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Chapter 1

Introduction

This thesis is comprised of three independent essays. One essay is in the field of macroe-
conomics and the other two are in time-series econometrics. The first essay, “Productivity
and Business Investment over the Business Cycle”, is co-authored with my co-supervisor
Hashmat Khan. This essay documents a new stylized fact: the correlation between labour
productivity and real business investment in the U.S. data switching from 0.54 to −0.1 in
1990. With the assistance of a bivariate VAR, we find that the response of investment to
identified technology shocks has changed signs from positive to negative across two sub-
periods: ranging from the time of the post-WWII era to the end of 1980s and from 1990 on-
wards, whereas the response to non-technology shocks has remained relatively unchanged.
Also, the volatility of technology shocks declined less relative to the non-technology shocks.
This raises the question of whether relatively more volatile technology shocks and the neg-
ative response of investment can together account for the decreased correlation. To answer
this question, we consider a canonical DSGE model and simulate data under a variety of
assumptions about the parameters representing structural features and volatility of shocks.

The second and third essays are in time series econometrics and solely authored by
myself. The second essay, however, focuses on the impact of ignoring structural breaks in
the conditional volatility parameters on time-varying volatility parameters. The focal point
of the third essay is on empirical relevance of structural breaks in time-varying volatility
models and the forecasting gains of accommodating structural breaks in the unconditional
variance.

There are several ways in modeling time-varying volatility. One way is to use the
autoregressive conditional heteroskedasticity (ARCH)/generalized ARCH (GARCH) class
first introduced by Engle (1982) and Bollerslev (1986). One prominent model is Bollerslev’s
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(1986) GARCH model in which the conditional volatility is updated by its own residuals
and its lags. This class of models is popular amongst practitioners in finance because
they are able to capture stylized facts about asset returns such as fat tails and volatility
clustering (Engle and Patton, 2001; Zivot, 2009) and require maximum likelihood methods
for estimation. They also perform well in forecasting volatility. For example, Hansen and
Lunde (2005) find that it is difficult to beat a simple GARCH(1,1) model in forecasting
exchange rate volatility. Another way of modeling time-varying volatility is to use the
class of stochastic volatility (SV) models including Taylor’s (1986) autoregressive stochastic
volatility (ARSV) model. With SV models, the conditional volatility is updated only by its
own lags and increasingly used in macroeconomic modeling (i.e. Justiniano and Primiceri,
2010). Fernandez-Villaverde and Rubio-Ramirez (2010) claim that the stochastic volatility
model fits better than the GARCH model and is easier to incorporate into DSGE models.

However, Creal et al. (2013) recently introduced a new class of models called the gener-
alized autoregressive score (GAS) models. With the GAS volatility framework, the condi-
tional variance is updated by the scaled score of the model’s density function instead of the
squared residuals. According to Creal et al. (2013), GAS models are advantageous to use
because updating the conditional variance using the score of the log-density instead of the
second moments can improve a model’s fit to data. They are also found to be less sensitive
to other forms of misspecification such as outliers. As mentioned by Maddala and Kim
(1998), structural breaks are considered to be one form of outliers. This raises the question
about whether GAS volatility models are less sensitive to parameter non-constancy.

This issue of ignoring structural breaks in the volatility parameters is important because
neglecting breaks can cause the conditional variance to exhibit unit root behaviour in
which the unconditional variance is undefined, implying that any shock to the variance
will not gradually decline (Lamoureux and Lastrapes, 1990). The impact of ignoring
parameter non-constancy is found in GARCH literature (see Lamoureux and Lastrapes,
1990; Hillebrand, 2005) and in SV literature (Psaradakis and Tzavalis, 1999; Krämer and
Messow, 2012) in which the estimated persistence parameter overestimates its true value
and approaches one. However, it has never been addressed in GAS literature until now.
The second essay uses a simple Monte-Carlo simulation study to examine the impact of
neglecting parameter non-constancy on the estimated persistence parameter of several GAS
and non-GAS models of volatility. Five different volatility models are examined. Of these
models, three –the GARCH(1,1), t-GAS(1,1), and Beta-t-EGARCH(1,1) models – are GAS
models, while the other two – the t-GARCH(1,1) and EGARCH(1,1) models – are not.
Following Hillebrand (2005) who studied only the GARCH model, this essay examines
the extent of how biased the estimated persistence parameter are by assessing impact of
ignoring breaks on the mean value of the estimated persistence parameter. The impact of
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neglecting parameter non-constancy on the empirical sampling distributions and coverage
probabilities for the estimated persistence parameters are also studied in this essay. For
the latter, studying the effect on the coverage probabilities is important because a decrease
in coverage probabilities is associated with an increase in Type I error. This study has
implications for forecasting. If the size of an ignored break in parameters is small, then
there may not be any gains in using forecast methods that accommodate breaks.

Empirical evidence suggests that structural breaks are present in data on macro-
financial variables such as oil prices and exchange rates. The potentially serious conse-
quences of ignoring a break in GARCH parameters motivated Rapach and Strauss (2008)
and Arouri et al. (2012) to study the empirical relevance of structural breaks in the context
of GARCH models. However, the literature does not address the empirical relevance of
structural breaks in the context of GAS models.

The third and final essay contributes to this literature by extending Rapach and Strauss
(2008) to include the t-GAS model and by comparing its performance to that of two
non-GAS models, the t-GARCH and SV models. The empirical relevance of structural
breaks in the models of volatility is assessed using a formal test by Dufour and Torres
(1998) to determine how much the estimated parameters change over sub-periods. The
in-sample performance of all the models is analyzed using both the weekly USD trade-
weighted index between January 1973 and October 2016 and spot oil prices based on West
Texas Intermediate between January 1986 and October 2016. The full sample is split into
smaller subsamples by break dates chosen based on historical events and policy changes
rather than formal tests. This is because commonly-used tests such as CUSUM suffer from
low power (Smith, 2008; Xu, 2013). For each sub-period, all models are estimated using
either oil or USD returns. The confidence intervals are constructed for the constant of
the conditional parameter and the score parameter (or ARCH parameter in GARCH and
t-GARCH models). Then Dufour and Torres’s (1998) union-intersection test is applied to
these confidence intervals to determine how much the estimated parameter change over sub-
periods. If there is a set of values that intersects the confidence intervals of all sub-periods,
then one can conclude that the parameters do not change that much. The out-of-sample
performance of all time-varying volatility models are also assessed in the ability to forecast
the mean and variance of oil and USD returns. Through this analysis, this essay also
addresses whether using models that accommodate structural breaks in the unconditional
variance of both GAS and non-GAS models will improve forecasts.
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Chapter 2

Productivity and Business
Investment over the Business Cycle

Abstract

This paper documents a new stylized fact—the correlation between labour productivity and
real business investment in the U.S. data since 1990 is−0.1. This correlation was 0.54 in the
post-WWII data until the end of 1980s. The response of investment to identified technology
shocks have switched signs across these two sub-periods from positive to negative, whereas
the response to a non-technology shock has remained approximately the same. Since the
volatility of technology shocks has decreased less relative to non-technology shock over the
two sub-periods, we explore the hypothesis whether the relatively more volatile technology
shocks and the negative response of investment can together account for the decreased
correlation. We consider a canonical DSGE model and simulate data under a variety of
assumptions about the parameters representing structural features and volatility of shocks.
The results show that although the smaller decline in the volatility of technology shocks
relative to non-technology shock has contributed to the decrease in the correlation, this
channel alone is not sufficient. Structural features such as increased average duration of
price contracts, unitary elasticity of substitution between labour and capital, and larger
magnitudes of investment adjustment costs are needed for the model to produce a near-zero
correlation between labour productivity and investment.

4



2.1 Introduction

We present a new stylized fact on the changing dynamics of U.S. business cycles.1 The
correlation between aggregate labour productivity and business investment in the post-
WWII U.S. data was significantly positive (0.54) over the business cycle until the end of
1980s. Since then the correlation is statistically zero (−0.1) indicating that the two vari-
ables do not exhibit business cycle co-movement (see Table 2.1). Macroeconomic models
that are widely used by academics and policy-makers deliver a strongly positive correla-
tion. The intuition is that a positive unanticipated technology shock increases the marginal
products of both labour and capital. Hence, labour productivity and investment moves
together.2 Understanding why this shift has occurred is, therefore, important from both
macroeconomic model development and policy perspectives.

Examining the cyclicality of labour productivity and business investment separately
reveals an important point about the stylized fact on their joint dynamics described above.
Recently Gali and van Rens (2014) have pointed out that procylicality of labour productiv-
ity has declined in the U.S. economy.3 We note that procyclicality of business investment,
on the other hand, has increased since the 1990s. So a natural question is whether the
decline in the cyclical correlation between labour productivity and business investment is
simply due to the decline in cyclicality of the former. Two pieces of evidence suggest that
this may not entirely be the case. First, the cyclicality of labour productivity sharply
declined around 1984 (see Figure 2 in Gali and van Rens (2014)), whereas the correlation
between labour productivity and business investment started to decline after 1990. Sec-
ond, we present new evidence that the response of business investment to technology shocks
changed from positive to negative after 1990. The the decline in the correlation between
labour productivity and business investment after 1990, therefore, is likely to be related
to shifts in the structural features of the U.S. economy. The question this paper seeks to
answer is whether shifts in structural elements that are present in a standard Dynamic
Stochastic General Equilibrium (DSGE) model, such as the real and nominal rigidities and
volatility of shocks, can account for the changed co-movement between labour productivity
and business investment.

Our paper is closest in spirit to Barnichon (2010) who studied the changed correla-

1This chapter is co-authored with my co-supervisor Hashmat Khan.
2More generally, other types of business cycle shocks such as investment-specific technology or marginal

efficiency of investment also imply a positive co-movement.
3Related research on the changing cyclicality of labour productivity includes Stiroh (2009), Gordon

(2010), and Barnichon (2010). Fernald and Wang (2015) provide a detailed discussion on the possible
explanations for why the cyclicality of productivity has changed.
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tion between productivity and unemployment before and after the mid-1980s. There are,
however, two differences. First, our focus is on business investment whereas Barnichon
(2010) abstracts from capital and investment. Second, Barnichon (2010) finds that the
response of the variable of interest in his study— unemployment—to a technology shock
did not change before and after the mid-1980s but the response to non-technology shock
did. Interestingly, we find the opposite pattern. The response of the variable of interest
in our study—business investment—to a technology shock changed after 1990 but not the
response to a non-technology shock. This finding suggests that some structural features ac-
counting for our stylized facts are likely to be different from the one proposed in Barnichon
(2010) in the context of productivity and unemployment.

In our empirical analysis, we first establish using moving correlations of 10-year window
that the decrease in correlation between labour productivity and business investment oc-
curred since 1990. Although our focus is on total business investment, we document that
the the post-1990 decrease in correlation between labour productivity and business in-
vestment occurs across all the sub-components of business investment, namely, residential,
structures, machinery and equipment, and software.

Next, we estimate a bivariate VAR with labour productivity (measured as output per
hour) and real business investment. We identify permanent shocks to labour productivity,
labeled as technology shocks, using long-run restrictions as in Gali (1999). The impulse
responses from this exercise reveal that the cyclical response of business investment to
technology shocks has changed during the pre- and post-1990 periods. Since the volatility
of technology shocks has decreased less relative to non-technology shock over the two sub-
periods, we explore the hypothesis whether the relatively more volatile technology shocks
and the negative response of investment can together account for the decreased correlation.

In our model-based analysis, we consider a canonical medium-scale DSGE model similar
to Christiano et al. (2005) and Smets and Wouters (2007). Following Cantore et al. (2014),
we allow a CES production function that nests the Cobb-Douglas specification. This allows
us to examine the consequences of changes in the elasticity of substitution between labour
and capital, in the context of our objective.

Using the DSGE model and simulate data under a variety of assumptions about the
parameters representing structural features and volatility of shocks. The results show
that although the smaller decline in the volatility of technology shocks relative to non-
technology shock has contributed to the decrease in the correlation, this channel alone is
not sufficient. Structural features such as increased average duration of price contracts,
unitary elasticity of substitution between labour and capital, and larger magnitudes of
investment adjustment costs are needed for the model to produce a near-zero correlation
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between labour productivity and investment.

The rest of the paper is organized as follows. Section 2 presents the empirical styl-
ized facts (both unconditional and conditional). Section 3 presents the model. Section 4
presents the main results and section 5 concludes.

2.2 Empirical Analysis

In this section we provide new stylized facts on the changing co-movement between labour
productivity and business investment.

2.2.1 Unconditional Correlations

The cyclical correlation between labour productivity and real business investment is 0.38
over the 1947Q1-2014Q4 period. To study how this correlation has changed over time, we
consider a moving correlation with a 10-year window. Figure 2.1 shows that the correlation
between labour productivity and investment before 1990 was positive and strong. But after
1990 the correlation declines sharply and has fluctuated around −0.1 until the end of the
sample period.4 On the basis of this evidence we choose 1990 to be the break-point and
divide the sample into pre- and post-1990 periods.

We split the sample into two periods 1947Q1-1989Q4 and 1990Q1-2014Q4. It is imme-
diately evident from Table 2.1 that the moderate correlation of 0.38 for the entire period
hides a change from a strong positive correlation before 1990 of 0.54 to a −0.1 correlation
after 1990. The stylized facts are similar when using either the Hodrick-Prescott (HP)
filter or the Baxter-King band-pass (BK) filter to extract the cyclical component.5

4An alternative definition of labour productivity, real output per person, also experienced a large
change in correlation with real investment. It dropped from 0.6 before 1990 to around 0.3 afterwards.
According to Santacreu (2015), real output per person captures other factors such as the composition of
labour force, fertility and mortality rates. More information about the measurement can be found here -
http://research.stlouisfed.org/publications/es/article/10328.

5Hamilton (2017) writes that the HP Filter should not be used because it produces spurious dynamics
that is inconsistent with the underlying data generated process (DGP) and suggest his filter as a more
robust alternative to the HP filter. So, we applied his filter to both labour productivity and investment
and find that it also produces similar stylized facts about the drop in the correlation after 1990.
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Figure 2.1: 10-year rolling correlation between labour productivity and real private business
investment
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Source: Bureau of Economic Analysis, Bureau of Labor Statistics, and FRED. The top panel represents

the correlation between labour productivity and real investment. Bottom panel is the correlation between

labour productivity and real investment per capita. Real private business investment by type and labour

productivity measurements have been detrended using the HP filter. Both are indexes with 2009 = 100.
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Table 2.1: Correlation between real investment and productivity

Filter 1947-2014 pre-1990 post-1990

Labour productivity
HP 0.38** 0.54** -0.1
HP and per capita 0.18** 0.54** -0.07
BK 0.39** 0.58** -0.1

Labour productivity is measured as real output per hour. Significance is indicated by one asterisk (10-percent level) or two

asterisks (5-percent level). Note that for real investment per capita, the period began in 1948 due to the availability of

labour market data.

Did the components of business investment also experience a change in correlation with
labour productivity? Table 2.2 reports the results.

Table 2.2: Correlations between real investment by type and labour productivity

Date Residential Structures Machinery and Equipment Software

1947-2014 0.50** -0.30** 0.10* -0.06
pre-1990 0.63** -0.12 0.29** -0.03
post-1990 0.09 -0.61** -0.27** -0.13

Data is from the Federal Reserve and Economic Data, Bureau of Economic Analysis and Bureau of Labor Statistics. Please

note that all series were detrended using the HP filter. Significance is indicated by one asterisk (10-percent level) or two

asterisks (5-percent level)

There are several notable stylized facts. Machinery and equipment spending expe-
rienced a sign switch in its correlation, moving from being positive before 1990 to being
significantly negative after 1990. The correlation between residential investment and labour
productivity dropped from being highly positive before 1990 (0.63) to becoming statisti-
cally zero after 1990 (0.09). For non-residential structures, the correlation drops from
essentially zero for pre-1990 period to −0.61 in the post-1990 period. Finally, for software,
the correlations are negative but not significant for both sub-periods. However, the magni-
tude does decrease in the post-1990 period. While there are differences in magnitudes and
signs, the general pattern shows a decrease in the correlation across all four components,
just as in the case of aggregate business investment shown in Table 2.1.
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2.2.2 Response of business investment to technology and non-
technology shocks

To help understand the source of the change in correlation, we examine the responses of
labour productivity and investment to technology and non-technology shocks in the pre-
and post-1990 period using the following system of equations.[

∆xt
∆it

]
= Φ(L)

[
εxt
εit

]
(2.1)

where x represents labour productivity and i denotes real investment, Φ(L) is the matrix
of lagged polynomials, and εxt and εit represent the technology and non-technology shocks
respectively. Equation (2.1) can be written equivalently as

∆xt =
∑4

j=1 βxx,j∆xt−j +
∑4

j=1 βxi,j∆it−j + εxt
∆it =

∑4
j=1 βix,j∆xt−j +

∑4
j=1 βii,j∆it−j + κεxt + εit

(2.2)

We use the long-run identification assumption of Gali (1999) that only a technology
shock has a permanent effect on the level of labour productivity.6 This means that the
long-run multiplier from investment to labour productivity is equal to zero. Using Shapiro
and Watson’s (1988) methodology, we impose the long-run restriction which is equivalent to
allowing the second difference of investment to enter into the first equation. However, the
innovations of labour productivity growth affect the contemporaneous values of investment
growth, so we cannot estimate the model described in equation 2.2 using OLS.

Following Shapiro and Watson (1988) and Francis and Ramey (2004), the identification
of technology shocks is achieved based on:

∆xt =
∑4

j=1 βxx,j∆xt−j +
∑3

j=0 βxi,j∆
2it−j + εxt

∆it =
∑4

j=1 βix,j∆xt−j +
∑4

j=1 βii,j∆it−j + κεxt + εit
(2.3)

Since ∆it is correlated with the error term εxt , we use the Shapiro and Watson (1988)
methodology by first taking 4 lags of ∆xt and ∆it as instruments and estimating the
first equation of (2) to obtain the residuals ε̂xt . Then, estimating the second equation of
(2) through ordinary least squares (OLS) by replacing εxt with ε̂xt , making it identifiable.
Following Francis and Ramey (2004) and Barnichon (2010), the generalized method of
moments (GMM) estimation is employed to jointly estimate both equations of (2).

These impulse responses are presented in Figures 2.2 and 2.3 for the pre- and post-
1990 periods respectively.

6We find using the Schwartz-Bayes Criterion and Akaike Information Criterion that using four lags
provided the best fit for the model.
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Figure 2.2: Pre-1990 empirical impulse response functions to technology and non-
technology shocks:
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Red line indicates the point estimate and the blue lines represent the 95% confidence interval
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Figure 2.3: Post-1990 empirical impulse response functions to technology and non-
technology shocks:
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The first row of Figures 2.2 and 2.3 reveals that the response of business investment to
technology shock changed sharply across the two sub-periods. A 0.9% increase in labour
productivity was associated with a 1 % increase in investment before 1990. By contrast,
a 0.5 % increase in labour productivity is associated with a 1% decrease in investment
in the post-1990 period. The second row of Figures 2.2 and 2.3 displays the effects of
a non-technology shock. The response of productivity and investment to non-technology
shocks after 1990 were relatively unchanged from the before 1990 period. The jump in
productivity is slightly larger in the post-1990 period than in the pre-1990. However, for
investment, the impact response is relatively small. Before 1990, a 0.3% increase in labour
productivity is associated with a 5% increase in investment. After 1990, about a 0.5%
increase in labour productivity is associated with close to 3% increase in investment.

Decline in the volatility of shocks

Barnichon (2010) documented although there has been a decline in the volatility of both
technology and non-technology shocks, the latter volatility has fallen relatively more. We
use a similar technique and compute the volatility of shocks measured as a 5-year rolling
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standard deviation. Figures 2.4 and 2.5 show the volatilities for technology and non-
technology shocks, respectively, identified using the VAR in the previous section. The re-
sults show that the volatilities of technology and non-technology shocks have declined after
the mid-1980s and early 1990s respectively. The technology shock volatility has decreased
by 30%, and the non-technology shock has decreased by 38% after 1990. The technology
shock results confirm the similar findings of Barnichon (2010). Since technology shocks
generated a negative investment response, a relatively smaller decline in their volatility
may be contribute to the sharp decrease in the correlation between labour productivity
and business investment in the post-1990 period.

Figure 2.4: 10-year rolling volatility of technology shocks
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Figure 2.5: 10-year rolling volatility of non-technology shocks
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2.3 Model

In this section we consider a DSGE model to study how shifts in certain structural features
can deliver the near-zero correlation between cyclical labour productivity and business
investment. The DSGE model is similar to the one developed in Christiano et al. (2005)
and Smets and Wouters (2007) with a rich set of real and nominal frictions and shocks.

2.3.1 Households

Households are assumed to live infinitely and are numerous, represented by a unit interval,
and supply heterogeneous labour (hours). Hours are then bundled together and sold to
the labour packing firm. This firm assigns wages to households depending on the number
of hours supplied. Furthermore, these households are also assumed to own firms; thus,
they own capital stock and purchase investment. Hence, they choose consumption level
Ct, investment level It, and bonds Bt to maximize their utility.

Labour Packers

Following Erceg et al. (2000), households are assumed to be heterogeneous in labour supply
which is indexed by j ∈ (0,1).

It is assumed that aggregate labour input is equal to:

Nt = (
∫ 1

0
Nt(j)

εw−1
εw dj)

εw
εw−1 (2.4)

where number of hours supplied by individual hours and wage elasticity of demand for
labour are respectively represented by Nt(j) εw > 1.
The problem of the labour packer is to maximize hours:

max
Nt(j)

W p
t (

∫ 1

0

Nt(j)
εw−1
εw dj)

εw
εw−1 −

∫ 1

0

Wt(j)Nt(j)dj (2.5)

After taking the first order condition of (3), we write individual hours in the following
form:

Nt(j) = (Wt(j)
W p
t

)−εwNt (2.6)

The labour packing firm rents out the heterogeneous labour supply to the intermediate
firm, and it faces a downward-sloping demand because the households supply differentiated
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labour which is imperfectly substitutable. Therefore, they have some wage-setting power.
From the first order condition obtained in equation (4), the aggregate wage index, Wt,

can be obtained as:

W p
t = (

∫ 1

0
Wt(j)

1−εwdj)
1

1−εw (2.7)

with Wt(j) representing individual household j receiving wage based on hours supplied.

Household Problem

Household j chooses consumption Ct(j), investment It(j), capital goods Kt(j), capital
utilization ut(j), and bonds Bt(j). With households receiving different wages based on
different hours supplied, this implies that households would choose different consumption
levels. In this model, the preferences are additively separable in consumption and hours.
According to Erceg et al. (2000), households are identical in consumption, capital accu-
mulation and utilization, and bonds but differ in wages they charge and labour supply,
if preferences are separable in consumption and there is a state contingent that protects
households from idiosyncratic wage risk. Hence, the subscript j can be dropped in this case.
Based on Ct, ut, Bt, It, Kt in each period, households maximize their utility represented by
the following:

E0

∞∑
t=0

βt[log(Ct − bCt−1)− ψNt(i)1+η

1+η
] (2.8)

where β ∈ (0, 1) is the discount factor, η is the inverse Frisch elasticity of labour supply,
and ψ represents the fixed cost of working. This paper follows Christiano et al. (2005) in
allowing for habit formation in consumption.

The household gets utility from consuming goods but disutility from working and is
subjected to the following constraints:

Ct + Bt+1

Pt
≤ Wt(i)

Pt
Nt(i) +RtutKt − (χ1(ut − 1) + χ2

2
(ut − 1)2)Kt + (1 + it−1)Bt

Pt
+ Divt

Pt
(2.9)

Kt+1 = (1− τ
2
( It
It−1
− 1)2)It + (1− δ)Kt (2.10)

Equation (7) is the budget constraint of the household and equation (8) is the capital
accumulation constraint. Households pay a price Pt for consumption goods, earn rental
rates Rt, and hold nominal bonds Bt−1 with nominal interest rate it−1 and sell them (Bt)
the next period. They do not pay any taxes. As owner of the firm, the representative
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household receives dividends from it. Furthermore, it owns capital stock, chooses the
capital utilization level, and faces both quadratic investment and capital utilization costs.

The Lagrangian method is used to derive the following first order conditions for the
household choices:

∂L
∂Ct

= 0 : λt = 1
Ct−bCt−1

− βbEt 1
Ct+1−bCt (2.11)

∂L
∂ut

= 0 : Rt = (χ1 + χ2(ut − 1)) (2.12)

∂L
∂Bt+1

= 0 : λt = βEtλt+1(1 + it)
Pt
Pt+1

(2.13)

∂L
∂It

= 0 : λt = µt(1− τ
2
( It
It−1
− 1)2 − τ( It

It−1
− 1) It

It−1
) + βEtµt+1τ( It+1

It
− 1)( It+1

It
)2 (2.14)

∂L
∂Kt+1

= 0 : µt = βEt(λt+1(Rt+1ut+1 − 1
Zt+1

(χ1(ut+1 − 1) + χ2

2
(ut+1 − 1)2)) + µt+1(1− δ))

(2.15)

In terms of setting wages, households cannot freely adjust their nominal wage each
period. These wages are subject to Calvo (1983) pricing. This paper assumes that the
households can change their nominal wages with probability 1− φw. Partial indexation to
inflation is allowed between wage changes in this paper and is represented by ζw ∈ (0, 1).
In period t+k, a household with its last wage adjustment in period t has a real wage of:

wt+k(j) = Wt+k(j)

Pt+k
= Πk

s=1
(1+πt+s−1)ζw

1+πt+s
wt(h) (2.16)

The problem of households updating their wages is:

max
Nt+k(j),wt(j)

Et

∞∑
k=0

(βφw)k(−ψ
N1+η
t+k

1 + η
+ λt+kN

1+η
t+k Πk

s=1

(1 + πt+j−1)ζw

1 + πt+s
wt(j))

s.t. Nt+k(j) = (
Πks=1

(1+πt+s−1)
ζw

1+πt+s
wt(j)

wt+k
)Nt+k

(2.17)

When the first order condition is satisfied, then a reset wage is obtained which is
common across all households.
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2.3.2 Firms

The modeling for firms follows Christiano et al. (2005) and Smets and Wouters (2007) by
incorporating the labour packing and price stickiness into the model. There are two types
of firms in our model: intermediate firms and final goods firms. We use the Cantore et al.
(2014) assumption that the intermediate firms produce intermediate goods using a CES
technology.

Final goods firms

The representative firm is assumed to operate under perfect competition to produce a
homogeneous good for consumption or investment. Prices for consumed and investment
goods are assumed to be the same.

This representative firm buys Yt(m) units of each intermediate good at prices Pt(m) in
order to maximize profits. Hence, the final goods firm problem is as follows:

max
Yt(j),Yt

PtYt −
∫ 1

0

Pt(m)Yt(m)dm

s.t. (

∫ 1

0

Yt(m)
εp−1

εp di)
εp
εp−1 ≥ Yt

(2.18)

We rearrange equation (16) to obtain the maximization problem with the firm needing
only to choose Yt(j) and the respective first order condition:

max
Yt(j)

Pt(

∫ 1

0

Yt(j)
εp−1

εp di)
εp
εp−1 −

∫ 1

0

Pt(j)Yt(j)di (2.19)

Yt(j) = (Pt(j)
Pt

)−εp(
∫ 1

0
Yt(j)

εp−1

εp )
εp
εp−1 = (Pt(j)

Pt
)−εpYt (2.20)

Intermediate goods firms

The intermediate firm m produces a homogeneous good at time t that depends on capital
and labour under monopolistic competition. Each firm is assumed to face Calvo (1983)
price adjustment costs.

Yt(m) = At(α(Kt(m)ez
K
t

K0
)
σ−1
σ + (1− α)(Nt(m)ez

N
t

N0
)
σ−1
σ )

σ
1−σ (2.21)
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These firms rent capital stock and household supply of hours. The intermediate firm’s
problem is to maximize profits. As in the case of households, firms are not free to change
their prices every period. They are subject to Calvo (1983) pricing. Therefore, their
problem is to minimize their inputs, subject to making sufficient demand for output.

min
K̃t(m),Nt(m)

W p
t Nt(m) +Rp

t K̃t(m)

s.t. At(α(
˜Kt(m)ez

K
t

K0

)
σ−1
σ + (1− α)(

Nt(m)ez
N
t

N0

)
σ−1
σ )

σ
1−σ ≥ (

Pt(j)

Pt
)−εpYt

(2.22)

where εp represents the price elasticity of demand for intermediate goods.

Equation (18) represents demand for intermediate goods from the final goods firms.
The Lagrangian equation is used in this case to obtain the following first-order conditions
with respect to K̃t(m) and Nt(m). The former denotes capital services, the product of
capital utilization, ut, and capital goods, Kt.

L = −W p
t Nt(m)−Rp

t K̃t(m) + qt(m)(At(α(
˜Kt(m)ez

K
t

K0
)
σ−1
σ + (1− α)(Nt(m)ez

N
t

N0
)
σ−1
σ )

σ
1−σ − (Pt(j)

Pt
)−εpYt)

(2.23)
The first order conditions are taken with respect to K̃t(m) and Nt(m) respectively:

∂L
∂K̃t(m)

= 0 : Rp
t = qt(m)αAt(

Y0

K0e
zKt

)
σ−1
σ ( Yt(m)

K̃t(m)
)

1
σ (2.24)

∂L
∂Nt(m)

= 0 : W p
t = qt(m)(1− α)At(

Y0

N0e
zNt

)
σ−1
σ ( Yt(m)

Nt(m)
)

1
σ (2.25)

Note that all the firms face the same prices, so the subscript m can be dropped. Further-
more, equations (22) and (23) can transformed into real terms if they are divided by price
Pt.

Rt = mctαAt(
Y0

K0ez
K
t

)
σ−1
σ (

Yt

K̃t

)
1
σ (2.26)

wt = mct(1− α)At(
Y0

N0ez
N
t

)
σ−1
σ (

Yt
Nt

)
1
σ (2.27)

where marginal cost mct = qt
Pt

.
The neutral technology shock At is assumed to follow the process:

lnAt = ρalnAt−1 + εa; (2.28)
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and the labour and capital augmented technology shocks also follow an AR(1) process:

lnzjt = ρzlnz
j
t−1 + εjz; forj = K,L (2.29)

The real profits for intermediate firm j can be rewritten as:

Πpt (m)

Pt
= Pt(m)

Pt
Yt(m)−mctYt(m) (2.30)

As mentioned earlier, the intermediate firms cannot easily change their prices in every
period. However, these firms can adjust their prices with probability 1−φp. In this paper,
partial indexation to inflation is also allowed, but it is for changes in prices this time. This
partial indexation is represented by ζp ∈ (0, 1). The firm’s problem is described as follows.

max
Pt(m),Yt(m)

Et

∞∑
k=0

(βφp)
kλt+k
λt

(
Π
ζp
t−1,t+k−1Pt(m)

Pt+k
Yt+k(m)−mct+kYt+k(m))

s.t. Yt+k(m) = (
Π
ζp
t−1,t+k−1Pt(m)

Pt+k
)Yt+k

(2.31)

The optimal price from equation (28) is called the reset price. All firms involved in
updating will set their price.

2.3.3 Monetary Authority and Aggregation

The Central Bank is assumed to set its nominal interest rate according to the Taylor rule.

it = (1− ρi)i+ ρiit−1 + (1− ρi)(φπ(πt − π) + ρy(lnYt − lnYt−1)) + εi,t (2.32)

it is the interest rate determined by the central bank through the Taylor rule in period
t. πt measures the inflation of the consumed good. ρi is the interest rate smoothing
parameter. Also, ρπ and ρy are the monetary response to deviations from inflation and
output respectively. The monetary policy shock, εi,t, follows an AR(1) process:

εi,t = ρquεi,t−1 + εi,t (2.33)

Under an aggregate economy, the following is obtained:

Ct + It = Yt (2.34)

19



2.4 Results

2.4.1 Log-linearization and calibration

We simulate the data for this model at a quarterly frequency. We use log-linearization
of the first-order conditions for the households, firms, and monetary authority around
their steady states. The calibrated values are similar those of Smets and Wouters (2007)
posterior estimated parameters using Bayesian methods. We set the discount factor in
the model to 0.98 and the capital share of output, α, to 0.33. The inverse of the Frisch
elasticity of labour supply, ψ equals 2. The substitution between goods is represented by
εp and the substitution between labour supply, εw, both equal 10, values consistent with
the Kimball curvature (Smets and Wouters (2007)). The persistence of technology shock
is 0.9. The standard deviation for technology shocks is decreased from 0.0088 to 0.0061 to
examine how much it contributes to lowering the correlation between labour productivity
and business investment the post-1990 period. We consider two separate values for the
investment adjustment cost parameter (i) 2.5 which is the estimated value in Christiano
et al. (2005) and (ii) 6 as per Smets and Wouters (2007). To capture the effects of different
rates of substitution between capital and hours, we consider a baseline value of σ = 0.35 as
in Cantore et al. (2014). Similarly for calibrating the volatility and persistence of capital-
augmented technology shocks we use the Bayesian estimates of Cantore et al. (2017). The
complete set of calibrated values is in the appendix. We use Dynare Adjemian et al.
(2011) to solve the model and consider five thousand simulations of the model to generate
correlations.

2.4.2 Shifts in technology shock volatility and structural features

Can the simulated model generate a low correlation between labour productivity and busi-
ness investment? We pursue an approach similar to that in Barnichon (2010) and Gali
and van Rens (2014) to address this question and explore shifts in the volatility of the
technology shock volatility and structural features. First, we generate simulated data for
two periods: pre-1990 and post-1990. The volatility of technology shock decreased from
0.0088 before 1990 to 0.0061 for after 1990. Table 2.3 shows the calibrated values of all
the model parameters.
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Table 2.3: Parameters and steady state calibration

Parameters Definition Pre-1990 value Post-1990 value
ψ Fixed cost of working 2 2
β Discount factor 0.98 0.98
φp Calvo price parameter 0.75 0.8
φw Calvo wage parameter 0.75 0.8
α Capital share of income 0.33 0.33
η Inverse of Frisch elasticity 1.23 1.23
b Habit formation parameter 0.64 0.64
χ1 Capital utilization parameter 1 0.035 0.035
χ2 Capital utilization parameter 2 0.01 0.01
τ Investment adjustment cost magnitude 2.5 2.5
δ Depreciation rate 0.025 0.025
εw Wage elasticity of demand for labour 10 10
εp Price elasticity of demand 10 10
ζp Degree of indexation to past inflation 0.05 0.05
ζw Degree of indexation to past wage inflation 0.44 0.44
ρi Degree of interest rate smoothing 0.81 0.81
φπ Policy-controlled int. rate response to inflation 1.31 1.31
φy Policy-controlled int. rate response to output gap 0.22 0.22
ρKz Capital-augmented shock persistence 0.8 0.8
ρa Neutral technology shock persistence 0.95 0.95
ρHz Labour-augmented shock persistence 0.14 0.14
ρqu Interest rate persistence 0.12 0.12
σzK Standard deviation of capital-augmented tech. shock 0.017 0.017
σea Standard deviation of neutral tech. shock 0.0088 0.0061
σzH Standard deviation of labour-augmented tech. shock 0.012 0.012
σei Standard deviation of interest rate persistence 0.0013 0.0008
π∗ Trend inflation rate 0 0
Y/N Steady state of Labor Productivity (in logs) 0.46 0.46
I Steady state of Investment (in logs) -2.34 -2.36

We simulate labour productivity and investment data using the model described in
section 3.7

7We use the perturbation methods to solve the system of first order equations in log-linear form around
the steady state. Next, we obtain each control variable (including labour productivity and investment)
which is a function of the capital stock and also shocks. We then extract the cyclical components of the
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Table 2.4 summarizes the U.S. data and model correlations. The results indicate that
decreasing the technology shock volatility over the 1990 period would be insufficient to
generate a low correlation between investment and labour productivity. In the case of
the average duration of wage and price stickiness for 3 quarters (φw = φp = 0.75), the
correlation decreased from 0.12 to 0.10 in the low elasticity of substitution case and from
0.20 to 0.19 in the constant elasticity of substitution case.

Additional assumptions about structural features such as price and wage rigidities are,
therefore, needed for the model to produce lower correlation. One possible structural
feature that may help generate a low correlation is an increase in the average duration
of price contracts which is an indicator of price rigidity. The response of output and
investment to technology shocks may be dampened in the presence of price rigidity. This
is because when supply increases, demand is unable to rise enough to meet the increases
in supply when prices are sticky. Thus, the response of output is smaller when prices are
rigid than when prices are flexible.

As it turns out, the Cobb-Douglas specification of the production function with rigid
prices and wages does generate a near zero correlation, suggesting that the model matches
the post-1990 correlation between investment and productivity.

Table 2.4: U.S. data and model: Correlation before and after 1990 with standard invest-
ment adjustment cost parameter=2.5

Pre-1990 Post-1990

Data 0.54 -0.1

Model and parameter assumptions σ = 0.35 σ = 1 σ = 0.35 σ = 1
φp = φw = 0.75 0.12 0.20 0.10 0.19
φp = 0.75, φw = 0.8 0.07 0.15 0.06 0.14
φp = 0.8, φw = 0.75 0.08 0.16 0.07 0.14
φp = φw = 0.8 0.04 0.10 0.04 0.10

According to Table 2.4, the simulated model cannot generate a correlation close to the
actual pre-1990 data in the presence of investment adjustment costs if it assumes that the
average duration of wage contracts equals 0.75 (wages are rigid). However, the table shows
that the model can generate a low investment and labour productivity correlation for the
post-1990 period if the average durations of prices and wages increase.

simulated labour productivity and investment using the HP filter for quarterly data. We then calculate
the unconditional correlation between cyclical components of labour productivity and investment.
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Higher investment adjustment costs can also help generate a low correlation between
labour productivity and investment is higher investment adjustment costs (IAC). This is
because the IAC dampens the response of investment to technology shocks. Higher IAC
means that it is more expensive to change the flow of investment, meaning that households
would respond by consuming more and investing less than they would without the presence
of IAC. Hence, the presence of IAC is important in helping to understand why there is a
change in the investment and labour productivity correlation after 1990.

To further understand the effects of the IAC, we also generated the simulated corre-
lations using the Smets and Wouters (2007) IAC parameter estimate equal to 6 instead
of 2.5. Table 2.5 summarizes the results. The results show that the simulated model can
generate an even lower correlation of 0.018 and 0.07 respectively for the σ = 0.35 and
σ = 1 cases after 1990.

Following Barnichon (2010), monetary policy is used as a proxy for non-technology
shock. When monetary policy shock volatility decreases, there is little change in the
correlation. This is consistent with the empirical results in section 2, where we find that
the change in the investment response to technology shocks after 1990 contributed to the
low correlation between investment and labour productivity.

Table 2.5: US and model data correlation before and after 1990 with investment adjustment
cost parameter=6

Pre-1990 Post-1990

Data 0.54 -0.1

Model and parameter assumptions σ = 0.35 σ = 1 σ = 0.35 σ = 1
φp = φw = 0.75 0.09 0.17 0.08 0.15
φp = 0.75, φw = 0.8 0.05 0.13 0.05 0.11
φp = 0.8, φw = 0.75 0.05 0.12 0.05 0.11
φp = φw = 0.8 0.02 0.08 0.02 0.08

In summary, the results from the simulated model indicate that a decline in the volatility
of technology shocks, accompanied by an increase in both price and wage rigidities can help
generate a low correlation between labour productivity and investment.
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2.4.3 Impulse response analysis

Figures 2.6 and 2.7 display the simulated responses of productivity and investment to
a technology and a monetary policy shock. The responses of labour productivity and
investment to technology shocks slightly decrease after 1990. This is the only feature that
matches the empirical model in section 2.2.

Figure 2.6: Pre-1990 simulated impulse response functions to technology and non-
technology shocks:
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Note: Impulse responses have been generated using σ = 1 (production function is
Cobb-Douglas), φp = φw = 0.75, σea = 0.0088, and σei = 0.0013.

Generally, the model is not successful in matching the empirical responses found in
section 2.2. With the exception of the investment response to technology shocks, the
simulated responses to technology and non-technology shocks are remarkably different from
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Figure 2.7: Post-1990 simulated impulse response functions to technology and non-
technology shocks:
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Note: Impulse responses have been generated using σ = 1 (production function is
Cobb-Douglas), φp = φw = 0.8, σea = 0.0061, and σei = 0.0013.

the empirical responses. The magnitude of the model response of labour productivity to
technology and non-technology shocks are smaller than the empirical responses. The sign
of the investment response to non-technology shock for the simulated model is difference
from the sign of the investment response for the empirical VAR model. This could be
related to choosing monetary policy shock as a proxy to non-technology shocks for the
investment and labour productivity analysis and other structural features not explored in
this data mechanical exercise.
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2.5 Conclusion

This paper documents a new stylized fact—the correlation between labour productivity and
real business investment in the U.S. data since 1990 is essentially zero. This correlation was
0.54 in the post-WWII data until the end of 1980s. The response of investment to identified
technology shocks have switched signs from positive to negative across these two sub-
periods, whereas the response to a non-technology shock has remained approximately the
same. Since the volatility of technology shocks has decreased less relative to non-technology
shock over the two sub-periods, we explore the hypothesis whether the relatively more
volatile technology shocks and the negative response of investment can together account
for the decreased correlation. We consider a canonical DSGE model and simulate data
under a variety of assumptions about the parameters representing structural features and
volatility of shocks. The results show that although the smaller decline in the volatility
of technology shocks relative to non-technology shock has contributed to the decrease in
the correlation, this channel alone is not sufficient. Structural features such as increased
average duration of price contracts, unitary elasticity of substitution between labour and
capital, and larger magnitudes of investment adjustment costs are needed for the model to
produce a near-zero correlation between labour productivity and investment.
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Chapter 3

Effects of ignoring structural breaks
in GAS volatility models

Abstract

Creal et al. (2013) recently introduced a new class of time-varying parameter models called
generalized autoregressive score (GAS) models. Within the GAS volatility framework, the
variance is updated by the scaled score of the model’s density function instead of the
squared residuals. Creal et al. (2013) claim that GAS models are advantageous to use
because updating the conditional variance using the score of the log-density instead of
the second moments can improve a model’s fit to data. GAS models are also found to
be robust to some forms of misspecification such as outliers, which raises the question of
whether GAS volatility models are less sensitive to parameter non-constancy. This issue is
important because ignoring structural breaks in the parameters can cause the conditional
variance to exhibit unit root behaviour in which the unconditional variance is undefined.
This implies that any shock to the variance will not gradually decline (Lamoureux and
Lastrapes, 1990). This paper conducts a Monte-Carlo simulation study of the effects of
ignoring parameter non-constancy on five different volatility models. Of these models,
three – the GARCH(1,1), t-GAS(1,1), and Beta-t-EGARCH(1,1) – are GAS models, while
the other two – t-GARCH(1,1) and EGARCH(1,1) – are not. The effects of the breaks
are assessed by examining the behaviour of the mean value of the estimated persistence
parameter and the coverage probabilities of the nominal 90% and 95% confidence intervals
for the persistence parameter as the sample size approaches infinity. The first finding
is that there are similarities between the responses of GAS and non-GAS models to a
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failure to take structural breaks in the conditional volatility parameters into account in
estimation. A second finding of this paper is that ignoring a break in any parameter
that shifts the unconditional variance, such as the constant or the persistence parameter,
causes the mean value of the estimated persistence parameter in all models to exceed its
true value and approach one as the sample size approaches infinity and the break size
increases. A third finding of this study is that a break in any parameter that does not
shift the unconditional variance has little to no effect on the mean value of the estimated
persistence parameter. Finally, the fourth finding of this study is that models based on
the t-distribution tend to be less reactive to breaks than models based on the Gaussian
distribution.

3.1 Introduction

There are several ways to model time-varying volatility. One way is to use the autoregres-
sive conditional heteroskedasticity (ARCH)/ generalized ARCH (GARCH) class of models
first introduced by Engle (1982) and then Bollerslev (1986). A prominent model that be-
longs to this class is the classical GARCH model of Bollerslev (1986), in which the condi-
tional volatility is updated by its own squared residuals. ARCH/GARCH modeling is quite
popular amongst econometric practitioners because these models can capture some stylized
facts about asset returns such as volatility clustering and fat tails, and can be estimated
using maximum likelihood methods (Engle and Patton, 2001; Zivot, 2009). Another way
is to use Creal et al.’s (2013) generalized autoregressive score (GAS) volatility framework.
Within the GAS volatility framework, the volatility is updated by the scaled score of the
model’s density function instead of the squared residuals. Different GAS volatility models
emerge depending on the choice of distribution and scaling matrix. For example, if the
density function is Student’s t and the scaling matrix is Fisher’s information matrix, then
one obtains the Student’s t-GAS volatility model (the t-GAS model hereafter). However,
if the scaling matrix is again the inverse of Fisher’s information matrix but the density is
Gaussian, then the GAS framework reduces to Bollerslev’s (1986) GARCH model. Harvey
and Chakravarty’s (2008) Beta-t-EGARCH model is obtained if the log density is Student’s
t and the scaling matrix is an identity matrix.

Creal et al. (2013) claim that GAS models are advantageous to use because updating
the conditional variance using the score of the log-density instead of the second moments
can improve a model’s fit to data. GAS models also have the advantage of being easily
estimated by maximum likelihood methods rather than the simulation-based estimation
methods which are necessary for more complex models such as stochastic volatility models.
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Additionally, there is evidence suggesting that the heavy-tailed GAS volatility models are
more successful empirically when compared to GARCH and stochastic volatility models.
For example, Koopman et al. (2016) use simulated data to show that score-driven GAS(1,1)
models have better forecast accuracy than GARCH models. Blazsek and Villatoro (2015)
and Blazsek and Mendoza (2016) find that a Beta-t-EGARCH(1,1) model forecasts better
than a simple GARCH(1,1) model during the post-financial crisis era, for nine global
industry price indexes and 50 stocks from the S&P 500 index respectively.

GAS models are also found to be robust to some forms of misspecification. For example,
GAS models perform well in forecasting even though the data are not generated from GAS
models. Koopman et al. (2016) use simulated data to show that GAS models have similar
forecast accuracy to that of state-space models, when the data are generated by state
space models. Another example is that the Student’s t-GAS model, in particular, is less
sensitive to outliers than Bollerslev’s (1987) t-GARCH model, which also assumes that
the errors follow a Student’s t-distribution. This is because in the t-GAS model, a large
absolute realization of an observation does not necessarily lead to a large increase in the
variance (Creal et al., 2013; Harvey, 2013). As mentioned by Maddala and Kim (1998),
structural breaks can be considered to be one type of outlier. They can also be viewed as
permanent outliers (see Harvey et al., 2001; Darné and Diebolt, 2005). Thus, this raises the
question of whether GAS volatility models are less sensitive when parameter non-constancy
is neglected in estimation than models not updated by the score.

The effect of ignoring parameter non-constancy on the estimated persistence of the con-
ditional variance has yet to be fully addressed in the literature on GAS volatility models.
This issue is important because if the persistence parameter equals one, then the conditional
variance exhibits unit root behaviour and the unconditional variance is undefined, implying
that any shock to the variance will not gradually decline (Lamoureux and Lastrapes, 1990).
On the other hand, the impact of neglecting structural breaks in volatility has been raised
only in the GARCH literature. Hillebrand (2005) shows that the persistence parameter of
a standard GARCH(1,1) model is overestimated and approaches one if structural breaks
in the parameters are neglected, while Lamoureux and Lastrapes (1990) find that ignor-
ing structural breaks in unconditional volatility can give rise to IGARCH-like behaviour.
Similarly, in their empirical study of oil price volatility, Ewing and Malik (2017) find that
accounting for endogenous structural breaks in asymmetric GARCH models can decrease
estimates of persistence. Ardia (2009) incorporates Markov-switching regimes into Glosten
et al.’s (1993) asymmetric GARCH model and applies Bayesian methods. Using the Swiss
Market Index log-return, he finds that incorporating Markov-switching regimes improves
the fit and produces better out-of sample forecasts. Rohan and Ramanathan (2012) ex-
tend Ardia’s (2009) study to general GARCH models and produce a formal test to identify
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break dates. They apply their model to both simulated data and empirical data such as
the Dow Jones and S&P 500 stock price indexes and the USD/EURO exchange rate and
are successful in identifying the first week of September 2008 as a break date coinciding
with the 2008 Financial Crisis.

Hence, this paper contributes to the literature by extending the simple Monte Carlo
simulations of Hillebrand (2005) to two GAS models – the t-GAS and Beta-t-EGARCH
models – to examine what happens to the estimated volatility persistence parameter when
structural breaks are ignored in estimation. This is done by generating data sets in which
a break in one parameter occurs in the middle of the sample, and then estimating the two
GAS models under the assumption that the parameters are constant. Leverage effects are
included in the version of the Beta-t-EGARCH model examined.

For purposes of comparison, the paper also simulates the Gaussian GARCH model
using two different generating processes, to see if the results are sensitive to whether the
GAS formulation or standard GARCH formulation is used. Nelson’s (1991) EGARCH
model with leverage effects and Bollerslev’s (1987) t-GARCH model are also simulated in
this paper. Again, the simulated data sets include a break in one parameter in the middle
of the sample, but the GARCH, EGARCH, and t-GARCH models are estimated under
the assumption of constant parameters. As is the case for the t-GAS model, there do not
appear to be any previous studies of the effects of breaks in volatility on estimates of the
EGARCH and t-GARCH models.

For all the models considered, the effects of breaks on the empirical sampling distri-
bution of the estimator of the persistence parameter are examined. Following Lumsdaine
(1995), the coverage probabilities of the standard confidence interval for the persistence
parameter are computed as well. Studying the impact of breaks on coverage probabilities
is important because a decline in the coverage probability is associated with an increase in
the probability of Type I error in hypothesis testing.

This paper is organized as follows. Section 3.2 briefly presents the time-varying volatil-
ity models considered. Section 3.3 describes the design of the simulation study, while
section 3.4 presents the results. Finally, section 3.5 concludes and makes suggestions for
the direction of future research.
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3.2 GAS versus non-GAS time-varying volatility mod-

els

For all models considered in this paper, it is assumed that the conditional mean is specified
as the following autoregressive (AR) process with one lag:

yt = µ+ φyt−1 + ut, (3.1)

where
ut = σtvt (3.2)

and yt is the dependent variable of interest at time t. µ and φ are the conditional mean
parameters. The error term ut has a mean of 0 and variance σ2

t . vt is assumed to be
generated by a standardized disturbance density p(vt). The mean of vt is 0 and its variance
is 1. How the conditional volatility is specified varies with each model.

The GAS volatility models considered in this simulation analysis are the t-GAS, GARCH,
and Beta-t-EGARCH models. In Creal et al.’s (2013) formulation of GAS volatility models,
the conditional variance is updated by the score of the log-density as follows:

σ2
t = ω +

∑p
i=1Aist−i +

∑q
j=1Bjσ

2
t−j (3.3)

where st = St∇t is the scaled score function, ∇t =
∂ ln p(ut|u1,u2,...,ut−1,σ2

1 ,σ
2
2 ,...,σ

2
t−1;φ)

∂σ2
t

is the

score function of the log density of ut with φ = {φ1, φ2, ..., φp} representing the set of static
parameters of the model, and St = I(φ)−1

t|t−1 = (Et−1[∇t∇′t])−1 is the scaling matrix func-

tion.1 Ai represents the scaled score parameter and Bi denotes the persistence parameter
of σ2

t for lag i. ω is the constant parameter in the conditional variance equation. Blasques
et al. (2014) show that the condition

∑l
j=1Bj < 1 must hold in order for the GAS(p,q)

process to be stationary.

If vt follows a standard Student’s t distribution, then

p(ut|u1, u2, ..., ut−1, σ
2
1, σ

2
2, ..., σ

2
t ;φ, η) =

Γ(η+1
2

)√
π(η − 2)σ2

tΓ(η
2
)

(
1 +

u2
t

(η − 2)σ2
t

)− η+1
2

, (3.4)

1Note that, as mentioned by Creal et al. (2013), the scaling matrix St can also take the form of an
identity matrix I or the square root of I(φ)−1t|t−1, leading to different types of GAS models. For simplicity,

this paper looks at only the Student’s t and Gaussian volatility cases with St = I(φ)−1t|t−1.
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where η represents the degrees of freedom of the distribution. Following Creal et al. (2013),
the score of the density in this case is

∇t =
∂ ln p(ut|u1,u2,...,ut−1,σ2

1 ,σ
2
2 ,...,σ

2
t−1;φ,η)

∂σ2
t

= −0.5
σ2
t

+ η+1
2

u2t
(η−2)σ4t

1+
u2t

(η−2)σ2t

.
(3.5)

Using equation (3.5), the scaling matrix for this model is

S =

Et−1

[
−0.5

σ2
t

+ η+1
2

u2t
(η−2)σ4t

1+
u2t

(η−2)σ2t

]2
−1

.

= η
2σ2
t (η+3)

.

(3.6)

If equation (3.6) is multiplied by equation (3.5) and the product is substituted into equation
(3.3), then one obtains the Student’s t GAS(p,q) model, also known as the t-GAS(p,q)
model of Creal et al. (2013):

σ2
t = ω +

∑p
i=1 Ai(1 + 3η−1).

(1+η−1)u2t−i

(1−2η−1)

[
1+

η−1u2
t−i

(1−2η−1)σ2
t−i

] +
∑q

j=1 Bjσ
2
t−j. (3.7)

Assuming that the stationarity condition holds, the unconditional variance is

σ2 = ω
1−
∑q
j=1Bj

(3.8)

for the t-GAS model. By setting p = q = 1, one obtains the t-GAS(1,1) model,

σ2
t = ω + A(1 + 3η−1).

(1+η−1)u2t−1

(1−2η−1)

[
1+

η−1u2t−1

(1−2η−1)σ2t−1

] +Bσ2
t−1 (3.9)

and its unconditional variance
σ2 = ω

1−B . (3.10)

Creal et al. (2013) demonstrate that Bollerslev’s (1986) GARCH model is also a GAS
model. If vt = ut

σt
has a standard Normal distribution, then

p(ut|u1, u2, ..., ut−1, σ
2
1, σ

2
2, ..., σ

2
t ;φ) =

1√
2πσ2

t

e
− u2t

2σ2t . (3.11)
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This implies that the score of the density is

∇t =
∂ ln p(ut|u1,u2,...,ut−1,σ2

1 ,σ
2
2 ,...,σ

2
t−1;φ)

∂σ2
t

= −0.5
σ2
t

+ 0.5
u2t
σ4
t
.

(3.12)

Hence,
S = (Et−1 [∇t∇′t])

−1

=

(
Et−1

[
−0.5

σ2
t

+ 0.5
u2t
σ4
t

]2
)−1

= 2σ4
t .

(3.13)

Multiplying (3.13) by (3.12), setting p = q = 1, and substituting the result into equation
(3.3) yields

σ2
t = ω + A

[
u2
t−1 − σ2

t−1

]
+Bσ2

t−1. (3.14)

As mentioned in Creal et al. (2013), equation (3.14) is more commonly written in the
form

σ2
t = ω + Au2

t−1 + (B − A)σ2
t−1, (3.15)

σ2
t = ω + αu2

t−1 + βσ2
t−1, (3.16)

where setting α = A and β = B − A leads to the familiar GARCH(1,1) model, in which
α is the ARCH parameter that captures the effect of past shocks and β is the GARCH
parameter that captures the effect of the previous conditional variance. The unconditional
variance is

σ2 = ω
1−α−β

= ω
1−B .

(3.17)

Thus, if one chooses the scaling matrix to be the inverse of Fisher’s information matrix
and assumes that the errors are normally distributed, the GAS(1,1) model reduces to a
GARCH(1,1) model under normality. The t-GAS(1,1) model reduces to the GARCH(1,1)
model only if the degrees of freedom are infinite.

The Beta-t-EGARCH(1,1) model with leverage effects (referred to as, henceforth, the
Beta-t-EGARCH(1,1) model) is another type of model encompassed by the GAS frame-
work. Harvey and Chakravarty (2008) introduce this model to address the nonexistence
of the unconditional moments of a Student’s t-EGARCH(1,1) model with finite degrees of
freedom. If the parameter of interest is instead log σ2

t , the scaling matrix is the identity
matrix, vt follows a Student’s t-distribution, and a leverage effect is added to the model,
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then one obtains the Beta-t-EGARCH(1,1) model considered in this study. In this case,
the scaled score of the log density with respect to the parameter of interest is

st = −1
2

+ η+1
2

u2t
(η−2)σ2t

1+
u2t

(η−2)σ2t

= 1
2

(
(η+1)u2t

(η−2)σ2
t+u2t

− 1
)
.

(3.18)

Substituting (3.18) into (3.3), replacing σ2
t with log σ2

t , and adding a leverage effect gives
the following equation:

log σ2
t = ω +

∑p
i=1(Aist−i + A∗i 1(ut < 0)(st−1 + 1)) +

∑q
j=1Bj log σ2

t−j

= ω +
∑p

i=1

[
Ai

(
(η+1)u2t−i

(η−2)σ2
t−i+u

2
t−i
− 1
)

+ A∗i I(ut < 0)(
(η+1)u2t−i

(η−2)σ2
t−i+u

2
t−i

)
]

+
∑q

j=1Bj log σ2
t−j

(3.19)
With p = q = 1, the Beta-t-EGARCH(1,1) model and its unconditional variance are
represented by

log σ2
t = ω + A

(
(η+1)u2t−1

(η−2)σ2
t−1+u2t−1

− 1
)

+ A∗I(ut < 0)
(

(η+1)u2t−1

(η−2)σ2
t−1+u2t−1

)
+B log σ2

t−1 (3.20)

and
σ2 = exp

(
ω

1−B

)
, (3.21)

respectively. A∗ is the leverage effect parameter.

The two non-GAS models used for comparison are the t-GARCH(1,1) and EGARCH(1,1)
models. Bollerslev’s (1987) t-GARCH(1,1) model is identical to that in equation (3.15),
except that the underlying distribution is a Student’s t-distribution, not a Gaussian dis-
tribution. It is important to note that, although the normal GAS(1,1) model reduces to
a GARCH(1,1) model, the t-GAS(1,1) model does not reduce to a t-GARCH(1,1) model.
This is because the t-GAS(1,1) updating mechanism in the second term of (3.9) differs from
the corresponding mechanism described by equation (3.15). The degrees of freedom appear
in the second term of the t-GAS(1,1) model, while the second term of the t-GARCH(1,1)
model depends only on the past squared error term. As Creal et al. (2013) and Harvey
(2013) point out, the updating mechanism in the second term of the t-GAS(1,1) model pro-
vides a more modest increase than the second term of the t-GARCH(1,1) model; a large
absolute realization of ut would not necessarily lead to a large increase in the variance.
Hence, the t-GAS(1,1) model is less sensitive to outliers than the t-GARCH(1,1) model.

Nelson’s (1991) exponential GARCH (EGARCH) model also incorporates leverage ef-
fects and is not score-based. As in the Beta-t-EGARCH(1,1) model, the parameter of
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interest for the EGARCH model is also log σ2
t , which is given by

log σ2
t = ω + A(|vt−1| − E|vt−1|) + λvt−1 +B log σ2

t−1. (3.22)

If vt is normally distributed, the conditional and unconditional variances are respectively

log σ2
t = ω + A(|vt−1| −

√
2
π
) + λvt−1 +B log σ2

t−1, (3.23)

and
σ2 = exp

(
ω

1−B

)
, (3.24)

where ω is the constant, λ captures the leverage effect, and B denotes the persistence
parameter of the EGARCH(1,1) model.

Unlike the t-GAS(1,1) and GARCH(1,1) models, the Beta-t-EGARCH(1,1) and the
EGARCH(1,1) models do not require restrictions to be imposed on their parameters to
ensure that the conditional variance is positive. However, B < 1 is required for stationarity
of the unconditional variance to hold. The next task is to examine, using a small-scale
Monte-Carlo simulation, the impact of failing to take into account structural breaks in the
parameters of the volatility models on the estimated persistence parameter B̂. This task
will include a comparison of the effects of neglected structural breaks on the GAS and
non-GAS models.

3.3 Monte-Carlo simulation study design

The design of the simulation study follows that of Hillebrand (2005). Hillebrand conducts
a study of the effects of neglecting parameter changes in α, β, and ω on the sum of the
estimated parameters α̂ and β̂ in the GARCH(1,1) model. He generates data for four
different sample sizes – T = 200, 800, 4000, and 10000 – under this assumption. Also,
he selects parameter values such that the generated data mimic the behaviour of financial
time series data, with breaks taking the form of a change in parameters in the middle of
each sample. Afterwards, he computes maximum likelihood estimates of the GARCH(1,1)
model for each simulated data set using quasi-Newton methods. In doing so, he imposes
constraints on the parameters (ω > 0; α, β ≥ 0; α+β < 1) to ensure that the unconditional
variance is positive. Hillebrand (2005) finds that ignoring changes in the DGP of the
conditional variance of GARCH(1,1) models can cause the parameters of the conditional
variance to be substantially overestimated, leading the sum of α̂ and β̂ to approach one.
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This is a concern because in order for the GARCH(1,1) model to be covariance stationary,
the sum of α and β must be strictly less than one.2

The simulation analysis carried out in this paper differs from that of Hillebrand (2005)
in that the focus is on the effects of ignoring a structural break on the estimated persistence
parameter, B̂. The reason for focusing on the persistence parameter is that when GARCH
models are applied to financial data, B̂ tends to be high. High persistence may indicate
that structural breaks are present (see Zivot, 2009; Hillebrand, 2005; Andreou and Ghysels,
2009). However, Hillebrand focuses only on the basic GARCH model. In this paper,
the study of neglected breaks is expanded to the t-GAS, Beta-t-EGARCH, EGARCH,
and t-GARCH models, with the standard GARCH model also included for purposes of
comparison. Furthermore, this simulation study includes the impact of a break in η (models
with Student’s t-distribution only).

In the case of the GARCH model, the simulated data are generated using two alternative
DGPs. The first is the standard GARCH DGP, given by equation (3.16). The second, called
the GAS-GARCH model hereafter, is described by equation (3.14). The difference between
the two formulations is that in the standard GARCH model, a change in the parameter A
also shifts the parameter B (equal to α+β), while in the GAS-GARCH model, changes in
A do not change B. In both cases, it is the GAS-GARCH formulation of equation (3.14)
that is estimated. Similarly, equation (3.16) is used for to generate data for the t-GARCH
model, but the GAS parameterization of equation (3.14) was used in estimating it. This
is done to ease the comparison between the effect of ignoring the breaks on the persistent
parameter of the t-GARCH model with that of the other models. Note that changes in
the parameter ω have no effect on the values of the other parameters of the DGP for the
GARCH and t-GARCH models, regardless of the parameterization used.

For each simulation, the initial value of y at time t = 1 is a random number drawn
from the standard normal distribution. The parameters of the conditional mean equation
are fixed at µ = 0 and φ = 0.7. For the t-GAS(1,1), GARCH(1,1), GAS-GARCH(1,1),
and t-GARCH(1,1) models, the initial parameter values of the conditional variance are ω
= 0.2, α = A = 0.1, and B = 0.8. The corresponding unconditional variance is equal to
one. The parameter values for the EGARCH(1,1) and Beta-t-EGARCH(1,1) models are ω
= 0 and B = 0.8, to ensure that the unconditional variance for these models is also equal
to one. In the case of the three t-distribution models, the degrees of freedom are equal to
five. For the EGARCH(1,1) model, the leverage effect parameter λ is equal to -0.09, and
for the Beta-t-EGARCH(1,1) model, the leverage effect parameter A∗ is equal to 0.08.3

2Recall that A and α are equivalent in this paper.
3In empirical studies, the EGARCH leverage effect parameter tends to be negative and the Beta-t-

36



Following Hillebrand (2005), multiple parameter switches are considered. Hillebrand
considers ten, but this paper examines only five parameter switches for each model. For
each model and sample size, the first simulation assumes no structural break. The uncon-
ditional standard deviation σ is set to σ1 = 1. For all models, breaks in the parameter
ω are chosen to correspond to the prespecified breaks in the conditional variance. After
the break, σ = σ2, where ω2 ranges from 1.15 to 1.75 with increments of 0.15 in each
subsequent simulation.4 For the GARCH, GAS-GARCH, t-GARCH, and t-GAS models,
changes in B are also chosen to correspond to changes in σ. Since the initial value of ω
is zero in the EGARCH and Beta-t-EGARCH models, the same change in B is applied
in these models. In the case of the GARCH and t-GARCH models, changes in A and β
also reflect the changes in σ, with changes in A causing a simultaneous change in B. The
parameter shifts in A that shift the unconditional variance of the GARCH and t-GARCH
models are then applied to the GAS-GARCH, t-GAS, EGARCH, and Beta-t-EGARCH
models, in which B remains constant when A changes. Although the parameter η does not
affect the unconditional volatility of any of the t-distribution models, the effects of ignoring
changes in it upon estimation are still assessed. Table 3.1 summarizes the changes in each
parameter for the simulation study.

In each simulation, only one parameter of the volatility model is changed. For example,
when ω changes as indicated in table 3.1, A, B, and η retain the same values as in the
no structural break case. In each model, simulations are carried out for six different
sample sizes: T = 250, 500, 1000, 2500, 5000, and 10000. These sample sizes reflect
common sample sizes for macroeconomic and financial time series data. Although most
macroeconomic time series tend to be of low frequency (i.e., quarterly or annual), high
frequency data are available for some macroeconomic variables. For example, there are
about 1000 monthly observations for U.S. inflation from 1947 to 2016, while the weekly
federal funds rate series has over 3000 observations. In contrast, financial time series
data tend to be of high frequency (i.e., hourly, daily, or weekly). A sample size of 10,000
observations corresponds to the size at which the asymptotic results become valid for high
frequency data. For each simulation, two thousand datasets of each sample size are drawn.

For each model, the parameters µ, φ,A,B, and η (if applicable) are jointly estimated

EGARCH leverage effect parameter tends to be positive. See Zivot (2009), Harvey and Chakravarty
(2008), and Harvey (2013).

4The 75% increase in volatility is motivated by the increase in US inflation volatility after March 1999.
Note that the volatility of the inflation rate increased from approximately 0.0016 in the January 1984-
March 1999 period to 0.0033 in the post-March 1999 period. However, volatilities have been normalized to
equal 1 in order to have a clear understanding of the simulation results and to obtain simpler parameter
values for the conditional variance constant, ω. Bataa et al. (2014) find that the US experienced a couple
of breaks in (conditional) volatility in inflation, one in April 1992 and the other in March 1999.
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using quasi-maximum likelihood estimation for each dataset.5 During the estimation pro-
cess, parameter restrictions are imposed on all models except the Beta-t-EGARCH(1,1)
and EGARCH(1,1) models, to ensure that the conditional variance is positive. These re-
strictions are ω ≥ 0, A > 0, and A ≤ B < 1 (for the GARCH(1,1), GAS-GARCH(1,1),
and t-GARCH(1,1) models) or 0 < (1 + 3

η
)A < B (for the t-GAS(1,1) model).6

3.4 Simulation results

This section summarizes the results of the Monte-Carlo simulations. For each simulation,
the results are evaluated using two different methods. Firstly, the mean and standard
deviation of the sampling distribution of the persistence parameter estimate, B̂, are pro-
duced using the two thousand observations of B̂. Secondly, following Lumsdaine (1995),
coverage probabilities of the 90% and 95% confidence intervals for B are constructed in
the following manner. First, confidence intervals for B are produced using the equation

B̂ ± t1−α/2
√
var(B̂), where t1−α/2 = 1.645 for the 90% case and t1−α/2 = 1.96 for the 95%

case. var(B̂) is estimated using the element of the estimated variance-covariance matrix
corresponding to B̂. Afterwards, the number of times the true value falls within the con-
fidence interval is divided by the number of datasets drawn (2,000). This measurement is
known as the coverage probability.

The simulation results are presented in two tables for each parameter which experiences
a structural break in the middle of the sample (see tables 3.2 to 3.7). In each table, the first
row contains the base case of no structural breaks. The subsequent rows display the results
when a structural break occurs in the middle of the sample, but is ignored in estimation.
The first table summarizes the mean and standard deviation of the sampling distribution
of B̂ for each simulation. The second table contains the coverage probabilities of the
90% and 95% confidence intervals for B. In addition, it contains the standard error of the
coverage probability. The standard error is constructed using the Bernouilli equation, as in

Lumsdaine (1995):
√

x̂(1−x̂)
N

, where x̂ is the coverage probability estimate and N (=2,000) is

the number of draws in the simulations. These standard errors appear in parentheses below

5All analysis and results were generated using The Mathworks Inc. (2014) MATLAB programs.
MATLAB packages for the estimation of GAS models were downloaded from the GAS Models website
(http://www.gasmodel.com/code.htm), and Martin et al. (2013) provided examples on how to conduct
Monte Carlo simulations.

6Conditions for ensuring positivity in the GAS model variances are from Creal et al. (2013) and Blasques
et al. (2014).
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the coverage probabilities. Lastly, relative frequency histograms are displayed for a sample
size of T = 10000 for three cases: no structural break in the top panel, a medium-sized
break in the middle panel, and a large break in the bottom panel.

3.4.1 Impact of ignoring a break in ω on B̂

Table 3.2 summarizes the simulation results for B̂ with and without the presence of a
break in ω. The results show that when there is no break in ω and the sample size is
small, the mean value of B̂ lies below the true value of B, 0.8. The downward bias in B̂
is most prevalent in the Beta-t-EGARCH(1,1) model, which has the lowest mean value of
B̂ for the sample sizes T = 250 and 500. On the other hand, the mean value of B̂ for the
t-GAS(1,1), GARCH(1,1), and GAS-GARCH(1,1) models is equal to 0.69, which is closer
to the true value than the mean value for the other models. However, when the sample
size is as large as 2500, the mean value of B̂ for all the models equals 0.79, almost equal
to the true value. Eventually, the mean value equals its true value when T = 10000 for all
the models.

When both the sample and break sizes are small, the mean value of B̂ is closer to
its true value than when there is no break in ω. For example, for the t-GAS(1,1) and t-
GARCH(1,1) models, the mean value of B̂ is 0.79 when the unconditional volatility switches
from 1 to 1.15 and T = 1000 as compared to 0.77 when there is no break. Similarly, at this
sample size, the mean value of B̂ for the GARCH(1,1), GAS-GARCH(1,1), and Beta-t-
EGARCH(1,1) models is equal to the true value of B when the change in the unconditional
volatility is equal to 0.15. Yet another example arises when T = 250 and the break in the
unconditional volatility is as large as 0.45, in which case, the mean values of B̂ for the
EGARCH(1,1) and Beta-t-EGARCH(1,1) models are both equal to 0.79. This result can
be explained by two biases offsetting each other. The first is that when the sample size
is small, the mean value of B̂ for all the models tends to underestimate the true value
of B. The second is that the mean value of B̂ tends to overestimate its true value when
structural breaks are ignored in estimation.

For all the models, the results also show that the mean value of B̂ eventually exceeds
the true value of B as the size of the break increases, and rapidly converges to one as the
sample size, T, approaches ∞. For instance, when the unconditional volatility switches
from 1 to 1.45 at T = 1000, the mean value of B̂ for the t-GAS(1,1) model is 0.91; similarly,
for this model, the mean value of B̂ equals 0.99 when the unconditional volatility changes
from 1 to 1.75 at T = 10000. As for the t-GARCH(1,1) model, the mean value of B̂ equals
0.99 when volatility increases by 0.75 and the sample size is equal to 2500. Given the same
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change in volatility, the mean value of B̂ for the GARCH(1,1) model equals 1 when T =
5000, and the mean of B̂ in the EGARCH(1,1) and Beta-t-EGARCH(1,1) models equals
1 and 0.98 respectively when T = 10000. Furthermore, a comparison of the GARCH and
GAS-GARCH columns reveals that using the GAS parameterization of the GARCH model
as the DGP does not affect the results. These results indicate that ignoring a break in
ω affects GAS models and non-GAS models in a similar manner. In addition, the results
for the GARCH(1,1) and t-GARCH(1,1) models are consistent with those of Hillebrand
(2005).

Figures 3.1 to 3.6 display the relative frequencies of the persistence parameter of the
five time-varying volatility models, for a sample size of 10000. The no structural break
case is in the top panel, a medium-sized break of 0.45 is displayed in the middle panel,
and in the bottom panel, there is a large break of 0.75. The figures show that when there
is no break in ω, the sampling distributions of B̂ in all the models center around the true
value that equals 0.8. However, these figures also show that the sampling distributions of
B̂ become narrower and shift rightwards towards one as the size of the break increases.
This result is consistent with those of table 3.2, where the mean value of B̂ approaches one
and the standard deviation of B̂ decreases to zero as the size of the break in ω increases.

These same figures also indicate that Gaussian models are more sensitive to a break in
ω than the Student’s t models. If the size of the break is medium, then it is the EGARCH
model that is most sensitive to the change in ω, because its distribution of B̂ becomes
a point mass at one. The figures also show that the GARCH model requires a smaller
break in order for the sampling distribution of B̂ to collapse to one than the t-GAS and
t-GARCH models. The probability that B̂ > 0.95 for the GARCH(1,1) model is larger
than the probability that B̂ for the t-GAS(1,1), t-GARCH(1,1), and Beta-t-EGARCH(1,1)
models. The performance of the GAS-GARCH model is similar to that of the GARCH
model. The sensitivities of the t-GAS and t-GARCH models to a break in ω are similar
as well. If the size of the break is large (∆σ = 0.75), the sampling distribution of B̂ in all
models collapses to one. With the large break size, the empirical sampling distributions of
both the EGARCH and GARCH models are point masses at one. The GAS specification
of GARCH model also has a distribution with a point mass at one, and the EGARCH
model has the highest probability of B̂ being equal to one (0.9). The GARCH model
has the second-highest probability, followed by the t-GAS and t-GARCH models. The
Beta-t-EGARCH(1,1) model has the smallest probability.

The fact that the sampling distributions of B̂ for the Gaussian models collapses to
one at smaller break sizes than the sampling distributions for the t-distribution models
suggests that the presence of heavy tails dampens the effect of ignoring the breaks in ω.
The presence of heavy tails may also explain why the t-GAS and t-GARCH models are
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less sensitive to breaks than the GARCH and EGARCH models. However, the Beta-t-
EGARCH model also have Student’s t errors and yet it has the smallest probability of B̂
being equal to one. This phenomenon may be the result of the Beta-t-EGARCH model
having a combination of features such as the log-variance being the time-varying parameter
instead of the variance, volatility being updated by the score of log-density, and being a
t-distribution model. The similarity of the GARCH and GAS-GARCH results implies that
the choice of the data generating process does not alter the effect of ignoring a break in ω
on B̂.

Table 3.3 summarizes the coverage probabilities of the 90% and 95% confidence intervals
for B. The results show that if there is a structural break in unconditional volatility and
this break is ignored in estimation, then the 90% and 95% coverage probabilities for B
decrease as the size of the break increases. In addition, as the sample size T approaches
∞, the coverage probabilities rapidly decrease to zero.

If there is no break, then the coverage probabilities for B in all models converge to 90%
and 95% respectively as T approaches∞. In this case, the t-GARCH model has the highest
coverage probability for all sample sizes. In contrast, the EGARCH model has the lowest
coverage probabilities for sample sizes T = 250, 500, and 1000; the t-GAS and t-GARCH
models have the lowest coverage probabilities for T = 2500; and the Beta-t-EGARCH(1,1)
model has the lowest for the larger sample sizes T = 5000 and 10000. In addition, for
all sample sizes, the GAS-specified GARCH model has the same coverage probabilities as
the GARCH model. Once again, this implies that using a different DGP for the GARCH
model has no impact on the effect of a break in ω that is ignored in estimation.

Compared to the no break case, all models experience a decrease in the 90% and 95%
coverage probabilities for B when a break occurs. In all cases, the GAS specification of
the GARCH model has the same coverage probabilities as the standard specification of
the GARCH model. For a small break, the GARCH model experiences the largest drop
in the coverage probabilities. In contrast, the t-GAS model has the smallest decrease in
coverage probabilities. Additionally, the t-GARCH model does not generally have the
highest coverage probabilities for B when the break is small. For larger sample sizes, the
t-GAS model has the highest coverage probabilities for the 90% confidence intervals when
T = 2500 and 10000. The t-GAS model also has the highest 95% coverage probability for
T = 1000, 2500, 5000, and 10000.

Table 3.3 shows that when the change in volatility is mid-sized (∆σ = 0.3 or 0.45), the
Beta-t-EGARCH model has the highest coverage probabilities for all sample sizes except
T = 250, in which case, the t-GAS model has the highest coverage probability, and T =
10000, where the EGARCH model has the highest coverage probability.
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The results indicate that for all models, when a break in ω is ignored the coverage
probability of the confidence intervals for B decreases to zero. The rate at which the
coverage probabilities for B̂ approach zero may differ for each model, but in the end the
coverage probabilities are poor when the break is ignored. Also, the results indicate that
re-parameterizing the GARCH model into a GAS model has no impact on the effect of
ignoring a break in ω, since the coverage probability is the same. The results imply that
problems in inference can arise when the break in ω is ignored, a decrease in coverage
probability is associated with an increase in the probability of a Type I error in hypothesis
testing.

3.4.2 Impact of ignoring a break in A on B̂

Table 3.4 summarizes the Monte Carlo simulations when a break in A is ignored. The
results show that the effect on the mean value of B̂ varies by model. For the t-GAS(1,1),
EGARCH(1,1), and Beta-t-EGARCH(1,1) models, not taking into account the parameter
change in A has little to no effect on the mean value of B̂. For example, on average,
B̂ for the t-GAS(1,1) model falls only slightly below its true value (equal to 0.8) if the
parameter A increases by at least 0.08 when T → ∞, while the mean value of B̂ for the
GAS-GARCH(1,1), EGARCH(1,1), and Beta-t-EGARCH(1,1) models converges to its true
value when A increases by the same amount. The estimator of B̂ remains consistent, as the
standard deviation decreases and approaches zero. These results may be linked to the fact
that changes in the parameter A in the t-GAS(1,1), GAS-GARCH(1,1), EGARCH(1,1),
and Beta-t-EGARCH(1,1) models does not produce a shift in the unconditional variance.

In contrast, table 3.4 shows that the mean values of B̂ for the GARCH(1,1) and t-
GARCH(1,1) models are noticeably affected by a change in A that is neglected in estima-
tion. The mean values converge towards one, but not as quickly as when ω changes. These
results are consistent with Hillebrand’s (2005). In contrast to the original GARCH speci-
fication, the neglected changes in A had relatively little effect on B̂ for the GAS-GARCH
model. Despite the GARCH and GAS-GARCH models being mathematically equivalent,
the effect of the change in A is not the same for the two models. These conflicting results
may be explained by the fact that in the standard GARCH parameterization, changes in A
causes B to also shift in the GARCH model, but not in the GAS-GARCH parameterization.
This implies that ignoring a break can affect the persistence parameter of the same model
differently, when it is re-parameterized in different forms. It also implies that whether or
not a neglected break occurs in a parameter that shifts the unconditional variance matters.

Figures 3.8 to 3.12 display the relative frequencies of B̂ when the change in A is ignored
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upon estimation. For the GAS-GARCH(1,1), t-GAS(1,1), EGARCH(1,1), and Beta-t-
EGARCH(1,1) models, these histograms show that the distribution of B̂ remains virtually
unchanged as the size of the break in A increases. In contrast, the distributions of B̂ in the
GARCH and t-GARCH models shift to the right as the size of a break in A increases. These
results also indicate that if the break occurs in parameters that shift the unconditional
variance and is ignored in estimation, then this break can shift the distribution of B̂,
collapsing to a mass point of one. These same results also show that neglected breaks in
the parameters that do not shift the unconditional variance may not have any effect on
the distribution of B̂.

Table 3.5 displays the coverage probabilities of B when the break in A is ignored. For
the t-GAS(1,1), GAS-GARCH(1,1), EGARCH(1,1), and Beta-t-EGARCH(1,1) models,
the change in A has little to no effect on the mean value of B̂, but the change did have
some effect on the coverage probability for B. In sample sizes T = 250, 500, and 1000,
the coverage probability for B is slightly higher when breaks in A are ignored than when
there are no breaks in A under the t-GAS(1,1), EGARCH(1,1), and Beta-t-EGARCH(1,1)
models. For example, for the t-GAS model, the 95% coverage probability for B increase
by 2.3 and 2.9 percentage points when T = 500 and 1000 respectively if the break in A is
as large as 0.13. Another example is that the 95% coverage probability for B for the GAS-
GARCH, EGARCH, and Beta-t-EGARCH models increases by as much as 5 percentage
points compared to the no break case when T = 500 and when the size of the break is
0.13. However, coverage probabilities decrease slightly in the presence of a break in A if T
= 5000 or 10000 for the t-GAS(1,1) model. The decreases in the 90% and 95% coverage
probabilities for the t-GAS model range from 0.3 to 3.5 percentage points and from 1 to
2 percentage points respectively. For the EGARCH(1,1) model, the coverage probability
increases by only 1 percentage point when a break in A is ignored as compared to when
there is no break if T = 2500 or 5000. With T = 10000, the EGARCH(1,1) coverage
probabilities for B decrease slightly (1 to 2.5 pp) when the break in A is neglected for the
90% confidence interval and relatively unchanged for the 95% confidence interval. In the
case of the Beta-t-EGARCH(1,1) model, when structural breaks are ignored the coverage
probabilities for B is either slightly lower or almost the same as in the case where there are
no structural breaks in A. In contrast, for the GARCH(1,1) and t-GARCH(1,1) models,
the coverage probabilities for B decrease to zero as T approaches ∞ and the size of the
break in A increases. The GARCH(1,1) and t-GARCH(1,1) coverage probabilities for B
are also summarized in table 3.5.

The results imply that if a break occurs in a parameter that shifts the unconditional
volatility, then the coverage probability for B converges to zero. Furthermore, these same
results also indicate that if the break occurs in a parameter that does not shift the un-
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conditional volatility, then the coverage probabilities for B also decrease, but only by a
small amount. The decrease in coverage probability is associated with an increase in the
probability of a Type I error in hypothesis testing. This implies that the probability of a
Type I error is higher when the parameter shifts the unconditional volatility than when
the parameter does not shift unconditional volatility.

3.4.3 Impact of ignoring a break in η on B̂

Table 3.6 summarizes the Monte Carlo simulation results for the mean values of B̂ of
the t-GAS(1,1), Beta-t-EGARCH(1,1), and t-GARCH(1,1) models when the break in η is
ignored. The results show that ignoring a break in η during estimation has no effect on
the mean value of B̂. This conclusion is confirmed in figures 3.13 to 3.15, since a break
in η does not shift the distribution of B̂ for any model. Note that η is another parameter
that does not shift the unconditional variance. Once again, this suggests that a break in a
parameter that does not change the unconditional variance has little to no effect on B̂.

However, the change in η behaves in a similar manner to the change in A for the t-GAS,
Beta-t-EGARCH, and EGARCH models. It does not affect B̂, but it does slightly affect
the coverage probability of B. According to table 3.7, the t-GAS model has slightly lower
90% and 95% coverage probabilities for B when a structural break in η is present than
when no structural breaks are present. For the t-GAS model, the coverage probabilities
for B decrease by about 1 to 3 percentage points. In the case of the Beta-t-EGARCH
model, the coverage probability of B is relatively stable for T = 500, 1000, and 2500 as
the size of the break increases. Additionally, the coverage probability of B for the Beta-t-
EGARCH model generally decreases by 1 to 2 percentage points when T = 5000 and 10000
and the size of the break in η increases. With the exception of T = 10000, the coverage
probability for B of the t-GARCH model is relatively unchanged for all sample sizes and
as the break size increases. The t-GARCH coverage probabilities for B decrease slightly at
T = 10000. Comparing the models, the results also indicate that the t-GAS model has the
lowest coverage probability regardless of sample and break sizes. However, the t-GARCH
and Beta-t-EGARCH models have similar coverage probabilities in the presence of a break
in η.

As discussed in section 3.4.2, the results show that a break in parameter that does
not shift the unconditional volatility has only a slight impact on the coverage probability.
The unconditional variance for all three models does not depend on η. For the t-GARCH
model, the effect of ignoring a break in A on the coverage probability for B differs from
the effect of ignoring a break in η. This is because A shifts the unconditional variance of
the t-GARCH model and η does not.
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3.4.4 Impact of ignoring a break in B on B̂

Table 3.8 displays the effect of ignoring a break in B on the sampling distribution of B̂ for
the t-GAS(1,1), EGARCH(1,1), and Beta-t-EGARCH(1,1) models.7 A second simulation
of the Beta-t-EGARCH model is carried out with the initial value of ω set equal to 0.2
rather than 0 because the original parameters for this model are such that changes in B
would have no effect on the unconditional variance. The results of both simulations of the
Beta-t-EGARCH model are included in the table.8

The results show that the impact of neglecting a break in B on B̂ is similar to that of
neglecting a break in ω. The mean value of B̂ in all three models converges to one as T
approaches ∞ and the size of the break in B increases. In addition, the rate at which the
mean value of B̂ approaches one varies. For example, for the t-GAS(1,1) model, the mean
value of B̂ never exceeds 0.97, even for the largest break size and T = 10000. However,
for the other two models, it exceeds 0.97 at all sample sizes, in some cases for small and
moderate breaks. As in the case of ω and A, when both the sample size and the size of the
break in B are small, ignoring a structural break in B appears to bring the mean value of
B closer to the true value.

Hence, the effects of breaks in ω and B on the mean value B̂ are similar. This similarity
may be due to the fact that both parameters have the ability to shift the unconditional
variance in all models. The effects of ignoring a break in B on the coverage probabilities
of the confidence intervals for parameter B is not studied here because B changes in mid-
sample. Hence there is no true value of B, and thus no results for this particular case are
discussed in this paper.

3.5 Other results

The focus of this paper is the impact of ignoring parameter non-constancy on the per-
sistence parameter. However, the impact of ignoring structural breaks on the parameter
estimates of A, ω, and η are in the Appendix. For instance, a change in ω causes Â and η̂
to fall below their true values on average and approach zero as T goes to infinity and the
size of the break increases. The coverage probabilities for parameters A and η decrease to

7Some of the models were not analyzed because of time constraints. In addition, what the preliminary
results for the other models are consistent with the finding that parameters that shift the unconditional
variance affect B̂ in all models.

8A similar approach would have been taken applied to EGARCH model, but due to time constraints
the alternative simulation was not carried out.
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zero, but at a slower rate than the coverage probability for B. Among the t-distribution
models, the t-GARCH model is the most sensitive to breaks in ω because it has the lowest
coverage probability for η when breaks are ignored.

A break in the parameter A has little effect on ω̂ for all the models. With the exception
of the t-GARCH model, the mean value of ω̂ for all models either converges to or is close
to the true value, irrespective of the size of the break. The coverage probabilities for ω for
the t-GAS model slightly increase for T = 250, 500, and 1000 and slightly decrease for T
= 2500, 5000, and 10000.

Also, a break in A has a small effect on η̂. In some cases, the presence of a break in
A helps bring the mean value closer to its true value. Similar to the impact on B̂, the
coverage probability for η either slightly decreases or remains relatively unchanged across
all models and break sizes. This suggests that a break in parameters that do not change
the unconditional volatility also have little to no effect on the estimated degrees of freedom
parameter.

3.6 Conclusion

This paper conducts a Monte-Carlo simulation study of the effects of ignoring parameter
non-constancy on five different volatility models. Of these models, three – the GARCH(1,1),
t-GAS(1,1), and Beta-t-EGARCH(1,1) – are GAS models, while the other two – t-GARCH(1,1)
and EGARCH(1,1) – are not. The effects of the breaks are assessed by examining the be-
haviour of the mean value of the estimated persistence parameter and the coverage proba-
bilities of the nominal 90% and 95% confidence intervals for the persistence parameter as
the sample size approaches infinity. This study produced several findings.

The first finding is that there are similarities between GAS and non-GAS models when
structural breaks in the conditional volatility parameters are neglected. In all the mod-
els, when some parameters shift in the middle of the sample, the estimated persistence
parameter converges to one as the size the break increases. Additionally, the coverage
probabilities of the 90% and 95% confidence intervals collapses to zero depending on the
size of the break in certain parameters and as the sample size approaches infinity. While
this study was motivated by a desire to compare the responses of GAS and non-GAS
models of volatility to breaks in their parameters, this study produces other interesting
findings.

The second finding is that ignoring a break in any parameter that shifts the uncondi-
tional variance, such as the constant or the persistence parameter, causes the mean value
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of the estimated persistence parameter in all models to exceed its true value and approach
one as the sample size approaches infinity and the break size increases. Additionally, the
same parameter shifts cause the coverage probability to approach zero as the size of the
break in the parameters increases.

The third finding of this study is that any parameter that does not shift the uncon-
ditional variance has little to no effect on the mean value of the estimated persistence
parameter. Examples of these parameters are the degrees of freedom parameter and the
score parameter. The same shift in the parameter can lower the coverage probability, which
is associated with an increase in the probability of making a Type I error. However, the
effect on the coverage probability is not as severe as the effect in the case of a parameter
that shifts the unconditional volatility.

Finally, the fourth finding of this study is that models based on the t-distribution
tend to be less reactive to breaks than models based on the Gaussian distribution. The
results suggest that a larger break is required for the sampling distribution of the estimated
persistence parameter to collapse to one for the t-distribution models than for the Gaussian
models. Similarly, the probability of the estimated persistence parameter being equal to
one is higher for the Gaussian models than for the t-distribution models.

Thus, this simulation study has several implications for practitioners. Firstly, the study
suggests that ignoring parameter non-constancy does not always lead to spurious persis-
tence. For instance, the results shows that a break in the score parameter can cause spuri-
ous persistence in the GARCH model, but if this same GARCH model is re-parameterized
to become a GAS-type model, then a break in this same parameter has little or no effect
on persistence. For practitioners, this suggests that it would be worthwhile to use the GAS
specification of the GARCH model instead of the standard GARCH model for analysis.
Secondly, the results from this study also suggest that if the break is small enough then
there will be little effect on persistence. A small break in parameters that shift the un-
conditional variance has only a small effect on persistence in all the models. This implies
that the size of the break also matters in estimating persistence in time-varying volatility
models. Hence, practitioners should check for parameter non-constancy in both GAS and
non-GAS models, especially for parameters that shift the unconditional variance. When
checking for breaks with small sample sizes, practitioners can ignore the break in the esti-
mated persistence parameter if they find that the percentage change in volatility is between
30% and 45%. Where the sample size is large, practitioners can ignore the break in the
estimated persistence parameter if the size of the break is as large as 15%. Thirdly, the
study has implications for forecasting. If the size of the break in parameters is small, then
there may not be any gain in using forecast methods that accommodate breaks.
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The findings of this study also suggest directions for future research. Since GAS models
that allow for integrated processes do not exist, one direction would be to develop GAS
models that allow for the persistence parameter to equal one. This type of model only
exists in the ARCH/GARCH class of models, called the integrated GARCH (IGARCH)
model. Another direction for future research would be to develop tests for parameter
non-constancy in GAS models. These tests can be developed using a similar approach
to that used by Smith (2008) for GARCH models. The results in this paper also raise
questions such as when structural breaks are ignored, what is the impact on GAS models
with non-normal distributions other than a Student’s t? Future research could expand
this simulation study to include GAS models with errors based on distributions other than
Gaussian and Student’s t. Future research could also extend Rapach and Strauss’s (2008)
study of the empirical relevance of structural breaks and their impact on forecasting to
GAS models, using data on variables such as oil prices, stock market prices, and exchange
rates.
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3.7 Empirical Distributions
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Figure 3.1: The effects of ignored breaks in ω on the sampling distribution of B̂ for the
t-GAS model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆ω = 0.22). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆ω = 0.41).
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Figure 3.2: The effects of ignored breaks in ω on the sampling distribution of B̂ for the
GARCH model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆ω = 0.22). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆ω = 0.41).
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Figure 3.3: The effects of ignored breaks in ω on the sampling distribution of B̂ for the
GAS specification of the GARCH model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆ω = 0.22). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆ω = 0.41).
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Figure 3.4: The effects of ignored breaks in ω on the sampling distribution of B̂ for the
t-GARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆ω = 0.22). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆ω = 0.41).

53



Figure 3.5: The effects of ignored breaks in ω on the sampling distribution of B̂ for the
EGARCH model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆ω = 0.15). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆ω = 0.22).
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Figure 3.6: The effects of ignored breaks in ω on the sampling distribution of B̂ for the
Beta-t-EGARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆ω = 0.15). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆ω = 0.22).
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Figure 3.7: The effects of ignored breaks in A on the sampling distribution of B̂ for the
t-GAS model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆A = 0.10. The bottom panel presents the empirical distribution of B̂ when the structural

break in the middle of the sample is large, with ∆A = 0.13.
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Figure 3.8: The effects of ignored breaks in A on the sampling distribution of B̂ for the
GARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆A = 0.10). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆A = 0.13).
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Figure 3.9: The effects of ignored breaks in A on the sampling distribution of B̂ for the
GAS specification of the GARCH model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆A = 0.10. The bottom panel presents the empirical distribution of B̂ when the structural

break in the middle of the sample is large, with ∆A = 0.13
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Figure 3.10: The effects of ignored breaks in A on the sampling distribution of B̂ for the
t-GARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel is the empirical

distribution in the case of a mid-size structural break case with σ2 = 1.45 (∆A = 0.10). The

bottom panel presents the empirical distribution of B̂ when the structural break in the middle

of the sample is large, with σ2 = 1.75 (∆A = 0.13).
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Figure 3.11: The effects of ignored breaks in A on the sampling distribution of B̂ for the
EGARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆A = 0.10. The bottom panel presents the empirical distribution of B̂ when the structural

break in the middle of the sample is large, with ∆A = 0.13.

60



Figure 3.12: The effects of ignored breaks in A on the sampling distribution of B̂ for the
Beta-t-EGARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆A = 0.10. The bottom panel presents the empirical distribution of B̂ when the structural

break in the middle of the sample is large, with ∆A = 0.13.
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Figure 3.13: The effects of ignored breaks in η on the sampling distribution of B̂ for the
t-GAS model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆η = 3. The bottom panel presents the empirical distribution of B̂ when the structural break

in the middle of the sample is large, with ∆η = 5.
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Figure 3.14: The effects of ignored breaks in η on the sampling distribution of B̂ for the
t-GARCH(1,1) model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆η = 3. The bottom panel presents the empirical distribution of B̂ when the structural break

in the middle of the sample is large, with ∆η = 5.
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Figure 3.15: The effects of ignored breaks in η on the sampling distribution of B̂ for the
Beta-t-EGARCH model
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Notes: In all figures, T = 10,000 and the true value of B is 0.8. The top panel represents the

empirical distribution of B̂ in the no structural break case. The middle panel displays the curve

of the empirical distribution of simulations in the case of a mid-size structural break with

∆η = 3. The bottom panel presents the empirical distribution of B̂ when the structural break

in the middle of the sample is large, with ∆η = 5.
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3.8 Tables

Table 3.1: Table of initial parameter values and parameter switches

σ ωa ωb B A η
1 0.2 0 0.8 0.1 5
1.15 0.26 0.06 0.85 0.15 6
1.3 0.34 0.1 0.88 0.18 7
1.45 0.42 0.15 0.9 0.2 8
1.6 0.51 0.19 0.92 0.22 9
1.75 0.61 0.22 0.93 0.23 10

Notes: ωa is constant of the conditional variance for the t-GAS, GARCH, GAS-GARCH,
and t-GARCH models. ωb is constant for the Beta-t-EGARCH(1,1) and EGARCH
models. ωa and ωb are chosen so as to generate the value of σ given in the left-most
column of the table, holding the other parameters fixed. B is also chosen to generate the
value of σ in the left-most column of the table, keeping the other parameters fixed. For
the GARCH and t-GARCH models only, A is selected so as to generate the
corresponding value of σ. The same values of A used for GARCH and t-GARCH models
are also used for the t-GAS, GAS-GARCH, EGARCH, and Beta-t-EGARCH models.
Additionally, for the t-distribution models only, changes to η are arbitrary.
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Table 3.2: Effect of a change in ω on B̂

T Vol. t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev.
1 0.69 0.24 0.68 0.26 0.69 0.25 0.69 0.25 0.66 0.36 0.64 0.37

1.15 0.71 0.24 0.72 0.26 0.72 0.25 0.72 0.25 0.67 0.36 0.67 0.35
250 1.3 0.77 0.22 0.78 0.24 0.80 0.22 0.80 0.22 0.72 0.35 0.72 0.33

1.45 0.83 0.19 0.84 0.20 0.87 0.18 0.87 0.18 0.79 0.32 0.79 0.26
1.6 0.88 0.16 0.89 0.17 0.91 0.14 0.91 0.14 0.85 0.30 0.85 0.21
1.75 0.92 0.13 0.93 0.14 0.95 0.11 0.95 0.11 0.87 0.30 0.89 0.17

1 0.73 0.19 0.74 0.20 0.73 0.20 0.73 0.20 0.72 0.27 0.71 0.26
1.15 0.76 0.18 0.76 0.19 0.76 0.19 0.77 0.19 0.75 0.26 0.74 0.24

500 1.3 0.82 0.17 0.83 0.16 0.86 0.15 0.86 0.15 0.83 0.21 0.79 0.21
1.45 0.88 0.13 0.89 0.13 0.92 0.10 0.92 0.10 0.92 0.16 0.86 0.15
1.6 0.92 0.10 0.93 0.10 0.96 0.06 0.96 0.06 0.95 0.12 0.91 0.11
1.75 0.96 0.07 0.96 0.07 0.98 0.04 0.98 0.04 0.97 0.10 0.94 0.08

1 0.77 0.13 0.77 0.13 0.76 0.13 0.76 0.13 0.76 0.16 0.76 0.14
1.15 0.79 0.12 0.79 0.12 0.80 0.12 0.80 0.12 0.81 0.14 0.80 0.12

1000 1.3 0.85 0.10 0.86 0.10 0.89 0.09 0.89 0.09 0.88 0.12 0.84 0.11
1.45 0.91 0.08 0.91 0.08 0.95 0.06 0.95 0.06 0.96 0.07 0.90 0.08
1.6 0.95 0.05 0.95 0.05 0.98 0.03 0.98 0.03 0.98 0.03 0.94 0.06
1.75 0.97 0.03 0.98 0.03 0.99 0.01 0.99 0.01 0.99 0.01 0.96 0.04

1 0.79 0.07 0.79 0.07 0.79 0.07 0.79 0.07 0.79 0.08 0.79 0.06
1.15 0.81 0.07 0.81 0.07 0.82 0.06 0.82 0.06 0.83 0.07 0.82 0.06

2500 1.3 0.87 0.06 0.87 0.06 0.91 0.05 0.91 0.05 0.91 0.07 0.86 0.06
1.45 0.93 0.05 0.93 0.05 0.97 0.03 0.97 0.03 0.99 0.02 0.92 0.04
1.6 0.97 0.03 0.97 0.03 0.99 0.01 0.99 0.01 0.99 0.01 0.95 0.03
1.75 0.98 0.01 0.99 0.02 0.99 0.01 0.99 0.01 1.00 0.00 0.97 0.02

1 0.79 0.04 0.79 0.04 0.79 0.04 0.79 0.04 0.79 0.05 0.79 0.04
1.15 0.82 0.04 0.82 0.04 0.83 0.04 0.83 0.04 0.84 0.05 0.82 0.04

5000 1.3 0.88 0.04 0.87 0.04 0.92 0.04 0.92 0.04 0.93 0.05 0.86 0.04
1.45 0.93 0.03 0.93 0.03 0.97 0.02 0.97 0.02 0.99 0.01 0.92 0.03
1.6 0.97 0.02 0.97 0.02 0.99 0.01 0.99 0.01 1.00 0.00 0.96 0.02
1.75 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00 0.98 0.02

1 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03
1.15 0.82 0.03 0.82 0.03 0.83 0.03 0.83 0.03 0.84 0.03 0.82 0.03

10000 1.3 0.88 0.03 0.87 0.03 0.92 0.03 0.92 0.03 0.93 0.04 0.86 0.02
1.45 0.93 0.02 0.93 0.02 0.98 0.01 0.98 0.01 1.00 0.01 0.92 0.02
1.6 0.97 0.02 0.97 0.02 0.99 0.01 0.99 0.01 1.00 0.00 0.96 0.02
1.75 0.99 0.01 0.99 0.01 1.00 0.00 1.00 0.00 1.00 0.00 0.98 0.01
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Table 3.3: Effect of a change in ω on the coverage probability of B

T Vol. t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
1 0.801 0.854 0.833 0.882 0.782 0.836 0.781 0.837 0.619 0.683 0.725 0.776

(0.009) (0.008) (0.008) (0.007) (0.009) (0.008) (0.009) (0.008) (0.011) (0.010) (0.010) (0.009)
1.15 0.777 0.829 0.805 0.852 0.739 0.795 0.738 0.793 0.668 0.723 0.706 0.760

(0.009) (0.010) (0.009) (0.008) (0.010) (0.009) (0.010) (0.009) (0.011) (0.010) (0.010) (0.010)
1.3 0.702 0.751 0.699 0.742 0.605 0.656 0.604 0.658 0.551 0.599 0.661 0.711

250 (0.010) (0.010) (0.010) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.010)
1.45 0.599 0.648 0.571 0.621 0.467 0.511 0.467 0.511 0.432 0.479 0.591 0.644

(0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
1.6 0.482 0.536 0.441 0.487 0.316 0.357 0.316 0.357 0.370 0.352 0.498 0.549

(0.011) (0.011) (0.011) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010) (0.011) (0.011) (0.011)
1.75 0.388 0.438 0.322 0.363 0.228 0.260 0.228 0.260 0.234 0.260 0.420 0.477

(0.011) (0.011) (0.010) (0.011) (0.009) (0.010) (0.009) (0.010) (0.009) (0.010) (0.011) (0.011)
1 0.799 0.855 0.827 0.874 0.751 0.820 0.752 0.821 0.690 0.759 0.774 0.823

(0.009) (0.008) (0.008) (0.007) (0.010) (0.009) (0.010) (0.009) (0.010) (0.010) (0.009) (0.009)
1.15 0.766 0.825 0.775 0.835 0.715 0.778 0.716 0.777 0.668 0.723 0.751 0.810

(0.009) (0.008) (0.009) (0.008) (0.010) (0.009) (0.010) (0.009) (0.011) (0.010) (0.010) (0.009)
1.3 0.638 0.690 0.625 0.671 0.531 0.580 0.530 0.579 0.542 0.597 0.691 0.747

500 (0.011) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.010) (0.010)
1.45 0.480 0.530 0.421 0.473 0.296 0.341 0.294 0.340 0.283 0.322 0.532 0.589

(0.011) (0.011) (0.011) (0.011) (0.010) (0.011) (0.010) (0.011) (0.010) (0.010) (0.011) (0.011)
1.6 0.322 0.370 0.259 0.292 0.141 0.167 0.141 0.166 0.139 0.158 0.372 0.419

(0.010) (0.011) (0.010) (0.010) (0.008) (0.008) (0.008) (0.008) (0.008) (0.008) (0.011) (0.011)
1.75 0.189 0.221 0.137 0.164 0.063 0.079 0.062 0.078 0.062 0.077 0.029 0.039

(0.009) (0.009) (0.008) (0.008) (0.005) (0.006) (0.005) (0.006) (0.005) (0.006) (0.010) (0.010)

Continued on next page
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Table 3.3 – continued from previous page
T Vol. t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

1 0.823 0.876 0.841 0.892 0.824 0.878 0.824 0.877 0.773 0.832 0.832 0.884
(0.009) (0.007) (0.008) (0.007) (0.009) (0.009) (0.009) (0.009) (0.009) (0.008) (0.008) (0.007)

1.15 0.786 0.844 0.799 0.840 0.766 0.816 0.766 0.816 0.727 0.782 0.782 0.838
(0.009) (0.008) (0.009) (0.008) (0.009) (0.009) (0.009) (0.009) (0.010) (0.009) (0.009) (0.008)

1.3 0.614 0.676 0.572 0.630 0.447 0.505 0.448 0.505 0.501 0.552 0.667 0.723
1000 (0.011) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.010)

1.45 0.377 0.430 0.301 0.354 0.169 0.200 0.169 0.200 0.149 0.181 0.419 0.477
(0.011) (0.011) (0.010) (0.011) (0.008) (0.009) (0.008) (0.009) (0.008) (0.009) (0.011) (0.011)

1.6 0.160 0.205 0.117 0.142 0.042 0.053 0.042 0.052 0.040 0.044 0.207 0.255
(0.008) (0.009) (0.007) (0.008) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.009) (0.010)

1.75 0.068 0.082 0.033 0.042 0.015 0.019 0.015 0.019 0.015 0.018 0.094 0.126
(0.006) (0.006) (0.004) (0.004) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.007) (0.001)

1 0.865 0.910 0.862 0.916 0.871 0.917 0.873 0.919 0.850 0.914 0.871 0.923
(0.008) (0.006) (0.008) (0.006) (0.007) (0.006) (0.007) (0.006) (0.008) (0.006) (0.008) (0.006)

1.15 0.803 0.873 0.794 0.859 0.789 0.848 0.789 0.849 0.747 0.815 0.803 0.861
(0.009) (0.007) (0.009) (0.008) (0.009) (0.008) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008)

1.3 0.521 0.600 0.438 0.513 0.295 0.354 0.295 0.354 0.394 0.452 0.575 0.658
2500 (0.011) (0.011) (0.011) (0.011) (0.010) (0.011) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011)

1.45 0.175 0.223 0.102 0.141 0.038 0.053 0.038 0.053 0.033 0.046 0.188 0.257
(0.008) (0.009) (0.007) (0.008) (0.004) (0.005) (0.004) (0.005) (0.004) (0.005) (0.009) (0.010)

1.6 0.034 0.044 0.012 0.015 0.007 0.008 0.006 0.007 0.010 0.012 0.035 0.053
(0.004) (0.005) (0.002) (0.003) (0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.004) (0.005)

1.75 0.007 0.011 0.002 0.002 0.004 0.004 0.004 0.004 0.008 0.009 0.009 0.016
(0.002) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.003)

Continued on next page
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Table 3.3 – continued from previous page
T Vol. t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

1 0.877 0.932 0.883 0.930 0.887 0.936 0.887 0.936 0.872 0.926 0.873 0.931
(0.007) (0.006) (0.007) (0.006) (0.007) (0.005) (0.007) (0.005) (0.007) (0.006) (0.007) (0.006)

1.15 0.807 0.875 0.810 0.869 0.774 0.844 0.776 0.843 0.741 0.812 0.789 0.859
(0.009) (0.007) (0.009) (0.008) (0.007) (0.009) (0.007) (0.009) (0.010) (0.009) (0.009) (0.008)

1.3 0.353 0.446 0.275 0.354 0.120 0.177 0.119 0.177 0.226 0.299 0.453 0.550
5000 (0.011) (0.011) (0.010) (0.011) (0.007) (0.009) (0.007) (0.009) (0.009) (0.010) (0.011) (0.011)

1.45 0.043 0.069 0.018 0.026 0.008 0.010 0.010 0.012 0.036 0.038 0.052 0.076
(0.005) (0.006) (0.003) (0.004) (0.002) (0.002) (0.002) (0.002) (0.004) (0.004) (0.005) (0.006)

1.6 0.011 0.014 0.001 0.001 0.007 0.008 0.008 0.008 0.016 0.020 0.007 0.009
(0.002) (0.003) (0.000) (0.000) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)

1.75 0.006 0.007 0.001 0.001 0.003 0.004 0.003 0.004 0.012 0.014 0.004 0.004
(0.002) (0.002) (0.000) (0.000) (0.001 (0.001) (0.001) (0.001) (0.002) (0.003) (0.001) (0.001)

1 0.881 0.938 0.896 0.950 0.887 0.941 0.887 0.941 0.890 0.942 0.879 0.938
(0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.007) (0.005)

1.15 0.781 0.854 0.777 0.848 0.653 0.775 0.655 0.776 0.633 0.744 0.749 0.827
(0.009) (0.008) (0.009) (0.008) (0.011) (0.009) (0.011) (0.009) (0.011) (0.010) (0.010) (0.008)

1.3 0.129 0.207 0.104 0.155 0.014 0.025 0.013 0.025 0.081 0.134 0.242 0.329
10000 (0.007) (0.009) (0.007) (0.008) (0.003) (0.003) (0.003) (0.003) (0.006) (0.008) (0.010) (0.011)

1.45 0.001 0.004 0.000 0.000 0.008 0.009 0.006 0.007 0.051 0.058 0.003 0.004
(0.001) (0.001) (0.000) (0.000) (0.002) (0.002) (0.002) (0.002) (0.005) (0.005) (0.001) (0.001)

1.6 0.004 0.005 0.001 0.001 0.008 0.009 0.007 0.009 0.026 0.029 0.002 0.003
(0.001) (0.001) (0.000) (0.000) (0.002) (0.002) (0.002) (0.002) (0.004) (0.004) (0.001) (0.001)

1.75 0.005 0.006 0.001 0.001 0.002 0.003 0.002 0.003 0.022 0.026 0.004 0.005
(0.002) (0.002) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) (0.003) (0.004) (0.001) (0.002)
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Table 3.4: Effect of a change in A on B̂

T ∆A t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev.
0 0.69 0.24 0.68 0.27 0.69 0.25 0.69 0.25 0.66 0.36 0.64 0.37

0.05 0.70 0.22 0.74 0.24 0.75 0.21 0.71 0.23 0.67 0.35 0.66 0.34
250 0.08 0.71 0.21 0.78 0.21 0.80 0.18 0.71 0.22 0.67 0.34 0.67 0.32

0.10 0.72 0.20 0.81 0.20 0.83 0.16 0.72 0.21 0.67 0.34 0.67 0.31
0.12 0.72 0.20 0.83 0.18 0.86 0.14 0.72 0.21 0.68 0.33 0.67 0.31
0.13 0.72 0.19 0.85 0.18 0.88 0.13 0.72 0.20 0.68 0.33 0.68 0.30

0 0.73 0.19 0.73 0.20 0.73 0.20 0.73 0.20 0.72 0.27 0.71 0.26
0.05 0.75 0.16 0.79 0.16 0.79 0.15 0.74 0.17 0.72 0.26 0.73 0.22

500 0.08 0.75 0.15 0.83 0.13 0.84 0.12 0.74 0.16 0.72 0.25 0.74 0.20
0.10 0.75 0.14 0.85 0.12 0.87 0.09 0.75 0.15 0.72 0.25 0.74 0.18
0.12 0.76 0.14 0.87 0.10 0.90 0.07 0.75 0.15 0.73 0.23 0.75 0.17
0.13 0.76 0.14 0.89 0.10 0.91 0.06 0.75 0.14 0.73 0.23 0.75 0.16

0 0.77 0.13 0.77 0.13 0.77 0.13 0.76 0.13 0.76 0.16 0.76 0.14
0.05 0.77 0.10 0.82 0.09 0.82 0.09 0.77 0.11 0.77 0.15 0.77 0.11

1000 0.08 0.78 0.09 0.85 0.07 0.87 0.06 0.78 0.10 0.77 0.14 0.78 0.10
0.10 0.78 0.09 0.87 0.06 0.89 0.05 0.78 0.09 0.77 0.13 0.78 0.09
0.12 0.78 0.09 0.89 0.05 0.91 0.04 0.78 0.09 0.77 0.13 0.78 0.09
0.13 0.78 0.08 0.90 0.05 0.92 0.04 0.78 0.09 0.77 0.12 0.78 0.08

0 0.79 0.07 0.79 0.07 0.79 0.07 0.79 0.07 0.79 0.08 0.79 0.06
0.05 0.79 0.06 0.83 0.05 0.84 0.04 0.79 0.06 0.79 0.07 0.79 0.05

2500 0.08 0.79 0.05 0.86 0.04 0.88 0.03 0.79 0.05 0.79 0.06 0.79 0.05
0.10 0.79 0.05 0.88 0.03 0.90 0.02 0.79 0.05 0.79 0.06 0.79 0.05
0.12 0.79 0.05 0.90 0.03 0.92 0.02 0.79 0.05 0.79 0.06 0.79 0.05
0.13 0.79 0.05 0.91 0.03 0.93 0.02 0.79 0.05 0.79 0.06 0.79 0.05

0 0.79 0.04 0.79 0.04 0.79 0.04 0.79 0.04 0.79 0.05 0.79 0.04
0.05 0.79 0.04 0.83 0.03 0.84 0.03 0.79 0.04 0.79 0.04 0.80 0.04

5000 0.08 0.79 0.03 0.86 0.03 0.88 0.02 0.79 0.03 0.79 0.04 0.80 0.03
0.10 0.79 0.03 0.88 0.02 0.90 0.02 0.79 0.03 0.79 0.04 0.80 0.03
0.12 0.79 0.03 0.90 0.02 0.92 0.01 0.79 0.03 0.79 0.04 0.80 0.03
0.13 0.79 0.03 0.91 0.02 0.93 0.01 0.79 0.03 0.80 0.04 0.80 0.03

0 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03
0.05 0.80 0.03 0.83 0.02 0.84 0.02 0.80 0.03 0.80 0.03 0.80 0.02

10000 0.08 0.79 0.02 0.86 0.02 0.88 0.02 0.80 0.02 0.80 0.03 0.80 0.02
0.10 0.79 0.02 0.88 0.02 0.90 0.01 0.79 0.02 0.80 0.03 0.80 0.02
0.12 0.79 0.02 0.90 0.01 0.92 0.01 0.79 0.02 0.80 0.03 0.80 0.02
0.13 0.79 0.02 0.91 0.01 0.93 0.01 0.79 0.02 0.80 0.03 0.80 0.02
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Table 3.5: Effect of a change in A on the coverage probability of B

T ∆A t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

90% 95% 90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
0 0.801 0.854 0.833 0.882 0.824 0.878 0.778 0.835 0.619 0.683 0.725 0.776

(0.009) (0.008) (0.008) (0.007) (0.009) (0.009) (0.009) (0.008) (0.011) (0.010) (0.010) (0.009)
0.05 0.812 0.872 0.800 0.850 0.735 0.062 0.791 0.845 0.640 0.696 0.744 0.794

(0.009) (0.007) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008) (0.011) (0.010) (0.010) (0.009)
0.08 0.810 0.866 0.749 0.811 0.673 0.733 0.795 0.845 0.640 0.686 0.749 0.804

250 (0.009) (0.008) (0.010) (0.009) (0.010) (0.010) (0.009) (0.008) (0.011) (0.010) (0.010) (0.009)
0.10 0.807 0.864 0.705 0.769 0.606 0.659 0.799 0.850 0.654 0.706 0.746 0.809

(0.009) (0.008) (0.010) (0.009) (0.011) (0.011) (0.009) (0.008) (0.011) (0.010) (0.010) (0.009)
0.12 0.817 0.870 0.640 0.708 0.516 0.579 0.800 0.856 0.647 0.706 0.763 0.820

(0.009) (0.008) (0.011) (0.010) (0.011) (0.011) (0.009) (0.008) (0.011) (0.010) (0.010) (0.009)
0.13 0.799 0.863 0.614 0.684 0.473 0.531 0.801 0.856 0.644 0.705 0.771 0.827

(0.009) (0.008) (0.011) (0.010) (0.011) (0.011) (0.009) (0.008) (0.011) (0.010) (0.009) (0.008)
0 0.799 0.855 0.827 0.874 0.838 0.878 0.751 0.820 0.690 0.759 0.774 0.823

(0.009) (0.008) (0.008) (0.007) (0.008) (0.007) (0.010) (0.009) (0.010) (0.010) (0.009) (0.009)
0.05 0.812 0.871 0.780 0.831 0.731 0.782 0.775 0.841 0.722 0.778 0.794 0.846

(0.009) (0.008) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008)
0.08 0.813 0.879 0.681 0.741 0.623 0.686 0.786 0.854 0.723 0.784 0.811 0.865

500 (0.009) (0.007) (0.010) (0.010) (0.011) (0.010) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008)
0.10 0.818 0.876 0.601 0.656 0.493 0.556 0.794 0.860 0.730 0.795 0.820 0.869

(0.009) (0.007) (0.011) (0.011) (0.011) (0.011) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008)
0.12 0.814 0.874 0.497 0.571 0.347 0.408 0.799 0.864 0.739 0.803 0.834 0.880

(0.009) (0.007) (0.011) (0.011) (0.011) (0.011) (0.009) (0.008) (0.010) (0.009) (0.008) (0.007)
0.13 0.817 0.884 0.445 0.517 0.282 0.333 0.797 0.866 0.743 0.807 0.836 0.884

(0.009) (0.007) (0.011) (0.011) (0.010) (0.011) (0.009) (0.008) (0.010) (0.009) (0.008) (0.007)

Continued on next page
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Table 3.5 – continued from previous page
T ∆A t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

0 0.823 0.876 0.841 0.892 0.867 0.909 0.823 0.878 0.773 0.832 0.832 0.884
(0.009) (0.007) (0.008) (0.007) (0.008) (0.006) (0.009) (0.007) (0.009) (0.008) (0.008) (0.007)

0.05 0.844 0.902 0.778 0.826 0.746 0.806 0.844 0.893 0.790 0.851 0.848 0.897
(0.008) (0.007) (0.009) (0.008) (0.010) (0.009) (0.008) (0.007) (0.009) (0.008) (0.008) (0.007)

0.08 0.842 0.900 0.620 0.691 0.514 0.590 0.847 0.900 0.804 0.857 0.845 0.899
1000 (0.008) (0.007) (0.011) (0.010) (0.011) (0.011) (0.008) (0.007) (0.009) (0.008) (0.008) (0.007)

0.10 0.846 0.905 0.475 0.560 0.311 0.385 0.846 0.903 0.805 0.868 0.849 0.907
(0.008) (0.007) (0.011) (0.011) (0.011) (0.011) (0.008) (0.007) (0.009) (0.008) (0.008) (0.007)

0.12 0.840 0.901 0.332 0.402 0.147 0.191 0.848 0.903 0.809 0.872 0.851 0.907
(0.008) (0.007) (0.011) (0.011) (0.008) (0.009) (0.008) (0.007) (0.009) (0.007) (0.008) (0.007)

0.13 0.840 0.905 0.267 0.322 0.093 0.121 0.846 0.908 0.814 0.877 0.847 0.911
(0.008) (0.007) (0.010) (0.010) (0.006) (0.007) (0.008) (0.006) (0.009) (0.007) (0.008) (0.006)

0 0.865 0.910 0.862 0.916 0.889 0.931 0.874 0.920 0.850 0.914 0.871 0.923
(0.008) (0.006) (0.008) (0.006) (0.007) (0.006) (0.007) (0.006) (0.008) (0.006) (0.008) (0.006)

0.05 0.872 0.919 0.702 0.774 0.674 0.752 0.875 0.926 0.859 0.916 0.871 0.925
(0.007) (0.006) (0.010) (0.009) (0.010) (0.010) (0.007) (0.006) (0.008) (0.006) (0.007) (0.006)

0.08 0.860 0.920 0.411 0.495 0.280 0.369 0.874 0.927 0.859 0.919 0.876 0.924
2500 (0.008) (0.006) (0.011) (0.011) (0.010) (0.011) (0.007) (0.006) (0.008) (0.006) (0.007) (0.006)

0.10 0.868 0.922 0.206 0.277 0.091 0.124 0.877 0.931 0.857 0.921 0.875 0.928
(0.008) (0.006) (0.009) (0.010) (0.006) (0.007) (0.008) (0.006) (0.008) (0.006) (0.007) (0.006)

0.12 0.862 0.922 0.085 0.118 0.013 0.023 0.876 0.924 0.857 0.925 0.872 0.925
(0.008) (0.006) (0.006) (0.007) (0.002) (0.003) (0.007) (0.006) (0.008) (0.006) (0.007) (0.006)

0.13 0.862 0.919 0.047 0.068 0.005 0.006 0.872 0.925 0.860 0.923 0.869 0.925
(0.008) (0.006) (0.005) (0.006) (0.002) (0.001) (0.007) (0.006) (0.008) (0.006) (0.008) (0.006)

Continued on next page
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Table 3.5 – continued from previous page
T ∆A t-GAS t-GARCH GARCH GAS-GARCH EGARCH Beta-t-EGARCH

0 0.877 0.932 0.883 0.930 0.899 0.942 0.888 0.937 0.872 0.926 0.873 0.931
(0.007) (0.006) (0.007) (0.006) (0.007) (0.005) (0.007) (0.005) (0.007) (0.006) (0.007) (0.006)

0.05 0.883 0.933 0.632 0.722 0.524 0.672 0.889 0.937 0.877 0.930 0.875 0.930
(0.007) (0.006) (0.011) (0.010) (0.011) (0.011) (0.007) (0.005) (0.007) (0.006) (0.007) (0.006)

0.08 0.871 0.928 0.216 0.293 0.072 0.121 0.889 0.938 0.880 0.935 0.872 0.930
5000 (0.008) (0.006) (0.009) (0.010) (0.006) (0.007) (0.007) (0.005) (0.007) (0.006) (0.007) (0.006)

0.10 0.861 0.921 0.052 0.082 0.005 0.007 0.879 0.934 0.878 0.933 0.874 0.930
(0.008) (0.006) (0.005) (0.006) (0.001) (0.002) (0.007) (0.006) (0.007) (0.006) (0.007) (0.006)

0.12 0.856 0.917 0.008 0.015 0.000 0.000 0.879 0.934 0.884 0.933 0.870 0.932
(0.008) (0.006) (0.002) (0.003) (0.000) (0.000) (0.007) (0.006) (0.007) (0.006) (0.008) (0.006)

0.13 0.861 0.917 0.001 0.005 0.000 0.000 0.876 0.934 0.883 0.931 0.867 0.933
(0.008) (0.006) (0.001) (0.001) (0.000) (0.000) (0.008) (0.006) (0.007) (0.006) (0.008) (0.006)

0 0.881 0.938 0.896 0.950 0.893 0.941 0.889 0.940 0.890 0.942 0.879 0.938
(0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.007) (0.005)

0.05 0.878 0.940 0.461 0.568 0.279 0.405 0.879 0.936 0.882 0.943 0.870 0.933
(0.007) (0.005) (0.011) (0.011) (0.010) (0.011) (0.007) (0.006) (0.007) (0.005) (0.008) (0.006)

0.08 0.856 0.923 0.043 0.071 0.004 0.009 0.870 0.933 0.877 0.939 0.865 0.931
10000 (0.008) (0.006) (0.005) (0.006) (0.001) (0.002) (0.008) (0.006) (0.007) (0.005) (0.008) (0.006)

0.10 0.856 0.920 0.002 0.005 0.000 0.000 0.864 0.930 0.883 0.940 0.861 0.932
(0.008) (0.006) (0.001) (0.001) (0.000) (0.000) (0.008) (0.006) (0.007) (0.005) (0.008) (0.006)

0.12 0.847 0.916 0.000 0.000 0.000 0.000 0.858 0.923 0.879 0.945 0.857 0.926
(0.008) (0.006) (0.000) (0.000) (0.000) (0.000) (0.008) (0.006) (0.007) (0.005) (0.008) (0.006)

0.13 0.846 0.912 0.000 0.000 0.000 0.000 0.855 0.920 0.877 0.940 0.860 0.926
(0.008) (0.006) (0.000) (0.000) (0.000) (0.000) (0.008) (0.006) (0.007) (0.005) (0.008) (0.006)
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Table 3.6: Effect of a change in η on B̂

T Size of break t-GAS t-GARCH Beta-t-EGARCH

Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev.
0 0.69 0.24 0.68 0.27 0.64 0.37
1 0.69 0.24 0.70 0.26 0.64 0.37

250 2 0.69 0.24 0.70 0.26 0.63 0.40
3 0.70 0.24 0.70 0.26 0.63 0.40
4 0.70 0.24 0.70 0.26 0.63 0.39
5 0.69 0.24 0.69 0.27 0.63 0.40
0 0.73 0.19 0.73 0.20 0.71 0.26
1 0.74 0.18 0.73 0.20 0.72 0.24

500 2 0.74 0.19 0.73 0.21 0.71 0.27
3 0.74 0.19 0.73 0.20 0.72 0.27
4 0.73 0.19 0.73 0.21 0.72 0.26
5 0.74 0.19 0.73 0.20 0.72 0.25
0 0.77 0.13 0.77 0.13 0.76 0.14
1 0.77 0.12 0.77 0.13 0.77 0.13

1000 2 0.77 0.12 0.77 0.13 0.77 0.14
3 0.77 0.13 0.77 0.14 0.78 0.12
4 0.77 0.13 0.76 0.15 0.77 0.13
5 0.77 0.13 0.77 0.14 0.77 0.12
0 0.79 0.07 0.79 0.07 0.79 0.06
1 0.79 0.06 0.79 0.07 0.79 0.06

2500 2 0.79 0.06 0.79 0.07 0.79 0.06
3 0.79 0.07 0.79 0.07 0.79 0.06
4 0.79 0.07 0.79 0.07 0.79 0.06
5 0.79 0.07 0.79 0.07 0.79 0.06
0 0.79 0.04 0.79 0.04 0.79 0.04
1 0.80 0.04 0.80 0.04 0.80 0.04

5000 2 0.80 0.04 0.79 0.04 0.80 0.04
3 0.80 0.04 0.80 0.04 0.80 0.04
4 0.80 0.04 0.80 0.04 0.80 0.04
5 0.80 0.04 0.80 0.04 0.80 0.04
0 0.80 0.03 0.80 0.03 0.80 0.03
1 0.80 0.03 0.80 0.03 0.80 0.03

10000 2 0.80 0.03 0.80 0.03 0.80 0.03
3 0.80 0.03 0.80 0.03 0.80 0.03
4 0.80 0.03 0.80 0.03 0.80 0.03
5 0.80 0.03 0.80 0.03 0.80 0.03
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Table 3.7: Effect of a change in η on the on the coverage probability of B

T Vol. t-GAS t-GARCH Beta-t-EGARCH

90% 95% 90% 95% 90% 95%
0 0.801 0.854 0.833 0.882 0.725 0.776

(0.009) (0.008) (0.008) (0.007) (0.010) (0.009)
1 0.806 0.845 0.836 0.880 0.720 0.779

(0.009) (0.008) (0.008) (0.007) (0.010) (0.009)
2 0.778 0.839 0.842 0.888 0.708 0.763

250 (0.009) (0.008) (0.008) (0.007) (0.010) (0.010)
3 0.778 0.831 0.845 0.881 0.702 0.759

(0.009) (0.008) (0.008) (0.007) (0.010) (0.010)
4 0.781 0.837 0.838 0.881 0.723 0.773

(0.009) (0.008) (0.008) (0.007) (0.010) (0.009)
5 0.783 0.839 0.840 0.881 0.721 0.784

(0.009) (0.008) (0.008) (0.007) (0.010) (0.009)
0 0.799 0.855 0.827 0.874 0.774 0.823

(0.009) (0.008) (0.008) (0.007) (0.009) (0.009)
1 0.783 0.843 0.813 0.876 0.780 0.837

(0.009) (0.008) (0.009) (0.007) (0.009) (0.008)
2 0.776 0.833 0.815 0.868 0.774 0.835

500 (0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
3 0.776 0.834 0.812 0.860 0.777 0.832

(0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
4 0.790 0.841 0.820 0.861 0.787 0.837

(0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
5 0.778 0.837 0.824 0.869 0.796 0.844

(0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
0 0.823 0.876 0.841 0.892 0.832 0.884

(0.009) (0.007) (0.008) (0.007) (0.008) (0.007)
1 0.803 0.862 0.853 0.897 0.826 0.878

(0.009) (0.008) (0.008) (0.007) (0.008) (0.007)
2 0.818 0.865 0.835 0.882 0.839 0.885

1000 (0.009) (0.008) (0.008) (0.007) (0.008) (0.007)
3 0.814 0.865 0.838 0.891 0.838 0.893

(0.009) (0.008) (0.008) (0.007) (0.008) (0.007)
4 0.818 0.871 0.835 0.893 0.852 0.900

(0.009) (0.008) (0.008) (0.007) (0.008) (0.007)
5 0.805 0.860 0.827 0.881 0.845 0.895

(0.009) (0.008) (0.008) (0.007) (0.008) (0.007)

Continued on next page
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Table 3.7 – continued from previous page
T ∆η t-GAS t-GARCH Beta-t-EGARCH

0 0.865 0.910 0.862 0.916 0.871 0.923
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

1 0.850 0.910 0.870 0.917 0.866 0.921
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

2 0.860 0.907 0.873 0.916 0.869 0.915
2500 (0.008) (0.006) (0.007) (0.006) (0.008) (0.006)

3 0.850 0.911 0.869 0.914 0.869 0.914
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

4 0.842 0.900 0.866 0.912 0.872 0.924
(0.008) (0.007) (0.008) (0.006) (0.007) (0.006)

5 0.848 0.899 0.869 0.915 0.870 0.924
(0.008) (0.007) (0.008) (0.006) (0.008) (0.006)

0 0.877 0.932 0.883 0.930 0.873 0.931
(0.007) (0.006) (0.007) (0.006) (0.007) (0.006)

1 0.876 0.925 0.886 0.941 0.875 0.930
(0.007) (0.006) (0.007) (0.005) (0.007) (0.006)

2 0.875 0.935 0.895 0.943 0.893 0.944
5000 (0.007) (0.006) (0.007) (0.005) (0.007) (0.005)

3 0.868 0.917 0.883 0.928 0.878 0.927
(0.008) (0.006) (0.007) (0.006) (0.007) (0.006)

4 0.860 0.918 0.881 0.929 0.879 0.928
(0.008) (0.006) (0.007) (0.006) (0.007) (0.006)

5 0.848 0.901 0.883 0.929 0.864 0.925
(0.008) (0.007) (0.007) (0.006) (0.008) (0.006)

0 0.881 0.938 0.896 0.950 0.879 0.938
(0.007) (0.005) (0.007) (0.005) (0.007) (0.005)

1 0.884 0.943 0.908 0.949 0.901 0.944
(0.007) (0.005) (0.006) (0.005) (0.007) (0.005)

2 0.873 0.929 0.884 0.939 0.878 0.931
10000 (0.007) (0.006) (0.007) (0.005) (0.007) (0.006)

3 0.861 0.917 0.885 0.934 0.873 0.936
(0.008) (0.006) (0.007) (0.006) (0.007) (0.005)

4 0.858 0.918 0.892 0.930 0.865 0.925
(0.008) (0.006) (0.007) (0.006) (0.008) (0.006)

5 0.845 0.910 0.874 0.926 0.864 0.923
(0.008) (0.006) (0.007) (0.006) (0.008) (0.006)
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Table 3.8: Effect of a change in B on B̂

T Size of break t-GAS EGARCH Beta-t-EGARCH (ω = 0) Beta-t-EGARCH (ω = 0.2)
Mean est. Std. Dev. Mean est. Std. Dev Mean est. Std. Dev Mean est. Std. Dev.

0 0.69 0.24 0.66 0.36 0.63 0.40 0.63 0.40
0.05 0.74 0.23 0.71 0.34 0.70 0.36 0.71 0.36

250 0.08 0.79 0.21 0.81 0.30 0.81 0.27 0.81 0.27
0.1 0.83 0.19 0.90 0.21 0.90 0.17 0.90 0.17
0.12 0.88 0.16 0.96 0.13 0.96 0.07 0.96 0.07
0.13 0.90 0.15 0.98 0.11 0.98 0.03 0.98 0.03

0 0.73 0.19 0.71 0.29 0.69 0.30 0.69 0.30
0.05 0.79 0.17 0.79 0.23 0.78 0.24 0.78 0.24

500 0.08 0.84 0.14 0.91 0.15 0.89 0.14 0.89 0.14
0.1 0.88 0.12 0.97 0.06 0.95 0.08 0.95 0.08
0.12 0.93 0.09 0.99 0.02 0.98 0.02 0.98 0.02
0.13 0.94 0.07 0.99 0.01 0.99 0.01 0.99 0.01

0 0.77 0.13 0.75 0.18 0.75 0.20 0.75 0.20
0.05 0.82 0.11 0.84 0.13 0.83 0.14 0.83 0.14

1000 0.08 0.87 0.08 0.95 0.06 0.93 0.07 0.93 0.07
0.1 0.91 0.06 0.99 0.01 0.97 0.03 0.97 0.03
0.12 0.95 0.04 0.99 0.00 0.99 0.01 0.99 0.01
0.13 0.96 0.03 0.99 0.00 0.99 0.01 0.99 0.01

0 0.79 0.07 0.78 0.09 0.79 0.08 0.79 0.08
0.05 0.84 0.06 0.87 0.06 0.86 0.06 0.86 0.06

2500 0.08 0.89 0.04 0.97 0.03 0.94 0.03 0.94 0.03
0.1 0.93 0.03 0.99 0.01 0.98 0.01 0.98 0.01
0.12 0.95 0.02 1.00 0.00 0.99 0.00 0.99 0.00
0.13 0.97 0.02 1.00 0.00 0.99 0.00 0.99 0.00

0 0.79 0.04 0.79 0.05 0.79 0.05 0.79 0.05
0.05 0.84 0.03 0.88 0.04 0.86 0.04 0.86 0.04

5000 0.08 0.89 0.03 0.98 0.02 0.95 0.02 0.95 0.02
0.1 0.93 0.02 0.99 0.00 0.98 0.01 0.98 0.01
0.12 0.96 0.01 1.00 0.00 0.99 0.00 0.99 0.00
0.13 0.97 0.01 1.00 0.00 0.99 0.00 0.99 0.00

0 0.80 0.03 0.80 0.03 0.80 0.03 0.80 0.03
0.05 0.84 0.02 0.88 0.03 0.87 0.03 0.87 0.03

10000 0.08 0.89 0.02 0.98 0.01 0.95 0.02 0.95 0.02
0.1 0.93 0.01 1.00 0.00 0.98 0.01 0.98 0.01
0.12 0.96 0.01 1.00 0.00 0.99 0.00 0.99 0.00
0.13 0.97 0.01 1.00 0.00 1.00 0.00 1.00 0.00
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Chapter 4

Structural breaks and GAS models of
oil and exchange rate volatilities

Abstract

Empirical evidence suggests that structural breaks are present in data on macro-financial
variables such as oil prices and exchange rates. The potentially serious consequences of
ignoring a break in GARCH parameters motivated Rapach and Strauss (2008) and Babikir
et al. (2012) to study the empirical relevance of structural breaks in the context of GARCH
models. However, the literature does not address the empirical relevance of structural
breaks in the context of GAS models. This paper contributes to this literature by ex-
tending Rapach and Strauss (2008) to include the t-GAS model and by comparing its
performance to that of the GARCH model and two non-GAS models, the t-GARCH and
SV models. The empirical relevance of structural breaks in the models of volatility are
assessed using the formal test of Dufour and Torres (1998) to determine whether the esti-
mated parameters change across subperiods. The performance of all the models is analyzed
using both the weekly USD trade-weighted index between January 1973 and October 2016
and spot oil prices based on West Texas Intermediate between January 1986 and October
2016. Through this analysis, this paper also addresses whether accommodating structural
breaks in the unconditional variance of both GAS and non-GAS models will improve fore-
casts. The results show that structural breaks are empirically relevant in GAS models of
USD volatility but not for oil volatility in terms of modeling. They also indicate that using
models that accommodate breaks can improve forecasts only in the short run.
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4.1 Introduction

Time-varying volatility models used in forecasting the variance include Bollerslev’s (1986)
generalized autoregressive conditional heteroskedasticity (GARCH) model, Taylor’s (1986)
stochastic volatility (SV) model, and, more recently, Creal et al.’s (2013) generalized au-
toregressive score (GAS) volatility model in which volatility is updated by the score of
the log-density.1 Studies show that these models have empirical success in forecasting the
variance. For example, Hansen and Lunde (2005) find after estimating 330 ARCH-type
models that it is difficult for any other model to outperform a simple GARCH(1,1) model
for exchange rate data. Clark and Ravazzolo (2015) use Bayesian estimation to find that
autoregressive (AR) and vector autoregressive (VAR) models with SV improve the point
and density forecast accuracies of real GDP growth, inflation, unemployment rate, and the
3-month Treasury bill rate. Koopman et al. (2016) use simulated data to show that score-
driven GAS(1,1) models outperform various forms of the GARCH model in both in-sample
and out-of-sample performance.

Empirical evidence suggests that structural breaks are also present in data on macro-
financial variables such as oil prices and exchange rates. For example, Rapach and Strauss
(2008) identify several breaks in the unconditional variance of seven US dollar exchange
rate return series between 1980 and 2005. Arouri et al. (2012) identify structural breaks
in the volatility of daily spot and future prices of gasoline and heating oil, but not in West
Texas Intermediate crude oil prices. Salisu and Fasanya (2013) identify two breaks in West
Texas Intermediate crude oil prices – in 1990 and 2008 – using Narayan and Popp’s (2010)
unit root test that allows for two structural breaks.

As for GAS models, the cited examples of their empirical success assume that the GAS
process is stable and thus the unconditional volatility is constant. However, as shown in
Chapter 3, if the assumption of a stable GAS process is violated due to ignored parameter
non-constancy, then a break in a parameter that shifts the unconditional variance causes
the estimated persistence parameter of the GAS model to be severely biased. Lamoureux
and Lastrapes (1990) and Hillebrand (2005) produce similar results for the case of a break
in any parameter of a GARCH model. Another consequence is that ignoring breaks in the
variance can lead to biased forecasts of the variance, as the forecasts may converge to the
wrong unconditional variance.

The potentially serious consequences of ignoring a break in GARCH parameters moti-
vated Rapach and Strauss (2008) and Arouri et al. (2012) to study the empirical relevance

1The scaling matrix of these GAS models was the square root of the inverse of Fisher’s identity matrix
which makes the models different from the classical GARCH model.
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of structural breaks in the context of GARCH models for exchange rates and oil respec-
tively, and whether accommodating breaks can improve forecasts. Rapach and Strauss
(2008) find that structural breaks are empirically relevant for GARCH models and accom-
modating breaks can improve volatility forecasts. Arouri et al. (2012) find that using rolling
windows can improve forecasts for crude oil volatility. However, the issue of the relevance
of structural breaks and how to best accommodate breaks in volatility when forecasting is
not addressed in the GAS literature. This paper contributes to this literature by extending
Rapach and Strauss (2008) to include the t-GAS model and comparing its performance to
that of the GARCH model and two non-GAS models, the t-GARCH and SV models. The
variables used are the weekly trade-weighted US dollar index and West Texas Intermedi-
ate crude oil prices are used for this analysis. The USD trade-weighted index was chosen
simply for the fact that it is an aggregate measure of the US dollar against the currency
of its major trading partners including Canada, the Euro Area, and Mexico.2 West Texas
Intermediate crude oil was chosen because it is produced in the US and considered to be
a benchmark for crude oil prices in North and South America (US Department of Energy,
2014).

Although the focus of much of the paper is on forecasting the variance, the ability of
the models to forecast the conditional mean of oil returns and exchange rate returns is
also examined. This is because correctly modeling and forecasting the prices/returns and
volatilities of oil and exchange rates are important for the following reasons. First, it can
help policymakers and firms adopt a correct risk management approach. Second, firms
and consumers depend on oil forecasts to make decisions regarding investments in reserve
exploration, development and production (Pindyck, 1999), and on exchange rate forecasts
for decisions regarding international trade, domestic wages, and employment.

In the case of the prices and returns of commodities such as oil, incorporating fea-
tures such as mean-reversion and time-varying trends (Pindyck, 1999) and jumps (see
Postali and Picchetti, 2006; Wilmot and Mason, 2013) have been found to improve model
fit and forecasts. Beck (2001) finds that volatility directly affects the prices of storable
commodities, and oil is considered to be a storable commodity. In determining whether
adding jumps, mean-reversion, and/or adding volatility improves the forecasts of com-
modity prices, Bernard et al. (2008) find that Schwartz and Smith’s (2000) mean-reversion
model with a stochastic convenience yield produces the best forecasts. According to Alquist
et al. (2013), AR and VAR models of the global oil market outperform a random walk fore-
cast of the real price of oil only at short horizons, and no-change forecasts are difficult to
beat.

2The definition of the USD trade-weighted index comes from Loretin (2005) and Board of Governors
of the Federal Reserve System (US) (2014).
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The papers cited above mainly focus on the mean forecasts of oil returns. Mohammadi
and Su (2010) assess the modeling performance of both the mean and volatility of oil prices
using various ARIMA-GARCH models. Since this paper assesses the forecasts of both the
mean and the variance, it follows Mohammadi and Su’s (2010) approach by specifying
the conditional mean of oil returns as an ARIMA model. In their case, they specify the
conditional mean as an MA(1) model, while this paper specifies the conditional mean as
an AR(1) model. Also, the main focus of their paper is on conditional volatility models
that incorporate asymmetry. Asymmetric models are not considered in this paper.

In the case of exchange rates, Meese and Rogoff (1983a,b) find that it is difficult to
outperform a random walk model in forecasting exchange rates. This conclusion is known as
the Meese-Rogoff puzzle. Meese and Rogoff (1983a) find that the inability of macroeconomic
models for exchange rates to forecast better than a random walk model is not attributable
to inconsistent or inefficient parameter estimation. In light of the Meese-Rogoff puzzle, the
conditional mean of exchange rate return is assumed to be a constant (i.e., the exchange
rate is a random-walk).

The in-sample performance of the models is assessed using the AIC and BIC. Also,
in assessing the empirical relevance of structural breaks, structural breaks are based on
historical events rather than hypothesis tests, because commonly-used structural break
tests such as the CUSUM test suffer from low power (Smith, 2008; Xu, 2013).3 The
empirical relevance of structural breaks in the models of volatility is assessed using a formal
test by Dufour and Torres (1998) to determine whether the estimated parameters change
over sub-periods, in contrast to Rapach and Strauss (2008) and Arouri et al. (2012) who did
not conduct any formal tests of the significance of changes in parameters. The in-sample
performance of all the models is analyzed using the weekly data for both variables.

The out-of-sample performance of the models is assessed using one-step-ahead forecasts.
Two forecasting strategies are applied – recursive and rolling window. The first strategy,
the recursive method, is used frequently with models generated by a stable process. The
second strategy, the rolling window method, is believed to better accommodate structural
breaks. Two sizes of rolling windows are employed. The first is half the length of the initial
estimation window of the recursive method. The second is one quarter the length of the
initial estimation window. The out-of-sample forecasts begin in November 2010 and end
in October 2016. This choice of period restricts the focus solely to the post-2008 Financial
Crisis era. Two-year, four-year, and six-year horizons are analyzed in this paper. The

3Mavroeidis (2010) used a similar approach in his analysis of inflation by splitting the data between
the pre- and post-Volcker years (1979). His focus is on the indeterminacy of US monetary policy using
limited-identification robust methods.
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out-of-sample performance is assessed for the mean, interval, and variance forecasts for
both oil and USD returns.

This paper is organized as follows. Section 2 briefly discusses the competing volatility
models considered in the paper. Section 3 describes the data used and the choice of
structural breaks. Section 4 discusses the in-sample performance of all the models for
oil and USD returns when structural breaks are ignored, and the empirical relevance of
breaks in the two series. Section 5 assesses the out-of-sample performance of all the models
when recursive or rolling window methods are employed. Finally, section 6 concludes and
provides suggestions for future research.

4.2 Volatility Models

Four univariate models of the variance of a single random variable yt are examined in this
paper. They are Bollerslev’s (1986) GARCH(1,1) model, Bollerslev’s (1987) t-GARCH(1,1)
model, Creal et al.’s (2013) t-GAS(1,1) model, and Taylor’s (1986) ARSV(1) model. All
these variance models are conditionally heteroskedastic. For each model, the conditional
mean, Et−1[yt], is assumed to contain no exogenous terms. Et−1[yt] is specified either as a
constant or as an AR(1) process, depending on the variable analyzed.4

The GARCH(1,1) model is the most well-known of the models used in this analysis.
The conditional variance in this model is updated by the squared error term and its own
lag:

yt = Et−1[yt] + ut
ut = σtvt vt ∼ N (0, 1)
σ2
t = ω + αu2

t−1 + βσ2
t−1

(4.1)

where ut is an error term with mean 0 and variance σ2
t , and vt is a sequence of independent

and identically distributed (iid) standard normal random variables. ω is the constant of the
conditional volatility model, α is the ARCH parameter, and β is the GARCH persistence
parameter. The unconditional variance of the GARCH(1,1) model is

σ2 = ω
1−α−β . (4.2)

4The most common specification for modeling the conditional mean of a variable with a time-varying
conditional variance is either with a constant or an AR(1) model. It is important to properly specify the
mean because misspecification of the conditional mean can induce serially correlated residuals, which can
in turn cause the squared residuals to be serially correlated, thereby leading the Engle (1982) ARCH-
LM test to falsely reject the null hypothesis that the disturbances are not conditionally heteroskedastic
(Lumsdaine and Ng, 1999).
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The second model used in this analysis is the t-GARCH(1,1) model. The t-GARCH(1,1)
model is a GARCH(1,1) model in which the error term ut is assumed to follow a Student’s
t distribution instead of a Gaussian distribution; in other words, vt is a sequence of iid
standard Student’s t random variables. The t-GARCH model should be considered as an
alternative to the GARCH model because weekly data tend to be non-normally distributed.
This model and its unconditional variance are described by the following equations:

yt = Et−1[yt] + ut
ut = σtvt vt ∼ St(0, 1, ν)
σ2
t = ω + αu2

t−1 + βσ2
t−1

(4.3)

and
σ2 = ω

1−α−β , (4.4)

where ν is the degrees of freedom parameter.

The third model of volatility considered in this paper is the t-GAS(1,1) model:

yt = Et−1[yt] + ut
ut = σtvt vt ∼ St(0, 1, ν)
σ2
t = ω + Ast−1 +Bσ2

t−1,
(4.5)

where ut is the error term with mean 0 and variance σ2
t , ν is the degrees of freedom param-

eter, A represents the scaled score parameter and B denotes the persistence parameter of

σ2 for lag 1. ω is the constant parameter in the conditional variance equation. The scaled

score is defined as st = St∇t, where

∇t =
∂ ln p(ut|u1,u2,...,ut−1,σ2

1 ,σ
2
2 ,...,σ

2
t−1;φ)

∂σ2
t

,

φ = {φ1, φ2, ..., φp} represent the set of static parameters of the log density function, and
St = I(φ)−1

t|t−1 = (Et−1[∇t∇′t])−1 is the scaling matrix function.5 Following Creal et al.

(2013), the scaled score of the density in this case is

st =
2σ2
t (ν+3)

ν

(
−0.5

σ2
t

+ ν+1
2

u2t
(ν−2)σ4t

1+
u2t

(ν−2)σ2t

)
= (1 + 3ν−1)

(1+ν−1)u2t

(1−2ν−1)

[
1+

ν−1u2t
(1−2ν−1)σ2t

] . (4.6)

5Note that, as mentioned by Creal et al. (2013), the scaling matrix St can also take the form of an
identity matrix I or the square root of I(θ)−1t|t−1, leading to different types of GAS models. For simplicity,

this paper looks at only the Student’s t and Gaussian volatility cases.
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The t-GAS(1,1) unconditional variance is

σ2 = ω
1−B . (4.7)

The t-GAS(1,1) model described in equation (4.5) is not equivalent to a t-GARCH(1,1)
model (Creal et al., 2013). Both the t-GAS(1,1) and t-GARCH(1,1) models are equivalent
if the degrees of freedom are infinite.6

The final model of volatility included in this analysis is the autoregressive stochastic
volatility (ARSV) model. The ARSV model is popular in both macroeconomic and finan-
cial applications. Unlike the t-GAS, GARCH, and t-GARCH models, the ARSV model
is not observation-driven, but parameter-driven. In this model, the conditional variance
is dependent only on past conditional variances. A standard ARSV model with 1 lag, or
alternatively the ARSV(1) model, is described by the following equations:

yt = Et−1[yt] + ut
ut = σtvt vt ∼ N (0, 1)
log σ2

t = ω + γ log σ2
t−1 + ηt,

(4.8)

where ω is a constant, γ is the coefficient of the log of the conditional variance in period
t-1, and ηt is normally distributed with a mean of 0 and variance σ2

η. ηt is also assumed to
be uncorrelated with ut. The unconditional variance of the ARSV(1) model is

σ2 = exp
(

ω
1−γ +

σ2
η

2(1−γ2)

)
. (4.9)

Three out of the four chosen models – the t-GAS(1,1), GARCH(1,1), and t-GARCH(1,1)
models – are estimated using one-step quasi-maximum likelihood estimation.7 In all three
models, the conditional mean and the conditional variance are jointly estimated. Restric-
tions are imposed to ensure that the conditional and unconditional variances are posi-
tive and that stationarity holds. For the t-GAS model, the restrictions are that ω > 0,
0 < (1 + 3

ν
)A < B and B < 1. For the GARCH and t-GARCH models, the restrictions are

ω > 0, α > 0, β > 0 and α + β < 1.

In the ARSV(1) model, all the parameters of the conditional variances are unobservable
in all periods and the likelihood is not in closed form, so maximum likelihood estimation is

6See Creal et al. (2013); Harvey (2013) and Chapter 3 of this dissertation for further discussion.
7All estimates and results were generated using The Mathworks Inc. (2014) MATLAB programs. The

t-GAS model codes are from the GAS models website, http://www.gasmodel.com/code.htm, and Martin
et al. (2013).
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not feasible. Hence, the ARSV(1) model is estimated using a two-step method which was
proposed by Nelson (1998) and Harvey and Shephard (1996).8 The first step is to esti-
mate the conditional mean using ordinary least squares estimation and save the residuals.
The second step uses the residuals to estimate the ARSV(1) model using quasi-maximum
likelihood estimation based on the Kalman filter. According to Ruiz (1994), this quasi-
maximum likelihood estimator is more efficient than a Generalized Method of Moments
estimator. Restrictions have also been imposed on the parameters of this model: ω > 0
and 0 < γ < 1.9

4.3 Data

Two important indicators of the economic and financial health of an economy are oil prices
and exchange rates. Alquist et al. (2013) write that if there are large unanticipated and
persistent changes in oil prices, then the welfare of both oil-exporting and oil-importing
countries are negatively impacted. Changes in the cost of crude oil can affect the decisions
of households and firms when purchasing oil for heating, transportation, and manufactur-
ing. In the case of exchange rates, their fluctuations can affect global trade. For example,
an appreciation of the US dollar can make US goods relatively more expensive for other
countries to purchase.

The volatilities of oil prices and exchange rates also matter. Oil price volatility can affect
the price, production, and inventories of oil. An increase in oil volatility can increase the
value of operating options held by firms and opportunity costs of holding these operation
options, which in turn can cause oil production to decrease. Higher volatility of oil prices
can also lead to greater demand for oil inventories which are necessary for smoothening
production and deliveries and lower marketing costs (Pindyck, 2004a,b). Volatility of
exchange rates is important because it reflects uncertainty about the prices of imports and
exports, the value of international reserves, open positions in foreign currency, the domestic
currency value of debt payments, and workers’ remittance which in turn affects domestic
wages, prices, output, and employment (Diebold and Nerlove, 1989).

Weekly data for the dollars per barrel price of West Texas Intermediate crude oil are

8Stochastic volatility models are frequently estimated using Bayesian methods in two steps. This type
of estimation tends to be complicated. Another way of estimating a stochastic volatility model is using a
closed-form method of moments estimator. See Dufour and Valery (2006).

9The stochastic volatility estimates and results were generated using the
MATLAB code from the Pellegrini and Rodriguez (2007) course webpage
(http://halweb.uc3m.es/esp/Personal/personas/spellegr/esp/Curso Cordoba/index.html).
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obtained from the Federal Reserve Economic Database (FRED) maintained by the Federal
Reserve Bank of St. Louis. In this paper, the sample period for oil prices is January
10, 1986 to October 28, 2016 (1609 observations). Weekly data for the US dollar trade
weighted index (USDTWI) from January 3, 1973 to October 26, 2016 (2287 observations)
are also obtained from the FRED database.

Both series are then converted into returns by taking the first difference of their natural
logs.10 The resulting variables are oil returns and USD returns. Both are multiplied by
100 before carrying out the empirical analysis.

Figures 4.1 and 4.2 display the levels and the returns (or first differences) of both series.
In figure 4.1, it can be seen that oil prices were relatively stable until the early 2000s. Then,
oil prices steadily rose from $20 to almost $150 in 2008. Oil prices dropped by about $100
in 2008, partially recovered in 2010, and then dropped once again in 2014. At the same
time, oil returns show spikes in volatility in the early 1990s, late 1990s, 2008, and 2014.
These time periods coincide with the First Iraq War, the Asian Financial Crisis of 1997,
the 2008 Global Financial Crisis, and the decline in global demand for oil respectively.
However, it is unclear from looking at figure 4.1 alone whether there are structural breaks
in volatility.

Figure 4.1: Oil price and returns, 1986 to 2016
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Figure 4.2 shows that the USDTWI reached a peak of 150 in the mid-1990s. Since

10The autocorrelations, partial autocorrelations, and unit root tests for the logs of oil prices and USDTWI
are provided in Appendix A1. They show that the logs of both data series are not stationary in levels, but
are stationary in first differences. Thus, the levels are transformed into first differences.

86



Figure 4.2: US Dollar trade-weighted exchange rate index and returns, 1973 to 2016
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then, the index has fluctuated between 70 and 125. However, the second panel of figure
4.2 shows that there was a spike in volatility in 2008, indicating a possible break. This
time period coincides with the 2008 Global Financial Crisis.

Once again, it is not easy to determine the properties of the data simply by looking at
the figures. Hence, summary statistics are calculated as a first step towards understanding
the properties of the data. These summary statistics are found in Table 4.1. The results
indicate that the standard deviations of oil and USD returns are large relative to the mean.
Furthermore, the data exhibit excess kurtosis. This means that models incorporating fat
tails will likely fit the data better. Given that the frequency of the data is weekly, it is not
surprising that the data exhibit non-normal behaviour. In addition, oil and USD returns
are weakly and negatively skewed, suggesting that neither allowing for leverage effects nor
assuming that the errors are from an asymmetric distribution may be necessary for this
analysis.

The second step in the examination of the data’s properties is to test for conditional het-
eroskedasticity. Table 4.1 also presents Ljung-Box Q statistics and Engle’s (1982) ARCH-
LM tests for the two variables. The Ljung-Box Q test shows that the null hypothesis of
no serial correlation in the squared residuals is rejected at the 5% level in favour of the
alternative hypothesis that the squared residuals exhibit autocorrelation. The ARCH-LM
test statistics show that at both 5 and 10 lags, the null hypothesis that the error term is
homoskedastic can be rejected in favour of the alternative hypothesis that the error term
is conditionally heteroskedastic, at the 5% level of significance.
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Table 4.1: Summary Statistics of the Series

Summary Statistics Oil Returns USD Returns
Mean 0.04 -0.01
Std. dev. 4.39 0.80
Skewness -0.14 -0.20
Kurtosis 6.25 5.23
Minimum -19.23 -5.52
Maximum 25.12 3.42
Ljung-Box Q(20)** 757.51 (0.000) 249.67 (0.000)
ARCH Lagrange Multiplier (5) 188.01 (0.000) 67.40 (0.000)
ARCH Lagrange Multiplier (10) 205.57 (0.000) 142.61 (0.000)
Number of observations 1608 2286

The number of lags used in the test is in brackets next to the names
of the test. The p-values are contained in the brackets next to the
test statistics. **Ljung-Box Q test is for the squared residuals based
on AR(1) model. Time period for oil returns is January 10, 1986 to
October 28, 2016. The period for USD returns is from January 3,
1976 to October 26, 2016.

Table 4.2: Summary statistics by sub-period

Variable Subperiod Mean Std. Dev. Skewness Kurtosis
Oil Returns January 1986 - July 1990 -0.11 4.92 -0.14 6.89

August 1990 - June 1997 0.07 4.09 0.18 7.04
July 1997 - May 2008 0.28 4.15 -0.38 4.64
June 2008 - October 2016 -0.23 4.61 0.00 6.62

USD Returns January 1973 - January 1994 -0.02 0.79 -0.32 6.09
February 1994 - June 2008 -0.04 0.72 -0.12 3.47
July 2008 - October 2016 0.06 0.92 -0.14 4.68

To see if there are differences in the sample moments due to structural breaks, table
4.2 provides summary statistics for sub-periods determined by historical events and policy
changes. The structural breaks are defined by historical events rather than statistical
testing for several reasons. Firstly, as pointed out by Hyndman (2014), structural breaks
arise from historical events such as wars and major policy changes. Hence, there is no
need to test for a break date such as August 1990, since it is known that the First Gulf
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War began in that month. Secondly, the CUSUM- or LM-based tests commonly used for
detecting structural breaks in the variance (e.g., Inclan and Tiao, 1994; Sanso et al., 2004)
are problematic. Xu (2013) uses Monte-Carlo simulations to demonstrate that when the
data have heavy tails, the CUSUM and LM tests have downward size distortion and suffer
from a loss in power. He also finds that the power of these tests is sensitive to the break
location.

For oil returns, the choice of break dates is based on the discussion in Baumeister and
Kilian (2016).11 The first break is assumed to be in August 1990, when the First Gulf War
began. Another likely break date is July 1997, coinciding with the Asian Financial Crisis.
June 2008, which marks the start of the global financial crisis that occurred during the
summer of 2008, is the last break date selected for oil returns.12 The summary statistics
show that the returns do indeed exhibit changes in the mean, standard deviation, skewness,
and kurtosis from one period to the next.

Thus, the results for oil returns suggest that one should allow for parameter changes
in the conditional mean and variance. Additionally, the summary statistics show that it
may not be necessary to allow the conditional distribution of oil returns to be skewed,
since skewness is small across all sub-periods.13 The kurtosis of oil returns for all three
sub-periods exceeds 3, the level of kurtosis for a Gaussian distribution, by at least 1.64.
This suggests that a t-distribution model would fit the oil returns data in all sub-periods
better than a normally distributed model.

In the case of USD returns, two break dates are selected. The first break date is January
1994, when the Federal Reserve introduced a major policy change in the form of an increase
in the Federal Funds Rate. Around that same date, Mexico experienced a currency crisis,
Canada was experiencing fiscal deficit problems, and Europe experienced a collapse of the
European Exchange Rate Commission, making the USD more attractive to investors. The
next break date selected coincides with the global financial crisis in the summer of 2008.

Table 4.2 shows that both the mean and variance of USD returns experienced a change
after June 2008, implying that it may be inappropriate to assume that the parameters of
time-varying volatility models are constant. Although the skewness of USD returns changes

11Baumeister and Kilian (2016) discuss in detail trends in oil prices during the last forty years. Their
article includes discussions of the impacts of events such as the First Gulf War and the Asian Financial
Crisis on oil prices.

12Another potential break date is June 2014, but splitting the sample at that date would result in
imprecise estimates of the time-varying volatility parameters because the sample size would be small, as
shown in Lumsdaine (1995).

13Bulmer (1979) suggests that if skewness is between -0.5 and 0.5, then the sample is approximately
symmetric.
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after February 1994, it is still close to zero, implying that estimating a symmetrically
distributed model (i.e., Gaussian, Student’s t) for USD returns may be appropriate across
all sub-periods. Also, the first and third sub-periods show signs of excess kurtosis, because
the level of kurtosis exceeds 3. This implies that a t-distribution model would likely provide
the best model fit to the data in the pre-February 1994 and post-July 2008 periods. The
second sub-period also exhibits some excess kurtosis (0.47), but the value of excess kurtosis
is less than 0.5 and much smaller than that for the first and third sub-periods (> 1.68).
This suggests there may not be any gains in model fit using a t-distribution model in the
February 1994 and June 2008 period.

4.4 In-sample performance

The next step of the analysis is to evaluate the in-sample performance of each model.
All four models of volatility described in section 4.2 are applied to each variable. The
conditional mean for oil returns is an AR(1) model, because this specification yielded
the lowest AIC and BIC values for all the time-varying volatility models used in this
paper.14 Also, in specifying the conditional mean as an ARIMA-type model, this paper
follows Mohammadi and Su (2010), who assess the modeling and forecasting performance
of various ARIMA-GARCH models of oil returns and volatilities. On the other hand,
the conditional mean for USD returns is assumed to be a constant (or equivalently, the
conditional mean of the USDTWI is a random walk with drift), following Rapach and
Strauss (2008). As discussed in section 4.3, both the mean and volatility of oil and USD
returns change when structural breaks occur. Therefore, the models are first estimated
using the full sample without taking structural breaks into account, and then re-estimated
for each sub-period in order to allow for structural breaks.

After estimation, the in-sample performance of each model is assessed using two com-
mon model selection criteria, the AIC and BIC.15 The model with the smallest AIC and/or
BIC is said to have the best in-sample performance. Both criteria are considered in this
analysis because although the AIC performs better than the BIC in finite samples, it is

14For oil returns, for each time-varying volatility model, the AIC and BIC values were lowest for the
AR(1) conditional mean specification. The model selection was carried out using the full sample. The
AR(1) conditional mean is used for oil returns for all subsamples as well.

15AIC = −2LogL + 2K and BIC = −2LogL + Klog(T ) where K is the number of parameters and T
is the sample size. To produce AIC and BIC values for the ARSV(1) model, I first estimate the ARSV
model using a two step quasi-maximum likelihood estimation method, then take the estimated parameters
and put them into the Gaussian log-likelihood function to obtain the log-likelihood value, LogL. Then,
this log-likelihood value is substituted into the AIC and BIC equations to obtain the values.
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biased towards selecting models that are over-parameterized. On the other hand, the BIC
tends to select models that are more parsimonious but performs better than the AIC in
large samples (Enders, 2010).

The empirical relevance of structural breaks in the parameters of the time-varying
volatility models is assessed in two ways. First, the magnitude of each estimated parameter
is examined to see there are changes in the estimates across sub-periods. Second, Dufour
and Torres’s (1998) union-intersection methods are used to determine whether changes in
parameters over the sub-periods are statistically significant. This method is used because
there is no formal way of testing for structural breaks in GAS models.

Dufour and Torres’s (1998) methods are applied to the parameters ω and A (α in
the GARCH and t-GARCH models) separately in each time-varying volatility model in
the following manner.16 The null hypothesis is that the parameters are not significantly
different from each other or H0 : θ1 = θ2 = ... = θm where m = 4 for oil returns, m = 3 for
USD returns, and θi represents a parameter from a time-varying volatility model in sub-
period i. The level of significance for this analysis is selected to be 10%. The confidence
interval for θ for each subsample i is Ci(yt, αi) = [θ̂i − tαi ∗ se(θ̂i), θ̂i + tαise(θ̂i)], where
αi is significant level for sub-period i, tαi is the critical value for the test for subsample i

based on the t-distribution, and se(θ̂i) is the standard error of θ̂i for sub-period i. All the
individual significant levels are chosen such that their sum is equal to the overall significant
level of 10%. For example, in the case of oil returns, 97.5% confidence intervals for θi are
constructed for each sub-period separately, since 10%/4 = 2.5%. As for the USD returns
case, 96.6% confidence intervals are constructed because 10%/3 = 3.33%.

As shown in Proposition 1 of Dufour and Torres (1998), the test of empty intersection is
based on the rejection region W (α,m) = {yεY : C1(yt, α1)∩C2(yt, α2)∩ ...∩Cm(yt, αm) =
∅}. Y is the set of variables used in this analysis, oil and USD returns. y in this paper
represents either oil returns or USD returns. If there is no intersection of the confidence
intervals for all subsamples, then the null hypothesis that the parameter estimates are
not significantly different from each other is rejected at the 10% level in favour of the
alternative.17

16There is no parameter A in the ARSV model, so I looked at only at the parameter ω.
17Alternatively, Dufour and Torres (1998) state the null hypothesis can be rejected if one or more of the

distances between two of the parameters is larger than the sum of their corresponding critical points.
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4.4.1 Oil returns

Focusing on oil returns, table 4.3 contains the estimates of all four models using the full
sample when structural breaks are ignored. The results indicate that the t-distribution
models fit oil returns better than the Normal distribution models. This is confirmed by
the fact that the estimated degrees of freedom parameter, ν̂, in the t-GAS(1,1) and t-
GARCH(1,1) models is between 7 and 8. The AIC and BIC values indicate that the
t-GARCH(1,1) model has the best fit, followed closely by the t-GAS(1,1) model. The fit
of the ARSV(1) model is considerably worse than that of the other three models.

Table 4.3: Oil returns full sample estimates of time-varying
volatility

Parameters GARCH t-GARCH t-GAS ARSV
µ 0.079 0.085 0.099 0.035**

(0.080) (0.084) (0.093) (0.000)
φ 0.149** 0.158** 0.150** 0.113**

(0.030) (0.025) (0.029) (0.000)
ω 0.595** 0.528** 0.542** 0.045**

(0.167) (0.147) (0.155) (0.000)
A 0.103** 0.107** 0.101**

(0.015) (0.015) (0.014)
β 0.865** 0.866**

(0.014) (0.016)
B 0.970**

(0.012)
γ 0.965**

(0.000)
ν 7.345** 8.012**

(1.261) (1.408)
Unconditional Volatility 4.312 4.422 4.250 2.057
No. of obs 1607 1607 1607 1607
AIC 8973.6 8909.9 8912.0 12975.0
BIC 9000.5 8942.2 8944.3 12997.0

Note: The standard errors are in parenthesis. ** and * represent sig-
nificance at the 5% and 10% levels respectively. For all models, the
conditional mean is E(yt) = µ + φyt−1. The GARCH, t-GARCH, t-
GAS, and ARSV volatility models are given in equations (4.1), (4.3),
(4.5), and (4.8) respectively. Note that α in equations (4.1) and (4.3) is
equal to A in equation (4.5).

In terms of the parameter estimates, the estimated constant of the conditional mean
varies from 0.03 to 0.1 amongst the four models for the full sample period. With the
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exception of the ARSV(1) model, the estimated constant is not statistically different from
zero. In contrast, φ̂ is statistically significant. φ̂ ranges from 0.11 to 0.16, implying that
persistence in the mean is low. Hence, past oil returns are not very useful for predicting
and forecasting current oil returns.

The conditional variance parameter estimates of the GARCH(1,1), t-GARCH(1,1), and
t-GAS(1,1) models are similar. The estimated constant parameter, ω̂, is greater than 0.5
for the GARCH(1,1), t-GARCH(1,1), and t-GAS(1,1) models and statistically significant.
ω̂ equals 0.045 for the ARSV(1) model and is also statistically different from zero.18

All four models indicate the presence of high persistence in the variance, because B̂ in
the t-GAS(1,1) model, α̂ + β̂ in the GARCH and t-GARCH models, and γ̂ in the ARSV(1)
model exceed 0.96. A high persistence parameter value frequently indicates the presence of
structural breaks not taken into account in these models, as discussed in Lamoureux and
Lastrapes (1990), Hillebrand (2005), and Chapter 3. In addition, the estimated uncon-
ditional volatility of the t-GARCH(1,1) model is closer to the sample standard deviation
than that of any other model. On the other hand, the estimated unconditional volatility
of the ARSV(1) model is the furthest away from the sample standard deviation. This is
not surprising since the ARSV(1) model did not do as well as the other models in terms
of in-sample performance.

Tables 4.4 to 4.7 summarize the results for oil returns when structural breaks are
controlled for by splitting the sample. These results suggest that the parameters of all the
volatility models analyzed in this paper are indeed not constant. ω̂ and Â in particular
appear to be variable across models and sub-periods. With the exception of the ARSV(1)
model, ω̂ ranges from 0.94 to 1.24 in the first sub-period, from 0.62 to 0.69 in the second
sub-period, from 0.72 to 0.78 in the third sub-period, and from 0.28 to 0.33 in the final
sub-period.

The statistical significance of ω̂ also varies across subsamples for the three models. For
example, in the first sub-period, ω̂ is not statistically different from zero for the t-GAS,
GARCH, and t-GARCH models. ω̂ for all models is statistically significant in the second
sub-period. For the t-GAS and t-GARCH models, ω̂ is statistically significant in the third
sub-period at the 5% and 10% levels respectively. However, ω̂ for the GARCH model is not
significantly different from zero in the third sub-period. In the fourth and final sub-period,
ω̂ for the t-GAS model is statistically significant at the 10% level. For the GARCH and
t-GARCH models, ω̂ is not statistically different from zero in the final sub=period. On

18Note that the parameters of the ARSV(1) model relate to the log of the conditional variance and
therefore are not directly comparable to those of the other three models.
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Table 4.4: Oil returns estimates of time-varying volatility be-
tween January 1986 and July 1990

GARCH t-GARCH t-GAS ARSV
µ -0.054 -0.156 -0.163 0.000

(0.244) (0.220) (0.180) (0.001)
φ 0.087 0.089 0.075 0.046**

(0.078) (0.074) (0.061) (0.000)
ω 1.236 0.940 0.974 0.071**

(0.865) (0.650) (0.662) (0.002)
A 0.121** 0.135** 0.141**

(0.058) (0.064) (0.057)
β 0.814** 0.826**

(0.079) (0.072)
B 0.956**

(0.040)
γ 0.947**

(0.002)
ν 4.674** 4.895**

(1.113) (1.162)
Unconditional Volatility 4.361 4.910 4.700 2.044
No. of obs 238 238 238 238
AIC 1376.7 1356.9 1357.2 1833.6
BIC 1394.1 1377.7 1378 1847.5

Note: The standard errors are in parenthesis. ** and * represent sig-
nificance at the 5% and 10% levels respectively. For all models, the
conditional mean is E(yt) = µ + φyt−1. The GARCH, t-GARCH, t-
GAS, and ARSV volatility models are given in equations (4.1), (4.3),
(4.5), and (4.8) respectively. Note that α in equations (4.1) and (4.3) is
equal to A in equation (4.5).

the other hand, ω̂ for the ARSV model ranges between 0.03 and 0.11 and is statistically
significant in all sub-periods.

Although there is some variability in ω̂ across sub-periods, the differences are not large
for any of the models except for the ARSV model. Figure 4.3 displays the range of values
that fall within the 90% confidence intervals of ω̂ for the GARCH, t-GARCH, t-GAS, and
ARSV models. The null hypothesis that ω is not statistically different across subsamples
can be rejected if there is no set of values that intersects the confidence intervals for all
sub-periods. The results show that for the GARCH, t-GARCH, and t-GAS models, the
confidence intervals of ω̂ all intersect somewhere between 0 and 0.5.19 Hence, the null

19I imposed positivity constraints on the estimates for all models. However, the size of some standard
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Table 4.5: Oil returns estimates of time-varying volatility be-
tween August 1990 and July 1997

GARCH t-GARCH t-GAS ARSV
µ -0.007 -0.054 0.000 0.000

(0.164) (0.144) (0.000) (0.001)
φ 0.120* 0.096** 0.101** 0.037**

(0.072) (0.047) (0.040) (0.000)
ω 0.685** 0.632** 0.617** 0.111**

(0.135) (0.248) (0.309) (0.003)
A 0.125** 0.132** 0.125**

(0.038) (0.032) (0.031)
β 0.812** 0.819**

(0.038) (0.033)
B 0.948**

(0.032)
γ 0.923**

(0.002)
ν 8.636** 9.560**

(3.821) (3.821)
Unconditional Volatility 3.297 3.591 3.445 2.214
No. of obs 361 361 361 361
AIC 1923.2 1911.9 1914 2307.4
BIC 1942.7 1935.2 1937.3 2323.0

Note: The standard errors are in parenthesis. ** and * represent sig-
nificance at the 5% and 10% levels respectively. For all models, the
conditional mean is E(yt) = µ + φyt−1. The GARCH, t-GARCH, t-
GAS, and ARSV volatility models are given in equations (4.1), (4.3),
(4.5), and (4.8) respectively. Note that α in equations (4.1) and (4.3) is
equal to A in equation (4.5).

hypothesis that the parameters are equal across the subsamples cannot be rejected. In
contrast, for the ARSV model, this same null hypothesis for ω can be rejected in favour of
the alternative hypothesis at the 10% level. This is because there is no intersection of the
confidence intervals for all four subsamples. This suggests that only for the ARSV model
is the ω̂ significantly different for the four subsamples.

Table 4.4 to 4.7 also indicate that the values of Â are similar in the first, second, and

errors causes some parameter estimates to be statistically insignificant. When confidence intervals are
constructed, the large standard errors cause some confidence intervals to have negative lower limits, and
upper limits greater than one. Further testing for non-stationary behaviour in the variance may be required
(i.e., Giraitis et al., 2006), but is left to future research.
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Table 4.6: Oil returns estimates of time-varying volatility be-
tween August 1997 and June 2008

GARCH t-GARCH t-GAS ARSV
µ 0.314** 0.401** 0.403** 0.297**

(0.169) (0.171) (0.166) (0.000)
φ 0.146** 0.131** 0.138** 0.132**

(0.039) (0.038) (0.038) (0.000)
ω 0.762 0.723* 0.775** 0.030**

(0.806) (0.395) (0.258) (0.001)
A 0.025 0.029* 0.028*

(0.019) (0.016) (0.016)
β 0.931** 0.929**

(0.058) (0.032)
B 0.955**

(0.014)
γ 0.909**

(0.002)
ν 9.377** 10.072**

(3.875) (4.269)
Unconditional Volatility 4.162 4.150 4.150 1.091
No. of obs 574 574 574 574
AIC 3260.2 3243.9 3244.4 8184.6
BIC 3281.9 3270.0 3270.5 8202.0

Note: The standard errors are in parenthesis. ** and * represent signif-
icance at the 5% and 10% levels respectively. For all models, the con-
ditional mean is E(yt) = µ + φyt−1. The GARCH, t-GARCH, t-GAS,
and ARSV volatility models are given in equations (4.1), (4.3), (4.5), and
(4.8) respectively. Note that α in equations (4.1) and (4.3) is equal to A
in equation (4.5).

fourth sub-periods and across all models (there is no equivalent of Â in the ARSV model).
Â is between 0.12 and 0.14 in the first sub-period, between 0.12 and 0.13 in the second
sub-period, and between 0.10 and 0.12 in the fourth and final sub-period. In these three
sub-periods, Â is statistically different from zero in all models at the 5% level. On the other
hand, in the third sub-period, Â ranges from 0.025 to 0.029 across models. Â is statistically
different from zero at the 10% level for the t-GARCH and t-GAS models. For the GARCH
model, Â is statistically insignificant. Additionally, figure 4.4 shows that the differences
in Â are not significantly large for all the models. This is because the confidence intervals
for Â overlap, implying that the null hypothesis that the parameters are equivalent across
sub-periods cannot be rejected in favour of the alternative.
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Table 4.7: Oil returns estimates of time-varying volatility be-
tween June 2008 and October 2016

GARCH t-GARCH t-GAS ARSV
µ -0.026 -0.06 -0.011 0.000

(0.174) (0.151) (0.018) (0.001)
φ 0.210** 0.251** 0.241** 0.170**

(0.054) (0.049) (0.045) (0.000)
ω 0.282 0.331 0.284* 0.036**

(0.187) (0.214) (0.147) (0.001)
A 0.117** 0.118** 0.103**

(0.039) (0.043) (0.029)
β 0.872** 0.868**

(0.042) (0.042)
B 0.987**

(0.016)
γ 0.978**

(0.001)
ν 6.631** 8.222**

(1.718) (2.714)
Unconditional Volatility 5.063 4.862 4.673 2.612
No. of obs 435 435 435 435
AIC 2393.1 2387.1 2385.2 2831.5
BIC 2413.4 2411.5 2409.6 2847.8

Note: The standard errors are in parenthesis. ** and * represent sig-
nificance at the 5% and 10% levels respectively. For all models, the
conditional mean is E(yt) = µ + φyt−1. The GARCH, t-GARCH, t-
GAS, and ARSV volatility models are given in equations (4.1), (4.3),
(4.5), and (4.8) respectively. Note that α in equations (4.1) and (4.3) is
equal to A in equation (4.5).

The estimated persistence parameter – B̂ in the t-GAS model, α̂ + β̂ in the GARCH and
t-GARCH models, and γ in the ARSV model – remains high and statistically significant
in all models and sub-periods. This implies that for oil returns, the presence of structural
breaks is not the only factor causing persistence to be high in all models. Other factors that
could cause persistence to be high in all models and all sub-periods include the presence
of additional unknown breaks. Figure 4.5 shows the application of Dufour and Torres’s
(1998) test to the persistence parameter of the t-GAS, GARCH, and t-GARCH models.
The results also indicate that the differences across sub-periods are also not statistically
significant. Only γ for the ARSV model had there been some differences across sub-periods.

The results show that the estimated unconditional volatility changes slightly across the
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Figure 4.3: 90% confidence intervals for ω by sub-period – oil returns

Note: The null hypothesis that ω is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges.

sub-periods for all models. This is because ω̂ in all models and α̂ for the GARCH(1,1)
and t-GARCH(1,1) models are not significantly different across sub-periods. In tables 4.4
to 4.7, the results also show that either the t-GARCH(1,1) model or t-GAS(1,1) model
have estimated unconditional volatilities closest to the sample standard deviation found
in table 4.2. In all periods, the ARSV(1) model comes in last with respect to in-sample
performance in terms of both its AIC and BIC values. Note that the estimated parameters
of the conditional mean also vary across sub-periods in all models. Only in the third
sub-period is µ̂ significantly different from zero for all models. In the last sub-period,
the persistence of the conditional mean increases slightly for all models. Together, these
changes imply that the unconditional mean also varies across subsamples.20

20However, when Dufour and Torres’s (1998) test was applied to the parameter estimates of the con-
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Figure 4.4: 90% confidence intervals for A by sub-period – oil returns

Note: The null hypothesis that A is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges.

ditional mean, the results show that the conditional mean estimates are statistically equivalent across
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Figure 4.5: 90% confidence intervals for B by sub-period – oil returns

Note: The null hypothesis that B is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges.

subsamples for all models except for the ARSV model.
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Although the parameter estimates of the conditional variance vary across subsamples,
the differences are not large, implying that structural breaks are not empirically relevant for
the volatility models of oil returns, except for the ARSV(1) model. For the GARCH(1,1)
and t-GARCH(1,1) models, this finding is consistent with that of Arouri et al.’s (2012)
for crude oil. Additionally, the poor performance of the ARSV(1) model compared to the
other three models contradicts the findings of Chan and Grant (2016), in that they find
that stochastic volatility models provide the best fit for oil returns.

4.4.2 USD returns

Table 4.8 summarizes the estimation results for USD returns for all four time-varying
volatility models using the full sample. The results show that the t-GAS(1,1) model has
better in-sample performance than the other three models when structural breaks are
ignored, based on the AIC and BIC values. The next best model is the t-GARCH(1,1)
model. Once again, the ARSV(1) model has the worst in-sample performance according to
the AIC and BIC. According to table 4.8, the estimated degree of persistence in conditional
volatility exceeds 0.98, indicating the possibility of structural breaks being present in USD
returns. The estimated constant of the conditional volatility, ω̂, ranges from 0.008 to 0.015
in all the models. Only for the t-GARCH model is ω̂ statistically insignificant. Also, Â
is between 0.08 and 0.11 for the GARCH(1,1), t-GARCH(1,1), and t-GAS(1,1) models.
The estimated degrees of freedom, ν̂, for the Student’s t models are approximately 10.
The finding that the Student’s t models have a finite ν̂ as well as the lowest AIC and
BIC values implies that USD returns are best fitted in-sample by a model based on the
Student’s t-distribution. As for the estimated mean µ̂, it is very close to zero in all models.
With the exception of the ARSV(1) model, µ̂ is statistically insignificant for all the models.

The USD returns sample is then broken down into smaller subsamples based on the
timing of the breaks, as discussed in section 4.3. Tables 4.9 to 4.11 summarize the estimates
of the competing volatility models for three sub-periods.

One estimated parameter that shows variability across the models and sub-periods is
the estimated constant of the conditional volatility, ω̂. The results show that in the first
sub-period, ω̂ ranges from 0.006 to 0.085 and is statistically insignificant for all models,
with the exception of the ARSV model. Additionally, table 4.10 shows that ω̂ ranges from
0.011 to 0.32 in the second sub-period. In contrast to ω̂ in the first sub-period, ω̂ in the
second sub-period is statistically different from zero for all the models. As for the third
sub-period, ω̂ is between 0.005 and 0.017 and is statistically significant at the 10% level
only for the t-GAS model.

101



Table 4.8: USD returns full sample estimates of time-varying
volatility

Parameters GARCH t-GARCH t-GAS ARSV
µ -0.008 -0.006 -0.003 -0.007**

(0.015) (0.014) (0.012) (0.000)
ω 0.012* 0.010 0.008* 0.015**

(0.007) (0.007) (0.005) (0.000)
A 0.085** 0.108** 0.092**

(0.024) (0.023) (0.018)
β 0.898** 0.884**

(0.029) (0.027)
B 0.992**

(0.010)
γ 0.986**

(0.000)
ν 10.084** 9.764**

(2.500) (2.396)
Unconditional Volatility 0.825 1.118 1.000 1.839
Number of Observations 2286 2286 2286 2286
AIC 5210.5 5140.8 5119.0 7096.4
BIC 5233.5 5169.5 5147.7 7113.6

Note: The standard errors are in parenthesis. ** and * represent sig-
nificance at the 5% and 10% levels respectively. For all models, the
conditional mean is E(yt) = µ. The GARCH, t-GARCH, t-GAS, and
ARSV volatility models are given in equations (4.1), (4.3), (4.5), and
(4.8) respectively. Note that α in equations (4.1) and (4.3) is equal to A
in equation (4.5).

For all models, the results also indicate that the null hypothesis that ω is equal in all
sub-periods can be rejected. This is because there is no set of values in ω that intersects
with the confidence intervals for ω of all subsamples. This is illustrated in figure 4.6,
which shows that the confidence intervals for ω for the three sub-periods have no points in
common, for all four models.

The sub-periods in which ω̂ varies are different for each model. Although some confi-
dence intervals reveal some pairwise overlaps, Dufour and Torres’s (1998) test is looking for
an overlap for all periods, and shows that the null hypothesis of the coefficient being equal
across all subsamples can be rejected. For the t-GAS model, the confidence intervals for ω
intersect only in the first and third sub-periods. As for the t-GARCH model, the confidence
interval for ω in the second sub-period does not intersect with the confidence intervals for
ω in the first and third sub-periods. In the case of the ARSV model, the first and second
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Table 4.9: USD returns estimates between January 1973 and
January 1994

Parameters GARCH t-GARCH t-GAS ARSV
µ -0.007 0.000 0.000 -0.016**

(0.022) (0.000) (0.000) (0.000)
ω 0.006 0.009 0.060 0.085**

(0.074) (0.016) (0.169) (0.001)
A 0.070 0.161** 0.215**

(0.052) (0.047) (0.095)
β 0.919** 0.920**

(0.060) (0.054)
B 0.912**

(0.266)
γ 0.956**

(0.001)
ν 7.006** 8.015**

(1.611) (3.879)
Unconditional Volatility 0.775 - 0.826 2.969
Number of Observations 1100 1100 1100 1100
AIC 2482.8 2400.8 2400.9 4232.1
BIC 2502.8 2425.8 2425.9 4247.1

Note: The standard errors are in parenthesis. ** and * represent sig-
nificance at the 5% and 10% levels respectively. For all models, the
conditional mean is E(yt) = µ. The GARCH, t-GARCH, t-GAS, and
ARSV volatility models are given in equations (4.1), (4.3), (4.5), and
(4.8) respectively. Note that α in equations (4.1) and (4.3) is equal to A
in equation (4.5).

sub-periods do not intersect with each other, but they both intersect with the third sub-
period. For the t-GARCH model, the second sub-period is significantly different from the
first and third sub-period according to Dufour and Torres’s (1998) union-intersection test,
because there is no set of values of the confidence interval for the second sub-period that
intersects with the confidence intervals for the first and third sub-periods. This implies
that the differences in parameters across sub-periods are large for all four time-varying
volatility models.

In the case of the estimated parameter Â, the parameter values vary across the models
and across sub-periods. In the first sub-period, Â ranges from 0.07 to 0.215, but it is
statistically significant only for the t-GAS and t-GARCH models. As for the second sub-
period, there is less variability between models, since Â lies between 0.164 and 0.166. In
the third subperiod, Â lies between 0.102 and 0.107 and is statistically significant at the
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Table 4.10: USD returns estimates between February 1994 and
June 2008

Parameters GARCH t-GARCH t-GAS ARSV
µ 0.000 0.000 0.000 -0.034**

(0.000) (0.050) (0.051) (0.000)
ω 0.320** 0.317** 0.263** 0.011**

(0.073) (0.061) (0.072) (0.000)
A 0.164** 0.166** 0.164**

(0.036) (0.031) (0.028)
β 0.237** 0.248**

(0.038) (0.032)
B 0.513**

(0.037)
γ 0.966**

(0.001)
ν 16.370** 16.289**

(0.000) (0.000)
Unconditional Volatility 0.731 0.735 0.735 1.181
Number of Observations 752 752 752 752
AIC 1636.5 1634.4 1634.4 1892.2
BIC 1655.0 1657.6 1657.6 1910.7

Note: The standard errors are in parenthesis. ** and * represent signifi-
cance at the 5% and 10% levels respectively. For all models, the conditional
mean is E(yt) = µ. The GARCH, t-GARCH, t-GAS, and ARSV volatility
models are given in equations (4.1), (4.3), (4.5), and (4.8) respectively.
Note that α in equations (4.1) and (4.3) is equal to A in equation (4.5).

5% level. However, the results in figure 4.7 show that although Â appears to vary across
subsamples, the differences are not significant. The figure shows that there exists a range
of values of A such that the confidence intervals of all the subsamples intersect for all
models. This implies that for the t-GARCH and GARCH models, in which A shifts the
unconditional volatility, changes in A may not be large enough to cause changes in the
unconditional volatility of the USD returns.

The results in tables 4.9 to 4.11 also show that the estimated persistence parameter
– B̂ of the t-GAS model, α̂ + β̂ of the GARCH and t-GARCH models, and γ̂ of the
ARSV model – varies across sub-periods in the t-GAS, GARCH, and t-GARCH models.
For the GARCH(1,1), t-GARCH(1,1), and t-GAS(1,1) models, the estimated persistence
parameter exceeds 0.9 in the first and last sub-periods, but is less than 0.43 in the second
sub-period. In contrast, the estimated persistence parameter in the ARSV(1), γ̂, process
remains high, and in all periods exceeds 0.9. Dufour and Torres’s (1998) test have also
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Table 4.11: USD returns estimates between July 2008 and Oc-
tober 2016

Parameters GARCH t-GARCH t-GAS ARSV
µ 0.063 0.064 0.063 0.062**

(0.038) (0.041) (0.040) (0.000)
ω 0.016 0.017 0.017* 0.005

(0.010) (0.011) (0.010) (0.190)
A 0.107** 0.107** 0.102**

(0.025) (0.024) (0.024)
β 0.874** 0.874**

(0.022) (0.022)
B 0.980**

(0.018)
γ 0.982**

(0.501)
ν 29.861** 29.884**

(10.566) (7.049)
Unconditional Volatility 0.918 0.946 0.922 1.188
Number of Observations 434 434 434 434
AIC 1103.8 1106.3 1106.9 1227.0
BIC 1120.1 1126.6 1127.2 1239.3

Note: The standard errors are in parenthesis. ** and * represent signif-
icance at the 5% and 10% levels respectively. For all models, the condi-
tional mean is E(yt) = µ. The GARCH, t-GARCH, t-GAS, and ARSV
volatility models are given in equations (4.1), (4.3), (4.5), and (4.8) respec-
tively. Note that α in equations (4.1) and (4.3) is equal to A in equation
(4.5).

been applied to the estimated persistence parameter for the GARCH, t-GARCH, t-GAS,
and ARSV models. As shown in figure 4.8, the results indicate that the changes in these
parameters can be considered to be large only for the t-GAS model, since the null hypoth-
esis that B is equivalent across sub-periods can be rejected in favour of the alternative.
For the other three models, the null hypothesis cannot be rejected in favour.

The estimate of the unconditional mean, µ̂ is close to zero in all periods and models.
Finally, ν̂ in the t-GARCH(1,1) and t-GAS(1,1) models trends upwards, implying that
over time, it becomes increasingly more favourable to estimate a Gaussian model of USD
returns. The fact that the estimated degrees of freedom, ν̂, are large in the last sub-period
confirms that it would be more appropriate to use a Gaussian GARCH model for that
period. Also, figure 4.9 displays the confidence intervals of the ν across all three sub-
periods. It shows that the differences in ν̂ across the sub-periods are also found to be
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Figure 4.6: 90% confidence intervals for ω by sub-period - USD returns

Note: The null hypothesis that ω is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges. The dot in the figure
represents a confidence interval that is actually the estimate since the standard error is
zero.
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Figure 4.7: 90% confidence intervals for A by sub-period - USD returns

Note: The null hypothesis that A is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges.

statistically significant at the 10% level.
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Figure 4.8: 90% confidence intervals for B by sub-period - USD returns

Note: The null hypothesis that B is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges. The squares in the figure
represents a confidence interval that is so small that it is difficult to see two confidence
intervals that do not intersect.
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Figure 4.9: 90% confidence intervals for ν by sub-period - USD returns

Note: The null hypothesis that ν is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges. The dot in the figure
represents a confidence interval that is actually the estimate since the standard error is
zero.
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Tables 4.9 to 4.11 also show that the estimated unconditional volatilities of all models
change over time. In addition, either the GARCH(1,1) model or the t-GAS(1,1) model
has an estimated unconditional volatility closest to the sample standard deviation. Once
again, the ARSV(1) model is farthest from the sample standard deviation, which is another
indication that the ARSV(1) model does not perform well in-sample. Furthermore, the
t-GARCH(1,1) model fare better than the other models in the first sub-period based on the
AIC and BIC values, while the t-GARCH(1,1) and t-GAS(1,1) models fares better than
the others in the second sub-period according only to the AIC value. Based on the same
criterion, the GARCH(1,1) model slightly outperforms the t-GARCH(1,1) and t-GAS(1,1)
models in the final sub-period.

4.4.3 In-sample performance: Summary and implications

For oil returns, it is unclear whether the t-GAS model or the t-GARCH model has the best
performance. However, it is possible to say that a t-distribution model fits oil returns better
than the Gaussian models, according to the AIC and BIC values. The AIC and BIC values
for the t-GAS(1,1) and t-GARCH(1,1) models are close in all sub-periods. In the case
of USD returns, either the t-GAS(1,1) model, t-GARCH(1,1) model, or the GARCH(1,1)
model has the best performance when structural breaks are taken into account. An out-
of-sample forecasting analysis is needed in order to determine which model has the best
performance outside the sample period.

One thing that is clear is that for both oil and USD returns the ARSV(1) model has the
worst in-sample performance for the entire period and each sub-period. This contradicts
the findings of Chan and Grant (2016). Chan and Grant (2016) find that stochastic
volatility models fit oil returns better than GARCH models. However, Chan and Grant
(2016) use Bayesian methods to estimate their stochastic volatility models rather than
quasi-maximum likelihood estimation with a Kalman Filter. The difference between the
in-sample performance of the ARSV model in this paper and that of Chan and Grant
(2016) suggests that alternative methods of estimation should be considered for the ARSV
model.

The in-sample analysis shows that structural breaks are empirically relevant for all
models of USD volatility, but not for the models of oil volatility. This is because, for the
USD returns, the estimated parameters of the conditional volatility substantially change
across the sub-periods. This is not the case for the models of oil volatility. In the case
of the GARCH model, the USD result is consistent with that of Rapach and Strauss
(2008) in which they find that the estimated parameters change substantially across sub-
periods. The crude oil result is consistent with that of Arouri et al. (2012); they find no
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evidence of structural breaks in the volatility of the data after using the CUSUM test.
The empirical relevance of structural breaks in both GAS models and non-GAS models
indicates the need to assess which model has the best out-of-sample performance and
whether accommodating structural breaks produces better forecasts, because in theory
failing to accommodate breaks can give rise to biased forecasts.

4.5 Out of sample performance

This section analyzes the out-of-sample performance of all the time-varying volatility mod-
els described in section 4.2. Each of the four time-varying volatility models is combined
with three types of forecasting method – the recursive window, which uses an expanding
estimation window; a rolling window of one-half the size of the initial recursive estimation
window, and a rolling window of one-quarter the size of the initial recursive estimation
window – to generate out-of-sample forecasts of oil and USD returns and volatilities. Thus
in total, 12 different forecasting models are compared in this analysis.

The recursive (expanding window) method is commonly used as a natural and ap-
propriate benchmark for forecasting data generated from a stable process (Rapach and
Strauss, 2008), while the rolling window method adapts to unknown structural breaks by
removing pre-break data from the sample. As mentioned by Clark and McCracken (2009),
the recursive method is the most accurate forecasting scheme with stable DGPs. On the
other hand, rolling window methods are considered better at accommodating breaks than
the recursive method. In principle, failing to accommodate structural breaks will induce
a systematic bias in the forecasts. As a result, the forecast can converge to the wrong
equilibrium values.

An alternative to the rolling window method would be to explicitly incorporate known
breaks into each model by either adding dummy variables to the model or following Rapach
and Strauss (2008) in using the last break date as the first observation of the estimation
window. The problem with adding dummy variables to allow for a break in each parameter
is that it leads to too many parameters to estimate. Generally, when the number of
parameters is large, the estimates may not converge. A bigger problem is that one can
only add dummy variables ex-post, after one knows when the breaks occurred. The last
break date for oil and USD returns is the first week of June 2008, which is very close to
the beginning of the forecast period (November 2010), which means that the sample would
be too small to estimate each time-varying volatility model precisely. Therefore, neither
option is pursued in this chapter.
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One step-ahead forecasts of the mean and variance of oil and USD returns are generated
for the following time horizons:

• two years ahead (November 2010 to October 2012);

• four years ahead (November 2010 to October 2014); and

• six years ahead (November 2010 to October 2016).

These forecast periods are of interest because the most recent recession and its aftermath
gave academics and policy advisors the motivation to rethink and reassess existing models.
It also prompted them to look for ways to improve forecasts of economic time series data
and to provide a better understanding of their dynamics and behaviour.

For forecasts of both the mean and the variance, the first set of forecasting models
involves estimation using a recursive window. The first step in conducting this forecasting
exercise is to estimate the parameters of all four models using an estimation window. For
the first forecast period, this estimation window starts at the beginning of the sample for
each variable and ends at observation R. For oil returns, the initial estimation window
begins in January 1986 and ends in October 2010. For USD returns, the initial estimation
window is January 1973 to October 2010. The parameter estimates from the estimation
window are used to compute the one-step-ahead forecast for the next period, R+1. The
estimation window is then expanded by one period such that the estimation window runs
from observation 1 to R+1, and a one-step-ahead forecast is generated for period R+2.
This process continues until H forecasts have been produced. Using a recursive window to
generate forecasts is appropriate if the mean and volatility processes are stable, in which
case it should produce unbiased forecasts.

Following Rapach and Strauss (2008), the second set of forecasting models is estimated
using rolling windows to better control for unanticipated breaks in the conditional mean and
variance. When rolling windows are used for estimation, the estimation window is modified
so that it does not include as many observations produced by a data generating process
that is unrelated to current data (Clark and McCracken, 2009). This can reduce bias in
the estimates and forecasts and reduce the mean squared forecast error. Unfortunately,
reducing the size of the estimation sample also raises the variance of the estimates, causing
the mean squared forecast error to increase. This is what Clark and McCracken (2009)
and Pesaran and Timmermann (2007) refer to as the bias-variance trade-off. Pesaran and
Timmermann (2007) find that it is in fact optimal to include some pre-break data in the
estimation window, and derive conditions to determine how much of the pre-break data
should be included in the estimation window. Unfortunately, Pesaran and Timmermann’s
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(2007) study is applicable only to a linear regression model for forecasting the mean. The
conditions for selecting the appropriate number of pre-break observations to include in the
estimation window do not yet exist for time-varying volatility models such as GAS models;
hence, this paper follows Rapach and Strauss (2008) in selecting rolling windows that
are one-half and one-quarter the size of the initial estimation window under the recursive
method.21 As mentioned earlier in this section, two types of rolling window are used in
this analysis – a rolling window equal to one-half of the initial estimation window, and a
rolling window equal to one-quarter of the estimation window. They are referred to as the
0.5 (or 0.5R) and 0.25 (or 0.25R) rolling windows respectively.

The rolling window forecasts are generated as follows. In the case of the 0.5 rolling
window, the parameters of all four models are first estimated using an estimation window
size of 0.5R, consisting of observations 0.5R+1 to R. Then, the first one-step-ahead forecast
is produced. Afterwards, the first observation is dropped and another is added such that
the estimation window now ranges from 0.5R+ 2 to R+ 1. The estimation window keeps
sliding by one observation and the process repeats until H forecasts have been produced.
As for the 0.25 rolling window case, the forecasts are generated in the same fashion, except
that the initial estimation window begins at 0.75R+1 and ends at R for both oil and USD
returns.

4.5.1 Forecast evaluation strategies

The approach used to evaluate forecasts of the mean is different from that used for the
variance. For mean forecasts, two loss functions, the mean square prediction error (MSPE)
and the mean absolute prediction error (MAPE), are employed in order to determine which
model produces the best forecast. They are defined as follows:

MSPE =
1

H

H∑
h=1

(yT+h − ŷT+h|T+h−1)2, (4.10)

and

MAPE =
1

H

H∑
h=1

|yT+h − ŷT+h|T+h−1|, (4.11)

21Rapach and Strauss (2008) point out that conditions for optimal estimation windows for GARCH
models are not yet in existence. I am not aware of any papers related to conditions for optimal estimation
windows. The closest paper in relation to time-varying volatility models is Clark and McCracken (2009)
who derive optimal choices of estimation window size and weights to combine recursive and rolling forecasts
for linear regression models in the presence of conditional heteroskedasticity.
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where yT+h is the actual value of the variable in period T+h and ŷT+h|T+h−1 is the forecasted
value for period T+h based on information available in the previous period.

However, the mean forecasts do not depend directly on the time-varying volatility
part of the models. Therefore, this paper goes a step further in assessing the out-of-
sample performance of the models by establishing prediction intervals around the mean
forecasts. To construct these intervals, this paper follows the methodology of Granger
et al. (1989). First, the forecast errors are obtained for each model. Then, the errors
are standardized using their respective predicted standard deviations. The standardized
errors are sorted and then regressed against a constant using quantile regression methods to
obtain estimates at the 10% and 90% quantiles. These interval forecasts are then evaluated
using Christoffersen’s (1998) conditional coverage test.

Christoffersen’s (1998) test is used to determine whether the interval forecasts have
good unconditional and conditional coverage. The null hypothesis for both tests is that
the nominal (unconditional or conditional) coverage equals 80%. He uses a likelihood ratio
(LR) test to determine whether the null hypothesis for either unconditional coverage or
conditional coverage can be rejected. If the null hypothesis is rejected, then one can say
that the interval forecasts do not have good unconditional/conditional coverage.

The evaluation of variance forecasts is more difficult because the true variance is unob-
servable. Hansen and Lunde (2006), Patton and Sheppard (2009) and Patton (2011) point
out that the use of squared error terms as a proxy for the variance σ2

t is noisy, and this
noise can affect the power of tests of forecast accuracy and the ranking of volatility and
variance forecasts. Patton and Sheppard (2009) and Patton (2011) further point out that
traditional loss functions such as the MSPE and MAPE are not robust to this noise. An
alternative approach to evaluating variance forecasts is to use the forecasting regression

σ̃2
T+h|T+h−1 = a0 + b0σ̂

2
T+h|T+h−1 + εT+h. (4.12)

where H is the number of forecast horizons, σ̃2
T+h|T+h−1 is the conditionally unbiased vari-

ance proxy at time T+h and σ̂2
T+h|T+h−1 is the variance forecast for period T+h given

information at T+h-1. If a0 and b0 are equal to 0 and 1 respectively, then the forecasts are
unbiased. Furthermore, if R2 is high, then the forecasts are accurate.

However, equation (4.12) suffers from an “errors-in-variables” problem when GARCH
parameter estimates are used to construct σ̂2

T+h|T+h−1, which causes b̂0 to have a downward
bias. This is also likely to happen with GAS and other volatility models. Hence, the
focus when evaluating the variance forecasting performance is rather on R2 (Andersen and
Bollerslev, 1998; Zivot, 2009). As mentioned by Andersen and Bollerslev (1998), when the
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squared return is used as a proxy, then R2 tends to be too low. They recommend the use
of the realized variance (RV) as a proxy.22

RV is defined as

RV m
t+h =

m∑
i=1

ỹ2
t+h,i (4.13)

where, in this paper, ỹ represents the demeaned returns and m is the number of observations
per week. Five daily values of oil and USD returns are used to construct the weekly realized
variance for each series. In other words, m = 5 in this paper. Following Patton (2011),
this constructed RV constitutes the conditional variance proxy σ̃2

T+h|T+h−1. Then, RV is

regressed against the conditional variance forecast σ̂2
T+h|T+h−1 for each competing volatility

model. R2 is then obtained from each regression and used to assess the out-of-sample
performance of each model. The model with highest R2 is selected as the model with the
best variance forecasts.

Alternatively, this paper also uses the Diebold-Mariano-West (DMW) test of Diebold
and Mariano (1995) and West (1996) to evaluate the forecasts. Instead of using the MSPE
and MAPE loss functions, this chapter uses the“QLIKE” and “MSE” loss functions which
belong to Patton’s (2011) family of loss functions that are robust to imperfect volatility
proxies:

L(σ̃2
t , ht; b) =


1

(b+1)(b+2)
(σ̃

2(b+2)
t − σ̂2(b+2))− 1

b+1
σ̂2(b+2)(σ̃2

t − σ̂2
t ) b 6= −1,−2

σ̂2
t − σ̃2

t + σ̃2
t log

σ̃2
t

σ̂2
t

b = −1
σ̃2
t

σ̂2
t
− σ̃2

t log
σ̃2
t

σ̂2
t

b = −2

(4.14)

where σ̂2
t is the conditional variance forecast and σ̃2

t is the realized variance. Setting b
= -2 gives rise to the “QLIKE” loss function, while setting b = 0 yields the “MSE” loss
function. These robust loss functions are then used to calculate the loss. See Appendix
C.3. for full details about Patton’s (2011) approach to evaluating variance forecasts.

4.5.2 Oil return forecast results

Table 4.12 displays the MSPE and MAPE of the oil return point forecasts for all four time-
varying volatility models. The mean forecasts for the ARSV model actually correspond to

22According to Andersen and Bollerslev (1998), using the RV, in particular with intra-day frequency,
would result in a higher R2. Due to limited data availability, daily oil and USD returns are used to
construct weekly forecasts.
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an AR(1) model with a constant variance because the ARSV model is estimated using a
two-step method in which the conditional mean and the conditional variance are estimated
separately. Only the predictive intervals, that are discussed later, take into account the
conditional variance of the ARSV model. Hence, in table 4.12, the mean forecasts generated
by the GARCH, t-GARCH, and t-GAS models are actually compared to forecasts generated
by an AR(1) model with a drift and constant variance.

The results show that for the two-year horizon, the MSPE loss function selects the
GARCH model with the recursive window and the MAPE selects the GARCH model with
the 0.5 rolling window. However, for the four-year horizon, the MSPE selects the GARCH
model with 0.5 rolling window and the MAPE favours the t-GARCH model with a recursive
window. On the other hand, the MSPE and MAPE for the six-year horizon both select
the GARCH model with the 0.5 rolling window. This implies that for the long-run, it
is beneficial to use the GARCH model and to use a method that accommodates breaks
when forecasting the conditional mean. On the other hand, in the short and medium run,
there is an inconsistency between the two loss functions with respect to the usefulness of
accommodating breaks using rolling window methods.

Table 4.12: Oil mean forecast performance

Model 2 year horizon 4 year horizon 6 year horizon
MSPE MAPE MSPE MAPE MSPE MAPE

Recursive t-GAS 11.384 2.545 7.756 2.070 13.549 2.674
Recursive GARCH 11.255 2.515 7.713 2.057 13.353 2.636
Recursive t-GARCH 11.358 2.525 7.718 2.053 13.309 2.633
Recursive ARSV 11.321 2.530 7.743 2.066 13.491 2.654
t-GAS with 0.5 RW 11.416 2.545 7.735 2.069 13.278 2.638
GARCH with 0.5 RW 11.316 2.505 7.692 2.057 13.227 2.626
t-GARCH with 0.5 RW 11.406 2.538 7.757 2.068 13.316 2.642
ARSV with 0.5 RW 11.319 2.527 7.734 2.064 13.409 2.646
t-GAS with 0.25 RW 11.282 2.512 7.712 2.064 13.270 2.635
GARCH with 0.25 RW 12.636 2.639 8.686 2.190 14.493 2.761
t-GARCH with 0.25 RW 11.486 2.552 7.767 2.064 13.290 2.634
ARSV with 0.25 RW 11.309 2.525 7.702 2.058 13.354 2.636

Notes: 0.5 RW denotes 0.5 rolling window, and 0.25 RW denotes 0.25 rolling win-
dow. The ARSV model is in this case an AR(1) model with drift and with a constant
variance. Bold values denotes the forecasting model with the smallest loss based on
criteria and horizon.
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Overall, all the models produce poor mean forecasts across all horizons. This is likely
because of the assumption that the conditional mean follows an AR(1) process. Prices
of commodities such as oil have been found to exhibit jumps, mean-reversion, and time-
varying trends, none of which have been incorporated in the simple AR(1) model used
here.23

The conditional mean forecasts do not depend on the variance parameters of any fore-
casting models used in this paper, but the prediction intervals do. The variance parameters
are used to construct 80% confidence bands for each forecast. Figures 4.10 to 4.12 display
oil returns, recursive forecasts of mean oil returns, and 80% confidence bands for the 2 year,
4 year, and 6 year horizons respectively for the GARCH, t-GARCH, t-GAS, and ARSV
models. The figures show that the mean forecasts do not come close to the actual values
of oil returns. This confirms the findings in table 4.12 that show that all the models yield
poor mean forecasts.

Figures 4.10 to 4.12 show that it is difficult to distinguish with the naked eye which
model’s forecast interval has the best conditional coverage. With the exception of the six-
year horizon, the GARCH, t-GARCH, and t-GAS models appear to have similar coverage.
The ARSV model have appears to have straighter forecast intervals than the other three
models.

Figures 4.13 to 4.15 display the mean forecast for each model generated using the 0.25
rolling window.24 The results indicate that once again the t-GAS(1,1), t-GARCH(1,1), and
GARCH(1,1) models have slightly more coverage than the ARSV(1) model. For all the
models, figures 4.13 and 4.14 also show that there is little difference between the coverage
of the 0.25 rolling window forecasts and recursive forecasts of the conditional mean. It is
only the ARSV(1) model for the six year horizon that displays some difference between
the coverage for recursive forecasts and rolling forecasts.

Tests for conditional coverage are applied to each model to determine whether the
actual coverage of interval forecasts is equal to the nominal coverage, which is 80%. Table
4.13 shows that all the models have good coverage, except for the t-GAS model with a
recursive window at the six-year horizon and the GARCH model with a 0.25 rolling window
at the two-year horizon. In the case of the t-GAS model with the recursive window at the
six-year horizon, the null hypothesis that its intervals have the correct coverage can be
rejected at the 10% level in favour of the alternative hypothesis. This implies that, in the

23See Schwartz and Smith (2000); Beck (2001); Bernard et al. (2008) for more information on modeling
and forecasting commodity prices in the presence of jumps and mean-reversion.

24I also created graphs for the 0.50 rolling window case, but they appeared to be identical to the recursive
case.
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Figure 4.10: Recursive oil returns mean forecast, 2 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.11: Recursive oil returns mean forecast, 4 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.12: Recursive oil returns mean forecast, 6 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.13: 0.25 rolling window oil returns mean forecast, 2 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.14: 0.25 rolling window oil returns mean forecast, 4 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.15: 0.25 rolling window oil returns mean forecast, 6 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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long term, it is less favourable to ignore breaks in a t-GAS model in order to obtain good
forecast coverage.
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Table 4.13: P-values for Christoffersen’s test of unconditional and conditional coverage for oil returns mean
forecasts

Recursive 0.5 Rolling Window 0.25 Rolling Window
Model Coverage 2 yr hor. 4 yr hor. 6 yr hor. 2 yr hor. 4 yr hor. 6 yr hor. 2 yr hor. 4 yr hor. 6 yr hor.

GARCH Unconditional 0.29 0.65 0.22 0.56 0.43 0.27 0.08 0.92 0.42
Conditional 0.30 0.89 0.46 0.68 0.48 0.47 0.21 0.97 0.72

t-GARCH Unconditional 0.29 0.78 0.17 0.41 0.54 0.59 0.56 0.43 0.34
Conditional 0.30 0.89 0.39 0.48 0.82 0.53 0.68 0.65 0.62

t-GAS Unconditional 0.20 0.34 0.02 0.41 0.34 0.28 0.56 0.20 0.17
Conditional 0.17 0.35 0.07 0.48 0.35 0.55 0.67 0.26 0.39

ARSV Unconditional 0.92 0.94 0.98 0.92 0.92 0.91 0.92 0.67 0.86
Conditional 0.72 0.72 0.45 0.98 0.82 0.20 0.91 0.70 0.36

Note: Null hypothesis is that actual coverage of confidence intervals equals nominal coverage of 80%.
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In the case of the GARCH model with a 0.25 rolling window at the two-year horizon,
the null hypothesis that the interval forecasts have good unconditional coverage rejected
at the 10% level for a 0.25 rolling window forecast. This suggests that it is not beneficial to
use a 0.25 rolling window to accommodate breaks in the GARCH model to produce good
short-run interval forecasts for oil returns.

Figure 4.16: Oil returns variance forecasts, 2010 - 2012
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Figures 4.16 and 4.17 display the first two years and last two years of the variance
forecasts generated by all the models estimated using either the recursive or the 0.25 rolling
window method. The results show that regardless of whether breaks are incorporated in
the model or not, the performances of all the models except for the ARSV models, with
forecasts appearing as straight lines near zero, appear identical. Also, for the ARSV model,
similar variance forecasts are produced whether the recursive or rolling windows are used.

Table 4.14 summarizes the Mincer-Zarnowitz R2 results for all twelve variance forecast-
ing models and all three time horizons. The results show that in the short and medium
run, it is beneficial to accommodate breaks using 0.5 rolling windows in order to produce
the best forecasts. For the two-year horizon, the ARSV model with the 0.5 rolling window
produces the best forecast, and t-GAS model with a 0.5 rolling window produces the best
forecast for the four-year horizon. Meanwhile, the recursive t-GARCH model generates the
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Figure 4.17: Oil returns variance forecasts, 2014 - 2016
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best variance forecast for the six-year horizon. Since the t-GAS model produces the second
best forecast, one can conclude that in the long-run, kurtosis matters for forecasting the
variance.

Table 4.14: Mincer-Zarnowitz R2 results for oil variance forecasts

2 years 4 years 6 years
Rec. 0.5 RW 0.25 RW Rec. 0.5 RW 0.25 RW Rec. 0.5 RW 0.25 RW

t-GAS 0.023 0.035 0.023 0.097 0.126 0.100 0.272 0.235 0.208
GARCH 0.017 0.017 0.036 0.089 0.101 0.111 0.257 0.236 0.219
t-GARCH 0.024 0.033 0.019 0.100 0.123 0.097 0.273 0.242 0.214
ARSV 0.020 0.131 0.014 0.004 0.069 0.021 0.002 0.023 0.012

Note: This table contains the R2 values for the Mincer-Zarnowitz regressions. Rec. denotes recur-
sive forecast, 0.5 RW denotes 0.5 rolling window, and 0.25 RW denotes 0.25 rolling window. The
bold value represents the forecasting model with the best forecast based on the Mincer-Zarnowitz
R2 values and horizon.
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Tables 4.15 and 4.16 present the DMW statistics for pairwise comparisons of the oil
returns variance forecasts, computed using Patton’s (2011) “QLIKE” and “MSE” loss
functions respectively. The results show that the t-GAS, GARCH, and t-GARCH models
generally outperform the ARSV model in forecasting the variance. For the two-year hori-
zon, the results for the ARSV model contradict the Mincer-Zarnowitz R2 results in table
4.14. However, the results do not contradict the findings for the four-year and six-year
horizons.
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Table 4.15: DMW test statistics for oil variance forecasts based on “QLIKE” loss function

Model 2 years 4 years 6 years
Model A Model B Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll.
t-GAS GARCH 2.575** 0.139 1.505 1.613 -1.107 1.225 -0.541 0.863 2.470**
t-GAS t-GARCH 2.553** 1.551 1.447 2.350** 0.380 1.169 0.546 2.000** 0.903
t-GAS ARSV -6.571** -6.418** -6.481** -6.965** -7.448** -7.459** -6.449** -6.173** -6.451**
GARCH t-GARCH 0.192 1.794* -1.418 0.657 -2.177** -1.033 1.478 2.168** -1.910*
GARCH ARSV -6.570** -6.407** -6.458** -6.956** -7.426** -7.426** -6.456** -0.862 -6.450**
t-GARCH ARSV -6.569** -6.411** -6.476** -6.961** -7.433** -7.454** -6.452** -6.172** -6.450**

Note: This table contains the t-statistics from the Diebold-Mariano-West test of equal predictive accuracy for Models A and
B. A positive (negative) value indicates Model A has a larger (smaller) loss function than Model B. * and ** indicate
significance at the 10% and 5% levels. Rec. denotes recursive forecast, 0.5 Roll. denotes 0.5 rolling window forecast, and 0.25
Roll. denotes 0.25 rolling window forecast.

Table 4.16: DMW test statistics for oil variance forecasts based on “MSE” loss function

Model 2 years 4 years 6 years
Model 1 Model 2 Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll.
t-GAS GARCH -0.108 -0.994 1.631 -0.124 -1.538 1.326 -1.857* 0.851 1.819*
t-GAS t-GARCH 0.350 0.803 -0.029 0.482 0.327 0.028 -0.908 1.023 0.107
t-GAS ARSV -4.169** -4.235** -4.013** -4.216*** -4.230** -4.117** -3.694** -3.736** -3.816**
GARCH t-GARCH 1.423 1.891* -1.754* 1.756* 1.891* -1.392 2.120** 0.127 -2.373**
GARCH ARSV -4.145** -4.163** -3.962** -4.193** -4.138** -4.011*** -3.733** -0.851 -3.850***
t-GARCH ARSV -4.134** -4.220** -3.979** -4.198** -4.196** -4.094** -3.723** -3.786** -3.836**

Note: This table contains the t-statistics from the Diebold-Mariano-West test of equal predictive accuracy for Models A and
B. A positive (negative) value indicates Model A has a larger(smaller) loss function than Model B. * and ** indicate
significance at the 10% and 5% levels. Rec. denotes recursive forecast, 0.5 Roll. denotes 0.5 rolling window forecast, and 0.25
Roll. denotes 0.25 rolling window forecast.
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Table 4.17: DMW test statistics for oil variance forecasts by forecasting method

Model GARCH t-GARCH t-GAS ARSV
Model A Model B QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE

Rec. 0.5 Roll. 1.672* 1.550 1.983** 1.780* 2.555** 2.509** 1.199 1.499
2 yr hor. Rec. 0.25 Roll. 1.010 1.104 1.055 1.006 0.704 -0.109 -1.299 -0.693

0.5 Roll. 0.25 Roll. -0.589 -0.056 -1.050 -0.457 -2.425** -1.516 -1.965** -1.736*
Rec. 0.5 Roll. 0.062 1.011 0.424 1.347 1.031 1.980** -1.806* -1.003

4 yr hor. Rec. 0.25 Roll. -0.098 0.824 -0.248 0.629 -0.868 -0.253 -4.663** -3.595**
0.5 Roll. 0.25 Roll. -0.273 0.022 -1.095 -0.492 -2.253** -1.429 -2.351** -1.984**

Rec. 0.5 Roll. -1.183 -0.820 -1.414 -1.678* -1.215 -1.868* -4.449** -4.255**
6 yr hor. Rec. 0.25 Roll. -0.417 -0.502 -1.048 -1.332 -1.958* -2.007** -5.738** -5.423

0.5 Roll. 0.25 Roll. 0.786 0.003 0.402 -0.047 -2.093** -1.161 2.220** 1.812*

Note: This table contains the t-statistics from the Diebold-Mariano-West test of equal predictive accuracy for Models
A and B. A positive (negative) value indicates Model A has a larger(smaller) loss function than Model B. * and **
indicate significance at the 10% and 5% levels. Rec. denotes recursive forecast, 0.5 Roll. denotes 0.5 rolling window
forecast, and 0.25 Roll. denotes 0.25 rolling window forecast.
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As part of the analysis of whether accommodating structural breaks improves fore-
casts, table 4.17 presents DMW test statistics that compare forecasts generated by the
same volatility model, but using different forecasting methods. With the exception of the
ARSV models, there are forecasting gains in using the 0.5 rolling window method to gen-
erate variance forecasts in the short run. For example, the test statistics for the two-year
horizon indicate the t-GAS model generates better forecasts when a 0.5 rolling window is
used than a recursive window. This result is significant at the 5% level regardless of the
choice of loss function. For the same two-year horizon, the t-GARCH model also produces
better forecasts using the 0.5 rolling window instead of a recursive window; this result is
statistically significant at the 10% level. In the case of the GARCH model, only the QLIKE
loss function implies that better forecasts are generated over the two-year horizon when a
0.5 rolling window is used instead of a recursive window. This QLIKE result is statistically
significant at the 10% level. On the other hand, when the MSE loss function is used, there
are no forecasting gains in applying the 0.5 rolling window method instead of the recursive
window when using the GARCH model. In addition, there are no statistically significant
forecast gains in using a 0.25 rolling window instead of the recursive window for any of
the models. Thus, the results imply that for oil returns, using the 0.5 rolling window to
accommodate structural breaks can improve variance forecasts in the short term, except
for the ARSV model.

For longer horizons, the results in table 4.17 show that accommodating breaks generally
does not produce gains in forecasting the variance. For example, the null hypothesis that
the GARCH model with a recursive window and the GARCH model with a 0.5 rolling
window have equal predictive ability cannot be rejected at the 10% level for four-year
and six-year horizons, regardless of whether the QLIKE or MSE loss function is used.
A similar result is produced when the GARCH model with a recursive window and the
GARCH model with a 0.25 rolling window. In the case of the t-GARCH model, there
are no forecasting gains in using either a 0.5 rolling window or a 0.25 rolling window
to accommodate breaks at the four-year horizon and also at the six-year horizon for the
QLIKE loss function case. However, if the MSE loss function is used, then the t-GARCH
results show that there are no forecasting gains in using either a 0.5 rolling window or a
0.25 rolling window to accommodate breaks at the four-year horizon. Additionally, when
the MSE loss function is used, a t-GARCH model with a recursive window produces better
forecasts than a t-GARCH model with a 0.5 rolling window and forecasts just as good
as the t-GARCH model with a 0.25 rolling window. The t-GAS results are mixed at the
four-year horizon. On one hand, they show that a t-GAS model with a 0.5 rolling window
produces better forecasts than a t-GAS model with a recursive window when the MSE loss
function is used. On the other hand, a t-GAS model with a 0.5 rolling window produces
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forecasts just as well as a t-GAS model with a recursive forecast when the QLIKE function
is used. For the six-year horizon, the t-GAS model with a recursive window produces
better forecasts than the t-GAS model with a 0.5 rolling window based on the MSE loss
function and performs equally well in forecasting based on the QLIKE loss function. Also,
the t-GAS model with a recursive window produces better forecasts than the t-GAS model
with a 0.25 rolling window regardless of the loss function used. The ARSV results show
that with the exception of using the MSE loss function at the four-year horizon, using a
recursive window produces better forecasts than using rolling windows. The results imply
that in the long-run, there are no forecasting gains in using rolling windows to accommodate
breaks in models of oil price volatility.

4.5.3 USD return forecasting results

As discussed in section 4.5.2, the ARSV model is estimated using a two-step method in
which the conditional mean and conditional variance are estimated separately. In this
case, the ARSV point forecasts are actually generated by a random walk with a drift
and a constant variance. The random walk with a drift and constant variance serves as
a benchmark in analyzing mean forecasts of USD returns. The mean forecasts of the
GARCH, t-GARCH, and t-GAS models (whose conditional means are also in the form of
a random walk) are compared with this benchmark model.

Table 4.18 contains the MSPE and MAPE of the point forecasts of USD returns. They
generally show that there is no clear advantage for any model, which is consistent with
the results of Meese and Rogoff (1983b). This is no surprise, since when the forecast of
the mean is equal to a constant, it is unlikely that any model would have an advantage
in forecasting the mean. This is the case regardless of the choice of forecasting method.
The implication is that there are no forecast gains in using methods for accommodating
for unknown breaks in the conditional mean, which is consistent with the finding of Burns
and Moosa (2017) that structural breaks are not the cause of the Meese-Rogoff puzzle.

Figures 4.18 to 4.20 display actual USD returns, the recursive forecasts of the mean and
80% confidence bands for the two-year, four-year, and six-year horizons respectively. The
figures show that the coverage of the mean forecast varies amongst the four time-varying
volatility models. For the first 70 horizons, the t-GAS model generally has the widest and
most volatile interval forecasts. This is followed by the t-GARCH and GARCH models. On
the other hand, the interval forecasts are narrower for the t-GAS, GARCH, and t-GARCH
models than that for the ARSV models between horizons 70 and 140 and from the 160th
horizon onwards. Also, the ARSV has straight interval forecasts. This reflects the inability
of the ARSV model to effectively capture changes in volatility.
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Table 4.18: USD mean forecast performance

Model 2 year horizon 4 year horizon 6 year horizon
MSPE MAPE MSPE MAPE MSPE MAPE

Recursive t-GAS 0.663 0.682 0.528 0.589 0.615 0.631
Recursive GARCH 0.663 0.682 0.528 0.589 0.615 0.631
Recursive t-GARCH 0.663 0.682 0.528 0.589 0.615 0.631
Recursive ARSV 0.664 0.680 0.531 0.589 0.617 0.631
t-GAS with 0.5 RW 0.663 0.682 0.528 0.589 0.615 0.631
GARCH with 0.5 RW 0.663 0.682 0.528 0.589 0.615 0.631
t-GARCH with 0.5 RW 0.663 0.682 0.529 0.589 0.615 0.630
ARSV with 0.5 RW 0.664 0.680 0.531 0.589 0.616 0.631
t-GAS with 0.25 RW 0.663 0.682 0.528 0.589 0.614 0.630
GARCH with 0.25 RW 0.663 0.682 0.528 0.589 0.615 0.631
t-GARCH with 0.25 RW 0.663 0.682 0.528 0.589 0.615 0.631
ARSV with 0.25 RW 0.674 0.677 0.537 0.589 0.621 0.630

Note: 0.5 RW denotes 0.5 rolling window, and 0.25 RW denotes 0.25 rolling
window. The ARSV model in this case is a random walk with drift, with constant
variance. The bold value represents the forecasting model with the lowest forecast
error based on the loss function and horizon.

Figures 4.21 to 4.23 display the 0.25 rolling window mean forecasts and 80% forecast
intervals for the two-year, four-year, and six-year horizons respectively. The figures indicate
that the GARCH and t-GARCH models have similar coverage of the mean of USD returns
forecasts. Additionally, the t-GAS model appear to have wider coverage of the mean
forecasts than the GARCH, t-GARCH, and ARSV models for the first 50 horizons. After
the 50th horizon, the t-GAS, GARCH, and t-GARCH appear to have similar coverage of
the mean forecasts. After the 200th horizon, the coverage of the mean forecasts for the
ARSV model is wider than that for the other three volatility models. In contrast to the oil
returns case, the interval forecasts for all the models appear to be slightly different when
the 0.25 rolling window forecasting method is used than when the recursive forecasting
method is used. For example, the coverage of the mean forecasts for the ARSV model
changes over the horizons when the 0.25 rolling method is used, as opposed to the coverage
being flat when the recursive method is used. Another example, shown in figures 4.19 and
4.20, is that between the 150th and 250th horizons, the coverage of the mean forecasts
is wider when the 0.25 rolling window is used than when the recursive window is used.
The results suggest that accommodating unknown breaks can affect forecast uncertainty,
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Figure 4.18: Recursive USD returns mean forecast, 2 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.19: Recursive USD returns mean forecast, 4 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.

135



Figure 4.20: Recursive USD returns mean forecast, 6 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.21: 0.25 rolling window USD returns mean forecast, 2 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.22: 0.25 rolling window USD returns mean forecast, 4 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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Figure 4.23: 0.25 rolling window USD returns mean forecast, 6 year horizon
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Note: The solid red line represents the mean forecasts, the green dash-dot line is the
actual data and the blue dash lines represent the 80% forecast interval around the mean
forecast.
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implying that structural breaks may be relevant for interval forecasts of USD returns during
the forecast period.

Table 4.19 displays test statistics for unconditional and conditional coverage. The
results indicate that the null hypothesis that the interval forecasts have the correct coverage
(80%) cannot be rejected in favour of the alternative for all the horizons and for all the
t-GAS(1,1), GARCH(1,1), and t-GARCH(1,1) models. For the ARSV(1) model with a 0.5
rolling window, the null hypothesis that the model has the correct unconditional coverage
cannot be rejected for four-year horizon. However, the null hypothesis that this same model
has correct conditional coverage can be rejected in favour of the alternative hypothesis at
the 5% level. This implies that using an ARSV model that accommodates breaks using a
0.5 rolling window does not provide good conditional coverage for USD mean forecasts.
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Table 4.19: P-values for Christoffersen’s test of unconditional and conditional coverage for USD return mean
forecasts

Recursive 0.5 Rolling Window 0.25 Rolling Window
Model Coverage 2 yr hor. 4 yr hor. 6 yr hor. 2 yr hor. 4 yr hor. 6 yr hor. 2 yr hor. 4 yr hor. 6 yr hor.
GARCH Unconditional 0.29 0.34 0.28 0.41 0.26 0.42 0.20 0.26 0.13

Conditional 0.34 0.61 0.54 0.53 0.50 0.69 0.42 0.18 0.26
t-GARCH Unconditional 0.13 0.26 0.13 0.29 0.34 0.17 0.13 0.43 0.08

Conditional 0.31 0.53 0.26 0.57 0.63 0.39 0.31 0.57 0.17
t-GAS Unconditional 0.41 0.65 0.28 0.41 0.81 0.98 0.41 0.81 0.65

Conditional 0.53 0.89 0.54 0.53 0.60 0.97 0.70 0.83 0.90
ARSV Unconditional 0.92 0.92 0.98 0.92 0.78 0.80 0.88 0.44 0.98

Conditional 0.10 0.03 0.45 0.60 0.02 0.61 0.18 0.00 0.28

Note: Null hypothesis is that actual coverage of confidence intervals equals nominal coverage of 80%.
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Figure 4.24: USD returns variance forecasts, 2010 - 2012
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Figures 4.24 and 4.25 display the realized variance and the recursive and 0.25 rolling
window variance forecasts generated by four models of volatility. As in the case of the
variance of oil returns, no model appears to have a clear advantage in generating forecasts
of the variance. Rather, the figures show that the ARSV models generate different fore-
casts for the variance of USD returns than the other models. Additionally, they show that
the rolling window method produces more volatile forecasts than the recursive method,
especially in the case of the t-GAS models. The figures also show that there are small
differences between using the recursive and rolling forecast methods. However, the dif-
ferences are most obvious for the ARSV model. These observations suggest that for the
ARSV model, using forecast methods that accommodate unknown breaks may not improve
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Figure 4.25: USD returns variance forecasts, 2014 - 2016
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variance forecasts.

Table 4.20 presents the Mincer-Zarnowitz R2s obtained after regressing the RV of USD
returns on the variance forecasts for each forecasting model. The results indicate that for
all forecast horizons, the t-GAS model combined with a 0.5 rolling window generates the
best variance forecasts. Once again, the results indicate that the ARSV model generates
the worst variance forecasts.
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Table 4.20: Mincer-Zarnowitz R2 results for USD variance forecast

2 years 4 years 6 years
Rec. 0.5 RW 0.25 RW Rec. 0.5 RW 0.25 RW Rec. 0.5 RW 0.25 RW

t-GAS 0.106 0.121 0.112 0.172 0.183 0.175 0.147 0.152 0.112
GARCH 0.099 0.049 0.018 0.160 0.124 0.078 0.146 0.122 0.060
t-GARCH 0.068 0.045 0.042 0.135 0.118 0.107 0.131 0.120 0.070
ARSV 0.022 0.002 0.003 0.060 0.013 0.018 0.005 0.008 0.018

Note: This table contains the R2 values for the Mincer-Zarnowitz regressions. Rec.
denotes recursive forecast, 0.5 RW denotes 0.5 rolling window, and 0.25 RW denotes 0.25
rolling window. The bold value represents the forecasting model with the best variance
forecast based on the Mincer-Zarnowitz R2 values and horizon.

However, if forecast evaluation is based on Patton’s (2011) loss functions and the DMW
test, then the results in tables 4.21 and 4.22 show that the GARCH and t-GARCH models
perform as well as the t-GAS model for all forecasting methods and forecast horizons. Also,
the DMW statistics indicate that the ARSV model generally produces inferior variance
forecasts of USD returns for the four-year and six-year horizons. The result that the t-GAS
model with a 0.5 rolling window produces better forecasts than all the ARSV models in the
medium and long run is consistent with the results in table 4.20. As for the comparison of
the variance forecast performance of the t-GAS model with the 0.5 rolling window and the
GARCH and t-GARCH models, it cannot be confirmed that the t-GAS model outperforms
all the other models using the DMW test and Patton’s (2011) loss functions.25

Table 4.23 presents DMW test statistics that compared the three different forecasting
methods for each model. The results show that better forecasts can be generated for some
volatility models if structural breaks are accommodated in the forecasting model in the
short run. For example, the t-GARCH model with a 0.25 rolling window generates a better
variance forecast than the t-GARCH model with either a 0.5 rolling window or a recursive
window over the two-year horizon. The GARCH results in this paper are consistent with
the findings of Rapach and Strauss (2008) whose forecast periods of 500 days which is
almost one and a half years. They find that accommodating breaks in a GARCH model by
using rolling windows is useful in forecasting exchange rate volatility. The ARSV model
also generates better forecasts when structural breaks are accommodated in the forecasting
model.

25However, the DMW test is a pairwise test and there are more general tests available such as Hansen’s
(2005) Superior Predictive Ability Test.
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Table 4.21: DMW test statistics for USD variance forecasts based on “QLIKE” loss function

2 years 4 years 6 years
Model 1 Model 2 Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll.
t-GAS GARCH 1.523 -0.629 0.157 0.691 -0.724 -0.591 0.789 -0.246 0.113
t-GAS t-GARCH 0.611 -0.756 1.152 0.240 -0.888 0.179 0.803 -0.368 0.859
t-GAS ARSV -0.570 -0.520 -0.383 -4.207** -4.021** -4.530** -3.220** -2.477** -2.011**
GARCH t-GARCH -2.252** -1.504 1.767* -1.055 -1.526 1.835* -0.236 -1.026 1.872*
GARCH ARSV -1.287 -0.147 -0.609 -4.341** -3.617** -4.593** -3.384** -2.369** -2.275**
t-GARCH ARSV -0.786 -0.068 -1.702* -4.203** -3.539** -5.095** -3.398** -2.333** -2.553**

Note: This table contains the t-statistics from the Diebold-Mariano-West test of equal predictive accuracy for Models A and
B. A positive (negative) value indicates Model A has a larger (smaller) loss function than Model B. * and ** indicate
significance at the 10% and 5% levels. Rec. denotes recursive forecast, 0.5 Roll. denotes 0.5 rolling window forecast, and 0.25
Roll. denotes 0.25 rolling window forecast.

Table 4.22: DMW test statistics for USD variance forecasts based on “MSE” loss function

2 years 4 years 6 years
Model 1 Model 2 Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll. Rec. 0.5 Roll. 0.25 Roll.
t-GAS GARCH -0.571 -1.253 -0.690 -0.692 -1.292 -0.815 -0.983 -1.173 -0.802
t-GAS t-GARCH -0.995 -1.295 -0.500 -1.068 -1.341 -0.659 -0.897 -1.189 -0.649
t-GAS ARSV -3.633** -2.198** -1.183 -7.799** -6.096** -4.685** -6.927** -4.454** -3.394**
GARCH t-GARCH -1.124 -1.349 1.480 -0.815 -1.406 1.405 0.616 -1.000 1.378
GARCH ARSV -2.831** -1.387 0.690 -6.934** -5.155** -4.591** -6.258** -3.931** -3.179**
t-GARCH ARSV -2.751** -1.387 -0.987 -6.907** -5.081** -4.922** -6.378** -3.897** -3.393**

Note: This table contains the t-statistics from the Diebold-Mariano-West test of equal predictive accuracy for Models A and
B. A positive (negative) value indicates Model A has a larger (smaller) loss function than Model B. * and ** indicate
significance at the 10% and 5% levels. Rec. denotes recursive forecast, 0.5 Roll. denotes 0.5 rolling window forecast, and 0.25
Roll. denotes 0.25 rolling window forecast.
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Table 4.23: DMW test statistics for USD variance forecasts by forecasting method

Model GARCH t-GARCH t-GAS ARSV
Model A Model B QLIKE MSE QLIKE MSE QLIKE MSE QLIKE MSE

Rec. 0.5 Roll. 1.268 -1.201 -0.128 -0.809 2.296** -0.376 5.639** 5.899**
2 year horizon Rec. 0.25 Roll. 1.537 0.718 2.956** 2.135** 2.308** 0.783 2.375** 3.209**

0.5 Roll. 0.25 Roll. 2.774** 2.304** 2.814** 2.200** 1.615 0.764 1.589 2.063**
Rec. 0.5 Roll. -0.571 -0.921 -0.157 -0.662 1.678* -0.289 11.132** 11.362**

4 year horizon Rec. 0.25 Roll. -0.712 -0.621 -0.046 0.456 0.003 0.364 5.908** 7.571**
0.5 Roll. 0.25 Roll. -0.527 0.175 0.032 0.823 -0.664 0.388 4.130** 5.106**

Rec. 0.5 Roll. -0.654 -1.154 -0.647 -1.449 0.975 -1.116 7.859** 9.909**
6 year horizon Rec. 0.25 Roll. -0.475 -0.198 -0.056 0.206 -0.012 0.289 5.757** 7.487**

0.5 Roll. 0.25 Roll. -0.210 0.766 0.275 1.173 -0.449 0.615 3.495** 4.342**

Note: This table contains the t-statistics from the Diebold-Mariano-West test of equal predictive accuracy for Models A and
B. A positive (negative) value indicates Model A has a larger(smaller) loss function than Model B. * and ** indicate
significance at the 10% and 5% levels. Rec. denotes recursive forecast, 0.5 Roll. denotes 0.5 rolling window forecast, and 0.25
Roll. denotes 0.25 rolling window forecast.
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In the case of the four-year horizon, the t-GAS results indicate that a t-GAS model with
a 0.5 rolling window outperforms a t-GAS model with a recursive window in generating
variance forecast, but only using the QLIKE loss function. The DMW statistics based on
the MSE loss function indicate that there is no difference in out-of-sample performance
between the recursive method and the rolling window methods. This suggests that in
the medium run, accommodating breaks may or may not produce better USD variance
forecasts. As for the GARCH model, the results indicate that there is also no difference
in out-of-sample performance when either the rolling window or recursive method is used.
They only indicate that the 0.25 rolling window outperforms the 0.5 rolling window. This
implies that in the medium run, it is not always useful to accommodate breaks when
forecasting the variance of USD returns.

Except for the ARSV model, accommodating breaks does not produce any forecast
gains for longer horizons. The results in table 4.23 once again show that there is no
significant difference in out-of-sample performance for the variance of USD returns if the
rolling window or recursive window is used for the t-GAS, GARCH, and t-GARCH models.
In contrast, the ARSV model produces better out-of-sample forecasts when the rolling
window methods are used than when the recursive method is used. With that said it is
worth noting that the ARSV models generally produce inferior forecasts than the GARCH,
t-GARCH, and t-GAS models regardless of the forecasting method used. This implies that
in the long run, it is generally not useful to accommodate for breaks when forecasting the
variance.

4.6 Conclusion

This paper assesses the empirical relevance of structural breaks in GAS models – GARCH
and t-GAS – of oil and USD returns relative to non-GAS models – t-GARCH and ARSV.
First, in-sample performance is assessed by estimating the t-GAS, GARCH, t-GARCH, and
ARSV models for the full sample and then breaking the sample into smaller subsamples to
check for the existence of structural breaks. Dufour and Torres’s (1998) union-intersection
test is applied to all the estimated parameters in each model to determine whether the
changes in the parameters are statistically significant. In all cases, the model selection
criteria used are AIC and BIC. The estimated unconditional volatility is also compared to
the sample standard deviation. Afterwards, the out-of-sample performance of the time-
varying volatility models with respect to their ability to forecast the mean and the variance
is compared. For the analysis, the four time-varying volatility models are combined with
three forecasting methods – recursive window, 0.5 rolling window, and 0.25 rolling window
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– to make 12 forecasting models. Recursive windows are frequently applied with models
of stable processes. The 0.5 and 0.25 rolling windows are believed to better accommodate
breaks than the recursive window.

This study produces several findings. First, structural breaks are empirically relevant
in GAS and non-GAS models of USD volatilities, but not in those of oil volatilities. For
the USD returns, the changes in the parameters of the conditional variance are statistically
significant across sub-periods. The GARCH results are consistent with those of Rapach
and Strauss (2008). As for the oil returns, the changes in parameters are not statistically
significant across sub-periods. This result is consistent with the results of Arouri et al.
(2012) since they found no structural breaks in GARCH models of crude oil prices.

Second, the ARSV model generally has the worst in-sample and out-of sample per-
formances. The ARSV model consistently produced the highest AIC and BIC values,
indicating that it has the worst model fit. Also, in terms of forecasting, both Mincer-
Zarnowitz regressions and the Diebold-Mariano-West tests indicate that variance forecasts
of the ARSV model are outperformed by the forecasts of the t-GAS, GARCH, and t-
GARCH models. The ARSV result is inconsistent with the findings of Chan and Grant
(2016) and Clark and Ravazzolo (2015), those who use Bayesian methods to estimate the
ARSV model. Thus, it is possible that the problem may lie with the estimator. Hence,
other estimation methods should be considered, such as that of Dufour and Valery (2006).

Third, with respect to oil returns forecasting, GARCH models that accommodate breaks
perform the best in the long run. In the short and medium run, the GARCH model
produces the best forecasts, but there is a disconnect between mean-squared error and
mean absolute error values with respect to whether using rolling windows to accommodate
breaks produces better forecasts than using recursive windows. As for forecasts of the
variance of oil returns, incorporating structural breaks into the model produces better
forecasts in the short and medium run. This result is consistent with those of Arouri
et al. (2012) for GARCH models; they find that using a 0.5 rolling window and daily data
produces better variance forecasts for crude oil returns. However, in the long run, this
paper finds that kurtosis is an important feature, since the t-GARCH model produces
better variance forecasts according to the Mincer-Zarnowitz regression and DMW tests for
the six-year horizon case.

Fourth, all models are considered to be equal when it comes to forecasting the mean of
USD returns. This is not surprising since it has been found by Meese and Rogoff (1983b)
that it is difficult for to outperform the random walk model in terms of forecasting exchange
rates. Accommodating breaks in the models does not improve the forecasts relative to the
random walk model which is consistent with Burns and Moosa (2017). However, the
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t-GAS model estimated using a 0.5 rolling window produces the best variance forecast
for all horizons, suggesting that it is useful to accommodate breaks in forecasting the
USD variance. This finding is consistent with Patton’s inferential approach which implies
that t-GAS models with breaks produce better forecasts than t-GAS models that do not
incorporate breaks in the short and medium run, but not in the long run.

Finally, accommodating structural breaks in models is helpful in forecasting the variance
only in the short run. For the two-year horizon, models that accommodate breaks generally
produce better variance forecasts than models that do not accommodate breaks. In the
case of the medium-run, the gains are mixed but as for the long-run, there is no forecast
gain for models that accommodate breaks. This implies that recursive methods should be
used in forecasting oil and USD variances for very long horizons.

This study focused mainly on the empirical relevance of structural breaks in models
of volatility. However, another important feature found in financial data is the presence
of long memory. This feature has been incorporated in the study of Arouri et al. (2012)
for oil volatilities, but not in this study. Future research could include the empirical
relevance of structural breaks and long memory in GAS models. The role of asymmetry
is not considered in this analysis; however, Mohammadi and Su (2010) find that using
asymmetric models such as EGARCH can improve forecasts for crude oil returns and
volatility. Extending the analysis of this study to include asymmetric GARCH and GAS
models could be considered for future research.

The conditional mean specification in this study excludes explanatory variables. There
are some studies suggesting that adding these variables improve the mean forecasts. Fer-
raro et al. (2015) find that oil prices have the ability to predict the Canadian-US Dollar
nominal exchange rate only at daily frequencies, and Berg et al. (2016) find that energy
and non-energy commodity prices and USD multilateral factor also have predictive ability
for the Canadian-US Dollar nominal exchange rate. Hence, adding energy and non-energy
commodity prices to the conditional mean equation of GAS models of exchange rate volatil-
ities in assessing the empirical relevance of structural breaks could also be considered for
future research.26

For the mean forecasts, alternative criteria such as directional accuracy, profitability,
and the adjusted root mean square error are not considered in this chapter. According to
Moosa and Burns (2014), models such as the time-varying parameter (TVP) models can
outperform the random walk model in forecasting exchange rates based on these alternative
criteria. A possible direction in future research could be to use a GAS model with the mean

26The Taylor rule and net foreign assets are also possible predictors according to a survey in exchange
rate predictability by Rossi (2013).
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as the time-varying parameter instead of the volatility for comparison with the TVP and
random-walk models in forecasting exchange rates could also be a possible future research
direction.
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Appendix A

Chapter 2

A.1 Data

All data used in this section are quarterly indexes from 1947 to 2014. Each index is
constructed by dividing each data point by the base year 2009. They were retrieved from
the Federal Reserve of Economic Database (FRED) of the Federal Reserve Bank of St.
Louis. The labour-related data source came from US Bureau of Labor Statistics and
output-related data source came from the Bureau of Economic Accounts.

Table A.1: Data source for Chapter 2

Variable FRED Variable Name FRED ID Series
Labour Productivity Nonfarm Business Sector: Real Output Per Hour of All Persons OPHNFB
Investment Real Gross Private Domestic Investment B006RA3Q086SBEA
Residential Structures Real Private Fixed Investment: Residential B011RA3Q086SBEA
Non-Residential Structures Real Private Fixed Investment: Nonresidential: Structures B009RA3Q086SBEA
Equipment Fixed Investment: Nonresidential: Equipment Y033RA3Q086SBEA
Software Nonresidential: Equipment: Information Processing Equipment Y034RA3Q086SBEA

Note: All data in this analysis are transformed into logs

Labor productivity is defined as real output per hour for the US non-farm business
section. There are other definitions of labour productivity such as output per person,
however, the Federal Reserve Bank of St. Louis (see Santacreu, 2015) points out that the
former is a better measurement than the latter.
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Real gross private domestic investment represents investment. It is composed of non-
residential structures, machinery and equipment, residential investment, and the change
in private inventories. Non-residential structures includes new construction and renovat-
ing existing structures, and spending on mining exploration. Machinery and equipment
consists of private businesses purchasing machines, furnitures, and dealers selling used ma-
chinery to private companies. Residential spending includes new construction of single and
multi-housing family units, improving and maintenance of existing homes, equipment such
as air conditioning and heating.

A.2 Unit Root testing in the Presence of Structural

Breaks

Before estimating VAR models, we first use the Perron (1989) method to test for structural
breaks in the presence of structural break in 1990.

This is important because in the presence of structural breaks, the various unit root
tests can be biased towards failure to reject the hypothesis of a unit root. Given that the
drop in correlation occurred around 1990, which indicates a sign of structural break.

The hypothesis is for no drift and no trend.

Null hypothesis is as follows:

H0 : yt = a0 + yt−1 + µ1DP + εt (A.1)

Alternative hypothesis is:

Ha : yt = a0 + a2t+ µ2DL + εt (A.2)

where DP represent the pulse dummy variable and DL represents the level dummy
variable equal to 1 for t > 1990Q1 and 0 otherwise.

The distribution for this test is the t-distribution and the critical values based on the
proportion of observations prior to the break can be found in Perron and Vogelsang (1993).

For labour productivity, the t-statistic is -2.189 which is greater than the 5% critical
value of 3.89 for the proportion of 0.6. This implies that we cannot reject the null hypothesis
in favor of the alternative.
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For investment, 2 additional lags are needed to remove autocorrelation. The t-statistic
is -3.78 which is also larger than the critical value of -3.89 at the 5% level.

Residential and machinery and equipment t-statistics are -3.17 and -3.05 respectively.
At the 5% level, their null hypotheses cannot be rejected.

Adding the drift and trend gives the following:

Null hypothesis:

H0 : yt = a0 + yt−1 + µ1DP + µ2DL + εt (A.3)

Alternative hypothesis is:

Ha : yt = a0 + a2t+ µ2DL + µ3DT + εt (A.4)

DT represents the trend dummy where t - 1990Q1 for t > 1990Q1 and 0 otherwise.

The critical value, using the Perron and Vogelsang (1993) paper, is -4.18 at the 5%
level. The t-statistics for labour productivity, investment, residential, and machinery and
equipment spending are -2.24, -3.99, -3.61, and -3.03 respectively. All the t-statistics are
larger than the critical value, implying that the null hypothesis of a unit root cannot be
rejected for a break in 1990.

Due to criticism that the choice of the structural break is exogenous (see Christano
(1992), Zivot and Andrews (1992)), The Perron (1997) test is used to test for unit roots
in the presence of structural breaks. Once again, the null hypothesis of a unit root cannot
be rejected whether there is an intercept or trend at the 5% level.

A.3 Procyclicality

Procyclicality of labour productivity is a major issue in literature (Gali and van Rens
(2014)). It was also discussed in Barnichon (2010). Table 5 below shows that procyclicality
of labour productivity, investment and its components.

Table A.2 shows that for labour productivity, it became less procyclical after 1990,
confirming the stylized facts by Gali and van Rens (2014). After 1990, the investment data
appears to be procyclical. The rolling correlations are needed to see when the possible
change in correlation took place.
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Table A.2: Cyclicality of real investment by type

Correlation with real GDP 1947-2014 1947-1989 1990-2014
Labor Prod 0.4132 0.5496 -0.0909

(1.22E-12) (5.82E-15) (0.3684)
Investment 0.8404 0.8211 0.9246

(8.39E-74) (3.01E-43) (7.21E-43)
Residential 0.5319 0.5067 0.6339

(2.87E-21) (1.33E-12) (1.44E-12)
Non-res structures 0.4506 0.4905 0.5055

(5.28E-15) (8.47E-12) (8.13E-08)
Mach. and Equip. 0.8078 0.8138 0.8935

(6.36E-64) (6.30E-42) (7.50E-36)
Software 0.6439 0.6063 0.7932

(3.00E-33) (1.21E-18) (7.81E-23)

Figure A.1: 10-year rolling correlation between real private business investment and real
GDP
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Source: Bureau of Economic Analysis and Bureau of Labor Statistics. Real private business investment

and GDP have been detrended using the HP filter. Both are indexes with 2009 = 100.
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Figure A.2: 10-year rolling correlation between real residential spending and real GDP
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Source: Bureau of Economic Analysis and Bureau of Labor Statistics. Real private business investment

and GDP have been detrended using the HP filter. Both are indexes with 2009 = 100.

Figure A.3: 10-year rolling correlation between real non-residential spending and real GDP
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Source: Bureau of Economic Analysis and Bureau of Labor Statistics. Real non-residential investment

and GDP have been detrended using the HP filter. Both are indexes with 2009 = 100.
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Figure A.4: 10-year rolling correlation between real machinery and equipment spending
and real GDP
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Source: Bureau of Economic Analysis and Bureau of Labor Statistics. Real machinery and equipment

spending and GDP have been detrended using the HP filter. Both are indexes with 2009 = 100.
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Appendix B

Chapter 3

B.1 Effect of a break in ω on other parameters
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Table B.1: Effect of a change in ω on A

T Vol t-GAS t-GARCH GARCH EGARCH Beta-t-EGARCH

Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev Mean est. Std. Dev Mean est. Std. Dev
1 0.11 0.07 0.11 0.09 0.11 0.07 0.05 0.16 0.13 0.09

1.15 0.11 0.07 0.12 0.09 0.11 0.07 0.08 0.15 0.13 0.09
250 1.3 0.11 0.07 0.12 0.09 0.12 0.07 0.11 0.15 0.13 0.09

1.45 0.11 0.07 0.13 0.09 0.12 0.07 0.15 0.14 0.14 0.09
1.6 0.11 0.07 0.14 0.10 0.13 0.07 0.17 0.13 0.14 0.09
1.75 0.12 0.07 0.14 0.10 0.13 0.07 0.18 0.12 0.14 0.09

1 0.10 0.05 0.11 0.06 0.10 0.05 0.08 0.10 0.12 0.06
1.15 0.11 0.05 0.11 0.06 0.11 0.05 0.10 0.09 0.12 0.06

500 1.3 0.11 0.05 0.11 0.06 0.10 0.05 0.12 0.09 0.12 0.06
1.45 0.10 0.05 0.11 0.07 0.10 0.05 0.13 0.08 0.12 0.06
1.6 0.10 0.05 0.11 0.07 0.10 0.05 0.13 0.07 0.12 0.06
1.75 0.10 0.05 0.11 0.07 0.09 0.05 0.14 0.07 0.12 0.06

1 0.10 0.03 0.10 0.04 0.10 0.04 0.09 0.06 0.11 0.04
1.15 0.10 0.03 0.10 0.04 0.10 0.04 0.11 0.06 0.11 0.04

1000 1.3 0.10 0.04 0.11 0.05 0.10 0.04 0.12 0.06 0.11 0.04
1.45 0.09 0.04 0.10 0.05 0.08 0.04 0.10 0.06 0.11 0.05
1.6 0.09 0.04 0.09 0.05 0.08 0.04 0.10 0.05 0.11 0.05
1.75 0.08 0.04 0.09 0.05 0.07 0.03 0.10 0.04 0.11 0.05

1 0.10 0.02 0.10 0.02 0.10 0.02 0.10 0.03 0.11 0.02
1.15 0.10 0.02 0.10 0.03 0.10 0.02 0.11 0.03 0.11 0.03

2500 1.3 0.10 0.02 0.10 0.03 0.09 0.03 0.11 0.05 0.11 0.03
1.45 0.09 0.03 0.10 0.04 0.07 0.03 0.07 0.04 0.11 0.03
1.6 0.08 0.03 0.08 0.04 0.06 0.03 0.07 0.03 0.10 0.04
1.75 0.06 0.03 0.07 0.04 0.06 0.02 0.07 0.02 0.09 0.04

1 0.10 0.01 0.10 0.02 0.10 0.02 0.10 0.02 0.10 0.02
1.15 0.10 0.01 0.10 0.02 0.10 0.02 0.12 0.02 0.11 0.02

5000 1.3 0.10 0.02 0.10 0.02 0.09 0.02 0.11 0.04 0.11 0.02
1.45 0.09 0.02 0.09 0.03 0.06 0.03 0.05 0.03 0.11 0.02
1.6 0.07 0.03 0.07 0.04 0.05 0.02 0.05 0.02 0.09 0.03
1.75 0.06 0.03 0.06 0.03 0.05 0.02 0.05 0.01 0.08 0.03

1 0.10 0.01 0.10 0.01 0.10 0.01 0.10 0.02 0.10 0.01
1.15 0.10 0.01 0.10 0.01 0.10 0.01 0.12 0.02 0.11 0.01

10000 1.3 0.10 0.01 0.10 0.01 0.09 0.02 0.11 0.04 0.11 0.01
1.45 0.09 0.02 0.10 0.02 0.06 0.02 0.03 0.02 0.11 0.02
1.6 0.07 0.02 0.07 0.03 0.05 0.02 0.03 0.01 0.10 0.02
1.75 0.05 0.02 0.06 0.03 0.04 0.01 0.04 0.01 0.08 0.03
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Table B.2: Effect of a change in ω on the coverage probability of A

T Vol. t-GAS t-GARCH GARCH EGARCH Beta-t-EGARCH

90% 95% 90% 95% 90% 95% 90% 95% 90% 95%
1 0.887 0.934 0.875 0.913 0.886 0.926 0.746 0.803 0.904 0.950

(0.007) (0.006) (0.007) (0.006) (0.007) (0.006) (0.010) (0.009) (0.007) (0.005)
1.15 0.865 0.916 0.877 0.915 0.867 0.909 0.788 0.838 0.896 0.945

(0.008) (0.006) (0.007) (0.006) (0.008) (0.006) (0.009) (0.008) (0.007) (0.005)
1.3 0.853 0.908 0.853 0.901 0.827 0.873 0.792 0.849 0.879 0.938

250 (0.008) (0.006) (0.008) (0.007) (0.008) (0.007) (0.009) (0.008) (0.007) (0.005)
1.45 0.834 0.892 0.847 0.897 0.816 0.872 0.802 0.856 0.877 0.934

(0.008) (0.007) (0.008) (0.007) (0.009) (0.007) (0.009) (0.008) (0.007) (0.006)
1.6 0.839 0.895 0.853 0.906 0.834 0.892 0.805 0.872 0.883 0.929

(0.008) (0.007) (0.008) (0.007) (0.008) (0.007) (0.009) (0.007) (0.007) (0.006)
1.75 0.843 0.899 0.858 0.913 0.859 0.911 0.790 0.864 0.871 0.875

(0.008) (0.007) (0.008) (0.006) (0.008) (0.006) (0.009) (0.008) (0.007) (0.007)
1 0.850 0.904 0.856 0.905 0.831 0.894 0.789 0.853 0.910 0.953

(0.008) (0.007) (0.008) (0.007) (0.008) (0.007) (0.009) (0.008) (0.006) (0.005)
1.15 0.847 0.895 0.855 0.896 0.820 0.879 0.806 0.867 0.902 0.943

(0.008) (0.007) (0.008) (0.007) (0.009) (0.007) (0.009) (0.008) (0.007) (0.005)
1.3 0.818 0.866 0.810 0.860 0.784 0.834 0.796 0.850 0.893 0.936

500 (0.009) (0.008) (0.009) (0.008) (0.009) (0.008) (0.009) (0.008) (0.007) (0.005)
1.45 0.783 0.851 0.775 0.827 0.753 0.808 0.803 0.858 0.871 0.925

(0.009) (0.008) (0.009) (0.008) (0.010) (0.009) (0.009) (0.008) (0.007) (0.006)
1.6 0.777 0.830 0.742 0.803 0.767 0.819 0.855 0.905 0.861 0.921

(0.009) (0.008) (0.010) (0.009) (0.009) (0.009) (0.008) (0.007) (0.008) (0.006)
1.75 0.775 0.821 0.726 0.801 0.802 0.850 0.901 0.938 0.869 0.921

(0.009) (0.009) (0.010) (0.009) (0.009) (0.008) (0.007) (0.005) (0.008) (0.006)
1 0.872 0.917 0.873 0.915 0.852 0.907 0.825 0.890 0.916 0.960

(0.007) (0.006) (0.007) (0.006) (0.008) (0.007) (0.009) (0.007) (0.006) (0.004)
1.15 0.882 0.938 0.861 0.908 0.837 0.895 0.836 0.898 0.908 0.947

(0.007) (0.005) (0.008) (0.006) (0.008) (0.007) (0.008) (0.007) (0.006) (0.005)
1.3 0.845 0.888 0.810 0.865 0.797 0.843 0.770 0.834 0.897 0.939

1000 (0.008) (0.007) (0.009) (0.008) (0.009) (0.008) (0.009) (0.008) (0.007) (0.005)
1.45 0.796 0.844 0.723 0.777 0.735 0.785 0.734 0.802 0.861 0.907

(0.009) (0.008) (0.010) (0.009) (0.010) (0.009) (0.010) (0.009) (0.008) (0.006)
1.6 0.736 0.786 0.633 0.699 0.711 0.760 0.827 0.878 0.834 0.881

(0.010) (0.009) (0.011) (0.010) (0.010) (0.010) (0.008) (0.007) (0.008) (0.007)
1.75 0.697 0.750 0.579 0.650 0.717 0.779 0.900 0.934 0.821 0.874

(0.010) (0.010) (0.011) (0.011) (0.010) (0.009) (0.007) (0.006) (0.009) (0.007)

Continued on next page
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Table B.2 – continued from previous page
T Vol. t-GAS t-GARCH GARCH EGARCH Beta-t-EGARCH

1 0.884 0.945 0.878 0.939 0.884 0.935 0.873 0.926 0.918 0.950
(0.007) (0.005) (0.007) (0.005) (0.007) (0.006) (0.007) (0.006) (0.006) (0.005)

1.15 0.882 0.938 0.879 0.933 0.895 0.933 0.859 0.919 0.902 0.949
(0.007) (0.005) (0.007) (0.006) (0.007) (0.006) (0.008) (0.006) (0.007) (0.005)

1.3 0.886 0.932 0.821 0.890 0.858 0.897 0.740 0.816 0.887 0.939
2500 (0.007) (0.006) (0.009) (0.007) (0.008) (0.007) (0.010) (0.009) (0.007) (0.005)

1.45 0.838 0.877 0.710 0.777 0.712 0.762 0.589 0.648 0.856 0.910
(0.008) (0.007) (0.010) (0.009) (0.010) (0.010) (0.011) (0.011) (0.008) (0.006)

1.6 0.725 0.772 0.566 0.617 0.592 0.658 0.599 0.664 0.813 0.870
(0.010) (0.009) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.009) (0.008)

1.75 0.624 0.683 0.452 0.503 0.527 0.605 0.641 0.718 0.796 0.842
(0.011) (0.010) (0.011) (0.011) (0.011) (0.011) (0.011) (0.010) (0.009) (0.008)

1 0.908 0.951 0.898 0.950 0.887 0.941 0.870 0.923 0.917 0.958
(0.006) (0.005) (0.007) (0.005) (0.007) (0.005) (0.008) (0.006) (0.006) (0.004)

1.15 0.904 0.950 0.891 0.950 0.903 0.956 0.823 0.896 0.911 0.950
(0.007) (0.005) (0.007) (0.005) (0.007) (0.005) (0.009) (0.007) (0.006) (0.005)

1.3 0.922 0.958 0.848 0.911 0.884 0.927 0.668 0.753 0.889 0.941
5000 (0.006) (0.005) (0.008) (0.006) (0.007) (0.006) (0.011) (0.010) (0.007) (0.005)

1.45 0.870 0.910 0.736 0.802 0.682 0.750 0.468 0.523 0.875 0.929
(0.008) (0.006) (0.010) (0.009) (0.010) (0.010) (0.011) (0.011) (0.007) (0.006)

1.6 0.718 0.767 0.526 0.580 0.441 0.526 0.388 0.448 0.836 0.876
(0.010) (0.009) (0.011) (0.011) (0.011) (0.011) (0.011) (0.011) (0.008) (0.007)

1.75 0.544 0.616 0.355 0.403 0.322 0.417 0.369 0.452 0.790 0.835
(0.011) (0.011) (0.011) (0.011) (0.010) (0.011) (0.011) (0.011) (0.009) (0.008)

1 0.909 0.953 0.912 0.959 0.890 0.942 0.881 0.933 0.917 0.954
(0.006) (0.005) (0.006) (0.004) (0.007) (0.005) (0.007) (0.006) (0.006) (0.005)

1.15 0.911 0.953 0.903 0.953 0.907 0.958 0.729 0.831 0.886 0.940
(0.006) (0.005) (0.007) (0.005) (0.007) (0.005) (0.010) (0.008) (0.007) (0.005)

1.3 0.920 0.959 0.859 0.907 0.900 0.941 0.646 0.731 0.824 0.900
10000 (0.006) (0.004) (0.008) (0.007) (0.007) (0.005) (0.011) (0.010) (0.009) (0.007)

1.45 0.909 0.949 0.751 0.831 0.606 0.718 0.484 0.542 0.831 0.894
(0.006) (0.005) (0.010) (0.008) (0.011) (0.010) (0.011) (0.011) (0.008) (0.007)

1.6 0.691 0.778 0.462 0.542 0.265 0.372 0.454 0.502 0.885 0.917
(0.010) (0.009) (0.011) (0.011) (0.010) (0.011) (0.011) (0.011) (0.007) (0.006)

1.75 0.396 0.521 0.250 0.299 0.136 0.212 0.441 0.503 0.840 0.875
(0.011) (0.011) (0.010) (0.010) (0.008) (0.009) (0.011) (0.011) (0.008) (0.007)
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Table B.3: Effect of a change in ω on η

Number of Periods Vol. t-GAS t-GARCH Beta-t-EGARCH
Mean est. Std.Dev. Mean est. Std.Dev. Mean est. Std.Dev.

1 6.38 4.10 6.43 4.12 6.52 4.40
1.15 6.24 3.96 6.26 4.02 6.35 4.26

250 1.3 5.97 3.74 5.94 3.80 6.14 4.06
1.45 5.72 3.56 5.63 3.54 5.82 3.80
1.6 5.50 3.43 5.38 3.36 5.57 3.61
1.75 5.28 3.20 5.16 3.12 5.37 3.46

1 5.56 1.89 5.57 1.91 5.58 1.99
1.15 5.48 1.86 5.48 1.88 5.48 1.89

500 1.3 5.30 1.72 5.26 1.76 5.34 1.72
1.45 5.13 1.59 5.06 1.64 5.14 1.57
1.6 4.98 1.50 4.89 1.54 4.98 1.50
1.75 4.86 1.46 4.76 1.49 4.88 1.45

1 5.27 0.99 5.27 1.00 5.27 0.99
1.15 5.21 0.96 5.21 0.97 5.20 0.96

1000 1.3 5.08 0.91 5.04 0.91 5.10 0.92
1.45 4.96 0.87 4.89 0.86 4.95 0.87
1.6 4.85 0.83 4.77 0.83 4.85 0.84
1.75 4.77 0.81 4.67 0.80 4.77 0.82

1 5.08 0.52 5.09 0.53 5.08 0.52
1.15 5.03 0.51 5.03 0.52 5.02 0.51

2500 1.3 4.91 0.49 4.88 0.49 4.93 0.49
1.45 4.81 0.47 4.75 0.47 4.80 0.47
1.6 4.73 0.46 4.66 0.46 4.72 0.45
1.75 4.68 0.45 4.60 0.46 4.67 0.45

1 5.05 0.36 5.05 0.37 5.05 0.36
1.15 5.00 0.36 5.00 0.37 4.99 0.36

5000 1.3 4.88 0.34 4.85 0.35 4.90 0.34
1.45 4.78 0.33 4.73 0.34 4.78 0.33
1.6 4.71 0.32 4.65 0.33 4.70 0.32
1.75 4.67 0.32 4.60 0.33 4.66 0.32

1 5.02 0.25 5.02 0.25 5.02 0.25
1.15 4.97 0.24 4.97 0.25 4.96 0.24

10000 1.3 4.86 0.23 4.83 0.23 4.87 0.23
1.45 4.76 0.22 4.70 0.22 4.75 0.22
1.6 4.69 0.22 4.63 0.22 4.68 0.22
1.75 4.65 0.21 4.57 0.22 4.64 0.21
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Table B.4: Effect of a change in ω on the coverage probability of η

T Vol. t-GAS t-GARCH Beta-t-EGARCH

90% 95% 90% 95% 90% 95%
1 0.920 0.945 0.917 0.942 0.909 0.931

(0.006) (0.005) (0.006) (0.005) (0.006) (0.006)
1.15 0.914 0.937 0.905 0.932 0.900 0.921

(0.006) (0.005) (0.007) (0.006) (0.007) (0.006)
1.3 0.900 0.930 0.887 0.918 0.886 0.911

250 (0.007) (0.006) (0.007) (0.006) (0.007) (0.006)
1.45 0.883 0.913 0.858 0.891 0.868 0.901

(0.007) (0.006) (0.008) (0.007) (0.008) (0.007)
1.6 0.865 0.901 0.831 0.871 0.847 0.884

(0.008) (0.007) (0.008) (0.007) (0.008) (0.007)
1.75 0.848 0.888 0.807 0.844 0.839 0.871

(0.008) (0.007) (0.009) (0.008) (0.008) (0.007)
1 0.923 0.953 0.928 0.950 0.923 0.950

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005)
1.15 0.922 0.949 0.920 0.945 0.913 0.947

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005)
1.3 0.900 0.935 0.896 0.927 0.901 0.935

500 (0.007) (0.006) (0.007) (0.006) (0.007) (0.006)
1.45 0.882 0.920 0.865 0.903 0.876 0.917

(0.007) (0.006) (0.008) (0.007) (0.007) (0.006)
1.6 0.866 0.906 0.824 0.875 0.859 0.898

(0.008) (0.007) (0.009) (0.007) (0.008) (0.007)
1.75 0.845 0.893 0.788 0.851 0.847 0.885

(0.008) (0.007) (0.009) (0.008) (0.008) (0.007)
1 0.895 0.942 0.911 0.952 0.883 0.939

(0.007) (0.005) (0.006) (0.005) (0.007) (0.005)
1.15 0.890 0.937 0.904 0.943 0.882 0.939

(0.007) (0.005) (0.007) (0.005) (0.007) (0.005)
1.3 0.883 0.927 0.892 0.927 0.875 0.922

1000 (0.007) (0.006) (0.007) (0.006) (0.007) (0.006)
1.45 0.873 0.915 0.859 0.902 0.863 0.911

(0.007) (0.006) (0.008) (0.007) (0.008) (0.006)
1.6 0.846 0.894 0.820 0.878 0.846 0.895

(0.008) (0.007) (0.009) (0.007) (0.008) (0.007)
1.75 0.826 0.879 0.783 0.849 0.822 0.875

(0.008) (0.007) (0.009) (0.008) (0.009) (0.007)

Continued on next page
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Table B.4 – continued from previous page
T Vol. t-GAS t-GARCH Beta-t-EGARCH

1 0.892 0.947 0.896 0.954 0.872 0.932
(0.007) (0.005) (0.007) (0.005) (0.007) (0.006)

1.15 0.884 0.942 0.887 0.945 0.874 0.931
(0.007) (0.005) (0.007) (0.005) (0.007) (0.006)

1.3 0.856 0.919 0.852 0.913 0.851 0.918
2500 (0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

1.45 0.810 0.884 0.783 0.857 0.803 0.871
(0.009) (0.007) (0.009) (0.008) (0.009) (0.008)

1.6 0.764 0.844 0.725 0.800 0.749 0.835
(0.010) (0.008) (0.010) (0.009) (0.010) (0.008)

1.75 0.726 0.813 0.682 0.756 0.715 0.801
(0.010) (0.009) (0.010) (0.010) (0.010) (0.009)

1 0.885 0.938 0.889 0.941 0.866 0.926
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

1.15 0.874 0.930 0.885 0.930 0.859 0.921
(0.007) (0.006) (0.007) (0.006) (0.008) (0.006)

1.3 0.828 0.889 0.819 0.881 0.836 0.897
5000 (0.008) (0.007) (0.009) (0.007) (0.008) (0.007)

1.45 0.741 0.829 0.725 0.804 0.737 0.818
(0.010) (0.008) (0.010) (0.009) (0.010) (0.009)

1.6 0.683 0.761 0.638 0.728 0.664 0.751
(0.010) (0.010) (0.011) (0.010) (0.011) (0.010)

1.75 0.642 0.725 0.578 0.681 0.623 0.717
(0.011) (0.010) (0.011) (0.010) (0.011) (0.010)

1 0.883 0.942 0.899 0.947 0.861 0.925
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

1.15 0.881 0.929 0.893 0.937 0.857 0.917
(0.007) (0.006) (0.007) (0.005) (0.008) (0.006)

1.3 0.788 0.866 0.770 0.853 0.802 0.875
10000 (0.009) (0.008) (0.009) (0.008) (0.009) (0.007)

1.45 0.638 0.733 0.585 0.684 0.633 0.725
(0.011) (0.010) (0.011) (0.010) (0.011) (0.010)

1.6 0.539 0.637 0.457 0.553 0.521 0.617
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)

1.75 0.492 0.583 0.350 0.455 0.454 0.562
(0.011) (0.011) (0.011) (0.011) (0.011) (0.011)
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B.2 Effect of a break in A on other parameters

Table B.5: Effect of a change in A on ω

Number of Periods Vol. t-GAS t-GARCH GARCH

Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev
1 0.31 0.24 0.30 0.25 0.30 0.24

1.15 0.29 0.21 0.29 0.24 0.28 0.21
250 1.3 0.28 0.20 0.28 0.23 0.28 0.20

1.45 0.28 0.19 0.26 0.22 0.27 0.19
1.6 0.28 0.18 0.25 0.21 0.27 0.19
1.75 0.27 0.18 0.24 0.20 0.27 0.19

1 0.26 0.18 0.26 0.18 0.27 0.19
1.15 0.25 0.15 0.24 0.17 0.26 0.16

500 1.3 0.24 0.14 0.22 0.14 0.25 0.15
1.45 0.24 0.13 0.21 0.13 0.25 0.14
1.6 0.24 0.13 0.20 0.12 0.24 0.14
1.75 0.24 0.12 0.19 0.12 0.24 0.14

1 0.23 0.13 0.23 0.12 0.23 0.13
1.15 0.22 0.10 0.21 0.10 0.23 0.10

1000 1.3 0.22 0.09 0.20 0.09 0.22 0.09
1.45 0.22 0.08 0.19 0.08 0.22 0.09
1.6 0.22 0.08 0.17 0.07 0.22 0.09
1.75 0.22 0.08 0.17 0.07 0.22 0.08

1 0.21 0.07 0.21 0.07 0.21 0.07
1.15 0.21 0.06 0.20 0.05 0.21 0.05

2500 1.3 0.21 0.05 0.18 0.05 0.21 0.05
1.45 0.21 0.05 0.17 0.04 0.21 0.05
1.6 0.21 0.05 0.16 0.04 0.21 0.05
1.75 0.21 0.05 0.16 0.04 0.21 0.05

1 0.21 0.04 0.20 0.04 0.21 0.04
1.15 0.21 0.04 0.19 0.03 0.21 0.04

5000 1.3 0.21 0.03 0.18 0.03 0.21 0.03
1.45 0.21 0.03 0.17 0.03 0.21 0.03
1.6 0.21 0.03 0.16 0.03 0.21 0.03
1.75 0.21 0.03 0.16 0.02 0.21 0.03

1 0.20 0.03 0.20 0.03 0.20 0.03
1.15 0.20 0.03 0.19 0.02 0.20 0.03

10000 1.3 0.21 0.02 0.18 0.02 0.20 0.02
1.45 0.21 0.02 0.17 0.02 0.21 0.02
1.6 0.21 0.02 0.16 0.02 0.21 0.02
1.75 0.21 0.02 0.15 0.02 0.21 0.02
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Table B.6: Effect of a change in A on the conditional coverage of ω

T Vol. t-GAS t-GARCH GARCH

90% 95% 90% 95% 90% 95%
1 0.803 0.854 0.833 0.874 0.773 0.835

(0.009) (0.008) (0.008) (0.007) (0.009) (0.008)
1.15 0.819 0.864 0.835 0.870 0.784 0.833

(0.009) (0.008) (0.008) (0.008) (0.009) (0.008)
1.3 0.802 0.860 0.821 0.866 0.780 0.843

250 (0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
1.45 0.811 0.871 0.810 0.861 0.780 0.840

(0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
1.6 0.811 0.867 0.798 0.854 0.777 0.834

(0.009) (0.008) (0.009) (0.008) (0.009) (0.008)
1.75 0.840 0.902 0.801 0.848 0.776 0.833

(0.008) (0.007) (0.009) (0.008) (0.009) (0.008)
1 0.808 0.857 0.833 0.874 0.749 0.815

(0.009) (0.008) (0.008) (0.007) (0.010) (0.009)
1.15 0.823 0.879 0.836 0.882 0.775 0.836

(0.009) (0.007) (0.008) (0.007) (0.009) (0.008)
1.3 0.828 0.884 0.822 0.871 0.779 0.843

500 (0.008) (0.007) (0.009) (0.008) (0.009) (0.008)
1.45 0.826 0.881 0.805 0.849 0.786 0.854

(0.008) (0.007) (0.009) (0.008) (0.009) (0.008)
1.6 0.821 0.884 0.778 0.830 0.778 0.849

(0.009) (0.007) (0.009) (0.008) (0.009) (0.008)
1.75 0.828 0.886 0.768 0.818 0.782 0.852

(0.008) (0.007) (0.009) (0.009) (0.009) (0.008)
1 0.832 0.882 0.845 0.895 0.824 0.871

(0.008) (0.007) (0.008) (0.007) (0.009) (0.007)
1.15 0.850 0.901 0.839 0.884 0.835 0.888

(0.008) (0.007) (0.008) (0.007) (0.008) (0.007)
1.3 0.844 0.898 0.814 0.868 0.842 0.901

1000 (0.008) (0.007) (0.009) (0.008) (0.008) (0.007)
1.45 0.851 0.906 0.784 0.840 0.845 0.896

(0.008) (0.007) (0.009) (0.008) (0.008) (0.007)
1.6 0.851 0.904 0.744 0.809 0.841 0.896

(0.008) (0.007) (0.010) (0.009) (0.008) (0.007)
1.75 0.846 0.897 0.720 0.782 0.842 0.894

(0.008) (0.007) (0.010) (0.009) (0.008) (0.007)
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Table B.6 – continued from previous page
T Vol. t-GAS t-GARCH GARCH

1 0.867 0.914 0.871 0.924 0.871 0.917
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

1.15 0.876 0.922 0.850 0.902 0.869 0.923
(0.007) (0.006) (0.008) (0.007) (0.008) (0.006)

1.3 0.867 0.921 0.787 0.854 0.857 0.913
2500 (0.008) (0.006) (0.009) (0.008) (0.008) (0.006)

1.45 0.863 0.919 0.715 0.785 0.858 0.921
(0.008) (0.006) (0.010) (0.009) (0.008) (0.006)

1.6 0.855 0.919 0.630 0.703 0.861 0.913
(0.008) (0.006) (0.011) (0.010) (0.008) 0.006

1.75 0.854 0.918 0.568 0.657 0.853 0.917
(0.008) (0.006) (0.011) (0.011) (0.008) (0.006)

1 0.882 0.937 0.896 0.938 0.893 0.933
(0.007) (0.005) (0.007) (0.005) (0.007) (0.006)

1.15 0.888 0.939 0.865 0.917 0.878 0.931
(0.007) (0.005) (0.008) (0.006) (0.007) (0.006)

1.3 0.870 0.931 0.774 0.840 0.872 0.927
5000 (0.008) (0.006) (0.009) (0.008) (0.007) (0.006)

1.45 0.865 0.928 0.635 0.732 0.866 0.928
(0.008) (0.006) (0.011) (0.010) (0.008) (0.006)

1.6 0.854 0.919 0.460 0.559 0.873 0.928
(0.008) (0.006) (0.011) (0.011) (0.007) (0.006)

1.75 0.856 0.917 0.370 0.465 0.861 0.924
(0.008) (0.006) (0.011) (0.011) (0.008) (0.006)

1 0.882 0.941 0.905 0.952 0.893 0.938
(0.007) (0.005) (0.007) (0.005) (0.007) (0.005)

1.15 0.882 0.938 0.863 0.910 0.871 0.933
(0.007) (0.005) (0.008) (0.006) (0.008) (0.006)

1.3 0.859 0.918 0.696 0.777 0.862 0.932
10000 (0.008) (0.006) (0.010) (0.009) (0.008) (0.006)

1.45 0.849 0.918 0.482 0.578 0.857 0.924
(0.008) (0.006) (0.011) (0.011) (0.008) (0.006)

1.6 0.846 0.911 0.256 0.345 0.855 0.919
(0.008) (0.006) (0.010) (0.011) (0.008) (0.006)

1.75 0.840 0.902 0.168 0.236 0.845 0.914
(0.008) (0.007) (0.008) (0.009) (0.008) (0.006)
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Table B.7: Effect of a change in A on ω of models with leverage effects

Number of Periods Volatility EGARCH(1,1) Beta-t-EGARCH(1,1)

Mean est. Std. Dev. Mean est. Std. Dev.
1 -0.01 0.06 0.04 0.12

1.15 -0.01 0.06 0.03 0.12
250 1.3 -0.01 0.06 0.03 0.11

1.45 -0.01 0.06 0.03 0.11
1.6 -0.01 0.06 0.03 0.11
1.75 -0.01 0.06 0.02 0.11

1 0.00 0.03 0.02 0.08
1.15 0.00 0.03 0.02 0.07

500 1.3 0.00 0.03 0.02 0.07
1.45 0.00 0.03 0.01 0.06
1.6 0.00 0.03 0.01 0.06
1.75 0.00 0.03 0.01 0.06

1 0.00 0.02 0.01 0.04
1.15 0.00 0.02 0.01 0.04

1000 1.3 0.00 0.02 0.01 0.04
1.45 0.00 0.02 0.01 0.04
1.6 0.00 0.02 0.01 0.04
1.75 0.00 0.02 0.01 0.04

1 0.00 0.01 0.00 0.02
1.15 0.00 0.01 0.00 0.02

2500 1.3 0.00 0.01 0.00 0.02
1.45 0.00 0.01 0.00 0.02
1.6 0.00 0.01 0.00 0.02
1.75 0.00 0.01 0.00 0.02

1 0.00 0.01 0.00 0.01
1.15 0.00 0.01 0.00 0.01

5000 1.3 0.00 0.01 0.00 0.02
1.45 0.00 0.01 0.00 0.02
1.6 0.00 0.01 0.00 0.02
1.75 0.00 0.01 0.00 0.02

1 0.00 0.00 0.00 0.01
1.15 0.00 0.00 0.00 0.01

10000 1.3 0.00 0.00 0.00 0.01
1.45 0.00 0.00 0.00 0.01
1.6 0.00 0.00 0.00 0.01
1.75 0.00 0.00 0.00 0.01
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Table B.8: Effect of a change in A on the conditional coverage of ω

T Vol. EGARCH Beta-t-EGARCH

90% 95% 90% 95%
1 0.897 0.930 0.932 0.963

(0.007) (0.006) (0.006) (0.004)
1.15 0.907 0.938 0.924 0.958

(0.007) (0.005) (0.006) (0.004)
1.3 0.898 0.941 0.925 0.963

250 (0.007) (0.005) (0.006) (0.004)
1.45 0.905 0.946 0.917 0.961

(0.007) (0.005) (0.006) (0.004)
1.6 0.903 0.943 0.915 0.957

(0.007) (0.005) (0.006) (0.005)
1.75 0.902 0.946 0.915 0.961

(0.007) (0.005) (0.006) (0.004)
1 0.929 0.962 0.933 0.971

(0.006) (0.004) (0.006) (0.004 )
1.15 0.934 0.967 0.924 0.963

(0.006) (0.004) (0.006) (0.004)
1.3 0.936 0.967 0.917 0.962

500 (0.005) (0.004) (0.006) (0.004)
1.45 0.936 0.969 0.912 0.957

(0.005) (0.004) (0.006) (0.005)
1.6 0.938 0.966 0.914 0.957

(0.005) (0.004) (0.006) (0.005)
1.75 0.936 0.967 0.908 0.953

(0.005) (0.004) (0.006) (0.005)
1 0.928 0.969 0.927 0.966

(0.006) (0.004) (0.006) (0.004)
1.15 0.925 0.967 0.916 0.959

(0.006) (0.004) (0.006) (0.004)
1.3 0.923 0.964 0.909 0.952

1000 (0.006) (0.004) (0.006) (0.005)
1.45 0.919 0.967 0.900 0.948

(0.006) (0.004) (0.007) (0.005)
1.6 0.923 0.964 0.900 0.944

(0.006) (0.004) (0.007) (0.005)
1.75 0.917 0.961 0.895 0.939

(0.006) (0.004) (0.007) (0.005)
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Table B.8 – continued from previous page
T Vol. EGARCH Beta-t-EGARCH

1 0.917 0.960 0.920 0.965
(0.006) (0.004) (0.006) (0.004)

1.15 0.918 0.959 0.901 0.957
(0.006) (0.004) (0.007) (0.005)

1.3 0.910 0.955 0.887 0.953
2500 (0.006) (0.005) (0.007) (0.005)

1.45 0.907 0.954 0.888 0.947
(0.006) (0.005) (0.007) (0.005)

1.6 0.911 0.952 0.886 0.948
(0.006) (0.005) (0.007) (0.005)

1.75 0.910 0.953 0.886 0.948
(0.006) (0.005) (0.007) (0.005)

1 0.913 0.958 0.919 0.963
(0.006) (0.005) (0.006) (0).004

1.15 0.901 0.955 0.905 0.951
(0.007) (0.005) (0.007) (0.005)

1.3 0.899 0.948 0.892 0.946
5000 (0.007) (0.005) (0.007) (0.005)

1.45 0.897 0.949 0.890 0.944
(0.007) (0.005) (0.007) (0.005)

1.6 0.890 0.948 0.883 0.939
(0.007) (0.005) (0.007) (0.005)

1.75 0.884 0.949 0.882 0.936
(0.007) (0.005) (0.007) (0.005)

1 0.896 0.947 0.914 0.967
(0.007) (0.005) (0.006) (0.004)

1.15 0.884 0.941 0.891 0.949
(0.007) (0.005) (0.007) (0.005)

1.3 0.876 0.939 0.883 0.939
10000 (0.007) (0.005) (0.007) (0.005)

1.45 0.872 0.935 0.884 0.935
(0.007) (0.006) (0.007) (0.006)

1.6 0.865 0.931 0.884 0.936
(0.008) (0.006) (0.007) (0.005)

1.75 0.862 0.929 0.880 0.933
(0.008) (0.006) (0.007) (0.006)
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Table B.9: Effect of a change in A on η

T Size of break t-GAS t-GARCH Beta-t-EGARCH

Mean est. Std.Dev. Mean est. Std.Dev. Mean est. Std.Dev.
0 6.38 4.10 6.43 4.12 6.52 4.40

0.05 6.35 4.06 6.36 4.12 6.54 4.43
250 0.08 6.28 3.92 6.29 4.09 6.53 4.42

0.1 6.26 3.88 6.23 4.09 6.51 4.38
0.12 6.20 3.77 6.17 4.05 6.48 4.35
0.13 6.18 3.76 6.13 4.01 6.46 4.32

0 5.56 1.89 5.57 1.91 5.58 1.99
0.05 5.54 1.88 5.52 1.91 5.58 1.99

500 0.08 5.49 1.80 5.46 1.91 5.57 1.99
0.1 5.46 1.76 5.41 1.90 5.55 1.97
0.12 5.43 1.72 5.35 1.84 5.53 1.96
0.13 5.41 1.70 5.32 1.81 5.52 1.95

0 5.27 0.99 5.27 1.00 5.27 0.99
0.05 5.25 0.97 5.24 0.99 5.27 0.98

1000 0.08 5.22 0.95 5.18 0.97 5.25 0.97
0.1 5.20 0.94 5.14 0.95 5.24 0.97
0.12 5.17 0.93 5.10 0.94 5.23 0.96
0.13 5.15 0.92 5.07 0.93 5.22 0.96

0 5.08 0.52 5.09 0.53 5.08 0.52
0.05 5.07 0.52 5.05 0.52 5.08 0.52

2500 0.08 5.04 0.51 5.00 0.52 5.06 0.51
0.1 5.02 0.50 4.97 0.51 5.05 0.51
0.12 5.00 0.50 4.93 0.50 5.04 0.50
0.13 4.98 0.49 4.91 0.50 5.03 0.50

0 5.05 0.36 5.05 0.37 5.05 0.36
0.05 5.03 0.36 5.02 0.37 5.04 0.36

5000 0.08 5.01 0.35 4.97 0.36 5.03 0.36
0.1 4.99 0.35 4.94 0.36 5.02 0.35
0.12 4.96 0.34 4.90 0.35 5.00 0.35
0.13 4.94 0.34 4.88 0.35 5.00 0.35

0 5.02 0.25 5.02 0.25 5.02 0.25
0.05 5.00 0.25 4.99 0.25 5.01 0.25

10000 0.08 4.98 0.24 4.94 0.24 5.00 0.24
0.1 4.96 0.24 4.91 0.24 4.99 0.24
0.12 4.93 0.24 4.87 0.24 4.97 0.24
0.13 4.92 0.24 4.85 0.24 4.97 0.24
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Table B.10: Effect of a change in A on the conditional coverage of η

T Vol. t-GAS t-GARCH GARCH

90% 95% 90% 95% 90% 95%
0 0.920 0.945 0.917 0.942 0.909 0.931

(0.006) (0.005) (0.006) (0.005) (0.006) (0.006)
0.05 0.917 0.945 0.908 0.936 0.906 0.930

(0.006) (0.005) (0.006) (0.005) (0.007) (0.006)
0.08 0.907 0.935 0.904 0.930 0.908 0.935

250 (0.007) (0.006) (0.007) (0.006) (0.006) (0.006)
0.1 0.907 0.938 0.899 0.923 0.906 0.931

(0.007) (0.005) (0.007) (0.006) (0.007) (0.006)
0.12 0.902 0.931 0.893 0.921 0.908 0.931

(0.007) (0.006) (0.007) (0.006) (0.006) (0.006)
0.13 0.901 0.932 0.887 0.918 0.909 0.932

(0.007) (0.006) (0.007) (0.006) (0.006) (0.006)
0 0.923 0.953 0.928 0.950 0.923 0.950

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005)
0.05 0.918 0.952 0.926 0.948 0.921 0.950

(0.006) (0.005) (0.006) (0.005) (0.006) (0.005)
0.08 0.899 0.952 0.915 0.942 0.920 0.954

500 (0.007) (0.005) (0.006) (0.005) (0.006) (0.005)
0.1 0.905 0.942 0.910 0.942 0.915 0.955

(0.007) (0.005) (0.006) (0.005) (0.006) (0.005)
0.12 0.900 0.941 0.902 0.931 0.915 0.955

(0.007) (0.005) (0.007) (0.006) (0.006) (0.005)
0.13 0.901 0.937 0.900 0.930 0.913 0.952

(0.007) (0.005) (0.007) (0.006) (0.006) (0.005)
0 0.895 0.942 0.911 0.952 0.883 0.939

(0.007) (0.005) (0.006) (0.005) (0.007) (0.005)
0.05 0.893 0.948 0.907 0.952 0.873 0.938

(0.007) (0.005) (0.006) (0.005) (0.007) (0.005)
0.08 0.880 0.935 0.905 0.944 0.878 0.939

1000 (0.007) (0.006) (0.007) (0.005) (0.007) (0.005)
0.1 0.874 0.929 0.899 0.940 0.883 0.938

(0.007) (0.006) (0.007) (0.005) (0.007) (0.005)
0.12 0.873 0.930 0.897 0.934 0.880 0.934

(0.007) (0.006) (0.007) (0.006) (0.007) (0.006)
0.13 0.872 0.924 0.893 0.929 0.873 0.931

(0.007) (0.006) (0.007) (0.006) (0.007) (0.006)
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Table B.10 – continued from previous page
T Vol. t-GAS t-GARCH GARCH

0 0.892 0.947 0.896 0.954 0.872 0.932
(0.007) (0.005) (0.007) (0.005) (0.007) (0.006)

0.05 0.891 0.948 0.897 0.949 0.869 0.934
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

0.08 0.868 0.933 0.883 0.943 0.873 0.936
2500 (0.008) (0.006) (0.007) (0.005) (0.007) (0.005)

0.1 0.864 0.932 0.881 0.936 0.865 0.933
(0.008) (0.006) (0.007) (0.005) (0.008) (0.006)

0.12 0.866 0.932 0.865 0.925 0.866 0.933
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

0.13 0.859 0.925 0.861 0.920 0.864 0.931
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

0 0.885 0.938 0.889 0.941 0.866 0.926
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

0.05 0.887 0.943 0.891 0.936 0.856 0.921
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

0.08 0.858 0.928 0.870 0.931 0.848 0.915
5000 (0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

0.1 0.856 0.924 0.857 0.919 0.844 0.914
(0.008) (0.006) (0.008) (0.006) (0.008) (0.006)

0.12 0.846 0.911 0.848 0.905 0.846 0.909
(0.008) (0.006) (0.008) (0.007) (0.008) (0.006)

0.13 0.846 0.905 0.836 0.889 0.842 0.904
(0.008) (0.007) (0.008) (0.007) (0.008) (0.007)

0 0.883 0.942 0.899 0.947 0.861 0.925
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

0.05 0.882 0.941 0.894 0.943 0.846 0.916
(0.007) (0.005) (0.007) (0.005) (0.008) (0.006)

0.08 0.860 0.920 0.874 0.923 0.840 0.910
10000 (0.008) (0.006) (0.007) (0.006) (0.008) (0.006)

0.1 0.839 0.918 0.847 0.906 0.829 0.905
(0.008) (0.006) (0.008) (0.007) (0.008) (0.007)

0.12 0.828 0.894 0.817 0.882 0.821 0.898
(0.008) (0.007) (0.009) (0.007) (0.009) (0.007)

0.13 0.817 0.896 0.795 0.869 0.816 0.894
(0.009) (0.007) (0.009) (0.008) (0.009) (0.007)
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B.3 Impact of ignoring parameter changes on B̂ for

alternative models

Table B.11: Effect of a break in parameters on B̂ of t-GAS model with B = 0.5

T Break Size ω A
Mean est. Std. Dev. Mean est. Std. Dev.

250 No break 0.47 0.29 0.47 0.29
Medium 0.66 0.32 0.49 0.22

Large 0.83 0.25 0.49 0.21
500 No break 0.46 0.26 0.46 0.26

Medium 0.74 0.28 0.48 0.18
Large 0.92 0.17 0.48 0.17

1000 No break 0.47 0.22 0.47 0.22
Medium 0.82 0.21 0.48 0.15

Large 0.98 0.08 0.48 0.14
2500 No break 0.48 0.15 0.48 0.15

Medium 0.90 0.15 0.48 0.10
Large 1.00 0.01 0.48 0.10

5000 No break 0.49 0.10 0.49 0.10
Medium 0.95 0.10 0.48 0.07

Large 1.00 0.00 0.48 0.07
10000 No break 0.50 0.07 0.50 0.07

Medium 0.97 0.07 0.49 0.05
Large 1.00 0.00 0.48 0.05
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Table B.12: Effect of a break in parameters on B̂ for the alternative EGARCH model

Number of Periods Break Size ω A B
Mean est. Std. Dev. Mean est. Std. Dev. Mean est. Std. Dev.

250 No break 0.66 0.36 0.66 0.36 0.66 0.36
Medium 0.81 0.30 0.72 0.31 0.76 0.31

Large 0.91 0.20 0.75 0.29 0.85 0.26
500 No break 0.72 0.27 0.72 0.27 0.72 0.27

Medium 0.92 0.15 0.79 0.20 0.85 0.17
Large 0.98 0.06 0.83 0.17 0.94 0.11

1000 No break 0.76 0.16 0.76 0.16 0.76 0.16
Medium 0.96 0.07 0.83 0.11 0.89 0.09

Large 0.99 0.01 0.87 0.09 0.97 0.03
2500 No break 0.79 0.08 0.79 0.08 0.79 0.08

Medium 0.99 0.02 0.85 0.06 0.91 0.04
Large 1.00 0.00 0.88 0.05 0.97 0.02

5000 No break 0.79 0.05 0.79 0.05 0.79 0.05
Medium 0.99 0.01 0.86 0.04 0.91 0.03

Large 1.00 0.00 0.89 0.03 0.98 0.01
10000 No break 0.80 0.03 0.80 0.03 0.80 0.03

Medium 1.00 0.01 0.86 0.03 0.91 0.02
Large 1.00 0.00 0.89 0.02 0.98 0.01
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Appendix C

Chapter 4

C.1 Checking for non-stationarity

C.1.1 Autocorrelation and Partial Autocorrelations

Figure C.1: Autocorrelation of the Oil Prices
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Figure C.2: Partial Autocorrelation of the Oil Prices
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Figure C.3: Autocorrelation of the US Trade Weighted Index
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Figure C.4: Partial Autocorrelation of the US Trade Weighted Index
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C.1.2 Unit Root Tests

This section shows that both oil prices and USD trade-weighted index contain a unit root. Three types
of unit root tests used are the Augmented Dickey-Fuller (ADF) test by Dickey and Fuller (1981) and the
Phillips-Perron (PP) test by Phillips and Perron (1988). In the case of the ADF and PP tests, the null
hypothesis states that the time series of interest contains a unit root. The alternative is that the series does
not contain a unit root. As for the KPSS test, the null hypothesis is that the series is I(0) or stationary.
Table C.1 presents the results.

Table C.1: Unit root tests by series

Variables/Unit Root Test ADF PP KPSS
Oil Prices -1.61 -1.29 2.92
USD Trade-Weighted Index -1.81 -1.47 2.28
Oil Returns -9.10 -35.77 0.07
USD Returns -17.25 -36.77 0.08

Notes: The drift but no trend case is applied to oil prices and USD Trade-Weighted Index and the no

drift, no trend case is applied to oil and USD returns. For the ADF and PP tests, the critical values at

the 5% level are -2.86 and -3.41 for the drift but no trend and no drift, no trend cases respectively. For

the KPSS test, critical value at the 5% level for the no trend case is 0.446.

The distribution for the test is the t-distribution and the values for the ADF tests are found in Fuller
(1976). For oil prices, the appropriate number of lags is 3 and the ADF test statistic is -1.61. In the
case of the USD trade-weighted index, the number of appropriate lags is 1 and the ADF test statistic is
-1.81. The ADF test statistics for both series are larger than the critical value of -3.41,at the 5% level.
This implies that the null hypothesis that the series contain a unit root cannot be rejected in favour of
the alternative, meaning that the oil price and USD trade-weighted index series are not stationary. These
results are also consistent with the PP tests because the PP test statistics for both series are also larger
than the critical value at the 5% level. In the case of the KPSS test, the null hypothesis of stationarity
can rejected for both series.

The first difference of the log of oil prices and log of the USD trade-weighted index are constructed to
make the data stationary. The former is called oil returns and the latter is called USD returns. Table C.1
also show the test statistics for both series. These results indicate that the series are stationary because
the null hypothesis that the series contains a unit root is rejected in both the ADF and PP tests. Also,
using the KPSS test, the null hypothesis that the series is stationary cannot be rejected for both oil and
USD returns.

C.2 Supplementary Data Information

Figures C.5 and C.6 display the oil return squared residuals and autocorrelations of the AR(1) model of
oil prices. Figure C.5 also shows some signs of volatility clustering. This same figure reveals an especially
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Figure C.5: Squared residuals of oil returns
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Figure C.6: Autocorrelation and partial autocorrelation of oil return squared residuals
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large spike around 2008, which points to the effects of the 2008-2009 recession. Figure C.6 also displays
statistically significant evidence of clustering, as there are significant autocorrelation for up to 7 lags and
from lags 11 to 13. Turning to partial autocorrelations, the first 7 lags (except for lag 4) are significant
as well as lags 11 and 13. Thus, there are also signs of conditional heteroskedasticity in the oil returns
residuals.

Figures C.7 and C.8 display the USD return squared residuals and autocorrelation of the AR(1) model
of USD returns. These results show that volatility clustering also occurs in USD returns. There are some
large spikes that occur at the beginning of the sample as well as in the late 1970s and in 2008-2009 period.
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Figure C.7: Squared residuals of USD returns
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Figure C.8: Autocorrelation and partial autocorrelation of USD return squared residuals
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According to figure C.8, significant autocorrelation occurs from lags 1 to 12 and at lags 14, 15, and 20.
There is also significant partial autocorrelations at lags 1 to 6.
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C.3 Alternative figures for the application of Dufour

and Torres’s (1998) test

Figure C.9: 90% confidence intervals for ω by sub-period – oil returns

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4

Subperiod

t-GAS



-1

0

1

2

3

1 2 3 4

Subperiod

GARCH



-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4

Subperiod

t-GARCH



0.04

0.06

0.08

0.1

0.12

1 2 3 4

Subperiod

ARSV



Note: The null hypothesis that ω is not statistically different from each other can be
rejected if there is no intersection that falls between the ranges.
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Figure C.10: 90% confidence intervals for A by sub-period – oil returns
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Figure C.11: 90% confidence intervals for ω by sub-period - USD returns
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Figure C.12: 90% confidence intervals for A by sub-period - USD returns
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C.4 Using Patton’s (2011) loss functions for evaluat-

ing variance forecasts

Patton (2011) proposed the following family of robust loss functions:

L(σ̃2
t , ht; b) = 1

(b+1)(b+2) (σ̃
2(b+2)
t − σ̂2(b+2))− 1

b+1 σ̂
2(b+2)(σ̃2

t − σ̂2
t ), b 6= −1,−2

= σ̂2
t − σ̃2

t + σ̃2
t log

σ̃2
t

σ̂2
t
, b = −1

=
σ̃2
t

σ̂2
t
− σ̃2

t log
σ̃2
t

σ̂2
t
, b = −2

(C.1)

where σ̂2
t is the conditional variance forecast in this paper. Setting b = -2 gives rise to the “QLIKE” loss

function, while setting b = 0 yields the “MSE” loss function. These robust loss functions are then used to
calculate the loss.

Once the loss has been calculated, the Diebold-Mariano-West (DMW) test is used to determine which
forecast is best. The formula for the DMW statistic is:

DMWt(b) =
√
TD(b)T√
ˆavar[D(b)T ]

, (C.2)

where

Dt(b) = L(σ̃2
t, σ̂

2
A,t; b)− L(σ̃2

t, σ̂
2
B,t; b). (C.3)

σ̂2
A,t is the forecast generated by model A and σ̂2

B,t is the forecast generated by model B. Equation
(C.2) is the difference in the loss functions. If DT is positive (negative), then model B (A) produces a
better forecast. As mentioned in Patton and Sheppard (2009), the asymptotic variance of the average
differences, âvar, are computed using the Newey-West variance estimator.

Both the “QLIKE” and “MSE” are considered in this paper because Patton (2011) find that both
functions are robust to imperfect proxies for the conditionally unbiased variance. Although, it is noted
that Patton and Sheppard (2009) and Patton (2011) find that the “QLIKE” loss function produces the
greatest power in conducting tests in comparing forecasts. For the DMW test, the null hypothesis, H0 is
that the forecasts have equal accuracy. The alternative hypothesis is that one forecast is more accurate
than the other.
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