Chiral dynamics for open-
charm systems at PANDA

Chirale Dynamik von Open-Charm-Systemen fir PANDA

Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von Xiaoyu Guo, M.Sc aus Tianjin (China)

Tag der Einreichung: 24.01.2017, Tag der Prifung: 15.02.2017

Darmstadt 2018 — D 17

1. Gutachten: Prof. Dr. Matthias F.M. Lutz
2. Gutachten: Prof. Dr. Achim Schwenk

TECHNISCHE
UNIVERSITAT
DARMSTADT

Fachbereich Physik
GSI Theorie




Chiral dynamics for open- charm systems at PANDA
Chirale Dynamik von Open-Charm-Systemen fiir PANDA

Genehmigte Dissertation von Xiaoyu Guo, M.Sc aus Tianjin (China)

1. Gutachten: Prof. Dr. Matthias F.M. Lutz
2. Gutachten: Prof. Dr. Achim Schwenk

Tag der Einreichung: 24.01.2017
Tag der Prifung: 15.02.2017

Darmstadt 2018 — D 17

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-72058
URL: http://tuprints.ulb.tu-darmstadt.de/7205

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

@00

Die Verdéffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/




Erklarung zur Dissertation

Hiermit versichere ich, die vorliegende Dissertation ohne Hilfe Dritter nur mit den an-
gegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
dahnlicher Form noch keiner Priifungsbehérde vorgelegen.

Darmstadt, den January 17, 2018

(Xiaoyu Guo)







Abstract

This thesis aims to study low-energy strong interaction effects of open-charm mesons. Our studies are
based on the chiral Lagrangian supplemented by constraints from the heavy-quark spin symmetry. The
pseudoscalar and vector open-charm-meson masses are calculated up to next-to-next-to-next leading
order (NLO) corrections. Different assumptions on the counting rules are investigated. It is illustrated
that a chiral expansion uniformly converges rapidly up to Goldstone boson masses as heavy as the kaon
masses if formulated in terms of physical meson masses. First estimates of the relevant low-energy
parameters are extracted from lattice QCD data on the quark mass dependence of the D meson masses.
Such low-energy parameters are of crucial importance for the low-energy interaction of the Goldstone
bosons with the D mesons.




Zusammenfassung

In dieser Arbeit untersuchen wir stark wechselwirkende Mesonsysteme mit nicht verschwindenden
Charminhalt (C # 0). Es kommt zur Anwendung der chiral Lagrangian, wobei die Konsequenzen
der Quarkspinsymmetry der schweren Quarks eingearbeitet werden. Die Massen der pseudoskalaren
und vektoriellen D Mesonen mit C = 1 werden zu N°LO berechnet. Verschiedene Annahmen fiir das
chirale Zahlschema werden untersucht. Es wird gezeigt, dass ein Zahlschema, welches mit Hilfe der
physikalischen Mesonmassen formuliert ist, uniform konvergiert bis zu Massen der Pionen und Kaonen
von ca 600 MeV. Erste Abschétzungen fiir die Niederenergieparameter des chiral Lagrangian werden aus
Gitter QCD Daten fiir die D Mesonmassen bei verschiedenen unphysikalischen Quarkmassen abgeleitet.
Diese Parameter bestimmen die Niederenergiewechselwirkung der Golstonebosonen mit den D Mesonen.
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1 Introduction

In the standard model, elementary particles are divided into quarks, leptons and gauge bosons. There
are 6 different flavors of quarks, the lighter ones up, down and strange, and heavier ones charm, bottom
and top. The quarks experience strong interactions with each other via gluons described by quantum
chromodynamics (QCD). QCD features asymptotic freedom: the magnitude of the QCD coupling con-
stant increases when the energy transfer decreases. As a consequence, low-energy QCD is characterized
by a plethora of non-perturbative phenomena.

In understanding the low-energy behavior of QCD, studies of open-charm mesons, mesons consisting
with a single charm quark, are believed to be of crucial importance (for reviews, see Refs. [1,2]). They
may be described by QCD-motivated quark models [3, 4]. However, open-charm states with exotic
properties have been discovered (see e.g. [5-7], and [8] for a recent review), that cannot be reasonably
accommodated by conventional quark models [9-13]. More systematic approaches based on QCD are
required for studies of open-charm systems.

Low-energy QCD systems have been extensively studied using chiral effective field theory approaches
[14-16]. For open-charm systems, the heavy-quark symmetry [17,18] poses additional constraints in the
construction of the relevant effective Lagrangians [19-21]. Chiral effective field theories are based on a
power counting scheme which permits the systematic and perturbative expansion of physical observables
in a small parameter, like the masses of the Goldstone bosons. Non-perturbative extensions implement
the coupled-channel unitarity constraint [22-26]. Such approaches are successful in describing exotic
open-charm states as molecular resonances generated by final state interactions [27-31]. Higher or-
der improvements rely on a set of low-energy constants (LECs) from counter terms in the effective
Lagrangian. As shown in Ref. [28], the knowledge of such LECs are crucial in predicting properties of
scalar and axial-vector open-charm resonances. Such studies are of great importance for the open-charm
physics program at PANDA [32].

As a non-perturbative approach, lattice QCD has gained great progress in describing low-energy QCD
properties during the last decades [33]. Accurate results are available mainly for ground-state masses
of hadrons at different quark masses with Goldstone-boson masses off their physical values. Low-energy
constants of effective Lagrangians may be extracted from such QCD lattice data. For a long time, lattice
simulations for charm quark systems were suffering from large discretization errors such that no faithful
results on open-charm meson or baryon masses were available. But recently, significant progress has
been made by improved actions that reduce the discretization errors and the use of larger lattices with a
smaller size of the lattice spacing [34-40].

This work aims to determine the low-energy constants of the chiral Lagrangian formulated with the
pseudo-scalar and vector D mesons. The masses of the D mesons are computed as a function of such
LECs at next-to-next-to-next leading order (N°LO). The resulting mass formulae are applied to two lattice
data sets [41,42].

In Chapter 2, we first briefly introduce the chiral Lagrangian properly constrained by the heavy-quark
symmetry. A full relativistic flavor SU(3) Lagrangian with pseudo-scalar and vector D mesons is consid-
ered. In particular all counter terms needed for the computation of the D-meson masses at N°LO are
constructed for the first time.

In Chapter 3, chiral loop corrections for the D-meson masses are computed in a finite spatial box
following the method suggested recently in [43]. The results are analyzed in the infinite volume limit
first. There is a controversy to what extent a flavour SU(3) chiral Lagrangian leads to convergent results
at physical values of the Goldstone boson masses [44-51]. Are the physical kaon and 1 meson masses
small enough so that the chiral expansion converges rapidly enough to obtain significant results? We
study this issue by considering four different counting rules and working out their respective convergence
domains. In particular a novel chiral expansion approach formulated in terms of physical meson masses
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is investigated Ref [52]. The Chapter closes with some first results obtained from a fit to the lattice data
sets. Here the finite-box computations for the D-meson masses are used. First estimates of the LECs are
discussed and compared with previous studies. A brief summary will be drawn in the last chapter.




2 Low Energy QCD and Effective Theories

QCD has been established as an SU(3) gauge theory to describe the strong interaction. The Lagrangian
is

- . 1
zQCD :'(/J(lY“@M—M;)QP—ZFa,WFfVJ (2.1

in which ) is a Ny-component quark field with Ny flavors and M, 9 is the current quark mass matrix. The
index a runs through the gauge degrees of freedom that are called gluons in QCD. The quark fields come
in the basic gauge representation with three different colours. It is convenient to consider the gauge
covariant derivative and the gluon field tensor

A
gt = o+ —igA’;?a (2.2)
FF7 = 9PAY — 3"AY + g fp ALAY (2.3)

where AY is the vector representation of the gluon field and A, are the eight Gell-Mann matrices. A
perturbative calculation of the coupling constant shows the asymptotic freedom of the strong interaction.
At the one-loop level, the running coupling constant tends to be divergent when the renormalization scale
goes down to Agcp &~ 200MeV. This divergence is just an artifact: it implies that perturbation theory turns
invalid at small momentum transfer. A non-perturbative calculation in the low energy region can give
a distinct running behavior of the coupling constant. The divergence of the coupling constant will no
longer appear. Nevertheless the one-loop result suggests a characteristic scale for QCD, Agcp &~ 200 MeV.

The strong interaction at low energies has got various unique features that can not be obtained from
perturbation theory. The most notable phenomena of non-perturbative QCD are the color confinement
and the spontaneous breaking of chiral symmetry. The colored degrees of freedom like quarks and gluons
are always grouped into colorless degrees like mesons and baryons. This is color confinement: the
normal physical world is color neutral. The breaking of chiral symmetry brings about a large dynamical
quark mass for light quarks and is responsible for the relatively low masses of the pseudoscalar meson
ground states.

Effective field theories provide powerful tools when dealing with complicated physical systems. The
effective degrees of freedom need not to be the same as the ones in the underlying theory. Effective
field theories implement simplified and systematic approaches to study non-perturbative QCD. Various
effective field theories for QCD were developed. For instance, at low energies chiral perturbation theory
(ChPT) can be applied (for reviewing see, for example, Refs. [53, 54]). Here an expansion according to
the small momenta of the Goldstone bosons is performed. On the other hand, in some systems involving
a heavy quark, the inverse of the heavy quark mass 1/M,, is a small quantity that one can perturbatively
deal with. The heavy quark effective theory (HQET) is based on this assumption (for reviewing see
Refs. [55,56]).

In this thesis, we will apply the effective theory method for the study of open-charm processes. Our
first step is to determine the effective chiral Lagrangian. Concepts from heavy quark effective theory are
used as well in order to take open-charm mesons into account. We will concentrate on the construction
of the effective Lagrangian in this chapter.

2.1 Chiral Perturbation Theory

As an effective theory, Chiral perturbation theory (ChPT) suitably describes the low-energy behavior of
the strong interaction, by asserting the theory possessing the same global symmetry as QCD, which is
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the chiral symmetry. In this work we focus on chiral SU(3) symmetry. This means that the strange quark
is treated as light as the u- and d-quark. In the low-energy regime of the strong interaction, the chiral
symmetry is spontaneously broken, i.e. the vacuum state of the low-energy strong interaction doesn’t
respect the symmetry of the Lagrangian. This leads to a large mass gap between the lowest lying pseudo-
scalar mesons, 7t and K, and other hadrons, due to Goldstone mechanism. We will have a more detailed
discussion of the spontaneous broken of SU(3) chiral symmetry in the following subsection.

2.1.1 Chiral symmetry

Chiral symmetry is an approximate global symmetry of the QCD Lagrangian with light quarks. The three
lightest quarks, u, d, s, have current masses of about 2 ~ 5 MeV for the u, d quarks and about 100
MeV for the s quark [57]. These masses are much smaller than the typical hadronic scale of ~ 1 GeV.
Therefore it is useful to consider the Lagrangian with up, down and strange quarks only

_. 1
,?SCD =qiy,2"q— 2 FouF", (2.4)

where we have neglected the quark mass matrix. The quark fields ¢ = u, d, s can be decomposed into
left- and right-handed fields

1—vy 1+7y
4= +q% G="70 k=54 (2.5)
In terms of those fields the Lagrangian EZSCD can be written as
o _ = - u = u 1 uy
gQCD - quYu@ q; + quYu@ qr — Z Fa MVF (26)

One can verify that this Lagrangian is invariant under two independent SU(3) xU(1) global transforma-
tions

qLﬁexp(—lGL—lZQ qL, qRHeXp(—lQR—lZGR qR, 2.7)

where A, represent the 8 Gell-Mann matrices. The Lagrangian preserves a global SU;(3) x SUg(3) x
U; (1) x Ug(1) symmetry called chiral symmetry. In contrast, the mass term

qrhq = q;hqg + qrihq; , (2.8)

is not invariant under independent right and left handed SU(3)xU(1) transformations. Here m =
dia(m,, my4, m,) is the quark mass matrix. If the masses of the light quarks are sufficiently small the
Lagrangian (2.4) serves as a good starting point to approximate strong interaction.

In the chiral limit, the chiral transformations on the Lagrangian (2.6) result in the Noether currents

VA =G0 200, A =300, a=1,...8, 29
VH(x) = q(x)r"q(x), A(x) =q(x)r"y°q(x), (2.10)

which are only conserved at the classical level. The U,(1) symmetry is explicitly broken due to a quantum
effect and will be mentioned later. If the remaining symmetry SU; (3) x SUg(3) x Uy (1) were respected
in hadronic states, hadrons with same quantum numbers but opposite parities would be degenerate.
This conclusion contradicts the observed hadronic spectrum. Moreover, the lightest pseudoscalar octet
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mesons are much lighter than all other hadrons. To be consistent with these facts, a spontaneous break-
ing of the chiral symmetry is expected. When a symmetry is spontaneously broken, the ground state no
longer respects the symmetry of the Lagrangian. The approximate SU,;(3) x SUg(3) symmetry is spon-
taneously broken down to SUy(3) symmetry in hadronic states. The lightest pseudoscalar mesons are
identified with the Goldstone bosons of the spontaneously broken chiral symmetry.

The eight Noether charges of the SU,(3) symmetry are defined by the zeroth components of the
corresponding Noether currents,

Qi(t) = J d3x A% (x). (2.11)

If the SU,(3) symmetry is spontaneously broken, the Noether charges give non-zero results when acting
on the vacuum state, Q4(t)|0) # 0. The resulting state vector has a non-vanishing overlap with the
Goldstone boson state |¢p?):

(01Qa(D)le?) # 0. (2.12)
Because of the Lorentz covariance, the matrix element of the corresponding current AZ between |0) and
|¢?) has the form (see e.g. [58])

(0lA%(0)I9"(p)) = ifo5°°p", (2.13)

where p* is the four-momentum of the Goldstone boson. The factor f,, is recognized as the decay
constant of the Goldstone bosons in the chiral limit, with the value f, ~ 93MeV [59]. Furthermore, the
matrix element of the pseudoscalar quark density (0|q(x)iysA,q(x)|¢,) is supposed to be non-zero. This
assumption is sufficient to give a time-independent vacuum expectation (see e.g. [58,54])

(ORLQ3(0),a(0)irs A, (0)]10) = 5 5.((0)a(0)), (214)

which can be identified with an order parameter of the spontaneous chiral symmetry breaking. Because
the translational invariance of the vacuum requires (§(0)q(0)) = (q(x)q(x)), the quark condensate is
space-time-independent, and can be abbreviated to (Gq). If the quark condensate (Gq) # 0, the chiral
symmetry will be spontaneously broken. In a strict chiral symmetric system, the spontaneous breaking
of chiral symmetry gives rise to the massless pseudoscalar meson octet, while the existence of small
quark masses shifts the meson masses to a small finite value. This phenomenon is illustrated by the
Gell-Mann-Oakes-Renner (GOR) relations [60]

2 _(qq>2 ’
g 3f02
K~ 3 2 s/

m? = (qq) (Zm +4ms)’ (2.15)

n 3 f02
where the M’s and m’s are meson masses and current quark masses respectively. Throughout the thesis,
we assume an exact SU(2) isospin symmetry (m, = my; = m). These relations relate the current quark
mass and the quark condensate to the Goldstone boson mass.

As mentioned before, the U,(1) symmetry is not conserved at the quantum level [61]. This effect is
attributed to U,(1) anomaly which originates from an ambiguity in defining the measure of the path
integrals for fermions [62]. The result is a non-vanishing term of the derivative of the corresponding
singlet axial-vector current in the chiral limit [63]

2

3g5
3MA“ = 3272 e“”p"Fstgo. (2.16)

Thus, no Goldstone modes are provided by the breaking of the U,(1) symmetry.
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2.1.2 Chiral Lagrangian in the pure Goldstone boson sector

As an effective low-energy theory, chiral perturbation theory is constructed with hadronic degrees of
freedom. Because there’s a mass gap between the Goldstone bosons and heavier hadrons only Goldstone
fields need to be included in an effective Lagrangian describing the strong interaction between Goldstone
bosons at low energies. The Goldstone fields can be treated as group parameters of a transformation be-
longing to the quotient G/H [64]. Here G is the spontaneously broken symmetry group SU;(3) x SUg(3)
and the subgroup H is the unbroken symmetry group SU(3). All transformations of the spontaneous
broken symmetry belong to G/H. A group element U(x) belonging to G/H can be chosen to transform
according to

G
U(x) = grU(X)g!, g1,z € SU(3), (2.17)

under a chiral rotation (g;, gz) € G. A convenient choice of U(x) is

U(x)= eXp[i¢(x)], (2.18)
fo
where
8 %+ 4/1/3n Vart V2K*
$()=> Ab=| V2= —n+4/1Bn VK |. 2.19)
a=1 V2K~ V2K° —2/4/3n

Under the parity transformation (£) and the charge conjugation (%), the field U(x) transforms respec-
tively as

U) S U x), UK S UT(x). (2.20)
Respecting C, P, T invariance, the effective Lagrangian with two derivatives reads [14-16]

fe
%= ?OTr[é’“U'a“U], (2.21)

where ‘Tr’ specifies a trace over flavor indices. This term is the minimal term that recovers the kinetic
term for the Goldstone bosons. The presence of the non-zero quark mass in QCD requires a finite-mass

term to the effective Lagrangian,

fs R
2 =", TlxUT+ UL, (2.22)

where an explicit chiral symmetry breaking term is defined by

m, 0 O (q)
X=2By| 0 my O [, Bo=——qq (2.23)

5
0 0 m, 3fo
This term transforms nonlinearly under the chiral transformation group G

G "
X — 8rX & - (2.24)

Besides the terms shown above, one can in principle construct infinitely many terms respecting the
chiral symmetry. If one could not tell the relative importance among the infinite many terms, one would
not make reliable predictions out of this theory. To this end, a power counting scheme is entailed. One
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can arrange the infinitely many interaction terms in respect with the relative importance according to
the power counting. And a finite number of interactions can be picked up for a required accuracy.

Fortunately, the power counting scheme of ChPT can be cheerfully established. It is based on the fact
that at low energies, the interactions among the Goldstone bosons tend to vanish when the energy of
the interaction approaches zero. This is the unique feature of the low energy strong interaction due to
the partial conservation of axial current (see [65,64]). To this end, the power counting scheme has been
established according to the power of the momentum of a Goldstone boson p, which has been firstly
proposed by Weinberg [66]. The chiral Lagrangian is re-expressed as,

L=Ly+ L+ (2.25)
The indices imply the chiral orders of the terms. The power counting rule is [14-16]
U~0(Q%; 8,U~0(Q); x~0(Q%. (2.26)

We assign Q to be the characteristic value of Q ~ m,x,/A,, whereas A, is some hard scale around
1GeV. According to the rule, the Lagrangians (2.21) and (2.22) are of the leading chiral order O(Q?).
The chiral counting rule for y comes from the fact that GOR relations (2.15) are valid at leading chiral
order, which provides

x = %(mfT + 2m12<)]l + %(mfT — mi)ks. (2.27)
Corrections of the meson masses come from higher chiral order terms. The advantage of adopting the
non-linear realization of Goldstone bosons (expressing the Goldstone bosons in terms of U) is that in this
manner all the Goldstone interactions involve derivatives acting on the Goldstone fields. This enables
one to count the chiral order of each vertex out of the Lagrangian by simply enumerating the number
of derivatives acting on U. This is the power of a non-linear realization of the Goldstone bosons, which
was illustrated by Coleman, Callan, Weiss and Zumino [67-69].

Up to now, the tree-level power counting rule has been demonstrated. To fully establish the chiral
power counting scheme for a quantum effective theory, one needs to estimate the importance of the
loop effects of the Goldstone bosons as well. In principle, if we consider loop corrections within an
effective theory, some counter terms at an unexpected order may be needed in perturbation theory as
to cancel the divergent part from the loops. This process makes the theory unrenormalizable and may
cause problems in determining the power counting. But fortunately, the power counting is not harmed
by this process when only Goldstone bosons are considered. Since all the energy scales the loop integrals
depend on are soft (which is comparable to the Goldstone-boson mass), the loop contributions can be
categorized according to the powers of soft scales and a power counting scheme can be well defined.
The power counting scheme for pure Goldstone-meson systems has been introduced firstly by Weinberg
in 1970s [66], and it has been treated as the foundation of the chiral perturbation theory.

For any given Feynman diagram, the corresponding amplitude depends on some external momenta.
In the framework of chiral perturbation theory including only the Goldstone bosons, the size of the
external momenta are comparable to the mass of Goldstone bosons. Thus in order to determine the
power counting of the amplitude, we need only to count the dimension of the amplitude. We know every
propagator of a Goldstone boson has mass dimension —2, and every O(Q") vertex has dimension n. And
for every loop, an integration over a 4-momentum is involved, so there is an additional dimension of 4. As
a result, the dimension of an amplitude for a given Feynman diagram which involves I, Goldstone-meson
propagator, N,, vertices of order 2n as well as N; loops reads [66]

oo o0
D=—2Iy + » 20Ny, + 4N, =2+ 2N, + > Ny, (2n—2), (2.28)

n=1 n=1
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which is exactly the chiral order (n,) of the diagram, n, = D. Here we have used the topological relation
Iy =N; + Zn N, — 1. And at a certain chiral order n, the number of vertices is finite, N,, < 0o, because
of symmetry restrictions. If we consider a chiral Lagrangian up to a maximum power counting n,,,, it
can be inferred from the relation (2.28), the more loops a diagram includes, the higher chiral order it
contributes to. So to a certain chiral order, only finite number of loop diagrams we need to consider.
On the other hand, considering an additional loop in the calculation will not give any corrections to the
lower chiral order. Under the power counting scheme shown by (2.28), a perturbative calculation is
feasible according to the chiral order. Another implication of the relation (2.28) is that, up to a given
chiral order, only a finite number of loop diagrams contribute, and their divergences can be compensated
by introducing finite number of contact counter terms to this order [14-16]. In other words, according
to the power counting, the prediction made by chiral perturbation theory (in the pure Goldstone-boson
sector) at a given chiral order is renormalization-scale independent.

The perturbative expansion according to the chiral power is convergent in the region close to the
threshold. In this region, the energy transferred is up to approximately 1GeV (see e.g. [53]). This region
is considered as the applicability domain of ChPT.

2.1.3 Inclusion of Heavy Meson Fields

Up to now we have considered the effective Lagrangian for describing the interaction of Goldstone-
bosons. One ends up with the well-established Chiral Perturbation Theory for Goldstone bosons. The
task of this thesis is to study the properties of the open-charm mesons in the low-energy regime. There-
fore we need to include the open-charm mesons as matter fields in the chiral Lagrangian. The lightest
pseudoscalar (J¥ = 07) and vector (J¥ = 17) open-charm mesons are included. We formulate the ef-
fective Lagrangian under the flavor SU(3) symmetry. The isospin doublet (D*, D°) is combined together
with D, to transform as an anti-triplet under the unbroken SUy(3) flavor transformation, so do their
vector meson partners. We provide the anti-triplets as [27] !

D= (D% —D*, D}), D,,= (ng, —D7, D},). (2.29)

Here we have adopted the tensor-field representation for the vector mesons [70,71]. The relation be-
tween the tensor and vector representations are illustrated in Appendix B.

The transformation rule of matter fields under the spontaneously broken chiral symmetry is not
uniquely defined, but different transformation forms are related to each other by field redefinitions
[56, 72]. We choose the approach to define such a transformation, which was proposed by Coleman
et.al. ( [67,68], see also e.g. [69]). According to this method, Goldstone fields can be represented by u,

u?(x) = U(x), (2.30)

where U(x) was already introduced in Eq.(2.18). Under the SU, (3) x SUg(3) chiral transformation, u(x)
transforms non-linearly

u(x) S, gru(x)K" = Ku(x)gz. (2.31)
K appears as a non-linear realization of SU;(3) x SUg(3) group. And it can be parameterized into
A
K(x)=exp| i 0,(x)= |. (2.32)
pli 2, oy ]

In the identification of the isospin doublet, we adopt the phase-factor convention |D*) = |I; = 1/2) and |D°) = |I; =
—1/2). The |D) can be annihilated by the corresponding field operator D. To this end, (D", D) transforms as an
isodoublet under an SU(2) transformation parameterized by 67, (D*,D°) — €!%79/2(D* D°). We can easily verify that
(D*,D%)Tio, transforms accordingly as an anti-doublet (D*,D%)"ic, — (D*,D%)"ic,e™'970/2, A direct inclusion of D;
provides us the formalism of SU(3) anti-triplet (D*,D%)"ic, ® D, = (D°, —D*, D,). By adopting such a convention, we
naturally obtain the — phase factor in front of D" (and D;v) in Eq.(2.29).
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It formally resembles an SU(3) transformation, but the group parameters 6;(x) vary with x, implicitly
depending on Goldstone fields u(x) as well as group elements (g;, gz). Under the unbroken SU(3)
transformation, 6; reduce to spacetime-independent constants, and K(x) becomes a linear representation
of SU,(3). The works of Coleman et.al. [67,68] have shown that it is always possible to find a form of
K (x) satisfying this property. The explicit expression of 6;(x) is irrelevant to the discussion here.

The derivative on the u-field can be collected most economically as

1. . N . G .
U,= E[u‘ (3,u) —u(g,u")] with, U, — KU,K". (2.33)
For instance, the leading order chiral Lagrangian for Goldstone bosons is
— £2 urrt 1

¢ = fFTUMU + 5’“]' (2.34)

Explicit chiral breaking effects has been realized by one of the source term

1 .; P

xe =Sy utu'yu'), (2.35)
where y is defined in (2.23). y, and y_ transform as a Lorentz scalar and a Lorentz pseudoscalar

respectively. The Lagrangian (2.34) is equivalent to the Lagrangian (2.21).
We apply this non-linear realization of SU;(3) x SUg(3) transformation to the matter fields D. Here
D may refer to either pseudo-scalar or vector open-charm mesons without harming the discussion. The

field and its conjugate D and D are anti-triplet and triplet respectively under the unbroken subgroup
H = SUy(3) transforming according to

D5 Dgl, b gD, (2.36)

where gy is a group element of SUy,(3). The conjugate field D transforms as a triplet. The transformation
of D and D under the chiral symmetry SU,(3) x SUx(3) can be assigned to follow

p %ok, DS kb. (2.37)

According to the previous discussion, under the unbroken SU,, (3) transformation, K reduces to g .

Since K depends on x (2.32), it is necessary to introduce a covariant derivative acting on the matter
field, 9, D, which transforms in the same way as D under the chiral transformation. One can construct
the covariant derivative

9,D = 3,D— DT, 9,D=38,D +T,D,

where I,= %[ui‘(auu) + u(ﬁMuT)]. (2.38)

Here T, is recognized as the chiral connection constructed such that 9,,D and D have identical transfor-
mation properties

2,D = 9,DK", 2,D 5 Ka,D, (2.39)
with T, 5 KL,K'+K3,K". (2.40)

This formalism is not the only way to implement the symmetry property of a matter field in a chiral
Lagrangian. But one merit of this non-linear realization is that it provides a simple form of the parity
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transformation for the fields (see e.g. Ref. [56]). Under parity transformation &, charge conjugation &,
the fields transform according to

U, ()5 —UHx,), D)5 =D(xp),  Du(x) D D(xp), () D tza(xp),  (2.41)
U () SUT(x), D) 5D(x),  Dulx)>-Du(), ()5 xf(x), (242

where x, satisfies x, = x,. It is worth to mention the transformation rule under time reversal J for
light mesons

U,(x) 5 —U(—xp), 2200 D yu(=xp). (2.43)

The time reversal operation will be useful in constructing the heavy-quark reduced formalism of the
open-charm Lagrangian, see the next section.
The chiral power counting for a D or D* is

2,D~Mp~Q°, (2°—M2)D ~Q, (2.44)

which is adopted in this thesis. In the effective theory including massive matter fields, the mass of the
massive fields serves as an additional scale and may spoil the power counting. In Ref. [73], Gasser et.
al. calculated the loop corrections for massive matter fields to the next leading order, and found that a
naive loop correction will modify the results at lower chiral orders and a power counting scheme cannot
be established straight forwardly. A possible approach to solve this problem is to use a heavy-hadron
reduction on the massive fields. The massive fields H are treated as infinitely massive, and corrections
enter the theory according to powers of 1/My. This approach is adequate to deal with the open-charm
mesons. Such kind of mesons possess a remarkable kind of additional symmetries coming from the
heavy quark consisted. We will briefly introduce this so-called heavy quark symmetry in the next section.
Afterwards we will illustrate how to perform the heavy-meson reduction on a chiral Lagrangian involving
an open-charm meson.

2.2 Heavy-Quark Reduction

2.2.1 Symmetries in heavy-light mesons

In QCD, it is a good approximation to take the chiral limit m; — 0 when dealing with light quarks , d, s.
In the case of ¢, b quarks, which have masses of M, ~ 1.27 GeV, M, ~ 4.18GeV [57], the heavy quark
limit, when the heavy quark mass M, — o0, is a good approximation instead [17]. The heavy quark
limit is useful to study meson systems including one single heavy quark ¢ or b, which are referred to
as open heavy-flavor mesons or heavy-light mesons. In a heavy-light meson, the heavy quark remains
static while light degrees of freedom move around it when M, — ©o. This scheme is comparable to an
atomic system. In such a system, the nucleus remains static, and neither its mass nor spin orientation
is significantly relevant to the dynamics of the system. In a heavy-light meson system, there are similar
phenomena from heavy-quark flavour symmetry and heavy-quark spin symmetry. Heavy-quark flavour
symmetry states, for a heavy-light meson, that the dynamics of the system remain unchanged when
exchanging the heavy quark flavor. Heavy-quark spin symmetry states that the dynamics of a heavy-
light meson system are irrelevant to the spin orientation of the heavy quark. Hence the total angular
momentum of the light degrees of freedom, which can be expressed as

ji =J — S, (2.45)
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can be applied to label an open heavy-flavor system in the heavy quark limit. The heavy-quark symmetry
breaking effects in QCD caused by the finiteness of heavy quark masses M, can be implemented by heavy
quark effective theory (HQET). As an effective theory, HQET provides an expansion of QCD in powers of
1/M, [74-78].

Inside a hadron state, the momentum of the heavy quark is dominated by the on-shell part, while the
off-shell part is a soft quantity. The momentum of the heavy quark can be decomposed into

po = Mou* + K, (2.46)

where the four-velocity v* satisfies v?> = 1. The soft part k* is of the Aqcp scale. The heavy quark field
Q(x) can be parameterized into

Q(x) = e ™" *Q{(x) + ™M Q{ (), (2.47)

where Q(V” and Q(U_) vary smoothly in space-time. The field operator Q(v*) annihilates a heavy quark and
Q(V_) creates a heavy antiquark. The QCD Lagrangian in the single heavy-quark sector

%o =Q(X)(iP — Ma)Q(x), (2.48)
can be written in terms of the smooth fields Q(UJ’) and Q(y_)
£, =QW[i% — My(1— p)1QL + e 2Mar* QI igh — My (1 — )14
+QU[i9 — Mo(1+ )1QYY + 2™Mev*QIN[i9 — My(1 + $)1Q0). (2.49)

The Lagrangian possesses two highly oscillating terms corresponding to heavy quark-antiquark interac-
tions

L, = e QUig — Mo(1 - P)IQSY + M QEI[ig — Mo(1 + )11 (2.50)

It can be proven that these terms vanish up to any given order of 1/M,. Here we use a trick inspired by
Ref. [79]. As an example, let us focus on the first term in the Eq.(2.50). Its contribution to the action is

f d'xe 2Mer QI [i9 — Mg(1— 1)IQLP(0). 2.51)
We notice the identity
e 2Morx — _ 22 d e 2 Mavx, (2.52)
2iM,

and find out that the term (2.51) is equivalent to
= . _
J d*x——(8,e72Mev)Q0) ()19 — M(1 — 1)1 (x)
—2iM, v v

1 : = . +
= 20, f d*xe 2Marxy . 3] Q)19 — Ma(1— 9)1QS7(x) |

+ surface term. (2.53)

In the second step, we have applied the integration by parts. The surface term is evaluated at infinity.
It has no physical implication since all interactions are turned off at infinity. We can iterate the same
process on the right hand side of Eq.(2.53) and obtain an expression with any finite order of id /M,
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exerting on the interaction (_2(,}_)[1% —My(1— ¢)]Q(V+). As far as k is soft, this term can be removed from
the Lagrangian. Here k refers to the momentum involved in the interaction. The same argument can
be applied on the second term of (2.50). As a result, heavy quarks and anti-quarks move independently
according to

= QW% — Mo(1— 1)1 + QL% — Mo(1 + $)1QS). (2.54)

There are no heavy-quark pair productions or annihilations.
Now we restrict our discussion to the quark sector of the Lagrangian (2.54),

£, =QPLip —Mo(1—- ISP (2.55)
The smoothly varying quark field Q(U” can be decomposed into

Q% = Q) +Q%)(x), (2.56)
where Q%) =P,QY, QW) =p.qQ. (2.57)

Projection operators P, are defined by

_1%y 2
P, = — sothat P;=P,, P,P.=0, P, +P_=1. (2.58)

The operators Q(+) and Q(+) are recognized as the large and small components respectively. In the rest
frame, where v* = (1,0,0,0), the large component corresponds to the upper two components of the
Dirac spinor while the small component corresponds to the lower ones. The small component can be
eliminated by using its equation of motion. This method is equivalent to integrate the small component
out in the path integral [80-82]. As a result, one receives a non-local effective Lagrangian for the Q(+)
field [80]

‘gﬁLQET Q.yiv-2Q,, +Q,,i% (iv-2+2M,)'i%,Q,,, (2.59)

in which @ﬁ = 9% — v¥v - 2 is the component orthogonal to the hadron’s velocity (v - 2, = 0). Here
we have suppressed the upper index (+). The first term of (2.59) is the Lagrangian in the heavy quark
limit. Higher 1/M,, order corrections are provided by the second term of (2.59). The expansion of this
term in powers of 12 /M, leads to a localized effective Lagrangian. It is easy to see that the leading order
Lagrangian respects the heavy-quark flavor and spin symmetry.

A similar discussion can be applied to the anti-quark sector of the Lagrangian (2.54). If we use a
decomposition for the anti-quark field Q(v_)

QO =Q)+Q%(x),  where, Q7)=P.QW; Q%) =r.QY). (2.60)

after integrating out the small component Q_U , we can get the effective Lagrangian describing the heavy
anti-quark field Q(; +y

We can determine the spin transformation formalism for Q,,. It can be derived from the Lorentz
transformation A for the full quark field

Q(x) 4 exp (—éw GW)Q(A_lx), o"’ = é[y“, r”]. (2.61)

where A is characterized by the antisymmetric tensor w,,,. A spin rotation R is defined as a Lorentz
transformation keeping v* intact, R*,v” = v*. Therefore it is a 3-dimensional rotation in the rest
frame of the heavy quark moving with the momentum p = M,v. Without losing generality, we specify
a reference frame where v* = (1,0,0,0). Under this condition, the characteristic tensor w,,, for a
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spin rotation R only has space-like components and can be represented by the rotation angle 6;, w;; =
—%ei jk0;. So the spinor field is transformed under the spin rotation as

Q(x) ER exp(i0 - S)Q(R 'x), S; = %Eijko-jk- (2.62)

. . . . 1 ” " _
The generator S can be re-expressed in a 4-dimensional formalism Si = 7€0iuy0"”, assigning €o;jx = €;ji-

Since €,,,,,0°° equals to —%)/50‘”, S; can be expressed as S; = —5750;, which is equivalent to
1
Si=3VsYoTi: (2.63)

We can generalize the expression into a covariant formalism in terms of v* and three orthonormal basis
K i bopy.e. = P p——
e; perpendicular to v¥, v-e; =0, e;-e; =—05,

5= 51stt; 264

It satisfies the commutation relations
[S:,S;]- =i€;S;, [¢,S;]_-=0. (2.65)
From (2.62), one can observe that the heavy-quark reduced field Q, , under spin rotation transforms as
e Mer5Q,, (x) = e Ma" exp (i - $)Q..,(R™x), (2.66)

where R(6) - v = v. This transformation formalism superficially change the space-time index from x to
R 'x. But actually the effect of this change is suppressed by 1/ M,. Using the plane-wave expansion, the
space-time rotation effect of Q+,,(R;1x) can be implemented by a phase factor

R—1 .
Mg X - 18)Q+,,(x). (2.67)

Q+U(R_1x) = exp (

To this end, the rotation R™'x amounts to a redefinition of 4-velocity, e Me”*Q,,(R™x) =
e_iMQ”/'xQ+U(x), where v‘; =y, + %iau satisfying the 4-velocity condition v’ = 1. Here the condi-
tion v’2 = 1 is fulfilled because of the relation R(8)v = v. So the leading order result is irrelevant to
the choice of the 4-velocity, and the effect of changing the 4-velocity v — v’ contributes to O(1/ My)

(see [83]). Therefore in the heavy quark limit, the heavy quark field Q. , transforms under the heavy-
quark rotation as

Q.0 (x) 2> exp (i0 - $)Q.,, (x), (2.68)
1
S; = EY5¢¢1" (2.69)

With the help of the heavy quark formalism, we can discuss heavy-light mesons. The pseudoscalar
and vector states are denoted by |P) and |P*(€)) respectively. They are normalized via the relativistic
convention

(P(IP(P)) =2E,(21)°8°(p—p"),  (P*(P)IP*(P")) = 2E,(21)°5°(p—P"). (2.70)

The corresponding field annihilation operators P, (x) and P} (x) can be normalized as [84]

(0P, (0)IP(p)) = vV/M,,  (O|PL(0)[P*(p,€)) = €/ My, (2.71)
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We denote the characteristic heavy meson mass as M,, which can be recognized as the spin average
of the degenerate heavy mesons respecting the heavy-quark spin symmetry. So operators P(x) and
P*(x) have the dimension %, and differs by a factor y/M, from the conventional normalization of boson
fields. We adopt the convention (2.71) throughout this section since it makes the heavy-meson fields
to be of the same dimension as the heavy-quark fields and simplifies our discussion. Under the Lorentz
transformation A and parity transformation &, the field operators (2.71) transform like

P.(x) D P,(x), P.(x) D —P,(xp), (2.72)

PI(x) S A%, PI(x),  PH(x) D PYy(xp), (2.73)
where x* = (A"")* x”, xj, = x,. Here P}, satisfies P, = P, ,. In the heavy quark limit, the heavy
pseudoscalar and vector mesons are degenerate and can be labeled by jlp = %_ from Eq.(2.45). As
mentioned before, such a meson can be considered as the composite of the heavy quark and light degrees
of freedom. The heavy quark is annihilated by the field Q. ,(x). In the heavy quark limit, it moves in the
same velocity of the meson. So Q, satisfies the projection relation yQ,, =Q,, . Here v is the 4-velocity
of the meson, satisfying v2=1.Ina jlp = %_ state, the light degrees of freedom as a whole transform as
an anti-fermion spinor [85]. It can be effectively annihilated by an anti-fermion operator g(x). So the

il = %_ states have non-zero overlaps with the interpolating field Q. ,(x)g(x),

(01Q,,(0)g(0)|P) = M2T?,  (0lQ,,(0)3(0)|P*(e)) = MZT (e), (2.74)

where Ff and 1“5 " are certain Dirac structures. The parameter Mg is attributed to the normalization. Up
to the normalization factor, the interpolating field Q. ,(x)q(x) serves as an operator annihilating either
a pseudoscalar or a vector open-charm meson state, which is equivalent to a meson field operator

(0lH,(0)|P) = v/MoI?,  (0IH,(0)|P*(€)) = +/MoI? (e). (2.75)

The field H,(x) transforms in the same way as Q. ,(x)g(x), which transforms as a Dirac bispinor. The
spinor field 1) transforms under the Lorentz and parity transformation according to

A i P
P — eXp(_Ewuvouv)wa Y =1y (2.76)
To this end, the corresponding transformation laws for the field H,(x) are expressed as
A Ly,oM N L, oM p
H,,(.X')—>€ 2oy Hv’(x )ez i > Hy(x)_)YOHvP(xP)YOa (277)

where a’* = (A" ,a”, af) = a,, for a = v or x. The projection relation yQ,, = Q,, ensures that H,
satisfies

yH, =H,. (2.78)

Moreover, we can perform a spin rotation R on the heavy-quark component Q, of the bispinor interpo-
lating field Q,(x)q(x). For a light quark-antiquark interpolating field, this kind of transformation will
change the field to be non-local. But as illustrated before, the rotational effect of the space-time index
of the heavy quark field is suppressed by 1/M,. So in the heavy quark limit, this transformation pre-
serves the locality of the interpolating field up to some higher-order corrections O(1/M,). With respect
to Eq.(2.68), the field Q,(x)q(x) transforms under the heavy-quark spin rotation according to

Q0 (3)3(x) = exp (i6 - $)Q,, (x)3(x). (2.79)
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Accordingly, the meson H,, transforms under the heavy-quark rotation R as

H,(x) = exp (i - $)H, (x). (2.80)

The open heavy-flavor interactions preserve the heavy-quark spin symmetry in heavy quark limit, so the
corresponding Lagrangian is invariant under the transformation (2.80).
Comparing Eq.(2.71) with (2.75), we can identify the field operator H, with P, (x) and P} (x) by

H,(x)=TFP,(x)+ rﬂpy(x), rli;e“ =T (e); (2.81)
where, p, =eMavxp Pt = eMuvxplt, (2.82)

The My is the mass of the field H. The extraction of the phase factor exp[iMyv - x] is equivalent to
extracting exp[iM,v - x] in defining Q,,. The difference between these two factors, exp[i(My—M,)v-x],
does not affect the result to the heavy quark limit [86]. The transformation laws of P and P* (2.72) and
(2.73) ensure the relation

_i uv L Wy
e 5Wyuy0 1"5/620)“1/0' — I_‘f’ ’}/0]_—‘11;‘)/0 = —]_—‘5’ (2.83)

_i wy _p* L uy P*, P*, _ TP*
e 2@ur? F,,/ e2@wo — AVMFV v’ YOFUP MYO — Fv,u' (284)

Because of the heavy-quark spin symmetry, the heavy-light pseudoscalar meson P and vector meson
P* are degenerate. A spin rotation acting on the heavy quark can lead to an interchange between the
two kinds of state. If the states are at rest, the demanded rotation is performed along the direction of
the polarization vector of P* by the rotation angle 7 [55]

P*(e)) 2277 ). (2.85)

This relation is fixed up to a phase factor and we set it to be 1. From Eq.(2.75), one can ob-
tain the relation between the wave functions of P and P* defined in (2.80), (0|H,(0)|P*(¢)) =
(0| exp (—ime - S)H,(0)|P). This equation entails a relation between the matrices Ff and Ff '

" (e) = —2ie - ST?. (2.86)

Here we have used the identity exp(—ime - S) = —2i€ - S.

Now we arrive at the point to determine the bispinor matrices I‘f . They need to satisfy the projection
relation (2.78), the transformation property (2.83,2.84) and the interchange relation (2.86)). It is
sufficient to construct I'! by

1+ .
=ity I(e)=

#ﬂe), (2.87)

which meet the requirements above. Therefore H,, is determined by [19],

1+ : ,
H,= T’”(p,, +iP,ys),  where, P,=eMiV¥p = pH=¢Mivxpl (2.88)

which satisfies
yH,=H,. (2.89)

Under Lorentz and parity transformations, H, transforms according to Eq.(2.77). And it transforms
under the heavy-quark rotation as Eq.(2.80).
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In the heavy quark limit, the transverse relation for P! reads:
v-P,=0. (2.90)

Using the equation of motion,
o*p, ,—iMyv"P, , =0, (2.91)

it can be proved that corrections to the relation (2.90) contribute to order 1/M,. This means that in the
heavy quark limit, one can identify an arbitrary v satisfying v = 1 with the 4-velocity of the meson. The
effect of choosing different 4-velocities arise from the 1/M, order (see [83]). The transverse relation
(2.90) entails that in the heavy quark limit H, satisfies

|

H,—-=H,. (2.92)
2

It is worth to emphasize that the field H,(x) only contains the annihilation operator for the heavy-light
meson but not the creation operator for the corresponding anti-meson. So one cannot specify a charge
conjugation operation for H, fields. But the charge-conjugation invariance holds in the non-reduced
relativistic field theory. In order to be consistent with the corresponding relativistic theory, the heavy-
quark reduced theory should be invariant under time reversal. Therefore the time-reversal invariance is
of special importance in constructing the heavy-quark reduced Lagrangian. Under time reversal 7, H,
transforms according to [87]

T
H,(x) = TH,,(—xp)T 7}, (2.93)
where T is a Dirac matrix satisfying T = T~! = —T* and can be represented as [88]
T = in'}/g. (2.94)

Later on we will show how to construct the heavy-quark reduced open-charm Lagrangian. The time-
reversal operation will give important constraints on the Lagrangian.

2.2.2 Heavy Meson Reduction

In order to study a hadron system involving massive mesons such as the open-charm mesons, we can
perform the heavy-meson reduction on the chiral Lagrangian where the heavy meson fields are arranged
in powers of the inverse of their masses. For a review, readers may consult Refs. [84,56]. We will
illustrate the reduction of the kinetic terms for the open-charm pseudoscalar and vector meson anti-
triplets D and D* [21,70]

'ZO = @,uabDa@gCDc - Da(MLZ))abDb - @(Iijupa@vbcDCvp + %st(Mlz)*)abDuvb ’ (295)
where flavor indices are explicitly labeled by a, b, ¢, and summations over the repeated labels are implic-
itly implemented. The fields D, D*” can annihilate an open-charm meson state or create an open-charm
anti-meson state. Here the tensor representation has been adopted for D*. The D- and D*-meson
mass matrices are denoted by M, and M. respectively. The mass splitting between different ele-
ments within one matrix are caused by the SU(3) flavor symmetry breaking effect, which is of the
scale Mp — Mp ~ 100MeV as well as Mp: — M- ~ 100MeV . The SU(3) flavor symmetry breaking effect
can be implemented by including higher chiral order corrections into the calculation. We will come back
to this topic in the next section. Here we restrict our discussion on the leading chiral order by respecting
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the strict SU(3) symmetry. And the mass matrices M}, and M. can be substituted by diagonal matrices
Mpdiag(1,1,1) and Mp.diag(1,1,1). The mass shift between the M, and Mp- is caused by the breaking
of heavy-quark spin symmetry, which is characterized by the mass gap Mp« — M, ~ 100MeV . This quan-
tity is much smaller than the characteristic D and D* mass M, ~ 2GeV . This effect is mainly attributed
to the 1/M, corrections. In the heavy quark limit, the mass Mj, is identical with M., and coincide with
the characteristic mass M,,. We can decompose such a meson field into a meson annihilation field P, and
an anti-meson creation field P_,

VM,D=P, +P_, (2.96)

where the scale M,, appears because of the normalization (2.71). Similar to the heavy-quark Lagrangian
we have discussed before, the meson and anti-meson fields decouple. We only concentrate on the heavy-
meson part. As discussed in the last section, the D meson annihilation field can be factorized by

P, =exp[—iMyv - x]P,,, (2.97)

and the vector representation of D* is factorized in the same way, P} = exp[—iM|, v-x ]P". From Appendix
B, the corresponding factorization formalism for the tensor representation of D* reads [29]

P! =iexp[—iM,v - x] [u“p; —v'Ph+ MLO (o»p?—2 ”plf;‘)] , (2.98)

with a 4-velocity normalized as v = 1. Substituting the relations above, we can reduce the Lagrangian
(2.95) to the zeroth order

gO,kin = —ZPUaU . i@abpvb + 2Pl’fav : i@abpvb,u’ (299)

We have invoked the transverse condition v, P* = 0. The Lagrangian can be further forged in terms of
the H, by definition H, = #(ipv}% +P,)as

gO,kin = itrD (Hya Vugngvb): (2100)

where trj, denotes a trace performed on the Dirac indices. This is the heavy-quark reduced form of the
kinetic term of the open-charm j* = %_ mesons. This term is invariant under the heavy-quark spin

rotation H, L, el »- So the kinematic term respects the heavy-quark spin symmetry. We notice the
normalization condition (2.71) or (2.75) makes %, y;, to scale with the heavy meson mass ~ M. This is
the typical scaling behavior of the heavy-meson Lagrangian in the limit M, — oo. This behavior follows
from the full covariant kinetic form (2.95), where every derivative acting on a D or D,,, field raises a
factor of M,:

8D ~ M,y[D +0(1/M,) terms]. (2.101)

The heavy-quark spin symmetry breaking terms appear as corrections to the next leading 1/M, order.
This interaction implicitly involves Goldstone boson fields from the covariant derivative (2.38).

The heavy quark symmetry provides additional correlation between the 0~ and 1™ heavy-light mesons.
To this end, the coupling constants of the chiral Lagrangian are correlated. We will illustrate such
constraints in the next section.

2.3 Heavy-quark constraints on the chiral Lagrangian involving open-charm mesons

In this section we construct an effective Lagrangian involving open-charm mesons, with an arrangement
of the effective interactions according to the chiral power counting scheme. Special attention is paid on
how heavy-quark symmetry implies constraints on the involved coupling constants, which are referred
to as low-energy constants (LECs).
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2.3.1 Leading order chiral Lagrangian

In Sec.2.2.2, we provided the kinetic parts of the D and D* Lagrangian as (2.95). We have seen that in
the heavy-quark limit, M;, = M)y, the kinetic part of the Lagrangian can be reduced into a compact form
(2.99). In this reduced form, the derivative acts on the soft field H,, and can be counted as the same
scale as the chiral scale Q. The covariant formalism for D and D* kinetic terms are implicitly involved in
Eq.(2.95), which is counted as as order Q. Goldstone fields are implicitly incorporated in the covariant
derivative 2* via the chiral connection ¥, see Egs. (2.38,2.40). Noticing the fact that u'u = 1, one can
rewrite I'* by I'* = %[u, d*u']. The D-meson part in Eq. (2.95) can be expanded with respect to the
Goldstone fields as,

%, =208,D0"D—DM?2D + #{aup[cp, 2,81 D—D[®,3,8]_2"D}. (2.102)

We assigned the D-meson mass matrix My as Mpdiag(1,1,1), which holds in the chiral limit. Here all
terms involving higher number of Goldstone fields have been omitted. The last contact interaction term
is referred to as the Weinberg-Tomozawa interaction. In the same manner, we can give the Lagrangian
involving kinetic and Weinberg-Tomozawa terms for D* mesons,

Ly =—03,D**3"D,, + %D“VM]%*DW - ﬁ{@uD““[cb, 2"®_D,,—D"*[®,0,8]_0'D,,}, (2.103)
where the D*-meson mass matrix M p+ is assigned to be the chiral limit M p+diag(1,1,1). The Egs.(2.102)
and (2.103) are part of the order Q chiral Lagrangian for the open-charm mesons. The mass term gives
the leading order contribution (0(Q°)) of the charmed-meson masses. The Weinberg-Tomozawa term
provides the O(Q) heavy-light meson 4-point interaction.

Besides the Weinberg-Tomosawa terms, there are 3-point interactions shown up at chiral order Q. For
3-point interactions involving Goldstone and heavy mesons, the leading order term is

3 3 i 3 3
M =2¢,[D,,U"3°D—3"DUD,,]— 5 gpe""*P[D, U8 Dy +37D,5U,D,, ]
1 _ _
—iEgge“mﬁ[DWUfaaDTﬁ +0,D,5UD,, 1. (2.104)

Here parameters gp, Zp, g5 are both real. The Lagrangian is invariant under parity and charge conju-
gation (2.41,2.42). The prefactors i before g, and g5 are required by hermiticity. There is one more
possible interaction, €,,qp (D’“’U "9.D* — 3. DU TD‘“’). After integrating by parts, it can be proven
that the contribution of this term is at least at the next order.

The three parameters gp, &» and g are correlated in the heavy quark limit. By means of heavy-quark
reduction, we can significantly reduce the number of independent interactions. We follow the way in
Sect. 2.2.2 to reduce the full Lagrangian .23(1), by using Egs. (2.97) and (2.98). We have

2,70 =2.g,(P,UMP' — PU"P!) + 28, P 1, P UP} +..., (2.105)
where terms explicitly including higher orders of 1/M,, are omitted. There are no terms corresponding
to g5 in (2.105). This fact implies that the interaction proportional to g5 contributes at least to the next
leading order of 1/M,,.

The expression (2.105) is comparable with the heavy-quark reduced 3-point Lagrangian to the order
Q and (1/M,)°. We use the multiplet field H, (2.88) to construct the requested heavy-quark reduced
3-point Lagrangian. The Lagrangian contains a trace over Dirac indices. To the leading order, the
heavy-quark rotation symmetry is respected, which means that the Lagrangian is invariant under the
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heavy-quark rotation (2.80). This condition requires H, being always followed by H, in Dirac space,
rejecting any Dirac matrices to exist between H,, and H,. The requested Lagrangian reads [19-21]

23(2 = 1Gptrp (HUU“YSY,LLHU)' (2.106)

As mentioned before, the constraint of time reversal invariance plays an important role in obtaining the
Lagrangian. Actually, the factor i in front of G, is required by the time reversal invariance. According to
the transformation rules for U* and H, (2.43,2.93), this term transforms under the time reversal as

trp, (HUU“YsYuHV)z’ —trp (H,U"ysy,H,). (2.107)

A factor i is necessary since it changes sign under time reversal, such that i trj, (H LUMYs }/MI-_I U) is invariant
under time reversal. Moreover the assignment with the additional factor i is in consistence with the

hermiticity?. We rewrite .553(2 in terms of open-charm meson fields P and P* (2.88), and get

g?flb)r =—2Gp (PUMPJ — PMU“PT) +2Gp€pyap vPeUHPeT, (2.108)
By matching the expressions (2.105) and (2.108), we obtain a relation between gp, gp and Gp,
g&r=8p=Gp. (2.109)

Therefore in the heavy quark limit, g, and g, are identical while g5 vanishes. We will see in the next
section, the 3-point interaction at O(Q) contributes to chiral order Q* self-energy correction of D-mesons.
We will suppose the heavy-quark corrections (~ 1/M,) is of no more importance than the Q? chiral
correction. It means the self-energy correction from the deviation between g, and g, will be numerically
compatible with the O(Q®) chiral correction. Therefore up to O(Q*), we can suppose the heavy-quark
relation [29]

gr=8p, g5 =0. (2.110)

At order higher than the leading order, 4-point interaction will appear serving as counter terms. They
can be systematically constructed according to the argument of chiral symmetry.

2.3.2 Higher order Lagrangian

As we have seen, the chiral Lagrangian at order Q involves three-point interactions between charmed-
mesons and Goldstone bosons. They contribute to O(Q®) charmed-meson self-energies. In this section
we proceed in constructing the counter terms at higher chiral orders that are necessarily involved in the
chiral corrections for the self-energies up to O(Q*). The higher-order counter terms we are considering
consist of chiral-symmetry breaking (y-SB) terms (~ y,) as well as chiral symmetry respecting terms.
All of the interactions involve an even number of Goldstone bosons.

At chiral order Q?, there are two different kinds of chiral-symmetry breaking (y-SB) terms for either
[0~ ] or [17] mesons. We collect them as

.2’)52) = —(4co—2¢;)DDTry, —2¢,Dy, D + (2, — &) D*'D,,, Try , + & D"y, D,,,. (2.111)

2 However this consistence does not always hold for all the possible cases. Some certain kind of interactions may require

an additional i to be time-reversal invariant but at the same time violates herminicity. The consistency requirement
makes a selection amongst all possible constructions of the Lagrangian.
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Substituting the relation y, = y,— Sf% {®, {x0,®}} + O(®*), we expand these y-SB NLO terms up to
4-point interactions,

_ 2Ch—C1 = _ c -
£ =—(4co—2¢,) DDTry, + (}2 LDDTr (®x,®) —2c;DyoD + #ZD[@, [%0,®],1,.D
~ ~ Uy 260_51 Uy A ~ wy T
+(2¢y—¢,)D*'D,,, Tryo — 272 DDy, Tr (@ xo®) + &, D" xoD,,
é N
— ——D"'[,[ )0, %], 1,Dp,- (2.112)

8f2

The 2-point terms Dy,D and D*”y,D,,, give the tree-level y-SB effect of the D-meson masses, leading
to a mass deviation between the strangeness 0 and strangeness 1 D-mesons. One can estimate the value
of ¢, and &, from the physical mass difference between D® and DS(*). The 2-point terms with once flavor
trace (~ Try,) gives an overall chiral correction. This correction is suppressed according to the inverse
of N (see App.C). The 4-point interactions in (2.112) will generate O(Q*) loop contributions to the
self energy. Detailed calculations will be performed in the next chapter. In the heavy-quark limit, the
coefficients ¢y, ¢c; and ¢, ¢; are correlated. We can easily verify the correlation by comparing with the
heavy-quark reduced form of the NLO y-SB term [28]

@ _ Go ~ C; -
L= A—xtrD (HA)Try, + A—xtrDHmH. (2.113)

In the heavy-quark limit, the hyperfine splitting between M, and M. vanishes. An explicit dependence
of the chiral breaking scale A, is implemented in the denominator. This arrangement entails a dimen-
sionless setup of LECs, C, and C;3. The portion of the Goldstone-boson mass m,, (leading order, from
Xo) and the hard scale A, implements the suppression according to chiral power counting

—~Q. (2.114)

Using the non-relativistic reduction techniques, we observe that if the heavy-quark spin symmetry is
respected, the coefficients in Eq.(2.111) satisfy [29]

~ ~ MO ~ MO
2C0_C1 == 2C0_C1 = A_Co, L =C = _Cl' (2.115)

X X

The factor of M, is derived from the normalization of H field (2.71). This factor rightly respects with the
scale dependence of the heavy-meson Lagrangian. Since numerically M, deviates not so much with A,
in the case of open-charm mesons (both of them are 1 ~ 2GeV), the combination M,/A, may not give
a significant modification of the magnitude of the LECs between C; and c;, ¢;. We can just neglect this
scale dependence in the dimensionless LECs c; and ¢;.

Besides the y-SB terms, there are chiral-symmetry respecting terms reading as

i} _ 2(2¢,+ i}
2P =4(2¢, + ¢3) DDTr (U,U") — 4¢,DU, UMD + %%D&Dﬁ [ur, U],
D
- %%D [UH, UWL 0,D +icee"™? (D [Uw UI]_ Dpff —Dpo [UI’ UH]— D)
D

The A, can be recognized as the typical scale of higher-energy modes. It always appears as a suppression factor (~ 1/A )

in a low-energy effective theory. This effect can be illustrated by integrating out the high-energy modes [70,71,89, 64].
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L _ . . (2c4+c5)
—2(28,+ &) DD, Tr (U, U*) + 28,D*P U, UMD 5 — M—a D*3,D, s TH[U*, U],
D*
[U*,U""],8,D,5 —4ED"*[U,, U] _D,,. (2.116)

D*
We allowed a hyperfine difference between the ¢, and ¢, 5 interactions in terms of the chiral-limit

charmed-meson masses M;, and M,.. They tend to be identical with the asymptotic value M, in the
heavy-quark limit. Substituting U, 9,840 (<I>3) we can get

= 27 %
2¢c,+c¢ _ 2c,+c _
£ ==2_"3DppTr(9,80"®) — %8 pg,®04®D + (‘f,—S)a D3,DTr[8"®,3"®]
4 f2 f2 u 2M2f2 p=y *
D

— 55 9 D[0"®,3"®], 3,D +i—> ° e (D[3,9,8,8] D,,—D

- 8,8,8,8]_D)

Y, f2 g 4f2

20, +¢ - ¢ _ 2c,+¢
—Z2_3pD,,Tr(9,80"9) + — D 3,83 8D, — (“T‘E’)
of of 4N, f2
Cs
+—
4M2,.f2 "

0,0 8,D,sTr[0"®,0"®]
8,0 [0"®,3"®],8,D,5 — f—D“"‘[a $,0"%]_D (2.117)

The ¢; and ¢; are identical if the heavy-quark symmetry is respected. One can confirm this fact by
matching the Lagrangian (2.116) into the heavy-quark reduced form

L2 = 22, (HA)Tr (U, U*") + 2S¢, (HU,U*'H) - G yvytrp (HA) Tr[UM, U],
’ Ay Ay Ay
+ oty (U, U], ) + iy (Ho, [0, U7T]_A), 2.118)
X X
and observe [29]

~ ~ MO ~ ~ MO
2CZ+C3:2C2+C3:_C2, 2C4+C5:2C4+C5:_C4,
A, A,
M M M
C3:53:_0C3, C5:65: _OCS, 66266: _OCG. (2119)
A, A, A,

The 4-point interactions (2.117) will contribute at N®LO by forming tadpole loops. The leading order
heavy-meson scale dependence is emphasized by the factor My/A,. The chiral-symmetry respecting
terms contribute to O(Q*) self-energy loop corrections. The heavy-quark correlation (2.119) are asserted
in our forthcoming study of the self-energy chiral corrections. On the contrary, we will release the heavy-
quark constraints between ¢, ¢; and ¢y, ¢; (2.115). We will probe the detail of these conditions in the
next chapter.

The possible NNLO (Q®) counter terms are redundant under a suitable redefinition of open-charm
meson fields [90,91,51]. And at N°LO there are several y-SB counter terms involved in the self-energy
corrections. They are stated as

£ =—dDy2D —dyDy DTr(x,) —d;DDTr () — dyDD (Try.)?
1- I _ 1o - 1.
+ EdlDl“’ x2D,, + EdzD‘” %Dy Tr () + §d3D‘”DWTr( x2)+ §d4DWDW(Tr)(+)2 . (2.120)

The power suppressions from the chiral breaking scale 1/ Af{ are implicitly incorporated in to the coupling
constants, ending up with dimension [m™2] LECs d; and d;. The two-point counter terms read as

29 =—d,DyED — d,D oD (o) — dsDDTr () — dyDD (Try,)?
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. I _ 1o .- 1. -
+=d, D" 2D, + EdzD’” x0Du Tr (o) + 5dBDI”DWTr( x2)+ Ed4D’”DW (Tryo)®. (2.121)

N | =

The terms with more flavor traces get more suppressed with under the large N approximation (see
Appendix C). But all of them are necessary in compensating the divergence of the chiral loop corrections
of the charmed-meson self-energy. It is straightforward to construct the corresponding heavy-quark
reduced terms. And the heavy-quark symmetry is implemented when the d;’s are identified with d’s,

d1 = d]_, dz = &2, d3 = &3, d4 = d4. (2.122)

We will assert these correlations in our treatment of the chiral self-energy corrections for the open-charm
mesons in the next chapter.
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3 Chiral extrapolation for open-charm meson masses

In this chapter we will study the chiral corrections for the masses of pseudo-scalar and vector D meson
states up to next-to-next-to-next-leading order (N>LO, O(Q*)). To this end, the one-loop effects from the
chiral Lagrangian we introduced for D-meson fields in the previous chapter will be derived in the first
section.

We should first discuss the power counting scheme. The power counting for systems with Goldstone
boson only was already reviewed in this work. In a case where matter fields are involved, the power
counting needs particular attention. If the conventional modified minimal-subtraction (MS) scheme is
employed in renormalizing the loops [73], derived from a relativistic chiral Lagrangian, power counting
violating effects are observed. In contrast, a consistent power counting scheme is obtained within the
heavy-hadron formalism. Here the heavy-meson propagator is proportional to 1/v - k, with k ~ Q. In
turn the heavy-meson propagator is of chiral order Q. For a given diagram with N; loops including
I;; (I;;) heavy meson (Goldstone boson) inner lines and N, f (NzMn ) heavy-meson (pure Goldstone-boson)
vertices of the nth (2nth) order, the chiral order is given by [92, 53]

o0 oo oo oo
ng=4N, —2Iy —Iy+ » 20N} + > nNF = 2N, + Iy +2+ Y (2n—2)NM + > (n—2)NF.  (3.1)
n=1 n=1 n=1 n=1
Here the topological relation N; = Ij; + I; — Ny — N + 1 had been used in the last step.

Unfortunately, the heavy-hadron approach suffers from unphysical analytic properties of its Green’s
functions [93]. In this approach physical quantities are systematically expanded in powers of the inverse
heavy-hadron masses. After this reduction, the analytic structure of the Green’s functions such as the
pole positions and the branch-cut behaviors is not consistent with the results obtained in the framework
of a fully relativistic field theory [94, 54, 95]. Therefore, it is advantageous to go back to the covari-
ant description where the micro-causality constraints of a local quantum field theory are manifest. To
this end, different renormalization schemes are proposed in order to render the loop effects free from
power-counting breaking effects. The first attempt is the infrared regularization [94]. The infrared con-
tribution which is attributed to the chiral dynamics has been disentangled from the full loop correction.
While this approach has great success, unphysical cuts contribute in dispersion-integral representation
of loop expressions [95,47]. It was realized that all the power counting breaking terms appear as some
polynomials in powers of light quark masses or small momenta [96]. Thus the power counting break-
ing terms can be avoided by appropriate subtraction schemes, without harming the analytic property of
the loop functions. Different subtraction schemes have been proposed, e.g. the chiral minimal subtrac-
tion method (y -MS) [97,22,47] and the extended-on-mass-shell method (EOMS) [98,99]. Both of the
schemes protect the analytic structure of the chiral loop corrections. These schemes are supposed to give
the same leading order contribution of a same loop, leaving out less important higher order differences.

Although both of these renormalization schemes have gained plausible success in the chiral extrapola-
tion processes [43,100], the chiral power counting of the covariant formalism deserves further classifi-
cation. In the covariant ChPT, one may specify the starting chiral order of a certain loop using covariant
ChPT, but in principle higher chiral order corrections contribute to the loop. A naive chiral expansion
according to small m,/Mp (m, as the Goldstone-boson mass, My, as the heavy hadron mass) is expected
to disentangle different chiral orders. But this expansion essentially reduces the covariant form to the
heavy-hadron form and, unsurprisingly, fails to converge in many applications. We will scrutinize this
problem later in this chapter, in application of a modified version of the y-MS subtraction scheme [52].
To be specific, the chiral expansions for the bubble-loop corrections of the D-meson self-energy will be
investigated in the second section of this chapter.

With well analyzed chiral corrections, we end up with D-meson mass formulae and higher chiral order
uncertainties are under well control. The involved undetermined LECs will be determined according
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to lattice data for the D-meson masses at various unphysical quark masses. We apply the finite-box
correction proposed in [43] in the chiral loop integrals. We perform the fitting according two lattice data
sets, and compare the fitted LECs to previous studies. Detailed discussions about these issues will be
performed in the last section of the chapter.

3.1 Chiral corrections for the masses of open-charm mesons up to N°LO

In this section, we will study the chiral corrections for the open-charm meson masses up to next-to-next-
to-next leading order (N°LO). This is the chiral order Q*. A first numerical estimate of the NNLO chiral
corrections will be provided in the end of this section.

3.1.1 Self-energies for the 0~ and 1~ open-charm mesons

The chiral Lagrangian generating the chiral corrections up to O(Q?*) involve the kinetic terms
(2.102,2.103), the 3-point interaction terms (2.104) as well as order Q> and Q* counter terms,
(2.112,2.117) and (2.121). For later convenience we introduce the chiral-limit mass MH of an open-
charm meson H with

MHE[O_] =M, MHe[l—] =M+A. (3.2)

Based on the chiral Lagrangian given in the last section, we can calculate the polarization, I, (p?),
for the pseudoscalar (D, D;) and the vector (D*, D) triplets states respectively. To the order Q*, the
polarization can be sorted into the contributions from tree-level and the one-loop diagrams

My =% + 10 7 + T + T, (3.3)

where HS) is the tree-level contribution from the y-SB counter terms at O(Q?) (2.112), and H;fl_x repre-
sents the tree-level contributions from the y-SB 0(Q*) counter terms (2.121). The loop-level correction

consists of bubble-loop contributions collected in HSOP, counted as order Q3, and an order Q* tadpole-

tadpole

loop contributions IT};

. The mass My, is evaluated according to,
M2 —M2—TI(M2)=0. (3.4

where M,, is the bare mass in the chiral limit as assigned in (3.2). By implementing the chiral corrections,
the wave functions of the D-mesons receive a renormalization with |H), = 1/Zy|H,). The wave-function
renormalization factor Zj; is derived from the polarization tensor with,

0
Zy—1= ﬁn;‘;‘)l’(pz) (3.5)
p pzzMé
If we have used the bare fields H,, the propagator of H, will experience a modification around the pole
mass by,

Zn

Sy =—H
Ho ™ p2— M2 +ie

(3.6)

Because of the wave-function renormalization Z,;, the bubble-loop correction will scale with the factor
ZyZy if bare fields are used. If the deviation of Z;; from one is sufficiently small, one may neglect the
contribution of Z;;. But actually, as we will see later, the Z}; factor is significantly larger than 1 for H = D,
and H = D;. Therefore, instead of using the bare fields we use the renormalized charmed-meson fields.
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The merit of performing the field renormalization is that we can directly relate the imaginary part of the
bubble-loop correction with the charmed-meson decay amplitudes at tree level via the optical theorem.
This is crucial since the coupling constant g, is extracted from the D* decay width at tree level. This
will be discussed in Sec.3.1.4. A renormalized charmed-meson field H, is related with a bare field H,
according to H, = H,/+/Zy, such that the normalization relation (0|H,|H,) = (0|Hp|H,) = 1 holds. If
we use the renormalized field H,, the propagator is renormalized as

1

=
p2—M7+ie

H

3.7

The bubble loop correction calculated in terms of the renormalized fields ﬁEOP is connected with the
bare-field result l'[loop

=1 1
M, =Z, ;™. (3.8)

Now it is justified to match the renormalized coupling g, with the D* decay width at tree-level. We will
suppress the label of r and implicitly imply all the quantities later on involved are renormalized. In terms
of the renormalized fields, the mass formula (3.4) ends up with the following expression,

M2 — M2 — T — T — 2P0 9% /7, = 0. (3.9)

A self-consistent solution of this set of equations determines the D-meson masses.
The tree-level chiral corrections contribute at O(Q?) and O(Q*). The tree-level contributions are ex-
pressed as

].:.[%_x :230 (4C0 - 2C1) (ms + Zm) + 4Boclm,
ﬁ%s_x :230 (4C0 - 2C1) (ms + 2m) + 4Boclm5,
= ZZBO (450 - 251) (ms + 2m) + 4B051m,
[13% =2B, (4, — 2&,) (m, + 2m) + 4By, m,. (3.10)

at 0(Q?), and

[} % =4B2(d, +2d, + 2d; + 4d,) m? + 4B2 (d3 + d;) m? + 4B2 (d, + 4d,) mm
MMy * =4B (2ds +4d,) m* + 4B} (d; + d, + d3 + dy) m? + 4B (2d, + 4d,) mm
5% =4B2(d, +2d, + 2d; + 4d,) m? + 4B2 (d3 + d;) m? + 4B2 (d, + 4d,) mm
M1} % =4B2 (2ds + 4d,) m? + 4B2(d, + dy + d5 + d;) m? + 4B2 (2d, + 4d, ) mm (3.11)

at 0(Q*). The light-quark masses are related with the Goldstone-boson masses according to conventional
ChPT. With the accuracy up to order Q*, the Goldstone-boson masses are expressed in terms of light quark
masses as [14]

mi :mj%m{fz + %In ‘ I,+ 16BO|:(2m +m,)(2Lg— L)+ m(2Lg — L5)]}
B s 1 1
m2 :W{f2 + §In + 1630[(2m +m,)(2Lg —Ly) + E(m +m)(2Lg — Ls)]},
2B 2m, 2 1
m? :%{fz +Ie= ST, + 168y (2m +m)(2Le — Lg) + (m+2m)(2Lg — Ls)]}
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Figure 3.1.: Loop corrections for D-meson masses. The single line represents 0~ mesons D or D,. The
double line represents the 1~ mesons D* or D}". The Goldstone bosons are symbolized by the
dashed line. The arrows show the directions of momenta.

2B,m[ 1 1 1 128 B2(m — m,)?

e ey
f2 16" 27 3 9 f2
where the empirical values of the LECs involved have been provided in Table II of Ref. [51].

The loop-level chiral corrections, as afore-mentioned, consists of bubble loops II}; lo0p and tadpole loops

Hgdpde. We have shown the corresponding Feynman diagrams in Fig. 3.1.

Up to N3LO, the masses of pseudo-scalar D-mesons receive contributions from bubble loops and tad-
pole loops shown as Fig.3.1(a), (b). The bubble loops read as

(H) .

G ddk i 4—d

loop 2y u uvpo,

My ero—(P7) = Z Z ( ) @) = +i6kukpp,,pUSR (p —k). (3.13)
Qe[8]Re[17]

And the tadpole loops read as

dpol iut GI(JXQ) GI(LIS% GI(LIVQ)
tapoe_ — k2= —_ - k)? 3.1
He[O ] & 8] (Zn)d k2 — m +ie 4f2 Z 4f2 Z 4f2 (p-k)|, (3.14)

Qe[8] Qe[8]

where Sl’; "P9(p) is the open-charm vector meson propagator in the tensor field representation,

, 1 My =P® o o P'P° up PP
Sp 7 (p) =~ z_M£+ie[ iz 878 g m e ) 519

which is discussed in more detail in Appendix B. Using the Passarino-Veltman reduction techniques, the
loop integral can be reduced into several basic integrals and reads

(H)
ety @ =2, 2 ( ) [ 20215 + B (D) + e (2 an(p?)],

Q€[8]Re[17]
1
ab '@ =— 4(pz—m2 +M2), bor ](pz)——z (pZ—M§+mé),

et ](pz)——z(p —2(M2+m2) +(M2—m2)?), (3.16)
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G, =2+/3g, G}f’gl = 48p

G = 22, Gl = g

Gipr =2V2gp

G\ =23 Gy = 4g» G =2v3g Gep = 48>
qu%*) fgp G(D ) j—gp G;L,);) [gp Gfﬁ,*) = %gp
G =2v2g, Gl =2v2g

Table 3.1.: The coefficients Gg;) appeared in the H € [07] and H € [17] bubble loops, defined with
respect to isospin-strangeness states (see the next chapter).

and the tadpoles

tadpole 2 ()() (S) ) _24(2)
e (p2) = 4f2 Z (611, — Giym2I — Goap’IS . (3.17)
Qel8
The scalar-loop integrals are defined as
L= dk iu4—d _ dk i‘l,(,4_d
Q= | (2n)d kz—mé+ie’ R= | (2n)d kZ—M}%+i6’
4 2
/@ = dik iutd k-p
QT 2r)dk2—m2+ie\ D)
Q
dik  —ip* 1
Ir(p?) = . 3.18
ar(pP) J (2m)d k2 —mg +ie (p—k)> — Mj +ie (3.18)

2
In the infinite-volume limit I ((22) reduces to the scalar tadpole I, according to | ((22) - %IQ.

The coefficients Gg? are listed in Table 3.1. The indices of Q and R refer to different isospin-
strangeness states. Each of such states has a certain value of isospin and strangeness. The values of
the coefficients G;IXQ), G(S) and G(V) can be found in the Table 3.2.

In order to apply dlmenswnal regularlzatlon we have computed the loop integral (3.13) in an arbitrary
space-time dimension d. Once having defined the theory in the dimension d, the boson fields carry as
dimension % — 1. The renormalization-scale dependence (u*~¢) in the loop integrals is introduced such
that the loops possess the same dimension as in the real physical space (d = 4).

As pointed out before, the integral me° contributes at order Q° if naive dimensional counting rules

He [o ]
are applied. However, if dimensional regularization with the MS subtraction scheme is used, power
counting violating terms of chiral order Q° and Q? arise in the result. As we mentioned earlier, we will
use the y-MS renormalization scheme in order to restore the power counting scheme. This subject will
be discusses in the next section in more detail.

We proceed with open-charm vector meson masses. Similar to the pseudoscalar meson session, there
is a NNLO bubble loop and N3LO tadpole loop contributions, shown in Fig.3.1(c),(d),(e) . The 1-PI loop
diagram for D* propagator in the tensor representation can be written as a rank-4 tensor IT"**°(p2). To
be explicit, the bubble-loop diagrams Fig.3.1(c),(d) can be written as

- o Gy’
-loop uv,po 2

k,k Sg(p—k)+ e
H€[1 ] (p7)= ZJ(zn)dkz mé+ie[ Z (Zf ) pPvPo r(P ) Z (2f )

Qe[8] Re[17]
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H Q G GG M2 G
D« —48(2¢, — ¢1) Bym — 24¢,Bym 24(2c, +c3)—12¢c5  24(2c4 +c5)—12¢5
D K| —32(2co—c;)By(my+m)—8c;By(mg+m)  32(2c,+c3)—8cy  32(2c4+cs5)—8cs
D n —13—6 (2¢y— 1) By (2my +m)—§clBOm 8(2c2+c3)—%c3 8(2c4+c5)—§c5
D, 7 —48(2¢o —¢;) Bym 24(2¢, + c3) 24(2¢, + c5)

D, K| —32(2co—cy) By (m +m)—16¢,By(my+m)  32(2c, +c3) —16¢c;  32(2c4 +c5) — 16¢s
D, n —13—630 (2m, +m) (2co—c1)—%Bomsc1 8(2c2+c3)—1?6c3 8(Zc4+c5)—13—6c5
D* « —48 (28, — &) Bym — 24¢,Bym 24(28, +8;)— 1265  24(28,+8&)—12¢
D* K| —32(28 —¢)Bo(m,+m)—8&By(my+m)  32(28,+¢)—8¢  32(26,+¢)— 88
D* —18 (28, —¢&,) By (2m, + m)— £&,Bym 8(28,+8;)—2¢, 8(26,+6)—2¢
Df m —48(2¢,— &) Bym 24 (28, + &3) 24(28,+ &)

D* K | —32(28 —&)Bo(m,+m)—16&By(m,+m) 32(28,+6)—16¢;  32(26,+&)— 1685
Df n —1B(2m, + m) (28, — &) — ZBym,é, 8(28,+8&)— 228,  8(28,+¢)— &

Table 3.2.: Coefficients G*)

2

(s) )
GHQ and GHQ

2
1 a
g ( ) (eaﬁgapp +€p[3‘§a(p_k)a) (eyéfrvp,u'i_e,uﬁrv(p_k)y) kngSRﬁ’Yé(p_k)]’ (319)

where the coefficients Ggff[l_]) can be found in Table 3.1. And the tadpole-loop diagram Fig. 3.1(c)
reads

=tadpole; uv,po __
1_IHe[l—]
Qe[8]

_1 Z de i‘l,l,4_D
2 (2m)P k2 — mé +ie

G Gs)
4f2 8up8vo — ﬁ

) k8,080

G(V)
HQ
- m (P ’ k)zg,upgvo ) (3.20)
where the coefficients involved can be found in Table 3.2.
The self-energy tensor I1,,,, po(pz) can be decomposed into a vector part and a tensor part,
2y — 1V (n2\ay (1 T (2o (2
Mo (p?) =T (P2 +T" ()2 (3.21)

where only the vector part IT" contributes to the mass. In the conventional vector representation, this
part can be projected by the transverse projector @“Uv/) = &u» —pupv/p2 (see e.g. [101,102]). The

projectors for the two components in the tensor representation @/u(i)pa can readily be constructed. We
recall from [29]

1
@‘qu;’)pg :2_p2 (guppvpa - g;w'pvpp - gvppp,po + gvapupp): (322)
1 1
@/lfﬂz),)pO' :E |:(g,upgva _gvpgucr) - E (g,uppvpo - g,uopvpp - gvppupo + gvop,upp)] . (323)
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They satisfy the projection relations

i j — )
YO STy =6, . (3.24)

We note the additional properties

1
yhmeogl) g =d=1,  @@meogl = (d*-3d+2),

gy impogy@)  =o0. (3.25)
We can decompose the (bare) propagator (3.15) in terms of the projectors
=2 (g _ p_Mz@(z) (3.26)
,uv po p p2 _ Mf{ +ie uv,po MI?[ uv,po :

and observe that the self-energy tensor I, pU(pz) contributes to the full propagator S W,pa(pz) according
to

Sfull (pZ) —

2 2_]\2’2 +2HV( 2)
oo o : (@’“) e — (3.27)
P p2—Mf[+2HV(p2)+le

uv,po ME] —2HT(p2) uv,po

The I1V modifies the pole position of the vector meson. In the vicinity of this pole, the #® component
disappears, which resembles the behavior of the bare propagator. The pole of the propagator (3.27)
at p?> = 0 should be canceled by requiring IT1"(0) = I17(0). We can check that this condition is indeed
fulfilled for the loop diagrams we are considering here. Since the hard scale Mf] is always much larger
than the chiral correction 2I17 (p?), the second term in (3.27) gives no additional pole structures. To this
end, we identify with —2T1" the loop contribution to the polarization I, appearing in the mass formula

(3.9) . Ty, », With the projection operator #()) . and obtain the loop corrections to the polarization
[Ty with

N

I;)ZI[)l (p 2) — @/(1) w, panif;)l:m(pz) (3.28)

This leads to our result

(H)
ECOED NS ( ) [ 02) + B (0D + 5 (D aa(p?) ]

Q€[8]Re[07]

(H)
+ Z Z ( ) [b[l ](p )IQ+a[1 ](pz)IR"‘C([;g](PZ)IQR(p2)+d& ]Iéz)],

Q€[8]Re[17]
1 1
Qg 0 ==y (PP +M7) b 0% = — s (P MR+ ),
1
on '(0*) =37 )(p4—z(M§+mg)+(M§—mg)2),
d>2—5d+6
[1 1.2 2 2\2( .2 2 2
=— M2+ —m2 +M?2),
%) 16(d—1)M,§p2( i+ p?)? (0= 0a)
d>—5d+6
[1 1 6 4 2 2
= —p*((2d —5)m2 —M
v = T 16(d — DMZp? [ =" (@ = omg —007)

This result agrees with the result of the formalism in [103].
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—p? (Mg - 6méM§) + méMg - M}g‘],

_ 2_ M2+ p2)?
[17], 2y _ d 5d+6(Rp 4 2 2 2 242
e \(p )_—16(d_1)M1% = (p*—2(M2 +m2) + (M2 —m2)?),
- d*>—5d+6
dl Ip?)y = ——2— " (4Mm2 +2p?), 3.29

and

= tadpole , 2y _ 1 x) $), 2 V) 2,2)

) =372 > [601,— Goym o — Gyop*1S . (3.30)

Qel8]

We note that for technical convenience we will assign d — 4 in the coefficients of the scalar loops before
performing the )(-M_S renormalization, to be introduced in the next subsection. It is known that this
leads to a finite renormalization of the counter terms in the chiral Lagrangian only. This is because a
power of d —4 may show up in the prefactor and cancels the divergence proportional to 1/(d —4) in
some of the corresponding scalar integrals. We do not follow up this finite renormalization in this work.

3.1.2 The y-MS subtraction scheme

In the previous section, we detailed the sub-leading order corrections to the D meson masses. The one-
loop integrals were evaluated by means of the Passarino-Veltman reduction approach. In this manner,
all one-loops are expressed in terms of several scalar-loop functions I, I, Ior (which are referred to
as Passarino-Veltman functions). As we mentioned before, the one-loop corrections suffer from power-
counting violating terms. We employ the y-MS scheme to renormalize the loop integrals in accordance
with dimensional power counting rules. This subtraction scheme was proposed in Ref. [97,47].

It is proven in Ref. [47] that any given one-loop integral (involving a single heavy particle line )
is compatible with the power counting rules after a suitable renormalization of the Passarino-Veltman
functions. It suffices to device a subtraction scheme for the Passarino-Veltman functions such that they
respect the dimensional counting rules. The important observation made was that only those Passarino-
Veltman functions that diverge in the limit d — 4 need to be modified. In turn, the y-MS scheme
specifies the subtraction terms for the divergent Passarino-Veltman functions as they appear in a one-
loop calculation. These are the I, I or Iz functions, for which the %-MS scheme is implemented by
specifying the subtraction terms. In this work we use the particular form as suggested recently in [52].
We specify

o m(zz 2 1
I, = 2y 1-h@Gn)),
2~ Ton2 ( g_a Ty n))
MZ 2 M2
R R
oly 162 (—4_—d+}/—1—1n(4ﬂ)+ln(ﬁ)),
1-v7 Iy
Olpp=————. 3.31
ART16m2 M2 (3-31)
with

Here the renormalization of the function IQR(pz) has been slightly modified from the original work [47]
such that the ultraviolet divergence in I is canceled by the hard-scalar tadpole I only [52]. In Ref.
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[47] the renormalized the scalar bubble I, suffers from an artificial pole at mé = M2 [52]. With
the assignment of (3.32), this problem has been avoided. Note the additional subtraction term yzRH,
defined as

M;—M}  |Mz—M;,
rH = — lim —*—Tlog| -2 (3.33)
20 H My

According to the definition, this dimensionless quantity is only nonzero for the off-diagonal loops (where
the external open-charm meson and the loop open-charm meson don’t have the same spin). This sub-
traction leads to a vanishing I in the chiral limit.

We provide analytic expressions for the non-renormalized forms of the Passarino-Veltman integrals in
Appendix D. The renormalized quantities I, I, and I,z we take from [52],

Por p* —2por v/ p2 p*+2pgr v/ p2
+ In| 1— 5 a2 | IOg 1-— 5 ,
1/p2 mQ+MR mQ+MR
M

2 2 2 2 ,2)2
with  p2 =M Mi* Mo (M — ) (3.34)
H

We express the loop corrections employed in our forthcoming calculation in terms of the renormalized
scalar-loop integrals I, and Iy as

o G(H) 2 -
Mydio) = Z Z [ pQRIQR+ (M2 )( an )2 log— + agR], (3.35)
Q€<[8]Re[1
(H) 2 2
G 1 m m
HpQR QR R H ;08— + ang
Q<[8]Re[0~] 3 12 (4m) M2
(H) 2 2 2 2
DI ( ) (- g I e
2 QRQR 2072 R H 2 2 [’
Q€<[8]Re[17] 6MR 24MHMR (475) MR
(3.36)
and
tadpole 1 ©9); (s) (V) 252 7(2)
Wyrefo-jor(1-) T4f2 Q%][GHQ o= Glomalo— GhaViZIs) |- (3.37)
(S

Comparing with the un- renormalized expressions (3.16), (3.29), one may notice that there is yet an
additional subtraction term a added in the bubble loop corrections. They are defined as

a

QR 32m2 |V H aM_ﬁ_ M

alyzAM GY2AM o
16772 Q’

(He[07]) :alAz |:(M2 —M2) ( Ad A M+ A)

+(M§—(M+A)2)M A(
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~ 2
(He[l_])_alA[ 2 N M (Aa )
=12 [(M2—(M+A)P?) —— [ == +1
*ar o6z | (Mii— s \Ga
A AD M+A)]~ RN
R Vil

+ (M3 —0) (5~ 5~ "o TR

After implementing the subtractions (3.33) and(3.38), the bubble-loop contributions scale with power
mg in the chiral limit. In particular, the open-charm meson masses are not renormalized in the chiral
limit. Thus, the bare masses M and M + A specify the pseudo-scalar and vector D meson masses at

(3.38)

m, = my = m, = 0 respectively. Also the chiral corrections of the wave functions start from order mé.
According to this subtraction scheme, the wave function ends up with unity in the chiral limit,
lim Z,=1. (3.39)

m,mg—0

More details will be discussed in Sec. 3.2.2.

We emphasize that our final expressions for the renormalized loop functions does not depend on the
renormalization scale. Such a dependence is completely driven by the scalar tadpole terms I, given
the y-MS framework. From the expressions for the un-renormalized loop functions one finds terms
proportional to mé I, which are not included in (3.36). This is justified because such terms can be
absorbed into the available tadpole terms. The only contributions that require particular attention are
proportional to (M3 — M2 )I,. The latter have been decomposed according to

2 2 2 2
m m M:—M
2 2\T7 2 2 Q Q R H_ 27
(MR —MH)IQ = (MR _MH)(47'5)2 log —}% + —}%mQ In. (3.40)

The first piece involves a chiral logarithm (~ log m,;), which cancels the asymptotic chiral logarithmic at
order mé possessed by the scalar-bubble contribution TQR towards the chiral limit. We will make further
discussions on this issue in Sec.3.2.2. The second piece has a scale dependence which scaling with a
heavy scale M. This part is redundant in the y-MS framework and therefore should be dropped. We can
systematically absorb this contribution into the available counter terms according to the renormalization
scheme (3.31).

In the next subsection, we will provide the expressions for the renormalization of the NLO LECs c;,
which aim to absorb the scalar-tadpole contributions at O(mg) in the bubble loops. The LECs at N3LO,
d;, possess renormalization-scale dependence, such that the full chiral correction up to O(Q*) is renor-
malization scale free. We will also provide the renormalization of d; in the next subsection.

3.1.3 Renormalization of the low energy constants

In the last subsection we have illustrated the forms of the loop corrections under a well defined sub-
traction scheme. We claimed that the scalar-tadpole contribution from the bubble loops proportional
to méI_Q can be absorbed into the Q* tadpole loop contributions by a suitable renormalization of the c;.
Indeed we derive the following

1
c;=Cot 5812» c3 =C3— 185,
~ ~ 1 ~9 1 2 ~ ~ 1~2 1 2
G=C6+ 586+ 5,8 =88~ 158
T I
Cy =Cq— gg}%, t.=0Cs+ Zg}%, (3.41)

We end up with the bubble loop contributions (3.35) and (3.36), where méfQ dropped.
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H ﬁg_}‘ )/ (2My) ﬁEOp /2My)  Zy with loop tree level
D 4.7 MeV -50.2 MeV 1.108 M 1907.4 MeV 1862.7 MeV
D 106.2 MeV -65.5 MeV 1.418 A 191.7 MeV 141.3 MeV
D* 5.0 MeV -113.4 MeV 1.163 o 0.440 0.426
Ds>|< 114.1 MeV -166.1 MeV 1.643 ¢, 0.508 0.469

Table 3.3.: The loop functions (3.35,3.36) are evaluated with the coupling constants g, = g, >~ 0.57 and
the physical isospin averaged meson masses. The large-N, relations (3.45) are assumed.

Renormalization-scale dependence is involved in the O(Q*) tadpole contributions (3.37), which is
readily eliminated by the running behavior of the LECs d’s at order Q* as

2 d o1 1 o

e = T (3.42)
for d;. The coefficients F(gil) are

ch11) :%(4@ + 12¢3 + 3c¢s),

ry) :%(44c1 —52¢5 — 13cs),

r(g) :%(240% — 84cy +240c, + 68¢; + 60c, + 17¢5),

Fci) =2i7(264c0 —132¢; + 264c, + 140c, + 66¢, + 35¢5). (3.43)

The d [ manifest the same behavior. We just read off Fél) out of the corresponding ch,l) by simply replacing

¢; with ¢;.

3.1.4 Numerical estimate on the importance of the bubble-loop corrections

In this section we provide a first numerical estimate on how much does the bubble loop corrections
1'[10Op affect the D-meson masses. We make a comparison with the numerical contribution of the 0(Q?)

(NLO) chiral correction HH % according to (3.9). For the time being, we switch off the O(Q*) (N*LO)

contributions, HZ_X = Hgdmle = 0. The free parameters include the chiral-limit masses M, A, the LECs

Co, ¢ and ¢, ¢; at NLO and gp, &p at NNLO. We assert the heavy-quark symmetry in our estimate for g,.
This constraint leads to g, = gp as we have seen in the last chapter. The value of g, is derived from the
D* — D decay width, which leads to [29]

gp = 8p ~0.57. (3.44)

We estimate the values of the leading order masses M, A and NLO LECs ¢, ¢; and ¢, ¢; from the physical
D-meson masses mp, mp_, my, and m}, . An average within each isospin multiplet is assumed with M;, =
1.8672GeV, M), = 1. 9683GeV and MD* = 2.0086GeV, Mpx = 2.1121GeV. In the estimation of the NLO
LECs, we allow a violation of heavy quark symmetry but assume the large N, limit. Under the large N,
limit, the following relations hold,

Co= 561 s Co==C;. (3.45)
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The fitted parameters are collected in the second last column of Tab. 3.3. In the third column, we show
the size of the bubble-loop contribution l=[}3°p. As a comparison, we list the size of the NLO corrections
HIZ{_X as well. We conclude that the bubble-loop corrections are as important as the NLO corrections
and should not be neglected. We also display the size of the wave-function renormalization factor
Zy in the fourth column. We find that the wave function factor significantly deviates from 1 for the
strange D-mesons. To this end, the wave-function renormalization effects from loops are not negligible
in our flavor SU(3) framework. We also compare with the parameters determined by switching off all
loop effects (shown in the last column of Tab.3.3). We observe that the inclusion of the bubble loop
corrections reasonably changes the values of the low-energy parameters.

3.2 The convergence of chiral expansions on the loop corrections

This section will be dedicated to performing a chiral expansion for the loop corrections. It has been
perceived for a long time that a conventional chiral expansion fails already at physical quark masses, in
particular due to the considerable size of the physical strange quark mass. The convergence property of
the chiral expansion has been extensively studied especially for baryons (readers are referred to Ref. [95]
for a comprehensive review). For the flavor SU(2) baryon chiral effective theories, it was demonstrated
the convergence domain is up to around 300 MeV for the pion mass if a conventional heavy-baryon ex-
pansion scheme is followed [104-106]. This poor convergence results in a bad performance in applying
the expanded chiral series to QCD lattice data, because the masses of Goldstone bosons are in part much
larger than their physical values (e.g. [107,108]). In the realistic world, the smallness of the conver-
gence domain may impede the use of flavor SU(3) chiral effective theories, since kaon and eta are as
heavy as 500 MeV. The analysis of the chiral expansion of the flavor SU(3) baryonic framework shows
poor convergence as well, in the calculation of different baryonic observables [48]. One may expect the
convergence of the chiral series in the open-charm meson sector could be better than baryonic sector
since the mass of D-meson is much heavier than the light baryons. But the existing works disagree with
this expectation. In Ref. [50], a study on the values of decay constants of D mesons from LQCD has
been performed in a flavor SU(3) framework. The chiral expanded ChPT results exhibit a much poorer
performance in fitting the lattice data as compared with the full covariant ChPT results.

One might be content with using the full un-expanded relativistic formalism (see e.g. calculations
[109,110,47,51] for the baryon spectroscopy, [46,111] for the baryon axial currents, [50, 100] for the
open-charm meson decay constants). But the full relativistic chiral effective theories including massive
hadrons suffer from model dependence, which is embodied by the choice of a renormalization scheme.
Different renormalization schemes lead to different higher chiral order contributions. If the chiral series
fails to converge, we must admit that the higher order renormalization-scheme dependence could be
even dominant. Another problem is the uncontrolled scale dependence we have discussed before. If
we adopt the full relativistic formalism, the renormalization-scale dependence will rise at each chiral
order [112]. Unless we provide the full chiral series of the counter terms that compensates the scale
dependence (which is practically not feasible), our result will suffer from an artificial scale dependence.
In the Sec.3.1.3, we removed the higher order u-dependent terms such that the finite counter terms up to
0(Q%) can fully control the renormalization-scale dependence. Such a treatment will be less convincing
if the corresponding u-independent part is kept to all orders. A convergent chiral expansion strategy can
significantly systematize computations based on the flavour SU(3) chiral Lagrangian.

In this section we focus on four different kinds of chiral expansion schemes. Three different assump-
tions are assigned on the largeness of the D-meson mass splittings in comparison with the Goldstone-
boson masses, ending up with the distinct expansion strategies of the loop functions. We will observe
that the three expansions work well within different ranges of Goldstone-boson masses. But all of them
fail to converge uniformly for Goldstone-boson masses ranging from the chiral limit to physical kaon and
eta masses. In the last, we applied a novel chiral expansion scheme developed recently for the chiral
extrapolation of the baryon octet and decuplet masses [52]. We will see that this expansion scheme
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properly works when the Goldstone-boson masses varies from the chiral limit to the size of physical kaon
and eta masses.

3.2.1 The convergence behavior in the heavy-quark mass limit

In this subsection we probe the asymptotic domain where the Goldstone boson is heavier than the mass
splitting between the D-mesons. When the charm quark mass My, is sufficiently heavy, the hyperfine mass
splitting between the 0~ and the 1~ D-mesons becomes sufficiently small such that My —My < m holds,
where H and R are D-mesons with different spins and my, is a Goldstone-boson mass. We introduce the
notation H L R to characterize this case. This result is derived from the heavy-quark effective theory,
which shows that the heavy-meson spin splitting effect is suppressed by the heavy quark mass,

Aqcp

My — Mg ~ (3.46)

M,

Therefore, for a sufficiently large heavy quark mass and a properly large Goldstone-boson mass, the ratio
My — Mg/mq may be counted with

MH - MR
mq

~Q for HLR. (3.47)

For the case when H and R have the same spin, denoted as H || R, the mass difference My — My is derived
from the chiral correction starting from O(Q?) which implies the same counting rule

MH - MR
Lo}

~Q for H|R. (3.48)

To this end, we can get the power counting assumption

My — M, m m My — M,
H R ,_Q " ~Q, H R ~Q2_ (3.49)

At the physical value of the charm quark mass, the typical size of My — My is 200 MeV. Thus the counting
scheme is justified for the heavier Goldstone bosons. For the pion, this counting scheme is not a good ap-
proximation. However, since the bubble-loop contributions gets larger when the Goldstone-boson mass
increases the kaon and eta meson contributions dominate the size of the loop. Therefore this approx-
imation is illustrative in understanding the convergence behavior of a flavor SU(3) chiral corrections.
Accurate to O(Q>), the bubble-loops are readily expanded with

(H)
—loop H (H)
Myero) = Z Z ( ) {aQR+XQR

Q€[8]Re[17]

YR 2 2[ ( My MR_MH)Z] 6
M 1— — 0
T lom2 VM 2 My mg +0(Q),

G(H) G(H)
U2 3 3 (%) el 3 5 (%) (et

QE[B]RE[l 8]Re[0—]

YR

m My —M
I Mm [1_(2MQH_ i H) ]}+0(Q6),
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H | 0%/eMy)  02%7°/eMy)  02%YeMy) 0% °/(2My)
D -50.2 MeV -38.7 MeV -29.4 MeV 22.8 MeV
D, -65.5 MeV -93.2 MeV 27.3 MeV 2.4 MeV
D* -113.4 MeV -135.1 MeV 19.0 MeV 6.3 MeV
DS* -166.1 MeV -308.3 MeV 99.8 MeV 61.8 MeV

Table 3.4.: The decomposition of the bubbles according to (3.49). The parameters involved are given by

Tab. 3.3.
2 2 2 2 2
=3 (T oM M) _ypp T (T MMy )
AR TH16m2\ M2 My H32m2\ M2 My My
3 2
m 3nf m M,—M
+MH—Q[—7T+—( @ _ TR H) ] (3.50)
16 2 2 \2My mq

The odd-order terms in XgR originate from the non-regular part of the scalar bubble I, (see the ap-
pendix). We can read off the 3rd, 4th and 5th order contributions from the above expression. Numerical
results are shown in Table 3.4. Here we use our first estimate for the low-energy parameters c,; and
Co as displayed in the second last column of Tab.3.3. The normalization factor of 2My is applied in
order to make the dimension of the loop to be [m]. While the summation up to the 5th order correction
qualitatively agree with the full result, the convergence is not well controlled owing to the smallness of
the pion mass. This fact is manifest especially in the case of the D meson, where the bubble with an
intermediate pion state plays an important role.

By construction, the counting rule (3.49) fails in the chiral regime where the light-quark masses ap-
proach zero. This is illustrated by Fig.3.2, where we plot the bubble-loop II;; as a function of the
Goldstone-boson masses in the flavor limit, m, = my = m,. The D-meson masses M, = M| and
Mp« = M)y are obtained by self-consistently solving the set of equations (3.9). The light-quark masses
are determined according to the GOR relation. The parameters displayed in the second last column
of Tab. 3.3 are again used. The 3rd, 4th and 5th order corrections are plotted in dashed, dotted and
dash-dotted lines, in comparison with the full result plotted in the solid black line. We also provided
the 6th order correction as a reference, plotted in a thin dash-dotted line. We notice that the 5th order
approximation agrees with the full term quite well when m_ gets larger than about 300 MeV. Especially,
in the case of the D-meson [Fig. 3.2(a)], there is a bending effect of the full bubble at ~ 550 MeV.
This behavior is well recovered by the large mutual cancellation effect between the (M — My )? and the
(Mg — M) terms in 5th order correction. We can observe that these terms arise from the expansion of
the non-regular part of the bubble (3.50). On the contrary, there is no convergence, when approximating
the chiral limit, even when the higher order correction are considered. We observe from Fig. 3.2 that the
6th order correction shows a logarithmic divergence in the extreme chiral regime where the Goldstone-
boson mass is significantly smaller than the heavy-meson mass splitting, characterized by A ~ 200 MeV.
This logarithm is absent in the full TQR, it is unavoidable in the the given expansion scheme.

3.2.2 The convergence behavior in the light-quark mass limit

In the last subsection, we observed that the expansion according to the counting scheme My —My/mg ~
Q respects the asymptotic domain well where the heavy-meson mass splitting is significantly smaller than
the Goldstone boson mass. This is a good approximation in the limit when the heavy quark mass tends to
infinity. In the case of physical charm quark mass, this is still a good approximation for the heavier Gold-
stone bosons kaon and eta. But this expansion doesn’t fit for the loops involving the pion, because the
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Figure 3.2.: The decomposed bubble loops e according to (3.49), as functions of the light quark

D/D*’
masses.

pion mass locates in the extreme chiral regime where the Goldstone-boson mass is significantly smaller
than the characteristic D-meson mass-splitting A ~ 200 MeV. In this regime, a strict chiral expansion is a
good approximation. The strict chiral expansion is performed according to the counting scheme
m, A 0
2 Lq, =~ Q. 3.51
A Q v; Q (3.51)
The chiral-limit D meson mass M serves as hard scale, which we assume to be of similar size as the chiral
symmetry breaking scale, A,, M ~ A, . The physical masses of the D-mesons are expanded according to
the chiral corrections,
2 3 2 3
M2 o =M +T0 + 10 +0(Q%), M2 =M +AP+1P +115 +0(Q%), (3.52)
where Hg) is the n-th order chiral correction of the D-meson mass. In turn the bubble loops are decom-
posed as

2
Moo ® =0 '}3‘6";13]— Z > ( ) nmd (M +A), (3.53)

Qe[8]Re[1
at third order, and

2

100P— ( (2) (2) (2) (3) /(2 +(2) 4) (2 +(2)

Mo = ZZ(Sﬂ:f){de—i_Y mH +rg g g~ +ryy M I
Qe[8]Re[1-]

2
M "a
+Y(5) 1-[(2) 1-[(2) + — X 4 [(az Y2—Qq Y4) + (az Y3 =& YS) log m]} ’

2

loop—4 02 1) L o) 2 @) ) @ @ 4 5@ @ @

e = ZZ(SM){ m2 1Y + 7P m2 0 + 7P nP n + 7 0l 0
Q€[8]Re[07]

2
+ Y&s) 1'[;2) Hg) + N m4Q [(az Y2— 0 Y4) (a2 T3—ay YS) log _]}
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Y (Snf) 2 (- 1)

Qe[8]Re[1-]

m2

—%(2 mé+31‘[g)—3ﬂg))mé logm}, (3.54)
at fourth order. We organize the prefactor of each term in terms of some dimensionless coefficients a,, v,
and a,, 7, They depend on the ratio A/M only. While the coefficients v,, ¥,, characterize the chiral
expansion of the scalar bubble functions, the a,, &, result from a chiral expansion of the coefficients
in front of the scalar loop functions. All such coefficients are provided in Appendix E. The fifth order
contribution for the vector D-mesons read as

(H) \ 2
G 1 mm
-loop— QR Q (2) 2)
— 3m +2m? II;;”—31II
H€[1 Z Z (STEf) 12M+A{ ( R)

Q€<[8]Re[17]

+3 (@ —nff))z} +... (3.55)

where the dots stand for additional terms constructed from (3.54) by the replacement 11 — 114, The
fiftth order terms for the pseudo-scalar D-mesons are completely derived from (3.54) with the replace-
ment 11 — 1),

The strict expanded forms are free from order mg and mé chiral logarithms of the form ~ log m, or

~ m(z2 log mg,. The potential O(mg) chiral logarithm from the scalar-bubble (see (3.34)) is compensated

by the chiral logarithm from the strict chiral expansion of the last term in (3.34)2. A further cancellation
mechanism prevents the contribution of a possible mé logm, chiral logarithm. The contribution from
the scalar tadpole contribution is proportional to a, (or a,). It is compensated by a corresponding term
from the chiral expansion of the scalar-bubble, proportional to a;y5 (or &;73) (see also Appendix E).
Our claim follows from
1 _ 1. .

5 %4 = 33, 5% = ~dYs, (3.56)

In the off-diagonal case, the convergence of the strict chiral expansion is seriously constrained by a
threshold condition. For H € [0™] and R € [17 ], as an example, the origin of the expansion is My = M,
My = M+A and m, = 0. The convergence domain is restricted according to the location of the threshold
condition mg < |[My—Mg|. If we neglect the O(mé) corrections for the D-meson masses, the convergence
radius is characterized by the hyperfine-splitting between the D-mesons A,

my S A. (3.57)

Only within the strict chiral regime, where the Goldstone-boson masses are much smaller than the char-
acteristic hyperfine-splitting scale A, such an expansion is applicable.

This highly restricted convergence behavior is depicted by plotting the bubble-loops ITj; as functions
of the Goldstone-boson masses in the flavor limit, m, = my = m,, as we did in the last section. The
D-meson masses are, again, obtained according to the self-consistent approach, using the same setup of
the parameters as the plots of the last section. The plots have been given in Fig. 3.3. The gray vertical
line indicates the location of A. We can observe that this expansion fails when the pion mass reaches A.
This expansion is clearly not a good approximation for a flavor SU(3) description of the chiral corrections
for the D-meson masses: the mass splitting scale A is as small as some of the Goldstone-boson masses.

2 This correlation was broken in the expansion of the last section. In that case the O(mg) chiral logarithm from the last

term in (3.34) can only be obtained upon a summation of all odd-power components. The breaking of this correlation
leads to the logarithmic divergence in the chiral limit from the 6th order correction according to the expansion of the
last section.
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Figure 3.3.: The decomposed bubble loops HD/D*, according to (3.51), as functions of the light quark
masses.

3.2.3 The convergence behavior in a small-scale expansion

In the last subsection we have seen that the convergence of a strict chiral expansion assuming A/M ~ Q°
is highly limited to the extreme chiral regime where the Goldstone-boson masses are much smaller than
the D-meson hyperfine splitting A. An approach to improve the convergence behavior is to consider the
hyperfine splitting as a soft scale with A ~ m,. According to this we will use the following counting
rules

A~mg~Q, Ng=4/A2—mE~Q. (3.58)

This expansion scheme is referred to as a small-scale expansion (SSE) scheme [113-116]. The full
bubble loops are accordingly expanded as

G
) > > ( ) ! { I
He[o 17 2 Q
Q€[8]Re[17] 167 2
2 2 2
m m m
Q 2 2 Q 2 Q
+T(—3A +4m} — 4Tl + 411z ) — T(2mQ + 311, — 31Tz ) log —

[(A2_§)+%(A2 HH+HR—m7é)](2Alog%—A10g;—%)
—M(Aé-ﬁ-%(Az HH+HR))AQ(IOg(A+AQ)_log(A_AQ))}
i = 2 [Z]( (H)) 4 A T 1)
TRIReET
—mTZ(zm +3HH—3HR)logm—2—ﬂ:Mm (1+]©)}
=

2 2
m m

Q 2 Q

_T(ZmQ + 3HH — BHR) log m
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H | 0%/eMy)  02%7°/eMy)  02%YeMy) 0% °/(2My)
D -50.2 MeV -67.7 MeV 15.0 MeV -8.9 MeV
D, -65.6 MeV -152.8 MeV 27.8 MeV 26.6 MeV
D* -113.4 MeV -111.7 MeV -57.1 MeV 18.6 MeV
DS* -166.1 MeV -252.0 MeV 84.3 MeV -69.5 MeV

Table 3.5.: The decomposition of the bubbles according to (3.58). The parameters involved are given by
Tab. 3.3.

%
o
2 o} NN
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2 — Ful %
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m, [GeV] m, [GeV]
(@) (b)
Figure 3.4.: The decomposed bubble loops H?‘;};*, according to (3.58), as functions of the light quark
masses.
2 2 2
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_ 2__Q\_ 2 (A2 __Q e _Q
M[(AQ > ) ZM(AQ 31y + 31Ty — )](2Alog - AlogMz)
M| A2 A(AZ 310, +310g) |81 A—NAy)—1 A+4q))
+ Q oy Lo 2t TSR] 1B og(—A—Ag)—log(—A+Ag))¢,

(3.59)

up to O(Q*). The fifth order correction is listed in Appendix E.

The numerical results up to the fifth order corrections are listed in Table 3.2.3. The convergence
behavior is not as good as one might have expected. We further plot the expanded bubble loops according
to the variable m, = my = m, in the flavor limit, as we did in the previous two expansions. The plots
are shown in Fig. 3.4. We observe that the convergence is improved when m, is larger than A. But
the expansion still manifests a poor convergence behavior when the Goldstone-boson mass is larger
than about 300 MeV. The failure of the convergence is especially significant for the D meson case at
around m, ~ 550MeV, where the full curve bends up. We recall that the expansion according to the
first power-counting scenario (3.49) significantly recovers this bend at the 5th order, where a large
cancellation between (Mg — M) component and (Mg — My)? component from the non-regular part of
the scalar-bubble took place. It is obvious that this expansion spoils the correlations between the Mz—My
components in the non-regular part.

46



3.2.4 A novel chiral-expansion pattern

Up to now we have investigated three different kinds of chiral expansion approaches on the bubble loop
corrections. The first expansion allows a small heavy-meson mass-splitting My — Mg/m, ~ Q, which
is justified at large Goldstone-boson masses m, ~ my. On the contrary, the second expansion, a strict
chiral expansion regarding m,/A ~ Q, works only when m,, is much smaller than the characteristic
mass splitting A. As a remedy, the third approach treats A ~ m, ~ Q, and was expected to extend the
convergence domain from the extreme chiral regime towards larger quark masses. But as we illustrated,
this approach only qualitatively reproduce the trend of the full-loop behavior when the Goldstone-boson
mass increases. Especially when the Goldstone-boson meson reaches the physical kaon mass, there is no
convergence pattern observed.

In this section we aim to bridge the different expansion approaches, which work in different regimes
of Goldstone-boson masses, into a uniformly convergent framework. It is an adaptation of the expansion
scheme developed recently for the chiral extrapolation of the baryon octet and decuplet masses [52].
This scheme is supposed to interpolate the two extreme counting rules (3.49) and (3.51) into a novel
counting rule

MR_MH MR_MH

~Q, —R_—H 2 for HJ|R,
@ e ||
M,—M M,—M, £+ A
—R_TH Q0 R H H 2 for H1R
mq My
1
Ap = +/(My —Mg)2—m?2 ~ with Ay =AMy, lim —, 3.60
Q \/( 1 —Mg) 2 ~Q H H o M, (3.60)

The driving idea behind this counting rule (3.60) is to formulate the expansion coefficients in terms of
physical masses. A lot of comments have been made on the poor convergence of conventional chiral
expansions [94, 54,95, 117]. A significant source of such an unpleasant behavior is assigned to the
butchering of the analytic structure as implied by the micro causality constraint of local quantum field
theories. As a typical example of how unphysical analytic properties affect the convergence domain of a
chiral expansion, we have already seen that the convergence domain of a strict chiral expansion is limited
by an inappropriate treatment of a close-by threshold branch point (see Eq.(3.57), in Section 3.2.2).
Keeping the physical masses in the expansion is of crucial importance in preserving critical analytic
properties.

The threshold branch points constitute the most important analytic property of the bubble loop di-
agram. The threshold behavior of the scalar loop function is driven by the phase-space factor py as
introduced in (3.34). The phase space factor vanishes at MI?I = (Mg £ mg)*. We rewrite pgp into

1
Par(M;) = 534 V(M + M2 —m3, (3.61)

where A, is defined according to (3.60). The factor A, vanishes at (Mg — My)* = m? only, resulting in
the branch point of the bubble loop at the normal threshold My = My + m,. Any expansion violating
this correlation will fail to converge when the branch point is crossed by a variation of m,. The second
zero point at (Mg + My)* —m}, in (3.61) is far from being reached by any physical values of my,. To this
end, for the off-diagonal loops, we keep the exact structure A, in our novel expansion. For the diagonal
loops, it always holds My — My < my,. In turn it would be justified to further expand A, in this case.
For an illustration of our expansion approach, it is convenient to express the loops in terms of the
following dimensionless quantities [52]
My L)

d:——]_’ X

=—. 3.62
M,, M, , (3.62)
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with the physical masses My, Mp and m,. The counting scheme (3.60) can be expressed in terms of d
and x as

d.q x~Q, d~Q?, for  H|R,
X
d
2.Q° x~Q, d—dy ~Q? for HLR,
X
=vVd2—x2~Q, with  dy= lim 0d. (3.63)
myds—

The scalar bubble I is readily expanded accordingly

“4nlly = i+ A0 06D

&)

2(1 + d) 2k Py

—d(2+d) log Z pET

() 5(‘]1() X2
2k 2 +1
+d(2+d)log +Z pE=t 8T IR (3.64)
where,
O(d) = X4 (log(d + x4) —log(d —xd)) s
2 4

IO P . SR S LY (3.65)

2 22+d) 16(2+d)3

The 5§d)’s up to i = 5 can be read off from the definition of §; in Appendix E by performing the sub-
stitution M — 1, A — d. The expression (3.64) is valid for all the d > 0, d < 0 and d = 0. The
expansion (3.64) is analytic at d = 0, no pole structure or branch point shows up at this point. In (3.64)
no assumption on the size of d was made yet. Therefore the full realization of the counting rules (3.63)

may require further expansions. All coefficients 6(d) are analytic functions in d with branch points at

@ 50 g2k,

The scalar bubble is expanded along three structures, the threshold-respecting part (~ fo( )), the chiral
logarithm part (the third line in Eq.(3.64)) and the polynomial part (the second line in Eq.(3.64)).
According to Ref. [52], there is an intricate cancellation mechanism between these three terms when x
departs from zero. The general expansion approach is nicely illustrated by the particluar case d = 0 (see
Ref. [52]). In the limit d = 0, which is reached by the condition My = My, the function fo(d) is simplified
to

d =—1and d =—2 only. In the limit d — 0 they all approach a finite value with 6,

FU=0(x2) = —v/x2. (3.66)

The full expansion (3.64) is reduced to

(47'5)2[_((2i:0) =— (1 Ll Ly O(x6)) Vx?

8 128
(1—ix —Lx +O(x6))x —x2logx. (3.67)
12° 7 120 8 '

It is observed in [52], that there is a significant cancellation between the leading order contribution
fo(d)(xz), —mn+v/x2, and the leading order polynomial contribution x? as well as the chiral logarithm
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x2log x2. Therefore we group together the —m v/x2 and the terms ~ x?2 to form the leading order term
7(d=0)
for Iog

(47r)21_éi=0) [O(Q)] =— v/ x2 + x2— x2 log x . (3.68)

The n-th order contribution of i((;z{:o) is determined by picking up the n-th term from the two brackets

in front of the two terms 7v/x2 and x2 in (3.67). It was proven in Ref. [52] that such an expansion
converges rapidly for |x| < 2 + d, a surprisingly large convergence domain.

In the off-diagonal case, a significantly sized d may be encountered. In this case, another scale is
necessarily involved, which is the chiral-limit mass difference A. The chiral expansion around this scale
has been arranged according to the counting scheme d —d, ~ Q? from Eq.(3.63). Note that strict
consistency with the chiral domain at x < d, requires to consider d, ~ Q°. In the off-diagonal case, we
meet two terms that are proportional to the mass difference d, which are the first terms in the second
and third line of Eq.(3.64) respectively. We follow the counting rule (3.63) to consider them as O(Q). If
we replaced those linear terms with d — d, at leading order we would obtain contributions of order Q°
at x < d,. Moreover the chiral logarithm terms proportional to d log x would not be canceled properly
in the chiral regime. This is seen from the following expansion

2 2 2
@, _dlog <+ x—(log% - 1) +0(x"). (3.69)

By substituting the above expression into (3.64), a full cancellation between the chiral logarithm pro-
portional to d has been implemented when x approaches the chiral limit.

We are prepared to recall the leading order contributions of the full scalar-bubble at d # 0. It is
emphasized that the full fo(d) has to be kept in order not to butcher the critical analytic property of
the loop function. Consistency with the chiral domain requires the presence of some linear terms in d.
Altogether we find,

(do)

i d 2(1+d,) 6
(4n)2IQR[O(Q)]=y§+(1+—°) D(x2)— d(2+d,) log (A+dy) %~ »
2 2+d, do
(do) )
+d(2+dy) log —— + ——x2log (3.70)
0 1+d dy (1+d)?° :

The order Q2 contribution is the O(d —d,) correction of the leading order term. The O(Q®) term consists
of the O[(d — d,)?] correction of the leading order term, and the once x? power higher correction of the
leading order term. According to [52], an My dependence in the logarithm has been kept, because this
is the natural structure generated in loop diagrams.

3.2.4.1 The third order chiral correction of the one-loop self energy

Having reviewed the chiral expansion scheme for the scalar bubble, we are ready to perform the chiral
expansion for the full bubble functions as they are needed in the D meson polarization tensors. We derive
the order Q® and Q* chiral corrections in this subsection. The O(Q”) terms are presented in Appendix E.

For the diagonal-diagram bubble-loop contribution, when H and R come from the same spin multiplet,
the O(Q?) contribution reads,

G(H) 21 mZ m
G- _ RN 2121 10g—2)— 2 _ (My— M;;)?
nes =My, Y. (47'cf) 6{MH (1-10g MR) an}(mQ (Mg — My )?), (3.71)

Qe[8],Re[17]
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Note that such a diagonal contribution appears for the [1~] meson loop corrections only. The correlation
amongst the m, and mé in the scalar bubble as shown in Eq.(3.68) has been respected. We keep the
factor mé — (Mg —Mp)? in front of the LO scalar bubble contribution derived from the phase space factor
d?—x2. The overall scale My, which is the typical mass scale of the chiral corrections of a charmed-meson
polarization tensor, is pulled out.

So far with the diagonal contributions, we consider the O(Q?) off-diagonal bubble contributions to
both the pseudo-scalar and vector charmed-meson masses. The off-diagonal contribution accounts for
the full O(Q?®) chiral correction of the pseudo-scalar meson self-energy,

2
@ _ I o) % 2 2
ne o= > (WGQR ) 7{57 AMm2 + 86 A*M (Mg — My — Ay)
Qel8]Re[17]
+ MH[ Aé(YlAH —6,(Mg— MH))
oM + A oN. Mg

m
2 Q Q
2M ((MR —My)(85- T)IOg M2

+ A3 [ 1og (Mg — My, + Ag) —log (Mg — My, — AQ)D

e 28503+ G tog o 572
AH 2 Q 3 Q MI% P .

where the coefficients y;, 6; and «a; are provided in Appendix E.
The phase-space factor Aé in front of the scalar bubble is kept. In the extreme chiral regime, the chiral

logarithms at powers mg and mé must vanish, as a result of chiral Ward identities. The cancellation at

power mOQ is implemented as a consequence of the scalar-bubble expansion (3.68). In contrast, a possible

chiral logarithm at power m(z2 is absent owing to an interplay of the scalar bubble and the scalar tadpole
using the identity (3.56). The expansion of the scalar-tadpole contribution is organized to preserve this
cancellation. We point at the importance the d4 term in (3.72). It ensures that wave-function factor
vanishes in the chiral limit

lim

oM 12 =0. (3.73)
m,mg—

We note that this is a property that is also satisfied by the full loop expression.

According to the same approach, the off-diagonal contribution of the O(Q®) charmed vector-meson
self-energy chiral correction is well determined. We collect the full O(Q®) chiral correction for the
charmed vector-meson self-energy as

G\
(3) 3—x 1)z 2 _ & A2
ne o =m* o+ > (4nf) {57AMmQ—56A M (Mg — My + Ay)
Qe<[8],Re[0]

M [ L. .
+ My M—_I_A[AQ(YIAH —6,(My _MR))

2
+ w((MH_MR)(Aé——é)] 0g mQ

2(M + A)? 2 M2
+Ag[1og(MR—MH—AQ)—1o (Mg +AQ)D
mg

+—( 52A +53m log— ]}, (3.74)
AH
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The coefficients &;, 5, and @&, are provided in Appendix E. We recall Eq.(3.71) for the diagonal con-
tribution Hz_x . The chiral expanded form at this order provides us a subtraction-scheme independent
expectation of the O(Q?) covariant bubble-loop chiral correction [52].

We proceed and provide the order Q* corrections. The explicit O(Q*) contribution from an off-diagonal
bubble loop comes from the (d — d,) correction of the O(Q?®) contribution, noticing (d — dy) ~ Q. In
comparison, we assert the power counting for the diagonal case with d ~ Q2. Therefore, the O(Q*)
diagonal bubble-loop contribution mainly consists of d x? terms. These terms experienced a strong
cancellation with the non-analytical contribution (~ 7 d x24/x). We incorporate this cancellation at this
order [52].

We collect O(Q*) bubble-loop chiral corrections as

loop—4 Ggl? (1 My dAY,
0% = E (—) {——a MA2§ +—[ AZ—2 +A2/5
He[0~] 1 6 a, 4
e[S IRal1] 4nf 4 4 JA

2 2

My by ( Mo My

—Az —H My, — M) A2 — —)log —

Bs Ay (M H)( QT ) 0g M2

+A3[log( — My + Ag) —log (Mg — My — AQ)D

m2 m2
+A2( 1 AZ + B3m log—)]}(MR—MH—AH), (3.75)
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- G M 3 m}
loop—4 _ (ﬂ) _H{(__“_ 2 )( VR TRY
Oy = E: +1+ log m? — (Mg — My)
He[1™] 2

Re[17]

1
& Anf 12 12 JA
Re[07]
a—My By maN . Mo
2 2
+B; AQ Ay Ay ((MH MR)( B _)log_lg
+A3[log( — My —Aq) —log (Mg — My +AQ)]
m2 2
R

The requirement of the Vanishing O(mg) wave-function correction leads to the &4 and & terms, such
that

lim me* ™ =0. (3.77)

m,mg—0 3M2

We notice they completely cancel out the counter part in O(Q?) corrections that added by the requirement
of the vanishing O(mg) wave-function correction.

3.2.4.2 The convergence behavior of the expansion

In this subsection we probe the numerical implications of the novel expansion we worked out in this
chapter. Following the same approach as we did in the previous expansions, the numerical estimate of
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H | 0g®/@2My)  05°°%/@eMy)  057%/@eMy)  057°/(2My)
D -50.2 MeV -48.5 MeV -2.8 MeV 1.1 MeV
D, -65.6 MeV -88.3 MeV 20.1 MeV 2.9 MeV
D* -113.4 MeV -99.5 MeV -17.1 MeV 3.1 MeV
Ds* -166.1 MeV -197.5 MeV 26.3 MeV 6.6 MeV

Table 3.6.: The decomposition of the bubbles according to (3.60). The parameters involved are given by
Tab. 3.3.

Ip/(2Mp) [GeV]

0 02 04 0.6 0 02 04 0.6
m, [GeV] m, [GeV]
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loop

Figure 3.5.: The decomposed bubble loops HD/D*,

according to (3.60), as functions of the light quark
masses.

the expanded contributions are listed in Tab. 3.6. The evaluation is taken at physical values of D-meson
masses. Again, we use our first estimate for the low-energy parameters ¢, ; and ¢, ; as displayed in the
second last column of Tab. 3.3. We observe that there is a good convergence behavior for all four open-
charm mesons. The O(Q®) corrections are always as small as a few MeV. The total error of the expansion
up to O(Q>) correction is well controlled within the MeV level, about 1%.

We further demonstrate the convergence behavior by plotting the loops ITj; as functions of the flavor-
limit masses m, = my = m,. The self-consistent approach has been applied to determine Mp = M,
and Mp. = Mp+ as we did before. The plots are shown in Fig.3.5. The convergence of the expansion
is manifest uniformly with a Goldstone-boson mass varying from the chiral limit to as large as 600 MeV.
The improvement is especially significant in the case of D meson [Fig.3.5(a)]. As we discussed in the
previous sections, there is a large correlation amongst terms in the non-analytic structure, resulting in
a bending at ~ 550 MeV. We observe form Fig.3.5(a) that this effect has been well described with the
inclusion of the O(Q*) correction.

From the demonstrations above, we conclude that our novel expansion approach is indeed a systematic
convergent approach for the D-mesons. And up to O(Q*), the order we are considering, the decompo-
sition has a well controlled error at the level of a few MeV. A full control of the accuracy at the scale
of few MeV is feasible upon a complete inclusion of Q> chiral corrections. This would involve a class of
two-loop diagrams.
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3.3 Chiral Extrapolation

In the last sections, we scrutinized chiral mass formula for the pseudoscalar and vector D-mesons up to
chiral order Q*. The results depend on the poorly known LECs ¢; and d; of the chiral Lagrangian, which
we will attempt to determine from lattice QCD simulations of the D meson masses (for a recent review,
see [118]). The lattice QCD approach has been intensively applied in the study of D-meson masses
so that there exits a significant data set for D-meson masses at various (unphysical) Goldstone-boson
masses. Once we determined the LECs in our mass formula, the D-meson masses can be computed at
any values for the up, down and strange quark masses, sufficiently small as to justify the application
of the chiral extrapolation. In this section, we will fit the LECs to lattice data. We first make a review
regarding to the current status of lattice simulations of the D-meson masses, and provide the lattice data
considered in our fits.

3.3.1 Lattice simulations for open-charm meson masses

Since 2007, the European Twisted Mass collaboration (ETMC) generated lattice configurations based on
twisted-mass formalism [119-122]. The early configurations involved only u, d sea quarks Ny = 2).
Recently, an improvement of the configurations have been made including both s and ¢ sea quarks [123-
125]. Based on these configurations, Kalinowski et.al. provided the up-to-date most comprehensive
simulation for all the 0~ and 1~ D-meson masses [40, 126].

There are works providing D-meson masses based on FNAL/MILC AsqTad configurations as well.
These configurations were generated by Fermilab and MILC collaborations [127]. The u, d and s sea
quarks have been implemented according to AsqTad formalism, which is an improved staggered-fermion
formalism [128]. HPQCD collaboration have applied the FNAL/MILC AsqTad configurations for exten-
sive studies of open-charm physics (e.g. Refs. [35,129,130]). Evaluations of D-meson masses can be
found from some of the works [131-133, 130]. Full relativistic description of the valence charm quark
has been implemented in these works, in terms of highly improved staggered-quark formalism [134].
The FNAL/MILC AsqTad configurations have also been adopted by LHP collaboration in [135]. This
work entails valence charm quark using Fermilab approach to study the DK scattering process. Values of
mp,p, are provide in this work.

Besides the works mentioned above, there are more works on open-charm meson masses. In a work
by Mohler et.al. [41,37], simulation of 0~ and 1~ D-meson masses have been performed using PACS-CS
configurations [136]. The configurations contain Ny = 2 + 1 dynamical quarks with improved Wilson
fermion formalism. The valence charm quark was implemented according to Fermilab approach [137,
138].

In this thesis we will mainly focus on analyzing the data given by ETMC and PACS-CS [40,41]. In the
rest of this subsection, we make a detailed discussion on processing the raw data from these two works.

3.3.1.1 The lattice data from ETMC

In this work, we employ the ETMC results provided by M. Kalinowski and M. Wagner, the authors of
Ref. [40], as a main resource of data in the fitting. Details of the involved ensembles are listed in
Tables 3.7,3.8, and the corresponding D-meson masses are in TablesE1,E2 in Appendix F. For each
ensemble, the D-meson masses are computed at two different values of the charm valence-quark mass
u.. Two different discretization modes have been applied according to the twisted-mass action. For
each ensemble at a given u., two different sets of the D-meson masses have been computed according
to two different discretization schemes, labeled with (£, F) and (%, £). We take the center value of the
masses from the results according to (%, F) discretization. The difference between the (£, ¥) and (£, %)
results measures the discretization error of the computation. We assign such difference, averaged over
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am, amy al[fm] NS xNp au, discr. aM, aM; gy

0.2772 (£,F) 1.3869(1) 1.4649(3)
0.2270 (£,F) 1.2241(2) 1.3042(4)
0.2772 (&,+) 1.4180(3) 1.4569(3)
0.2270 (&,4) 1.2522(2) 1.2973(3)
0.2768 (&,F) 1.3859(1) 1.4636(3)
0.2389 (+£,F) 1.2642(1) 1.3430(3)
0.2768 (+,+) 1.4171(1) 1.4556(2)
0.2389 (&,+) 1.2929(2) 1.3360(3)
0.2768 (&,F) 1.3863(2) 1.4645(4)
0.2389 (+,F) 1.2645(2) 1.3442(5)
0.2768 (£,£) 1.4178(3) 1.4564(3)
0.2389 (#,+) 1.2936(3) 1.3370(4)
0.2929 (£,F) 1.4273(2) 1.5069(4)
0.2299 (&,F) 1.2353(2) 1.3172(5)
0.2929 (#£,+£) 1.4600(2) 1.4981(3)
0.2299 (&,4) 1.2646(2) 1.3103(4)

0.1240(4) 0.2512(3) 0.0885 323 x 64

0.1412(3) 0.2569(3) 0.0885 323 x 64

0.1440(6) 0.2589(4) 0.0885 243 x 48

0.1988(3) 0.2764(3) 0.0885 24> x 48

Table 3.7.: Ensembles involved in ETMC results, provided by the authors of Ref. [40]. The results corre-
spond to 3 = 1