
HAL Id: tel-01653090
https://tel.archives-ouvertes.fr/tel-01653090

Submitted on 1 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building distributed computing abstractions in the
presence of mobile byzantine failures

Antonella Del Pozzo

To cite this version:
Antonella Del Pozzo. Building distributed computing abstractions in the presence of mobile byzantine
failures. Networking and Internet Architecture [cs.NI]. Université Pierre et Marie Curie - Paris VI,
2017. English. <NNT : 2017PA066159>. <tel-01653090>

https://tel.archives-ouvertes.fr/tel-01653090
https://hal.archives-ouvertes.fr

Building Distributed Computing Abstractions in
the Presence of Mobile Byzantine Failures

Universitá di Roma “Sapienza”

Dottorato di ricerca in Ingegneria Informatica – XXIX Ciclo

Université Pierre et Marie Curie

Thèse de doctorat en Informatique, Télécomminication et Électronique

Candidate

Antonella Del Pozzo
ID number 1015134

Thesis Advisors

Prof. Silvia Bonomi
Prof. Maria Potop-Butucaru

Reviewers

Prof. Antonio Fernandez Anta
Prof. Xavier Defago
Prof. Achour Mostefaoui

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Informatique, Télécomminication
et Électronique

December 2016

Building Distributed Computing Abstractions in the Presence of Mobile Byzan-
tine Failures
Ph.D. thesis. Sapienza – University of Rome
ISBN: 000000000-0
© 2016 Antonella Del Pozzo. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: February 2, 2017

Author’s email: delpozzo@dis.uniroma1.it

mailto:delpozzo@dis.uniroma1.it

A Mamma

v

Contents

1 Introduction 1
1.1 Contributions and Road map . 3

2 Related Work 5
2.1 Mobile Byzantine Failure Models for Round-based Compu-

tations . 6
2.2 Approximate Byzantine Agreement 7
2.3 Distributed Registers . 8

3 System Model 9
3.1 Processes . 9
3.2 Process Failures . 10
3.3 Communication models . 11
3.4 Time Assumptions . 11
3.5 Computational models . 11

4 Mobile Byzantine Failures 13
4.1 MBF Models for round-based computations 13

4.1.1 Mobile Byzantine Models for round-free computations 15

5 Distributed Registers in the Round Based Model 21
5.1 Register Specification . 21
5.2 Impossibilities . 22

5.2.1 Discussion . 23
5.3 Lower Bounds . 24
5.4 Upper Bounds . 28

5.4.1 Areg Algorithm Detailed Description 29
5.4.2 Correctness proofs . 32

6 Distributed Registers in the Round-free Model 39
6.1 Register Specification . 39
6.2 Impossibilities . 40

6.2.1 Impossibilities in Asynchronous System 41
6.3 Lower Bounds for the Synchronous MBF models 46

6.3.1 Examples . 60
6.4 Upper Bounds for the (∆S,CAM) Synchronous model 62

6.4.1 Preg Detailed Description for δ ≤ ∆ < 3δ 63

vi Contents

6.4.2 Preg for ∆ < δ . 66
6.4.3 Preg for ∆ ≥ 3δ . 69
6.4.4 Correctness (∆S,CAM) . 70
6.4.5 Discussion . 78

6.5 Upper Bounds for the (ITB,CAM) Synchronous model 79
6.5.1 Preg Detailed Description. 80
6.5.2 Preg for ∆ ≥ 4δ . 83
6.5.3 Preg in the (ITU,CAM) model 83
6.5.4 Correctness (ITB,CAM) . 84

6.6 Upper Bounds for the (∆S,CUM) Synchronous model 88
6.6.1 Preg Detailed Description for δ ≥ ∆ 89
6.6.2 Preg for δ > ∆ . 92
6.6.3 Correctness (∆S,CUM) . 93

6.7 Upper Bounds for the (ITB,CUM) Synchronous model 98
6.7.1 Preg Detailed Description . 99
6.7.2 Preg for the (ITU,CUM) model 102
6.7.3 Correctness (ITB,CUM) . 103

6.8 Concluding remarks . 108

7 Approximate Agreement in the Round Based Model 111
7.1 Mobile Byzantine Approximate Agreement specification. 111
7.2 Lower Bounds . 112
7.3 Upper Bounds . 114

7.3.1 Mixed-fault Model . 114
7.3.2 Background on Mean-Subsequence-Reduce Algorithms 114
7.3.3 Mapping MBF on to Mixed-Fault Model 115
7.3.4 Preliminaries and Basic Notation 117
7.3.5 MSR correctness under Mobile Byzantine fault model 120

8 Conclusions 123

Bibliography 125

1

Chapter 1

Introduction

Nowadays high availability plays a key role for many distributed systems. Just
to give an intuition, less than twenty years ago IBM Global Services quantified
that due to unavailable systems in 1996 the American businesses lost $4.54 billion
[41]. In 2015, this figure has dramatically increased, indeed, it has been shown
that IT downtime costs $700 billion to North American companies [1]. One of the
main challenges is to guarantee distributed systems availability despite accidental
and malicious failures. Failures can not be avoided, increasing the importance of
designing fault tolerant systems. The main characteristic of those systems is the
elimination of single points of failure introducing redundancy, which allows the
system to work even though some of its components are faulty. More into details,
all different typologies of failures are included under the name of Byzantine failures.
A Byzantine component may behave in any possible way, spanning from the crash
failures (the component does not work at all) to malicious failures (the component
is hijacked by an attacker). Classical Byzantine tolerant solutions assume that over
n components there can be up to f that may suffer from Byzantine failures. If
such hypothesis is violated, i.e., an attacker controls more than f components, the
distributed system may no more be available or correct. It follows that the main
limitation with this approach is that systems are built to tolerate a fixed percentage
of failures over the whole components number. This fails the reality test of long-lived
distributed services. With new exploits being publicized daily and hackers offering
services at amazingly low prices, every component is bound to be compromised in a
long time. On the bright side, dedicated cure and software rejuvenation techniques
increase the possibility that a compromised node does not remain compromised
forever, and may be recover from its previously compromised status [42]. Moreover,
as pointed out in [52], in addition to classical Byzantine behaviors, it is worth to
consider mobile adversaries. Mobile adversaries have been primarily introduced in
the context of multi-party computation and they try to model an attacker that is
able to progressively compromise computational entities but only for a limited period
of time. Therefore, tolerating Mobile Byzantine Failures is, in some sense, like having
a bounded number of compromised entities at any given time, but such set changes
from time to time. Such model captures phenomena like virus injection (where
viruses start to infect the network but then they are detected and progressively
deleted from a set of machines), programmed maintenance with the aim of restoring

2 1. Introduction

potentially infected machines or self-repairing systems [42]. All those considerations
advocate the study of a more complex failure model to capture the dynamism of
compromised component sets.
In this thesis we analyze two main problems concerning the implementation of
distributed systems. Distributed Registers and Approximate Agreement. Those,
in our vision, were the natural steps after the Mobile Byzantine Tolerant Consen-
sus, the only problem solved so far in the presence of mobile Byzantine failures
([3, 5, 11, 21, 40]). Distributed Registers are the building block of a distributed
data store, a fundamental component for many of the principal web services, such
as Facebook (Apache Cassandra), Google (BigTable), Netflix (Druid), Amazon
(Dynamo), just to cite a few. Depending on the provided consistency degree there
are three register specifications, from the weakest to the strongest: safe, regular and
atomic. To ensure high availability, storage services are usually implemented by
replicating data at multiple locations and maintaining such data consistent. Thus,
replicated servers represent today an attractive target for attackers that may try
to compromise replicas correctness for different purposes. Some examples are: to
gain access to protected data, to interfere with the service provisioning (e.g., by
delaying operations or by compromising the integrity of the service), to reduce service
availability with the final aim to damage the service provider (reducing its reputation
or letting it pay for the violation of service level agreements), etc. In this context,
thanks to Byzantine Fault Tolerance (BFT) techniques, a compromised replica (a
Byzantine failure) is made transparent to clients. In the context of distributed
storage implementations (e.g., register abstraction), common approaches to BFT
are based on the deployment of a sufficient large number of replicas to tolerate an
estimated number f of compromised servers (i.e., BFT replication). However, to the
best of our knowledge, no storage abstraction has been investigated so far assuming
mobile adversaries.
Along with the Distributed Register abstraction, the Approximate Agreement prob-
lem plays a key role in many distributed system classes. The emergent area of sensor
networks or mobile robot networks revived recently the research on one of the most
studied building blocks of distributed computing ([9, 10, 13, 27, 46, 47, 48, 49, 50]).
Indeed, gathering environmental data such as temperature or atmospheric pressure,
or synchronizing clocks in large scale sensor networks, typically do not require perfect
agreement between participating nodes. Also, requiring autonomous mobile robots
to gather at some specific location e.g., to communicate or to setup a new task,
tolerates a difference in the final robot positions after gathering. This is due to the
robots physical size. Accepting a predetermined difference in the agreement process
permits to avoid many impossibility results occurring in the perfect agreement case.
The above mentioned contexts are not free from failures and in particular from
Byzantine ones. In sensor networks, in fact, sensors may not transmit their values or
may transmit erroneous values due to permanent or temporary failures. In mobile
autonomous robot networks, some robots may move in the opposite direction as
the one intended due to hardware malfunction of buggy software. In both cases the
signals (transmitted data, or perceived position) sent by the faulty participants may
have a tremendous impact on the approximated value that is computed by the correct
ones. To handle such behaviors, the solvability of Approximate Agreement has been
studied in presence of Byzantine processes [15, 22, 28]. The problem becomes even

1.1 Contributions and Road map 3

more difficult to solve when failures may impact different participants over time. For
example, in sensor or mobile robot networks, the possibility of intermittent external
perturbations (e.g., magnetic fields) may affect different processes of the network
at various moments during system execution. Participants that are located in such
affected areas may exhibit Byzantine behavior. While the Approximate Agreement
problem has been deeply studied in systems prone to Byzantine faults [15, 22, 28]
revealing its complexity, none has been done (as far as we know) considering Mobile
Byzantine Failures. This left open some important questions about the solvability
of the problem and its complexity.

1.1 Contributions and Road map

The work in this thesis can be quickly listed in the following contributions:

• we define a general round-free Mobile Byzantine Failure (MBF) model, which
can be decomposed in a hierarchy of four different models (published in [8]);

• starting from the already defined round-based Mobile Byzantine Failure model,
we solve the Atomic Register problem (published in [6]);

• we define a framework to prove lower bounds to solve Safe Register problem
in each of the round-free synchronous MFB models;

• we propose optimal solutions to solve Regular Registers problem in each of
those models (partially published in [8]);

• we propose an optimal solution for the Approximate Agreement problem in
the round-based MBF models (published in [7]).

Roadmap. In Chapter 2 and Chapter 3 we respectively discuss related works
and define the system model. The main contribution of this thesis is Chapter 4,
where we propose and formalize a general MBF model. Along with the already
defined round based MBF model, we propose a hierarchy of round-free MBF models,
generated combining components awareness about their failure state and mobile
agents movements freedom. Hereafter we explore the instances of the model where
this problem is solvable,e.g., we provide impossibility results for the asynchronous
setting (Section 6.2). In Chapter 5 is presented the study of Distributed Register in
the round-based MBF models. In particular we prove lower bounds on the number
of replicas, and propose an optimal algorithm to solve the strongest consistency
register problem in the round-based system model. In Chapter 6 we explore the
Regular Register abstraction in the round-free MBF models. We prove lower bounds
(Section 6.3) and present and prove the correctness of protocols (Sections 6.4 - 6.7)
whose resilience is optimal with respect to the number of Byzantine agents that can
be tolerated.

Finally we move to the Approximate Agreement problem in Chapter 7. In Section
7.2 we prove lower bounds for Approximate Agreement in the Mobile Byzantine
failures model. Interestingly the lower bounds do not change with respect the

4 1. Introduction

Agreement in the Mobile Byzantine failures model. The same happens in the case
of Byzantine failures, Agreement and Approximate Agreement have the same lower
bounds with respect the number of replicas. Then we map the existing variants of
Mobile Byzantine models to the Mixed-Mode faults model [22]. This mapping further
helps us to prove the correctness of a particular class of solutions for Approximate
Agreement in the Mobile Byzantine failures model, Section 7.3.

5

Chapter 2

Related Work

Byzantine fault tolerance is at the core of Distributed Computing and a fundamen-
tal building block in any reasonably sized distributed system. Byzantine failures
encompass all possible cases that can occur in practice (even unforeseen ones) as
the impacted process may simply exhibit arbitrary behaviors. Specifically targeted
attacks to compromise processes and/or virus infections can indeed cause malicious
code execution. In classical Byzantine fault-tolerance, the power of attacks and
infections is typically abstracted as an upper bound f on the number of Byzantine
processes that a given set of n processes has to be able to tolerate. Such bounds
permit to characterize the solvable cases for benchmarking problems in Distributed
Computing (e.g., Agreement and Register Emulation). As we stated, this abstraction
fails the reality test of long-lived distributed services. Dedicated cure and software
rejuvenation techniques increase the possibility that a compromised node does not
remain compromised forever, and may be aware of its previously compromised status
[42]. Rejuvenation techniques use proactive and reactive replicas recovery. Interest-
ingly, proactive recovery has been shown to be not feasible in asynchronous systems
([43], [44]). In few words, periodically groups of replicas start to recover, but in an
asynchronous system a compromised replica can delay its recovery, allowing more
than f replicas to be compromised. Interestingly, in [38] is presented a theoretical
model to estimate the system resilience over its lifetime based on the rejuvenation
rate and the number of replicas. As will be clearer further, the implicit failure model
considered in those works match particular cases of the Mobile Byzantine Failures
(MBF) models. In the MBF models, faults are represented by Byzantine agents
that are managed by a powerful omniscient adversary that “moves” them from a
process to another. Let us note that the term “mobile” does not necessary imply
that a Byzantine agent physically moves from one process to another, but it rather
captures the phenomenon of a progressive infection, that modifies the code executed
by a process as well as its internal state, and the subsequent cure and restoration
of the correct protocol (due, for example, to the detection of the infection or to a
proactive recovery mechanism). In the sequel, we first present Mobile Byzantine
Failure models, then we introduce the relevant abstractions that we considered to be
solved in presence of Mobile Byzantine failures, Shared Memory and Approximate
Agreement.

6 2. Related Work

2.1 Mobile Byzantine Failure Models for Round-based
Computations

Mobile Byzantine Failures have been investigated so far in round-based computations,
and can be classified according to Byzantine mobility constraints: (i) Byzantine
agents with constrained mobility [11] may only move from one node to another
when protocol messages are sent (similarly to how viruses would propagate), while
(ii) Byzantine agents with unconstrained mobility [3, 5, 21, 36, 39, 40] may move
independently of protocol messages.

Most of the previously cited models [3, 5, 11, 21, 40] consider that processes
execute synchronous rounds composed of three phases: (i) send where processes
send all the messages for the current round, (ii) receive where processes receive all
the messages sent at the beginning of the current round and (iii) computation where
processes process received messages and prepare those that will be sent in the next
round. Only between two consecutive rounds, Byzantine agents are allowed to move
from one node to another. Hence the set of faulty processes at any given time has a
bounded size, yet its membership may evolve from one round to the next. The main
difference between the aforementioned four works [3, 5, 21, 40] lies in the knowledge
that processes have about their previous infection by a Byzantine agent. In Garay’s
model [21], a process is able to detect its own infection after the Byzantine agent
left it. More precisely, during the first round following the leave of the Byzantine
agent, a process enters a state, called cured, during which it can take preventive
actions to avoid sending messages that are based on a corrupted state.

More details are presented in Chapter 3, where we present all the system models
considered in this thesis.

The Byzantine Agreement problem, introduced first by Lamport et al. [26] is
one of the most studied building blocks in distributed computing and is specified as
the conjunction of the following three properties [28]:

• (Termination): All correct processes eventually decide;

• (Agreement): No two correct processes decide on different values;

• (Validity): If all correct processes start with the same value v, then v is the
only possible decision value for a correct process.

In the Mobile Byzantine version of the problem has been the only problem solved
so far presence of mobile Byzantine failures.

Garay [21] proposed, in this model, an algorithm that solves Mobile Byzantine
Agreement provided that n > 6f . This bound was later dropped to n > 4f by Banu
et al. [3]. Sasaki et al. [40] investigated the same problem in a model where processes
do not have the ability to detect when Byzantine agents move, and show that the
bound raises to n > 6f . Finally, Bonnet et al. [5] considers an intermediate setting
where cured processes remain in control on the messages they send (in particular,
they send the same message to all destinations, and they do not send obviously fake
information, e.g., fake IDs); this subtle difference on the power of Byzantine agents
has an important impact on the bounds for solving agreement: the bound becomes
n > 5f and is proven tight.

2.2 Approximate Byzantine Agreement 7

2.2 Approximate Byzantine Agreement
In this thesis we explore the Approximate Byzantine Agreement problem, in which
processes start with real numbers as inputs, and eventually decide a real number
as output. The difference with the (exact) Byzantine Agreement is that instead of
agreeing exactly, processes are allowed to disagree within a small positive margin ε
on the decided values. The specification of the Approximate Byzantine Agreement
[28] has the same termination property as the Byzantine Agreement. However, it
has different agreement and validity properties:

• (Termination): All correct processes eventually decide;

• (ε-Agreement): for some ε > 0, the decision values of any pair of correct
processes are within ε of each other;

• (Validity): any decision value for a correct process is in the range of the
initial values of the correct processes.

The Approximate Byzantine Agreement problem has been studied since the
eighties [15], [19]. Most of the presented solutions are based on successive rounds of
exchanges of the latest value each process locally stores. Upon collecting each set of
values, a correct process applies a function (e.g., average) and adopts as next value
the value returned by the function. The interested reader may refer to reference
textbooks [28] and references herein [17, 18].

Stolz et al. [45] recently proposed an Approximate Byzantine Agreement solution
where processes have to approximate the median value of the input values. Their
algorithm achieves agreement for n > 3f within f + 1 rounds, where f denotes
the number of faulty (Byzantine) processes, while n denotes the total number of
processes. Their algorithm is not included in the class of MSR-algorithms of [22]
since they use a variant of the King algorithm [4]. Multidimensional agreement has
been investigated by Mendes et al. [34, 35], where the authors also highlight the
connexion between approximate agreement and convergence in mobile autonomous
robot networks [9, 10]. Li et al. [27] and Charron-Bost et al. [13] consider extensions
to dynamic networks. In a sustained line of work, Tseng et al. [46, 47, 48, 49, 50]
investigate approximate agreement problem within various faults models (link crash,
process crash, Byzantine) in multi-hop networks (both for the directed and the
undirected cases).

Allowing different kinds of faults was investigated by Kieckhafer et al. [22], as
they unify different algorithms into the class of MSR-algorithms (Mean - Subsequence-
Reduced), which compute the mean of a subsequence of the reduced multi-set of
values. The authors analyze the convergence rate and the fault-tolerance of this
class of algorithm in a so-called Mixed-Mode faults model. In this model faults are
partitioned into asymmetric (classical Byzantine), symmetric and benign. The benign
faults are self-incriminating (immediately self-evident to all non faulty processes).
The behavior of symmetric faults is perceived identically to all correct processes,
while the asymmetric faults have a totally arbitrary behavior. That is, the behavior
of processes being subject to asymmetric faults may be perceived differently by
different correct processes.

8 2. Related Work

2.3 Distributed Registers
A Distributed Register (or just Register) is an abstraction that provides two operation,
read() to read the value on the register and write(), to write a new value on the
register. This abstraction can be accessed by multiple readers and by one or multiple
writers. We indicate as SWMR Register the Single Writer Multi Reader Register
specification and as MWMR Register the Multi Writer Multi Reader Register
specification. Distributed Registers classification have been defined in [24] depending
on the operational semantics they provide. In particular those semantics aim to
specify values that a read() operation is allowed to return. Safe Register is the
weakest specification. The only assumption is that a read() operation that is not
concurrent with any write() operation obtains the correct value, the most recently
written one. Thus, in case the operations are concurrent, a read() operation is
allowed to return any value in the register domain. The Regular Register is the
next stronger specification. Basically, it is a safe register (a read not concurrent with
a write returns the correct value) and in which a read() operation that overlaps a
write() operation obtains either the old or the new value. The Atomic Register
is the strongest specification considered. This register is like a regular register in
which reads and writes behave as if they occur in some definite order. Informally,
the semantic does not allow the following situation: given two consecutive (not
concurrent) read() operations, r1 and r2, is it not possible that r1 returns a more
recent value with respect to the one returned by r2 (the so called new old inversion).
In [25] algorithms are presented to implement those Register specifications in an
asynchronous system, all but the MWMR Atomic Register, whose is presented in [51].
Those works do not take into account any type of failure, [2] is the first work that
introduces a solution to implement a SWMR Atomic Register in an asynchronous
system prone to crash failures, and in [29], using quorum system, the MWMR Atomic
Register problem is solved.
As we state, beside crash failures, Byzantine failures are the most general failures
type, and Byzantine fault tolerance is at the core of Distributed Computing. To
tolerate Byzantine failures two approaches are possible: (i) verifiable approach,
where authenticated communication primitives are used to communicate and (ii)
non-verifiable, where those primitives are not available. Concerning the verifiable
approach in [12] is provided the first optimal MWMR Atomic Register, where n > 3f
is the lower bound on the number of replicas. Concerning the more challenging
non-verifiable approach, in [31] is implemented a safe and regular register introducing
the so called Byzantine Quorum System. Atomicity is solved in [37] showing that
any protocol assuring the regular semantic in presence of Byzantine failures can
produce an atomic register leveraging on the writeback mechanism. Finally in [32]
a solution is presented matching the lower bound to implement a MWMR Atomic
Register. In particular they state that the lower bound on the number of servers
to implement a safe register with a confirmable1 protocol is at least n > 3f , which
matches the lower bounds of the verifiable approach.

1If the protocol defines the write completion predicate so that completion can be determined
locally by a writer and all writes eventually completes.

9

Chapter 3

System Model

In this chapter we introduce the basic definitions to characterize the distributed
system and the system model where it takes place.

3.1 Processes

A process models the computer program behavior. A distributed system is composed
by a set of n processes, each of them running a distributed algorithm and each of them
is distinguishable by a unique identifier. We denoted such set as Π = {p1, p2, . . . , pn}.
When we consider the Client-Server paradigm, we consider a distributed system
composed of an arbitrarily large set of client processes C and a set of n server
processes S = {s1, s2 . . . sn}. In the following, when it is not necessary to specify,
we use the general term process.

The passage of time is measured by a fictional global clock that spans the set
of natural integers. Processes in the system do not have access at the fictional
global time. At each time t, each process (either client or server) is characterized
by its internal state (or just state) i.e., the set of all its local variables and the
corresponding values.

Each process is modeled as an I/O automaton [30]. Automaton actions are
classified as either input, output, or internal. An automaton generates output and
internal actions autonomously, and transmits an output to its environment (e.g., the
process sends a message). In contrast, the automaton input (e.g., the process receives
a message) is generated by the environment and transmitted to the automaton. We
refer to this interface as the automaton actions signature sig.

More formally an I/O automaton is a tuple of the form A = 〈sig,Γ, st0,F , ω〉,
where:

- sig is the actions signature, a finite, non empty set of input, output and
internal actions;

- Γ is a finite, non empty, set of states;

- st0 ∈ Γ is the initial state;

- F ∈ Γ is a non empty set of final states;

10 3. System Model

- ω : Γ× sig → Γ is the transition function.

When automata run, they generate executions. An execution is an alternated
sequence of states stj and actions πj starting with the initial state st0. A distributed
protocol is composed by a set of u automata, P = {A1,A2, . . . ,Au}. The set
containing the u executions of all n processes forms the behavior of the distributed
system.

3.2 Process Failures

In this work we consider a distributed system prone to failures, in particular Mobile
Byzantine failures. We refer to a process experiencing a Byzantine failure as
Byzantine process, faulty process or just Byzantine. A Byzantine process, contrarily
to a correct process, might deviate in an arbitrarily way from the automaton
specification assigned to it. Given an execution, a Byzantine process pi is assumed
to be always faulty Mobile Byzantine fault is an extension of such model, given an
execution, a Byzantine process pi is not assumed to be Byzantine forever, or in other
words, all processes can be Byzantine at some point, but the number of Byzantine
process can not be more than f at any time. We assume that there are f mobile
Byzantine agents (or just mobile agents) that move from a process to another, in
such a way that when a mobile agent affects a process, such process is said to be
Byzantine. In this case the notion of time has to be explicit, we say that a process pi
is Byzantine at time t or affected by mobile Byzantine agent at time t. We assume
that when a process is no more affected by Byzantine failure, it retrieves the correct
protocol P code from a tamper prof memory but the internal state is not predictable.
Such process is said to be cured at time t. Let P = {A1,A2, . . . ,Au} be a protocol
such that Ai = 〈sigi,Γ, sti0 ,Fi, ωi〉 ∀i = 1, . . . , u. Intuitively, a correct process never
deviates from P specification. On the contrary, a Byzantine process can be modeled
by a process executing a protocol B 6= P. A cured process is executing P but with
different states with respect to a correct process at the same time t. Let us now give
a formal definition of correct, Byzantine and cured processes with respect to the
time. To do that let us first introduce the concept of valid internal state at time t
referred in short as valid state at time t.

Definition 1 (Valid State at time t) Let sti,t be the internal state of a process
pi at some time t. sti,t is said to be a valid state at time t if it does exist a fictional
process p̂0 always executing P such that st0,t = sti,t.

Definition 2 (Correct process at time t) A process is said to be correct at time
t if (i) it is executing its protocol P and (ii) its state is a valid state at time t. We
denote as Co(t) the set of correct processes at time t while, given a time interval
[t, t′], we denote as Co([t, t′]) the set of all the processes that are correct during the
whole interval [t, t′] (i.e., Co([t, t′]) =

⋂
τ ∈ [t,t′]Co(τ)).

Definition 3 (Faulty process at time t) A process is said to be faulty at time t
if it is controlled by a mobile Byzantine agent and it is executing a protocol B 6= P
(i.e., it is behaving arbitrarily). We denote as B(t) the set of faulty processes at time

3.3 Communication models 11

t while, given a time interval [t, t′], we denote as B([t, t′]) the set of all the processes
that are faulty during the whole interval [t, t′] (i.e., B([t, t′]) =

⋂
τ ∈ [t,t′]B(τ)).

Definition 4 (Cured process at time t) A process is said to be cured at time t
if (i) it is executing its protocol P and (ii) its state is not a valid state at time t.
We denote as Cu(t) the set of cured processes at time t while, given a time interval
[t, t′], we denote as Cu([t, t′]) the set of all the processes that are cured during the
whole interval [t, t′] (i.e., Cu([t, t′]) =

⋂
τ ∈ [t,t′]Cu(τ)).

3.3 Communication models

Processes, in order to run the distributed protocol, need to communicate. In this work
we consider the message-passing model. In particular, we assume that: (i) each
process can communicate with every other process through a broadcast() primitive.
In the Client-Server paradigm, (ii) each client ci ∈ C can communicate with every
server through a broadcast() primitive and (iii) each server can communicate with a
particular client through a send() unicast primitive. We assume that communications
are authenticated (i.e., given a message m, the identity of its sender cannot be
forged) and reliable (i.e., spurious messages are not created and sent messages are
neither lost nor duplicated).

3.4 Time Assumptions

Communication between processes is either synchronous or asynchronous. We as-
sume (i) processes internal steps take no time and, as stated before, (ii) there is a
global clock. We consider two types of system time assumptions: asynchronous and
synchronous.
The asynchronous system is characterized by no physical timing assumption on
processes and communication links. Thus, there exists no upper bound on communi-
cations latency. As a consequence, messages are delivered but it is not possible to
predict any upper bounds on their delivery time. On the contrary, the synchronous
system is characterized by the following property: a message m sent at time t from
process pi /∈ B(t) to pj is received by pj a time t′, t′ ≤ t+ δ and δ ≥ 0. Similarly, let
t be the time at which a correct process (client) pi /∈ B(t) invokes the broadcast(m)
primitive, then there is a constant δ such that all processes (servers) have delivered
m by time t+ δ. δ is known to every process.

3.5 Computational models

We consider two different computational models, round-based and round-free. In
the round-based system the computation evolves in sequential synchronous rounds
{r0, r1, . . . , ri, . . . }. Every round is divided in three phases: (i) send, where processes
send all the messages for the current round, (ii) receive, where processes receive
all the messages sent at the beginning of the current round and (iii) computation,
where processes process received messages and prepare those that will be sent in the

12 3. System Model

next round. Contrarily to this, in the round-free system there are no rounds and no
phases driving the computation.

13

Chapter 4

Mobile Byzantine Failures

In this chapter we define the Mobile Byzantine Failure (MBF) models, starting with
models defined so far for round-based computation, and presenting after them our
contribution for round-free computations. The MBF models considered so far in
the literature [3, 5, 11, 21, 36, 39, 40] assume that faults, represented by Byzantine
agents, are controlled by a powerful external adversary that “moves” them from a
server to another. Let us remember that the term “mobile” does not necessary mean
that a Byzantine agent physically moves from one process to another but it rather
captures the phenomenon of a progressive infection, that alters the code executed
by a process and its internal state.

4.1 MBF Models for round-based computations
In all the above cited works the system evolves in synchronous rounds. As we
state in the previous chapter, every round is divided in three phases: send, receive
and computation. Concerning the assumptions on agent movements and servers
awareness on their cured state, the Mobile Byzantine Models defined in [5, 21, 11, 40]
are summarized as follows:

• Garay’s model [21] (M1). In this model, agents can move arbitrarily from a
server to another at the beginning of each round (i.e., before the send phase
starts). When a server is in the cured state it is aware of its condition and
thus can remain silent for a round to prevent the dissemination of wrong
information. An example is depicted in Figure 4.1.

• Bonnet et al.’s model [5] (M2) and Sasaki et al.’s model [40] (M3). As in
the previous model, agents can move arbitrarily from a server to another at
the beginning of each round (i.e., before the send phase starts). Differently
from the Garay’s model, in both models it is assumed that servers do not
know if they are correct or cured when the Byzantine agent moved. The main
difference between these two models is that in the (M3) a cured process still
acts as a Byzantine one extra round. Example are depicted in Figure 4.2 and
Figure 4.3 respectively.

• Buhrman’s model [11] (M4). Differently from the previous models, agents
move together with the message (i.e., with the send or broadcast operation).

14 4. Mobile Byzantine Failures

pi

pj

ri ri+1 ri+2

s s sr r rc c c

faulty

cured− aware

Figure 4.1. Example of a run with Garay’s MBF model

pi

pj

ri ri+1 ri+2

s s sr r rc c c

faulty

cured

Figure 4.2. Example of a run with Bonnet’s MBF model

However, when a server is in the cured state it is aware of that. An example is
depicted in Figure 4.4.

Previously cited models [5, 21, 11, 40] consider that the Byzantine agents mobility
is related to the round-based synchronous system communication. That is, processes
execute synchronous rounds composed of three phases: send, receive, compute. Only
between two consecutive rounds, Byzantine agents are allowed to move from one
node to another. In the sequel we formalize and generalize the MBF model. Our
generalization is twofold: (i) we decouple the Byzantine agents movement from
the structure of the computation making it round-free and hence suitable for any
distributed application and (ii) we model the infection diffusion in relation with the
detection/recovery capabilities of servers.

pi

pj

ri ri+1 ri+2

s s sr r rc c c

faulty

cured

Figure 4.3. Example of a run with Sasaki’s MBF model

4.1 MBF Models for round-based computations 15

pi

pj

ri ri+1 ri+2

s s sr r rc c c

faulty

cured− aware

Figure 4.4. Example of a run with Burhman’s MBF model

4.1.1 Mobile Byzantine Models for round-free computations

In our framework, we are interested in modeling two different attack dimensions: (i)
how the external adversary can coordinate the movement of the Byzantine agents
and (ii) the process awareness about their current failure state. The first point
abstracts the capability of the external adversary to propagate the infection with
respect to the detection and recovery capability of processes while the second point
distinguishes between detection and proactive recovery capabilities.

Concerning the adversary coordination power, we can distinguish among the
following three cases:

• ∆-synchronized (or synchronized with a period ∆, denoted as ∆S):
the external adversary moves all the f mobile Byzantine Agents at the same
time t and movements happen periodically (i.e., movements happen at time
t0 + ∆, t0 + 2∆, . . . , t0 + i∆, with i ∈ N). An example is shown in Figure 4.5.

• independent: the adversary moves each of f mobile Byzantine Agents inde-
pendently. Independent movements can be further decomposed in:

– time-bounded (ITB): each of the f Mobile Byzantine Agent mai is
forced to remain on a process for at least a period ∆i. Given two mobile
Byzantine Agents mai and maj , their movement periods ∆i and ∆j may
be different. An example is shown in Figure 4.6.

– time-unbounded (ITU): each Mobile Byzantine agent mai is free to
move at any time (i.e., it may occupy a process for one time unit, corrupt
its state and then leave). This case can be seen as a particular case of
ITB where ∆i = 1 for each mobile agent mai. An example is shown in
Figure 4.7.

Concerning the knowledge that each process has about its failure state, we will
distinguish, as for round-based models, among the following two cases:

• Cured Aware Model (CAM): at any time t, any process is aware about
its failure state.

• Cured Unaware Model (CUM): at any time t, any process is not aware
about its failure state.

16 4. Mobile Byzantine Failures

s5

s4

s3

s2

s1

s0

ma1

ma2

t0 t0 + ∆ . . . t0 + i∆

Figure 4.5. Example of a (∆S, ∗) run with f = 2.

Any instance of our MBF framework is characterized by a pair (X,Y), where
X represents the coordination aspect (i.e., one among ∆S, ITB and ITU) and
Y represents the process awareness (i.e., CAM vs. CUM). Figure 4.8 shows the
six different models obtained by combining the two axis of our round-free MBF
framework.

The coordination dimension allows to characterize the infection spreading from
a time point of view. In particular:

• (∆S, ∗) allows to consider coordinated attacks where the external adversary
needs to control a subset of machines. In this case, compromising new machines
will take almost the same time as the time needed to detect the attack or the
time necessary to rejuvenate. This may represent scenarios with low diversity
where compromising time depends only on the complexity of the exploit and
not on the target server. More formally, the external adversary moves all
the f mobile Byzantine Agents at the same time t and movements happen
periodically (i.e., movements happen at time t0 + ∆, t0 + 2∆, . . . , t0 + i∆,
with i ∈ N) and such periods are known by servers.

• (ITB, ∗) slightly relaxes the assumption about the time of the infection propa-
gation. In particular, in this case the Byzantine agents may affect different
servers for different periods of time. This abstracts in some way the possible
different complexities of various attack steps (each mobile agent can do a set
of exploits and each exploit may take different time to succeed and then to
be detected). As a consequence, we are able to capture possible differences in
the detection and the rejuvenation times that are now different from server
to server. More formally, each of the f Mobile Byzantine Agent mai is forced
to remain on a process for at least a period ∆i. Given two mobile Byzantine
Agents mai and maj , their movement periods ∆i and ∆j may be different.

• (ITU, ∗) further relaxes the coordination assumption and allows to consider
extremely fast infection and detection/rejuvenation processes. More formally,

4.1 MBF Models for round-based computations 17

s5

s4

s3

s2

s1

s0

ma1

ma2

∆2 ∆1

|B(t0 + ∆1, t0 + 2∆1)| = f

Figure 4.6. Example of a (ITB, ∗) run with f = 2.

each Mobile Byzantine agent mai is free to move at any time (i.e., it may
occupy a process for one time unit, corrupt its state and then leave). This
case can be seen as a particular case of ITB where ∆i = 1 for each mobile
agent mai.

Let us note that, obviously, (∆S, ∗) is the most restrictive coordination case with
respect to the adversary power while (ITU, ∗) represents the maximum freedom
(from the coordination point of view) for the external adversary.

The awareness dimension allows to distinguish between servers under continuous
monitoring from the non-monitored ones. Monitored systems are, in fact, char-
acterized by detection and reaction capabilities that enable them to detect their
failure state and to act accordingly. On the contrary, non-monitored servers have
no self-diagnosis capabilities but they can try to prevent infections by adopting
pessimistic strategies that include proactive rejuvenation. In particular:

• (∗, CAM) is able to capture scenarios where servers are aware of a past infection
as they abstract environments characterized by the presence of monitors (e.g.,
antivirus, Intrusion Detection System etc...) that are able to detect the
infection and notify the server when the threat is no more affecting the server.

• (∗, CUM) represents situations where the server is not aware of a possible past
infection. This scenario is typical of distributed systems subject to periodic
maintenance and proactive rejuvenation. In this systems, there is a schedule
that reboots all the servers and reloads correct versions of the code to prevent
infections to be propagated in the whole network. However, this happens
independently from the presence of a real infection and implies that there
could be periods of time where the server executes the correct protocol however
its internal state is not aligned with non compromised servers.

18 4. Mobile Byzantine Failures

s5

s4

s3

s2

s1

s0

ma1

ma2

|B(t)| = f

t

Figure 4.7. Example of a (ITU, ∗) run with f = 2.

ΔS, CAM ΔS, CUM

ITB, CAM ITB, CUM

ITU, CAM ITU, CUM

Process Awareness (decreasing)

Ad
ve

rs
ar

y
Po

w
er

 (i
nc

re
as

in
g)

Figure 4.8. MBF model instances for round-free computations and their relations.

It is easy to prove that CAM is a stronger awareness condition with respect to
CUM and thus represents a restriction over the adversary power.

The instance (∆S,CAM) is the strongest one as it is the most restrictive for
the external adversary and it provides cured processes with the highest awareness
while the instance (ITU,CUM) represents the weakest model as it considers the
most powerful adversary and provides no awareness to cured processes.

As in the round-based models, we assume that the adversary can control at most
f Byzantine agents at any time (i.e., Byzantine agents are not replicating themselves
while moving). In our work, only servers can be affected by the mobile Byzantine

4.1 MBF Models for round-based computations 19

agents1. It follows that, at any time t, |B(t)| ≤ f . However, during the system
life, all servers may be affected by a Byzantine agent (i.e., none of the server is
guaranteed to be correct forever). In order to abstract the knowledge a server has
on its state (i.e., cured or correct), we assume the existence of a cured_state oracle.
When invoked via report_cured_state() function, the oracle returns, in the CAM
model, true to cured servers and false to others. Contrarily, the cured_state oracle
returns always false in the CUM model. The implementation of the oracle is out of
scope of this work and the reader may refer to [36] for further details.

1 It is trivial to prove that in our model when clients are Byzantine it is impossible to implement
deterministically even a safe register. The Byzantine client will always introduce a corrupted value.
A server cannot distinguish between a correct client and a Byzantine one.

21

Chapter 5

Distributed Registers in the
Round Based Model

5.1 Register Specification
A register is a shared variable accessed by a set of processes (i.e., clients) through
two operations, namely read() and write(). Informally, the write() operation updates
the value stored in the shared variable while the read() obtains the value contained
in the variable (i.e., the latest written value). The register state is maintained by the
set of servers S. Every operation issued on a register is, generally, not instantaneous
and it can be characterized by two events occurring at its boundaries: an invocation
event and a reply event. These events occur at two time instants (i.e., invocation
time and the reply time) according to the fictional global time.
An operation op is complete if both the invocation event and the reply event occurred
(i.e., the client issuing the operation does not crash between the invocation time and
the reply time). Then, an operation op is failed if it is invoked by a process that
crashes before the reply event occurs.

Given two operations op and op′, their invocation times (tB(op) and tB(op′)) and
reply times (tE(op) and tE(op′)), we say that op precedes op′ (op ≺ op′) if and only
if tE(op) < tB(op′). If op does not precede op′ and op′ does not precede op, then op
and op′ are concurrent (noted op||op′). Given a write(v) operation, the value v is
said to be written when the operation is complete.
In this chapter we consider the atomic register specifications.

MWMR Atomic Register

The Multi-Writer/Multi-Reader (MWMR) atomic register is specified as follow:

• Termination: Any operation invoked on the register eventually terminates.

• Validity: A read() operation, if it does not overlap any write() operation, returns
the last value written before its invocation (i.e., the value written by the latest
completed write() preceding it).

• Ordering: There exists a total order S such that (i) any operation invoked on
the register belongs to S, (ii) given op and op′ belonging to S, if op ≺ op′, then

22 5. Distributed Registers in the Round Based Model

op appears before op′ in S and (iii) any read() operation returns the value v
written by the last write() preceding it in S.

Impossibility results are stated in the next section (Section 5.2). For simplicity
those results are proven using the weak register specification, the safe register (weaker
than the regular register in the Lamport’s hierarchy [23]). Contrarily to the Atomic
register, a read() operation on a safe register concurrent with a write operation may
return any value in the register domain.

SWMR Safe Register

A single-writer/multi-reader (SWMR) safe register [23] specified as follows:

• Termination: if a correct client invokes an operation, it eventually returns
from that operation (i.e., every operation issued by a correct client eventually
terminates);

• Validity: A read() operation, if it does not overlap any write() operation,
returns the last value written before its invocation (i.e., the value written by
the latest completed write() preceding it).

5.2 Impossibilities
In this section we start to present new problems that arise to design a MBF tolerant
protocol. In particular what is the impact of mobile Byzantine movements and the
consequent change of servers failure state. In the sequel we prove that in the case of
MBF tolerant implementations a new operation, that we name maintenance(), must
be implemented to prevent servers from losing the current register value.

Theorem 1 Let n be the number of servers emulating a safe register and let f
be the number of Mobile Byzantine Agents affecting servers. Let AR and AW be
respectively the algorithms implementing the read() and the write() operations. If
f > 0 then there exists no protocol Preg = {AR,AW } implementing a safe register
in any of the MBF models for round-based computations.

Proof Let us suppose by contradiction that Preg = {AR,AW } is a correct protocol
implementing a safe register. If Preg is correct, it means that both AR and AW
implementing respectively the read() and the write() operations terminate i.e., they
stop to execute steps when the operation is completed. Let r be the round at which
some operation op terminates and let us assume that no other operation is invoked
until round r′ > r. Let us note that during the interval [r, r′] no algorithm is running
as all the operations issued in the past are completed. As a consequence, no correct
server and no cured server change its state by themselves. However, considering
that r′ does not depend on Preg (i.e., it is not controlled by the register protocol
but it is defined by clients) and considering the mobility of the Mobile Byzantine
agents, we may easily have a run where every correct server is faulty and its state is
corrupted at some round in [r, r′]. Considering that Preg = {AR,AW } and that AR

5.2 Impossibilities 23

and AW are not running in [r, r′] we can have that every server stores a non valid
state at round r′ and the register value is lost. As a consequence, AR has no way to
read a valid value after r′ and the validity (or termination, depending on how the
algorithm is implemented) property is violated. It follows that Preg is not correct
and we have a contradiction. �Theorem 1

From Theorem 1 it follows that, in presence of Mobile Byzantine Agents, a new
operation must be defined to allow cured servers to restore a valid state and avoid
the loss of the register values.

Definition 5 (maintenance() and AM) A maintenance() operation is an operation
that, when executed by a process pi, terminates at some point during round r so
that pi has a valid state at the beginning of round r + 1 (i.e., it guarantees that
pi is correct at round r + 1). A maintenance algorithm AM is an algorithm that
implements the maintenance() operation.

As a consequence, any correct protocol Preg must include one more algorithm
implementing the maintenance() operation1 so that the corollary follows:

Corollary 1 Let n be the number of servers emulating a register and let f be the
number of Mobile Byzantine Agents in the system. That is, if f > 0 then any correct
protocol Preg implementing a register in the round-based Mobile Byzantine Failure
model must include an algorithm AM (i.e., Preg = {AR,AW ,AM}) that concurrently
runs with mobile agents movements.

Lemma 1 Let Preg = {AR,AW ,AM} be a protocol implementing a safe register
in any round-based Mobile Byzantine Failure Model. Let f > 0 be the number of
Byzantine Agents controlled by the external adversary. Any algorithm AM must
involve at least one round.

Proof The claim follows by considering that cured servers have a compromised
state and they need to receive information from correct servers in order to be able
to update their state to a valid one. It follows that at least one communication step
is required, which means at least one round. �Lemma 1

5.2.1 Discussion

In the previous works ([21, 3, 5, 11]) has never been pointed out the maintenance
necessity condition. The reason is that the aim of those works is to solve consensus,
which is a single operation and whose solution requires algorithms evolving in rounds
([20]), thus in a synchronous system there are no periods in which the protocol
does not perform operations while mobile agents are moving. The only form of
maintenance, in the mobile Byzantine case, is performed when consensus terminates,
thus at the end of the operation. In this case algorithms keep on exchanging
information to do not lose the reached agreement. Informally we can say that

1Let us note that such an operation can also be embedded in the other algorithm. However,
for the sake of clarity, we consider here only protocols where valid state recovery is managed by a
specific operation.

24 5. Distributed Registers in the Round Based Model

the maintenance() operation is embedded in the previous work given the problem
nature (solution itself requires a continuous values exchange). In the register case,
more operations occur and those operation may not be sequential, thus an explicit
maintenance operation is required. In a toy scenario where the writer is continuously
executing the write() operation the maintenance() operation would be redundant.

5.3 Lower Bounds

In this section we prove impossibilities on the number of correct servers to implement
an atomic register for the four models [5, 21, 11, 40] presented in Chapter 4. An
algorithm that matches those impossibilities is presented in Section 5.4, proving that
results presented in the sequel are lower bounds for the considered problem.

To this aim we start proving impossibilities on the number of correct servers
to implement a safe register, whose results can be directly extended to atomic
register. We represent each server si state at each round r as the composition of the
internal state and faulty state: 〈values, fstate〉si,r, where si is the server identifier
we are referring to at round r. values represents the internal variables values of si
(including the last written value) and fstate is the failure state at round r, such
that fstate ∈ {correct, cured, faulty}. We represent fstate for simplicity in each
considered failure models. Notice that in Garay [21] and Buhrman [11] models this
information is available at server side contrarily to Sasaki [40] and Bonnet [5] models.
Without loss of generality in the following proofs we consider that one server may
be affected by a Byzantine agent each round, i.e., f = 1. To extend the proof then
it is sufficient to substitute the faulty server with a set of f faulty servers.

As shown in Section 5.2, the AM algorithm is necessary (cf. Corollary 1), there-
fore any protocol solving safe register has to be twofold, on one side it has to (i) allow
cured servers to turn in correct and to (ii) allow a client, if there are no concurrent
write() operation, to return the last written value during a read() operation. In the
following impossibility proofs we violate one of the two. In particular concerning
the AM algorithm we consider the following. For Lemma 1 such operation requires
at least one round in which correct servers exchange the information necessary for a
cured server to become correct. From the system model, the computation evolves
in rounds and at each round the set of Byzantine servers may change. To match
the result in Lemma 1 we consider that at the beginning of each round servers,
during the send phase of the round, broadcast information each others and dur-
ing the delivery phase, at the end of the same round, servers collect those information.

Theorem 2 If n ≤ 3f , there exists no protocol P solving a safe register in Garay’s
model [21].

Proof Let us suppose by contradiction that there exists a protocol P implementing
the safe register in the Garay’s model with n = 3f . Let r1 be the first round of the
computation. Assuming that the mobile agent moves at each new round, it follows
that during next round r2, the first cured server appears (server that was affected
during round r1).

5.3 Lower Bounds 25

Let E1 and E2 be two executions where at the beginning of each round servers ex-
change the value values they are storing. Execution E1 characterized by the following
three servers states at the beginning of round r2: {〈v, correct〉s0,r2 , 〈v′, faulty〉s1,r2 ,
〈⊥, cured〉s2,r2}. During round r2 cured server s2 collects other servers values:
{v, v′}2. Since P exists then s2, at the end of the round, changes its state stor-
ing the same values as the correct server s0, 〈v, correct〉s2,r2 . Execution E2 is
characterized by the following three servers states at the beginning of round r2 :
{〈v′, correct〉s0,r2 , 〈v, faulty〉s1,r2 , 〈⊥, cured〉s2,r2}. During r2 cured server s2 collects
the following servers replies: {v, v′}. By hypothesis P implements a safe register,
then s2, at the end of the round, changes its state storing the same values as the
correct server s0, 〈v′, correct〉s2,r2 . In both executions s2 collects the same sets of
replies but ends up with different states, leading to a contradiction. To conclude
the proof let us consider the case in which the maintenance() operation lasts more
than one round, then it is straightforward that there is no advantage. In this case
the reply set collected during the round after can be either the same (if the mobile
agent does not move, but then we can still build two indistinguishable executions)
or different, but such difference is due to the presence of two cured servers and a
Byzantine server, so there are no more correct servers. Thus if n = 3f there is no
maintenance() operation and from Theorem 1 safe register cannot be implemented.

�Theorem 2

The previous proof is constructed on the fact that when n ≤ 3f , cured processes
cannot recover the correct state. Therefore, a client cannot return the last written
value. Next proofs advocate that even though the number of correct servers increases,
a client may return different values based on the same set of collected values. To
be as general as possible consider that a read() operation is composed by a request
phase and of t, t ≥ 1, reply phases. In each of those reply phases servers send
to the client their stored value. A read() operation whose duration is not fixed is
considered because mobile agents move round after round, this means that the system
composition changes respect to the faulty servers and changes at each round the set
of correct servers that reply. Thus one may think that after a certain amount of time
it could be possible to read. Let further assume that each server is aware of having
been affected in the previous round and sends back this information to client. Notice,
we are assuming that correct servers know if they were correct or not in the previous
round, indifferently from the failure model considered. In this way we are giving to
servers as much power as possible, despite that, we prove impossibilities. We assume
that reply messages contain the following information: 〈value, fstater−1〉sjr , where
value is the value stored by sj at round r and fstater−1 ∈ {correct, non_correct}
is the failure of the server in the previous round, notice that non_correct is either
Byzantine or cured.

Theorem 3 If n ≤ 4f , there exists no protocol P implementing a safe register in
Sasaki’s model [40].

Proof Let us suppose that n = 4f and that the P protocol does exist. Let r1 be
the first round of the computation, such that during r2 the first cured server appears

2In Garay’s model s2 is aware of being cured, so it can ignore its own value.

26 5. Distributed Registers in the Round Based Model

(server that was affected during round r1). Let us consider that at round r2 client
ci issues a read() operation, such that during r2 the request phase takes place and
during r3 until r3+t, the t reply phases take place. Let value be the value stored by
correct servers, so that each server sj replies as follows:

• (case 1) if sj is faulty then it replies with 〈value′, non_correct〉;

• (case 2) if sj is cured then it replies with 〈value′, correct〉;

• (case 3) if sj is correct, but was cured in the previous round then it replies
with 〈value, non_correct〉;

• (case 4) if sj is correct and was correct also in the previous round then it
replies with 〈value, correct〉;

Let E1 be an execution where f = 1 and v is the value stored by correct servers.
Let us consider that mobile agent affects at each round ri a different server in the
following way: given ri the mobile agent is on s(i mod n), for simplicity let us denote
such servers as sS1(i), 1 is because we are referring to case 1, as defined earlier. It
follows that cured server at ri is sS2(i) = s(i−1) mod n if i > 1, the correct server that
was previously cured is sS3(i) = si+2 mod n while the correct server that was correct
also in the previous round is sS4(i) = si+1 mod n, as depicted in Figure 5.1. In E1 at
round r2 the request phase takes place and from round r3 to round r3+t, ci collects
the following replies:
{〈v, non_correct〉s1,r3 , 〈v′, correct〉s2,r3 , 〈v′, non_correct〉s3,r3 , 〈v, correct〉s4,r3 ,
. . . , 〈v, non_correct〉sS3(3+t),r3+t , 〈v′, correct〉sS2(3+t),r3+t , 〈v′, non_correct〉sS1(3+t),r3+t ,
〈v, correct〉sS4(3+t),r3+t}. Since P exists then ci returns v.
Let E2 be an execution where f = 1 and v′ is the value stored by correct servers
and a mobile agent is affecting at each round ri a different server, in particular at
ri the affected server is s(n−i mod n) such that the cured server is s(n−(i−1) mod n)
from i ≥ 1. Fixed those two servers in each round s(n−(i−2) mod n) (from i ≥ 2) is
the correct server that was previously cured. s(n−(i−3) mod n) is the correct server
that was correct also in the previous round, with i ≥ 3, if i = 2 we consider s2 as
the resulting server. Such scenario is depicted in Figure 5.2. In E2 at round r2 the
request phase takes place and from round r3 to round r3+t, ci collects the following
replies:
{〈v′, non_correct〉s1,r3 , 〈v′, correct〉s2,r3 , 〈v, non_correct〉s3,r3 , 〈v, correct〉s4,r3 ,
. . . , 〈v′, non_correct〉sS1(3+t),r3+t , 〈v′, correct〉sS2(3+t),r3+t , 〈v, non_correct〉sS3(3+t),r3+t ,

〈v, correct〉sS4(3+t),r3+t}. Since P exists then ci returns v′.

In both executions ci returns different values even though it collects the same set
of replies, thus there exist no protocol P solving the safe register if n ≤ 4f . Notice
that this is true despite that the mobile agent affects different servers in the two
executions and despite the variable duration of the read() operation, which concludes
the proof. �Theorem 3

Corollary 2 If n ≤ 4f , there exists no protocol P in Bonnet model [5].

5.3 Lower Bounds 27

s1

s2

s3

s4

r1 r2 r3 rt

req rep rep . . . rep

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5.1. Scenario representing the mobile agent movement in execution E1

s1

s2

s3

s4

r1 r2 r3 rt

req rep rep . . . rep

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5.2. Scenario representing the mobile agent movement in execution E2

28 5. Distributed Registers in the Round Based Model

Proof The claim simply follows by considering that the Bonnet model is a particular
case of Sasaki model, in which cured servers act as less powerful faulty servers, forced
to send the same message to all. The same reasoning as in the proof of Theorem 3
is applied. �Corollary 2

In the Burhman’s model [11] a key role is played by the moment at which mobile
agents move. In this case mobile agents, rather than moving at the beginning of the
round, move during the sending phase. Moreover cured servers, as in Garay’s model,
are aware about their failure state.

Theorem 4 If n ≤ 2f , there exists no protocol P implementing a safe register in
the Burhman’s model [11].

Proof The proof is direct considering that to tolerate Byzantine servers, with
non-confirmable writes, n ≥ 2f + 1 is the minimal required number of servers [33].

�Theorem 4

5.4 Upper Bounds
In this section, we present an algorithm Areg implementing a MWMR Atomic
Register resilient to the presence of up to f mobile Byzantine agents for the four
Round-Based MBF models (i.e., M1-M4). The algorithm follows the basic quorum-
based approach to implement read() and write() operations.

Let us recall that mobile Byzantine agents move from one server to another
corrupting their internal states. As a consequence, if not properly mastered, this can
bring to the compromising of all the servers and to the loss of the register value (cf.
Theorem 1). A naive solution would be to exploit write() operations to clean values
of cured processes and increase the number of replicas n to ensure the presence of
“enough” correct servers to select a valid value. However, such solution has two
strong drawbacks: (i) write() operations are not governed by servers and are invoked
depending on clients protocols and (ii) the number of replicas needed to tolerate
f mobile Byzantine agents grows immediately linearly in the number of rounds
between two following write() operations (as the number of cured servers grows).
To handle the presence of mobile Byzantine agents, we started from this intuition
and we defined a value propagation mechanism that is used to help cured servers to
recover and to update their local variables to a correct state. Such mechanism is
executed at the beginning of each round and it pushes information between servers
allowing cured ones to become correct in one round. The immediate benefit is the
reduction of the number of replicas required to master the mobility.

The algorithm presented in the following is defined in a parametric way in order
to fit all the four round-based mobile Byzantine failure models presented in Chapter
4. The first parameter of the algorithm, denoted as α, is used to relate the global
number of required servers n to the number of mobile Byzantine agents f that can
be tolerated. In particular, we relate such two values by the following inequality
n ≥ αf + 1 with α ∈ {2, 3, 4} depending on the mobile Byzantine failure model
considered. The second parameter, denoted as β, is used to define the minimal
number of occurrences of a same value that a client needs to collect in order to

5.4 Upper Bounds 29

Failure model Mid α β Oracle
Garay [21] M1 3 2 enabled

Bonnet et al. [5] M2 4 2 disabled
Sasaki et al. [40] M3 4 2 disabled

Burhman et al. [11] M4 2 1 enabled
Table 5.1. Areg parameters for the four different Mobile Byzantine Failure models.

select a valid value at the end of the read() operation. Such number is denoted by s
and it is defined as s = n − βf , with β ∈ {1, 2}. Finally, in order to abstract the
knowledge that a server has of its failure state (i.e., cured or correct), we introduce
the cured_state oracle. When invoked via report_cured_state() function, it returns,
in the Garay [21] and Buhrman et al. [11] models, true to cured servers and false to
others. In this case the oracle is said to be enabled. In Sasaki et al. [40] and Bonnet
et al. [5] model the cured_state oracle returns always false. In this case the oracle
is said disabled. The implementation of the oracle is out of scope of this work and
the reader may refer to [14], [36] for further details.

Table 5.1 summarizes the above parameters for each model.

5.4.1 Areg Algorithm Detailed Description

The pseudo-code of the algorithm is presented in Figures 5.3-5.5. The algorithm
exploits the round based nature of the system.
Any write() operation spans at most two rounds. The operation may, in fact, be
invoked in the middle of a round and in this case it effectively starts in the send
phase of the next round r. The writer broadcasts the value and all servers deliver
it in the same round r. In the receive phase of the same round, servers delivers
write() messages and, if more than one write() operation is executed in the same
round, servers update the register by selecting the value coming from the client
with the highest identifier. Due to the synchrony assumptions no acknowledgement
message is required and the operation can terminate at the end of the round r.
The read() operation spans at most three rounds. As for the write(), it effectively
starts with the send phase of the round starting after its invocation, and takes such
round to send a read request to servers, and the following one to gather replies. In
the computation phase of the round after, the reader selects the value occurring at
least s = n− βMif times concluding the operation.

The value propagation mechanism is implemented by letting servers disseminate
the stored value through echo() messages at the beginning of each round. Such
echo() messages are collected during the receive phase and are used by cured
processes to select a value and to update their value of the register. In such way, they
are able to cope with f servers that may have lost their value during the previous
round due to the Byzantine mobility.

Local variables at client ci. Each client ci manages the following variables to
implement the read() operation:
− opR_starti: is a variable that keeps track of the state of a read() operation at client
ci and it can have the following values: {0 = request_round, 1 = reply_round,⊥ =

30 5. Distributed Registers in the Round Based Model

Init():
(1) valuei ← ⊥;
—————————————————————————————-
At the beginning of each round r
(2) echo_valsi ← ∅;
(3) current_writesi ← ∅;
(4) curedi ← report_cured_state();
—————————————————————————————-
Send Phase of round r
(5) if (¬curedi)
(6) then broadcast echo(valuei, i);
(7) for each j ∈ current_readsi do
(8) send reply(valuei, i) to cj ;
(9) endFor
(10)endif
(11) current_readsi ← ∅;
—————————————————————————————-
Receive Phase of round r
(12) for each echo(v, j) message delivered do
(13) echo_valsi ← echo_valsi ∪ {v};
(14)endFor
(15) for each write(v, j) message delivered do
(16) current_writesi ← current_writesi ∪ {< v, j >};
(17)endFor
(18) for each read(j) message delivered do
(19) current_readsi ← current_readsi ∪ {j};
(20)endFor
—————————————————————————————-
Computation Phase of round r
(21) if (current_writesi 6= ∅)
(22) then let v such that ∃ < v, j >∈ current_writesi
(23) ∧j = arg maxk(< −, k >∈ current_writesi);
(24) valuei ← v;
(25) else if (∃v ∈ echo_valsi | #occurrence(v) ≥ n− βMif)
(26) then valuei ← v;
(27) else valuei ← ⊥;
(28) endif
(29)endif

Figure 5.3. Areg implementation: code executed by any server si.

no_read_running}.
− repliesi: is a set that collects reply messages during a read() operation. It is set
to ∅ at the beginning of the operation.

Local variables at server si. Each server sj manages the following variables:
− valuei: it stores the current value of the register.
− echo_valsi: is a set variable (emptied at the beginning of each round) where
servers store the echo messages received in the current round.
− current_writesi: is a set variable (emptied at the beginning of each round) where
servers store values received through a write() message.
− current_readsi: is a set variable where servers store identifiers of clients that are
currently reading. It is emptied after the reply to such clients.
− curedi: is a boolean variable set through the report_cured_ state() event. It is set
to true by the cured_state oracle (if enabled) when si is in a cured state. Otherwise
it is always false.

5.4 Upper Bounds 31

operation read():
(1) delay opR_starti ← 0 until the end of the round;
—————————————————————————————
Send Phase of round r
(2) if (opR_starti == 0)
(3) broadcast read(i);
(4) endIf
(5) repliesi ← ∅;
—————————————————————————————
Receive Phase of round r
(6) for each reply(vj , j) message received from sj do
(7) repliesi ← repliesi ∪ {< vj , j >};
(8) endFor
—————————————————————————————
Computation Phase of round r
(9) if (opR_starti == 1)
(10) then opR_starti ← ⊥;
(11) if (∃ < vj ,− >∈ repliesi | #occurrence(vj) ≥ n− βMif)
(12) then v ← vj ;
(13) else v ← ⊥;
(14) endif
(15) return v;
(16) else if (opR_starti == 0)
(17) then opR_starti ← 1;
(18) repliesi ← ∅;
(19) else opR_starti ← ⊥;
(20) endif
(21)endif

Figure 5.4. Areg implementation: code executed by any client ci for the read() operation.

Server maintenance. In the send phase of each round, each servers si, whose
variable curedi is set by the oracle as false, performs the broadcast of echo(val, i)
message (line 6, Figure 5.3). If no write() operations happen in the current round
(the condition at line 21 is not verified), then servers use such collected values
are then used during the computation phase (line 25, Figure 5.3) to select a value
occurring at least n− βMif times and update their state.
Write operation. In order to write a value v a client ci has to broadcast the
write(v, i) message to all servers (line 1, Figure 5.5). Since an operation invocation
may happen in any time during a round, then the broadcast() is delayed until the
next send phase. At the server side this message is delivered within the same
round during the receive phase and any correct and cured server sj stores it in
current_writesj set (lines 15-16, Figure 5.3). At the end of the round, during the
computation phase, if current_writesj is not empty then the value associated to
the highest client identifier is stored in valuej (lines 21-24, Figure 5.3). Back to the
client side, during its computation phase, it returns the write_confirmation to the
application layer (line 4, Figure 5.5).

Read operation. When a read() operation is invoked by a client ci, opR_starti is
set to 0 at the end of the current round (line 1, Figure 5.4), thus at the next send
phase the condition at line 2 is true and the read(i) message is broadcast (line
3). Regardless the value of opR_starti at each round the repliesi set is emptied

32 5. Distributed Registers in the Round Based Model

operation write(v)
(1) delay broadcast write(v, i) until next send phase;
—————————————————————————————
Send Phase of round r
(2) nop
—————————————————————————————
Receive Phase of round r
(3) nop
—————————————————————————————
Computation Phase of round r
(4) return write_confirmation;

Figure 5.5. Areg implementation: code executed by any client ci for the write() operation.

(line 18). In the computation phase, the condition at line 16 is true (opR_starti is
equal to 0) and opR_starti is set to 1. This means that the read_request phase
is over and the next one is the read_reply one. At server side (Figure 5.3), the
read(i) message is delivered within the same invocation round. Once the message
is delivered, any server sj stores the identifier of the reader in the current_readsj
set in order to send back a reply() message at the beginning of the next round
(lines 18-19, Figure 5.3).
At client side (Figure 5.4), when the next round begins, the condition at line 2 is not
true, thus during the send phase the repliesi set is emptied. Such set is filled with
reply(valuej) messages during the receive phase (lines 6 - 8, Figure 5.4). During
the computation phase the condition at line 9 is true, thus opR_starti is set to ⊥
and the value in repliesi which occurs at least n − βMif times is returned to the
application layer (lines 8-15, Figure 5.4).

5.4.2 Correctness proofs

Lemma 2 Any write() operation eventually terminates.

Proof The proof follows by considering that the write() operation generates a
write_confirmation event at the end of the computation phase in which the operation
is effectively started (line 4, Figure 5.5). �Lemma 2

Lemma 3 Any read() operation eventually terminates.

Proof When a reader invokes a read() operation opr at round r, it executes line 1
in Figure 5.4 by setting opR_starti = 0 just before entering in the send phase when
it sends the read request, let us say at round r + 1. Then opR_starti is set to 1 in
the computation phase of r + 1 (line 17, Figure 5.4). During the computation phase
of round r + 2, ci executes lines 9-15, Figure 5.4 returning from the operation and
the claim follows.

�Lemma 3

Theorem 5 (Termination) Any operation invoked on the register eventually ter-
minates.

5.4 Upper Bounds 33

Proof The proof directly follows from Lemma 2 and Lemma 3. �Theorem 5

Lemma 4 Let αMi and βMi be the parameters for each of the 4 failure models Mi
as reported in Table 5.1 and used by the algorithm in Figures 5.3-5.5. Let n > αMif
for each failure model Mi considered. At the end of each round at least n− f correct
servers store the same value v in their valuei local variable.

Proof The proof is done by induction.

- Basic Step. At the end of each round, each non-faulty server updates its
valuei local variable (i) in line 24 (i.e., if there exists at least a pair in the
current_writesi local variable) or (ii) in line 26 (i.e., current_writesi is
empty and there exist at least n− βMif same values in echo_valsi).
Let us recall that at round r0 all correct servers store the same default value
⊥ in their local variable valuei. As a consequence, in r0 there exists at least
n− 2f (f are Byzantine and f are cured, the remaining servers are correct)
correct servers storing v.
Let us first prove that one of the two cases always happens and then we prove
that the number of non-faulty servers storing the same values v at the end of
r0 is n− f .
The current_writesi local variable is initialized by any non-faulty server si to
∅ at the beginning of each round r (cfr. line 3) and it is updated when a write()
message is received by si3. Thus, case (i) corresponds to a scenario where at
least a write() operation is executed in round r0 and case (ii) corresponds to a
scenario where no write() is running.

– Case (i): current_writesi 6= ∅. In this case the claim simply follows
by observing that the current _writesi local variable is filled in when
servers deliver a write() message. Considering that (i) writer clients
broadcast a write(v, j) message in the send phase of round r, (ii) clients
are correct and send the same set of values to all servers that will apply a
deterministic function to select the value v and (iii) at most f servers are
faulty and may skip the update of their valuei variable, the claim follows.

– Case (ii): current_writesi = ∅ and line 25 is true. In this case, the
valuei variable is updated according to the values stored in echo_valsi.
Such variable is emptied by every non-faulty process at the beginning
of each round (cfr. line 2) and is filled in when an echo() message is
delivered. Such message is sent at least by any server, believing it is
correct, at the beginning of each round.
At the beginning of r0, at least n − f − x correct servers will send an
echo(v, j) message, where x is the number of non-faulty processes that
become faulty in r0 (i.e., x = f for all the models but Burhman’s one
where x = 0 as faulty processes move during the send phase and not at

3Recall that such write() message is sent by the writer client in the send phase of the first round
starting after the write() invocation and it is delivered by any non-faulty server in the same round.

34 5. Distributed Registers in the Round Based Model

the beginning of the round). Let us note that the condition in line 25
is verified if and only if n − 2f ≥ n − βMif that is true in any model
(n− 2f is the number of correct servers sending the echo() message in
r0). Therefore, considering that at the end of round r0 non-faulty servers
are exactly n− f , we have that n− f processes will execute this update.

- Inductive Step. Iterating the reasoning for any r the claim follows.

�Lemma 4

Theorem 6 (Validity) Let αMi and βMi be the parameters for each of the 4 failure
models Mi as reported in Table 5.1 and used by the algorithm in Figures 5.3-5.5.
Let n > αMif for each failure model, Mi, considered. A read() operation, if it does
not overlap any write() operation, returns the last value written before its invocation
(i.e., the value written by the latest completed write() preceding it).

Proof Let rw1 be the round in which opw terminates and let v0 be the value written
by opw. Without lost of generality, let us consider the first write(v) operation op′w
and the first read() operation opr issued after rw1. Three cases may happen: (i)
opr ≺ op′w, (ii) op′w ≺ opr and (iii) op′w || opr. Let us note that opr spans over at
least two rounds and during the first one the client sends the read() message while
in the second one it collects replies.

• Case (i): opr ≺ op′w. This case follows directly from Lemma 4 considering
that (i) at the end of the first round of opr at least n − f correct processes
have the same value v0 written by opw, (ii) while moving to the second round
of opr, at most x processes can get faulty (with x ≤ f for models M1-M3 and
x = 0 for M4), (iii) n− f − x ≥ n− βMif (i.e., βMif ≥ f + x) for each model
(i.e., there will always be enough replies from correct servers to select a value)
and (iv) n− βMif > f (i.e., (αMi − βMi)f + 1 > f) for each model. It follows
that faulty processes cannot force the client to select a wrong value and the
claim follow in this case.

• Case (ii): op′w ≺ opr. Let rw′ be the round at which op′w terminates and
let rw′ + 1 be the round at which opr is invoked. Due to Lemma 4, at round
rw + 2 there are at least n− βMif of the last written value. So, applying the
same reasoning of case (i) the claim follows.

• Case (iii): op′w || opr. Let us note that a read() operation spans two rounds,
i.e., the round of the request rreq and the round of the reply rreply. So, let us
consider them separately.

– Case (iii.a): op′w is concurrent with opr during rreq. In that case the
value v is delivered to correct server at the end of rreq. Due to Lemma
4, at the end of rreq at least n− f correct servers store the new written
value v, we fall down into case (ii) and the claim follows.

5.4 Upper Bounds 35

– Case (iii.b): op′w is concurrent with opr during rreplay. Since, in every
round, the send phase is executed before the receive phase, it follows that
at least all the correct servers will reply with the value written before
the invocation of the write() operation, we fall down into case (i) and the
claim follows.

�Theorem 6

Theorem 7 (Ordering) Let αMi and βMi be the parameters for each of the 4
failure models Mi as reported in Table 5.1 and used by the algorithm in Figures
5.3-5.5. Let n > αMif for each failure model Mi considered. There exists a total
order S such that (i) any operation invoked on the register belongs to S, (ii) given
op and op′ belonging to S, if op ≺ op′, then op appears before op′ in S and (iii) any
read() operation returns the value v written by the last write() preceding it in S.

Proof Let rw1 be the round in which opw terminates and let v0 be the value written
by opw.

In order to prove the claim, we have to show that the algorithm in Figures 5.3-5.5
is eventually able to build a total order of operations S that preserves (i) the read
from last write property and that includes all the operations from a certain round
on.

Let us observe the following:

1. any write() operation is “effectively” executed in one round (i.e., the round in
which the value is propagated) even if it has been invoked during the previous
round;

2. any read() operation is “effectively” executed in two rounds (i.e., rreq the round
in which the request for reading the value is sent to servers and rrep where
replies are collected at the client side) even if it has been invoked during the
previous round;

3. at the beginning of any round r > rw1, since no more transient failures are
going to happen, there always exist at least n− 2f correct servers storing the
same value v (see Lemma 4);

4. correct servers answer to read request by sending back their local values.

Let us suppose by contradiction that a total order S does not exists. S cannot exist
iff the scenario in Figure 5.6 happens. However, considering the observations above
and that the algorithm evolves in synchronous rounds, all the possible executions
follow patterns similar to those shown in Figure 5.7, i.e., there can not exist a
write() operation that overlaps two different read() operations opr1 and opr2 such
that opr1 ≺ opr12, from which we have a contradiction. �Theorem 7

Theorem 8 Let Areg be the algorithm in Figures 5.3-5.5 and let n ≥ αf . If α = 3,
for each round r Areg implements a MWMR Atomic register in the Garay model.

36 5. Distributed Registers in the Round Based Model

opr1 → v2

opw(v1)

opr2 → v1

opw(v2)

cr t

cw t

Figure 5.6. An example of new/old inversion.

ropr2opr1

rr1req rr1reply rr2req rr2reply

rwv1 rwv2

opw(v1) opw(v2)

ropr2opr1

rr1req rr1reply rr2req rr2reply

rwv1 rwv2

opw(v1) opw(v2)

Figure 5.7. Examples of runs showing in details how operations can be aligned given the
round-based nature of the system.

Proof It follows directly from Theorems 5, 6 and 7.
�Theorem 8

Theorem 9 Let Areg be the algorithm in Figures 5.3-5.5 and let n ≥ αf . If α = 4,
for each round r Areg implements a MWMR Atomic register in the Bonnet model.

Proof It follows directly from Theorems 5, 6 and 7.
�Theorem 9

Theorem 10 Let Areg be the algorithm in Figures 5.3-5.5 and let n ≥ αf . If α = 4,
for each round r Areg implements a MWMR Atomic register in the Sasaki model.

Proof It follows directly from Theorems 5, 6 and 7.
�Theorem 10

Theorem 11 Let Areg be the algorithm in Figures 5.3-5.5 and let n > αf . If α = 2
then for each round r Areg implements a MWMR Atomic register in the Burhman
model.

Proof It follows directly from Theorems 5, 6 and 7.
�Theorem 11

Concluding remarks

The results found so far can be quickly summarized in Table 5.2. As we can see,
with respect to the Consensus problem, are required f fewer servers to solve the
Atomic Register problem. This is no true only for the Sasaki’s model that requires
the same lower bound as the Bonnet’s model. Intuitively from the Register point of

5.4 Upper Bounds 37

MBF model Atomic Register tight bound Consensus tight bound
Burhman n ≥ 2f + 1 n ≥ 3f + 1 [3]
Garay n ≥ 3f + 1 n ≥ 4f + 1 [21]
Bonnet n ≥ 4f + 1 n ≥ 5f + 1 [5]
Sasaki n ≥ 4f + 1 n ≥ 6f + 1[40]

Table 5.2. Comparison between lower bounds to solve the Atomic Register and Consensus
problems in the round-based MBF models.

view, the fact that a cured server sends different non valid values (Sasaki’s model)
or the same (Bonnet’s model) has not affect on the solution. Roughly speaking,
the maintenance() operation act as a Consensus algorithm where all correct servers
propose the same value. Concerning the read() operation, it is transparent the fact
that a cured server can send the same non valid value or different non valid values
since it is interacting only with one client per time.

39

Chapter 6

Distributed Registers in the
Round-free Model

In this Chapter we consider the round-free MBF models. We first state the Safe
Register and Regular Register problems and we prove that in an asynchronous
system such problems are unsolvable. Then, in the remaining part of this Chapter,
only synchronous round-free MBF models are considered. In particular, for each
instance of the round-free MBF model, we prove lower bounds and propose optimal
solutions with respect to the required number of replicas.

6.1 Register Specification

As define in Section 5.1, a register is a shared variable accessed by a set of processes
(i.e., clients) through two operations, namely read() and write().

In this chapter we consider the following register specifications in the round free
models.

SWMR Regular Register

A single-writer/multi-reader (SWMR) regular register [23] specified as follows:

• Termination: if a correct client invokes an operation, it eventually returns
from that operation (i.e., every operation issued by a correct client eventually
terminates);

• Validity: A read() operation returns the last value written before its invocation
(i.e., the value written by the latest completed write() preceding it), or a value
written by a concurrent write() operation.

Our impossibility results (reported in the next section) are proven for the case
of a safe register (weaker than the regular register in the Lamport’s hierarchy [23]).
A read operation on a safe register concurrent with a write operation may return
any value in the register domain.

40 6. Distributed Registers in the Round-free Model

SWMR Safe Register

A single-writer/multi-reader (SWMR) safe register [23] specified as follows:

• Termination: if a correct client invokes an operation, it eventually returns
from that operation (i.e., every operation issued by a correct client eventually
terminates);

• Validity: A read() operation, if it does not overlap any write() operation,
returns the last value written before its invocation (i.e., the value written by
the latest completed write() preceding it).

We consider in the sequel only execution histories related to the register compu-
tation. In particular, the set of relevant computation events H will be defined by
the set of all the operations issued on the register and the happened-before relation
will be substituted by the precedence relation ≺ between operations. Thus, we will
consider a register execution history specified as ĤR = (H,≺).

From the specification above, we can define a specified notion of valid value at
time t for register as follow:

Definition 6 (Valid Value at time t) Let ĤR = (H, ≺) be a register execution
history of a regular-register R. A valid value at time t is any value returned by a
fictional read() operation on the register R executed instantaneously at time t.

6.2 Impossibilities
In this section we prove that, contrary to the static Byzantine tolerant implemen-
tations of registers, in the case of MBF tolerant implementations a new operation,
namely maintenance(), must be implemented to prevent servers from losing the
current register value, independently from the system synchrony. Then, we show
that in an asynchronous system and in the presence of single Mobile Byzantine
Agent, there is no protocol Preg implementing a safe register and consequently a
regular register.

Theorem 12 Let n be the number of servers emulating a safe register and let
f be the number of Mobile Byzantine Agents affecting servers. Let AR and AW
be respectively the algorithms implementing the read() and the write() operation
assuming no communication between servers. If f > 0 then there exists no protocol
Preg = {AR,AW } implementing a safe register in any of the MBF models for
round-free computations.

Proof Let us suppose by contradiction that Preg = {AR,AW } is a correct protocol
implementing a safe register. If Preg is correct, it means that both AR and AW
implementing respectively the read() and the write() operation terminates i.e., they
stop to execute steps when the operation is completed. Let t be the time at which
the last operation op terminated and let us assume that no other operation is invoked
until time t′ > t. Let us note that during the time interval [t, t′] no algorithm is
running as all the operations issued in the past are completed. As a consequence,

6.2 Impossibilities 41

no correct server and no cured server will change its state. However, considering
that t′ does not depend on Preg (i.e., it is not controlled by the register protocol but
it is defined by clients) and considering the mobility of the Mobile Byzantine agents,
we may easily have a run where every correct server is faulty and its state can be
corrupted at some time in [t, t′].

Considering that Preg = {AR,AW } and that AR and AW are not running in
[t, t′] we can have that every server stores a non valid state at time t′ and the register
value is lost. As a consequence, AR has no way to read a valid value and the validity
property is violated. It follows that Preg is not correct and we have a contradiction.

�Theorem 12

From Theorem 12 it follows that, in presence of Mobile Byzantine Agents, a new
operation must be defined to allow cured servers to restore a valid state and avoid
the loss of the register value.

Definition 7 (maintenance() and AM) A maintenance() operation is an operation
that, when executed by a process pi, terminates at some time t leaving pi with a
valid state at time t (i.e., it guarantees that pi is correct at time t). A maintenance
algorithm AM is an algorithm that implements the maintenance() operation.

As a consequence, any correct protocol Preg must include one more algorithm
implementing the maintenance() operation1 so that the corollary follows:

Corollary 3 Let n be the number of servers emulating a register and let f be the
number of Mobile Byzantine Agents in the system. That is, if f > 0 then any correct
protocol Preg implementing a register in the round-free Mobile Byzantine Failure
model must include an algorithm AM (i.e., Preg = {AR,AW ,AM}).

Corollary 4 Let Preg = {AR,AW ,AM} be a protocol implementing a safe register
in the (∆S,CAM) Mobile Byzantine Failure Model. Let f > 0 be the number of
Byzantine Agents controlled by the external adversary. Any algorithm AM must
involve at least one communication step.

Proof The claim simply follows by considering that cured servers have a compro-
mised state thus, they need to receive information from correct servers in order to
be able to update their state to a valid one. �Lemma 4

6.2.1 Impossibilities in Asynchronous System

Lemma 5 Let Preg = {AR,AW ,AM} be a protocol implementing a safe register in
the (∆S,CAM) MBF model. Let f > 0 be the number of Byzantine Agents controlled
by the external adversary. Any algorithm AW and AR must involve at least one
send− reply (resp. request− reply) communication pattern (i.e., two communication
steps).

1Let us note that such an operation can also be embedded in the other algorithm. However, for
the sake of clarity, we will consider here only protocols where valid state recovery is managed by a
specific operation.

42 6. Distributed Registers in the Round-free Model

Proof Let us recall that read() and write() operations are issued by clients and
that the set of clients C and the set of servers S maintaining the register are disjoint.
As a consequence, when a client ci wants to write a new value v in the register, it
has necessarily to propagate it in the server set. The same happens when a client cj
wants to read: it has to ask servers the most up-to-date value. It follows that a send
(request) communication step is necessary.

Let us now show that the send communication step is not sufficient to provide a
correct implementation of AW and AR.

In oder to be correct, AW must ensure the termination property. As a conse-
quence, ci must be able to decide when it can trigger the write_return event. In
particular, this can be done when at least one correct server2 updated its internal
state.

Let us recall that (i) processes communicate only by exchanging messages, (ii)
clients (and in particular the writer) do not know the failure state of servers and (iii)
the system is asynchronous. As a consequence, the only way ci has to know that
at least one server sj updated its state is to wait for an acknowledgement from sj .
As a consequence, a second communication step, i.e., a reply step, is necessary for a
correct implementation of AW .

The same reasoning applies for the termination of the read() operation and the
claim follows.

�Lemma 5

Lemma 6 Let n be the number of servers emulating a safe register and let f be the
number of Byzantine agents in the (∆S,CAM) Mobile Byzantine Failure model. Let
t be a time instant at which f servers are faulty and f other servers are cured. Let
op be a maintenance() operation issued at time t. There does not exist a maintenance
algorithm AM able to terminate in asynchronous settings leaving cured servers with
a valid state.

Proof Consider an arbitrary cured server s in the set of cured servers that triggers
a maintenance operation op. Assume that op is implemented by an algorithm AM
in asynchronous settings. Two cases may happen: (i) there is no write() operation
concurrent with op or (ii) there is at least one concurrent write() operation.

• Case 1: @ write(v)||op. Considering that no write() is concurrent with op,
the only way s has to come back to be correct is to get the valid value from
correct servers. As a consequence, every AM must include a communication
step where correct servers send their stored value to the cured server s (see
Corollary 4). Let us recall that the system is asynchronous; thus it is not
possible to bound, a priori, the time needed by such messages to reach s. In
addition, s is aware just about its failure state but it is not aware about other
failure states (in other words, s cannot know, for any time t, the sets Co(t)
and B(t)).
As a consequence, the termination condition of AM will depend on messages
delivered by s and coming from other servers. Let us recall that cured servers

2The exact number of processes is given by the implementation of AW algorithm. In any case,
such number does not affect the proof and it must be at least one.

6.2 Impossibilities 43

have a non-valid state and, in order to terminate, AM must be able to decide
a valid value to update the state of the cured server.
Thus, the termination condition of AM must be able to select a valid value by
considering all the information received by s.
Let us now show that due to the Byzantine agents movement and the asyn-
chrony of the communication, we can always have an indistinguishability
situation between valid values and non valid values.
The indistinguishability comes from the following observations:

1. in every time interval [t0 + j∆, t0 + (j + 1)∆] (with j ∈ N) the number
of correct servers sending valid values is n − (j + 1)f . In fact, at any
movement, the adversary may decide to move the Byzantine agents on a
totally disjoint set of servers (corrupting each time f new servers) until
everyone is corrupted. Where t0 is the initial time where f servers and
all the other servers where correct.

2. messages may take an arbitrary time to reach their destination and, in the
worst case, all the messages sent in a long time period may be delivered
at the same time and not following the FIFO order.

3. when a server is affected by the Byzantine agents, it can send an arbitrary
number of messages with an arbitrary content. In particular, given the
sequence of messages sent by a server before its compromising, such
sequence can be permuted and sent again creating a symmetry condition.

As a consequence, each time that s evaluates a set of messages, it can always
have a symmetric set and it will be forced to wait forever. Hence, the mainte-
nance operation never terminates which contradicts the assumption. The same
scenario may happen for every cured server starting a maintenance() operation
and there is a time t′ such that Co(t′) = ∅ and none of the maintenance()
operation will terminate.

• Case 2: ∃ write(v)||op. Due to the asynchrony of the system, every write()
operation may be completed by interacting with servers always in the time
period in which they are faulty. As a consequence, the resulting computation
is equivalent to the one in which the write() never happened, we fall down in
the previous case and the claim follows.

�Lemma 6

Theorem 13 Let n be the number of servers emulating the register and let f be
the number of Byzantine agents in the (∆S,CAM) Mobile Byzantine Failure model.
If f > 0, then there exists no protocol Preg = {AR,AW ,AM} implementing a safe
register in an asynchronous system.

Proof Let us consider the time t0 at which the distributed computation starts. At
time t0, we have that f servers are affected by the mobile Byzantine agents (i.e.,
|B(t0)| = f) while all the others are correct (i.e., |Co(t0)| = n− f).

44 6. Distributed Registers in the Round-free Model

At time t0 + ∆, the adversary moves mobile agents and, in the worse case, such
agents affect a set of f servers completely disjoint from the previous one. Thus, in the
computation we have f servers controlled by the Byzantine agents (|B(t0 +∆)| = f) ,
f different servers entering in the cured state (|Cu(t0 + ∆)| = f)) and n− 2f correct
processes (|Co(t0 + ∆)| = n− 2f). Let us recall that, by assumption, cured servers
know about their state (see CAM model) and thus they can start executing the
maintenance operation running the maintenance algorithm AM . Each of the cured
servers at time t0 + ∆, s, will start a maintenance() operation. Following Lemma
6 there is no AM maintenance algorithm able to terminate leaving s with a valid
state under asynchronous communication model. As a consequence, the value of the
register is lost and no client is able to return a valid value of the register.

�Theorem 13

Note that the above result extends to any register specification and to any MBF
instance defined in Chapter 4 since (∆S,CAM) is the weakest adversary and safe is
the weakest specification.

Lemma 7 Let Preg = {AR,AW ,AM} be a protocol implementing a safe register
in the (∆S,CAM) Mobile Byzantine Failure Model. Let f > 0 be the number of
Byzantine Agents controlled by the external adversary. Any algorithm AW must
involve at least one communication step.

Proof Let opW be a write operation invoked by client ci and let v be the value to
be written (i.e., to be stored in the register). The claim simply follows by considering
that servers need to receive information from client ci in order to be able to store v.

�Lemma 7

Lemma 8 Let f > 0 be the number of Byzantine Agents controlled by the exter-
nal adversary. If n ≤ 3f then there exists no algorithm AM implementing the
maintenance() operation in the (∆S,CAM) MBF model.

Proof Let us suppose that AM does exists. Let E1 be an execution for f = 1 and
n = 3. Let us consider the generic time Ti when the mobile agent moves from s1
to s2 and ∆ > 0 arbitrarily big. At Ti, s0 is correct and stores v, s1 is cured and
finally s2 is Byzantine. s1 is aware to be in a cured state and starts a maintenance()
operation. In order to terminate it s1 needs to get values from other servers, s1 and
s2, to became correct (cf. Lemma 4). During such operation s1 gets v from s0 and
v′ 6= v from s2. By hypothesis AM does exist, so s1 become correct storing v. Let
us consider another execution E2, for f = 1 and n = 3. Let us consider the generic
time Ti when the mobile agent moves from s1 to s2 and ∆ > 0 arbitrarily big. At
Ti, s0 is correct and stores v′, s1 is cured and finally s2 is Byzantine. As in E1, s1 is
aware to be in a cured state so it starts the maintenance() operation. In order to
terminate it s1 needs to get values from others server, s0 and s2, to become correct
(cf. Lemma 4). During such operation s1 gets v′ from s0 and v 6= v′ from s2. By
hypothesis AM does exist, so s1 became correct storing v′. In both execution s1
terminates the maintenance() operation with different values, but reasoning on the
same set of values, both executions are indistinguishable leading to a contradiction.

6.2 Impossibilities 45

Considering that all Byzantine agents move in a coordinated way, for a generic f ≥ 1,
is it enough to consider S0, in place of s0, as a set of f correct servers, S1, in place
of s1, as a set of cured servers and finally S2, in place of s2 as a set of f Byzantine
servers and the result does not change. �Lemma 8

Lemma 9 Let f > 0 be the number of Byzantine Agents controlled by the exter-
nal adversary. If n ≤ 4f then there exists no algorithm AM implementing the
maintenance() operation in the (∆S,CUM) MBF model.

Proof Let us suppose that AM does exists. From Lemma 4 such algorithm has to
involve at least one information exchange among servers. Since those servers are
not aware about their state we assume that AM is triggered at some point by all
servers (not necessarily at the same time). We consider a scenario for f = 1 and
n = 4, {s0, s1, s2, s3}. Let Ti be the generic time when the mobile agent moves from
s2 to s3 and ∆ > 0 arbitrarily big. s2, is not aware to be in a cured state and at
some point it triggers the maintenance() operation. We consider two cases, a server
invoking AM may use or not the value of its internal state.

• Server uses its internal state.

– Let E1 be an execution, such that at Ti s0, s1 are correct and storing v, s2
is cured and s3 is Byzantine. s2 at some points starts the maintenance()
operation and gets v from s0, s1 and v′ 6= v from s3 and itself. By
hypothesis AM does exist, so s2 became correct and stores v.

– Let us consider another execution E2 such that at Ti s0, s1 are correct
and storing v′, s2 is cured and s3 is Byzantine. s2 at some points starts
the maintenance() operation and gets v′ from s0, s1 and v 6= v′ from s3
and itself. By hypothesis AM does exist, so s2 became correct storing v′.

In both execution s2 terminates the maintenance() operation with different
values, but values collected are the same in both executions, leading to a
contradiction.

• Server does not use its internal state.

– Let E1 be an execution, such that at Ti s0, s1 are correct and storing v,
s2 is cured and s3 is Byzantine. Correct server s0 at some points starts
the maintenance() operation and gets v from s1 and v′ 6= v from s2, s3.
By hypothesis AM does exist, so s0 is still correct and stores v (value
coming from the correct process).

– Let us consider another execution E2 such that at Ti s0, s1 are correct
and storing v′, s2 is cured and s3 is Byzantine. s0 at some points starts
the maintenance() operation and gets v′ from s1 and s3 and v 6= v′ from
s2. By hypothesis AM does exist, so s0 is still correct and stores v′ (value
coming from the correct process).

In both execution s0 terminates the maintenance() operation with different
values, but values collected are the same in both executions, leading to a
contradiction.

46 6. Distributed Registers in the Round-free Model

It follows that there exists no algorithm AM that solves the maintenance in the
(∆S,CUM) model if n ≤ 4f . �Lemma 9

6.3 Lower Bounds for the Synchronous MBF models
In this section we prove lower bounds with respect to the minimum fraction of correct
servers to implement safe registers in presence of mobile Byzantine failures 3. In
particular we first prove lower bounds for the (∆S,CAM) and (∆S,CUM) models
and then we extend those results to all the other models. The first observation that
raises is that in presence of mobile agents in the round-free models there are several
parameters to take into account with respect to the round-based model. Let us start
considering that the set of Byzantine servers changes its composition dynamically
time to time. This yields to the following question: does it impact on the read()
duration? Or, in other words, such operation has to last as less as possible or until it
eventually terminates? In this chapter we consider the read() operation duration as
a parameter itself, allowing us to easily verify when the variation of such parameter
has any impact on lower bounds. Here below the list of parameters we take into
account.

• servers knowledge about their failures state (CAM,CUM);

• the relationship between δ and ∆ (that states how many Byzantine servers
there may be during an operation);

• Tr, the read() operations duration;

• γ, the upper bound on the time during which a server can be in a cured state
(the design of an optimal maintenance() operation is out of the scope of this
thesis, thus we use such upper bound as another parameter).

Those parameters allow us to describe different failure models and help us to
provide a general framework that produces lower bounds for each specific instance
of the MBF models. In the sequel it will be clear that γ varies depending on the
coordinated/uncoordinated mobile agents movements (∆S, ITB, ITU). In other
words, in this parameter is hidden the movements model taken into account, so we
do not need to explicitly parametrize it.

Before to start let us precise that we do not consider the following algorithm
families: (i) full information algorithm families (processes exchange information at
each time instant); (ii) algorithms characterized by a read operation that does not
require a request-reply pattern; (iii) algorithms with non quiescent operation (the
message exchange triggered by an operation eventually terminates); and finally (iv)
algorithms where clients interact with each other. All results presented in the sequel
consider a families of algorithms such that previous characteristics do not hold.

The lower bounds proof leverages on the classical construction of two indistin-
guishable executions. The tricky part is to characterize the set of messages delivered
by a client from correct and incorrect servers depending of the read() operation

3Results on safe register can be directly extended to the other register specifications.

6.3 Lower Bounds for the Synchronous MBF models 47

duration. Let Tr, Tr ≥ 2δ be such duration (according to Lemma 5, each read()
operation requires at least a request-reply pattern). We first characterize the correct
and incorrect sets of messages, delivered during Tr time, with respect to ∆ and γ.

For clarity, in the sequel we note correct message/request/reply a message that
carries a valid value when it is sent (i.e., sent by a correct process). Otherwise, the
message is incorrect.

Corollary 3 proves that a protocol Preg implementing a regular register in a
mobile Byzantine setting in addition to the mandatory read() and write() operations
must include the additional maintenance operation. Let us recall that such operation
when executed by a process pi, whose internal state is clean from mobile agent
effects, terminates at some time t such that pi has a valid state at time t.

Such operation has a direct impact on the number of correct processes in any time
instant. For that reason it is important to characterize its duration, in particular its
upper bound in terms of time. The following definition defines γ, the upper bound
of the time during which a server can be in a cured state.

Definition 8 (Curing time, γ) We define γ as the maximum time a server can
be in a cured state. More formally, let Tc the time at which server sc is left by a
mobile agent, let opM the first maintenance operation that correctly terminates, then
tE(opM)− Tc ≤ γ.

Lemma 10 There no exist a maintenance() operation that correctly terminates in
less than δ time.

Proof The proof follows from Corollary 4 and considering that δ is the upper bound
on the message delivery delay. �Lemma 10

γ is strictly dependent on the considered Byzantine agent movement model
and as we state, the design of an optimal maintenance() operation in the different
models is not the scope of such work. For the sake of simplicity in the following
depicted figures we consider γ ≤ δ in the (∆S, ∗) models and γ ≤ 2δ in the others.
Intuitively, in the first model the time at which mobile agents move is known, thus
the maintenance() operation can start right after agents movement, thus it lasts just
the time necessary for messages exchange. In the other models such time it is not
known, thus we reasonably assume γ ≤ 2δ. It holds if servers exchange messages
each δ time periods or employ a request-reply pattern.

We define below a scenario of agents movements S∗, with respect to we build
the two indistinguishable executions for the lower bounds proof.

Definition 9 (Scenario S∗) Let S∗ be the following scenario: for each time Ti, i ≥
0 the affected servers are s(i mod n)f+1, . . . , s(i mod n)f+f .

Figure 6.1 depicts S∗. In particular, the red part is the time where f agents are
affecting f servers and the gray part is the time during which servers are in a cured
state.

Let us characterize the Preg protocol in the most general possible way. By
definition a register abstraction involves read() and write() operations issued by clients.
From Lemma 5, a read operation involves at least a request− reply communication

48 6. Distributed Registers in the Round-free Model

1f

2f

3f

4f

T0 T1 T2 T3 T4 T5 T6 T7 . . .

. . .

Figure 6.1. Representation of S∗ where mobile agents affect groups of f different servers
each Ti period. In particular here γ > ∆. The gray rectangles represent the time during
which servers are in a cured state.

pattern (i.e., two communication steps). Thus, given the system synchrony, a read()
operation opR lasts at least Tr ≥ 2δ time. Moreover we consider that a correct server
sends a reply message in two occasions: (i) after the delivery of a request message,
and (ii) right after it changes its state, at the end of the maintenance operation if
an opR is occurring. The latter case exploits the maintenance operation allowing
servers to reply with a valid value in case they were Byzantine at the beginning
of the read operation. Moreover we assume that in (∗, CAM) model servers in a
cured state do not participate to the read operation. Notice that those servers are
aware of their current cured state and are aware of their impossibility to send correct
replies. Even though those may seems not very general assumptions, let us just
consider that we are allowing servers to correctly contribute to the computation as
soon as they can and stay silent when they can not and under those assumptions
we prove lower bounds. Thus if we remove those assumptions the lower bounds
do not decreases. Scenario and protocol has been characterized. Now we aim to
characterize the set of servers, regarding their failure states, that can appear during
the execution of the protocol, in particular during the read() operation. Those sets
allow us to characterize correct and incorrect messages that a client delivers during
a read() operation.

Definition 10 (Failure State of servers in a time interval) Let [t, t + Tt] be
a time interval and let t′, t′ > 0, be a time instant. Let si be a server and statei be
si state, statei ∈ {correct, cured,Byzantine}. Let S(t′) be the set of servers si that
are in the state statei at t′, S(t′) ∈ {Co(t′), Cu(t′), B(t′)}. S̃(t, t+ Tr) is the set of
servers that have been in the state statei for at least one time unit during [t, t+ Tr].
More formally, S̃(t, t+ Tr) =

⋃
t≤t′≤t+Tr S(t′).

For instance, let opR be a read() operation, B̃(tB(opR), tE(opR)) is the set
containing all servers that have been Byzantine for at least one time unit during opR.
Similarly, C̃o(tB(opR), tE(opR)) and C̃u(tB(opR), tE(opR)) are the sets containing
all servers that have been Correct and Cured respectively, for at least one time unit
during opR. In the following, we define two additional sets: (i) the set of servers
that during opR contribute sending to the client both correct and incorrect replies
and (ii) the set of servers that during opR do not reply at all.

6.3 Lower Bounds for the Synchronous MBF models 49

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 6.2. Let [t, t+ Tr] be time a interval such that in the given scenario |B̃(t, t+ Tr)| =
MaxB̃(t, t+Tr). In particular we have that in the time interval [t′, t′+Tr], |B̃(t′, t′+Tr)| =
MaxB̃(t, t+Tr). While in the time interval [t′′, t′′+Tr], |B̃(t′′, t′′+Tr)| < MaxB̃(t, t+Tr).

Definition 11 (˜CBC(t, t+ Tr)) Let [t, t + Tr] be a time interval, ˜CBC(t, t + Tr)
denotes servers that during a time interval [t, t+ Tr] belong first to B̃(t, t+ Tr) or
Cu(t) (only in (∗, CUM) model) and then to Co(t+ δ, t+ Tr − δ) or vice versa.
In particular let us denote:

• B̃C(t, t+Tr) servers that during a time interval [t, t+Tr] belong to B̃(t, t+Tr)
or Cu(t) (only in (∗, CUM) model) and to C̃o(t+ δ, t+ Tr − δ).

• C̃B(t, t + Tr) servers that during a time interval [t, t + Tr] belong to C̃o(t +
δ, t+ Tr − δ) and to B̃(t, t+ Tr).

Definition 12 (Sil(t, t+ Tr)) Let [t, t+ Tr] be a time interval. Sil(t, t+ Tr) is the
set of servers in Cu(t, t+ TR − δ).

Servers belonging to Sil(tB(opR), tE(opR)) are servers that do no participate to
opR. In oder words, those servers in the worst case scenario became correct after
tE(opR)− δ, thus if they send back a correct reply it is not sure that client delivers
such reply before the end of Tr time. Now we can define the worst case scenarios for
the sets we defined so far with respect to S∗.

Definition 13 (MaxB̃(t, t+ Tr)) Let S be a scenario and [t, t+Tr] a time interval.
The cardinality of B̃S(t, t+Tr) is maximum with respect to S if for any t′, t′ > 0, we
have that |B̃S(t, t+Tr)| ≥ |B̃S(t′, t′+Tr)|. Then we call the value of such cardinality
as MaxB̃S(t, t+ Tr). If we consider only one scenario per time then we can omit the
subscript related to the scenario and write directly MaxB̃(t, t+ Tr).

This value quantifies in the worst case scenario how many servers can be Byzan-
tine, for at least one time unit, during a read() operation. Figure 6.2 depicts a
scenario where Tr = 3δ and during the time interval [t′, t′ + Tr] there is a maximum
number of Byzantine servers while in [t′′, t′′ + Tr] this number is not maximal.

Definition 14 (MaxSil(t, t+ Tr)) Let S be a scenario and [t, t+Tr] a time interval.
The cardinality of SilS(t, t+ Tr) is maximum with respect to S if for any t′, t′ ≥ 0
we have that |Sil(t, t+ Tr)| ≥ |Sil(t′, t′ + Tr)| and B̃(t, t+ Tr) = MaxB̃(t, t+ Tr).
Then we call the value of such cardinality as MaxSilS(t, t+ Tr). If we consider only

50 6. Distributed Registers in the Round-free Model

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 6.3. Let us consider the time instant t and the depicted scenario such that |Cu(t)| =
MaxCu(t). In particular, in this case |Cu(t′)| = MaxCu(t) and |Cu(t′′)| < MaxCu(t).

one scenario per time then we can omit the subscript related to the scenario and
write directly minSil(t, t+ Tr).

This value quantifies the maximum number of servers that begin in a cured state
a read() operation and are still cured after Tr−δ time. So that any correct reply sent
after such period has no guarantees to be delivered by the client and such servers
are assumed to be silent.

Definition 15 (MaxCu(t)) Let S be a scenario and t be a time instant. The
cardinality of CuS(t) is maximum with respect to S if for any t′, t′ ≥ 0, we have
that |CuS(t′)| ≤ |CuS(t)| and B̃(t, t+ Tr) = MaxB̃(t, t+ Tr). We call the value of
such cardinality as MaxCuS(t). If we consider only one scenario per time then we
can omit the subscript related to it and write directly MaxCu(t).

This value quantifies, in the worst case scenario, how many cured servers there
may be at the beginning of a read() operation. Figure 6.3 depicts a scenario where
at time t′ there are the maximum number of cured server while at t′′ this value is not
maximum. Notice that in such figure, in case of a shorter time interval [t′, t′ + 2δ] s0
would be silent.

Definition 16 (minC̃o(t, t+ Tr)) Let S be a scenario and [t, t + Tr] be a time
interval then minC̃S(t, t+Tr) denotes the minimum number of correct servers during
a time interval [t+ δ, t+ Tr − δ]. If we consider only one scenario per time then we
can omit the subscript related to it and write directly minC̃(t, t+ Tr).

Notice that we are not interested in servers that are always correct during the
read() operation opR, but in servers that surely can reply. A reply sent before
tE(opR)− δ is for sure delivered by client.

Figure 6.4 depicts a scenario where during the both intervals [t′, t′ + Tr] and
[t′′, t′′ + Tr] the number of correct servers is minimum.

Definition 17 (min ˜CBC(t, t+ Tr)) Let [t, t+Tr] be a time interval thenmin ˜CBC(t, t+
Tr) denotes the minimum number of servers that during a time interval [t, t+ Tr]
belong first to B̃(t, t + Tr) or Cu(t) (only in (ITB,CUM) model) and then to
Co(t+ δ, t+ Tr − δ) or vice versa and B̃(t, t+ Tr) = MaxB̃(t, t+ Tr).
In particular let us denote as:

6.3 Lower Bounds for the Synchronous MBF models 51

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 6.4. Let [t, t+Tr] be a time interval such that in the depicted scenario |C̃o(t, t+Tr)| =
minC̃o(t, t+ Tr). Then in both time intervals [t′, t′ + Tr] and [t′′, t′′ + Tr] we have that
|C̃o(t′, t′ + Tr)| = |C̃o(t′′, t′′ + Tr)| = minC̃o(t, t+ Tr).

s0

s1

s2

s3

t′ t′ + 3δ t′′ t′′ + 3δ

Figure 6.5. Let [t, t+Tr] a time interval such that in the depicted scenario ˜CBC(t, t+Tr) =
min ˜CBC(t, t+Tr). Then ˜CBC(t′, t′+Tr) > min ˜CBC(t, t+Tr) and ˜CBC(t′′, t′′+Tr) =
min ˜CBC(t, t+ Tr).

• minB̃C(t, t+ Tr) the minimum number of servers that during a time interval
[t, t+ Tr] belong to B̃(t, t+ Tr) or Cu(t) (only in (ITB,CUM) model) and to
C̃o(t+ δ, t+ Tr − δ).

• minC̃B(t, t+ Tr) the minimum number of servers that during a time interval
[t, t+ Tr] belong to C̃o(t+ δ, t+ Tr − δ) and to B̃(t, t+ Tr).

As we stated before, Byzantine servers set changes during the read() operation
opR, so there can be servers that are in a Byzantine state at tB(opR) and in a correct
state before tE(opR)− δ (cf. s0 during [t′, t′+ 3δ] time interval in Figure 6.5). Those
servers contribute with an incorrect message at the beginning and with a correct
message after. The same may happen with servers that are correct from tB(opR)
to at least tB(opR) + δ (so that for sure deliver the read request message and send
the reply back) and are affected by a mobile agent after tB(opR) + δ (cf. s0 during
[t′′, t′′ + 3δ] time interval in Figure 6.5).

Lemma 11 MaxB̃(t, t+ Tr) = (dTr∆ e+ 1)f .

Proof For simplicity let us consider a single agent mak, then we extend the same
reasoning to all the f agents. In [t, t+Tr] time interval, with Tr ≥ 2δ, mak can affect
a different server each ∆ time. It follows that the number of times it may change

52 6. Distributed Registers in the Round-free Model

server is Tr
∆ . Thus the affected servers are dTr∆ e plus the server that was affected at t.

Finally, extending the reasoning to f agents, MaxB̃(t, t+ Tr) = (dTr∆ e+ 1)f , which
concludes the proof. �Lemma 11

As we see in the sequel, the value of MaxB̃(t, t+ Tr) is enough to compute the
lower bound. Now we can define the worst case scenario for a read() operation with
respect to S∗. Let op be a read operation issued by ci. We want to define, among the
messages that can be deliver by ci during op, the minimum amount of messages sent
by server when they are in a correct state and the maximum amount of messages
sent by servers when they are not in a correct state.
In each scenario, we assume that each message sent to or by Byzantine servers is
instantaneously delivered, while each message sent to or by correct servers requires
δ time. Without loss of generality, let us assume that all Byzantine servers send
the same value and send it only once, for each period where they are Byzantine.
Moreover, we make the assumption that each cured server (in the CAM model) does
not reply as long as it is cured. Yet, in the CUM model, it behaves similarly to
Byzantine servers, with the same assumptions on message delivery time.

Definition 18 (MaxReplies_NCo(t, t+ Tr)k) Let MaxReplies_NCo(t, t+ Tr)k
be the multi-set maintained by client ck containing mij elements, where mij is the
i − th message delivered by ck and sent at time t′, t′ ∈ [t, t + Tr] by sj such that
sj /∈ Co(t′).

Considering the definitions of both MaxB̃(t, t + Tr) and MaxCu(t) the next
Corollary follows:

Corollary 5 In the worst case scenario, during a read operation lasting Tr ≥ 2δ
issued by client ci, ci delivers MaxB̃(t, t + Tr) incorrect replies in the (∗, CAM)
model and MaxB̃(t, t+ Tr) +MaxCu(t) incorrect replies in the (∗, CUM) model .

Definition 19 (minReplies_Co(t, t+ Tr)k) Let minReplies_Co(t, t+Tr)k be the
multi-set maintained by client ck containing mij elements, where mij is the i− th
message delivered by ck and sent at time t′, t′ ∈ [t, t+Tr] by sj such that sj ∈ Co(t′).

Note that correct replies come from servers that (i) have never been affected
during the time interval [t, t+Tr], or (ii) where in a cured state at t but do not belong
to the Sil(t, t + Tr) set, or (iii) servers that reply both correctly and incorrectly.
The next Corollary follows.

Corollary 6 In the worst case scenario, during a read operation lasting Tr ≥ 2δ
issued by client ci, ci delivers n−(MaxB̃(t, t+Tr)+MaxSil(t, t+Tr))+min ˜CBC(t, t+
Tr) correct replies in the (∆S,CAM) model and n− [MaxB̃(t, t+Tr)+MaxCu(t)]+
min ˜CBC(t, t+ Tr) correct replies in the (∆S,CUM) model.

In the following, given a time interval, we characterize correct and incorrect
servers involved in such interval. Concerning correct servers, let us first analyze
when a client collects x ≤ n different replies and then we extend such result to x > n.
Then we do the same for incorrect replies.

6.3 Lower Bounds for the Synchronous MBF models 53

Lemma 12 Let op be a read operation issued by client ci in a scenario S∗, whose
duration is Tr ≥ 2δ. Let x, x ≥ 2, be the number of messages delivered by ci during op.
If x ≤ n then minReplies_Co(t, t+ Tr)k contains replies from x different servers.

Proof Let us suppose that minReplies_Co(t, t+ Tr)k contains replies from x− 1
different servers (trivially it can not be greater than x). Without lost of generality,
let us suppose that ci collects replies from s1, . . . , sx−1. It follows that there is a
server si, i ∈ [1, x− 1] that replied twice and a server sx that did not replied. Let us
also suppose w.l.g. that there is one Byzantine mobile agent mak (i.e., f = 1). If
during the time interval [t, t+Tr] sx never replied, then sx has been affected at least
during [t+ δ, t+ Tr − δ − γ + 1]. This implies that Tr ≤ ∆ + 2δ + γ. Since si replies
twice then two scenarios are possible during op: (i) si was first affected by mak and
then became correct (so it replied once), then affected again and then correct again
(so it replied twice); (ii) si was correct (so it replied once), then it was affected by
mak and then correct again (so it replied twice). Let us consider case (ii) (case (i)
follows trivially). Since si had the time to reply (δ), to be affected and then became
correct (∆ + γ) and reply again (δ) this means that Tr > ∆ + 2δ + γ. A similar
result we get in case (i) where the considered execution requires a longer time. This
is in contradiction with Tr ≤ ∆ + 2δ + γ thus ci gets replies for x different servers.

�Lemma 12

If a client delivers n > x messages then we can apply the same reasoning of the
previous Lemma to the first chunk of n messages, then to the second chunk of n
messages and so on. Roughly speaking, if n = 5 and a client delivers 11 messages
from correct processes, then there are 3 occurrences of the message coming from the
first server and 2 occurrences of the messages coming from the remaining servers.
Thus the next Corollary directly follows.

Corollary 7 Let op be a read operation issued by client ci in a scenario S∗, op
duration is Tr ≥ 2δ. Let x, x ≥ 2, be the number of messages delivered by ci during op,
then minReplies_Co(t, t+Tr)k contains x mod n messages mij whose occurrences
is bxnc+ 1 and (n− x (mod n)) messages whose occurrences is bxnc.

The case ofMaxReplies_NCo(t, t+Tr)k directly follows from scenario S∗, since
by hypotheses mobile Byzantine agents move circularly from servers to servers, never
passing on the same server before having affected all the others. Thus, the following
corollary holds.

Corollary 8 Let op be a read operation issued by client ci in a scenario S∗, op
duration is Tr ≥ 2δ. Let x, x ≥ 2, be the number of messages delivered by ci
during op, then MaxReplies_NCo(t, t + Tr)k contains x mod n messages mij

whose occurrences is bxnc+ 1 and (n− x (mod n)) messages whose occurrences is
bxnc.

At this point we can compute how many correct and incorrect replies a client ck
can deliver in the worst case scenario during a time interval [t, t+Tr]. Trivially, ck in
order to distinguish correct and incorrect replies needs to get minReplies_Co(t, t+
Tr)k > MaxReplies_NCo(t, t+ Tr)k. It follows that the number of correct servers

54 6. Distributed Registers in the Round-free Model

nCAMLB
[2MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr)−min ˜CBC(t, t+ Tr)]f

nCUMLB
[2(MaxB̃(t, t+ Tr) +MaxCu(t, t+ Tr))−min ˜CBC(t, t+ Tr)]f

Table 6.1. How to compute the number of replicas in each model.

has to be enough to guarantee this condition. Table 6.1 follows directly from this
observation. In a model with b Byzantine (non mobile) a client ci requires to get
at least 2b+ 1 replies to break the symmetry and thus n ≥ 2b+ 1. In presence of
mobile Byzantine we have to sum also servers that do not reply (silent) and do not
count twice servers that reply with both incorrect and correct values.

Theorem 14 If n < nCAMLB
(n < nCUMLB

) as defined in Table 6.1, then there
not exists a protocol Preg solving the safe register specification in (∆S,CAM) model
((∆S,CUM) model respectively).

Proof Let us suppose that n < nCAMLB
(n < nCUMLB

) and that protocol Preg
does exist. If a client ci invokes a read operation op, lasting Tr ≥ 2δ time, if no write
operations occur, then ci returns a valid value at time tB(op). Let us consider an
execution E0 where ci invokes a read operation op and let 0 be the valid value at
tB(op). Let us assume that all Byzantine severs involved in such operation reply
once with 1. From Corollaries 5 and 6, ci collects MaxReplies_NCo(t, t + Tr)i
occurrences of 1 and minReplies_Co(t, t+ Tr)i occurrences of 0. Since Preg exists
and no write operations occur, then ci returns 0. Let us now consider a another
execution E1 where ci invokes a read operation op and let 1 be the valid value
at tB(op). Let us assume that all Byzantine severs involved in such operation
replies once with 0. From Corollaries 5 and 6 and Corollary 7 and Corollary 8, ci
collectsMaxReplies_NCo(t, t+Tr)i occurrences of 0 andminReplies_Co(t, t+Tr)i
occurrences of 1. Since Preg exists and no write operations occur, then ci returns 1.

From Lemmas 11 and using values in Table 6.1 we obtain following equations for
both models:

• (∆S,CAM):

– MaxReplies_NCo(t, t+ Tr)i= MaxB̃(t, t+ Tr) = (dTr∆ e+ 1)f
– minReplies_Co(t, t+ Tr)i= n− [MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr)] +
min ˜CBC(t, t+ Tr) =

[2(MaxB̃(t, t+ Tr)) +MaxSil(t, t+ Tr)−min ˜CBC(t, t+ Tr)]+

−[(MaxB̃(t, t+ Tr) +MaxSil(t, t+ Tr)) +min ˜CBC(t, t+ Tr)] =

MaxB̃(t, t+ Tr) = (dTr∆ e+ 1)f

• (∆S,CUM):

– MaxReplies_NCo(t, t+ Tr)i= MaxB̃(t, t+ Tr) +MaxCu(t) = (dTr∆ e+
1)f +MaxCu(t)

– minReplies_Co(t, t+Tr)i= n−[MaxB̃(t, t+Tr)+MaxCu(t)]+min ˜CBC(t, t+
Tr) =

6.3 Lower Bounds for the Synchronous MBF models 55

[2MaxB̃(t, t+ Tr) + 2MaxCu(t))−min ˜CBC(t, t+ Tr)]+

−[MaxB̃(t, t+ Tr) +MaxCu(t)] +min ˜CBC(t, t+ Tr) =

MaxB̃(t, t+ Tr) +MaxCu(t) = (dTr∆ e+ 1)f +MaxCu(t)

It follows that in E0 and E1 ci delivers the same occurrences of 0 and 1, both
executions are indistinguishable leading to a contradiction.

�Theorem 14

MaxReplies_NCo(t, t+ Tr)i and minReplies_Co(t, t+ Tr)i are equal indepen-
dently from the value assumed by Tr, the read() operation duration. From the
equation just used in the previous lemma the next Corollary follows.

Corollary 9 For each Tr ≥ 2δ if n > nCAMLB
(n > nCUMLB

) thenMaxReplies_NCo(t, t+
Tr)i < minReplies_Co(t, t+ Tr)i.

At this point we compute minCu(t), MaxSil(t, t+ Tr) and min ˜CBC(t, t+ Tr)
to finally state exact lower bounds depending on the system parameters, in particular
depending on ∆, γ and the servers awareness, i.e., (∗, CAM) and (∗, CUM).

Let us adopt the following notation. Given the time interval [t, t + Tr] let
{s1, s2, . . . , sb} ∈ B(t, t+ Tr) be the servers affected sequentially during Tr by the
mobile agent mak. Let {s−1, s−2, . . . , s−c} ∈ Cu(t) be the servers in a cured state at
time t such that s−1 is the last server that entered in such state and sc the first server
that became cured. Let tBB(si) and tEB(si) be respectively the time instant in
which si become Byzantine and the time in which the Byzantine agent left. tBCu(si)
and tECu(si) are respectively the time instant in which si become cured and the
time instant in which it became correct. Considering that mak moves each ∆ time
then we have that tBB(si−1) − tBB(si) = ∆ and tBCu(s−j) − tBCu(s−j+1) = ∆.
The same holds for the tE of such states. Moreover tBB(s1) = tBCu(s−1). Now we
are ready to build the read scenario with respect to S∗. In particular we build a
scenario for the (∆S,CAM) model and one for the (∆S,CUM) model. Intuitively,
the presence of cured servers do not have the same impact in the two models, thus in
the (∆S,CUM) model we maximize such number. Let [t, t+ 2δ] be the considered
time interval and let ε be a positive number arbitrarily smaller, then we consider in
the (∆S,CAM) scenarios t = tEB(s1)− ε (cf. Figure 6.6) and in the (∆S,CUM)
scenarios tBB(sb) = t+ 2δ − ε (cf. Figure 6.7).

In the sequel we use the notion of Ramp Function:

R(x) =
{
x if x ≥ 0
0 if x < 0

Lemma 13 Let us consider a time interval [t, t + Tr], Tr ≥ 2δ and an arbitrarily
small number ε > 0, then in fthe (∆S,CAM) model MaxCu(t) = R(dγ−∆+ε

∆ e).

Proof As we defined, s−1 is the most recent server that entered in a cured state,
with respect to the considered time interval. Intuitively each s−j is in Cu(t) if
tECu(s−j) > t. Considering that tECu(s−j)− tECu(s−j−1) = ∆ then the number

56 6. Distributed Registers in the Round-free Model

s−2=−c

s1

s2

s−1 s3=b

. . .t t+ 2δ

Figure 6.6. Representation of S∗ when we consider a (∆S,CAM) model, in particular
tEB(s1) = t+ ε, for ε > 0 and arbitrarily small.

s−2=−c

s1

s2

s−1 s3=b

. . .t t+ 2δ

Figure 6.7. Representation of S∗ when we consider a (∆S,CUM) model, in particular
tBB(sc) = t+ 2δ − ε, for ε > 0 and arbitrarily small.

of servers in a cured state at t is MaxCu(t) = d tECu(s1)−t
∆ e. 4 As we stated, for

(∗, CAM) models we consider scenarios in which t, the beginning of the considered
time interval, is just before tEB(s1). Thus given an arbitrarily small number ε > 0, let
t = tEB(s1)−ε. By construction we know that tBB(s1) = tEB(s1)−∆ = tBCu(s−1).
Substituting tBCu(s−1) = t+ ε−∆, since we consider γ the upper bound for the
curing time, then tECu(s−1) = t+ε−∆+γ . So finally,MaxCu(t) = d tECu(s1)−t

∆ e =
dγ−∆+ε

∆ e and since there can no be a negative result then MaxCu(t) = R(dγ−∆+ε
∆ e).

This concludes the proof. �Lemma 13

Lemma 14 Let us consider a time interval [t, t+Tr], Tr ≥ 2δ and an arbitrarily small
number ε > 0, then in the (∆S,CUM) model MaxCu(t) = R(dTr−ε−d

Tr
∆ e∆+γ

∆ e).

Proof As we defined, s−1 is the most recent server that entered in a cured state,
with respect to the considered interval. Intuitively, s−j is in Cu(t) if tECu(s−j) > t.
Considering that tECu(s−j) − tECu(s−j−1) = ∆ then the number of servers in a
cured state at t is MaxCu(t) = d tECu(s1)−t

∆ e. As we state, for (∗, CUM) models
we consider scenarios in which the end of the considered time interval, is just
after tBB(sb). Thus given an arbitrarily small number ε > 0, let tBB(sb) =
t+ Tr − ε. By construction we know that tBB(s1) = tEB(s1)−∆ = tBCu(s−1) and

4Consider Figure 6.6, s2 is the most recent server that entered in the cured state. This is the
server that spend more time in such state with respect to the others. It follows that other servers
are in a cured state if during this time interval there is enough time for a “jump”

6.3 Lower Bounds for the Synchronous MBF models 57

tBB(s1) = tBB(sb) − dTr∆ e∆ (cf. Lemma 11). Substituting and considering that
tECu(s−1) = tBCu(s−1)+γ) we get the following: tECu(s−1) = t+Tr−ε−dTr∆ e+γ.

Finally MaxCu(t) = d tECu(s1)−t
∆ e = dTr−ε−d

Tr
∆ e+γ

∆ e and since there can not be a

negative result then MaxCu(t) = R(dTr−ε−d
Tr
∆ e∆+γ

∆ e). This concludes the proof.
�Lemma 14

Lemma 15 Let us consider a time interval [t, t+Tr], Tr ≥ 2δ and an arbitrarily small
number ε > 0, then in the (∆S,CAM) model MaxSil(t, t+Tr) = R(dγ−∆+ε−Tr+δ

∆ e).

Proof As we defined, s−1 is the most recent server that entered in a cured
state, with respect to the considered interval. Intuitively, s−j is in Sil(t, t + 2δ)
if tECu(s−j) > Tr − δ. Considering that tECu(s−j)− tECu(s−j−1) = ∆ then the
number of servers in a silent state at t is MaxSil(t, t+ 2δ) = d tECu(s1)−Tr+δ

∆ e. As
we stated for (∆S,CAM) models we consider scenarios in which t, the beginning
of the considered time interval, is just before tEB(s1). Thus given an arbitrarily
small number ε > 0, let t = tEB(s1)− ε. By construction we know that tBB(s1) =
tEB(s1)−∆ = tBCu(s−1). Substituting tBCu(s−1) = t+ ε−∆, since we consider
γ the upper bound for curing time, then tECu(s−1) = t + ε −∆ + γ . So finally,
MaxSil(t, t+ Tr) = d tECu(s1)−Tr+δ

∆ e = dγ−∆+ε−Tr+δ
∆ e, then since there can not be a

negative result MaxSil(t, t+ 2δ) = R(dγ−∆+ε−Tr+δ
∆ e). �Lemma 15

Lemma 16 Let us consider a time interval [t, t+Tr], Tr ≥ 2δ and an arbitrarily small
number ε > 0, then in the (∆S,CUM) model MaxSil(t, t+Tr) = dTr−ε−d

Tr
∆ e∆+γ−δ
∆ e.

Proof As we defined, s−1 is the most recent server that entered in a cured state, with
respect to the considered interval. Intuitively, s−j is in Sil(t, t+ Tr) if tECu(s−j) >
Tr−δ. Considering that tECu(s−j)−tECu(s−j−1) = ∆ then the number of servers in
a silent state at t isMaxSil(t, t+Tr) = d tECu(s1)−Tr+δ

∆ e. As we stated for (∆S,CUM)
models we consider scenarios in which t+Tr, the end of the considered time interval,
is just after tBB(sb). Thus given an arbitrarily small number ε > 0, let tBB(sb) =
t+ Tr − ε. By construction we know that tBB(s1) = tEB(s1)−∆ = tBCu(s−1) and
tBB(s1) = tBB(sb) − dTr∆ e∆ (cf. Lemma 11). Substituting and considering that
tECu(s−1 = tBCu(s−1) + γ) we get the following: tECu(s−1 = t+Tr − ε−dTr∆ e+ γ.

Finally MaxSil(t, t+Tr) = d tECu(s1)−Tr+δ
∆ e = dTr−ε−d

Tr
∆ e+γ−Tr+δ

∆ e, then since there

can not be a negative result, MaxSil(t, t+Tr) = dTr−ε−d
Tr
∆ e∆+γ−Tr+δ

∆ e. �Lemma 16

Lemma 17 Let us consider a time interval [t, t+Tr], Tr ≥ 2δ then in the (∆S,CAM)
model. min ˜CBC = R(dTr∆ e − d

δ
∆e) +R(dTr−γ−Tr+δ∆ e).

Proof By definition min ˜CBC(t, t+ Tr) = minC̃B(t, t+ Tr) +minB̃C(t, t+ Tr).
- minC̃B(t, t+ Tr) is the minimum number of servers that correctly reply and then,
before t+ Tr are affected and incorrectly reply. Let us observe that a correct server
correctly reply if belongs to Co(t, t+ δ), it follows that servers in B̃(t, t+ δ) do not

58 6. Distributed Registers in the Round-free Model

correctly reply. Thus, minC̃B(t, t + Tr) = MaxB̃(t, t + Tr) −MaxB̃(t, t + δ). It
may happen that MaxB̃(t, t+ Tr) < MaxB̃(t, t+ Tr − δ), but obviously there can
no be negative servers, so we consider only non negative values, minC̃B(t, t+ Tr) =
R(MaxB̃(t, t+ Tr)−MaxB̃(t, t+ δ)).

- minB̃C(t, t + 2δ) is the minimum number of servers that incorrectly reply and
then become correct in time that the correct reply is delivered. A server is able to
correctly reply if it is correct before t + Tr − δ (the reply message needs at most
δ time to be delivered). Thus we are interested in servers that are affected by a
mobile agent up to t + Tr − γ − δ. For (∆, CAM) models we consider scenarios
in which t, the beginning of the considered time interval, is just before tEB(s1).
Thus given an arbitrarily small number ε > 0, let t = tEB(s1) − ε. In the time
interval [t, t + Tr − γ − δ] the number of the mobile agent “jumps” is given by
dTr−γ−δ∆ e Trivially, we can not have a negative number, so it becomes R(dTr−γ−δ∆ e).
Summing up min ˜CBC = R(dTr∆ e− d

δ
∆e) +R(dTr−γ−δ∆ e), which concludes the proof.

�Lemma 17

Lemma 18 Let us consider a time interval [t, t + Tr], Tr ≥ 2δ, let ε > 0 be an
arbitrarily small number. If maxCu(t) > 0 or γ > ∆ then in the (∆S,CUM) model
minC̃B = dTr−ε−δ∆ e otherwise minC̃B = R(MaxB̃(t, t+Tr)−MaxB̃(t, t+Tr− δ)).

Proof minC̃B(t, t + Tr) is the minimum number of servers that correctly reply
and then, before t + Tr are affected by a mobile agent and incorrectly reply. We
are interested in the maximum number of Byzantine servers in B(t, t+ Tr − δ), so
that the remaining ones belong to B(t+ Tr − δ, t+ Tr), which means that servers in
B(t+Tr−δ, t+Tr) are in Co(t, t+δ) (considering the scenario S∗). Thus, considering
that in the (∆, CUM) model we consider tBB(sb) = t+Tr− ε (ε > 0 and arbitrarily
small) then we consider the maximum number of “jumps” there could be in the time
interval [t + δ, t + Tr − ε]. Thus minC̃B(t, t + Tr) = d t+Tr−ε−t−δ∆ e = dTr−ε−δ∆ e. If
MaxCu(t) = 0 or γ > ∆ then it has no sense to consider the (∆S,CUM) worst
case scenario that aims to maximize cured servers. Thus in this case we consider the
(∆S,CAM) worst case scenario,minC̃B = R(MaxB̃(t, t+Tr)−MaxB̃(t, t+Tr−δ)),
concluding the proof. �Lemma 18

Lemma 19 Let us consider a time interval [t, t+Tr], Tr ≥ 2δ then in the (∆S,CUM)
model then if maxCu(t) > 0 min ˜CBC = dTr−ε−δ∆ e+R(dTr∆ e−d

γ−δ
∆ e)+(MaxCu(t)−

MaxSil(t, t+Tr)), otherwisemin ˜CBC assumes the same values as in the (∆S,CAM)
case.

Proof By definition min ˜CBC(t, t+ Tr) = minC̃B(t, t+ Tr) + minB̃C(t, t+ Tr).
From Lemma 18, if maxCu(t) > 0 or ∆ > γ then in the (∆S,CUM) model
minC̃B = dTr−ε−δ∆ e otherwise minC̃B = R(MaxB̃(t, t+Tr)−MaxB̃(t, t+Tr−δ)).
minB̃C(t, t+ Tr) is the minimum number of servers that incorrectly reply and then,
before t + Tr − δ become correct so that are able to correctly reply in time such
that their reply is delivered. In the (∆S,CUM) model servers may incorrectly reply
because affect by a mobile agent or because in a cured state. In the first case, a

6.3 Lower Bounds for the Synchronous MBF models 59

Table 6.2. Values for a general read() operation that terminates after Tr time.

MaxB̃(t, t+ Tr) MaxCu(t) MaxSil(t, t+ Tr)
(∆S,CAM) dTr∆ e+ 1 R(dγ−∆+ε

∆ e) R(dγ−∆+ε−Tr+δ
∆ e)

(∆S,CUM) dTr∆ e+ 1 R(dTr−ε−d
Tr
∆ e∆+γ

∆ e) dγ+δ−ε−dTr∆ e∆
∆ e

min ˜CBC(t, t+ Tr)
(∆S,CAM) R(dTr∆ e − d

δ
∆e) +R(dTr−γ−δ∆ e)

(∆S,CUM) dTr−ε−δ∆ e5+R(dTr∆ e − d
γ+δ
∆ e) + (MaxCu(t)−MaxSil(t, t+ Tr))

server is able to correctly reply if it become correct before t + Tr − δ (the reply
message needs at most δ time to be delivered). Thus we consider the maximum
number of servers that can be affected in the period t+ Tr − γ − δ, t+ Tr, which is
dγ+δ

∆ e. Thus, among the Byzantine servers (i.e., MaxB̃(t, t+T)) we consider servers
not affected in the time interval [t+ Tr − γ + δ, t+ Tr]. In other words such servers
have γ time to became correct and δ time to reply before the end of the operation.
ThusMaxB̃(t, t+Tr)−Max(t+Tr−γ+δ, t+Tr). Again we can not have a negative
number, so it becomes R(dTr∆ −

γ−δ
∆ e). Concerning servers that incorrectly reply

when in a cured state, we are interested in servers that correctly reply after in time
such that the reply is delivered by the client, i.e., they are not silent. This number
is easily computable, MaxCu(t) −MaxSil(t, t + Tr). Thus minB̃C(t, t + 2δ) =
(MaxCu(t) −MaxSil(t, t + Tr)). Summing up if maxCu(t) > 0 or ∆ > γ, then
min ˜CBC = dTr−ε−δ∆ e+R(dTr∆ e−d

γ−δ
∆ e)+(MaxCu(t)−MaxSil(t, t+2δ)), otherwise

min ˜CBC assumes the same values as in the (∆S,CAM) model, which concludes
the proof. �Lemma 19

In Table 6.2 are reported all the results found so far for (∆S, ∗) models.
Such results have been proved considering f = 1. Extending such results to

scenario for f > 1 is straightforward in the (∆S, ∗) model. The extension to f > 1
in the (ITB, ∗) and (ITU, ∗) models is less direct. What is left to prove is that
the results found for f = 1 can be applied to all other models in which mobile
agents move independently from each other. In the following Lemma we employ ∗ to
indicate that the result holds for ∗ assuming consistently the value CAM or CUM .

Lemma 20 Let n∗LB ≤ α∗(∆, δ, γ)f be the impossibility result holding in the (∆S, ∗)
model for f = 1. If there exists a tight protocol Preg solving the safe register for
n ≥ α∗(∆, δ, γ)f + 1 (f ≥ 1) then all the Safe Register impossibility results that hold
in the (∆S, ∗) models hold also in the (ITB, ∗) and (ITU, ∗) models.

Proof Let us consider the scenario S∗ for f = 1 and a read() operation time interval
[t, t+ Tr], t ≥ 0. Depending on the value of t there can be different (but finite) read
scenarios, rs1, rs2, . . . , rss. By hypothesis there exists Preg solving the safe register
for n ≥ α∗f(∆, δ, γ) + 1 then among the read scenarios RS = {rs1, rs2, . . . , rss} all
the possible worst case scenarios {wrs1, . . . , wrsw} ⊆ RS hold for n = α∗(∆, δ, γ)f
(meaning that Preg does not exist). We can say that those worst scenarios are
equivalent in terms of replicas, i.e., for each wsrk is it possible to build an impossibility
run if n = α∗(∆, δ, γ) but Preg works if n = α∗(∆, δ, γ)+1 (if we consider f = 1). Let
us now consider (∆S, ∗) for f > 1. In this case, mobile agents move all together, thus

60 6. Distributed Registers in the Round-free Model

s0

s1

s2

s3

t t+ 2δ

(a) (∆S,CAM) scenario.

s0

s1

s2

s3

s4

t t+ 2δ

(b) (∆S,CUM) scenario.

Figure 6.8. (∆S,CAM) and (∆S,CUM) scenarios considering 2δ ≤ ∆ < 3δ .

the same wrsk scenario is reproduced f times. For each wrsk scenario is it possible
to build an impossibility run if n = α∗(∆, δ, γ)f , i.e., α∗(∆, δ, γ)− 1 non Byzantine
servers are not enough to cope with 1 Byzantine server, then it is straightforward
that α∗(∆, δ, γ)− f non Byzantine servers are not enough to cope with f Byzantine
servers, the same scenario is reproduced f times.
In the case of unsynchronized movements (ITB and ITU) we consider ∆ = min
{∆1, . . . ,∆f}. Each mobile agent generates a different read scenarios, those scenario
can be up to f . As we just stated, if Preg exists, those worst case scenarios are
equivalent each others in terms of replicas. Since all the worst case scenarios
are equivalent in terms of replicas, thus impossibility results holding for mobile
agents moving together hold also for mobile agent moving in an uncoordinated way.

�Lemma 20

6.3.1 Examples

In this last part we see with some example how to compute the lower bounds for
some particular case.

If Figure 6.8 we consider 2δ ≤ ∆ < 3δ. In case (a) we consider the (∆S,CAM)
model. In such case we haveMaxB̃(t, t+2δ) = 2 (cf. Lemma 11),MaxCu(t) = 0 (cf.
Lemma 13), thus MaxSil(t, t+ 2δ) = 0 as well (cf. Lemma 15) and min ˜CBC = 0
(cf. Lemma 17). In particular, s0 and s1 incorrectly reply, contrarily to s2 and s3.
Thus, considering the reasoning in Theorem 14 we have that for n = 4 we can build
two indistinguishable executions. In case (b) we consider the (∆S,CUM) model. In
such case we have MaxB̃(t, t+ 2δ) = 2 (cf. Lemma 11), MaxCu(t) = 1 (cf. Lemma
14), MaxSil(t, t+ 2δ) = 0 (cf. Lemma 16) and min ˜CBC = 1 (cf. Lemma 19). s0,
s1 and s2 incorrectly reply, contrarily to s3 and s4. Moreover s2 is correct before
t+ δ, thus reply correctly as well.Thus, considering the reasoning in Theorem 14 we
have that for n = 5 we can build two indistinguishable executions.

If Figure 6.9 we consider δ ≤ ∆ < 2δ. In case (a) we consider the (∆S,CAM)
model. In such case we haveMaxB̃(t, t+2δ) = 3 (cf. Lemma 11),MaxCu(t) = 1 (cf.
Lemma 13), MaxSil(t, t+ 2δ) = 0 (cf. Lemma 15) and min ˜CBC = 1 (cf. Lemma

6.3 Lower Bounds for the Synchronous MBF models 61

s0

s1

s2

s3

s4

t t+ 2δ

(a) (∆S,CAM) scenario.

s0

s1

s2

s3

s4

s5

t t+ 2δ

(b) (∆S,CUM) scenario.

Figure 6.9. (∆S,CAM) and (∆S,CUM) scenarios considering δ ≤ ∆ < 2δ .

17). In particular, s0, s1 and s3 incorrectly reply, contrarily to s3 and s4. Moreover s2
is correct before t+δ, thus reply correctly as well. Thus, considering the reasoning in
Theorem 14 we have that for n = 5 we can build two indistinguishable executions. In
case (b) we consider the (∆S,CUM) model. In such case we haveMaxB̃(t, t+2δ) = 3
(cf. Lemma 11), MaxCu(t) = 1 (cf. Lemma 14), MaxSil(t, t+ 2δ) = 0 (cf. Lemma
16) and min ˜CBC = 2 (cf. Lemma 19). s1, s2, s3 and s4 incorrectly reply, contrarily
to s0 and s5. Moreover s4 is correct before t+ δ and s1 complete the maintenance()
operation before t + δ, thus both reply correctly as well. Thus, considering the
reasoning in Theorem 14 we have that for n = 6f we can build two indistinguishable
executions.

When we consider the model in which mobile agents are free to move we consider
γ ≤ 2δ. If Figure 6.10 we consider 2δ ≤ ∆ < 3δ and f = 2. In such case we have
MaxB̃(t, t + 2δ) = 2f = 4 (cf. Lemma 11), MaxCu(t) = 1f = 2 (cf. Lemma
13),MaxSil(t, t+ 2δ) = 0 (cf. Lemma 15) and min ˜CBC = 0 (cf. Lemma 17). Thus,
considering the reasoning in Theorem 14 we have that for n = 4f we can build two
indistinguishable executions. In this case we can see that the two mobile agents
generates two different read scenarios, but those scenarios are equivalent in terms of
replies. Let ma0 the mobile agent on s0 at time t and Let ma1 be the mobile agent
on s4 at time t. ma0 generates the following scenario: s0 and s1 incorrectly reply,
contrarily to s2 and s7 (that starts the maintenance() when s0 becomes Byzantine).
On the other side, ma1 generates the following read scenario: s4 and s5 incorrectly
replies, s3 is silent, but s5 correctly replies before to be affected and s6 correctly
replies as well.

In the remaining part of the Chapter we propose optimal solutions to solve the
Regular Register problem in the hierarchy of models we proposed (cf. Figure 4.8).
Notice that all those solutions are optimal with respect to the γ deriving from the
specific maintenance() operation employed, but we do not always have clues about
the optimality of such operation. Before to proceed, is it worthy to discuss the
relationship between the protocol structure and the MBF model considered. As we

62 6. Distributed Registers in the Round-free Model

s0

s1

s2

s3

s4

s5

s6

s7

t t+ 2δ

Figure 6.10. (ITB,CAM) scenario for 2δ ≤ ∆ < 3δ and f = 2.

will see, the read() and write() operations slightly change from a model to the next.
Informally speaking, such operations need to interact with a large enough fraction of
correct servers, the dimension of such fraction depends on δ,∆ and γ. What really
changes, from a model to the next, is the maintenance() operation. Indeed such
operation copes with mobile agent movements and allows cured servers to become
correct as soon as possible. In the next sections we will see how such operation has
to change with respect to the MBF failure model considered and consequently the
impact of γ in the protocols upper bounds we define.

6.4 Upper Bounds for the (∆S,CAM) Synchronous model

In this section, we present an optimal protocol Preg with respect to the number of
replicas, that implements a SWMR Regular Register in a round-free synchronous
system for (∆S,CAM) instance of the proposed MBF model. Our solution is based
on the following three key points: (1) we implement a maintenance() operation that
is executed periodically at each Ti = t0 + i∆ time (the time at which mobile agents
move is known). In this way, the effect of a Byzantine agent on a server disappears in
a bounded period of time; (2) we implement read() and write() operations following
the classical quorum-based approach. The size of the quorum needed to carry
on the operations, and consequently the total number of servers required by the
computation, is dependent by the time to terminate the maintenance() operation, δ
and ∆; (3) we define a forwarding mechanism to avoid that read() and write()
messages are “lost” by some server si due to a concurrent movement of the Byzantine
agent during such operations. Notice that when we say that a message is lost we
are referring to the following situation: a client send a message at time t, thus it is
delivered by all servers in a non Byzantine state in the time interval [t, t+ δ]. As

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 63

k = d 2δ
∆ e nCAM ≥ (k + 3)f + 1 #replyCAM ≥ (k + 1)f + 1 #echoCAM Tr d

k = 1 4f + 1 2f + 1 2f + 1 2δ 3
k = 2 5f + 1 3f + 1 2f + 1 2δ 3

Table 6.3. Parameters for PRreg Protocol in the (∆S,CAM) model for δ ≤ ∆ < 3δ.

a consequence, servers in B̃(t, t+ δ) may deliver such message when affected by a
mobile agent, so that, after the mobile agent move to another server there is not
trace of the delivered message. Thus we say that such message is lost.
Protocol Preg is presented in details for δ ≤ ∆ < 3δ (6.4.1). Then we present slight
modifications to apply to algorithms in both cases ∆ < δ (6.4.2) and ∆ > 3δ (6.4.3).
Finally are presented parametrized joint proofs for those three cases (6.4.4). For
simplicity we consider ∆ as a multiple of δ or vice versa when δ > ∆ and we use
k = d2δ

∆ e as a parameter. Roughly speaking k represents how many mobile agent
“jumps” there may be during a 2δ temporal window and k

2 how many “jumps” there
can be in a δ time period.

6.4.1 Preg Detailed Description for δ ≤ ∆ < 3δ

The protocol Preg for the (∆S,CAM) model is described in Figures 6.11 - 6.13,
which present the maintenance(), write(), and read() operations respectively. Pa-
rameters for such protocol are reported in Table 6.3 respect to k = d2δ

∆ e. nCAM is
the minimum number of required replicas, #replyCAM is the minimum number of
expected reply messages carrying the same value from #replyCAM different servers
and #echoCAM is the minimum number of echo messages carrying the same value
from #echoCAM different servers. Tr is the read() operation duration and d is the
number of values each server stores.

Local variables at client ci. Each client ci maintains a set replyi that is used
during the read() operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from
servers. In particular v is the value, sn is the associated sequence number and j is the
identifier of server sj that sent the reply back. Additionally, ci also maintains a local
sequence number csn that is incremented each time it invokes a write() operation
and is used to timestamp such operations monotonically.

Server side is more complex than client side. Servers, besides to store values
and provide them when required, have also to manage the maintenance operation.
As we proved in Theorem 12, such operation is necessary to cope with Byzantine
movements to do not lose the last written values in the register.
Local variables at server si. Each server si maintains the following local variables
(we assume these variables are initialized to zero, false or empty sets according their
type):

• Vi: an ordered set containing d tuples 〈v, sn〉, where v is a value and sn
the corresponding sequence number. Such tuples are ordered incrementally
according to their sn values. The function insert(Vi, 〈vk, snk〉) places the new
value vk with sequence number snk in Vi according to the incremental order

64 6. Distributed Registers in the Round-free Model

with respect to the sequence numbers. If there are more than d values, it
discards from Vi the value associated to the lowest sequence number.

• pending_readi: set variable used to collect identifiers of the clients that are
currently reading.

• curedi: boolean flag updated by the cured_state oracle. In particular, such
variable is set to true when si becomes aware of its cured state and it is reset
during the algorithm when si becomes correct.

• echo_valsi and echo_readi: two sets used to collect information propagated
through echo messages. The first one stores tuple 〈j, 〈v, sn〉〉 propagated by
servers just after the mobile Byzantine agents moved, while the second stores
the set of concurrently reading clients in order to notify cured servers and
expedite termination of read().

• fw_valsi: set variable storing a triple 〈j, 〈v, sn〉〉 meaning that server sj
forwarded a write message with value v and sequence number sn.

• just_correcti: boolean flag used to prevent servers, that were cured during the
previous maintenance() operation, to reset the auxiliary variables (echo_valsi,
echo_readi and fw_valsi listed before). In particular this variable is set to
true just after si becomes correct and it is reset during at the end of the next
maintenance() operation.

In order to simplify the code of the algorithm, let us define the following functions:

• select_d_pairs_max_sn(echo_valsi): this function takes as input the set
echo_valsi, selects all the tuples 〈v, sn〉 whose occurrence in echo_valsi is at
least #echoCAM = 2f + 1 and among those returns the d tuples (if exist) with
the highest sequence number.

• select_value(replyi): this function takes as input the replyi set of replies
collected by client ci and returns the pair 〈v, sn〉 occurring at least #replyCAM
times. If there are more pairs satisfying such condition, it returns the pair
containing the highest sequence number.

The maintenance() operation. Such operation is executed by servers periodically at
any time instant Ti = t0 + i∆. In the (∗, CAM) models servers knows when a mobile
agent leaves them, thus depending on such knowledge they execute different actions.
In particular, if a server si is not in a cured state then it broadcasts an echo message
carrying Vi and pending_readi sets. Moreover if si is not in a just_correcti case,
it empties fw_valsi and echo_valsi sets, meaning that there is not need to retrieve
lost values because si was not recently affected by a mobile agent.

If a server si is in a cured state it first cleans its local variables and then, after δ
time units, tries to update its state by checking the number of occurrences of each
pair 〈v, sn〉 received with echo messages. In particular, it updates Vi invoking the
select_d_pairs_max_sn(echo_valsi) function that populates Vi with up to d tuples
〈v, sn〉. If there are less than d tuples 〈v, sn〉, it means that there are concurrent

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 65

operation maintenance() executed every Ti = t0 + i∆ :
(1) curedi ← report_cured_state();
(2) if (curedi) then
(3) Vi ← ∅; echo_valsi ← ∅; echo_readi ← ∅; fw_valsi ← ∅;
(4) wait(δ);
(5) insert(Vi, select_d_pairs_max_sn(echo_valsi));
(6) curedi ← false;
(7) just_correcti ← true;
(8) for each (j ∈ (pending_readi ∪ echo_readi)) do
(9) send reply (i, Vi) to cj ;
(10) endFor
(11) else
(12) broadcast echo(i, Vi, pending_readi);
(13) if ¬(just_correcti)then
(14) fw_valsi ← ∅; echo_valsi ← ∅;
(15) else just_correcti ← false;
(16) endif
(17)endif
——————————————————————————————————

when echo (j, Vj , pr) is received:
(18) echo_valsi ← echo_valsi ∪ Vj ;
(19) echo_readi ← echo_readi ∪ pr;

Figure 6.11. AM algorithm implementing the maintenance() operation (code for server si)
in the (∆S,CAM) model for δ ≤ ∆ < 3δ.

write() operations updating the register value concurrently with the maintenance()
operation. For the moment, si considers 〈⊥, 0〉 as the pair associated to the value
that is concurrently written. At the end si assigns false to curedi variable, meaning
that it is now correct (has valid value to reply with) and can start to reply to clients
that are currently reading and assigns true to just_correcti variable, to avoid to
empty the auxiliary variables during the next maintenance() operation.

The write() operation. When the writer wants to write a value v, it increments
its sequence number csn and propagates v and csn to all servers. Then it waits for
δ time units (the maximum message transfer delay) before returning.

When a server si delivers a write message, it updates Vi invoking the function
insert() and forwards the message, through a write_fw(i, 〈v, csn〉), to all others
servers. This helps to cope with the message loss in case servers deliver such message
while they are affected by mobile Byzantine agents. In addition, it also sends a
reply() message to all clients that are currently reading (clients in pending_readi
set) to allow them to terminate their read() operation.

When si delivers a write_fw(j, 〈v, csn〉) message, it stores such message in
fw_valsi set. Such set is constantly monitored together with echo_valsi set to find
a couple 〈v, sn〉 occurring at least #replyCAM times. This continuous check enables
servers in a cured of just cured state to store the new value and reply to a reading
client as soon as possible.

The read() operation. When a client wants to read, it broadcasts a read() message
request to all servers and waits 2δ time (i.e., one round trip delay) to collect replies.
When it is unblocked from the wait statement, it selects a value v invoking the
select_value function on replyi set, sends an acknowledgement message to servers to

66 6. Distributed Registers in the Round-free Model

========= Client code ==========
operation write(v):
(1) csn← csn+ 1;
(2) broadcast write(v, csn);
(3) wait (δ);
(4) return write_confirmation;

========= Server code ==========
when write(v, csn) is received:
(5) insert(Vi, 〈v, csn〉);
(6) for each j ∈ (pending_readi ∪ echo_readi) do
(7) send reply (i, {〈v, csn〉});
(8) endFor
(9) broadcast write_fw(i, 〈v, csn〉);
—————————————————————————————————————

when write_fw(j, 〈v, csn〉) is received:
(10) fw_valsi ← fw_valsi ∪ {〈j, 〈v, csn〉〉};
—————————————————————————————————————

when ∃〈j, 〈v, sn〉〉 ∈ (fw_valsi ∪ echo_valsi) occurring at least #replyCAM times:
(11) insert(Vi, 〈v, sn〉);
(12) ∀j : fw_valsi ← fw_valsi \ {〈j, 〈v, ts〉〉};
(13) ∀j : echo_valsi ← echo_valsi \ {〈j, 〈v, ts〉〉};
(14) for each (j ∈ (pending_readi ∪ echo_readi)) do
(15) send reply (i, {〈v, sn〉}) to cj ;
(16) endFor

Figure 6.12. AW algorithm implementing the write(v) operation in the (∆S,CAM) model
for δ ≤ ∆ < 3δ.

inform that its operation is now terminated and returns v as result of the operation.
When a server si delivers a read(j) message from client cj it first puts the client

identifier in pending_readi set to remember that cj is reading and needs to receive
possible concurrent updates, then si checks if it is in a cured state and if not, it
sends a reply back to cj . Note that, the reply() message carries the set Vi, which
contains up to d tuples 〈value, ts〉.

As we said earlier, Vi may contains less than d values if si was affected by a
Byzantine agent when the last write() operations occurred. As soon as si retrieve
such values through the fw_valsi and echo_valsi sets, such values are sent back
to cj .

In any case, si forwards a read_fw message to inform other servers about cj
read request. This is useful in case some server missed the read(j) message as it
was affected by mobile Byzantine agent when such message has been delivered.

When a read_fw(j) message is delivered, cj identifier is added to pending_readi
set, as when the read request is just received from the client.

When a read_ack(j) message is delivered, cj identifier is removed from both
pending_readi and echo_readi sets as it does not need anymore to receive updates.

6.4.2 Preg for ∆ < δ

When ∆ < δ the previous protocol changes with respect to the maintenance()
operation. In this case, during such operation operation, mobile Byzantine agent
movements may occur. Informally the maintenance() operation could be run at each
Ti, but since Ti+1 − Ti < δ, then a new maintenance() would be started before the

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 67

========= Client code ==========
operation read():
(1) replyi ← ∅;
(2) broadcast read(i);
(3) wait (Tr);
(4) 〈v, sn〉 ← select_value(replyi);
(5) broadcast read_ack(i);
(6) return v;
———————————————————————–

when reply (j, Vj) is received:
(7) for each (〈v, sn〉 ∈ Vj) do
(8) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(9) endFor

========= Server code ==========
when read (j) is received:
(10) pending_readi ← pending_readi ∪ {j};
(11) if (¬curedi)
(12) then send reply (i, Vi);
(13) endif
(14) broadcast read_fw(j);
———————————————————————–

when read_fw (j) is received:
(15) pending_readi ← pending_readi ∪ {j};
———————————————————————–

when read_ack (j) is received:
(16) pending_readi ← pending_readi \ {j};
(17) echo_readi ← echo_readi \ {j};

Figure 6.13. AR algorithm implementing the read() operation in the (∆S,CAM) model
for δ ≤ ∆ < 3δ.

∆ ≤ δ nCAM ≥ (k + k
2 + 2)f + 1 #replyCAM ≥ (k + 1)f + 1 #echoCAM ≥ kf + 1 Tr d

δ
2 ≤ ∆ < δ 8f + 1 5f + 1 4f + 1 2δ 3

Table 6.4. Parameters for PRreg Protocol in the (∆S,CAM) model for ∆ < δ.

previous one terminate, so that the operation never terminate. This means that it
no possible to run a new maintenance() at each Ti. To overcome this problem we
introduce a new variable curing_statei that is used in place of curedi in the following
way. When curedi is set to true, then the maintenance() operation starts. To avoid
the run of a new operation too early (at the next Ti), curedi is set to false and
curing_statei to true. So that curing_statei is used during the read() operation to
avoid cured servers to reply when are storing any valid value. Variable counteri takes
the place of just_curedi. Basically, after the end of the maintenance() operation,
some value just written could be still missing, thus echo_valsi and fw_valsi can
not be emptied, in this case, for δ time after the end of the operation. counteri keeps
track of the number of maintenance() operations that occur during δ time. In Figure
6.14 and Figure 6.15 are reported, with slight modifications, the maintenance() and
read() operations respectively (write() operation is unchanged). In Table 6.4 are
listed the new parametrized values. In particular, in the second line there is an
example for δ

2 ≤ ∆ < δ. As we can see the number of replicas increases to cope with
the number of Byzantine servers that increases during a δ time period.

68 6. Distributed Registers in the Round-free Model

operation maintenance() executed every Ti = t0 + i∆ :
(1) curedi ← report_cured_state();
(2) if (curedi) then
(3) Vi ← ∅; echo_valsi ← ∅; echo_readi ← ∅; fw_valsi ← ∅;
(4) curing_statei ← true;
(5) curedi ← false;
(6) wait(δ);
(7) insert(Vi, select_d_pairs_max_sn(echo_valsi));
(8) curing_statei ← false;
(9) counteri ← k

2 ;
(10) for each (j ∈ (pending_readi ∪ echo_readi)) do
(11) send reply (i, Vi) to cj ;
(12) endFor
(13) elseIf ¬(curing_statei)
(14) broadcast echo(i, Vi, pending_readi);
(15) if counteri = 0 then
(16) fw_valsi ← ∅; echo_valsi ← ∅;
(17) else counteri ← counteri − 1;
(18) endif
(19)endif
——————————————————————————————————

when echo (j, Vj , pr) is received:
(20) echo_valsi ← echo_valsi ∪ Vj ;
(21) echo_readi ← echo_readi ∪ pr;

Figure 6.14. AM algorithm implementing the maintenance() operation (code for server si)
in the (∆S,CAM) model for ∆ < δ.

========= Client code ==========
operation read():
(1) replyi ← ∅;
(2) broadcast read(i);
(3) wait (2δ);
(4) 〈v, sn〉 ← select_value(replyi);
(5) broadcast read_ack(i);
(6) return v;
———————————————————————–

when reply (j, Vj) is received:
(7) for each (〈v, sn〉 ∈ Vj) do
(8) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(9) endFor

========= Server code ==========
when read (j) is received:
(10) pending_readi ← pending_readi ∪ {j};
(11) if (¬curing_statei)
(12) then send reply (i, Vi);
(13) endif
(14) broadcast read_fw(j);
———————————————————————–

when read_fw (j) is received:
(15) pending_readi ← pending_readi ∪ {j};
———————————————————————–

when read_ack (j) is received:
(16) pending_readi ← pending_readi \ {j};
(17) echo_readi ← echo_readi \ {j};

Figure 6.15. AR algorithm implementing the read() operation in the (∆S,CAM) model
for ∆ < δ.

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 69

∆ ≥ 3δ nCAM #replyCAM ≥ (k + 1)f + 1 #echoCAM Tr d
k = 1 3f + 1 2f + 1 2f + 1 3δ 4

Table 6.5. Parameters for PRreg Protocol in the (∆S,CAM) model for ∆ ≥ 3δ.

6.4.3 Preg for ∆ ≥ 3δ

For ∆ ≥ 3δ the protocol slightly changes with respect to the δ ≤ ∆ < 3δ protocol
(cf. 6.4.1), in particular the main changes are in the maintenance() operation. The
idea is the following, with respect to 6.4.1, nCAM is composed by f fewer correct
servers but a longer read() operation is employed. This gives to servers in a cured
state during a read() operation the time to become correct and contribute to such
operation. To cope with a fewer number of correct servers, in particular in the
forwarding mechanism and maintenance() operation, messages coming from cured
servers are ignored, which implies to wait the maitenance() termination (if a server
does not send an echo() message then is faulty or cured) to take any decision. In
Figure 6.16 and Figure 6.17 the maintenance() and the write() operation respectively.
The read() operation does not change, the only difference is the different values
assumed by Tr that according to Table 6.5 is 3δ.

For each server si there are the following changes:

• Vi dimension is d = 4 rather than d = 3;

• during the maintenance() operation fw_valsi are purged from values coming
from cured servers using the following function;

– delete_cured_values(echo_valsi, seti): this function takes as input echo_valsi
and seti set and removes from the latter all values coming from servers
that omit to send the echo() message.

• at this point in fw_valsi ∪ echo_valsi there can be at most f values coming
from Byzantine servers, then a value is chosen from such set if occurs at least
f + 1 = #echoCAM times and no decision are taken when the server is still in
a cured state, meaning that the delete_cured_values(echo_valsi, fw_valsi) and
delete_cured_values(echo_valsi, echo_valsi) functions have not been invoked
yet.

• there is no more need of just_curedi variable. This variable was used to avoid
to delete the fw_valsi ∪ echo_valsi sets after the end of the maintenance()
operation in case, before the beginning of such operation, a write() operation
occurred. To allows the cured server to get the value the forwarding mechanism
takes place. In this case, being ∆ ≥ 3δ the new maintenance() operation do no
begin before the end of the forwarding mechanism and thus there is no more
need to keep those values during more than one maintenance() operation.

For each client ci the only change concern the read() operation, that terminates
after 3δ time rather than 2δ time.

70 6. Distributed Registers in the Round-free Model

operation maintenance() executed every Ti = t0 + i∆ :
(1) curedi ← report_cured_state();
(2) if (curedi) then
(3) Vi ← ∅; echo_valsi ← ∅; echo_readi ← ∅; fw_valsi ← ∅;
(4) wait(δ);
(5) delete_cured_values(echo_valsi, echo_valsi);
(6) insert(Vi, select_d_pairs_max_sn(echo_valsi));
(7) delete_cured_values(echo_valsi, fw_valsi);
(8) curedi ← false;
(9) for each (j ∈ (pending_readi ∪ echo_readi)) do
(10) send reply (i, Vi) to cj ;
(11) endFor
(12) else
(13) broadcast echo(i, Vi, pending_readi);
(14)endif
——————————————————————————————————

when echo (j, Vj , pr) is received:
(15) echo_valsi ← echo_valsi ∪ Vj ;
(16) echo_readi ← echo_readi ∪ pr;

Figure 6.16. AM algorithm implementing the maintenance() operation (code for server si)
in the (∆S,CAM) model for ∆ ≥ 3δ.

6.4.4 Correctness (∆S,CAM)

Proofs for PRreg protocol are similar for all the three cases presented. Termination
property is guaranteed by the way the code is designed, after a fixed period of time
all operations terminate. Validity property is proved with the following steps:

• 1. maintenance() operation works (i.e., at the end of the operation n−f servers
store valid values). In particular, for a given value v stored by #echo correct
servers at the beginning of the maintenance() operation, there are n−f servers
that may store v at the end of the operation;

• 2. given a write() operation that writes v at time t and terminates at time
t+ δ, there is a time t′ > t+ δ after which #reply correct servers store v.

• 3. at the next maintenance() operation after t′ there are #reply − f = #echo
correct servers that store v, for step (1) this value is maintained.

• 4. the validity follows considering that the read() operation is long enough to
include the t′ of the last written value before the read() and V is big enough
to do not be full filled with new values before t′.

Those steps are used along all the chapter for all the algorithms we present.
We now show that the termination property is satisfied i.e, that read() and

write() operations terminates. Due to the algorithm implementation, such property
is independent from the specific instance of the MBF model considered.
Notice, from now on we refer to the protocol code lines in 6.4.1, for the others
instances (δ > ∆ 6.4.2 and ∆ ≥ 3δ 6.4.3) we point out code lines when it is necessary.

Lemma 21 If a correct client ci invokes write(v) operation at time t then this
operation terminates at time t+ δ.

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 71

========= Client code ==========
operation write(v):
(1) csn← csn+ 1;
(2) broadcast write(v, csn);
(3) wait (δ);
(4) return write_confirmation;

========= Server code ==========
when write(v, csn) is received:
(5) insert(Vi, 〈v, csn〉);
(6) for each j ∈ (pending_readi ∪ echo_readi) do
(7) send reply (i, {〈v, csn〉});
(8) endFor
(9) broadcast write_fw(i, 〈v, csn〉);
—————————————————————————————————————

when write_fw(j, 〈v, csn〉) is received:
(10) fw_valsi ← fw_valsi ∪ {〈j, 〈v, csn〉〉};
—————————————————————————————————————

when ∃〈j, 〈v, sn〉〉 ∈ (fw_valsi ∪ echo_valsi) occurring at least #echoCAM times ∧¬(curedi):
(11) insert(Vi, 〈v, sn〉);
(12) ∀j : fw_valsi ← fw_valsi \ {〈j, 〈v, ts〉〉};
(13) ∀j : echo_valsi ← echo_valsi \ {〈j, 〈v, ts〉〉};
(14) for each (j ∈ (pending_readi ∪ echo_readi)) do
(15) send reply (i, {〈v, sn〉}) to cj ;
(16) endFor

Figure 6.17. AW algorithm implementing the write(v) operation in the (∆S,CAM) model
for ∆ ≥ 3δ.

Proof The claim follows by considering that a write_confirmation event is returned
to the writer client ci after δ time, independently of the behavior of the servers (see
lines 3-4, Figure 6.12). �Lemma 21

Lemma 22 If a correct client ci invokes read() operation at time t then this operation
terminates at time t+ Tr.

Proof The claim follows by considering that a read() returns a value to the client
after 2δ time, independently of the behavior of the servers (see lines 12-15, Figure
6.13). �Theorem 22

Theorem 15 (Termination) If a correct client ci invokes an operation, ci returns
from that operation in finite time.

Proof The proof follows from Lemma 21 and Lemma 22. �Theorem 15

Notice, in the following, when not explicitly defined, we always consider as
hypothesis that nCAM follows values defined in Tables 6.3, 6.4 and 6.5.

Lemma 23 (Step 1) Let v be the value stored at #echoCAM correct servers sj ∈
Co(Ti), such that v ∈ Vj∀sj ∈ Co(Ti). Then ∀sc ∈ Cu(Ti) v is returned by
the function select_d_pairs_max_sn(echo_valsi) at Ti + δ (i.e., at the end of the
maintenance() operation).

72 6. Distributed Registers in the Round-free Model

Proof By hypotheses at Ti there are #echoCAM correct servers sj storing the same
value v in Vj and running the correct code. Non faulty servers run code in Figure 6.11.
In particular each correct server broadcasts a echo() message with attached the
content of Vj (line 11) while each server si ∈ Cu(T1) waits δ time (line 4) to gather
all the echo() messages. Since those servers are #echoCAM then after δ time all non
Byzantine servers collect #echoCAM occurrences of all correct values in Vj . Thus all
cured servers get v when invoke the function select_d_pairs_max_sn(echo_valsi).
To conclude, at the beginning of the maintenance() operation the echo_vals set is
reset. During such operation there are at most 2δ

∆ = kf Byzantine servers (servers
just affected and servers affected in the previous δ time period, that can send an
incorrect echo() message. When 0 < ∆ ≤ 3δ, #echoCAM = kf + 1 > kf then
Byzantine servers are not able to force cured servers to chose a never written or
older value. The same reasoning holds for ∆ ≥ 3δ considering that, contrarily to
the previous case, we remove values coming from Byzantine servers affected before
the maintenance() operation (cf. Figure 6.16 line 6), thus cured servers have to cope
only with f Byzantine servers, being #echoCAM = f + 1 > f then Byzantine servers
may not force the cured servers to chose a never written or older value, concluding
the proof. �Lemma 23

In the next lemma we prove that, thanks to the forwarding mechanism, after
a shorter time, Tr after the end of the write() operation, there are enough servers
storing the last written value to allow a read() operation to return it. We refer to Tr,
which is the read() duration since this time is strictly related to the availability of
the last written value to be read. This is always true except for ∆ ≥ 3∆. Looking
at Figure 6.20 is it clear that during each maintenance() operation there are never
#replyCAM servers. Now it should be clear why Tr in this case is longer, to allows
cured servers to become correct and reply.

Lemma 24 (Step 2) Let opW be a write(v) operation invoked by a client ck at time
tB(opW) = t then at time t+Tr there are at least #replyCAM servers sj ∈ Co(t+2δ)
such that v ∈ Vj.

Proof Let us proceed by construction. We first consider how many correct servers
are storing v at t+δ (the end of opW , cf. Lemma 21), then we evaluate this number at
time t+Tr. Due to the communication channel synchrony, the write messages from
ck are delivered by non faulty servers within the time interval [t, t+δ]; any non faulty
server in the time interval [t, t+ δ] executes the correct algorithm code. Thus, each
sj delivers the write message and executes line 5 in Figure 6.12, storing v in Vj . For
Lemma 11 in the [t, t+ δ] time interval there are maximum 2δ

∆ + 1 = k+ 1 Byzantine
servers, thus at t + δ v is stored by at least n − (k + 1)f = (k + 1)f + 1 correct
servers. For clarity let us now consider separately the three cases: (i) 0 < ∆ < 2δ,
(ii) 2δ ≤ ∆ < 3δ and (iii) ∆ ≥ 3δ. Let us remember that Tr = 2δ in case (i) and
case (ii) and Tr = 3δ in case (iii).

case (i) 0 < ∆ < 2δ, k ≥ 1 (cf. Figure 6.18), at t + δ there are (k + 1)f + 1 =
#replyCAM correct servers storing v. We have to prove that despite a Byzantine
movement Ti ∈ [t+ δ, t+ 2δ] (at Ti there are #replyCAM − f = #echoCAM correct
servers storing v) at time t + 2δ there are #replyCAM correct servers storing v.

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 73

Those #replyCAM correct servers may deliver the write() message from ck before
of after Ti−1. Consequently they can send the WRITE_FW() (or echo()) message
before of after Ti. In the first case v is insert in the V set (Figure 6.12 line 5)
and at the next maintenance() operation, at Ti, v is in the echo() message (Figure
6.11 line 12). In the second case, when the write() message from ck is delivered
by servers in C̃o(t, t+ δ) after Ti , the WRITE_FW() message is sent by servers
in the time interval [Ti, tE(op)] (Figure 6.12 line 9). Since a message is delivered
by δ time, then by tE(op) + δ = t+ 2δ any server has enough occurrences of v in
the fw_valsi ∪ echo_valsi set, line 15 Figure 6.12 is executed and v is stored in
V . Thus by this time, all servers that are no Byzantine during [Ti, tE(opW) + δ]
(i.e.,n− f > #replyCAM) store v.

case (ii) 2δ ≤ ∆ < 3δ , k = 1, being ∆ ≥ 2δ then during a 2δ time interval
can occur only one Byzantine movement, cf. Figure 6.19. Let be Ti the time of such
movement, there are two cases: (a) Ti ∈ [t, t + δ] and case (b) Ti ∈ [t + δ, t + 2δ].
In case (a), at t+ δ there are (k + 1)f + 1 = 2f + 1 correct servers storing v and
there are not further movements up to t+ 2δ. To completeness, at t+ 2δ, thanks to
the forward mechanism shown in case (i), servers that were in B(t) are now storing
v as well. Thus at t+ 2δ there are at least 3f + 1 > #replyCAM servers storing v.
Finally, case (b), since Ti ∈ [t+ δ, t+ 2δ] then Ti /∈ [t, t+ δ] so that at t+ δ there
are n− f = 3f + 1 correct servers storing v. At t+ 2δ, due to Byzantine movements
in Ti, there are 2f + 1 = #replyCAM servers storing v.

case (iii) ∆ ≥ 3δ, being ∆ ≥ 3δ then during a Tr = 3δ time interval can oc-
cur only one Byzantine movement, cf. Figure 6.20. Let be Ti the time of such
movement, there are two cases: (a) Ti ∈ [t, t + δ] and case (b) Ti ∈ [t + δ, t + 3δ].
In case (a), at t + δ there are f + 1 correct servers storing v and there are not
further movements up to Ti + 3δ. As for case (i) those f + 1 correct servers may
deliver the write() message from ck before of after Ti. Consequently they can send
the WRITE_FW() (or echo()) message before of after Ti. In the first case v
is insert in the V set (Figure 6.17 line 5) and at the next maintenance() operation,
at Ti, v is in the echo() message (Figure 6.16 line 13). In the second case, when
the write() message from ck is delivered by servers in C̃o(t, t + δ) after Ti , the
WRITE_FW() message is sent by servers in the time interval [Ti, tE(op)] (Figure
6.17 line 9). Since a message is delivered by δ time, then by tE(op) + δ = t+ 2δ any
server has f + 1 occurrences of v in the fw_valsi ∪ echo_valsi sets, and after Ti + δ
values coming from cured servers are removed, thus line 11 is executed and v is stored
in V . Thus by this time, all servers that are no Byzantine during [Ti, tE(opW) + δ]
(i.e.,#replyCAM), store v.
Finally, case (b), since Ti ∈ [t+ δ, t+ 3δ] then Ti /∈ [t, t+ δ] so that at t+ δ there
are n− f = 2f + 1 correct servers storing v. At t+ 2δ, due to Byzantine movements
in Ti, there are f + 1 = #echoCAM servers storing v and for Lemma 23 from time
Ti + δ ≤ t+ 3δ there are #replyCAM servers storing v.

To conclude the proof, let us consider that cured servers reset the fw_vals and
echo_vals when they begin the maintenance() operation and in Tr = 2δ time there
are not enough Byzantine servers to force a cured server to store in V a never

74 6. Distributed Registers in the Round-free Model

s0

s1

s2

s3

s4

s5

write()

TiTi+1

twC

Figure 6.18. Blue arrows are the write() message delivery, green arrows are the
write_fw() messages and orange arrows are the echo() messages sent.

written value. If Tr = 3δ we have that messages coming from cured servers (and
thus servers that were previously Byzantine) are ignored (Figure 6.16 line 5 and line
7). �Lemma 24

For simplicity, for now on, given a write() operation opW we call tB(opW) + Tr =
twC the completion time of opW , the time at which there are at least #replyCAM
servers storing the value written by opW .

Lemma 25 (Step 3) Let opW be a write() operation occurring at tB(opW) = t and
let v be the written value and twC its completion time. Then if there are no other
write() operations after opW , the value written by opW is stored by all correct servers
forever.

Proof Let Ti be the time of the first Byzantine agent movement after twC , let us
consider the same cases as in Lemma 24: (i) 0 < ∆ < 2δ, (ii) 2δ ≤ ∆ < 3δ and (iii)
∆ ≥ 3δ.

case (i) 0 < ∆ < 2δ, for Lemma 24, at t + Tr = t + 2δ = twC there are
n−f > #replyCAM = (k+1)f+1 servers storing v. Thus at time Ti, due to Byzantine
movements, there are at least n− 2f ≥ #relyCAM servers storing v and performing
the maintenance() operation. For Lemma 23 at the end of maintenance() operation
all cured servers, when invoke select_d_pairs_max_sn(echo_valsi) returns v. By
hypothesis there are no concurrent write() operation, thus all those servers store v.
When ∆ ≥ δ, at the end of this maintenance() operation there are n−f ≥ #replyCAM
servers storing v, whose became n− 2f ≥ #replyCAM ≥ #echoCAM at Ti+1, again,
applying Lemma 23, at the end of maintenance() operation there are n− f correct
servers storing v. This reasoning can be iterated forever. When ∆ < δ before the
end of the maintenance() other movements occur. In particular in δ time may occur
d δ∆e = k

2 = k′ movements. Thus each time there are up to f servers that lose v. This

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 75

s0

s1

s2

s3

s4

write()

Ti

twC

s0

s1

s2

s3

s4

write()

Ti

twC

Figure 6.19. Scenario representing case (a) and case (b) for δ ≤ ∆ < 3δ. Blue arrows are
the write() message delivery, green arrows are the write_fw() messages sent.

s0

s1

s2

s3

write()

Ti

twC

s0

s1

s2

s3

write()

Ti
twC

Figure 6.20. Scenario representing case (a) and case (b) for ∆ > 3δ. Blue arrows are the
write() message delivery, green arrows are the write_fw() messages sent.

76 6. Distributed Registers in the Round-free Model

is true for k′ times. At time Ti+k′ > Ti + δ, servers that executed the maintenance()
operation at Ti, for Lemma 23 are now able to select v, and since there a no write()
operations, v is stored in Vj . Thus, at time Ti+k′ there are n−(k′−1)f servers storing
v since Ti and f servers that terminate the maintenance() operation started at Ti. So
there are n−(k′−1)f+f = n−k′f = (k+k′+2)f+1−k′f = (k+1)f+1 ≥ #replyCAM
servers storing v. From now on, at each Tj there are up to f servers that lose v and
f servers that recover it, thus v is always stored at all correct servers.

case (ii) 2δ ≤ ∆ < 3δ, case (a) Ti−1 ∈ [t, t + δ], from Lemma 24 at time
twC there are 3f + 1 correct servers storing v. Using the same reasoning as in case
(i), at Ti there are 2f + 1 = #echoCAM = #replyCAM correct servers storing v, by
hypothesis there are no further write() operation, thus for Lemma 23, at the end of
the maintenance() operation there are n− f ≥ 3f + 1 ≥ #replyCAM correct servers
storing v. Applying the same iterative reasoning as in case (i) we have that v is
stored in all correct servers forever.
case (b) Ti−1 ∈ [t + δ, t + 2δ], as show in Lemma 24, at t + δ there are n − f
correct servers storing v. Thus at Ti there are n− 2f ≥ #replyCAM ≥ #echoCAM
correct servers storing v. By hypothesis there are no further write() operations, so
we can apply Lemma 23 and at the end of the maintenance() operation there are
n− f ≥ #replyCAM correct servers storing v. Applying the same iterative reasoning
as in case (i) we have that v is stored in all correct servers forever.

case (iii) ∆ ≥ 3δ. From Lemma 24 at time twC there are n − f correct servers
storing v. At the next maintenance() operation those servers are n−2f = #echoCAM ,
for Lemma 23 those servers are enough to correctly terminate the maintenance()
operation. Thus, before next mobile agent movements, there are n−f correct servers
storing v and again this reasoning can be iterated forever concluding the proof.

�Lemma 25

Notice, for ∆ ≥ 3δ case, contrarily to other cases, a value v is present in #reply
correct servers only from the end of the maintenance() time to the next mobile agent
movement. In other words, there is a period of δ time in which is not possible to
read(), to cope with that the read() operation lasts 3δ time rather than 2δ.

Lemma 26 (Step 3) Let opW0 , opW1 , . . . , opWq−1 , opWq , opWq+1 , . . . be the sequence
of write() operations issued on the regular register. Let us consider a particular opWq ,
let v be the value written by opWq and let twCk be its completion time. Register
stores v (there are at least #replyCAM correct servers storing it) up to time at least
tBWq+d.

Proof The proof simply follows considering that:

• for Lemma 25 if there are no more write() operation then v, after twC , is in
the register forever.

• any new written value is store in an ordered set V (cf. Figure 6.12 line 5)
whose dimension is d.

• write() operations occur sequentially.

6.4 Upper Bounds for the (∆S,CAM) Synchronous model 77

It follows that after the beginning of d write() operations, opWq+1 , . . . , opWq+d , v it
may be no more stored in the regular register. �Lemma 26

Considering values in Tables 6.3, 6.4 and 6.5, we always have that if 0 < ∆ < 3δ
then n − B̃(t, t + δ) ≥ #replyCAM . We can rewrite it as nCAM − (d δ∆e + 1)f ≥
#replyCAM .

• δ ≤ ∆ < 3δ, Table 6.3. (k + 3)f + 1− 2f = (k + 1)f + 1;

• ∆ ≤ δ, Table 6.4. (k + k
2 + 2)f + 1− (k2 + 1)f = (k + 1)f + 1 6.

Theorem 16 (Step 4.) Any read() operation returns the last value written before
its invocation, or a value written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval
[tB(opR), tB(opR) + Tr − δ]. Since such operation lasts Tr, the reply messages sent
by correct servers within tB(opR) + Tr − δ are delivered by the reading client. For
0 < ∆ < 3δ during [t, t+ δ] time interval there are n− k

2 − 1 ≥ #replyCAM correct
servers that have the time to deliver the read request and reply. For ∆ ≥ 3δ, there is
a δ time period in which a mobile agent movement occurs. But in this case Tr = 3δ,
thus during such operation there are the remaining 2δ time during which there are
#reply correct servers that reply. Now we have to prove that what those correct
servers reply with is a valid value. There are two cases, opR is concurrent with some
write() operations or not.
- opR is not concurrent with any write() operation. Let opW be the last write()
operation such that tE(opW) ≤ tB(opR) and let v be the last written value. For
Lemma 25 after the write completion time twC there are #replyCAM correct servers
storing v. Since tB(opR) + Tr − δ ≥ twC , then there are #replyCAM correct servers
replying with v. So the last written value is returned.
- opR is concurrent with some write() operation. Let us consider the time
interval [tB(opR), tB(opR) + Tr − δ]. In such time there can be at most d− 1 write()
operations7. For Lemma 26 the last written value before tB(opR) is still present in
#replyCAM correct servers. Thus at least the last written value is returned. To
conclude, for Lemma 11, during the read() operation there are at most (k + 1)f
Byzantine servers, being #replyCAM > (k + 1)f then Byzantine servers may not
force the reader to read another or older value, if an older values has #replyCAM
occurrences the one with the highest sequence number is chosen. �Theorem 16

Theorem 17 Let n be the number of servers emulating the register and let f be the
number of Byzantine agents in the (∆S,CAM) round-free Mobile Byzantine Failure
model. If n = nCAM according to Tables 6.3 - 6.5, then Preg instances (cf. 6.4.1,
6.4.2 and 6.4.3) implement a SWMR Regular Register in the (∆S,CAM) round-free
Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 15 and Theorem 16. �Theorem 17

6k = d 2δ
∆ e, thus d

δ
∆e ≤

k
2 .7If the read() operation lasts Tr = 2δ time, then there can be 2 concurrent write() operations in

Tr − δ time, if Tr = 3δ there can be 3 write() operations in Tr − δ time.

78 6. Distributed Registers in the Round-free Model

0 2 4 6 8 10
0

5

10

15

k

n
(f

)

nCAM
nCAMLB

Figure 6.21. The red line is the nCAM function for δ > ∆, (k + k
2 + 2)f + 1. The blue

line is the Function nCAMLB
described in Table 6.1 with values from Table 6.2. The

distance between the two lines is just 1 server.

Lemma 27 Protocol Preg for ∆ ≥ 3δ is tight.

Proof The proof simply follows considering that for Lemma 8 there exists no
protocol solving the safe register problem if n ≤ 3f . �Lemma 27

Lemma 28 Protocols Preg for 0 < ∆ < δ and Protocol Preg for δ ≤ ∆ < 3δ are
tight with respect to γ ≤ δ.

Proof The proof follows from Theorem 14 using the values in Table 6.2 to compute
nCAMLB

as defined in Table 6.1. From Lemma 23 we can set γ ≤ δ. In particular if
δ ≤ ∆ < 3δ then lower bounds are respectively 4f if k = 1 and 5f if k = 2. Whose
match values of nCAM = (k + 3)f + 1. If δ > ∆, let us consider graphic depicted
in Figure 6.21, where nCAM and nCAMLB

are depicted for k increasing, proving
that the bound for the protocol is just above, by one server, over the lower bound.

�Lemma 27

6.4.5 Discussion

We proved that exists an optimal protocol Preg that solves the Regular Register and
matches bound proved in Section 6.3. Thus are verified the hypothesis for Lemma
20, which implies that lower bounds proved so far for the (∆S,CAM) model holds
for the (ITB,CAM) and (ITU,CAM) models. Clearly since parameters change
from model to model then the exact values of those lower bounds are different.

Finally let us conclude this section with Figure 6.22. In such figure we case see
that for 0 < ∆ < 3δ (for simplicity we draw two specific cases) for any value of Tr
the lower bounds do not change. For ∆ ≥ 3δ lower bounds are lower when Tr is a

6.5 Upper Bounds for the (ITB,CAM) Synchronous model 79

2 4 6 8 10
3

3.5

4

4.5

5

Tr

n
(f

)

2δ ≤ ∆ < 3δ
δ ≤ ∆ < 2δ

∆ ≥ 3δ

Figure 6.22. The red line is the nCAMLB
function for k = 1 and Tr ∈ [2δ, . . . , 10δ]. The

blue line is the nCAMLB
function for k = 2 and Tr ∈ [2δ, . . . , 10δ]. The green dots is the

nCAMLB
function for ∆ ≥ 3δ and Tr ∈ [2δ, . . . , 10δ] .

multiple of ∆. Intuitively the reason behind is that Tr has to be long enough to
allow cured servers to terminate the maintenance() operation but on the other side
it has to be not too long to allow mobile agents to move to much during a read()
operation.

6.5 Upper Bounds for the (ITB,CAM) Synchronous model
In this section, we present an optimal protocol Preg with respect to the number of
replicas, that implements a SWMR Regular Register in a round-free synchronous
system for (ITB,CAM) and (ITU,CAM) instances of the proposed MBF model.
The difference with respect (∆S,CAM) model is that the time at which mobile
agents move is unknown. Notice that each mobile mai agent has it own ∆i. Since
we do not have any other information we consider ∆ = min{∆1, . . . ,∆f}. Following
the approach used in the (∆S,CAM) model, our solution is still based on the
following two key points: (1) we implement a maintenance() operation, in this case
executed on demand; (2) we implement read() and write() operations following
the classical quorum-based approach. The size of the quorum needed to carry
on the operations, and consequently the total number of servers required by the
computation, is dependent by the time to terminate the maintenance() operation,
δ and ∆ (see Table 6.6). Contrarily to the solution presented in Section 6.4, we
do not employ a a forwarding mechanism. Such mechanism is it not necessary
since being the maintenance() operation on demand (i.e., γ ≤ 2δ) its duration
increases and, informally speaking, there is no more need to rush to help cured
servers to retrieve a lost value as soon as possible. In this case, the only propagating
mechanism is on the maintenance() operation. In Table 6.6 nCAM is the minimum
number of required replicas, #replyCAM is the minimum number of expected reply
messages carrying the same value from #replyCAM different servers and #echoCAM

80 6. Distributed Registers in the Round-free Model

k = d 2δ
∆ e nCAM ≥ 2(k + 1)f + 1 #replyCAM ≥ (k + 1)f + 1 #echoCAM ≥ (k + 1)f Tr d

k = 1 4f + 1 2f + 1 2f 2δ 3
k = 2 6f + 1 3f + 1 3f 2δ 3
k = 4 10f + 1 5f + 1 5f 2δ 3

Table 6.6. Parameters for PRreg Protocol in the (ITB,CAM) model.

is the minimum number of echo messages carrying the same value from #echoCAM
different servers. The last difference, with respect the (∆S,CAM) model is the
increased #echoCAM . In fact, since the maintenance() operation lasts δ time more
then there are k

2 Byzantine servers more. What we can do, is to leverage of the
failure awareness and make it possible for curing servers, to ignore information
coming from servers that where Byzantine in the δ time before the beginning of the
maintenance() operation, as we do in the (∆S,CAM) model for ∆ ≥ 3δ.

6.5.1 Preg Detailed Description.

The protocol Preg for the (ITB,CAM) model is described in Figures 6.23 - 6.25,
which present the maintenance(), write(), and read() operations, respectively.

Local variables at client ci. Each client ci maintains a set replyi that is used
during the read() operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from
servers. In particular v is the value, sn is the associated sequence number and j is the
identifier of server sj that sent the reply back. Additionally, ci also maintains a local
sequence number csn that is incremented each time it invokes a write() operation
and is used to timestamp such operations monotonically.

Local variables at server si. Each server si maintains the following local variables
(we assume these variables are initialized to zero, false or empty sets according their
type):

• Vi: an ordered set containing d tuples 〈v, sn〉, where v is a value and sn
the corresponding sequence number. Such tuples are ordered incrementally
according to their sn values. The function insert(Vi, 〈vk, snk〉) places the new
value in Vi according to the incremental order and, if there are more than d
values, it discards from Vi the value associated to the lowest sn.

• pending_readi: set variable used to collect identifiers of the clients that are
currently reading.

• curedi: boolean flag updated by the cured_state oracle. In particular, such
variable is set to true when si becomes aware of its cured state and it is reset
during the algorithm when si becomes correct.

• echo_valsi and echo_readi: two sets used to collect information propagated
through echo messages. The first one stores tuple 〈j, 〈v, sn〉〉 propagated by
servers just after the mobile Byzantine agents moved, while the second stores
the set of concurrently reading clients in order to notify cured servers and
expedite termination of read().

6.5 Upper Bounds for the (ITB,CAM) Synchronous model 81

function awareAll():
(1) broadcast echo(i,⊥)
(2) wait(δ);
(3) broadcast echo(i,⊥)
——————————————————————————————————

operation maintenance() executed while (true) :
(4) curedi ← report_cured_state();
(5) if (curedi) then
(6) curedi ← false;
(7) curing_statei ← true;
(8) Vi ← ∅; echo_valsi ← ∅; pending_readi ← ∅;curingi ← ∅;
(9) broadcast echo_req(i);
(10) awareAll();
(11) wait(2δ);
(12) delete_cured_values(echo_vals);
(13) insert(Vi, select_three_pairs_max_sn(echo_valsi));
(14) for each (j ∈ (curingi)) do
(15) send echo (i, Vi) to sj ;
(16) endFor
(17) curing_statei ← false;
(18)endIf
——————————————————————————————————

when echo (j, Vj) is received:
(19) for each (〈v, sn〉 ∈ Vj do
(20) echo_valsi ← echo_valsi ∪ 〈v, sn〉j ;
(21) endFor
——————————————————————————————————

when echo_req (j) is received:
(22) curingi ← curingi ∪ j;
(23) if (Vi 6= ∅)
(24) send echo(i, Vi);
(25) endif

Figure 6.23. AM algorithm implementing the maintenance() operation (code for server si)
in the (ITB,CAM) model.

• curingi: set used to collect servers running the maintenance() operation. Notice,
to keep the code simple we do not explicitly manage how to empty such set
since has not impact on safety properties.

In order to simplify the code of the algorithm, let us define the following functions:

• select_d_pairs_max_sn(echo_valsi): this function takes as input the set
echo_valsi and returns, if they exist, three tuples 〈v, sn〉, such that there
exist at least #echoCAM occurrences in echo_valsi of such tuple. If more
than three of such tuple exist, the function returns the tuples with the highest
sequence numbers.

• select_value(replyi): this function takes as input the replyi set of replies
collected by client ci and returns the pair 〈v, sn〉 occurring at least #replyCAM
times (see Table 6.6). If there are more pairs satisfying such condition, it
returns the one with the highest sequence number.

• delete_cured_values(echo_vals): this function takes as input echo_valsi and
removes from fw_valsi all values coming from servers that sent an echo()
message containing ⊥.

82 6. Distributed Registers in the Round-free Model

========= Client code ==========
operation write(v):
(1) csn← csn+ 1;
(2) broadcast write(v, csn);
(3) wait (δ);
(4) return write_confirmation;

========= Server code ==========
when write(v, csn) is received:
(5) insert(Vi, 〈v, csn〉);
(6) for each j ∈ (pending_readi) do
(7) send reply (i, {〈v, csn〉});
(8) endFor
(9) for each j ∈ (curingi) do
(10) send echo (i, Vi);
(11) endFor

Figure 6.24. AW algorithm implementing the write(v) operation in the (ITB,CAM)
model.

The maintenance() operation. Such operation is executed by servers on demand
when the oracle notifies them that are in a cured state. Notice that in the (∗, CAM)
models servers knows when a mobile agent leaves them, thus depending on such
knowledge they execute different actions. In particular, if a server si is not in a cured
state then it does nothing, it just replies to echo_req() messages. Otherwise, if a
server si is in a cured state it first cleans its local variables and broadcast to other
servers an echo request then, after 2δ time units it removes value that may come
from servers that were Byzantine before the maintenance() and updates its state by
checking the number of occurrences of each pair 〈v, sn〉 received with echo messages.
In particular, it updates Vi invoking the select_three_pairs_max_sn(echo_valsi)
function that populates Vi with d tuples 〈v, sn〉. At the end it assigns false to
curedi variable, meaning that it is now correct and the echo_valsi can now be
emptied. Contrarily to the (∆S,CAM) case, cured server notifies to all that it has
been Byzantine in the previous δ time period. This is done invoking the awareAll
function that broadcast a default value ⊥ after δ time that a server discovered to be
in a cured state.
The write() operation. When the writer wants to write a value v, it increments
its sequence number csn and propagates v and csn to all servers. Then it waits for
δ time units (the maximum message transfer delay) before returning.

When a server si delivers a write, it updates its local variables and sends a
reply() message to all clients that are currently reading (clients in pending_readi)
to notify them about the concurrent write() operation and to each server executing
the maintenance() operation (servers in curingi).
The read() operation. When a client wants to read, it broadcasts a read() request
to all servers and waits 2δ time (i.e., one round trip delay) to collect replies. When it
is unblocked from the wait statement, it selects a value v invoking the select_value
function on replyi set, sends an acknowledgement message to servers to inform that
its operation is now terminated and returns v as result of the operation.

When a server si delivers a read(j) message from client cj it first puts its
identifier in the set pending_readi to remember that cj is reading and needs to

6.5 Upper Bounds for the (ITB,CAM) Synchronous model 83

receive possible concurrent updates, then si checks if it is in a cured state and if not,
it sends a reply back to cj . Note that, the reply() message carries the set Vi.

When a read_ack(j) message is delivered, cj identifier is removed from both
pending_readi set as it does not need anymore to receive updates for the current
read() operation.

========= Client code ==========
operation read():
(1) replyi ← ∅;
(2) broadcast read(i);
(3) wait (2δ);
(4) 〈v, sn〉 ← select_value(replyi);
(5) broadcast read_ack(i);
(6) return v;
———————————————————————–

when reply (j, Vj) is received:
(7) for each (〈v, sn〉 ∈ Vj) do
(8) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(9) endFor

========= Server code ==========
when read (j) is received:
(10) pending_readi ← pending_readi ∪ {j};
(11) if (Vi 6= ∅)
(12) then send reply (i, Vi);
(13) endif
———————————————————————–

when read_ack (j) is received:
(14) pending_readi ← pending_readi \ {j};

Figure 6.25. AR algorithm implementing the read() operation in the (ITB,CAM) model.

6.5.2 Preg for ∆ ≥ 4δ

In this work we do not analyze the case ∆ ≥ 4δ. When we plot nCAMLB
for ∆ = 4δ

and γ = 2δ we obtain the graphic in Figure 6.26. As we can see when Tr is a multiple
of 4δ the lower bound decrease to 3f , with respect to 4f for all the other values
of Tr. This means that it does not exist a protocol solving the Safe Register with
less than 3f servers. On the other side our conjecture is that we can not solve the
maintenance() operation in the ITB model with less than 3f servers. This is due to
the uncoordinated agents movements, which implies that during the maintenance()
operation there may be more Byzantine servers with respect to the previous model.
For this reason we do not consider such specific case.

6.5.3 Preg in the (ITU,CAM) model

By definition (ITU,CAM) is an instance of the (ITB,CAM) such that ∆ = 1.
Thus, given δ and the relationship d2δ

∆ e = k is it straightforward to have an algorithm
to solve the SWMR Regular Register in the (ITU,CAM) model.

84 6. Distributed Registers in the Round-free Model

0 2 4 6 8 10
0

1

2

3

4

5

Tr(δ)

n

nCAMLB

Figure 6.26. The blue line is the Function nCAMLB
described in Table 6.1 with values

from Table 6.2. We consider f = 1 and γ = 2δ.

6.5.4 Correctness (ITB,CAM)
To prove the correctness of Preg, we first show that the termination property is
satisfied i.e, that read() and write() operations terminates.

Lemma 29 If a correct client ci invokes write(v) operation at time t then this
operation terminates at time t+ δ.

Proof The claim follows by considering that a write_confirmation event is returned
to the writer client ci after δ time, independently of the behavior of the servers (see
lines 3-4, Figure 6.24). �Lemma 29

Lemma 30 If a correct client ci invokes read() operation at time t then this operation
terminates at time t+ 2δ.

Proof The claim follows by considering that a read() returns a value to the client
after 2δ time, independently of the behavior of the servers (see lines 3-6, Figure
6.25). �Theorem 30

Theorem 18 (Termination) If a correct client ci invokes an operation, ci returns
from that operation in finite time.

Proof The proof follows from Lemma 29 and Lemma 30. �Theorem 18

Notice, in the following, when not explicitly defined, we always consider as
hypothesis that nCAM follows values defined in Table 6.6 and proceed following the
same four steps as in 6.4.4.

Before to prove the correctness of the maintenance() operation let us see how
many Byzantine agent there may be during such operation. Since the cured server

6.5 Upper Bounds for the (ITB,CAM) Synchronous model 85

run it as soon as the mobile agent mai leaves it, then mai movement are aligned to
such operation, this agent contribution is 2δ

∆ = k. All the others f − 1 mobile agent
are not aligned, thus their contribution is MaxB̃(t, t+ 2δ) = k + 1. Thus there are
k + (k + 1)× (f − 1) Byzantine servers during the 2δ time maintenance() operation.

Lemma 31 (Step 1) Let Ti = t be the time at which mobile agent mai leave sc.
Let v be the value stored at #echoCAM servers sj /∈ B(t, t + δ) ∧ sj ∈ Co(t + δ),
v ∈ Vj∀sj ∈ Co(t+ δ). At time t+ 2δ, at the end of the maintenance(), v is returned
to sc by the function select_d_pairs_max_sn(echo_valsc).

Proof The proof follows considering that:

• the maintenance() employs a request-reply pattern and during such operation,
by hypothesis, there are #echoCAM servers that are never affected during the
[Ti, Ti+δ] time period and are correct at time Ti+δ. i.e., there are #echoCAM
servers that deliver the echo_req() message (the can be either correct or
cured) but are correct at time Ti + δ such that the reply is delivered by sc by
time Ti + 2δ.

• during the maintenance() operation there are k + (k + 1)× (f − 1) Byzantine
servers, and (k2)f servers that were Byzantine in [t − δ, t] time period, thus
they could have sent incorrect messages as well.

• each cured servers, invokes awareAll() function, sends a ⊥ message twice:
when they are aware to be cured and δ time after. Thus by time t+ 2δ server
running the maintenance removes from echo_vals the (k2)f messages sent by
those servers. In the end there are k+ (k+ 1)× (f −1) = (k+ 1)f −1 messages
coming from Byzantine servers in the echo_valsc set.

#echoCAM = (k + 1)f > (k + 1)f − 1 thus Byzantine servers can not force
the function select_d_pairs_max_sn(echo_valsc) to return a not valid value and
select_d_pairs_max_sn(echo_valsc) returns v that occurs #replyCAM times, con-
cluding the proof. �Lemma 31

Lemma 32 (Step 2.) Let opW be a write(v) operation invoked by a client ck at
time tB(opW) = t then at time t+δ there are at least #replyCAM servers sj /∈ B(t+δ)
such that v ∈ Vj.

Proof The proof follows considering that during the write() operation, [t, t + δ],
there can be at most (k2 + 1)f mobile agents. Thus, during such time there are
n− (k2 + 1)f = 2(k + 1)f + 1− (k2 + 1)f = (k + k

2 + 1)f + 1 servers sj that being
either cured or correct, execute code in Figure 6.24, line 5, inserting v in Vj . Finally,
(k + k

2 + 1)f + 1 > (k + 1)f + 1 = #replyCAM concluding the proof.
�Lemma 32

For simplicity, for now on, given a write() operation opW we call tB(opW)+δ = twC
the completion time of opW , the time at which there are at least #replyCAM
servers storing the value written by opW .

86 6. Distributed Registers in the Round-free Model

Lemma 33 (Step 3.) Let opW be a write() operation occurring at tB(opW) = t
and let v be the written value and let twC be its completion time. Then if there are no
other write() operations after opW , the value written by opW is stored by all correct
servers forever.

Proof Following the same reasoning as Lemma 32, at time t+ δ, assuming that in
[t, t+ δ] there are (k2 + 1)f , then there are at least (k + k

2 + 1)f + 1 servers sj that
being either cured or correct, execute code in Figure 6.24, line 5, inserting v in Vj .
Now let us consider the following:

• Let B1 = B̃(t, t+δ) be the set containing the (k2 +1)f Byzantine servers during
[t, t+ δ], so that there are (2k+ 1)f + 1− k

2 = (k+ k
2 + 1)f + 1 ≥ #replyCUM

non faulty servers storing v;

– there are (k2)f Byzantine servers in B1 that begin the maintenance()
operation . At that time there are #replyCAM non faulty servers storing
v, being #replyCAM > #echoCAM , for Lemma 31 at the end of the
maintenance() operation, by time t+ 3δ, those servers obtain v a result
of select_d_pairs_max_sn(echo_vals) invocation, whose is stored in V
since there are no other write() operation and since v has the highest
associated sequence number.

• Let B2 = B̃(t+ δ, t+ 2δ) be the set containing Byzantine servers in the next δ
period. Those servers are k

2f (it is not k
2f + 1, otherwise we would count the

Byzantine servers at t+δ twice). Thus, at t+2δ there are (k+ k
2 +1)f+1− k

2f =
(k + 1)f + 1 = #replyCAM non faulty servers storing v;

– there are (k2)f Byzantine servers in B2 that begin the maintenance()
operation during [t+ δ, t+ 2δ] time interval. There are #replyCAM non
faulty servers storing v, being #replyCAM > #echoCAM , for Lemma 31
at the end of the maintenance() operation, by time t+ 4δ, those servers,
get v invoking select_d_pairs_max_sn(echo_vals), whose is stored in V
since there are no other write() operation and since v has the highest
associated sequence number.

• Let B3 = B̃(t+ 2δ, t+ 3δ) be the set containing Byzantine servers in the next
δ period. Those servers are k

2f . At t + 3δ there are (k + 1)f + 1 − k
2f <

#replyCAM non faulty servers storing v and the there are (k2)f servers in B1
that terminated the maintenance() operation storing v. Summing up there are
(k + 1)f + 1− k

2f + k
2f = #replyCAM servers storing v.

Thus, after t+ 3δ period there are servers becoming affected that lose v, but there
are other f servers that become correct storing v, so that all correct servers store v.
Since there are no more write() operation, this reasoning can be extended forever,
concluding the proof. �Lemma 33

Lemma 34 (Step 3.) Let opW0 , opW1 , . . . , opWk−1 , opWk
, opWk+1 , . . . be the sequence

of write() operations issued on the regular register. Let us consider a particular opWk
,

6.5 Upper Bounds for the (ITB,CAM) Synchronous model 87

let v be the value written by opWk
and let tEwk be its completion time. Then the

register stores v (there are at least #replyCAM correct servers storing it) up to time
at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 33 if there are no more write() operation then v, after twC , is in
the register forever.

• any new written value is store in an ordered set V (cf. Figure 6.24 line 5)
whose dimension is 3.

• write() operations occur sequentially.

It follows that after the beginning of 3 write() operations, opWk+1 , opWk+2 , opWk+3 , v
it may be no more stored in the regular register. �Lemma 34

Theorem 19 (Step 4.) Any read() operation returns the last value written before
its invocation, or a value written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval
[tB(opR), tB(opR) + δ]. Since such operation lasts 2δ, the reply messages sent by
correct servers within tB(opR)+δ are delivered by the reading client. For 0 < ∆ < 4δ
during [t, t+ δ] time interval there are n− k

2 − 1 ≥ #replyCAM correct servers that
have the time to deliver the read request and reply. Now we have to prove that
what those correct servers reply with is a valid value. There are two cases, opR is
concurrent with some write() operations or not.
- opR is not concurrent with any write() operation. Let opW be the last write()
operation such that tE(opW) ≤ tB(opR) and let v be the last written value. For
Lemma 33 after the write completion time tCw there are #replyCAM non faulty
servers storing v. Since tB(opR) + δ ≥ tCw, then there are #replyCAM non faulty
servers replying with v (Figure 6.25, lines 11-12). So the last written value is
returned.
- opR is concurrent with some write() operation. Let us consider the time
interval [tB(opR), tB(opR) + δ]. In such time there can be at most two write()
operations. Thus for Lemma 34 the last written value before tB(opR) is still present
in #replyCAM non faulty servers. Thus at least the last written value is returned.
To conclude, for Lemma 11, during the read() operation there are at most (k + 1)f
Byzantine servers, being #replyCAM > (k+1)f then Byzantine servers may not force
the reader to read another or older value and even if an older values has #replyCAM
occurrences the one with the highest sequence number is chosen. �Theorem 19

Theorem 20 Let n be the number of servers emulating the register and let f be
the number of Byzantine agents in the (ITB,CAM) round-free Mobile Byzantine
Failure model. Let δ be the upper bound on the communication latencies in the
synchronous system. If n = nCAM according to Table 6.6 then Preg implements a
SWMR Regular Register in the (ITB,CAM) and (ITU,CAM) round-free Mobile
Byzantine Failure model.

88 6. Distributed Registers in the Round-free Model

0 2 4 6 8 10
0

5

10

15

20

25

k

n
(f

)

nCAM
nCAMLB

Figure 6.27. The red line is the nCAM function for δ > ∆, 2(k + 2)f + 1. The blue line is
the Function nCAMLB

described in Table 6.1 with values from Table 6.2 (setting γ = 2δ).
The distance between the two lines is just 1 server.

Proof The proof simply follows from Theorem 18 and Theorem 19 and considering
∆ = 1 in the case of (ITU,CAM) model. �Theorem 17

Lemma 35 Protocol Preg for 0 < ∆ < 4δ is tight with respect to γ ≤ 2δ.

Proof The proof follows from Theorem 14 using the values in Table 6.2 to compute
nCAMLB

as defined in Table 6.1. We can use such Theorem since does exists a tight
protocol that solves Regular Register in the (∆S,CAM) model so we can apply
Lemma 20. From Lemma 31 we can set γ ≤ 2δ. Let us consider graphic depicted in
Figure 6.27, where the two functions are depicted for k increasing, proving that the
bound for the protocol is just above, by one server, over the lower bound. �Lemma 35

6.6 Upper Bounds for the (∆S,CUM) Synchronous model
In this section, we present an optimal protocol Preg with respect to the number of
replicas, that implements a SWMR Regular Register in a round-free synchronous
system for (∆S,CUM) instance of the proposed MBF model. As for the (∆S,CAM)
model, the moment at which mobile agents move is known but servers are not aware
of their failure state. As for the (∆, CAM) model (cf. Section 6.4), our solution is
based on the following two key points: (1) we implement a maintenance() operation
that is executed periodically at each Ti = t0 + i∆ time. In this way, the effect of a
Byzantine agent on a server disappears in a bounded period of time; (2) we implement
read() and write() operations following the classical quorum-based approach. The
size of the quorum needed to carry on the operations, and consequently the total
number of servers required by the computation, is computed by taking into account
the time to terminate the maintenance() operation, δ and ∆; Contrarily to the

6.6 Upper Bounds for the (∆S,CUM) Synchronous model 89

k = d 2δ
∆ e, δ ≤ ∆ < 3δ nCUM ≥ (3k + 2)f + 1 #replyCUM ≥ (2k + 1)f + 1 #echoCUM ≥ (k + 1)f + 1
k = 2 8f + 1 5f + 1 3f + 1
k = 1 5f + 1 3f + 1 2f + 1

∆ ≥ 3δ 4f + 1 2f + 1 2f + 1
Table 6.7. Parameters for PRreg Protocol in the (∆S,CUM).

(∆S,CAM) case, the values that populate auxiliary variables (i.e., not the register
stored value) have a fixed life time. This is necessary since servers are never aware
to be in a cured state and thus mobile agents, once they left, may force them to
take wrong decisions. For this reason, there is no more a forwarding mechanism
and no more a fw_vals set after a write() operation. The maintenance() operation
is the only operation in charge to “push” values and is run any ∆ time. It follows
that is it necessary more time to spread the last written value to enough servers so
that the value can be read. To this purpose, values that populate auxiliary variables
can not be reset at each maintenance() operation (later it will be clearer), which
implies that cured servers can not have a clean state after only one maintenance()
operation. Thus in this model we have that cured servers are in such state for a
longer time, in particular γ ≤ 2δ. This is the first case we saw where γ is greater
than the maintenance() duration.

As in Section 6.4, the number of replicas needed to tolerate f Byzantine agents
does not depend only on f but also on the ∆ and δ relationship (see Table 6.7).

6.6.1 Preg Detailed Description for δ ≥ ∆
The protocol Preg for the (∆S,CUM) model is described in Figures 6.28 - 6.30.

Local variables at client ci. Each client ci maintains a set replyi that is used dur-
ing the read() operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from servers.
Additionally, ci also maintains a local sequence number csn that is incremented each
time it invokes a write() operation and is used to timestamp such operations.

Local variables at server si. Each server si maintains the following local variables
(we assume these variables are initialized to zero, false or empty sets according their
type):

• Vi: an ordered set containing 3 tuples 〈v, sn〉, where v is a value and sn
the corresponding sequence number. Such tuples are ordered incrementally
according to their sn values.

• Vsafej : this set has the same characteristic as Vj . The function insert(Vsafei , 〈vk, snk〉)
places the new value in Vsafei according to the incremental order and if dimen-
sions exceed 3 then it discards from Vsafei the value associated to the lowest
sn.

• Wi: is the set where servers store values coming directly from the writer,
associating to it a timer, 〈v, sn, timer〉. Values from this set are deleted at the
end of the maintenance() operation when the timer expires or has a value non
compliant with the protocol.

90 6. Distributed Registers in the Round-free Model

• echo_valsi and echo_readi: two sets used to collect information propagated
through echo messages at the beginning of the maintenance() operation. The
first one stores tuple 〈v, sn〉j propagated by servers just after the mobile
Byzantine agents moved. Set echo_readi stores identifiers of concurrently
reading clients in order to notify cured servers and expedite termination of
read().

• pending_readi: set variable used to collect identifiers of the clients that are
currently reading.

In order to simplify the code of the algorithm, let us define the following functions:

• select_three_pairs_max_sn(echo_valsi): this function takes as input the set
echo_valsi and returns, if they exist, 3 tuples 〈v, sn〉, such that there exist at
least #echoCUM occurrences in echo_valsi of such tuple. If more than 3 of
such tuples exist, the function returns the tuples with the highest sequence
numbers.

• select_value(replyi): this function takes as input the replyi set of replies
collected by client ci and returns the pair 〈v, sn〉 occurring at least #replyCUM
times. If there are more pairs with the same occurrence, it returns the one
with the highest sequence number.

• conCut(Vi, Vsafei ,Wi): this function takes as input three 3 dimension ordered
sets and returns another 3 dimension ordered set. The returned set is com-
posed by the concatenation of Vsafei ◦ Vi ◦ Wi, without duplicates, trun-
cated after the first 3 newest values (with respect to the timestamp). e.g.,
Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉, 〈vd, 4〉} and Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉} and
Wi = ∅, then the returned set is {〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}.

The maintenance() operation. Such operation is executed by servers periodically
at any time Ti = t0 + i∆. Each server first checks if there are expired values in Wi

then all the content of Vsafei is stored in Vi and all Vsafei and echo_valsi sets are
reset. Each server broadcast an echo message with the content of Vi, Wi (purged
of the timer information) and the set pending_readi. When there is a value in
echo_vasi set that occurs at least #echoCUM times, it updates Vsafei set by invoking
select_three_pairs_max_sn(echo_valsi) function. To conclude, after δ time since
the beginning of the operation, the Wi set is pruned from expired values and Vi
is reset. Informally speaking, at this point Vi is no more used, since Vsafei during
the maintenance() operation is filled with values, then the content in Vi is not more
necessary.

The write() operation. When the writer wants to write a value v, it increments
its sequence number csn and propagates v and csn to all servers. Then it waits for
δ time units (the maximum message transfer delay) before returning.

When a server si delivers a write, it stores v in Wi. Then server sends a reply
carrying such value to each reading client and broadcast such value as an echo()
message to other servers.

6.6 Upper Bounds for the (∆S,CUM) Synchronous model 91

function timerCheck(Wi):
(1) for each (〈〈v, csn〉, timer〉j ∈Wi) do
(2) if (Expired(timer) ∧ (timer > 2δ)
(3) Wi ←Wi \ 〈〈v, csn〉, timer〉j ;
(4) endif
(5) endFor
————————————————————————————————————-

operation maintenance() executed every Ti = t0 + i∆ :
(6) echo_valsi ← ∅; Vi ← Vsafei

; Vsafe ← ∅;
(7) Seti ← ∅;
(8) for each〈〈v, csn〉, timer〉j ∈Wi do;
(9) Seti ← Seti ∪ 〈v, csn〉j ;
(10)endFor
(11)broadcast echo(i, Vi ∪ Seti, pending_readi);
(12)wait(δ);
(13) timerCheck(Wi);
(14)Vi ← ∅;
——————————————————————————————————
(15)when select_three_pairs_max_sn(echo_valsi) 6= ⊥
(16) insert(Vsafei

, select_three_pairs_max_sn(echo_valsi));
(17) for each (j ∈ (pending_readi ∪ echo_readi)) do
(18) send reply (i, Vsafe) to cj ;
(19)endFor
————————————————————————————————————-

when echo (j, S, pr) is received:
(20) for each (〈v, sn〉j ∈ S)
(21) echo_valsi ← echo_valsi ∪ 〈v, sn〉j ;
(22) endFor
(23) echo_readi ← echo_readi ∪ pr;

Figure 6.28. AM algorithm implementing the maintenance() operation (code for server si)
in the (∆S,CUM) model.

The read() operation. When a client wants to read, it broadcasts a read() request
to all servers and waits 2δ time to collect replies. When it is unblocked from the
wait statement, it selects a value v occurring #replyCUM number of times from the
replyi set, sends an acknowledgement message to servers to inform that its operation
is now terminated and returns v as result of the operation.

When a server si delivers a read(j) message from client cj it first puts its
identifier in the set pending_readi to remember that cj is reading and needs to
receive possible concurrent updates, then si sends a reply back to cj . Note that, in
the reply() message is carried the result of conCut(Vi, Vsafei ,Wi). In this case, if
the server is correct then Vi contains valid values, and Vsafei contains valid values
by construction, since it comes from values sent during the current maintenance().
If the server is cured, then Vi and Wi may contain any value. Thus, considering the
function conCut(), a cured server may send a non valid value during 2δ time. Finally,
si forwards a read_fw message to inform other servers about cj read request. This
is useful in case some server missed the read(j) message as it was affected by mobile
Byzantine agent when such message has been delivered.

When a read_fw(j) message is delivered, cj identifier is added to pending_readi
set, as when the read request is just received from the client.

When a read_ack(j) message is delivered, cj identifier is removed from both
pending_readi and echo_readi sets as it does not need anymore to receive updates
for the current read() operation.

92 6. Distributed Registers in the Round-free Model

========= Client code ==========
operation write(v):
(1) csn← csn+ 1;
(2) broadcast write(v, csn);
(3) wait (δ);
(4) return write_confirmation;

========= Server code ==========
when write(v, csn) is received:
(5) Wi ←Wi ∪ 〈〈v, csn〉, setT imer(2δ)〉;
(6) broadcast echo(i, 〈v, csn〉, pending_readi);
(7) for each j ∈ (pending_readi ∪ echo_readi) do
(8) send reply (i, {〈v, csn〉});
(9) endFor

Figure 6.29. AW algorithm implementing the write(v) operation in the (∆S,CUM) model.

========= Client code ==========
operation read():
(1) replyi ← ∅;
(2) broadcast read(i);
(3) wait (2δ);
(4) 〈v, sn〉 ← select_value(replyi);
(5) broadcast read_ack(i);
(6) return v;
———————————————————————–

when reply (j, V_set) is received:
(7) for each (〈v, sn〉 ∈ V_set) do
(8) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(9) endFor

========= Server code ==========
when read (j) is received:
(10) pending_readi ← pending_readi ∪ {j};
(11) send reply (i, conCut(Vi, Vsafei

,Wi));
(12) broadcast read_fw(j);
———————————————————————–

when read_fw (j) is received:
(13) pending_readi ← pending_readi ∪ {j};
———————————————————————–

when read_ack (j) is received:
(14) pending_readi ← pending_readi \ {j};
(15) echo_readi ← echo_readi \ {j};

Figure 6.30. AR algorithm implementing the read() operation in the (∆S,CUM) model.

6.6.2 Preg for δ > ∆

From Corollary 4, maintenance() operation can not last less than δ time. When
δ > ∆, during such operation Byzantine agent movements may occur and contrarily
to the (∆S,CAM) model, servers are not aware of their failure state. Thus servers
can not trigger maintenance() operation when they enter in a cured state and neither
at each agent movements, they have to trigger it by themselves periodically. As
we already declared, the maintenance() operation is not the main scope of such
work, thus in such case we propose the same maintenance() implementation in both
(∆S,CUM) for δ > ∆ and (ITB,CUM) models (cf. 6.7). In such case the resulting
curing time γ ≤ 4δ. Being γ the same in both cases, this implies that lower bounds

6.6 Upper Bounds for the (∆S,CUM) Synchronous model 93

with respect to such parameter are the same as solution to solve the regular register
problem. The are no clue about the optimality of γ in those models, but the solution
to implement the regular register is optimal with respect to the γ deriving from the
maintenance() operations we design.

6.6.3 Correctness (∆S,CUM)

To prove the correctness of Preg we demonstrate that the termination property is
satisfied i.e, that read() and write() operations terminates. For the validity property
we follow the same four steps as defined in 6.4.4.

Lemma 36 If a correct client ci invokes write(v) operation at time t then this
operation terminates at time t+ δ.

Proof The claim simply follows by considering that a write_confirmation event is
returned to the writer client ci after δ time, independently of the behavior of the
servers (see lines 3-4, Figure 6.29). �Lemma 36

Lemma 37 If a correct client ci invokes read() operation at time t then this operation
terminates at time t+ 2δ.

Proof The claim simply follows by considering that a read() returns a value to the
client after 2δ time, independently of the behaviour of the servers (see lines 12-15,
Figure 6.30). �Lemma 37

Theorem 21 (Termination) If a correct client ci invokes an operation, ci returns
from that operation in finite time.

Proof The proof simply follows from Lemma 36 and Lemma 37. �Theorem 21

Lemma 38 (Step 1.) Let v be the value stored at #echoCUM correct servers
sj ∈ Co(Ti), v ∈ Vj∀sj ∈ Co(Ti). Then ∀sc ∈ Cu(Ti) at Ti+δ (i.e., at the end of the
maintenance()) v is returned by the function select_three_pairs_max_sn(echo_valsi).

Proof By hypotheses at Ti there are #echoCUM correct servers sj storing the same
v and running the code in Figure 6.28. In particular each server broadcasts a echo()
message with attached the content of Vj which contains v (line 11). Messages sent by
#echoCUM correct servers are delivered by sc and stored in echo_valsc. The system
is synchronous, thus by time Ti+δ function select_three_pairs_max_sn(echo_valsc)
returns v. �Lemma 38

Lemma 39 Let si be a correct server running the maintenance() operation at time
Ti, then if v is returned by the function select_three_pairs_max_sn(echo_valsi)
there exist a write() operation that wrote such value.

94 6. Distributed Registers in the Round-free Model

Proof Let us suppose that select_three_pairs_max_sn(echo_valsi) returns v′
and there no exist a write()(v′). This means that si collects in echo_valsi more
than #echoCUM occurrences of v′ coming from cured and Byzantine servers. Let us
consider cured servers sc at time Tc. At the beginning of the maintenance() operation
sc broadcasts values contained in Vi and Wi (Figure 6.28 line 11). Vi is reset at
each operation with the content of Vsafei which is reset at each operation (line
6). It follows that sc broadcasts non valid values contained in Vi only during the
maintenance() operation run a Tc. Contrarily, values in Wi, depending on k, are
broadcast only at Tc or also at Tc+1. Let us consider two cases: k = 1 and k = 2.
case k = 1: In this case since ∆ ≥ 2δ and the maximum value of the timer associated
to a value is 2δ, then each cured server sc broadcasts a non valid value contained in
Wi only during the first maintenance() operation. Thus, during each maintenance()
operation there are f Byzantine servers and f cured servers, those are not enough
to send #echoCUM = 2f + 1 occurrences of v′. For Lemma 38 this is the necessary
condition to return v′ invoking select_three_pairs_max_sn(echo_valsi), leading to
a contradiction.
case k = 2: ∆ ≤ 2δ and the maximum value of the timer associated to a value is 2δ,
then each cured server sc broadcasts a non valid value contained in Wi during the
first and the second maintenance() operations. Thus, each cured server sc broadcast
a non valid value contained inWi during two maintenance() operations. Summing up,
during each maintenance() operation at time Ti there are f Byzantine servers, f cured
servers and f servers that were cured during the previous operation. Those servers are
not enough to send #echoCUM = 3f + 1 occurrences of v′, for Lemma 38 this is the
necessary condition to return v′ invoking select_three_pairs_max_sn(echo_valsi),
leading to a contradiction and concluding the proof. �Lemma 39

From the reasoning used in this Lemma, the following Corollary follow.

Corollary 10 Let si be a non faulty process and v a value in Wi. Such value is in
Wi during at most k sequential maintenance() operations.

Finally, considering that servers reply during a read() operation with values in
Wi it follows that servers can be in a cured state for 2δ time.

Corollary 11 Protocol P implements a maintenance() operation that implies γ ≤ 2δ.

Lemma 40 Let Tc be the time at which sc become cured. Each cured server sc can
reply back with incorrect message to a read() message during a period of 2δ time.

Proof The proof directly follows considering that the content of a reply() message
comes from the Vc, Vsafec and Wi sets. The first one is filled with the content of
Vsafec at the beginning of each manteneance() operation and after δ time is reset
(cf. Figure 6.28 lines 12-14). The second one is emptied at the beginning of each
manteneance() operation and the third one keeps its value during k maintenance()
operations (cf. Corollary 10). Thus by time Tc + 2δ sc cleans all the values that
could come from a mobile agent. �Lemma 40

6.6 Upper Bounds for the (∆S,CUM) Synchronous model 95

s0

s1

s2

s3

s4

s5

write()

Ti

twC

s0

s1

s2

s3

s4

s5

write()

Ti

twC

Figure 6.31. Blue arrows are the write() message delivery, orange arrows are the
write_fw() messages sent. Blue dots are the time at which servers return v invoking
select_three_pairs_max_sn(echo_valsi).

Lemma 41 (Step 2.) Let opW be a write(v) operation invoked by a client ck at
time tB(opW) = t then at time t + δ there are at least n − 2f ≥ #replyCUM non
faulty servers sj /∈ B̃(t, t + δ) such that v ∈ Wi and is returned by the function
concCut().

Proof Due to the communication channel synchrony, the write messages from ck
are delivered by servers within the time interval [t, t+ δ]; any non faulty server sj
executes the correct algorithm code. When sj delivers write message it executes
line 5 Figure 6.29, it stores the value in Wj and sets the associated timer to 2δ.
For Lemma 11 in the [t, t+ δ] time interval there are maximum 2f Byzantine servers,
thus at t+ δ v ∈Wj at n− 2f = (3k+ 2)f + 1− 2f = 3kf + 1 ≥ #replyCUM correct
servers if ∆ < 3δ. Otherwise, v ∈Wj at 4f + 1− 2f = 2f + 1 ≥ #replyCUM correct
servers if ∆ ≥ 3δ. Since write() operations are sequential, during [t, t+ δ] there is
only one new value inserted in Wi, which is returned by the function conCut() by
construction. �Lemma 41

For simplicity, from now on, given a write() operation opW we call tB(opW) + δ =
twC the completion time of opW , the time at which there are at least #replyCUM
servers storing the value written by opW .

Lemma 42 (Step 3.) Let opW be a write() operation and let v be the written value.
If there are no other write() operations, the value written by opW is stored by all
correct servers forever (i.e., v is returned invoking the conCut() function).

Proof From Lemma 41 at time twC there are at least n− 2f > #replyCUM correct
servers sj that returns v when invoke function conCut(). We consider two cases:
δ ≤ ∆ < 2δ (k = 2) and ∆ ≥ 2δ.
case 1 δ ≤ ∆ < 2δ: in this case there is a set of 3kf + 1 = 6f + 1 non faulty

96 6. Distributed Registers in the Round-free Model

servers si such that v ∈Wi. At the beginning of the next maintenance() operation,
for Corollary 10 those non faulty servers still have v ∈Wi. Up to f mobile agents
move and such set of servers decreases to 5f + 1 ≥ #echoCUM . For Lemma 38
at the end of the maintenance() all non faulty servers return v when invoking
select_three_pairs_max_sn(echo_valsi). Since there are no more write() operation
and v is the last written value (i.e., has the highest sequence number), n− f non
faulty servers insert v in Vsafei . It follows that cyclically before each mobile agents
movements there are f servers more that store v thanks to the maintenance() and
f servers that lose v because affected, but the remaining set of non faulty servers
is enough to successfully run the maintenance() operation (cf. Lemma 38)) so all
correct servers store v.
case 2 ∆ ≥ 2δ: let [t, t+ δ] be the time interval during which opW took place and
let Ti be the time at which mobile agent move, two cases may occur, case (2.1)
Ti ∈ [t, t+ δ] and case (2.2) Ti /∈ [t, t+ δ]. In case (2.1) Ti occurs during the write()
operation. There are n − 2f correct servers sj having v ∈ Wj , Figure 6.29, line 5
.Those servers may deliver v before or after Ti. In the first case v is broadcast at
the beginning of the maintenance() operation (cf. s4 in the first part in Figure 6.31,
Figure 6.28, line 11), v ∈Wj for Corollary 10. In the second case v is broadcast just
after the delivery (cf. s3 in the first part in Figure 6.31, Figure 6.29, line 6), at most v
is delivered by time t+δ and hereafter broadcast. It follows that by time t+2δ all non
Byzantine servers return v from function select_three_pairs_max_sn(echo_valsi)().
Since there are no more write() operation and v is the last written value (i.e., has the
highest sequence number), then v is inserted in Vsafei at all correct servers. Being
∆ ≥ 2δ then t+ 2δ < Ti+1, the next mobile agents movement. Finally in case (2.2),
since Ti /∈ [t, t+ δ] then at twC there are n− f servers storing v. Which is the same
situation that happens in case (2.1) at time t+ 2δ < Ti+1. It follows that cyclically
before each agent movements there are f servers more that store v thanks to the
maintenance() and f servers that lose v because faulty, but this set of non faulty
servers is enough to successfully run the maintenance() operation (cf. Lemma 38))
so all correct servers store v.

�Lemma 42

Lemma 43 (Step 3.) Let opW0 , opW1 , . . . , opWk−1 , opWk
, opWk+1 , . . . be the sequence

of write() operation issued on the regular register. Let us consider a generic opWk
,

let v be the written value by such operation and let twC be its completion time. Then
v is in the register (there are #replyCUM correct servers storing it) up to time at
least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 42 if there are no more write() operation then v, after twC , is in
the register forever;

• any new written value eventually is stored in ordered set Vsafe, whose dimension
is 3;

• write() operation occur sequentially.

6.6 Upper Bounds for the (∆S,CUM) Synchronous model 97

s0

s1

s2

s3

s4

s5

t t+ 2δ

s0

s1

s2

s3

s4

s5

s6

s7

s8

. . .

t t+ 2δ

Figure 6.32. In the first scenario ∆ ≥ 2δ and in second one is ∆ ≥ δ.

It follows that after 3 write() operations, opWk+1 , opWk+2 , opWk+3 , v is no more stored
in the regular register. �Lemma 43

Before to prove the validity property, let us consider how many Byzantine and
cured servers can be present during a read() operation that last 2δ, cf. Figure 6.32.
If k = 2 there can be up to (k+ 1)f = 3f Byzantine servers and 2f cured servers. If
k = 1 there can be up to (k + 1)f = 2f Byzantine servers and f cured servers.

Theorem 22 (Step 4.) Any read() operation returns the last value written before
its invocation, or a value written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval
[tB(opR), tB(opR) + δ]. The operation lasts 2δ, thus reply messages sent by correct
servers within tB(opR) + δ are delivered by the reading client. For 0 < ∆ < 4δ
during [t, t+ δ] time interval there are n− k

2 − 1 ≥ #replyCUM correct servers that
have the time to deliver the read request and reply. Now we have to prove that
what those correct servers reply with is a valid value. There are two cases, opR is
concurrent with some write() operations or not.
- opR is not concurrent with any write() operation. Let opW be the last write()
operation such that tE(opW) ≤ tB(opR) and let v be the last written value. For
Lemma 42 after the write completion time twC there are at least #replyCUM correct
servers storing v (i.e., v ∈ conCut(Vi, Vsafei ,Wi). Since tB(opR) + δ ≥ tCw, then
there are #replyCUM correct servers replying with v. So the last written value is
returned.
- opR is concurrent with some write() operation. Let us consider the time

98 6. Distributed Registers in the Round-free Model

interval [tB(opR), tB(opR) + δ]. In such time there can be at most three write()
operations. Thus for Lemma 43 the last written value before tB(opR) is still present
in #replyCUM correct servers. At least the last written value is returned. To
conclude, for Lemma 40 Byzantine and cured servers can no force correct servers
to store and thus to reply with a never written value. Only cured and Byzantine
servers can reply with non valid values. As we stated, if k = 1 there are up to
3f non correct servers. If k = 2 there are 5f non correct servers. In both cases
the threshold #replyCUM is higher than the occurrences of non valid values that
a reader can deliver. Mobile agents can not force the reader to read another or
older value and even if an older values has #replyCUM occurrences the one with the
highest sequence number is chosen. �Theorem 22

Theorem 23 Let n be the number of servers emulating the register and let f be
the number of Byzantine agents in the (∆S,CUM) round-free Mobile Byzantine
Failure model. Let δ be the upper bound on the communication latencies in the
synchronous system. If (i) ∆ ≥ δ and (ii) n follows values listed in Table 6.7, then
Preg implements a SWMR Regular Register in the (∆S,CUM) round-free Mobile
Byzantine Failure model.

Proof The proof simply follows from Theorem 21 and Theorem 22. �Theorem 23

Lemma 44 Protocol Preg for ∆ ≥ δ is tight with respect to γ ≤ 2δ.

Proof The proof follows from Theorem 14 using the values in Table 6.2 to compute
nCUMLB

as defined in Table 6.1. From Lemma 38 and Corollary 11 we can set
γ ≤ 2δ. In particular if ∆ ≥ δ then lower bounds are respectively 8f if k = 1 and
5f if k = 2, whose match nCUM = (3k + 2)f + 1. Finally 4f if ∆ ≥ 3δ matches
the lower bound for the (∆S,CUM) model (cf. Lemma 9), concluding the proof.

�Lemma 44

6.7 Upper Bounds for the (ITB,CUM) Synchronous model
In this section, we present an optimal protocol Preg with respect to the number of
replicas, that implements a SWMR Regular Register in a round-free synchronous
system for (ITB,CUM) and consequently (ITU,CUM) instances of the proposed
MBF model. In this model we use all techniques we used so far, in particular the
maintenance() operation needs to be carefully managed. In this model, as for the
(∆S,CUM) model, servers are not aware of their failure state, thus they have to run
such operation either they are correct or cured. In addition, in the (ITB,CUM)
model, the moment at which mobile agents move is not known, thus as for the
(ITB,CAM) case, a request-reply pattern is used to implement the maintenance()
operation. The read() and write() operations follows the same approach as in the
previous models. Table 6.8 reports the parameters for the protocol. In particular
nCUM is the bound on the number of servers, #replyCUM is minimum number of
occurrences from different servers of a value to be accepted as a reply during a read()
operation and #echoCUM is the minimum number of occurrences from different
servers of a value to be accepted during the maintenance() operation.

6.7 Upper Bounds for the (ITB,CUM) Synchronous model 99

k = d 2δ
∆ e ≥ 1 nCUM ≥ (5k + 2)f + 1 #replyCUM ≥ (3k + 1)f + 1 #echoCUM ≥ (3k) + 1f

k = 2 12f + 1 7f + 1 6f + 1
k = 1 7f + 1 4f + 1 4f + 1

nCUM #replyCUM #echoCUM
3δ ≤ ∆ < 4δ 6f + 1 3f + 1 3f + 1
4δ ≤ ∆ < 5δ 5f + 1 3f + 1 3f + 1

∆ ≥ 5δ 4f + 1 3f + 1 3f + 1
Table 6.8. Parameters for PRreg Protocol for the (ITB,CUM) model.

6.7.1 Preg Detailed Description

The protocol Preg for the (ITB,CUM) model is described in Figures 6.33 - 6.35,
which present the maintenance(), write(), and read() operations, respectively.

Local variables at client ci. Each client ci maintains a set replyi that is used
during the read() operation to collect the three tuples 〈j, 〈v, sn〉〉 sent back from
servers. In particular v is the value, sn is the associated sequence number and j is the
identifier of server sj that sent the reply back. Additionally, ci also maintains a local
sequence number csn that is incremented each time it invokes a write() operation
and is used to timestamp such operations monotonically.

Local variables at server si. Each server si maintains the following local variables
(we assume these variables are initialized to zero, false or empty sets according their
type):

• Vi: an ordered set containing 3 tuples 〈v, sn〉, where v is a value and sn
the corresponding sequence number. Such tuples are ordered incrementally
according to their sn values.

• Vsafej : this set has the same characteristic as Vj . The insert(Vsafei , 〈vk, snk〉)
function places the new value in Vsafei according to the incremental order and
if dimensions exceed 3 then it discards from Vsafei the value associated to the
lowest sn.

• Wi: is the set where servers store values coming directly from the writer,
associating to it a timer, 〈v, sn, timer〉. Values from this set are deleted when
the timer expires or has a value non compliant with the protocol.

• pending_readi: set variable used to collect identifiers of the clients that are
currently reading.

• echo_valsi and echo_readi: two sets used to collect information propagated
through echo messages. The first one stores tuple 〈j, 〈v, sn〉〉 propagated by
servers just after the mobile Byzantine agents moved, while the second stores
the set of concurrently reading clients in order to notify cured servers and
expedite termination of read().

• curingi: set used to collect servers running the maintenance() operation. Notice,
to keep the code simple we do not explicitly manage how to empty such set
since has not impact on safety properties.

100 6. Distributed Registers in the Round-free Model

operation timerCheck(Wi) executed while (true) :
(1) for each (〈〈v, csn〉, timer〉j ∈Wi) do
(2) if (Expires(timer) ∧ (timer > 4δ))
(3) Wi ←Wi \ 〈〈v, csn〉, timer〉j ;
(4) endif
(5) endFor
————————————————————————————————————-

operation maintenance() executed while (true) :
(6) echo_valsi ← ∅; Vi ← Vsafei

; Vsafe ← ∅;
(7) rand← new_rand();
(8) broadcast echo_req(i, rand);
(9) wait(2δ);
——————————————————————————————————

when select_three_pairs_max_sn(echo_valsi) 6= ⊥
(10) insert(Vsafei

, select_three_pairs_max_sn(echo_valsi));
(11) for each (j ∈ (pending_readi ∪ echo_readi)) do
(12) send reply (i, Vsafe) to cj ;
(13)endFor
————————————————————————————————————-

when echo (j, S, pr, r) is received:
(14) if (rand = r)then:
(15) echo_valsi ← echo_valsi ∪ 〈v, sn〉j ;
(16) echo_readi ← echo_readi ∪ pr;
(17) endIf
——————————————————————————————————

when echo_req (j, r) is received:
(18) Seti ← ∅;
(19) for each〈〈v, csn〉, epoch〉j ∈Wi do;
(20) Seti ← Seti ∪ 〈v, csn〉j ;
(21) endFor
(22) send echo(i, Vi ∪ Seti, r) to sj ;

Figure 6.33. AM algorithm implementing the maintenance() operation (code for server si)
in the (ITB,CUM) model.

In order to simplify the code of the algorithm, let us define the following functions:

• select_three_pairs_max_sn(echo_valsi): this function takes as input the set
echo_valsi and returns, if they exist, three tuples 〈v, sn〉, such that there exist
at least #echoCUM occurrences in echo_valsi of such tuple. If more than
three of such tuples exist, the function returns the tuples with the highest
sequence numbers.

• select_value(replyi): this function takes as input the replyi set of replies
collected by client ci and returns the pair 〈v, sn〉 occurring occurring at least
#replyCUM times. If there are more pairs with the same occurrence, it returns
the one with the highest sequence number.

• conCut(Vi, Vsafei ,Wi): this function takes as input three 3 dimension ordered
sets and returns another 3 dimension ordered set. The returned set is com-
posed by the concatenation of Vsafei ◦ Vi ◦ Wi, without duplicates, trun-
cated after the first 3 newest values (with respect to the timestamp). e.g.,
Vi = {〈va, 1〉, 〈vb, 2〉, 〈vc, 3〉, 〈vd, 4〉} and Vsafei = {〈vb, 2〉, 〈vd, 4〉, 〈vf , 5〉} and
Wi = ∅, then the returned set is {〈vc, 3〉, 〈vd, 4〉, 〈vf , 5〉}.

The maintenance() operation. Such operation is executed by servers every 2δ
times. Each time si resets its variables, except for Wi (that is continuously checked

6.7 Upper Bounds for the (ITB,CUM) Synchronous model 101

========= Client code ==========
operation write(v):
(1) csn← csn+ 1;
(2) broadcast write(v, csn);
(3) wait (δ);
(4) return write_confirmation;

========= Server code ==========
when write(v, csn) is received:
(5) Wi ←Wi ∪ 〈〈v, csn〉, setTimer(4δ)}〉;
(6) for each j ∈ (pending_readi ∪ echo_readi) do
(7) send reply (i, {〈v, csn〉});
(8) endFor
(9) broadcast echo(i, 〈v, csn〉);

Figure 6.34. AW algorithm implementing the write(v) operation in the (ITB,CUM)
model.

by the function timerCheck()) and the content of Vsafei , which overrides the content
of Vi, before to be reset. Then si choses a random number to associate to such
particular maintenance() operation instance 8, broadcast the echo_req() message
and waits 2δ before to restart the operation. In the meantime echo() messages are
delivered and stored in the echo_valsi set. When there is value v whose occurrence
overcomes the #echoCUM threshold, such value is stored in Vsafei and a reply()
message with v is sent to current reader clients (if any).
Notice that, contrarily to all the previous models, servers are not aware about their
failure state and do not synchronize the maintenance() operation with each other.
The first consequence is a that a mobile agent may leave a cured server running such
operation with garbage in server variables, making the operation unfruitful. Such
server has to wait 2δ to run again the maintenance() operation with clean variables,
so that next time it will be effective, which implies γ ≤ 4δ.
The write() operation. When the writer wants to write a value v, it increments
its sequence number csn and propagates v and csn to all servers. Then it waits for
δ time units (the maximum message transfer delay) before returning.

When a server si delivers a write message, it updates Wi, associating to such
value a timer 4δ. 4δ it is a consequence of the double maintenance() operation that
a cured server has to run in order to be sure to be correct. Thus if a server is correct
it keeps v in Wi during 4δ, which is enough for our purposes. On the other side
a cured servers keeps a value (not necessarily coming from a write() operation) no
more than the time it is in a cured state, 4δ, which is safe. After storing v in Wi,
such value is inserted in reply() message to all clients that are currently reading
(clients in pending_readi) to notify them about the concurrent write() operation
and to any server executing the maintenance() operation (servers in curingi).
The read() operation. When a client wants to read, it broadcasts a read() request
to all servers and waits 2δ time (i.e., one round trip delay) to collect replies. When it
is unblocked from the wait statement, it selects a value v invoking the select_value

8Is it out of the scope of this work to describe such function, we assume that Byzantine server
can not predict the random number chosen next. The aim of such number is to prevent Byzantine
servers to send reply to maintenance() operations before their invocation, or, in other words, it
prevents correct servers to accept those replies.

102 6. Distributed Registers in the Round-free Model

function on replyi set, sends an acknowledgement message to servers to inform that
its operation is now terminated and returns v as result of the operation.

When a server si delivers a read(j) message from client cj it first puts its
identifier in the set pending_readi to remember that cj is reading and needs to
receive possible concurrent updates, then si sends a reply back to cj . Note that, in
the reply() message is carried the result of conCut(Vi, Vsafei ,Wi). In this case, if
the server is correct then Vi contains valid values, and Vsafei contains valid values
by construction, since it comes from values sent during the current maintenance().
If the server is cured, then Vi and Wi may contain any value. Finally, si forwards a
read_fw message to inform other servers about cj read request. This is useful in
case some server missed the read(j) message as it was affected by mobile Byzantine
agent when such message has been delivered.

When a read_ack(j) message is delivered, cj identifier is removed from both
pending_readi set as it does not need anymore to receive updates for the current
read() operation.

========= Client code ==========
operation read():
(1) replyi ← ∅;
(2) broadcast read(i);
(3) wait (2δ);
(4) 〈v, sn〉 ← select_value(replyi);
(5) broadcast read_ack(i);
(6) return v;
———————————————————————–

when reply (j, Vj) is received:
(7) for each (〈v, sn〉 ∈ Vj) do
(8) replyi ← replyi ∪ {〈j, 〈v, sn〉〉};
(9) endFor

========= Server code ==========
when read (j) is received:
(10) pending_readi ← pending_readi ∪ {j};
(11) send reply (i, conCut(Vi, Vsafei

,Wi));
(12) broadcast read_fw(j);
———————————————————————–

when read_fw (j) is received:
(13) pending_readi ← pending_readi ∪ {j};
———————————————————————–

when read_ack (j) is received:
(14) pending_readi ← pending_readi \ {j};
(15) echo_readi ← echo_readi \ {j};

Figure 6.35. AR algorithm implementing the read() operation in the (ITB,CUM) model.

6.7.2 Preg for the (ITU,CUM) model

By definition (ITU,CUM) is an instance of the (ITB,CUM) such that ∆ = 1.
Thus, given δ and the relationship d2δ

∆ e = k is it straightforward to have an algorithm
to solve the SWMR Regular Register in the (ITU,CUM) model.

6.7 Upper Bounds for the (ITB,CUM) Synchronous model 103

6.7.3 Correctness (ITB,CUM)
To prove the correctness of Preg we demonstrate that the termination property is
satisfied i.e, that read() and write() operations terminates. For the validity property
we follow te same four steps as defined in 6.4.4.

Lemma 45 If a correct client ci invokes write(v) operation at time t then this
operation terminates at time t+ δ.

Proof The claim simply follows by considering that a write_confirmation event is
returned to the writer client ci after δ time, independently of the behavior of the
servers (see lines 3-4, Figure 6.34). �Lemma 45

Lemma 46 If a correct client ci invokes read() operation at time t then this operation
terminates at time t+ 2δ.

Proof The claim simply follows by considering that a read() returns a value to the
client after 2δ time, independently of the behaviour of the servers (see lines 12-15,
Figure 6.35). �Lemma 46

Theorem 24 (Termination) If a correct client ci invokes an operation, ci returns
from that operation in finite time.

Proof The proof simply follows from Lemma 45 and Lemma 46. �Theorem 24

To easy the next Lemmas let us use state the following result.

Lemma 47 Let [t, t + 2δ] be a generic interval, then there are always at least
#replyCUM correct servers that reply during the [t, t+ δ] time interval.

Proof This follows considering the definition of minimum number of correct replies
during a time interval (cf. Corollary 6). Since does exist a tight protocol P solving a
regular register in the (∆S,CAM) model, then for Lemma 20, is it possible to apply
values from Table 6.2 to compute the minimum number of correct replies during the
considered time interval, substituting values in each case the result is always at least
#replyCUM . �Lemma 47

Lemma 48 (Step 1.) Let Ti be the time at which mobile agent mai leave sc and
let t ≤ Ti + 2δ the time at which sc run the second maintenance() operation. Let v
be the value stored at #echoCUM servers sj /∈ B(t, t + δ), v ∈ Vj∀sj /∈ B(t, t + δ).
At time t+ 2δ, at the end of the maintenance(), v is returned to sc by the function
select_three_pairs_max_sn(echo_valsc).

Proof The proof follows considering that:

• the maintenance() employs a request-reply pattern and during such operation,
by hypothesis, there are #echoCUM servers that are never affected during the
[t, t+ δ] time period and are storing v at time t+ δ. i.e., there are #echoCUM
servers that deliver the echo_req() message (the can be either correct or
cured) but are storing v in V at time t+ δ such that the reply is delivered by
sc by time t+ 2δ.

104 6. Distributed Registers in the Round-free Model

• during the maintenance() operation can incorrectly contribute (k + 1)f Byzan-
tine servers, and (2k)f servers that were Byzantine in [t− 4δ, t] time period,
thus they could be still in a cured state 9.

• when the echo_req() message is sent, sc uses a random number in order to
be able to accept only echo() message sent after t.

#echoCUM = (3k)f + 1 > 3kf thus Byzantine servers can not force the function
select_three_pairs_max_sn(echo_valsc) to return a not valid value so it returns v
that occurs #replyCUM times, which is true since there exist #echo_CUM non
faulty servers that reply to the echo_req() message sending back v, concluding
the proof. �Lemma 38

In the sequel we consider γ ≤ 4δ. In the previous Lemma we proved that cured
servers sc can get valid values in 2δ time. Contrarily to all the previous model, the
maintenance() operation is triggered each 2δ. Thus a mobile agent, just before to
leave could leave sc with the timer just reset and garbage in the echo_setc and Vc
sets, which does not allow sc to correctly terminate the operation. Thus sc has to
wait 2δ before to effectively starts a correct maintenance() operation. In the sequel
we refer to the first maintenance as the operation that may be ineffective and
we refer to the second maintenance as the operation that allows a cured server
to retrieve and store valid values. It is straightforward that γ ≤ 4δ and the next
Corollary just follows.

Corollary 12 Protocol P implements a maintenance() operation that implies γ ≤ 4δ.

Lemma 49 (Step 2.) Let opW be a write(v) operation invoked by a client ck at
time tB(opW) = t then at time t + δ there are at least n − 2f > #replyCUM non
faulty servers si such that v ∈Wi (so that when si invokes conCut(Vi, Vsafei ,Wi) v
is returned).

Proof When the write() message is delivered by non faulty servers si, such
message is stored in Wi and a timer associated to it is set to 4δ, after that the value
expires. For Lemma 11 in the [t, t+δ] time interval there are maximum 2f Byzantine
servers. All the remaining n − 2f non faulty servers execute the correct protocol
code, Figure 6.34 line 5 inserting v in Wi. Since write() operations are sequential,
during [t, t+ δ] there is only one new value inserted in Wi, which is returned by the
function conCut() by construction. �Lemma 49

For simplicity, for now on, given a write() operation opW we call tB(opW)+δ = twC
the completion time of opW , the time at which there are at least #replyCUM
servers storing the value written by opW .

Lemma 50 (Step 3.) Let opW be a write() operation and let v be the written
value and let twC be its time completion. Then if there are no other write() op-
eration, the value written by opW is stored by all correct servers forever (i.e.,
v ∈ conCut(Vi, Vsafei ,Wi)).

9We prove hereafter that γ ≤ 4δ, but to prove it we have first to prove that the maintenance()
lasts 2δ time.

6.7 Upper Bounds for the (ITB,CUM) Synchronous model 105

Proof From Lemma 41 at time twC there are at least n− 2f > #replyCUM non
faulty servers sj such that v ∈Wi. For sake of simplicity let us consider Figure 6.36.
Let us consider that:

• for Lemma 49, all non faulty servers si have v in Wi at most at twC ;

• when si runs the next maintenance(), at the end of such operation, v is returned
by select_three_pairs_max_sn(echo_valsi) function and since it is the value
with the highest sequence number (there are no other write() operation) then
v is inserted in Vsafei (cf. Figure 6.33 line 10), thus such value is present in
the ECHO() message replies for the next 2δ time;

• this is trivially true up to time t′ = t+ 4δ, for the timer associated to each v in
Wi. In [t, t′] there are 2k+1 Byzantine servers, thus v ∈Wj at n− (2k+1) non
faulty servers, and n− (2k + 1) = (3k + 1)f + 1 = #replyCUM ≥ #echoCUM ;

• for each non faulty server the next maintenance() operation opM can happen
either in [t′, t′+ δ] or in [t′+ δ, t′+ 2δ] (cf. Figure 6.36)s10 and s11 respectively:

– tB(opM) ∈ [t′, t′ + δ] (cf. s10 Figure 6.36): s10 starts opM1 before t′ + δ,
let us name it server type A. This means that tB(opM−1) + δ < t′ − δ,
thus for Lemma 48, at the end of the operation v ∈ Vsafe10 and during
opM1 v ∈ V10;

– tB(opM) ∈ [t′ + δ, t′ + 2δ] (cf. s11 Figure 6.36): s11 starts opM1 after
t′ + 2δ let us name it server type B. This means that tB(opM−1) + δ > t′,
thus at the end of the operation we can not say that v ∈ Vsafe10 but at
least during opM−1 v ∈ V11.

If all non faulty servers are type A, during opM1 all non faulty servers have v ∈ V and
insert v in the echo() message. The same happens if all non faulty servers are type
B, during opM−1 , all of them inter v in the echo() message and the maintenance()
operation terminates with such value. If the situation is mixed, then servers type
B, when run opM−1 , deliver echo() messages from both type A and type B servers.
Thus if there are enough occurrence of v they can store v ∈ Vsafeb and during opM1

v ∈ Vb. During such operation both servers type A and type B have vinV . Again, if
there are enough occurrences of v, the operation ends with v ∈ Vsafeb . It follows that
servers type A, when run opM1 delivers echo() messages containing v from both type
A and type B servers. During the time interval [t′, t′+ 2δ] there are k correct servers
that are affected by mobile agent, cf. Figure 6.36, s5 and s6. At the same time there
is server s0, type A, that terminate its maintenanace() with v ∈ Vsafe0 , and thus
compensates s5, allowing s1, type B, to terminate the maintenanace() operation with
v ∈ Vsafe1 , which compensates s6. This cycle, between type A and type B servers
can be extended forever. By hypothesis there are no more write() operation, thus all
correct servers have v ∈ Vsafe or V , and v is returned when servers invoke function
conCut(). �Lemma 50

Lemma 51 (Step 3.) Let opW0 , opW1 , . . . , opWk−1 , opWk
, opWk+1 , . . . be the sequence

of write() operation issued on the regular register. Let us consider a generic opWk
,

106 6. Distributed Registers in the Round-free Model

s0

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

. . .

write(v) t′

v ∈ Vsafe5

v ∈ Vsafe6

v ∈ Vsafe7

v ∈ Vsafe8

v ∈ Vsafe9
v ∈ Vsafe10

v ∈ Vsafe11

v ∈ Vsafe12

v ∈ Vsafe13

t′ + 2δ

v ∈ Vsafe0

v ∈ Vsafe1

opM−1 opM1

opM−1 opM1

Figure 6.36. maintenance() operation opM1 analysis after a write() operation, t′ = t+ 4δ.
White rectangles are maintenance() operation run by correct servers. In particular s10
runs such operation during the first δ period after t′, while s11 runs it during the second
δ period.

6.7 Upper Bounds for the (ITB,CUM) Synchronous model 107

let v be the written value by such operation and let twC be its completion time. Then
v is in the register (there are #replyCUM correct servers that return it when invoke
the function conCut()) up to time at least tBWk+3.

Proof The proof simply follows considering that:

• for Lemma 50 if there are no more write() operation then v, after twC , is in
the register forever.

• any new written value eventually is stored in an ordered set Vsafe and then
V (cf. Figure 6.33 line 6 or line 10) whose dimension is three.

• write() operation occur sequentially.

It follows that after three write() operations, opWk+1 , opWk+2 , opWk+3 in V Vsafe and
W there are three values whose sequence number is higher than the one associated
to v, thus by construction conCut() does not return v anymore, v is no more stored
in the regular register. �Lemma 51

Theorem 25 (Step 4.) Any read() operation returns the last value written before
its invocation, or a value written by a write() operation concurrent with it.

Proof Let us consider a read() operation opR. We are interested in the time interval
[tB(opR), tB(opR) + δ]. Since such operation lasts 2δ, the reply messages sent by
correct servers within tB(opR)+δ are delivered by the reading client. During [t, t+δ],
for Lemma 47 there are at least #replyCUM correct servers that reply. Now we have
to prove that what those correct servers reply with is a valid value. There are two
cases, opR is concurrent with some write() operations or not.
- opR is not concurrent with any write() operation. Let opW be the last write()
operation such that tE(opW) ≤ tB(opR) and let v be the last written value. For
Lemma 50 after the write completion time twC there are at least #replyCUM correct
servers storing v (i.e., v ∈ conCut(Vj , Vsafej)). Since tB(opR) + 2δ ≥ tCw, then there
are #replyCUM correct servers replying with v (cf. Lemma 47), by hypothesis there
are no further write() operation and v has the highest sequence number. It follows
that the last written value v is returned.
- opR is concurrent with some write() operation. Let us consider the time
interval [tB(opR), tB(opR) + δ]. In such time there can be at most two write()
operations. Thus for Lemma 51 the last written value before tB(opR) is still present
in #replyCUM correct servers and all of them reply (cf. Lemma 47) thus at least
the last written value is returned. To conclude, for Lemma 11, during the read()
operation there are at most (k+1)f Byzantine servers and 2k cured servers 10, being
#replyCUM = (3k + 1)f + 1 > (3k + 1)f then Byzantine servers may not force the
reader to read another or older value and even if an older values has #replyCUM
occurrences the one with the highest sequence number is returned, concluding the
proof. �Theorem 25

10Servers where affected in the previous 4δ time period, thus they are still running the two
maintenance() operations, that last at most 4δ.

108 6. Distributed Registers in the Round-free Model

0 2 4 6 8 10
0

10

20

30

40

50

k

n
(f

)

nCAM
nCAMLB

Figure 6.37. The red line is the nCUM function for k ≥ 1, (5k + 2)f + 1. The blue line is
the Function nCAMLB

described in Table 6.1 with values from Table 6.2 (setting γ = 4δ).
The distance between the two lines is just 1 server.

Theorem 26 Let n be the number of servers emulating the register and let f be
the number of Byzantine agents in the (ITB,CUM) round-free Mobile Byzantine
Failure model. Let δ be the upper bound on the communication latencies in the
synchronous system. If n ≥ (5k + 2)f + 1, then Preg implements a SWMR Regular
Register in the (ITB,CUM) round-free Mobile Byzantine Failure model.

Proof The proof simply follows from Theorem 24 and Theorem 25. �Theorem 26

Lemma 52 Protocol Preg is tight in the (ITB,CUM) model with respect to γ ≤ 4δ.

Proof The proof follows from Theorem 14 using the values in Table 6.2 to compute
nCUMLB

as defined in Table 6.8. We can use such Theorem since does exists a tight
protocol that solves Regular Register in the (∆S,CUM) model so we can apply
Lemma 20. From Corollary 12, γ ≤ 4δ. For k ≥ 1, let us consider graphic depicted in
Figure 6.37, the two functions are depicted for k increasing, proving that the bound
for the protocol is just above, by one server, over the lower bound. For ∆ ≥ 3δ is it
enough to substitute values in Table 6.2 to compute nCUMLB

concluding the proof.
�Lemma 52

6.8 Concluding remarks

In the following tables are reported part of the results found so far. For simplicity
we are reporting particular cases for δ ≥ ∆ considering ∆S and ITB movement
models.

6.8 Concluding remarks 109

CAM
∆S
Tr = 2δ
γ ≤ δ

ITB
Tr = 2δ
γ ≤ 2δ

δ ≤ ∆ < 2δ n ≥ 4f + 1 n ≥ 4f + 1
2δ ≤ ∆ < 3δ n ≥ 5f + 1 n ≥ 6f + 1

CUM
∆S
Tr = 2δ
γ ≤ 2δ

ITB
Tr = 2δ
γ ≤ 4δ

δ ≤ ∆ < 2δ n ≥ 5f + 1 n ≥ 7f + 1
2δ ≤ ∆ < 3δ n ≥ 8f + 1 n ≥ 12f + 1

CAM
∆S
Tr = 3δ
γ ≤ δ

∆ ≥ 3δ n ≥ 3f + 1

CUM
∆S
Tr = 3δ
γ ≤ 2δ

ITB
Tr = 2δ
γ ≤ 4δ

3δ ≤ ∆ < 4δ n ≥ 4f + 1 n ≥ 6f + 1
4δ ≤ ∆ < 5δ n ≥ 4f + 1 n ≥ 5f + 1
∆ ≥ 5δ n ≥ 4f + 1 n ≥ 4f + 1

It is interesting to notice that for ∆ ≥ 3δ the Register protocol lower bounds
match the lower bounds imposed by the maintenance() operation, respectively n ≥
3f + 1 for the (∆S,CAM) model (cf. Lemma 8) and n ≥ 4f + 1 for the (∆S,CUM)
model (cf. Lemma 9). Thus, those bounds are optimal in terms of correct replicas
with respect to the optimal maintenance() operation. Interestingly those bounds
match also the lower bounds presented in the Round-Based MBF models (Chapter
5). In particular the n ≥ 3f + 1 lower bound for the (∆S,CAM) model matches the
Garay’s model lower bound, where cured servers are aware about their failure state
as for the (∗, CAM) model. On the other side, the n ≥ 4f + 1 lower bound for the
(∆S,CUM) model matches the Bonnet’s model (and Sasaki’s model) lower bound,
where cured servers are not aware about their failure state as for the (∗, CUM)
model.
Concerning the (ITB,CAM) models, as we stated, we conjecture that, even for
∆ ≥ 3δ there exists no protocol solving the Regular Register with less than n ≥ 4f+1
replicas. On the other side, for the (ITB,CUM) models we proposed a protocol
solving the regular register for n ≥ 4f + 1 when ∆ > 5δ. Thus, also in this case the
protocol for the maintenance() operation is optimal in terms of correct replicas.

111

Chapter 7

Approximate Agreement in the
Round Based Model

In this chapter we address Approximate Agreement problem in the Mobile Byzantine
Failure model. Our contribution is three-fold. First, refined the problem specification
to adapt it to the Mobile Byzantine Failure environment. Then, we propose the the
first mapping from the existing variants of Mobile Byzantine models to the Mixed-
Mode faults model.This mapping further help us to prove the correctness of class
MSR (Mean-Subsequence-Reduce) algorithms in our context and is of independent
interest. We also prove lower bounds for solving Approximate Agreement under all
existing Mobile Byzantine faults models

7.1 Mobile Byzantine Approximate Agreement speci-
fication.

The Byzantine Approximate Agreement problem has been accurately specified in
[28]. Here, we adapt such specification to the case of Mobile Byzantine Failures.
Informally, in the Byzantine Approximate Agreement, each process starts proposing
a real-value input and eventually every correct process decides a real-valued output;
given any two correct processes, their decided values can differ for at most ε, where ε
is the tolerance in the approximation. When considering Mobile Byzantine Failures
we have that each process pi can switch between faulty and correct states several
times during the computation. Thus, we need to extend the specification of Byzantine
Approximate Agreement to Mobile Byzantine Approximate Agreement in order to
take into account such aspect. The key point in the extension is to specify that
multiple decisions can be taken by the same process due to the fact that its failure
state is not permanent. However, every decision taken by a process pi while it is
correct must be “consistent” with the others (i.e., the decided value should be at
most ε far from values decided by others correct processes). More formally:

• Eventual− Convergence: There exists a round r such that, for every round
r′ > r, every correct process in r′ decides a value.

112 7. Approximate Agreement in the Round Based Model

• ε− Agreement: Let vi and vj be two values decided respectively by pi and pj
when they are correct, then vi and vj are within ε of each other i.e., |vi−vj | ≤ ε;

• Validity: Let V be the set of initial values proposed by correct processes at
round r0 and let vmin and vmax be respectively the minimum and the maximum
value in V . Let vi be a value decided by process pi when it is correct then vi
must be in the range [vmin, vmax].

7.2 Lower Bounds

In order to formulate the strongest impossibility results related to Approximate
Agreement in the Mobile Byzantine faults model we examine a weaker version of
this problem referred in [19] as Simple Approximate Agreement. Each correct node
has a real value from [0, 1] as input and chooses a real value. Correct behaviors
must satisfy the following properties: Agreement: The maximum difference between
values chosen by correct nodes must be strictly smaller than the maximum difference
between the inputs, or be equal to the latter difference if it is zero. Validity: Each
correct node chooses a value in the range of the inputs of the nodes.

We prove lower bounds for each Mobile Byzantine faults models: Garay’s (M1),
Bonnet’s(M2), Sasaki’s (M3) and Burhman’s (M4). The bounds for the models (M3)
and (M4) result from the classical bounds proved in [19] and the mapping defined in
7.3.3. In the case of models (M1) and (M2), since the behavior of cured processes
cannot be totally controlled by the Byzantine adversary, specific proofs are needed.
Note that the lower bounds below do not concern the class of algorithms whose
computations end before the end of the first round and that start in a configuration
where there are f Byzantine processes and no cured ones. It is trivial that for
this class of algorithms the lower bounds are the same as those proven in [19] (i.e.,
n ≥ 3f + 1).

Theorem 27 (Lower bound for Garay’s model) There is no algorithm that
solves Simple Approximate Agreement in the Garay’s model (M1) under the Mobile
Byzantine faults model if n ≤ 4f .

Proof The proof goes by contradiction. Suppose that there exists an algorithm
A verifying the Simple Approximate Agreement properties in the (M1) Mobile
Byzantine faults model with n ≤ 4f . Consider w.l.g. a system with four processes
and one Byzantine mobile agent. The generalization of the proof can be done by
replacing any process with a group of f processes.

Consider the system with four processes denoted p0, p1, p2, p3 and consider that
p0 is occupied by the Byzantine agent while p1 is cured and p2 and p3 are correct
processes. Note that the cured process in (M1) model is silent. Consider three
executions of A denoted E1, E2 and E3 constructed as follows. In E1 the correct
processes propose both the value 0. It follows, from the Agreement and Validy
properties of A, that the value chosen by p1, p2 and p3 should be 0 (independently
of the value sent by the Byzantine process, assume it 1). In E2 the correct processes
propose both 1. It follows, from the Agreement and Validity properties of A, that the

7.2 Lower Bounds 113

value chosen by p1, p2 and p3 is 1 (independently of the value sent by the Byzantine
process, assume it 0).

The E3 brings the contradiction: some correct processes choose 1 while others
choose 0, which contradicts the Agreement property of A. The execution E3 is as
follows: the process occupied by the Byzantine agent sends 0 to process p2 and 1 to
process p3. Let us consider only the processes p2 and p3. The multiset held by p2 is
{0,0,1}. This multiset is identical with the one p2 gathered in E1, hence its choice in
E3 should be 0 (identical to the one in E1). The multiset gathered by p3 in E3 is
{1,0,1} and identical with the one p3 gathered in E2. Thus, p3 should choose 1 in E3.
Execution E3 violates the Agreement property of Simple Approximate Agreement.
This contradicts the assumption that A verifies the Simple Approximate Agreement
properties. �Theorem 27

Theorem 28 (Lower bound for Bonnet’s model) There is no algorithm that
solves Simple Approximate Agreement in the Bonnet’s model (M2) under the Mobile
Byzantine faults model if n ≤ 5f .

Proof The proof follows the same general idea as the proof of Theorem 27. Suppose
that exists an algorithm A verifying Simple Approximate Agreement properties in
Mobile Byzantine model (M2) with n ≤ 5f . In all of them we consider five processes
p0, p1, p2, p3 and p4, where p0 is occupied by a Byzantine agent while p1 is cured (its
state may be corrupted) and p2, p3 and p4 are correct processes.

Consider three executions: E1, E2 and E3. Execution E1 starts in a configuration
where p2, p3 and p4 propose 0 while p1 proposes 1. Assume p0 sends 1 to all processes.
Each non faulty process gathers in E1 the multi-set {1,1,0,0,0} and following the
Agreement and Validity properties of A , they have all to choose 0 in E1.

Execution E2 starts in a configuration where p2, p3 and p4 propose 1 while p1
proposes 0. Assume p0 sends 0 to all processes. Each non faulty process gathers in
E2 the multi-set {0,0,1,1,1} and following the Agreement and Validity properties of
A , they have all to choose 1 in E2.

Execution E3 brings the contradiction. Assume that in E3 p0 sends 0 to p2 and
1 to p3. p2 gathers the multiset {1,1,0,0,0} hence it has the same multi-set as in
E1. p2 then chooses 0. p3 gathers the multi-set {0,0,1,1,1} and since this multi-set
is identical with the one gathered in E2, p3 has to make the same choice, namely
1. Execution E3 violates the Agreement property, hence A do not implement the
Simple Approximate Agreement. �Theorem 28

Theorem 29 (Lower bound for Sasaki’s model) There is no algorithm that
solves Simple Approximate Agreement in the Sasaki’s model (M3) under the Mobile
Byzantine faults model if n ≤ 6f .

Proof The proof follows directly from the lower bound for the Simple Approximate
Agreement [19] and the mapping defined in 7.3.3. Note that in the Sasaski’s model
the number of processes with asymmetric behavior is 2f where f is the number of
Byzantine agents. �Theorem 29

114 7. Approximate Agreement in the Round Based Model

Theorem 30 (Lower bound for Burhman’s model) There is no algorithm that
solves Simple Approximate Agreement in the Burhman’s model (M4) under the Mobile
Byzantine faults model if n ≤ 3f .

Proof The proof follows directly from the lower bound for Simple Approximate
Agreement [19] and the mapping defined 7.3.3. Note that in the Burhman’s model
in each round there are exactly f asymmetric faulty processes. �Theorem 30

7.3 Upper Bounds

In this chapter, we prove that the family of Mean-Subsequence-Reduce (MRS)
algorithms is able to solve the Mobile Byzantine Approximate Agreement Problem.
In order to to that, we will show a mapping between each MBF model presented in
Section 7.3.3 and the mixed-fault model considered in [22] where MSR have been
proved to work for a certain mix of Byzantine failure types.

In the following, we first introduce the mixed-fault model presented in [22], then
we provide some background notions and formalization about MRS and then we will
show the mapping.

7.3.1 Mixed-fault Model

In [22], three particular categories of failures have been considered: (i) benign, (ii)
symmetric and (iii) asymmetric.

• A process pi is said to be benign faulty if it exposes a self-incriminating, or
immediately self-evident fault to all non-faulty processes. An example of benign
fault is a crash failure or an omitted reply in a synchronous system. Indeed,
given the knowledge about upper bounds on latencies in synchronous systems,
such behaviors can be immediately detected by every non-faulty process. .

• A process pi is said to be symmetrically faulty if its behavior is perceived
identically by all non-faulty processes. A symmetric fault is generally a
malicious fault such as unexpected message broadcast to all processes.

• A process pi is said to be asymmetrically faulty if its behavior may be perceived
differently by different non-faulty processes. An asymmetric fault is a classical
arbitrary fault such as a broadcast where the sender can send different values
to different correct processes.

7.3.2 Background on Mean-Subsequence-Reduce Algorithms

Convergent voting algorithms represent a family of algorithms that can be used to
solve the Byzantine Approximate Agreement problem. Convergent voting algorithms
start from an initial set of proposed values {v1, v2, . . . vn} and guarantee that any
process pi converges to a value vi satisfying the Byzantine Approximate Agreement
specification. In [22] convergent voting algorithms are called Mean-Subsequence-
Reduce (MSR).

7.3 Upper Bounds 115

More in details, any algorithm in this family proceeds in rounds and during any
round rj , every process pi executes the following actions:

1. send-phase: pi sends its “voted” value to the others;

2. received-phase: pi aggregates values in a multiset Nrk ;

3. computation-phase: pi applies a deterministic function F(Nrk) to decide the
value to vote in the next round rk+1.

Their computation function can be expressed in the general form:

FMSR(Nrk) = mean[Sel(Red(Nrk))]

where Sel is a selection function and Red is a reduction function used to filter values.
The correctness of MSR algorithms in the Mixed-mode faults model is guaranteed

by the single-step convergence property. Informally, at the end of each round rk, the
range of values voted by correct processes shrinks with respect to the beginning of
the round.

In [22], the authors proved that, given the number of benign faults b, the number
of symmetric faults s and the number of asymmetric faults a, the minimum number of
processes n needed to solve the Byzantine Approximate Agreement by an algorithm
in the class MSR is

n > 3a+ 2s+ b (7.1)

7.3.3 Mapping MBF on to Mixed-Fault Model

In order to prove that MSR algorithms are able to solve the Mobile Byzantine
Approximate Agreement problem, we will map each Mobile Byzantine Failure model
to the Mixed-mode faults and we will exploit the constraint on n established in the
Mixed-fault model to compute the number of processes required to solve Mobile
Byzantine Approximate Agreement problem in the Mobile Byzantine Failure model.

Note that the behavior of Mobile Byzantine processes concern only the send/receive
phases of MSR algorithms. Therefore, we focus on the behavior of the faulty pro-
cesses during the execution of these phases. In order to match our models the
send-phase of MSR algorithms should be sightly modified in order to prevent correct
processes to participate to the communication as per the requirement of the M1
model.

Lemma 53 Let T brk be the set of cured processes at the beginning of round rk in
model M1. If the send phase

if (cured) nop; else send(vote) to all processes;

is executed by any pj ∈ T brk then the computation executed in round rk is equivalent
to the computation under Mixed-mode fault model with a = f and b = |T brk |.

116 7. Approximate Agreement in the Round Based Model

Proof A cured process, in M1 is aware of its failure state thus if it is forced to skip
the send phase then it is detected by any correct process in round rk. �Lemma 53

Lemma 54 Let T srk be the set of cured processes at the beginning of round rk in
model M2. If the send phase

send(vote) to all processes;

is executed by any pj ∈ T srk then the computation executed in round rk is equivalent
to the computation under Mixed-mode fault model executed with a = f and s = |T srk |.

Proof A cured process in M2 is not aware of its state, hence it sends its vote to
every process in the system. This value may be the result of a corrupted state. This
is identical to the behavior of a process exhibiting a symmetric fault. �Lemma 55

Lemma 55 Let T ark be the set of cured processes at the beginning of round rk in
model M3. If send phase

send(vote) to all processes;

is executed by any pj ∈ T ark then the computation executed in round rk is equivalent
to the computation under Mixed-mode fault model executed with a = f + |T ark |.

Proof A cured process inM3 is not aware of its state hence it sends its vote to every
process in the system. Moreover, Byzantine agent prepares the outgoing message
queue (cf. [40]). Thus, a cured process executes the sending phase as any correct
process. However, differently from the correct processes it sends possibly different
values (left behind by the Byzantine agent) to every process in the system. This is
identical to the behavior of a process exhibiting an asymmetric fault. �Lemma 55

Lemma 56 Let T crk be the set of cured processes at the beginning of round rk in
model M4. If the send phase

send(vote) to all processes;

is executed by any pj ∈ T crk then the computation executed in round rk is equivalent
to the computation under Mixed-mode fault model executed with a = f .

Proof In this failure model, Byzantine agents move along with the messages. Thus
during the sending phase there are no processes in T crk . �Lemma 56

Table 7.1 summarizes the mapping results proven in Lemmas 53-56.
Given Lemmas 53-56 and considering equation (1), it is possible to define the

number n of processes required to run a MSR algorithm. Results are shown in Table
7.2 for each Mobile Byzantine Failure model.

In the previous Section we shown that each of the four round based MBF models
described in Chapter 4 can be mapped in a particular configuration of the Mixed-
fault model. Let us note that such mapping holds if we take a snapshot of the

7.3 Upper Bounds 117

M1 M2 M3 M4
Asymmetric faulty faulty faulty, cured faulty
Symmetric cured
Benign cured

Table 7.1. Mapping between the behavior of faulty processes in the Mixed-Mode faulty
model and faulty and cured processes in the four Mobile Byzantine faulty models.

nMi

M1 n > 3f + b = 4f
M2 n > 3f + 2s = 5f
M3 n > 3(f + a) = 6f
M4 n > 3f = 3f

Table 7.2. Number of required replicas in each failure model.

computation at the beginning of each round. In the following, we will prove that the
mobility does not affect the mapping as moving from one round to the following does
not alter the proportion of processes in the mixed-fault model. This will allow us to
prove that in presence of mobile Byzantine agents the MSR family of algorithms
verifies the Byzantine Approximate Agreement specification.
In order to do that, we first characterize configurations produced by a MSR algorithm
in presence of static Byzantine faulty nodes. Then, we prove that each configuration
produced in presence of mobile Byzantine agents has the same characterization.
Hence, the mobility of Byzantine agents does not affect the correctness of MSR
family. Moreover, we prove that the necessary condition over the number of replicas
in [22] still holds in the Mobile Byzantine failures model with the mapping defined
in the previous section.

7.3.4 Preliminaries and Basic Notation

In order to proceed with our proof, we first need to recall some basic notations from
[15, 22]. Let V be a set of values:

• min(V): is the minimum value of the elements in V ;

• max(V) is the maximum value of the elements in V ;

• ρ(V): (also called range of V) is the interval of real spanned by V (i.e.,
ρ(V) = [min(V),max(V)]);

• δ(V): (also called diameter of V) is the difference between the maximum and
the minimum values of V (i.e., δ(V) = min(V)−max(V));

• N i
rk
: is the multi-set of values received by a non-faulty process pi in a given

round rk. Let U ⊆ N i
rk

be the subset of values generated by non-faulty
processes 1.

1Since the communication graph is fully connected then this set is equal for any correct process

118 7. Approximate Agreement in the Round Based Model

V

U

p0 p1 p2 p3 p4

p0 p1 p2 p3 p4

p0 p1 p2 p3 p4

.

p0 p1 p2 p3 p4

p2 vectors
V U

U

U

r1

r2

r3

rk

V

U

p0 p1 p2 p3 p4

p0 p1 p2 p3 p4

p0 p1 p2 p3 p4

.

p0 p1 p2 p3 p4

Figure 7.1. On the left M1 model and on the right the “Mixed-Mode” Failure model.
Processes are colored according to the mapping defined in 7.3.3. V and U are the
proposed values sets by all and by correct processes respectively. In both cases, round
after round U is shrinking and the computation is carried out by the same fraction of
correct processes. What change is that in the first case they change identifiers over the
rounds.

In addition, we need to recall the two fundamental properties that allows to
prove the correctness of the MSR algorithms family. If n > 3a + 2s + b then the
following two properties hold:

Property 1 For each non-faulty process pi, the value computed at the end of round
rk is in the range of non-faulty values, i.e.,

FMSR(N i
rk

) ∈ ρ(U).

Property 2 For each pair of non-faulty processes pi and pj, the difference between
their computed values is strictly less than the diameter of the sub-multiset of non-
faulty values received, i.e.,

|FMSR(N i
rk

)−FMSR(N j
rk

)| < δ(U).

In the following virk denotes the value obtained at the end of round rk (com-
putation phase) by process pi, applying the MSR function vector N i

rk
(i.e., virk ←

FMSR(N i
rk

)) and we will refer to such value as correct value.

Lemma 57 Let T ∗rk be the set of cured processes at the beginning of round rk in
the models M1-M4. If n > nMi and every pj ∈ T ∗rk executes computation-phase
of a MSR-algorithm then at the end of rk we have |T ∗rk | = 0.

7.3 Upper Bounds 119

Proof The proof is done by induction. During the first round r0 no Byzantine
agent moved yet. Thus, at the end of r0 trivially |T ∗r0 | = 0. In the next round r1
Byzantine agents move thus affecting up to f processes. Therefore, at the beginning
of r1 there are up to f cured processes, |T ∗r1 | ≤ f . If we substitute, for each model
M1-M4 (cf. Table 7.1), values in n > 3a + 2s + b if follows that despite agents
movement, n > nMi still holds. Thus, for the definition of FMSR() the value that
each process computes at computation-phase is correct. Hence, at the end of round
r1 we have |T ∗r1 | = 0. For each further rk the reasoning is similar. �Lemma 57

From Lemma 57 it follows that during each round there are not cured processes
related to the previous round but only the ones due to the last Byzantine agents
movement, hence the corollary below.

Corollary 13 Let Trk be the set of cured processes at the beginning of round rk.
∀rk, |Trk | ≤ f .

Definition 20 (configuration Crk) Let configuration Crk be a set of n tuples
〈failure state, proposing value〉i representing the state of each process pi at round rk.
Note that processes, depending on the failure model, may or may not be aware of
their failure state.

Definition 21 (AArk) Let AA be a generic instance of the MSR family and let
AArk be the rk − th execution of the protocol AA at round rk, such that Crk ←
AArk(Crk−1). It takes as input Crk−1 and returns Crk .

Definition 22 (static computation) A sequence of k AA executions, such that
Crk ← AArk−1(AArk−2(. . . AAr1(Cr0)) . . .) is said a static computation if in every
configuration Cr1 , ..., Crk , there exists a subset of at least n− (3a+ 2s+ b) correct
processes that are correct during the whole computation.

Note that with fixed a,s and b, the relation n > 3a+ 2s+ b always holds in a
static computation of a MSR algorithm ([22]).

Definition 23 (mobile computation) A sequence of k AA executions, such that
Crk ← AArk−1(AArk−2(. . . AAr1(Cr0)) . . .) is said to be a mobile computation if for
any two subsequent configurations Crk , Crk+1, any process may change the failure
state but the relation n > 3a+ 2s+ b holds at each round.

Definition 24 (configurations equivalence) A configuration Crk is said to be
equivalent to a configuration C̄rk if:

• Crk and C̄rk produce the same U ;

• ∀k, Crk has at least the same number of tuples 〈correct, correct value 〉 as C̄rk .

Note that in a static computation a correct process is correct for the whole computa-
tion, while in a mobile one is correct with respect to the observed round.

Definition 25 (correct computation) A computation Cr0 , . . . , Crk is a correct
computation if it is possible to build a static computation C̄r0 , . . . , C̄rk such that,
∀j ∈ [0, k], Crj is equivalent to C̄rj .

120 7. Approximate Agreement in the Round Based Model

Given a static computation C̄r0 , . . . , C̄rk of an algorithm in the MSR class, if
n > 3a+ 2s+ b, then each configuration C̄rj , j ∈ [0, k], is characterized as follows:

• up to a asymmetric Byzantine processes;

• up to s symmetric Byzantine processes;

• up to b benign faults;

• at least n− (a+ s+ b) correct processes such that each pj of them computes a
correct value vrjj .

The first three points are due to the failures static nature. The last one is given
by the failures static nature plus the correctness of the algorithm in the static case
(as proven in [22]).

7.3.5 MSR correctness under Mobile Byzantine fault model

In the following we prove that despite the mobility of Byzantine agents, the MSR
family of algorithms satisfies the Mobile Byzantine Approximate Agreement speci-
fication. In the presence of mobile Byzantine agents, each round is characterized
by correct, cured and faulty processes. As we showed previously, depending on the
failure model considered, cured processes behave accordingly to a different kind
of fault (asymmetric, symmetric or benign). Figure 7.1 presents an example of
execution of a MSR algorithm in presence of Mobile Byzantine Failures (left side)
and Mixed-Mode Failures (right side) and informally shows that at the beginning of
each round we obtain the same configuration that satisfy the properties required for
the convergence.

The following theorem proves the mapping between the Mobile Byzantine faults
model and the Mixed-mode fault model. Let us start proving that if n > nMi then
a mobile computation is also a correct computation, as defined in subsection 7.3.4.

Theorem 31 Let us consider a mobile computation C0, C1, . . . , Ck, ∀k ∈ N of an
algorithm AA in the class MSR. If in each round n > nMi (cf. Table 7.2) then the
sequence C0, . . . , Ck is a correct computation.

Proof We have to show that for each iteration of AA we can build a static
computation equivalent to the dynamic one. The proof is done by induction. Let us
denote by C, T ∗ and B the set of correct, cured and Byzantine processes respectively
and let t∗ denote the cardinality of T ∗. Let us denote, in the static case, by C′,
T ′, and B′ the set of correct, non correct (which may be asymmetric, symmetric,
or benign), and asymmetric faulty processes, respectively, and let t′∗ denote the
cardinality of T ′.

• Rounds 0 → 1: At the begining of round 0, Byzantine agents never move.
Thus, the configuration is as follows:

– C: ∀i ∈ C, 〈correct, viniti 〉i, |C| ≥ n− (f);
– B: ∀j ∈ B, 〈faulty,⊥ 2 〉j , |B| ≤ f .

2We use ⊥ to indicate that it can be any value

7.3 Upper Bounds 121

The protocol executes its first iteration. Processes exchange their value and
each non Byzantine process pi updates its state: 〈failure state, proposing value
← v0

i = FMSR(V 0)〉 . At this point the situation is as follow:

– C: ∀i ∈ C, 〈correct, v0
i 〉i, |C| ≥ n− (f);

– B: ∀j ∈ B, 〈faulty,⊥〉j , |B| ≤ f .

Up to now, the same happens in a static computation. At the begining of round
1, at most f Byzantine agents move affecting other processes. Thus there are
up to t∗ = f cured processes storing a non correct value (e.g., v0 /∈ ρ(N0)).

– C: ∀i ∈ C, 〈correct, viniti 〉i, |C| ≥ n− (f + t∗);
– T : ∀k ∈ T , 〈cured,⊥〉k, |T | ≤ t∗;
– B: ∀j ∈ B, 〈faulty,⊥〉j , |B| ≤ f .

At the begining of round 1, there are at least n− (f + t∗) correct processes. If
we map it to the Mixed-mode failures model (cf. Table 7.1), this is equivalent
to a static configuration where there are f asymmetric processes and t∗ non
correct that may be asymmetric, symmetric or benign:

– C′: ∀i ∈ C′, 〈correct, viniti 〉i, |C′| ≥ n− (f + t′∗);
– T ′: ∀k ∈ T ′, 〈∗,⊥〉k, |T ′| ≤ t′∗;
– B′: ∀j ∈ B′, 〈asymmetric,⊥〉j , |B′| ≤ f .

The mobile and static configurations are equivalent. Thus the current mobile
configuration (and the mobile computation up to now) is correct.

• Rounds 1→ 2: From the previous point, the configuration at the beginning of
round 1 is correct. The second iteration of the protocol takes place. Processes
exchange their value and each non Byzantine process pi updates its state:
〈failure state, proposing value ← v1

i = FMSR(N1
i)〉. At this point, for Lemma

57, each process in T ∗ becomes correct. In other words, there are up to f
Byzantine processes and at least n− f correct processes. We are in the same
situation as at the end of previous round 0.
At the beginning of next round, at most f Byzantine agents can move to other
processes, leaving up to t∗ = f cured processes with non correct value. Thus
there are at least n − (f + t∗) correct processes at the begining of round 2.
The mobile and static configurations are equivalent. Thus the current mobile
configuration (and the mobile computation up to now) is correct.

• Rounds i → i + 1: generalizing, for each round starting with a correct con-
figuration we can apply the previous reasoning ending in a subsequent round
characterized by a correct configuration.

�Theorem 31

In the following we prove the correctness of any algorithm in the class MSR
under Mobile Byzantine failure model.

122 7. Approximate Agreement in the Round Based Model

Lemma 58 (Termination) Let AA be an algorithm in the class MSR. If n > nMi,
AA under Mobile Byzantine fault model verifies the Eventual-Convergence property
of the Byzantine Approximation Agreement.

Proof From Theorem 31, if n > nMi then algorithm AA generates a sequence of
correct configurations, i.e., a sequence of converging values exactly as in [15, 22],
thus the Eventual-Convergence property is satisfied in the same way the Termination
is satisfied by the [15, 22] solutions. �Lemma 58

Lemma 59 (ε-Agreement) Let AA be an algorithm in the class MSR. If n > nMi,
AA under Mobile Byzantine fault model verifies the ε-Agreement property of the
Byzantine Approximation Agreement.

Proof From Theorem 31, if n > nMi then algorithm AA generates a sequence of
correct configurations, i.e., a sequence of converging values exactly as in [15, 22].
Thus, the ε-Agreement property is satisfied in the same way this is satisfied by the
[15, 22] solutions.

In the following we prove that once ε-Agreement is achieved among the currently
non faulty processors, it is preserved among the (possible different) uninfected
processors. Let us consider an arbitrarily long mobile computation C0, . . . , Ck. If
ε-Agreement is achieved then there exists a round ra, a ∈ [0, k] where all non faulty
processes agree on values that are ε close to each other. Considering that n > nMi

then from Theorem 31 the whole mobile computation C0, . . . , Ck is correct. Thus
from round to round the two properties P1 and P2 hold and correct processes values
can not diverge from each other.

�Lemma 59

Lemma 60 (Validity) Let AA be an algorithm in the class MSR. If n > nMi, AA
under Mobile Byzantine fault model verifies the Validity property of the Byzantine
Approximation Agreement.

Proof From Theorem 31, if n > nMi then algorithm AA generates a sequence of
correct configurations, i.e., a sequence of converging values exactly as in the validity
proof in [15, 22]. �Lemma 60

The three above lemmas provide the proof of the theorem below.

Theorem 32 If n > nMi then the class MSR verifies the Byzantine Approximate
Agreement specification.

123

Chapter 8

Conclusions

In this thesis we have deeply studied the Mobile Byzantine Failures model. The
importance of such model arises when we have to design a Byzantine Tolerant
protocol ables to tolerate f Byzantine replicas in a long lasting execution. Thus,
a situation where it is more likely that the number of Byzantine replicas exceeds
f , yielding to the necessity to restore the correct state of compromised replicas. In
this thesis, we coped with the new challenges that such model unveils, from new
definitions of failure states to the impact of the operations duration. Indeed, in such
models we can not assume anymore that during an operation there are f Byzantine
processes but depending on the characteristic of the system model considered we
have to be able to compute how many Byzantine processes can be involved during
each operation, so that also the way to prove lower bounds has been rethought.
In particular in this work we first proposed optimal solutions for the Atomic Register
problem in the already defined mobile Byzantine round-based models. As we saw,
solving such problem in presence of mobile Byzantine failures implies higher lower
bounds with respect to solutions coping with Byzantine failure. On the other side,
given the round-based nature of the model the solution is algorithmically simple.
This observation advocate to our main contribution, a general round-free mobile
Byzantine failure model which can be deployed in four different models. Those
models describe the different processes awareness about their failure state and mobile
agent movements (coordinated or uncoordinated).
We prove that in each model (round-based and consequently round-free) an addi-
tional operation, the maintenance, is necessary to implement registers. Moreover we
prove that maintenance is not solvable in a system model where communications
are asynchronous. Later we provided a framework to compute lower bounds in each
instance of the MBF models.
Once lower bounds have been proved we solve the Regular Register problem in all
the four different model variants. In those cases, register protocols, in addition to
read and write operations, implement the maintenance operation to cope with mobile
Byzantine failures. Interestingly, we saw that read and write operations do not really
change through the four different failures models. This is due to the maintenance
operation that changes from a model to another and makes transparent the mobile
agents movements to the read a write operations. In short, such operation guarantees
that during each operation there is a set of correct processes, large enough, to provide

124 8. Conclusions

a valid value to the reading client.
Finally we proposed an optimal solution for the Approximate Agreement specifi-
cation in the mobile Byzantine round-based models. Interestingly, concerning the
Approximate Agreement, we show how the already existing solutions can be used
also in presence of mobile Byzantine failures and under which conditions. Moreover,
we found out that, as in the Byzantine failures model, consensus problem and
approximate agreement problem share the same lower bounds on the fraction of
required correct servers.

Future works. The round-free MBF models presented in this thesis open to
several future works. Fundamentally, any known problem solved in presence of
Byzantine failures can be studied in presence of Mobile Byzantine failures and
nevertheless is it worthy to study the maintenance operation optimality in the
different MBF models. From our side, the most immediate future work concerns the
Atomic Register problem, which is the last register specification left to be solved. [6]
considers for the first time both transient failures 1 and Mobile Byzantine failures
in the round based specification. In particular in such failures model the Atomic
Register is optimally solved. This open to the study of Register problem in a model
prone to both transient failures and round-free Mobile Byzantine failures.
Besides Registers, the natural consequence of the round-free MBF models definition
is the study of Consensus and Approximate Agreement in such models and in
particular the study of the necessary conditions to solve those problems. Contrarily
to the Approximate Agreement problem, the existence of a process that is always
correct is a necessary condition to solve Consensus in the round-based MBF model.
Thus the first question to address is if one process always correct is enough in the
round-free models or if we need more.
Regarding the MBF model itself another interesting study concerns the possible
mapping between mobile Byzantine and churn. Informally, in models prone to churn
there is a fraction of processes that leave the system and another fraction that join
the system. Join the system means that those processes has to retrieve the state of
the other correct processes, exactly what happens for cured processes running the
maintenance operation.

1Local variables of any process can be arbitrarily modified [16]. It is nevertheless assumed that
transient failures are quiescent i.e., there exists a time (unknown to the processes) after which no
more transient failures are going to happen.

125

Bibliography

[1] The high price of it downtime. http://www.networkcomputing.com/
networking/high-price-it-downtime/856595126. Accessed: 2017-01-27.

[2] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in
message-passing systems. Journal of the ACM (JACM), 42 (1995), 124.

[3] Banu, N., Souissi, S., Izumi, T., and Wada, K. An improved byzantine
agreement algorithm for synchronous systems with mobile faults. International
Journal of Computer Applications, 43 (2012), 1.

[4] Berman, P., Garay, J. A., and Perry, K. J. Towards optimal distributed
consensus (extended abstract). In 30th Annual Symposium on Foundations of
Computer Science, Research Triangle Park, North Carolina, USA, 30 October -
1 November 1989, pp. 410–415 (1989).

[5] Bonnet, F., Défago, X., Nguyen, T. D., and Potop-Butucaru, M.
Tight bound on mobile byzantine agreement. Theor. Comput. Sci., 609 (2016),
361. Available from: http://dx.doi.org/10.1016/j.tcs.2015.10.019, doi:
10.1016/j.tcs.2015.10.019.

[6] Bonomi, S., del Pozzo, A., and Potop-Butucaru, M. Tight self-
stabilizing mobile byzantine-tolerant atomic register. In Proceedings of the 17th
International Conference on Distributed Computing and Networking, ICDCN
’16, pp. 6:1–6:10. ACM, New York, NY, USA (2016). ISBN 978-1-4503-
4032-8. Available from: http://doi.acm.org/10.1145/2833312.2833320,
doi:10.1145/2833312.2833320.

[7] Bonomi, S., Pozzo, A. D., Potop-Butucaru, M., and Tixeuil, S.
Approximate agreement under mobile byzantine faults. In 36th IEEE In-
ternational Conference on Distributed Computing Systems, ICDCS 2016,
Nara, Japan, June 27-30, 2016, pp. 727–728 (2016). Available from: http:
//dx.doi.org/10.1109/ICDCS.2016.68, doi:10.1109/ICDCS.2016.68.

[8] Bonomi, S., Pozzo, A. D., Potop-Butucaru, M., and Tixeuil, S. Opti-
mal mobile byzantine fault tolerant distributed storage. In Proceedings of the
ACM International Conference on Principles of Distributed Computing (ACM
PODC 2016). ACM Press, Chicago, USA (2016).

[9] Bouzid, Z., Potop-Butucaru, M. G., and Tixeuil, S. Byzantine conver-
gence in robot networks: The price of asynchrony. In Principles of Distributed

http://www.networkcomputing.com/networking/high-price-it-downtime/856595126
http://www.networkcomputing.com/networking/high-price-it-downtime/856595126
http://dx.doi.org/10.1016/j.tcs.2015.10.019
http://dx.doi.org/10.1016/j.tcs.2015.10.019
http://dx.doi.org/10.1016/j.tcs.2015.10.019
http://doi.acm.org/10.1145/2833312.2833320
http://dx.doi.org/10.1145/2833312.2833320
http://dx.doi.org/10.1109/ICDCS.2016.68
http://dx.doi.org/10.1109/ICDCS.2016.68
http://dx.doi.org/10.1109/ICDCS.2016.68

126 Bibliography

Systems, 13th International Conference, OPODIS 2009, Nîmes, France, De-
cember 15-18, 2009. Proceedings (edited by T. F. Abdelzaher, M. Raynal, and
N. Santoro), vol. 5923 of Lecture Notes in Computer Science, pp. 54–70. Springer
(2009). Available from: http://dx.doi.org/10.1007/978-3-642-10877-8_7,
doi:10.1007/978-3-642-10877-8_7.

[10] Bouzid, Z., Potop-Butucaru, M. G., and Tixeuil, S. Optimal byzantine-
resilient convergence in uni-dimensional robot networks. Theor. Comput. Sci.,
411 (2010), 3154. Available from: http://dx.doi.org/10.1016/j.tcs.2010.
05.006, doi:10.1016/j.tcs.2010.05.006.

[11] Buhrman, H., Garay, J. A., and Hoepman, J.-H. Optimal resiliency
against mobile faults. In Fault-Tolerant Computing, 1995. FTCS-25. Digest of
Papers., Twenty-Fifth International Symposium on, pp. 83–88. IEEE (1995).

[12] Cachin, C. and Tessaro, S. Optimal resilience for erasure-coded byzantine
distributed storage. In International Conference on Dependable Systems and
Networks (DSN’06), pp. 115–124. IEEE (2006).

[13] Charron-Bost, B., Függer, M., and Nowak, T. Approximate consensus
in highly dynamic networks: The role of averaging algorithms. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6-10, 2015, Proceedings, Part II, pp. 528–539 (2015).

[14] Denning, D. E. An intrusion-detection model. IEEE Transactions on software
engineering, (1987), 222.

[15] Dolev, D., Lynch, N. A., Pinter, S. S., Stark, E. W., and Weihl,
W. E. Reaching approximate agreement in the presence of faults. Journal of
the ACM (JACM), 33 (1986), 499.

[16] Dolev, S. Self-Stabilization. MIT Press (2000). ISBN 0-262-04178-2.

[17] Fekete, A. D. Asymptotically optimal algorithms for approximate agreement.
Distributed Computing, 4 (1990), 9.

[18] Fekete, A. D. Asynchronous approximate agreement. Inf. Comput., 115
(1994), 95.

[19] Fischer, M. J., Lynch, N. A., and Merritt, M. Easy impossibility proofs
for distributed consensus problems. Distributed Computing, 1 (1986), 26.

[20] FISCHER, M. J. and LYNCII, N. A. A lower bound fob the time to assube
intebactive consistencv. INFORMATION PROCESSING LETTERS, (1982).

[21] Garay, J. A. Reaching (and maintaining) agreement in the presence of mobile
faults. In International Workshop on Distributed Algorithms, pp. 253–264.
Springer (1994).

[22] Kieckhafer, R. M. and Azadmanesh, M. H. Reaching approximate
agreement with mixed-mode faults. Parallel and Distributed Systems, IEEE
Transactions on, 5 (1994), 53.

http://dx.doi.org/10.1007/978-3-642-10877-8_7
http://dx.doi.org/10.1007/978-3-642-10877-8_7
http://dx.doi.org/10.1016/j.tcs.2010.05.006
http://dx.doi.org/10.1016/j.tcs.2010.05.006
http://dx.doi.org/10.1016/j.tcs.2010.05.006

Bibliography 127

[23] Lamport, L. On interprocess communication. Distributed computing, 1 (1986),
86.

[24] Lamport, L. On interprocess communication. part i: Basic formalism. DC, 1
(1986), 77.

[25] Lamport, L. On interprocess communication. part ii: Algorithms. DC, 1
(1986), 86.

[26] Lamport, L., Shostak, R., and Pease, M. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4
(1982), 382.

[27] Li, C., Hurfin, M., and Wang, Y. Approximate byzantine consensus in
sparse, mobile ad-hoc networks. J. Parallel Distrib. Comput., 74 (2014), 2860.

[28] Lynch, N. A. Distributed Algorithms. Morgan Kaufmann (1996).

[29] Lynch, N. A. and Shvartsman, A. A. Robust emulation of shared memory
using dynamic quorum-acknowledged broadcasts. In Fault-Tolerant Comput-
ing, 1997. FTCS-27. Digest of Papers., Twenty-Seventh Annual International
Symposium on, pp. 272–281. IEEE (1997).

[30] Lynch, N. A. and Tuttle, M. R. An introduction to input/output automata.
CWI Quarterly, 2 (1989), 219. Available from: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.83.7751;http://www.bibsonomy.org/
bibtex/2919d591f0c2a2754fc7e4aeb008d14ca/giuliano.losa.

[31] Malkhi, D. and Reiter, M. K. Secure and scalable replication in phalanx. In
Reliable Distributed Systems, 1998. Proceedings. Seventeenth IEEE Symposium
on, pp. 51–58. IEEE (1998).

[32] Martin, J.-P., Alvisi, L., and Dahlin, M. Minimal byzantine storage.
In International Symposium on Distributed Computing, pp. 311–325. Springer
(2002).

[33] Martin, J.-P., Alvisi, L., and Dahlin, M. Minimal byzantine storage.
In International Symposium on Distributed Computing, pp. 311–325. Springer
(2002).

[34] Mendes, H. and Herlihy, M. Multidimensional approximate agreement
in byzantine asynchronous systems. In Symposium on Theory of Computing
Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pp. 391–400 (2013).

[35] Mendes, H., Herlihy, M., Vaidya, N. H., and Garg, V. K. Multidi-
mensional agreement in byzantine systems. Distributed Computing, 28 (2015),
423.

[36] Ostrovsky, R. and Yung, M. How to withstand mobile virus attacks. In
Proceedings of the tenth annual ACM symposium on Principles of distributed
computing, pp. 51–59. ACM (1991).

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751; http://www.bibsonomy.org/bibtex/2919d591f0c2a2754fc7e4aeb008d14ca/giuliano.losa
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751; http://www.bibsonomy.org/bibtex/2919d591f0c2a2754fc7e4aeb008d14ca/giuliano.losa
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.7751; http://www.bibsonomy.org/bibtex/2919d591f0c2a2754fc7e4aeb008d14ca/giuliano.losa

128 Bibliography

[37] Pierce, E. and Alvisi, L. A recipe for atomic semantics for byzantine quorum
systems. Tech. rep., Technical report, University of Texas at Austin, Department
of Computer Sciences (2000).

[38] Platania, M., Obenshain, D., Tantillo, T., Sharma, R., and Amir, Y.
Towards a practical survivable intrusion tolerant replication system. In Reliable
Distributed Systems (SRDS), 2014 IEEE 33rd International Symposium on, pp.
242–252. IEEE (2014).

[39] Reischuk, R. A new solution for the Byzantine generals problem. Information
and Control, 64 (1985), 23.

[40] Sasaki, T., Yamauchi, Y., Kijima, S., and Yamashita, M. Mobile
byzantine agreement on arbitrary network. In International Conference On
Principles Of Distributed Systems, pp. 236–250. Springer (2013).

[41] Services, I. G. Improving systems availability. Tech. rep., IBM Global Services
(1998).

[42] Sousa, P., Bessani, A. N., Correia, M., Neves, N. F., and Verissimo,
P. Highly available intrusion-tolerant services with proactive-reactive recovery.
IEEE Transactions on Parallel & Distributed Systems, (2009), 452.

[43] Sousa, P., Neves, N. F., and Verissimo, P. How resilient are distributed f
fault/intrusion-tolerant systems? In 2005 International Conference on Depend-
able Systems and Networks (DSN’05), pp. 98–107. IEEE (2005).

[44] Sousa, P., Neves, N. F., and Verissimo, P. Hidden problems of asyn-
chronous proactive recovery. In Proc. of the Workshop on Hot Topics in System
Dependability (HotDep’07) (2007).

[45] Stolz, D. and Wattenhofer, R. Byzantine approximate agreement with
median validity. In to appear OPODIS’15 (2015).

[46] Su, L. and Vaidya, N. H. Reaching approximate byzantine consensus with
multi-hop communication. In Stabilization, Safety, and Security of Distributed
Systems - 17th International Symposium, SSS 2015, Edmonton, AB, Canada,
August 18-21, 2015, Proceedings, pp. 21–35 (2015).

[47] Tseng, L. and Vaidya, N. H. Iterative approximate byzantine consensus
under a generalized fault model. In Distributed Computing and Networking, 14th
International Conference, ICDCN 2013, Mumbai, India, January 3-6, 2013.
Proceedings, pp. 72–86 (2013).

[48] Tseng, L. and Vaidya, N. H. Asynchronous convex hull consensus in the
presence of crash faults. In ACM Symposium on Principles of Distributed
Computing, PODC ’14, Paris, France, July 15-18, 2014, pp. 396–405 (2014).

[49] Tseng, L. and Vaidya, N. H. Iterative approximate consensus in the
presence of byzantine link failures. In Networked Systems - Second International
Conference, NETYS 2014, Marrakech, Morocco, May 15-17, 2014. Revised
Selected Papers, pp. 84–98 (2014).

Bibliography 129

[50] Vaidya, N. H., Tseng, L., and Liang, G. Iterative approximate byzantine
consensus in arbitrary directed graphs. In ACM Symposium on Principles of
Distributed Computing, PODC ’12, Funchal, Madeira, Portugal, July 16-18,
2012, pp. 365–374 (2012).

[51] Vitanyi, P. M. and Awerbuch, B. Atomic shared register access by asyn-
chronous hardware. In Foundations of Computer Science, 1986., 27th Annual
Symposium on, pp. 233–243. IEEE (1986).

[52] Yung, M. The "Mobile Adversary" Paradigm in Distributed Computation
and Systems. In PODC (edited by C. Georgiou and P. G. Spirakis), pp. 171–
172. ACM (2015). ISBN 978-1-4503-3617-8. Available from: http://dblp.
uni-trier.de/db/conf/podc/podc2015.html#Yung15.

http://dblp.uni-trier.de/db/conf/podc/podc2015.html#Yung15
http://dblp.uni-trier.de/db/conf/podc/podc2015.html#Yung15

