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ABSTRACT 

 

Jim Albert, Advisor 

 

 In 2014 Ohio began the Sexual Assault Kit Testing Initiative with the goal of analyzing 

all previously untested sexual assault kits (SAKs). Approximately 13,900 previously untested 

SAKs were sent for forensic analysis. Of these SAKs, a sample of 2,500 was drawn for statistical 

analysis. The goal was to gain some general information about the SAKs as well as to answer a 

variety of specific questions in the hopes of producing cost-saving measures in the future. 

Questions considered were those such as:  which forensic samples most consistently produce 

Combined DNA Index System (CODIS)-eligible DNA profiles, what factors predict whether or 

not a kit will contain a DNA profile foreign to the victim, as well as others. The results of the 

initiative were published in Kerka, Heckman, Maddox, Sprague, & Albert (2018). 

 This thesis expands upon the work in the aforementioned article. In the article, a logistic 

regression model was constructed to predict whether or not an SAK would contain a CODIS-

eligible DNA profile. It was estimated to have a misclassification rate of 34.2%.  This thesis 

compares three other models to the logistic regression model to determine if any improvements 

in performance can be made. The models tested were decision trees, bagged trees and random 

forests. The decision tree had an estimated misclassification rate of 29.7%, thus offering a 

moderate improvement over the logistic regression model. 

 In addition, the same models were compared for their ability to predict which SAKs 

would contain duplicate DNA profiles across multiple forensic samples (vaginal sample, anal 

sample, etc). No model was able to do a satisfactory job of predicting this response. 
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This thesis is dedicated to all victims of sexual assault. I hope it makes some small contribution 

to rectifying the injustice you have suffered.
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CHAPTER 1 INTRODUCTION 

The backlog of untested sexual assault kits (SAKs) in many states and cities has become 

an issue of growing alarm. In 2008, over 10,000 untested SAKs were found in the Los Angeles 

Police and Sheriff’s Departments (Peterson, Johnson, Herz, Graziano, & Oehler, 2012). 

Maryland revealed that police departments across the state had over 3,700 untested SAKs (The 

Baltimore Sun, 2017). As of 2017, Nevada had 8,000 untested SAKs, Arizona had 6,000, and 

Florida had 13,000 (“Where the Backlog Exists,” 2017). Other locations have similar backlogs. 

Many states and cities don’t even know how many they have. 

The federal government has taken notice. In April 2017, a group of lawmakers launched 

the Bipartisan Task Force to End Sexual Violence. The task force was created to address issues 

such as K-12 education, college campus safety, the rape kit backlog, and law enforcement 

training, among other things (“Bipartisan Group,” 2017). Even popular actors such as Law and 

Order SVU’s Mariska Hargitay have been raising public awareness about the issue. In June 

2017, Hargitay appeared before the aforementioned task force as a witness (“Bipartisan Task 

Force,” 2017). 

Like many other states and cities, Ohio had its own backlog of untested SAKs. In Ohio’s 

case, the backlog numbered in the tens of thousands, with cases dating from the late 80’s to the 

early 2010’s. In 2014 Ohio began the Sexual Assault Kit Testing Initiative in order to address the 

issue. Through the initiative, all untested SAKs were submitted for forensic analysis. 

Approximately 13,900 kits were analyzed. From the population of 13,900, a sample of 2,500 was 

taken to look for patterns that might allow for more efficient processing in the future. The 

significant conclusions of the work were summarized in Kerka, Heckman, Maddox, Sprague, & 
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Albert (2018). This thesis hopes to expand upon the work of the paper, in ways soon to be 

described. 

The Sexual Assault Kit Testing Initiative has been successful in identifying perpetrators 

of sexual assaults as well as linking cases involving unknown assailants through the utilization of 

the Combined DNA Index System (CODIS) database. CODIS is used to store the DNA profiles 

of perpetrators of criminal activity. When DNA evidence is found at a crime scene (or on a 

victim’s body in the case of sexual assault), if it meets the standards of entry into the CODIS 

database, it will be uploaded and potentially linked to an identical DNA profile that already 

exists in the database. If the perpetrator DNA profile and identity has previously been loaded into 

CODIS, uploading the DNA profile again will match (hit) to a person of known identity. If the 

perpetrator has left DNA at previous crime scenes but never been apprehended his profile may 

appear in CODIS but there will be no identity associated with it. 

When a person becomes the victim of sexual assault, he/she goes to the hospital to have 

an SAK collected by a Sexual Assault Nurse Examiner (SANE). The SANE collects a variety of 

samples from the victim. Some of the most commonly collected samples consist of vaginal 

swabs, anal swabs, oral swabs, pubic hair standards and combings, and swabs and cuttings from 

the underwear worn during the sexual assault. Once these samples are collected they are placed 

in an SAK, which is then transferred to the local police department where a decision is made as 

to whether or not it should be submitted to the laboratory for testing. If an SAK is submitted for 

DNA testing, a variety of forensic samples contained within the SAK undergo processing to 

determine if a suspect’s DNA profile can be identified from the evidence. Forensic samples are 

initially sent through DNA extraction where the DNA contained within the sample is isolated 

and purified. The commonly low-level amounts of forensic DNA are then amplified by 



3 
	

polymerase chain reaction (PCR) to increase the number of copies of the DNA. The samples 

ultimately undergo capillary electrophoresis which generates data containing the DNA profiles 

from each individual forensic sample. From there, DNA analysts examine the DNA profiles to 

determine if a DNA profile foreign to the victim of the sexual assault is present. These foreign 

DNA profiles can then potentially be uploaded into CODIS or compared to a suspect DNA 

standard. If multiple forensic samples produce CODIS-eligible DNA profiles of the same 

individual, only the highest quality profile is uploaded. Across multiple previous studies that 

examined DNA testing results of forensic samples, DNA profiles were uploaded into CODIS in 

between 25.0% and 49.0% of all SAKs examined. Of those DNA profiles that were uploaded 

into CODIS, a “hit”—a DNA profile match to either a named individual or a forensic sample in 

an unsolved case—was seen in approximately 48.9% to 58.0% of the uploads (Wells, Campbell, 

& Franklin, 2016). 

The reason for the backlog of SAKs is that law enforcement doesn’t submit every kit they 

obtain for forensic analysis. There are a variety of reasons for this. One is that most jurisdictions 

do not have written guidelines for testing SAKs. Many decisions are left to the leadership of the 

department, and if the department is understaffed or does not place a high value on sexual 

assault, the kits may be neglected. In addition, there is little training on how to handle sexual 

assault. When a victim is traumatized after the attack, he/she may not clearly recall the details of 

the event. When a victim cannot clearly articulate what happened, this harms her perceived 

credibility, inclining law enforcement to drop the case. It is also possible they hold the victim 

responsible for what happened, further reducing her credibility. Also, many jurisdictions don’t 

test SAKs when the identity of the assailant is known, because they don’t believe the results of 

the testing will improve prosecution of the case. In addition, many crime labs simply don’t have 
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the funding or personnel to properly test all kits. On average, testing one kit costs between $1000 

and $1500, which at times can strain resources (“Why the Backlog Exists,” 2017). 

As previously stated, the Sexual Assault Kit Testing Initiative was Ohio’s effort to 

address the SAK backlog in the state. Kerka et al., (2018) summarized the efforts of the project. 

One of the primary goals of the project was to determine which forensic samples (vaginal, anal, 

etc) tend to yield DNA profiles that are CODIS-eligible.  On the basis of the results, the paper 

recommended certain guidelines for future SAK testing. In addition, logistic regression was used 

to estimate the probability that a particular kit would contain a CODIS-eligible DNA profile. 

This thesis expands upon that work by comparing the performance of several different statistical 

methods for their ability to predict the presence of a CODIS-eligible DNA profile in a kit. 

Furthermore, it also tries to identify factors that predict which kits contain duplicate DNA 

profiles across different forensic samples (for instance, if the same profile will be found in both 

the vaginal and anal sample). This thesis proposes several different methods and compares them 

on the basis of their predictive ability and ease of interpretation. The methods compared are: 

logistic regression, decision trees, bagged trees, and random forests. 

 One of the limitations of this work is that some of the DNA profiles obtained may have 

been those of consent partners rather than those of perpetrators. At the time of SAK collection 

victims are asked whether they had recent consensual sex. If they report yes, it is the job of the 

local law enforcement agency to obtain a DNA sample from the consent partner, called an 

elimination standard, in order to ensure the consent partner’s profile is not uploaded into CODIS. 

Unfortunately, these standards are rarely collected around the time of the initial investigation, 

and as a result some of the DNA profiles uploaded are those of non-criminals. 
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 Another limitation is that the SAKs in the sample were collected from assault scenarios 

that varied dramatically. Some victims were vaginally assaulted. Others were vaginally and 

anally assaulted. Others were forced to perform oral sex on the assailant. This information might 

have been incorporated into the methods, but unfortunately the type of assault the victim endured 

was one of the most frequently missing pieces of information from the kit. In the sample of 2,500 

kits, whether a vaginal or anal assault occurred was missing almost 30% of the time. As a 

consequence, such information was not utilized. 

 A third limitation is that single-assailant and multiple-assailant cases were not separated. 

Both kinds of cases were used for the purposes of building the statistical models. One of the 

response variables of interest was whether or not at least one CODIS-eligible DNA profile was 

uploaded. It did not distinguish between one, two, three, or four profiles being uploaded. If there 

are significant differences between the two scenarios there may be a loss in the accuracy of the 

model predictions. 

 At the time of publication, no other work had previously been done to build statistical 

models to predict whether or not an SAK would contain a CODIS-eligible DNA profile or 

duplicate DNA profiles. Much work has been done in related areas, however. Fallik & Wells 

(2014) suggest that submitting SAKs for analysis long after initial collection is unlikely to have 

an impact on the investigation and prosecution of the case. Gray-Eurom, Seaberg, and Wears 

(2001) built a logistic regression model to predict whether or not a case would result in 

successful prosecution resulting in a conviction. Several cities have done studies on backlogged 

SAKs and looked at the rates of CODIS uploads and CODIS hits, such as Houston, Detroit, Los 

Angeles and New Orleans (National Institute of Justice, 2016). These projects did not use 
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statistical modeling to predict which kits would contain CODIS-eligible DNA profiles though. 

As such, this work hopes to make a unique contribution to the field. 

The next chapter gives a summary of the variables in the dataset. Chapter 3 is an 

exploratory analysis of the predictor variables. Chapter 4 gives an overview and examples of the 

different methods used in the thesis. Chapters 5 and 6 compare the ability of the four methods 

(logistic regression, decision trees, bagged trees and random forests) to predict the presence of 

CODIS-eligible DNA profiles and duplicate DNA profiles respectively. Chapter 7 makes some 

concluding remarks. 

All statistical models were built using the statistical software R (R Core Team, 2017). 

The ‘ggplot2’ package was used to make many of the graphs in this thesis (Wickham, 2009). The 

‘dplyr’ package was used for easy manipulation of the data (Wickham, Francois, Henry, & 

Muller, 2017). The ‘rpart’ package was used to fit decision trees and make graphical displays 

(Therneau, Atkinson, & Ripley, 2017). The ‘step’ and ‘glm’ functions were used to fit the 

logistic regression models (R Core Team 2017). The ‘randomForest’ package was used to fit the 

bagged tree and random forest models (Liaw & Wiener, 2002). Appendix A contains a full list of 

packages and functions used. 
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CHAPTER 2 DATA DESCRIPTION 

2.1 Data Collected 

Over 13,900 sexual assault kits were submitted to the Ohio Bureau of Criminal 

Investigation from over 294 unique law enforcement departments in the state of Ohio under the 

Sexual Assault Kit Testing Initiative. The results of the analyses were compiled into case files. 

From the population of 13,900 kits, a convenience sample of 2,500 SAKs was drawn for 

statistical analysis. The cases were chosen at convenience because the Ohio Bureau of Criminal 

Investigation already had several thousand case files associated with SAKs in its possession and 

opted to use those as opposed to ordering files from storage. The data from these 2,500 SAKs 

was manually entered into a spreadsheet for analysis. The following is a partial list of 

information recorded (excluding some of the more technical forensic details): 

• The date of offense 

• The date of SAK collection 

• The date of SAK submission to laboratory for testing 

• The type of assault (vaginal, anal, oral, or other) 

• The age of the victim 

• Whether or not foreign DNA was obtained from particular forensic samples, and the 

quality of that DNA 

• Whether or not DNA from a particular forensic sample was uploaded into CODIS 

• Whether or not the profile uploaded to CODIS produced a ‘hit’ 

• Whether the local law enforcement agency obtained a ‘hit confirmation standard’ from 

the individual identified by CODIS to confirm the identity of the perpetrator 

• Number of assailants reported by the victim 
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• The number of distinct DNA profiles obtained 

• The number of duplicate DNA profiles obtained 

• The number of forensic samples run in laboratory testing 

• Whether or not the victim reported having consensual sex in the last 72-96 hours 

 

 The gender of the victim was not recorded, so we don’t know exactly how many of the 

victims were male. However, penile samples are only collected for male victims, so the number 

of penile samples can be used to estimate the percentage of men in the sample. The number of 

penile samples collected suggest that at least 3% of the victims were male. 

2.2 Selection of Predictor Variables 

 For the purposes of building the statistical models, decisions had to be made about which 

variables would be considered for inclusion in the models. Every variable that could have had an 

impact on the response was considered unless there was a specific reason to exclude it. Recall 

that the two responses of interest were whether an SAK contained at least one CODIS-eligible 

DNA profile and whether an SAK contained duplicate DNA profiles across multiple forensic 

samples. Since both responses deal with the results of forensic analysis, predictor variables that 

were appropriate for one were also appropriate for the other. As a result, discussion of which 

variables were considered for the models is condensed into one discussion. 

 One of the biggest reasons a variable may have been excluded from consideration is that 

information about it was missing in the SAK case file. Table 2.1 shows the percent of the cases 

with certain information missing. In a small fraction of the cases the date of offense was 

unknown, while in almost 10% of the cases the date of kit collection was unknown. In almost 

30% of the cases it was unknown whether the victim suffered a vaginal or anal assault (not  
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Information Missing (%) 
Did Law Enforcement Obtain 'Hit Confirmation 
Standard' 65.3 

Did Victim Report Other Kind of Assault 29.9 
Did Victim Report Oral Assault 27.8 
Did Victim Report Anal Assault 27.6 
Did Victim Report Vaginal Assault 24.9 
Did Victim Report Recent Consensual Sex 18.8 
Number of Assailants Reported by the Victim 15.5 
Date of Kit Collection 9.6 
Victim Age 6.0 
Date of Offense 3.0 
Date of Kit Submission to Laboratory 0 
Was Particular Forensic Sample Analyzed 0 
Was DNA Obtained from a Sample 0 
Was DNA Profile from Sample Uploaded into CODIS 0 
Did Uploaded Profile Produce a 'Hit' 0 
Number of Distinct DNA Profiles Obtained 0 
Number of Duplicate DNA Profiles Obtained 0 
Number of Forensic Samples Run in Testing 0 

 
Table 2.1:  Percent of Cases with Information Missing. 
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shown in table). It was likely unknown whether or not law enforcement obtained a hit 

confirmation standard. In about 15% of the cases the number of assailants reported by the victim 

was unknown, and in 19% of the cases whether the victim had consensual sex was unknown.  

 There are multiple methods for dealing with missing data. One such method is complete 

case analysis. In complete case analysis, all observations with any missing information are 

removed. Another method is mean imputation. In this method, the average of the non-missing 

values is imputed for all missing values of the predictor. A third option is single imputation. In 

single imputation, a model is created to predict the missing values. For instance, a linear 

regression model might be created to predict missing values for the number of assailants reported 

by the victim. Another, slightly more sophisticated method is multiple imputation. Multiple 

imputation takes the predicted value from single imputation and adds a random error term to it in 

order to reproduce the variability in the original data set. Each missing value is imputed in this 

way. But rather than just imputing each missing value once, multiple imputation imputes each 

missing value m times, resulting in m fully imputed data sets. Regression models are then built 

from each of these m data sets, and the coefficient estimates from each of the models are 

combined to create the coefficients of the final model. For more information please see UCLA 

(n.d.). For a complete treatment of the subject, please see Molenberghs, Fitzmaurice, Kenward, 

Tsiatis, & Verbeke (2014). 

 For this thesis, we chose to opt for single imputation by linear regression for the 

quantitative variables. Two variables we attempted to impute were not directly listed in the table 

above but could be calculated from the table. These were the number of days to kit collection and 

the number of years from kit collection to kit submission to the laboratory for analysis. Two 

linear regression models were constructed with each of these variables as the response. All other 
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variables in the dataset were used as predictors, except whether an SAK contained a CODIS-

eligible DNA profile and whether it contained duplicate DNA profiles. For both models, the 

value of R2 was no greater than 10%. This means that no more than 10% of the variability in the 

response could be explained by the predictor variables. This is an extremely small figure, and as 

a result imputation by regression was abandoned. Imputation was not attempted for the 

qualitative variables due to a lack of sensible predictor variables. As a result, we decided to use 

complete case analysis, and all observations with any missing data were removed. 

 Next a decision had to be made as to which variables would be excluded due to having 

too much missing data. We decided that the variables relating to the type of assault the victim 

suffered were missing too frequently to be worth including in the models. If they were included, 

over 30% of the cases would have to have been removed. 

 Still, many decisions had to be made about other variables as well. One variable 

considered was whether the victim suffered a single-male or multiple-male assault. The problem 

with including this variable is that it is difficult to determine which kind of assault the victim 

actually suffered. A case might be considered multiple-male if the victim reported multiple 

assailants in the assault. The problem with using this to label a case ‘multiple-male’ is that often 

the victim doesn’t remember the exact details of the assault (if she was drugged or beaten), and 

may misremember the number of assailants. As a consequence, whether the assault was single or 

multiple-male was not considered as a predictor variable. 

 Several variables weren’t considered because they bore no logical relation to the response 

or they were not chronological (such as using number of distinct DNA profiles obtained to 

predict whether at least one profile was obtained). The final set of predictors considered for the 

models were:  days to kit collection (a combination of date of offense and date of kit collection), 
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years to kit submission to laboratory (a combination of date of kit collection and date of kit 

submission to laboratory), victim age, number of forensic samples run in laboratory testing, the 

occurrence of consensual sex, and ten categorical variables corresponding to whether each of the 

top ten most common samples was analyzed in a particular case (vaginal sample, anal sample, 

pubic hair comb swab, oral sample, underwear crotch swab, underwear crotch cutting, pubic hair 

standard swab, underwear non-crotch cutting, external vaginal area sample, and neck/ear swab). 

For the sake of clarity, the variables ‘days to kit collection’ and ‘years to kit submission to 

laboratory’ are shown on a timeline in Figure 2.1. 

 

 

Figure 2.1:  Timeline of SAK submission process. 

 

 There were 538 cases with information missing about one or more of the predictor 

variables. As a result, these cases were removed for the purposes of building the models. This 

left 1,962 cases with complete information. In addition, several kits were removed because they 

were outliers. Two were removed because they were collected more than two weeks after the 

assault. Kits submitted to the laboratory 15 or more years after collection were also removed due 

to there being so few of them. When modeling which kits contained duplicate DNA profiles, kits 

with only one sample analyzed were removed. This left 1,937 cases for modeling which kits 
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contained a CODIS-eligible DNA profile, and 1,924 cases for modeling which contained 

duplicate profiles. 
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CHAPTER 3 EXPLORATORY ANALYSIS OF PREDICTOR VARIABLES 

 In this chapter, we’ll focus on exploring the distributions of, and relationships between, 

the predictor variables. Figure 3.1 shows, in three separate panes, the distribution of the number 

of days to kit collection, the number of years to kit submission to laboratory, and the age of the 

victim. Most kits are collected the same day as the assault (57.7%); only 4.4% of kits are 

collected three or more days after the assault. Only a few kits spent less than three years in 

storage. The median victim age was 22. Days to kit collection and victim age are both clearly 

right-skewed, while years to kit submission to laboratory is more symmetric. For the purposes of 

the models in Chapters 5 and 6, age is treated as a categorical variable with ranges 0-7, 8-15, 16-

22, 23-50 and 51 plus. 

Figure 3.2 from top to bottom shows the percent of victims who had recent consensual 

sex before the assault, the distribution of the number of samples run in laboratory testing, and the 

percent of the time the top ten most common samples were analyzed. Twenty-seven percent of 

victims had recent consensual sex before they were assaulted. The distribution of the number of 

samples run is fairly symmetric, with nearly half of the kits having four or five samples tested. 

Figure 3.3 shows a violin plot of the distribution of days to kit collection and the number 

of samples run, both separated by victim age. The left panel helps us determine if certain age 

groups waited longer to have their kits collected. Violin plots are constructed such that each 

“violin” has an equal area. The width of the violin is relative to the total size of the group. If this 

wasn’t the case, the violin for those age 23-50 would be much larger than for those age 0-7 

because there were many more victims age 23-50. Looking at the plot, it appears those age 16-22 

and 23-50 are most likely to have their kit collected on the same day as the assault, because the 

width of their violins at zero days is largest. This might be because those of adult age are able to  
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Figure 3.1:  Top Left:  Distribution of days to kit collection.  Top Right:  Distribution of victim age.  
Bottom Left:  Distribution of years to kit submission to laboratory. 
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Figure 3.2:  Top:  Percent of victims that had recent consensual sex.  Middle:  Distribution of the 
number of samples run.  Bottom:  Percent of time common forensic samples were analyzed. 

 The vaginal and anal samples were analyzed most frequently at 87.8% and 84.3%  
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Figure 3.3:  Left:  The number of days to kit collection separated by victim age.  Right:  The number of 
samples run separated by victim age. 
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take themselves to the hospital to have the SAK collected while those of a younger age may be 

unable to take themselves or be uncertain of what to do in the wake of an attack. It appears those 

age 51+ show the greatest variability as to when they have their kit collected, as suggested by the 

fact that their violin is of the most uniform width. 

 The right panel suggests that the variability in the number of samples run is fairly 

uniform across different age groups. The age of the victim doesn’t seem to have an impact on the 

number of samples run. 

Figure 3.4 shows the percent of victims who had recent consensual sex by age category. 

As one might expect, those between the ages of 16-22 and 23-50 most frequently reported having 

consensual sex before the assault. In Chapter 4 we’ll turn to the methods considered for the 

analysis. 
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Figure 3.4:  Percent of victims having consensual sex separated by victim age. 
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CHAPTER 4 CHOICE OF METHODS FOR MODEL-BUILDING 

4.1 What is a Classification Problem? 

 For this thesis there are two response variables we are interested in predicting:  whether 

an SAK contains at least one CODIS-eligible DNA profile, and whether an SAK contains 

duplicate DNA profiles across multiple forensic samples. These are qualitative, rather than 

quantitative, responses. As such, the methods that are typically used for quantitative responses, 

such as linear regression, will not work in this circumstance. A specific name is given to 

problems where the goal is to predict a qualitative response:  classification problems. The goal of 

classification is to classify a particular observation to one of K classes. For both of the response 

variables we are interested in, K = 2 (either at least one profile was found or not, either a kit 

contained duplicate profiles or not). One of the biggest differences between classification 

methods and methods with quantitative responses is that typically a classification method will 

assign an observation a probability between 0 and 1 of belonging to a particular class. Generally, 

the observation is assigned to the class to which it has the greatest probability of belonging. 

Quantitative responses, on the other hand, can generally be any real-valued number. 

4.2 Measuring the Performance of a Classification Model 

 There are three common ways to measure the performance of a classification model:  the 

misclassification rate, expected loss, and cross-entropy, also known as normalized negative log-

likelihood. The misclassification rate is simply the proportion of observations the model 

misclassifies. The expected loss takes into account the possibility that some mistakes are costlier 

than others. For instance, when diagnosing a disease, such as cancer, it would be costlier to 

misdiagnose someone who does in fact have cancer than to misdiagnose someone who doesn’t 

have cancer. Another scenario in which expected loss is appropriate is when a bank is deciding 
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who to lend credit to. For the bank, lending credit to someone who defaults is costlier than 

failing to lend credit to someone who wouldn’t default. With expected loss, different weights can 

be placed on different errors to account for the size of the error. Cross-entropy takes into account 

the certainty with which the model made the prediction. For instance, if a model estimated that a 

particular observation had a 90% probability of belonging to the wrong class, this would be 

punished more heavily than if the model had estimated only 60%. While each of these metrics is 

appropriate in different scenarios, for this thesis we’ll use the misclassification rate as the metric 

of model performance. For a slightly more in-depth treatment of the subject please see Shalizi 

(2009). 

4.3 Choice of Classification Methods 

 There are many different methods of classification. Common methods include K-nearest 

neighbors, logistic regression, discriminant analysis and decision trees. All were considered for 

potential use in this thesis. Both K-nearest neighbors and discriminant analysis were ultimately 

rejected because they are unable to handle qualitative predictor variables (such as the occurrence 

of consensual sex). However, both logistic regression and decision trees are able to handle 

qualitative predictor variables. As such, these methods were included for comparison. In 

addition, ‘bagging’ and ‘random forests’ were used as well. Bagging is a method that can be 

applied to other statistical methods in order to improve performance. It is commonly applied to 

decision trees, and that’s how we’ll use it here as well. Decision trees on which bagging is 

performed will be referred to as ‘bagged trees’ throughout the thesis. Random forests are a slight 

tweak on bagged trees. They are also designed to improve performance. The next few sections 

will describe the four methods in greater detail. 
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4.4 Logistic Regression Description and Example 

Logistic regression takes a set of predictor variables associated with an observation as 

inputs and estimates the probability that the observation belongs to a particular class. Generally 

an observation is assigned to the class with greatest probability. Hastie, Tibshirani, & Friedman 

(2016) offer a description of the method. Let N denote the total number of observations in the 

training set, and yi, i = 1…N, be the class to which observation i belongs. Let X be the N x p 

matrix of predictor variables, where p is the number of predictors. A single row in this matrix, 

denoted xi, contains the predictor variables for a single observation. To denote the estimated 

probability that an observation has a positive response, we’ll use p(X) = Pr (y = 1 | x). In this 

context, both containing a CODIS-eligible DNA profile and containing duplicate profiles are 

considered positive responses. The probability an observation has a negative response (doesn’t 

contain a CODIS-eligible DNA profile or duplicate profiles) is 𝑃𝑟	 𝑦 = 0	 𝑥), or 1 – p(X). 

Logistic regression assumes that the response variable has two classes. In this case, the 

model takes the form 

𝑙𝑜𝑔 , -
./, -

= 𝛽1 +	𝛽3𝑥	 4.4.1	 
 

where β0 is the intercept and βT is a vector of coefficients of length p. As previously stated, p(X) 

is the estimated probability of obtaining a CODIS eligible DNA profile. The ratio ,(-)
./,(-)

 is called 

the “odds”. For instance, ,(-)
./,(-)

 could be the odds in favor of obtaining a CODIS-eligible DNA 

profile. An odds of 1 means both obtaining and failing to obtain a profile are equally likely. An 

odds greater than 1 means obtaining a profile is more likely, while an odds less than 1 means 

failing to obtain a profile is more likely. Taking the natural logarithm of the odds produces the 

log-odds, or “logit”. The logit is a linear function of the predictor variables. 
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By manipulating 4.4.1, one can solve for p(X): 
 
 

𝑝 𝑋 = 	 789:8
;<

.=	789:8;<
	 4.4.2	 

  

 The benefit of 4.4.2 is that one can directly estimate the probability of a particular 

outcome by plugging in values for the predictor variables. Of course the ultimate goal of 

classification is to assign an observation to a class. A natural way to do this is to assign 

observations with an estimated probability of 50% or greater to one class (obtained a CODIS-

eligible DNA profile, for instance), and those with an estimated probability of less than 50% to 

the other (no DNA profile), although other boundaries may be chosen. On the logit scale, 

observations with a logit of 0 or greater would be assigned to the first class, and those with a 

logit of less than 0 would be assigned to the other class. 

 The model is fit by maximizing the value of the likelihood function through maximum 

likelihood estimation. The likelihood function is displayed in Equation 4.4.3. The likelihood 

function is a function of the parameters β0 and β. Maximum likelihood estimation chooses values 

for β0 and β that maximize 4.4.3. The value p(xi) is the same as that displayed in  Equation 4.4.2. 

It is the probability that an observation belongs to a particular class (in our case, contains a 

CODIS-eligible DNA profile). While we could substitute 4.4.2 into 4.4.3, we won’t for 

simplicity of display. The value yi is the true class of the observation (1 if it contains a DNA 

profile, 0 otherwise). In words, maximum likelihood estimation is maximizing the probability 

that each observation belongs to the class it does in fact belong to, multiplied by one another. 

Coefficient values that maximize 4.4.3 are selected. A method of iteratively reweighted least-

squares is used to find the exact coefficient values. Details can be found in Hastie et al., (2016). 
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𝐿 𝛽1, 𝛽 = 	 𝑝(𝑥@)AB(1 − 𝑝 𝑥@ )./ABE

@F. 	 4.4.3 
 
 
Before we discuss the variable selection process, we’ll briefly describe how models can 

be compared to one another. One such way is on the basis of the Akaike Information Criterion 

(AIC). The AIC is computed as follows: 

 

𝐴𝐼𝐶 = 	−2 𝑙𝑛 𝐿LMN + 2(𝑝 + 1)	 4.4.4	 
  

 In the above equation, p represents the number of predictor variables and 𝐿LMN refers to 

the maximum value of the likelihood function for a particular model. Models with smaller AIC’s 

are preferable to ones with larger AIC’s. The equation can be broken into two components. The 

first component, −2 𝑙𝑛 𝐿LMN , only decreases as more predictor variables are added to the 

model. The first component will decrease if an added variable is able to improve the predictions 

of the model. For instance, if it is able to increase the estimated probabilities from 60% to 80%, 

and those are predictions for the class the observations do indeed belong to, the first component 

will decrease. The second component, 2(𝑝 + 1), only increases as predictor variables are added 

to the model. The second component can be thought of as a ‘penalty term’. The idea is that a 

predictor variable should be added as long as it decreases the first component by more than the 

value of the penalty term. If it cannot, the AIC will increase. 

With an understanding of the AIC, we can now proceed to variable selection. There are 

two primary ways to select variables for a model. One is called ‘best subsets’. The idea behind 

best subsets is to compare the performance of models with different numbers of predictor 

variables. To do this, the best 2-3 models with each number of predictor variables from 1 to p 

(the total number of predictor variables) are chosen for comparison based on some criteria, such 
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as AIC. The complexity of the model is weighed against its predictive ability. Simpler models 

(ones with fewer variables) are preferred once additional predictor variables are unable to help 

the model make more accurate predictions. The other method is called the ‘one-variable-at-a-

time’ approach. There are three such methods: forward selection, backward selection, and 

stepwise selection. For this thesis we’ll use forward selection. Forward selection begins by 

adopting a model with no predictor variables (the ‘null model’). Next, each of the p predictor 

variables are considered for entry into the model. The variable that would decrease the AIC by 

the largest amount is added to the model. Next, each of the p-1 remaining predictor variables are 

considered for entry into the model. The variable that would decrease the AIC by the largest 

amount is again added to the model. This process continues until there is no variable that would 

decrease the AIC. 

 With a fuller understanding of the method, we’ll now proceed to a simple example. 

Suppose we want to model the probability that a basketball player makes a particular shot. 

Suppose that a variable selection process has been carried out, and there are two relevant 

predictor variables:  the player’s distance from the net (in feet), and whether or not he’s playing 

at home. The first predictor is quantitative while the second is qualitative (home/away). 

Equations 4.4.5 and 4.4.6 show the model on both logit and probability scales respectively. 

 
𝑙𝑜𝑔 , -

./, -
= 	2	 − 	0.15𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 + 	0.5𝐻𝑜𝑚𝑒	 4.4.5 

 

																																									𝑝 𝑋 = 	 7
([	\	9.]^_B`abcde	:	9.^fghe)

.=7([\9.]^_B`abcde:9.^fghe) 4.4.6  
  
  
 The variable Distance assumes values between 0-30 and Home assumes a value of 1 if 

playing at home and 0 if away. Probabilities can be calculated by assigning values to the 
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variables. For instance, if a player is 10 feet away and is playing at home, the probability he 

makes a shot is  7
([	\	9.]^∗]9	:	9.^∗])

.=7([\9.]^∗]9:9.^∗])
= 0.731. The number ‘2’ in the right-hand side of both 

equations is called the intercept. The intercept determines the estimate of the probability when all 

variables are 0. In this case, the intercept is estimating the probability that a player makes a shot 

from 0 feet away, playing an away game. The probability he makes the shot is 7[

.=7[
= 0.881.  In 

this case it makes sense for the variables to assume a value of 0, but in some situations it does 

not. In those situations, the intercept should not be interpreted. 

 Figure 4.1 displays a graph of Equation 4.4.6. The top curve corresponds to when the 

variable Home assumes a value of 1, and the bottom curve corresponds to when it assumes a 

value of 0. We can clearly see that the probability of making a shot changes as a function of 

distance for both home and away games. The curves are steepest at the point corresponding to 

probability 0.5. For the case of home games, this corresponds to a distance of 16.7 on the x-axis. 

This implies that the largest changes in probability are going to correspond to changes in 

distance around the vicinity of 16.7. For instance, assuming a home game, increasing the shot 

distance from 16 to 17 corresponds to a decrease in probability of 0.525 – 0.488 = 0.037. 

Changing the shot distance from 26 to 27 corresponds to a decrease of 0.198 – 0.175 = 0.023, a 

smaller change than before. 
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Figure 4.1: Probability of making a shot as a function of distance from the net. The top curve shows the 
probability when playing at home and the bottom when playing away. 

 

4.5 Decision Tree Description and Example 

 Decision trees come in two types: regression trees and classification trees. Regression 

trees handle quantitative responses while classification trees handle qualitative responses. Just 

like logistic regression, classification trees can be used to assign an observation to one of 

multiple classes. To make a prediction using a decision tree, a series of questions are answered 

about an observation. Once enough information is collected, the observation will eventually land 

in a ‘terminal node’ on the tree, at which point a prediction is made as to the class of the 

observation. We’ll use a simple example to demonstrate how they work, and then proceed to 

how they’re fit. 
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 In 2015, the website Kaggle.com released a dataset containing information about the 

individuals who lived and perished in the sinking of the Titanic in 1912 (Titanic: Machine 

Learning from Disaster, 2015).  The dataset contains details about each passenger such as their 

age, gender, ticket class, number of siblings and parents aboard, as well as whether or not they 

survived. Figure 4.2 shows a decision tree crafted from the dataset. To make a prediction as to 

whether or not a passenger survived, we must answer a series of questions beginning at the top of 

the tree. The first is whether the person is male or female. If the person is female, move right and 

land in a ‘terminal node’. A terminal node is a location on the tree where a final prediction is 

made (indicated by rectangular boxes in the tree). All other locations are simply called nodes 

(indicated by diamond-shaped boxes). For this terminal node, the prediction is ‘Survived’. There 

are two numbers below the prediction. The first is the proportion of observations in that node 

that fall in the class ‘Survived’. The second is the percentage of all observations that land in that 

node. So, of all female passengers, 73% of them survived, and 36% of all passengers were 

female. Suppose we want to make another prediction for a male passenger. First we move left, 

and then determine if his age was greater or less than 9.5. If it was greater, we move left again 

and predict that he died. From the information in that node we see that 61% of passengers on the 

Titanic were men older than 9.5, and only 17% of them survived. 
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Figure 4.2: Titanic Survivor Decision Tree (Wikipedia, 2017). Retrieved from 

https://en.wikipedia.org/wiki/Decision_tree_learning#/media/File:Titanic_Survival_Decison_Tree_SVG.
png. 

  

 There are many great resources on decision trees, such as Shalizi, (2009) and Hastie et 

al., (2016). Atkinson & Therneau, (2017) are useful because they describe the fitting process in 

the context of the function we later use to fit the tree, rpart. Next we’ll proceed to how decision 

trees are fit. 

 The idea behind decision trees is to divide the predictor space (i.e. the range of all 

predictor variables) into regions (denoted Rm). Theoretically there are many ways of doing this, 

but the most common is using a method called recursive binary splitting. Recursive binary 

splitting begins with all observations in the same region. Observations are then split over a single 

variable in such a way that ‘node impurity’ (to be defined) within the two resulting regions is 

reduced as much as possible. We can illustrate this process using the SAK data. For example, the 

first split in our data might be over whether an SAK was collected within two days or not. Figure 
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4.3 offers a visual display of this process. There are now two regions after the first split. Next, 

each of the two is split in such a way that node impurity is further reduced as much as possible. 

For example, those SAKs collected within two days might be divided based on whether the 

victim had consensual sex or not. The SAKs collected after two days might be divided based on 

whether or not the victim is age 23-50. Now with four regions, each is again split in such a way 

that node impurity is reduced as much as possible. This process continues until some stopping 

rule is reached, such as when a region has fewer than a certain number of observations (say, 10). 

 

Figure 4.3:  Decision Tree in Construction. 

 
When dividing the regions, the goal is to reduce what’s called ‘node impurity’. There are 

multiple ways to measure node impurity, but on this occasion we’ll use the Gini index. The Gini 

index is given as 

 
𝑝̂Ln(1 −

o
nF. 𝑝̂Ln)	 	4.5.1		
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where p̂mk is the proportion of observations in the mth region that belong to the kth class. In our 

case, since there are only two classes this can be reduced to 4.5.2. Depending on the situation we 

are modeling, we can let k=1 represent “contains CODIS-eligible DNA profile” or “contains 

duplicate DNA profiles”. 

 
2𝑝L.(1 −	𝑝L.)	 	4.5.2	 

 

The Gini index is similar to the concept of variability in the sense that a small Gini index 

corresponds to low variability within a node. For categorical data, variability is considered low 

when all or nearly all observations are of the same class. Thus, variability within a node is lowest 

when �̂�L. is close to 0 or 1. The Gini index will also be lowest when �̂�L. is close to 0 or 1. 

One may wonder why we use the Gini index in the first place. A natural suggestion for a 

criterion on which to split the regions is the misclassification rate. One could simply divide the 

observations in such a way that the number of misclassified observations is reduced as much as 

possible. Although this has intuitive appeal, it has a serious drawback. To illustrate this, suppose 

there are 100 observations in node A, and the misclassification rate in the node is 0.25. Suppose 

node A is split into two nodes, A1 and A2, each with 50 observations. It is possible that the 

misclassification rate of A1 is 0 and the misclassification rate of A2 is 0.5, and that overall no 

fewer observations are misclassified. This would be considered a useful split even though the 

overall misclassification rate wasn’t reduced. Please refer to Atkinson & Therneau (2017) for 

more information on the subject. 

Now we can formally state how recursive binary splitting works to divide the regions. 

Recursive binary splitting works to minimize 4.5.3, where M is the total number of regions. The 
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value of M continues to increase until a stopping condition is met. The values being summed are 

easily recognized from 4.5.2. 

 
 

2𝑝L.(1 −	𝑝L.)p
LF. 	 	4.5.3	 

 

Once a tree is built, there is usually one more step to arrive at a final model:  pruning. 

Pruning is essentially the reverse process of building the tree, whereby terminal nodes are 

actually removed from the tree. The reason we do this is that the original tree may have overfit 

the data. That is, we may have found a tree that does a good job classifying observations that 

were used to train it, but is unlikely to do a good job classifying observations that weren’t. Trees 

constructed in the initial building phase may have as many as 100 or more terminal nodes. The 

goal of pruning is to reduce the number of terminal nodes to a more manageable number without 

sacrificing model performance. 

Pruning creates a ‘subtree’ of the original tree. When pruning a tree, nodes must be 

removed from the bottom up; that is, at a given point in time, only those splits that resulted in 

exactly two terminal nodes can be undone. As with building the tree, we need a criterion to 

decide which nodes to prune. Typically, if the goal of the model is to minimize the 

misclassification rate, nodes are removed in such a way as to minimize the proportion of 

misclassified observations. Those nodes that lead to the smallest increase in misclassification 

rate are collapsed first (removing nodes in general increases the misclassification rate, whereas 

adding nodes decreases it). It can be difficult to know how many terminal nodes the final tree 

should contain, so it is useful to have a way to estimate how well trees with different numbers of 

terminal nodes perform on real data. Leave-one-out cross-validation (LOOCV) is useful for this 

purpose. Leave-one-out cross-validation is a kind of ‘resampling method’. Such methods were 
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devised because they allow us to obtain information about the performance of a model without 

having to collect additional observations. In leave-one-out cross-validation, n statistical models 

are created, where n is the number of observations in the data set. Each of the models is fit using 

all observations from the data except one. Each observation is excluded from exactly one model. 

Then, each model makes a prediction for the class of the observation that was not used to train 

the model. This results in n predictions. The proportion of incorrect predictions is the LOOCV 

error rate. 

But how exactly does LOOCV work in this context? The idea is to minimize the 

misclassification rate while also assuming there is a penalty associated with adding additional 

nodes to the tree. For every additional node added to the tree, we’ll assume there is a penalty α 

associated with it. The penalty α can also be referred to as a complexity parameter (cp). The 

result is that we’re trying to minimize the following: 

 
 

𝐶q 𝑇 = 𝑀 𝑇 + 	𝛼|𝑇|	 	4.5.4	 
  
 
In the above equation, Cα(T) represents the cost of a tree T for a pre-defined value of α. 

The goal is to find a tree T with minimal cost for a given α-value. The term M(T) represents the 

misclassification rate of tree T, and |T| represents the number of terminal nodes in the tree. 

As α varies, the tree that minimizes 4.5.4 varies as well. In practice, cross-validation is 

used to find the optimal value of α. In this case we’ll use LOOCV. The process works as follows: 

1. Select a set of values for α. 

2. Use LOOCV to build a set of n trees for a particular α-value. Specifically, use all 

observations except one to build a set of n models. Each observation is excluded 

from exactly one model. Each of these n trees are constructed so as to minimize 
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4.5.4. Each of these n trees then make a prediction for the single observation that 

wasn’t used to train the tree. The proportion of misclassified observations is the 

LOOCV error rate. 

3. Repeat for every value of α selected in Step 1. 

4. Use the results of LOOCV to select a final value of α. 

5. Prune the original tree to minimize 4.5.4 based on that value of α. 

 

 More details on how values for α are selected can be found in Atkinson and Therneau 

(2017). In the next section we’ll discuss bagged trees. 

4.6 Bagged Trees Description 

 Bagging is a method that can be applied to a variety of statistical methods in order to 

improve performance. It is commonly used in the context of decision trees, and that’s how we’ll 

apply it in this thesis. The word ‘bagging’ is a blend of bootstrap and aggregation. 

Bootstrapping is another kind of resampling method, like LOOCV, that allows additional 

information to be gained from the original dataset without the need to obtain additional 

observations. A bootstrap sample is one in which n observations are drawn with replacement 

from the original dataset. Many observations will appear multiple times in a bootstrap sample, 

while many won’t appear at all. To create a bagged decision tree simply take multiple 

bootstrapped samples from the original dataset and fit an unpruned decision tree to each one 

(meaning each tree will likely have many terminal nodes). This set of decision trees is the 

bagged decision tree. Generally, at least 100 bootstrap samples are taken, and thus at least 100 

unpruned trees are constructed. While taking 100 bootstrap samples is sufficient for good 
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performance in most situations, there is no drawback to taking more (James, Witten, Hastie & 

Tibshirani, 2015). 

To make a prediction for an observation, each of the bagged trees makes a prediction as 

to which class the observation belongs. The class that wins a majority of the votes is the final 

predicted class. Although each individual tree will have high variance, the variance of 

predictions averaged over multiple trees is much less. This can be motivated intuitively by the 

fact that a given random variable X can have variance σ2, but the average of a random sample, X̄, 

has variability σ2/n. In a similar fashion, bagging also reduces the variability of predictions, and 

thus improves accuracy. Bagging only works to reduce variability to a point, though, because the 

trees built from bootstrapped samples are correlated with one another since the bootstrapped 

samples all come from the same dataset. 

 One of the disadvantages of bagged trees is that there is no way to display them 

graphically apart from graphing the many individual trees. The primary benefit of bagged trees is 

their ability to improve predictive performance over a regular decision tree (James et al., 2015). 

Next we’ll discuss random forests. 

4.7 Random Forests Description 

 In addition to bagging, there is yet another method with the potential to improve the 

predictive performance of the decision tree. This method is called random forests. It is identical 

to bagging except for one tweak:  when building the trees from the bootstrap samples, at each 

split in the tree, only a subset of the predictors is considered on which to make the split. For 

example, if there are 16 predictor variables, 4 might be chosen at random on which to make the 

split. The justification for doing this is that it makes the trees less correlated with one another. 

With bagging, if there is a single strong predictor it is likely that every tree in the bootstrapped 
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samples makes the first split on this predictor. The result is that the trees will look very similar to 

one another. Using random forests prevents this by considering only some of the predictors at 

each split. 

 The rationale for making the trees less correlated is that averaging highly correlated 

values does little to improve predictive performance (James et al., 2015). To motivate this idea 

intuitively, suppose you wanted to predict a person’s weight based on their height in inches. It 

would be easy to build a linear regression model to do so. Then suppose you are given a second 

predictor variable:  each person’s height in centimeters. This information would be perfectly 

correlated with the first predictor, height in inches, and would thus be redundant. Adding this 

variable would not add any additional information to the model, and would not improve model 

performance. 

4.8 Pros and Cons of the Methods 

 Each classification method has pros and cons. Generally no single method will perform 

the best in all situations. Logistic regression has the advantages of being relatively easy to 

understand and having a long history of use. Decision trees are also easy to understand, can 

easily handle a large number of predictor variables, and have a nice visual display. The main 

disadvantage is that they tend not to have as great a predictive ability as other classification 

methods (James et al., 2015). The advantage of using bagging and random forests is that these 

methods frequently leads to improved predictive performance. The disadvantage is that the 

original method loses its interpretability, thus making it difficult to communicate to others how 

predictions are made. Both bagging and random forests have no simple graphical display. 

Typically, random forests will outperform bagged trees. In addition, different methods make 

different assumptions about the shape of the ‘decision boundary’, discussed next. 
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4.9 Decision Boundaries 

 The decision boundary is the location in the predictor space that divides predictions of 

one class from predictions of another. It is easiest to understand graphically. Figure 4.4 shows an 

example where there are two predictor variables, x1 and x2, and two classes for the response 

variable, yellow and green. A distinction can be made between the true decision boundary and 

the estimated decision boundary. The true decision boundary shows the ideal way to make 

predictions for the observations based on your stated goals, such as minimizing the 

misclassification rate. The true decision boundary in the figure is represented by the shape 

created by the adjacent colors. In the top row this shape is a line, and in the bottom it is two 

perpendicular half-lines. 

The estimated decision boundary is shown in black. This shows the way a particular 

model assigns observations to classes. The top left image shows a logistic regression model’s 

decision boundary. Logistic regression models produce linear decision boundaries, and when the 

true decision boundary is linear they perform very well. In this case it matches the true decision 

boundary. The top right image shows a decision tree’s attempt to model a linear decision 

boundary. It performs less well because decision trees cannot produce linear decision boundaries. 

Rather, they divide the predictor space into rectangular regions, as the figure shows. 

The bottom row shows a situation where the true decision boundary is non-linear. The 

bottom left image shows a logistic regression model’s decision boundary. Clearly the logistic 

regression model performs very poorly. The decision tree bottom right, on the other hand, 

performs very well. 
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Figure 4.4:  Top Row:  A two-dimensional classification example in which the true decision boundary is 
linear, and is indicated by the shape created by the shaded regions. A classical approach that assumes a 

linear boundary (left) will outperform a decision tree that performs splits parallel to the axes (right). 
Bottom Row:  Here the true decision boundary is non-linear. A linear model is unable to capture the true 
decision boundary (left), whereas a decision tree is successful (right). Image obtained from James et al., 

(2015). Reprinted with permission of the authors. 
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We can revisit our logistic regression model example from Section 4.4 and analyze its 

decision boundary. It can be shown that if the goal is to minimize the misclassification rate, 

observations should be assigned to the class to which they have the highest probability of 

belonging (James et al., 2015). In the case of a binary response, this means an observation should 

be assigned to the class to which it has a greater than 50% chance of belonging. In order to find 

the decision boundary, one simply needs to set p(X) = 0.5 in Equation 4.3.2 and solve for the 

variable Distance. Alternatively, one could set log , -
./, -

= 0 in Equation 4.3.1 and solve for 

Distance, since a value of 0.5 on the probability scale corresponds to a value of 0 on the logit 

scale. The decision boundary will change based on the value of Home. Figure 4.5 shows the 

decision boundary for this example. The top and bottom images show the decision boundary 

when playing away and home respectively. In this case the decision boundary is represented by a 

point rather than a line. When playing away, the decision boundary corresponds to a value of 

Distance = 13.3, and when playing at home it corresponds to Distance = 16.7. 

 

 

Figure 4.5:  Top:  Decision boundary when playing away. Bottom:  Decision boundary when playing at 
home. Shots made from distances falling in the red shaded area are predicted to be made, while those in 

blue are predicted to miss. 
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 Figure 4.6 shows the graph of this example with vertical lines drawn at the decision 

boundaries of 13.3 and 16.7. These lines both end when they hit the curve at probability 0.5. 

 

Figure 4.6:  Decision boundaries are shown to correspond to probabilities of 0.5. 

  

Bagging and random forests do not produce decision boundaries that can be displayed in 

the form of Figures 4.4 and 4.5. They can improve the predictive accuracy regardless of the 

underlying decision boundary. 
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CHAPTER 5 PREDICTING THE PRESENCE OF A CODIS-ELIGIBLE DNA PROFILE 

5.1 Introduction 

 One of the goals of the Sexual Assault Kit Testing Initiative was to determine the factors 

that are associated with an SAK containing a CODIS-eligible DNA profile. Kerka et al., (2018) 

proposed a logistic regression model to estimate probability that a kit would contain such a 

profile. In this section several different classification methods will be compared to determine 

their performance relative to the logistic model presented in the paper, and reprinted here. This 

chapter begins by looking at the individual relationship between the response variable and the 

predictor variables, followed by fitting a logistic regression model, a decision tree, a bagged tree, 

and a random forest, and ending with a comparison of the methods. 

5.2 Examining Relevant Variables 

The first step was to determine how strong the relationship was between the individual 

predictor variables and the response. Figure 5.1 shows the relationship between the response and 

four predictor variables (starting in the top left and moving clockwise):  days to kit collection, 

occurrence of consensual sex, number of samples run, and years to kit submission to laboratory. 

The y-axis in each of the four graphs is the percent of kits in the sample that contained a CODIS-

eligible DNA profile. The top left graph shows a clear relationship between the number of days 

to kit collection and obtaining a profile. The longer the victim waits, the less likely it is that the 

kit will contain a DNA profile. 

The top right pane shows the impact of consensual sex. A greater proportion of SAKs 

from victims who reported consensual sex contained at least one CODIS-eligible DNA profile 

than from those who did not. 
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Figure 5.1: The y-axes display the percent of kits containing at least one CODIS-eligible DNA profile. 
The x-axes display days to kit collection, the occurrence of consensual sex, years to kit submission to 

laboratory and number of samples run. 
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The bottom right pane shows the impact of the number of samples run. Intuitively, one 

would expect that SAKs with more samples run would more frequently contain a profile. The 

figure shows a more complicated story. We see that the percentage of SAKs with at least one 

profile appears to increase starting at one sample and then plateaus at 3-4. It begins to drop 

starting at five. This seems to suggest that if 3-4 samples are run, it is likely that a profile will be 

found. If more than five samples need to be run there is less certainty that DNA will be found. 

Although this may be rather counterintuitive, there is an explanation for it in terms of the 

laboratory testing procedure. If the victim reports one perpetrator and no consensual sex, the 

laboratory will only test 3-5 samples. Since there is only one sexual partner, it is relatively easy 

to extract a DNA profile from the samples. If the victim reports having recent consensual sex or 

multiple assailants, the laboratory will typically test more than five samples. However, the 

presence of DNA from multiple individuals makes it difficult to isolate the DNA profile of any 

one person. Thus, it is slightly less likely that a DNA profile will be found. 

 The bottom left pane shows the impact of years to kit submission to laboratory. For the 

ranges 3-6, 6-9, 9-12, and 12-15, the percent of kits with CODIS-eligible DNA profiles drops as 

the number of years to submission increases. 

 The relevance of victim age was also explored. Table 5.1 shows the percent of the time 

kits from victims of various age ranges contained CODIS-eligible DNA profiles. Victims of age 

0-7 had a surprisingly low rate of 5.3%. It is unclear why this is the case. One possibility is that 

young children on average wait longer to have their kits collected, possibly due to their inability 

to communicate. Indeed, there is some truth to this explanation. In the sample, the average wait 

time to kit collection for all victims was 0.63 days. For children, the average wait time was 0.88 

days. Other research has shown a similar trend (Peterson et al., 2012). Another point worth 
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noting is that the percentage of the time the date of assault was missing or unknown was higher 

for children than for all other age groups, also shown in Table 5.1. This suggests that the average 

wait time to kit collection for children may be even higher than 0.88, although this is speculative. 

More research will have to be done to determine what accounts for the low proportion of profiles 

from child victims. 

 

Age Range  
of Victim 

Sample  
Size 

Percent of Kits Containing CODIS  
Eligible DNA Profile 

Percent of Time Assault Date 
was Missing/Unknown 

0-7 114 5.3 20.18 
8-15 361 44.9 2.49 
16-22 771 65.4 1.43 
23-50 1031 63.8 2.13 
51+ 73 35.6 8.22 

 
Table 5.1: Percent of Kits Containing CODIS-Eligible DNA By Victim Age. 

 
 Figure 5.2 shows how the response varied based on whether or not certain forensic 

samples were analyzed. A forensic sample is a potentially useful predictor if there’s a large 

difference in the percent of SAKs that contain a CODIS-eligible DNA profile when it is and is 

not analyzed. For instance, for the vaginal sample, a DNA profile was found a greater percent of 

the time when it was analyzed than when it wasn’t. Thus, the vaginal sample may be a useful 

predictor. Likewise with the neck/ear swab. The pubic hair comb swab and the underwear non-

crotch cutting may also be useful, although, if they were analyzed, they indicate that a profile 

was less likely to be found. As a note, this should not be misinterpreted to mean these samples 

shouldn’t be collected. It simply means the cases where they weren’t collected were more likely 

to contain a DNA profile. 
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Figure 5.2: For each sample, the cases were separated based on whether or not it was analyzed. The 
percent of kits containing a CODIS-eligible DNA profile is shown. 
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5.3 Logistic Regression 

The ‘step’ and ‘glm’ functions in R were used to perform forward selection and model 

fitting (R Core Team, 2017). The variables considered for entry into the model were: days to kit 

collection, years to kit submission to laboratory, consensual sex (yes/no), number of samples run, 

age of victim (categorical with classes 0-7,8-15,16-22,23-50,51+) and ten categorical variables 

corresponding to whether or not the top ten most commonly analyzed forensic samples were 

analyzed in a particular case (vaginal sample, anal sample, pubic hair comb swab, oral sample, 

underwear crotch swab, underwear crotch cutting, pubic hair standard swab, underwear non-

crotch cutting, external vaginal area sample, and neck/ear swab). Table 5.2 shows the various 

steps in the model selection process, along with the AIC values at each step. In the first step the 

model contained 13 variables, with all but underwear non-crotch cutting significant at the 0.05 

level. It contained all the age variables and six of ten of the forensic samples. While most of the 

forensic samples were significant at the 0.05 level, there were theoretical reasons why they 

should be removed from the model. The original purpose of building the logistic regression 

model was to estimate the probability that an SAK would contain a CODIS-eligible DNA 

profile. The idea was that a lay-person, possibly not well-educated in statistics, may use the 

model for this purpose. From his/her perspective, it may not make sense to ask about only six 

samples, particularly in light of the fact that there are over 100 that can be collected. The anal 

sample, collected almost 85% of the time, would not even be included in the model. The vaginal 

sample was included, but it may not make sense to ask if the vaginal sample was collected if, for 

instance, the victim was a male. The answer doesn’t seem to be ‘no’, but rather it seems the 

question doesn’t apply. If all of the top ten most commonly collected samples were highly  
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First Step:       
Coefficients Estimate Std Error P-value 
Intercept -2.05 0.43 0.000 
Days to Collection -0.44 0.06 0.000 
Age 8-15 2.46 0.41 0.000 
Age 16-22 2.9 0.4 0.000 
Age 23-50 2.95 0.39 0.000 
Age 51+ 2.46 0.5 0.000 
Consensual Sex 0.91 0.13 0.000 
Samples Run -0.11 0.04 0.002 
Vaginal Sample 1.39 0.2 0.000 
Pubic Hair Comb Swab -1.24 0.13 0.000 
Oral Sample -0.52 0.12 0.000 
Underwear Crotch Cutting -0.3 0.15 0.042 
Underwear Non-Crotch Cutting 0.29 0.2 0.134 
Neck/Ear Swab 0.55 0.2 0.008 
        
AIC = 2090       
        
Second Step:       
Coefficients Estimate Std Error P-value 
Intercept -0.38 0.42 0.372 
Days to Collection -0.43 0.06 0.000 
Years to Submission -0.06 0.02 0.001 
Age 8-15 2.49 0.4 0.000 
Age 16-22 2.88 0.39 0.000 
Age 23-50 2.79 0.39 0.000 
Age 51+ 2.24 0.49 0.000 
Consensual Sex 0.84 0.12 0.000 
Samples Run -0.24 0.02 0.000 
        
AIC = 2261       
        
Third Step:       
Coefficients Estimate Std Error P-value 
Intercept -1.65 0.4 0.000 
Days to Collection -0.42 0.06 0.000 
Years to Submission -0.04 0.02 0.008 
Age 8-15 2.23 0.39 0.000 
Age 16-22 2.71 0.38 0.000 
Age 23-50 2.7 0.38 0.000 
Age 51+ 2.03 0.47 0.000 
Consensual Sex 0.74 0.12 0.000 
        
AIC = 2376       

             
            Table 5.2:  Steps in the logistic regression model selection process. 
 



48 
	

significant, a better case could be made for including them. In order to avoid confusion, though, 

the forensic samples were removed from the model. 

In the second step, forward selection was rerun considering all variables except the 

forensic samples. We can see that the AIC increased from 2090 to 2261 between the first and 

second step. This is a moderate cost, but having a simpler model is consistent with the rest of our 

model-building goals. In this model, the years to kit submission makes an appearance. All eight 

variables were significant at the 0.05 level. The large p-value for the intercept suggests that the 

intercept may be zero, although this is of little inherent significance. More importantly we want 

to verify that the coefficients of the variables are not zero, since, if they were, those variables 

would have no impact. 

 In this model, the coefficient estimates appear sensible except that the variable ‘samples 

run’ has a negative coefficient. This implies that running more samples decreases the probability 

of obtaining a CODIS-eligible DNA profile. By this logic, the probability of obtaining a profile 

is maximized by running only one sample. This is an illogical result, and a strong reason to 

exclude it from the model. In the third and final step, the number of samples run was removed. 

In the final model, all coefficients were significant at the 0.05 level. Again the AIC 

increased, this time from 2261 to 2376. However, this was necessary to ensure our model didn’t 

yield illogical results. Years to kit submission to laboratory had the largest p-value of all 

predictor variables. This is consistent with the exploratory work, as it appeared that it was a 

relatively weak predictor. Nonetheless, it was still significant at the 0.05 level. 

 Next we’ll examine the final fitted model more closely. The model is represented in 

Equations 5.3.5 and 5.3.6, on probability and logit scales respectively. 
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𝑝 𝑋 = 	 7(\].y^\9.z[_\9.9z{:[.[|}~\]^:[.�]}]y\[[:[.�9}[|\^9:[.9|}�^]:9.�z�)

.=	7(\].y^\9.z[_\9.9z{:[.[|}~\]^:[.�]}]y\[[:[.�9}[|\^9:[.9|}�^]:9.�z�)
	 5.3.5	

	
𝑙𝑜𝑔 , -

./, -
= 	−1.65 − 0.42𝐷 − 0.04𝑌 + 2.23𝐴�/.� + 2.71𝐴.�/oo + 2.70𝐴o�/�1 + 2.03𝐴��. + 0.74𝐶								5.3.6 

	 	

	 The variables in the equations were abbreviated using the first letter of their name in 

Table 5.2. In the equations at most one age variable assumes a value of one (if a victim is in that 

age category). If all age variables are set to zero this implies the victim is aged 0-7. The variable 

consensual sex takes on a value of one if the victim had consensual sex and zero otherwise. 

 Although the logit form displayed in 5.3.6 is often useful, we’ll restrict our interpretation 

to the probability scale of 5.3.5. The intercept of -1.65 gives us the probability when all variables 

are zero- that is, zero days to kit collection, zero years to kit submission, age 0-7 and no 

consensual sex. This probability is 7\].y^

.=7\].y^
 = 0.161. The primary reason this probability is so low 

is because victims age 0-7 had an extraordinarily low rate of CODIS uploads (see Table 5.1). 

They also, of course, hadn’t had consensual sex.  

 Figure 5.3 shows how the probability of obtaining a profile varies as a function of days to 

kit collection. In order to make a graphical display, values had to be chosen for certain variables. 

The top graph is broken down by whether or not the victim had consensual sex, and assumes a 

value of 8.5 years to kit submission to laboratory and a victim aged 23-50. The bottom graph is 

broken down by victim age and assumes no consensual sex and 8.5 years to kit submission to 

laboratory. To reiterate a point from Chapter 4, the slope of the curve is steepest where the 

probability is 0.5. In the top figure, for instance, this corresponds to 1.5 days for a victim who 

hasn’t had consensual sex. In this instance, if a victim waits two days instead of one to have the 

kit collected, the probability drops by 0.104 that it will contain a profile. If the victim waits six 

days instead of five the probability only drops by 0.058. As a matter of fact, there is a convenient  
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Figure 5.3:  Top: Probability of obtaining a CODIS-eligible DNA profile plotted against days to kit 
collection. It is broken down by whether or not the victim had consensual sex, and assumes 8.5 years to 
kit submission to laboratory and a victim aged 23-50.  Bottom: Same plot, broken down by victim age. 

Assumes no consensual sex. 
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rule describing approximately how much the probability will change by changing one variable 

one unit. Gelman and Hill (2007) describe the “divide-by-four” rule, which serves exactly this 

purpose. If you take a coefficient and divide it by four, that’s approximately how much the 

probability will change by changing a variable by one unit at the steepest point on the curve 

(emphasis on steepest point). The coefficient for days to kit collection is -0.42. Dividing by four 

makes -0.105, which is remarkably close to the 0.104 above. Of course, this rule doesn’t apply to 

categorical variables. It also becomes less accurate the further you move away from the steepest 

point. 

 In the bottom graph we can see that kits from those age 16-22 and 23-50 have the greatest 

probability of producing a profile. Those age 0-7 have at most a chance of 0.125. 

 Figure 5.4 is similar to 5.3 except it plots years to kit submission to laboratory on the x-

axis. The top graph is again broken down by consensual sex and assumes zero days to kit 

collection and a victim aged 23-50. The bottom graph is broken down by victim age and assumes 

zero days to kit collection and no consensual sex. The curves in Figure 5.4 are much less steep 

than the curves in 5.3, indicating that the number of days to kit collection has a greater impact on 

the response. We can again divide the coefficient for years to kit submission by four to get an 

estimate of how much the probability changes. The probability will change by about -0.04/4 = -

0.01 for every additional year. Next we’ll proceed to build a decision tree. 
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Figure 5.4:  Top: Probability of obtaining a CODIS-eligible DNA profile plotted against years to kit 
submission to laboratory. It is broken down by whether or not the victim had consensual sex, and assumes 

zero days to kit collection and a victim aged 23-50.  Bottom: Same plot, broken down by victim age. 
Assumes no consensual sex. 
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5.4 Decision Tree 

The ten individual forensic samples were excluded from the decision tree due to the same 

concerns as with the logistic regression model. The number of samples run, however, was 

included. The reason for including the number of samples run is that decision trees are not linear 

classification methods (recall Figure 4.4), and thus are not necessarily going to produce illogical 

results the way the logistic regression model did. 

The ‘rpart’ package in R was used to fit the tree (Therneau et al., 2017). The function 

‘rpart’, contained within the rpart package, was coded to stop dividing the regions when they had 

10 or fewer observations. The gini index was used as the measure of node impurity. The full tree 

contained 168 terminal nodes. Since this is far too many terminal nodes, the next step was to 

prune the tree. 

As you may recall from Section 4.5, trees are pruned with the help of a complexity 

parameter α. Leave-one-out cross-validation (LOOCV) was used to find the optimal value of α. 

Figure 5.5 shows the misclassification rate for different values of α as estimated by LOOCV. The 

lower x-axis of the figure shows different values of the complexity parameter α. The upper x-

axis shows the corresponding number of terminal nodes of the tree associated with that α-value. 

Note that the x-axis is not linear. The y-axis displays the relative error rate. The error rate is 

relative to that of the one-node tree. A tree with one node can only make one prediction for all 

observations, so naturally it will predict that all observations are of the majority class. In this 

case, it will predict that all SAKs contain a CODIS-eligible DNA profile, and it is correct 60% of 

the time because 60% of the observations in the dataset belong to that class. The error rate of the 

one-node tree is scaled to be one on the y-axis. As the figure shows, the LOOCV error rate 

initially declines as nodes are added. After a point, though, it generally begins to increase. 
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LOOCV seems to suggest that a five-node tree is appropriate. The five-node tree is displayed in 

Figure 5.6. 

 

Figure 5.5:  Estimated misclassification rate from leave-one-out cross validation. 
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                                              Figure 5.6:  Five-node decision tree. 

  
 The five-node decision-tree contains only three variables:  consensual sex, number of 

samples run, and days to kit collection. Interestingly, the very first split was over the number of 

samples run, a variable excluded entirely from the logistic regression model. The tree decided 

that splitting SAKs into two groups was appropriate based on whether five or fewer samples 

were collected or six or greater were collected. This is interesting because this corresponds to an 

actual difference in laboratory testing procedure. Typically, if a victim does not report 

consensual sex and had only one assailant, the laboratory will run five or fewer samples. If the 

victim reported consensual sex or multiple assailants the laboratory will typically run six or more 

samples. Notably absent from this model are victim age and years to kit submission to 

laboratory. Another striking fact about the model is its simplicity. Five terminal nodes is quite 

small. This makes for an interesting comparison to the logistic regression model. 
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 As with the decision tree discussed in Section 4.5, if the split condition is met, move left. 

Otherwise, move right. For instance, if six or more samples were collected we would move left. 

If the victim had consensual sex we would move right, landing in node 5. We see that 11% of all 

observations fall in this node. That is, 11% of all SAKs had six or more samples run and had a 

victim who had consensual sex. Of these SAKs, 63% contained at least one CODIS-eligible 

DNA profile and 37% did not. The final prediction for this node is “Yes”. For making 

predictions about future SAKs, 63% and 37% can also be interpreted as the estimated probability 

of obtaining a profile and failing to obtain a profile respectively for SAKs that land in that node. 

5.5 Bagged Trees 

 As with the decision tree, the number of samples run was included while the individual 

forensic samples were excluded. For most purposes taking 100 bootstrap samples is sufficient for 

good performance. Just to be safe, we took 500, since there’s no drawback to taking more. The 

model was built using the ‘randomForest’ package in R (Liaw & Wiener, 2002). 

 As previously mentioned, one of the disadvantages of bagged trees is that there is very 

little to show in terms of graphical output. There is, however, still a way to assess the importance 

of the variables. One can assess the importance of the variables in the following way:  for each 

split in the tree, add the values of the gini index for the two resulting nodes; then sum the values 

corresponding to each variable over which a split was made; finally, the total value for each 

variable is averaged over all 500 bagged trees. Figure 5.7 displays this graphically. A large value 

on the x-axis indicates an important variable. Strangely, the variable years to kit submission to 

laboratory appears to be by far the most important variable. The reason for this is that the bagged 

decision trees are unpruned, meaning many of them contain well over 100 terminal nodes. For 

these trees many splits are made at the bottom over years to kit submission to laboratory. The 
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individual bagged trees wildly overfit the model by splitting too many times over this variable. 

The result is an inflated sense of the true importance of the variable. For this reason 

measurements of variable importance in bagged trees can be quite unreliable. Excluding years, 

though, the number of samples run appears to be most important. Next we’ll proceed to fit a 

random forest. 

 

Figure 5.7:  Variable importance measure of bagged tree. 

 

5.6 Random Forest 

 As you may recall from Section 4.7, random forests are identical to bagged trees except 

for one tweak:  when building the tree, at each split only a subset of the predictors is considered 

on which to make the split. For instance, since there are eight predictors in our model, a random 

set of three might be chosen at each split. The purpose is to make the trees less correlated. 
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 The randomForest package was used to fit a random forest as well (Liaw & Wiener, 

2002). Just like with the bagged tree we took 500 bootstrap samples and built 500 unpruned 

decision trees, this time considering only three of the predictors at each split. Just as with the 

bagged tree there is little to display in terms of graphical output. The importance of the variables, 

however, can still be assessed the same way as in bagged trees. Figure 5.8 shows the variable 

importance plot for the random forest model. We see that considering only three of the eight 

variables at each split was sufficient to reign in the unrelenting splitting over years to kit 

submission that cursed the bagged model. Besides the years to kit submission to laboratory, the 

variables largely retained the same order of importance as in the bagged model. The number of 

samples was most important, followed by days to kit collection, consensual sex, and victim age. 

 

 

Figure 5.8:  Variable importance measure of random forest. 
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5.7 Comparing the Models 

There are multiple ways to test the performance of statistical models. One way is to build 

a model using the dataset and then obtain additional observations (‘test data’) on which to test 

the model. However, it may not be desirable to do this if the cost of obtaining test data is 

substantial. Alternatively, the dataset may be split into two parts:  a training set on which to build 

the model, and a test set on which to test its performance. This method is called the validation set 

approach. The drawback of this method is that there are now fewer observations on which to 

train the model. To avoid this problem other methods have been developed. Cross-validation was 

designed to estimate the test error rate without losing observations from the training set. For this 

reason cross-validation is an appealing option. We already encountered leave-one-out cross-

validation (LOOCV) in section 5.4. There is another kind of cross-validation, k-fold cross-

validation, which is also commonly used to evaluate models. We chose to use LOOCV over k-

fold cross-validation because of a specific reason relating to bagged trees and random forests. 

The reason is that bagged trees and random forests are easy to evaluate by a metric that is very 

similar to LOOCV. 

Recall that bootstrap samples are taken with replacement. It is easy to show that each 

sample makes use of only around two-thirds of the observations in the original dataset. Thus, 

each sample is missing around one-third of the original observations. This implies that, for any 

given observation, approximately one-third of the bootstrap samples do not contain that 

observation. In our case, taking 500 bootstrap samples means approximately 167 of the decision 

trees built from the samples were not trained using a given observation. We are able to make use 

of this fact to estimate the error rate on real data. To do this we take the first observation in the 

original dataset and let each of the ~167 models that weren’t trained using that observation 
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predict its class. Out of these ~167 predictions, the class with the most votes is the final 

prediction. Of course, this prediction is either correct or incorrect. This is repeated for each 

observation in the training set, and the proportion of misclassified observations is called the out-

of-bag (OOB) error rate. Interestingly, it turns out this error rate is nearly identical to the 

LOOCV error rate (James et al., 2015). As a result, we’ll substitute the OOB error rate in place 

of the LOOCV error rate for the bagged tree and random forest. 

 Table 5.3 shows the estimated error rates for the four models. Interestingly a five-node 

decision tree seems to offer a moderate improvement over logistic regression. This suggests that 

the relationship between the response and the predictors may be better approximated by a non-

linear model. The decision tree actually performed worse when bagging and random forests were 

used. The random forest still performed better than the bagged tree, which suggests it is still 

preferable to bagging. 

 Theoretically bagging and random forests should improve the performance of the 

decision tree. Since they didn’t, further exploration was in order. One unexpected result of the 

analysis was the importance of years to kit submission to laboratory in the bagged tree and 

random forest. Interestingly, when this variable is removed from the pool of potential predictor 

variables entirely the bagged tree and random forest models actually improve. Table 5.4 shows 

the OOB error rate when years to kit submission to laboratory is not considered for the models. 

The OOB error rate drops by about 0.02 from the corresponding values in Table 5.3. This is quite 

an unusual result. One would expect that adding more predictor variables to the pool of potential 

candidates could only improve the performance of a model. In this case it appears years to kit 

submission to laboratory actually misled the models and made them worse. 
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 LOOCV Error Rate OOB Error Rate 
Logistic Regression 0.342 - 
Decision Tree (five nodes) 0.297 - 
Bagged Tree - 0.316 
Random Forest - 0.306 

 
Table 5.3:  Comparison of estimated error rates of the four methods. 

 
 

 OOB Error 
Bagged Tree 0.293 
Random Forest 0.289 

 
Table 5.4:  OOB error when years to kit submission to laboratory is removed from the pool of 

potential predictor variables. 
 

 The final question is which model to choose. It appears the five-node tree offers several 

benefits over the logistic regression model. In addition to having a lower estimated error rate, the 

decision tree is also simpler. It makes use of only three variables, whereas the logistic regression 

model required four. There is no reason to even consider the bagged tree or the random forest 

with years to kit submission to laboratory included. They have higher estimated error rates than 

the five-node tree and offer no additional benefits. The random forest with years to kit 

submission to laboratory excluded is an option if the only goal is prediction. However, given the 

benefits of having a graphical display, it seems the five-node decision tree is the best option. 
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CHAPTER 6 PREDICTING THE PRESENCE OF DUPLICATE DNA PROFILES 

6.1 Introduction 

 In addition to predicting whether or not an SAK contains a CODIS-eligible DNA profile, 

it is also useful for cost-saving purposes to determine which kits contain identical DNA profiles 

across multiple forensic samples (vaginal sample, anal sample, etc). If the kits that contain 

duplicate profiles can be predicted with a high level of accuracy, it may be possible to develop an 

alternative protocol that involves analyzing fewer samples, thus saving costs. 

 In the sample of 2,500 SAKs, 11.4% contained duplicate DNA profiles (duplicate implies 

two or more). Of course the kits that contained no DNA profiles at all had no chance of 

containing duplicate profiles. About 57% of the kits contained at least one DNA profile, and 

43% did not. Of the kits that contained at least one profile, 20% contained duplicate profiles. 

 As with chapter 5, this chapter will begin by examining the individual relationship 

between the predictor variables and the response. 

6.2 Examining Relevant Variables 

 Figure 6.1 shows the relationship between the percent of kits that contain duplicate DNA 

profiles and five predictor variables:  days to kit collection, the occurrence of consensual sex, 

years to kit submission to laboratory, number of samples run and victim age. As the top left 

graph shows, as the days to kit collection increased, the proportion of kits that contained a profile 

decreased. No kits collected five or six days after the assault contained duplicate profiles. 
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Figure 6.1:  The y-axes display the percent of kits that contain duplicate DNA profiles. The x-axes display 
days to kit collection, the occurrence of consensual sex, years to kit submission to laboratory, number of 

samples run and victim age. 
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The occurrence of consensual sex had a large impact on the response:  19.2% of SAKs 

from victims who had consensual sex produced duplicate DNA profiles while only 7.4% of 

SAKs from victims who didn’t have consensual sex did. 

The relationship between years to kit submission to laboratory and the response didn’t 

appear very strong. A kit may have been slightly less likely to contain duplicate profiles if it 

spent longer time in storage. 

The number of samples run did appear to have an impact. The more samples that were 

run the more likely it was that a kit would contain duplicate profiles. Over 25% of kits that had 

12 or more samples run contained duplicate DNA profiles. 

The age of the victim also appeared relevant. No kits from those age 0-7 and only a few 

from those age 51+ contained duplicate profiles. It may not be surprising that SAKs from child 

victims didn’t contain duplicate DNA profiles since only 5% of them contained a single DNA 

profile to begin with.  

 Figure 6.2 shows the impact of analyzing certain forensic samples. The blue bar shows 

the percent of the time kits contained duplicate profile when that particular sample was analyzed. 

The red bar shows the percent of time the kits contained duplicate profiles when that sample was 

not analyzed. A large gap in the percent of kits that contain duplicate profiles when a sample was 

analyzed versus when it was not analyzed indicate a potentially useful predictor. It appears that 

analyzing the vaginal sample, external vaginal area sample and the neck/ear swab could be 

useful in predicting the presence of duplicate profiles. For every sample, the percent of kits with 

duplicate profiles was greater when that sample was analyzed than when it wasn’t. 



65 
	

 

Figure 6.2: For each sample, the cases were separated based on whether or not it was analyzed. The 
percent of kits containing duplicate profiles is shown. 
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6.3 Logistic Regression 

 Eighteen variables were considered for the logistic regression model (four of which 

corresponded to victim age). Again the ‘step’ and ‘glm’ functions were used. Table 6.1 shows 

the steps in the model selection process. 

 In the first step, forward selection kept two variables that weren’t significant at 

the 0.05 level:  age 51+ and vaginal sample analyzed. It didn’t make sense from a practical 

perspective to keep only one of the four age variables. For this reason a second model was fit 

with Age 51+ excluded. 

The AIC only increased by 0.8 between the first and second steps. In the second step, the 

model had two variables that weren’t significant at the 0.05 level:  years to kit submission to 

laboratory and vaginal sample analyzed. Since vaginal sample analyzed had the largest p-value, 

it was considered for removal first. The model without this variable had an AIC of 1253.5, which 

was identical to that of the second model. As such, there was no harm in removing that variable 

from the model. 

 In the third step, years to kit submission to laboratory was just barely insignificant at the 

0.05 level. However, there was a more serious problem:  the coefficient for pubic hair comb 

swab analyzed was negative. The model was suggesting that analyzing the pubic hair comb swab 

actually decreased the probability of obtaining duplicate profiles. However, this contradicts our 

intuition that running more samples should increase the probability of obtaining duplicate 

profiles, and it also contradicts Figure 6.2 which suggests that the coefficient should in fact be 

positive. The reason this occurred was that in the total sample of 2,500 observations from which 

Figure 6.2 was crafted, a greater proportion of kits contained duplicate profiles when the pubic 

hair comb swab was analyzed than when it wasn’t. However, after removing outliers, kits with 
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First	Step:	 		 		 		
Coefficients Estimate Std Error P-value 
Intercept -3.21 0.44 0.000 
Days to Kit Collection -0.28 0.1 0.007 
Years to Kit Submission -0.05 0.03 0.049 
Age 51+ -1.05 0.73 0.153 
Number of Samples Run 0.19 0.04 0.000 
Consensual Sex 0.99 0.15 0.000 
Pubic Hair Comb Swab Analyzed -0.53 0.18 0.003 
Vaginal Sample Analyzed 0.47 0.34 0.16 
        
AIC = 1252.7       
        
Second Step:       
Coefficients Estimate Std Error P-value 
Intercept -3.22 0.44 0.000 
Days to Kit Collection -0.29 0.1 0.006 
Years to Kit Submission -0.05 0.03 0.055 
Number of Samples Run 0.19 0.04 0.000 
Consensual Sex 0.99 0.15 0.000 
Pubic Hair Comb Swab Analyzed -0.54 0.18 0.003 
Vaginal Sample Analyzed 0.46 0.34 0.18 
        
AIC = 1253.5       
        
Third Step:       
Coefficients Estimate Std Error P-value 
Intercept -2.82 0.32 0.000 
Days to Kit Collection -0.29 0.1 0.006 
Years to Kit Submission -0.05 0.03 0.057 
Number of Samples Run 0.19 0.04 0.000 
Consensual Sex 1.01 0.15 0.000 
Pubic Hair Comb Swab Analyzed -0.54 0.18 0.003 
        
AIC = 1253.5       
        
Fourth Step (Final):       
Coefficients Estimate Std Error P-value 
Intercept -2.57 0.3 0.000 
Days to Kit Collection -0.3 0.1 0.003 
Years to Kit Submission -0.07 0.03 0.006 
Number of Samples Run 0.14 0.03 0.000 
Consensual Sex 1 0.3 0.000 
        
AIC = 1260.7       

 
Table 6.1:  Steps in the logistic regression model selection process. 
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only one sample run, and observations that contained missing data, only 1,924 observations were 

left to train the model. Out of these 1,924 observations, when the pubic hair comb swab was 

analyzed a smaller proportion of kits contained duplicate profiles. Out of a concern that the 

negative coefficient in the table does not represent the true relationship between the variable and 

the response, pubic hair comb swab analyzed was removed from the final model, leaving four 

variables remaining. 

 The four variables in the final model were:  days to kit collection, years to kit submission 

to laboratory, number of samples run, and consensual sex. All variables were significant at the 

0.05 level. The AIC jumped from 1253.5 to 1260.7 between the third and final steps. This is not 

a very large increase considering the benefits of this model, such as having all significant 

predictors and not having coefficients that produce counterintuitive results. The probability and 

logit equations of this model are shown in 6.3.1 and 6.3.2 respectively. 

 

𝑝 𝑋 = 	 7(\[.^�\9.|_\9.9�{:9.]z�:]�)

.=	7(\[.^�\9.|_\9.9�{:9.]z�:]�)
	 	6.3.1		

	

𝑙𝑜𝑔 , -
./, -

= 	−2.57 − 0.3𝐷 − 0.07𝑌 + 0.14𝑆 + 1𝐶	 	6.3.2	 
 

 The variables are abbreviated with the first letter of their name in Table 6.2 except the 

number of samples run, which is abbreviated ‘S’. Unlike in the logistic regression model of 

Section 5.3, the intercept of this model has no practical meaning because it makes no sense to 

assign a value of zero to the number of samples run. The probability of obtaining duplicate 

profiles when no samples are run is obviously zero, so the model will produce patently wrong 

results in this case. 
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 Figure 6.3 offers a graphical display of Equation 6.3.1 with values plugged in for certain 

variables. The top left image shows the probability of obtaining duplicate profiles plotted against 

days to kit collection. It assumes 8.5 years to submission to laboratory and five samples run. As 

we learned from Chapter 5, a convenient way to assess how the probability changes is to use the 

divide-by-four rule. Unfortunately, this rule isn’t going to be very accurate because the rule only 

applies to x-values around probability 0.5. For instance, the rule tells us to divide the coefficient 

of days to kit collection by four. This would yield -0.075. But the curve doesn’t decrease by 

0.075 for every additional day. Going from zero to one day with consensual sex decreases the 

probability by only 0.042. 

 The top right graph shows the probability plotted against years to kit submission to 

laboratory. Similar to the top left graph, the divide-by-four rule won’t be highly accurate since 

no location on the plot attains a probability of 0.5. 

 The divide-by-four rule is more appropriate for the bottom left graph. The bottom left 

graph plots probability against the number of samples run. The consensual sex curve nearly 

attains a probability of 0.5. The divide-by-four rule suggests that for every additional sample run 

the probability of obtaining duplicate profiles increases by 0.14/4 = 0.035. The actual increase in 

probability going from 12 to 13 samples is 0.033. Next we’ll consider fitting a decision tree. 
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Figure 6.3:  Top Left:  Probability of a kit containing duplicate DNA profiles plotted against days to kit 
collection. Assumes 8.5 years to kit submission to laboratory and five samples run. Top Right:  

Probability plotted against years to kit submission to laboratory. Assumes zero days to kit collection and 
five samples run. Bottom left:  Probability plotted against the number of samples run. Assumes zero days 

to kit collection and 8.5 years to kit submission to laboratory. 
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6.4 Decision Tree 

 Again the rpart package in R was used to fit a decision tree to the data. The pubic hair 

comb swab was excluded as a predictor variable since it led to illogical results in the logistic 

regression model. The initial tree contained 55 terminal nodes. LOOCV was used to determine 

the optimal number of terminal nodes. Figure 6.4 shows the LOOCV error rates for trees of 

varying sizes. As before, the y-axis shows the error rate relative to that of the one-node tree. In 

this case, the error rate of the one-node tree is 0.11. This is the proportion of observations one 

would misclassify if one simply predicted “No” for every observation in the dataset. One may 

recall from earlier that 11.4% of SAKs in the sample contained duplicate profiles. The figure 

0.11 differs slightly from the number cited earlier because it was computed after observations 

were removed for containing missing data and other reasons. 

 As Figure 6.4 shows, adding additional nodes to the tree doesn’t actually appear to lower 

the estimated error rate. It appears that the single-node tree performs the best of all trees. As 

such, there is little reason to pursue a decision tree model. Next we’ll see how bagging performs. 
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Figure 6.4:  Estimated misclassification rate from leave-one-out cross validation. 

 

6.5 Bagged Trees 

 A bagged tree was created in an attempt to beat the ‘null error rate’ of 0.11. The 

randomForest package was used to fit the model. The pubic hair comb swab was excluded from 

the bagged tree as well. Again, 500 unpruned trees were created from bootstrap samples. The 

out-of-bag (OOB) error rate for the bagged trees was 0.1138. As with the decision tree, the 

bagged tree fails to improve upon the null error rate. It appears bagging is a fruitless method in 

this context. 

6.6 Random Forest 

 A random forest was also used in an attempt to beat the null error rate of 0.11. The pubic 

hair comb swab was excluded as a predictor. Again 500 trees were constructed, this time 
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considering only 4 of the 17 predictors at each split. The randomForest package was used to fit 

the model. The model had an OOB error rate of 0.1086. It is encouraging to see that the model 

beat the null error rate, although by a highly unimpressive margin. In the next section we’ll see 

how the models compare to the logistic regression model. 

6.7 Comparing the Models 

 Table 6.2 displays the estimated test error rate for each of the four models. A decision 

tree was not crafted at all since no model stood a chance of improving on the null error rate of 

0.11. When crafting the decision tree, we were alerted early to the fact that no tree would beat 

the null error rate since LOOCV is used in the model selection process. On the other hand, 

LOOCV is not used in the model selection process for logistic regression. As such, we were only 

alerted after the model was created to the fact that it didn’t beat the null error rate. The only 

model that did beat the null error rate was the random forest. It did so by an unimpressive 

0.0014. Since all models performed so poorly, there is little value in using any of them to predict 

the presence of duplicate DNA profiles in a kit. Next we’ll turn to chapter 7 for closing remarks. 

 
 

 LOOCV Error Rate OOB Error Rate 
Logistic Regression 0.1101 - 
Decision Tree (No model selected) - 
Decision Tree (Bagged) - 0.1138 
Decision Tree (Random Forest) - 0.1086 

 
Table 6.2:  Estimated Error Rate in Predicting Duplicate Profiles. 
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CHAPTER 7 CONCLUSION 

 Four statistical methods were compared for their ability to predict two response variables:  

whether an SAK contained a CODIS-eligible DNA profile, and whether an SAK contained 

duplicate DNA profiles across multiple forensic samples. Concerning the first response variable, 

a five-node decision tree seemed to be the most appropriate model. It has a simple graphical 

display and was estimated to classify only 0.008 more observations incorrectly than the random 

forest. The logistic regression model unfortunately wasn’t able to model the response as 

effectively as the decision tree. It was expected to classify 0.045 more observations incorrectly 

than the decision tree. 

 One of the most interesting findings of the analysis was that the bagged tree and random 

forest actually performed worse when the predictor years to kit submission to laboratory was 

included. One would think no harm could come of including additional predictor variables in the 

pool of potential predictor variables. This illustrates the importance of doing further analysis 

when an unexpected result comes up. In this case we were able to pinpoint the problem fairly 

quickly due to the fact that the graph of variable importance showed a strange result:  years to kit 

submission to laboratory was purporting to be by far the most important variable. We were 

skeptical of this result because it was one of the weaker variables in the logistic regression 

model. After removing it from the analysis altogether we realized it had been misleading the 

models. Sure enough, after it was removed, model performance improved. 

 As of now it appears the best statistical model will be able to guess correctly about 70% 

of the time whether an SAK contains a DNA profile or not. One may wonder if experts would be 

able to guess correctly more than 70% of the time. I think it’s reasonable that they may be able 

to. While 70% is high, there is certainly a lot of room for improvement. It’s also possible that the 
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combination of an expert and a statistical model would be able to improve on the 70% figure. 

This may be an area worth investigating in future research. 

 As stated in the introduction, one of the limitations of these models is that they don’t 

incorporate any information about the nature of the assault, i.e. vaginal assault, anal assault, etc. 

More work could be done to determine how the models might change after incorporating 

information about assault type. The type of assault could be included as a predictor variable, or 

entirely different statistical models could be built for different scenarios. In addition, these 

models don’t incorporate information about the number of assailants in the assault. The reason 

for this is the difficulty in determining the actual number of assailants, as noted in the 

introduction. Future work could try to incorporate this information into the statistical models as 

well. 

 As for predicting which kits contain duplicate DNA profiles, as of right now statistical 

models are largely unable to beat the ‘null’ model of simply predicting “No” for each kit. The 

best model, the random forest, was estimated to classify only 0.0014 more observations correctly 

than the null model. Every other model was expected to perform worse than the null model. It 

seems more high-quality predictor variables are needed to accurately predict this response. 

 Finally, the models could have been improved if there simply had not been so much 

missing data. Sexual assault nurses and others may not have anticipated the data would be used 

in a future statistical analysis and in some cases may have been careless about properly 

documenting the details. It is impossible to know exactly how much the missing data has 

affected the models, but hopefully future studies will be able to correct for any biases the models 

have. Hopefully this work can be used as a starting point for future statistical modeling of sexual 

assault kits. 
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APPENDIX A LIST OF R PACKAGES AND FUNCTIONS USED 

 

Function Package Description 
glm stats Fits generalized linear models such as logistic regression. 

step stats 
Performs forward, backward, and stepwise selection for 
generalized linear models based on AIC. 

rpart rpart 
Fits regression and classification trees using recursive 
binary splitting. 

plotcp rpart Creates a graph of leave-one-out cross-validation results. 
fancyRpartPlot rpart Creates a graphical display of a decision tree fit by rpart. 

- ggplot2 Graphics package for R. 
randomForest randomForest Fits bagged trees and random forests. 

VarImpPlot randomForest 
Creates a variable importance plot for random 
forests/bagged trees. 

- dplyr Allows for easy manipulation of data frames. 
 


	TITLE PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	CHAPTER 7
	REFERENCES
	APPENDIX A



