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Abstract

Sentiment analysis of Swedish reviews and transfer
learning using Convolutional Neural Networks

Johan Sundström

Sentiment analysis is a field within machine learning that focus on determine the 
contextual polarity of subjective information. It is a technique that can be used to 
analyze the "voice of the customer" and has been applied with success for the 
English language for opinionated information such as customer reviews, political 
opinions and social media data. A major problem regarding machine learning 
models is that they are domain dependent and will therefore not perform well for 
other domains. Transfer learning or domain adaption is a research field that study a 
model's ability of transferring knowledge across domains. In the extreme case a 
model will train on data from one domain, the source domain, and try to make 
accurate predictions on data from another domain, the target domain. The deep 
machine learning model Convolutional Neural Network (CNN) has in recent years 
gained much attention due to its performance in computer vision both for in-domain 
classification and transfer learning. It has also performed well for natural language 
processing problems but has not been investigated to the same extent for transfer 
learning within this area. The purpose of this thesis has been to investigate how
well suited the CNN is for cross-domain sentiment analysis of Swedish reviews. The 
research has been conducted by investigating how the model perform when trained 
with data from different domains with varying amount of source and target data. 
Additionally, the impact on the model’s transferability when using different text 
representation has also been studied.

This study has shown that a CNN without pre-trained word embedding is not that 
well suited for transfer learning since it performs worse than a traditional logistic 
regression model. Substituting 20% of source training data with target data can in 
many of the test cases boost the performance with 7-8% both for the logistic 
regression and the CNN model. Using pre-trained word embedding produced by a 
word2vec model increases the CNN's transferability as well as the in-domain 
performance and outperform the logistic regression model and the CNN model 
without pre-trained word embedding in the majority of test cases.
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Populärvetenskaplig sammanfattning
Sentimentanalys är ett fält inom maskininlärning och språkteknologi (eng. Natural Lan-
guage Processing (NLP)) där fokus ligger på att analysera text, tal eller annan typ av sub-
jektiv information. Ett generellt mål inom sentimentanalys är att avgöra polariteten, at-
tityden eller känslan i text eller annan information. Det kan exempelvis vara att avgöra
huruvida innehållet har positiv, negativ eller neutral ton. Sentimentanalys tillämpas i stor
utsträckning inom det som kallas ”voice of the customer” där målet är att få en inblick i
kunders förväntningar, preferenser och aversioner gällande produkter och tjänster. Detta
kan på ett automatiskt vis göras genom att med hjälp av maskininlärning analysera kundun-
dersökningar, kundrecenssioner eller sociala mediaflöden. Resultatet är något som sedan
skulle kunna användas som beslutstöd.

Användning av sentimentanalys för att bestämma polariteten hos film-, produkt- eller an-
dra typer av recensioner har tillämpats i stor utsträckning inom NLP-området. En svårighet
vad gäller sentimentanalys och andra områden där maskininlärning ska tillämpas är att välja
ut vilka kännetecken eller ”features”, som ska användas till att träna den prediktiva mod-
ellen. Features inom sentimentanalys är exempelvis ord, grupper av ord eller bokstäver.
Det finns en rad maskininlärningsmodeller att välja bland för utveckling av prediktiva mod-
eller. På senare tid har ett fält inom maskininlärning som kallas djupinlärning (eng. deep
learning) fått mycket uppmärksamhet. Djupinlärningsmodeller har förmågan att lära sig un-
derliggande strukturer i data på ett sätt som andra maskininlärningsmodeller inte kan där
kännetecken eller features inte manuellt behöver bestämmas av en människa utan modellen
kan själv lära sig det. Trots att sentimentanalys är utbrett inom forskningsvärlden är ma-
joriteten av forskningen emellertid huvudsakligen fokuserad på det engelska språket och det
är svårt att hitta liknande forsking för andra språk som exempelvis svenska.

Vid utveckling av maskininlärningsmodeller är det vanligt att träna en modell för en speci-
fik kontext. Detta görs lättast genom att träna en modell på liknande typ av data som
den sedan testas och tillämpas på. Ett uppenbart problem kring detta är att modellen blir
domänberoende och för varje nytt område måste en ny maskininlärningsmodell utvecklas,
tränas och testas vilket är både ett tidskrävande och upprepande arbete. En prediktiv modell
presterar bäst om den får träna på mycket data inom samma domän. Detta är dessvärre
svårt i många sammanhang då datatillgången ofta kan vara begränsad eller otillgänglig.
Överföringslärning eller domänanpassning (eng. transfer learning, domain adaption) är ett
aktivt forskningsområde som fokuserar på att tackla problemen gällande domänberoende
och databegränsning. Huvudidén är att träna en modell med data från en distribution,
källdomänen, och samtidigt få den att kunna prediktera data från en annan distribution,
måldomänen. Exempelvis skulle data från en domän kunna användas för att träna en modell
som kan prediktera data från en närliggande eller relaterad domän.

Djupinlärningsmodeller såsom CNN:er är ursprungligen utvecklade för bildigenkänning och
har på ett framgångsrikt vis använts inom överföringslärning inom just bildigenkänning. På
senare år har dessa nätverk även visat sig fungera väl för text- och sentimentanalys. Syftet
med denna studie har således varit att undersöka huruvida ett CNN är lämpad att användas
för överföringslärning inom sentimentanalys för svenska recensioner. Detta har undersökts
genom att studera hur en modell presterar då den tränas med varierande mängd data från



käll- och måldomänen. Genom att variera mängden träningsdata från olika domäner går det
att undersöka hur domänberoende modellen är för olika mängd och typ av data. Detta ger
även en indikation om hur relaterade käll- och måldomänen egentligen är. För att få ett per-
spektiv på hur djupinlärningsmodellen presterar har den jämförts med en traditionell mask-
ininlärningsmodell, logistisk regression, som anses vara väl lämpad för sentimentanalys.

Maskininlärningsmodeller har inte möjlighet att förstå eller hantera ren textdata utan text
måste representeras på ett numeriskt vis. Det finns en rad olika sätt att representera text
på numeriskt vis och vilket sätt som används kan ha stor inverkan på modellens prestation
gällande sentimentklassificering samt överföringsförmågan. Olika textrepresentationer har
därför undersökts i denna studie där bland annat en oövervakad (eng. unsupervised) modell
kallad word2vec använts till att förträna ordvektorer.

Undersökningen har visat att CNN:en utan förtränade ordvektorer som använts i denna
studie inte är vidare lämpad för överföringslärning inom sentimentanalys av svenska recen-
sioner i extremfallen där modellen tränas med data från en domän och sedan försöker klas-
sificera data från en annan domän. Detta då den traditionella modellen, logistisk regression,
presterar lika eller bättre i majoriteten av testfallen. Däremot är det möjligt att öka CNN:ens
prestation inom domänen genom att addera data från en annan domän i träningsprocessen.
I testfallen där all data används från både käll- och måldomänen presterar CNN:en bättre
än den logistisk regressionsmodellen i de flesta testfallen. Mängden måldomändata som
används till modellträning har i många fall haft en avgörande inverkan på resultatet där
denna studie visar att överföringsförmågan hos en modell ökar markant genom att ersätta
20% av källdomändata med måldomändata. Detta gäller både CNN:en och den logistiska
regressionsmodellen. Denna studie har också visat att textrepresentationen har en avgörande
inverkan på såväl överföringslärning som klassificering inom domänen då CNN-modellen
med förtränade word2vec-ordvektorer utklassar de andra modellerna i majoriteten av fallen
både gällande klassificering inom domänen men framför allt gällande överföringslärningen.
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1 Introduction
We use people’s opinion to make decision in our day to day life whether we are planning on
buying something, vote in elections, decide what movie to watch, hotel to stay at or restau-
rant to visit. Similar it is crucial for businesses to get insight in what consumer think about
their products or services to stay competitive. The amount of data generated on the Internet
each day is huge. A lot of the data is produced by people sharing or expressing their opinion
on various forums such as social media or blogs sites. Products, hotels, restaurants, movies
and similar are a common subjects people frequently express their opinions about. Senti-
ment analysis or opinion mining is a subfield to machine learning that focus on determine
the polarity or emotion of events, e.g. determine if a text has a positive, negative or neutral
tone. Machine learning models often require a lot of data in order to build accurate predic-
tive models. Therefore, with the increasing amount of freely available data generated on the
Internet every day, sentiment analysis or opinion mining has gained much attention [1]. It
can effectively be applied by businesses to analyse the so called “voice of the customer” to
get an overall understanding of customer opinions, something that subsequently can help in
decision making.

1.1 Problem
Using sentiment analysis to determine the contextual polarity of movie and product reviews
or social media posts like Twitter tweets and Facebook updates is widely applied in the field
of Natural Language Processing (NLP). This has lately been done with excellent result us-
ing deep learning techniques [2], [3], [4]. A crucial factor that affect traditional machine
learning model performance is the feature selection process. Features in sentiment analysis
can be letters, words or combination of words. Determine what features are relevant as well
as irrelevant for a particular problem is a difficult and time-consuming task [5]. Deep learn-
ing models have the ability to extract higher level features all by themselves and hence do
not actually need pre-defined features defined by humans [4], [6]. Even though sentiment
analysis has been extensively investigated, the majority of previous research are focusing on
the English language and it is hence difficult to find sentiment analysis research for other
languages such as Swedish.

The traditional way of building machine learning models is to focus on a specific context [7].
What this means is that normally a model is trained and evaluated on the same sort of data,
e.g. train a model based on movie reviews, test and evaluate it on other movie reviews in
order to achieve the best possible predictive model for unseen movie reviews. Even though
these models perform really well they have a serious drawback. That is the fact that they are
domain dependent and hence will not perform well on data from other contexts or domains
[1]. This is not really a problem if only a specific domain is evaluated and there exist plenty
of readily available labeled data. However, this is usually not what reality looks like. Of-
ten data comes in different forms, from different domains, is limited and unlabeled [8], [9].
To build machine learning or predictive models for every new domain might include fea-
ture selection, development, training, tuning, maintaining and sometimes manually labeling
data. This is a process that is difficult, repetitive and time consuming. Transfer learning and
domain adaption is a highly active research field that aims to tackle the problem of domain
dependence and data limitation where the distribution of source and target data differs [7].
The main idea is to utilize data from different but related domains where data is readily
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available to build predictive models for the target domain.

1.2 Purpose
The goal of this research is to investigate how transferable the deep machine learning model,
Convolutional Neural Network (CNN), is for sentiment analysis of Swedish reviews. There
are obvious needs for more generic machine learning models that can perform well on vari-
ous type of domains as well as in other languages than English. A way to address the issue of
domain dependent models can be to utilize data that are readily accessible from different but
related domains when building and training models. The related data in combination with
limited desired domain data can be used together to train, pre-train and fine-tune machine
learning models such as neural networks and deep neural networks. Deep learning models
such as CNNs has successfully been applied for transfer learning in the field of computer
vision but has not been investigated to the same extent within the field of NLP [10]. There-
fore, the aim of this research is to study how well suited CNNs are for transfer learning or
domain adaption for sentiment analysis of Swedish reviews. While the choice of machine
learning model most likely have a great impact on the end result the data representation,
pre-processing and pre-training phase must also be considered. This leads to the following
research questions.

• How well suited are Convolutional Neural Networks for cross-domain sentiment clas-
sification of Swedish reviews?

• What impact does the data representation have on the transferability across domains?

1.3 Disposition
This thesis report starts with a background section covering the fundamentals of machine
learning, a thorough description of supervised learning with artificial neural networks fol-
lowed by an overview of deep learning and a more in-depth explanation of what CNNs are
and how they work. This section also covers sentiment analysis, how to work with textual
data in machine learning as well as how to evaluate machine learning models. Lastly, a
section covering problem background along with related studies is presented. The experi-
ment section covers the type of experiments that will be conducted in this thesis to answer
the research questions. In the methodology section every necessary step taken to fulfill this
research are covered. This include, amongst other, data gathering, pre-processing, machine
learning modeling and evaluation. Next, is the data section where the data used in this thesis
is presented along with information such as amount of data and data distribution of cate-
gories and ratings.

The result section provides visual and tabular results of the conducted experiments. There-
after, the findings in the result section are highlighted where the CNN model is compared
with the baseline model and the impact of the text representation are discussed. Lastly, the
gained insights are summarized and suggestions of future work is presented.

2 Background
In this section, the field of machine learning is briefly described, followed by a more in-
depth explanation of supervised learning and neural networks. Next, Convolutional Neural
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Networks (CNN), some difficulties in machine learning, what sentiment analysis is, how to
work with text data and how to evaluate a machine learning model performance are covered.
Lastly, the problem background along with related studies in the area is described.

2.1 Machine learning
Machine learning is as described in [11] a field within computer science that allows for com-
puters to learn from previous experience without being explicitly programmed. A common
goal in machine learning is to build computational models that, as accurately as possible, can
predict the output of some input data. These models are constructed by combining knowl-
edge from the fields of computer science, optimization, statistics and probability. Machine
learning has successfully been applied in a variety of applications such as natural language
processing, text or document classification, speech and image recognition as well as recom-
mendation systems to name a few.

2.1.1 Different types of learning

Training machine learning models can be done in various ways, either through supervised,
unsupervised, reinforcement learning or a combination of these. Supervised learning is
essentially when a learner is trained on data points associated with labels to then predict or
classify the labels of unseen data points. In unsupervised learning the training data do not
have any labels. The learner train on that data and try to make predictions of unseen data
by for instance clustering similar data points together. A common problem in unsupervised
learning is that it is difficult to evaluate how well the model perform since the ground truth
is unknown. Reinforcement learning is quite different and instead of training on a lot of data
an agent interact with an environment with a set of rules specified by the programmer. The
agent receive rewards based on its actions and the rules of the environment. Reinforcement
learning is a type of trial-and-error process where the agent constantly learn from feedback
and previous experience. It is in a sense closely related to how humans learn new things
such as how we learn to ride a bike [11]. In this thesis both supervised and unsupervised
learning will be used to train models where the goal is to classify sentiment in Swedish
reviews across domains.

2.1.2 Artificial Neuron

Inspired by the biological brain the Artificial Neural Network (ANN) is widely used in the
field of machine learning to solve problems such as predictive modeling, classification and
function approximation. An ANN is a network of nodes connected to each other. The nodes
of the network, also called Artificial Neurons (AN) or perceptrons, are the basic building
blocks of ANNs. The neurons in a network are connected by weights and the structure of
a simple AN can be seen in Figure 1. An AN essentially takes an input, x, associated with
a weight, w, plus a bias term, b, calculate the net input which usually is a weighted sum,
(Equation 2.1), apply an activation function that decides whether the neuron should “fire”
or not. The role of the weights associated with the input is to either strengthen or weaken
the input signal. The operations of an AN can be seen as a nonlinear mapping from RN to
usually either an output in the range of 0 and 1 or -1 and 1 where N defines the number of
inputs. The choice of activation function determines to what interval the input signal will
be mapped and if the neuron should fire. The bias term allows for shifting the activation
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function to either right or left along the x-axis and is also associated with a weight and an
additional biasvalue, see Equation 2.2. [12]

Figure 1: Artificial Neuron

net =
N

Â
i=1

(xiwi)+b, where b is as in Equation 2.2 (2.1)

b = w0 ⇤biasvalue, where biasvalue usually is equal to 1 (2.2)

2.1.3 Activation function

There are various types of activation functions or transfer functions as they are sometimes
called. Step function, sigmoid function, tanh function or rectifier (ReLU) function are all
common activation functions [12]. A plot of the sigmoid activation function where l = 1
can be seen in Figure 2 and its corresponding mathematical expression in Equation 2.3. The
activation function maps the net input value to a value in the range of [0, 1]. The l parameter
controls the steepness of the function. In a binary classification problem the output value
can be seen as the probability that the input belongs to a certain class. Say that the activation
function outputs the value 0.8, this indicate that there is 80% chance that the input belongs
to class 1 and 20% chance that it belongs to class 2. A similar activation function used
for multiclassification task is the softmax function which will output a probability for every
class in the range [0,1] where the sum of the probabilities are equal to 1.
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Figure 2: Sigmoid activation function

f (net) =
1

1+ e�lnet (2.3)

The ReLU activation function, Figure 3 and mathematically expressed in Equation 2.4, maps
the net input to a value in the interval [0, •]. This means that all negative values are set to
zero. By setting negative values to zero and hence make the neuron inactive will ease the
computational load in a network with many neurons since fewer neurons are activated and
hence less computations are required. Also computations are linear for ReLU compared
to the exponential sigmoid function. It has also been shown in [13] that ReLU activation
function is well suited for not only image recognition but also for sentiment analysis with
sparse text data.

Figure 3: ReLU activation function

f (net) = max(0,net) (2.4)
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2.1.4 Neural Networks

As explained in [12] regular feed forward neural network has at least three layers; an input,
hidden and output layer where every layer consist of a few or several neurons. An example
of a feed forward neural network with two hidden layers, also called a Multi-Layer Percep-
tron (MLP), can be seen Figure 4. An MLP receives an input signal and passes that signal
through the network, layer by layer to finally reach the output layer. The output of a layer
is the input of the subsequent layer. In supervised learning, as briefly described in Section
2.1.1 the goal is to train a machine learning model so that it can classify or predict unseen
and unlabeled data by letting the model train on known labeled data. In this thesis the po-
larity of reviews are to be determined hence the model should be able to predict whether a
review has a positive or negative tone.

Neural networks can be used for supervised learning where the model, during training, is
given both an input as well as a label or target associated with that input. The network then
tries to minimize the error between the networks predicted output value and the target value
by adjusting its weights. The weight adjustments of the neurons are made by utilizing op-
timization and a method called backpropagation, further described in Section 2.1.6. Once a
network is trained it can be saved and used for later hence there is no need to retrain the net-
work with the same data every time it shall be used. What saving a trained network actually
means is that the architecture as well as the trained weights are saved then either the entire
network or just desired parts, i.e. layers or specific neurons of the network can be used for
other occasions.

Figure 4: Artificial Feed Forward Neural Network with two hidden layers

2.1.5 Cost function

Measuring how well a machine learning or statistical model predict the outcome of an event
can be done using a cost or objective function, sometimes also called a loss function [11].
Essentially what the cost function is measuring is the error rate between the predicted value
and the correct target value. The goal of the machine learning model is to obtain the smallest
possible error, i.e. to minimize the error and hence the cost function. There are several types
of cost functions. A common function is the Mean-Squared Error (MSE) that is used to
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calculate the average squared difference between the predicted values, p, and the target
values, t, see Equation 2.5. Cross Entropy (CE) (Equation 2.6), or binary cross-entropy
in binary classification problems, is another common objective function that has proven to
converge faster as well as yield better outcome in classification error rates compared to MSE
for ANNs [14]. In [15] the author demonstrate the advantage of CE over MSE when training
an ANN and demonstrates that for CE the closeness of the prediction is considered while
MSE tend to give much emphasis to incorrect outputs.

MSE =
1
N

N

Â
i=1

(pi � ti)2 (2.5)

CE =
1
N

N

Â
i=1

tilog(pi) (2.6)

Where p is the predicted value, t is the correct target value and N number of samples.

2.1.6 Gradient descent and back propagation

Running through an epoch include both a forward pass and a backward pass over the net-
work [16]. The forward pass include passing the data through the network, calculates the
net input or the weighted sum, apply an activation function and predict the outcome and
calculate the error rate, i.e. the difference between the predicted value and the target value.
An explanation of the forward pass for an AN is described in Section 2.1.2.

The goal of the backward pass is to obtain better predictions, i.e. minimize the error, for
the subsequent forward pass by updating the weight and biases of the network. This is an
optimization process used for training neural networks and it is called back propagation.

The process of minimizing the error or cost is built on using derivatives. Derivatives are
useful when it comes to finding the local minimum of a function. Gradient descent is a
popular optimization algorithm that uses derivatives to step wise follow the direction of the
negative gradient of the cost function with the ultimate goal of finding a minimum. Calcu-
lating the derivatives of the cost function, E, in a neural network can be done using the chain
rule. This is necessary since the cost function is a function of the activation function, y =
f (net). The activation function is a function of the weighted sum or net input, net, which is
a function of weights, w. Hence to calculate the gradient of the cost function with respect to
a certain weight i for a single neuron can be done using Equation 2.7 [12].

∂E
∂wi

=
∂E
∂y

∂y
∂net

∂net
∂wi

(2.7)

Assuming the MSE cost function (Equation 2.5), sigmoid activation function (Equation 2.3)
and net input as the weighted sum as in Equation 2.1, then the separate derivatives of Equa-
tion 2.7 can be derived as follow.

∂E
∂y

= 2(
1
2
)(p� t)1

= (p� t)
(2.8)
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∂y
∂net

= f 0(net)

= y(1� y)
(2.9)

∂net
∂wi

= xi (2.10)

Then Equation 2.7 can be expressed using Equation 2.8, 2.9, 2.10 as.

∂E
∂wi

= (p� t)( f 0(net))xi (2.11)

To decrease the error, the weight, wi, is updated to w0
i using the update rule in Equation 2.12.

w0
i = wi +Dw (2.12)

Where Dw is.
Dw =�h ∂E

∂wi
(2.13)

Where h is the learning rate. Equation 2.13 can hence be written as.

Dw = hdxi (2.14)

Where d is.

d = (p� t)( f 0(net))
= (p� t)(y)(1� y)

(2.15)

For large neural networks containing several neurons and hidden layers every weight w is
updated according to the same principle as described in this section.

2.2 Deep learning
Deep neural networks has recently gained much attention due to its state of the art perfor-
mance in machine learning for task such as image, audio and video recognition as well as
for tasks related to text and speech [17]. Choosing feature or feature extraction is a vital part
when working with traditional machine learning models. In NLP tasks this can for instance
be to choose what words to keep, how many words or decide whether to use single words
or combination of words. In deep learning, feature extraction is built-in and the model can
learn to extract features on its on with different levels of abstraction [6]. There are differ-
ent types of deep neural networks such as CNNs and Recurrent Neural Networks (RNN).
CNNs has shown particularly impressive performance for image recognition while RNNs
are more suited for sequential data like speech and text [17]. However, [2] has proven that
CNNs also achieves state of the art performance in NLP problems such as text and sentiment
classification. CNNs, what they are and how they work are further explained in subsequent
sections.

2.2.1 Convolutional Neural Networks

[18] explains that CNNs are similar to the standard MLP explained in Section 2.1.4. Both
networks contain neurons with weights and biases that are trainable. Weights are updated
with gradient descent and backpropagation and they both use non-linear activation function.
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Since CNNs were initially developed for image classification and computer vision the intu-
ition of CNNs are somewhat easier to grasp from a computer vision point of view. Therefor
in the following sections CNNs for NLP will be described with illustrations both from the
NLP as well as the computer vision perspective.

The main components in a CNN are the convolutional layer, pooling layer and fully con-
nected layer. Other important components are activation function, optimization algorithm,
dropout and a range of other hyperparameters that can be tuned. The fully connected layer
can be seen as a standard feed forward neural network described in Section 2.1.4, where the
final classification takes place. An example of a CNN architecture for sentiment analysis
can be seen in Figure 5.

Figure 5: Example CNN architecture for sentiment analysis

Convolutional layer
The input to a CNN is a numerical matrix that represent an image of pixels, a sentence
of words or characters. The primary task of the convolutional layer is to extract features
from the input matrix. By applying the convolutional operation spatial relations between
the pixels or words in the input matrix can be preserved and a new matrix with convolved
features can be obtained. The convolutional step is essentially a filter with weights that
slides across the input matrix and performs a dot product between the weights in the filter
and the input matrix [19]. An illustration of the convolutional step can be seen in Figure 6.
The filter slides from left to right starting in the top left corner and finishing in the bottom
right corner jumping down one row at a time. In the illustration in Figure 6 the mapping
from the input matrix through the filter to the convolved feature can be seen. After every
training session the weights in the filter are updated using backpropagation [20].

Figure 6: Convolutional operation

When dealing with images the input matrix is a set of pixels that represents the image. For
text applications each row in the input matrix can be seen as a word. However, the rows can
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also represent one or more characters instead of entire words though it is more common to
use words over characters. Since each row corresponds to a word, every word is represented
by a vector of numbers. These vectors are usually either one-hot vectors or word embed-
ding, concepts that are further explained in Section 2.5.

For images the filters are often quadratic and slides over different parts of the image re-
gion, see Figure 6. When dealing with text it is more common to slide over full rows, i.e.
words, using a filter width equal to the width of the matrix. However filters with different
heights can be used. The height of the filter indicate how many words the window should
capture or slide over and is sometimes called kernel, window or filter size. Applying the
filter to the corners or edges where no neighboring pixel values exists can be solved with
something called zero padding. What this means is that all the values that are not in the
matrix but captured by the filter is set to zero. This allow for applying the filter to every ele-
ment in the input matrix. The movement of the filter can be adjusted with a stride parameter.
In the sentence-word analogy a stride value of one implies that the filter moves one word
at a time capturing every word while a stride parameter of two capture every other word in
the sentence. Different number of filters with different kernel sizes can be used in the same
model. [20]

Pooling layer
In [21] the author explain that after the convolved feature matrices has been obtained typ-
ically a pooling layer is applied. One major purpose of the pooling operation, also called
sub-sampling, is to reduce the size of the convolved feature matrix while keeping the most
implicit information. This help to cut down the computation time and control overfitting
since the number of parameters is reduced [20]. The pooling layer extract specific and
hopefully important features from the input. As an example, if a sentence contains some-
thing like “horrible movie”, this region may yield a higher value for some filter compared
to surrounding regions and hence be detected by the pooling layer. There are different types
of pooling such as maximum, average or summation pooling. The most commonly used in
previous research for sentiment analysis is maximum pooling [2], [6], [19]. The way max
pooling work is basically that it extracts the largest value in the pooling window. When
dealing with text data the pooling window often spans over the entire filtered matrix extract-
ing the global maximum and hence a single number (although smaller windows can also be
applied). Figure 7 illustrate both global max pooling as well as max pooling with a window
size of 2x2 and stride value 2.

Figure 7: Pooling operation
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Additional components
Convolutional layer and pooling layer may be the major building blocks of CNNs but there
are some additional features or layers that can be of importance as well. Dropout is one such
layer whose purpose is to prevent overfitting, it is further described in Section 2.3. Another
technique similar to dropout is to add noise to the data [22]. In CNN architectures this can
be applied by adding a noise layer just after the input layer that will make small changes or
corrupt the input data slightly. One type of noise is the Gaussian noise which is a statistical
noise with normal distribution.

Optimization
There are several types of optimization algorithms. Gradient descent is one such optimiza-
tion algorithm briefly explained in Section 2.1.6. Other optimization algorithms are Adap-
tive Gradient Algorithms (AdaGrad) and Root Mean Square Propagation (RMSProp) which
are both extensions of gradient descent. A further extension of gradient descent as described
in [23] is an algorithm called Adam which it is a combination of AdaGrad and RMSProp.
It has been shown that Adam is well suited for problems with large datasets and/or many
parameters. It is also an efficient algorithm for deep learning that works well for computer
vision as well as NLP problems.

2.3 Difficulties in machine learning
Although statistical modeling and machine learning can be useful in many situations such
as function approximation and predictive learning there are also some common difficulties
related to these techniques. Overfitting and underfitting are examples of two such difficul-
ties. Overfitting in machine learning as described in [24] refers to a model that models the
training data too well. This means that the model learns the characteristics of the training
data in such extent that it has trouble to generalize and hence model new and unseen data.
As for overfitted models underfitted models also has trouble generalizing new unseen data,
however underfitted model cannot even model the training data.

For a neural network that tries to approximate a function the main causes for overfitting
is letting the model train for too long with too many nodes, i.e. parameters describing the
desired function. Deep neural network are powerful machine learning models but due to the
large number of nodes they are prone to overfitting [22]. There are however techniques to
address the problem of overfitting in deep neural networks. Dropout is a technique applied
during training where randomly selected nodes are dropped along with their connections
[22]. Other approaches is to use regularization, add noise to the input data and utilize a
validation dataset to determine when to stop training [25]. Adding noise or small changes
to the training data will challenge the neural networks robustness to handle a dataset that is
slightly modified.

2.4 Sentiment analysis
Sentiment analysis is as described in [26] a subfield to machine learning and natural lan-
guage processing (NLP) that focus on analyzing text, speech or other type of subjective in-
formation. A general goal within sentiment analysis is to determine the polarity or emotion
of events, i.e. determine if a text has a positive, negative or neutral tone. More sophisticated
emotions like anger, happiness, irony or sadness can also be investigated with the same tech-
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nique.

Sentiment analysis is sometimes called opinion mining and is widely adopted in the field
of NLP and has been applied to many different areas where people’s opinions can be found.
One such area is social media on the web. The increasing amount of freely available opinion-
ated data generated on the Internet and especially on social media and other social networks
today has made it easier to do research on large scale sentiment analysis. A variety of fields
have been investigated using sentiment analysis or opinion mining such as movie, product,
restaurant or hotel reviews, political opinions and recommendation systems [8]. Sentiment
analysis or opinion mining can be used for decision making for both businesses as well as
consumers. It is crucial for businesses to know what consumers thinks about their prod-
ucts or services. Simultaneously consumers want to know what other people think about a
product before they buy it themselves. Taking advantage of the vast amount of data on the
Internet using sentiment analysis can increase the understanding of ”the voice of the cus-
tomer” and hence help in the decision making process. [26]

Recently sentiment analysis has been studied using deep learning techniques. State of the
art performance for NLP tasks such as binary as well as multi sentiment classification and
opinion detection have been obtained using CNNs [2]. In [2] the author is using one convo-
lutional layer with kernel size of 3, 4, 5 and 100 filters. Other settings used are dropout with
a dropout rate of 0.5, ReLU activation function and global max pooling. Similarly in [19]
where the authors predicts the sentiment of Twitter tweets they use a single convolutional
layer, ReLU activation function and max pooling. They do however not specify all hyper-
parameters such as number of filters, kernel size and dropout rate etcetera. Other research
have used two convolutional layers [27].

2.5 Working with text data
Machine learning models cannot handle raw text as input therefore the text must be con-
verted or represented in a numerical way. There are a few common approaches to repre-
sent text data when dealing with sentiment analysis and document or sentence classification
problems. A few of these are described in the following sections.

2.5.1 Bag of Words

One common and simple approach is called Bag of Words (BoW) where the frequency of
words is used while the order of words and grammar is not considered [28]. It is easiest
illustrated with an example. Consider the following two sentences:

1. Justin likes to drink coffee with milk and sugar.

2. Katy likes sugar , she also likes to drink coffee with milk.

The vocabulary based on these sentences are:
['Justin ', 'likes ', 'to ', 'drink ', 'coffee ', 'with ', 'milk ',
'and ', 'sugar ', 'Katy ', 'she ', 'also ']

Which are the unique words from the sentences grouped together. The two sentences can
then be numerically represented as follows:

1. [1,1,1,1,1,1,1,1,1,0,0,0]

2. [0,2,1,1,1,1,1,0,1,1,1,1]
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Where the numbers indicates how many times each word appears in that sentence or docu-
ment. Here only single words or so called 1-grams or unigrams are used in the BoW model.
Another possible representation to capture a broader context would be to used n-grams. An
example of a 2-grams or bigram vocabulary based on the two sentences above is as follows:

['Justin likes ', 'likes to ', 'to drink ', 'drink coffee ', 'coffee with ',
'with milk ', 'milk and ', 'and sugar ', 'Katy likes ', 'likes sugar ',
'sugar she ', 'she also ', 'also likes ']

Instead of using every word in a corpus it is common to reduce the vocabulary size. Choos-
ing the number of words and which words to use can be done in different ways. Two com-
mon ways to do this is to either choose the most frequent words in the corpus or choose the
words based on something called ”Term frequency-inverse document frequency” (Tf-idf).
As explained in [29] calculating Tf-idf is a two step procedure. First Tf, which essentially is
the number of times a word appears in a document normalized by the total number of words
in that document, is calculated. Idf which indicate the importance of a word is calculated by
taking the logarithm of number of documents divided by the number of documents that has
the word in it. This can help filtering out stop words like ”the”, ”a”, ”and” etcetera which are
words that probably occur frequently in a corpus but are not that important for the context.

2.5.2 Ont-hot encoding

One-hot encoding is another approach for numerically representing words in text data. This
approach is also easiest illustrated with a simple example. Consider a vocabulary of three
words in a specific order, ”coffee”, ”milk” and ”tea”. Considering the order of the vocab-
ulary the individual words can be numerically represented using one-hot encoded vectors.
The first word, i.e. ”coffee” is represented as [1,0,0] where the 1 at position one indicate
that ”coffee” appears at position one in the vocabulary. Similarly ”milk” is represented as
[0,1,0] and ”tea” as [0,0,1] following the same principles [30].

2.5.3 Word embedding

Other more sophisticated word representations can be obtained by using models such as
Tomas Mikolov’s word2vec or Facebook’s fastText. They are so called word embedding
and constructed by training large corpus of text data in an unsupervised fashioned. The
aim of these models are to obtain numerical vectors representing each word in a vocabulary
where words that are similar should be close to each other in the vector space. These models
are probabilistic and can achieve tasks like vector(king)�vector(man)+vector(woman)⇡
vector(queen) [31]. A graphical example of this vector equation in 2D can be seen in Figure
8.

13



Figure 8: A classic word2vec example

The word2vec model is essentially a neural network with one input layer, one hidden layer
with linear neurons and no activation function and one output layer with a softmax function
used for multiple classification [31]. There are two approaches when building a word2vec
model, Continuous Bag Of Word (CBOW) and Skip-gram model. The CBOW model will be
used in this thesis and hence further explained. In the CBOW approach the neural network
tries to predict a word given a context where a context can be a word, a group of words or
a sentence. In the case where the context is a single word the input and target to the neural
network are one-hot encoded vectors. Initially, weight values are randomly assigned to the
hidden layers. The input is passed through the hidden layer till the output layer which in
turn predicts the output. The error between the output and the target is then calculated and
back propagation, as explain in Section 2.1.6, is applied to update the weights of the hidden
layer. After the network is trained, the output layer is removed and the trained weights of
the hidden layer represents the actual word vectors. Instead of the input or context being a
single word it can be several. The only difference is that the output of the hidden layer is av-
eraged element wise over the number of input words. The Skip-gram model does basically
the opposite, i.e. it will try to predict a context given a word.

Another type of embedding is to map positive integer values in an array to float values in a
lower dimension. When dealing with sparse vectors this can be an efficient way to represent
data in a more dense form. In deep learning this can be achieved by adding an embedding
layer as the first layer of the model. The embedding layer will take arrays of integer values
and map these to float values. An example is given in [32], the Keras documentation, where
the embedding layer maps the input array [[4], [20]] to the output [[0.5,0.1], [0.6,�0.2]]. In
this example the integer value 4 respectively 20 with dimension 1 x 1 has been transformed
to a vector of size 1 x n where n equals 2.

2.6 Evaluate performance
Measure the performance of a machine learning model can be done in a several ways. For
classification task a straightforward approach is to calculate the percentage of correctly clas-
sified and or incorrectly classified data points. This measure is called accuracy (see Equation
2.16) and as the name indicates measure how accurately the machine learning model can
classify unseen data points [12]. This is a reliable metric of performance when the dataset
used is balanced, i.e. the number of data points in each class are evenly distributed. Say that
a dataset contains 50% positive and 50% negative data points. A machine learning model
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with accuracy 80% performs way better compared to randomly guessing if the next data
points is either positive or negative which in the long run should give an accuracy of 50%. If
the dataset is instead imbalanced e.g. there are 80% positive and 20% negative data points
then just guessing that all unseen data points are positive will yield an accuracy of 80%.
This is somewhat misleading since the accuracy of classifying positive data points seem to
be high, but at the same time the accuracy of classifying negative data points is 0% which is
really low.

There are several metrics to use when dealing with imbalanced datasets such as Precision,
Recall and Reception Operating Characteristic (ROC) curve. To describe the performance
of a model a confusion matrix can be used [33], see Figure 9. The table displays the actual
condition in the columns and the predicted values in the rows. The green cells indicates
correct predictions, i.e. for all conditions that actually are positive, predict positive and
for all conditions that actually are negative, predict negative. The red cells indicates error
predictions, e.g. if a condition is true, the model predicts it to be false or vice versa.

Figure 9: Confusion matrix

Precision (Equation 2.17) and Recall (Equation 2.18) are two frequently used metrics that
can be derived from the confusion matrix (Figure 9). Precision is a measure that when the
model predicts true can tell how often the models is correct. Recall or True Positive Rate
(TPR) is a measure that when the condition actually is true can tell how often the model
predicts true. Another measure is F1 score that calculates the weighted mean of Precision
and Recall, see Equation 2.19.

Accuracy =
T P+T N

T P+T N +FP+FN
(2.16)

Precision =
T P

T P+FP
(2.17)

Recall =
T P

T P+FN
(2.18)

F1score = 2
PrecisionRecall

Precision+ recall
(2.19)

Where T P is the number of true positive, T N is the number of true negative, FP is the num-
ber of false positive and FN is the number of false negative.

The ROC-curve metric displays the relation between the TPR and the False Positive Rate
(FPR) and is a common way to display the performance of a classifier [33]. An example
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of an ROC-curve can be seen in Figure 10 where TPR and FPR are calculated for every
possible threshold. A good classifier will yield a ROC-curve that stretches up to the upper
left corner while a poor classifier will be positioned close to the diagonal dotted line. The
diagonal line essentially illustrates the result of random guesses. The Area Under the (ROC)
Curve (AUC) is a metric that represent the ROC-curve as a single value. The AUC value
can be in the range of 0 to 1 where 1 is the desired value and 0.5 represent the diagonal line,
i.e. random guessing. In Figure 10 the AUC value in percent can be seen in the box in the
bottom right corner of the plot.

Figure 10: Example of an ROC-curve with corresponding AUC value

For sentiment classification of reviews where there are well-defined characteristics for pos-
itive and negative reviews the ROC-curve and hence also AUC are reliable measures of
performance [34]. Also according to [35] for imbalanced dataset where the positive class
is overrepresented ROC-curve and AUC is preferred over F1 score which is derived from
Precision and Recall. An example that illustrate that Precision, Recall and hence F1 is not
preferred is presented in [35] where a dataset with 10 samples are used and 1 sample is neg-
ative and 9 are positive. Say that a model predict every sample to be positive. This will yield
the metrics where TP = 9, FP = 1, TN = 0, FN = 0 and by using Equation 2.17 and 2.18 the
Precision = 0.9 and Recall = 1.0. Both Precision and Recall are one or close to one which
by a first glance looks promising. However, by calculating TPR = TP/(TP+FN) = 1.0 and
FPR = FP/(FP+TN) = 1.0 indicates that this is a poor classifier due to the high value of FPR.
FPR is also known as the ”false alarm rate” since it measure the ratio between the number
of negative points falsely predicted as positive and the total number of negative points.

2.6.1 Baseline

When evaluating the performance of a machine learning model or essentially any kind of
system or scientific experiment a baseline for comparison is fundamental [36]. Model accu-
racy, AUC or F1 score do not actually say anything about the performance if not compared to
a baseline. A common baseline for classification tasks is random guessing. For a balanced
binary dataset random guessing corresponds to a 50% accuracy. The same principle can
be applied to other investigations such as comparing a new model to a well-known model
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where the latter act as a baseline. By feeding the two models with the same input and calcu-
late different metrics of how they perform the models can easily be compared.

The aim in this thesis is to investigate a CNN’s transferability between different domains.
In order to get a notion of the models performance it is interesting to not only investigate
the metrics described above for different CNN architectures but rather compare these met-
rics to another well known statistical or machine learning model. The baseline model used
in this thesis is a traditional machine learning model called Maximum Entropy or Logistic
Regression for binary classification known to perform well on sentiment analysis tasks and
commonly used as baseline for sentiment analysis research along with other machine learn-
ing models such as Naive Bayes and Support Vector Machines [37], [38]. In logistic regres-
sion the logistic function or sigmoid function explained in Section 2.1.3 is used to predict
the probability that a data point, x, belongs to a certain class y [39]. This is further done by
minimizing a cost function, see Equation 2.20, and use gradient decent, as briefly mentioned
in Section 2.1.6, to update the weights, w.

Cost =� 1
m

m

Â
i=1

[yilog(hw(xi))+(1� yi)log(1�hw(xi))]+
l

2m

n

Â
j=1

w2
j (2.20)

Where
hw(x) = h(wT x) =

1
1+ e�wT x

(2.21)

is the hypothesis with the logistic function and

l
2m

n

Â
j=1

w2
j (2.22)

is the L2 regularization term that reduces the magnitude of w j and is used to prevent over-
fitting, something that is discussed in Section 2.3. l is the regularization parameter that
control the magnitude of the fitting parameters, w j.

2.7 Problem background and related studies
Domain adaption or transfer learning as it is also called is a highly active research field
within the machine learning paradigm. The most common way to study transfer learning is
to use data from two separate domains, although more than two domains can be used, and
consider one of the domains as the source domain and the other domain as the target domain
[7]. This means that data from source and target are sampled from different distributions
[8]. Often the source domain data is labeled while all or most of the target domain data is
unlabeled. The aim is to make use of the source data in the training processes to build a
model for the target domain.

As explained in [40], the lack of training data with high quality is one of the biggest chal-
lenges when applying machine learning models to new domains. This is especially true
for deep learning models where a lot of data often is needed to achieve good performance.
These are typical use cases for transfer learning, i.e. to utilize non-target domain data which
might be of higher quality, labeled and readily available to help train models for the target
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domain.

Transfer learning is widely known in the field of computer vision where deep neural net-
works seldom are trained from scratch but instead leverage networks that already have been
trained on huge datasets [41]. These already trained neural networks can be reused and
fine-tuned with new data to fit other domains. The main idea is that in a neural network
with several layers the first layers, i.e. the layers further away from the output seem to cap-
ture more elementary features from the input signal compared to layers closer to the output
[42]. A transfer learning approach is to freeze initial layers and fine-tune layers closer to
the output. Using pre-trained networks and transfer learning will both reduce the training
phase, require less data and hopefully still achieve similar performance as in-domain trained
models.

Even though transfer learning has been successfully applied in the field of computer vi-
sion it has not been successful to the same extent for NLP and sentiment analysis. Although
not as good results have been obtained for NLP compared to computer vision this does
not mean that good results have not been obtained. It is however difficult to compare per-
formance between separate fields such as computer vision and NLP. Transfer learning or
domain adaption has been an active research field within NLP for over a decade where a
lot of different approaches to tackle the difficulties have been studied. However, similar to
sentiment analysis research the majority of work has focused on the English language.

Training a model on the source domain and directly apply it on the target domain often
yields poor results [40]. Studies have shown that the target data, even if it is limited and/or
unlabeled should be utilized and somehow be part of the pre-training and/or training pro-
cess [8], [40]. Utilizing both source and target data can be achieved in several ways. In [1]
they try to align domain-specific words from different domains into unified clusters using
domain-independent words as a bridge, something they call Spectral Feature Alignment.
This is done in an unsupervised fashioned where they cluster data from different domains to
find domain specific and independent words. In [8] the authors are using a deep learning ap-
proach for domain adaption for sentiment analysis. They are using something called Stacked
Denoising Autoencoders on data from both source and target to extract higher level features.
Autoencoders can be used for dimensionality reduction, i.e. they try to find a way to repro-
duce the input signal but in a compressed way. The denoising part, i.e. applying noise to the
input signal which slightly modifies the input signal can simulate that data might come from
another distribution. This is an unsupervised approach and once the higher level features are
extracted a supervised classifier known to perform well on sentiment analysis tasks called
Support Vector Machines are trained and used for classification. The authors of [43] extends
this research and instead suggest something they call marginalized Stacked Denoising Au-
toencoders which yields roughly the same performance as in [8] but in a more time effective
way.

In [40] they study the impact of using pre-trained word vectors from the target domain
before training a model with data from another domain. They study different deep learning
models such as CNNs, RNNs and Long-Short-Term-Memory Networks. They conclude that
using pre-trained word vectors from the target domain significantly boost the performance
of transfer learning. [44] use CNNs to train a model based on job descriptions and evaluate
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it on resume data. Since job description data is easier to collect and somewhat related to
resume data they use domain adaption to classify the more scarce resume data. The authors
consider CNN to be useful in a domain adaption scenario where the goal is to classify short
texts. They also suggest that the model most likely will perform better if the model is trained
with both source and target data compared to merely source data.

3 Experimental setup
This section covers how the investigation of the Convolutional Neural Network’s (CNN)
transferability for sentiment analysis of Swedish reviews across domains will be conducted.
Two types of experimental setups are presented along with how to study and interpret the
results. The idea behind which data domains to investigate is also covered in this section.

3.1 Experiment
There are two experimental setups used in this thesis, the first is based on training a model on
data from a source domain called S along with a fraction, a , of data from a target domain,
T , and test the model on unseen target domain data, T 0. The experimental setup can be
seen in Figure 11 where the number next to the arrow indicate the order of the action. The
experimental idea is to start with a equal to 1 and gradually decrease its value by a certain
step length, h, down to 0. The model can hence be rigorously trained and tested for different
amount of target data T . This approach yields different training dataset sizes for every a and
when the source and target data size differs this might affect the transferability investigation
and making it difficult to determine whether the model perform in a certain way due to the
amount of data used for training. Therefore another approach where the training dataset size
is fixed is also investigated.

Figure 11: Experimental framework I

Instead of using the whole dataset of S, while |T | is multiplied by a , |S| is multiplied by
(1�a) keeping the training dataset size constant throughout the experiment. |S| and |T |
represent the dataset sizes for the source respectively the target datasets. Since the source
and target dataset differs initially in size and to get a constant size, N, the larger of the two
dataset will be truncated to the size of the smaller. The dataset size, N, is hence chosen by
N = min{|S|, |T |}. The experimental setup in Figure 11 is hence modify to the experimental
setup in Figure 12. Using the whole dataset of S as in Experiment I would probably be
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recommended in a real system since more data often yields better results for deep learn-
ing models. However, by keeping the data size fixed as in Experiment II there will be no
bias towards larger datasets for individual tests and more focus can be directed towards the
models’ transferability.

Figure 12: Experimental framework II with fixed dataset size

3.1.1 Experiment evaluation

By starting with a set to 1 and gradually decrease its value down to 0 by a certain step
length, h, should indicate how target data dependent the model is between certain domains.
Plotting the models AUC score against a will yield a visual indication of how transferable
the model is between the chosen domains or how related the domains are. A transferable
model should have a somewhat constant AUC score and hence a constant line in the plot.
Also, inspecting the AUC score for different a will indicate whether there is a critical point
in the relation between the amount of target respectively source data. An AUC score that
drops significantly when a decreases probably indicate that the model is not that transfer-
able or there are no or little relation between the domains. The goal is hence not necessarily
to achieve the highest possible accuracy or AUC score, instead a model that can keep or
not loose too much performance when a is decreased is desired. Comparing Experiment I
and Experiment II will give an indication of the dataset size impact on the transferability,
especially for the extreme case where a = 0 and the datasets differs notably in size.

To get an overview of how transferable the models are in its extreme cases the AUC loss
will be studied. The AUC loss is in this thesis calculated by taking the difference in AUC
score for a = 1 and a = 0 for the second experiment with fixed dataset size. When a is
equal to 1 the model is trained and evaluated on the target domain (in-domain classification)
while when a is equal to 0 the model is trained on merely the source domain and evaluated
on the target domain (out-domain classification). Furthermore, some data domain charac-
teristics such as frequently used words and intersection of words across domains will be
studied. This will indicate whether different domains are using the same type of words and
how domain specific the most frequent words are. Also, misclassification statistics such as
proportion of misclassified positive and negative reviews and average review text length will
also be investigated. Studying misclassification can reveal if there are any particular type of
reviews the model having trouble to classify.
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3.1.2 Data domains

The choice of which source and target domain data to use for different tests is based on
the idea of starting with domains that intuitively seem to be more related to then test the
transferability between more distant domains. An example hypothesis is that the domain
category ”Datorer & Tillbehör” is closer related to ”Ljud, Bild & Musik” and ”Elektronik”
than to ”Hem & Trädgård” in dataset A or to ”Restauranger” in dataset C, see Section 5 for
more information about the datasets. This hypothesis is based on word similarities across
domains where domains related to say technology may intuitively use more similar words.
Reviews for technical products such as computers or monitors may include words such as
”portable”, ”battery”, ”sharp”, ”resolution” or ”memory”. Although, some words may be
even more domain specific and only suitable for a specific product or service. However,
these words are probably not that common to use when reviewing restaurants where words
like ”service”, ”tasty”, ”disgusting” and ”fresh” are more frequently used. Some words that
are more generic and may be found across almost all domains are words such as ”expensive”,
”cheap”, ”great”, ”good” and ”bad”.

3.1.3 Models

The models that are going to be investigated are foremost a CNN designed for sentiment
analysis, (for detailed information about the CNN model see Section 4.7). To compare the
results of the CNN model a traditional statistical or machine learning model called logistic
regression will undergo the same experiments. In order to evaluate the impact of differ-
ent text representations the CNN model will be tested with both standard word embedding
and pre-trained word embedding using a word2vec model. The baseline, i.e. the logistic
regression model will be tested with both a unigram as well as a unigram and bigram text
representation.

4 Methodology
In this section, the methodological approach of the research is explained. It include a de-
tailed explanation of the research workflow, i.e. every necessary step taken from data gath-
ering and data preparation to modeling and model evaluation. Furthermore, tools, libraries
and frameworks used throughout this thesis are also described.

4.1 Delimitation
The CNN architecture used for the main experiments in this thesis were chosen based on
initial testing of various different CNN architectures with different hyperparameter settings
on different domains along with inspiration from previous work. There is however no guar-
antee that the particular CNN architecture used in this thesis is the best performing CNN
architecture for transfer learning in this context. The aim and scope of this thesis is however
not to evaluate every possible CNN architecture and to find the optimal CNN architecture for
transfer learning, it rather focuses on investigating a CNN’s transferability across different
domains and how the model behave when varying the amount of source and target data used
for training. Therefore, through initial testing of several CNN architectures for different do-
mains a fairly simple model that performed similar as more complex models were used for
the main experiments.
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4.2 Workflow
The investigation of how well suited CNNs are for transfer learning for sentiment analysis
of Swedish reviews included several steps. An overview of the workflow or the necessary
steps taken in this thesis can be seen in the list, Workflow, below. The first step was to gather
data. Data is of course a vital part when dealing with machine learning models and without
data this research would not be possible. Next, inspection of the collected data gave an over
all understanding of its characteristics. The next step was to pre-process and prepare the
data for machine learning followed by building desired machine learning models. To keep
track of and for easy access during the subsequent analysis phase all tests and test results
were stored in a database. The individual steps in the Workflow list below will be further
explained in the following sections but first a brief explanation of the software tools that
were used is presented.

Workflow

1. Gather data

2. Inspect data

3. Prepare data for machine learning

4. Build machine learning models

5. Train and test machine learning models

6. Store tests, results and metadata

7. Analysis of test results together with data inspection in step 2

8. Repeat from step 4

4.3 Tools
To fulfill every step in the workflow presented in the previous section a set of software tools
were necessary to use. A brief overview of the most vital and frequently used tools and
libraries in this thesis is presented next.

4.3.1 Python

Python is a general-purpose programming language extensively used throughout this thesis.
It is as described in [45] an object-oriented, interpreted, high-level programming language
that can be applied to many different problems and scenarios. Python has a standard library
for handling areas such as string processing, Internet protocols and operating system inter-
faces among others. However, Python supports a wide range of third-party extensions as
well [46]. The major Python libraries or extensions used in this thesis are Scrapy, IPython,
Jupyter Notebook, Pandas, Matplotlib, Scikit-learn, Tensorflow, Keras and Gensim. These
libraries and what they were used for are briefly described next.

Scrapy
Scrapy is an open source library or framework for extracting or scraping data from websites
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[47]. This tool was used in this thesis to develop scripts that could crawl three different
websites and extract review data along with metadata.

IPython and Jupyter Notebook
IPython is an interactive shell for python with a Jupyter Notebook kernel allowing for inter-
active development of code in the browser [48], [49]. It is widely used in the field of data
science and similar for data processing, statistical modeling, machine learning, numerical
simulations and visualization. Jupyter Notebook was used throughout this thesis for data
processing, machine learning, analysis and visualization.

Pandas
Pandas is an open source library for data manipulation and data analysis [50]. It provide easy
handling of data structures along with high performance. Pandas has been used throughout
this thesis for processing and handling data along with data analysis.

Matplotlib
Matplotlib is a Python library dedicated for plotting figures, graphs and diagrams [51]. It
was used in combination with Jupyter Notebook for visualization.

Scikit-learn
Scikit-learn is an open source machine learning, data mining and data analysis library for
Python [52]. The library provide, among others, the logistic regression model used as base-
line in this thesis.

Tensorflow
Tensorflow is an open source library for machine intelligence and numerical computations
originally developed by Google [53]. The library is especially well suited for deep learning
where the flexible architecture allows computations to be deployed to one or more CPUs or
GPUs. Tensorflow was used as the backend software to allow deep learning in this thesis.

Keras
Keras is a high-level API that can be used together with Tensorflow and other deep learning
libraries [54]. Its main focus is to allow for fast prototyping and experiment. The Keras API
was used to develop the CNNs with different architectures examined in this thesis.

Gensim
Gensim is a library for unsupervised semantic modeling from plain text. The library is spe-
cialized in processing raw, unstructured digital text in an efficient way [55]. Building and
training the word2vec model based on review texts was achieved using the Gensim library.

4.3.2 PostgreSQL

PostgreSQL is an open-source relational database system [56]. In this thesis PostgreSQL
were used as a database to store data in a structured way. Examples of what was stored is
information related to the datasets, various tests, test results and metrics. The data can easily
be accessed by querying the database using SQL queries.
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4.4 Data gathering
The data used for this research was scraped from three different websites that provide re-
views. These websites contain everything from product and restaurant reviews to reviews of
companies, hair designer, dentists, plumbers and many more. Along with a written opinion
the review is associated with a rating, either in the range of 1 to 5 or 1 to 10 depending on
the website, with 5 respectively 10 as the highest grade and 1 the lowest. Review text, rating
as well as meta information such as brand, superior category, category and sub category,
company name and the corresponding url was gathered. An example of a gathered review
along with metadata can be seen in Section 5.2.

Scraping the websites for information included several steps. First the underlying structure
of the website was inspected. This included inspection of the HTML structure, searching
for urls as well as tags and their identifiers to determine where the relevant information was
located. After that it was possible to develop scripts that found these tags and extracted the
desired information. The gathered information was then stored on disk in JSON format.

The underlying structure of websites usually differs. This means that the scraping script
had to be tailor made for every new website. Although several sites underlying structure had
similarities and hence much of the scraping code could be reused.

4.5 Data inspection
After the data was collected it was inspected to get an overall understanding of the data, its
characteristics, its shape and its distribution. This phase included looking into and reading
samples of reviews to grasp what makes a high as well as poor rated review. Another impor-
tant inspection step was to get an overall understanding of the whole dataset such as number
of reviews, how the reviews are distributed over different categories, the overall distribu-
tion of ratings and the average length of review texts in terms of words. A more in-depth
inspection of the datasets used in this thesis can be seen in Section 5.

4.6 Preparing data
Pre-processing and cleaning data before feeding it to a predictive model is a major and an
important part when working with machine learning. ”Garbage in garbage out” is a well
know saying in machine learning, automatic control or essentially anywhere where an input
signal is fed to a system to produce an output signal. There are of course many aspects of
data quality, sometimes no matter how much the data is pre-processed it is still considered
garbage. However pre-processing can somewhat increase the data quality and some pre-
processing is almost always needed to transform the data into a format that the system or
model can interpret.

The pre-processing of the text data included removal of HTML-tags, non alphanumeric
tokens, blank lines, whitespace in beginning and ending of texts. A few of the collected
reviews only contained rating and no review text, other review texts only contained a single
character. These reviews were of no use and hence directly removed. The rating value was
converted from strings to integers. After the major pre-processing was done the data was
saved and stored on disk in a Comma Separated Value (CSV) format for easy access later on.
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Further data preparations included removal of reviews with review text shorter than a certain
threshold. The threshold used in this thesis was to remove all reviews that contained less
than two words. Since reviews with a text length shorter than two words were directly re-
moved a lower threshold could never be used, no restrictions were however set for an upper
threshold at this point.

In this thesis only positive and negative reviews were considered. Since the review rat-
ing values were used as sentiment indicators, i.e. high ratings were associated with positive
review text while low ratings were associated with negative review text, the neutral reviews
were removed. For reviews where the ratings ranged from 1 to 5, ratings of 1 and 2 were
considered negative while ratings of 4 and 5 were consider positive. Ratings with value 3
were considered neutral. In the case where it was possible to set a rating in the range from
1 to 10, reviews with rating 1, 2 and 3 were treated as negative, 4, 5, 6, 7 as neutral and 8, 9
and 10 as positive. For both rating metrics the neutral reviews were removed. The transfor-
mation from rating to sentiment was inspired by previous research where [1], [8], [43] and
[57] used a dataset collected from Amazon that contain reviews of DV D, Books, Electronics
and Kitchen appliance with minimum rating 0 and maximum rating 5. The rating were
converted to sentiment where reviews with rating > 3 were considered positive and reviews
with rating < 3 were considered negative and the remaining reviews were neglected.

4.6.1 Text representation

Several types of numerical representations of the review text were used for different mod-
els. These included BoW and Tf-Idf with unigram and bigram described in Section 2.5.
Different types of word embedding were tested for the deep neural networks. Both Keras
embedding layer, which later on will be called standard word embedding, as well as pre-
trained word embedding produced by a word2vec model were investigated.

In order to feed a CNN with text data the first step was to map every word in the dataset
to an integer or index value representing the word in a vocabulary. Each review is then con-
verted to a sequence of integers where each integer represent a word. Since a CNN requires
that the input is of the shape n x m and reviews are of different length the sequences are
padded to equal length. Longer reviews are truncated while shorter reviews are padded with
0 values. The threshold for review text length were set to 300 tokens.

Over a million raw reviews from different categories and websites were gathered in this
thesis. Out of these reviews 927250 contained at least two words in their review text. These
review texts were used to train a word2vec model using the CBOW approach with word
dimension 100 described in Section 2.5.3. The minimum count was set to 5 meaning words
that appeared less than 5 times in the whole corpus were removed. The reason was that
words that appear less than a certain threshold can be considered typos or garbage. In the
case where the less frequent words are not garbage the limited quantity is still not enough
for training. The threshold of 5 was chosen arbitrarily and based on the fact that it was the
default threshold in the Python library Gensim used to train the word2vec model.
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4.7 Modeling
A lot of different CNN architectures were tested but the basic structure used can be seen
in Figure 13. Different number of convolutional filters, kernel, filter or window sizes and
pooling sizes were tried out. The use of denoising layer and dropout layer were also tested.
Other settings that was tuned were settings like number of epochs to train the model, batch
size and whether certain weights should be trainable or not. Different text representations as
described in previous section such as a standard embedding layer and an embedding layer
were the weights are pre-trained using an unsupervised word2vec approach were thoroughly
investigated. Although a lot of different settings were tried a few of the settings were early
on kept constant throughout the major part of the experiments. These settings were based
on both inspiration from previous work and through testing. Among these settings were
ReLU activation function, sigmoid function for classification in the output layer, binary
cross-entropy as cost function and Adam as optimization function.

Figure 13: Basic CNN architecture for sentiment classification

An example of setting up a CNN with one convolution layer, several filters, a pooling layer
and a fully connected layer using Python and Keras with Tensorflow backend is shown in
the code below along with additional comments. Note that this is merely an example of how
to set up a CNN in Keras, no dropout layer is for instance present in this example.

from Keras import ... # assume all necessary imports

# Specify parameters

EMBEDDING_DIM = 100

MAX_SEQUENCE_LENGTH = 300

TRAINABLE = True

..

# Instantiate a sequential model

model = Sequential()

# Embedding layer as the first layer

model.add(Embedding(input_dim=len(word_index)+1,

output_dim=EMBEDDING_DIM,

weights=[embedding_matrix], # initialize embedding weights

input_length=MAX_SEQUENCE_LENGTH,

trainable=TRAINABLE))

# One dimensional convolutional layer with specified number of filters

# filter size, padding and activation function

model.add(Conv1D(filters=100, kernel_size=4,

padding='same', activation='relu'))

# One dimensional max pooling layer with window size 2

model.add(MaxPooling1D(pool_size=2))

# Flatten the output from the pooling layer
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# so it fits the fully connected layer

model.add(Flatten())

# Fully connected layer with ReLU activation function

model.add(Dense(units=250, activation='relu'))

# Output layer predicting the output using sigmoid activation function

model.add(Dense(units=1, activation='sigmoid'))

# Other settings such as loss function,

# optimization algorithm and desired metrics

model.compile(loss='binary_crossentropy', optimizer='adadelta',

metrics=['accuracy', 'precision', 'recall', 'f1'])

# Train the model with training data and validation data

# for a given number of epochs and batch size

model.fit(X_train, y_train,

validation_data=(X_val, y_val),

epochs=3,

batch_size=32)

# Evaluate model on new data...

scores = model.evaluate(X_test, y_test)

# ...or generate predictions based on new data

predictions = model.predict(X_test)

Through testing it turned out that a fairly simple model performed similar as a more complex
model and since the training time increases significantly when the number of parameters
increases the simpler model was used for the extensive experiments in this thesis. The most
important features of this model are summarized in Table 1. Dropout is used both directly
after the embedding layer and prior to the fully connected layer with dropout probability of
0.2 and 0.5 respectively. The use of dropout in the initial part of the network was inspired
by previous research where denoising or corruption were added to the data in order to train
a robust classifier more suited for transfer learning. The early dropout is also a way of
simulating that the data comes from a slightly modified distribution. A dropout layer close
to the output layer can also increase the robustness of the network and is mainly used to
prevent overfitting. Choosing number of convolutional filters and their kernel sizes as well as
other hyperparameters were determined by trial-and-error along with inspiration of previous
work in the area (and the fact that complex models are more computationally intensive to
train). As mentioned earlier, since no major improvement was gained using a more complex
network the simplest possible but still well performing network was used. The weights of
the embedding layer were both initialized randomly using standard embedding as well as
with the pre-trained word2vec representation of the review text data. All the weights of the
network including the embedding layer weights were set to be trainable, i.e. no weights
were locked or frozen during training. Freezing the weights of the embedding layer were
also tested but keeping them trainable yielded better performance for initial tests. One epoch
means a full training cycle on the training set. Batch size is the number of training samples
that are fed to the model at a time.

Table 1: CNN model overview.

Conv. Embedding Filters Kernel size Pooling Dropout Epochs Batch
1 random, w2v 32 3 2 0.2, 0.5 5 128
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For the baseline an L2 regularized logistic regression model with BoW data representation
with unigram and unigram and bigram were used. The regularization parameters, l , was
set to 1 and the solver used was the default efficient large scale linear classification library,
liblinear [58]. Using techniques such as Tf-idf might improve the performance but for fair
comparison both models, the CNN and logistic regression, used a vocabulary that consisted
of the 5000 most frequent words.

4.7.1 Training and testing

The datasets for the CNN model were split into three sets; a training set, a validation set and
a test set with distribution 60%, 20% and 20% respectively. The validation set was mainly
used to prevent overfitting and to know when to stop training and can be seen as an extended
training set. Therefore the validation set included, like the training set, both source and tar-
get data with the same proportion as for the training set. For the baseline the datasets were
instead split into two sets, a training set and a test set with distribution 80% and 20%. Both
the CNN and baseline were trained and tested in a K-fold cross-validation fashioned which
means that the model trained on the training set and was tested on the test set K times with
randomly selected train and test data for every K. An average of the scores of the K runs
were then calculated. K was set to 5 for the CNN and 10 for the baseline. The reason for that
the two models differ in the way they were trained and how the datasets were split is because
of how the models work. The more traditional baseline model cannot take a validation set
as input therefor it got a training set of size 80% while the CNN got a training size of 60%
plus a validation set of 20%. For all experiments the test set contained only target data and
was not used in training in any way.

Several different domains were investigated. Table 2 displays the investigated domains
and an indication of whether the domain acted as source or target along with the type of
reivew data. The Datasize column indicate whether the data size was fixed (Experimental
II), unfixed (Experiment I) or both. Both fixed and unfixed datasets were used only when
the source dataset was larger than the target dataset. For experiment II, when the source
dataset was smaller than the target dataset the larger dataset was truncated to the same size
as the smaller of the two datasets. All experiment were executed by starting with a = 1 and
gradually decrease its value by a step length, h = 0.2, down to a = 0.
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Table 2: Domains investigated.

Source Target Type Data size
Elektronik Restauranger Company!Company Fixed, unfixed
Elektronik Datorer & Tillbehör Company!Product Fixed, unfixed
Elektronik Ljud, Bild & Musik Company!Product Fixed, unfixed
Elektronik Hem & Trädgård Company!Product Fixed, unfixed
Restauranger Elektronik Company!Company Fixed
Restauranger Datorer & Tillbehör Company!Product Fixed, unfixed
Restauranger Ljud, Bild & Musik Company!Product Fixed, unfixed
Restauranger Hem & Trädgård Company!Product Fixed, unfixed
Datorer & Tillbehör Elektronik Product!Company Fixed
Datorer & Tillbehör Restauranger Product!Company Fixed
Datorer & Tillbehör Ljud, Bild & Musik Product!Product Fixed, unfixed
Datorer & Tillbehör Hem & Trädgård Product!Product Fixed, unfixed
Ljud, Bild & Musik Elektronik Product!Company Fixed
Ljud, Bild & Musik Restauranger Product!Company Fixed
Ljud, Bild & Musik Datorer & Tillbehör Product!Product Fixed
Ljud, Bild & Musik Hem & Trädgård Product!Product Fixed, unfixed
Hem & Trädgård Elektronik Product!Company Fixed
Hem & Trädgård Restauranger Product!Compnay Fixed
Hem & Trädgård Datorer & Tillbehör Product!Product Fixed
Hem & Trädgård Ljud, Bild & Musik Product!Product Fixed

4.8 Evaluation
The experimental results from the two experimental for all models were visualized by plot-
ting the AUC score against a . To compare the different models, CNN and baseline, for two
given domains, the resulting AUC score for different a were plotted in the same figure. This
gave a clear visual representation of how transferable the models were for different domains
and for different amount of data. The AUC loss explained in Section 3.1.1, were summarized
in two bar plots giving an overview of the models transferability across domains. Further-
more, some information regarding the best performing models misclassification statistics
were summarized in a table. Statistics in this sense mean proportion of positive and negative
reviews misclassified (FP, FN) along with average review text length in words for a = 1
and a = 0 for Experiment II, i.e. in-domain classification versus out-domain classification.
This gave an indication of what kind of reviews the model struggled to predict. Also, some
characteristics regarding the different data domains such as most frequent words and inter-
section of words across domains were also conducted. This gave a hint of the data domains
vocabulary richness along with common words used across domains.

5 Data
In this section, information regarding the datasets used in this research are presented. In-
formation such as size of the datasets i.e. number of reviews, average review text length in
words, distribution of ratings and a few example ratings are displayed. A more detailed in-
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spection of the datasets and domains used for the main experiments is shown. Lastly, some
results regarding the pre-trained word2vec model are also presented.

5.1 Datasets
Three datasets gathered from different websites were used in this thesis. Table 3 displays
an overview of the number of reviews gathered for each dataset prior to and after pre-
processing. The number of reviews after the neutral reviews were deleted is also displayed
along with the average review text length in words for each dataset. Dataset A is more fo-
cused on individual product reviews while dataset B and dataset C rather contain company
reviews. However, all datasets are divided into categories on their respective website.

Table 3: Overview of datasets.

Source Raw Pre-processed Positive and negative Avg. review length
A 345765 144541 112626 57
B 737131 733555 694990 19
C 49405 49133 44531 24

5.1.1 Dataset details

The individual reviews in dataset A belongs to a superior category. The distribution of
reviews over their superior categories can be seen in the Table 4. The table displays the
number of reviews after pre-processing is done and neutral reviews are removed. Categories
containing less than 1000 reviews are not included in the table.

Table 4: Overview of dataset A.

Category Number of reviews
Spel och Film 38996
Datorer och Tillbehör 24336
Ljud, Bild och Musik 21507
Mobil och GPS 12049
Hem och Trädgård 6872
Skönhet och Hälsa 3624
Foto och Video 2595
Skor, Kläder och Accessorarer 1139

The overall distribution of reviews for dataset A can be seen in Figure 14 and the distribution
of the dataset where the neutral reviews are removed and the positive and negative reviews
are respectively grouped together can be seen in Figure 15.
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Figure 14: Distribution of rating Figure 15: Distribution of sentiment

The number of reviews for each category in dataset B can be seen in Table 5. The table
displays the number of reviews after pre-processing is done and neutral reviews are removed.
As for dataset A, categories containing less than 1000 reviews are not included in the table.

Table 5: Overview of dataset B.

Category Number of reviews
Hem och Trädgård 167844
Kläder och Mode 109588
Transport 90232
Fritid 70065
Elektronik 54429
Hälsa och Välbefinnande 43848
Resor och semester 31045
Pengar 29103
Sport 22496
För Företag 20966
Mat och Dryck 10372
Hantverkare 10022
Barn 9890
Konst 7915
Datorer och Tillbehör 7325
Telefon- och Internettjänster 3442
Sällskapsdjur och husdjur 2564
Underhållning 2279
Tobaksprodukter 1203
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Figure 16: Distribution of rating Figure 17: Distribution of sentiment

The number of reviews for each category in dataset C can be seen in Table 6. The table
displays the number of reviews after pre-processing is done and neutral reviews are removed.

Table 6: Overview of dataset C.

Category Number of reviews
Restauranger 26089
Bilverkstäder 11509
Frisörer 6934

Figure 18: Distribution of rating Figure 19: Distribution of sentiment

5.1.2 Investigated domains

Figure 20 displays the distribution of sentiment for the domains used in the main experi-
ments. The data domain names are hereafter often abbreviated, Datorer & Tillbehör (D&T),
Ljud, Bild & Musik (LB&M), Hem & Trädgård (H&T), Elektronik (E), Restauranger (R).
See Table 13 in Appendix A for more details about what subcategories and the amount of
data the investigated domains contain.

32



Figure 20: Distribution of sentiment for investigated domains

5.2 Example reviews
Every review was gathered along with some metadata. A more detailed example of what a
review object would look like is shown below.
Brand: Samsung

Broad (Superior) category: Ljud , Bild & Musik

Category: Hembiosystem & stereopaket

Specific category: Hembiosystem

Name: Samsung MS660/MS661

Review text: Vä ldigt nöjd med musik - och filmupplevelsen. Mer djup i filmen och

discomusiken fl ödade. Helt klart värt pengarna. Barnen har anv änt den flitigt och

vi vuxna med. Rummet fylls med en känsla som är så verklig så vi lever oss

verkligen in i filmen och musiken.

Rating: 10

Url: http :// wwww.link.to.review/review_id

However not all meta attributes were available for all websites and reviews but were gath-
ered where possible.

Below in Table 7 are a few examples of positive and negative reviews randomly selected
from the investigated data domains along with their original corresponding rating.

33



Table 7: Example reviews with corresponding rating.

Review text Rating Category
Mycket nöjd. Mycket ljud till ett rimligt pris. Lätt att installera,
lätt att hantera ur kontroll, iPad eller mobiltelefon. Litet fo-
tavtryck och ger mycket ljud.

10/10 LB&M

Gör det den ska och jag upplever ingen fördröjning alls. Väldigt
simpel att installera på min mac, använder den i garageband och
funkar kanon. Man kan även koppla in förutom en mic, ett till
instrument. Den är dock väldigt simpel och inget extra så tycker
900kr är ett ganska kraftigt pris för den, dock köpte jag den hos
X för ca 600 vilket är ett mer logiskt pris.

8/10 D&T

Läcker vatten emellanåt. Vid lägre temperaturval stänger den av
sig själv. Man får ”jobba” ganska ordentligt för att få det riktigt
slätt vilket jag inte har behövt med andra strykjärn. Köpte den
billigt på erbjudande men skulle inte rekommendera produkten.

3/10 H&T

Lämnade tillbaka min på garantin när den började lukta brännt.
X hade ingen ny på lager och vägrade att ge mig en V2. Kass
produkt och kasst av X att inte ge mig en likvärdig produkt. Fick
istället ett tillgodokvitto.

1/10 H&T

En mysig restaurang, jättegod mat och mycket trevlig personal!
Vi rekommenderar gärna denna restaurang till andra och kommer
säkerligen att besöka den igen vi också!

5/5 R

Bra grejor. Vad jag behöver till mobilen. Bra priser och enkel
leverans. Tyvärr gillade min iPhone 7 plus bara Apple orginalde-
lar, X lightning till 3 mm piratdelen gillas inte efter nån minut.
Alla övriga delar funkar bra.

4/5 E

Jag var där och käkade igår den xx-xx-xx. Jag har aldrig blivit så
magsjuk som nu. Är typ grön i ansiktet och spyr som en räv. Gör
mig en tjänst passa dig för detta stället.

1/5 R

5.3 Word2vec
Since the word2vec model trained on the review text produced numerical vectors that rep-
resents each word in the training corpus it is possible to see how similar different words
are, i.e. how close they are in the vector space. A few examples of word similarities for the
word2vec model used in this research can be seen in Table 8. Obtaining the word similarities
are done by utilizing the built-in, most similar, feature in the Python library Gensim.
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Table 8: Top 5 similar words

Word Similar word Similarity

jättebra

superbra 0.894
kanon 0.853
kanonbra 0.852
toppen 0.850
utmärkt 0.820

dåligt

uselt 0.760
kasst 0.743
illa 0.706
konstigt 0.694
märkligt 0.692

extremt

oerhört 0.853
otroligt 0.810
väldigt 0.809
fruktansvärt 0.797
sjukt 0.749

skarp

ljusstark 0.876
knivskarp 0.798
färgåtergivning 0.714
skarpa 0.713
bakgrundsoskärpa 0.702

6 Result
In this section the results from the experiments are presented. First an overview in terms of
AUC loss across domains is presented followed by more detailed plots showing the AUC
score for different amount of source and target data. Next, some data domains and word
characteristics across domains are presented followed by some misclassification statistics.
The representation of the data domains in this section are often abbreviated, as in Section 5.
Datorer & Tillbehör (D&T), Ljud, Bild & Musik (LB&M), Hem & Trädgård (H&T), Elek-
tronik (E), Restauranger (R). To display which bar or curve that belongs to a certain model
in the plots, all plots are labeled. The labels are LR� uni which stand for logistic regres-
sion with unigram text representation, LR�unibi stand for logistic regression with unigram
and bigram text representation, CNN � emb represents a Convolutional Neural Network
(CNN) with standard word embedding and CNN �w2v represents a CNN with pre-trained
word2vec text representation. All the plots are annotated with a domain and an arrow point-
ing to another domain. This representation means that the domain to the left of the arrow is
the source (S) domain and the other is the target (T ) domain, e.g. Elektronik (S) ! Datorer
& Tillbehör (T).

6.1 Overview
Figure 21 and 22 shows an overview of the AUC loss between domains. The AUC loss
is the difference in AUC score for a = 1 and a = 0, i.e. in-domain versus out-domain
classification. Higher AUC loss value indicate worse performance in terms of transferability
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between two domains. A few rare cases displays negative AUC loss, this indicates that the
AUC score is actually higher for the out-domain case.

Figure 21: AUC loss between domains for in-domain vs. out-domain classification.

Figure 22: AUC loss between domains for in-domain vs. out-domain classification.

6.2 Area Under the Curve score
Several plots displaying the investigated machine learning models’ transferability between
domains are presented next. The following ten figures are structured in the same fashioned,
i.e. the figures contain three plots where the plot to the:

• Left - represent experiment I

• Middle - represent experiment II

• Right - represent experiment II where the source and target are switched
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Figure 23: AUC score for different amount of source respectively target data for Elektronik !
Datorer & Tillbehör and Datorer & Tillbehör ! Elektronik.

Figure 24: AUC score for different amount of source respectively target data for Elektronik ! Ljud,
Bild & Musik and Ljud, Bild & Musik ! Elektronik.

Figure 25: AUC score for different amount of source respectively target data for Elektronik ! Hem
& Trädgård and Hem & Trädgård ! Elektronik.

Figure 26: AUC score for different amount of source respectively target data for Elektronik !
Restauranger and Restauranger ! Elektronik.
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Figure 27: AUC score for different amount of source respectively target data for Restauranger !
Datorer & Tillbehör and Datorer & Tillbehör ! Restauranger.

Figure 28: AUC score for different amount of source respectively target data for Restauranger !
Ljud, Bild & Musik and Ljud, Bild & Musik ! Restauranger.

Figure 29: AUC score for different amount of source respectively target data for Restauranger !
Hem & Trädgård and Hem & Trädgård ! Restauranger.

Figure 30: AUC score for different amount of source respectively target data for Datorer & Tillbehör
! Ljud, Bild & Musik and Ljud, Bild & Musik ! Datorer & Tillbehör.
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Figure 31: AUC score for different amount of source respectively target data for Datorer & Tillbehör
! Hem & Trädgård and Hem & Trädgård ! Datorer & Tillbehör.

Figure 32: AUC score for different amount of source respectively target data for Ljud, Bild & Musik
! Hem & Trädgård and Hem & Trädgård ! Ljud, Bild & Musik.

6.3 Domain word characteristics
Table 9 displays the amount of unique words a given data domain contain along with the
intersection of words across domains. As an example, Datorer & Tillbehör contain 54941
unique words and Hem & Trädgård contain 31328 words and the two domains have 14141
unique words in common.

Table 9: Unique and overlapping words across domains.

Data D&T LB&M H&T E R
D&T 54941 21079 14141 13742 10562
LB&M - 51663 13525 13621 10879
H&T - - 31328 10887 9298
E - - - 43619 9670
R - - - - 31310

Table 10 displays the top 20 frequent words in each data domain where stop words are not
considered. The table is ordered in a descending order where the most frequent words are at
the top of the table.
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Table 10: Top 20 frequent words in investigated domains.

D&T LB&M H&T E R
fungerar
väldigt
problem
riktigt
köpte
nöjd
funkar
skärmen
tyst
perfekt
känns
skärm
priset
datorn
använder
snabb
köp
ca
enda
spel

ljud
ljudet
riktigt
väldigt
lurar
nöjd
bas
låter
par
högtalare
musik
sitter
fungerar
köpte
tv
priset
lurarna
funkar
problem
känns

väldigt
riktigt
kaffe
köpte
maskinen
fungerar
nöjd
maskin
problem
ca
känns
använda
snygg
tyst
tycker
köpa
perfekt
köp
enda
vatten

snabb
leverans
snabbt
nöjd
priser
service
pris
beställde
beställa
snabba
varan
smidigt
handla
väldigt
beställning
produkter
produkt
problem
leveranser
hitta

mat
trevlig
service
personal
maten
trevligt
bemötande
väldigt
miljö
personlaen
fantastisk
mysig
ställe
bord
riktigt
restaurang
atmosfär
åt
fantastiskt
tillbaka

6.4 Misclassification statistics
Table 11 displays some statistics for the CNN model with pre-trained word embedding using
a word2vec model. The statistics include the proportion of False Negative (FN) and False
Positive (FP) misclassification along with the average review text length, Rev. len., for a = 1
and a = 0. Column, Test length, to the far right displays the average review text length for
the test set. The review text length are length in terms of number of words. All the data in
Table 11 are averages over K = 5 runs and with a threshold equal to 0.5.
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Table 11: Statistics over misclassification

Dataset a = 1 a = 0 Test
FN FP Rev. len. FN FP Rev. len. length

E!R 34% 66% 46 12% 88% 47 24
E!D&T 29% 71% 85 67% 33% 123 59
E!LB&M 29% 71% 102 73.5% 26.5% 171 67
E!H&T 30% 60% 90 65% 35% 121 73
R!E 43% 57% 36 67.6% 32.5% 31 17
R!D&T 37.5% 62.5% 84 89.5% 10.5% 101 59
R!LB&M 24% 76% 98 90% 10% 137 66
R!H&T 42% 58% 93 82% 18% 123 75
D&T!E 40% 60% 34 48% 52% 35 17
D&T!R 33% 67% 45 16% 84% 47 24
D&T!LB&M 24% 76% 96 21.5% 78.5% 93 65
D&T!H&T 40% 60% 98 21.5% 78.5% 96 74
LB&M!E 50% 50% 34 52% 48% 36 17
LB&M!R 33% 67% 45 9% 91% 51 25
LB&M!D&T 30% 70% 86 37% 63% 84 57
LB&M!H&T 37% 63% 89 23% 77% 89 74
H&T!E 34.5% 65.5% 35 73.5% 26.5% 33 16
H&T!R 31.5% 68.5% 43 27% 73% 40 24
H&T!D&T 28.5% 71.5% 88 70% 30% 84 61
H&T!LB&M 21.5% 78.5% 92 64.5% 35.5% 99 66

Table 12 displays a few example reviews where the CNN-model with pre-trained word2vec
embedding strongly misclassified. A value close to 1 in the Pred. column indicate that the
model believes the review to be positive while a value closer to 0 indicate that the model
predict the review to be negative. The Rating column displays the original review rating.
The Category column indicates whether it was an in-domain or out-domain classification.
A single category in the column meaning in-domain while S ! T meaning out-domain.

Table 12: Misclassification examples.

Review text Rating Pred. Category
Fantastiskt lätt att installera.
Bra med möjlighet att koppla in usbdisk.
Snygg och liten och fungerar väldigt bra.
Update; Tappar anslutning med ca 30 minuters intervaller.
Samma uppsättning som tidigare och problemet har börjat för
några månader sen.

2/10 0.977 D&T
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Har älskat den här plattan, mycket bra kvalitet och allt funger-
ade perfekt så jag skaffade en till. En månad senare var båda
sönder, en med trasig usb port och en med skärmen spräckt
pga lekande barn. Allt frid och fröjd in med dom på repara-
tion tänkte jag.
Där har jag nu efter flera månaders väntan fått veta att det inte
finns några reservdelar till dessa. Hur Google och ASUS kan
sätta sina namn på en produkt som kännetecknas av sådant
slöseri och slit och släng är för mig en gåta. MYCKET
Besviken och kommer inte att köpa fler tablets från dessa
tillverkare.
Om du köper se till att packa in den i ordentligt med skydd för
du har inga extra chanser att laga den senare.

1/10 0.974 D&T

Makalös prestanda, datorn startar på ett klick, alla program
som ska ladda är klarladdade efter två sekunder.
Min solid statare gick tyvärr sönder. Efter en vecka ungefär
så började konstiga frysningar uppträda lite då och då. När
den användes kunde allting bara avstanna i fem till tio sekun-
der för att sedan hosta igång som inget har hänt. Synnerligen
irriterande vid spelande. Har du liknande problem, skicka till-
baks den. Läste en del på nätet och visade sig att rätt många
har problem med sina SSD. Så jag väntar nog ett halvår till
innan jag köper en ny!

8/10 0.026 D&T

Bra och relativt enkla inställnings funktioner. Stödjer flertalet
ddns.
Fick tyvärr problem med tappad anslutning sporadiskt. Ping
mot ntp1.sp.se varierar 33-55-150 ms och tappade paket.
Detta slår även på ip-tele, trots att den är inkopplad före
routern. Bytte tillfälligt tillbaka till den gamla Linksys WRT-
54GL med Tomato. Det kan vara ngn. inställning som jag
missat, som påverkar detta.
Köpte denna Asus p.g.a grabbarna i familjen klagade på dåliga
svarstider i spel, och bra recensioner här. Men ngt i Asus
försämrar ännu mer. Det märks även vid vanlig surf, då
webbsidor tar lång tid att ladda ibland. Fw uppgraderad till
3.0.0.4.376.1071 efter köp. Det kanske finns en senare fw som
är bättre. Tänkte kolla efter alternativ FW, tomato/merlin/dd-
wrt.
Update: Problemet med droppade paket är inte routern. Verkar
vara modemet som bråkar och att Asus routern är känsligare
än Linksysen för detta. I morse var linan väldigt dålig. Kol-
lade direkt efter modemet, vilket gav 12% packet loss under
3-4 minuter. Höjer betyget 5 till 8.

8/10 0.0045 E!D&T

42



Efter ombyggnaden har menyn blivit katastrofalt dålig och
dyr, ny personal och troligen nya ägare som gjort det sämre,
det enda som blivit bättre är att lokalen är grymt fräsch men
priserna blivit mkt dyrare och menyn väldigt liten,.. 100kr för
1 pizza är för mkt, visserligen har de mängdrabatt om du köper
flera 2st = 150kr men kvaliten är dålig tyvärr... Före ombyg-
gnaden sommaren 2010: Grymt goda pizzor och trevlig per-
sonal, lite högre pris men det är det verkligen värt, ibland ses
kändisar äta här och restaurangen är så mysig att det är värt
att ta med dejten om ni är hungriga, helt klart söders bästa
pizzeria!

2/5 0.991 LB&M!R

Mycket god mat men snorkig och otrevlig service vi kände oss
förnedrade.

1/5 0.997 R
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7 Discussion

7.1 AUC loss and transferability
The AUC loss plots, Figure 21 and 22, displays an overview of the transferability across
domains. Since the AUC loss is calculated as the difference of AUC for in-domain com-
pared to out-domain classification it gives a clear overview of how the models perform in
the extreme cases where all target data is used compared to when no target data is used for
training. By inspecting the AUC loss plots and comparing the baseline with both unigram
and unigram and bigram text representation to the CNN with standard text embedding one
can see that the CNN perform better in only 4 out of 20 cases. Judging from these results
one can conclude that the CNN used in this thesis is not that well suited for transfer learning
in the extreme cases since the more traditional logistic regression model performs equal or
even better in most of the cases. Also, by inspecting the more detailed plots in Figure 23 to
Figure 32 both the baseline and standard CNN are somewhat close in terms of absolute AUC
score for in-domain classification. The CNN with standard word embedding is however per-
forming better than the baselines in 6 out of 10 cases where a = 1 for experiment I. This is
the settings that probably would be used in a real life system where all data is utilized, i.e.
all source and target data is used for training. Comparing the two experiment for a = 1 for
the CNN models reveals that adding data from another domain in the training process can
in many cases increase the overall performance by around 1-3% instead of just training on
in-domain data.

One can see in Figure 23 to Figure 32 that the AUC score decreases gradually as a decreases
for the majority of the tests. This is somewhat intuitive and expected. What is interesting is
however the fact that in many cases such as E!D&T, D&T!E, LB&M!E, E!R, R!E,
R!D&T, D&T!R, R!LB&M, LB&M!R the AUC score drops significantly when a
drops from 0.2 to 0. This is true for both CNN with standard text embedding and the base-
lines. This means that by just substituting a small amount of source data with target data
in the training processes one can significantly improve the transferability performance. In
some cases, such as R!H&T for the CNN with standard text embedding and unfixed data
size (leftmost plot in Figure 29) the critical point where the performance drops is rather at
a = 0.4 compared to a = 0.2 as in many other cases. Other, not that obvious, examples
where the threshold is at a = 0.4 or maybe a = 0.6 are R!D&T for the unfixed data size,
leftmost plot in Figure 27. Exactly where the threshold is differs slightly for the individual
tests and having a smaller step size, h, could help pinpoint more precisely where that crit-
ical point is. What is clear is that utilizing target data in the training process increases the
performance in almost every case.

By studying the model performance between intuitively related domains it is possible to see
that both the CNN and the baseline model are more transferable in those cases compared
to more distant domains, e.g. D&T!LB&M performs better than D&T!R, at least in the
extreme cases as can be seen in Figure 21. However, this is not always the case. E and D&T
can be seen as somewhat related but the transferability from E to D&T is rather poor, espe-
cially in the extreme cases where a is equal to 0. However, the other way around, D&T!E
shows better performance. Similar results can be found for E!LB&M and LB&M!E.
A possible cause for these results is most likely that the domain E is of the type company
reviews while D&T and LB&M are product reviews. One can imagine that company re-
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views are more limited in their vocabulary, where words such as “snabb leverans”, “bra
service”, “billigt och fraktfritt” can be applied to almost any kind of company regardless of
their type of business. While product reviews have a richer vocabulary where every product
can have more specific positives and negative attributes. The richness of the vocabulary can
somewhat be confirmed when inspecting Table 9, both D&T and LB&M are much smaller
datasets than E but contain several thousand more unique words than E.

Another similar example is that the transferability between D&T and R is better than the
other way around, i.e. R!D&T. From Table 9 it can be seen that R reviews have a smaller
vocabulary than D&T even though R is a slightly larger dataset. The R dataset also just
contain restaurant reviews while D&T covers a wide range of subcategories as can be seen
in Table 13 in Appendix A. Other categories that intuitively seem more distant is H&T and
LB&M but the AUC score for LB&M!H&T do not drop that much as a decreases, which
at first seem strange. H&T!D&T and H&T!LB&M also reveals high transferability, in
fact, the AUC score actually increases as a decreases. By inspecting the subcategories of
H&T, Table 13 in Appendix A, it reveals that it is a quite diverse superior category contain-
ing review about everything from kitchen appliance, cleaning, smart homes to tools, f ood
and interior design. Also, by comparing the top 20 frequent words in Table 10 for D&T and
H&T it is possible to see that they share 12 out of 20 words. This is the highest number of
words any two domains share when considering their top 20 frequent words. Also, LB&M
and H&T share 7 words and D&T and LB&M share 9 words while D&T and E share only
4. So, H&T might be closer related to D&T and LB&M than one might intuitively think
when just considering their domain names.

Another reason that the Experiments with H&T produces rather different results compared to
the other tests might be that it is by far the smallest of the investigated datasets. The most no-
table results is as mentioned in the previous section H&T!D&T and H&T!LB&M where
the AUC increases as a decreases. That behavior cannot be seen for H&T!E and H&T!R.
A possible reason for that is when using H&T as source in Experiment II the larger dataset
is truncated. The D&T and LB&M datasets might lose vital information in that step while
the E and R datasets might be more robust and undiversified. This should however be ad-
dressed since the experiments are performed in a cross-validation fashioned. Another no-
table result is that the baselines actually outperform both CNN models for H&T!D&T and
H&T!LB&M in terms of absolute AUC score and in-domain classification. Once again,
this might have to do with the dataset size since a deep neural network often require a lot of
data to perform well. The size of the H&T dataset might be more suitable for the traditional
logistic regression model for the more diverse product review datasets. Although the AUC
loss in the extreme cases when using H&T as source is lower than for many other domains,
by inspecting the actual AUC score in the rightmost plots of Figure 31, 32 one can see that
the in-domain AUC score is worse compared to when using one of the other datasets as
source. This is clearly a data size issue. Comparing the rightmost plot of Figure 31 with
the middle plot of Figure 23 one can see the obvious difference in AUC score for a = 1, i.e.
in-domain classification. In both these cases the models are only using D&T data but for the
latter case the whole D&T set is used while for the first case only D&T data in the size of
H&T is used for training.

Some difference in transferability can be seen between experiment I and II, i.e. keeping
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just the source domain constant for all a versus keeping the total training size constant. The
difference is quite subtle, at least for datasets that are in the range of 20 - 45 thousand re-
views. The dataset size seem however to be of greater importance when comparing the two
experiment for a smaller target dataset as mentioned in the previous discussion. Comparing
the experiments with fixed and unfixed data size when H&T is the target domain, it is pos-
sible to see that the overall performance is higher when the source data size is kept constant
and is in this case much larger than the target dataset. This is mainly the case for the CNN
models when inspecting the case where a = 1, i.e. the full source and target datasets are
used for training. This further strengthen the fact that deep neural networks are more data
size dependent compared to more traditional machine learning models. Comparing the two
experiments AUC score for a = 0, i.e. only source data is used for training but the data size
differs between the experiments one can see a significant difference where the AUC score
for experiment I is higher for all models. Concrete examples can be seen in the leftmost and
middle plots of Figure 25, 29, 31 and 32 where H&T acts as target, i.e E!H&T, R!H&T,
D&T!H&T, LB&M!H&T. To fully understand if this is the case it would be necessary to
do more test with a larger data size of H&T, that was however not possible since at the time
of this research no more H&T data were available.

7.2 Text representation
The model that outperform all the other models in the absolute majority of the cases in
terms of transferability is the CNN with unsupervised pre-trained word embedding using
word2vec. This can be seen in the extreme cases in the AUC loss plots, Figure 21 and Fig-
ure 22. The CNN model with word2vec embedding is in most of the cases also performing
best for in-domain classification. Using pre-trained word vectors can hence improve both
in-domain as well as the transferability of a model significantly. In several cases such as
D&T!E, D&T!R, LB&M!E, LB&M!R, the AUC loss are over 5% less compared to
the CNN with standard word embedding and the baselines. The use of pre-trained word
vector also increase the overall in-domain performance in most of the cases. Comparing to
standard word embedding it is possible to see an in-domain AUC difference of 1-3% to the
CNN with word2vec embedding’s favor. However, in a few cases, where the smaller dataset
H&T is used for the fixed data size experiments this model actually performs worst in terms
of absolute in-domain AUC score and transferability.

The drawback of using pre-trained word vectors is the fact that training them require a lot
of textual data. On the other hand, there exists already pre-trained word vectors free of use
such as a word2vec model trained on millions of Google news articles in English. Since this
thesis investigate Swedish reviews, such a pre-trained word vector would be of no use. The
word2vec model trained in this thesis were trained with the same sort of data as used for
the experiments, i.e. reviews. It is however possible to pre-train word vectors using other
text corpus’s such as a Wikipedia dump, news articles or Twitter tweets. Although, one can
imagine that using the same type of data for the word2vec model as for the predictive model
will yield better performance compared to training a word2vec model on arbitrary text data.
Mainly because different words are used in different contexts and in different ways. This is
however only speculations and tests would have to be conducted to confirm this claim.

Varying between unigram and bigram for the baseline seem not to have that great impact
on the transferability. In the extreme cases unigram seem to be better suited for LB&M!E
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and E!H&T while unigram and bigram seem to be a better fit for D&T!R and LB&M!R.
When using the smaller dataset, H&T, it seems like unigram and bigram perform slightly
better in most of the cases. It is difficult to pinpoint why that is and this might hence be
easiest determined through testing and evaluation to see what works best for a particular
domain or domains. Inspecting the AUC plots for varying a the two baseline curves follow
each other closely more or less in every test. Using both unigram and unigram and bigram
in this thesis was mainly to cover how logistic regression is commonly used for sentiment
analysis.

7.3 Review level
The overall performance of the CNN with the pre-trained word embedding is rather high
across domains, at least compared to the other models investigated in this thesis. It is how-
ever difficult to grasp what is really happening inside a deep neural network designed for
sentiment analysis compared to a CNN dedicated for image recognition. In the latter case it
is possible to extract what happens in each layer of the network, i.e. it is possible to step by
step see how an image is processed and what features are identified by the network, layer by
layer. When working with textual data it seem to be more complex.

Since it is difficult to know exactly how the CNN work the misclassified review were stud-
ied. From Table 11 it is possible to determine that in all in-domain cases the most difficult
reviews to classify seem to be negative reviews, i.e. the model predicted positive when the
actual sentiment is negative. This might have to do with the skewness of the datasets, i.e.
the number of positive reviews are a lot more than the number of negative reviews. When
instead inspecting the out-domain misclassification distribution the proportion of FP and
FN is almost 50/50. So for transfer learning it seems like the model having equally hard to
predict positive as negative reviews seen over all tests. There are however major differences
between specific datasets and domains.

An overall observation valid for all the tests for the CNN with word2vec embedding is
that longer reviews in terms of words are more difficult to classify, this is true both for in-
domain as well as out-domain classification. In Table 11 it is possible to see that the average
review text length for misclassified reviews for both a = 1 and a = 0 is longer compared
to the average review text length of the actual test set (Table 11 rightmost column). A rea-
son might be that longer reviews tend to contain both positive and negative aspects and it is
hence difficult for the classifier to determine if the positives outweigh the negatives and vice
versa.

A few examples of misclassified reviews where the model strongly believed a review was
positive but turned out to be negative and vice versa can be seen in Table 12. These reviews
are quite difficult even for a human to classify as positive or negative since they contain
both positive and negative aspects. A few of the reviews were also updated later on mak-
ing it even more difficult. These are just a few examples and no statistical conclusion can
be drawn from this but it is interesting to see examples of what kind of reviews the model
struggle to classify.
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7.4 Rating as sentiment
The validity of using ratings strictly as an indicator of positive and negative reviews can be
discussed. It is commonly used in previous research to use the review rating as a sentiment
indicator [1], [8], [43], [57]. One can understand why this is so broadly used. In machine
learning it is often difficult to get hold of big labeled datasets, so using the review rating as
sentiment indicator is an easy way to get a lot of freely available and labeled data. However,
a lot of reviews are not only positive or negative, instead many contain both positive and
negative aspects. A more valid approach might be to restrict negative and positive reviews
to the minimum respectively maximum rating, i.e. 1/5 and 5/5 or 1/10 and 10/10. By doing
that a lot of training data is however lost.

Intuitively or maybe ideally, a review with rating of 1/5 should contain merely negative
aspects while a review with rating of 2/5 should contain some positive segments. The same
reasoning can be done for rating 5/5 and 4/5 as well. The machine learning model should
hence be able to determine if the positive outweigh the negatives and vice versa. So, the
problem of restricting reviews to either positive or negative might just be the fact that re-
views are labeled positive and negative and should rather be labeled as mostly positive and
mostly negative. Another approach is instead of seeing it as a binary problem every rating
can be associated with a label, something like negative, weakly negative, neutral, weakly
positive, and positive. This will however most likely require more data so that each rating is
well represented over all datasets. The amount of reviews with rating 1 and 2 (and 3) were
often few for the datasets used in this research, hence this approach was not an option.

Another problem regarding review data can be that the actual ratings do not correspond
to the review text that well. In [59] they compare reviewer rating and reader rating, i.e.
they study the difference between how a reviewer rate its own review text with how a reader
would rate that same review text. They mean that even though a reviewer consider the same
product or service while writing the review text and giving the rating there might be a mis-
match between the text and rating since the reviewer can leave out perceptrons or thoughts
of the product or service in the review text but include it in the rating. Therefore, if a reader,
that has not experienced the same thing as the reviewer, rate the review text solely on the
review text, the text and rating might correlate more accurately. By comparing these two ap-
proaches and train a Naive Bayes classifier they find that reader ratings is a better measure
compared to reviewer rating. This can be an important factor to keep in mind when dealing
with review data and sentiment analysis. However, the advantage of easily access big corpus
of annotated data is lost if reader rating should be considered over reviewer rating.

8 Conclusion
This study has shown that the CNN model with standard word embedding used in this thesis
perform worse in terms of transferability in the extreme cases for a fixed data size compared
to the baselines, i.e. a logistic regression model with unigram and unigram and bigram text
representation, when trying to predict the sentiment of Swedish reviews across domains.
The CNN model perform better in terms of transferability in the extreme case in only 4 out
of 20 tests. Judging from these results one can conclude that the CNN model used in this
thesis by itself is not that well suited for transfer learning in the extreme cases since it does
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not beat the baseline model. The CNN does however perform better than the baseline in 6
out of 10 cases when the full source and target data are used for training. This study has
shown that instead of merely using one domain for training it is possible to boost the perfor-
mance of a CNN model by adding data from another domain in the training phase.

Substituting a smaller amount of source data with target data for training can significantly
increase the transferability performance across domains. In this thesis, substitution of 20%
of the total source domain training set with target data has proven to increase the AUC score
up to 7-8%. This is true for the majority of the tests done in this thesis both for the standard
CNN model and the baselines. Another important factor is the training data size where a
larger dataset size can increase both the overall as well as the transferability performance of
especially the CNN models.

A fairly simple CNN with pre-trained word embedding like word2vec outperform the other
models in almost every test case. This is true both for in-domain classification but foremost
for the transferability aspect. The text representation has a great impact on the transferabil-
ity of the model and using pre-trained word embedding is therefore recommended both for
transfer learning as well as for in-domain sentiment analysis. The pre-training is done in an
unsupervised fashioned and labeled data is hence not required for this step.

It is difficult to determine the relatedness of two domains by just looking at what categories
they belong to. In this thesis it seems like product reviews from different categories are more
related compared to say product and company reviews within the same area. Other aspects
that might better describe two domains relatedness seem to be the intersection of total words
and frequently used words across domains. It is hence important to study the characteristics
of the datasets when dealing with sentiment analysis and transfer learning.

9 Future work
In this thesis the best overall performing model in terms of transferability and in-domain
sentiment classification is a CNN with pre-trained word embedding using word2vec. The
word2vec model is trained on review type data and it would be interesting to see how the
performance differs if the word2vec model is instead trained with arbitrarily text data such
as a Wikipedia corpus.

A lot of focus in this research was to investigate transfer learning by combining different
amount of source and target data for training. Another focus would be to investigate the
maximum transferability achieved by training a deep learning network with a large amount
of data from different source domains and fine tune some parts such as the last fully con-
nected layer of the network with a smaller amount of target data. A further extension to this
research would be to add more levels of sentiment such as neutral, weakly and strongly pos-
itive and negative sentiment instead of just grouping reviews into either positive or negative
sentiment. Although, more data would most likely be required. This might however help to
capture the more ambiguous reviews that a binary classifier struggle to classify.
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Appendix A

Table 13: Investigated domains and their subcategories

Category Subcategories Amount

Datorer & Tillbehör

Datorkomponenter 9597
Möss & tangentbord 3592
Nätverk 3485
Datorer 2073
Kablar 1971
Bildskärmar 1437
Datortillbehör 839
Lagrinsmedia 675
Skrivare & skannrar 482
Mjukvaror 114
VR-glasögon 71

Ljud, Bild & Musik

Högtalare & hörlurar 11831
Hifi- & hembiotillbehör 1578
Förstärkare 1551
Projektorer & dukar 1407
Mediaspelare 1213
TV 1044
Stereodelar 854
Hembiosystem & stereopaket 568
PA-utrustning 482
DVD-spelare & Blu-ray-spelare 323
Musikinstrument 252
Billjud 202
Bärbart ljud 202

Hem & Trädgård

Kök 2450
Städ & klädvård 850
Vitvaror 567
Inredning 554
Smarta hem 486
Trädgårdsredskap 479
Verktyg 461
Klimat & värme 393
Grillar 236
Livsmedel 166
Till bilen 93
Badrum 69
Kontorsutrustning 35
Djurfoder 33

Elektronik

Mobiltillbehör 17562
Mobiltelefoner 8114
Batterier & strömförsörjning 7836
Ljud 2985
TV & bildskärmar 2359
Hushållsapparater 2337
Elektroniska reserverlar & komponenter 1705
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Elartiklar 1050
Foto & video 294
Elektronikreparation 158

Restauranger Restauranger 26089
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