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Abstract 

 
Industrial robots rapidly gained popularity as they can perform tasks quickly, repeatedly and 

accurately in static environments. However, in modern manufacturing, robots should also be able 

to safely interact with arbitrary objects and dynamically adapt their behavior to various situations. 

The large masses and rigid constructions of industrial robots prevent them from easily being re-

tasked. In this context, this work proposes an immediate solution to make rigid manipulators 

compliant and able to efficiently handle object interactions, with only an add-on module (a custom 

designed instrumented compliant wrist) and an original control framework which can easily be 

ported to different manipulators. The proposed system utilizes both offline and online trajectory 

planning to achieve fully automated object interaction and surface following with or without 

contact where no prior knowledge of the objects is available.  

 

To minimize the complexity of the task, the problem is formulated into four interaction motion 

modes: free, proximity, contact and a blend of those. The free motion mode guides the robot 

towards the object of interest using information provided by a RGB-D sensor. The RGB-D sensor 

is used to collect raw 3D information on the environment and construct an approximate 3D model 

of an object of interest in the scene. In order to completely explore the object, a novel coverage 

path planning technique is proposed to generate a primary (offline) trajectory. However, RGB-D 

sensors provide only limited accuracy on the depth measurements and create blind spot when it 

reaches close to surfaces. Therefore, the offline trajectory is then further refined by applying the 

proximity motion mode and contact motion mode or a blend of them (blend motion mode) that 

allow the robot to dynamically interact with arbitrary objects and adapt to the surfaces it 

approaches or touches using live proximity and contact feedback from the compliant wrist. 

 

To achieve seamless and efficient integration of the sensory information and smoothly switch 

between different interaction modes, an original hybrid switching scheme is proposed that applies 

a supervisory (decision making) module and a mixture of hard and blend switches to support data 

fusion from multiple sensing sources by combining pairs of the main motion modes. Experimental 

results using a CRS-F3 manipulator demonstrate the feasibility and performance of the proposed 

method. 



iii 
 

ACKNOWLEDGEMENTS 

 

This thesis represents not only my work at the keyboard but it is the lessons I have learned, many 

experiences I have gained and the result of works I have done with the invaluable help of 

remarkable individuals who I wish to thank and acknowledge. 

 

First and foremost I would like to thank my supervisor Professor Pierre Payeur for all his 

contributions, guidance, patience and support through the rough road to finish this thesis. I would 

also like to thank my co-supervisor Professor Robert Laganière, for all the support and 

encouragement over the course of this research and several publications.  

 

I wish to acknowledge the contribution of Mr. Pascal Laferrière to this research via the 

development of the instrumented compliant wrist, as well as the financial support from the Natural 

Sciences and Engineering Research Council of Canada (NSERC) provided under the Strategic 

Project and Discovery Research Grant programs. Appreciation also goes to the Canada Foundation 

for Innovation (CFI) that made possible the high-end robotic research infrastructure used in this 

work. 

 

A heartfelt thanks to my family and specially my beloved parents. Words cannot express how 

grateful I am for the endless support and love you gave me to achieve my goal.  

 

 

 

 

 



iv 
 

Dedication 

 

 

To  

 

 

The Most Holy Person, Mother 

The angel who is always my supportive 

 

 

Dearest Person, Father 

A strong and gentle soul who is my guardian angel 

 

 

Best friends, Siblings 

Gifts from God who are my inspiration  

 

 

 



v 
 

TABLE OF CONTENTS 

Chapter 1. INTRODUCTION........................................................................................... 1 

1.1 Motivation and Problem Statement ...............................................................................1 
1.2 Objectives ......................................................................................................................3 
1.3 Thesis Organization .......................................................................................................4 

Chapter 2. BACKGROUND AND RELATED WORK ................................................. 5 

2.1 Sensor-Based Control ....................................................................................................5 
2.1.1 Visual Servoing ........................................................................................... 6 
2.1.2 Force/torque Control ................................................................................. 18 
2.1.3 Tactile Sensing Based Control .................................................................. 21 

2.2 Manipulator Modification and Redesign .....................................................................23 
2.3 Adaptive Object-Robot Interaction ..............................................................................25 

2.3.1 Gain Scheduling Adaptive Control ........................................................... 26 
2.3.2 Model Reference Adaptive Control .......................................................... 26 
2.3.3 Self -Tuning Adaptive Control ................................................................. 27 

2.4 Hybrid Control Strategies ............................................................................................28 
2.5 Chapter Summary ........................................................................................................31 

Chapter 3. PROPOSED APPROACH ........................................................................... 34 

3.1 Multi- Stage Control System Overview .......................................................................34 

3.2 Offline (free motion) Trajectory Planning ...................................................................37 
3.2.1 Object Detection and Segmentation.......................................................... 38 

3.2.2 Surface Coverage Path Planning ............................................................... 42 
3.3 Online (proximity/contact) Path Planning ...................................................................49 

3.3.1 Adaptive Position Control......................................................................... 52 
3.3.2 Adaptive Orientation Control ................................................................... 58 

3.3.3 Proximity and Contact Motion Mode ....................................................... 62 
3.4 Hybrid Switching Control Scheme ..............................................................................63 

3.4.1 Design of the Proposed Hybrid Switching Control Scheme ..................... 63 

3.4.2 Stability of Proposed Hybrid Switching Control Scheme ........................ 68 
3.5 Updating the Occupancy Grid and Object Retrieval ...................................................69 
3.6 Chapter Summary ........................................................................................................71 

Chapter 4. EXPERIMENTAL RESULTS ..................................................................... 73 

4.1 Object Segmentation ....................................................................................................73 
4.2 Static Object-Robot Interaction ...................................................................................74 

4.2.1 Experiment 1: Position Matching with a Static Surface in Proximity Motion 

Mode ......................................................................................................... 75 

4.2.2 Experiment 2: Position and Orientation Matching with a Static Surface in 

Proximity Motion Mode ........................................................................... 78 
4.2.3 Experiment 3: Position and Orientation Matching with a Static Surface in 

Contact Motion Mode ............................................................................... 83 
4.3 Dynamic Object-Robot Interaction ..............................................................................86 



vi 
 

4.4 Surface Following ........................................................................................................89 

4.5 Discussion and Comparison with Other Methods .......................................................97 
4.6 Chapter Summary ......................................................................................................100 

Chapter 5. CONCLUSION ........................................................................................... 101 

5.1 Summary ....................................................................................................................101 

5.2 Contributions..............................................................................................................102 
5.3 Future Work ...............................................................................................................104 

REFERENCES ....................................................................................................................... 105 

Appendix A – Microsoft Kinect Technology .......................................................................... 118 

Appendix B – Instrumented Compliant Wrist ....................................................................... 121 

Appendix C – CRS F3 Manipulator ........................................................................................ 124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of Figures 

Figure 2.1: a) Eye-to-hand configuration, and b) eye-in-hand configuration  ................................ 7 

Figure 2.2: Open-loop visual control .............................................................................................. 7 

Figure 2.3: Direct visual servoing. .................................................................................................. 9 

Figure 2.4: Image-based visual servoing architecture. ................................................................. 10 

Figure 2.5: Position-based control architecture. ........................................................................... 14 

Figure 2.6: Indirect force control. ................................................................................................. 19 

Figure 2.7: Impedance Control Scheme. ....................................................................................... 20 

Figure 2.8: Hybrid force/motion control. ...................................................................................... 21 

 

Figure 3.1: Proposed hybrid-adaptive control system. ................................................................. 36 

Figure 3.2: Block diagram of the proposed hybrid switching control system. ............................. 37 

Figure 3.3: The RGB-D sensor positioning. ................................................................................. 38 

Figure 3.4: Depth filter: a) original data from Kinect, and b) after applying the depth filter ....... 39 

Figure 3.5: a) RGB image of the working environment, and b) RGB values corresponding to the 

selected points over the user-selected object of interest ............................................................... 40 

Figure 3.6: a) Object of interest 3D model, and b) object discretized to a set of uniform cubic cells

....................................................................................................................................................... 44 

Figure 3.7: a) Smaller cell and larger cell representation, and b) merging smaller cells to reduce 

data volume ................................................................................................................................... 45 

Figure 3.8: a) Accessible directions of motion for the robot end-effector over the surface encoded 

in the 2.5D occupancy grid model, b) global trajectory planning strategy, and c) vertex normal 

calculation at the center of the front face of a larger cell .............................................................. 47 

Figure 3.9: Block diagram of the online position and orientation controllers. ............................. 52 

Figure 3.10: Fuzzy membership functions: a) error, b) change of error, and c) adaption gain .... 56 

Figure 3.11: Proposed switching control system model. .............................................................. 64 

Figure 3.12: Workspace decomposition. ...................................................................................... 65 

Figure 3.13: Switching signal and supervisory control framework. ............................................. 67 

Figure 3.14: a) Cells coverage by the wrist, b) compliant wrist sensors arrangement. ................ 70 

 



viii 
 

Figure 4.1: RGB-D data captured by the Kinect sensor: a) RGB image, b) depth. ...................... 74 

Figure 4.2: Proximity interaction with only position adjustment: a) initial pose; b) first iteration; 

c) second iteration; and d) third and final iteration. ...................................................................... 76 

Figure 4.3: Position error corrections during 10 consecutive trials of proximity position 

adjustment: (adaptation gain value and remaining position error over each bar, and b) evolution of 

position error with respect to set point at each iteration. .............................................................. 78 

Figure 4.4: Proximity interaction with position and orientation adjustments: a) initial pose; after 

b) first iteration; c) second iteration; and d) third and final iteration............................................ 79 

Figure 4.5: Proximity position adjustment during 10 consecutive trials: a) position adaptation gain 

value and remaining position error over each bar, and b) rotation gains self-tuning (grey and yellow 

bars) based on the orientation error (red and green bars). ............................................................ 81 

Figure 4.6: Position and orientation error corrections over 10 consecutive pose adjustment 

processes with the proximity control mode. ................................................................................. 82 

Figure 4.7: Contact interaction: pose at a) initial configuration after contact is reached, b) after first 

iteration, and c) after second and final iteration. .......................................................................... 84 

Figure 4.8: Position and orientation error corrections during 10 contact pose adjustments ......... 86 

Figure 4.9: Complete process of robot-object interaction with a moving target surface: a) object 

detection and localization, b) proximity interaction, and c) contact interaction. .......................... 88 

Figure 4.10: Hybrid switching control system performance. ....................................................... 89 

Figure 4.11: Door set up with respect to the robot and the Kinect. .............................................. 90 

Figure 4.12: a) A real automotive door panel, b) trajectory planning to ensure full coverage over 

the region of interest, c) global trajectory: position, d) global trajectory: orientation. ................. 92 

Figure 4.13: Illustration of accurate match between end-effector and curved object surface at 

selected configurations over a curved automative door panel. ..................................................... 93 

Figure 4.14: The hybrid controller performance in refining the robot position and orientation. . 95 

Figure 4.15: a) Activated modes at each step by the hybrid switched control system, b) internal 

sensors dataset. .............................................................................................................................. 96 

 

 



ix 
 

List of Tables 

Table 3.1: Fuzzy rule base ............................................................................................................ 57 

Table 3.2: Object retrieval rules.................................................................................................... 70 

 

Table 4.1: Object segmentation results ......................................................................................... 74 

Table 4.2: Adaptive position controller performance, proximity mode ....................................... 77 

Table 4.3: Adaptive position controller performance, proximity mode ....................................... 80 

Table 4.4: Adaptive orientation controller performance, proximity mode ................................... 80 

Table 4.5: Adaptive position controller performance. .................................................................. 84 

Table 4.6: Adaptive orientation controller performance............................................................... 84 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 
 

Chapter 1. INTRODUCTION 

1.1 Motivation and Problem Statement  

Industrial robots rapidly gained popularity in manufacturing because of performing tasks quickly, 

repeatedly and accurately in relatively static environments. The first approaches to control a robot 

were developed based on the definition of a highly structured model of the environment and design 

of the robots for a specific task. These robots cannot see and perceive their workspace. They are 

mainly applicable only for specific purposes when there is no change in the environment. As 

robotic technology develops, robots start to move out of factories and are being repurposed for 

alternate tasks and applications. However, beside the kinematic capabilities of industrial robots, 

their heavy and rigid construction prevent them from easily being re-tasked. Therefore, 

repurposing them for alternate tasks and applications requires precise control of forces and motion, 

and cannot be fully accomplished without a comprehensive set of sensing modalities that monitor 

the position, orientation, shape, surface characteristics and even objects transformation under 

external constraints. For that matter, it is essential to develop innovative integrated sensing and 

control methods to provide next generation robots with increased versatility that will make them 

perform closer to what human beings can achieve.  

 

The latest forecast from the International Federation of Robotics (IFR) shows that more than 1.4 

million new industrial robots are expected to be installed and the number of industrial robots 

deployed worldwide will increase to around 2.6 million units by 2019. In the race for automation 

in manufacturing, the demand in Canada increased by 49 percent in 2015 and annual growth of 5 

to 10 percent in sales of robots in North America is expected from 2016 to 2019. A significant 

number of the industrial robots (around 70 percent) are currently applied in the automotive, 

electrical, electronics and metal and machinery industries [1]. In order to extend the usability of 

industrial robots currently at work or the ones that will be installed in the near future, these robots 

should be able to react and self-adapt their behavior to the configuration of or changes in the 

environment. The flexibility and adaptation to various unmodeled objects in arbitrary positions 

raise new challenges in reactive object interaction and exploration tasks which involve a full range 

of sensing, planning and fine control steps that must be performed by proper planning and control 
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algorithms, and be seamlessly integrated. Therefore, smooth interaction with an object and 

complete following of its surface under consideration of the kinematic constraints and also 

environment uncertainties such as possible deformation and movement of the objects at the contact 

point, are the problems addressed in this thesis. It consists of achieving complete exploration and 

alignment of a robot’s end-effector with an unknown, and not precisely located, surface while 

accommodating its curvature.  

 

This work is motivated by applications in inspection, cleaning, painting, welding and particularly 

security screening. The research was conducted in the specific context of detecting dangerous or 

prohibited substances hidden in a vehicle, boxes and parcel post without direct human intervention, 

an asset that is critical to ensure the security of populations and properties worldwide. While very 

efficient technologies exist to detect the presence of minute amounts of dangerous material 

particles, the process of collecting such particles safely and efficiently in an automated manner 

remains a challenge. In order to accomplish such complex operations over surfaces of arbitrary 

shape, the robotic system must be able to sense the environment and analyse the information 

accurately, but still rapidly. In the literature, a large range of sensors are frequently employed to 

support such complex tasks. Unfortunately, many types of sensors are not capable to capture color 

and depth images simultaneously, or are slow and require a considerable amount of time to perform 

range acquisition. To overcome these limitations, several attempts have been made to capitalize 

on novel consumer-grade RGB-D cameras such as the Microsoft Kinect sensor. This sensor is able 

to generate high density depth maps and corresponding color images in a fraction of a second. 

However, important limitations remain with these sensing solutions. Beyond a limited depth 

resolution, their bounded depth of field results in the lack of adequate sensing in close proximity 

to surfaces. Also, they do not provide any touch/tactile sensing capabilities to ensure robust 

interaction control when the robot is in contact with an object. Therefore, this work aims at 

bringing object-robot interaction and robotic surface following functionalities at a higher level of 

performance, dexterity and operational capabilities, by focusing on data collection, processing, 

and decision stages that are not yet well mastered by state-of-the-art technologies. In this context, 

this work addresses two key issues of flexibility and adaptability in reactive interaction with 

objects by introducing new adaptive controllers and an original hybrid switched motion control 
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system that integrates multimodal sensory information (vision, proximity, touch) for offline and 

online motion planning supported by a Kinect sensor and a specially designed instrumented 

compliant wrist with embedded proximity and contact sensors. 

 

1.2 Objectives  

This work aims to provide a solution to retrofit on classical rigid industrial robots and provide 

them with a level of compliance to afford the necessary flexibility and adaptability with only the 

addition of an instrumented wrist device and a control layer that does not affect the internal 

controller of the robot (from the manufacturer) to make them more flexible and adequate to tackle 

complex tasks that they were not initially designed for. To achieve the goal, the main objectives 

of this work are as follows: 

 

 To develop innovative means for robotic systems to automatically scan, explore, and 

interact with miscellaneous objects, and react in real-time to dynamic changes in the 

environment while performing integrated multi-sensorial (vision, proximity, touch) 

exploration and interaction.  

 

 To develop a global trajectory planning method for customized robot-object interaction 

and surface following approach using fast but low accuracy RGB-D sensors when no 

contact with an object is required.  

 

 To design and develop unique adaptive controllers for the collection, mapping and 

processing of proximity and contact sensing stages data for a robotic manipulator to 

achieve smooth and reliable online close proximity and contact interaction, and surface 

following.  

 

 To achieve a seamless and efficient integration of multimodal sensory information by 

smoothly switching between different interaction modes using an original hybrid switched 

control system.  
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Besides contributing to scientific knowledge in control systems, sensing and robotics, the results 

of this research are of immediate benefit to advanced manufacturing, security robotics, human-

robot interaction, transformable/deformable objects manipulation, or assistive robotics in 

uncontrolled environments. 

 

1.3 Thesis Organization 

The following chapters contained in this thesis are organized as follows. 

 

Chapter 2 provides a review of a wide range of research domains which are related to this work. 

The major focus of this chapter is to address the research problems in literature and describe the 

existing challenges. 

 

Chapter 3 presents the research methodology and the proposed system design. The first section 

of the chapter introduces the general perspective of the system design. In the next section, the 

proposed offline (free motion) path planning method to generate a global trajectory to scan and 

explore the object’s surface completely under guidance from only a peripheral RGB-D vision stage 

is presented. The third section provides details of the design and implementation of the online 

(local) motion planning strategy using sensory information provided by an instrument compliant 

wrist with embedded proximity and contact sensing stages. It also details the hybrid switching 

control scheme that is developed to integrate and switch smoothly between all interaction modes. 

 

Chapter 4 describes experimental results obtained with a CRS-F3 manipulator equipped with a 

custom-built compliant wrist to validate performance and efficiency of the proposed system in 

offline and online object-robot interaction and surface following tasks. The results are also 

compared with other methods. 

 

Chapter 5 concludes this work, followed by a summary of contributions and suggestions for future 

research.  

 

 



5 
 
 

Chapter 2. BACKGROUND AND RELATED WORK 

As robots system become more flexible, the costly and time consuming pre-programming and 

teaching process can be progressively eliminated to enable them to operate in different places and 

tasks. A significant number of approaches have been proposed to control industrial robots in 

dealing with uncertainty by incorporating additional sensors, redesigning the robot mechanically 

or developing new control methodologies. In general, the previously proposed solutions for an 

industrial manipulator to perform interaction with objects and tackle the surface following problem 

can be divided into 4 categories: 1) equip robot with or incorporate additional sensors, 2) modify 

or mechanically redesign of the manipulator, 3) modify trajectory by designing and developing 

adaptive controllers, or 4) develop hybrid control strategies and switching control systems. 

 

This chapter presents an overview of the previously proposed approaches and developments in 

areas related to this research in the four above mentioned categories. The performance of the most 

frequently used approaches related to object-robot interaction and surface following and their pros 

and cons are reviewed and discussed.  

 

2.1 Sensor-Based Control 

Three types of sensors are mostly used for robotic manipulators control: vision (2D/3D cameras), 

force/torque, and tactile. Vision sensors provide global or local information to localize the robot 

and the objects relative to their environment. This information is used by the robot controller to 

reach the object or target while avoiding undesired obstacles. On the other hand, force/torque and 

tactile sensors information are available when the robot enters into contact with the object. The 

local surface properties can be extracted from the contact location which may provide 

supplementary information for the robot to identify and manipulate the object. According to the 

information available from sensors, four frequently used robotic control strategies have been 

developed to control the robot’s movements: visual servoing, force/torque control, tactile sensing 

control, and hybrid control (vision/force, vision/tactile, and position/force). This section reviews 

such sensing and control strategies used in surface following and object-robot interaction tasks.  
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2.1.1 Visual Servoing 

Using visual feedback in order to control a robot is commonly called visual servoing [2]. Usually, 

visual features such as points, lines and regions are used in various object manipulation tasks such 

as alignment of a robot manipulator with an object. A visual servoing system acquires a scene in 

the robot environment by one or more cameras in order to control the robot end-effector’s pose 

with respect to an object in the scene or to feedback local information about a specific object for 

further manipulation. The camera can be placed in different positions. There are two typical 

configurations according to the camera position in a visual servoing system: eye-to-hand (Figure 

2.1a), or eye-in-hand (Figure 2.1b).  

 

Independently from the camera position, calibration is usually required to determine the camera’s 

intrinsic parameters such as the image center, focal length and aspect ratio, and extrinsic 

parameters related to the relative position and orientation of the camera with respect to the robot. 

The camera can be mounted on the robot end-effector (eye-in-hand) to provide more precise vision 

of the local environment, or it can be mounted at a fixed position (eye-to-hand) to perform other 

tasks where the simultaneous observation of the robot and its environment is required.  

 

Various visual servoing approaches have been proposed for more than three decades starting from 

simple pick–and–place tasks to today’s real-time, advanced manipulation of objects. Lane tracking 

for cars, navigation for mobile platforms and manipulation of objects are some applications of 

visual servoing. It is generally used for automated manipulation of objects which requires object 

detection, feature extraction, segmentation, recognition, servoing, alignment and grasping. Visual 

control techniques can be classified as open-loop or closed-loop control (that is visual servoing) 

based on the input reference of the control loop. 

 



7 
 
 

      

(a)                                                           (b) 

Figure 2.1: a) Eye-to-hand configuration, and b) eye-in-hand configuration.  
 

Open-loop robot control initially was used in robotic systems incorporating computer vision 

known as “look-and-move” technique [3]. In this approach, the vision system works as a pose 

estimator in order to obtain the required motion command for the robot (Figure 2.2). First, the 

robot sees and recognizes the environment helped by a computer vision system, and then, it 

performs the motion based on the data acquired in the previous step [4]. In an open-loop control 

system using the “look-and-move” approach, it is assumed that the object position does not change 

over the execution time, from the moment the vision system obtains the object position until the 

robot reaches this position. For example in a task where the robot must reach the position of an 

object in the workspace, the open-loop system does not check if the object is reached during the 

task or once the robot reaches the final position. Therefore, the accuracy in positioning the end-

effector with respect to the target object depends on the accuracy of the visual sensor, the exactness 

of feature extraction, the robot kinematic calibration and the camera calibration. 

 

Figure 2.2: Open-loop visual control.  
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Simple and repetitive assembly tasks can be performed quickly through look-and-move open-loop 

controls. However, they are not proper for complex tasks due to inaccuracy in calibration or 

modelling. An open-loop visual servoing scheme for positioning and tracking task is presented in 

[5] that computes the reference input of the robot joints controller with the target’s projection 

location in the image plane. The operation is performed only once. Fujimoto [6] applied a multi-

rate controller to the visual servo system of a 6 DOF manipulator which takes advantage of both 

feed-forward and feedback schemes. In [7] the open-loop controller allows the robot to perform 

faster movements and does not require visual feedback from the hand. When sight of the hand is 

available within the camera field of view, the closed-loop controller allows for precise positioning 

of the hand in the image plane. More recently, Chang and Wu [8] presented a vision-based control 

approach for hand-eye robotic assembly tasks. In this work, the look-then-move open-loop control 

or closed-loop control laws are synthesized to accomplish the required assembly task.  

 

Closed-loop control is an alternative to the previous approach. It is based on the explicit use of 

visual information in the control feedback loop [2-9], which leads to the concept of visual servoing. 

This approach permits to correct possible errors in the object position estimation obtained from 

the computer vision system. Moreover, it permits to adapt the robot trajectory in view of possible 

movements of the objects in the workspace.  Hence, vision is part of a control system where it 

provides feedback about the state of the environment. A closed-loop control of a robot system 

consists of two intertwined processes: tracking and control. Tracking provides a continuous 

estimation and update of features during the respective robot and object motions. Based on this 

sensory input, a control sequence is generated. In addition, the system may also require an 

automatic initialization which commonly includes feature segmentation and object recognition. 

Visual servoing approaches can be divided in two different groups: direct and indirect visual 

servoing respectively.  

 

The robot internal controller is not present in direct visual servoing (Figure 2.3). Thus, the internal 

joints controller of the robot is replaced by the visual controller, which uses the vision system data 

directly to control and stabilize the robot. In other words, visual feedback is used to directly 
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compute joints inputs and stabilize the mechanism. The full nonlinear dynamic model of the robot 

is considered in the control analysis [10]. 

 

Figure 2.3: Direct visual servoing. 

The first solution to the direct visual servoing problem was proposed by Miyazaki and Masutani 

[11]. Similar works were proposed by Espiau et al. [12] and Kelly et al. [13], for which the control 

of interaction between a robot and its environment is based on data provided by a visual sensor 

inside the closed-loop control scheme in a camera-in-hand configuration. In [14-16], the dynamic 

model of the manipulator in the control analysis and the robustness against parametric uncertainties 

of the vision system are considered. Later on, Cheah et al. [17] proposed a vision based tracking 

controller with adaptation to uncertainty in depth information. In [18], a direct dynamic visual 

servoing at high sampling rates was presented for machines used for production of devices that 

inherently consist of equal features placed in a repetitive pattern. The motor inputs are driven 

directly by the vision controller without the intervention of low level joint controllers. Silveira and 

Malis [19-20] proposed a direct visual servoing technique where the control error as well as the 

control law is fully based on image data and the visual features used in the control law are the pixel 

intensity (i.e. metric measures are neither required nor estimated). In other works, a direct visual 

servoing system is described in [21] that employs a network of cameras providing high-speed 

vision feedback that is robust to occlusions. More recently, Tamadazte et al. [22] demonstrated an 

accurate micro-positioning scheme based on a direct visual servoing process. This technique uses 

only the pure image signal (photometric information) to design the control law.  

 

In contrast to direct control, indirect visual servoing has a hierarchical or cascaded control 

architecture. The indirect visual servoing category can be split into two sub-categories: position-
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based and image-based visual servoing respectively [23]. Both techniques are usually implemented 

in an external loop that provides an input to the robot internal controller. 

 

2.1.1.1 Image-based Visual Servoing 

In image-based visual servoing (IBVS), control values are computed on the basis of image features 

directly. In this approach, image features of the objects in the visual data are used to determine the 

control law without the necessity of calculating their 3D location. It results in a more robust 

approach regarding calibration errors than position-based visual servoing. This approach is also 

known as 2D visual servoing because the control action is computed in the two dimensional space 

of the image. 2D visual features such as points, corners, lines and regions are typically used in an 

image-based visual servoing system. The features help to recognize the projection of a specific 

object in the scene without ambiguity. In contrast to position-based visual servoing, image-based 

visual servoing is more suitable when a geometric model of the task is not available. IBVS has 

three main advantages in comparison with other visual servoing methods: i) it is “model-free”, 

which means that it does not require a model of the target object, ii) it is robust to camera model 

errors, and iii) it is also insensitive to camera calibration errors [24].  

 

Figure 2.4 shows the general architecture of an image-based visual servoing system. The loop 

control of IBVS is fed back with the visual features obtained from the images, without the necessity 

of determining the 3D pose of the object to reach. The control actions of the image-based visual 

servoing system to move the robot at each iteration are performed by reducing the image distance 

error between a set of current and desired image features in the image plane. Once the error is zero 

(i.e., the current and the desired features match), the task concludes.  

 

Figure 2.4: Image-based visual servoing architecture. 
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The velocity of the camera (Cv), is the input for controlling the robot movements in a basic IBVS 

approach. The control law is obtained using the interaction matrix or image Jacobian (Js). The 

interaction matrix relates the variations of the visual features (𝑓 ̇ ) in the image with the variations 

of the poses of the camera in the 3D space, i.e., its velocity [25] : 

𝑓 ̇ = 𝐽𝑠 . 𝐶𝑣 (2.1) 

The interaction matrix is a function of the current value of the visual features in pixels, the intrinsic 

camera parameters, and the 3D information relating to the 3D points corresponding to the visual 

features (e.g., the distance from the camera to the corresponding object feature). The way to 

compute the interaction matrix is a major topic of research in image-based visual servoing. Offline 

update is the simplest way to compute the interaction matrix which is computed only once before 

the visual servoing task is started. The interaction matrix depends on the value of the visual 

features. Therefore, the distance in the final position defines the distance between the camera and 

the object. The number of computing operations is reduced using the approach during the visual 

servoing development and maintains the convergence [26]. Nevertheless, convergence problems 

in large movements have been stated in where the desired visual features are used to compute the 

interaction matrix [27]. Moreover, the visual features may get out of the camera view and cause 

the failure of the task. Therefore, the local minima of the image features and the singularities of 

the interaction matrix are drawbacks of the IBVS which may lead to the IBVS failure. A key point 

to solve the problem of singularity of the interaction matrix and the local minima of the image 

features is the choice of image features. Several efforts have been made to determine a better 

solution than offline computation of the interaction matrix such as decoupling image features to 

deliver a triangular or diagonal interaction matrix [28-30]. Using proper image moments as image 

features in visual servoing renders the interaction matrix with a maximal decoupled structure [29]. 

Therefore, the singularity problem of the interaction matrix is avoided and the performance of the 

IBVS system is significantly improved.  

 

In order to obtain a permanently updated interaction matrix, the intrinsic camera parameters and/or 

the camera-object depth values must be estimated during the visual servoing task. The intrinsic 

camera parameters are usually computed offline in a calibration phase, and as such the camera 

intrinsic parameters are constant. However, in some visual servoing tasks the intrinsic parameters 
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are not constant or they require zooming to provide high precision images. Camera online 

calibration was developed in [31, 32] using the images acquired during a visual servoing task. 

Pomares et al. [31] proposed a method based on virtual visual servoing where the real intrinsic 

camera parameters are computed from the images acquired up to the moment. An adaptive IBVS 

controller was developed in [32] where the value of the intrinsic parameters are determined during 

the task that regulated the feature points in an image to the desired locations.  

 

The offline intrinsic camera parameters and depth estimation and its implementation are easier and 

less time consuming than online estimation. Nevertheless, the visual features may still get out of 

the image plane and the visual servoing task may fail. Therefore, the visibility problem has 

received particular attention in the literature. To solve the problem, a minimum number of image 

features must remain in the camera’s field of view during visual servoing. The most widespread 

solutions to assure the visibility of all features during the control task are based on using potential 

fields [33]. A potential function was proposed in [34] to guarantee that all features remain in the 

image during the control task and repel feature points from the boundary of the image plane. 

Intrinsic-free visual servoing [35, 36] is another solution to this issue that zooms in order to keep 

all features in the field of view throughout the trajectory. 

 

In addition to the previous problems of online calibration, the camera-object depth estimation is 

not an easy task and it can introduce some undesirable behaviors. Cervera et al. [37, 38] introduced 

3D information in the feature vector of the control law. In this approach, the 3D pose estimation 

is not performed but the distance or depth from the camera to each characteristic point is computed. 

The linear displacement of the 3D object with respect to the camera is obtained using the feature 

vector which includes 3D information. In similar work, De Luca et al. [39] proposed a method to 

estimate on-line the value of the depth for feature points while the camera is moving through the 

scene, by using tools from nonlinear observer theory. Using the method, an object most likely 

remains in the field of view of the camera during the task. However, the results can be improved 

using a 3D pose estimation from the intrinsic camera parameters and the estimated depth. 

Therefore, a proper camera calibration and 3D information obtained by a pose estimation 

algorithm or a stereo visual system is required. 
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The complexity of the objects in the scene and finding adequate visual features is another important 

issue for the temporal efficiency of visual servoing systems. To perform the IBVS the object should 

convert to its simplest form. Various techniques are used for visual features extraction. Therefore, 

the image processing tasks are mainly segmentation of the specific features and computation of 

their center of gravity. Pages et al. [40, 41] solved the complexity problem by adding external 

features to any object in the scene with a structured light emitter that is linked to the camera to 

produce a suitable set of visual features. The system is applicable for plane-to-plane tasks where 

only three degrees of freedom are considered. According to the visual features vector, the 

interaction matrix is only decoupled into local conditions for the positions near the desired location 

[42], or the global convergence in [43]. The global convergence proves robust against calibration 

errors. Visual features are provided by a structured light emitter based on laser pointers, and by 

defining an image transformation, the misalignment between the camera and the lasers has been 

improved. To achieve the analysis of stability for the previous system a new set of visual features 

is described in [42]. However, extracting visual features is too complex or too time consuming for 

positioning with respect to non-textured objects. Pages et al. solved the problem of visual servoing 

tasks with non-featured objects [43] by projecting coded structured light to the scene. Visual 

features are available independently from the object appearance with the use of coded patterns. 

Experiments show that good results are obtained when the classical IBVS control law is applied 

using the points drawn on the object surface and the robot is positioned with respect to planar 

objects. On the other hand, when using non-planar objects, the results show that the camera motion 

is noisier, slower and less monotonic. Furthermore, the online interaction matrix estimation is not 

possible because the camera and the projector are not calibrated. 

 

The image-based approach may reduce computational delay, eliminate the necessity for image 

interpretation and eliminate errors due to sensor modeling and camera calibration. However, it 

does present a significant challenge to controller design since the system is non-linear and highly 

coupled. Furthermore, one of the problems with IBVS schemes is that it is difficult to estimate 

depth. 
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2.1.1.2 Position-based Visual Servoing 

In a position-based visual servoing (PBVS) system [also called 3D visual servoing], image features 

are extracted from the image and a model of the scene and the target is used to determine the pose 

of the target with respect to the frame attached to the camera. A camera is the sensor used to 

estimate the position and the orientation (pose) of the target with respect to the camera coordinate 

system (Figure 2.5). The position (PC) and orientation (φC) of the object with respect to the 

reference coordinate frame of the camera defines the current features. The reference input is the 

pose of the object with respect to the camera frame at the robot desired position (Pd) and orientation 

(φd). The current and the desired features are expressed in three dimensional (3D) coordinates. 

Finally, the control error (e) is defined by the difference between current and desired 3D poses. 

The 3D pose of the robot and the kinematic error is generated in the Cartesian space and mapped 

to actuators commands. This classical computer vision problem is called the 3D localization 

problem. 

 
 

 Figure 2.5: Position-based control architecture.  

The main advantage of using position-based control is in defining tasks in a standard Cartesian 

frame, and if the pose parameters are accurate, the robot trajectory is straight and without 

oscillation. On the other hand, the control law depends on the vision system calibration parameters, 

and can become widely sensitive to calibration errors. Moreover, it is impossible to ensure that the 

object will always remain in the camera field of view during the entire duration of the servoing 

task.  

 

Various methods were proposed to solve the problems. Wilson et al. [44] proposed a Cartesian 

position-based visual servo control for robots with a single camera mounted at the end-effector. 
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They applied an extended Kalman filter (EKF) to obtain a recursive solution of the 

photogrammetric equations, and to properly combine redundant measurements. In a similar work, 

an adaptive Kalman filter was proposed in [45] to address the problem of nonlinear systems that 

cannot be linearized or where the model is unavailable. In [46] a position-based visual servoing 

approach was developed for a multiarm robot based on the real-time estimation of the pose of a 

target object using the extended Kalman filter. Janabi-Sharifi and Marey [47] presented a new 

algorithm, namely iterative adaptive EKF (IAEKF) by integrating mechanisms for noise 

adaptation and iterative-measurement linearization to estimate position and orientation of an object 

in real time. In [48], it is shown that a visual sensor elaborating 3D features at video rate can be 

used to estimate the pose of the target object and reach a specific pose between the sensor frame 

and a target object frame. In [49], the authors used a mixed 2D-3D approach in order to take into 

account the size of the shape in the image space. They defined an ellipsis which includes all the 

features used in the reconstruction algorithm, and design a control law in order to keep it in the 

image plane. Thuilot et al. [50] presented a position-based modeling approach in order to guarantee 

that the object remains in the field of view of the camera during the whole robot motion by using 

a representation of the pose which separates the rotational and translational dynamics. Chesi et al. 

[51] proposed a switching controller to address a similar problem. As long as all feature points are 

inside the image frame, a position based controller is used. Once a feature enters the boundary of 

the image frame, a controller consisting of either pure rotational motion or pure translational 

motion is activated. The drawback of this switching controller is the presence of chattering. In 

[52], Murao et al. presented a receding horizon approach for the stabilization of a robot arm using 

a position-based visual controller. In each iteration a nonlinear optimization problem is solved.  

 

A position-based visual servoing system (PBVS) impedance control was proposed by Lippiello et 

al. [53], and a method for geometric reconstruction was presented in [54] for use in PBVS. It offers 

the ability to control the pose of the camera or a body with respect to a planar object in the scene. 

Herrejon et al. [55] proposed a PBVS for catching a 3D flying object using Recursive Least 

Squares (RLS) trajectory estimation from a monocular image sequence. More recently, the 

problem of moving a camera from an initial pose to a final pose is addressed in [56] that formulates 

a convex optimization problem for the translational motion. In [57] the proposed scheme is 
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designed based on a combination of the relative pose (position and orientation) of a vision system 

with information from an inertial sensor (acceleration and angular velocity) to get a final relative 

pose. In addition, a Kalman filter is used to handle asynchronous information from those sensors. 

 

The position-based visual servoing has some shortcomings to accomplish servoing tasks: i) it 

requires the estimation of the pose of the target, which requires some form of a model, and ii) 

precise system calibration (camera, camera/robot) is required to estimate the desired velocity of 

the robot and in order to achieve accurate positioning.  

 

Stereo configurations and the Kinect sensor have been widely applied in the literature to obtain 

3D information from the scene and reduce the complexity of the PBVS. Stereo vision was first 

applied in visual servoing by Kase et al. [3]. Stereo visual servoing presents some particularities 

in comparison to monocular visual servoing. There are two cameras and two images at each control 

loop iteration where each image has a different center of gravity. In [58], Cervera and Martinet 

described a stereo visual servoing control scheme using 2D information. In this work the 

interaction matrix is composed by stacking the interaction matrices obtained from each image as 

if they come from the same image. The proposed method is robust with respect to calibration errors 

but some problems can appear if the relationships between frames are not properly taken into 

account. They also present a new feature vector, composed of the visual features measured in 

pixels and the disparity of the two images of the visual stereo rig [59] where the use of 3D features 

allows the linearization of the interaction matrix and therefore a better joint decoupling. In [60] 

visual features are obtained from segmented image of objects and the stereo configuration is used 

for estimating 3D positions and orientations. This method suffers from coupling between 

orientation and translation and a better study of the influence of noise and the camera calibration 

is necessary to improve the robustness of the stereo visual servoing schemes proposed. In another 

work, Recatala et al. in [61] presented a stereo visual servoing system using a stereo pair of 

cameras mounted in an eye-in-hand configuration on a robot arm for positioning of a gripper with 

respect to an object. Grasp points are used as control features in the design of the control law. The 

epipolar geometry of two fixed cameras overlooking the scene was considered in [62, 63] for 
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online estimation of the image Jacobian. The stereo configuration is used to obtain the epipolar 

constraints or the fundamental matrix computation.  

 

Alternatively, several solutions for vision-guided robotic inspection make use of high-cost 3D 

profiling cameras, scanners, sonars or combinations of them, which often results in lengthy 

acquisition and slow processing of massive amounts of information. However, the ever growing 

popularity and adoption of RGB-D sensors, especially the Microsoft Kinect sensor, motivated its 

introduction in the development of vision-guided robotic systems. Compared with stereo cameras 

and other 3D sensors, the Kinect decreases the computation time of depth, avoids complex 

calculations and simplifies the design effort of the controller in visual servoing systems. In the last 

decade, these new sensors have changed the way in which the environment can be measured and 

perceived by intelligent automatic systems.  

 

Teuliere and Marchand [64] presented a 3D visual servoing technique using depth maps extracted 

from RGB-D sensor data to achieve robotic positioning tasks. This method does not require the 

estimation of the 3D pose, nor the extraction and matching of 3D features and only requires dense 

depth maps provided by 3D sensors. Rakprayoon et al. [65] proposed a Kinect-based obstacle 

detection for manipulator that relies on depth images. A vision-guided robotic system for tracking 

of a moving object using a Kinect camera was proposed in [66] where the Kinect provides 3D 

information of a target object and a Kalman filter is used to predict the target state (position and 

velocity) estimation. In another work, García et al. [67] presented a comparative study of the 

performance of D-IBVS (depth image-based visual servoing) in estimating the depth using a low 

cost RGB-D sensor like Kinect in three different ways. The visual servoing system has been 

developed over ROS (Robot Operating System) to perform visual servoing tests using RGB-D 

sensors. Review of literature shows that the main advantage of 3D visual servoing is that it allows 

the decoupling of the translational and rotational control loops. It does not require predefined 

geometric models and ensures the control law convergence. The authors conclude that the extra 

information (depth) provided by RGB-D sensors improves the positioning accuracy of the system 

in comparison with classic IBVS and does not require the estimation of the 3D pose as for PBVS 

techniques. Furthermore, the RGB-D sensor’s short response time is advantageous in a variety of 
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applications requiring robot guidance such as control of grasping and manipulating tasks where 

the robot tracks trajectories for moving away from and/or moving near to the objects. 

 

These findings inspired the selection of the Kinect sensor for the peripheral vision stage that will 

support offline path planning and the approach phase in the solution that is developed in this thesis. 

However, vision sensors are very sensitive to lighting, provide limited accuracy on depth 

measurements and are not able to determine physical properties of objects and interaction forces. 

These limitations also motivated the development of additive sensing stages and related control 

mechanisms that will be detailed in this thesis. 

 

2.1.2 Force/torque Control  

Force/torque sensors are critical components to extend the capability of robot manipulators, 

especially when there is physical interaction between the robot and the objects located in its 

workspace. With help from these sensors the robot is made able to deal flexibly with uncertainties 

in its environment and to execute complicated tasks. During interaction, force control is required 

to manage the forces properly [68]. In force/torque control, the force/torque sensors information 

is used as input for the controller. The input which consists of force/torque values applied between 

the object and the robot at contact points is then processed by control laws to regulate the contact 

force/torque for execution of the desired tasks by the robot.  

 

Two strategies are commonly used to control interaction forces: passive and active force control. 

Passive force control is an open loop control system. The robot is typically equipped with a special-

purpose compliant tool, designed for a particular task, to add flexibility to the end-effector. The 

robot does not require any sensor to measure the forces involved and the compliant tool adapts to 

the changes in the environment independent of the robot. However, compliant tools are not very 

precise or accurate and not proper to performing tasks that involve tolerance to large errors 

between the planned path and the actual path under compliance, as it is limited by the allowed 

range of compliance of the robot [69]. On the other hand, active force control works as a closed-

loop control system. In active force control, the robot is equipped with a force/torque sensor that 

measures forces and moments and feeds these back to modify the defined path and adjust the 
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resulting forces. This strategy implies that the robot be compliant and responds with sufficient 

flexibility to the position and orientation of the contact surface to permit the adaptation without 

breakages. Active force control can be divided into indirect force control and direct force control.  

 

2.1.2.1 Indirect Force Control 

The indirect force control achieves force control using motion control without explicit closure of 

a force feedback loop [70]. Impedance control (admittance control) [52, 71-73] is an example of 

indirect force controller. The impedance control’s objective is to regulate the mechanical 

impedance, defined as a dynamic relation between the exerted force and the movement error, of 

the robot along each direction on the task space (Figure 2.6). 

 

 

Figure 2.6: Indirect force control.  

 

Admittance control, which corresponds to the robot reaction to motion deviation, generates a 

deviation from the desired motion impedance control. Usually, the desired impedance is chosen 

linear or of second order, and the robot and the environment are modeled as in a mass-spring-

damper system with adjustable parameters (Figure 2.7). 

 



20 
 
 

 

Figure 2.7: Impedance Control Scheme. 

 

2.1.2.2 Direct Force Control 

The direct force control scheme requires an explicit model of the interaction task. It continually 

measures the output of the system and compares the feedback to a desired motion and contact 

forces defined by the user under a closed force feedback loop. The error signal is fed into the 

controller to adjust the output until it matches the reference input and the error signal becomes 

zero. Hybrid force/motion control [74-78] is an example of direct force control. Hybrid 

force/motion control’s objective is controlling the motion along the unconstrained task directions 

and force (moments) along the constrained task directions. According to the decomposition, the 

contact force and the end-effector motion can be controlled simultaneously in two mutually 

independent subspaces, each made of a number of directions in the workspace (Figure 2.8).  

 

The force/torque control systems enable the robot to deal flexibly with uncertainties in the 

environment and adjust interaction forces between the robot and environment. However, they are 

only applicable in the context of surface following when there is physical interaction between the 

robot and the objects located in its workspace. An initial contact point between the tool and the 

object must be prescribed and the force controlled contact must be maintained.  
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Figure 2.8: Hybrid force/motion control. 

 

2.1.3 Tactile Sensing Based Control 

Tactile (cutaneous) sensing is a more recent trend and has generally been inspired from human 

tactile sensing. Tactile sensors emulate the human skin by arrays of sensors which obtain 

distribution of the measured property over the contacting surface [79]. Tactile sensors can 

determine different physical properties of objects (pressure, deformation, stress, vibrations…) 

precisely through their contact with the world. There are various families of tactile sensors because 

they are implemented based on different technologies. These sensors can be classified into a 

number of different groups depending upon their construction: piezoresistive (optical), 

piezoelectric, capacitive, and elastoresistive sensors. According to the measured property, tactile 

sensors may also be categorized into two main groups: static and dynamic. Sensors from the former 

group analyze the physical properties of two static contacting surfaces based on the measurement 

of the normal pressure over the contacting surfaces or their deformation. On the other hand, sensors 

from the latter group measure the vibrations or changes in stress of two moving contacting surfaces 

to determine when slippage between the contacting surfaces takes place [80]. Robotic tactile 

sensing can be grouped into two categories as well, based on the function or the task to be 

accomplished: “perception for action” which is applied in grasp control and dexterous 

manipulation, and “action for perception” which is used in object recognition, modeling and 

exploration [81]. The analogous terms of extrinsic/external and intrinsic/internal touch sensing in 

robotics correspond to cutaneous and kinesthetic sensing in humans respectively. Intrinsic tactile 

sensors are placed inside the mechanical structure of the robot and derive the contact data using 
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force/torque sensors, while extrinsic tactile sensors are mounted at or near the contact surface of 

the robot to obtain the local data. Therefore, tactile control is able to adjust the way the surfaces of 

the robot and the object come into contact such that the relative position of these surfaces are 

optimal for a specific manipulation task. 

 

Despite variations between tactile sensor types, they provide the required information at contact 

points between the robot and objects to adapt the robot’s behavior to the objects’ physical 

properties and to changes, such as displacement, in the environment. The main objectives of 

applying tactile control in robotics systems are object identification and manipulation control. 

 

In manipulative tasks, tactile information is used as a control parameter to obtain contact point 

estimation, surface normal, curvature measurement, and slip detection through measurement of 

normal static forces [82, 83]. In [84], the direction of force has been considered in addition to 

magnitude to regulate the balance between normal and tangential forces to ensure grasp stability.  

Kane et al. [85] developed a novel tactile array manufactured in a silicon process, while Okamura 

and Cutkosky [86] used tactile sensing for detection of small surface features (cracks, bumps, and 

ridges) during haptic exploration and dexterous manipulation. Charlebois et al. [87] investigated 

an exploratory procedure (EP) based on rolling a probe on the surface of an unknown object for 

determining the local shape or curvature of objects, using contact sensing by a dexterous robotic 

agent. Galvez et al. [88] proposed an intrinsic tactile sensing method to compute the normal vectors 

of the surface and the shape of an object from a geometric model of the robot. In other works, 

different types of tactile sensors have been used for hardness or consistency measurement [89], 

surface texture detection [90] and temperature measurement [91]. In [92], a haptic sensor system 

has been developed which combines a 16x16 array of force sensing resistor (FSR) elements to 

recognize small-size three dimensional (3D) objects and enhance the haptic control of robotic 

manipulation. Dynamic events have been considered to detect stress changes, slip and other 

temporal events at a contact point [93]. Dahiya et al. [94] presented the design of a tactile sensing 

system while physical and operational constraints of a robotic system are taken into account. 

Mittendorfer and Cheng [95] developed a new generation of active tactile modules in order to 

approach multi-modal whole body touch sensation for humanoid robots and recently Oliveira et 



23 
 
 

al. [96] developed a multimodal bio-inspired tactile sensing module to provide the required data 

for non-normal forces estimation and surface classification by vibrations and accelerations. 

 

Vision sensors can provide non-contact measurement of the environment but due to their limited 

accuracy on depth measurements and the blind spots in depth measurement in close proximity of 

the object (the minimum range for the Kinect is about 0.6 m) are not suitable for tasks that involve 

contact with object. On the other hand, touch (Force/tactile) sensing control system enables the 

robot to measure the local shape of objects and regulate the interaction of robots with the object 

that comes into contact [97]. However, they have a complex and distributed nature and require 

large data processing. Due to the limited bandwidth of the touch sensors, the execution speed of 

the task is often restrained to prevent loss of contact and information. Furthermore, they are 

applicable only where planned trajectories are known beforehand [81]. In order to enable the robot 

to interact with arbitrary objects with or without contact, in this work the sensor-based control 

concepts are exploited and further developed to make rigid manipulators compliant and adaptable 

to the changes in the environment. 

 

2.2 Manipulator Modification and Redesign  

The structure of a robot and choosing the right tools are as important as motion control and path 

planning. In addition to sensing improvements, the need for flexibility and reducing the risk of 

damages suggest complementing control systems by increasing the robot mechanical compliance, 

hardware modifications, retrofitting, and new components. Indeed, compliance is an increasingly 

desired property to provide adaptable interface between robots and the environment where there are 

environment (including human)-robot interactions [98]. Inspired from the human-like adaptable 

compliance, robots should have similar capabilities to that embedded in biological systems in order 

to safely interact with their environment. An intrinsic compliance can be incorporated to the robot 

in form of flexible links or passive compliance at the robot joints [97, 98]. Attempts have been made 

at constructing safe robots with variable-impedance actuation [99], parallel and distributed macro-

mini actuation [102], and incorporating compliant structures into the actuators [103]. The most 

frequent type of compliance incorporated in robot manipulators are flexible joints [104], which 

allows compliance and decoupling between the actuator and the link. Flexible joints reduce the 
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impedance of stiff actuators but deteriorate performance in high speed tasks such as trajectory 

following. Variable impedance actuators were proposed [105, 106] to tackle the problem with the 

way that actuator’s compliance varies according to the task requirements. Flexibility also can be 

achieved using flexible links [107, 108]. Control of flexible link manipulators arises new 

engineering challenges due to vibration and deformation of links that are highly nonlinear, and also 

reduce the positioning accuracy.    

 

An alternative way to enable robots to safely interact with the environment and increase their 

compliancy is to use soft robotics [109]. The new paradigm aims to design robots that are more 

adaptable and flexible by replacing their rigid counterparts by soft structures [110]. Soft robots are 

inspired from biological systems. The design of these robots is still in early stages and not fully 

commercialized. The main challenge in developing soft robots is that there is no general theory and 

formal guidelines on how to control the unconstrained structures and design lightweight structures 

that bring the desired degree of flexibility and safety. 

 

Although the proposed methods increase the compliancy and flexibility of traditional robots, their 

accuracy in positioning and stiffness tuning has been discarded. In order to improve the precision 

and stability, higher stiffness and additional sensory information is required to control the robot 

properly in a highly changing environment. To get a desired level of stiffness and exert suitable 

forces, elastic actuators were developed [111, 112]. Elastic actuators that use springs are more 

predictable and simpler to model and control in comparison to flexible and soft robots with 

complicated dynamic structures. However, using only springs for elasticity and force control can 

lead to oscillations in the robot’s motion.  

 

Precise force measurements is hardly a necessity for some object manipulation tasks like humans 

who can feel and estimate forces being applied to the body and react to them without a need for 

precise force measurement. Therefore, to simplify the adaptive control of robot manipulators in 

dynamic environments, the force control problem can be transformed into position control. For this 

purpose, compliant wrists were proposed [113-115]. Compliant wrists are mounted at the extremity 

of a manipulator robot and provide a level of compliance to the robot. A compliant wrist combines 
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passive compliance using elastic actuators and embedded sensors that permits active force control 

and compensation of positioning error. The force applied to the environment is estimated based on 

the amount of compression and extension of embedded springs, assuming the spring constants are 

known. In contrast to flexible joints and links, a compliant wrists can be easily mounted on a 

manipulator’s end-effector and requires no modification to the existing platform, no complete re-

evaluation of the control system, and reduces the complexity and costs significantly. This may lead 

to quick adoption by roboticists and industry. Therefore, in this work the flexibility problem is 

addressed by using the custom designed instrumented compliant wrist, as a one-fits-all solution to 

retrofit on mass market manipulators in order to provide them with a level of compliance and the 

necessary flexibility to deal with complex, unstructured scenarios, eventually including human 

beings. 

 

2.3 Adaptive Object-Robot Interaction 

Surface following, in the context of this work, is defined as a task where a robot end-effector is in 

contact with an object and moves along its surface while maintaining a given angle and contact 

force between the end-effector and the surface, and while ensuring proper coverage of a given 

portion of that surface. In most of the proposed methods in the literature [116-119] a predefined 

model of the object is used to plan a trajectory, and adaptive laws are devised based on the dynamic 

models of the robot systems to align the robot end-effector with the surface and adjust the contact 

force. However, the overall kinematics and dynamics of robot manipulators and their environment 

are nonlinear, therefore it is very difficult to derive them exactly, especially the latter one. To allow 

standard industrial robots to interact smoothly with arbitrarily shaped or dynamic objects, reliable 

interaction control strategy and reactive planning algorithms are required to direct the robot motion 

under consideration of the kinematic constraints and environment uncertainties. Although 

conventional (PD/PID) controllers are the most applicable controller for robot manipulator control, 

they are not suitable for nonlinear systems and lack robustness to disturbances and uncertainties. A 

general solution to this problem is to design and develop adaptive controllers. In this section, 

adaptive motion planning and control strategies specifically related to the robot-object interaction 

and surface following (or tracking) applications will be reviewed and discussed. Adaptive 

controllers can be divided into three categories: gain scheduling, model reference and self-tuning. 



26 
 
 

2.3.1 Gain Scheduling Adaptive Control 

Gain scheduling can be considered as an open-loop or direct adaptive control system because the 

efficiency of the adaptation gains at modifying the system performance is not measured and fed 

back. The gain scheduling controller parameters are updated using an adjustment rule based on the 

external or internal signal value to the plant [120]. Advantage of this type of controller is its fast 

adaptation, reliable operation and easy implementation [121]. Most of the proposed gain 

scheduling controllers are developed using conventional PD/PID controllers, fuzzy logic and 

neural network.  An adaptive PD - Gain Scheduling controller was proposed in [122] to adapt the 

PD parameters on-line depending on the operation conditions and to control each joint movement 

independently of the others for a six-degree-of-freedom robot manipulator. Helal et al. [123] 

proposed a multi-loop PID gain scheduling controller for a 2-DOF arm robot trajectory control. 

The fuzzy gain scheduling has been very popular for adaptive control of robot manipulators. A 

PID Adaptive Fuzzy Gain scheduling (PID-AFGS) was presented in [124] for intelligent control 

of a robot arm. In a similar work [125], a fuzzy gain scheduling is used for position control of a 2 

DOF robot manipulator. In [126], an online-tuning gain scheduling dynamic neural PID (DNN-

PID) controller using a neural network was developed for real-time control of a manipulator to 

compensate for environmental variations. In another work [127], a neural network (ANN)-based 

proportional-integral (PI) gain scheduling is used to tune the force controller and interact 

adaptively with an unknown environment.  

 

While gain scheduling methods have been used in a variety of applications with satisfactory 

results, they involve a lack of relation between the dynamic characteristics of the environment and 

the original nonlinear plant model and can only adapt to variations which are priori known or 

measurable in the system. For that reason the system can fail if the relationship changes. 

 

2.3.2 Model Reference Adaptive Control 

Another popular adaptive control structure is the Model Reference Adaptive Controller (MRAC). 

The MRAC is used when the plant parameters are unknown or to track the output using a trajectory 

or command signal [128]. The structure works based on the principle of adjusting the controller 

parameters where the difference between the output of the actual plant and the output of the 
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reference model (desired performance) is measured. This information is used by an adaptation 

mechanism to adjust the controller parameters and force the plant to track the reference model and 

make the difference converge to zero. The advantage of the MRAC is that it does not require to 

know the plant parameters completely, here referring to the robot and its environment models. The 

parameters approximations can be improved during the adaptive control process [129]. 

 

The main application of the adaptive controller is in tracking a reference trajectory but it has 

received a considerable attention for the motion control of robotic manipulators [130]. Traditional 

adaptation laws for the MRAC include the MIT rule [131], Lyapunov second direct method [132], 

and the Popov hyperstability theory [133]. The drawback of the traditional MRAC method is that 

it involves heavy computational loads related to the Euler-Lagrange dynamics formulation [134]. 

To improve the computational efficiency, the conventional control systems are modified through 

employing neural networks, or fuzzy logic. Wilson and Rock [135] used two neural networks to 

modify the MRAC control system to a reconfigurable control system and accomplish fast 

adaptation. Fuzzy MRAC control systems were proposed to improve the manipulator performance 

interaction with the environment [136], damp the end-effector vibration and precise tip-positioning 

[137], and achieve rapid and accurate tracking control [138]. The MRAC drawbacks are related to 

the stability of the controller because it is difficult to develop stable adaptation rules and the system 

relies on non-linear segment cancellation [139]. 

 

2.3.3 Self -Tuning Adaptive Control 

Self-tuning controllers is a class of adaptive control which is used to control unknown systems 

where the plant has constant (or slowly varying) parameters. The controller automatically tunes its 

parameters online to deliver a dynamic model of the plant at every time step [140, 124]. Self-

tuning controllers offer a better performance for real-time and multi-sensory robotic applications 

in comparison to classic control approaches that rely heavily on analytical techniques.  

 

To overcome the conventional controller’s problem, various self-tuning adaptive controllers have 

been proposed during the past decades. Fuzzy self-tuning PID controllers were widely replaced and 

used by conventional PID controllers where the PID gains are tuned based on a fuzzy inference 
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system. Mohammed et al. [141] proposed a fuzzy system called Order-Fuzzy Proportional Integral 

Derivative (FO-Fuzzy-PID) for trajectory tracking control for a robot manipulator. A gain 

scheduling fuzzy self-tuning structure for motion control of robot manipulators was proposed in 

[142] and an online real-time self-tuning multi-input–multi-output (MIMO) fuzzy bang-bang 

controller (FBBC) was used in [143] for two-link rigid-flexible robot manipulators. Neural 

networks have also been applied frequently in designing adaptive self-tuning controllers for robotic 

manipulators motion control. Yuh [144] proposed a self-tuning type neural network controller for 

nonlinear time-varying robot systems. Neural network self-tuning PID control was used by Al-

Khayyt [145] which combines a conventional PID controller and neural network learning 

capabilities for robot manipulator trajectory tracking. In a similar work [146], a neural network 

controller was applied to identify the system parameters and a PID controller was used to define 

the control law. A hybrid force and position controller based on adaptive neuro fuzzy inference 

system proportional derivative + integral (ANFIS-PD+I) was proposed by Chaudhary et al. [147] 

for trajectory tracking control of a robot manipulator under constrained environment. 

 

Compared with other adaptive controllers, self-tuning controllers are more reliable in presence of 

variation in the system. The controllers do not require precise model of the environment (system) 

and can automatically tune the controller gains using the past input and output values and online 

measurements when the system changes. The controller’s fast and reliable performance in dealing 

with uncertainties in the environment motivates us to develop new self-tuning controllers for 

adaptive position and orientation control of the robot. 

 

2.4 Hybrid Control Strategies 

To develop a comprehensive navigation system in unstructured environments it is required to 

combine the sensory information from various sources, integrate different control modes stably, 

and switch smoothly between them. For this purpose, hybrid dynamical systems are proposed 

which generate control laws by composition or combination of continuous and discrete signals or 

control modes for smooth and efficient switching between control modes and interaction with the 

environment.  
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Touch sensors are mainly used in the context of the classical constrained hybrid force/position 

control which requires exact knowledge of the environment in the form of constraints imposed to 

the end-effector motion. In the other words, the geometry of the environment is assumed to be 

known, but its position and orientation with respect to the robot end-effector are unknown. In 

[148], the problem of force and position control of a robot manipulator performing compliant tasks 

is addressed which describes a 3D surface tracking controller based on the Smith predictor design. 

An adaptive motion and force tracking control for high performance robust control of a 

manipulator in contact with unknown stiff surfaces was proposed in [149]. Automation of surface 

finishing processes such as deburring, grinding, chamfering, and polishing has been an interesting 

application of compliant force/motion control in the manufacturing industry. A complete surface 

finishing task presented in [150] is divided into three phases (free motion phase, transition phase, 

and constrained motion phase). Motion/force control algorithms are developed for each phase 

depending on the location of the robot end-effector. In [151], a hybrid form of natural admittance 

control is used to address the surface finishing challenges. The hybrid motion control consists of 

position control using automated registration of the physical part with a CAD representation, and 

force control to exert controlled and gentle pressure on the part’s surface. Yin et al. [152] proposed 

a methodology for active tracking of unknown surface using force sensing and control technique. 

They present a strategy of force sensing and control on the basis of information fusion of force and 

position, fuzzy hierarchical coordination and neural control. In a similar work, Li and Li [153] 

applied a neural network to classify an unknown environment. On-line force feedback data are 

employed to estimate the normal and tangential directions of the unknown environment to generate 

the reference trajectory for the target impedance model. The curvature is calculated in real time to 

adjust the speed of the tangential direction by fuzzy reasoning according to current and forecast 

contact force. Papageorgiou et al. [154] proposed a methodology to drive the end-effector of a 

non-redundant manipulator in close proximity of a surface while avoiding obstacles. Once the end-

effector is close to the surface, a second controller takes over to stabilize the end-effector at a 

predefined distance to the surface. Later, in [155] they added force control for tasks that involve 

dealing with contact on surfaces. The problem of kinematic input constraints and a non-smooth 

kinematic controller was discussed in [156]. Wang and Li [157] presented an approach to control 

a manipulator while tracking a surface where the tactile sensing is integrated with force-torque 
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information as the feedback. Hybrid impedance control is applied to follow both the position and 

force trajectories. Later, they extended the work to control the end-effector of a redundant 

manipulator in [158].  

 

A fundamental advantage of using vision-based control over force/torque control is that no contact 

with the object is required as it allows non-contact measurement of the environment. Vision 

sensors provide global or local information to determine the robot and the objects relative locations 

in the environment. This information can be used by the robot controller to reach to the object or 

target while avoiding undesired obstacles. However, most of the proposed approaches on vision 

control for robot manipulators have involved free motion control [159]. These approaches 

demonstrate a good performance in dealing with planar surface following but are not very 

successful over 3D structures because the depth of the object is also required for precise path 

planning. Therefore, hybrid vision/force controllers have been proposed to deal with cases where 

free motion and contact tasks are involved. Vision and force are two complementary sensing 

capabilities that can greatly improve the autonomy of a robot manipulator performing interaction 

with its environment.  

 

In recent years, several approaches have been proposed where force and vision measurements are 

combined as hybrid visual/force control. In fact, the robot achieves global/local information about 

the environment using vision and can later adjust its motion with respect to the local constraints 

by perception of the force applied to the end-effector. Pichler and Jagersand [160] presented an 

uncalibrated hybrid force-vision control system where force sensing is incorporated into an 

uncalibrated visual servoing system to simultaneously update a surface model while controlling 

the manipulator. In a similar work [161], an eye-in-hand vision and a force control is integrated 

based on the task frame formalism (TFF) in an uncalibrated workspace, and in [162] a force-torque 

sensor mounted at the wrist of the manipulator and a visual sensor with an uncalibrated single 

camera fixed to the ceiling of the work space are used to control the manipulator, such that the 

end-effector follows a path on an unknown surface. Olsson et al. [163] proposed another 

uncalibrated visual servoing strategy for surface following using multiple cameras. An edge-based 

rigid-body tracker is used in an observer-based controller, and combined with a six degree-of-

freedom force/impedance controller for interaction with a stiff uncalibrated environment. Ramey 
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et al. [164] presented a real-time 3D surface tracking using a stream of rectified stereo pairs based 

on the iterative updating of surface representations directly from the images and a re-weighted 

least squares minimization wherein a mask is incorporated to increase robustness to occlusion 

information. The surface tracking method is formulated for a general family of linear parametric 

surface models and the cases of planar and tensor product surfaces. An adaptive hybrid visual 

servoing/force control was proposed by Hosoda et al. [165] who presented an online estimator for 

an image Jacobian matrix which describes the relation between image features and the tip 

position/orientation of the manipulator, and a method to estimate the normal vector of the unknown 

constraint surface. Similarly, in [166], a visually servoed adaptive controller is proposed for 

motion and force tracking with uncertainties in the constraint surface, kinematics, dynamics, and 

camera model. Adaptive Jacobian matrices are used to compensate the uncertainties due to internal 

and external parameters and a Lyapunov-like function is presented to prove the stability of the 

proposed vision–force controller. Lippiello et al. [167] proposed a robot force/position control 

approach with force and visual feedback where the environment is a rigid object of known 

geometry but with unknown and time-varying pose. The relative pose is estimated online based on 

all the available sensor data (visual, force and joint position measurements) using the Extended 

Kalman Filter (EKF).  

 

Although the proposed hybrid vision/force approaches enhanced the robot’s motion control, they 

are still slow and require a considerable amount of time due to the limited contact points of force 

and tactile sensors which impose delays. The approaches are not proper to perform surface 

following tasks when there is a large error between the planned path and final path and also where 

close proximity (non-contact or prior to contact) interaction or surface following is desired. 

Furthermore, the majority of the cases estimate the 3D parameter of the target object from the 

extracted image data obtained from a 2D camera or 3D scanner (laser sensor) system which is 

usually time-consuming and require extensive data processing. 

 

2.5 Chapter Summary  

This chapter presented a detailed review on the sensors, approaches and control strategies that have 

been proposed to control the movements of robot manipulators using the information collected by 
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various sensors. As vision, force and tactile sensors are the most commonly used devices to analyze 

the robot’s interaction with the environment, first their corresponding control strategies have been 

exposed in section 2.1, for visual servoing, force, and tactile sensing-based control.  

 

A great number of publications demonstrate that visual servoing is and will be the most widespread 

and efficient method for manipulator control. Particularly, position-based, image-based and 

stereo/RGB-D (3D) visual control techniques are also detailed in order to further describe various 

forms of visual servoing. However, the review of literature showed that vision information only is 

not sufficient and accurate enough to perform tasks that require close and physical interaction with 

objects due to occlusion issues, lightening sensitivity and limitation in available density or 

resolution on depth measurements. To overcome the problem, touch sensors (force/torque and 

tactile) are often incorporated to the system to provide additional sensory information. Two 

different techniques have been presented for implementing force control: passive force control and 

active force control. Similarly, tactile control techniques have been categorized according to their 

application in robotic tasks: object identification and manipulation control.  

 

Using various sensors and applying proper control strategies enables the robot to perceive its 

environment and interact with objects in static environments. However, beyond selecting proper 

sensors, and in order to perform complex tasks in the presence of uncertainties in unstructured 

environments, it is also required to design robots and develop control strategies that are more 

adaptable and flexible. Approaches from the literature that are most related to this thesis have been 

overviewed, with their respective sensory configuration and the final application for each control 

technique compared. This review reveals that adaptive controllers and hybrid control systems offer 

a better performance in dealing with uncertainties in unstructured environments. As such, vision 

measurements are usually combined with force/tactile measurements to form hybrid visual/force 

control for robotic manipulation.  

 

Although these approaches demonstrate good performance, they are only applicable where there 

is a physical interaction between the robot and the objects, and require precise models of the robot 

and the environment, with the latter being extremely hard to obtain. To allow these robotic 
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platforms to interact safely with transforming or moving objects, a reliable interaction control 

strategy and trajectory planning algorithm is required to direct the robot motion under 

consideration of the kinematic constraints and environment uncertainties. A hybrid multi-sensory 

system is expected to be able to control the robot kinematics and adapt its behavior to dynamic 

situations which have an important influence on the reliable and smooth interaction between the 

robot and the object. Therefore, this work proposes a hybrid-adaptive switched control system that 

consists of two model-free adaptive controllers for flexible and reactive interaction with 

transformable objects of different shapes with only the addition of an instrumented wrist device to 

prevent any damage and ensure finely controlled contact using multimodal sensory information. 
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Chapter 3. PROPOSED APPROACH 

In order to enable industrial robots to interact with objects of different shapes and accommodate 

their curvature in a dynamic and unstructured environment, they are expected to behave 

autonomously, adapt to changes in the environment and react to the objects movement and 

deformation safely and flexibly. A traditional way to interact with and explore objects with a 

robotic manipulator is to use geometric models of the objects. However, this requires that exact 

models of the objects are acquired and computed in order to closely follow the surface of these 

objects using conventional techniques (deliberative control). Deliberative (model-based) planning 

searches for the optimal path and generates a plan to reach the goal, assuming comprehensive and 

accurate knowledge of the environment. Then the system performs an action within the context 

and limitations of the static model of the environment and that supports the planning stage. The 

main drawback of deliberative control is that the system cannot adapt to new scenarios. To deal 

with the shortcomings of the deliberative approach, adaptive (reactive) planning was developed. 

Adaptive motion planning methods generate control commands based on currently perceived 

information. As such it is not required to build a complete model of objects. However, when no 

prior knowledge about the object is available, this may result in following a wrong direction, 

especially at corners and on curved surfaces. To achieve close surface following with contact, an 

initial contact point between the robot tool and the object must also be prescribed by the user, 

which introduces a supplementary constraint. Addressing these limitations, this work proposes an 

original hybrid-adaptive motion planning approach that integrates vision, proximity and contact 

sensing in a hybrid control structure which combines the advantages of planning in deliberative 

architectures along with the quick response of reactive architectures.  

 

3.1  Multi- Stage Control System Overview 

Surface following and interaction with objects can be accomplished either with contact (for 

applications such as polishing, welding, cleaning, or particles collection which is of particular 

interest in this work) or without contact (for applications like painting and inspection). In this 

work, to guide the robot’s end-effector towards an object, and then control its motion to execute 

the desired interaction with the surface, the motion control task is divided into four interaction 

modes (Figure 3.1): three main motion modes (free, proximity, contact) and one transition mode 
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in between the main modes (blend), where each motion mode uses specific sensory information. 

Figure 3.1 shows how the proposed multi-modal sensing strategy is taken advantage of to develop 

a multi-stage control approach. In order to efficiently navigate a robotic manipulator and interact 

with objects of various but unmodeled shapes, the robot movement over the objects surface is 

controlled using three motion planning techniques: deliberative, reactive and a combination of 

those (hybrid). To design the deliberative system and generate an offline trajectory, a global but 

approximate model of objects is acquired by a RGB-D sensor, namely a Kinect sensor (Appendix 

A), to ensure complete coverage of the object’s surface which is explored.  

 

Adaptive (reactive) control system is developed by integrating in different stages the proximity 

and contact sensory information that is provided online by a specially designed compliant wrist 

with embedded sensors, which was developed by other researchers prior to this work (Appendix 

B). The adaptive control stage allows for refinement and compensation of the low accuracy of the 

RGB-D data collected by the Kinect sensor when close and physical interaction between the robot 

and the object is required. For this purpose, two unique model-free and self-tuning adaptive 

controllers are designed to control the robot position and orientation using the available online 

sensory information. The proposed adaptive controllers do not require precise mathematical model 

of the robot and the environment, or any force/torque calculation and learning procedure, which 

enables the robot to perform reactive and fast interaction with or without contact with a surface.  

 

To achieve a seamless and efficient combination and integration of the deliberative (offline) and 

reactive (online) control systems, a stable and reliable switching scheme is also presented. It is 

well known that classic hard switching (event-based) schemes can cause chattering, oscillation and 

instability if a subsystem fails due to noise or other possible sensor failures. To address the 

problem, a hybrid switching scheme is proposed that allows data fusion from multiple sensing 

modalities, and provides the manipulator with the capability to operate independently on any given 

mode, or in transition in between control modes to perform more complicated tasks as required by 

different applications. Unlike previous works, the proposed hybrid switched control system 

employs a supervisory (decision making) module that uses hard and blend switches for smooth 
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transitions and weighted combinations of the different motion modes to achieve smooth but 

accurate robot-object interactions in proximity as well as in contact with surfaces. 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

Figure 3.1: Proposed hybrid-adaptive control system. 
 

The main components and interconnections, as well as how the control modes interact with each 

other is shown in Figure 3.2. The first step to achieve interaction with an object is the detection 

and localization of that object in the robot workspace. For that matter, the Kinect sensor is used 

for rapidly acquiring color and 3D data on the environment. The data is then processed to segment 

and construct a 3D model of the object of interest in the scene. In order to completely explore the 

object, a novel coverage path planning technique is proposed to generate a primary (offline) 

trajectory as a general guidance for navigation and interaction with the object (free motion). The 

acquisition speed of the Kinect and its low cost have been major selection criteria for this sensor 

to be used for offline trajectory planning. However, the information provided by the Kinect is not 

accurate enough for developing reactive object-robot interaction control when close and physical 

interaction is required. Furthermore, the object may move or deform under the influence of the 

physical interaction. Therefore, proximity control and contact control modes are also designed and 

integrated with the system to dynamically update the 3D model through using a custom designed 

instrumented compliant wrist (Appendix B). This stage supports the modification of the position 

and orientation of the robot based on the online sensory information when it reaches in close 

proximity  where the compliant wrist embedded sensors can detect the object (proximity mode) or 
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in contact with the object  where the robot makes contact with the object (contact mode). In order 

to switch and transit smoothly between the interaction modes, blend motion modes are proposed 

that allow data fusion from multiple sensing modalities by combining pairs of the main motion 

modes. The design, implementation and integration of the system components are detailed in the 

following sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Block diagram of the proposed hybrid switching control system. 

 

3.2  Offline (free motion) Trajectory Planning  

In the free motion phase which refers to the robot movement in an unconstrained work space, an 

approximate 3D model of the object of interest is constructed using 3D data collected by a Kinect 
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sensor. The 3D model is used to localize the object in the robot workspace and generate a global 

trajectory to guide the robot towards the selected surface and to scan and explore the entire object’s 

surface that is visible by the Kinect and reachable by the robot. Based on the surface shape acquired 

by the peripheral vision stage, a unique coverage path planning (CPP) strategy is developed 

(detailed in Section 3.2.2) using dynamic 3D occupancy grid to plan a global trajectory, ensure 

complete coverage of the selected surface, and support the early robotic exploration stage of the 

object’s surface.    

 

3.2.1 Object Detection and Segmentation 

In order to efficiently navigate a robotic manipulator and interact with objects of various shapes, 

identification and localization of the object of interest in the robot workspace must first be achieved. 

For that matter, the Kinect sensor is positioned behind the robot with the sensor’s viewing axis (Z-

axis) perpendicular to the bodywork for collecting data over the object, as shown in Figure 3.3.  

 

Figure 3.3: The RGB-D sensor positioning. 

 

The data acquired by the Kinect sensor contains an RGB image and a collection of points 

(𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑). Each 3D point, 𝑝𝑖, with (𝑥, 𝑦, 𝑧) coordinates is defined with respect to the Kinect 

reference frame and supports corresponding (r, g, b) values representing color (Eq. 3.1). 
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𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑 =⋃𝑝𝑖

𝜈−1

𝑖=0

, ∀𝑖, 𝑗 ∈ [0, 𝜈 − 1], 𝑝𝑖 ∩ 𝑝𝑗 = ∅ 

𝑝𝑖 = [𝑝𝑖𝑥, 𝑝𝑖𝑦, 𝑝𝑖𝑧 , 𝑝𝑖𝑟 , 𝑝𝑖𝑔, 𝑝𝑖𝑏] 

                

        

(3.1) 

where 𝜈 is the number of points in the point cloud.  

 

When multiple objects are present in the working environment, objects of interest must be identified 

and discriminated from the scene. Three filters are used to extract and segment an object of interest 

from the workspace: a depth filter, a color filter, and a distance filter. The depth data range covered 

by the Kinect sensor is typically between 0.5m to 6m and the error in depth considerably rises with 

the distance [168, 169].  To filter out the points that are not in the desired depth range (ǲ), a 

thresholding filter is applied (see algorithm 1) which eliminates all the points with a depth value 

(Z-coordinate) over a pre-set desired range. As shown in Figure 3.4, the points in the original depth 

image acquired by the Kinect which are located outside of the desired range are filtered out, here 

represented as black pixels. Therefore, the less accurate background area is discarded and the depth 

range is limited to the actual robot workspace. Color segmentation allows to group objects of similar 

color. However, if there are multiple objects of similar color in the scene, a single object of interest 

cannot be identified only using color segmentation. Therefore, a distance filter is also applied on 

the point cloud to extract only the object of interest, as will be detailed below.  

 

      

(a)                                      (b) 

Figure 3.4: Depth filter: a) original data from Kinect, and b) after applying the depth filter. 
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In order to optimize the robot movement, specific information about the object of interest should 

be extracted from the RGB-D data using color and distance filters. After acquiring the data, the 

RGB image (Figure 3.5a) is presented to the operator. A mouse event callback function waits for 

the operator to click on any points of the desired object in the image from which the RGB values 

of the pixels (Figure 3.5b) are extracted. To increase the accuracy of the color segmentation, the 

operator can choose a number of points (µ) on the object of interest according to the object’s size 

and shape. The RGB values of the operator selected points of interest, ObjectRGB, as defined in 

Eq. 3.2 are first used to define a range of color for the object. The points in the RGB image that are 

within the same color range and for which the Euclidean color distance (ΔΕ) from the selected 

points (Object RGB) is less than a specific pre-set threshold (λ) are extracted from the point cloud, 

while the other points are eliminated. 

    

(a)                                                         (b) 

Figure 3.5: a) RGB image of the working environment, and b) RGB values corresponding to the 

selected points over the user-selected object of interest. 
 

Since each pixel in the RGB image corresponds to a particular point in the RGB-D point cloud, a 

primary estimate of the object of interest’s position in the workspace is extracted from the points 

corresponding to the points selected by the operator. After RGB color-based clustering has been 

applied, the (x,y,z) coordinates of the selected points, ObjectCoordinate, as defined in Eq. 3.3, are 

used as query points to filter out even more points that are not within a desired 3D Euclidean 

distance range with respect to the query point. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑅𝐺𝐵 =  [𝛼𝑘, 𝛽𝑘, 𝛾𝑘], 𝑘 ∈ [0, µ − 1] (3.2) 
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𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 =  [𝒳𝑘 , 𝒴𝑘, 𝒵𝑘], 𝑘 ∈ [0, µ − 1] (3.3) 

where α, 𝛽, 𝛾 correspond to RGB values, respectively, for the color space used in this work. 

 

The distance of each point in the point cloud from each query point is computed and the points for 

which the distance deviation (Δ£) with respect to the query points values are above the pre-set 

threshold [£] are dropped. The value of £ (Eq. 3.4) is the minimum distance between each query 

point from the other query points in the ObjectCoordinate set. Eventually, the remaining set of 

points (𝑂𝑖) form the object of interest RGB-D point cloud, ObjCloudKinect, as defined in Eq. 3.5.  

𝒇𝒐𝒓 (𝑘, 𝑞 = 0…µ − 1) 

£𝑘 = min√(𝒳𝑞 − 𝒳𝑘)2 + (𝒴𝑞 − 𝒴𝑘)2 + (𝒵𝑞 − 𝒵𝑘)2 

   

(3.4) 

where [𝒳𝑞 , 𝒴𝑞 , 𝒵𝑞] are the coordinates of the qth query point that belongs to [0, µ − 1], q is not 

equal to k, and µ is the number of selected points by the operator (query points). 

𝑂𝑏𝑗𝐶𝑙𝑜𝑢𝑑𝑲𝒊𝒏𝒆𝒄𝒕 = 𝑂𝐾 = ⋃ 𝑂𝑖

m−1

𝑖=0

, 𝑂𝑖 ∈ [0,𝑚 − 1] 

         

 (3.5) 

where 𝑚 is number of extracted points and 𝑂𝑖 = [𝑜𝑖𝑥 , 𝑜𝑖𝑦, 𝑜𝑖𝑧].  

 

However, the points are defined with respect to the Kinect reference frame and must be transformed 

to the robot’s base frame (Eq. 3.6). 

𝑂𝑏𝑗𝐶𝑙𝑜𝑢𝑑𝑹𝒐𝒃𝒐𝒕 = 𝑂𝑅 = 𝑇𝐾
𝑅 . 𝑂𝐾  (3.6) 

where 𝑇𝐾
𝑅 is the homogeneous transformation matrix of the Kinect sensor’s frame with respect to 

the robot’s base frame. The transformation matrix is estimated using the method proposed in [170, 

171]. Algorithm 1 details the entire object of interest’s segmentation process. 
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Algorithm 1: Object of interest segmentation 

1: Inputs:    𝑃𝑜𝑖𝑛𝑡𝐶𝑙𝑜𝑢𝑑 = [𝑝𝑖] =  [𝑝0, 𝑝1… 𝑝𝑣−1], 𝑂𝑏𝑗𝑅𝐺𝐵 =  [𝛼𝑘, 𝛽𝑘, 𝛾𝑘],  

                     𝑂𝑏𝑗𝐶𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 =  [𝒳𝑘 , 𝒴𝑘, 𝒵𝑘], 𝑘 ∈ [0, µ − 1], 𝑇𝐾
𝑅 

2: Output:   𝑂𝑏𝑗𝐶𝑙𝑜𝑢𝑑𝑹𝒐𝒃𝒐𝒕 = 𝑂𝑖
𝑅 

3: Parameters: ǲ, ν, µ, £, λ. 

4: 𝒇𝒐𝒓 (𝑘 = 0…µ − 1)  

5:    𝒇𝒐𝒓 ( 𝑖 = 0…𝜈 − 1)  𝐝𝐨 

6:      𝚫𝒁𝒌 = [ǲ− 𝑝𝑖𝑧] 

7:      𝜟𝜠𝒌 = √(𝛼k − 𝑝𝑖𝑟)2 + (𝛽k − 𝑝𝑖𝑔)2 + (𝛾k − 𝑝𝑖𝑏)2 

8:      𝚫£𝒌 = √(𝒳𝑘 − 𝑝𝑖𝑥)2 + (𝒴𝑘 − 𝑝𝑖𝑦)2 + (𝒵𝑘 − 𝑝𝑖𝑧)2  

9:         𝒊𝒇 (Δ𝑍𝑘 ≥ 0  &  𝛥𝛦𝑘 ≤ λ  &  Δ£𝑘 ≤ £𝑘)  𝐭𝐡𝐞𝐧 

10:              𝑂𝐾[𝑖] = 𝑝𝑖    

11:  𝒆𝒏𝒅 𝒊𝒇 

12:      𝒆𝒏𝒅 𝒇𝒐𝒓 

13:   𝒆𝒏𝒅 𝒇𝒐𝒓 

14: 𝑂𝑅 = 𝑇𝐾
𝑅 . 𝑂𝐾 

15: 𝒓𝒆𝒕𝒖𝒓𝒏 𝑂𝑅 

 

3.2.2 Surface Coverage Path Planning 

Based on the object of interest’s 3D data extracted from the original depth image, a coverage path 

planning (CPP) strategy is developed using dynamic 3D occupancy grid to plan a global trajectory 

and guide the robot end-effector towards the surface, and then control its motion to execute the 

desired exploration and interaction with the surface. 

 

The key task of coverage path planning (CPP) is to guide the robot over the object surface and 

guarantee a complete coverage using the preprocessed RGB-D data from which only the selected 

object of interest remains. CPP for industrial robotic application has recently undergone significant 

research especially in automated inspection, security screening [172], painting and surface 
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following tasks [173]. The CPP algorithms can be performed either off-line when the environment 

(object) is static, which requires a priori knowledge of the environment, or on-line when the 

environment might change from when it was acquired, in which case real-time sensory information 

is required to update the information and produce online trajectory [174]. Occupancy grids are one 

of the most popular modeling techniques used to support CPP. In most of the previously proposed 

methods [175-176], the occupancy grid is built in an offline phase and it is not updated during 

operation. In contrast to previous works, here the CPP is developed using 3D occupancy grid 

method which utilizes offline and online trajectory planning. To support the offline part of the 

planning, an occupancy grid is initially formed using the information provided by the Kinect sensor. 

Once the robot reaches in proximity to the surface, online planning is performed with the occupancy 

grid being dynamically refined, using the data acquired by sensors built in the compliant wrist to 

modify the position and orientation of the robot when it is in close proximity (proximity interaction) 

and in contact with the object (contact interaction). The process continues during the entire robot-

surface interaction. 

 

3.2.2.1 3D Occupancy Grid 

The construction of an occupancy grid to represent an object starts with a cubic bounding box 

surrounding the entire object which gets recursively subdivided into smaller cells until the 

maximum level of resolution is reached. Here, the volume of the bounding box is dynamic 

according to the volume of the object of interest (Eq. 3.7). 

(𝑍𝑚𝑎𝑥 − 𝑍𝑚𝑖𝑛) × (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛) × (𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛) (3.7) 

where Ymin, Ymax, Xmin, Xmax, Zmin and Zmax correspond respectively to the minimum and maximum 

values of the X, Y and Z coordinates, in millimeters, in the point cloud of the object of interest, 

ObjectCloudRobot, obtained in Eq. 3.6. The size of the cells can be selected based on the desired 

resolution of the grid for a particular application and then the object surface is discretized to a set 

of uniform cubic cells (Eq. 3.8). Given the application of surface following for particles collection 

that is considered here, the object of interest is mapped into an occupancy grid with cubic cells of 

the same size as the robot’s tool plate size to ensure complete coverage with minimum number of 
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moving steps. In the present case the tool plate measures 130𝑚𝑚 × 130𝑚𝑚 × 130𝑚𝑚 (Figure 

3.6a).  

𝑂𝑏𝑗 =⋃⋃⋃𝐶𝐼,𝐽,𝐾

Ҏ

𝐾=0

Ѵ

𝐽=0

Ҥ

𝐼=0

, 𝐼 ∈ [0,Ҥ], 𝐽 ∈ [0, Ѵ], 𝐾 ∈ [0, Ҏ] 
              
(3.8)          

 

where 𝐶𝐼,𝐽,𝐾 represents a cell in the object model and 

Ҏ= ||(Xmax – Xmin)/130|| 

Ҥ = ||(Ymax – Ymin)/130|| 

Ѵ = ||(Zmax – Zmin)/130|| 

(3.9)            

 
 

The level of resolution has an important impact on the precision of the object borders in the model. 

The major issue arises when cells are partially occupied. That usually happens where the object 

has acute edges and also near the contours of the object of interest. In order to mitigate the problem, 

the grid resolution is increased and each cube is subdivided to 8 smaller cells (Figure 3.6b).  The 

smaller cells (𝐶𝑠) are cubes with size of 65 × 65 × 65 , in mm, with each larger cell (𝐶𝐵) 

containing 8 smaller cells in two layers of four. 

 

       
                                               (a)                                                         (b) 

Figure 3.6: a) Object of interest 3D model, and b) object discretized to a set of uniform cubic 

cells. 

The resolution and therefore the precision of the occupancy grid can be increased by changing the 

maximum number of recursive subdivisions, but it requires a larger memory space to store the 

model. Considering that the RGB-D sensor is perceiving the scene from a point of view that is 
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relatively perpendicular to the surface of the object, the regions in the back are essentially 

occluded, actually creating only a 2.5D model of the object of interest. Advantage is taken of the 

fixed configuration of the Kinect sensors to make the model more compact and achieve higher 

computational efficiency by decreasing the number of cells in the model. For that purpose, the 

matching front and the back layers of the larger cells (Figure 3.7a) are merged into one layer, and 

the resulting pairs of smaller cells are replaced with a cuboid cell of size 130 × 65 × 65, in mm, 

the largest side being on depth, here corresponding to the X-axis in the robot’s reference frame as 

depicted in Figure 3.7b.  Each larger cell now contains only four smaller cells, instead of eight 

(Figure 3.7b), and the model being considered is a 2.5D surface representation from the point of 

view of the Kinect sensor. 

         
                                       (a)                                                               (b) 

Figure 3.7: a) Smaller cell and larger cell representation, and b) merging smaller cells to reduce 

data volume. 
 

The occupancy grid is formed by determining the state of each cell. The smaller cuboid cells (𝐶𝑖,𝑗,𝑘
𝑠 ) 

are classified with two states as occupied or free. A cell is tagged as occupied if it contains at least 

one vertex from the point cloud representing the object of interest, ObjCloudRobot (Eq. 3.6). If the 

smaller cuboid cell is occupied, its value is 1, otherwise it is 0. The state variables associated with 

the larger cells (𝐶𝐼,𝐽,𝐾
𝐵 ) are: occupied (1), unknown (0.5), or free (0), which are identified based on 

the smaller cell’s value. If more than two smaller cells of a larger cell are occupied, the value of 

the associated larger cell is 1; else if one or two of the small cells are occupied the value is 0.5; 

and if all the small cells are free then the larger cell is tagged with 0.  

𝐶𝑖,𝑗,𝑘
𝑠 = 𝑆(0 = 𝐹𝑟𝑒𝑒|1 = 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑) 

𝐶𝐼,𝐽,𝐾
𝐵 = 𝑆(0 = 𝐹𝑟𝑒𝑒|0.5 = 𝑢𝑛𝑘𝑛𝑜𝑤𝑛|1 = 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑) 
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The occupancy grid corresponding to the larger cells is represented by a Ҥ× Ѵ × Ҏ dimensional 

matrix (Eq. 3.10). Initially all cells are considered as unknown. Therefore, the occupancy 

matrix, 𝑂𝑐𝑐𝑀𝑎𝑡𝑟𝑖x, is initialized with a value equal to 0.5 in all cells, where 𝐶𝐼,𝐽,𝐾
𝐵  contains 

occupancy information associated with the larger cell (I, J, K) and cell (0, 0, 0) is located in the 

front upper left corner of the grid. 

 

 

 

 

  (3.10) 

 

The occupancy matrix provides the required information to plan an offline trajectory to completely 

explore the selected object’s surface. Therefore, in the next step the occupancy matrix is used for 

global path planning. In addition, to preserve the dynamic characteristic of the occupancy grid and 

to achieve a more accurate and efficient exploration of the object surface, the occupancy grid is 

updated later, using the instrumented compliant wrist sensory information when the robot reaches 

in close proximity to the object. 

 

3.2.2.2 Global Trajectory Generation 

In order to ensure coverage over the object surface, the robot end-effector should explore all the 

occupied cells and avoid the free ones. Therefore, the robot end-effector’s pose at each time step is 

defined by a set of points: 

𝑃𝐺[𝑘] =  (𝑝𝑜𝑠𝐺[𝑘], 𝑟𝐺
𝛷[𝑘], 𝑑𝑖𝑟𝐺[𝑘]) (3.11) 

 

where 𝑝𝑜𝑠𝐺 = [ 𝑝𝐺
𝑥, 𝑝𝐺

𝑦
, 𝑝𝐺

𝑧], 𝑟𝐺
𝛷 = [ 𝑟𝑘

Ɵ, 𝑟𝑘
𝜑
, 𝑟𝑘
𝜓
], and 𝑑𝑖𝑟𝐺 respectively determine the end-effector 

position with respect to the robot base, its orientation, and the direction of motion. The 
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concatenation over iterations, k, of the set of points to be visited generates a global trajectory for 

the robot end-effector to follow. 

𝑇𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑃𝐺[0]⌢ 𝑃𝐺[1]⌢ 𝑃𝐺[2]⌢⋯⌢ 𝑃𝐺[𝑜𝑐𝑐]  (3.12) 

where 𝑜𝑐𝑐 is the number of occupied cells in the occupancy grid. 

 

In this work, the start point is always the nearest occupied cell to the upper left corner of the object 

and the initial moving direction is horizontal. The end-effector position at each moving step 

(𝑝𝑜𝑠𝐺[𝑘]) is defined by extracting the closest vertex in the object point cloud (𝑂𝑏𝑗𝑒𝑐𝑡𝐶𝑙𝑜𝑢𝑑𝑹𝒐𝒃𝒐𝒕) 

to the center of the occupied larger cell (𝑐𝑒𝑛𝑡𝑟𝑒(𝐶𝐼,𝐽,𝐾
𝐵 )) in the robot moving direction. However, if 

the larger cell is not completely occupied (𝑖. 𝑒. 𝐶𝐼,𝐽,𝐾
𝐵 = 0.5). As shown in Figure 3.8a, the robot can 

move in 8 possible directions [horizontally, vertically, and diagonally] and it must move through 

all the points to cover the object surface area. This area is covered using a Seed Spreader motion 

[177] pattern (Figure 3.8b). The robot begins at a start point defined above and moves horizontally 

to the right towards the center of the next occupied cell. If there is no occupied cell on the right, the 

motion direction is changed and the robot moves vertically (diagonally) down/up to the next point. 

Then the robot again moves horizontally but in the opposite direction until it reaches to the last 

occupied cell on the other side of the object. The process continues until the robot has conquered 

the last occupied cell and explored the entire area. 

    

                (a)                                         (b)                                                  (c) 

Figure 3.8: a) Accessible directions of motion for the robot end-effector over the surface encoded 

in the 2.5D occupancy grid model, b) global trajectory planning strategy, and c) vertex normal 

calculation at the center of the front face of a larger cell. 
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The set of points (center of the occupied cells), forming a path defined in the previous step, 

determine the positions for the end-effector in Cartesian coordinates over the object surface. In 

addition to the robot position, to ensure proper alignment of the end-effector with the surface, it is 

required to estimate the local surface normal and calculate the end-effector orientation at each point. 

The local normal at each point is calculated using the neighbor cells (Figure 3.8c). Given that there 

are four smaller cells forming a larger cell, four points which are situated in the center of each 

occupied cell (closest point to the center) in three dimensions are obtained. Each set of three points 

forms a triangle for a total of four triangles that can be generated. First, the normal to each triangle 

(𝑁𝑖) is calculated and normalized. The normal of each triangle is computed as the cross product 

between the vectors representing two sides of the triangle. The following equations define the 

normal vector, N, calculated from a set of three points, E, F, G, coordinates: 

𝑁𝑥 = (𝐸𝑦 − 𝐺𝑦 ∙ 𝐸𝑧 − 𝐹𝑧) − (𝐸𝑧 − 𝐺𝑧 ∙ 𝐸𝑦 − 𝐹𝑦) (3.13) 

𝑁𝑦 = (𝐸𝑧 − 𝐺𝑧 ∙ 𝐸𝑥 − 𝐹𝑥) − (𝐸𝑥 − 𝐺𝑥 ∙ 𝐸𝑧 − 𝐹𝑧) (3.14) 

𝑁𝑧 = (𝐸𝑥 − 𝐺𝑥 ∙ 𝐸𝑦 − 𝐹𝑦) − (𝐸𝑦 − 𝐺𝑦 ∙ 𝐸𝑥 − 𝐹𝑥) (3.15) 

The resulting normals are then normalized such that the length of the edges does not come into 

account. The normalized vector, Nnorm, is computed as: 

𝑛𝑜𝑟𝑚 = √𝑁𝑥2 + 𝑁𝑦2 + 𝑁𝑧2 

 

(3.16) 

𝑁𝑛𝑜𝑟𝑚 = [𝑁𝑛𝑥 𝑁𝑛𝑦 𝑁𝑛𝑧],   

where 𝑁𝑛𝑥 = 𝑁𝑥/norm, 𝑁𝑛𝑦 = 𝑁𝑦/norm, 𝑁𝑛𝑧 = 𝑁𝑧/𝑛𝑜𝑟𝑚. 

 

Then, the average of the four triangle normals provides the estimated object’s surface normal at the 

center of the larger occupied cell, and the local object surface orientation is deduced from that 

normal vector to the surface. 
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The free-motion mode (𝑓𝐹) defines the robot position (𝑝𝑜𝑠𝑅), orientation (𝑟𝑅
𝜙
) and motion direction 

(𝑑𝑖𝑟𝐺) at each moving step, k, as follows:  

𝑓𝐹𝑟𝑒𝑒−𝑚𝑜𝑡𝑖𝑜𝑛 = 𝑃𝐺[𝑘] = {

𝑝𝑜𝑠𝑅[𝑘] = 𝑝𝑜𝑠𝐺  [𝑘] = [ 𝑝𝑘
𝑥, 𝑝𝑘

𝑦
, 𝑝𝑘

𝑧]  

𝑟𝑅
𝜙[𝑘] =  𝑟𝐺

𝜙[𝑘] = [ 𝑟𝑘
Ɵ, 𝑟𝑘

𝜑
, 𝑟𝑘
𝜓
]

𝑑𝑖𝑟𝐺[𝑘]  

 

 

(3.17) 

 

3.3  Online (proximity/contact) Path Planning 

Embedding human like adaptable compliance is an essential feature for safe interaction in object-

robot interaction and surface following applications. Compliance allows for greater margins of 

uncertainty in sensing technologies meant to monitor the dynamic interaction between the robot 

and environment which cannot be predicted in advance and to reduce the risk of damages where 

such measurement errors could be hazardous. The previously active and passive designed 

compliance devices applied in industrial robots (detailed in section 2.2) cause slower response, 

reduce position estimation and increase oscillation due to their limitation in providing information 

only using force/torque sensors during the interaction. Moreover, the precision of the Kinect 

measurements has been evaluated in [170, 178, 179]. They reported a precision of 1mm-2cm along 

the X-Y axes and 1mm-4cm along the Z axis (Kinect’s axes) which varies based on the object 

distance from the Kinect. The error may also increase due to inaccuracy in the Kinect/robot 

calibration process [180]. Furthermore, the object may move or deform under the influence of the 

physical interaction. Therefore, to address these problems and compensate for errors in the rough 

3D profile of the surface provided by the RGB-D sensor, and to further refine the global trajectory, 

an instrumented compliant robotic wrist device described in Appendix B was designed and built 

by my colleagues [181] in the SMART research group to support dexterous robotic interaction 

with live proximity and contact feedback. It is equipped with embedded proximity and contact 

sensors, and mounted on the robot as its end-effector, as shown in Figure 3.9a. 
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(a)                                               (b)                                           (c)                        

Figure 3.9: a) Compliant wrist mounted on the CRS-F3 manipulator, b) internal and external 

sensors arrangement, c) compliant wrist assembly. 

 

The compliant wrist provides a means of detecting objects both in contact and proximity to the 

end-effector, as well as adding a degree of compliance to the robot which enables the end-effector 

to slide on an object without damaging it and adapt to its surface changes when contact happens. 

As shown in Figure 3.9b, the compliant wrist is equipped with eight infrared (IR) distance 

measurement sensors. The infrared sensors are arranged in two arrays of four sensors each: an 

external array and an internal array. The external sensor array allows to measure distances at 

multiple points between the wrist and the object located in front of the end-effector. The maximum 

measurement distance of each sensor is 400 mm but since the external sensors are offset from the 

contacting surface of the compliant wrist, the offset is subtracted from the total distance which 

results in a 265 mm depth range [181]. The internal sensor array is situated between the base of 

the compliant wrist structure and a moveable plate, as shown in Figure 3.9c. It allows the device 

to determine the surface orientation and distance to an object when the robot is in contact with it. 

The two plates (base and compliant) are attached by a sliding shaft allowing for deflection of the 

upper compliant plate under externally applied forces which provides a translation of -25 mm when 

it is completely compressed. The sensing layers estimate an object pose in the form of a 3D 

homogeneous transformation matrix. The rotation and translation parameters are obtained using 

the distance measurements from the IR sensors. The wrist was designed as a black box system that 

can be readily mounted on any type of manipulator, as its embedded electronics is completely 

independent from the robot controller. The research detailed in this section capitalizes on the live 

measurements provided by the instrumented wrist to design original control schemes that can also 
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be integrated as an overlay to any manipulator controller, therefore maximizing the flexibility of 

the approach. 

 

To interact with the object and closely accommodate its local surface curvature, two self-tuning 

model-free adaptive position and orientation controllers are developed using online proximity and 

contact sensory information provided by the compliant wrist (Figure 3.10). These controllers 

operate from the moment the robot end-effector that is the compliant wrist, reaches in proximity 

to the considered object surface. The controllers are designed to allow the robot to react to 

unanticipated events and to quickly correct the path whenever needed and, as such, dynamically 

refine the offline path with the extra inputs now available. The proposed adaptive on-line trajectory 

generation is designed to generate continuous command variables and modify the position and 

orientation of the robot end-effector based on the online sensory information when the robot end-

effector is in close proximity of (proximity control mode) or in contact with (contact control mode) 

an object. As shown in Figure 3.10, distance and orientation deviation values between the robot 

end-effector and the object’s surface are measured simultaneously by the compliant wrist sensors. 

The values are compared with the desired distance and orientation set by the user as specifications 

for the robotic interaction (e.g. following a surface at a given distance with normal orientation, or 

closely following the surface with continuous contact), then the controllers run in parallel to 

generate position and orientation control signals to compensate the deviations from the 

specifications. The controllers generate the control signals until there is no change of distance and 

orientation error between the robot and the object.  

 

The adaptive controllers neither require precise mathematical model of the robot and the 

environment, nor force/torque calculation or learning procedure to compensate for the unknown 

system dynamics parameters. As a result, it can be applied to control various robot manipulators 

of different kinematic and dynamic models.   
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Figure 3.10: Block diagram of the online position and orientation controllers. 

 

3.3.1 Adaptive Position Control 

When the robot is in close proximity to or contact with the target points defined by the global 

trajectory, a position error (distance) between the robot end-effector and the desired set point is 

calculated based on the currently perceived information by internal (external) sensors. The 

adaptive position controller generates a position control signal to adjust the robot distance from 

the object and eliminate the error in proximity and contact phases. The position error, ek, defined 

in Eq. 3.18, is determined as a distance between the end-effector and the object. The distance is 

updated by external sensors or internal sensors when the robot is in close proximity or in contact 

with the object respectively.  

𝑒𝑘 = 𝑑𝑘 − 𝑑0 (3.18)                 

where 𝑑𝑘 is the average of the distance measurements by the four external (or internal) sensors, 

and 𝑑0 is the desired distance to the object set by the operator. The 𝑑0 value can be positive, 

negative or zero depending on the application requirement. For example, if it is desired to follow 

or interact with an object from a specific distance without contact (e.g. spray painting, inspection), 

then 𝑑0 gets positive values. In some applications such as welding and assembly, it is desired to 

contact and align the robot end-effector with the object’s surface but not to apply much force unto 

the object, then the value of 𝑑0 is set to zero. On the other hand, for applications such as polishing, 

particles collection, or live shape (curvature) estimation, a better result will be obtained when the 
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robot applies force by attempting to move slightly into the object, which causes the compliant plate 

of the wrist to be deflected, then 𝑑0 < 0 is suitable.    

 

3.3.1.1 Design of Proposed Adaptive Position Controller 

In order to eliminate the position error, an adaptive position controller is developed to create a 

closed loop controller with parameters that can modify and correct the end-effector position and 

react to changes in the environment. From this error, a cost function is formed in which the 

relationship between the change in error and the cost function is inspired from the MIT rule [182, 

183]. The MIT rule is used to develop adaptation mechanism for model reference adaptive control 

systems. In this rule, a cost function is defined as a function of error between the actual plant and 

a reference model. The control parameters are adjusted in such a way that the cost function is 

minimized so that output of the plant becomes the same as the reference model. In contrast to 

previous works [130-133], where the MIT rule has been applied for model reference adaptive 

control (MRAC), in this work it is used to design a model-free adaptive controller where the output 

of the system is compared to a desired distance instead of a reference model. The goal is to 

minimize the cost related to the error to guarantee that for any given desired distance, the error 

converges to zero. For this purpose stochastic gradient descent theory [184] is applied. In the 

typical gradient descent algorithms [185-187], the adaptation gain is either predefined or the gain 

is derived online by applying learning methods. These methods are computationally expensive and 

may not be adaptive to unstructured dynamic environments. However, here the adaptation gain is 

not pre-defined or fixed and no learning procedure is required. Instead, the gains are dynamically 

updated during the robot-object interaction by gain-adaptation laws developed using fuzzy logic. 

 

From the distance error (Eq. 3.18) a cost function, J, can be formed as shown in Eq. 3.19. It should 

be adjusted in the direction of the negative gradient of J to minimize the quadratic cost function 

and therefore the error.  

𝐽(Ӕ𝑘) =
1

2
 (𝑑𝑘 − 𝑑0)

2 =
1

2
𝑒𝑘
2 (3.19)                 
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Ӕ𝑘+1 − Ӕ𝑘 = −𝜆
𝜕𝐽(Ӕ𝑘+1)

𝜕Ӕ
  (3.20)                 

where Ӕ is the position control signal that defines the amount of movement towards the object, λ 

is the adaptation gain and 
𝜕𝐽

𝜕Ӕ
  is the gradient of J. 

 

The control signal Ӕ is updated and corrected through the gradient descent procedure [184] online 

to minimize the cost function. 

Ӕ𝑘+1 = Ӕ𝑘 − λ
𝜕 J(Ӕ𝑘+1)

𝜕Ӕ𝑘
 

(3.21)                 

Using the chain rule [188], the update rule Eq. 3.21 can be rewritten as 

𝜕 𝐽(Ӕ𝑘+1)

𝜕Ӕ𝑘
= 
𝜕𝐽(Ӕ𝑘+1)

𝜕𝑒𝑘+1
 
𝜕𝑒𝑘+1
𝜕Ӕ𝑘

= 𝑒𝑘+1
𝜕𝑒𝑘+1
𝜕Ӕ𝑘

   (3.22)                 

where φ𝑘 =
𝜕𝑒𝑘+1

𝜕Ӕ𝑘
  is called the sensitivity derivative of the system. The control signal Ӕ is updated 

and described by 

Ӕ𝑘+1 = Ӕ𝑘 − λ 𝑒𝑘+1φ𝑘 (3.23)                 

The gradient descent proceeds by finding the optimal solution to minimize the error. However, the 

control signal, Ӕ, is dictated by the magnitude of the gradient. Therefore, the adaptive controller 

is very sensitive to the changes in the amplitude of the reference input (𝑒𝑘), and a high magnitude 

of the gradient can make the system unstable. In order to reduce the sensitivity of the system and 

control the moving step’s size by the adaptation gain, λ, instead of the gradient magnitude, a 

normalized update rule is proposed. 

Ӕ𝑘+1 = Ӕ𝑘 − 𝜆 𝑒𝑘+1𝛷𝑘  (3.24)                 

where Φ𝑘 =
φ𝑘 

√𝛼2+φ𝑘
2  

 and α is introduced to remove the difficulty of zero division when φ is small. 
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The controller designed using this technique is also very sensitive to the amplitudes of the 

adaptation gain (λ). The adaptation gain (𝜆) specifies how much the control signal Ӕ can change 

on each update. Large adaptation gains can make the system unstable. Therefore, λ plays a critical 

role for the system’s stability and convergence. As a general rule, the value of λ  is kept small. A 

small adaptation gain can satisfy the system’s stability requirements but it needs many iterations 

and makes the convergence rate very slow. It is not practical to determine a fixed (optimal) 

adaptation gain for all moving steps (iterations) due to unpredictable object movement or 

deformation that can happen during the robot-object interaction. The performance of the system 

can be improved by adapting the gain, 𝜆, during the interaction. Therefore, it is proposed to 

determine the adaptation gain, 𝜆, for every moving step, 𝑘, based on the error value (Eq. 3.18). The 

objective is that the farther the robot is from the object surface (or from the desired distance away 

from the object), the larger should λ be, and therefore results in moving faster toward the object. 

When the error is reduced (the robot gets closer to the object), then the adaptation gain, λ, gets 

smaller . Since the convergence rate and stability of the system depend on the adaptation gain, 

selecting a proper value is crucial.  

 

Fuzzy control is ideal to deal with nonlinear systems where there is a wide range of operating 

conditions, an inexact model exists and accurate information is not required. In order to obtain the 

highest adaptation gain that increases the convergence rate and guaranties the stability of the 

system, it is estimated using a fuzzy controller. The fuzzy controller input variables are the distance 

error (𝑒𝑘) and change of error (𝛥𝑒𝑘), and the output is the adaptation gain, 𝜆, as shown in Figure 

3.11. If the robot is in close proximity of the object surface, the proximity motion mode is activated 

and the external sensors from the compliant wrist provide the input for the fuzzy controller. 

Alternatively, when the robot end-effector is in contact with the object, the contact motion mode 

kicks in and the internal sensors from the compliant wrist provide the distance measurements for 

the controller. The standard triangular membership functions and Mamdani type inference are 

adopted for the fuzzification due to their small computation cost which enhances the reaction speed 

of the system. The error (𝑒𝑘) in distance is represented by five linguistic terms, as shown in Figure 

3.11a: large negative (LN), small negative (SN), zero (Z), small positive (SP), and large positive 

(LP). Similarly in Figure 3.11b, the fuzzy set of change of error (𝛥𝑒𝑘) is expressed by negative big 
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(NB), negative (N), zero (Z), positive (P), and positive big (PB). The output linguistic terms for 

adaptation gain are (Figure 3.11c): very slow (VS), slow (S), medium (M), Fast (F), and very fast 

(VF) over the interval [0, 1]. 

 

 

(a) 

 

(b) 

 

(c)                  

Figure 3.11: Fuzzy membership functions for: a) error, b) change of error, and c) adaptation gain. 
 

Table 3.1 shows the fuzzy rules where the adaptation gain is determined depending on the robot 

distance to the surface. The rules are developed using the method proposed in [189-190] for fast 

convergence and minimum oscillations. The center of gravity (COG) method is used to diffuzify 

the output variable, 𝜆, as defined in Eq. 3.25. 
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𝜆 =
∑ 𝜇(𝑓𝑖). 𝑓𝑖
𝑚
𝑖=1

∑ 𝜇(𝑓𝑖)
𝑚
𝑖=1

 
(3.25) 

where  𝜇 is membership function, 𝑓𝑖 is the numerical values of output set and 𝑚 is number of the 

output fuzzy sets. 

 

Table 3.1: Fuzzy rule base. 

 

 

3.3.1.2 Stability of Proposed Adaptive Position Controller 

To investigate the stability of the adaptive controller, the discrete Lyapunov function candidate is 

defined as: 

𝑉𝑘 =
1

2
 𝑒𝑘

2 (3.26)                 

where ek is the distance error defined in Eq. 3.18. 

The change in Lyapunov function is obtained by: 

𝛥𝑉𝑘 = 𝑉𝑘+1 − 𝑉𝑘 = 
1

2
 𝑒𝑘+1
2 − 

1

2
 𝑒𝑘
2 (3.27)                 

where the error at index time k+1 can be written as: 

𝑒𝑘+1 = 𝑒𝑘 + 𝛥𝑒𝑘 (3.28)                 

Thus Eq. 3.28 can be rewritten as:  

𝛥𝑉𝑘 =  
1

2
 [𝑒𝑘 + 𝛥𝑒𝑘]

2 − 
1

2
 𝑒𝑘
2 = 𝛥𝑒𝑘[𝑒𝑘 +

𝛥𝑒𝑘
2
 ] (3.29)                 
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The error difference can be estimated by [191]: 

𝛥𝑒𝑘 ≈ 
𝜕𝑒𝑘+1
𝜕Ӕ𝑘

 𝛥Ӕ𝑘 = 

−𝜆 𝑒𝑘+1𝜑𝑘𝛷𝑘 = −𝜆 𝑒𝑘+1
𝜑𝑘
2 

√𝛼2 + 𝜑𝑘
2 

 

  

(3.30)                 

By substituting Eq. 3.28 in Eq. 3.30,  

Δek = −λ (ek + Δek)
φk
2 

√α2 + φk
2 

 (3.31)                 

Δek = −𝜆
𝑒𝑘𝜑𝑘

2 

(√𝛼2 + 𝜑𝑘
2 + 𝜆𝜑𝑘

2) 
     (3.32)                 

Finally, the change of the Lyapunov can be defined as: 

ΔVk =
−λ ekφk

2 

(√α2 + φk
2 + λφk

2)
[
 
 
 
 

ek + 
−λ ekφk

2 

2 (√α2 + φk
2 + λφk

2)
]
 
 
 
 

 

=
−λ φk

2 

(√α2 + φk
2 + λφk

2) 

[1 −
λ φk

2 

2(√α2 + φk
2 + λφk

2) 

]ek
2  ≤ 0 

   

           

(3.33)              

The candidate Lyapunov function for the position controller is positive definite and the change of 

the function ΔVk is negative definite where the adaptation gain, λ, is positive. Therefore the system 

is (locally) asymptotically stable in the sense of Lyapunov. 

 

3.3.2 Adaptive Orientation Control 

The orientation error is determined as the angular deviation between the robot’s end-effector and 

the object surface normal direction (Eq. 3.34). When the robot is in close proximity of (or in contact 
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with) the object, the orientation error of the object surface is estimated by the proximity/contact 

sensors embedded in the compliant wrist, in terms of the roll (𝑟𝑂
Ɵ) and pitch (𝑟𝑂

𝜑
) angles (Euler 

angles) of the object surface with respect to the wrist reference plane. The yaw angle (𝑟𝑂
𝜓

), 

corresponding to the rotation around the compliant wrist pointing direction, is not measurable by 

the compliant wrist sensory stage. But as it does not affect the end-effector alignment with respect 

to the surface, it is set to zero by default. 

𝑒𝑂 = [𝑟𝑆
𝜙
]𝑇 = [

𝑟𝑂
Ɵ

𝑟𝑂
𝜑] − [

𝑟𝐸
Ɵ

𝑟𝐸
𝜑] = [

𝑟𝑆
Ɵ

𝑟𝑆
𝜑] (3.34)                 

where the 𝑟𝐸
Ɵ and  𝑟𝐸

𝜑
 correspond to the roll and pitch angles, respectively, of the end-effector.  

 

Let the rotation matrix of the object surface generic orientation, 𝑟𝑂
𝜙

, be denoted as 𝑅𝑂
𝜙

 with respect 

to the wrist (end-effector) frame, and the rotation matrix of the end-effector with respect to the robot 

base frame be described by 𝑅𝐸
𝜙

, then the desired rotation of the end-effector with respect to the 

robot base frame, 𝑅𝑅
𝜙

, to match the compliant plate with the object surface can be determined by 

(Eq. 3.35). 

𝑅𝑅
𝜙
= 𝑅𝐸

𝜙
∗ 𝑅𝑂

𝜙
  (3.35) 

In a robot-object interaction task, 𝑅𝑅
𝜙

 is set as the orientation to be tracked by the robot end-

effector. However, in order to obtain smooth orientation adjustments, it is not directly sent to the 

controller, and instead the orientation of the end-effector is updated using an adaptive orientation 

signal, at each moving step to correct the orientation error between the end-effector and the object’s 

surface. 

 

3.3.2.1 Design of Proposed Adaptive Orientation Controller 

The use of classical exponential error decrease is common for error regulation where the error 

decreases exponentially to minimize the error. 
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Δ𝑒𝑂 = −𝜂 ∗ 𝑒𝑂 = 𝑟𝐴
𝜙

  (3.36) 

𝑟𝐴
𝜙
= −𝜂 ∗ 𝑟𝑆

𝜙
  (3.37) 

where 𝑟𝑆
𝜙
= [𝑟𝑆

Ɵ, 𝑟𝑆
𝜑
, 0] and 𝜂 is a proportional gain. 

 

To avoid instability, the proportional gain is generally a small value and it remains constant during 

the interaction, which increases the convergence time. On the other hand, a large gain value 

reduces the convergence time but may lead to tracking loss or task failure due to fast motion. 

Therefore, in order to reduce the convergence time and oscillation near the equilibrium point, while 

preserving the system stability, the gain, 𝜂, should also be tuned according to the error value at 

each moving step. When the orientation error is very small, the convergence rate reveals to be 

fairly poor and therefore the final orientation correction becomes very slow and oscillatory. To 

avoid the problem, the gain must rather switch back to a larger gain near the equilibrium point 

(𝑒𝑂 = 0) to ameliorate the performance. A similar adaptive controller as the proposed position 

controller (Section 3.3.1) can be used for orientation control. But setting up the fuzzy rule base for 

tuning the orientation adaptation gain that satisfies the above switching strategy is not very efficient 

because it requires a larger number of membership functions, rules and variables. As the rule base 

of the controller increases, computation and therefore convergence takes longer for each control 

cycle, so that it is nearly impossible to set up fuzzy rules for more than three inputs [192]. In this 

case, exponential error regulation methods [193-194] offer a better performance with a much more 

reduced set of parameters. Due to this choice, a new exponential error regulation strategy is 

proposed to compute a proper adaptation gain value for 𝜂. In contrary of classic exponential error 

regulation methods, the adaptation gain is not constant and switches from large to small when the 

error decreases, and switches back to larger gain when error arrives to a specified threshold. In 

addition, another formulation of the regulation is used where the error norm is applied in 

computation of the adaptation gain to accelerate the convergence and avoid instability. The 

following equations are developed based on the orientation error that is updated online using the 

information provided by the compliant wrist sensors.  

 



61 
 
 

𝜂𝑘 = {
1 − µ exp(−𝜉|𝑒𝑘

𝑂 𝑒𝑘
𝑛𝑜𝑟𝑚⁄ |),     |𝑒𝑘

𝑂 𝑒𝑘
𝑛𝑜𝑟𝑚⁄ | > 𝜕

 
µ exp(−𝜉| 𝑒𝑘

𝑂 𝑒𝑘
𝑛𝑜𝑟𝑚⁄ |),          | 𝑒𝑘

𝑂 𝑒𝑘
𝑛𝑜𝑟𝑚⁄ | < 𝜕 

 

 

 (3.38)                 

where [𝑒𝑘
𝑂]𝑇 = [𝑟𝑆

Ɵ[𝑘], 𝑟𝑆
𝜑
[𝑘]],   𝑒𝑘

𝑛𝑜𝑟𝑚 = √𝑟𝑆
Ɵ[𝑘]2 + 𝑟𝑆

𝜑
[𝑘]2, 𝜂𝑘 = [𝜂Ɵ[𝑘], 𝜂𝜑[𝑘]] and where µ 

and 𝜉 are positive constant scalar values and 𝜕 is the switching threshold.  

 

As shown in Eq. 3.38, in the first proposition, the adaptation gain is large when the orientation 

error is large and it gets smaller when the error reduces until the error arrives to a small value. 

According to the second proposition, the adaptation gain switches back to a larger gain near the 

convergence. The gain tuning scheme leads to increase the convergence rate and prevent 

oscillation and instability. 

 

By using the adaptive orientation signal, the end-effector orientation angles necessary to match 

with the object’s surface orientation are calculated by: 

𝑟𝐴
𝜙[𝑘] = {

𝑟𝐴
Ɵ[𝑘] = 𝜂Ɵ[𝑘] ∗ 𝑟𝑆

Ɵ[𝑘] 

𝑟𝐴
𝜑[𝑘] = 𝜂𝜑[𝑘] ∗ 𝑟𝑆

𝜑[𝑘] 

𝑟𝐴
𝜓[𝑘] = 0 

 

 

(3.39) 

Let the rotation matrix of the adaptive orientation signal, 𝑟𝐴
𝜙

, be denoted with 𝑅𝐴
𝜙

, with respect to 

the wrist (end-effector) frame. The desired robot end-effector orientation with respect to the robot 

base frame at each moving step, 𝑘, is determined using the orientation matrix, 𝑅𝑅
𝜙

. 

𝑅𝑅
𝜙[𝑘] = 𝑅𝐸

𝜙
[𝑘] ∗ 𝑅𝐴

𝜙
[𝑘] (3.40) 

The resulting change in the orientation error for the above mentioned orientation correction is 

given by:  

𝛥𝑒𝑘
𝑜 = 𝑒𝑘+1

𝑜 − 𝑒𝑘
𝑜 = −𝜂𝑘𝑒𝑘

𝑜 = −𝜂𝑘 [
𝑟𝑆
Ɵ[𝑘]

𝑟𝑆
𝜑
[𝑘]
] 

(3.41) 
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3.3.2.2 Stability of Proposed Adaptive Orientation Controller 

The stability of the orientation controller can be verified using the Lyapunov candidate function 

defined as:  

𝑉𝑘 =
1

2
 𝑒𝑘
𝑜𝑇𝑒𝑘

𝑜  (3.42) 

where 𝑒𝑘
𝑜 is the orientation error defined in Eq. 3.34. 

 

The change of the Lyapunov function using Eq. 3.41 is obtained as: 

𝛥𝑉𝑘 =  𝑉𝑘+1 − 𝑉𝑘 = 
1

2
 𝑒𝑘+1
𝑜 𝑇

𝑒𝑘+1
𝑜 −

1

2
 𝑒𝑘
𝑜𝑇𝑒𝑘

𝑜 = 

 
1

2
 [(𝛥𝑒𝑘

𝑜 + 𝑒𝑘
𝑜)𝑇(𝛥𝑒𝑘

𝑜 + 𝑒𝑘
𝑜)] −

1

2
 𝑒𝑘
𝑜𝑇𝑒𝑘

𝑜 =  𝑒𝑘
𝑜𝑇𝛥𝑒𝑘

𝑜 + 
1

2
 𝛥𝑒𝑘

𝑜𝑇𝛥𝑒𝑘
𝑜 

   

 (3.43) 

𝛥𝑉𝑘 = −𝜂𝑘𝑒𝑘
𝑜𝑇𝑒𝑘

𝑜 −
1

2
𝜂𝑘

2𝑒𝑘
𝑜𝑇𝑒𝑘

𝑜 = −𝜂𝑘 (𝑒𝑘
𝑜𝑇𝑒𝑘

𝑜 −
1

2
𝜂𝑘𝑒𝑘

𝑜𝑇𝑒𝑘
𝑜)  (3.44) 

where ΔVk < 0 if 0 < ηk < 1. Therefore, the orientation control system is stable in the sense of 

Lyapunov.   

 

3.3.3 Proximity and Contact Motion Mode  

As mentioned before, when the robot is in close proximity of the object surface, the proximity 

mode is activated and external sensors provide the distance and orientation of the object surface 

relative to the compliant wrist mounted on the robot as the end-effector. While the robot follows 

the global trajectory defined in section 3.2, the adaptive controllers generate proximity position 

control signal, Æ𝑃 (Eq. 3.24), and orientation control signals, 𝑟𝐴𝑃
𝜑

, (Eq. 3.39), where subscript P 

holds for proximity, to dynamically update and modify the end-effector pose over the object using 

the new sensory information as follows:  
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𝑓𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦 = {
𝑝𝑜𝑠𝑅[𝑘] = 𝑝𝑜𝑠𝐸  [𝑘] + Æ𝑃[𝑘]

𝑟𝑅
𝜙[𝑘] =  𝑟𝐸

𝜑
[𝑘] + 𝑟𝐴𝑃

𝜑
[𝑘] 

 (3.45) 

where 𝑝𝑜𝑠𝐸, 𝑟𝐸
𝜑

 are the current robot position and orientation. 

 

When the robot touches the objects surface, the compliant plate is deflected and the contact mode 

is activated. The internal sensors provide contact information for the adaptive controllers to 

generate contact position (Eq. 3.24) and orientation (Eq. 3.39) using Eq. 3.46 to refine the end-

effector pose around the global trajectory defined in section 3.2. 

𝑓𝐶𝑜𝑛𝑡𝑎𝑐𝑡 = {
𝑝𝑜𝑠𝑅[𝑘] = 𝑝𝑜𝑠𝐸  [𝑘] + Æ𝐶[𝑘]

𝑟𝑅
𝜙[𝑘] =  𝑟𝐸

𝜑
[𝑘] + 𝑟𝐴𝐶

𝜑
[𝑘] 

 (3.46) 

where Æ𝐶, 𝑟𝐴𝐶
𝜑

 are adaptive position and orientation signals in the contact motion mode.  

 

3.4  Hybrid Switching Control Scheme 

Hybrid systems in general are composed of two distinct components in which continuous 

subsystems and discrete subsystems interact with each other. As discussed in section 2.4, hybrid 

systems have been used frequently in sensor-based robotic control systems where the robot 

interacts with the environment. A class of hybrid systems that has received significant attention 

recently in multimodal control consists of switched systems that provide a framework to model 

and integrate several control modes and feedback control algorithms while ignoring irrelevant 

details using supervisory logic-based control laws [194]. A hybrid switched system consists of a 

set of linear or nonlinear functions and a supervisor that selects a particular function to control the 

system in response to dynamics of the system.  

 

3.4.1 Design of the Proposed Hybrid Switching Control Scheme 

This work proposes an original hybrid switched system which consists of four subsystems 

(interaction modes) and a unique switching control scheme to combine and smoothly switch 

between these interaction modes. Unlike previously proposed hybrid systems (discussed in section 
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2.4) that use force/torque sensors and vision sensors to control a robot motion (hybrid vision/force 

control) where local information from the environment is acquired from a force/torque sensor only 

when contact occurs between the robot and the environment, here the hybrid system utilizes and 

combines the RGB-D data provided by a Kinect sensor, extra data from proximity sensors during 

close approach, and finally data from contact sensors provided by the compliant wrist. This enables 

the robot to adapt reactively and interact with the environment with or without contact. In addition 

to the sensory improvement, the contribution of the proposed hybrid switched system is the 

weighted combinations of hard switch and blend switch between the different motion modes 

through using logistic functions [195] that orchestrate the transition between the interaction modes 

and their respective controllers.  

 

The supervisory control scheme is designed to implement a switching law that creates a mixture 

of hard and blend switches (Figure 3.12) to overcome chattering, oscillation and instability 

problems when the system switches from one mode to another, when a subsystem fails due to 

noise, or other possible sensor failures. The three oval containers of the graph in Figure 3.12 

represent the three main motion modes of the system and the transitions are represented by the 

directed arrows. The unidirectional arrows and the bidirectional arrows show the hard switches 

and blend switches between the motion modes respectively. Blend switching leads to smooth 

transition between two interaction modes and allows complementary use and data fusion from 

multiple sensing sources by combining pairs of the main motion modes, and related sensing stages, 

in what is called here a blend motion mode. 

 

 

Figure 3.12: Proposed switching control system model. 

 

As shown in Figure 3.13, the switching signal varies when the robot finds itself within certain 

regions of the workspace based on the end-effector distance to the object surface (the operational 
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distance of the compliant wrist varies from -25mm to 265mm [181]). The free motion mode (𝑓𝐹) 

is activated when the robot is far from the object or all the sensors embedded on the complaint 

wrist cannot detect the object to guide the robot toward it and adjust the end-effector to fit over the 

object surface. Navigation is then guided from data acquired with the Kinect sensor, which leads 

to global path planning as detailed in section 3.2. Once the object is successfully detected and the 

robot reaches within a certain distance from the object, the proximity motion mode (𝑓𝑃) is activated 

where the sensory information provided by external sensors of the compliant wrist is used to 

locally adjust the robot pose over the object surface without any contact. The contact motion mode 

(𝑓𝐶) kicks in when the robot first comes in contact with the object. The true contact is detected by 

the internal sensors when the compliant contact plate is deflected from its rest state and the 

translational shaft is compressed by a certain amount. Reversely, once the task is completed, the 

robot moves away from the surface, switches back to proximity mode, and eventually reaches far 

away from the object and then switches back in free motion mode. The blend motion modes are 

respectively a mixture of free motion and proximity (𝑓𝑃𝐹), or contact and proximity (𝑓𝐶𝑃),  which 

enable the robot to use two different motion modes simultaneously and switch smoothly between 

them where a transition from a motion mode to another is required and where using only one 

sensing modality may not provide accurate enough or adequate information. The blend switching 

also plays an important role under special circumstances that may appear during operation, like 

loss of contact with surface due to the object movement or deformation, end of object, high 

curvature, etc. As such the multiple connections and combination of hard and blend switches 

provide a robust framework that is able to recover from more complex situations than classical 

force/torque controllers. 

 

Figure 3.13: Workspace decomposition. 
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In this work, the switching control is developed based on the position error (Eq. 3.18) between the 

robot end-effector and the desired set point, here set at a desired distance, 𝑑0, to the object surface 

at each moving step, k. It is modeled as follows: 

               𝑒𝑘+1 = 𝑓𝛿(𝑒)(𝑒𝑘, 𝑑𝑘), (3.47) 

𝛿(𝑒) ∈ {𝐹, 𝑃, 𝐶, 𝑃𝐹, 𝐶𝑃} 

where 𝑑𝑘 is the current distance from the object obtained by either the internal sensors (𝑑𝑘
𝑖𝑛𝑡) in 

the proximity mode, or from the external sensors (𝑑𝑘
𝑒𝑥𝑡)  of the compliant wrist in the, contact 

mode; 𝛿(𝑒) determines which function 𝑓𝛿(𝑒)(𝑒𝑘, 𝑑𝑘) controls the system behavior at each moving 

step (k), where 𝑓𝐹 , 𝑓𝑃, 𝑓𝐶 , correspond to free (F) motion, proximity (P), and contact (C) control 

modes respectively. 𝑓𝑃𝐹 refers to the proximity and free motion modes combination (called 

blended proximity-free, PF), and 𝑓𝐶𝑃 is the contact and proximity motion modes combination 

(called blended contact-proximity, CP). The switching signal (𝛿) is determined using Eq. 3.48, 

according to the internal error (𝑒𝑖𝑛𝑡) and external error (𝑒𝑒𝑥𝑡). The error values shown in Eq. 3.48 

are in 𝑚𝑚 and are defined experimentally based on the compliant wrist sensor’s performance 

analysis detailed in [181]. For a compliant wrist equipped with different IR sensors, or other robot-

mounted distance measurement devices, re-calibration of Eq. 3.48 would be necessary, but the 

general framework would remain valid as such. 

 

𝛿(𝑒) =

{
 
 

 
 
𝐶,                                             𝑒𝑘

𝑖𝑛𝑡 ≤ −15

𝐶𝑃,                         − 15 < 𝑒𝑘
𝑖𝑛𝑡 < −2     

𝑃,                         − 2 ≥ 𝑒𝑘
𝑖𝑛𝑡 , 𝑒𝑘

𝑒𝑥𝑡 ≤ 45 

𝑃𝐹,                                   45 < 𝑒𝑘
𝑒𝑥𝑡 < 80 

𝐹,                                            𝑒𝑘
𝑒𝑥𝑡 ≥ 80    

 

   

(3.48)                 

 

where    𝑒𝑘 = {
𝑒𝑘
𝑖𝑛𝑡 = 𝑑𝑘

𝑖𝑛𝑡 − 𝑑0
𝑒𝑘
𝑒𝑥𝑡 = 𝑑𝑘

𝑒𝑥𝑡 − 𝑑0
 

The interaction mode selection and combination of the modes is supervised by the supervisor, S to 

smoothly switch among the motion modes (Eq. 3.49). 
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𝑆 =

{
 
 

 
 
𝑓𝛿(𝑒) = (1 − 𝛽)𝑓𝐶 ,                                         𝛿(𝑒) = 𝐶       

𝑓𝛿(𝑒) = 𝛽𝑓𝑃 + (1 − 𝛽)𝑓𝐶 ,                             𝛿(𝑒) = 𝐶𝑃     

𝑓𝛿(𝑒) = 𝛽𝑓𝑃,                                                     𝛿(𝑒) = 𝑃       

𝑓𝛿(𝑒) = 𝛽𝑓𝑃 + (1 − 𝛽)𝑓𝐹,                             𝛿(𝑒) = 𝑃𝐹    

𝑓𝛿(𝑒) = (1 − 𝛽)𝑓𝐹 ,                                         𝛿(𝑒) = 𝐹      

 

   

(3.49)                 

 

The blending gain (𝛽) is determined for gain scheduling based on the error, 𝑒𝑘, (Eq.  3.49) to apply 

one or blend two motion control modes in different operational conditions. The supervisory control 

framework and the blending gain curve is shown in Figure 3.14.  

 

 

Figure 3.14: Switching signal and supervisory control framework. 

 

The 𝛽 value is bounded to [0, 1], with 𝛽=0 corresponding to the free motion and contact modes, 

and 𝛽=1 to the proximity mode. In order to blend the interaction modes (blend switching), 𝛽 is 

computed using the logistic function (Eq. 3.50). The logistic function combines two characteristics 

of the exponential function in one, that is the exponential (fast) growth first, and the bounded 

(slow) exponential growth when values are near the limits [195].   

𝛽 = 𝐴 + 
𝐶 − 𝐴

1 + 𝑒−ƙ(𝑒𝑘−ℓ)
  (3.50) 

where 𝐴 is the lower asymptote, 𝐶 is the upper asymptote, ƙ is the growth rate, and ℓ is the value 

of the curve midpoint. Therefore, to obtain the profile of Figure 3.14, in the two blend zones the 

blending gain is computed as follows based on the operational characteristics of the compliant 

wrist considered in this research:  
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𝛽 =

{
 
 

 
 

1

1 + 𝑒−0.5(𝑒𝑘
𝑖𝑛𝑡+7)

       − 15 < 𝑒𝑘
𝑖𝑛𝑡 < −2 

 
1

1 + 𝑒0.2(𝑒𝑘
𝑒𝑥𝑡−62.5)

         45 < 𝑒𝑘
𝑒𝑥𝑡 < 80 

  

 

    

(3.51) 

The proposed hybrid switched system is designed based on the distance error between the end-

effector and the object surface. Therefore, the compliant wrist can be replaced by any other sensors 

that can provide similar distance measurements. Even force/torque sensors could be applied to 

control contact forces instead of the internal sensors where the error would be defined as the 

difference between the desired force and the measured force applied on the object.   

 

3.4.2 Stability of Proposed Hybrid Switching Control Scheme 

A number of different theories have been proposed to ascertain stability of hybrid switched 

systems. One of the frequently used approaches to demonstrate stability of hybrid switched 

systems is the multiple Lyapunov functions (MLFs) introduced by Branicky [196], where a 

Lyapunov function, 𝑉𝑖(𝑥), is defined for each control mode, 𝑓𝑖(𝑥), and the stability of the system 

is guaranteed if: 1) all the subsystems are stable, and 2) their corresponding Lyapunov function is 

decreasing from the value it had the last time the subsystem left the control mode, 𝑖, which can be 

achieved by exerting some conditions and restrictions on the switching.  

 

In section 3.3.1.2 and 3.3.2.2, it was shown that the Lyapunov functions associated with the 

position and orientation adaptive controllers are positive definite and have a negative definite 

derivative that ensure the stability of the subsystems. The switching rules of Eq. 3.48 ensure that 

a subsystem is activated when its constraints are satisfied and it remains active as long as its 

Lyapunov function continues to decrease. In order to guaranty the stability of the overall system 

and satisfy the second stability condition, the supervisory control scheme enforces another rule to 

restrict the switching conditions. The switching rule (Eq. 3.48) applies only when the interaction 

mode, 𝑓𝛿(𝑒), has been previously activated. Suppose that 𝑉𝛿(𝑒) is a Lyapunov function associated 

with the subsystem 𝑓𝛿(𝑒), our proposed hybrid switched system orchestrates the transition between 

interaction modes and picks a subsystem (𝑓𝐹 , 𝑓𝑃, 𝑓𝐶 , 𝑓𝑃𝐹 , 𝑓𝐶𝑃 ) in a way that at each instant, 𝑘, the 
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corresponding Lyapunov function of the subsystem is less than it was last time the controller 

operated in that mode. 

                                                           𝑉𝛿(𝑒)(𝑘) < 𝑉𝛿(𝑒)(𝑗)                                                      (3.52) 

where 𝑘 > 𝑗, and 𝑗 is the last time the subsystem, 𝑓𝛿(𝑒), left the control mode 𝛿(𝑒). Therefore, the 

proposed hybrid switched system controls the transition between the interaction modes and their 

respective controllers in a way that guarantees the stability of the system in the sense of multiple 

Lyapunov functions (assuming that the robot manipulator is stable).  

 

3.5  Updating the Occupancy Grid and Object Retrieval 

The offline global trajectory initially guides the robot towards the object to interact with and to 

explore its surface using the modified 3D occupancy grid. As discussed in section 3.2.2.2, the state 

variables associated with the larger cells of the grid is unknown (0.5) when the cell is not 

completely occupied. This normally happens when the object has acute edges or has not been 

acquired well by the Kinect sensor due to its limited range of operation, its accuracy, or lighting 

problems. Furthermore, the object may move or deform during the interaction. Therefore, to 

achieve complete exploration of the object and complement the coverage path planning, it is 

required to update the occupancy grid and react to movements of the object surface.  

 

When the robot is in close proximity to the object, the compliant wrist embedded sensors provide 

closer and higher accuracy feedback about it. In order to update the occupancy grid, the local 

information provided by the external sensors of the compliant wrist are used to update the global 

trajectory. As mentioned in section 3.2.2.1, the larger cells size was selected the same size as the 

robot’s tool plate (compliant plate) size. As shown in Figure 3.15a, if we consider the white region 

as a part of the object of interest surface decomposed into the smaller cells, given the selected 

resolution of the occupancy grid, the compliant plate is able to cover four smaller cells (one larger 

cell), and the external sensors which are protruding over the four sides of the compliant plate can 

provide online look-ahead information while the robot is moving along the global trajectory.  
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As shown in Table 3.2, a set of If-Then rules are considered to decide in which direction to steer 

the robot when operating under guidance of the compliant wrist external sensors (S1, S2, S3 and 

S4). The directions are defined with respect to the end-effector’s reference frame and can be either 

-X, -Y, +X, +Y or certain combinations of these (Figure 3.15 b). For example when the robot is 

moving to the right and the next cell value is 0.5 (unknown cell), the sensor situated on the right 

side (S2) will allow an update of the state of the two cells located ahead on the right. If the sensor 

detects the object in that position, the cell value changes to 1 and the robot moves to the right, else 

it will change to zero and the robot moves towards the next occupied cell.   

              

                      (a)                                                      (b) 

Figure 3.15: a) Cells coverage by the wrist, b) compliant wrist sensors arrangement. 

 

Table 3.2: Object retrieval rules under guidance from compliant wrist embedded 

sensors. 

If Then Direction If Then Direction 

None  N/A S3 , S4  +X & +Y 

S1  -X S4 , S1  +Y & -X 

S2  -Y S1, S2, S3  -Y 

S3  +X S2, S3, S4  +X 

S4  +Y S3, S4, S1  +Y 

S1, S2  -X & -Y S4, S1, S2  -X 

S2 , S3  -Y & +X S1, S2, S3, S4  N/A 
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3.6 Chapter Summary 

This chapter presented the design and implementation of a hybrid switched control system operating 

from multi-sensory inputs for automated and rapid object segmentation, proximity/contact 

interaction and surface following. The hybrid control architecture enables the robot to detect and 

follow the surface or interact with an object of interest with or without contact using the information 

provided by a Kinect sensor and augmented locally using a custom designed instrumented 

compliant wrist with embedded proximity and contact distance sensors. A unique supervisory 

control scheme is proposed to supervise the robot motion continuously and to smoothly switch 

between five motion modes (𝑓𝐹 , 𝑓𝑃, 𝑓𝐶 , 𝑓𝐹𝑃 , 𝑓𝑃𝐶), based on the robot end-effector’s distance from the 

object surface. Each of the 3 main motion control modes (𝑓𝐹, 𝑓𝑃, 𝑓𝐶) generates a position control 

signal and an orientation control signal using a specific sensing modality. 

 

In the free motion mode, the 2.5D model of the object acquired via a peripheral RGB-D vision stage 

is used to plan a global trajectory (detailed in section 3.2) and guide the robot from an initial position 

towards the object. The proximity mode then enables the robot to refine the reference (global) 

trajectory using the proximity sensing information to track the desired trajectory within a specific 

distance without contact, or to finely adjust the robot pose before contact happens (transition) to 

damp the system and match its pose with the surface. The contact with surface is triggered by the 

internal sensors where the contact plate is deflected under externally applied forces. The contact 

motion mode enables the robot to more precisely adapt to the changes and forces generated by the 

surfaces with which it comes into contact. When the contact is detected, the internal sensors provide 

the fuzzy inputs (error and change of error) instead of the external sensors to make sure that the 

robot remains in contact with the object and prevent the robot from pushing too much into the 

object, even though forces are not formally measured nor estimated.  

 

Although using the compliant wrist increases the flexibility and reduces the risk of damages, the 

compliance reduces the stiffness required for position control. As a consequence, the position 

measurement accuracy is decreased. To achieve a better accuracy and smoothly switch from one 

motion mode to another and prevent chattering, oscillation and instability, the sensory information 

from different sources, and therefore the motion modes, needed be combined under specific 
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conditions, which led to the development of blend motion modes. Therefore, a hybrid switched 

control system including a unique supervisory control scheme is designed for dictating an original 

switching law that is a mixture of hard and blend switches to determine which motion mode(s) 

should be active at each moving step. 
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Chapter 4. EXPERIMENTAL RESULTS 

In order to validate and demonstrate the performance and efficiency of the proposed methods, 

experimental validation of robot-object interaction under the free, proximity, contact and hybrid 

(proximity and contact) control modes are carried out using a 7-DOF CRS-F3 robot (Appendix C) 

on which the instrumented compliant wrist is mounted as the end-effector. The purpose of these 

experiments is to explicitly evaluate the performance of the proposed hybrid switched system and 

of the adaptive controllers for object detection, surface following and reactive interaction with static 

and moving objects. Five experimental protocols are examined. In the first three experiments, a 

planar object has been used rather than a curved surface to evaluate the performance and accuracy 

of the adaptive controllers and of the switching scheme in proximity and contact interactions with 

a static object. The fourth experiment is dynamic object-robot interaction where a flat panel moves 

frequently to random positions and orientations in front of the end-effector and it should detect and 

follow the object pose continuously. Furthermore, the system’s performance when achieving 

reactive interaction and surface following over a curved surface is demonstrated in the fifth 

experiment presented in this chapter. The various test cases are closely examined to confirm the 

validity of the proposed approaches and the results are discussed and compared with other methods 

from the literature. 

 

4.1  Object Segmentation 

The first step to guide the robot towards the object of interest in the robot workspace, and efficiently 

come to interact with it, is object localization and segmentation from the scene (section 3.2). A 

Kinect sensor is used to collect color and depth information within only a few seconds. As shown 

in Figure 3.3, the Kinect sensor is located behind the robot. Therefore, the manipulator was initially 

located at the extremity of its workspace to avoid creating any occlusion during the RGB-D data 

acquisition phase. The RGB image (Figure 4.1) is presented to the operator who can then click on 

any points on the desired object in the image from which the color and depth information is then 

processed and filtered using Algorithm 1 in order to extract and segment the 3D information 

corresponding to the object of interest. 
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Figure 4.1: RGB-D data captured by the Kinect sensor: a) RGB image, b) depth. 
 

Table 4.1 shows the efficiency of the proposed segmentation algorithm at extracting each object of 

interest from the scene shown in Figure 4.1, where there are four objects of different shapes and 

colors. The original point cloud provided by the Kinect sensor after applying the depth filter 

includes 41204 points from which over 99% of the object of interest have been successfully 

recovered from the point cloud after the operator selected a point on each of them. The considered 

exact number of points in each object is extracted using MeshLab software and compared to the 

number of points extracted with the proposed approach that combines color and depth filters. 

Table 4.1: Object segmentation results. 

 

 

4.2  Static Object-Robot Interaction 

While interacting with static objects, two scenarios are examined. In both cases, the object is 

initially placed in a random pose within the robot’s workspace (more precisely within the compliant 

wrist’s embedded sensors operational field of view) and remains in that position and orientation 

until the robot end-effector comes to match its position and surface orientation (here called pose 

adjustment). The moving steps that the robot performs to reach the desire final pose (here called 
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iterations) are also closely monitored. The process is repeated 10 times in each test run with the 

object adopting a new random static pose that the robot end-effector attempts to match. In these 

scenarios the objective is to evaluate the performance of both controllers in the online trajectory 

planning phase only, that is using the embedded sensors from the compliant wrist. Therefore, the 

offline path planning phase that relies on Kinect sensor’s data is skipped in the first two 

experiments, and no surface following and coverage is considered. A single object-robot matching 

configuration is pursued at a time, before the test resumes with a new random pose to reach to. 

 

In the first scenario, the robot operates in the proximity motion mode only. It does not make any 

contact with the object but rather maintains a specific distance from it, defined by the user prior to 

the interaction. As discussed before, the ability of the robot to reactively interact with objects but 

without reaching contact is critical in modern manufacturing where robots are used for inspection, 

painting, cleaning and similar tasks. The methodology proposed in this thesis contributes this 

important additional feature which is not permitted when more traditional force/torque sensors and 

controls schemes are implemented.  

 

The second scenario is similar but its objective is to evaluate the system performance in the contact 

motion mode, where the robot makes physical contact with the object surface and remains in contact 

with it while adjusting and finely matching the end-effector position and orientation with the 

surface. Among many different applications of object-robot physical interaction that involve 

contact, we can refer to surface following, particles collection, welding and polishing. 

 

4.2.1 Experiment 1: Position Matching with a Static Surface in Proximity Motion 

Mode 

In the first scenario a planar surface is positioned parallel to and at a particular distance from the 

robot end-effector. The object is fixed and does not move during the interaction. The purpose of 

the scenario is to only evaluate the accuracy of the proposed adaptive position controller, its 

stability and convergence rate while correcting the end-effector position and compensating for any 

deviations from the desired set point defined by user.  
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In the case reported here, the robot should maintain a distance of 20 mm from the object surface, 

and since the robot is not to make any contact with the object during the interaction, the proximity 

motion mode is activated and the external sensors mounted on the compliant wrist provide the 

required distance information to the controller. Since it is only desired to verify the position 

controller performance, the wrist is initially positioned parallel to the surface and the desired 

orientation deviation is set to 0 degrees which means having the end-effector’s pointing direction 

aligned with the normal to the surface. The fuzzy controller presented in section 3.3.1.1 generates 

the adaptation gain (λ) and the position control signal (Ӕ) that defines the amount of movement 

towards the object. An example of the resulting proximity position adjustments is shown in Figure 

4.2. 

    

(a)                                                            (b) 

   

(c)                                                               (d) 

Figure 4.2: Proximity interaction with only position adjustment: a) initial pose; b) first iteration; 

c) second iteration; and d) third and final iteration. 
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Figure 4.2a shows the relative pose of the compliant wrist with respect to the surface of a planar 

object before attempting to match the robot’s pose to that of the object’s surface. The robot moves 

towards the object and progressively (Figure 4.2b-d) refines its pose over the object and after three 

iterations the error reaches the desired set point (Figure 4.2d).  

 

The corrections performed by the adaptive position controller to correct and adjust the robot pose 

for each configuration during interaction are detailed in Table 4.2 (values in mm) for the test case 

illustrated in Figure 4.2. At the first configuration, the average distance from the planar surface is 

73 mm. Since the desired distance from the object is set to 20 mm, the initial position error is 53 

mm. In order to correct the deviation, the adaptive position controller is activated and the control 

parameters are tuned based on the error value at each configuration. At the first configuration, the 

adaptation gain (𝜆 = 0.9) is generated by the fuzzy controller based on the position error and the 

position control signal (Ӕ = 45.02 𝑚𝑚) indicates that the robot should move towards the object 

to compensate the error. In the next configurations, the adaptation gain and therefore the position 

control signal both get smaller, as expected, when the robot gets closer to the set point after each 

iteration. The position control signal is generated until the stop condition is satisfied and there is 

no change in distance error.   

Table 4.2: Adaptive position controller performance, proximity mode. 

Configuration 
Initial 

Distance 

Initial 
position 

error (mm) 

Final 
position 

error (mm) 

Position 
adaptation 

gain (λ) 

Position 
control 

signal (Ӕ) 

1 73 53 11.5 0.9 45.02 

2 31.5 11.5 3.6 0.679 7.83 

3 23.6 3.6 2.1 0.339 1.24 

A series of 10 position matching processes were examined where the object is positioned in 10 

random positions with different initial distance error from the robot (the first 3 steps correspond to 

the case detailed above and to values reported in table 4.2). The position control parameters are 

tuned based on the distance error at each iteration (depicted on top of each bar in Figure 4.3a). The 

fuzzy adapter presented in section 3.3.1.1 tunes the adaptation gain properly for each scenario 

(shown in different colors) and the proposed controller generates the position control signal which 

results in fast but smooth error reduction. The evolution of the position error for all 10 pose 

adjustments performed solely in the proximity control mode is shown in Figure 4.3b. The red 
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markers and labels show the initial error at the beginning of each position adjustment process, and 

the blue markers show how the position error reduces after each iteration, and eventually converges 

toward the desired set point (black markers).  

 

(a) 

 

(b) 

Figure 4.3: Position error corrections during 10 consecutive trials (red dots) of proximity position 

adjustment: (adaptation gain value and remaining position error over each bar, and b) evolution of 

position error with respect to set point at each iteration. 

 

4.2.2 Experiment 2: Position and Orientation Matching with a Static Surface in 

Proximity Motion Mode 

The second scenario is similar to the previous one, except that this time the orientation of the object 

surface is also changed for each test run. As a result, both translation and orientation deviations 

from the desired set points must be corrected for simultaneously while the robot attempts to match 

the end-effector’s position and orientation with that of the object surface. The object otherwise 

remains static for the duration of each position and orientation matching process. 
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An example of the simultaneous position and orientation adjustment process in proximity control 

mode is shown in Figure 4.4. When there are translation and orientation errors between the robot 

and desired set points, both the position and orientation controllers are activated simultaneously to 

compute the respective adaptation gains and generate control signals to reposition the compliant 

wrist using the data provided by the external sensors only on the compliant wrist. The pose 

adjustment’s iterations and the results obtained with the proposed adaptive position and orientation 

controllers are detailed in Table 4.3 and Table 4.4 for the test case illustrated in Figure 4.4. At the 

first configuration, the initial distance from the planar surface is 41.6 mm and since the desired 

distance and orientation from the object are again set to 20 mm and 0 degree respectively, the 

initial position error is 21.6 mm and the absolute orientation deviation, 𝑒𝑛𝑜𝑟𝑚, (Eq. 3.37) is 0.327 

rad (Figure 4.4a). The position adaptation gain (λ) is tuned by the proposed fuzzy controller based 

on the distance error, and the orientation tuning gains (𝜂Ɵ 𝑎𝑛𝑑 𝜂𝜑) are generated based on the roll 

(𝑟𝑆
Ɵ) and pitch (𝑟𝑆

𝜑
) orientation errors (Eq. 3.38) using the exponential decrease function (Eq. 

3.37).  

    
(a)                                                            (b) 

   
(c)                                                          (d) 

Figure 4.4: Proximity interaction with position and orientation adjustments: a) initial pose; after 

b) first iteration; c) second iteration; and d) third and final iteration. 
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Table 4.3: Adaptive position controller performance, proximity mode. 

Configuration 
Initial 

Distance 

Initial 
position 

error (mm) 

Final 
position 

error (mm) 

Position 
adaptation 

gain (λ) 

Position 
control signal 

(Ӕ) 

1 41.6 21.6 8.6 0.76 16.65 

2 28.6 8.6 4.8 0.411 3.77 

3 24.8 4.8 2.6 0.33 1.60 

 

Table 4.4: Adaptive orientation controller performance, proximity mode. 

 
Configuration Initial error  

(rad) 

Final error 
(rad) 

Orientatio

n error, 𝒓𝑺
Ɵ 

 (rad) 

Orientation 

error, 𝒓𝑺
𝝋

 

 (rad) 

Orientation 
adaptation 
gain (𝜼Ɵ) 

Orientation 
adaptation 
gain (𝜼𝝋) 

Orientation 
control signal 

(𝒓𝑨
Ɵ) 

Orientation 
control signal 

(𝒓𝑨
𝝋
) 

1 0.32 0.09 0.18 -0.26 0.892 0.959 0.167 -0.258 

2 0.09 0.02 -0.01 -0.08 0.448 0.978 -0.006 -0.087 

3 0.02 0.01 -0.02 -0.01 0.968 0.830 -0.025 -0.011 

 

The adaptation gains and the pose control signals are larger when the error is large and get smaller 

when the error decreases as expected. However, near the equilibrium orientation point, 𝑒𝑜 → 0 

(Eq. 3.34), the orientation tuning gains switch back to a larger gain when the orientation error 

becomes very small, which results in a faster convergence. The robot moves towards the object 

and progressively (Figure 4.4b-d) refines its pose to match that of the object surface. After three 

iterations, the final end-effector pose reaches the desired set points, while preserving the system 

stability and ensuring safe interaction.  

 

A series of 10 position and orientation matching processes using only proximity motion mode 

were performed and closely examined. The tuning of the adaptation gains with the proposed fuzzy 

controller (Eq. 3.23) and exponential decrease function (Eq. 3.37) for the proximity interaction 

experiments is shown in Figure 4.5, as a sequence of individual operations (the first 3 steps 

correspond to the case detailed above and to values reported in Table 4.3 and Table 4.4). The 

position control parameters are tuned based on the distance error at each iteration (depicted on top 

of each bar in Figure 4.5a) and the orientation adaptation gains (𝜂Ɵ, 𝜂𝜑) and orientation control 

signals (𝑟𝐴
Ɵ, 𝑟𝐴

𝜑
) are generated to adjust the end-effector orientation based on the orientation error 

(𝑟𝑆
Ɵ, 𝑟𝑆

𝜑
) at each iteration (Figure 4.5b). In contrast to the position adaptation gain, the adaptation 



81 
 
 

gains 𝜂Ɵ, 𝜂𝜑 (grey and orange lines) do not always vary proportionally to the orientation error 

𝑟𝑆
Ɵ, 𝑟𝑆

𝜑
 (red and green bars). The gains are large when the orientation error is large and get smaller 

when the error decreases, but when the error becomes very small, the gains get back to larger 

values in order to reduce the convergence time and oscillation near the equilibrium point. Although 

the orientation adaptation gains do not vary linearly with the angular error value, it is observed 

that the orientation control signals 𝑟𝐴
Ɵ, 𝑟𝐴

𝜑
 do vary proportionally with and change based on the 

orientation errors. The behavior observed through these experiments demonstrate the feasibility 

and efficiency of the proposed adaptive orientation controller.   

 

(a) 

 

(b) 

Figure 4.5: Proximity position adjustment during 10 consecutive trials: a) position adaptation gain 

value and remaining position error over each bar, and b) rotation gains self-tuning (grey and yellow 

bars) based on the orientation error (red and green bars). 
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The evolution of the position and orientation errors for all 10 proximity control mode pose 

adjustment process conducted is shown in Figure 4.6. The red markers show the initial position 

and orientation error, respectively, at the beginning of each pose adjustment process. The blue 

markers show how the position and orientation errors is progressively and smoothly reduced after 

each iteration, and eventually converge toward set point as expected, with black markers depicting 

final residual errors. 

 

(a) 

 

(b) 

Figure 4.6: Position and orientation error corrections over 10 consecutive pose adjustment 

processes with the proximity control mode. 

Analysis of the two proximity interaction results show that the number of iterations for each pose 

adjustment process varies based on the initial distance and orientation from the desired set point. 

However, it can be slightly different for some cases due to the sensor’s measurement variations 

that influence the system performance especially near the convergence point. The average final 

position error from the set point over the 10 runs is 2.1 mm for the first experiment and 2.06 mm 
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for the second experiment. It should be noted that the distance error values are reported by the 

compliant wrist. The actual final error was measured by a metric ruler after each adjustment. The 

actual mean final position error for both experiments was about 1.8 mm and the standard deviation 

was 0.42 mm. The final orientation error after each adjustment was very small so it was not feasible 

to perform ground truth measurements on those angles. The mean orientation error reported by the 

compliant wrist over the 10 runs is 0.007 rad and the standard deviation is 0.001 rad.  

 

4.2.3 Experiment 3: Position and Orientation Matching with a Static Surface in 

Contact Motion Mode 

The purpose of the third experiment is to evaluate the system performance while operating in the 

proposed contact control mode, that is when the robot end-effector makes contact with the surface 

of an object and should remain in contact with it while adjusting and matching its position and 

orientation with that of the surface of the object. The internal sensors of the compliant wrist are 

used to detect the contact when the compliant plate of the wrist is deflected. In order to make sure 

that the robot is perfectly in contact with the object and detects the contact via its internal sensors 

during the interaction, the desired distance to the object is set to -3 mm and the desired orientation 

is set to 0 rad. The negative value represents the compliant plate deflection amount toward the 

fixed plate of the wrist due to the force imposed by the object. 

 

Figure 4.7a shows the initial pose of the robot end-effector and the planar surface considered for 

this experiment before attempting to match the robot’s pose to that of the object’s surface. Figure 

4.7b and Figure 4.7c illustrate the robot relative position and orientation after the first and second 

iterations as the manipulator performs its movement up to the desired pose. The results obtained 

with the proposed adaptive position and orientation controllers while operating with a physical 

contact are reported in Table 4.5 and Table 4.6 for the test case shown in Figure 4.7. The tables 

show the control parameters used to define the robot pose at each iteration. 
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(a)                                                             (b) 

  
(c) 

Figure 4.7: Contact interaction: pose at a) initial configuration after contact is reached, b) after 

first iteration, and c) after second and final iteration. 

 

Table 4.5: Adaptive position controller performance. 

Iteration Initial position 
error (mm) 

Final position 
Error (mm) 

Position adaptation 

gain (λ) 
Position control 

signal (Ӕ) 

1 -24.1 -10.5 0.792 -19.11 

2 -10.5 -2.20 0.458 -9.05 

 

Table 4.6: Adaptive orientation controller performance. 

 
Iteration 

Initial    
error  
norm 

Final  
error 
norm 

Orientation 

error, 𝒓𝑺
Ɵ 

(rad) 

Orientation 

error, 𝒓𝑺
𝝋

 

(rad) 

Orientation 
adaptation 
gain (𝜼Ɵ) 

Orientation 
adaptation 
gain (𝜼𝝋) 

Orientation 
control 

signal (𝒓𝑨
Ɵ) 

Orientation 
control 

signal (𝒓𝑨
𝝋
) 

1 0.32 0.15 -0.32 -0.03 0.979 0.342 -0.320 -0.012 

2 0.15 0.04 -0.10 -0.11 0.928 0.943 -0.097 -0.107 

 

Figure 4.8 shows the system performance for 10 random contact pose adjustments. Similar to the 

second experiment reported in section 4.2.2, the planar surface position and orientation is changed 

in between each test case. But it remains static for the duration of the each entire position and 



85 
 
 

orientation matching process. The initial position and orientation errors at the beginning of each 

pose adjustment process and the error correction achieved after each iteration are shown by the red 

markers and blue markers respectively. It can be seen that the control parameters in Figure 4.8c, 

change based on the online sensory information to make the necessary adjustments. The final 

position error shown in Figure 4.8a has negative values that confirm the compliant plate deflection 

(shaft compression) due to the force imposed by the object during the pose adjustment and 

therefore the ability of the robot to maintain contact after each adjustment as desired. The mean 

final position and orientation errors from the result obtained by the compliant wrist are -2.09 mm 

and 0.023 rad. Although the number of iterations and the pose error are influenced by the sensor’s 

signal variability, the robot successfully refines and matches its position and orientation with that 

of the surface of the object after a two to three iterations only, demonstrating stability and accuracy 

both in position and in orientation.  
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(c) 

Figure 4.8: a) Position and b) orientation error corrections during 10 contact pose adjustments, 

with c) corresponding adaptation gains. 

 

4.3  Dynamic Object-Robot Interaction 

This fourth experiment validates the proposed hybrid switching control scheme that integrates and 

ensures smooth switching between five different motion modes. In order to test the controller up 

to its full capability, as it adapts the robot configuration to that of a moving target in 3D space, an 

individual holds a planar surface in front of the robot and moves it frequently to random positions 

and orientations in an unpredicted way, while remaining within the workspace of the robot 

manipulator. The robot is required to adapt its pose to continuously match the end-effector’s 

position and orientation with that of the dynamic object (with a desired distance between the end-

effector and the surface set to 0mm, and an orientation relative to the surface also set to 0 rad). 

 

The entire sequence of operation that is described in chapter 3, from RGB-D data acquisition 

(section 3.2.1), user selection of the object of interest (section 3.2.2), target retrieval using the 

compliant wrist’s embedded sensors (section 3.5), as well as position and orientation controllers 

(section 3.3), and the hybrid switched controller (section 3.4) must repeatedly transition in between 

different interaction modes from free motion (Figure 4.9a), to proximity (Figure 4.9b), and to 

contact (Figure 4.9c), and vice versa. The experiment begins by monitoring the behavior of the 

manipulator robot when there is no object in front of the robot. First, the RGB-D data is acquired 

by the Kinect and the RGB image is presented to the operator. The 3D information about the object 
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of interest is extracted from the corresponding area of the point cloud when the operator clicks on 

the object in the RGB image. The free motion mode is activated (Figure 4.9a) and the robot moves 

towards the selected object. It should be noted that in this experiment it is not desired to explore 

the object surface but rather react and follow the object’s movement dynamically. Therefore the 

Kinect information is only used to guide the robot towards the object at the beginning of the 

procedure. The object may move during the approach phase while it is not yet detected by all the 

external sensors embedded in the compliant wrist. Therefore, the retrieval algorithm (section 3.5) 

takes control of the robot movement to guide the robot in the proper direction for all the external 

sensors to eventually detect the object before any interaction occurs. Once the object is detected 

by the four external IR sensors, depending on the object’s position, a specific motion mode is 

assigned by the hybrid controller for the end-effector to begin its dynamical interaction with the 

object. 

 

   

(a) 

    

(b) 
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(c) 

Figure 4.9: Complete process of robot-object interaction with a moving target surface: a) object 

detection and localization, b) proximity interaction, and c) contact interaction. 

As shown in Figure 4.10a for one of the test sequences performed, the position and orientation 

signals are continuously computed and the hybrid controller switches smoothly between all 

interaction modes using the data provided by the RGB-D sensor for free motion, external compliant 

wrist sensors for proximity interaction, and internal compliant wrist sensors for contact interaction. 

The blend motion modes are activated when it is possible for data derived from the different sensors 

to be combined and to ensure smooth transition from one of the three main interaction modes to 

another. The blending gain (β) proposed in section 3.4 is used for gain scheduling. As shown in 

Figure 4.10b, the blending gain value is 0 for free motion (depicted in green) and contact (depicted 

in orange) modes, is 1 for proximity (blue) mode, and it varies between 0 and 1 to blend the three 

main motion modes according to the proposed blending weight distribution (Figure 3.14), as 

desired. In the first phase (depicted in green) the robot moves toward the object (free motion). Since 

at the beginning of the interaction, the object is not completely detected by the external sensors 

(Figure 4.10a), the error is large but the robot adjusts its position using the retrieval algorithm 

(section 3.5). The error distance decrease corresponds to the object coming into the line of sight of 

each of the embedded external infrared sensors. When the object is detected by all four sensors the 

interaction mode switches automatically and smoothly to the proximity mode, or to any other 

interaction mode based on the online sensory information, to best align the robot end-effector pose 

with that of the object surface (Figure 4.9b-c). The peaks of error visible in Figure 4.10a happen 

when the object moves to a new position, as manipulated by an individual, whether it is operating 

in the proximity (Figure 4.9b) or the contact (Figure 4.9c) control mode. In all cases, the proposed 

hybrid-adaptive switched control scheme is successful at recovering the new pose of the target 
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object and making the end-effector efficiently and smoothly adapt to the new configuration. As 

shown in Figure 4.10a, the errors on position and orientation are systematically reduced and the 

deviation in between the end-effector and the surface converges toward zero as a result of effective 

switching between the different modes of operation considered. 

    

(a) 

 

(b) 

Figure 4.10: Hybrid switching control system performance: a) position error, and b) blending 

gain on position controller. 

 

4.4   Surface Following 

In the fifth experiment, it is desired to closely follow the surface of a curved object (Figure 4.11) 

and to explore the object surface completely while maintaining contact of the end-effector with the 

surface and accommodating its curvature accurately. This experiment illustrates particularly well 
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the context of development for the proposed solution, that is particles collection by smoothly wiping 

surfaces with arbitrary shape for automated security screening. The experiment reported here is also 

representative of alternative scenarios, including robotic inspection, welding, waxing, polishing, or 

printing. In the present case, the object considered is a real automotive door panel. The region of 

interest to be fully covered corresponds to the entire area located below the window line. The upper 

window area is not considered for these experiments since glass is not imaged well with Kinect 

sensor technology, and also the robot cannot reach the window area. The desired distance between 

the contact compliant plate of the end-effector and the surface of the object at any location is set to 

-3 mm. Parallel alignment between the contact compliant plate of the end-effector and the local 

orientation of the surface is imposed by setting 0 rad as a constraint on orientation. As shown in 

Figure 4.11 which shows the entire experimental setup, the Kinect sensor is located behind the robot 

and the latter moves on a two meter linear track to wipe the full width of the door panel surface.  

 

Figure 4.11: Door set up with respect to the robot and the Kinect sensor. 
 

The Kinect sensor collects raw 3D information on the environment. The RGB image captured by 

the Kinect (Figure 4.12a) is presented to the operator. The object of interest is selected by the 

operator and the corresponding part of the point cloud is automatically extracted from the scene, as 

shown in Figure 4.12b. The entire region that is segmented is then decomposed to a set of uniform 

cells. These are the same size as the compliant plate of the wrist (127x127 mm) which determines 

the size of the steps for trajectory planning. A global trajectory is then generated using the proposed 

coverage path planning method (section 3.1) to ensure complete coverage of the surface while 

scanning over the object of interest’s surface. The door panel size is 1018x509 mm, and the global 

trajectory consists a set of 32 points (32 occupied cells) that determine the successive end-effector 
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positions [𝑝𝐹
𝑥, 𝑝𝐹

𝑦
, 𝑝𝐹

𝑧] and orientations [ 𝑟𝐹
Ɵ, 𝑟𝐹

𝜑
, 𝑟𝐹
𝜓
] with respect to the robot frame (Figure 4.12c,d) 

to ensure full coverage of the object surface.  
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(b) 
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(d) 

Figure 4.12: a) A real automotive door panel, b) trajectory planning to ensure full coverage over 

the region of interest, c) global trajectory: position, and d) global trajectory: orientation. 

 

Once the global trajectory is generated, the free motion mode is initially activated to guide the robot 

towards the start point. When the robot reaches in close proximity of the object, the proximity 

(external) sensors embedded on the compliant wrist detect the object, the switching signal (𝛿) is 

determined using Eq. 3.48 and the switching supervisor selects a control mode according to Eq. 

3.49. Therefore, the motion control mode is switched to the proximity mode where the adaptive 

position and orientation controllers adjust the robot pose (Eq. 3.45) using the external sensors in 

preparation for a safe contact with the object. To ensure safe contact with the object and smooth 

switching between the proximity mode and the contact mode, the online information provided by 

the internal and external sensors are combined (Eq. 3.49) and the blend mode is activated. When 

contact happens, the control mode switches to the contact mode only and the adaptive controllers 

refine the robot end-effector’s position and orientation over the object using the internal sensory 

information (Eq. 3.46) and maintain contact with the object during the interaction. The robot then 

moves to the next pose defined by the global trajectory and the same process as above repeats for 

each moving step until the robot reaches out to all the 32 points (cells) and fully explores the panel 

(Figure 4.13).  
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Figure 4.13: Illustration of accurate match between end-effector and curved object surface at 

selected configurations over a curved automotive door panel.  
 

Figure 4.14 shows the adaptive controllers performance in refining the global trajectory during the 

interaction process. The depth adjustment over the object surface using the adaptive position 

controllers (depicted in blue) is shown in Figure 4.14a, and compared with the depth measurements 

estimated from the RGB-D data (depicted in orange). In other words, the orange curve represents 

the pre-planned trajectory for the end-effector, while following the sequence depicted in Figure 

4.14b. It is noticeable that as the door panel is slightly inclined, as can be seen in Figure 4.13, the 

bottom part, scanned at the end of the trajectory, is closer to the Kinect sensor. As such, distance is 

progressively reduced as the robot progresses through the 32 moving steps. The robot pose over the 

object surface varies according to change of the door curvature. When the robot moves horizontally 

the change in depth (corresponding to the X axis in the robot’s reference frame) is small because 

the curvature of the door in the scan line is consistent, but when the robot moves vertically on the 

object surface the depth changes more abruptly due to the curvature of the door being more 

prominent along the vertical direction. The robot moves vertically three times at steps 9, 17 and 25. 

Conversely, the blue curve represents the same trajectory but as it was refined and actually 

performed under the more accurate guidance of sensors embedded in the compliant wrist, especially 
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the internal ones as contact needed to be maintained throughout the experiment. The distance along 

the depth axis is increased on all locations with respect to that of the orange trajectory. This means 

that the end-effector reached further, and closer to the door panel, than what was initially planned 

from the approximate surface location estimates extracted from the Kinect sensor depth map. The 

general trends of distance variations over the pre-planned and actual trajectories remain consistent. 

This demonstrates that the original approximate trajectory supports adequately the process of 

surface following and ensures complete coverage, while the embedded sensing stage provided by 

the compliant wrist allows for a much more accurate match of the end-effector with the local surface 

position and orientation at all locations, while also ensuring smooth and stable approach phases and 

potential recovery of contact. Such a behavior goes beyond what more traditional force/torque 

control schemes can provide, as the proposed integrated sensing and control framework closely and 

seamlessly monitors the surface and controls the robot over the entire interaction period, from far 

away from the surface and up to full contact with it. 

 

The orientation correction is represented in Figure 4.14b, the local object surface orientation with 

respect to the robot base frame around the y-axis (in grey) and z-axis (in green) estimated as part of 

the offline path planning process are also updated locally using the online sensory information (in 

blue and orange) from the compliant wrist. As the results show, the global trajectory is also refined 

locally in orientation, further refining the complete exploration of the door panel while 

accommodating its inherent curvature.  
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(b) 

Figure 4.14: Hybrid controller performance in refining the robot a) position and b) orientation. 

 

The switching mode control graph (Figure 4.15a) shows the switching process between different 

interaction modes for this task. Referring to Eq. 3.51, the system switches between the proposed 

modes and the blending gain changes based on the robot distance from the object as desired. Once 

the robot detects the object completely (free motion), the interaction mode switches to proximity. 

Once the contact happens, the motion mode switches between the contact mode and the blend 

(Proximity-Contact) mode. As mentioned, in this experiment it is desired to follow and slide on the 

object surface while maintaining contact. For this purpose, the desired distance from object is set 

to -3 mm. According to Eq. 3.48 and Eq. 3.49, the best results are obtained when the sensory 

information of internal and external sensors are combined and the system operates in the blend 

mode (Figure 4.15a).  

 

When the robot makes contact with the object, the compliant plate deflection is detected by the 

internal sensors (when there is no contact, the compliant plate is in an equilibrium condition and 

the internal sensors return a value of zero). As Figure 4.15b shows the compliant plate has been 

deflected during the task after a few moving steps (free and proximity motion) at the beginning of 

the task and remained deflected, which confirms that the robot maintained contact during the 

surface following. The sensors S1, S2, S3 and S4 (four internal infrared sensors (Figure 3.9b)) 

return negative values where the compliant plate is deflected (compressed). 
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(a) 

 

(b) 

Figure 4.15: a) Activated modes at each step by the hybrid switched control system, b) internal 

sensors dataset, for the fifth test scenario provided full surface following over an automotive 

door panel. 
 

Analysis of all the different experiments results demonstrate the accuracy, performance and 

stability of the adaptive controllers in refining the robot pose over the object using the online 

sensory information. The precision achieved for position and orientation was within ±3 mm and 

±0.05 rad respectively. The results obtained in [181] in relation with the development of the 

instrumented compliant wrist reveal that the pose measurement estimated by the compliant wrist 

sensors can reach up to ±2.4 mm on the error in distance and ±0.03 rad deviation in rotation, 

depending on the object pose with respect to the robot. Therefore, it is credible to associate the 

major sources of error in the proposed control scheme to the embedded sensing stage in the 

compliant wrist, as the performance of the proposed controllers is commensurate with the sensors 

accuracy levels. 
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4.5  Discussion and Comparison with Other Methods 

Although much of the literature reviewed in preparation for this work produced interesting and 

promising results, a direct comparison of results could not be made due to variation in robots, 

objects and the novel sensing device used for our experiments. However, the capabilities of the 

proposed approach in data collection, adaptability, decision making and switching control is 

compared with previous works in this section. 

 

The problem of surface following (tracking) has been addressed by model-based methodologies 

[116-119] frequently where the object model is assumed to be known a priori. In these approaches 

force/torque sensors are mainly used to align the end-effector with the object surface and to adjust 

the contact point by devising adaptive rules based on the robot dynamic model. However, these 

approaches rely heavily on the predefined object model and the robot dynamics and are therefore 

not appropriate when there are structural uncertainties in the robot or object model. As discussed in 

section 2.1, in order to achieve a safe and reliable interaction with objects of different shapes, 

applying appropriate sensors to model the objects and update local information to refine the 

accuracy of the representation plays a significant role to enhance the speed, accuracy and 

performance of the overall robotic application. Various sensors have been used for object modelling 

(section 2.1.3.3), such as 3D profiling cameras, scanners, sonars, laser or combinations of them. 

However, these sensors are expensive and acquisition is usually lengthy and requires the processing 

of massive amounts of information. Alternatively, in this work, the problem was addressed by 

integrating only a low cost but fast Kinect sensor to collect 3D information on the scene and 

generate a primary global trajectory for the manipulator to scan and explore the entire surface of an 

object of interest through using a 3D occupancy grid. To the best of our knowledge, no approach 

has been proposed for complete surface coverage robot path planning on objects of arbitrary shape, 

without requiring a detailed model of the said object. In the former surface following approaches, 

the trajectory was generated using a predefined object model [116-119], or the object model was 

constructed using online sensory information as the robot moved along the surface in a random 

way, but no global trajectory was constructed [197, 198] to ensure complete coverage. In some 

other works, only the contours of the object of interest [199] or predefined contact points [200, 201] 

were considered and followed rather than the entire surface. 
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In order to enable industrial robots to interact with the environment and offer flexibility, adaptable 

compliance has been incorporated to industrial robots. Our review of the traditional and recent 

robotics technologies (section 2.2) shows that in many cases the modifications are technically 

challenging, not feasible and require hardware modifications, retrofitting, and new components 

which result in high costs. We address the flexibility problem by using a low cost custom-designed 

compliant wrist mounted on the robot end-effector to increase the robot mechanical compliance and 

reduce the risk of damages, both to the robot and the environment. Using additional sensors for 

global/local object modelling and incorporating compliancy to the rigid body of standard robots are 

crucial but not sufficient for safe and flexible interaction with objects in presence of uncertainties. 

To achieve reliable reactive interaction in such circumstances, adaptive controllers have been 

proposed. Most studies on adaptive control (section 2.3) for object-robot interaction tasks use 

force/torque sensors to adjust the robot pose over the object. The adaptive laws are designed based 

on the manipulator dynamic and contact characteristics. The controller’s performance relies heavily 

on the robot and environment model and is sensitive to modeling errors. Another major limitation 

of these approaches is that the controllers are only applicable where there is contact between the 

robot and the object. In this work, two original model-free self-tuning adaptive controllers were 

proposed to facilitate robot reactive interaction and surface following tasks with or without contact. 

The adaptive controllers are designed to control the robot’s position and orientation respectively 

using online sensory information provided by the infrared (IR) sensors embedded in the compliant 

wrist. The adaptive controllers indirectly solve the force control problem in the object-robot 

interaction in the form of a position control problem where the IR sensors provide the required 

information for the interaction instead of touch sensors (force/torque, tactile and haptic). In contrast 

to the other works (section 2.3), they neither require precise mathematical model of the robot and 

the environment, nor force/torque calculation and learning procedure. Moreover, using two 

different controllers allows the decoupling of the translational and rotational control loops that 

result in minimum convergence time, minimum oscillation, and higher accuracy. 

 

Combined together, the proposed global trajectory planning and adaptive control enable the robot 

to interact with an object in different motion modes under specific sensory guidance. In order to 

perform more complex tasks and interact with dynamic environments, it is essential to integrate, 
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combine and switch instantaneously between the control modes because change in the environment 

happens at unforeseen instants. Most of the previously designed hybrid systems (section 2.4) only 

use vision (proximity) and force/torque sensors for position and force control where the free motion 

is handled by the vision (proximity) sensors and force/torque sensor is used to adjust the contact 

force. Only few works proposed multi-phase control [202, 203]. These approaches use event based 

(hard) switching scheme in which the controller switches between the phases when certain 

conditions are satisfied. In contrast to previous works, the proposed hybrid switched control system 

employs hard and blend switches by taking advantage of logistic functions that lead to smooth 

transitions and weighted combinations of the different motion modes to fully leverage the sensory 

stages embedded on the compliant wrist to detect, refine and interact with an arbitrary located and 

shaped object of interest. Moreover, the proposed adaptive controllers and the hybrid switched 

approaches are general, in the sense that their concept and formulation are not restricted to the 

instrumented compliant wrist considered in this research. The embedded sensors scan be substituted 

by other type of sensors providing distance measurement and the control schemes can readily be 

integrated in other robotic control systems where interaction with surfaces or surface following is 

expected. 

 

In addition, comparison of the proposed hybrid switched control system for surface following and 

interaction with previous works not involving a compliant wrist [173], only using direct sensory 

information from the compliant wrist but without adaptive controllers [181], applying a classical 

fuzzy controller [204], and also a self-tuning fuzzy-PID controller [205], shows that incorporating 

the compliant wrist sensing stage increases the flexibly and accuracy of the performed task.  

 

When the data acquired by the compliant wrist sensors are directly sent to the robot controller [181], 

the robot oscillate a lot near the set points and convergence tends to be slow. To improve the 

performance, a fuzzy controller was applied [204] to react adaptively to the object movement and 

continuously match the end-effector’s position and orientation with that of the object. Although the 

fuzzy controller enables the robot to react fast to the changes, it had weak performance in reducing 

the oscillation and was not very accurate and stable.  
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In [205], a self-tuning fuzzy PID controller was applied to control the robot pose over an object (the 

real car door). As the results show, the self-tuning fuzzy-PID controller provides a fast response to 

changes and minimizes the error better than the fuzzy controller [204]. However, the controller is 

very sensitive to changes in the amplitude of the error and PID algorithms do not guarantee optimal 

control or system stability. In addition, as discussed in section 3.3.2, in order to improve the 

convergence and reduce the oscillation problem near the desired set points, decoupling the position 

and orientation controllers is suggested but setting up the fuzzy rule base for tuning the position and 

orientation adaptation gains is not efficient because it requires a larger number of membership 

functions, rules and variables and extensive computation time. The proposed  hybrid-adaptive 

switched control scheme addresses those limitation and experiments demonstrate that the weighted 

combination of four control modes benefitting from the fusion of multi-sensory information results 

in a faster convergence rate, higher accuracy and stable interaction with an arbitrary object surface.  

 

4.6  Chapter Summary 

This chapter presented the experimental results and evaluation of the proposed coverage path 

planning, adaptive position and orientation controllers as well as the original hybrid switched 

control scheme, which were tested individually and in an integrated manner on different scenarios. 

The results from the experiments validate the efficiency, accuracy and performance of the approach 

in close interaction with static or dynamic objects, and with and without contact. Experimentation 

also demonstrated the robot’s ability to successfully follow, both in position and orientation, the 

entire curved surface of an object of interest. The two original model-free self-tuning adaptive 

controllers that are introduced in this thesis were able to dynamically tune the adaptation gains, and 

generate position and orientation control signals to react to an object’s surface configuration or to 

its movements in order to guarantee safe and stable pose adjustment. In addition, five alternative 

motion modes were proposed, applied and integrated within the original proposed switching control 

scheme which utilizes a mixture of hard and blend switches, unlike state-of-the-art literature. It is 

demonstrated that the hybrid switch approach is capable to supervise the robot motion continuously 

and smoothly switch between different motion modes when it finds the robot within certain distance 

ranges from the object. These original concepts can easily be adapted to any robotic and sensing 

mechanisms, as well as to a variety of robotic applications. 
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Chapter 5. CONCLUSION 

5.1   Summary 

Following an extensive review of the related works, the pros and cons of different methods have 

been discussed and existing problems of the control schemes for adaptive and flexible object-robot 

interaction and surface following were identified. In order to take advantage of the various control 

techniques, a hybrid control architecture under multi-sensory guidance is proposed to perform an 

accurate and reliable interaction with and surface following of objects of arbitrary shape. The 

proposed hybrid system is a combination of deliberative (global) and reactive (local) path planning 

methods. 

 

The motion planning task is divided into 3 main interaction modes of free, proximity and contact 

motion modes. Each of the three motion control modes uses specific sensory information to guide 

the robot in different regions of the workspace based on the object of interest’s location and 

orientation. The free motion mode operates when the robot is far from any object and it is moving 

through free space until it reaches in close proximity of an object of interest. In the solution 

developed in this thesis, this mode is fed with information from a Kinect sensor that provides an 

approximate 2.5D model of the object of interest from which a global trajectory is generated with 

the goal to provide full coverage of a defined portion of the surface. This mode manages the robot 

motion during the approach phase. Once the end-effector reaches in close proximity to the surface, 

the proximity mode takes over to smoothly control the manipulator movement over the object 

surface where the robot pose is calculated according to the local information provided by an array 

of infrared sensors embedded on the compliant wrist. The contact mode is later on activated when 

the robot touches the objects surface, and then relies on sensory information from a second array 

of infrared sensors on the compliant wrist.  

 

Local information made available at and surrounding the contact point supports the development 

of an innovative form of reactive motion control that provides a manipulator with the capabilities 

of closely following the surface curvature while maintaining contact with the object. The proposed 

control scheme includes two unique self-tuning adaptive controllers that refine and stabilize the 
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robot pose over the object surface. However, using only a specific set of sensors and event-based 

(hard) switching control system tends to cause chattering, oscillation and system instability. 

Therefore, a novel hybrid switched control system is proposed to combine the sensory information 

and switch smoothly between the interaction modes by blending the main motion modes, resulting 

in a fourth blend motion mode. The proposed method was implemented and validated through 

experimental test runs with a 7-DOF robotic manipulator equipped with the custom instrumented 

compliant wrist considered for this research. The experimental results demonstrated that the robot 

can accurately and stably adapt its position and orientation to the configuration of static or dynamic 

objects, and to successfully scan an entire region of an object of interest under multimodal sensing 

while closely following the curved surface of an object with or without contact. 

 

5.2  Contributions 

This thesis proposes an original hybrid-adaptive switched motion control system for a reliable 

reactive and adaptive interaction and surface following of objects with arbitrary surface shape with 

or without contact using an industrial robot. The multi-stage control system utilizes offline and 

online trajectory planning and a combination of them to address the flexibility and adaptability 

problem of standard robots interacting with unstructured environment. The approach differs from 

the literature in terms of data collection, processing, trajectory planning and decision stages by 

developing a unique coverage path planning, two original self-tuning adaptive controllers and a 

hybrid switched control scheme. This offers an original self-standing solution for the important 

market that represent the rigid manipulators currently at work and the ones that will be installed in 

the near future. The proposed coverage path planning method ensures complete coverage of the 

selected surface independently from the contour and surface shape of the object. The adaptive 

controllers solve the force control problem in form of a position control problem where infrared 

sensors provide the required information for the interaction instead of touch sensors (force/torque, 

tactile and haptic). The proposed adaptive controllers require no learning procedure, no precise 

mathematical model of the robot and the environment and does not rely on force/torque calculation. 

As such the controllers enable the robot to interact with objects with and without contact. The 

original hybrid switch scheme which utilizes a mixture of hard and blend switches, integrates and 
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switches smoothly between the five alternative motion modes to supervise the robot motion 

continuously. 

 

Development of the system resulted in multiple contributions to the fields of surface coverage path 

planning, adaptive control, hybrid switching, object (human)-robot interaction, security screening 

and surface following. The work can also be applied for various industrial processes application 

such as paint removal, polishing, welding, sanding, sand-blasting, stamping, surface writing or 

printing.  The principal original contributions of this thesis are: 

 

1 Design of a strategy for real-time robot trajectory modification via two unique model-free self-

tuning adaptive controllers that react to the object movement and its dynamic changes of 

configuration to achieve an accurate and reliable close proximity and contact interaction; 

2 Design of multi-phase control strategies (free-motion, proximity  and contact), governed by a 

novel hybrid switched control approach that applies a mixture of hard and blend switches to 

seamlessly and efficiently combine the sensory information from multiple sensors and 

ensure smooth switching between different interaction modes; 

3 Development and implementation of a coverage path planning method using cell decomposition 

technique to ensure complete coverage scan or exploration of an object of interest; 

4 Development of innovative means to automatically collect, detect and extract 2.5D information 

over an object of interest in the robot workspace using fast but low cost RGB-D sensors. 

This research also led to a number of publications [159, 172, 173, 180, 204, 205, 206 and 207] and 

garnered recognition in the form of a Best paper award at IEEE International Systems Conference 

(2014), an IEEE award (2015) and Electrical and Computer Engineering award (2016) at the 

Engineering and Computer Science and Graduate Poster Competition held at the University of 

Ottawa. 
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5.3  Future Work  

This thesis proposes a new methodology for accurate, reliable and stable interaction with objects of 

arbitrary shape. Since the approach does not rely on the kinematic/dynamic model of the robot and 

requires no hardware and expensive mechanical modifications, it can be expanded and easily be 

implemented using any robot for a multitude of more complex applications. Therefore, there are 

still many opportunities to improve and extend the scope of this thesis:  

 The compliant wrist used for the online trajectory modification currently suffers from some 

problems that limit its practical application. Its current size and the accuracy of the 

measurements limit the robot movement and adoption in surface following and object tracking. 

The maximum and minimum rotational range that the internal and external sensors can detect 

is ±40⁰ and ±58.5⁰ which implies some restrictions in following surfaces with steep curves.  

 An eye-in hand 3D camera (Kinect fusion) can be mounted on the robot to provide live 3D 

local images to extend the work for some applications such as telerobotics, surgical robots and 

live 3D surface construction.  

 The adaptive controllers and the hybrid switched control scheme rely only on the distance 

measurement from the compliant wrist. Therefore, a better performance could be achieved by 

incorporating touch sensors (force/tactile) and improving the adaptive controllers to make 

them capable to regulate and adjust the robot pose and interaction forces simultaneously.  
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Appendix A – Microsoft Kinect Technology 

The Kinect sensor was built by Microsoft to revolutionize the gaming industry. It enables a 

computer to sense the third dimension (depth) of the environment and let people interact with 

computer games. Most of the sensors used in manipulator robots navigation are not capable to 

capture a color and a depth image simultaneously, and those that acquire depth require a 

considerable amount of time to perform range acquisition over an entire surface. In contrast, the 

ability in measuring and monitoring surfaces in 3D and the extreme acquisition speed of Kinect 

technology motivated the adoption of the Kinect sensor for rapidly acquiring objects of various 

shape and color and to develop a wide range of applications.  

 

The Kinect sensor, version Xbox 360 used in this research, contains an infrared (IR) projector, one 

color camera, and one IR camera (Figure A.1), as well as a microphone array. Its field of view is 

57° horizontally and 43° vertically, and the operational range of the sensor is between 0.8 to 3.5 

m, while it can be extended up to 6 m. 

 

 

 
 

Figure A.1: Microsoft Kinect sensor. 

 

 

The infrared projector generates electromagnetic waves and projects them on objects in form of a 

set of infrared dots (light pattern). The lights are reflected from the objects and captured by the 

infrared camera to create a depth map through correlation and triangulation. The information from 

the depth sensor and the RGB camera are combined to capture the surrounding world in 3D with 
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surface textures. The result of the combination is a RGB-D image at 640x480 pixels resolution 

where each pixel contains color and depth information.  

 

However, the depth values distribution is not the same over the entire field of view and the depth 

accuracy decreases with the distance due to calibration between the infrared projector and the 

infrared camera [208]. The accuracy can be improved by using specific calibration procedures and 

software correction of sensor outputs but it still might not be suitable for some robotic tasks. 

 

The color and depth images provided by the Kinect sensor are not registered. To merge the color 

and depth, first the Kinect’s internal intrinsic and extrinsic parameters should be determined. The 

intrinsic parameters for the color sensor are the focal length and the principal point, and the infrared 

sensor intrinsic parameters are lens distortion coefficients. The intrinsic parameters can be 

determined using the standard chessboard recognition method proposed by Zhang [209]. Extrinsic 

parameters for built-in Kinect sensors (color and depth) within each Kinect unit are determined by 

stereo calibration. The position between both cameras is defined by Eq. A.1: 

𝐻 = 𝐻𝑅𝐺𝐵𝐻𝐼𝑅
−1 (A.1) 

𝐻IR is the homogenous transformation matrix from the depth (IR) camera to a checkerboard target 

used for calibration, and 𝐻RGB is the homogenous transformation from the color (RGB) camera to 

the checkerboard target. The internal extrinsic calibration parameters allow to accurately relate the 

color to depth data collected by a given Kinect device. However, the Kinect sensor does not 

directly provide the registered color and depth images. Therefore, the 3D coordinates 

corresponding to each point in the depth image are computed as follows: 

𝑋𝐼𝑅 = (𝑥 − 𝑂𝑥_𝐼𝑅)𝑑𝑢(𝑥, 𝑦) 𝑓𝑥_𝐼𝑅⁄  

𝑌𝐼𝑅 = (𝑦 − 𝑂𝑦_𝐼𝑅)𝑑𝑢(𝑥, 𝑦) 𝑓𝑦_𝐼𝑅⁄  

𝑍𝐼𝑅 =  𝑑𝑢(𝑥, 𝑦) 

 

(A.2) 

where (XIR, YIR, ZIR) are the 3D point coordinates of pixel (𝑥, y) in the depth image with respect to 

the IR camera reference frame, (𝑥, 𝑦) is the pixel location in the depth map, (𝑓𝑥_𝐼𝑅, 𝑓𝑦_𝐼𝑅) is the focal 
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length of the IR camera, (𝑂𝑥_𝐼𝑅,𝑂𝑦_𝐼𝑅) is the optical center of the IR camera, and 𝑑𝑢(𝑥, 𝑦) is the 

depth of a pixel (𝑥, 𝑦) in the depth image. Next, the color is assigned from the RGB image to each 

3D point PIR (XIR, YIR, ZIR) as follows: 

𝑃RGB (𝑋RGB, 𝑌RGB, 𝑍RGB) = 𝑅 ⋅𝑃IR + 𝑇 

𝑥 = (𝑋𝑅𝐺𝐵. 𝑓𝑥_𝑅𝐺𝐵 𝑍𝑅𝐺𝐵) + ⁄ 𝑂𝑥_𝑅𝐺𝐵  

𝑦 = (𝑌𝑅𝐺𝐵. 𝑓𝑦_𝑅𝐺𝐵 𝑍𝑅𝐺𝐵) + ⁄ 𝑂𝑦_𝑅𝐺𝐵 

 

(A.3) 

where PRGB is the 3D point with respect to the color camera reference frame, 𝑅 and 𝑇 are the rotation 

and translation parameters from the color camera to the depth camera obtained from the calibration 

procedure, (𝑓𝑥_𝑅𝐺𝐵, 𝑓𝑦_𝑅𝐺𝐵) is the focal length of the color camera, (𝑂𝑥_𝑅𝐺𝐵,𝑂𝑦_𝑅𝐺𝐵) is the optical 

center of the color camera, and (𝑥, 𝑦) is the pixel location of color information in the color image.  

 

Kinect sensors can also be used for building dense 3D maps and modeling of large scale indoor 

environments. For this purpose, a multi-view vision system is required to rapidly acquire and 

reconstruct a full scale model of the environment. A calibration methodology was proposed in [168, 

170] to estimate the internal and external calibration parameters over a network of Kinect sensors 

to achieve accurate alignment between the respective point clouds and textured images acquired by 

each Kinect sensor that are distributed in a collaborative network of imagers to provide coverage 

over the large objects [210]. 
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Appendix B – Instrumented Compliant Wrist 

Taking inspiration from humans interacting with their environment, compliance is a key aspect for 

manipulation tasks that increase the flexibility of a robotic platform and reduce the risk of damage 

or injury. Various approaches and compliant devices were found in literature (section 2.2) to 

provide the required information for robot manipulators for safe and flexible contact interaction 

with objects. To prevent the need for sophisticated algorithms, expensive force and vision sensors, 

or costly modifications, an instrumented compliant robotic wrist device was designed and built by 

my colleagues [181] in the SMART research group. The device provides an adaptable interface 

between the environment and a robot. Moreover, it collects the required local information to 

support dexterous robotic interaction prior to initial contact, and also while contacting with an 

object using live proximity and contact feedback. 

 

The compliant wrist is composed of two rigid plates separated by springs which provide enough 

freedom for the upper compliant plate to adapt to the position and orientation of a surface that the 

robotic wrist might touch (Figure B.1). It provides a means of detecting objects both in proximity 

and in contact to the end-effector, as well as adding a degree of compliance to the end-effector 

which enables the latter to touch or slide on the object without damaging it. With the extra sensing 

capabilities provided, a robot controller can dynamically adapt to surface changes or displacement 

that may occur when contact with the robot happens.  

 

 

Figure B.1: Compliant wrist. 
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As shown in Fig. B.2, the compliant wrist is equipped with eight infrared distance measurement 

sensors. The infrared sensors are arranged in two arrays of four sensors each: an external array and 

an internal array. The external sensor array allows to measure distances at multiple points between 

the wrist and the object located in front of the end-effector, supporting control in proximity to 

objects. The internal sensor array is situated between the base of the compliant wrist structure and 

a moveable plate that allows the device to estimate the surface orientation and distance to an object 

when the robot is contacting with it. The combination of the two sensory layers provides the 

necessary information for fine tuning the robot pose while maneuvering in close proximity or 

contact with an object. To make use of the measurements provided by the compliant wrist, it is 

required to create a closed feedback loop between the compliant wrist module and a robot. This 

thesis focuses on the development of the corresponding control schemes to fully take advantage of 

the extra sensing data available through the wrist. 

          

Figure B.2: a) Compliant wrist sensors arrangement and b) dual sensing layers of the compliant 

instrumented device (reproduced with permission from [181]). 

The sensing layers estimate an object’s pose in the form of a 3D homogeneous transformation 

matrix. The rotation and translation parameters are obtained using the distance measurements from 

the IR sensors. Eq. B.1 shows how the transformation matrix is calculated using distances provided 

by the internal sensors (contact sensing layer). A similar calculation can be made from the external 

sensors (proximity sensing layer) using values E, F, G and H instead, as measured by external 

sensors (Fig. B.3). The transformation matrix determines the object pose with respect to the 

compliant wrist frame which is transferred to the robot’s base frame. 
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𝑄𝑒𝑛𝑑𝑒𝑓𝑓/𝑜𝑏𝑗𝑒𝑐𝑡 =

[
 
 
 
 

cos 𝛼 0 sin 𝛼 0
sin 𝛽 sin 𝛼 cos𝛽 − sin 𝛽 cos 𝛼 0

−cos 𝛽 sin 𝛼 sin 𝛽 cos 𝛽 cos 𝛼
𝐴 + 𝐵 + 𝐶 + 𝐷

4
0 0 0 1 ]

 
 
 
 

 

 

  (B.1) 

where 𝛽 = 𝑎𝑡𝑎𝑛2(𝐷 − 𝐵 𝑊⁄ ),  𝛼 = 𝑎𝑡𝑎𝑛2(𝐴 − 𝐶 𝑊⁄ ) 

 

 

Figure B.3: Distance measurements from internal and external sensors (reproduced with 

permission from [181]). 

Fig. B.4 illustrates the key components of a closed feedback loop involving the compliant wrist. 

The blue arcs in the vicinity of the compliant wrist module and the transceiver connected to the 

robot show how all information generated by the compliant wrist is delivered wirelessly to the 

robot controller to direct the motion of the robot. The communication channel is bidirectional 

which enables the robot controller to send commands to the compliant wrist module to make data 

requests. 

 

Figure B.4: Wireless communication between the compliant wrist and robot (reproduced with 

permission from [181]). 
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Appendix C – CRS F3 Manipulator 

The CRS F3 manipulator used for this research is a 6-DOF robot arm mounted on a 2-m long linear 

track (Fig. C.1), which adds a 7th DOF. 

 

 
 

Figure C.1: CRS F3 manipulator. 

 

 

The Denavit-Hartenberg parameters of the CRS F3 robot are given in Table C.1. 

Table C.1: Denavit-Hartenberg parameters. 

i 𝒂𝒊 𝒅𝒊 𝜶𝒊 𝜽𝒊 

0 0 𝐷0 90 180 

1 𝑎1 𝑑1 90 𝜃1 + 90 

2 𝑎2 0 0 𝜃2 + 90 

3 0 0 90 𝜃3 + 90 

4 0 𝑑4 90 𝜃4 + 180 

5 0 0 90 𝜃5 + 180 

6 0 𝑑6 + 𝐿 0 𝜃6 

 

where 𝑎1 = 100; 𝑑1 = 350;  𝑎1 = 270; 𝑑4 = 265 ; 𝑑6 = 75 and 𝐿 =  70.  
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The forward kinematic model and the inverse kinematic model of the robot can be deduced using 

the DH table in order to transform the desired trajectories planned in the Cartesian space to the 

joint space. If the transformation matrix of the end-effector related to the base is given by the 

following expression: 

𝑀06 = [

𝑟11 𝑟21
𝑟21 𝑟22

𝑟13 𝑇𝑥
𝑟23 𝑇𝑦

𝑟31 𝑟32
0 0

𝑟33 𝑇𝑧
0 1

] (C.1) 

The position of the center of the end-effector is given as follows: 

𝑜𝑥 = 𝑇𝑥 − (𝑑6 + 𝐿)𝑟13 

𝑜𝑦 = 𝑇𝑦 − (𝑑6 + 𝐿)𝑟23 

𝑜𝑧 = 𝑇𝑧 − (𝑑6 + 𝐿)𝑟33 

(C.2) 

There are different techniques to calculate the closed loop inverse model. Here, the inverse model 

was inspired from [211] and modified for the 7 DOFs, CRS-F3 manipulator. As a general solution, 

the first three joint’s angles can be deduced as follows: 

𝜃1 = 𝑎𝑡𝑎𝑛2(𝑜𝑦, 𝑜𝑥) 𝑜𝑟 𝜃1 = 𝑎𝑡𝑎𝑛2(𝑜𝑦, 𝑜𝑥) + 𝜋 (C.3) 

𝜃3 = 2𝑎𝑡𝑎𝑛 (𝑘1 ±√(𝑘1
2 − 𝑘3

2) 𝑘3⁄ )  (C.4) 

where  

𝑘1 = 2𝑎2𝑑4 

𝑘3 = 𝑜𝑥
2 + 𝑜𝑦

2 + 𝑜𝑧
2 − 2𝑜𝑥𝑎1𝑐1 − 2𝑜𝑦𝑎1𝑠1 + 𝑎1

2 − 𝑎2
2 − 𝑑4

2; 

𝑐1 = cos(𝜃1) 𝑎𝑛𝑑 𝑠1 = sin(𝜃1). 

𝜃2 = 𝑎𝑡𝑎𝑛2(𝑠2, 𝑐2)   

and 

𝑠2 = sin(𝜃2) = (𝑐2 − 𝑐1 𝜇2 𝜇1⁄ ) (𝑣2 − 𝑣1 𝜇2 𝜇1⁄ )⁄ ; 
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𝑐2 = cos(𝜃2) = (𝑐1 − 𝑣1𝑠2) 𝜇1⁄  

𝜇1 = 𝑎2 + 𝑑4𝑠3,  𝜇2 = −𝑑4𝑐3 

𝑣1 = 𝑑4𝑐3,  𝑣2 = 𝑎2 + 𝑑4𝑠3 

𝑐1 = 𝑜𝑥𝑐1 + 𝑜𝑦𝑠1 − 𝑎1, 𝑐2 = 𝑜𝑧 

𝜃4, 𝜃5 and 𝜃6, are calculated using the transformation matrix of the last three joints 𝑀36, while 

𝜃1, 𝜃2 and 𝜃3 calculated previously allow to determine the matrix 𝑀03. As  𝑀06 is already known 

from the position and orientation of the Cartesian desired point, the matrix 𝑀36 can be defined as 

follows: 

 𝑀36 = 𝑀03
−1𝑀06 = [

𝑟11 𝑟21
𝑟21 𝑟22

𝑟13 𝑇𝑥
𝑟23 𝑇𝑦

𝑟31 𝑟32
0 0

𝑟33 𝑇𝑧
0 1

] (C.5) 

Using the elements of matrix 𝑀36, the angles 𝜃4, 𝜃5 and 𝜃6 are calculated as follows: 

𝜃4 = 𝑎𝑡𝑎𝑛2(𝑟23, 𝑟13)  (C.6) 

𝜃5 = 𝑎𝑟𝑐𝑐𝑜𝑠(−𝑟33)  (C.7) 

𝜃6 = 𝑎𝑡𝑎𝑛2(−𝑟32, 𝑟31)  (C.8) 

 


