled Strategic and Tactical Optimization

To handle real-time control, we propose a centralized rule-based algorithm for the energy hub.
Note that in practice, we could also overlay a controller already implemented. We call these
controllers “Local Controllers”, and we abbreviate LC. They have to be embedded and highly
reactive, thus they cannot compute the best sourcing strategy on a long time-frame. Such a
sourcing strategy is computed with a “Strategic Optimizer” (abbreviated SO), which sends next
strategic instructions to LC regularly.

Definition 7. Let us call the plan computed by SO a strategy, and the set-point computed by LC a
tactic.
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Let us note that previous versions of that control method were published in (Desdouits,
Alamir, Veronique Boutin, et al., 2015; Desdouits, Alamir, Giroudeau, and Le Pape, in press).
Hereafter, we start by presenting data that feed components and interactions between them.

2.4.1 Data and Interactions

LC has to be highly reactive. For the multisource elevator application, we estimate a relevant
time-step is one second, iterated every second. On the other hand, SO has to consider suf-
ficiently long time-steps to get relevant forecasts, and a sufficiently long horizon to take into
account energy price variations. Thus, a fifteen minutes period with a 24h horizon is relevant
for the multisource elevator, and the problem is re-solved every hour.

The dynamic of the interactions between LC and SO is illustrated on Figure 2.4. In a real
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Optional
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FIGURE 2.4 – Software components interactions.

product, LC would probably be embedded into the energy hub. While SO could be proposed
as a web service. We can see on Figure 2.4 that LC and SO are separated components that
communicate only through a strategic instruction. An instruction is composed of a target time,
and an array of np cells: one per prosumer connected to the energy hub. For storage units, an
instruction is expressed as a target state of charge. For controllable prosumers, an instruction
is expressed as mean power. For the other prosumers (that are supposed non controllable),
instructions are empty. An instruction can be sent over a network or shared by components
running into the same computer. That allows flexible business models.

Moreover, SO needs to know the current state of charge of every storage unit and the current
availability of controllable prosumers. It is also fed by a forecast f , that is a |P ∪ E| ×H matrix,
with H the number of periods considered by SO. For prosumers in P, the tariff is forecasted,
whereas for prosumers in E, the produced and consumed quantity is forecasted. The way
forecasts are computed is explained in Subsection 2.5.1.

Finally, LC applies the computed tactic that is a vector of np power values, on the multi-
source system. LC is fed with current solar production, electricity tariff and flexibility of the
elevator due to the current users’ calls.

2.4.2 Strategic Optimizer

The problem solved by SO consists of finding the best sources of energy to be used, factoring in
the storage capacities, during a long time frame. The goal is to minimize costs related to energy
purchasing and battery usage within the time frame, while ensuring the hub is autonomous.
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A Generic Formulation Depending on Prosumers Kind

Let us suppose that the optimization period is a constant τ , and that the number of periods in
the optimization horizon is denoted H .

Definition 8. Let ei[t] = pi[t]× τ be the energy amount produced by prosumer πi over a period τ .

Thereafter decision and state variables are defined, depending on prosumers kind:

• Storage units: ∀πi ∈ S,

– ∀l ∈ {0, . . . ,H−1}, 0 ≤ echi [tl] ≤ −pmini ×τ (resp. 0 ≤ edisi [tl] ≤ pmaxi ×τ ) the amount
of energy charged into (resp. discharged from) the prosumer πi (that is a storage
unit) between time tl and time tl+1 = tl + τ . Thus ei[tl] = edisi [tl]− echi [tl].

– ∀l ∈ {0, . . . ,H}, 0 ≤ xi[tl] ≤ 1 the state of charge of the prosumer πi at time tl.

• Controllable prosumers: ∀πi ∈ P,

– ∀l ∈ {0, . . . ,H − 1}, 0 ≤ epurchi [tl] ≤ pmaxi × τ (resp. 0 ≤ esoldi [tl] ≤ −pmini × τ ) the
amount of energy purchased from (resp. sold to) the prosumer πi (that is a control-
lable prosumer) between time tl and time tl+1 = tl + τ . Thus ei[tl] = epurchi [tl] −
esoldi [tl].

• Non-controllable prosumers: ∀πi ∈ E,

– ∀l ∈ {0, . . . ,H − 1}, pmini × τ ≤ ei[tl] = fi[tl] ≤ pmaxi × τ the forecasted production
(if positive) or consumption (if negative) of the prosumer πi between time tl and
time tl+1 = tl + τ . These ei are not decision variables but constant data given by an
external forecast.

Remark: Although storage units charge and discharge could be modeled as a single variable
ei, two variables (echi and edisi ) are used in our model, because there are two different yields that
impact the charge and the discharge. However, we do not want to charge and discharge the
same storage unit at the same time. Both variables are minimized in the objective function to
avoid this issue (cf Lemma 2.4.1 and the associated proof hereafter).

The following constraints must be taken into account:

• A minimum energy amount must be kept into storage units.

∀πi ∈ S, ∀l ∈ {0, . . . ,H}, xi[tl] + ρminSOCi [tl] ≥ cminSOCi (2.4)

For this constraint, a new slack variable is defined: 0 ≤ ρminSOCi [tl] ≤ cminSOCi is the
percentage of storage unit state of charge under a given minimum value cminSOCi at time
tl. Then, cminSOCi is the ratio of the storage unit state of charge that the energy hub needs
to ensure security in case of grid failure. The ρminSOCi variables must be null except in
the case of grid failure, so they are penalized with a strong coefficient in the objective
function (cf Equation (2.9)).

• The energy-related equation of the energy hub must be satisfied: the sum of consumed
and produced energy between time tl and time tl+1 = tl + τ must be equal.

∀l ∈ {0, . . . ,H − 1},
∑
i∈P

(ei[tl]) = 0 (2.5)
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• The state of charge of storage units must be updated at each time-step with the energy
charged and discharged.

∀πi ∈ S, ∀l ∈ {0, . . . H − 1}, xi[tl+1] = xi[tl] +
ccyi
ccei
× echi [tl]−

1

cdyi × ccei
× edisi [tl] (2.6)

where ccei is the energy capacity of the storage unit and ccyi (resp. cdyi ) is the charging (resp.
discharging) yield of the storage unit. Yields are normalized between 0 and 1.

• Let a new slack variable ∀l ∈ {0, . . . H − 1}, 0 ≤ ρstabi [tl] ≤ pmaxi − pmini be the difference
between the amount of energy purchased from a controllable prosumer πi at time tl and
the amount of energy purchased from the same controllable prosumer at time tl−1. This
value has to be penalized in the objective function. The associated constraints are:

∀πi ∈ P, ∀l ∈ {0, . . . H − 1}, ei[tl−1]− ei[tl]− ρstabi [tl] ≤ 0 (2.7)

ei[tl]− ei[tl−1]− ρstabi [tl] ≤ 0 (2.8)

Please note that, for the first period, ei[tl−1] is set to the corresponding instruction com-
puted for prosumer πi during the last run of SO. If the current execution is the first one,
ei[tl−1] is set to zero.

• Depending on the exact use case, cyclical constraints (or additional cost factors), such as
requiring the battery to be full at the beginning of the morning can be added.

Given those constraints, our economical objective function is given by Equation (2.9).

Minimize
H−1∑
l=0

[
∑
πi∈P

(
−csoldi [tl]× esoldi [tl] + cpurchi [tl]× epurchi [tl]

+ min

[min
πj∈P

(cpurchj [tl])

10
,

min
πj∈S

(cagingj )

2

]
× ρstabi [tl]

)

+
∑
πi∈S

(
cagingi

2
× echi [tl] +

cagingi

2
× edisi [tl]

+ 2×max
πj∈P

(cpurchj [tl])× ρminSOCi [tl]

)]
(2.9)

where cpurchi [tl] is the electricity buying price at time tl and csoldi [tl] is the electricity selling price
at time tl thus −csoldi [tl] × esoldi [tl] + cpurchi [tl] × epurchi [tl] is the electricity bill for the lth period
and prosumer πi. These constants are given by the cost function costπi , which is considered
linear in the current formulation.

On the other hand, cagingi is a coefficient that allows to have a linear approximation of the

impact of the storage unit usage on its aging: cagingi =
cinvei

ccyei ×ccei
, the constant cinvei represents the

investment cost of the storage unit; ccei is the energy capacity of the storage unit and ccyei is the
mean number of cycles that the storage unit can bear.

Remark: As the battery aging cost is just a way to discourage the controller from using the
battery, a first order approximation was chosen. In reality, “small” charges and discharges
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further impact storage units but we ignore this effect here. This cost could be tuned depending
on the results of long-term simulations (typically several years) of the controller and its impact
on the battery lifetime. On the other hand, auto-discharge of storage units is neglected for the
moment.

Moreover, a minimum energy amount must be kept into storage units in order to ensure
autonomy in case of grid failure. As explained above, we cannot ensure that with a hard con-
straint because we need to allow consuming this reserve during a grid failure. Thus, we use the
soft constraint (2.4) with the slack variable ρminSOCi that is minimized in the objective function.
We could have considered that, in case of grid failure, a different operating mode that allows
violating this constraint would be set. But a soft constraint, with a soundly chosen coefficient
(twice the maximal price of electricity), does the same job in a simpler way.

In order to reduce the chattering of the energy purchased from controllable prosumers, we
minimize the slack variable called ρstabi . Finally, both echi and edisi are penalized, in order to
avoid they could be both positive in the same time.

Lemma 2.4.1. In all optimal solutions, ∀l ∈ {0, . . . ,H − 1}, ∀πi ∈ S, echi [tl] = 0 ∨ edisi [tl] = 0.

Proof. Assume ê, an optimal solution, such that there exists 0 ≤ l ≤ H − 1 where both êchi [tl]
and êdisi [tl] are strictly positive. Then, let us consider another solution e

′
where all decision

variables have the same value except that:

ech
′

i [tl] = êchi [tl]−min(êchi [tl], ê
dis
i [tl])

edis
′

i [tl] = êdisi [tl]−min(êchi [tl], ê
dis
i [tl])

As ech
′

i [tl] and edis
′

i [tl] are both penalized in the objective function, then solution e
′

admits a
lower cost than solution ê that was optimal by assumption.

Note that all variables are weighted with a fraction of the energy tariff in order to ensure
the right setting of the objective (reserve for grid failure, electricity cost, . . . ).

The overall linear formulation is then:

Minimize (2.9)

Subject to (2.4)− (2.8)

The Multisource Elevator Formulation

In the elevator context, we choose to set cminSOC2 to 0.2 and cminSOC3 to 1.0 because the super-
capacitor has to be fully charged in case of grid failure and a 20% charged battery can supply
the super-capacitor for several travels. Moreover, the battery is a lead-acid battery with an
energy capacity of 3000 Wh, an investment cost of 300 e and a maximum power of 2880 W.
The super-capacitor has an energy capacity of 120 Wh, an investment cost of 2400 e and a
maximum power of 57600 W. Thus, storage units aging costs are the following ones:

caging2 =
cinve2

ccye2 × cce2
=

300

20000× 3000
= 0.000005

caging3 =
cinve3

ccye3 × cce3
=

2400

20000× 120
= 0.001

Table 2.1 shows the linear program applied to the multisource elevator case, in vector form.
Variables in bold are column vectors of dimension H , and matrices. Let A, B, A

′
and B

′
be
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TABLE 2.1 – A linear formulation for the multisource elevator sourcing problem.

Minimize

[
−cpurch

4 � epurch
4

+5× 10−6 × e2 + 0.001× e3

+2× cpurch
4 � ρminSOC

2 + 2× cpurch
4 � ρminSOC

3

+min
(

c
purch
4
10

, 2.5× 10−6
)
� ρstab4

]
6∑
i=1

ei = 0

esold−
4 − esold

4 − ρstab4 ≤ 0

esold
4 − esold−

4 − ρstab4 ≤ 0

x+
2 − x2[t1] + Aech

2 + Bedis
2 = 0

−x+
2 − ρminSOC

2 ≤ −0.2

x+
3 − x3[t1] + A

′
ech
3 + B

′
edis
3 = 0

−x+
3 − ρminSOC

3 ≤ −1.0

0 ≤ ech
i ≤ −pmini × τ ,∀πi ∈ S

0 ≤ ρstab4

0 ≤ edis
i ≤ pmaxi × τ ,∀πi ∈ S

0 ≤ epurch
4 ≤ 50000× τ

0 ≤ xi ≤ 1 ,∀πi ∈ S

0 ≤ e6

0 ≤ ρminSOC
i ≤ 0.2 ,∀πi ∈ S

H ×H-matrices:
A = diag

(
− ccy2
cce2

= − 0.9
3000

)
B = diag

(
1

cdy2 ×cce2
= 1

0.9×3000

)
A
′

= diag
(
− ccy3
cce3

= − 0.9
120

)
B
′

= diag

(
1

cdy3 ×cce3
= 1

0.9×120

)
Moreover, the symbol � states for the Hadamard product (element-wise product).

As we choose 15 minutes periods (τ = 0.25) and a 24 hours horizon, H = 24 ÷ 0.25 = 96.
That gives us a linear program with 96 periods. In practice, we have 12 vectors of H decision
variables each and 10 constraints per time step. Thus every hour we solve a linear problem
with 1152 variables and 960 constraints. Building and solving the problem with GLPK (GNU
Linear Programming Kit, Version 4.54 2014) takes about one second.

2.4.3 Local Controller

Our LC is a centralized rule-based controller that computes, in real-time and for a single time-
step, a sourcing tactic. The tactic depends on: 1) the relative priority associated to every pro-
sumer, 2) current flexibility of every prosumer, 3) the current strategic instruction if any, or a
default instruction otherwise. As SO is based on energy forecasts, some strategic instructions
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may be infeasible at some points, and LC has to find the best trade-off between current instruc-
tion and current situation.

Principles of the Rule-based Algorithm

Each prosumer connected to the energy hub is associated with a priority number. A priority
list is defined as a permutation of the prosumers set P : (πl1 , . . . , πlnp ), ordered by decreasing
priority numbers. A priority number represents the importance of satisfying a prosumer rela-
tively to the others and is linked to the quality of service. The prosumer that has the biggest
priority number will get its preferred flexibility, unless this is impossible. On the other hand,
the prosumer that has the smallest priority number will be used to produce or consume the
power needed by the other prosumers as much as possible.

Moreover each prosumer has a list of flexibilities, that can be discrete power values:

(p1
i , p

2
i , . . . , p

m
i )

or power intervals:
([p1,min

i , p1,max
i ], . . . , [pm,mini , pm,maxi ])

Flexibilities are ordered by decreasing preference order of the prosumer. For example, if an
elevator π1 is stopped and empty, it can move to a higher floor (flexibility p1

1), or move to a lower
floor (flexibility p2

1), or stay still and consume standby power (flexibility p3
1). The preferred

flexibility p1
1 of the elevator is to go in the direction that corresponds to the first user call and

stop on the way if other calls have been made on intermediate floors and for the same direction.
On the other hand, some prosumers have no discrete flexibilities but a set of possible intervals.
For example, a battery can consume or produce a power value bounded by its minimum and
maximum power bound.

The third, and last, parameter that influences LC is the strategic instruction. If there is no
strategic instruction available, LC decides itself of a default instruction. That allows LC to work
alone if its link with SO is broken. Setting the default instruction influences performances of
the tactic.

Given these three inputs, LC builds a decision tree for the current time step. The decision
tree has a level per prosumer, ordered by decreasing priority order. In a given level, every
node has as many children as the number of flexibilities of the prosumer corresponding to the
next level. A tactic is obtained by a depth-first search in the tree, and composed of a power
value per prosumer. Such a tactic is also called a “control vector” in this subsection.

During the depth first search, if the node holds a single power value, this value is chosen.
Otherwise, a default value is chosen in the given interval. If a strategic instruction is available
for the current prosumer, the value in the interval, nearest to the instruction value is chosen;
otherwise, the value in the interval, nearest to zero is chosen. When a leaf is reached, the
algorithm checks if the sum of the chosen power values is equal to zero. If not, the difference
is compensated, as much as possible, by each node through backtracking in the tree. When the
tree root is reached, if the sum of the power values chosen is null, the solution is kept. If not,
the depth first search continues. That way, the first found solution is the best one regarding the
prosumers priority order, the preferences of each prosumer and the strategic instruction.

This way to compute a tactic could be used for a wide range of multisource systems. Thus
the detailed algorithm is presented in Chapter 4, where its genericity is discussed.

Parameters Values and Objectives

This rule-based algorithm can be tuned depending on the objective, through parameter values
described above. We cannot influence prosumers flexibilities but we can choose priority order
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and default instruction. There are three versions of LC:

MinPeaks The goal of the first controller considered is to minimize power peaks purchased
from controllable prosumers.

Opportunistic The second controller considered is supposed to minimize dissipated energy
and thus the energy bill.

Secure The third controller considered minimizes storage units usage while guaranteeing that
storage units will be ready in case of grid failure.

Priority order and default instruction associated with each of these three controllers are
shown in Table 2.2. Let us recall that a strategic instruction is composed of target state of charge
for storage units and target power for controllable prosumers, as explained in Subsection 2.4.1.
Moreover, LCs classify storage units in three categories:

• those under their minimum state of charge S1 = {πi ∈ S | xi < cminSOCi },

• those usable to absorb power peaks S2 = {πi ∈ S \ S1 | pmaxi ≥ max
πj∈E

(−pminj )},

• the other ones S3 = S \ (S1 ∪ S2).

TABLE 2.2 – Three LCs and their parameters.

(A) Priority orders3.

MinPeaks Opportunistic Secure

P 3 3 1

S1 4 4 3

S2 2 2 4

S3 1 1 2

E 5 5 5

(B) Default instructions4.

MinPeaks Opportunistic Secure

P standby cons 0 W 0 W

S1 cminSOC
i cminSOC

i cminSOC
i

S2 100% xi 100%

S3 100% xi xi

E

For every LC, the non-controllable prosumers are those with the biggest priority number,
meaning that they should not be used to balance the energy hub, if it can be avoided. Note
that in case they are multiple non-controllable prosumers on the same energy hub, they cannot
always be given relative priority numbers. For example, if different actors (two production
plants, two different buildings, etc) need a big amount of energy at the same time, and their is
not enough energy, a compromise has to be found. In that case, a more sophisticated controller
(probably finding Pareto-optimal solutions) should be used. However, for rather small energy
hubs like the multisource elevator, non-controllable prosumers can easily be prioritized. The
elevator has a bigger priority number than the solar panels. The elevator would also have a
bigger priority number than an air-conditioner in the same building for example.

The MinPeaks LC attributes the second biggest priority numbers to storage units under
their minimum state of charge, in order to re-fill them if needed. Then come the controllable
prosumers, in order to reduce power peaks from and to them. Finally come storage units
used to absorb power peaks, and lastly other storage units. That way, the battery absorbs
all power demands if possible, and the supercapacitor can stay fully charged for cases it is
needed. Default instructions are used only when no strategic instruction is available. In this

3Let us note that the prosumer with the biggest priority number is the one that has the highest priority.
4A target state of charge of xi means the storage unit has to stay at its current state of charge.
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case, controllable prosumers are supposed to supply the amount of power consumed by non-
controllable prosumers when they are in standby mode. The storage units are preferred to be
fully charged.

The Opportunistic LC uses the same priority orders as the MinPeaks LC, only the default
instructions change. In order to be opportunistic, no power is taken from the grid by default,
and all the storage units shall stay at their current state of charge. Note that the Opportunistic
LC’s behavior is comparable to a classical rule-based controller.

Finally, the Secure LC gives to controllable prosumers the lowest priority in order to avoid
using storage units if possible. The default instruction of storage units usable to absorb power
peaks is to be fully charged. The other storage units are supposed to stay at their initial state of
charge.

Example of Decision Tree

This rule-based algorithm is based on a decision tree. We can see in Figure 2.5, a decision tree
built by LC. Tree nodes represent flexibilities and contain either a possible produced power
value, or a power interval with consumption and production bounds. Tree levels are associated
with prosumers, in decreasing priority order. In order to find the best tactic, the controller

Root

Elevator
p1 = −500W

Solar panels
p5 = 20W

Resistor
− infW ≤ p6 ≤ 0W

Grid
0W ≤ p4 ≤ 6000W

Supercapacitor
−100W ≤ p3 ≤ 100W

Battery
−50W ≤ p2 ≤ 50W

Elevator
p1 = 200W

Solar panels
p5 = 20W

Resistor
− infW ≤ p6 ≤ 0W

Grid
0W ≤ p4 ≤ 6000W

Supercapacitor
−100W ≤ p3 ≤ 100W

Battery
−50W ≤ p2 ≤ 50W

Elevator
p1 = −50W

Solar panels
p5 = 20W

Resistor
− infW ≤ p6 ≤ 0W

Grid
0W ≤ p4 ≤ 6000W

Supercapacitor
−100W ≤ p3 ≤ 100W

Battery
−50W ≤ p2 ≤ 50W

Prosumers by
decreasing

priority order

Flexibilities by decreasing preference order

E

P

S2

S3

FIGURE 2.5 – An example of the MinPeaks Local Controller decision tree.

searches in the tree, depth first and builds a set-points vector p composed of a power value per
node encountered.

An example is presented below to give the reader a clearer idea of how a tactic p(t) is
computed, at a given time-step t. p(t) = [p1(t), p2(t), p3(t), p4(t), p5(t), p6(t)] is the control vector
composed of np chosen power values. We suppose that a strategic instruction is available, valid
for the next five minutes, and sets as targets:

• a mean power of 200W for the grid,

• a state of charge of 100% for the supercapacitor,
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• a state of charge of 100% for the battery.

A tactic is computed by the LC by trying to apply the strategic instruction if possible, and
adapting it if not.

1. Starting from root, the first node encountered is the one this highest priority: the elevator,
its preferred flexibility is to consume 500 W.

p(t) = [−500, p2(t), p3(t), p4(t), p5(t), p6(t)]

2. The second node encountered corresponds to solar panels, that produce 20 W.

p(t) = [−500, p2(t), p3(t), p4(t), 20, p6(t)]

3. The strategic setpoint for the resistor is 0 W, that is into its flexibility interval.

p(t) = [−500, p2(t), p3(t), p4(t), 20, 0]

4. The strategic setpoint for the grid is to purchase 200 W, that is into the flexibility interval.

p(t) = [−500, p2(t), p3(t), 200, 20, 0]

5. Suppose that the target state of charge of the supercapacitor is 100% and the current state
of charge is 50.0%, so the supercapacitor needs to be charged. If we suppose that the
target time of the set-point is five minutes later and the supercapacitor energy capacity is
60 Wh, then 30 Wh have to be charged in five minutes. The corresponding mean power
is pmean3 = 30÷ (5÷ 60) = −360 W, but the lower bound of the flexibility interval is −100
W. The chosen power value p3(t) is then −100 W.

p(t) = [−500, p2(t),−100, 200, 20, 0]

6. In the same way, the battery has to be charged and the minimum value of its flexibility
interval is -50 W.

p(t) = [−500,−50,−100, 200, 20, 0]

7. Now, the current node is a leaf, so we need to check if the sum of the control vector is
null. As,

∑
(−500,−50,−100, 200, 20, 0) = −430, the current prosumer (that is the lowest

priority) needs to change its power value as much as possible to get the sum to zero. So,
the battery changes its power value to 50 W.

p(t) = [−500, 50,−100, 200, 20, 0]

8. The backtracking continues and the current node is the supercapacitor. The sum cur-
rently is

∑
(−500, 50,−100, 200, 20, 0) = −330 and the supercapacitor needs to changes

its power value to 100W.

p(t) = [−500, 50, 100, 200, 20, 0]

9. The current node is the grid and the sum currently is
∑{−500, 50, 100, 200, 20, 0} = −130.

So, the grid needs to changes its power value to 330W.

p(t) = [−500, 50, 100, 330, 20, 0]
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10. Now, the sum is null, and the tree traversal can go back to the root. The current solution
is admissible and optimal regarding priority order and flexibilities.

Note that we could avoid some of the backtracks by “propagating” the sum constraint as
we go down the tree; but this would make the implementation more complex while backtracks
very rarely occur. Indeed, the storage units are sized appropriately to compensate the biggest
elevator consumption peaks.

Convergence and Performances

Now let us explain why this algorithm always converges. The needed hypothesis are that:
each prosumer has, at least, one flexibility and a finite number of flexibilities (thus the tree has
a finite size and a solution always exists).

root

f1 =
{p1}

fk =
[fmink , fmaxk ]

fnp

f1’s first
brother

f1’s last
brother

. . .

. . .

. . . . . .

C

FIGURE 2.6 – Example of search tree for a LC.

Lemma 2.4.2. When going down the tree, tree leaves can be reached in finite time.

Proof. There are a finite number of prosumers. When going down the tree, each prosumer has
at least one flexibility. A default value in the flexibility set or interval can be deterministically
computed in finite time. Thus, the control vector can be filled in with np power values, and a
tree leaf can be reached.

Lemma 2.4.3. From a tree leaf, the tree root can be reached in finite time.

Proof. Let us note C = (f1, . . . , fnp) a path of flexibility nodes from the tree root to the tree
leaf fnp . Let us note V = (p1, . . . , pnp) | ∀i ∈ {1, . . . , np}, pi ∈ fi the corresponding control
vector. When going back from the tree leaf fnp to the tree root, if the current node fi ∈ C
corresponds to a flexibility interval, the chosen power value pi is deterministically adapted in
finite time to make

∑i
j=np

pj tend towards zero. Then fi−1, parent of fi, is considered. In the
case where fi corresponds to a discrete flexibility, and

∑i
j=np

pj = 0, then the parent node fi−1

is considered. If fi corresponds to a discrete flexibility and
∑i

j=np
pj 6= 0, the next brother of

fi is considered and a new sub-branch of the tree is explored. If there are no more brother to
explore, the discrete flexibility fi is kept and fi−1, parent of fi, is considered5. Thus, each node

5 Let us note in that case, the flexibility node in fi’s brothers that gets the sum nearest to zero should be kept in
order to get a better tactic, but that would complicate the algorithm.
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is considered only once and from every node, the parent node is reached in finite time. By
induction, the tree root can be reached in a finite duration.

Thus, the algorithm always converges but does it converge towards the most valuable so-
lution (i.e.: the control vector with the sum nearest zero)?

Lemma 2.4.4. Given the following hypothesis:

1. a control vector with a null sum exists with the current flexibilities,

2. prosumers with a discrete set of flexibilities are the first prosumers in the search tree and,

3. each prosumer with a flexibility interval has only one contiguous interval,

then the equilibrium is reached by this rule-based algorithm.

Proof. According to Hypothesis 1, a control vector with a null sum can be found from the
current flexibilities. Let us note C the first path of flexibility nodes that can be obtained from a
depth-first search in the rooted tree T , and such that there exists a control vector V with a null
sum and composed of a power value per flexibility node in C:

∃ a path C = (f1, . . . , fnp) ∈ T such that #C = np,

∃ a vector V = (p1, . . . , pnp) such that ∀i ∈ {1, . . . , np}, pi ∈ fi ∧
np∑
j=1

(pj) = 0 (2.10)

When going from the root to the leaf fnp along C, the first met nodes are those correspond-
ing to discrete flexibilities, according to Hypothesis 2. Let us note fl the last node along C
corresponding to a discrete flexibility. In control vector V ,

∑np
i=1(pi) = 0 and (f1, . . . , fl) are

discrete flexibilities, thus
∑l

i=1 pi = −∑np
i=l+1 pi. Therefore, it is possible to find power values

in fl+1 × . . .× fnp (with × the Cartesian product) such that their sum equals s = −∑l
i=1 pi.

Let us suppose that the algorithm returns a control vector with a non-null sum. Thus, the
whole search tree is gone through. In particular, Path C is examined, along which a control
vector V

′
= (p

′
1, . . . , p

′
np) is built. Since the control vector V

′
is built along C too and nodes

f1 to fl correspond to discrete flexibilities, ∀i ∈ {1, . . . , l}, p′i = pi. When going back from
the leaf fnp to fl, at each level i, a power value p

′
i is chosen in f

′
i to bring

∑np
j=i p

′
j towards s.

Because it is possible to find power values in fl+1 × . . .× fnp such that their sum equals s and
because flexibility interval corresponds to a single contiguous flexibility interval (according to
Hypothesis 3), the algorithm builds V

′
such that

∑np
i=l+1 p

′
i = s. Thus control vector V

′
has a

null sum and is returned by the algorithm. That contradicts the hypothesis of the algorithm
returning a control vector with a non-null sum.

In the multisource elevator system we consider, the only prosumer with a discrete set of
flexibilities is the elevator. Moreover, the elevator has the highest priority in the three local
controllers proposed. Thus, Lemma 2.4.4 holds and if the equilibrium exists, it can always be
reached in our use-case: the elevator can get its preferred flexibility (and not be affected by
power supply considerations). If the equilibrium does not exist, all the tree nodes are consid-
ered and the algorithm terminates with a control vector that has a non-null sum. That would
mean that energy sources cannot supply enough power at this time step. That could occur with
the multisource elevator if the grid is down and the storage units are empty for example.

What to do if hypothesis of Lemma 2.4.4 do not hold, as well as the reasons why the lemma
is not correct without those hypothesis, would have to be handled in future work.
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2.5 Robustness to Forecast Uncertainties and Performance Guaran-
tee

One of the core questions we often encounter in the optimization of design, planning, and
control, is the robustness of the proposed solution to uncertainty in the measured (or predicted)
data. The robustness of a solution could be defined as its capacity not to be invalidated and stay
satisfactory whatever are the uncertain input data. As the SO accuracy depends on the forecasts
accuracy, a robustness study has to be performed to identify situations where using our rather
complex control solution gives better results than using a simple rule-based controller.

Let us consider two different use cases where a certification has to be given on the control
method achievements. In the first one, a customer wants to respect a limit of power consump-
tion enforced by local standards, electricity contract or by the electricity tariff (that can be much
more expensive above a given power limit). In this use case, the aim is to determine the optimal
sizing of a battery and a supercapacitor in order to certify that the customer will never exceed
the given power limit. In the second use case, a customer already has storage units and wants
to use them to benefit from Time-Of-Use tariffs or participate in the demand-response market.
We want to certify that, if he buys our control solution, he will gain X % on his daily electricity
bill with a prescribed high probability.

As we want to provide a guarantee that a certain condition will be satisfied at least a great
percentage of the days, the uncertainties to be considered concern all elements that vary from
a day to another. Let us note that these elements may be more or less known or predictable at
time t0: the state of charge of the battery is known at t0; a weather forecast enables to estimate
solar production precisely enough for our needs; and a forecast of the elevator’s energy needs
can also be available but often much less precise. The control method takes such forecasts into
account. To certify a property on a given percentage of the days, we have to consider these
forecasts as part of the uncertainty set, even though the controller take them as data.

There are an infinite number of daily scenarios of elevator usage; thus we cannot simulate
them all. A particular method, that can be used to offer performance guarantee, relies on the
fact that an event (such as exceeding Pmax on a given day) which is not observed over a rep-
resentative set of N samples (with a large N) has low probability of occurrence (depending on
N). In this section, we investigate the use of such a method for the design and control of a
multisource elevator.

First an elevator statistical model has been built, to allow drawing elevator usage scenarios.
These scenarios are mandatory to allow guaranteeing performance of our control method. In
Subsection 2.5.1, the elevator statistical model is presented, as well as the uncertainty set com-
posed of uncertain data and their associated forecasts. Then, in Subsection 2.5.2, the principles
of the randomized algorithm are introduced. Let us note that a previous version of this work
was published in (Desdouits, Alamir, Giroudeau, and Le Pape, in press).

2.5.1 Data Generation and Forecasts

We draw samples of elevator calls according to a statistical model. This model distinguishes
multiple types of travels: morning and afternoon arrivals and departures, lunch breaks, inter-
floor travels, arrivals and departures of external visitors. Statistical laws are identified based
on historical data among the following set of eleven candidate laws:

• Uniform

• BiUniform

• QuadriUniform

• Gaussian

• BiGaussian

• BiLinear
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• BiQuadratic

• BiCubic1

• BiCubic2

• BiBeta1

• BiLogistic

As an illustration, the reader is invited to look at Figure 2.7, corresponding to the arrival of
people in the morning for two different floors of the building: the horizontal axis corresponds
to the number of people arrived and the vertical axis to the time of arrival (in minutes after
midnight). The black dotted curve is the actual observation, while the plain coloured curves
correspond to approximations of the arrival time distribution by classical statistical laws. Ac-
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FIGURE 2.7 – Arrival time of people for two different floors, approximation by
statistical law compared to real data.

cording to the average difference between the predicted arrival time (based on a random gen-
eration) and the effective arrival time (coming from historical data) on a similar day, all laws
except Uniform and BiUniform are good enough for our purpose. For the first experiments we
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used only Gaussian Laws (average error of 30% of the standard deviation), but further investi-
gations using BiCubic2 (average error of 26% of the standard deviation), for example, could be
interesting. However, we expect that would not induce significant changes in the results.

For each travel type and relevant pair of floors, these laws provide information on the num-
ber of people moving during the day (depending on day-of-week, week-of-year, etc.), the dis-
tribution of their weights, the distribution of the times of the people movements during the
day, and the probability that two similar movements are grouped (i.e., several people going
to lunch together, etc.). The attendance of the office building is tuned depending on several
kinds of days: very low on Sundays, a little bit greater on Saturdays, average on Wednesdays
and rather high otherwise. Moreover, the week of year modulates these values. A random
generator is used on this basis to generate scenarios.

A forecast of elevator energy consumption is built by averaging energy production or con-
sumption on several daily scenarios of the same kind. Thus, there is one forecast per kind of
day. An alternative could be to use standard machine learning techniques to directly forecast
energy production or consumption for each SO period.

Definition 9. A drawn scenario of daily elevator consumption, for the kind of dayD, is denotedwDcons ∈
WD
cons. The associated forecast is denoted fDcons.

The second kind of uncertainties is solar radiation, uniformly drawn between two bounds:
a typical cloudy day and a typical sunny day. The predicted solar production, known at the
beginning of each day, is drawn in the interval: [daily profile minus ten percent ; daily profile
plus ten percent]. Note that solar production samples are uniformly drawn, regardless of the
kind of day.

Definition 10. A drawn scenario of daily solar production, is denoted wprod ∈ Wprod. The associated
forecast is denoted fprod.

Thus, let fD be the forecast that feeds SO. It is deterministic and depends only on the kind
of day considered.

Definition 11. fD = [fDcons, fprod], a 2 × H matrix, with H the number of periods considered for the
predictions.

The last kind of uncertainty is the initial state of charge of storage units at the beginning
of a simulated day. These states of charge are uniformly drawn between 0% and 100%. Let us
note that if we had historical data, we could use a better distribution that the uniform one.

Definition 12. Drawn initial state of charge of storage units are denoted winitSOC ∈ [0, 100]2.

Finally the uncertainty set considered contains the three sources of uncertainties stated be-
fore, as well as the forecasts (even if they depend only on the kind of day).

Definition 13. LetW =
⋃
D

(WD
cons)×Wprod× [0, 100]2 be the uncertainty set considered and wD ∈W

be a scenario drawn for a given day D such that: wD = (wDcons, wprod, winitSOC , f
D).

2.5.2 Randomized Algorithm Principles

The principles of the randomized algorithm used are the following. Some key design param-
eters, relevant for the given problem, are chosen. Then, for all possible values of the design
parameters, control algorithms are simulated with several uncertainty scenarios. The design
vector, that gives admissible solutions and the best objective value on simulated scenarios, is
kept.
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Because there is an infinite number of possible uncertainty scenarios, we cannot simulate
them all. Thus, in order to get a certification that simulation results are representative, a sta-
tistical approach is adopted. To obtain this certification, we use results shown in (Alamo et al.,
2015) on randomized algorithms. We briefly recall them, and apply them to our context below.
Let:

• Θ be the set of possible values of design parameters we want to optimize (i.e.: storage
unit possible sizes, etc). The cardinality of Θ is denoted nC .

• θ ∈ Θ be a vector with nθ components.

• W be the set of uncertainties (Definition 13), composed of possible elevator consumption
curves during a day, solar production curves, initial state of charge, and forecasts.

• wD ∈W an uncertainty scenario drawn for a given day D, as stated in Definition 13.

• u∗(θ, wD) be a vector of target state of charge for the battery and target energy purchase
from the grid over the day, given by SO.

• J(θ) be an objective function to minimize.

• C be a set of constraints on design parameters.

• g : Θ×W → {0, 1} be a function that returns zero if all constraints c ∈ C are satisfied and
one otherwise.

Then, we use the following result from (Alamo et al., 2015): if we generate N Independent and
Identically Distributed samples {w(1), . . . , w(N)} from W according to the probability PrW and
then solve the following sampled optimization problem:

min
θ∈Θ

J(θ) subject to
N∑
l=1

g(θ, w(l)) = 0 (2.11)

with
N ≥ 1

η
(

e

e− 1
)(ln

nC
δ

) (2.12)

then, the probability for the optimal solution θ̂N to the optimization problem, to violate the
design constraint is smaller than η, with a confidence probability no smaller than 1−δ. In other
terms, we can certify, with a probability 1 − δ, that the control strategy will satisfy the design
constraint in at least 100 × (1 − η) percent of the cases. In order to solve this optimization
problem, we use Algorithm 1.

Let us note that the number of constraint violations g(θ, w(l)) could be authorized to be non-
null. For example, an electricity tariff could be such that a given number of power peaks over a
maximum value could be authorized over a single year. In that case, the number N of samples
to draw would be bigger. We did not consider this case in this manuscript.

2.6 Experiments

For the simulation purpose, we developed in Matlab (The MathWorks Inc., 2015) a simula-
tion engine with dynamic time steps depending on events occurring. All experiments were
conducted on a Lenovo ThinkPad W540, Intel Core i7 2.80 GHz, 32 Go RAM.

The building considered is a business tower with nine floors and the elevator has the fol-
lowing characteristics:
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Algorithm 1 Randomized algorithm inspired of (Alamo et al., 2015)

1: S ← ∅ . N -set i.i.d. samples to be drawn from W
2: for each kind of day D do
3: let nD be the number of D-days in year
4: draw a set SD of dnD×N365 e samples of D-days
5: S ← S ∪ SD
6: end for . at this point S = {w(1), . . .} is a set of at least N samples, representative of every

kind of day
7: for each θ ∈ Θ do
8: for each w(l) do
9: compute the optimal sourcing strategy u∗(θ, w(l))

10: simulate a day w(l) using u∗(θ, w(l))
11: check if the constraints C are respected: g(θ, w(l))
12: end for

13: if
N∑
l=1

g(θ, w(l)) = 0 then . θ is feasible

14: compute J(θ) . the objective function value for θ
15: end if
16: end for
17: keep the feasible θ for which J(θ) is minimal

standby consumption 50 W

cabin mass 750 kg

counterweight mass 850 kg

nominal velocity 1.0 ms−1

We simulate user calls to the elevator with the statistical model described in Subsection 2.5.1.
Moreover, we have implemented a tactic to answer user calls to the elevator. This tactic con-
siders calls in chronological order to choose the destination of the elevator. But, the elevator
stops along the way if another call destination is on this way. When the first call in the chrono-
logical order is over, the next one is considered. Most of the elevators seem to continue in the
same direction after having terminated the first call, until all the other calls going to the same
direction are met. But we did not implement this functionality. On the other hand, we have
an energy model of the elevator that allows us to compute energy consumption regarding the
chosen travel and the weight of passengers. Data used in this model include weights of cabin,
counterweight and cable, cable length, elevator base power and nominal speed, altitude of
departure and arrival floors, and efficiency for both energy-consuming and energy-producing
travels.

We consider that 2 square meters of solar panels are installed on the roof top of the building,
and are dedicated to the elevator. These solar panels are supposed well oriented towards the
sun and having a yield of 15%.

The following bounds pmin and pmax on power consumption and production are considered
for every prosumer, depending on their physical capabilities:

the elevator π1: pmin1 = −12000, pmax1 = 7000

the battery π2: pmin2 = −2880, pmax2 = 2880

the supercapacitor π3: pmin3 = −57600, pmax3 = 57600
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the grid π4: pmin4 = −∞ (or 0 if re-selling is disabled), pmax4 = +∞

the solar panels π5: pmin5 = 0, pmax5 = 200

the resistor π6: pmin6 = − inf because we consider that the resistor was sized big enough for the
considered multisource elevator, pmax6 = 0.

These values were chosen as realistic as possible, regarding our knowledge of the current mar-
ket. The resistor and grid power capabilities were chosen infinite for the sake of the experi-
ments.

Given this context, many experiments were conducted with different parameters variations.
Table 2.3 summarizes the context of each experiment conducted. The first two columns give
a reference to the theoretical concept that was experimented, as well as a reference to the ex-
perimental results obtained. As a reminder, Subsections 2.4.2 and 2.4.3 refer respectively to the
strategic and local controllers, while Section 2.5 is about robustness. The next four columns
entitled “Controllers” show which kind of controllers have been used.

The “Forecasts” columns show the way forecasts sent to the Strategic Optimizer were gen-
erated in the experiment. “exact” means that the amount of energy in every forecasted period
is the same as the amount that could be computed after the simulation (in other terms, the fore-
cast is perfect). If forecasts are not exact, 50 sample days were drawn and averaged to compute
the elevator consumption forecast. “pessimistic” means that the forecasts were weighted by
the storage units charging (or discharging) yield. This point is explained with more details in
Subsection 2.6.2.

The “Energy tariff” columns indicate which kind of electricity contract was used to compute
the energy bill. Finally, the “Context” column shows if grid resell was considered or not, and
the energy capacity of the storage units.

TABLE 2.3 – Design of experiments and associated parameters.

Reference Controllers Forecasts Energy tariff Context

cftheory

cfexperim
ent

strategy

m
in

peaks
LC

opportunistic
LC

secure
LC

exact

pessim
istic

flat

peak
off-peak

indexed
on

spot

grid
resell

c
ce2

(kW
h)

c
ce3

(W
h)

2.4.2 2.6.1 X X 7 X 7 3 120

2.4 2.6.2 X X X {X, 7} X 7 3 120

2.4.3 2.6.3 {X, 7} X X X X X X 7 3 120

2.5 2.6.4 X X 7 X X 7 {3, 6} {30, 60, 120}
2.5 2.6.5 {X, 7} X X X 7 X X X X {7, X} 3 60

In the experiments, the score of a solution is evaluated according to: the maximum power
peak purchased from (or sold to) the grid, the number of those power peaks over a given
power limit and the daily cost cdaily Key Performance Indicator (KPI). This includes: cebill be
the energy bill of the whole day and caging be the aging cost associated to the storage units
usage that has been done during the day. In addition, depending on the controller, final states
of charge can be different. Then we note csoc the cost associated to refill (or to empty) storage
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units to match their initial state of charge. We consider that corresponding energy is purchased
(or sold) at the cheapest tariff.

Definition 14. The daily cost is defined as cdaily = cebill + caging + csoc.

For the sake of the example, the elevator we consider would consume almost 3kWh during
a typical week day. That means that without batteries, solar panels and energy recovery, the
electricity bill with a flat tariff would be about 38 euro cents per day. This is too small to hope
big economical gains but perspectives are discussed in Section 2.7.

2.6.1 A Typical Strategy

FIGURE 2.8 – A typical strategic plan.

Results obtained by SO, during a typical day, with a peak/off-peak tariff, are illustrated on
Figure 2.8. The first sub-figure is an energy layers plot where positive power represents power
that is injected in the energy hub (produced by prosumers) and negative power represents
power that is taken from the energy hub (consumed by prosumers). The second sub-figure
presents the storage units state of charge and the grid tariff. We can see that, when the electricity
is cheap (before 09:00), the energy is purchased from the grid (in red), and stored in the battery
(in green). After 09:00, no more energy is purchased and the energy needed is discharged from
the battery.



Chapter 2. Multisource elevator 33

In this situation, SO tries to take advantage of the off-peak tariff to charge the battery and
avoid to purchase energy from the grid during the peak tariff. We can see that the battery is
charged just enough to achieve this goal (about 50% at 09:00).

2.6.2 Forecast Period and Information Loss

In this sub-section, the point is to characterize the error made by SO due to the time periods
aggregation. This error is evaluated (on a typical day) by comparing results of the MinPeak LC
following the strategy with results computed by SO before the beginning of the day.

The plan computed before the day by SO is the same as on Figure 2.8 and the corresponding
MinPeaks tactic is illustrated on Figure 2.9. The first sub-figure represents the power consump-
tion and production of the different prosumers. Clearly, the consumption peaks of the elevator
(in blue; that reaches 8 kW) are absorbed by storage units (in green). While in every cases, the
maximum power peak purchased from the grid is under 400 W, that is far less than 8 kW. The
second sub-figure shows the evolution of the storage units state of charge and the grid tariff.
In brown, we can see the strategic instructions that are quite well followed by the battery.

FIGURE 2.9 – MinPeaks LC following strategy.

Now, let us compare numeric results of LC and SO. As the accuracy of SO depends on
1) charging and discharging yields of storage units, and 2) forecasts accuracy. We decided to
consider ideal yields (100 %) and realistic yields (90 %). On the other hand, forecasts are exact,
in order to evaluate the error due to time periods aggregation, and the impact of the storage
units yield. Table 2.4 summarizes the results obtained by SO and by the MinPeaks LC following
the instructions, in three cases.

When storage units yields are ideal, the energy bill and the amount of energy purchased
obtained by the strategy are very close to ones obtained by the tactic. Both values are less than
3 % higher with tactic than with strategy. Though all parameters are ideal, this small error is due
to the energy aggregation in 15 mn periods into forecasts. Indeed, when summing positive and
negative energy values over a period, only the difference is kept. Then, SO take into account
only this small amount of energy to purchase (or discharge). In reality, if production occurs
before consumption, produced energy is stored and discharged later to supply consumption.
But, if consumption occurs before production, the energy has to be found elsewhere before the
production could be stored. When yields are ideal and storage units not empty, that has no
impact on the energy bill. But when storage units are empty the energy has to be purchased
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TABLE 2.4 – Strategic and tactical results with different yields.

view point yield forecast energy bill aging costs energy purchased

SO 100 % exact 0.12 e 0.01 e 1164.3 Wh

LC 100 % exact 0.12 e 0.13 e 1187.8 Wh

ratio LC
SO 100 % exact 1.03 13.59 1.02

SO 90 % exact 0.14 e 0.01 e 1382.2 Wh

LC 90 % exact 0.17 e 0.33 e 1640.5 Wh

ratio LC
SO 90 % exact 1.26 31.59 1.19

SO 90 % exact + yield 0.17 e 0.01 e 1705.7 Wh

LC 90 % exact + yield 0.17 e 0.10 e 1654.5 Wh

ratio LC
SO 90 % exact + yield 0.97 8.67 0.97

and that explains the small differences observed above. On the other hand, the aging cost
computed by LC is far bigger than those estimated by the SO because the latter did not take
into account power peaks. Indeed, to achieve instructions at the end of a strategic period, LC
cannot always charge storage units with average power computed from the instruction. It has
to absorb consumption and production peaks, and thus to charge and discharge storage units
many times within the period. The amount of energy charged into and discharged from storage
units is thus far bigger (about 14 times in this case) than computed by SO.

Now let us look at the impact of realistic yields on these results. We can see that, in the three
metrics, results are worse than before. The reason is that non ideal yields drive non null energy
losses. Thus, the above mentioned discrepancy due to aggregation is emphasized in presence
of non ideal yield.

In order to make SO take into account almost all energy has to transit through storage units,
we integrate the impact of storage units yield into consumption forecasts of prosumers in E. The
strategy becomes pessimistic because in the end not all energy will go through storage units.
But the yield taken into account in forecasts becomes a tunable parameter for the pessimistic
prediction. Moreover, re-computing a strategy every hour prevents LC to deviate too far away
from the target, even if the strategy is not perfectly accurate. In this experiment, we choose a
yield value of 0.9, that is the real storage units yield. We can see that the error of SO is really
reduced compared to the previous experiment. That also improves LC results, especially on
aging costs.

The last thing that has to be explained in the table is: why are aging costs higher when yields
are ideal than when yields are realistic and forecasts take yields into account? Aging costs are
higher in the former because, the battery is emptied at the beginning of some periods and the
supercapacitor has to supply the elevator before being refilled by produced energy. On the
other hand, when the strategy is pessimistic, this situation occurs less frequently. Since super-
capacitors are much more expensive than regular batteries, aging costs in the first experiment
are higher than in the third one.

2.6.3 Local Controller Parametrizations

Let us compare results of the different LCs, averaged over fifty elevator usage samples drawn.
The initial state of charge of storage units are: 20% for the battery and 100% for the supercapac-
itor. First of all, let us look at Figures 2.10a, 2.10b and 2.10c that allow us to compare the three
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different tactics, without any strategy.
Figure 2.10a corresponds to the MinPeaks LC and we can see that there are a few power

peaks from the grid at the beginning of the day. This is because not enough energy was pro-
duced before consumption, so energy had to be purchased to supply the elevator. Moreover at
the end of the day, the battery is not at its minimum state of charge and the supercapacitor is
full.

Figure 2.10b corresponds to the Opportunistic LC. With this tactic, all available energy is
used as soon as possible, thus the supercapacitor supplies the elevator at the beginning of the
day and is emptied. Then, there are many power peaks purchased from the grid in the morning
and in the middle of the afternoon.

Figure 2.10c corresponds to the Secure LC. This tactic purchases from the grid all energy
needed to preserve storage units from aging. The supercapacitor, that allows the elevator to
travel during grid failures, is maintained full. The battery, that has to supply supercapacitor
during grid failures, is maintained at its minimum state of charge.

Finally, the MinPeaks Controller following strategy is illustrated on Figure 2.9 and com-
mented in the previous subsection.

Now, let us look at numerical results shown in Table 2.5. First, note that a LC on its own does
not take into account electricity tariff at all. On simulated days, we can see that the only efficient

TABLE 2.5 – Comparison of numerical results of different tactics.

Strategic Local pmax nbpeaks cebill caging csoc cdaily

Optimizer Controller W e e e e

X MinPeaks 317.7 0 0.13 0.12 0.00 0.24

7 MinPeaks 7839 2.1 0.19 0.51 -0.03 0.66

7 Opportunistic 8627 2.9 0.12 0.07 0.01 0.20

7 Secure 8775 3.3 0.24 0.00 0.00 0.24

way to reduce the maximum power peak purchased from the grid is the MinPeaks Controller
following the strategy. That way, the purchasing peak is about 5% of the maximum authorized
power peak. The tactics on their own do not absorb power peaks, because a predictive strategy
is necessary to achieve such a goal. On the other hand, the savings the MinPeaks Controller
makes on the electricity bill are compensated by the aging costs it occurs. The obtained daily
cost is the same as the one of the Secure LC. Let us note that, if the gap between on- and off-peak
hourly cost grows, the daily cost of this MinPeaks LC following the strategy also decreases.

If the MinPeaks LC is on its own (for example during a long network failure), the daily
cost increases dramatically but the number of (and the maximum) power peaks stay below the
other controllers on their own.

However, if the goal is only to minimize cost, without taking into account power peaks, the
Opportunistic LC alone is the best (as far as the ratio between the high/low prices is moderate).

Finally, the Secure tactic does not use storage units at all and thus, has a higher energy bill,
but no aging cost.

2.6.4 Which Storage Units to Avoid Power Peaks?

In this sub-section, suppose that the objective is to sell our control solution to a customer ad-
mitting a very big annual penalty if he purchases electricity from the grid over a given power
value pmax. Thus, we want to ensure (with a confidence of 1− δ) that there is probability lesser
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(a) MinPeaks LC.

(b) Opportunistic LC.

(c) Secure LC.

FIGURE 2.10 – LC on their owns.
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than η to exceed the power value pmax. Among solutions satisfying this condition, the most
profitable solution should be chosen.

The theoretical results presented in Section 2.5 are used to decide which battery and super-
capacitor the customer should buy to be certified to achieve his goal. In this experiment, we
consider that the customer subscribes to a peak / off-peak typical French tariff and uses our
MinPeak LC coupled with our SO. Now let us define:

• A function f(θ, w, u∗) that gives the daily cost cdaily obtained by the local controller at the
end of the day, depending on: θ the considered design parameter, w the daily scenario,
and u∗ the strategy pre-computed by SO.

• A set B = {3000, 6000} of possible battery energy capacities (in Wh).

• A set S = {30, 60, 120} of possible supercapacitor energy capacities (in Wh).

• A set F of maximal daily costs certified to the customer (in e).

• The resulting set of design parameters Θ = B × S × F , and θ ∈ Θ a vector with nθ = 3
components; the first component is the battery capacity, the second is the supercapacitor
capacity, and the third is the corresponding certified daily cost.

• The design constraint c1, that states the maximum power peak from (or to) the grid
should be below pmax:

c1 : max
t∈{0,...,H}

(|p4(t)|) ≤ pmax

• The design constraint c2, that states the daily cost should be below the third component
of the design parameter:

c2 : f(θ, w, u∗) ≤ θ3

• The resulting set of design constraints C = {c1, c2}.

• J(θ) = θ3 the certified daily cost (cost of the worst sample).

• The maximum power peak allowed is pmax = 6000 W.

• Representativeness and confidence probabilities are η = 0.05, δ = 0.05, and the corre-
sponding number of drawn samples is N = d 1

η ( e
e−1)(lnnCδ )e = 152.

These parameters given, the optimization problem (2.11) is solved, using Algorithm 1. Let
us note that, in practice, the third component of the design parameters does not have to be
introduced. Indeed, θ3 can be chosen as max

w(l)∈S
f(θ, w(l), u∗). The experiments results are sum-

marized in Table 2.6. In the context studied (chosen elevator, storage units yield, etc), the
following report could be done to the customer.

“The smallest supercapacitor (30Wh) does not permit to avoid all consumption
peaks above 6 kW. The worst-case guaranteed daily cost with the 3kWh battery
is 0.36 e, from 5 to 11 cents better than with the 6kWh battery. The best choice
is the 3 kWh battery and the 60Wh supercapacitor, because they have the smallest
investment cost, the smallest daily cost, and avoid peaks.

For the sake of the comparison, the mean daily cost of a business as usual controller
in the same case is 0.23 e. So the average gain is 0.28 e per day on these samples.
But we know that on some days, the daily cost of the MinPeaks LC can reach 0.36
e, 1 cent more than the worst-case results of a business as usual controller. Thus,
we can certify (with probabilities given above) that avoiding peaks above 6 kW will
cost at most 1 euro cents more per day than with a classical controller. ”
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TABLE 2.6 – Storage units sizing for certified maximum power peak.

Battery (kWh) Supercapacitor (Wh) max peak (kW) number of peaks daily cost (e)

Worst case result certified

3 30 11.8 2 0.36

3 60 5.2 0 0.36

3 120 3.0 0 0.36

6 30 11.8 2 0.47

6 60 5.2 0 0.45

6 120 3.5 0 0.41

Mean result on drawn samples

3 30 1.76 0.10 -0.02

3 60 0.57 0 -0.05

3 120 0.51 0 -0.06

6 30 1.79 0.10 -0.07

6 60 0.58 0 -0.10

6 120 0.52 0 -0.12

Note that: 1) the mean daily cost computed on the 152 samples is -0.05 e, far better than
the certified value (money is saved actually), 2) on average bigger storage units would bring
more savings, 3) these results were obtained without considering reselling energy to the grid,
reselling will be considered in the next subsection, 3) as the tariff gap grows, the daily cost
induced by the MinPeaks LC decreases.

2.6.5 Which Tactic and Tariff to Get Savings?

Now, let us consider a case where a customer already has storage units and wants to use them
to improve his energy bill. Several control solutions, and electricity tariffs, must be compared
to tell this customer which ones are the best for him. Savings on his electricity bill he will
achieve, with the proposed control solution and tariff, have to be certified.

For that purpose, let us define:

• A set T of possible electricity tariffs: T = {flat (0.00013), peak/off-peak (0.00015 /
0.00010), indexed on spot with the same coefficient for both purchase and sale of energy
(between 0.0002991 and 0.0009386)} (e/Wh). These tariffs are representative of those can
be found in France. The flat tariff is cheaper than the others but does not allow a customer
to take advantage of his storage units by shifting consumption or inject into the grid. The
peak/off-peak tariff is cheaper than the flat one during off-peak hours (18:00 - 9:00) and
more expensive otherwise. The indexed on spot tariff is more expensive than the other
ones but varies significantly every hour and remunerates the injection of energy at a high
value.
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• a set C of possible controllers: C = {MinPeaks LC that reduces power peaks following
strategic instructions from SO, Opportunistic LC that minimizes dissipated energy, Se-
cure LC that does not use storage units at all}. The MinPeaks LC is coupled with the
strategic optimizer to take advantage of the storage units to smooth power peaks. The
other controllers are on their own to reduce the installation cost of the solution, while
achieving savings, or reducing costs.

• A setM of possible maximum power values from and to the grid:

M = {[−50000, 0], [−50000, 20000]}(W )

The first possibility denies re-selling electricity to the grid, while the second one allows
re-selling.

• A set F of maximal daily costs that could be certified to the customer (in e).

• The resulting set of design parameters Θ = T × C ×M × F , and θ ∈ Θ a vector with
nθ = 4 components.

• The design constraint c
′
, that states the daily cost should stay below the 4th component

of the design parameter:
c
′

: f(θ, w, u∗) ≤ θ4

• The resulting set of design constraints C
′

= {c′}.

• J(θ) = θ4 the certified daily cost (cost of the worst sample).

• Two probabilities η = 0.05, δ = 0.05, and N = d 1
η ( e

e−1)(lnnCδ )e = 187.

The results of the experiment conducted are given in Table 2.7. In this context, we would

TABLE 2.7 – Certified savings on the energy bill.

Strategic Local tariff flat peak/off-peak indexed on spot

Optimizer Controller resell 7 X 7 X 7 X

Worst case result certified

X MinPeaks 0.34 0.23 0.36 0.05 1.39 -0.08

7 Opportunistic 0.31 0.31 0.27 0.27 1.21 1.21

7 Secure 0.59 0.30 0.53 0.25 2.25 1.06

Mean result on drawn samples

X MinPeaks -0.10 -0.21 -0.05 -0.33 0.18 -1.23

7 Opportunistic -0.03 -0.03 -0.02 -0.02 0.10 0.10

7 Secure 0.34 0.13 0.30 0.11 1.35 0.54

give the following report to the customer.

“A business as usual controller that does not use storage units achieves a certi-
fied daily cost of 0.59 e with the flat tariff; while a certified daily cost of 0.25e is
achieved with the peak/off-peak tariff, when re-selling is allowed.
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If re-selling is not allowed, the Opportunistic LC coupled with the peak/off-
peak tariff provides the best guarantee. The associated certified cost is 0.27 e per
day while the average cost obtained is -0.02 e (which is actually a gain). Let us note
that a better average is obtained by the MinPeaks LC on the tested samples but with
more variability from day to day.

If re-selling energy to the grid is allowed, the indexed on spot tariff should be
chosen, along with the MinPeak LC coupled with SO. The corresponding certified
daily cost is -0.08 e per day. That means that the elevator operational cost and the
storage units investment cost are compensated by the gain on the electricity bill.
Moreover the mean daily cost obtained on those samples is -1.23 e.”

Let us note that: 1) bigger is the battery, better would be the MinPeaks LC results; 2) the
Opportunistic LC gets the same results with or without re-selling, because no energy is re-sold
even if it is allowed; the Secure LC’s best results occur with the peak/off-peak tariff, when re-
selling electricity is allowed, because it re-fills storage units if they are not full at the beginning
of the day.

2.7 Conclusion on Optimal Sourcing Strategies

In this chapter, we formalized the sourcing problem and its application to a multisource ele-
vator. We gave a method to solve it, composed of a Local Controller coupled with a Strategic
Optimizer. That allows us to tackle real-time issues while taking into account long-term objec-
tives based on forecasts. A linear formulation allows us to compute a strategy and a centralized
rule-based algorithm gives us a tactic. Three Local Controller parametrizations are illustrated,
and a customer should choose the most adapted to its studied energy hub. Moreover, a way
to certify, under uncertainties, savings achieved by a control method for a multisource eleva-
tor, is proposed. This Certification Framework is based on a randomized algorithm and its
associated bound on the number of needed drawn samples, proved in (Alamo et al., 2015).
Using this algorithm, a certified bound on the maximum power peak purchased from (or sold
to) the grid by a multisource elevator can be given, as well as a lower bound on the savings
achieved. Such a solution could be used by a building manager who wants to participate in the
demand-response market. In the same way, advice can be given to a customer regarding the
control solution he should buy for his multisource elevator, and the minimum economical gain
induced can be certified.

The experiments show that power peaks can be avoided and that a multisource elevator can
be made energy cost-free, though this is strongly dependent on the context. In the experiments
we ran, gains up to 0.67 e per day could be certified and gains up to 1.57 e per day could
be observed. The key point of the method presented is the possibility to find the best design
in a given context, and the ability to certify the associated savings. This allows a manager to
arbitrate if the chosen design worth to be installed or not.

A legitimate criticism of this work could be that economical gains are very low. First, let
us recall that these results are for a unique elevator, while in practice several elevators could
share the same battery. Second, reducing power consumption peaks could be very useful to be
demand-response aware and to respect future energy limitation laws. In those cases, minimiz-
ing the energy bill is only an appreciable addition to the consumption peaks minimization. For
the multisource elevator use case, having storage units allows the elevator to evacuate disabled
people in case of fire. Using these storage units to minimize the energy bill could dampen the
investment. Third, energy prices are going to increase in future years, as will do storage units
performances. That will also increase the benefit of this solution. Finally, the proposed solution
can be applied to other multisource systems where it can be much more profitable. In fact,
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as the consumption increases, the profitability also increases, especially if reselling energy is
possible.

On the other hand, we will have to compare the cost of maintaining our rather complex so-
lution, regarding the customer value in each use case. If the maximum power peak purchased
from the grid is not an issue and the energy tariff considered is a typical French peak/off-peak
tariff, the Opportunistic LC (or a similar classical rule-based controller) should be used, as it is
simpler to install and maintain.

Having tested this method in a real building (maybe coupled to a Building Management
System) would have been highly valuable, but we did not have this opportunity. Moreover,
comparing results obtained with several elevators models, or even with a set of several eleva-
tors would have been interesting.



42

Chapter 3

Energy Optimization of a
Manufacturing Plant

Contents
3.1 Stakes and Potential of Energy Optimization in a Real Manufacturing Plant . 43
3.2 Data Acquisition System, Data Mining, and Energy Modeling . . . . . . . . . 44

3.2.1 The Energy Data Acquisition System . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Energy Modeling of Activities . . . . . . . . . . . . . . . . . . . . . . . . 47

First Stage: Energy and Production Data Synchronization . . . . . . . . 48
Second Stage: Construction of the Energy Model of the Plant . . . . . . 48
Validation and Application . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Scheduling with Electricity Cost: Problem Statement, State of the Art and
Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Scheduling Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Graham’s Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Efficient Methods to Find Production Plans . . . . . . . . . . . . . . . . . . . . 58

3.4.1 Overlap MILP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Time-Based Precedence-Oriented MILP . . . . . . . . . . . . . . . . . . . 61
3.4.3 Time-Based Storage-Oriented MILP . . . . . . . . . . . . . . . . . . . . . 65
3.4.4 Local Search Algorithm and Constraint Programming Problem . . . . . 69
3.4.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.1 How Do the Three Formulations Behave? . . . . . . . . . . . . . . . . . . 71
3.5.2 Results on Benchmark Instances . . . . . . . . . . . . . . . . . . . . . . . 71

Optimization comparison with the best known results . . . . . . . . . . 73
Comparison with and without energy . . . . . . . . . . . . . . . . . . . . 74

3.5.3 Results on Instances Built from the Pilot Plant Data . . . . . . . . . . . . 75
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

In the previous chapter, potential gains were low and multiple elevators would have to be
considered to achieve real savings. Here, a manufacturing plant with about 1Me electricity bill
is considered and energy savings could be big. Section 3.1 presents the studied manufactur-
ing plant and introduces potential and issues with its energy optimization. Then, Section 3.2
presents briefly our work on the data acquisition system, and the energy modeling of produc-
tion activities. In Section 3.3, the scheduling problem we consider is formalized, and a brief
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state of the art is discussed. The energy model feeds with real data the production scheduling
formulations given in Section 3.4. In Section 3.5, experiments are conducted on Benchmarks
and instances built from the real plant data, to compare benefits of each proposed method.
Finally, the chapter is concluded by Section 3.6.

3.1 Stakes and Potential of Energy Optimization in a Real Manufac-
turing Plant

Nowadays, the electricity price increases, the demand-response market emerges (Albadi and
El-Saadany, 2008), and European regulation pressure on environment is becoming stronger.
With this new energy challenge, the usage of energy has to come under scrutiny. In manu-
facturing plants, the first step, and first need to improve energy efficiency, is to measure and
understand the energy consumption. The second step consists of introducing some flexibility
in the production plan to cope with the energy price variation. Indeed, if improving efficiency
of machines themselves is excluded, one way to reduce the energy bill is to schedule the most
consuming production activities when the electricity is cheap.

Here comes the challenge of the “zero stock policy” inherited from kanban (Sugimori et al.,
1977), one of the current production management strong principles. In a factory, one of the
only ways to get some flexibility without compromising the delivery date is to introduce some
storage and to change the inventory policy. By introducing the variable price of energy, the
time intervals when energy is spent are not equivalent. Some time intervals are more attractive
than others to consume energy. These constraints can be taken into account in the scheduling
of production.

The electricity cost function can be constant over time, a peak/off-peak tariff, or even a more
complex cost function. In this chapter, a general form of electricity tariff is studied. Time buck-
ets are considered, and in each time bucket, a piecewise-linear function of the instantaneous
power consumed gives the electricity cost per time unit. In order to evaluate the potential im-
pact of taking into account such an electricity tariff in a production scheduling problem, a real
manufacturing plant is studied.

The studied Schneider Electric manufacturing plant produces electrical enclosures and elec-
trical cabinets from steel coils and electrical outlets and accessories using injection presses and
extrusion machines. The plant is composed of three main activities:

1. Cabinet and cells manufacturing,

2. Plastic tubes extrusion,

3. Plastic electrical appliance injection molding.

We chose to focus on the cabinet manufacturing part. The amount of resources spent in the
plant is significant: the annual costs of energy and water reaches more than 1.6 Me, out of
which the major part (62%) is electricity, but the detailed split of this consumption is unknown.

The current scheduling strategy is led by a lowest stock possible and the activity is planned
to produce the production order portfolio in due time, with the right quality level. No real
attention is paid to the energy cost for the production line. Energy is considered as a utility that
you consume to achieve quality production in due time. Our goal is to understand the energy
consumption of the manufacturing process and to manage it, in order to optimize the energy
bill, as well as other Key Performance Indicators of the plant manager.

Currently, production plans are computed in three phases, illustrated on Figure 3.1. The
first phase consists in having always enough raw material ready to supply production lines.
The second phase consists in building production orders from customer demands. The third
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FIGURE 3.1 – De-coupled optimization problems.

phase is a scheduling problem that gives a weekly production plan from pre-computed pro-
duction orders. This is the problem we address in this chapter.

A scheme of the production lines concerned by the scheduling problem is also given on
Figure 3.1. There are two parallel production lines, one for the bodies and one for the doors
of the electrical cabinets. Each production line has several stamping and welding machines.
Then, bodies and doors are painted together on a carousel. Door gaskets are set, and need to
be dried during six hours before bodies and doors could be assembled.

In addition to this pilot plant, we also used Benchmarks from the literature to test our
algorithms. More precisely, we used 38 instances from (Le Pape and Robert, 2007) to which
energy consumption and tariffs have been added. This enables to compare our results with
results from the literature.

3.2 Data Acquisition System, Data Mining, and Energy Modeling

In order to enable automatic computation of production plans, we had to measure energy con-
sumption of all production lines. The data acquisition system we put in place is briefly dis-
cussed in Subsection 3.2.1. From these data, we had to build energy models in order to feed the
scheduling model.

Some work on energy modeling of a manufacturing plant can be found in the literature. For
example, (Le et al., 2013) and (Dietmair and Verl, 2009) address energy modeling of machines.
(Dietmair and Verl, 2009) have built a modeling framework for machine-tool energy consump-
tion, based on the finite-state machines theory. (Le et al., 2013) use a similar model and give
an approach to reduce the number of required sensors in process tracking by identifying ma-
chines operational states, using a neural network. Following a different path, (Fysikopoulos
et al., 2014) propose a generalized approach to manufacturing energy efficiency by giving a
definition of manufacturing energy efficiency at four different levels: Process level, Machine
level, Production line level and Factory level. Interactions between these levels are studied and
an example of scheduling is given at the production line level. Once again, energy models of
machines are built using finite-state machines.

We tried to build energy models of production activities depending of the kind of reference
produced, instead of energy models of machines. That way, we tried to simplify the energy
modeling process, while getting precise enough models to schedule production accurately. Our
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energy modeling methodology is presented in Subsection 3.2.2. Let us note that a previous
version of this work was published in (Desdouits, Bergerand, et al., in press).

3.2.1 The Energy Data Acquisition System

The energy data acquisition system is composed of hardware and software components in-
volved in the data collection process: sensors, data concentrator, transmission to a database.
This acquisition system is described in Figure 3.2. The focus was made on a selection of con-
suming machines in the production lines. Four machines have been selected; two per produc-
tion lines: the door stamping, the door welding, the body stamping and the body welding.
Those machines have been selected because their electricity consumption is significant enough
and the assumption was made that the consumption profile would vary according to the type
of cabinet produced. The goal was to get an accurate enough consumption profile of a set of
machines. The system is built from a set of off-the-shelf components and bespoke components:

• The energy sensors: two prototypes of self-powered energy sensors have been used to
monitor the machine electricity consumption: one type for mono-phased machines (E3
family Energy Estimator from Schneider Electric Innovation team) and one for three-
phased machine (E4 family) ones. Both sensor types send the measured data through
radio ZigBee Green Power (ZGP) protocol. The value sent is the cumulated value of
energy measured since the beginning of their life; potential overflow is easily managed
downstream. The information is not sent on a regular time basis, but on a regular quan-
tum of energy.

• The Sologate gateway: this gateway has been used to take the advantage of both its sup-
port of the ZigBee protocol to receive sensors’ data and its ability to expose the data
through modbus protocol. The Sologate is capable of updating the energy values roughly
every 100 ms.

• The LINC gateway: the role of this gateway is to be able to sample the energy value
with a 1-second sampling rate. To achieve this, the LINC middleware provided by CEA
(Louvel and Pacull, 2014) has been deployed on a Raspberry Pi. It has been specialized
in order to collect data and manage the Energy Operation database format. It queries the
Sologate gateway through Modbus protocol and builds an aggregation of those data into
a single file that contains time series made of the time stamped changes of energy value.
Consequently, the timestamps are not regular, but the number of samples is smaller.

• The Energy Operation database and visualization tool: this is a proprietary Schneider-
Electric tool offering a data storage capability and a web interface.

A set of dashboards has been configured in order to show data and support analysis. For
example, Figure 3.3 shows the global evolution of the consumption of each machine over a
month period, the total consumption of the four machines per day and per machine, the weight
of each machine in the total consumption. Energy values are expressed in kWh in all the di-
agrams. We can see that stamping is the most consuming activity; almost 70% of the global
electricity consumption for the given month. With these dashboards, it is however difficult to
determine whether the variation of electricity consumption from one reference to the other can
be exploited to generate savings.

Figure 3.4 shows the evolution of the power consumption of the body production line (in
Watts), over a two-month period. We can see that the baseline power is about 7500W for the
body part of the production lane. A similar visual analysis helped us to highlight that the base-
line power consumption of the whole lane is about 10 kW when machines are idle. Moreover,
machines are never switched off and their energy consumption during non-productive periods
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FIGURE 3.2 – Energy data acquisition system.

FIGURE 3.3 – Energy Operation dashboard example.
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represents about 3% of the total energy consumption. Those observations are used in the fol-
lowing subsection, in order to check the consistency of the consumption model built. They also
highlight flexibilities that can be exploited by the scheduler to reduce the electricity bill.

FIGURE 3.4 – Power consumption of the body line over time.

Besides, production data are extracted from the Manufacturing Execution Systems (MES)
deployed into the plant. The extracted production data still need to be formatted and processed
in order to retrieve the key information. It is to be noticed also that part of the production
information is the result of a manual keying; therefore, the time stamping can suffer from
some inaccuracy. In particular, start and end times of activities cannot be estimated accurately
enough.

A first analysis showed that no production data are available on the Sundays, while the
electricity consumption measured is higher than the baseload. The plant manager explained
that this is due to Sunday maintenances, not logged in the production system. This observa-
tion confirmed that the energy acquisition system put in place is accurate enough to highlight
anomalies.

3.2.2 Energy Modeling of Activities

From the gathered data, we wish to evaluate and model the energy consumption of the pro-
duction activities executed in the plant. To enable this evaluation, we developed a procedure in
two stages. Each of the two stages (further described below) is implemented as a web service
on a Schneider Electric platform in the cloud. The first service synchronizes the schedule and
energy consumption data. The second service uses the result of this synchronization to char-
acterize the energy consumption for each relevant activity. The first service is optional: if the
user already has synchronized data, the second service can be used directly.

The overall procedure shall be appropriate (sufficient) under the following theoretical as-
sumptions. Sufficient production and energy data are available and these data are (globally)
clean enough. If the energy consumption of the process depends on external factors, we are
able to get the associated data and to take them into account in the modeling. For example,
if the energy consumption varies with the external temperature, we consider that we can take
into account the relevant weather data. If manufacturing activities can overlap in time and
consume energy measured by the same sensor (e.g., either because the same machine works
on several activities in pipeline or in parallel, or because a unique sensor is used for a group
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of machines), then the energy consumption of each activity shall not vary too much during the
course of the activity. Otherwise, the activity would need to be decomposed in energetically
homogeneous sub-activities.

Let us note that the second service provides model quality indicators. Bad values of these
indicators are often reported when one of the above assumptions does not apply. A more com-
plex "visual" version of the procedure is currently under study, in order to deal with more
complex environments, for which the automatic procedure is insufficient. Services implemen-
tation and data analysis were performed with RapidMiner 5 (Hofmann and Klinkenberg, 2013),
although in a version customized by Schneider Electric.

First Stage: Energy and Production Data Synchronization

The first stage consists of synchronizing the energy consumption data (one time series per
sensor) with production data extracted from the manufacturing execution system (or another
legacy system) monitoring the plant. The synchronization algorithm first divides the time line
according to the energy time series and determines the portion of each production activity in
each time interval. Roughly speaking, the synchronization algorithm consists in re-sampling
the production data at the sampling rate of the energy data.

Moreover, the synchronization algorithm offers the option to aggregate or not contiguous
time intervals with similar production information into a unique time interval. When aggre-
gation is done, similar time intervals are replaced by a unique time interval, summing both
the energy consumption and the production amount data. Such an aggregation presents two
advantages: first, the resulting table is smaller and easier to read; second, minor differences
during the execution of the same activities are automatically averaged. It presents two draw-
backs: the time intervals in the resulting table have different durations and do not coincide
with the sampling rate of the energy consumption sensor; second, energy differences during
the execution of the same activities are no longer visible.

Second Stage: Construction of the Energy Model of the Plant

The second stage consists in constructing an energy model. It relies on multivariate regression
analysis to identify a consumption baseline (i.e., power consumed in the plant, even when it is
idle) and the energy required in order to execute a unit of each type of activity in the plant. The
regression results give:

• energyr is the energy consumed by producing one unit of reference r; this is the coeffi-
cient we want to compute for reference r;

• baseload is the power consumed by the line whatever the production;

• errori is a term that represents regression model errors.

The regression can then be expressed in the following way:

∀i ∈ {1, . . . ,H},
totalMeasuredEnergyi =

∑
r∈R

(energyr × batchSizer,i) + baseload× τi + errori (3.1)

Where:

• H is the number of time periods considered;

• τi is the duration of the time period i;
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• totalMeasuredEnergyi is the amount of energy measured by the energy sensor during
time period i;

• R is the set of identifiers of product references;

• batchSizer,i is the quantity of reference r produced during period i.

For both the baseline and each activity, usual statistic quality indicators (absolute error,
t-statistic, and p-value) are also provided, enabling to qualify the confidence in the model.

Validation and Application

The result is very sensitive to the precision and accuracy of historical data. We have first vali-
dated the algorithm on a set of 34 benchmarks in the ideal case (with perfect energy consump-
tion and manufacturing production data). Then, we have introduced perturbations of these
data in order to quantify the algorithm sensitivity. More precisely, we considered the following
types of perturbations of the data:

1. a significant energy consumption baseline (i.e., energy consumed when no manufactur-
ing activity is ongoing in the plant);

2. random fluctuations of the energy consumption and/or random errors from the sensors;

3. reduced frequency of sensor measurements;

4. imprecise manufacturing execution system data (start and end times of production activ-
ities).

Roughly, the obtained results show an appropriate robustness to perturbations (1) and (2), pro-
vided enough measurements are available. Perturbations of type (3) are well handled, as long
as the frequency of sensor measurements remains below the characteristic frequency of the
manufacturing process. Perturbations of type (4) are the most annoying. Indeed, the informa-
tion available for making the analysis quickly degrades with the imprecision of activity start
and end times.

For the Schneider Electric plant, we applied the two stages on the data of the body produc-
tion line, with two different synchronization strategies:

• First, we kept periods of the same duration τ . We can see a part of the results obtained on
Figure 3.5. There is a line per kind of referencer, and the “value” column corresponds to
themeanPowerReferencer value, in Watts per product unit. The three other columns are
quality indicators (for example, pValue should be as near zero as possible). We obtained a
baseload power consumption of 7299 W for the body production line, consistent with the
value of 7500 W suggested by the visual analysis (see Figure 3.4). However, coefficients
meanPowerReferencer obtained have a very bad confidence level. This can be explained
by a significant variability of the energy consumption during the production of a specific
reference.

• The second synchronization strategy aggregates time periods with similar production, as
explained above. The baseload obtained is higher (which is obviously wrong), but the
activities consumptions are more realistic. The high baseload is due to imprecision in the
production log. Indeed, when an activity begins several minutes before being logged, ma-
chines are considered idle while they are actually producing a reference and consuming
energy. As consecutive non-productive periods are aggregated, this phenomenon virtu-
ally increases the computed baseload. On the other hand, activities consumptions are
probably lower than the real consumptions (due to the too high baseload), but consistent
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FIGURE 3.5 – Sample of the regression results, on non-aggregated data.

FIGURE 3.6 – Sample of the regression results, on aggregated data.



Chapter 3. Energy Optimization of a Manufacturing Plant 51

between one another (see Figure 3.6). Even if this result is not perfect, this is much more
satisfactory than the previous result, as it enables to identify the relative consumption of
each activity, and hence the activities to perform when the price of electricity is low.

Finally, we built an approximation of the activities energy consumption by keeping the
baseload computed with non-aggregated data, and increasing the energy consumption of activ-
ities (computed with aggregated data), according to the difference between the two baseloads.
We found out that the power consumption of activities of the body production line varies be-
tween 13kW and 23kW, with a baseload of 7.3 kW. Due to the great variability of these con-
sumptions, an efficient scheduling algorithm should be able to achieve savings on the electric-
ity. Indeed, this estimation of the energy consumption of each activity is used during schedul-
ing to consider the cost of electricity consumption as one of the optimization criteria to mini-
mize. This incites the scheduler to schedule the activities for which the electricity consumption
is high at times at which the tariff is low. This way, a trade-off between storage costs and energy
cost can be done, depending on the electricity tariff.

3.3 Scheduling with Electricity Cost: Problem Statement, State of the
Art and Complexity

The goal is to determine if it is worth considering energy costs in the scheduling of a given
factory or workshop in a factory. And in particular, what kinds of compromises are worth
considering between energy and intermediate or final product inventory. With this goal in
mind, we implemented three Mixed-Integer Linear Programs to model the problem with dif-
ferent constraints relaxations. Moreover, a simple Local Search has been developed to tackle
the complexity of the studied problem.

First, the scheduling problem studied is formalized in Section 3.3.1, and the Graham’s no-
tation is given. Then in Section 3.3.2, a brief review of related papers that can be found in the
literature is made, along with the complexity results. Let us note that a previous version of this
work was published in (Haouassi et al., in press).

3.3.1 Scheduling Problem

In this section, the constraints of the scheduling problem are first described, then an optimal
solution is characterized, finally the corresponding Graham’s notation is given. To make the
problem description simple, we will focus on the case of our pilot plant. The reader can easily
apply our approach to any generalized flow-shop or job-shop problem with time lags, energy
resources and a combination of tardiness, earliness, intermediate storage and energy cost.

Instance

We consider a set of two types of materials: final materials (different references of electrical
cabinets), and intermediate materials (cabinet bodies and cabinet doors, at different produc-
tion states). Moreover, each material has an associated storage cost that models the cost of
holding this material. For instance, the storage cost of a body is higher than the storage cost
of the corresponding door since the body is bigger and more difficult to transport and to store.
Moreover the body is composed of more steel than the door and thus its economical value is
higher.

Definition 15. Let M be the set of all those materials. ∀matm ∈ M , let scm ∈ R+ be the storage cost
of one unit of the material matm.
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The plant receives a set of customer demands, each of them associated to a desired quantity
of a given material and a due date. A tardiness cost for delivering a demand after the due date
is decided, depending on the kind of demand.

Definition 16. Let D be the set of customer demands, and ∀demd ∈ D, let:

duedated ∈ N be the due date of the demand,

fmatd ∈M be the final product to satisfy the demand,

qd ∈ N be the needed quantity of product,

tcd ∈ R+ be the cost of delivering one time unit after duedated.

Each customer demand has to be satisfied by a job, composed of six activities. For each job,
the precedence graph between activities is the same in-tree.

Definition 17. Let:

J be the set of jobs,

jd ∈ J be a job such that jd = {ad1, . . . , ad6},

Gd be the precedence in-tree associated to a job jd,

A be the set of all activities associated to every demand: A =
⋃
jd∈J jd,

G be the precedence graph between all activities, a collection of in-trees: G = (A,A) =
⋃
jd∈J Gd .

Let us note that, depending on the context, we use the job-related indexing, or the absolute indexing of
activities. For example, Activity ad2 is the second activity inside Job jd, but a2 is the second activity in
the whole set of activities A.

The plant has a setR = {r1, . . . , r5} of machines with unitary capacities. Each activity a ∈ A
has to be scheduled on a given machine. Moreover, for each job jd, the same assigment of the
activities of jd on the machines is given.

Definition 18. Let R = {r1, . . . , r5} be the set of considered machines. ∀jd ∈ J , the assignment of the
activities on the machines is: (ad1, r1), (ad2, r2), (ad3, r3), (ad4, r2), (ad5, r4), and (ad6, r5).

Besides, each precedence arc (adi , a
d
j ) ∈ A, holds the intermediate material reference and

quantity and a minimum delay (time lag) between activities. Since the precedence graph is a
disjoint collection of in-trees, every activity has at most one successor. Thus, data related to an
arc (ai, aj) are considered as activity ai data.

Definition 19. ∀ai ∈ A, let:

vpti be the processing time for every unit of material ai produces (called variable processing time),

pti be the total minimum processing time of ai,

resi be the machine on which ai has to be processed,

pi be the power consumption of the activity ai,

imati be the intermediate material produced by ai,

qi be the number of units of this imati activity ai has to produce for each unit of final material needed,
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FIGURE 3.7 – Precedence graph of a job jd.

dmini be the minimum time lag between the production of each unit of imati and the consumption of
the same unit.

Figure 3.7 shows the precedence graph of a job jd. The graph is an oriented in-tree with
six activity nodes. Each activity is scheduled on a different machine, except for the painting
activities that share the same painting machine (represented by an exclusive or). Each arc of
the graph corresponds to an intermediate material, a quantity, and a minimum delay between
activities. For example, in order to produce one unit of the final material, Activity a6 has to
consume one painted body and two painted jointed doors. In order to consume a painted
jointed door, a drying delay of the joint of six hours has to be respected.

Let us note that, in practice, the painting process is a carousel on which doors and bodies
are hung, painted, then unhung. In order to model correctly human resources who hang and
unhang, the painting activities a2 and a4 have been split into two different activities with a
painting delay between them. Let us also note that only the door line a3 and the body line a1

require a significant amount of electricity; other operations being low-consumers or manual.

Solution

A feasible solution to this problem is a schedule of the activities of every job. Both preemptive
and non-preemptive solutions can be considered. Non-preemptive solutions are more easily
applicable in a real factory, whereas preemptive solutions can really improve objective value.

Let sti (resp. eti) be the start time (resp. completion time) of the activity ai. Let stki be the
time when activity ai starts the production of the piece of material corresponding to the kth

piece of final material. The following constraints define the problem:

• the activities duration has to be respected:

∀ai ∈ A, sti = st1i (3.2)

eti = stqd×qii + vpti (3.3)

∀k ∈ {1, . . . , qd × qi}, stk+1
i ≥ stki + vpti (3.4)

Equation (3.2) states that the starting time of an activity is the starting time of the produc-
tion of its first piece of material. Equation 3.3 forces the completion time of an activity to
equals the completion time of its last piece of material. Indeed, there are qd × qi pieces of
material produced by an activity ai because qd is the number of final pieces of material
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required by the demand, and qi is the number of intermediate pieces of material ai has
to produce for each piece of final material. Finally, Equation 3.4 ensures that a piece of
material can be produced only after the previous one have been finished.

• at most one activity is scheduled on the same machine at the same time:

∀(ai, aj) ∈ A×A|resi = resj ∧ i 6= j,

sti ≥ stj ⇒ sti ≥ etj (3.5)

• every piece of material imati consumed by aj must have been produced by ai at least
dmini sooner:

∀aj ∈ A,∀k ∈ {1, . . . , qd × qj},
stkj ≥ max

ai∈A|∃(ai,aj)∈A

(
st
dk×qi/qje
i + vpti + dmini

)
(3.6)

Indeed, when there is an arc (ai, aj) ∈ A, then the kth piece of material can be produced by
aj only when aj can consume the corresponding dk× qi/qjeth piece of material produced
by ai. Let us note that the kinds of precedence constraints to be considered (start-to-start,
end-to-start, etc.) depend on the manufacturing process studied. The real plant studied
in this document can be modeled by start-to-start precedence like the equation presented
above.

Moreover, an optimal solution minimizes:

the storage costs ∑
matm∈M

(scm × sqm) (3.7)

where sqm is the number of units of matm stored, multiplied by the duration they were
held in stock,

the tardiness costs ∑
d∈D

(tcd × ld) (3.8)

where ld is the delivery tardiness of Demand demd,

the energy costs

Definition 20. Let T be the time interval considered for the scheduling problem. Let pmax be
the maximum power that can be consumed by the studied plant and P = [0, pmax] be the related
interval of definition of possible power values. Then, let us define power : T → P a function of
time that gives the overall power consumption of the plant at time t, such that:

power(t) =
∑

ai∈A|ai is running at t

pi (3.9)

We consider a set of buckets, that are time intervals where the energy cost function does
not change. For each time t in a bucket Bl, the electricity cost is given by the same
piecewise-linear cost function fBl , depending on power(t). The power capacity, for a
fixed bucket Bl, is divided into capacity intervals (non necessarily uniform), such that in
each interval the function fBl is linear.

Definition 21. Let:
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B be the set of buckets,

Bl ∈ B be a bucket such that: Bl = [Binfl ,Bsupl [,

Il be the ordered set of power capacity intervals for a given bucket Bl,
Ih ∈ Il be a power capacity interval such that: Ih =]cminh, cmaxh],

fch be the fixed cost that occurs when: power(t) ≥ cminh,

vch be the variable cost that occurs when: cminh ≤ power(t) ≤ cmaxh,

fBl : P → R+ be the piecewise-linear cost function for a given bucket Bl, such that:
fBl(p) =

∑
Ih∈Il|p>cminh

[
fch + vch × (min(cmaxh, p)− cminh)

]
The total energy cost over a time period T is given by:

E =
∑
Bl∈B

∫ Bsupl

Binfl

fBl(power(t)) dt (3.10)
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FIGURE 3.8 – Energy cost function of the time bucket B1.

Example of cost function: Figure 3.8 gives an illustration of the piecewise-linear cost function
fB1 for a fixed bucket B1. In this example, power capacity is partitioned in a uniform way, every
4 kW. The value of fB1(p) is computed by looking over each power capacity interval, such that
p is lower or equal the maximum capacity of the interval: I0 and I1. For each of those capacity
intervals, the related cost is given by a fixed cost plus a linear function of the power exceeding
the minimal capacity of the interval. For example, the cost induced by the interval I1 is given
by fc1 +vc1× (p−4). Finally, the obtained value fB1(p) is a cost in Euro cents per hour, that has
to be integrated over time in order to obtain the total cost in Euros over a given time period.
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FIGURE 3.9 – Example of schedule.

Example of a schedule cost computation: The schedule given in Figure 3.9 consumes 3 kW
between t0 and t1. With the cost function illustrated in Figure 3.8, that would cost vc0 × 3 ×
(t1− t0) = 0.5×3×1 = 1.5 ce. Moreover, between t2 and t3, the 5 kW power consumed would
induce an electricity cost of (vc0×4+fc1 +vc1×1)×(t3−t2) = (0.5×4+3+0.75×1)×1 = 5.75
ce. The electricity cost of the whole schedule can be computed in the same way, looking over
every time interval.

Graham’s Notation

This problem is a generalized flow-shop problem with precedence, due dates, time-lags, and
an energy resource. The objective considered is a trade-off between tardiness cost, storage
(earliness) cost and energy cost. A convenient and classical notation for scheduling problems
is the Graham’s notation scheme introduced in (Graham et al., 1979). This notation denote
scheduling problems as α | β | γ, where the α field describes the machine environment, β the
other constraints and γ the objective function. In (Zhang, 2010), a survey of complexity results
for scheduling problems with time-lags is given, and the notation lj for time lags in the β field
of the Graham’s notation is introduced. Finally, let us note S the storage costs and E the energy
costs. Thus, our problem Π may be described as follows:

Π : F | res1, in-tree, dj , lj |
∑
j

(wTj Tj) + S + E

We also address the preemptive case and note Π′ the problem Π in which preemption is al-
lowed.
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TABLE 3.1 – A brief state of the art related to flow-shop scheduling with
piecewise-linear electricity cost functions.

Flow-shop, lot-sizing, RCPSP Linear energy cost functions
and constraints

Piecewise-linear energy cost
functions

(Graves, 1981; Brucker and
Knust, 1999; Gonzalez and
Sahni, 1978; Brucker, Drexl,
et al., 1999; T. J. R. Johnson,
1967; Herroelen, De Reyck,
and Demeulemeester, 1998;
Sampson and Weiss, 1993;
Palpant, Artigues, and Mich-
elon, 2004; Pesek, Schaerf,
and Žerovnik, 2007; Danna,
2004)

(Erschler, Lopez, and Thu-
riot, 1991; Le Pape, 1994;
Baptiste, Le Pape, and
Nuijten, 2001; Artigues,
Lopez, and Haït, 2009; Ar-
tigues, Lopez, and Haït,
2013; Nattaf, Artigues, and
Lopez, 2015; Nattaf, Ar-
tigues, Lopez, and Rivreau,
2016; Masmoudi et al., 2015;
German, Desdouits, and
Le Pape, 2015; Pecero et al.,
2012)

(Ngueveu, Artigues, and
Lopez, 2016)

3.3.2 Related Work

Flow-shop scheduling and lot-sizing problems have been broadly studied in the literature. In
(Graves, 1981), a review of production scheduling is given, covering many aspects of our prob-
lem Π. More recent results are given in (Brucker and Knust, 1999), NP-hardness is proven
for several previously opened flow-shop problems. In particular, F2|pij = 1, chains|∑j(Ti) is
proven being NP-hard. Since the problem Π is a generalization of the previous problem, Π is
also NP-hard. Notice that Π′, where the preemption is allowed for Π, remains hard (see (Gon-
zalez and Sahni, 1978)). One could also consider Π as a RCPSP with unitary capacity resources
(machines), a in-tree precedence graph and a more complex objective function. Let us point out
(Brucker, Drexl, et al., 1999) for a survey about RCPSP.

Electricity-aware scheduling is an emerging trend. If one wants to participate in the demand-
response market, one can consider maximum power-peak capacity, or electricity cost functions,
both varying over time. In the first case, the key point is to manage electricity consumption
to respect capacity constraints. The relevant notion of energetic reasoning was introduced in
scheduling in the 1990s, in (Erschler, Lopez, and Thuriot, 1991; Le Pape, 1994; Baptiste, Le
Pape, and Nuijten, 2001), and often used to strengthen the analysis of non-energetic resource
constraints. Related research works are discussed below.

In (Erschler, Lopez, and Thuriot, 1991), a MILP formulation of the overlap of tasks on time-
intervals is proposed.

In (Artigues, Lopez, and Haït, 2009; Artigues, Lopez, and Haït, 2013), the authors introduce
the Energy Scheduling Problem (EnSP) where activities are defined by their required energy
and minimum and maximum resource requirements. The problem consists in finding, for each
activity, a starting and completion times but also a power allocation that can vary over time.
The objective considered is the sum of the linear energy costs and power overrun costs. A
two-step approach to solve the problem is given, composed of a time-based MILP model and a
constraint propagation technique.

In (Nattaf, Artigues, and Lopez, 2015) and (Nattaf, Artigues, Lopez, and Rivreau, 2016), this
problem is extended with time windows and linear efficiency functions. Mixed Integer Linear
Programs, satisfiability tests and a hybrid branch-and-bound method are proposed to solve the
problem.
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Another extension of the EnSP, given in (Ngueveu, Artigues, and Lopez, 2016), consists in
considering preemptive tasks with time windows and non-linear efficiency functions. They
show that their problem is NP-hard. The authors introduce a non-linear (due to the efficiency
function) mixed integer formulation and an extended MILP formulation based on feasible
subsets. A Branch&Price procedure, as well as a piecewise-linear lower and upper bound-
ing framework are proposed. Piecewise-linear electricity tariff functions can be modeled as
non-linear efficiency functions.

When the key point is no more the electricity capacity, but the electricity cost, complex
electricity cost functions have to be considered.

In (Masmoudi et al., 2015), a short overview of energy-related objectives in lot-sizing and
flow-shops problems is given, but only peak/off-peak electricity cost functions are considered.

In the same way, in (German, Desdouits, and Le Pape, 2015), a slightly different version
of problem Π is studied: the time horizon is divided into several time buckets with a linear
electricity cost function associated with each bucket. The authors also use a local search method
to solve the problem and give a MIP formulation used as one of the local search operators.

On our side, a piecewise-linear electricity cost function, varying over time is considered, as
explained in subsection 3.3.1.

In all the previously cited research works, problems are solved using MILP (sometimes cou-
pled with Constraint Satisfaction Problems). In order to solve our complex industrial problem,
we are also interested in local search techniques. The well-known RCPSP (defined in (T. J. R.
Johnson, 1967)) minimizes the duration of the project subject to simple precedence constraints
and availability constraints on renewable (but non-energetic) resources. This problem is NP-
difficult and many approaches were tried to solve it in exact or approximated ways (Herroelen,
De Reyck, and Demeulemeester, 1998). It has been treated with a lot of different local search
techniques: see for instance (Sampson and Weiss, 1993; Palpant, Artigues, and Michelon, 2004;
Pesek, Schaerf, and Žerovnik, 2007). A problem similar to ours (but with no energy resource)
has been studied in (Danna, 2004) with a hybrid algorithm composed of mixed integer pro-
gramming and local search techniques. This paper has provided some results on a number of
public benchmark instances. In (Pecero et al., 2012), a local search algorithm is proposed on
a similar scheduling problem as the one in (Artigues, Lopez, and Haït, 2009), yet with prece-
dence constraints and with the goal of minimizing the energy consumption while preserving
a given schedule performance (makespan). We inspired of those papers to implement a local
search algorithm, that uses a MILP operator.

Table 3.1 summarizes the brief state of the art presented above.

3.4 Efficient Methods to Find Production Plans

The scheduling problem introduced in the previous section is NP-difficult and very hard to
solve optimally in practice. Thus we propose three different Mixed-Integer Linear formula-
tions; each of them approximating one or several difficult notions of the original problem. This
way, a plant manager could compare several production plans, computed in limited time with
our methods, and choose the solution he prefers.

The following subsections are devoted to the presentation of three Mixed-Integer Linear
formulations: the first one is time-independent, and models only a linear electricity cost func-
tion; the second one is time-based, non-preemptive and precedence-oriented; and the third one
is time-based, preemptive and storage-oriented. In each case, we have to determine the start
time of every scheduled activity in order to minimize the resource, tardiness and storage costs.

Definition 22. In all formulations, the considered time horizon T is discretized such that:

• τ is the time step (ex: 10mn)
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• H is the number of time steps considered (ex: 60)

• T = {t0, t0 + τ, . . . , t0 + (H − 1)× τ} is the set of instants considered

• t ∈ T is a given time instant considered (ex: 6h45)

t0 titi−1 ti+1 tH−1

ττ

3.4.1 Overlap MILP

In this subsection, we limited ourselves to the case in which the resource cost is, over each
time interval, linear. This restriction allows us to model linear electricity costs (like peak/off-
peak tariffs) easily, with a time-independent formulation, using previous results from (Erschler,
Lopez, and Thuriot, 1991). Let the decision variables of this formulation be:

sti ∀ai ∈ A the start time of the activity ai

eti ∀ai ∈ A the completion time of the activity ai

tardd ∀demd ∈ D the (positive) amount of time between the due date
of demand demd and its delivery date (0 if the de-
mand is delivered before or at the due date)

xi,j ∀(ai, aj) ∈ A2 |
resi = resj ∧ i < j

boolean variable equal to 1 if the activity ai is before
aj

overlapi,l ∀ai ∈ A
∀Bl ∈ B

real amount of time during which activity ai over-
laps the time bucket Bl

overlapMaxi,l ∀ai ∈ A
∀Bl ∈ B

an auxiliary variable representing an upper bound
of the variable overlapi,l when the overlap is non-
null (can be negative otherwise)

stockm ∀matm ∈M the total amount of time during which one unit of
material matm is stored

posi,l ∀ai ∈ A
∀Bl ∈ B

boolean variable equal to 1 if the activity ai overlaps
the bucket Bl

First, let us introduce the classical constraints ruling the start and end times of the activities.

∀ai ∈ A, eti − sti = pti (3.11)
∀(ai, aj) ∈ A, stj − sti ≥ dmini (3.12)

Equation (3.11) ensures that an activity duration is exactly equal to its required processing time.
While Equation (3.12) enforces a minimum delay between two activities linked by a precedence
arc.

In order to ensure a machine is only used by one activity at a time, the following disjunctive
constraints (coming from (Applegate and Cook, 1991)) are used.

∀(ai, aj) ∈ A2|resi = resj ∧ i < j, eti ≤ stj +M × (1− xi,j) (3.13)
etj ≤ sti +M × xi,j (3.14)
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If two activities are supposed to be executed on the same machine, then one of them has to be
scheduled sufficiently before the other one.

Each customer demand has an associated delivery tardiness that is the positive amount of
time between the demand due date and the end of the last activity of the associated job.

∀demd ∈ D, tardd ≥ eti − duedated | ai = ad6 (3.15)
tardd ≥ 0 (3.16)

Each material is stored after having been produced and before having been consumed. In
this formulation, we suppose that all activities have the same production and consumption rate
(which is not necessarily true but simplifies the modeling). Then the amount of time, during
which one unit of material matm is stored, is modeled in the following way.

∀matm ∈M, stockm =
∑

(ai,aj)∈A|mati=matm
(stj − sti)× qi (3.17)

Finally, the electricity cost is modeled according to (Erschler, Lopez, and Thuriot, 1991).
The principle is to compute the amount of time each activity overlaps each bucket. With this
information, it is possible to compute the electricity cost, if we suppose that the cost function
is linear in each bucket. That does not model the whole complexity of the problem considered
in this chapter, but allows this formulation to remain time-independent. The overlap of each
activity on each time bucket is defined as: overlapi,l = max(0,min(Bsupl −Binfl ,Bsupl − sti, eti−
Binfl , eti − sti)). This equation represents the four cases when the activity is processed outside
the bucket (before or after), inside it and when they partially or totally overlap. This (non-
linear) equation is modeled with the following linear equations.

∀ai ∈ A,
∑
Bl∈B

overlapi,l = eti − sti (3.18)

∀ai ∈ A,∀Bl ∈ B, overlapi,l ≤ posi,l × (Bsupl − Binfl ) (3.19)

overlapi,l ≤ overlapMaxi,l + (tH − t0)× (1− posi,l) (3.20)

overlapMaxi,l ≤ B
sup
l − Binfl (3.21)

overlapMaxi,l ≤ B
sup
l − sti (3.22)

overlapMaxi,l ≤ eti − Binfl (3.23)

overlapMaxi,l ≤ eti − sti (3.24)

overlapi,l ≥ 0 (3.25)

Equation (3.18) ensures that the overlap of a given activity over all buckets is equal to the
activity processing time. Equation (3.19) states that if Activity ai does not overlap bucket Bl,
then overlapi,l = 0. Equation (3.20) bounds overlapi,l by overlapMaxi,l, iff Activity ai overlaps
bucket Bl. Finally, Equations (3.21) - (3.24) bound overlapMaxi,l by the real (possibly negative)
amount of time Activity ai overlaps Bucket Bl.

Figure 3.10 shows an example with one activity and three time buckets. Activity a1 actually
overlaps Buckets B0 and B1. As the activity begins during B0 and is completed at the end
of B1, overlapMax1,0 is positive and bounds overlap1,0. In the same way, overlapMax1,1 is
positive and bounds overlap1,1. On the other hand, as Activity a1 does not cross Bucket B2,
overlapMax1,2 is negative and pos1,2 = 0 bounds overlap1,2.
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FIGURE 3.10 – Computation of overlap between activity and time buckets.

Then, the objective function is given by:∑
demd∈D

tardd × tcd +
∑

matm∈M
stockm × scm +

∑
ai∈A

∑
Bl∈B

pi × vc1
l × overlapi,l (3.26)

Note that we can compute the electricity cost looking independently at each activity only be-
cause of the simplifying assumption about the linear cost function.

The whole formulation is given by:

min (3.26)

s.t. (3.11) - (3.20)

This formulation has a big advantage: it is time-independent; but the storage and energy
objectives are approximated (except, of course, respectively if all activities have the same pro-
duction and consumption rates or if the tariff is truly linear over each bucket).

3.4.2 Time-Based Precedence-Oriented MILP

This formulation is inspired by a classical time-based scheduling formulation (see (Pritsker,
Waiters, and Wolfe, 1969)) that uses time-indexed boolean variables giving the starting time
of each activity. This formulation does not allow preemption and thus addresses Problem Π.
There are classical: precedence constraints with minimum delays, tardiness constraints and
tardiness cost. Moreover, the storage constraints used give an approximation of the storage
cost. Indeed, for each precedence arc (ai, aj), the whole material quantity is considered stored
between the sti and stj . This is exact if and only if the production rate and consumption rate of
both activities are the same. Otherwise this is an approximation of the storage costs that allows
us to store material only if it is profitable regarding the others costs.

Finally, modeling piecewise-linear energy costs with a linear program was a challenge.
Note that the electricity cost depends on the power consumption of all activities at the same
time, thus this is a coupling constraint.

Let the decision variables of this formulation be:
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yi,t ∀ai ∈ A,
∀t ∈ T

a boolean variable that is worth 1 if the activity ai starts at
t, 0 otherwise

eti ∀ai ∈ A the completion time of the activity ai

stockm ∀matm ∈M the total amount of time during which one unit of material
matm is stored

tardd ∀demd ∈ D the (positive) amount of time between the due date of de-
mand demd and its delivery date

powert ∀t ∈ T the power consumption of the whole production plan at
time t

βt,h ∀t ∈ T
∀Ih ∈ Il|
t ∈ Bl

a boolean variable equals to 1 if the power capacity interval
Ih is used at time t

αt,h ∀t ∈ T
∀Ih ∈ Il|
t ∈ Bl

a real variable equals to the power value used in the capac-
ity interval Ih at time t

A feasible non-preemptive solution, regarding yi,t variables, is defined by the following
equations: ∑

t∈T
yi,t = 1 ∀ai ∈ A (3.27)∑

t∈T
t× (yj,t − yi,t) ≥ dmini ∀(ai, aj) ∈ A (3.28)

∑
ai∈A|resi=r

t∑
t′=tinf

yi,t′ ≤ 1 ∀r ∈ R,∀t ∈ T (3.29)

eti −
∑
t∈T

(yi,t × t+ yi,t × pti) = 0 ∀ai ∈ A (3.30)

Equation (3.27) is a classical assignment constraint that ensures activities can start only once.
Equation (3.28) defines start-to-start precedence constraints with minimum delay. Equation
(3.29) is the disjunctive constraint that ensures every machine is used by at most one activity
at the same time. In this constraint, tinf = b t−ptiτ c × τ + 1 is the first time step where ai can
have begun and still being running at time t. Finally, Equation (3.30) sets the completion time
of each activity, regarding their starting time.

Then, the following constraint sets stockm to the amount of storage used over the whole
time horizon.

stockm =
∑

(ai,aj)∈A|mati=matm

∑
t

[
t× τ × (yj,t − yi,t)× qi

]
∀matm ∈M (3.31)

Equation (3.31) allows us to recover: the idle time between the starting time of activity ai (that
produces material matm) and the starting time of activity ai (that consumes it), multiplied by
the quantity of material matm produced. Note that this is an approximation of the real storage
duration of matm, since that supposes activities have the same consumption and production
rate.
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The following classical tardiness constraints ensure that tardd is the positive tardiness of
demand demd, regarding its due date.

∀demd ∈ D tardd ≥ eti − duedated | ai = ad6 (3.32)
tardd ≥ 0 (3.33)

Equation (3.32) ensures that the tardiness of a given demand demd is greater than the amount
of time between its due date and the completion time of the last activity of the job jd. Equation
(3.33) ensures that this tardiness is positive.

Equation (3.34) computes the instantaneous power used by the whole set of activities, at
every time step.

powert =
∑
ai∈A

t∑
t′=tinf

pi × yi,t′ ∀t ∈ T (3.34)

Previous time-steps have to be looked over in order to determine if an activity is running at
time t, following the same principles as Equation (3.29).

Now, let us introduce the constraints defining the piecewise-linear energy cost function, as
described in subsection 3.3.1.

∀t ∈ T, ∀Ih ∈ Il|t ∈ Bl,

βt,h ≥
powert − cminh

pmax
(3.35)

αt,h ≤ (cmaxh − cminh)× βt,h (3.36)

αt,h ≥ (cmaxh − cminh)× βt,h+1 (3.37)

∀t ∈ T, powert =
∑

Ih∈Il|t∈Bl

αt,h (3.38)

Equation (3.35) forces βt,h to 1 when the power consumed at time t is greater than the minimal
capacity of the interval. Equation (3.37) ensures that if the capacity interval Ih+1 is (partially)
covered, then the capacity interval Ih is entirely covered. Equation (3.36) ensures that if the
capacity interval Ih is (partially) covered, then βt,h is worth 1. Equation (3.38) ensures that the
amount of capacity intervals covered at time t equals to the power consumed at the same time.

Figure 3.11 gives an example of how those variables behave while computing the electricity
cost of a given schedule. In this example, there are three capacity intervals I0, I1, I2, each of
them with a capacity of two units of power. There are also four different activities with a power
consumption represented on the y-axis. The x-axis represents time intervals during which the
electricity cost is evaluated. We can see on the figure that between t0 and t1, three power
units are consumed by activities a1 and a2. Thus, the two first capacity intervals I0 and I1 are
(partially) covered and β0,1 = β1,1 = 1. The corresponding α variables contain the amount of
the interval covered.

Finally, the objective function of this time-based precedence-oriented formulation is defined
below.

Energy objective ∑
t∈T

∑
Ih∈Il|t∈Bl

fch × βt,h + vch ×αt,h (3.39)
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FIGURE 3.11 – Integer variables to compute the piecewise-linear electricity cost
of a given schedule.

Tardiness objective ∑
d

tardd × tcd (3.40)

Storage objective ∑
m

stockm × scm (3.41)

Then, the overall MILP formulation is given by:

min (3.39) + (3.40) + (3.41)

s.t. (3.27) - (3.38)

This formulation is time-based. That induces several difficulties: choosing an appropriate
time-step for the instance and a big number of variables and constraints when the time-step is
small and the time horizon is big. Conversely, choosing a large time step leads to a pessimistic
formulation of the resource constraint and energy cost. But having a time-based formulation
is the only way we found to allow the formulation of a piecewise-linear energy cost function.
However, let us note that the linear relaxation of a time-based formulation is supposed to be
better than the linear relaxation of a time-independent formulation. In this precedence-oriented
formulation, the storage objective remains an approximation.
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FIGURE 3.12 – Dual graph of the precedence graph from Figure 3.7.

3.4.3 Time-Based Storage-Oriented MILP

This formulation allows preemption and is driven by the amount of materials in storage. The
key point is that a precedence link between activities is equivalent to a shared storage of mate-
rial. Indeed, for each precedence arc (ai, aj) ∈ A, ai has to begin to fill the stock of mati before
aj could be scheduled. In fact, managing stock levels is somehow the dual point of view of
ensuring precedence, as the materials graph is the dual graph of the precedence graph.

Definition 23. Let G′ be the dual graph of G where nodes are materials and arcs are activities.

Figure 3.12 shows, as an example, the dual graph of the precedence graph of a job, shown
on Figure 3.7. The nodes are stocks of material and the arcs are activities that produce and
consume materials.

Now, let us show how precedence constraints are replaced by storage constraints in this for-
mulation. The decision variables given below are the ones that are different from the previous
formulation. Let:

xi,t ∀ai ∈ A,
∀t ∈ T

be a boolean that is equal to 1 if ai is
running between t and t+ τ

duri,t ∀ai ∈ A,
∀t ∈ T

be the duration of ai that covers [t, t+τ ]

zd,t ∀demd ∈ D,
∀t ∈ T ∪ {H × τ}

be a boolean that is equal to 1 if demand
demd is supplied at time t

stockm,t ∀matm ∈M,
∀t ∈ T ∪ {H × τ}

be the amount of material matm stored
at time t

Moreover, tardd, powert, αt,h and βt,h are defined in the same way as in Subsection 3.4.2.
As this formulation allows preemption, consistency between x boolean variables and dur

amounts of time is ensured by the following equations.

duri,t ≤ τ × xi,t ∀ai ∈ A,∀t ∈ T (3.42)
duri,t ≥ xi,t ∀ai ∈ A,∀t ∈ T (3.43)∑

t∈T
duri,t = pti ∀ai ∈ A (3.44)

Equation (3.42) ensures that xi,t = 0 implies duri,t = 0 and bounds duri,t = 0 by τ , while
Equation (3.43) ensures that duri,t is not null if xi,t is not null. Equation (3.44) ensures that an
activity is executed during its required processing time. Note that a solution of this formulation
does not give starting and completion time of each activity: given the duration of an activity



Chapter 3. Energy Optimization of a Manufacturing Plant 66

over a time-step, its starting time has to be decided. For that purpose, we implemented a simple
heuristic, presented at the end of this subsection.

Disjunctive constraints relative to machines unitary capacity are stated in Equation (3.45).∑
ai∈A|resi=r

xi,t ≤ 1 ∀r ∈ R,∀t ∈ T (3.45)

Note that the disjunction concerns the whole time-step even if two activities could be scheduled
one after the other in the same time-step. It would be worthwhile to consider a relaxation of
this constraint using duri,t variables. But in that case, the heuristic to compute starting times
from duri,t variables would be more complex.

Delivery and tardiness constraint are re-formulated as below.

∀demd ∈ D, ∑
t∈T∪{H}

zd,t = 1 (3.46)

∑
∀t∈T∪{H}

(t× zd,t)− tardd = duedated (3.47)

tardd ≥ 0 (3.48)

Equation (3.46) ensures each demand is delivered once. Equations (3.47) and (3.48) ensures
delivery is after due date and tardiness is consistent.

The key point of this formulation is the following flow-like equations that regulate material
storage. The idea is that the quantity of a materialmatm stored at time t is given by the quantity
of the same material stored at time t − τ , minus the quantity consumed between t − τ and t,
plus the quantity produced between t− τ and t. In order to compute those quantities, one has
to look over each precedence arc related to matm. The time needed for activity ai to produce
one unit of material is given by vpti. Then the quantity of material produced by an activity ai
is given by: duri,t−τ

vpti
.

Example: Figure 3.13 shows the evolution of the stock of the intermediate material imat2 over
six time periods. At time t0, the stock is empty. Then, activity a2 begins to produce imat2. At
time t1, the stock grows of dur2,0

vpt2
= 0.5 × 4 = 2. During the two next time periods, the stock

grows of 1/vpt2 = 4 units. But at time t3, activity a6 begins to consume imat2. Thus at time
t4, the stock has 6 units because it has been increased of 1/vpt2 = 4 units and decreased of
1/vpt6 = 8 units.

This reasoning works for every precedence arc without a minimum delay requested. But
when there is a minimum delay dmini on a precedence arc (ai, aj), the time delay has to be
taken into account in the flow-like equation (with an additional time dimension). For that
purpose, another virtual material matficti has to be created with a virtual producing activity of
duration dmini. Indeed, for a given time-step t, the stock of mati (resp. matficti ) is decreased
(resp. increased) of what was produced by activity ai at time-step tdelay − τ , with tdelay =
b t−dminiτ c × τ .

Example: An example of minimum delay is given in Figure 3.14, with activities a2 and a6

linked by a precedence arc with a minimum delay of 3τ . It means that each piece of material
produced by a2 has to wait at least 3τ time units before being consumed by a6. Like in the
previous example, the rounded rectangles at the bottom of the figure represent the evolution of
the stock variables. The first row of stock variables corresponds to the stock of material imat2
varying over time. The second row is for the stock of material imatfict2 . The arrows that go
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to the first raw of stock variables indicate the amount of material imat2 produced by activity
a2. The arrows between stocks of imat2 and stocks of imatfict2 correspond to pieces of material
for which to delay dmin2 has passed. Finally, the arrows coming from the second raw of stock
variables indicate the amount of material imat2 consumed by activity a6. During the period
[t0; t1], a2 produces two pieces of material imat2, that fill the stock of imat2 at time t1. These
two pieces are removed from the stock 3τ later, at time t4, to fill the stock of material imatfict2 .
Since then, these two pieces are available to be consumed by activity a6, and so on.

Now, let us introduce the previously described stock equations.

∀matm ∈M,∀t ∈ T ∪ {H × τ}, stockm,t = stockm,t−τ

+
∑

ai∈A|mati=matm

(
duri,t−τ
vpti

)
−

∑
demd∈D|fmatd=matm

(zi,t × qd)

−
∑

(ai,aj)∈A|mati=matm∧dmini=0

(
durj,t−τ
vptj

)

−
∑

ai∈A|mati=matm∧dmini>0

(
duri,tdelay−τ

vpti

)
(3.49)

Equation (3.49) regulates the stock of each material matm. Every activity ai increases stocki,t of
the quantity of imati it can produce in duri,t−τ . Every demand that consumes fmatd decreases
stockd,t of qd units if it is delivered at time t. Every activity aj decreases stocki,t of the quantity
of mati it can consume in durj,t−τ , if there is no minimum delay on the arc (ai, aj). If there is
a minimal delay on arc (ai, aj), then the material mati is automatically consumed dmini time
units after having being produced. The quantity automatically consumed increases another
virtual stock introduced below.

∀(ai, aj) ∈ A|dmini > 0,∀t ∈ T ∪ {H × τ},

stockfict
i,t = stockfict

i,t−τ +
duri,tdelay−τ

vpti
− durj,t−τ

vptj
(3.50)

Equation (3.50) regulates the stock of each fictive materialmatficti induced by every precedence
arc (ai, aj) producing mati with a not null minimum delay. This virtual stock at time t is auto-
matically increased from the quantity of matm produced by activity ai at tdelay− τ . This virtual
stock is consumed normally by activity aj .

Then, the total storage cost can be approximated in the following way.∑
matm∈M

∑
t∈{τ,...,H×τ}

stockm,t × τ × scm (3.51)

The stockm,t variables correspond to the amount of stock at time t. In order to compute the
storage cost between time t and time t+ τ , we have to consider that stockm,t pieces have been
stored during the whole period [t; t+ τ ]. This is not necessarily true and makes Equation (3.51)
an approximation of the real storage cost.

Finally, Equation (3.52) computes the instantaneous power used by the whole set of activi-
ties, at every time step, while Equations (3.35) - (3.38) ensure the electricity cost is computed as
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in the previous formulation.

powert =
∑
ai∈A

pi × xi,t ∀t ∈ T (3.52)

Note that this equation induces a pessimistic computation of the power consumed during a
time-step as all activities are considered being simultaneous.

Then, the overall MILP formulation is given by:

min (3.39) + (3.40) + (3.51)

s.t. (3.35) - (3.38) & (3.42) - (3.52)

With this formulation, we tried to find a way to compute storage costs in a more accurate
way. However, there are many drawbacks with this formulation.

Firstly, a solution to this formulation does not give a schedule. Thus, a heuristic has to
be used to compute starting and completion times of activities. We developed two heuristics:
a simple greedy algorithm and a linear problem formulation. Moreover, precedence delays
between activities are respected only when the time step used tends toward zero. In order
to fix this issue, one time step (more) can be requested between two activities linked by a
precedence arc. That would degrade solutions quality but would make them fully compliant
with precedence constraints. Another solution would be to replace xi,t and duri,t variables by
sti,t and eti,t variables, stating for the starting and completion times of ai on time step [t, t+ τ ].
This solution would allow to remove integer variables but needs a lot more research time we
do not currently have.

The second problem is there is no limit on activities preemption. Thus solutions found are
not really usable in the plant. A solution could be to take into account machines setup costs,
but new integer variables would be necessary.

The third problem is that electricity and storage costs are really approximated. Indeed for
their computation, activities and stock behaviors are considered uniform over a given time
step, which is not true.

For all those reasons, the storage-oriented formulation could not currently be used in a
decision-aid tool. Thus, it is not included in the experiments.

3.4.4 Local Search Algorithm and Constraint Programming Problem

Since it is hard to compute an optimal solution in reasonable time, we implemented a hybrid
local search algorithm coupled with the Overlap MILP and a Constraint Satisfaction Solver.
The local search algorithm we implemented is illustrated on Figure 3.15. A first solution is
computed using a Constraint Satisfaction solver, with a limited execution time ( 1

20 of the total
allowed processing time). Then, a time frame that contains a very expensive activity is chosen,
and optimized using a MILP operator, while there is execution time left.

In practice the use of binary variables posi,l for computing the energy cost seems to direct
CPLEX away from the optimization of the tardiness and hence leads to poor solutions. To allow
the Overlap formulation to run faster as a MILP operator, we have chosen to relax the posi,l
variables to have a value in [0, 1].

In order to get quickly a feasible solution, and bootstrap the Local Search Solver, we have
implemented a naive Constraint Satisfaction Problem with the Choco 3 solver (cf (Prud’homme,
Fages, and Lorca, 2016)). We modeled all variables as integers in order to improve the solver
efficiency. As a branching strategy, we chose to look over start time/end time variables first
because an “earliest possible solution” would be highly efficient to bootstrap the Local Search.
We use also a "last conflict" composite heuristic that hacks the main strategy by forcing the use
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FIGURE 3.15 – Local search principles.

of variables involved in recent conflicts. As a search strategy in variables domain, we sorted the
production orders according to the Earliest Due Date rule. Then, by subtracting the duration
of each task and propagating the precedence constraints, we determined a partial order on the
scheduled activities.

3.4.5 Complexity

Before presenting results, let us comment the size of the each formulation, depending on in-
put data size. Table 3.2 gives the number of variables and constraints for each formulation.
We can see that the storage-oriented formulation has more variables and constraints than the
precedence-oriented formulation, while both have O

(
|T | ×

[
|J |+∑Bl∈B |Il|]) variables. On

the other hand, the overlaps formulation has O
(
|J |2 + |J | × |B|

)
variables and constraints.

TABLE 3.2 – Dimension of the studied MILP formulations.

Formulation Overlaps Largest instance

Variables 4|J |2 + 16|J |+ 18|J | × |B| 191100

Including binaries 4|J |2 − 3|J |+ 6|J | × |B| 179550

Constraints 8|J |2 + 23|J |+ 30|J | × |B| 376530

Formulation Precedence-oriented Largest instance (τ = 10mn)

Variables |T | × (6|J |+ 2
∑
Bl∈B |Il|+ 1) + 13|J | 1285914

Including binaries |T | × (6|J |+∑Bl∈B |Il|) 1276128

Constraints |T | × (3
∑
Bl∈B |Il|+ 7) + 25|J | 30450

Formulation Storage-oriented Largest instance (τ = 10mn)

Variables |T | × (19|J |+ 2
∑
Bl∈B |Il|+ 1) + 8|J | 4036704

Including binaries |T | × (7|J |+∑Bl∈B |Il|) + |J | 1488018

Constraints |T | × (22|J |+ 3
∑
Bl∈B |Il|+ 7) + 19|J | 4686150

Let us verify the impact of those dimensions on the experimental results.
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3.5 Experiments

This chapter reports on a computational comparison of formulations described in Section 3.4.
The implementation was done in Java using the Concert library of IBM ILOG Cplex opti-
mizer 12.6.1. The experiments were launched on a Lenovo W540, with an Intel(R) Core(TM)
i7-4810MQ CPU (2.80GHz) and 32Go RAM.

First, a small instance is solved in order to illustrate the differences in the solutions obtained
by the three formulations. First, the methods presented in Section 3.4 are tested on Benchmark
instances from the literature. Then, instances built from the real plant data are used to check
how accurate a decision-aid tool could be.

3.5.1 How Do the Three Formulations Behave?

The electricity cost function considered has three time buckets and two intervals of capacity in
each bucket. For the sake of the example, the second capacity interval costs less than the first
one.

Figure 3.16 holds Gantt diagrams obtained with each method on the same given small 2-
jobs instance. Each solution is optimal for its formulation and one-hour time-steps were chosen
for the sake of the example. The X-axis represents the time horizon while the Y-axis represents
the resources (electricity and machines). Considered resources are (top-down): electricity, body
line, door line, a worker who hangs materials to be painted, another worker who unhangs those
materials, door jointing machine, workers who assembly bodies and doors.

Figure 3.16a shows the overlaps formulation results. In this formulation, linear cost func-
tions are taken into account instead of piecewise-linear cost functions. Indeed, only the first
power capacity interval of each bucket is considered. Thus, scheduling energy consuming ac-
tivities at the same time is not significant in this formulation. The door line activities are sched-
uled early to benefit of the cheap electricity tariff. The body activities are scheduled just before
the mounting activities, when the electricity is cheap again, in order to pay a small storage cost.

However, the precedence-oriented formulation schedules body activities at the same time
as door activities. That allows the schedule to benefit from the second power capacity interval
where the electricity cost is much lower than every other costs. In this case, paying more storage
costs is interesting to gain even more on electricity cost.

On the other hand, the storage-oriented formulation uses preemption to refine the trade-off
between storage costs and electricity costs. Indeed, body activities are preempted to benefit
from the low electricity costs in the first bucket as well as reducing storage costs by scheduling
the last part of body activities at the latest time possible. Moreover, hanging and unhanging
tasks are preempted to save storage cost because of the low consumption rate of the mounting
activities.

3.5.2 Results on Benchmark Instances

The MascLib Benchmark (cf (Le Pape and Robert, 2007)) is composed of scheduling prob-
lems from real business data and from the literature. These instances had initially no energy
cost. Thus, appropriate energy consumption and tariff data have been added. In general, a
day/night contract with an off-peak price 40% to 50% lower than the peak price. Piecewise-
linear energy cost functions will be considered in the next subsection. The set of instances is
composed of two different types of instances (NCGS and NCOS) that have from 12 to 200 op-
erations. NCGS are instances of the No-Calendar-General-Shop problem. NCOS stands for
No-Calendar-One-Step; in these instances all the recipes have only one activity and there is
only one resource of unitary capacity. None of these benchmark instances have storage costs.

Four resolution methods were considered:
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(a) Overlaps formulation

(b) Time-based precedence-oriented formulation

(c) Time-based storage-oriented formulation

FIGURE 3.16 – Gantt diagrams obtained on a two-days instance.
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1. the local search algorithm,

2. the Overlap MILP without energy optimization,

3. the Overlap MILP,

4. the Precedence-Oriented MILP.

For all runs, a CPU time limit is imposed, depending on the number of activities in the problem
instance. The three MILP formulations are warm started using a first solution computed by the
naive Constraint Programming formulation.

We first compare methods 1, 3, and 4 on the 38 instances (without energy cost) to the best
results known in the literature. Then, we try to establish how much energy cost can be saved
without compromising (too much) the other objectives.

Optimization comparison with the best known results

We ran this experiment on the instances without energy cost, since there are no best solutions
with the energy in the literature. Moreover, we had to adapt the time step of the Precedence-
Oriented formulation to each instance. We proceeded automatically for each instance, by
choosing as a time step the minimum duration needed to produce one unit of material. We
tried iteratively to decrease the time step when the gap obtained was closed to zero, or to in-
crease the time step when the gap was closed to 100%. Let us note that, knowing the context, a
relevant time step could be determined easily.

TABLE 3.3 – Results on Benchmark instances of scheduling problems without
energy cost.

Local Search Overlap MILP Precedence-
Oriented MILP

ALL

NB-RUN 38 38 38

NB-BEST (= best known) 29 34 26

GAP regarding best known solu-
tions

5.6% 0.9% 16.4%

NCGS

NB-RUN 20 20 20

NB-BEST 17 20 14

GAP regarding best known solu-
tions

8.7% 0% 30.1%

NCOS

NB-RUN 18 18 18

NB-BEST 12 14 12

GAP regarding best known solu-
tions

2.1% 1.9% 1.2%
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For all the 38 instances, and then for the NCOS and NCGS separately, we computed the
number of instances where we found the same result as the best known result in the litera-
ture. Results are presented in Table 3.3, where NB-RUN denotes the number of instances used
and NB-BEST denotes how many times the best-known solution was reached. Moreover, the
gap between the total cost achieved and the total cost of the best known solution is used as a
performance indicator. GAP denotes the average deviation from the best-known solution, i.e.:
GAP = 1

NB-RUN
∑

instances

cost of computed solution
cost of best-known solution − 1.

We can see that, on these instances, our resolution methods are convincing. The Overlap
formulation found the best known solution for 89% of the instances, with an average gap from
the best known solution of 0.9%. The Local Search procedure and the Precedence-Oriented
formulation were less successful, with respectively 76% and 68% of the instances solved with
the best-known cost achieved. If we look more closely at the NCGS instances, the Overlap
formulation always found the best known solution, and the Precedence-Oriented formulation
performed badly with an average gap of 30.1%. This seems to indicate that the Precedence-
Oriented formulation has some difficulties to deal with precedence. On the other hand, on
NCOS instances, the Precedence-Oriented formulation obtained the best average gap of 1.2%.
However, the Overlap formulation found the biggest number of best known solutions. In all the
cases, the Local Search procedure performed moderately. It probably would have to be adapted
to achieve better results. For example, a new local search operator using the Precedence-
Oriented formulation could be implemented. Another first solution could also be computed
with the Overlap MILP without energy optimization.

Comparison with and without energy

We wanted here to compare schedules computed with energy optimization to schedules com-
puted without taken energy into account. Let us note that we considered here linear electricity
cost functions, as peak/off-peaks tariffs were probably used in the real context of those Bench-
mark instances.

Table 3.4 shows the results obtained regarding energy optimization. NB-IMPROVED rep-
resents the number of instances (over NB-RUN) that were (strictly) improved when optimizing
the electricity cost in addition to the other objectives. Some instances were not improved be-
cause taking the energy cost into account slowed down the solver and gets the tardiness cost
to be really increased. MEAN-IMPROVEMENT represents the average gain on the total cost
obtained when optimizing the energy cost compared to a solution obtained by the Overlap for-
mulation without energy optimization. When MEAN-IMPROVEMENT is negative, that means
the total cost have been increased. This is the case in average, because of the non-improved in-
stances for which the tardiness cost has been far more increased than the decrease of energy
cost on improved instances. This is why we also look at the MEAN-IMPROVEMENT-COND
indicator, which takes only into account the improved instances to compute the gain.

We can see on Table 3.4 that the Local Search procedure improved the biggest number
of instances (26

38 = 68%). But the Overlap formulation is the one that degrades the least the
total cost in average (for improved and non-improved instances). On the other hand, the
Precedence-Oriented formulation achieves a bigger gain for improved instances (1.1% in av-
erage, 9.6% in the best case). If we look only at the NCGS instances, precedence constraints
induce worse performances for the three methods, but the trend is the same. If we look only
at the NCOS instances, the MEAN-IMPROVEMENT of the Precedence-Oriented formulation
is positive, meaning that an average gain is achieved, even if we take into account the non-
improved instances.

Globally, savings are small. On the instances where the total cost could be improved in the
given computation time, less than 1% of the total cost could be saved, up to 9% in the best
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TABLE 3.4 – Results on Benchmark instances of scheduling problems with energy
cost.

Local Search Overlap MILP Precedence-
Oriented MILP

ALL

NB-RUN 38 38 38

NB-IMPROVED 26 24 19

MEAN-IMPROVEMENT -12.4% -7.5% -11.9%

MEAN-IMPROVEMENT-
COND

0.6% 0.6% 1.1%

NCGS

NB-RUN 20 20 20

NB-IMPROVED 18 16 12

MEAN-IMPROVEMENT -19.3% -10.7% -23.2%

MEAN-IMPROVEMENT-
COND

0.5% 0.5% 0.5%

NCOS

NB-RUN 18 18 18

NB-IMPROVED 8 8 7

MEAN-IMPROVEMENT -4.7% -4.0% 0.7%

MEAN-IMPROVEMENT-
COND

0.8% 0.8% 2.2%

case. However, for those instances from the industry, 1% of the total cost could represent a big
amount of money. Let us note also that most of the instances have too long activities compared
to the buckets size, thus the margin to improve energy costs is really small. Different electricity
cost functions would probably improve the gains, but they would have to be adapted to the
time scale of the instance. If we had to propose a decision-aid tool in the real context of those
instances, we probably would:

1. compute a first solution with the Overlap Formulation without energy cost, warm started
by the Constraint Satisfaction Solver,

2. run in parallel both the MILP formulations warm started by this first solution and the
Local Search Procedure using both formulations as local search operators,

3. keep those four solutions as choices for the decision maker.

3.5.3 Results on Instances Built from the Pilot Plant Data

The experiments have been conducted on four different instances, that have been built using
the real plant data. The first one has two demands for a time horizon of two days. The second
one has six demands for a time horizon of five days. Both are used to evaluate results of the
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formulations on small instances (far smaller than those of the real plant). The third one has two
hundreds and ten demands for a time horizon of seven days and no precedence (there are only
the body line data). This is a real instance, but without any precedence, in order to evaluate
their impact on the results. The forth one is the same as the third one, but with all activities and
precedence. This is the instance we have to solve, in order to be able to built a decision-aid tool
for the real plant.

The electricity cost functions are the same in every instance: there are three time buckets
for each day (0h - 5h ; 5h - 21h ; 21h - 0h) and two intervals of capacity in each bucket. This is
equivalent to a peak/off-peak tariff with 0.002 euro cents per kWh in off-peak hours and 0.004
euro cents per kWh in peak hours, except that the second capacity interval (starting from 1kW)
is a twice more expensive than the first one.

Our experimental study aims to compare resolution methods in term of solution quality and
run time. For the time-indexed formulation, several time steps are tried in order to evaluate
their impact on run time and solution quality. Maximum run time is also tuned to see how
the methods behave through their resolution process. We use the naive Constraint Satisfaction
Problem presented in Subsection 3.4.4, in order to compute a first feasible solution. We provide
(or not) formulations with this first feasible solution to allow them to cut the branching tree
faster. The impact of those warm starts is investigated during experiments. Finally for each
instance, we ran the Overlaps formulation without the energy-related variables, in order to
compare an optimal non-energy-aware solution with the others.

Now, let us present Table 3.5, giving numeric results. The first three columns give the for-
mulation used, whether a warm start was performed or not, and the time-step τ (if relevant).
The other columns give, for each instance, for each maximum run-time allowed: the gap be-
tween the best integer objective value and the best relaxed objective value, the energy cost, the
storage cost and the tardiness cost of the best solution obtained. Instances are denoted by the
couple: (number of jobs, number of days).

On the smallest instance (2,2), all formulations give optimal results in less than 1mn. As
there are only two jobs, all the formulations schedule energy consuming activities at different
times. Thus, the fact the Overlaps formulation does not take into account piecewise linear
energy cost is not a problem for this instance. For the first two rows, energy is not part of the
objective function and the total cost obtained if 0.79 e. All other formulations give the same
optimal objective value of 0.68 e (but not the same solution).

On the second instance (6,5), all results are still optimal in less than 1mn. The Precedence-
oriented formulation takes advantage of its knowledge of the piecewise linear cost function to
achieve the best results (more than five times better than the Overlaps formulation). Indeed,
the Overlaps formulation finds an optimal solution where consuming activities are scheduled
at the same time. This is not a problem regarding its objective function, but it is when the
electricity cost is evaluated with the piecewise linear functions. Even if the Local Search uses
the Overlaps formulation as an operator, its solution is really close to the best solution found.
That can be explained by the fact that Local Search evaluates solutions, to decide to keep them
or not, using the real electricity cost.

On the third instance "(210,7) bodies", Local Search obtains good results, even in ten minutes
(more than 11% better than Overlaps without energy optimization). The Precedence-Oriented
formulation is not far away, but the warm start is required with a 10mn time-step. Let us note
that increasing the time step decreases the run-time needed to find good solutions (with a small
gap). On the other hand, an optimal solution with a bigger time-step is worse than (or equal
to) an optimal solution with a smaller time-step. Finally, the Overlaps formulation has a hard
time to reduce the gap and find good solutions, because of the size of the instance.

Finally, the biggest instance (one week of the real plant) is solved only by MILP with warm
start and the local search procedure. The first solutions (found by the CSP solver) are not
improved during a hour of computation by the MIP formulations. The local search procedure
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TABLE 3.5 – Formulations results on realistic instances.

Formulations warm
start

τ (mn) Instances I (2,2) (6,5) (210, 7) bodies (210, 7)

H H H Run time I 1mn 1mn 10mn 1h 10mn 1h

Overlaps without
energy
optimization

7

gap 0 0 92.2 91.6 ∞ ∞

energy 0.72 2.04 505.41 503.9 ∞ ∞

storage 0.07 0.82 5.35 5.53 ∞ ∞

tardiness 0 0 0 0 ∞ ∞

Overlaps without
energy
optimization

X

gap " " 97,8 91,3 99.7 99.7

energy " " 481,13 504.65 1960.64 1960.64

storage " " 15,72 5.38 30.38 30.38

tardiness " " 0 0 0 0

Overlaps 7

gap 0 0 ∞ ∞ ∞ ∞

energy 0.62 12.98 ∞ ∞ ∞ ∞

storage 0.06 1.23 ∞ ∞ ∞ ∞

tardiness 0 0 ∞ ∞ ∞ ∞

Overlaps X

gap " " 99.2 98.9 100 99.9

energy " " 471.56 456.54 1960.64 1960.64

storage " " 32.05 24.28 30.38 30.38

tardiness " " 0 0 0 0

Precedence-
oriented 7 10mn

gap 0 0 100 100 ∞ ∞

energy 0.41 1.64 412.02 412.02 ∞ ∞

storage 0.27 1.09 5.92 5.92 ∞ ∞

tardiness 0 0 3× 1010 3× 1010 ∞ ∞

Precedence-
oriented X 10mn

gap " " 75.4 0 100 70.7

energy " " 476.72 448.89 2004.89 2004.89

storage " " 27 11.9 20.99 20.99

tardiness " " 0 0 0 0

Precedence-
oriented 7 15mn

gap 0 0 0.1 0.1 ∞ ∞

energy 0.41 1.64 464.3 464.3 ∞ ∞

storage 0.27 1.11 11.28 11.28 ∞ ∞

tardiness 0 0 0 0 ∞ ∞

Precedence-
oriented X 15mn

gap " 0 0.1 0.1 100 67.1

energy " 1.64 464.36 464.36 2071.65 2071.65

storage " 1.07 11.21 11.21 14.46 14.46

tardiness " 0 0 0 0 0

Local search

gap

energy 0.62 1.61 429.23 423.82 1957.53 1745.98

storage 0.06 1.16 12.54 12.09 27.78 16.77

tardiness 0 0 0 0 0 0
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gets better results, succeeding to improve greatly its solution during the last fifty minutes of
computation. Savings of 10.9% on the electricity bill are finally achieved, compared to the
solution found by the Overlaps formulation without energy optimization. Since the local search
has for the moment a single MILP operator based on the Overlap formulation, better results
would probably be achieved with a second local search operator based on the Precedence-
oriented formulation.

To conclude, the size of the formulations has not the expected influence on the solution
quality. As the Precedence-oriented formulation is time-based, a better linear relaxation seems
to allow it to find results faster than the Overlap formulation for big instances. But this is not
sufficient to handle a realistic instance efficiently. On the other hand, these first results show
that 10.9% of the electricity bill can be saved by optimizing energy consumption and consid-
ering the chosen cost function. Extrapolated to the real plant, savings of 10.9% of the annual
electricity bill would represent about 109000 euros. This result would have to be confirmed
with a more accurate modeling of the activities duration and electricity cost.

3.6 Conclusion

In this chapter, a Schneider Electric manufacturing plant is studied. The goal is to determine if
taking into account the electricity cost when scheduling production plans could generate sav-
ing on the total bill. In order to compute production plans, we had to know how much energy
is consumed in producing each kind of reference. Thus, we measured energy consumed by
each machine, over a long time period. Then we synchronized energy measures with produc-
tion log, and used a regression algorithm to compute approximated energy consumption of
each activity, as well as the baseload. The approach has been validated on clean datasets from
benchmark files. In addition, we confirmed for the studied plant, that energy consumption
varies, depending on the kind of reference produced. This potentially enables savings on the
electricity bill, by scheduling most energy-consuming activities when the electricity is cheaper.
However, contrarily to what we expected, we did not find out any correlation between the size
of the cabinet produced and the energy consumption.

On the other hand, the scheduling problem taken from the real manufacturing plant is
formalized. Three MILP formulations are given in order to solve the problem efficiently with
some modeling approximations. The emphasis is put on the electricity cost modeling and a
set of piecewise-linear cost functions is considered. The number of variables stays polynomial,
contrarily to a formulation found in the literature for a slightly different problem with the same
kind of cost functions (cf (Ngueveu, Artigues, and Lopez, 2016)). We show that good solutions
can be found, either for Benchmark instances and for instances built from the real plant data,
with the proposed formulations. Savings of about 10.9% of the electricity bill are achieved for
the most realistic instance built from the real plant data.

In the real manufacturing plant context, those formulations are aimed to be integrated in
a decision-aid tool. Such a tool could be used by the plant manager to generate and compare
possible production plans, as well as their impact on each of the cost functions. A good way
to build a decision-aid tool could be to use all the formulations as local search operators, on
accurately chosen time-windows. A first solution computed without any energy optimization
could feed this local search procedure. Moreover, the electricity tariff should be chosen among
a set of possible ones, regarding the flexibility of the plant. Such a decision-aid tool could also
assist a plant manager for participating in the demand-response market.

Finally, from a fundamental research point of view, the following tracks are considered.
The energy models of activities should be compared to models based on finite-state machines,
in order to evaluate how much precision is lost. The Storage-oriented formulation should be
further investigated. Decision variables would have to be changed in order to generate feasible
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solution in the first place. Adding setup costs on activities would discourage preempting too
many times activities if the gain is not so big. An event-based formulation, taken into account
piecewise-linear energy cost functions should be possible to find. That would need to model in
an exact way the instantaneous power consumed, using (Artigues, Lopez, and Haït, 2013). On
the other hand, a fundamental question concerns the strength of linear relaxations of the three
formulations proposed. This question of interest requires to be dug into. A multi-objective ap-
proach, providing Pareto-optimal schedules could also be interesting. Finally, decomposition
methods could be investigated.
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In order to handle our three use-cases described previously, we had to imagine a relevant
software architecture. A generic object-oriented model was implemented in Matlab, and web
services were implemented in other languages. In this chapter, we inspired of what we learned
when building a software architecture relevant for our three use-case, to give practical guide-
lines for control, planning and design of prosumer systems.

4.1 How to Control Electricity Purchasing?

There are two ways to control electricity purchasing: limiting the maximum power peak pur-
chased, or minimizing the electricity bill. Minimizing the electricity bill is a long-term objective,
as a sufficiently long time-frame has to be considered to benefit of the energy tariff changes. On
the other hand, limiting the maximum power peak purchased is only possible with a real-time
controller. Although this can be facilitated by considering piecewise-linear electricity cost func-
tions in a long-term optimization. Furthermore, when an energy manager wants to act on his
electricity bill, he has two directions to investigate: shift consumption when electricity is cheap,
or smooth consumption by storing electricity.

There are cases, like a manufacturing plant or a water network, where the electricity con-
sumption can be shifted of a noticeable duration. In the studied manufacturing plant, the most
consuming activities can be scheduled at times the electricity is cheap. Indeed, intermediate
products (doors or bodies) can be produced and stored when electricity is cheap, and used to
produce cabinets when electricity is expensive. In a water network, pumps can be used to fill in
water towers mostly when electricity is cheap. In both cases, something is transformed using
electricity, and stored to be used later. A specific scheduling algorithm has to be developed
to take into account constraints and specific objectives of the system, as well as to minimize
the electricity bill. Input data of such an algorithm are composed of (but not reduced to): en-
ergy models, forecasted (or well-known) customer demands, physical constraints (like delays,
or yields). In most of the cases, the considered system is subject to (machine) failures, and
if forecasts are used, there cannot be fully accurate. Thus, long-term plans computed by this
scheduling algorithm should be used by a low-level controller to cope with real-time aspects.
This low-level controller can be a manager, or an automated control system.
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FIGURE 4.1 – Pumping plans without and with optimization.

FIGURE 4.2 – Production plans without and with optimization.
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Examples of pumping and production plans are given on Figures 4.1 and 4.2. On Figure 4.1,
we can see Business As Usual (BAU) pumping plans and optimized pumping plans (resp. on
the left side and on the right side). Graphs on the top represent the evolution of the water level
in water towers, compared to the water flows and the electricity tariff over a given day. Graphs
on the bottom represent water flow coming from each of the pumps and the corresponding
discharge pressure. Optimized pumping plans are more stable than BAU ones, regarding the
flow coming from the pumps. Pumps are also used in a more efficient way regarding the yield.
This is possible because of water demand prediction, and a model of pumps efficiency. On
Figure 4.2, two production plans for the same voluntary under-loaded week are presented.
The first one does not optimize the energy cost, and the second one does. We can see that
when the electricity bill is minimized, activities are scheduling sooner, even if that increases
the storage cost. Whatever is the context, one of the core question is: how to use those strategic
plans during real-time control?

In other cases, shifting electricity consumption is complicated, or even impossible. For
example, the electricity consumption of an elevator cannot be shifted more than five or six
seconds (the admissible waiting duration). Thus, electricity itself has to be stored into batteries,
in order to limit the impact of an uncontrollable energy consumption. In that case, coupled-
controllers proposed in Chapter 2 can be used as they are, or enriched with new prosumers
(like gensets).

If the system considered can shift its consumption and has multiple sources of energy, op-
timal plans would address both energy consumption scheduling and sourcing plans. But such
a system would probably be too complex for both problems at the same time. Thus, interac-
tions between scheduling algorithm and multisource optimization has to be defined. I would
recommend to first compute an optimal consumption schedule, then to use it as a consump-
tion forecast for the multisource optimization. The low-level multisource controller proposed
in Chapter 2 is then capable to exploit real-time feasibilities of each prosumer, depending on
its priority level. A more detailed view on the proposed software architecture is given in Sec-
tion 4.2.

The same high-level features are needed to control every prosumer system. There are intro-
duced in Figure 4.3.

First, data have to be collected to get to know the system. They can be:

• customer demand data (water demand at every water tower, cabinet production demand,
or user call to the elevator for example),

• energy data (electricity consumption of machines, of the elevator, of the pumps),

• external data (like weather data) that influence energy consumption or customer de-
mands of the system,

• or even the real-time state of the system (like storage units state of charge, weight of the
cabin of the elevator, production machines state).

These data can then be used to build an energy model of the system. A simple model can be
built from energy data, external data and state data, with simple machine learning algorithms.
Such a model could have been used for an elevator and has been used for the manufacturing
plant. An energy model of the activities was built based on energy measurements, and pro-
duction data (state of the system). A more accurate model could have been based on precise
machines state data. Or a more complex model can be built based on physical knowledge of
the system. Such a model has to be fed with more data than the previous one. This is what we
did for the elevator, and our model is fed by the altitude of the starting and destination floors,
the weight of the cabin (including passengers), the nominal speed, and the cable length. Let us
note that this model computes energy consumption or production but suppose constant power,
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FIGURE 4.3 – Needed features to optimize a prosumers system.

that is not true at all in reality. An energy model of the water network pumps was also built
from physical data, and is fed by the needed water flow.

Using data collected and energy models, future customer demands and/or energy con-
sumption of the system have to be forecasted, in order to allow computing optimal schedules.
For example, in the elevator use-case, future energy consumption of the elevator is forecasted,
as well as solar panels energy production. The former is built using a statistical model of user
calls and an energy model; the latter is based on weather forecasts and an energy model. These
forecasts are then used to compute a sourcing strategy. In the manufacturing use case, cus-
tomer demands are well-known. Thus, no forecasts are needed. Finally, in the water network
use case, water demand is forecasted using historical weather and water demand data, and a
machine-learning algorithm.

Once all that information is available, context specific scheduling algorithms can be used to
compute optimal energy-aware schedules. Schedules can either be sourcing plans, consump-
tion schedules or both, as described in the beginning of this section. Finally, every prosumers
system has to be controlled in real-time, taking into account high-level scheduled previously
computed.

Now, let us introduce the principles of the proposed software architecture.

4.2 Proposed Software Implementation

As explained in the previous section, each prosumer has to be modeled in order to be con-
trolled. This model, in blue on Figure 4.4, is composed of an energy model and a behavioral
and physical model, depending on the measured data. Depending on the local controller deci-
sions, the energy model is used to compute how much energy would be used. Moreover, the
behavioral and physical model keeps the system state up to date.

For example, in the elevator use-case, the system states are: current floor, current cabin
weight and whether the elevator is moving or waiting or doing nothing. The current cabin
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FIGURE 4.4 – Proposed software architecture for a prosumer system.

weight is measured and the data comes from a (virtual) sensor, but the other states are main-
tained by the model. A more accurate model, taking into account current speed and power
consumption of the elevator, would be needed for a real elevator. But for the simulations pur-
pose, we use a simplified model, knowing only the nominal speed and the global energy con-
sumption of an elevator travel.

The second software component needed by a prosumer system is the local controller, in
yellow on Figure 4.4. The local controller takes real time decisions in order to meet customer
demands. For a prosumer to be controlled, the local controller has to know what are its flexi-
bilities at a given time step, based on customer demands and current state. Each flexibility is
linked to its energy consumption. Then the local controller has to decide, at every time step,
which flexibility to use. In most of the cases, this controller can be a simple rule-based one.
Once the decision is taken, the corresponding set point is sent to the system model in order to
update the system state.

For example, for the elevator, the flexibilities can be: stay at the current floor and wait, or
go up because of a user call, or go down because of a user call. A simple state machine is used
to decide the order of user calls to meet. Then the destination of the first user call is sent to the
model to update the system states.

The last software component part of a prosumer system is the strategic controller, in green
on Figure 4.4. It is optional because the system can be controlled only by a local controller,
using a model. But the strategic controller allows a prosumer system to be optimally controlled,
based on forecasts. Indeed, a local controller has to be real-time and accurate, thus long-term
objectives cannot be considered. Long-term objectives (like minimizing energy consumption,
or minimizing the economical cost of the system) are optimized by a strategic controller. This
component uses forecasts of customer demands, as well as forecasts of other data influencing
the prosumer system. A simplified model of the system is used in the strategic controller, in
order to keep the optimization problem as simple as possible.
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For example, the manufacturing plant strategic controller uses customer demands and sim-
ple activities energy model to optimize the energy consumption of the plant (as well as other
KPIs). For this purpose, an optimal production plan is built, composed of the starting times of
each production activity. In that case, the local controller would be the plant manager and the
workers themselves. From the pre-computed production plan, they would have to deal with
the machine failures and other unexpected events, in real time.
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FIGURE 4.5 – A more complex software architecture with an energy hub.

We can take another example of strategic controller with the elevator. We did not use any
strategic controller for the elevator itself, because the quality of service is a priority in this field
and is ensured by the local controller. But we could have considered a set of several elevators in
the same building. In that case, a strategic controller could have dispatched between elevators
the different user calls, in order to optimize the energy consumption, and the quality of service
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(waiting time for example). A reduced set of user calls to meet would have been sent as an
instruction to each local controller.

But we did not consider this track in the elevator use-case, because we focused on the sourc-
ing problem. That led us to consider a special kind of prosumer: the energy hub. An energy
hub is the root of a star graph of prosumers. The corresponding software architecture, applied
to the multisource elevator use-case, is illustrated on Figure 4.5. The energy hub controller aims
to maintain the power equilibrium between all prosumers, by degrading the quality of service
of prosumers of low priority. For that purpose, flexibilities of each prosumer are requested by
the energy hub controller at every time step, as power intervals or discrete power alternatives.
Then, a decision is taken using a depth-first search in a tree; and power set-points are sent to
each prosumer. Algorithms 2 and 3 show how we implemented the energy hub controller.

Algorithm 2 Energy hub’s Local Controller algorithm for time step t and period τ .

Require: P the set of np prosumers
Require: instruction the relevant strategic instruction

. check flexibilities of every prosumer during [t, t+ τ [
flex← [ ] . let flex be the ordered list of the np prosumers flexibilities
for πi ∈ P do

flex[i]← getF lexibilities(i, t+ τ) . let
flex[i] be a list of pairs where: the first member represents an instant in [t, t+ τ [, the second
member represents different flexibilities for Prosumer πi at this instant
end for

. make the time steps match between prosumer flexibilities
times← { } . let times be a set of instants considered in [t, t+ τ [
for πi ∈ P do

for (t
′
, f lexi,t′ ) ∈ flex[i] do

times← times ∪ {t′} . build the set of all different instants in [t, t+ τ [
end for

end for
for πi ∈ P do

for t
′ ∈ times do . add a value for every time-step in every prosumer flexibility list

if flexi,t′ exists then
do nothing

else
flexi,t′ ← flexi,t′′ with t

′′
the last instant in flex[i] lower than t

′

end if
end for

end for

pList← getPriorityList() . get the priority list depending on the current instruction
. choose the best combination of flexibilities depending on the priority list

choice← [ ] . let choice be the array of the np chosen power values for each instant in
[t, t+ τ [
for t

′ ∈ times do
choicet′ ← choosePower(t

′
, f lex, instruction, pList, 0, [0 . . . 0])

end for

Algorithm 2 ensures that all events in a given time-step [t, t + τ [ will be considered. For
example, if a given prosumer is supposed to stop what it was doing at t+ 0.5τ , then [t, t+ 0.5τ [
and [t+ 0.5τ, t+ τ [ will be considered separately. Another example could be when a battery is
going to be fully discharged at t+0.3τ , then during the interval [t, t+0.3τ [ the battery could be
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Algorithm 3 Depth-first search algorithm of the energy hub’s Local Controller.

Require: t
Require: flex . the ordered list of the np prosumers flexibilities
Require: instruction . the relevant strategic instruction
Require: pList . a list of prosumers, sorted by decreasing priority number
Require: p ∈ {0, . . . , np − 1} . number of the current prosumer in pList
Require: choice . power choices made by previous prosumers
i← pList[p]

. choose the preferred flexibility for Prosumer πi
if instruction 6= ∅ then

choice[i]← the value closest to instruction[i] in the flexibility range flexi,t
else

if Prosumer πi has a discrete list of flexibilities then
choice[i]← flexi,t[0]

else
choice[i]← the value closest to the default instruction in the flexibility range flexi,t

end if
end if

. compute choices of other prosumers with a smallest priority number
if p < np − 1 then

choice← choosePower(t, f lex, instruction, pList, p+ 1, choice)
end if

. choose a less desired flexibility of Prosumer πi if needed
if

∑
c∈choice

(c) 6= 0 then

if Prosumer πi has a discrete list of flexibilities then
updatedChoiceNb← 0
while updatedChoiceNb < |flexi,t| ∧

∑
c∈choice

(c) 6= 0 do

updatedChoiceNb← updatedChoiceNb+ 1
choice[i]← flexi,t[updatedChoiceNb]

. update choices of other prosumers with a smallest priority number
if p < np − 1 then

choice← choosePower(t, f lex, instruction, pList, p+ 1, choice)
end if

end while
else

choice[i]← the value in flexibility range flexi,t closest to −
( ∑
c∈choice

(c)− choice[i]
)

end if
end if
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discharged but during [t + 0.3τ, t + τ [ it has to be unused or recharged. However, if charging
or discharging the battery is possible over the whole interval [t, t + τ [, the interval is not split.
Complexity of Algorithm 2 is in O(np × ζ + ζ × c(Algorithm 3)) with ζ the number of times
the interval [t, t+ τ [ should have to be split to consider all possible events from all prosumers,
and c(Algorithm 3) the complexity of Algorithm 3. That allows simulations to be accurate but
would probably not be done in practice. Indeed, choosing a sufficiently small time step and
updating regularly the system state with sensors data should be sufficient to keep the model
accurate.

Algorithm 3 is a recursive algorithm that illustrates the depth-first search in the tree of
flexibilities. The complexity of this algorithm is in O(σnp), with σ the maximum number of
flexibilities of a prosumer at the given time step. The application to the multisource elevator
use-case is explained with more details in Subsection 2.4.3. Several parametrizations of the
prosumers priority order and default instructions are given. Regarding the complexity of the
proposed rule-based LC, a simple Model-Based Predictive Controller could be preferable in
some cases.

TABLE 4.1 – Linear Program addressing the sourcing problem.

Minimize

H−1∑
l=0

[∑
πi∈P

(
−csoldi [tl]× esoldi [tl] + cpurchi [tl]× epurchi [tl]

+ min

[min
πj∈P

(cpurchj [tl])

10
,

min
πj∈S

(cagingj )

2

]
× ρstabi [tl]

)

+
∑
πi∈S

(
cagingi

2
× echi [tl] +

cagingi

2
× edisi [tl]

+ 2×max
πj∈P

(cpurchj [tl])× ρminSOCi [tl]

)]

Such that:

∀l ∈ {0, . . . ,H − 1}, ∑
i∈P

(ei[tl]) = 0

∀πi ∈ P, ei[tl−1]− ei[tl]− ρstabi [tl] ≤ 0

ei[tl]− ei[tl−1]− ρstabi [tl] ≤ 0

∀πi ∈ S, xi[tl+1] = xi[tl] +
ccyi
ccei
× echi [tl]−

1

cdyi × ccei
× edisi [tl]

∀l ∈ {0, . . . ,H},
∀πi ∈ S, xi[tl] + ρminSOCi [tl] ≥ cminSOCi

The corresponding sourcing strategic controller decides, on a long timeframe, the target
state of charge of storage units and the target power to purchase from controllable prosumers.
The reason why the instruction for storage units is a target state of charge, rather than a target
mean power, is that the LC can adapt the power needed in real-time to reach to target state of
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charge at the desired time. The linear program is summarize in Table 4.1 and described with
more details in Subsection 2.4.2.

This particular strategic controller needs a forecast of the energy consumption and pro-
duction of each non-controllable prosumer. These forecasts are obtained from prosumers’s
local controllers, based on other forecasted data. For example, the forecast of energy consump-
tion of the elevator is obtained from the elevator local controller. The elevator local controller
computes, based on forecasted user calls, its call answering tactic and the corresponding en-
ergy consumption. The time-series obtained is re-sampled and sent to the strategic controller.
The solar panels forecasted production is computed based on weather forecasts and an energy
model. More than those forecasted data, the strategic controller has to build an optimization
problem with constraint coming from every prosumer. A centralized optimization problem is
built, asking each prosumer its own energetic and power constraints. To keep the problem lin-
ear, constraints have to stay simple, and simplified prosumer models are used. A decentralized
approach has not been investigated because of the simplicity and the small number of pro-
sumers considered. In cases where a centralized approach does not make sense, the interested
reader can refer to (Pflaum, Alamir, and Lamoudi, 2014) for the introduction of a hierarchi-
cal control structure (decentralized but supervised) that addresses a sourcing problem at the
district level.

The last point we want to address about software engineering is Service Oriented Architec-
ture. In order to optimize the development effort needed to handle the three Arrowhead pilots
(elevator, plant and water network), shared web services were developed. The architecture
we imagined is presented on Figure 4.6. These services would be called by deployed appli-

Building
an energy

model
sy
n
ch
ro
n
izeD

ata

ch
aracterizeC

on
su
m
p
tion

Forecaster

b
u
ild

M
o
d
el

ap
p
ly
M
o
d
el

d
eleteM

o
d
el

Planning
and

scheduling

getO
p
tim

alS
ou

rcin
gP

lan

op
tim

ize

getP
ro
d
u
ction

S
ch
ed
u
le

Electricity
tariff

G
etC

u
rren

tP
rice

G
etF

orecasted
P
rice

A
d
d
N
ew

C
on

tract

Manufacturing
plant

Water
distribution

Lift and
hoisting

FIGURE 4.6 – Service oriented architecture of the three Arrowhead pilots.

cations in order to deport expansive computing. Moreover, a Service Oriented Architecture
allows a viable business model. Indeed, the simplest part of the software solutions can be sold
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to customers at a fair price. For some customers who have small needs, that would be suffi-
cient. For those who want to control and understand more finely their prosumer system, the
most complex (and expansive part) of the algorithms can be rented as web services. Another
advantage of this architecture is that the components are kept modular, and thus more easily
maintainable. Finally, that allows applications and services to be developed in any preferred
programming language (and not necessarily the same). On the other hand, the main drawback
is that network lags and failures can impact the quality of service. This is why local controllers
are never implemented as services but nested in on-site applications.

On Figure 4.6, we can see that four kinds of services were developed: those related to en-
ergy modeling, forecasting, scheduling, and electricity tariff. The energy modeling services are
those explained in Subsection 3.2.2. There are quite specialized for the manufacturing domain.
The forecast services are fully generic and can be used to build a forecasting model from any
kind of time-series. They can actually be used by the three pilots. Among the scheduling ser-
vices, there are two specialized strategic controllers (one solving sourcing problems, and one
building production plans), and one generic service called "optimize". This generic service is
composed of several optimization engines, and manages internally the optimization engines
available for handling optimization demands. That allows a deported management of licenses
and gives a unified optimization interface to all applications and scheduling services. Finally,
the electricity tariff services maintain tariffs up to date and give a unified interface to request
them. The electricity bill of power time-series can also be computed.

The software architecture described in this section, applied to the multisource elevator use-
case, is presented on Figure 4.7. We can see that Local Controllers interact between them, while

FIGURE 4.7 – Lift application software architecture.
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each Local Controller also interact with its own Strategic Controller (possibly implemented as a
web-service). Strategic Controllers use predictions coming from web-services, themselves fed
by historical data.

4.3 Robustness and Performance Guarantee

The previous section explains how to control a prosumer system. In order for a prosumer
system to be efficient, it has to be appropriately controlled (at the tactic and strategic levels),
and appropriately designed. For example, designing the multisource elevator system consists
in choosing the best storage units, electricity tariff, and controller. The elevator itself could
also be chosen in case of design of a brand new system. Designing the manufacturing plant
regarding its electricity consumption would be to choose the most appropriate electricity tariff,
or even the best places and sizes of storage areas. Designing the water network in the energetic
point of view would be to choose groups of pumps regarding their efficiency and the most
profitable electricity tariff.

The notion of robustness can be defined in the following way at the different levels. The
robustness of a Strategic Optimizer depends on the amount of disturbances its strategies can
endure before being invalidated. The robustness of a local controller is its capacity to balance
the prosumer system whatever the situation. Finally, a robust prosumer system design is a
design that has always the expected performances whatever the situation, even in improbable
use-cases.

The key point of designing a system is to be able to guarantee the performances of the
proposed design. For that purpose, two questions arise: which Key Performance Indicators
should be used to evaluate the design performances and how to guarantee, in an efficient way,
those performances? The first idea coming to mind is to simulate the chosen system design
over a representative number of days and to compute the average or the worst case value
of the chosen KPI. But what is a representative number of days? This is why we propose
to use a randomized algorithm and its associated number of samples needed to guarantee
performances with a given probability. This algorithm, described in Section 2.5, is fed by a
set of design parameters and a set of drawn samples and gives the best design among the
combinations of design parameters value. Along with this best design, the associated KPI
value obtained in the worst case over the drawn samples is given, as well as the guarantee with
a given probability that the performances will not be worse than that. From that probability,
the mean number of days over a year, when the design KPI will be worse than the certified
value, can be computed and given to a customer.

Among the possible KPIs, we can cite the maximum power peak purchased from the grid,
the economical (operational and investment) cost of the prosumer system, or even the capacity
of a prosumer system to exploit and respect offers from a demand-response aggregator. On
the other hand, the same randomized algorithm can be used to evaluate the robustness of a
strategic optimizer. In that case, the KPI could be whether the strategy has to be repaired after
some disruptions or not and the design parameters could be the amplitude of the disruptions
considered.

4.4 Example of Demand-Response Application

In this section, an example of demand-response applied to the multisource elevator communi-
cating with an aggregator is presented.

For an elevator in an office building, the strategic optimization results generally show mul-
tiple battery charging/discharging “trend periods” during the day. These trend periods are il-
lustrated on Figure 4.8, on which they are separated by dashed black lines. A trend period



Chapter 4. Control and Planning of Prosumer Systems 92

FIGURE 4.8 – Trend periods of the battery during a two days period.

is defined as a period over which the battery state of charge (looked at the time granularity
of the SO) monotonically increases or monotonically decreases. In the late evening and early
morning (off-peak), electricity is bought to charge the battery; this is the first trend period of
the first day. During daytime, the battery is discharged as the elevator requires a lot of energy
and the electricity tariff is high (on-peak); this is the second trend period of the first day, during
which power power can even be sold to the grid (see Figure 4.8). The next day also has two
trend periods following the same logic. Let us note that at the end of the second day, the state
of charge of the battery is constant. This is considered being part of the previous “discharging”
trend period.

If we look at each of these trend periods from the elevator point of view, we see that the
exact profile followed to recharge or discharge the battery is not very important. The important
point is to keep the trend (either increasing or decreasing) and reach the right level at the end of
the period. In the SO model, a term of the objective function favors smoothing of the purchases
and sales of energy. In many cases, the amount of energy purchased or sold is constant or
almost constant over the identified trend periods. In reality, the grid operator or an aggregator
could prefer to sell or buy more or less energy during the trend period, depending on global
production and consumption of many actors.

For example, imagine the weather is such that the utility is expecting a production of a lot
of Aeolian energy between 10pm and midnight. In such as case, it is more interesting to incite
consumers to consume between 10pm and midnight: the batteries of the elevator could be fully
recharged at that time rather than on the early morning. This could be done in two ways: a
change of tariff decided on the day, or by asking flexible consumers how they could adapt,
deciding how much they shall adapt, and rewarding them for their flexibility.

As part of the Arrowhead project, we collaborated with a team developing a system usable
by an aggregator to receive and manage flexible energy consumption and production offers
Šikšnys et al., 2015. We first identify trend periods, based on the plan generated by the SO.
For each of these periods, we compute an envelope of the battery state of charge and grid
purchase/sale curves, while guaranteeing:

1. that the battery charging/discharging trend is respected throughout the trend period;

2. that the planned value of the battery state of charge at the end of the trend period is
attained;
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3. that the maximal power of the battery and grid connection are respected.

The envelope of the possible grid power constitutes a flexible offer. To build a flexible offer
object, we iterate over the τ intervals composing the trend period under consideration. For
each such interval, we determine lower and upper bounds on grid consumption, taking into
account the trend, the charging or discharging yield of the battery, and the power limits of
the battery and grid connection. The flex-offer object is composed of these bounds for each τ
interval and a global constraint enforcing that the total energy bought or sold will remain equal
to the initial plan. Let us note that constraints on the minimal and maximal states of charge of
the battery do not need to be taken into account as, in any solution, (i) the states of charge at
the beginning and end of the trend period will be the same as in the initial SO plan, and (ii) the
state of charge will monotonically increase or decrease between these two points.

Figure 4.9 illustrates a plan computed by the SO, the corresponding flexible offer that can be
proposed to the aggregator, and the plan updated with the aggregator response. The red curve

FIGURE 4.9 – Initial plan versus flex-offer of the aggregator.

(Grid buy/sell plan) and the dark blue dotted curve (Lead acid battery) constitute the initial
plan computed by the SO. The red shadowed area represents the flexible offer: the envelop
within which the grid power should stay to respect trend periods. Then, the orange curve (Grid
buy/sell plan after flex) is the response of the aggregator regarding its preferred purchasing
curve. The light blue dotted curve (Lead acid battery after flex) is the evolution of the state of
charge of the battery, computed from the aggregator response. First, let us note that the initial
plan is much smoother than the one proposed by the aggregator. Indeed, the aggregator has
to deal with several consumers. Their consumption have to be scheduled at different times
to minimize the global consumption peak. In this example the initial plan had an electricity
bill of −1.01e while the plan amended after the flexible offer has an electricity bill of −0.98e.
However, a retribution of −3, 47e for our flexibility comes with the aggregator plan. That
would fully compensate storage units usage cost and make the multisource elevator profitable,
even with a simple peak/off-peak tariff.

Let us note that in practice, computing a flexible offer is equivalent to build the statement
of a sub-problem of the SO problem, (i) limited to the given trend period, (ii) where all vari-
ables except the charging/discharging quantities, states of charge and purchase/sale quantities
have been fixed, and (iii) with no optimization criterion. This statement can then be sent to the
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aggregator which uses it as a sub-problem of a more global problem, and optimizes its global
problem using its own objective function. The solution of the sub-problem can then be sent
back to the SO and used to update the plan. In practice, the aggregator from Šikšnys et al., 2015
is not expecting a formal sub-problem description, but is using an object-oriented representa-
tion of a flexible offer that is equivalent to a sub-problem of the SO problem.

Let us conclude that such a demand-response scenario can be put in place for any energy
system including a SO, a battery and a connection to the grid.
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Chapter 5

Conclusion

During this PhD thesis, we proposed efficient resolution methods for three optimization prob-
lems from the industry, two of them are reported in this manuscript. These problems have
different scale, different context and different constraints, but they have a common point: the
energy consumption has to be controlled.

The multisource elevator problem was formalized, then solved using two coupled con-
trollers to handle real-time and economical dimensions of the problem. The first controller is
a linear problem which, once solved, gives a sourcing strategy for the next twenty-four hours,
for example. This sourcing strategy is composed of target state of charge for storage units
and mean power for controllable prosumers, and minimizes the electricity bill as well as the
storage units aging cost. The low-level controller is a real-time rule-based controller using a
depth-first search in a tree of flexibilities to compute the best trade-off between the strategic
instruction received and the current situation. This two-levels approach was generalized to
allow its application to a wide class of small sourcing problems, with a few additions in case of
slightly different prosumers. Experiments were conducted to highlight the impact of the two-
level strategy on the accuracy of the computed savings. Moreover, a randomized algorithm
was proposed to design the system by choosing storage units, electricity tariff and controllers,
and to be able to guarantee the performances of this design.

It would have been worthy to experiment the coupled controllers on a real elevator. This
would have allowed to get more sensor data, to refine the statistical model built and to check
the accuracy of the call answering tactic implemented. Experiments on multiple elevators shar-
ing the same storage units would also have been interesting. A strategic controller would have
been needed to dispatch travels between the elevators and the interactions between this strate-
gic controller and the sourcing strategic controller would have been of a great interest. The
aging model of the battery could have been improved with a more complex model, or with a
more accurate coefficient computed after a great number of battery aging experiments. Finally,
different elevator models (varying counterweight for example) could have been compared to
evaluate their impact on the savings. We did not have time nor means to perform all the exper-
iments mentioned above, but they are valuable research tracks for future work.

The manufacturing plant use-case allowed us to put in place the whole process needed
to optimize a real prosumer, from sensors to optimization strategy. From the energy mea-
surements, data mining, and energy modeling processes, we learned that in case production
data are not accurate, it is probably better to use finite state machines to model energy con-
sumption of production machines. But in case accurate production data are available, our
method to model activities energy consumption is really faster to put in place. This remark
is also valid in other contexts to choose between simplified energy model and more complex
process-based energy model. On the other hand, the scheduling problem was formalized as a
generalized (preemptive) flow-shop with precedence, due dates, and a trade-off between tar-
diness, inventory and energy objectives. In particular the electricity cost functions considered
are a set of piecewise-linear functions of the power used; one function per time bucket. Three
MILP formulations were proposed to model the scheduling problem, each of them with several
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modeling approximations to keep the problem linear. The first formulation is event-based but
considers only linear electricity cost function and approximates the storage cost. The second
formulation models piecewise-linear energy cost functions, but is time-based and thus is pes-
simistic regarding resource constraints (including power). The third formulation proposed is
also time-based, allows preemption and considers precedence constraints as constraints on the
amount of stock of the intermediate material. Although this approach could be interesting, we
did not have time to handle all the related issues and we did not use this formulation in the
experiments. Finally, a local search algorithm and a naive Constraint Satisfaction Problem have
also been implemented in order to facilitate the resolution of the complex scheduling problem
considered. Experiments have been conducted on Benchmark instances from the literature, as
well as on four instances built with data from the real plant. Results on the Benchmark show
that only a small percentage of the total cost can be saved by optimizing energy, and not for
the biggest instances. Fortunately, better results are achieved on the instances built from the
real plant data, and savings are made on the electricity cost, without any degradation of the
tardiness cost.

There are four main points we wish to have been able to dig into. The first one is com-
paring finite state machines energy models of production machines to our regression-based
energy models of activities. The second one is an event-based formulation including our linear
modeling of piecewise-linear energy cost functions. The third one is a functional preemptive
storage-oriented formulation, based on the principles given in Subsection 3.4.3, but solving the
issues discussed in the same subsection. The last one concerns improvement of the local search
procedure. Indeed, the first solution feeding the local search could be optimized briefly by the
Overlap formulation without energy cost. Moreover, new local search operators, based on the
time-based formulations could be implemented.

The third use-case studied is about computing optimized pumping plans for a drinking
water network. We did not investigate much this use-case, but a quadratically constrained
formulation was used to solve the optimization problem, taking into account hydraulic con-
straints. Two simulation models of the water network were proposed and experiments were
run to evaluate the feasibility and potential gains of the optimized pumping plans compared
to the Business As Usual plans. No outlook are considered regarding this use-case, as Gratien
Bonvin is currently doing his PhD thesis on this subject (cf Bonvin, Samperio, et al., 2015; Bon-
vin, Demassey, et al., 2016). But research work on this use-case helped us to better understand
how to manage the coupling between optimization and simulation engines.

The savings achieved on the electricity bill go from 10.9% to 114%, depending on the use-
case considered. The gain in euros is small for the multisource elevator (114% × 0.59 e per
day ' 245 e per year) but potentially multiplied by a big number of elevators. Moreover, the
optimization proposed in this case can be handled in a fully automatic way. For the manu-
facturing plant, potential gains are bigger (10.9% × 1Me = 109000 e per year) but the specific
modeling to be done for each plant is significant. Furthermore, production plans have to be ap-
plied by human resources, or a fully automatic production system has to be put in place (with
local controllers) and that complicates the optimized production plans application. In a water
network, the application of pumping plans can be (quite) easily put in place, and could bring
15% savings. But the interaction between pumping plans and local control of pumps has to be
carefully investigated.

From those three use-cases, we extracted guidelines on software architecture and algo-
rithms that shall be used when considering a (reasonably small) problem of prosumers and
their electricity bill in a centralized way. In case there are too many prosumers to solve a global
problem, either the problem should be split at different levels and the interactions between
these levels should be defined, or decentralized problems should be defined in each prosumer
and the convergence of the global system should be studied. See Pflaum, Alamir, and Lam-
oudi, 2014 for an example of hierarchical architecture for a district. Whatever the optimization



Chapter 5. Conclusion 97

method used, optimizing the electricity bill at the consumer side allows aggregators and elec-
tricity transmission system operators to minimize electricity consumption peaks. That could
profit to all the actors by saving money, and to the earth by reducing the CO2 emission. De-
pending on the evolution of electricity prices, demand-response incentives, and regulations,
the use-cases considered in this thesis might become worth implementing.
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