
Faculty of Computer Science Institute of Computer Engineering, Chair of VLSI EDA

Diploma Thesis

Virtualized Reconfigurable Resources
and Their Secured Provision in an
Untrusted Cloud Environment

Paul R. Genßler
Born on: 26.05.1990 in Berlin
Matriculation number: 3569856
Matriculation year: 2009

to achieve the academic degree

Diplom-Informatiker (Dipl.-Inf.)

First referee

Prof. Dr.-Ing. habil. Rainer G. Spallek
Second referee

Prof. Dr.-Ing. Diana Göhringer
Supervisor

Dipl.-Inf. Oliver Knodel

Submitted on: 20.11.2017

Statement of authorship

I hereby certify that I have authored this Diploma Thesis entitled Virtualized Reconfigurable Re-
sources and Their Secured Provision in an Untrusted Cloud Environment independently and
without undue assistance from third parties. No other than the resources and references indi-
cated in this thesis have been used. I have marked both literal and accordingly adopted quota-
tions as such. There were no additional persons involved in the intellectual preparation of the
present thesis. I am aware that violations of this declaration may lead to subsequent withdrawal
of the degree.

Dresden, 20.11.2017

Paul R. Genßler

Abstract

The cloud computing business grows year after year. To keep up with increasing demand and to
offer more services, data center providers are always searching for novel architectures. One of
them are FPGAs, reconfigurable hardware with high compute power and energy efficiency. But
some clients cannot make use of the remote processing capabilities. Not every involved party
is trustworthy and the complex management software has potential security flaws. Hence,
clients’ sensitive data or algorithms cannot be sufficiently protected.

In this thesis state-of-the-art hardware, cloud and security concepts are analyzed and com-
bined. On one side are reconfigurable virtual FPGAs. They are a flexible resource and fulfill
the cloud characteristics at the price of security. But on the other side is a strong requirement
for said security. To provide it, an immutable controller is embedded enabling a direct, confi-
dential and secure transfer of clients’ configurations. This establishes a trustworthy compute
space inside an untrusted cloud environment. Clients can securely transfer their sensitive data
and algorithms without involving vulnerable software or a data center provider. This concept is
implemented as a prototype. Based on it, necessary changes to current FPGAs are analyzed.
To fully enable reconfigurable yet secure hardware in the cloud, a new hybrid architecture is
required.

Zusammenfassung

Das Geschäft mit dem Cloud Computing wächst Jahr für Jahr. Um mit der steigenden Nach-
frage mitzuhalten und neue Angebote zu bieten, sind Betreiber von Rechenzentren immer auf
der Suche nach neuen Architekturen. Eine davon sind FPGAs, rekonfigurierbare Hardware mit
hoher Rechenleistung und Energieeffizienz. Aber manche Kunden können die ausgelagerten
Rechenkapazitäten nicht nutzen. Nicht alle Beteiligten sind vertrauenswürdig und die komple-
xe Verwaltungssoftware ist anfällig für Sicherheitslücken. Daher können die sensiblen Daten
dieser Kunden nicht ausreichend geschützt werden.

In dieser Arbeit werden modernste Hardware, Cloud und Sicherheitskonzept analysiert und
kombiniert. Auf der einen Seite sind virtuelle FPGAs. Sie sind eine flexible Ressource und ha-
ben Cloud Charakteristiken zum Preis der Sicherheit. Aber auf der anderen Seite steht ein ho-
hes Sicherheitsbedürfnis. Um dieses zu bieten ist ein unveränderlicher Controller eingebettet
und ermöglicht eine direkte, vertrauliche und sichere Übertragung der Konfigurationen der Kun-
den. Das etabliert eine vertrauenswürdige Rechenumgebung in einer nicht vertrauenswürdigen
Cloud Umgebung. Kunden können sicher ihre sensiblen Daten und Algorithmen übertragen oh-
ne verwundbare Software zu nutzen oder den Betreiber des Rechenzentrums einzubeziehen.
Dieses Konzept ist als Prototyp implementiert. Darauf basierend werden nötige Änderungen
von modernen FPGAs analysiert. Um in vollem Umfang eine rekonfigurierbare aber dennoch
sichere Hardware in der Cloud zu ermöglichen, wird eine neue hybride Architektur benötigt.

Contents

Abstract/Zusammenfassung I

List of Figures VII

List of Tables IX

List of Acronyms X

1 Introduction 1

2 Background and Related Work 3
2.1 Background . 3

2.1.1 Symmetric Cryptography . 4
2.1.1.1 Advanced Encryption Standard 4
2.1.1.2 Other Symmetric Encryption Algorithms 5
2.1.1.3 Comparison of Symmetric Cryptographic Systems 6

2.1.2 Asymmetric Cryptography . 6
2.1.2.1 RSA Cryptosystem . 6
2.1.2.2 Elliptic Curve Cryptography . 8
2.1.2.3 Comparison of Asymmetric Cryptographic Systems 10
2.1.2.4 Diffie-Hellman Key Exchange 10

2.1.3 Digital Signatures . 11
2.1.4 Hash Functions . 12
2.1.5 Message Authentication Code . 13
2.1.6 Certificates . 15
2.1.7 TLS Protocol . 16

2.2 Related work . 18
2.2.1 Security Concerns in Cloud Computing 18
2.2.2 Approaches on Cloud Security . 18
2.2.3 Virtual FPGAs for the Cloud . 19
2.2.4 FPGA Security Concepts . 20
2.2.5 Approaches on Security of Remote FPGAs 21

3 Design 23
3.1 Threat Model . 23
3.2 Trust Model . 24

III

Contents

3.3 Host/FPGA-Hypervisor . 26
3.3.1 Initializing a Secure Connection . 27

3.3.1.1 Data Encryption . 28
3.3.1.2 Sharing a Common Secret . 28
3.3.1.3 Authenticity of an Accelerator 29
3.3.1.4 Message Authentication . 29
3.3.1.5 Bitstream Transfer Protocol . 30

3.3.2 Robust Virtualization of Reconfigurable Logic 31
3.3.2.1 Limiting the Reconfigurability 32
3.3.2.2 Overlapping Resources . 32

3.4 From Design to Hardware . 33

4 SecFPGA-Hypervisor Implementation 35
4.1 EC Key Processor . 36

4.1.1 Elliptic Curve Multiplier . 36
4.1.2 True Random Number Generator . 38
4.1.3 Key Derivation . 40
4.1.4 ECDSA . 40

4.2 Command Decoder . 42
4.2.1 Hash . 42
4.2.2 Certificate . 45

4.3 Key Store . 45
4.4 Configuration Filter . 46
4.5 Encryption Engines . 46

5 Results 49
5.1 Security Evaluation . 49
5.2 Deployment Delay . 50

5.2.1 Precomputations for a TLS Handshake 51
5.2.2 Computations during a TLS Handshake 52

5.3 Extra Latency Through AES . 53
5.4 Resource Utilization of the SecFPGA-Hypervisor 55

5.4.1 Resource Utilization of the EC Key Processor 55
5.4.2 Resource Utilization of the CMD Decoder 56
5.4.3 Resource Utilization of the AES Cores 56
5.4.4 Estimated Utilization of an Optimized Implementation 57

6 Conclusions and Future Work 61

Bibliography XIII

Appendix A-1
A SecFPGA-Hypervisor Commands . A-1
B Certificate of a SecFPGA . B-1

IV

List of Figures

2.1 The elliptic curve y2 = x3 − 3x + 5. 9
2.2 Diffie-Hellman key exchange. 11
2.3 Concept of a digital signature. 12
2.4 Concept of a MAC. 13
2.5 GCM mode of operation. 14
2.6 CPU performance comparison of different MAC schemes. 15
2.7 Important fields from the X.509 certificate for tu-dresden.de. 16
2.8 A certificate chain for tu-dresden.de. 16
2.9 TLS 1.2 handshake protocol. 17
2.10 Example for a TLS cipher suite. 17
2.11 Diagram of the FPGA-based RC2F. 20

3.1 Trust in a local workplace. 25
3.2 Trust in today’s cloud system. 25
3.3 Trust through a third party. 26
3.4 Trust in the proposed system. 26
3.5 High level overview of the proposed system. 27
3.6 Device lifecycle until after its deployment in the cloud. 29
3.7 X.509 certificate for example SecFPGA 13A7FC. 30
3.8 Chain of trust for a SecFPGA. 30
3.9 The supported chiper suite. 30
3.10 Secure transfer of a vFPGA bitstream. 31
3.11 Overlapping of client and hypervisor resources. 33

4.1 Placement of the SecFPGA-Hypervisor in the RC2F. 35
4.2 Interaction of the SecFPGA-Hypervisor modules with a client. 37
4.3 Internal block diagram of the EC Key Processor. 38
4.4 Interface of the EC Key Processor. 39
4.5 State machine of the EC Key Processor. 39
4.6 Block diagram of the elliptic curve multiplier. 40
4.7 Key derivation from the common secret. 41
4.8 Interface of the ECDSA core. 41
4.9 General structure of a command word. 42
4.10 Interface of the CMD Decoder. 43
4.11 Block diagram of the CMD Decoder. 43
4.12 State machine of the CMD Decoder. 44

VII

LIST OF FIGURES

4.13 Interface of the Key Store. 45
4.14 Implementation of the data path encryption. 47

5.1 Gantt chart for TLS precomputation. 51
5.2 Gantt chart for TLS handshake. 52
5.3 Data stream throughput over PCIe. 54

A.1 General structure of SecFPGA-Hypervisor commands. A-1
A.2 Structure of command 0x00. A-1
A.3 Structure of command 0x01. A-2
A.4 Structure of command 0x80. A-2
A.5 Structure of command 0x81. A-3
A.6 Structure of command 0x00. A-3

VIII

List of Tables

2.1 Key lengths in cryptosystems. 3
2.2 The number of AES rounds increases with the key length. 4
2.3 Comparison of symmetric encryption schemes. 6
2.4 Comparison of ECC and RSA. 10
2.5 Comparison of common hash algorithms. 13
2.6 Comparison of MAC schemes. 15

4.1 Evaluation of the true random number generator. 40

5.1 Precomputation times for a TLS handshake. 51
5.2 Computation times for a TLS handshake after the CKS is received. 52
5.3 Latencies on the data path. 54
5.4 Comparison of latencies between RC2F and SecFPGA-Hypervisor. 54
5.5 Resource usage of the whole SecFPGA-Hypervisor. 55
5.6 Resource utilization of the EC Key Processor. 56
5.7 Resource utilization of the CMD Decoder. 56
5.8 Resource usage of an AES-128 core with an arbiter for six RC2F-streams. . . . 57
5.9 Estimated resource based on cores reported in literature. 58

IX

List of Acronyms
AE authenticated encryption

AES Advanced Encryption Standard

ASIC application-specific integrated cir-
cuit

BRAM Block RAM

BSI Bundesamt für Sicherheit in der In-
formationstechnik

CA certificate authority

CKS client key share

CPU central processing unit

CR client random

DSP digital signal processor

ECC elliptic curve cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDHE Ephemeral Elliptic Curve
Diffie-Hellman

ECDLP elliptic curve discrete logarithm
problem

ECDSA Elliptic Curve Digital Signature Al-
gorithm

ECM elliptic curve multiplier

FIFO first in first out buffer

FPGA Field Programmable Gate Array

GCM Galois/Counter Mode

HLS High Level Synthesis

HMAC keyed-hash message authentica-
tion code

IaaS Infrastructure as a Service

IP intellectual property

IV initialization vector

LUT look up table

MAC message authentication code

NIST National Institute of Standards
and Technology

nonce number used once

PaaS Platform as a Service

PCIe Peripheral Component Intercon-
nect Express

PRE partial reconfiguration engine

PRNG pseudo random number genera-
tor

PUF physically unclonable function

RC2F Reconfigurable Common Comput-
ing Framework

ROM read only memory

RSA Rivest-Shamir-Adleman

S-Box substition box

SecFPGA Secured FPGA

SKS session key share

SPK session private key

X

LIST OF TABLES

SR session random

SSL Secure Sockets Layer

TA trusted authority

TLS Transport Layer Security

TPM Trusted Platform Module

TRNG true random number generator

vFPGA virtual FPGA

VM virtual machine

VMM virtual machine manager

XI

1 Introduction
The flexibility of reconfigurable resources like FPGAs enables a unique combination of high
throughput and computing power with low energy consumption and time to market. They
present an excellent opportunity for data center providers to further increase their processing
capabilities without going beyond the boundaries of their power budget. The services provided
by the data center are often called the cloud and are used by a wide range of different clients.
However, sensitive data is not secure in those remote systems. The multilayered cloud environ-
ment involves various different parties able to access the clients’ data. Potential security flaws
in the complex software infrastructure enable even more attacks. Thus, a system is needed to
establish a trustworthy and secured space in a remote data center without sacrificing flexibility,
energy efficiency and processing power.

Virtualizing the hardware into a flexible resource is essential to fulfill cloud characteristics and
is still a topic of research. Other proposals explored security aspects and configuration updates
of remote FPGAs. Some require a secured setup by the client in a trusted environment, others
rely on a third party to establish trust in the remote system. However, most researchers focus
only on one specific area. Virtual FPGAs are not secure against malicious configurations, clients’
intellectual property can be effortlessly extracted by the cloud provider and an adversary is able
to easily steal sensitive data. Approaches on security employ either setup strategies infeasible
in a cloud environment or only delegate the responsibility from one party to another, but an
additional third party does not reduce the required trust. Furthermore, virtualization is often not
considered or only very limited, yet it is an essential part towards a flexible, highly optimized
and efficient cloud system.

This gap in current research is investigated in this thesis. A system should be designed
and evaluated to unite energy efficiency and processing power with cloud characteristics like
flexibility and fast provisioning. Based on an FPGA design it can exploit their reconfigurability to
provide each client with an individual virtual FPGA. With security as the highest priority it must
enable a confidential transfer and processing of clients’ algorithms and data. Every connection
must be trustworthy and protected against different levels of attackers. Even the cloud provider
should not be able to access sensitive data. Thus, vulnerable software has to be avoided to
offer this high level of security.

This thesis is structured in the following way. After this introduction, important cryptographic
algorithms are outlined and a literature review investigates previous work in the field of cloud
computing and virtualization of reconfigurable resources from the perspective of security. In
Chapter 3 a design is discussed to unite the virtualization and security requirements developed
earlier. It is followed by the description of a prototypic implementation to verify crucial aspects
of the design. This prototype is evaluated in chapter 5 to analyze provided security and the
overhead it generates. In chapter 6 this thesis is summarized and future work outlined.

1

2 Background and Related Work

This chapter explores previous work in the field of cryptography, security, cloud computing, re-
configurable resources and their virtualization. Each domain contributes with valuable insights,
strong algorithms and elaborate concepts to the design of a secure hardware accelerator for
the cloud. In section 2.1 the focus is on established security schemes and protocols mixed with
state-of-the-art implementations whereas section 2.2 investigates more abstract constructs re-
garding FPGAs, cloud and virtualization.

2.1 Background

One of the main goals of cryptography is to establish a trustworthy and confidential communi-
cation between two parties over an insecure channel. Various fundamentally different schemes
exist to solve the unique problems. However, none of them is unbreakable, in the worst case
an attackers tries each possible combination, the so called brute-force attack. The security of
an algorithm is therefore determined by the number of operations an attacker has to execute
in order to break the secrecy. This number is primarily based on the length of the key used as
the starting secret, the underlying mathematical principle and the best known attack algorithm.
Hence, different schemes require different key lengths to provide the same level of security,
which is compared in Table 2.1.

Table 2.1: Comparison of key lengths in bit of different cryptographic systems. [Bro10, p. 15]

Security Level
[operations]

AES
(s. 2.1.1.1)

RSA
(s. 2.1.2.1)

ECC
(s. 2.1.2.2)

280 80 1024 163
2128 128 3456 283
2192 192 7680 409
2256 256 15 360 571

This section outlines symmetric cryptography for fast de- and encryption first followed by
asymmetric schemes to create common secrets. Section 2.1.3 describes how these schemes
can be used to sign messages. Hash functions and message authentication codes are outlined
in section 2.1.4 and 2.1.5, respectively. Digital certificates and their chain of trust are essential
in a fast verification process and explained in section 2.1.6. Finally, the presented schemes and
algorithms are combined within the Transport Layer Security (TLS) protocol, which is described
in section 2.1.7.

3

2 Background and Related Work

2.1.1 Symmetric Cryptography

The first attempts to symmetrical cryptography were straightforward. Simple rotation ciphers
shifted each letter by an offset. Shifting A to C requires a key-value of two, for an A to become an
E the key has to be four. Both parties have to use the same key, which is used for decryption
and encryption, hence the name. But the substitution cipher can be broken easily by hand,
analyzing the frequency distribution [Sin68] or other methods [PR79; UY06].

Nowadays far more complex but also far more secure algorithms exist, a few of them are
outlined in this section. First, section 2.1.1.1 describes Rijndael, also known as AES. After-
wards, other symmetrical cryptographic algorithms are summarized in section 2.1.1.2. Finally,
the schemes are compared in section 2.1.1.3.

2.1.1.1 Advanced Encryption Standard

In 1997 the US National Institute of Standards and Technology (NIST) launched a competition
for a new symmetric block cipher [AES] to replace the slow and aging Data Encryption Standard
(DES) [FIPS 46-2]. The winner was an algorithm called Rijndael, a combination of the last names
of its authors Daemen and Rijmen, but it is commonly referred to as Advanced Encryption
Standard (AES). They described a symmetric cipher with different key sizes, which is fast on
hardware and software and free of patents [DR99]. This section first outlines the algorithm and
after that its security and possible attacks.

Rationale

AES is a 128-bit block cipher, in other words 128-bit can be encrypted with each run. A single
run has multiple rounds, depending on the size of the key as shown in Table 2.2.

Table 2.2: The number of AES rounds increases with the key length.

key length rounds

128-bit 10
192-bit 12
256-bit 14

Before the first run the input is transformed into a 4x4 matrix of 8-bit words:

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

Each run consists of different steps working on this matrix: SubBytes, ShiftRow, MixColumn,
AddRoundKey. SubBytes executes a nonlinear substitution to prevent the ciphertext yielding
any clues about the plaintext. This is done using a substition box (S-Box), each 8-bit word is
replaced with another 8-bit word. The substitution values were carefully chosen to be resilient
against differential and linear cryptanalysis. This confusion is one of two principles in cipher
design described by Shannon [Sha45]. The next step, ShiftRow, rotates each row to the left,
the first one zero times, the second one once, the third twice and the fourth three times:

a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

⇒

a0 b0 c0 d0

b1 c1 d1 a1

c2 d2 a2 b2

d3 a3 b3 c3

4

2.1 Background

This linear permutation shuffles the data around to change on average half of the output bits if
a single input bit changes. This is called diffusion and the next step, MixColumn, has the same
goal but is more complex and will not be explained further. AddRoundKey is the last step and
applies the key with a bitwise xor operation. To decrypt a ciphertext, the four steps have be to
inverted and applied backwards. For a more in-depth coverage of the algorithm the book The
design of Rijndael: AES-the advanced encryption standard [DR13] is recommended.

Security and Attacks

To brute force a k-bit key it takes 2k operations. The full AES algorithm executes multiple rounds
as shown in Table 2.2. Biryukov et al. have targeted AES-256 with only nine rounds and could
retrieve the key kA after 2131 operations [BKN09]. They used a related key kB, which is derived
from the original key kA with a special algorithm, to make this attack possible. The group around
Biryukov optimized this related key approach further to break a nine round AES-256 in only 239

operations [Bir10]. However, since in practice only the full number of rounds and no related keys
would be used, these attacks are only theoretical. In 2011 Bogdanov et al. described the first
key-recovery attack on full AES reducing the required time for a 128-bit key to 2126.2 [BKR11].
But this attack is only slightly more practical since is only reduced the complexity by 2 bits and
requires 288 bits of data.

A class of threats with importance in practice are side channel attacks. They target hard-
ware or software implementations, which are inadvertently leaking data. In 2006 Osvik et al.
extracted a key after 800 operations or 65 ms through a cache-timing attack [OST06]. It was
required to run their software on the machine performing AES. A more efficient implementa-
tion of a cache based attack was proposed by Ashokkumar et al. [AGM16]. Only a few AES
operations sufficed to calculate the secret key.

Even though theoretical and practical attacks are known, AES is recommended by various
authorities [BSI17; NIST15] and is used in the latest TLS protocol [RFC 5246]. With a robust
implementation AES is considered to be secure.

2.1.1.2 Other Symmetric Encryption Algorithms

Another AES competition participant was the Blowfish successor called Twofish [Sch98]. Like
the other candidates is it a 128-bit block cipher and supports key lengths of 128, 192 and 256
bits. It uses 16 rounds, generates S-Boxes from the key and uses whitening. Twofish utilizes
more conservative components than the AES winner Rijndael. Lucks published an attack, which,
however, targets only six to eight rounds and is therefore only theoretical [Luc02]. No practical
attacks are known and Twofish is considered to be secure [Sch13, p. 145].

KASUMI is based on MISTY1 and was developed in 1999 to be used in the Universal Mobile
Telecommunications System standard, hence it is one of the most used symmetrical encryption
schemes [KASUMI01]. The algorithm was designed especially for hardware implementations
and is based on a Feistel cipher with eight rounds. The key length is 128-bit and it has to be
expanded eight times so each round uses a different sub key. This key extension was identified
as a weak spot by Dunkelman et al. [DKS10]. Using related keys, they showed that KASMUI
can be broken with a time complexity of only 232. Therefore, they recommend to avoid the
algorithm if a related-key attack can be mounted.

Salsa20 was developed by Bernstein and supports keys of 128 and 256 bit length [Ber08b].
It is a stream cipher with a different design approach compared to others like RC4 or A5. Most
stream ciphers use a complex function to generate pseudo randomness from the symmetric
key and simple extract methods to create the keystream, which will be XORed with the plain
text to output the cipher text. Salsa20, on the other hand, uses the key as the start value for
a simple counter. The far more sophisticated extraction method generates a cryptographically

5

2 Background and Related Work

secure keystream. At time of writing, only attacks targeting eight of the twelve or twenty
rounds are published [Aum08]. That the slightly changed ChaCha20 algorithm [Ber08a] was
added as a cipher suite for the TLS protocol in 2016 [RFC 7905] shows the confidence the
community places in its security.

2.1.1.3 Comparison of Symmetric Cryptographic Systems

In Table 2.3 different symmetrical encryption schemes are compared. Both AES candidates
support 128, 192 and 256-bit keys, Salsa20 and ChaCha20 128 and 256-bit keys and KASUMI
only a fixed length of 128 bits. Furthermore, KASUMI is vulnerable to a related-key attack with
practical complexity. No feasible practical attacks are public known for the two AES candidates
as well as Salsa20/ChaCha20. One reason why Rijndeal was selected in favor of Twofish is its
better efficiency, both in hardware and software. Today, many central processing units (CPUs)
and systems on a chip support dedicated instructions, like Intel’s AES-NI [AES-NI], to accelerate
the AES winning algorithm. Since its selection, a wide variety of implementations have been
reported in literature. They range from high throughputs of 260 149 Mbit/ s [SS15] to a high
efficiency of 42.27 Mbit/ s/ slice [SA11]. But to better compare AES and ChaCha20 Table 2.3
lists numbers from a single paper. Sugier showed that the stream cipher is faster on FPGAs,
but because it is not yet supported by hardware extensions of CPUs it offers less throughput
on these platforms. KASUMI was designed for hardware implementations in low-end devices
and a decent throughput can be achieved.

Table 2.3: Comparison of symmetric encryption schemes.

Property AES (Rijndael) Twofish KASUMI ChaCha20

Key length in bit 128, 192, 256 128, 192, 256 128 128, 256
Practical attacks none none related-key none
CPU cycles per byte 0.7a, b, c, d 16.6a, b, c 68.8a, e 6.0c, f

Throughput (FPGA)g 24 400a, h 177a, i 3 584a, k 33 700f, h

Speed/Area (FPGA)m 9.87a, h 0.164a, i 0.756a, k 6.36f, h

a 128-bit key
b CTR mode [DH79]
c [CryptoPP]
d [AES-NI] support

e [BK15]
f 256-bit key
g in Mbit/ s
h [Sug13], Xilinx Spartan 6

i [GC01], Xilinx XCV-1000
k [KGK04], Xilinx XCV300E
m in Mbit/ s/ slice

2.1.2 Asymmetric Cryptography

Also known as public key cryptography, these schemes are based on two distinct keys. One of
them, the private key, has to be kept secret by the sender while the second one is available to
anyone, including attackers and eavesdroppers. It is therefore called public key. In 1976 Diffie
and Hellman proposed this concept [DH76]. They described how the public key can be derived
from a private key using simple operations, e.g. multiplication. However, computation of the
private key based only on the public key has to be infeasible.

This section describes multiple mathematical operations, which fulfill this requirement, start-
ing with integer factorization and the popular RSA scheme based on it. Elliptic curves are used
by various algorithms and outlined in section 2.1.2.2. Afterwards, the two concepts are com-
pared and a key exchange scheme concludes the section.

2.1.2.1 RSA Cryptosystem

The concept from Diffie and Hellman lacked an implementation for a one-way function. This in-
spired Rivest, Shamir and Adleman to investigate and a year later in 1978 they described such a

6

2.1 Background

function in their paper “A method for obtaining digital signatures and public-key cryptosystems”
[RSA78]. The name is composed of the first letters of the researchers’ names: RSA.

Today RSA is used in the Secure Sockets Layer (SSL) standard [RFC 6101] and its succes-
sors among others, protocols to ensure secure web hosting, instant messaging, email and
more. It can be used to encrypt messages as well as authentication. However, because RSA
is comparatively slow, it is often only used to encrypt and transmit a key for faster symmetric
algorithms. This section first describes the underlying maths while the security and known
attacks are evaluated afterwards.

Rationale

RSA is based on the computational complexity of factoring an integer product. No algorithm of
polynomial complexity are publicly known and it appears to be a hard problem. In the first step
two large prime numbers a and b are chosen at random and must be kept secret. Their product
n will be used as a modulus and is one part of the public key tuple as well as the private key
tuple. Next, the totient t has to be calculated. It is defined by Equation 2.1 where lcm is the
least common multiple.

t = λ(n) = lcm(a − 1, b − 1) (2.1)

The second part of the public key tuple PK is e with 1 < e < t and e coprime to t.

public key PK = (e, n) (2.2)

The private key tuple pk is completed by d, the modular multiplicative inverse to e under t:

d ≡ e−1 mod t (2.3)

private key pk = (d, n) (2.4)

Anyone can encrypt a plaintext message x with the public key tuple PK and function c defined
in Equation 2.5 to get the encrypted message x|PK .

x|PK = c(x) ≡ xe mod n (2.5)

Decrypting the ciphertext x|PK is only possible with the private key tuple pk = (d, n) using
function m defined in Equation 2.6.

x = m(x|PK) ≡ x|PK
d mod n (2.6)

But not only encryption is possible, the possession of a private key component d can also
be verified. To prove it the sender sings a plaintext message xs with the decryption function
m. The message xs and the signed one xs|pk are transmitted. Any recipient can now verify that
the sender is in possession of the private key component d by applying the encryption function
c to the signed message xs|pk with the available public key tuple PK and comparing it to the
plaintext xs.

Security and Attacks

The security level of RSA is primarily based on the size of the prime numbers a and b and the
resulting product n. The number of bits of n determines the key length. Factoring attacks try
to find the prime numbers used to calculate n. The fastest known method, the General NFS
algorithm [Len93], has a sub-exponential runtime and was used to factor a 768-bit RSA key in
2009 [Kle10]. This 768-bit number was one of the RSA numbers published by RSA Security in
their RSA Factoring Challenge [RSAC91]. At the time of writing no larger numbers are factored.

7

2 Background and Related Work

However, even 1024-bit keys are not considered secure. Therefore the German Bundesamt für
Sicherheit in der Informationstechnik (BSI) and the US NIST recommend key lengths of at least
2000 bit [BSI17; NIST15] to prevent factoring.

But there are other attacks targeting the mathematical system, weaknesses in parameter
and prime selection or the hardware implementation itself. Dubey et al. surveys those attacks
and lists countermeasures [Dub14]. They conclude that none of the attacks are a serious threat
if the algorithm is implemented correctly. Therefore, RSA is considered to be secure. Only
quantum computers appear able to break the scheme. Shor developed a polynomial time quan-
tum algorithm rendering RSA obsolete if those computers reach the required processing power
[Sho99].

2.1.2.2 Elliptic Curve Cryptography

Elliptic curve cryptography (ECC) was first independently proposed by Miller [Mil85] and Koblitz
[Kob87] in 1985. It was widely adapted in 2005 after the OpenSSL team accepted a relevant
patch and the U.S. National Security Agency announced Suite B [Nat15], a set of cryptographic
algorithms containing a digital signature and a key agreement scheme based on ECC. One
of the main factors limiting a wider use is the unclear patent situation. BlackBerry holds many
patents relating ECC, but some claim that alternative not patented techniques still allow efficient
implementations [Ful07].

This section first outlines the concepts ECC is based on. For more detailed insights the
original papers [Kob87; Mil85] are recommended. The second part focuses on the security
aspects and possible attacks.

Rationale

An elliptic curve is defined by equation 2.7 over a finite field and a point O in infinity.

y2 = x3 + ax + b (2.7)

It can be shown that a line intersecting with the curve always has exactly three points of inter-
section.

1. For a line parallel to the y -axis the third point is O.
2. If the line is tangent to the curve, the point of intersection counts twice.
3. With all other lines the points of intersection are obvious.

Using this property it is possible to define an addition operation. A special case, point doubling
i. e. adding point G to itself, is illustrated in Figure 2.1. Because it is only a single point, case
2 is in effect and a line tangent to the curve is used. The resulting point of intersection is
mirrored on the x-axis to yield the final sum G2. Repeating this operation m-times is called
point multiplication and is defined through equation 2.8.

Q = m * G (2.8)

There are efficient algorithms to calculate Q from m and G, for example the Montgomery lad-
der [Mon87]. The inverse operation, calculating m with given Q and G, is the elliptic curve
discrete logarithm problem (ECDLP) and no efficient classical algorithms are publicly known.
Therefore, ECC is based on the assumption that the ECDLP is in fact a hard problem and a
classical algorithm with polynomial complexity cannot exist.

To use this asymmetric encryption scheme two parties have to agree on a parameter set
which is defined by the sextuple T :

8

2.1 Background

−4 −2 2 4

−4

−2

2

4
G3 = G + G2

G14

G50

0

y2 = x3 − 3x + 5

G(−0.9, 2.6)

G2 = G + G = 2 * G = (1.8, −2.3)

Figure 2.1: The elliptic curve y2 = x3 −3x +5 with point G and the result of the point duplication
operation G2. Gm with m ∈ 3, 14, 50 are examples and are calculated repeating this
addition m-times: Gm = G + Gm−1 = m * G: point multiplication.

T = (p, a, b, G, n, h)

p a prime specifying the field Fp

a, b a, b ∈ Fp specify the curve, see eq. 2.7
G base point G = (xG, yG) ∈ Fp

n a prime which is the order of G
h an integer cofactor

Several parameter sets are defined to improve the interoperability of different ECC-based so-
lutions. They are often referred to as standard curves (e.g. [RFC 5639]). An alternative form
to the prime number based finite field Fp are elliptic curves over binary fields F2n , they use
slightly different math and parameters, but are based on the same principle. The private key is
a randomly generated integer kA ∈ [1, n − 1]. Using equation 2.8 the public key KA = kA * G is
calculated and shared with the other party.

Various algorithms can use the public-private key characteristics of ECC. For example, Elliptic
Curve Integrated Encryption Scheme is a basic de- and encryption algorithm derived from the
original DHAES [ABR99]. Another example is Elliptic Curve Digital Signature Algorithm (ECDSA),
the integer multiplication based DSA was modified by Kravitz to use elliptic curves [Kra93].

Security and Attacks

ECC is based on the assumption that solving the ECDLP is infeasible. All publicly known algo-
rithms to solve this problem like baby-step giant step [Sha71] or Pollard’s rho [Pol78] need about
O(

√
n) steps. Therefore, the size of the underlying field should be double the required security

parameter. In order to achieve the level of 128-bit symmetric encryption a 256-bit prime number
p is required. Table 2.1 compares different schemes and their key lengths. In 2009 Bos et al.

9

2 Background and Related Work

computed a discrete logarithm on an elliptic curve with a 112-bit prime in about six months
using 200 PlayStation 3 [Bos12]. Almost six years later, in January 2015, the computation in a
113-bit binary field was successful. Wenger and Wolfger used a 10-core Kintex-7 FPGA cluster
for 82 days [WW16]. To break 256-bit ECC in one year of computation they estimate based
on their implementation that hardware worth 18.1 · 1024 US$ is needed, hence 256-bit can be
considered sufficiently secure for the next decade.

However, a novel ground braking algorithm or advances in quantum computers could break
ECC. Proos and Zalka [PZ03] and Kaye [Kay05] describe quantum algorithms to calculate the
discrete logarithm in polynomial time over prime and binary fields, respectively. But quantum
computers are not needed to exploit weaknesses in the implementation. Several physical at-
tacks are known and have to be considered during the design. Passive attacks, also called side
channel analysis, and active or fault attacks require access to the device but have shown to be
effective [De 05; KSZ11; FGV11]. Fan and Verbauwhede surveyed them and showed possible
counter measurements to limit the effectiveness of such attacks [FV12].

2.1.2.3 Comparison of Asymmetric Cryptographic Systems

Raju and Akbani summarized the advantages of ECC over factoring based asymmetric schemes
like RSA [RA03]. As shown in Table 2.1, the security level of ECC is about half of the key length.
On the other hand, the key size of RSA increases exponentially. Thus, ECC allows significantly
shorter keys, which results in faster processing and lower resource and energy usage. Table 2.4
summarizes this and compares CPU and FPGA implementations. Mentens realized a 163-bit
and 256-bit ECC coprocessor on an FPGA and demonstrated an 1.5 times increase in resource
utilization for two times the security level [Men07]. RSA implementations, however, show only
a linear correlation between resource usage and provided security [SDI11]. On the algorithmic
side, both underlying mathematical constructs are threatened by quantum computers but not
by any known classical algorithms or practical attacks, which cannot be mitigated with higher
key lengths.

Table 2.4: Comparison of ECC and RSA.

Property RSA ECC

Recommended key length in bit 2048a 256a

Attack complexity sub-exponential [Len93] exponential [Sha71]
CPU cycles per byte 3.24b, c 1.75b, d

Operations per second (FPGA) 725e 2531f

Area (FPGA) 7300 Slicese 1029 Slices, 20 DSPsf

a [BSI17]
b [CryptoPP]
c 2048-bit RSA signature

d 256-bit ECDSA signature
e 1024 bits, [SDI11], Xilinx Virtex 5
f 256 bits, curve 25519, [SG14], Xilinx Zynq 7020

2.1.2.4 Diffie-Hellman Key Exchange

In 1976 Diffie and Hellman described a key exchange scheme to establish a shared secret over
an insecure channel between two parties. Their concept is based on modular exponentiation
with integer numbers, but can also be realized with elliptic curves, the so called Elliptic Curve
Diffie-Hellman (ECDH). The later was recommended by Adrian et al. after they demonstrated
a practical attack against the integer variant using precomputed exponentiations [Adr15]. Al-
ternatively, the key size can be increased, which, however, increases the computation time as
well. Regardless of whether modular exponentiation or elliptic curves are used, the underlying
concept does not change. It can be described as mixing of colors as shown in Figure 2.2. First,
both parties, Alice and Bob, have to agree on a common paint, i.e. a modulus or an elliptic curve.

10

2.1 Background

Alice Bob

+

=

+

=

+

=

+

=

secret color

secret color

common secret

common paint
publicly shared

public transport

mixture separation
is expensive

Figure 2.2: Illustration of the Diffie-Hellman key exchange scheme through mixing of colors.

This does not has to be kept secret quite different from the secret color each party selects at
random. It is crucial for this integer to be as random as possible, otherwise an attacker might
exploit the weak source of randomness to predict this secret color, thus breaking the scheme.
The public component is generated using the secret color. This process is mathematically easy,
like a modular exponentiation or a point multiplication on an elliptic curve. The reverse process,
separation of the public color into the common paint and the secret color, has to be expensive,
which it is believed to be for the modular and elliptic curve discrete logarithm problem. There-
fore, an attacker knowing the common paint as well as the public color is unable to efficiently
calculate a secret color. After the public colors are exchanged, the last step is the combination
of the private color with the other party’s public color to derive a common secret, which is a
mixture of each parties secret color as well as the common paint.

Once the private key is leaked to an attacker the common secret is revealed. If this private
key was reused to secure multiple connections, all of them are compromised. To minimize the
impact of a leaked key, a new one is generated for each execution of the algorithm. Hence, each
connection has an individual common secret. This feature is called perfect forward secrecy, a
term first coined by Günther [Gün89]. If an ephemeral private key is used the Diffie-Hellman
key exchange is abbreviated with an extra E leading to DHE, and in combination with elliptic
curves Ephemeral Elliptic Curve Diffie-Hellman (ECDHE).

2.1.3 Digital Signatures

The authenticity and integrity of digital data can be proven using a digital signature. Diffie and
Hellman first described this concept in 1976 [DH76]. Goldwasser et al. formalized it further and
established security requirements and described attacks against the scheme [GMR88]. Follow-
ing their analysis four points characterize a digital signature:

• A digital signature cannot be forged.

• It has to be verifiable.

• It cannot be transfered from one document to another.

• The associated data cannot be altered unnoticed.

The process of creating and verifying a signature is illustrated in Figure 2.3. The basic function
sig = s(d, pk) creates the signature of data d and can only be invoked by the signer, Alice,

11

2 Background and Related Work

because only she knowns her private key pk. The associated public key PK is distributed
and available to anybody. The receiver Bob uses it and the signature sig and to verify d with
d ′ = v (sig, PK). If d and d ′ match, Alice did in fact send d to Bob.

This is
some data.

5c6be9f32a4 ? yes
? no

plain data
d

private key
pk

signature
sig = s(d, pk)

public key
PK

verification
d ?= v (sig, PK)

Figure 2.3: Basic concept of a digital signature (adapted from [Sch13, p. 202]). The signature
is created with the private key and verified with the public key.

The asymmetric encryption algorithm RSA, described in section 2.1.2.1, can also be used to
create digital signatures. Alice “encrypts” the plain data d with her private key tuple pk. Bob
can verify it by “decrypting” it with the public key tuple PK . Another algorithm is the Digital Sig-
nature Algorithm (DSA), it was patented in 1991 by Kravitz but was made available royalty-free
worldwide [Kra93]. Today, the scheme uses a longer SHA-2 hash algorithm and modular arith-
metic with prime numbers. A variation called Elliptic Curve Digital Signature Algorithm (ECDSA)
uses elliptic curves, hence it is faster and requires smaller keys as shown in Table 2.4.

2.1.4 Hash Functions

Using digital signatures explained in section 2.1.3 to sign a whole message is slow and the
signature is about as long as the message itself. In practice a hash function is applied to the
message to generate a short sequence which can be signed much quicker. The goal of a hash
function is therefore to map an arbitrary large input to an output with a fixed size, e.g. 160 bit
for SHA-1. To be useful in cryptography a hash function has to have several properties [RS04]:

• The same input results always in the same output.

• A single bit modification of the input changes half of the output - avalanche effect [WT86].

• The mapping must be as unique as possible and evenly distributed.

• It is infeasible to generate a collision, i.e. find a second input with the same hash.

• It is infeasible to reconstruct the message from the hash.

To achieve such a behavior, techniques similar to symmetric encryption are used. Binary op-
erations applied to chunks of the data in multiple rounds aim to confuse and diffuse [Sha45].
However, this one-way function does not require a key, hence it does not encrypt the message.

A multitude of hash functions were developed over time. Table 2.5 compares members of
the popular SHA family. SHA-1 was specified in 1995 [FIPS 180-1]. Its successor SHA-2 was
also commissioned by the USA and standardized in [FIPS 180-2]. SHA-3, on the other hand,
was the winner of a competition organized by NIST and proposed by Bertoni et al. in 2007
[Ber07]. It does not replace SHA-2, but complements it. Although SHA-1 is the fastest of the
SHA family it should not be used any longer. A collision was found in 2017 by Stevens et al.
[Ste17]. No collisions are publicly disclosed for the other algorithms and they continue to be
recommended [Dwo15]. Of those two the SHA-3 functions performs more faster on CPUs and
more efficiently on FPGAs.

12

2.1 Background

Table 2.5: Comparison of common hash algorithms.

Property SHA-1 SHA-2 SHA-3

Hash length in bit 160 224, 256, 384, 512 224, 256, 384, 512
Security broken [Ste17] >− 256 bita securea

CPU cycles per byte 6.8b, e 13.3b, f 11.8b, f

Speed/Area (FPGA) ~0.5c, e 0.95d, f 1.84d, f

a recommended by NIST [Dwo15]
b [CryptoPP]

c [SK05]
d [GHR10]

e 160-bit Hash
f 256-bit Hash

2.1.5 Message Authentication Code

A message authentication code (MAC) is similar to a digital signature, but instead of an asym-
metric private-public key pair it uses a shared symmetric secret key. With at least two parties
in possession of the key able to create a MAC, it does not provide the property non-repudiation.
In other words, a MAC cannot be used to prove that a message was signed by a specific en-
tity. Nevertheless, MACs are an essential part of an authentic and secure communication. The
basic principle is shown in Figure 2.4 and several different schemes exist to calculate a MAC
m(text, key).

This is
some data.

e2a6f3c45b9

plain data
d

secret key
key

MAC
mac = m(d, key)

Figure 2.4: Basic concept of a message authentication code (MAC). The MAC is created from
the input d and a secret shared key using a MAC-algorithm m. The receiver recal-
culates the MAC and verifies it against the transmitted one.

A MAC algorithm can be build upon a hash function (section 2.1.4), which links the security
of the MAC to the underlying primitive. Concatenating (||) a key to the plain text is a simple
solution as shown in Equation 2.9.

MAC(d, key) = hash(key || d) (2.9)

This, however, is vulnerable to length extension attacks if a Merkle-Damgård hash function like
MD5, SHA-1 or SHA-2 is used [FS03, Section 6.3.1]. SHA-3, on the other hand, uses a novel
sponge approach [Ber07] which is not susceptible to this kind of attack. Based on this, NIST
standardized this approach in 2016 under the name KMAC [Joh16].

To prevent length extension attacks Bellare et al. described the keyed-hash message authen-
tication code (HMAC) scheme [BCK96]. This algorithm can safely utilize hash functions like
SHA-1 and SHA-2 through nested hashing as shown in Equation 2.10.

HMAC(d, key) = hash
((

key ′ ⊕ opad
)

|| hash
(
(key ′ ⊕ ipad) || d

))
(2.10)

The key is used to derive key ′, which is XORed (⊕) with the padding ipad and then concatenated
with the plain text d. This input is hashed once. The resulting hash is appended to the derived
key ′, which is XORed with another padding opad, and hashed again to yield the final MAC.
Even though the security of this MAC depends on the underlying hash function, known attacks
against SHA-1 do not work with this construct. Bellare proved it in “New proofs for NMAC and
HMAC: Security without collision-resistance” [Bel06].

13

2 Background and Related Work

Figure 2.5: GCM mode of operation. EK denotes a symmetric encryption with key K and multH

a multiplication in the Galois field GF (2128) with the hash-key H = EK (0). [MV04b]

Another approach to build a MAC combines encryption with authentication and is also known
as authenticated encryption (AE). Galois/Counter Mode (GCM) is a mode of operation for sym-
metric key block ciphers like AES to provide AE. It was first described by McGrew and Viega
in 2004 [MV04b]. The key feature is the Galois field multiplication, which can be parallelized
easily resulting in a high throughput. The encryption operation is displayed in Figure 2.5.Inputs
are up to 239 bits of plain text, a secret initialization vector (IV) as the start value for the counter,
a secret symmetric key and optionally additional authentication data like header field which
can or has to be publicly shared. Outputs are the cipher text and an authentication tag, the
MAC, with a length limited to 128 bit. McGrew and Viega proofed that the mode is secure if
the underlying block cipher is indistinguishable from a random sequence [MV04a]. Iwata et al.
discovered in 2012 flaws in the original proof, but were able to correct them [IOM12]. They rec-
ommended a 96-bit IV from a provable security perspective. Joux described an attack where a
reused IV-key pair breaks the scheme and allows an adversary to recover the key. They called
it the “forbidden attack“ [Jou06], since any implementation should avoid this obvious security
flaw. Another target is the length of the authentication tag. Mattsson and Westerlund [MW15]
and Ferguson [Fer05] showed that short tags increase the probability of successful forgery sig-
nificantly and that the authentication key may be revealed. Ferguson discourages the use of
AES-GCM whereas Mattsson and Westerlund recommend it with 128-bit tags and a careful
implementation.

This section outlined different approaches on message authentication codes, which are com-
pared in Table 2.6. First of all, none of the schemes, although they provide different levels of
security, show severe weaknesses and can be used in new designs. However, there perfor-
mance varies greatly and also between the selected hardware. The implementation of KMAC
(SHA-3) for example has the highest throughput when realized on an FPGA, but the poorest

14

2.1 Background

performance on a CPU, which is compared with the others in Figure 2.6. There, HMAC-SHA-1
and GCM perform best with HMAC-SHA-256 only marginally faster than KMAC. It should be
noted that the depicted speed includes an AES-128 encryption of the data, a benefit of the AE
approach.

Table 2.6: Comparison of message authentication code schemes.

Property HMAC-SHA-1 HMAC-SHA-256 KMAC-256 GCM

Tag length in bit 160 224-512 224-512 128
Security level 160 224-512 224-512 128
Usage HMAC HMAC KMAC AE
CPU cycles per byte see Figure 2.6
Throughput (FPGA)a 1 587c, f 10 886e, g 37 632e, h 36 920d, i

Speed/Area (FPGA)b 0.265c, f 2.722e, g 9.141e, h 7.740d, i

a in Mbit/ s
b in Mbit/ s/ slice
c Xilinx Virtex E

d Xilinx Virtex 5
e Xilinx Virtex 6
f [Mic04]

g [Mic12]
h [MIV15]
i [ACM14]

102 103 104 105 106 107 108 109

Data Size in Byte

0

2500

5000

7500

10000

12500

C
P

U
S

pe
ed

in
M

bi
t/

s

HMAC-SHA-1 HMAC-SHA-256 KMAC-256 (SHA-3) AES-GCM

0

2500

5000

7500

10000

12500

Figure 2.6: CPU performance comparison of different MAC schemes. Benchmark was per-
formed on a Linux host with OpenSSL 1.1.1.

2.1.6 Certificates

Certificates build upon digital signatures described in section 2.1.3. They are a wrapper and
include more information, e.g. who signed it. Standards like X.509 [ITU93] or Pretty Good
Privacy (PGP) [RFC 4880] describe how such a certificate is structured and what information
have to be included. A X.509 example for the website tu-dresden.de is shown in Figure 2.7.
It includes, among others, a name, the public key of the server, a validity period, the public
key PKca of the entity signing it and a fingerprint. This fingerprint is a digital signature in form
of a SHA-256 hash encrypted with the private key of the signing entity. The client uses the
issuer’s public key PKca to “decrypt” it and compares the plain hash to a locally computed one.
If they match, the certificate is authentic and was not modified. Yet the client has to trust in
the legitimacy of the signing entity. In case of tu-dresden.de it is TU Dresden CA - G02, the
organization controlling the server created a certificate for itself. However, another organization,
namely DFN-Verein PCA Global - G01, issued a certificate to TU Dresden CA - G02 and allowed

15

2 Background and Related Work

Issued To
Common Name tu-dresden.de
Alternative Names www.tu-dresden.de

bio.tu-dresden.de
. . .

Serial Number 1B2C25...AC71AE
Public Key C1AB9D...3972BD (4096-bit RSA)

Issued By
Common Name TU Dresden CA - G02
Public Key C10E1E...337B27 (2048-bit RSA)

Period of Validity
Begins At Tue, 12 Apr 2016 07:45:07 GMT
Expires At Tue, 09 Jul 2019 23:59:00 GMT

Fingerprints
SHA-256 w/ RSA Signature 22A6FD...F2773E (2048-bit RSA)

Figure 2.7: Important fields from the X.509 certificate for tu-dresden.de.

it to sign new certificates on its own. This is also called a certificate chain, is described in the
X.509 standard and visualized in Figure 2.8.

Deutsche Telekom Root CA 2
DFN-Verein PCA Global - G01

TU Dresden CA - G02
tu-dresden.de

Figure 2.8: A certificate chain for tu-dresden.de. Through two intermediate certificates the
server was indirectly signed by Deutsche Telekom Root CA 2.

Root certificates, like the one issued by Deutsche Telekom, are often embedded into oper-
ating systems and web browsers. This only displaces the problem of initial trust for the client,
now the software has to be checked. But this check is a one time effort compared to the mul-
titude of root certificates, which would have to be checked individually. At time of writing the
web browser Firefox includes more than 150 certificates [Moz].

2.1.7 TLS Protocol

Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) are cryptographic
protocols for secure and authentic digital communication. The current TLS version 1.2 was
specified 2008 by the Internet Engineering Task Force in [RFC 5246]. According to Schmeh
it fits in between the Open Systems Interconnection model [ISO7498-1] level 4 and 5, but is
generally placed in level 4 [Sch13, p. 656].

To establish a secure connection between client and server the TLS handshake protocol
shown in Figure 2.9 is used. In step (i) the client initiates the process and sends 28 bytes of
random data used later. This ClientHello message also includes all by the client supported
cipher suites. A cipher suite defines a key exchange algorithm, a bulk encryption algorithm and
a message authentication code algorithm.

16

2.1 Background

client server

ClientHello

ServerHello

Certificate
includes PubKeyServer

verify

ServerHelloDone

ClientKeyExchange
PreMasterSecret|PubKeyServer

generate keys

ChangeCipherSpec

Finished|client_write_key

ChangeCipherSpec

Finished|server_write_key

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

Figure 2.9: TLS 1.2 handshake protocol.

TLS RSA WITH AES 128 CBC SHA256

key exchange

bulk encryption

message authentication code

Figure 2.10: Example for a TLS cipher suite.

The example shown in Figure 2.10 selects asymmetric RSA (described in section 2.1.2.1)
for key exchange, symmetric 128-bit AES (section 2.1.1.1) to encrypt the data stream and
HMAC-SHA-256 (section 2.1.4) to guarantee data integrity. The server selects one suite and
communicates that to the client with a ServerHello message, which also includes 28 bytes
of random data, in step (ii). Then the server’s certificate is send to the client. It contains in-
formation about the domain, the server’s public key and the hash value of itself. Based on the
concepts explained in section 2.1.6, the client verifies the certificate.

If the verification was successful, the client randomly generates a PreMasterSecret and
encrypts it with the server’s public key in step (vi). Because only the server knows its own
private key, only it can decrypt the PreMasterSecret. Both sides use this secret and the two
times 28 bytes of random data exchanged with the Client/ServerHello messages to generate
six keys in step (vii):

• client_write_MAC_secret

• server_write_MAC_secret

• client_write_key

• server_write_key

• client_write_IV1

• server_write_IV1

1optional, depends on the symmetric algorithm for bulk encryption

17

2 Background and Related Work

Using two sources of randomness improves the quality and prevents attacks on a weak source
used by the client. But more importantly it stops man-in-the-middle replay attacks in which
the handshake is send again. Without the server’s random data, the same keys would be
generated and previous messages are valid again. This can be abused, e.g. execute a financial
transaction twice. Another attack is prevented by generating distinct keys for client and server.
In a reflection attack the adversary feeds messages back to their sender [Tan03]. If the client
receives a message encrypted with the client_write_key, it knows the message was not sent
by the server. If there were only one write_key, the client could not differentiate between its
and the server’s messages. The *_write_MAC_secret keys are used in the HMAC algorithm.
It is always advisable to use different keys for different algorithms.

The client announces that the following messages will be encrypted in step (viii) with a
ChangeCipherSpec message. The handshake is finished with step (ix) and a hash over all pre-
vious messages is calculated. The 12-byte hash is then encrypted with the client_write_key
and send to the server. A successful verification proves that the handshake was not tampered
with and all messages from the client reached the server without, maybe malicious, modifica-
tions. The server repeats this steps so that the client can also confirm a tamper-free handshake.

Isobe et al. implemented TLS on an FPGA with more than twice the throughput as a CPU
while only one-tenth of power was consumed [Iso10].

2.2 Related work

This section outlines literature from different research areas fundamental to secure reconfig-
urable hardware in the cloud. First, security concerns in cloud computing are summarized
followed by approaches to control and minimize threats and problems. Subsequently, virtual-
ization of FPGAs is introduced and security concerns mentioned. The section concludes by
showing different proposals for remote but secure FPGA designs.

2.2.1 Security Concerns in Cloud Computing

A cloud is primarily based on a software system to manage the clients. Like almost every
software, it is vulnerable to exploits and weak configurations open security holes. However,
there are more risks the client has to accept when using remote resources. A very detailed
overview was given by Fernandes et al. in “Security issues in cloud environments: a survey”
which is summarized hereafter [Fer14]. It is unknown what happens to the stored data: if it is
duplicated, altered in any way, thoroughly isolation from other clients’ data, reliably overwritten
before reuse or if there will be any downtimes.

Virtualization introduces a whole lot of new security issues like virtual machine (VM) image
theft or code injection. Irazoqui et al. demonstrated a very practical attack to steal symmetric
keys of another VM on the same CPU [Ira14]. Some issues persist even when the servers
go offline, the security of old images degrades due to discovery of new vulnerabilities. The
virtual machine manager (VMM) is a single point of failure as well as a worthwhile target to
attack multiple VMs at once. A virtualized network allows packet sniffing and spoofing, leads
to unstable network characteristics and can reduce the effectiveness of traditional security
methods. VMs themselves can be the target of man in the middle or side-channel attacks or
malware injection. Additionally, a malicious administrator is a threat the client cannot control as
well as identity management, authentication and authorization procedures.

2.2.2 Approaches on Cloud Security

A common tool to secure a standard CPU-based machine is a Trusted Platform Module (TPM)
[TPM2]. It provides features like authenticated boot sequence or cryptographic keys. It does

18

2.2 Related work

not prevent modifications of a running program or data extraction, hence it cannot protect the
whole system sufficiently. An FPGA based TPM module was proposed by Eisenbarth et al.
in “Reconfigurable trusted computing in hardware”, but it is geared towards a processor sup-
ported single user application and requires an initial setup by a trusted third party [Eis07]. The
sensitive internal state of the module cannot be transfered, making migration between nodes
very difficult thus preventing a flexible cloud.

Another approach for secure computing in a cloud is the use of full homomorphic encryption
schemes described by Gentry [Gen09]. They execute special algorithms on encrypted data -
without decrypting it at any point. It is a very elegant solution, the user only has to encrypt
the data before uploading it. After processing in an unsecured environment, the still encrypted
results can be downloaded and decrypted at client site, which is assumed to be safe. However,
Moore et al. concluded in “Practical homomorphic encryption: A survey” that there are still a
lot of open problems and research to be done [Moo14]. For example could Lee attack parts
of the algorithm because of an incorrect choice of parameters [Lee11]. They summarized fur-
ther that the performance of the used algorithms has to be drastically improved, homomorphic
encryption is far too slow to be used in a productive system.

According to Liu’s definition in “NIST cloud computing reference architecture” a cloud auditor
is a “party that can conduct independent assessment of cloud services, information system
operations, performance and security of the cloud implementation.” [Liu11] Audits are well
established in traditional systems, but new cloud environments provide new challenges [RG14;
Cho15; Ryo14]. Because multiple clients use the service offered by different Software as a
Service and Platform as a Service (PaaS) providers, it is difficult to control all aspects and access
specific subsets of data.

2.2.3 Virtual FPGAs for the Cloud

Following Moore’s Law, the number of transistors doubles approximately every two years,
FPGAs are growing in size with every new generation [Moo65]. But not every design can make
use of the huge amount of available resources using only a portion of the chip. To increase the
utilization, the logic can be virtualized to allow multiple different designs on the same device.

This approach was used by El-Araby et al. in “Virtualizing and sharing reconfigurable resources
in High-Performance Reconfigurable Computing systems” to virtually increase the number of
reconfigurable accelerators available to a CPU although there was only a single physical device
[EGE08]. Chen et al. described in 2014 a framework based on the open source cloud software
OpenStack to enable FPGAs as a shared resource in the cloud [Che14]. They further analyzed
the impediments of deploying today’s FPGAs, security aspects and virtualization overhead. In
the same year, Byma et al. divided the logic resources into multiple regions which can be allo-
cated like standard VMs also using OpenStack [Bym14]. An extended interface was proposed
in “Virtualized FPGA Accelerators for Efficient Cloud Computing” by Fahmy et al., allowing not
only prioritized communication to the host, but also provided an interface between the single
virtual FPGAs (vFPGAs) [FVS15].

The focus of Knodel et al. in “Virtualizing Reconfigurable Hardware to Provide Scalability in
Cloud Architectures” is not only on virtualization of the FPGAs allowing flexible partitioning, but
also on different service models to satisfy various customer demands [KGS17]. Their Recon-
figurable Common Computing Framework (RC2F) is FPGA-based and includes a hypervisor, I/O
components and partial reconfigurable regions as shown in Figure 2.11. It enables fast com-
munication over PCIe with the host or via Ethernet with a network. The virtualization concept
abstracts those single links into multiple dedicated channels to serve the vFPGAs as well as
the hardware hypervisor. The client channel bundles a total of twelve RC2F-streams to serve
six clients with a read and write stream each. A single stream has a throughput of 800 MB/ s.

19

2 Background and Related Work

JTAGFlashBBRAM

Channel
Interface

PCIe Core Dom0 Hypervisor
 Virtualization Layer

Reconfig Area 1: vFPGA 0 Reconfig Area N: vFPGA N

PCI-Express Endpoint

Hypervisor
Control Unit

Config Space
System Status
Reconfiguration

vFPGA
Control Unit

Clocking
State Transitions
IPv4-Address

Accelerator Design — DomU Accelerator Design — DomU…

||||||||||

Ethernet

 Eth Core

PCI Virtualization VLAN/IP

||||||||||

64

vControl
Config Space
Virtual States

||||||||||

||||||||||

vControl
Config Space
Virtual States

32

host
stream

net
packet

32
64 64 64

host
stream

net
packet

3232

… …

 Memory Core

Memory Controller

Memory Virtualization (Pagetable)

256256

256

ICAP
Config

Encryption
Unit

AES, RSA, SHA

DDR3 RAM

FPGA Board

Network

Host

Backend
Interface

Frontend
Interface

Hardware
Interface

Channel Virtualization
……

Figure 2.11: The RC2F connects vFPGAs with a host over PCIe or with a network over Ethernet.
It enables partial reconfiguration of individual regions. [KGS17]

2.2.4 FPGA Security Concepts

The before mentioned proposals focused on enabling FPGAs in the cloud, but they neglected
major security concerns. Although software offers a larger attack surface than hardware, due
to their complex multi tasking and resource sharing, FPGAs and their configuration are still
vulnerable to certain attacks and multiple security concerns arise.

First of all, the client’s system designer cannot be sure that the chip is free of hardware
Trojans, either the FPGA vendor or the foundries could have added them. However, Agrawal et
al. investigated in “Trojan Detection using IC Fingerprinting” how the vendor can detect hidden
backdoors using methods from cryptanalysis like power and temperature profiling to create a
unique fingerprint for the IC [Agr07]. To generate such a fingerprint, only a few chips have to
be invasively tested if they comply with the vendor’s specifications. In 2012 a backdoor, which
leaked security keys among others, was detected in a military grade Actel/Mircosemi FPGA by
Skorobogatov and Woods [SW12].

Thompson challenges the basic trust in software in “Reflections on trusting trust” [Tho84].
The EDA tools themselves could extract information or manipulate the developers designs. This
basic problem directly affects all approaches on security and is not within the scope of this
thesis. Meanwhile, a strong reputation of the EDA tools developer might ease the concerns of
clients.

20

2.2 Related work

Operating FPGAs or other hardware under direct control of the client is fairly secure, e.g. fire-
walls can prevent any data leakage. Yet, many FPGAs are deployed in the field and the system
designer looses direct physical access to secure the system. It has to withstand attempts of
reverse engineering, cloning or overbuilding among others. Leading manufactures are aware
of such threats and attacks and provide tools to secure the valuable intellectual property (IP)
[Tri07; UG470]. However, these systems have their shortcomings and are targeted at specific
use cases. Trimberger and Moore outlines possible attacks in [TM14]. For example, the de-
crypted design could be intercepted while it configures the FPGA. Side-channel attacks like
power, timing and electromagnetic emanation analysis can be used to weaken the protection
from encryption. Timing based [Bha09], optical [SA03] or EM [SH07] fault injections can break
the security of the chip as well. But again, there are effective defenses in place to protect the
chip which were summarized in “A survey on security and trust of FPGA-based systems” by
Zhang and Qu [ZQ14].

2.2.5 Approaches on Security of Remote FPGAs

If the engineer has access to the devices before they are deployed, effective security mea-
sures can be taken. This process is supported by many vendors as outlined in section 2.2.4.
But in a cloud environment where the Infrastructure as a Service (IaaS) provider cannot be
trusted, it is impossible for the client to establish any trust. Therefore, third party entities, of-
ten called trusted authority (TA), are employed in different proposals to deploy a secured initial
configuration. Drimer and Kuhn [DK09] and Devic et al. [DTB10] describe both a protocol for
secure remote updates which could also be used in the cloud context. They require additional
Non-Volatile-Memory and the first configuration is done in a trusted environment. Kepa et al.
proposed in “Serecon: A secure dynamic partial reconfiguration controller” a few enhance-
ments to the FPGA fabric to allow for a secure controller with a strong chain of trust [Kep08]. A
third party TA is utilized to certify the public key generated by the controller. They mediate ac-
cess to the internal reconfiguration port to prevent malicious configurations from altering their
controller. But slow asymmetric encryption, involvement of a host computer and no authenti-
cation of the client’s bitstream are weak points. Another single user framework was proposed
by Eguro and Venkatesan [EV12]. With the example of medical data they described how a TA
would configure FPGAs with symmetric keys before they are delivered to the data center. After-
wards, clients send their design to the TA for encryption. Only the trustworthy preconfigured
FPGA can decrypt and partially reconfigure itself. They point out the difficulties of a secure
multi user approach because of route-through wires to hard macros or I/O pins which have to
be protected from an adversary.

But employing a TA just transfers the trust problem from one party to another, the number of
involved and trusted participants does not change from the clients perspective. Furthermore,
none of the proposals utilize the available fabric efficiently because they do not enable multiple
users.

21

3 Design
A small company wants to accelerate their data processing. Instead of buying expensive
servers and recruiting new personal to run them, they decide to use remote computing capabil-
ities, the cloud. As they handle confidential data for their clients a public cloud cannot be used.
It would make the data accessible to many different parties like data center administrators or
the PaaS provider, which are possible security flaws. To exclude these, dedicated hardware is
required to bypass vulnerable and easy to manipulate software. Hence, it must be possible to
establish a secure connection to the device itself. Additionally, it must be authenticatable, the
small company has to be able to verify the endpoint before sending sensitive data. After the
connection has been set up, a high throughput is required to process large amounts of data.
Their algorithms also have a high memory complexity, external but secure remote storage is
necessary.

The cloud provider, on the other hand, has a different perspective. There, the device is an
extra resource that has to be flexible, scalable and rapidly provisioned like other cloud resources
such as storage, CPUs or GPGPUs. These properties can be achieved through virtualization of
the reconfigurable fabric into resizable partitions. But the management overhead for the host
system should be as low as possible, the more work can be offloaded to the device, the better.

This chapter discusses a possible solution and outlines decisions to meet the goal of an FPGA
based remote but secure and virtualized hardware accelerator in the cloud. The design has to
satisfy the demands of both client and provider. First, in section 3.1 the security requirements
are analyzed by classifying different levels of attacks, followed an evaluation of trust needed.
This is used in the design of the hypervisor discussed in section 3.3. The chapter is concluded
with an evaluation of possible ways to realized the design in hardware.

3.1 Threat Model

To design a secure, remote endpoint for clients, different levels of adversaries and threats have
to be analyzed first. The primary concern is the confidentiality of the clients’ data and algorithms.
Hence, slow downs, denial of service attacks or even physical destruction are not evaluated.

Level 5: Outside of the Data Center

A level five adversary is located outside of the data center and does not have any access to it,
only the traffic to and from the client can be observed and altered. Therefore, the client must
be able to establish an authenticated connection to the system. The connection has to be at
least as secure as other remote connections, e.g. to a trusted mail server.

23

3 Design

Level 4: Virtualized Access to the Same Host

A multitude of clients are active at the same time in a cloud system and not everyone is
allocated a separate machine. Instead a few clients share a single host, which is virtualized
into VMs by a VMM. Through security flaws in the virtualization layer, the device attached to
this host might be directly accessible to an attacker. However, the adversary could also be the
IaaS provider. Therefore, the device has to protect itself and the clients’ data from unfiltered
malformed inputs.

Level 3: Physical Access to the Board

The device is considered to be under attack after it left the vendor’s facilities, hence the board
manufacturer might be a threat. They could add compromising components, bugged memory
or unwanted external interfaces to the printed circuit board. Any third party in possession of it
can still alter it. Therefore, the board itself is treated as hostile and no unencrypted data can
leave the device, unless explicitly sent by the user through a dedicated channel.

Level 2: Virtualized Access to the Same Physical Chip

At threat level two, a virtual partition on the same physical device is provisioned to the attacker.
But it should not be possible to affect other users from within the device itself. Hence, shared
resources like network or memory bandwidth cannot be utilized to capacity by a single user.
More importantly, a strict separation of the clients’ data is mandatory. Not only in memory or
buffers but the reconfigurable partitions must be isolated to prevent any interference, which
might compromise the other clients’ security.

Level 1: Physical Access to the Chip

Since the board design cannot be relied on to protect the data, the device itself has to be
secured. A threat-level-one attacker could get access to the device at any stage after it left
the vendor’s facility. This includes transport service, board manufacturer and also data center
personal among others. They could, for example, try to extract important secret keys through
side-channel attacks. This is necessary because all encrypted data is assumed to be secure
without access to the keys if intact cryptographic schemes are used. Thus, the device has to
be hardened against physical attacks which would yield the cryptographic keys.

Level 0: Access During Design or Manufacturing

At threat level zero the attacker can alter the design or introduce backdoors during manufactur-
ing. As outlined in section 2.2.4, the device vendor can analyze the hardware to find unwanted
modifications. Therefore, the client still has to trust the vendor, the tools and to some extend
the device foundry. But this is the same level of trust the client has to have into hardware
in general, CPUs, hard drives and other components might be modified as well. Hence, the
system design does not aim to protect from threat-level-zero adversaries. After all, no remote
system, which was never physically checked and controlled by the user, can be trusted.

3.2 Trust Model

No user of any remote system has total control over it contrary to classic in-house deployment
shown in Figure 3.1. In the later scenario, not even data leaking hardware Trojans are of any
concern because any network access can be physically prevented or fully controlled by firewalls.

24

3.2 Trust Model

This is also true for electronic design automation (EDA) tools used by the client. In this case,
no data can be transmitted from an offline workplace. Therefore, the level of required trust is
very low.

FPGA vendor

Chip
foundry

EDA
tools

IP
vendor

direct physical access:
secured in house de-

ployment at client site

client

Figure 3.1: Classic offline usage at the client’s facilities. Most secure solution, only the local
workplace has to be trusted. However, it is without any benefits of the cloud.

However, the trend towards cloud computing moves the devices out of client’s reach and into
data centers. There, according to Mell and Grance multiple providers have to be considered
[MG11]. The client will be in direct contact with the Platform as a Service (PaaS) provider,
who bases its business model on top of the services of the Infrastructure as a Service (IaaS)
provider. Both parties have to be trusted since they are not under the client’s control and might
leak sensitive data. Additionally, the user cannot verify the hardware, so the FPGA vendor and
its associates raise the level of required trust further as shown in Figure 3.2.

FPGA vendor

Chip
foundry

EDA
tools

IP
vendor

IaaS provider

PaaS provider

client

Figure 3.2: State of the art cloud usage: the client has to trust everybody.

Security tools provided by the vendor are not suited for a cloud deployment with regularly
changing users, but only for a single setup procedure as described in section 2.2.4. Therefore,
many proposals and those outlined in section 2.2.5 rely on a TA to establish trust, to secure
the first deployment or to sign keys associated with an FPGA. This adds another party to the
required area of trust, but also cuts out the PaaS provider. Figure 3.3 highlights this often used
construct. However, the proposed designs fail to meet the cloud characteristics of resource
pooling, i.e. do not allow multiple users.

The goal of this thesis is to minimize the trust required by the client in various cloud providers.
A dedicated third party or TA offering special services only for this system should be avoided. It
has to be assumed that the FPGA vendor is trustworthy, since they control the system’s design
and supervise the manufacturing process. However, if the design is implemented as proposed,
the vendor should not be able to compromise client data. The overall reduction of required trust
is illustrated in Figure 3.4. Additionally, the reconfigurable resources have to be virtualized in a
secure way. In other words, the underlying hypervisor does not leak any sensitive information
and the use of vFPGAs does not decrease the security.

25

3 Design

FPGA vendor

Chip
foundry

EDA
tools

IP
vendor

IaaS provider

PaaS provider

client

TA

Figure 3.3: Based loosely on the proposal from Eguro and Venkatesan [EV12], using a trusted
authority (TA), which the client and the IaaS provider have to trust. The PaaS provider
can only access encrypted data.

FPGA vendor

Chip
foundry

EDA
tools

IP
vendor

IaaS provider

PaaS provider

client

Figure 3.4: The proposed system does not rely on any third party and also excludes the IaaS
provider.

3.3 Host/FPGA-Hypervisor

In a local single user context the reconfigurable fabric and all connected resources like memory
or PCIe can be utilized to capacity. In a local multi user context, those shared resources have
to be managed to allow a fair usage and to prevent a single user from blocking the others. As
shown in Figure 3.5, this management is done by the crossbar, which also includes different end-
points for external connections like PCIe, on-board memory, Ethernet or other high speed inter-
faces. The crossbar is part of the FPGA hypervisor, the so called SecFPGA-Hypervisor an in-chip
controller for data transfer, reconfiguration and communication with clients. These connections
must be trustworthy, confidential and authentic. Therefore, the SecFPGA-Hypervisor’s imple-
mentation has to be immutable and hardened against malicious manipulations and side-channel
attacks. It has to be able to protect itself against threat-level-four to threat-level-one adversaries.

The counterpart to the SecFPGA-Hypervisor is the host hypervisor, which is excluded from
any security related process. Otherwise trust in the IaaS provider would be required, because
this design cannot control the software executed on the CPU. Hence, the host hypervisor
simply forwards data through the PCIe interface to and form the device. It also handles admin-
istrative tasks like scheduling and billing. Since its correct behavior cannot be verified and is
not critical to data security, the host hypervisor is not discussed further.

The first part of this section discusses how a secure and authentic connection between
a client and the system can be initiated. After the connection is established, the client can
reconfigure the vFPGA. The challenges of virtualized yet secure reconfiguration are outlined
and solutions are presented in the second part.

26

3.3 Host/FPGA-Hypervisor

Accelerator board

SecFPGA

endpoints &
crossbar

hand-
shake

PRE

key
store key gen

chip

on-board memory

external high speed interfaces

vFPGA 0

vFPGA 1

vFPGA 2

re
co

nfi
gu

ra
bl

e
ch

ip
ar

ea

EE

EE

EE

..
.

..
.

..
.

key transfer data transfer reconfiguration immutable

Figure 3.5: High level overview of the proposed system. The SecFPGA-Hypervisors in dark blue
must be immutable to prevent malicious modifications compromising the security.
The partial reconfiguration engine (PRE) enables changes to the configuration of the
virtual FPGA (vFPGA), whose data is protected by the encryption engines (EEs).

3.3.1 Initializing a Secure Connection

With available schemes it appears easy to secure a communication channel. Asymmetric cryp-
tography allows two parties to make a confidential connection. The authenticity of the other
entity can be verified through a trusted third party. After that, symmetric keys are exchanged
to increase the throughput. But a naive implementation of this straightforward process is still
susceptible to different kinds of attacks, which are even available to a threat-level-five adver-
sary. Hence, a more sophisticated protocol is mandatory to establish a reliable, confidential
and authentic connection.

This is not a new requirement, so different protocols can be found in the literature. Many
of them have matured over multiple versions to better withstand against different kinds of
attacks. For example, in the TLS protocol both client and server have to send random data,
which is used among others to derive the shared secret keys. This makes attacks on weak
sources of randomness on either side more difficult. Therefore, this design is based on already
existing protocols to avoid possible vulnerabilities. One of them, TLS, was specifically designed
for (web)server-client connections. Thus, it will be adapted and used for every connection,
overcoming the initial lack of trust in a remote system. If the handshake is directly implemented
in hardware, vulnerable software can be bypassed and the attack surface is minimized. This
increases the security and causes little to no overhead on the host machine because it does
not have to negotiate with the client itself. However, as outlined in section 2.1.7, the TLS
protocol allows a wide variety of key exchange, signature, MAC and bulk encryption algorithms.
In contrary to software, the available area of a hardware implementation is limited and costly.
Thus, only a fixed subset of primitives can be offered to a client.

The choice of those primitives is discussed in the following sections starting with the bulk en-
cryption algorithm. Afterwards, different key exchange schemes are discussed, section 3.3.1.3
approaches the authentication of a SecFPGA and 3.3.1.4 evaluates various message authenti-
cation codes. The final section 3.3.1.5 describes the bitstream transfer protocol.

27

3 Design

3.3.1.1 Data Encryption

The selection of an encryption algorithm is crucial for the performance of the system, since ev-
ery byte of data entering or leaving the client’s vFPGA has to be processed. Hence, asymmetric
schemes cannot be used, they are neither fast nor designed for encrypting long streams of data.
Symmetric algorithms, on the other hand, offer superior performance, a smaller area footprint
and shorter keys. But they are not all the same, several symmetric encryption schemes were
outlined in section 2.1.1 and compared in Table 2.3. Key size, the primary factor for the pro-
vided security level, can vary from 128 to 256 bit for most primitives. This allows for different
levels of security without a new algorithm. However, KASUMI only allows for 128-bit keys,
locking the security level. Additionally, a practical attack is known, which increases the likeli-
hood of new even more compromising attacks leading to a complete break of the algorithm.
The other schemes do not show such weaknesses and, at the same time, offer higher perfor-
mance. If only throughput has to be considered, ChaCha20 would be the algorithm of choice
for a hardware implementation. But chip area and client performance, most likely CPU bound,
are important as well. There, AES provides better speed per area and thanks to CPU extensions
like AES-NI unmatched client side performance. Since ChaCha20 is a relatively new algorithm,
improved implementations and dedicated CPU might become available in the future. Twofish
is to slow overall to be a viable option.

In summary, AES is a flexible, secure and on every platform fast option and is therefore
selected as the data encryption algorithm.

3.3.1.2 Sharing a Common Secret

To use a symmetric encryption scheme, both parties have to use the same shared key. Trans-
mitting this key without any protection would render the encryption useless since an attacker
could easily extract the key and decrypt the data. Therefore, both parties have to establish a
common secret which cannot be accessed by anyone else.

One option is asymmetric encryption with RSA described in section 2.1.2.1. The client gen-
erates the symmetric key, encrypts it with the public key of the server and transmits it over
the unsecured channel. Since only the server has access to the private key, no third party can
decrypt the symmetric key. This method is an often used option in the TLS handshake protocol
(section 2.1.7). Another possible option is the ECDH key exchange outlined in section 2.1.2.4.
It has several advantages over RSA, some of which are summarized in Table 2.4. The general
performance of the basic operation is faster with elliptic curves in terms of CPU cycles as well
as with FPGAs. There, also the resource usage is less and the smaller keys allow for a more
efficient design. Another advantage is easier perfect forward secrecy. With RSA, generating a
new public key for every connection takes time, especially on an embedded hardware [LSP02].
Also, ephemeral RSA (ERSA) is not supported by TLS. Elliptic curves, on the other hand, allow
for a very fast public key generation and ECDH(E) is fully supported by TLS.

Many different elliptic curves are defined, but the SecFPGA can only support one specific
curve due to resource constraints. It can be assumed that the client does know which curve is
supported and therefore sends the suitable public key share as soon as a device was allocated.
It can not be assumed though that the client knows all public keys of all devices within the data
center. If the symmetric key should be shared with RSA, the client has to acquire the specific
public key first, which adds an extra round trip.

In summary, ECDHE allows for easier implementations of perfect forward secrecy, faster
handshakes and shorter keys, all in all enabling a more efficient design.

28

3.3 Host/FPGA-Hypervisor

Vendor

SecFPGA n

SecFPGA n
in node X

cloud

manufacture SecFPGA n

generate public/private key pair

send public key

sign and store certificate
into non-volatile storage

deliver SecFPGA n

install SecFPGA n

regenerate key pair

Figure 3.6: After a power cycle, the SecFPGA regenerates its key pair and exposes only the
public part. The signed certificate is stored in a non-volatile storage with the chip
and is still available after the deployment in the cloud.

3.3.1.3 Authenticity of an Accelerator

Public key cryptography allows to create a common secret between two parties. But it cannot
establish trust since the client cannot be certain that the other party is really the entity it pre-
tends to be. Even a threat-level-five adversary could intercept the unsecured communication,
act as a SecFPGA and send a forged public key misleading the client into believing the con-
nection to be secure. The vendor, which is assumed to be trustworthy, has to help the client
to verify the public key of the SecFPGA. But verifying the public keys every time a new client
allocates a vFPGA introduces extra latency, load on the vendor’s servers and new protocols.
Instead, already existing infrastructure can be used.

Digital certificates, described in section 2.1.6, provide a standardized way to verify public
keys and authenticate remote endpoints. To minimize latency and overhead, the system itself
sends its certificate during the handshake process. Since verification mechanisms are built
into modern operating systems and are used by various software, the effort on client side is
minimal. For the vendor the certificate creation is an additional step, but a one time process
without further obligations.

After the SecFPGA was manufactured and powered up for the first time, it generates the
public and private key pair through a physically unclonable function (PUF) as described by Paral
and Devadas [PD11]. Figure 3.6 highlights this and other important steps until after the device
was delivered and installed in the cloud. The vendor reads out the public key as well as an
ID, embeds it into a new certificate according to the X.509 standard [ITU93] and signs it. An
example certificate for SecFPGA 13A7FC is shown in Figure 3.7.

The vendor itself was signed by a trusted third party root certificate authority (CA) leading to
the chain of trust displayed in Figure 3.8. This is no special service or an extra entity in regards to
the thrust model described in section 3.2 since root CAs commonly authenticate web servers.
The signed certificate is than stored in the SecFPGA’s memory. Hence, it can be renewed
later if the limited validity period of the first certificate expires. This does not introduce new
vulnerabilities since the client only accepts certificates signed by the vendor, which is assumed
to be trustworthy.

3.3.1.4 Message Authentication

Encrypting a message does prevent adversaries from extracting the plain data. It does, how-
ever, not protect it from alterations. In some cases this could be detected by the receiver,

29

3 Design

Issued To
Common Name SecFPGA 13A7FC
Serial Number 7FA192...4F1D17
Public Key 0401B2...9D1C5C (283-bit EC)

ASN1 OID: sect283r1

Issued By
Common Name Vendor CA
Public Key FDB3A3...29E6C3 (2048-bit RSA)

Period of Validity
Begins At Fri, 01 Dec 2017 07:45:07 GMT
Expires At Sun, 01 Dec 2019 07:45:07 GMT

Fingerprints
SHA-256 w/ RSA Signature 3ABD29...E46B51 (2048-bit RSA)

Figure 3.7: X.509 certificate for example SecFPGA 13A7FC.

Trusted Third Party Root CA

Vendor CA
SecFPGA n

Figure 3.8: Chain of trust for a SecFPGA.

but not in general. Therefore, MACs are often used. Several different schemes are outlined
in section 2.1.5 and compared in Table 2.6. While there are security concerns about GCM by
some researches, it is still recommended by the BSI [BSI17] and NIST [NIST15] and widely
used in practice. An important factor is its good performance on FPGA and CPU alike, where
only SHA-1 can compete with it. SHA-3, on the other hand, has the lowest CPU throughput
but bests GCM on the reconfigurable fabric. SHA-2 does neither perform fastest nor slowest
on any platform.

All algorithms are well tested and provide sufficient security. But only GCM offers good
performance on all platforms. Thus, it is selected to verify the integrity of the connection.

3.3.1.5 Bitstream Transfer Protocol

Based on the selection of primitives in the previous sections only the TLS cipher suite named
in Figure 3.9 is supported. The resulting protocol is shown in Figure 3.10. It is based on the
current draft of TLS 1.3 [Res17] and implements a subset of possible features and options.
However, this does not lead to decreased security, because the core mechanics are intact.

With a new request for a vFPGA the client sends the 28 bytes client random (CR) with a

TLS ECDHE ECDSA WITH AES 128 GCM SHA256

key exchange

bulk encryption with authentication

handshake hash

Figure 3.9: The only supported cipher suite by this design. The selected algorithms combine
resource efficiency and short computation times.

30

3.3 Host/FPGA-Hypervisor

client
SecFPGA n
in node X

vFPGA m in
SecFPGA n

vFPGA request
client random (CR) & key share (CKS)

reset requested vFPGA m

generate ECDHE-keys: SPK, SKS
sym = PRNG(CR, ECDH(CKS, SPK), SR)

session random (SR) & SKS
|certificate & |“verfiy”hash|DPRK & “final” hash|sym

sym = PRNG(CR, ECDH(SKS, CPK), SR)
verify certificate
verify hash

|client’s “final” hash & bitstream|sym decrypt, verfiy and program bitstream

Figure 3.10: The TLS protocol was adapted to enable the secure and authentic transfers of
vFPGA bitstreams to a SecFPGA. The configuration is protected by symmetric
encryption with the key “sym”, which is created during the TLS handshake.

client key share (CKS) suitable for the implemented elliptic curve. The host hypervisor can
evaluate the unencrypted request for billing and scheduling and afterwards forward them to
the SecFPGA. If the request is unjustly blocked by a cloud provider or evicts another legitimate
client, only their quality of service suffers, but not the security of clients’ data. Through a
complete reset of the vFPGA previous configurations are no longer accessible, and even if data
remains in buffers or external memory it is still encrypted.

After the vFPGA reset, the true random number generator (TRNG), which is part of the
SecFPGA, generates 28 bytes session random (SR) and an ephemeral session private key (SPK).
With the SPK the public session key share (SKS) is calculated. This new key pair is used to com-
plete the ECDHE key exchange. The resulting shared secret is along with the CR and SR feed
into a well defined pseudo random number generator (PRNG). Its output is used to derive var-
ious symmetric keys (sym), which are right away utilized to encrypt the SecFPGA’s certificate.
Additionally, a hash over the transaction so far is calculated, signed through the ECDSA with
the device private key, encrypted and appended to the certificate. Finally, a second hash over
the whole handshake including the CR, CKS, SR, SKS, the encrypted certificate and first hash
is calculated, then encrypted and the package is send to the client. Upon receiving it, the un-
encrypted SR and SKS are used in the same way to derive the symmetric keys (sym) through
ECDHE and the PRNG. With them, the rest can be decrypted, the certificate and public key
verified and the hashes checked. At last, the client also calculates a hash over the whole trans-
action, now including the second hash, and prepends it to the bitstream. Together they are
encrypted with sym and transfered to the SecFPGA. There, after the hash was compared to a
locally computed one, the vFPGA bitstream is programmed and the partition ready for use.

If any errors occur or the client uses standardized but not implemented functionalities, the
handshake aborts, resets and returns the system into a safe state in which it accepts new
connections.

3.3.2 Robust Virtualization of Reconfigurable Logic

Partial dynamic reconfiguration enables systems like FPGAs to change their behavior at runtime
in one area without interrupting operations in other areas [UG470]. This useful feature is used
by various proposals outline in section 2.2.3 and enables the creation of vFPGAs, partitions
within the system, which are mediated by a hypervisor. That is made possible by a hard macro,
the partial reconfiguration engine (PRE), a fixed component inside the chip to reconfigure itself.
FPGAs allow almost every resource to be changed through the PRE, which can be connected
internally or driven by external pins. To prevent adversaries from altering the configuration,

31

3 Design

FPGA vendors include symmetric encryption engines and authentication primitives to only allow
genuine partial or full bitstreams. But this protection can not be utilized in a multiuser context
because the symmetric key must not be made public.

To tackle the security challenges arising from virtualization, new concepts have to be devel-
oped. This section outlines these challenges and proposes solutions that have to be imple-
mented to defend against threat-level-two attackers. The first section discusses the ability to
limit reconfigurability while the second part approaches the problem of overlapping resources.

3.3.2.1 Limiting the Reconfigurability

The full bitstream for an FPGA consists of a series of commands which wrap the actual config-
uration data of the resources. This data is split in multiple frames. Each frame has a specific
address, which describes where and what resource is configured. Partial bitstreams are no dif-
ferent, except they only cover a predefined area of the device. However, this could be exploited
by a threat-level-two adversary, the attacker adds constructed frames to the initial configuration
bitstream. Thus, they are able to change not only the correctly allocated partitions but also secu-
rity sensitive logic within the SecFPGA-Hypervisor or other clients. Hence, the systems would
fail to protect itself and other clients’ data. To deny such attacks, the seeming vulnerability
through the frame based structure can be turned against an attacker.

The SecFPGA-Hypervisor controls the internal PRE and can parse new reconfiguration data.
Therefore, to ensure the integrity of frames outside the partitions allocated by an adversary, the
SecFPGA-Hypervisor has to check each frame. The frame address ranges of each partition are
known during the design phase and are stored within the initial authentic configuration. With
a new client connection, a potential attack, the requested partitions are allocated. This unlocks
only the assigned address ranges and each frame, which is not located within these ranges, is
dropped by this special filter module, which is part of the PRE.

3.3.2.2 Overlapping Resources

Another problem in a multi user context with potential adversaries is the overlapping of re-
sources. Figure 3.11 displays this using the example of a RC2F based design on a Xilinx Virtex-7
FPGA. There, the hypervisor is confined to the “RC2F_Hypervisor” region but also accesses
resources in the clients’ partitions “vFPGA5” and “vFPGA4”. Additionally, signals are routed
through the vFPGAs. Although better partitioning, careful placement and routing can mitigate
the issue, it highlights the difficulties and area cost of FPGA based virtualization. The client
partitions could be resized to exclude those resources, but this overhead reduces the available
area as shown by Knodel et al. [KGS17]. If, on the other hand, SecFPGA-Hypervisor resources
remain in the client partitions, the filter described in section 3.3.2.1 has to be extended.

Not only the frame addresses have to be validated, but also the content of each frame recon-
figuring resources in overlapping areas. However, the exact documentation of the frame format
is not publicly available. If a third party would like to deploy this design, further investigations
of the specifications and format are necessary, but this is not within the scope of this thesis.
Therefore, it is assumed that the vendor is able to create a mask, which overlays the client’s
bitstream and protects the SecFPGA-Hypervisor from modifications. Creating the mask has to
be simple or a one time process. A more complex analysis consumes more valuable chip area
since the host CPU cannot be used. The trust model does not allow external components as
they might be controlled or influenced by an adversary.

In summary, overlapping resources are a challenge that cannot be overcome easily without
assistance of the vendor or an FPGA fabric geared towards separation of hard macros used by
the SecFPGA-Hypervisor and general reconfigurable logic available to the clients. Therefore,
this remains an open problem which can be solved with more information about the targeted
hardware.

32

3.4 From Design to Hardware

Figure 3.11: Some hypervisor resources (light blue) and connections (red) are placed and routed
through reconfigurable partitions. Image created with Xilinx Vivado 2016.4.

3.4 From Design to Hardware

After the design was finalized, it has to be realized in hardware, two options present themselves
as viable. FPGAs appear as the natural choice since they are already reconfigurable. However,
application-specific integrated circuit (ASIC) design is far more flexible and can also include
reconfigurable resources. Kuon and Rose explored and quantified the gap between FPGAs
and ASICs [KR10]. The choice usually depends on a few factors. The former requires less
development time, thus allows for a shorter time to market which saves cost. It can also be
modified later if flaws are found and need to be patched. But this comes with the price of
increased energy usage and less efficiency compared to ASICs. The significant cost of custom
designs demand high production volumes whereas FPGAs are suitable for low to midrange
volumes.

The novel design of the SecFPGA has a few additional factors to consider. Current FPGAs
do not only contain reconfigurable logic but also hard macros like the reconfiguration port, AES
cores for initial bitstream decryption and HMAC-SHA2 engines for authentication [UG470]. This
basic architecture would have to be extended to host the whole SecFPGA-Hypervisor, which
requires a partial reengineering of today’s FPGA. Alternatively, the vendor generates a new
symmetric key for each device and encrypts the SecFPGA-Hypervisor bitstream. With help
of the existing built-in security mechanisms the chip is locked to only accept configurations
encrypted with the corresponding symmetric key. Hence, only the genuine SecFPGA design
can be loaded by the FPGA. This first deployment of a trusted configuration is in many proposals
handled by a TA, but can also be done by the vendor saving an additional party.

But state-of-the-art FPGAs pose a challenge for a secure virtualization. The challenges and
solutions are discussed in section 3.3.2 and indicate that without investment of the vendor cur-
rent FPGAs are not suitable. Therefore, this design should be realized through a semi-custom
ASIC layout combining the benefits of both worlds. Basing it on current FPGA designs low-
ers development cost while the dedicated SecFPGA components provide better performance,
which frees up more reconfigurable resources. And, crucially, a semi-custom design simplifies
the virtualization and separation of the partitions.

33

4 SecFPGA-Hypervisor Implementation
In this chapter an implementation of the SecFPGA-Hypervisor design discussed in chapter 3 is
described. The RC2F, outlined in section 2.2.3, is used as the base of this implementation. It
supports important functionality like data transfer over PCIe, memory virtualization and Ethernet
communication. A host hypervisor is also available to assist in a fast development. The RC2F
is extended with a prototype of the SecFPGA-Hypervisor to perform necessary operations to
allow for a secure and authentic transfer of a vFPGA bitstream. To enable this initial handshake,
the SecFPGA-Hypervisor is divided into five modules and acts like a proxy in the RC2F as shown
in Figure 4.1. The RC2F System Bus is connected to the host via PCIe. The system channel
of the bus handles management data and the vFPGA bitstreams whereas the client channel
is dedicated for communication with the vFPGAs after the initial handshake. At the other side
of the SecFPGA-Hypervisor, the RC2F vFPGA Bus connects to the PRE of the FPGA, which is
connected through the RC2F. The client channel on the RC2F vFPGA Bus transfers unencrypted
data between the SecFPGA-Hypervisor and the clients’ vFPGAs.

The interaction of the SecFPGA-Hypervisor modules is shown in Figure 4.2. The sequence
follows the design of the handshake discussed in section 3.3.1.5 closely. Internal details of the
modules and their interfaces are described in this chapter. First, the startup and precomputa-
tion phase, which mainly involves the SecFPGA-Hypervisor’s EC Key Processor, is depicted in
section 4.1. Afterwards, the Command (CMD) Decoder is described in section 4.2 followed
by the Key Store in 4.3. After the connection to the client is secured, the received bitstream
has to be analyzed. A description of the Configuration Filter is given in section 4.4. Finally, the
encryption and decryption of the clients’ data is outlined in section 4.5

Internal Bus
EC Key

Processor

Command
Decoder

Key Store
symmetric keys

symmetric nonces
MAC keys

Configuration
Filter

Encryption

Decryption

RC2F System Bus RC2F vFPGA Bus

system

client client

config

SecFPGA-Hypervisor

Figure 4.1: The SecFPGA-Hypervisor acts like a proxy between the RC2F System and vFPGA
Bus. The internal bus is a representation of the TLS key distribution.

35

4 SecFPGA-Hypervisor Implementation

Implementing efficient, high speed cryptographic schemes is not part of this thesis. The
purpose of this prototype is to verify the design of chapter 3, hence only critical aspects are
realized. Some elements like AES-GCM are replaced with other algorithms, because publicly
available cores have insufficient performance. All implemented cores are also not hardened
against a threat-level-one attacker. The design is implemented with Vivado 2016.4 and targets
the Virtex-7 VC707 Evaluation Platform1, which is equipped with a Xilinx XC7VX485TFFG1761-2
[DS180].

4.1 EC Key Processor

The EC (Elliptic Curve) Key Processor handles the asymmetric cryptography operations inside
the SecFPGA-Hypervisor. With a state machine build around the elliptic curve multiplier (ECM),
the EC Key Processor enables the ECDHE key exchange and signature generation through
ECDSA. Several submodules are needed to provide this functionality as shown in Figure 4.3.
The key generator is, however, not based on a PUF as described in section 3.3.1.3. In this
prototype it is a placeholder which provides a predefined value as private key. Hence, it is only
connected to the ECDSA core and not to the ECM, which would calculate the public key. As
shown in Figure 4.4, it is closely coupled with the Command Decoder, but the separation into
single modules allows for a cleaner implementation and an easy exchange of the underlying
security primitives.

To speed up the TLS handshake, the EC Key Processor starts several precomputations, which
include:

• Generation of an ephemeral session private key.

• Calculation of the session key share (SKS) based on the session private key.

• Generation of 8-byte session random data.

• Generation of the signature intermediate.

• Calculation of the signature curve point based on the intermediate.

Figure 4.5 visualizes those steps as possible states of the EC Key Processor and highlights
the precomputation states with a dashed line. These operations primarily depend on the ECM
described in section 4.1.1. To generate new values a TRNG is utilized, which is outline in sec-
tion 4.1.2. After the precomputation completes, the EC Key Processor waits for a client to
connect. The initial data package is processed by the CMD Decoder and the client key share
(CKS) input is asserted. It is used by the ECM to complete the ECDHE key exchange and derive
a common secret. Details of the key derivation are described in section 4.1.3. Following that,
the “verify” hash of the transaction is processed by the ECDSA core to calculate the signature,
which is explain further in section 4.1.4. Finally, the EC Key Processor enters an idle state until
the CMD Decoder asserts a reset to start the precomputations for a new connection.

4.1.1 Elliptic Curve Multiplier

Elliptic curve arithmetic is the mathematical foundation of the security of this design. The el-
liptic curve multiplier (ECM) handles multiplications on a specific curve. Implementing such a
processor is not within the scope of this thesis, hence an already existing core was used. How-
ever, it is optimized solely for the curve sept233r1 [Cer10] fixing the security level to 233 bits.
According to Table 2.1, this is similar to about 112-bit AES and is in the same order of magni-
tude as the other primitives. The processor itself was developed by Rebeiro and Mukhopadhyay

1https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html

36

https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html

4.1 EC Key Processor

A
pp

C
om

m
an

d
D

ec
od

er
E

C
K

ey
P

ro
ce

ss
or

K
ey

S
to

re
C

on
fig

ur
at

io
n

Fi
lte

r
..

.
..

.

S
ec

FP
G

A
-H

yp
er

vi
so

r
C

lie
nt

In
se

cu
re

C
ha

nn
el

cm
d

0x
00

cl
ie

nt
ke

y
sh

ar
e

(C
K

S
)

cl
ea

r
re

qu
es

te
d

vF
P

G
A

s

cm
d

0x
80

se
ss

io
n

ke
y

sh
ar

e
(S

K
S

)
cl

ie
nt

ke
y

sh
ar

e
(C

K
S

)
ca

lc
ul

at
e

sh
ar

ed
se

cr
et

de
riv

e
TL

S
-k

ey
s

up
da

te
TL

S
ke

ys
fo

r
re

qu
es

te
d

sl
ot

s
pr

ov
id

e
ke

y
an

d
no

nc
e

en
cr

yp
t

ce
rt

ifi
ca

te

“v
er

ify
”

ha
sh

of
tr

an
sa

ct
io

n

si
gn

ha
sh

“v
er

ify
”

E
C

D
S

A
si

ga
nt

ur
e

of
ha

sh

en
cr

yp
t

si
gn

at
ur

e

cm
d

0x
81

en
cr

yp
te

d
ce

rt
ifi

ca
te

an
d

si
gn

at
ur

e
co

m
pu

te
“fi

na
l”

ha
sh

en
cr

yp
t

ha
sh

cm
d

0x
82

en
cr

yp
te

d
ha

sh
of

w
ho

le
ha

nd
sh

ak
e

up
da

te
S

ec
FP

G
A

_w
rit

e_
no

nc
e

ve
rif

y
ce

rt
ifi

ca
te

,h
an

ds
ha

ke

cm
d

0x
01

en
cr

yp
te

d
vF

P
G

A
bi

ts
tr

ea
m

de
cr

yp
te

d
vF

P
G

A
bi

ts
tr

ea
m

en
ab

le
re

qu
es

te
d

ra
ng

es
fil

te
re

d
fr

am
es

to
R

C
2F

co
nfi

g

up
da

te
cl

ie
nt

_w
rit

e_
no

nc
e

Fi
gu

re
4.

2:
In

te
ra

ct
io

n
of

th
e

S
ec

FP
G

A
-H

yp
er

vi
so

rm
od

ul
es

w
ith

ea
ch

ot
he

ra
nd

w
ith

a
cl

ie
nt

ov
er

an
un

se
cu

re
d

ch
an

ne
l.

Th
e

go
al

is
a

se
cu

re
d

an
d

au
th

en
tic

vF
P

G
A

bi
ts

tr
ea

m
tr

an
sf

er
.

P
re

co
m

pu
ta

tio
n

of
in

te
rm

ed
ia

te
E

C
D

H
E

an
d

E
C

D
S

A
va

ria
bl

es
is

do
ne

be
fo

re
th

e
cl

ie
nt

co
nn

ec
ts

ot
he

rw
is

e
th

e
re

qu
es

t
is

st
al

le
d.

Th
e

S
ec

FP
G

A
’s

ho
st

is
no

t
sh

ow
n

be
ca

us
e

it
on

ly
fo

rw
ar

ds
th

e
da

ta
an

d
is

pa
rt

of
th

e
in

se
cu

re
ch

an
ne

l.

37

4 SecFPGA-Hypervisor Implementation

EC Key Processor

ECM

SHA-3

ECDSA

TRNG

Key Gen

hash

CKS SKS

sig

keys

Figure 4.3: Internal block diagram of the EC Key Processor with the elliptic curve multiplier
(ECM) as a key component. The outside connections are abstracted to interfaces
and displayed in more detail in Figure 4.4.

[RM08] and made publicly available [MRR08]. That version supports only multiplications with
the base point of the curve. But in the ECDHE key exchange algorithm the client sends a point
on the curve which has to be multiplied by the session private key. Therefore, the core was
adopted to support any curve point as an input. As shown in Figure 4.6 the point has to be
supplied via the base_x and base_y interface. The factor is limited to only 32 bits, which limits
the possible points on the curve hence the security. Nevertheless, the processor allows for
fast point multiplications on elliptic curves.

This capability is used repeatedly each time a client connections. Two precomputations are
done directly after a previous vFPGA bitstream transfer completed and the EC Key Processor
was reset, highlighted in Figure 4.5 with a dashed line. First, the session public key is calculated
using an ephemeral session private key generated by the TRNG. After the computation finished,
the SKS interface is asserted. Second, the curve point of the signature intermediate, also
generated by the TRNG, is calculated and supplied to the ECDSA core.

4.1.2 True Random Number Generator

Argyros and Kiayias demonstrated a practical attack on weak PHP random number generators
to predict password reset tokens which an adversary consequently can use to overtake ac-
counts [AK12]. Such attacks underline the importance of a good random number generator. In
this design, the security of each connection depends heavily on the true randomness of the
intermediate values used in ECDHE or ECDSA algorithms. Hence, a ring oscillator conceptual
similar to a proposal by Merli et al. [MSE10] was implemented. It utilized slight manufactur-
ing variances of logic gates to generate an unpredictable sequence, which is also different for
every chip. This implementation consists of 21 ring oscillators per bit and can supply 32 ran-
dom bits each clock cycle to the command decoder. An output sequence was tested with A
Pseudorandom Number Sequence Test Program developed by Walker [Wal08] and compared
to a “readme”-like text file and a sample from Random.org in Table 4.1. It can be seen that the
TRNG’s quality is sufficiently high enough for this proof of concept prototype, but would have
to be improved for production.

As part of the EC Key Processor, the TRNG supplies random data as an ephemeral private key
to the ECM. Additionally, another intermediate private key is generated each time the ECDSA
modules signs a transaction hash. Finally, random data is also provided to the key derivation
module, which is explained in section 4.1.3. This prevents the regeneration of previously used
keys if the CKS is resend.

38

4.1 EC Key Processor

clk

reset

client_pub_x session_key_x

client_pub_y session_key_y

client_random EC Key
Processor

session_random

client_pub_valid session_key_valid

transaction_hash signature

transaction_hash_valid signature_valid

client_write_key

SecFPGA_write_key

client_write_nonce

SecFPGA_write_nonce

client_write_MAC_secret

SecFPGA_write_MAC_secret

keys_valid

CKS interface
from CMD Decoder

hash interface
from CMD Decoder

SKS interface
to CMD Decoder

sig interface
to CMD Decoder

keys interface
to Key Store and
CMD Decoder

233

233

64

233

233

233

64

466

128

128

128

128

128

128

Figure 4.4: Interface of the EC Key Processor. Various signals are grouped into sub-interfaces.

generate signa-
ture intermediate

invert signature
intermediate

generate session
private key

calculate session
key share

calculate signa-
ture curve point

wait for client
key share

calculate
shared secret

derive key set 0

derive key set 1

wait for trans-
action hash

calculate ECDSA
signature

finished

finished/
assert SKS finished

finished

CKS asserted finished

finished

finished/
assert keys

hash asserted

finished/assert sig

reset

precomputation

Figure 4.5: State machine of the EC Key Processor. The precomputations encircled by a dashed
line can be done before a client connects. The signal interfaces are defined in
Figure 4.4.

39

4 SecFPGA-Hypervisor Implementation

clk

reset Elliptic Curve
Multiplier

done

base_x out_x

base_y out_y

factor

233

233

32

233

233

Figure 4.6: Block diagram of the elliptic curve multiplier (ECM) developed by [RM08]. It is mod-
ified to accept an arbitrary base point through the new inputs base_x and base_y.
The curve sept233r1 is used.

Table 4.1: Evaluation of the implemented TRNG. Tests are done with a tool developed by
Walker [Wal08].

Metric Text Document Random.org SecFPGA

Entropy per bit 0.622 123 0.999 994 0.999 249
Arithmetic mean 0.3230 0.4986 0.5161
Serial correlation coefficient 0.400 175 −0.001 747 −0.033 334

4.1.3 Key Derivation

The six TLS keys and nonces are generated from the common ECDHE secret calculated by
the ECM, the client’s random data and data supplied by the SecFPGA-Hypervisor’s TRNG. The
TLS standard employs a HMAC-based key derivation function specified in [Kra10]. For this
prototype only a SHA-3 core was directly available and used instead of HMAC. As described in
section 4.2.1, it outputs 512 bits, which is not enough to derive the 768 bits needed for the keys
and nonces. Therefore, the common secret and random data are split into two parts according
to the scheme displayed in Figure 4.7. Splitting the client’s random data reduces the influence
of a potential weak source of randomness.

4.1.4 ECDSA

The ECDSA core was implemented with Xilinx Vivado High Level Synthesis (HLS) [UG902]. This
toolchain converts C-code into a hardware description language and allows fast realizations at
the cost of performance as shown by Winterstein et al. [WBC13]. The interface generated
through the HLS is shown in Figure 4.8. The most expensive operation of ECDSA is the inver-
sion of an intermediate value. But this value does not depend on the message-to-sign, therefore
it can be processed before the message arrives. Hence, the random intermediate_int sup-
plied by the TRNG is inverted in the binary field of the curve sept233r1 in the precomputation
phase. The inversion can be calculated by exponentiation of the intermediate_int with 2m −2
as shown in Equation 4.1.

a−1 ≡ a2m−2 mod curve

a−1 ≡ a2233−2 mod x233 + x74 + 1
(4.1)

The exponentiation is implemented with the square and multiply algorithm.
In the meantime, the curve point of intermediate_int is calculated by the ECM and provided

to the core at the intermediate_x input. After the “verify” hash is asserted the signature
computation starts and yields the two components r and s, which have to be transfered to the
client.

40

4.1 EC Key Processor

derivation of key set 0191 0

32 MSB CR 128 MSB shared secret 32 LSB SR

hashed with SHA3-512
255 128 0

server_write_key client_write_key

derivation of key set 1159 0

32 MSB SR 96 LSB shared secret 32 LSB CR

hashed with SHA3-512
255 128 0

client_write_IV server_write_IV

client_write_MAC_secret server_write_MAC_secret

Figure 4.7: A SHA-3 hash is used as a PRNG in this prototype implementation to derivate the
TLS keys and nonces, which are the initialization vectors (IVs) for AES in CTR mode.

clk

reset

start ECDSA done

private_key

intermediate_int signature_r

intermediate_x signature_s

hash

233

233

233

233

233

233

Figure 4.8: Slightly simplified interface of the ECDSA core that was generated using Xilinx Vi-
vado HLS. It initially inverts the intermediate_int and in a second step computes
the signature.

41

4 SecFPGA-Hypervisor Implementation

4.2 Command Decoder

The CMD Decoder processes the incoming data and coordinates the other modules within
the SecFPGA-Hypervisor. A detailed interface description is given in Figure 4.10, which also
outlines sub-interfaces like session key share (SKS) or client key share (CKS). The system
channel of the RC2F System Bus is not actively used by the framework. Hence, this prototype
implements its own message format, which is shown in Figure 4.9. The full list of of currently
supported commands is available in appendix A.

63 56 55 24 23 0

cmd package length extra data

Figure 4.9: General structure of a command word. It must be the first word to start processing
the subsequent data package.

The CMD Decoder is divided in several submodules as shown by the data flow graph in
Figure 4.11. One submodule is the state machine, which is the main connection point and
organizes the control flow within the module. Before a TLS handshake and after the vFPGA
bitstream transfer, it is in an idle state as shown in Figure 4.12. In this state it awaits a new
connection attempt, which begins with the command 0x00 sent from the client and forwarded
by the host over PCIe onto the RC2F System Bus. If the precomputations of the EC Key Pro-
cessor described in section 4.1 are finished, the handshake continues, otherwise it is stalled
until they are completed. The available SKS is send with command 0x80 to the client while the
incoming CKS is extracted from the command 0x00 and supplied to the EC Key Processor to
complete the ECDHE key exchange and key derivation.

With the symmetric keys and nonces available, the certificate is read from a read only memory
(ROM), encrypted by the AES-CTR core and send as the first part of command 0x81 to the client.
In the mean time, a buffer recorded every command entering and leaving the CMD Decoder.
Its content is read out and hashed to generate the first hash, which is signed with the ECDSA
algorithm in the EC Key Processor. After the signature is computed, it is encrypted and send as
the second part of command 0x81, which completes it. For the “final” hash over the complete
handshake the buffer is read out again, a hash generated, encrypted and send as command
0x82 to the client.

While the CMD Decoder awaits command 0x01 containing the encrypted vFPGA bitstream,
the Key Store is updated with the current nonce, the AES-CTR core reset and loaded with the
client_write_key as well as the client_write_nonce. They are needed to decrypt the incoming
bitstream send by the client after processing the handshake data and verifying the authenticity
of the SecFPGA. On arrival, the vFPGA bitstream is decrypted and forwarded to the Configura-
tion Filter. After the stream was processed, the submodules are reset and the state machine
is ready for the next connection.

The rest of this section highlights important aspects about the SHA-3 implementation in 4.2.1
followed by the certificate in section 4.2.2. The AES-CTR core is described in the context of
the encryption engines in section 4.5.

4.2.1 Hash

The hash core used in this prototype was initially developed by Hsing in 2013 [Hsi13]. However,
with the standardization of the Keccak hash function as SHA-3 in 2015 the padding changed.
Hence, inputs without a length a multiple of 512 bits result in a different hash. To increase the
interoperability with clients, the core was updated to confirm with the SHA-3 specifications.

The core is instantiated two times in the SecFPGA-Hypervisor. Its first application is as a
PRNG for key derivation in the EC Key Processor. The second instance generates the “ver-

42

4.2 Command Decoder

clk

reset

RC2F_system_in RC2F_system_out

session_x client_x

session_y Command
Decoder

client_y

session_random client_random

session_valid client_valid

signature transaction_hash

signature_valid transaction_hash_valid

configuration_data

configuration_data_valid

client_write_key slot

SecFPGA_write_key client_write_nonce_update

client_write_nonce SecFPGA_write_nonce_update

SecFPGA_write_nonce client_write_nonce_valid

keys_valid SecFPGA_write_nonce_valid

FIFO interface

SKS interface
from EC Key Proc.

sig interface
from EC Key Proc.

keys interface
from EC Key Proc.

FIFO interface

CKS interface
to EC Key Proc.

hash interface
to EC Key Proc.

to Filter

to Key Store

64

233

233

64

466

128

128

128

128

64

233

233

64

233

32

6

128

128

Figure 4.10: Interface of the CMD Decoder.

CMD Decoder

AES-CTR

Certificate

SHA-3

SM

Buffer

keys

sig

SKS

RC2F system

to Filter

hash

CKS

Figure 4.11: Block diagram of the CMD Decoder highlighting important data transfers. The
state machine (SM) interacts with the RC2F system channel. Each command of a
handshake is stored in a buffer to compute the transaction hashes.

43

4 SecFPGA-Hypervisor Implementation

idle

send
0x80

process
0x00

w
ait

for
E

C
D

H
E

send
0x81

w
ait

for
“verify”

hash
w

ait
for

E
C

D
S

A

send
0x81

(sig)

w
ait

for
“final”

hash

send
0x82

w
ait

for
0x01

process
0x01

0x00
received/send

session
key

share
0x00

received

0x80
sent

client
key

share
extracted

sym
m

etric
keys

valid/
encrypt

certificate
and

send
signature

calculated/
encrypt

signature
and

send

signaure
send/

start
hashing

hash
done/

encrypt
and

send
verify

handshake
hash

sent/update
nonce

0x01
received/de-

crypt
vFP

G
A

bitstream

vFP
G

A
bitstream

forw
arded

to
filter

hash
done/

start
E

C
D

S
A

certificate
encrypted/

start
hashing

Figure
4.12:S

tate
m

achine
of

the
C

M
D

D
ecoder.

C
om

m
ands

are
send

and
received

through
the

R
C

2F
S

ystem
B

us’s
system

channelto
and

from
the

client.

44

4.3 Key Store

ify” and “final” hash for the TLS handshake in the CMD Decoder. The first one is truncated
to 233 bits to be signed with the ECDSA algorithm, which in this prototype is based on the
233-bit curve sept233r1. The second hash ensures the integrity of the whole handshake. Any
modification during the transfer would result in a different value.

4.2.2 Certificate

To verify the authenticity of a public key of a SecFPGA its certificate is required. The certificate
is signed by the vendor after the chip was manufactured and stored in a non-volatile memory. In
this prototype the implementation of a chain of trust is guided by the design and consist of three
entities. At the top is an artificial root CA which signs the example vendor “SecureCloudHW”,
which in turn signs the SecFPGA’s public key.

The signed certificate follows the X.509 standard and is included in appendix B. It is encoded
in the compact DER format [ITU02], which results in a size of 909 bytes. However, for better
alignment it is padded with 13 0x00-bytes to a total size of 922 bytes. It is modeled as a ROM
and the data is embedded in the FPGA bitstream. The module has a 218-bit wide output, which
simplifies the connection to the AES encryption engine, which processes 128 bits every clock
cycle. The address input is driven by a counter to read out the entire certificate.

4.3 Key Store

After the initial TLS handshake, the EC Key Processor sends the generated keys to the Key
Store, whose interface is shown in Figure 4.13. At the same time the CMD Decoder asserts
the slot signal to indicate which vFPGAs are allocated and which keys have to be replaced.
Inside the Key Store cross clocking flip-flops synchronize the slower clock domain of the CMD
Decoder and EC Key Processor to the high speed encryption engines. The keys and nonces
are than supplied to the AES-CTR cores described in section 4.5.

clk_in

clk_out

reset Keystore

slot update

client_write_key client_write_keys

SecFPGA_write_key SecFPGA_write_keys

client_write_nonce client_write_nonces

SecFPGA_write_nonce SecFPGA_write_nonces

client_write_MAC_secret client_write_MAC_secrets

SecFPGA_write_MAC_secret SecFPGA_write_MAC_secrets

valid

client_write_nonce_valid

SecFPGA_write_nonce_valid

keys interface
from EC Key Proc.

from CMD Decoder

AES-keys if.
to AES-CTR

6

128

128

128

128

128

128

6

768

768

768

768

768

768

Figure 4.13: Interface of the Key Store.

45

4 SecFPGA-Hypervisor Implementation

4.4 Configuration Filter

The Configuration Filter protects the SecFPGA-Hypervisor as well as other clients’ vFPGAs
from disallowed modifications. This is possible due to the frame based structure of a bitstream,
which is a sequence of commands and data. After a synchronization pattern and some set
up, a repeating series of addresses and data includes the actual configuration. On a Xilinx 7
Series FPGA each frame consists of 101 words and a full bitstream of a XC7VX485T contains
50 176 frames [UG470]. A vFPGA is smaller and constraint to a specific area on the chip, which
is described by a certain set of frames. The addresses of those frames are determined during
the design phase and do not change later. They set the allowed area a client’s bitstream can
influence.

The Configuration Filter acts as a proxy and is placed in between the CMD Decoder and
the RC2F vFPGA Bus, which is connected to the PRE of the FPGA. It receives the decrypted
bitstream, scans for interrupting commands like global reset or shut down and blocks them. It
also detects the command to set the frame address, which is passed to a set of six detectors,
one for each vFPGA. They use the set of predefined ranges to determine if the address is within
the enabled area. Their results are masked by to the slot signal so that the check is only valid
for the allocated vFPGAs. If there is a hit, i.e. the address is within the allowed ranges, the
configuration is passed through to the RC2F vFPGA Bus. Otherwise this part of the bitstream
is replaced with no-operation commands.

The bitstream format is designed as a continuous stream, in other words not each frame has
to have a header specifying its address. A modified bitstream could start at a valid location and
write through a continuous sequence outside of the allowed ranges. Thus, the Filter cannot
only scan for commands to set the frame address. Through an internal counter the end of
a 101-word frame is detected and if another one follows directly afterwards, its address is
calculated based on the start address and the current offset. The same six detectors check the
calculated address and the process repeats.

4.5 Encryption Engines

Protection of the clients’ data has the highest priority. Therefore, the strong AES algorithm,
described in section 2.1.1.1, was selected in section 3.3.1.1. But instead of implementing it
all over again, a publicly available core by Hsing called “Tiny AES” was used [Hsi15]. It has a
throughput of 128 bit/ cycle at 300 MHz. However, it only supports one-way encryption, hence
additional logic is needed to also enable decryption. The CTR mode, introduced 1979 by Diffie
and Hellman [DH79], allows both ways with a single implementation. A steadily increasing
counter value is added to a nonce, also referred to as an initialization vector (IV), and encrypted
with the provided key. The resulting bit pattern is than XORed with the plain text to get the
cipher. To decrypt it, the same key, nonce and the correct counter value have to be used to
regenerate the same bit pattern for another XOR operation, this time with the cipher to get the
plain text.

This CTR mode was implemented on top of the existing AES core, which has 21 pipeline
stages. A stage was added to execute the XOR operation and two additional stages to synchro-
nize the round robin interface.Because of the core’s high throughput of 4.8 GB/ s, a single core
can handle up to six RC2F-streams at the same time. Hence, only two instances are necessary
and placed between the RC2F System Bus and the vFPGA Bus. Each clock cycle the round
robin interface handles data for a different client connected through cross clocking FIFOs as
shown in Figure 4.14.

46

4.5 Encryption Engines

A
E

S
-1

28
C

TR
m

od
e

ro
un

d
ro

bi
n

th
ro

ug
h

al
lc

lie
nt

in
te

rf
ac

es

A
E

S
-1

28
C

TR
m

od
e

ro
un

d
ro

bi
n

th
ro

ug
h

al
lc

lie
nt

in
te

rf
ac

es

FI
FO

15
0

M
H

z

30
0

M
H

z

64
bi

t

12
8

bi
t

12
8

x
12

8
bi

t

S
ta

nd
ar

d
FI

FO

FI
FO

30
0

M
H

z

10
0

M
H

z

12
8

bi
t

64
bi

t

12
8

x
12

8
bi

t

S
ta

nd
ar

d
FI

FO

FI
FO

15
0

M
H

z

30
0

M
H

z

64
bi

t

12
8

bi
t

12
8

x
12

8
bi

t

S
ta

nd
ar

d
FI

FO

FI
FO

30
0

M
H

z

10
0

M
H

z

12
8

bi
t

64
bi

t

12
8

x
12

8
bi

t

S
ta

nd
ar

d
FI

FO

K
ey

S
to

re

R
C

2F
S

ys
te

m
B

us
R

C
2F

re
ad

cl
ie

nt
n

R
C

2F
w

rit
e

cl
ie

nt
n

R
C

2F
re

ad
cl

ie
nt

n-
1

R
C

2F
w

rit
e

cl
ie

nt
n+

1

R
C

2F
vF

P
G

A
B

us

vF
P

G
A

re
ad

n
vF

P
G

A
w

rit
e n

vF
P

G
A

re
ad

n-
1

vF
P

G
A

w
rit

e n
+

1

rd
_e

n
em

pt
y

da
ta

64

fu
ll

w
r_

en
da

ta

12
8

rd
_e

n
em

pt
y

da
ta

12
8

fu
ll

w
r_

en
da

ta
64

fu
ll

w
r_

en
da

ta

64

rd
_e

n
em

pt
y

da
ta

12
8

fu
ll

w
r_

en
da

ta

12
8

rd
_e

n
em

pt
y

da
ta

64

cl
ie

nt
ke

ys

no
nc

es
6

x
12

8

6
x

12
8

0

fr
om

R
C

2F
S

ys
te

m
B

us
cl

ie
nt

ch
an

ne
l

5

..
.

0

5

to
R

C
2F

vF
P

G
A

bu
s

cl
ie

nt
ch

an
ne

l

. .
.

0
fr

om
R

C
2F

vF
P

G
A

bu
s

cl
ie

nt
ch

an
ne

l
5

..
.0

to
R

C
2F

S
ys

te
m

B
us

cl
ie

nt
ch

an
ne

l

5

. .
.

Fi
gu

re
4.

14
:A

E
S

co
re

s
em

be
dd

ed
in

to
th

e
da

ta
pa

th
be

tw
ee

n
th

e
R

C
2F

S
ys

te
m

an
d

vF
P

G
A

B
us

.
U

ni
qu

e
ke

ys
ar

e
ge

ne
ra

te
d

fo
re

ac
h

cl
ie

nt
du

rin
g

th
e

in
iti

al
TL

S
ha

nd
sh

ak
e.

47

5 Results

In this chapter the design as well as the prototypical implementation are analyzed. First, the
security of the SecFPGA system is evaluated against different threat levels. The deployment
delay introduced by the TLS handshake is reported in section 5.2 followed by the extra latency
through the AES encryption in 5.3. In the final section 5.4 the cost of security is analyzed in
regards to resource utilization.

5.1 Security Evaluation

Different levels of adversaries and various attack vectors challenge the design in unique ways.
In this section the security of the SecFPGA design is evaluated in regards to possible threats
described in section 3.1.

Level 5: Outside of the Data Center

A threat-level-five adversary is located outside of the data center and does not have any
access to it, only the traffic to and from the client can be observed and altered. The SecFPGA
bitstream transfer protocol is based on TLS, which is used on a daily basis around the world.
Thus, the SecFPGA provides the same level of security like any other TLS connection.

Level 4: Virtualized Access to the Same Host

The host is expected to mediate the access to the PCIe bus and consequently to the
SecFPGA. If an attacker breaches the virtualization layer of the VMM and is able to inject
arbitrary data onto the bus, the SecFPGA-Hypervisor should not expose sensitive data. The
same is expected if the attacker is a malicious administrator or other personal with bare metal
access.

The design has two entry points where it receives data. The first one is the system channel,
which is connected to the CMD Decoder. This module accepts only well defined commands
in order to execute a TLS handshake. Any other command or data is discarded and aborts
a handshake in progress. Thus, the system channel does not allow any access to sensitive
data. The client channel is the second entry point and connected to the AES-GCM encryption
engines. In this mode the algorithm provides authenticated encryption and detects not correctly
encrypted data. But thanks to the TLS handshake, only the legitimate client is in possession of
the required keys.

49

5 Results

Level 3: Physical Access to the Board

Before the board was manufactured, and with more effort also afterwards, compromising
components, bugged memory or unwanted external interfaces could be added. Therefore, the
board itself is treated as hostile. But this is not a threat to the security of the SecFPGA, because
client data can only leave the SecFPGA-Hypervisor after it was AES encrypted.

Level 2: Virtualized Access to the Same Physical Chip

At threat level two, a vFPGA on the same physical chip is provisioned to an attacker. Through
a careful reset process and new symmetric keys no old data is available to the attacker. The
SecFPGA design also includes a configuration filter to prevent modified bitstreams from altering
vFPGAs outside of the provisioned area. Access to the client channel cannot be blocked by an
attacker, because the encryption engines offer enough throughput to serve all clients with their
maximum bandwidth.

Level 1: Physical Access to the Chip

Since encrypted data is only as secure as the keys, they have to be protected as effectively
as possible. Every party including the transport service, board manufacturer and data center
personal with physical access to the chip might tamper with it and try to extract the private key.
This would allow an adversary to pass off a simulation as a trustworthy SecFPGA, clients’ sensi-
tive data could be leaked. Furthermore, the symmetric keys negotiated by the TLS handshake
have to be secured from outside attackers. But these physical side-channel attacks cannot be
handled solely by the design, a hardened implementation is therefore mandatory.

Level 0: Access During Design or Manufacturing

A threat-level-zero attacker can alter the design or introduce backdoors during manufacturing.
At this level the SecFPGA design process itself has to be questioned and is therefore not within
the scope of this thesis.

5.2 Deployment Delay

In a standard RC2F flow, the vFPGA bitstream is uploaded to the host by the client. After
that, the host hypervisor initiates the transfer to an FPGA and the RC2F hardware hypervisor
starts the reconfiguration. While stored on the host and during the transfer to the FPGA board,
the vFPGA bitstreams are vulnerable to modifications and IP theft. A SecFPGA, on the other
hand, allows for a secured and confidential transfer of vFPGA configurations directly to the
SecFPGA-Hypervisor. However, this requires a TLS handshake between client and SecFPGA,
an obligation the RC2F does not impose.

In this section the TLS overhead is measured precisely with the Vivado Simulator [UG900]. In
contrast to measurements on an FPGA, the software tool does not impose limitations in terms
of counter accuracy or record buffer depth. Instead, all computations and data exchanges can
be investigated thoroughly and with clock cycle precision. First, precomputations for the ECDSA
and ECDHE are analyzed. Second, the computations based on the client key share (CKS) are
discussed.

50

5.2 Deployment Delay

Table 5.1: Precomputation times for a TLS handshake.

Step Depends On Module Action Start Time (µs) Duration (µs)

1 – TRNG Generate 1st integer 0.00 0.05
2 1 ECDSA Invert 1st integer 0.05 1429.10
3 1 ECM Curve point 1st integer 0.05 6.70

4 – TRNG Generate 2nd integer 6.75 0.05
5 4 ECM Curve point 2nd integer 11.80 5.00

0.0 6.75 11.8
. . .

1435.85
precomputation time in µs

TRNG

ECM

ECDSA

su
bm

od
ul

e . . .

Figure 5.1: Gantt chart for TLS precomputations.

5.2.1 Precomputations for a TLS Handshake

For an ECDHE key exchange and the ECDSA, several precomputations can be done. They are
described more detailed in section 4.1. This section analyzes them and evaluates the imple-
mentation presented in chapter 4.

An expensive step in the ECDSA is the inversion of an intermediate integer. It is generated
by the TRNG and does not depend on any client data. Furthermore is the intermediate integer
also processed by the ECM to compute a curve point, which is needed after the CKS is received.
Hence, generating this integer is done first followed by the two calculations, which can be done
in parallel. Figure 5.1 visualizes these steps, Table 5.1 lists the computation times. They also
shows the high cost of the inversion. With 1429.1 µs it is by far the most expensive operation
of the whole handshake. It dwarfs both point elliptic curve multiplications done by the ECM.
They take from 5.0 µs to 6.7 µs with the 32-bit factor. Rebeiro and Mukhopadhyay state that a
multiplication with a full 233-bit factor takes about 31 µs on a Xilinx Virtex-4 clocked at 60.05 MHz
[RM08]. In this SecFPGA-Hypervisor implementation the ECM is clocked at 33 MHz due to
placement and timing constraints. Thus, a multiplication with a full factor would take 56.4 µs,
which is still an order of magnitude less than the inversion.

Both operations, inversion and multiplication, could be accelerated with higher clock speeds.
But the ECDSA core offers many additional optimization opportunities. In this proof-of-concept
prototype naive algorithms are used. More sophisticated approaches were proposed in the
literature reducing the computation time drastically. Furthermore, the core was implemented
with Vivado HLS. The example by Winterstein et al. showed that the core produced by HLS
achieved only half the performance a manually implemented one did [WBC13]. Therefore, it can
be assumed that at least some precomputation time can be saved by a classic, fully manual
behavioral description of the hardware.

In summary, the unoptimized precomputations take only 1.43 ms to complete. In the same
amount of time only a tenth of a single vFPGA can be reconfigured. Thus, new precomputations
can be done during the bitstream transfer, which would hide them completely and allow for
more connections per second.

51

5 Results

Table 5.2: Computation times for a TLS handshake after the client key share (CKS) is received.
The ECC modules are located in the EC Key Processor (ECKP), the SHA-3 and AES
core in the CMD Decoder.

Step Depends On Module Action Start Time (µs) Duration (µs)

1 CKS ECDHE complete key exchange 0.00 5.00
2 1 ECKP key derivation 5.00 0.66
3 2 AES encrypt certificate 5.66 1.43
4 3 SHA-3 compute “verify” hash 7.09 4.01
5 4 ECDSA sign “verify” hash 11.10 4.40
6 5 AES encrypt signature 15.50 0.34
7 6 SHA-3 compute “final” hash 15.84 4.28
8 7 AES encrypt “final” hash 20.12 0.37

5.66 15.84 20.49
computation time for a TLS handshake in µs

ECDHE

Key Derivation

AES

SHA-3

ECDSA

su
bm

od
ul

e

process 0x00 send 0x81 send 0x82

Figure 5.2: Gantt chart for TLS handshake after the client key share (CKS) is received. A TLS
handshake cannot be parallelized significantly. Precomputations are completed be-
forehand and not shown.

5.2.2 Computations during a TLS Handshake

After the precomputations are finished, the SecFPGA-Hypervisor waits for a client to request a
vFPGA. With the initial connection the CKS is send. This unencrypted message is encoded as
command 0x00 and is processed right away. It takes the ECM 5 µs to calculate the common
secret. As discussed in section 5.2.1, this depends on the ephemeral session key and can
take up to 56.4 µs if a full 233-bit factor is used. The key derivation process depends on the
common secret as stated in Table 5.2 and shown in Figure 5.2. This prototype uses the SHA-3
core described in section 4.2.1 as the PRNG to generate the symmetric keys. Its two iterations
take 0.66 µs and enable the AES core to process the certificate. An encrypted version of the
certificate cannot be stored, because with every connection new symmetric keys are derived.
Thus, 1.43 µs are spent each connection to encrypt it. While it is send to the client, it is also
stored in a buffer alongside the other received and sent commands. This buffer is read out
and processed by the SHA-3 core to compute the “verify” hash. After 4.01 µs the hash is
feed into the ECDSA submodule and it generate the signature in 4.4 µs. Its 466 bits have to be
processed by the AES core, which, mainly due to the 24 pipeline stages, takes 0.34 µs. Finally,
the buffer has to be read out and its content hashed again to compute the “final” hash. With
the necessary encryption it takes 4.65 µs to send this last command 0x82.

To complete the whole handshake without precomputation, the SecFPGA-Hypervisor needs
20.49 µs. Even though a TLS handshake is very linear and does not allow a great degree par-
allelization, some optimization can be done. The current implementation saves every byte of
received or sent data in a buffer. To compute a hash, the buffer is read out. This read process

52

5.3 Extra Latency Through AES

can be started as soon as data is available. Interleaving could save about 1 - 1.5 µs for the first
“verify” hash and 3.66 µs of the 4.28 µs for the “final” hash, dropping the total handshake time
to 15.33 - 15.83 µs. However, with this reduction of 25 % the possibilities for parallelism are
exhausted since all other operations depend on the result of the previous one. Nevertheless,
some primitives can be clocked at higher speed, e.g. the AES core with 300 MHz, the SHA-3
core or the ECM. Although this reduces the impact of the interleaving described earlier, it could
save a few µs. Especially a higher clock frequency for the ECM can directly reduce the com-
putation time. The authors reported 60.04 MHz, which cuts the ECDHE time in half [RM08].
Under the assumption about Vivado HLS discussed in the previous section, the performance
of the second elliptic curve module ECDSA can be doubled.

In summary, the SecFPGA-Hypervisor performs a TLS handshake in 20.49 µs. This outper-
forms software implementations, e.g. an Intel Skylake CPU at 3.14 GHz takes about 1630 µs
only to verify the 233-bit ECDSA signature [CryptoPP]. But further optimizations are likely to ac-
celerate handshakes between specialized hardware accelerators like two SecFPGAs. A rough
estimate, based on the proposed changes outlined in this section, is a computation time of 8 µs
or with full a 233-bit factor 35 µs. Both times are an order of magnitude lower than the transfer
and reconfiguration time of a vFPGA. Hence, the TLS overhead of the SecFPGA-Hypervisor is
of no consequence compared to the RC2F.

5.3 Extra Latency Through AES

The RC2F utilizes the PCIe bus to communicate with the host. As with any form of connection it
has some latency, the time it takes the first bytes from a vFPGA to reach the client’s application
running on the host machine. In a SecFPGA every byte leaving a vFPGA is encrypted and every
byte entering a vFPGA is decrypted with AES. Even though throughputs of over 32 GB/ s are
reported in literature [SS15], it inevitably delays the data flow further. In this section the delay
introduced by the SecFPGA-Hypervisor is analyzed.

The implementation described in section 4.5 uses AES cores clocked at 300 MHz, which
results in 4.8 GB/ s throughput. It employs a 21-stage pipeline to achieve such speeds. This
is the first source of added latency introduced by the SecFPGA-Hypervisor. An extra stage
executes the CTR mode’s XOR operation, two additional stages synchronize the round robin
arbiter. They are executed at 300 MHz in contrast to a vFPGA, which operates at only 100 MHz.
To synchronize the clock domains, FIFOs are embedded into the data path between the RC2F
System Bus and the RC2F vFPGA Bus. This is the second source of latency, but the direction
is important. While the RC2F vFPGA Bus is clocked at 100 MHz, the RC2F System Bus is
clocked at 250 MHz allowing a faster sampling inside the FIFOs. Hence, synchronizing “fast”
data to a slower clock domain takes the most amount of time. This is shown in Table 5.3, which
summarizes the singles stages and lists the absolute delays. However, some synchronization
is also necessary in the standard RC2F design. Those times are also listed in Table 5.3 and
have to be subtracted for a fair comparison, which is shown in Table 5.4

In summary, the SecFPGA-Hypervisor adds 100 ns latency to the data path from the RC2F
vFPGA to the System Bus and also 100 ns the other way around. In both cases delays the
AES decryption or encryption the data by 80 ns, which accounts for 80 % of the extra latency.
However, 100 ns are an order of magnitude below the 70 µs PCIe latency1 and enable strong
symmetric encryption. Even though the use of AES introduces a slight delay, it does not reduce
the throughput of a vFPGA. Thus, standard RC2F data rates shown in Figure 5.3 are possible.

1Linux Kernel 4.10.0-37, VC707, RC2F loopback

53

5 Results

Table 5.3: Latencies introduced by various stages on the data path between RC2F System Bus
and RC2F vFPGA Bus.

Action Source (MHz) Destination (MHz) Stages Latency (ns)

AES 300 300 21 70.00
CTR mode 300 300 1 3.33
Round-Robin 300 300 2 6.67
RC2F vFPGA Bus to AES 100 300 2 26.67a

AES to RC2F System Bus 300 250 2 23.33a

RC2F System Bus to AES 250 300 2 20.67a

AES to RC2F vFPGA Bus 300 100 2 53.33a

RC2F vFPGA to System Busb 100 250 2 30.00a

RC2F System to vFPGA Busb 250 100 2 54.00a

a worst case, [PG057] b without AES

Table 5.4: Comparison of latencies for different directions between standard RC2F and this
SecFPGA-Hypervisor implementation.

Direction RC2F (ns) SecFPGA (ns)

RC2F System to vFPGA Bus 54 154
RC2F vFPGA to System Bus 30 130

10−1 100 101 102 103 104 105

Data Stream Size in MB

0

400

800

1200

1600

Th
ro

ug
hp

ut
in

M
B

/s

write
read
overall

0

400

800

1200

1600

Figure 5.3: Throughput for a single client connected over PCIe, which is managed by RC2F.

54

5.4 Resource Utilization of the SecFPGA-Hypervisor

Table 5.5: Resource usage of the whole SecFPGA-Hypervisor in absolute numbers and in rela-
tion to the resources available on the Virtex-7.

Submodule LUTs Registers BRAMs

EC Key Processor 30 766 10.13% 15 158 2.50% 0 0.00%
CMD Decoder 7279 2.40% 8714 1.44% 87 8.45%
Key Store 269 0.09% 4379 0.72% 0 0.00%
Configuration Filter 119 0.04% 99 0.02% 0 0.0 %
AES encryption 4612 1.52% 5820 0.96% 86 8.35%
AES decryption 4595 1.51% 5820 0.96% 86 8.35%
Cross clock FIFOs 1358 0.44% 3000 0.48% 50 4.85%

Overall 48 878 16.10% 42 891 7.06% 309 30.00%
a A XC7VX485T is equipped with 303 600 LUTs, 607 200 registers and 1030 BRAMs among others.

5.4 Resource Utilization of the SecFPGA-Hypervisor

This implementation of the SecFPGA-Hypervisor uses many different modules to enable a
secure and authentic vFPGA bitstream transfer. Each module is essential to fulfill this task,
but this comes at a price. A standard RC2F implementation does not offer this security and
requires about 50 000 look up tables (LUTs) and 110 Block RAMs (BRAMs) for its hypervi-
sor, PCIe endpoint, Ethernet and memory controller [KGS17]. In contrast to this does the
SecFPGA-Hypervisor’s symmetric data encryption alone utilize over 172 BRAMs. A complete
overview of the resource usage is given in Table 5.5.

In this section the utilization is evaluated and analyzed. Important submodules are broken
down to investigate the cause and to work out possible optimizations. The EC Key Processor
is examined in section 5.4.1 followed by the CMD Decoder in 5.4.2 and the encryption engines
in section 5.4.3. The section is concluded by a best-case outlook for the SecFPGA-Hypervisor
resource utilization based on highly optimized implementations reported in the literature.

5.4.1 Resource Utilization of the EC Key Processor

The EC Key Processor houses asymmetric cryptography cores and derives the symmetric keys
based on the ECDHE key exchange. Its resource utilization is shown in Table 5.6. Most of
the LUTs are consumed by the 233-bit ECM. According to the authors, this core is highly
optimized and is more compact than other similarly fast implementations [RM08]. Thus, it
offers only a very small optimization potential. The ECDSA core, on the other hand, is not
optimized and consumes more than half of the registers. Although the analysis of Vivado HLS
by Winterstein et al. revealed that the toolchain uses resources efficiently, some algorithms
employed by this ECDSA implementation can be optimized to reduce the resource consumption.
Another tradeoff is the level of parallelization. The flexibility of HLS allows to trade resource
consumption for performance.

This prototype uses a SHA-3 core to derive the symmetric keys, which does not conform with
the TLS standard. But the core was available and fulfills the role of a PRNG well. Its resource
usage is not high, only about 5.5 % of all SecFPGA-Hypervisor LUTs and registers. This is
only slightly more than the registers needed to synchronize data from the EC Key Processor’s
100 MHz to the ECM’s 33 MHz and back. The TRNG is modest and has a negligible resource
utilization.

Overall has the EC Key Processor the highest resource consumption, but offers at the same
time potential for future optimizations. In most cases it is a performance-area tradeoff.

55

5 Results

Table 5.6: Resource utilization of the EC Key Processor and its submodules in absolute numbers
and in relation to the overall usage of the module.

Submodule LUTs Registers BRAMs

ECM 21 695 70.52% 48 0.32% 0 0.00%
ECDSA 5243 17.04% 8510 56.14% 0 0.00%
Key derivation 2601 8.45% 2245 14.81% 0 0.00%
TRNG 670 2.18% 34 0.22% 0 0.00%
Synchronization 319 1.07% 1944 12.82% 0 0.00%

EC Key Processor 30 766 100.00% 15 158 100.00% 0 0.00%

Table 5.7: Resource utilization of the CMD Decoder and its submodules in absolute numbers
and in relation to the overall usage of the module.

Submodule LUTs Registers BRAMs

AES 3011 41.37% 4886 56.07% 86 98.85%
Buffer 0 0.00% 0 0.00% 1 1.15%
SHA-3 2598 35.69% 2245 25.76% 0 0.00%
Certificate 128 1.76% 128 1.47% 0 0.00%

CMD Decoder 7279 100.00% 8714 100.00% 87 100.00%

5.4.2 Resource Utilization of the CMD Decoder

The CMD Decoder interacts with the host hypervisor and through it with the clients. It pro-
cesses incoming allocation requests, takes part in and handles the TLS handshake. A more
detailed description is given in section 4.2.

To fulfill these functions the CMD Decoder is composed of different submodules. Their
resource utilization is listed in Table 5.7. About half of the LUTs and registers and almost all
BRAMs are consumed by an AES core, which decrypts and encrypts the traffic with clients.
However, if a new allocation request is raised, the corresponding vFPGAs are reset and their
encryption engines are no longer used. Those unused engines could be repurposed for the
time of the handshake and serve the CMD Decoder.

The second biggest consumer of resources is the SHA-3 core with about a third of all LUTs
and registers used by the CMD Decoder. The core computes a hash of the TLS handshake
to detect modifications and prevent adversaries from tampering. As shown in section 5.2.2
does the hash generation influence the computation time for a handshake noticeably. But with
optimizations described in said section, this influence can be reduced and a more resource
efficient but slower hash core could replace it. Other submodules have a negligible resource
utilization. The CMD Decoder itself needs approximately 1500 LUTs and registers each. They
are mostly used for the state machine and control logic around the submodules.

In summary, the CMD Decoder’s utilization could be cut in half by repurposing unused AES
cores in the data path. But in this prototype implementation it uses less than 2.5 % of the
available resources, so it is not a problem except for the high BRAM usage.

5.4.3 Resource Utilization of the AES Cores

Two AES cores are embedded into the data path between the RC2F System and vFPGA Bus.
Each can encrypt or decrypt six RC2F streams to provide strong protection against eavesdrop-
per. Details of the algorithm are given in section 2.1.1.1, a description of the implementation

56

5.4 Resource Utilization of the SecFPGA-Hypervisor

Table 5.8: Resource usage of an AES-128 core with an arbiter for six RC2F-streams in absolute
numbers and in relation to the overall usage of the module. In the implementation
two of these modules are instantiated.

Submodule LUTs Registers BRAMs

AES-Core 3178 69.16% 3968 68.18% 86 100.00%
Arbiter 1417 30.84% 1852 31.82% 0 0.00%

Overall 4595 100.00% 5820 100.00% 86 100.00%

and the used CTR mode in section 4.5. The resource usage is listed in Table 5.8.
The most decisive feature of the AES core is its implementation of the S-Boxes. The core’s

author Hsing choose BRAMs to map them, which results in the high utilization of 8.35 % com-
pared to only 1.05 % of LUTs and register relative to all available resources of the XC7VX485T.
Due to the core’s speed and routing complexity, other modules cannot be mapped together with
it in the same area and use the remaining resources. This imbalance leads to a poor utilization
overall and a high area requirement of the SecFPGA-Hypervisor. Alternative implementations
realize the S-Boxes in LUTs or as combinational logic. Zhou et al. compared all methods and
reported a higher LUT utilization as a tradeoff [ZMH09]. However, only about 1100 LUTs were
needed to replace their 41 BRAMs, which is a good compromise.

In conclusion, the AES core has a very competitive throughput/slice ratio, but uses too much
BRAMs. Thus, it increases the area requirement of the SecFPGA-Hypervisor significantly,
which in turn reduces the available area for vFPGAs.

5.4.4 Estimated Utilization of an Optimized Implementation

Cryptography is not a new topic and many algorithms and even more implementations have
been proposed in literature. With deeper understanding of the concepts, novel techniques are
reported and reduce resources consumption or increase throughput. In this section the imple-
mentation of the SecFPGA-Hypervisor is revised. Combining highly efficient cores proposed in
literature and optimizations described in the previous sections, a lower resource utilization can
be achieved.

The first module, which is swapped out, is the ECM. It is very fast but requires also a lot
of resources. Therefore, it is replace with a more efficient core which provides higher 256-bit
security on curve 25519, which was specified by Bernstein [Ber06]. It uses a polynomial field
instead of binary, which allows for a faster processing on client side. An implementation on a
Virtex-5 was realized by Sasdrich and Güneysu [SG14]. On that chip it takes 400 µs for a single
multiplication, which is about eight times longer compared to the current implementation on a
faster Virtex-7.

Another proposal targeting a Virtex-5 is a SHA-256 core by Garcia et al. [Gar14]. They aimed
for a very compact design without sacrificing the throughput, which is lower than that of the
SHA-3 core by Hsing. But the hash is only needed during the handshake and its computation
can be parallelized well with other tasks. The selected SHA-256 core needs 280 clock cycles to
process 512 bits and is clocked at 65 MHz on an older Virtex-5. A higher speed can be expected
on a more modern FPGA. The new core is not only used to compute the “verify” and “final”
hash in the CMD Decoder, but also for key derivation in the EC Key Processor. This resource
sharing eliminates the need for a second instance of a hash core.

The most important change is the selection of another AES core. Hsing developed a compet-
itive core with high speed and good throughput/slice ratio, but it does not offer a GCM mode,
which was actually designated in the design proposed in chapter 3. Hence, Hsing’s core is re-
placed with an implementation by Zhou et al. [ZMH09]. While it supports only a slightly higher

57

5 Results

Table 5.9: Estimated resource usage of an optimized SecFPGA-Hypervisor based on cores re-
ported in literature. While only about 3 % slices of a XC7VX485T can be saved, the
BRAM usage drops significantly and authenticated encryption is enabled.

Submodule Reference/ Slices BRAMs DSP
Optimization Ref. this Ref. this Ref. this

ECM [SG14] 1029 5765 2 0 20 0
Hash [Gar14] 139 715 0 0 0 0
Key derivation reuse 0 714 0 0 0 0
AES encryption [ZMH09] 4628 2334 0 86 0 0
AES decryption [ZMH09] 4628 2052 0 86 0 0
TLS encryptiona reuse 0 1226 0 86 0 0

Savings overall 2382 256 -20
a De-/Encryption of handshake traffic and bitstream

throughput of 41.47 Gbit/ s it does enable the authenticated encryption AES-GCM. They also
realized a BRAM based version, which consumes 3533 slices and 41 BRAMs. But as argued
in section 5.4.3, the high BRAM utilization reduces the overall area efficiency. Additionally an
optimization proposed in the same section is implemented. During a TLS handshake, at least
one vFPGA is reconfigured and does not transmit data. Thus, the encryption is routed through
this free slot and saves an AES core within the CMD Decoder.

All in all is a reduction of 10 % or 2382 slices and, more importantly, 258 BRAMs possible with
only 20 additional digital signal processors (DSPs) as shown in Table 5.9. While the handshake
takes longer, it also provides more security and less load on client side. Furthermore, it better
conforms with the TLS standard, which does neither specify SHA-3 in its handshake protocol nor
in the supported key derivation algorithms. The authenticity of the data flow is better protected
by a strong AES-GCM.

58

6 Conclusions and Future Work
The goal of this thesis was to develop an FPGA based system suitable for a cloud deployment.
Additionally, it must allow a confidential transfer of FPGA configurations from a client to the
cloud to establish a trustworthy computing space in the remote system. Initially an analysis
pointed out the advantages of virtualizing an FPGA into a flexible resource. Previous work, like
the RC2F, also showed the suitability of virtual FPGAs (vFPGAs) in the cloud context. But fur-
ther literature review revealed their security related challenges. Furthermore, possible attacks
and adversaries in a cloud environment were surveyed and together with the virtualization chal-
lenges categorized into different threat levels. Based on that, two major objectives were identi-
fied. First, the confidential and authentic transfer of the client’s configuration to the FPGA. The
second objective is the secure reconfigurability of a vFPGA.

The so called SecFPGA-Hypervisor was designed to meet these challenges. It is part of the
initial FPGA configuration, manages the vFPGAs and connects them through various high speed
interfaces like PCIe to the host and clients. To establish a secured and trustworthy connection
directly to the SecFPGA-Hypervisor, the TLS protocol was adapted. Because of an FPGA’s
limited resources, only the most efficient algorithms and security primitives supported by TLS
are used, which includes but is not limited to elliptic curve cryptography and AES encryption.
Each SecFPGA is signed by the vendor after it was manufactured and thus can be authenticated
individually by means of its standardized X.509 certificate. But the secured transfer is not the
only challenge. The complete reconfigurability of an FPGA was identified as a severe security
flaw. Thus, a filter was developed to protect the SecFPGA-Hypervisor and clients’ vFPGAs from
maliciously altered configurations.

A prototype based on the RC2F was implemented to verify important aspects of the design
and to measure the overhead introduced by the new security features. The most expensive
computations for the TLS handshake are done prior to a connection. This reduces the process-
ing time on the SecFPGA to 20.49 µs, which is an order of magnitude faster than the reconfigura-
tion of a single vFPGA. After the initial handshake, further data flow between client and vFPGA
is AES encrypted. This delays the data, but only by an additional 100 ns, which is negligible
compared to a 70 µs PCIe transfer time. Both latencies do not impact the deployment time or
responsiveness significantly given the vastly improved security and protect against eavesdrop-
pers. On the other hand is the additional resource utilization substantial. About 15 % LUTs and
BRAMs of a Virtex-7 XC7VX485T are used, but routing complexity prevents efficient mapping
into a small area.

Another conclusion from the prototype implementation confirmed the concerns raised during
the design phase about the full reconfigurability of an FPGA. Routing resources and fixed FPGA
infrastructure inside the vFPGAs cannot be sufficiently protected without assistance of the
vendor. The analysis in this thesis of FPGA virtualization suggests necessary changes to current
architectures to truly enable virtual yet secure FPGAs in an untrusted cloud environment:

61

6 Conclusions and Future Work

• strict separation of static FPGA infrastructure and reconfigurable space for vFPGAs

• dedicated clock distribution networks inside each vFPGA

• vFPGA bitstreams without shared address ranges

• embedded security primitives for better performance and more available chip area

• asymmetric FPGA authentication through a public key

Other improvements are not bound to a new architecture, but should be considered in future
work. The crossbar handles all traffic equally to prevent congestion caused by a single client.
But it does not offer different service levels and thus it may be not as efficient as possible. If one
client does not need a high throughput, this share could be allocated to another client whose
performance correlates directly with the available throughput. The SecFPGA-Hypervisor can be
extended to handle TLS handshakes directly over network interfaces. Current tasks of the host
like access control and billing would either be handled within the chip or through specialized
routers. It downgrades the insecure host machine into a simple storage extension, which only
contains securely encrypted data.

Switching from the server role into the client role does not change to TLS handshake pro-
cedure considerably. Instead of generating a signature, it has to be verified. With almost all
the required primitives already in place, only this verification process has to be added to the
SecFPGA to enable a direct communication between two devices. Thus, scalability within the
cloud system can be improved. A client only has to connect to a single SecFPGA and set it
up with a bootstrap configuration. The actual configuration is then send to the initial SecFPGA,
which takes care of connecting and configuring other SecFPGAs. A secured and confidential
subnet inside an untrusted cloud environment is established.

62

Bibliography
[ABR99] Michel Abdalla et al. “DHAES: An Encryption Scheme Based on the Diffie-Hell-

man Problem.” In: IACR Cryptology ePrint Archive 1999 (1999), p. 7.

[ACM14] Karim M. Abdellatif et al. “FPGA-Based High Performance AES-GCM Using Ef-
ficient Karatsuba Ofman Algorithm”. In: Reconfigurable Computing: Architec-
tures, Tools, and Applications: 10th International Symposium, ARC 2014, Vilam-
oura, Portugal, April 14-16, 2014. Proceedings. Ed. by Diana Goehringer et al.
Cham: Springer International Publishing, 2014, pp. 13–24. DOI: 10.1007/978-3-
319-05960-0_2.

[Adr15] David Adrian et al. “Imperfect Forward Secrecy: How Diffie-Hellman Fails in Prac-
tice”. In: Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security. CCS ’15. Denver, Colorado, USA: ACM, 2015, pp. 5–
17. ISBN: 978-1-4503-3832-5. DOI: 10.1145/2810103.2813707.

[AES] Announcing Request for Candidate Algorithm Nominations for the Advanced En-
cryption Standard (AES). Department of Commerce, National Institute of Stan-
dards and Technology. Sept. 12, 1997. URL: http://csrc.nist.gov/archive/
aes/pre-round1/aes_9709.htm (visited on 08/01/2017).

[AES-NI] Intel Corporation. Intel Data Protection Technology with AES-NI and Secure Key.
2017. URL: https://www.intel.com/content/www/us/en/architecture-and-
technology/advanced-encryption-standard--aes-/data-protection-aes-
general-technology.html (visited on 10/10/2017).

[AGM16] C Ashokkumar et al. “Highly Efficient Algorithms for AES Key Retrieval in Cache
Access Attacks”. In: 2016 IEEE European Symposium on Security and Privacy
(EuroS P). Mar. 2016, pp. 261–275. DOI: 10.1109/EuroSP.2016.29.

[Agr07] D. Agrawal et al. “Trojan Detection using IC Fingerprinting”. In: 2007 IEEE Sym-
posium on Security and Privacy (SP ’07). May 2007, pp. 296–310. DOI: 10.1109/
SP.2007.36.

[AK12] George Argyros and Aggelos Kiayias. “I Forgot Your Password: Randomness At-
tacks Against PHP Applications”. In: Presented as part of the 21st USENIX Secu-
rity Symposium (USENIX Security 12). Bellevue, WA: USENIX, 2012, pp. 81–96.
URL: https://www.usenix.org/conference/usenixsecurity12/technical-
sessions/presentation/argyros.

[Aum08] Jean-Philippe Aumasson et al. “New features of Latin dances: analysis of Salsa,
ChaCha, and Rumba”. In: Lecture Notes in Computer Science 5086 (2008),
pp. 470–488.

XIII

https://doi.org/10.1007/978-3-319-05960-0_2
https://doi.org/10.1007/978-3-319-05960-0_2
https://doi.org/10.1145/2810103.2813707
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
http://csrc.nist.gov/archive/aes/pre-round1/aes_9709.htm
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard--aes-/data-protection-aes-general-technology.html
https://doi.org/10.1109/EuroSP.2016.29
https://doi.org/10.1109/SP.2007.36
https://doi.org/10.1109/SP.2007.36
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/argyros
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/argyros

Bibliography

[BCK96] Mihir Bellare et al. “Keying Hash Functions for Message Authentication”. In:
Advances in Cryptology — CRYPTO ’96: 16th Annual International Cryptology
Conference Santa Barbara, California, USA August 18–22, 1996 Proceedings. Ed.
by Neal Koblitz. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 1–15.
ISBN: 978-3-540-68697-2. DOI: 10.1007/3-540-68697-5_1.

[Bel06] Mihir Bellare. “New proofs for NMAC and HMAC: Security without collision-re-
sistance”. In: Annual International Cryptology Conference. Springer. 2006,
pp. 602–619.

[Ber06] Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”. In: Inter-
national Workshop on Public Key Cryptography. Springer. 2006, pp. 207–228.

[Ber07] Guido Bertoni et al. “Sponge functions”. In: ECRYPT hash workshop. Vol. 2007.
9. 2007.

[Ber08a] Daniel J Bernstein. “ChaCha, a variant of Salsa20”. In: Workshop Record of
SASC. Vol. 8. 2008, pp. 3–5.

[Ber08b] Daniel J. Bernstein. “The Salsa20 Family of Stream Ciphers”. In: New Stream
Cipher Designs: The eSTREAM Finalists. Ed. by Matthew Robshaw and Olivier
Billet. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 84–97. ISBN:
978-3-540-68351-3. DOI: 10.1007/978-3-540-68351-3_8.

[Bha09] S. Bhasin et al. “Security evaluation of different AES implementations against
practical setup time violation attacks in FPGAs”. In: 2009 IEEE International
Workshop on Hardware-Oriented Security and Trust. July 2009, pp. 15–21. DOI:
10.1109/HST.2009.5225057.

[Bir10] Alex Biryukov et al. “Key Recovery Attacks of Practical Complexity on AES-256
Variants with up to 10 Rounds”. In: Advances in Cryptology – EUROCRYPT 2010:
29th Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, French Riviera, May 30 – June 3, 2010. Proceedings. Ed. by
Henri Gilbert. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 299–319.
ISBN: 978-3-642-13190-5. DOI: 10.1007/978-3-642-13190-5_15.

[BK15] Jonathan Becktor and Christian Kiær. “TMTO Attack on the 3G Block Cipher
KASUMI”. Bachelor’s Thesis. Technical University of Denmark, 2015.

[BKN09] Alex Biryukov et al. “Distinguisher and Related-Key Attack on the Full AES-256”.
In: Advances in Cryptology - CRYPTO 2009: 29th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings. Ed. by
Shai Halevi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 231–249.
ISBN: 978-3-642-03356-8. DOI: 10.1007/978-3-642-03356-8_14.

[BKR11] Andrey Bogdanov et al. “Biclique cryptanalysis of the full AES”. In: Advances in
cryptology–ASIACRYPT 2011 (2011), pp. 344–371.

[Bos12] Joppe W Bos et al. “Solving a 112-bit prime elliptic curve discrete logarithm
problem on game consoles using sloppy reduction”. In: International Journal of
Applied Cryptography 2.3 (2012), pp. 212–228.

[Bro10] Daniel R. L. Brown. SEC 2: Recommended Elliptic Curve Domain Parameters.
Tech. rep. Version 2.0. Certicom Research, Jan. 2010.

[BSI17] Kryptographische Verfahren: Empfehlungen und Schlüssellängen. Tech. rep. BSI
TR-02102-1. Version 2017-01. Postfach 20 03 63, 53133 Bonn, Germany: Bunde-
samt für Sicherheit in der Informationstechnik, Feb. 2017.

XIV

https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/978-3-540-68351-3_8
https://doi.org/10.1109/HST.2009.5225057
https://doi.org/10.1007/978-3-642-13190-5_15
https://doi.org/10.1007/978-3-642-03356-8_14

Bibliography

[Bym14] S. Byma et al. “FPGAs in the Cloud: Booting Virtualized Hardware Accelerators
with OpenStack”. In: 2014 IEEE 22nd Annual International Symposium on Field-
-Programmable Custom Computing Machines. May 2014, pp. 109–116. DOI: 10.
1109/FCCM.2014.42.

[Cer10] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
Tech. rep. Certicom Corp., Jan. 27, 2010.

[Che14] Fei Chen et al. “Enabling FPGAs in the cloud”. In: Proceedings of the 11th ACM
Conference on Computing Frontiers. ACM. 2014, p. 3.

[Cho15] David C. Chou. “Cloud computing risk and audit issues”. In: Computer Stan-
dards & Interfaces 42.Supplement C (2015), pp. 137–142. ISSN: 0920-5489. DOI:
https://doi.org/10.1016/j.csi.2015.06.005.

[CryptoPP] Crypto++ 5.6.5 Benchmarks. 2017. URL: https : / / www . cryptopp . com /
benchmarks.html (visited on 09/27/2017).

[Dam89] Ivan Bjerre Damgård. “A design principle for hash functions”. In: Conference on
the Theory and Application of Cryptology. Springer. 1989, pp. 416–427.

[De 05] Elke De Mulder et al. “Electromagnetic analysis attack on an FPGA implementa-
tion of an Elliptic curve cryptosystem”. In: Computer as a Tool, 2005. EUROCON
2005. The International Conference on. Vol. 2. IEEE. 2005, pp. 1879–1882.

[DH76] Whitfield Diffie and Martin Hellman. “New directions in cryptography”. In: IEEE
transactions on Information Theory 22.6 (1976), pp. 644–654.

[DH79] W. Diffie and M. E. Hellman. “Privacy and authentication: An introduction to
cryptography”. In: Proceedings of the IEEE 67.3 (Mar. 1979), pp. 397–427. ISSN:
0018-9219. DOI: 10.1109/PROC.1979.11256.

[DK09] Saar Drimer and Markus G Kuhn. “A protocol for secure remote updates of FPGA
configurations”. In: International Workshop on Applied Reconfigurable Comput-
ing. Springer. 2009, pp. 50–61.

[DKS10] Orr Dunkelman et al. “A Practical-Time Related-Key Attack on the KASUMI Cryp-
tosystem Used in GSM and 3G Telephony.” In: Crypto. Vol. 6223. Springer. 2010,
pp. 393–410.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the advanced
encryption standard. Springer Science & Business Media, 2013.

[DR99] Joan Daemen and Vincent Rijmen. AES proposal: Rijndael. 1999.

[DS180] Xilinx Inc. 7 Series FPGAs Data Sheet: Overview. Aug. 1, 2017.

[DTB10] Florian Devic et al. “Secure protocol implementation for remote bitstream up-
date preventing replay attacks on FPGA”. In: Field Programmable Logic and Ap-
plications (FPL), 2010 International Conference on. IEEE. 2010, pp. 179–182.

[Dub14] Manish Kant Dubey et al. “Cryptanalytic Attacks and Countermeasures on RSA”.
In: Proceedings of the Third International Conference on Soft Computing for
Problem Solving: SocProS 2013, Volume 1. Ed. by Millie Pant et al. New Delhi:
Springer India, 2014, pp. 805–819. ISBN: 978-81-322-1771-8. DOI: 10.1007/978-
81-322-1771-8_70.

[Dwo15] Morris Dworkin. NIST Policy on Hash Functions. Aug. 5, 2015. URL: https :
/ / csrc . nist . gov / Projects / Hash - Functions / NIST - Policy - on - Hash -
Functions (visited on 09/27/2017).

XV

https://doi.org/10.1109/FCCM.2014.42
https://doi.org/10.1109/FCCM.2014.42
https://doi.org/https://doi.org/10.1016/j.csi.2015.06.005
https://www.cryptopp.com/benchmarks.html
https://www.cryptopp.com/benchmarks.html
https://doi.org/10.1109/PROC.1979.11256
https://doi.org/10.1007/978-81-322-1771-8_70
https://doi.org/10.1007/978-81-322-1771-8_70
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions
https://csrc.nist.gov/Projects/Hash-Functions/NIST-Policy-on-Hash-Functions

Bibliography

[EGE08] Esam El-Araby et al. “Virtualizing and sharing reconfigurable resources in High-
-Performance Reconfigurable Computing systems”. In: High-Performance Re-
configurable Computing Technology and Applications, 2008. HPRCTA 2008. Sec-
ond International Workshop on. IEEE. 2008, pp. 1–8.

[Eis07] Thomas Eisenbarth et al. “Reconfigurable trusted computing in hardware”. In:
Proceedings of the 2007 ACM workshop on Scalable trusted computing. ACM.
2007, pp. 15–20.

[EV12] K. Eguro and R. Venkatesan. “FPGAs for trusted cloud computing”. In: 22nd
International Conference on Field Programmable Logic and Applications (FPL).
Aug. 2012, pp. 63–70. DOI: 10.1109/FPL.2012.6339242.

[Fer05] Niels Ferguson. “Authentication weaknesses in GCM”. In: Comments submit-
ted to NIST Modes of Operation Process (2005).

[Fer14] Diogo AB Fernandes et al. “Security issues in cloud environments: a survey”.
In: International Journal of Information Security 13.2 (2014), pp. 113–170.

[FGV11] Junfeng Fan et al. “To infinity and beyond: Combined attack on ECC using points
of low order”. In: International Workshop on Cryptographic Hardware and Em-
bedded Systems. Springer. 2011, pp. 143–159.

[FIPS 180-1] FIPS 180-1. National Institute of Standards and Technology, 1995.

[FIPS 180-2] FIPS 180-2. National Institute of Standards and Technology, 2002.

[FIPS 46-2] FIPS 46-2. National Institute of Standards and Technology, 1993.

[FS03] Niels Ferguson and Bruce Schneier. Practical cryptography. Vol. 23. Wiley New
York, 2003.

[Ful07] Scott M. Fulton. Certicom Patent Suit Against Sony Threatens to Unravel AACS.
2007. URL: https://betanews.com/2007/05/30/certicom- patent- suit-
against-sony-threatens-to-unravel-aacs/ (visited on 07/25/2017).

[FV12] Junfeng Fan and Ingrid Verbauwhede. “An Updated Survey on Secure ECC Im-
plementations: Attacks, Countermeasures and Cost.” In: Cryptography and se-
curity 6805 (2012), pp. 265–282.

[FVS15] S. A. Fahmy et al. “Virtualized FPGA Accelerators for Efficient Cloud Computing”.
In: 2015 IEEE 7th International Conference on Cloud Computing Technology and
Science (CloudCom). Nov. 2015, pp. 430–435. DOI: 10.1109/CloudCom.2015.
60.

[Gar14] Rommel Garcia et al. “A compact FPGA-based processor for the Secure Hash Al-
gorithm SHA-256”. In: Computers & Electrical Engineering 40.1 (2014), pp. 194–
202.

[GC01] Kris Gaj and Pawel Chodowiec. “Fast Implementation and Fair Comparison
of the Final Candidates for Advanced Encryption Standard Using Field Pro-
grammable Gate Arrays”. In: Topics in Cryptology — CT-RSA 2001: The Cryp-
tographers’ Track at RSA Conference 2001 San Francisco, CA, USA, April 8–12,
2001 Proceedings. Ed. by David Naccache. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 84–99. ISBN: 978-3-540-45353-6. DOI: 10.1007/3-540-
45353-9_8.

[Gen09] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Pro-
ceedings of the 41st annual ACM symposium on Symposium on theory of
computing-STOC\’09. ACM Press. 2009, pp. 169–169.

XVI

https://doi.org/10.1109/FPL.2012.6339242
https://betanews.com/2007/05/30/certicom-patent-suit-against-sony-threatens-to-unravel-aacs/
https://betanews.com/2007/05/30/certicom-patent-suit-against-sony-threatens-to-unravel-aacs/
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1109/CloudCom.2015.60
https://doi.org/10.1007/3-540-45353-9_8
https://doi.org/10.1007/3-540-45353-9_8

Bibliography

[GHR10] Kris Gaj et al. “Fair and Comprehensive Methodology for Comparing Hardware
Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs”. In: Cryp-
tographic Hardware and Embedded Systems, CHES 2010: 12th International
Workshop, Santa Barbara, USA, August 17-20, 2010. Proceedings. Ed. by Ste-
fan Mangard and François-Xavier Standaert. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 264–278. ISBN: 978-3-642-15031-9. DOI: 10.1007/978-3-
642-15031-9_18.

[GMR88] Shafi Goldwasser et al. “A digital signature scheme secure against adaptive cho-
sen-message attacks”. In: SIAM Journal on Computing 17.2 (1988), pp. 281–
308.

[Gün89] Christoph G Günther. “An identity-based key-exchange protocol”. In: Workshop
on the Theory and Application of of Cryptographic Techniques. Springer. 1989,
pp. 29–37.

[Hsi13] Homer Hsing. OpenCores - SHA3 Core. Jan. 29, 2013. URL: https://opencores.
org/project,sha3 (visited on 09/08/2017).

[Hsi15] Homer Hsing. OpenCores - Tiny AES. Dec. 14, 2015. URL: https://opencores.
org/project,tiny_aes (visited on 09/06/2017).

[IOM12] Tetsu Iwata et al. “Breaking and Repairing GCM Security Proofs”. In: Advances
in Cryptology – CRYPTO 2012: 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings. Ed. by Reihaneh Safavi-Naini
and Ran Canetti. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 31–49.
ISBN: 978-3-642-32009-5. DOI: 10.1007/978-3-642-32009-5_3.

[Ira14] Gorka Irazoqui et al. “Wait a minute! A fast, Cross-VM attack on AES”. In: Inter-
national Workshop on Recent Advances in Intrusion Detection. Springer. 2014,
pp. 299–319.

[Iso10] Takashi Isobe et al. “10 Gbps implementation of TLS/SSL accelerator on FPGA”.
In: Quality of Service (IWQoS), 2010 18th International Workshop on. IEEE. 2010,
pp. 1–6.

[ISO7498-1] Information technology – Open Systems Interconnection – Basic Reference
Model: The Basic Model. Tech. rep. ISO/IEC 7498-1:1994. International Organi-
zation for Standardization, 2000. URL: https://www.iso.org/standard/20269.
html.

[ITU02] Information technology – ASN.1 encoding rules: Specification of Basic Encoding
Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER). Tech. rep. International Telecommunication Union, 2002.

[ITU93] The Directory – Authentication Framework. Tech. rep. International Telecommu-
nication Union, 1993.

[Joh16] Ray Perlner John Kelsey Shu-jen Chang. NIST Special Publication 800-185.
Dec. 22, 2016. DOI: 10.6028/NIST.SP.800-185.

[Jou06] Antoine Joux. “Authentication failures in NIST version of GCM”. In: NIST Com-
ment (2006), p. 3.

[KASUMI01] Universal Mobile Telecommunications System (UMTS); Specification of the
3GPP confidentiality and integrity algorithms; Document 2: Kasumi algorithm
specification. Tech. rep. European Telecommunications Standards Institute,
Aug. 1, 2001.

[Kay05] Phillip Kaye. “Optimized quantum implementation of elliptic curve arithmetic
over binary fields”. In: Quantum Information & Computation 5.6 (2005), pp. 474–
491.

XVII

https://doi.org/10.1007/978-3-642-15031-9_18
https://doi.org/10.1007/978-3-642-15031-9_18
https://opencores.org/project,sha3
https://opencores.org/project,sha3
https://opencores.org/project,tiny_aes
https://opencores.org/project,tiny_aes
https://doi.org/10.1007/978-3-642-32009-5_3
https://www.iso.org/standard/20269.html
https://www.iso.org/standard/20269.html
https://doi.org/10.6028/NIST.SP.800-185

Bibliography

[Kep08] Krzysztof Kepa et al. “Serecon: A secure dynamic partial reconfiguration con-
troller”. In: Symposium on VLSI, 2008. ISVLSI’08. IEEE Computer Society An-
nual. IEEE. 2008, pp. 292–297.

[KGK04] Paris Kitsos et al. “High-speed hardware implementations of the KASUMI block
cipher”. In: Circuits and Systems, 2004. ISCAS’04. Proceedings of the 2004 In-
ternational Symposium on. Vol. 2. IEEE. 2004, pp. II–549.

[KGS17] Oliver Knodel et al. “Virtualizing Reconfigurable Hardware to Provide Scalability
in Cloud Architectures”. In: Reconfigurable Architectures, Tools and Applications,
RECATA 2017, Rom, Italien, ISBN: 978-1-61208-585-2. 2017.

[Kle10] Thorsten Kleinjung et al. “Factorization of a 768-bit RSA modulus”. In: CRYPTO
2010. Vol. 6223. Springer. 2010, pp. 333–350.

[Kob87] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209.

[KR10] Ian Kuon and Jonathan Rose. Quantifying and Exploring the Gap Between FPGAs
and ASICs. Springer US, 2010. ISBN: 978-1-4419-0738-7. DOI: 10.1007/978-1-
4419-0739-4.

[Kra10] H. Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF Scheme.
Cryptology ePrint Archive, Report 2010/264. http://eprint.iacr.org/2010/
264. 2010.

[Kra93] D.W. Kravitz. Digital signature algorithm. US Patent 5,231,668. July 1993. URL:
https://www.google.com/patents/US5231668.

[KSZ11] Sahbuddin Abdul Kadir et al. “Simple power analysis attack against elliptic curve
cryptography processor on FPGA implementation”. In: Electrical Engineering
and Informatics (ICEEI), 2011 International Conference on. IEEE. 2011, pp. 1–4.

[Lee11] Moon Sung Lee. “On the sparse subset sum problem from Gentry-Halevi’s
implementation of fully homomorphic encryption.” In: IACR Cryptology ePrint
Archive 2011 (2011), p. 567.

[Len93] A. K. Lenstra et al. “The number field sieve”. In: The development of the number
field sieve. Ed. by Arjen K. Lenstra and Hendrik W. Lenstra. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1993, pp. 11–42. ISBN: 978-3-540-47892-8. DOI: 10.
1007/BFb0091537.

[Liu11] Fang Liu et al. “NIST cloud computing reference architecture”. In: NIST special
publication 500.2011 (2011), p. 292.

[LSP02] Chenghuai Lu et al. “Implementation of fast RSA key generation on smart cards”.
In: Proceedings of the 2002 ACM symposium on Applied computing. ACM. 2002,
pp. 214–220.

[Luc02] Stefan Lucks. “The Saturation Attack — A Bait for Twofish”. In: Fast Software
Encryption: 8th International Workshop, FSE 2001 Yokohama, Japan, April 2–4,
2001 Revised Papers. Ed. by Mitsuru Matsui. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 1–15. ISBN: 978-3-540-45473-1. DOI: 10.1007/3- 540-
45473-X_1.

[Men07] Nele Mentens. “Secure and efficient coprocessor design for cryptographic ap-
plications on FPGAs”. PhD thesis. Katholieke Universiteit Leuven, 2007.

[Mer89] Ralph C Merkle. “A certified digital signature”. In: Conference on the Theory
and Application of Cryptology. Springer. 1989, pp. 218–238.

[MG11] Peter Mell and Timothy Grance. “The NIST definition of cloud computing”. In:
(2011). DOI: 10.6028/NIST.SP.800-145.

XVIII

https://doi.org/10.1007/978-1-4419-0739-4
https://doi.org/10.1007/978-1-4419-0739-4
http://eprint.iacr.org/2010/264
http://eprint.iacr.org/2010/264
https://www.google.com/patents/US5231668
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1007/BFb0091537
https://doi.org/10.1007/3-540-45473-X_1
https://doi.org/10.1007/3-540-45473-X_1
https://doi.org/10.6028/NIST.SP.800-145

Bibliography

[Mic04] Harris E Michail et al. “Efficient implementation of the keyed-hash message
authentication code (HMAC) using the SHA-1 hash function”. In: Electronics,
Circuits and Systems, 2004. ICECS 2004. Proceedings of the 2004 11th IEEE
International Conference on. IEEE. 2004, pp. 567–570.

[Mic12] Harris E. Michail et al. “On the Exploitation of a High-throughput SHA-256 FPGA
Design for HMAC”. In: ACM Trans. Reconfigurable Technol. Syst. 5.1 (Mar. 2012),
2:1–2:28. ISSN: 1936-7406. DOI: 10.1145/2133352.2133354.

[Mil85] Victor S Miller. “Use of elliptic curves in cryptography”. In: Conference on the
Theory and Application of Cryptographic Techniques. Springer. 1985, pp. 417–
426.

[MIV15] Harris E. Michail et al. “Pipelined SHA-3 Implementations on FPGA: Architec-
ture and Performance Analysis”. In: Proceedings of the Second Workshop
on Cryptography and Security in Computing Systems. CS2 ’15. Amsterdam,
Netherlands: ACM, 2015, 13:13–13:18. ISBN: 978-1-4503-3187-6. DOI: 10.1145/
2694805.2694808.

[Mon87] Peter L Montgomery. “Speeding the Pollard and elliptic curve methods of fac-
torization”. In: Mathematics of computation 48.177 (1987), pp. 243–264.

[Moo14] Ciara Moore et al. “Practical homomorphic encryption: A survey”. In: Circuits
and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE. 2014,
pp. 2792–2795.

[Moo65] Gordon E Moore. “Cramming more components onto integrated circuits.” In:
VLSI Technologies and Architectures - Electronics 38.8 (Apr. 1965).

[Moz] CA/Included Certificates. Mozilla Project. 2017. URL: https://wiki.mozilla.
org/CA/Included_Certificates (visited on 08/25/2017).

[MRR08] Debdeep Mukhopadhyay et al. Elliptic Curve Crypto Processor for FPGA Plat-
forms. Dec. 9, 2008. URL: http://cse.iitkgp.ac.in/~debdeep/osscrypto/
eccpweb/index.html.

[MSE10] Dominik Merli et al. “Improving the quality of ring oscillator PUFs on FPGAs”. In:
Proceedings of the 5th workshop on embedded systems security. ACM. 2010,
p. 9.

[MV04a] David A. McGrew and John Viega. “The Security and Performance of the Galois/-
Counter Mode (GCM) of Operation”. In: In INDOCRYPT, volume 3348 of LNCS.
Springer, 2004, pp. 343–355.

[MV04b] David McGrew and John Viega. “The Galois/counter mode of operation (GCM)”.
In: Submission to NIST Modes of Operation Process 20 (2004).

[MW15] John Mattsson and Magnus Westerlund. Authentication Key Recovery on Galois
Counter Mode (GCM). Cryptology ePrint Archive, Report 2015/477. http : / /
eprint.iacr.org/2015/477. 2015. DOI: http://dx.doi.org/10.1007/978-3-
319-31517-1_7.

[Nat15] National Security Agency. Suite B Cryptography. Aug. 19, 2015. URL: https :
/ / web . archive . org / web / 20150831131731 / https : / / www . nsa . gov / ia /
programs/suiteb_cryptography/index.shtml.

[NIST15] Elaine Barker and Allen Roginsky. Transitions: Recommendation for Transitioning
the Use of Cryptographic Algorithms and Key Lengths. Tech. rep. Revision 1.
National Institute of Standards and Technology, Nov. 2015. DOI: http://dx.doi.
org/10.6028/NIST.SP.800-131Ar1.

XIX

https://doi.org/10.1145/2133352.2133354
https://doi.org/10.1145/2694805.2694808
https://doi.org/10.1145/2694805.2694808
https://wiki.mozilla.org/CA/Included_Certificates
https://wiki.mozilla.org/CA/Included_Certificates
http://cse.iitkgp.ac.in/~debdeep/osscrypto/eccpweb/index.html
http://cse.iitkgp.ac.in/~debdeep/osscrypto/eccpweb/index.html
http://eprint.iacr.org/2015/477
http://eprint.iacr.org/2015/477
https://doi.org/http://dx.doi.org/10.1007/978-3-319-31517-1_7
https://doi.org/http://dx.doi.org/10.1007/978-3-319-31517-1_7
https://web.archive.org/web/20150831131731/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://web.archive.org/web/20150831131731/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://web.archive.org/web/20150831131731/https://www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml
https://doi.org/http://dx.doi.org/10.6028/NIST.SP.800-131Ar1
https://doi.org/http://dx.doi.org/10.6028/NIST.SP.800-131Ar1

Bibliography

[OST06] Dag Arne Osvik et al. “Cache Attacks and Countermeasures: The Case of AES”.
In: Topics in Cryptology – CT-RSA 2006: The Cryptographers’ Track at the RSA
Conference 2006, San Jose, CA, USA, February 13-17, 2005. Proceedings. Ed.
by David Pointcheval. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–
20. ISBN: 978-3-540-32648-9. DOI: 10.1007/11605805_1.

[PD11] Zdenek Paral and Srinivas Devadas. “Reliable and efficient PUF-based key gener-
ation using pattern matching”. In: Hardware-Oriented Security and Trust (HOST),
2011 IEEE International Symposium on. IEEE. 2011, pp. 128–133.

[PG057] Xilinx Inc. FIFO Generator v13.1. LogiCORE IP Product Guide PG057. Apr. 5,
2017.

[Pol78] John M Pollard. “Monte Carlo methods for index computation (mod p)”. In: Math-
ematics of computation 32.143 (1978), pp. 918–924.

[PR79] Shmuel Peleg and Azriel Rosenfeld. “Breaking Substitution Ciphers Using a Re-
laxation Algorithm”. In: Commun. ACM 22.11 (Nov. 1979), pp. 598–605. ISSN:
0001-0782. DOI: 10.1145/359168.359174.

[PZ03] John Proos and Christof Zalka. “Shor’s discrete logarithm quantum algorithm for
elliptic curves”. In: Quantum Information & Computation 3.4 (2003), pp. 317–
344.

[RA03] GVS Raju and Rehan Akbani. “Elliptic curve cryptosystem and its applications”.
In: Systems, Man and Cybernetics, 2003. IEEE International Conference on.
Vol. 2. IEEE. 2003, pp. 1540–1543.

[Res17] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC. Fre-
mont, CA, USA: RFC Editor, July 3, 2017. URL: https://tools.ietf.org/html/
draft-ietf-tls-tls13-21 (visited on 08/02/2017). draft.

[RFC 4880] J. Callas et al. OpenPGP Message Format. RFC 4880 (Proposed Standard). RFC.
Updated by RFC 5581. Fremont, CA, USA: RFC Editor, Nov. 2007. DOI: 10.17487/
RFC4880. URL: https://www.rfc-editor.org/rfc/rfc4880.txt.

[RFC 5246] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard). RFC. Updated by RFCs 5746, 5878, 6176,
7465, 7507, 7568, 7627, 7685, 7905, 7919. Fremont, CA, USA: RFC Editor, Aug.
2008. DOI: 10.17487/RFC5246. URL: https://www.rfc- editor.org/rfc/
rfc5246.txt.

[RFC 5639] M. Lochter and J. Merkle. Elliptic Curve Cryptography (ECC) Brainpool Stan-
dard Curves and Curve Generation. RFC 5639 (Informational). RFC. Fremont, CA,
USA: RFC Editor, Mar. 2010. DOI: 10.17487/RFC5639. URL: https://www.rfc-
editor.org/rfc/rfc5639.txt.

[RFC 6101] A. Freier et al. The Secure Sockets Layer (SSL) Protocol Version 3.0. RFC 6101
(Historic). RFC. Fremont, CA, USA: RFC Editor, Aug. 2011. DOI: 10 . 17487 /
RFC6101. URL: https://www.rfc-editor.org/rfc/rfc6101.txt.

[RFC 7905] A. Langley et al. ChaCha20-Poly1305 Cipher Suites for Transport Layer Security
(TLS). RFC 7905 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, June
2016. DOI: 10.17487/RFC7905. URL: https://www.rfc- editor.org/rfc/
rfc7905.txt.

[RG14] SC Rachana and HS Guruprasad. “Emerging Security Issues and challenges in
cloud computing”. In: International Journal of Engineering Science and Innova-
tive Technology 3 (2 2014). ISSN: 2319-5967.

XX

https://doi.org/10.1007/11605805_1
https://doi.org/10.1145/359168.359174
https://tools.ietf.org/html/draft-ietf-tls-tls13-21
https://tools.ietf.org/html/draft-ietf-tls-tls13-21
https://doi.org/10.17487/RFC4880
https://doi.org/10.17487/RFC4880
https://www.rfc-editor.org/rfc/rfc4880.txt
https://doi.org/10.17487/RFC5246
https://www.rfc-editor.org/rfc/rfc5246.txt
https://www.rfc-editor.org/rfc/rfc5246.txt
https://doi.org/10.17487/RFC5639
https://www.rfc-editor.org/rfc/rfc5639.txt
https://www.rfc-editor.org/rfc/rfc5639.txt
https://doi.org/10.17487/RFC6101
https://doi.org/10.17487/RFC6101
https://www.rfc-editor.org/rfc/rfc6101.txt
https://doi.org/10.17487/RFC7905
https://www.rfc-editor.org/rfc/rfc7905.txt
https://www.rfc-editor.org/rfc/rfc7905.txt

Bibliography

[RM08] Chester Rebeiro and Debdeep Mukhopadhyay. “High Speed Compact Elliptic
Curve Cryptoprocessor for FPGA Platforms.” In: Indocrypt. Vol. 5365. Springer.
2008, pp. 376–388. DOI: 10.1007/978-3-540-89754-5_29.

[RS04] Phillip Rogaway and Thomas Shrimpton. “Cryptographic Hash-Function Ba-
sics: Definitions, Implications, and Separations for Preimage Resistance, Sec-
ond-Preimage Resistance, and Collision Resistance”. In: Fast Software En-
cryption: 11th International Workshop, FSE 2004, Delhi, India, February 5-7,
2004. Revised Papers. Ed. by Bimal Roy and Willi Meier. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 371–388. ISBN: 978-3-540-25937-4. DOI:
10.1007/978-3-540-25937-4_24.

[RSA78] Ronald L Rivest et al. “A method for obtaining digital signatures and public-key
cryptosystems”. In: Communications of the ACM 21.2 (1978), pp. 120–126.

[RSAC91] RSA Laboratories. The RSA Factoring Challenge FAQ. Mar. 18, 1991. URL: https:
//www.emc.com/emc- plus/rsa- labs/historical/the- rsa- factoring-
challenge-faq.htm (visited on 07/31/2017).

[Ryo14] J. Ryoo et al. “Cloud Security Auditing: Challenges and Emerging Approaches”.
In: IEEE Security Privacy 12.6 (Nov. 2014), pp. 68–74. ISSN: 1540-7993. DOI:
10.1109/MSP.2013.132.

[SA03] Sergei P. Skorobogatov and Ross J. Anderson. “Optical Fault Induction Attacks”.
In: Cryptographic Hardware and Embedded Systems - CHES 2002: 4th Inter-
national Workshop Redwood Shores, CA, USA, August 13–15, 2002 Revised
Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 2–12. ISBN:
978-3-540-36400-9. DOI: 10.1007/3-540-36400-5_2.

[SA11] Mostafa I. Soliman and Ghada Y. Abozaid. “FPGA implementation and perfor-
mance evaluation of a high throughput crypto coprocessor”. In: Journal of Par-
allel and Distributed Computing 71.8 (2011), pp. 1075–1084. ISSN: 0743-7315.
DOI: https://doi.org/10.1016/j.jpdc.2011.04.006.

[Sch13] Klaus Schmeh. Kryptografie - Verfahren, Protokolle, Infrastrukturen (5. Aufl.).
dpunkt.verlag, 2013, pp. I–XXVII, 1–772. ISBN: 978-3-89864-435-8.

[Sch98] Bruce Schneier et al. “Twofish: A 128-bit block cipher”. In: NIST AES Proposal
15 (1998).

[SDI11] G. D. Sutter et al. “Modular Multiplication and Exponentiation Architectures for
Fast RSA Cryptosystem Based on Digit Serial Computation”. In: IEEE Transac-
tions on Industrial Electronics 58.7 (July 2011), pp. 3101–3109. ISSN: 0278-0046.
DOI: 10.1109/TIE.2010.2080653.

[SG14] Pascal Sasdrich and Tim Güneysu. “Efficient Elliptic-Curve Cryptography Using
Curve25519 on Reconfigurable Devices.” In: ARC 8405 (2014), pp. 25–36.

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and em fault-attacks on crt-based
rsa: Concrete results. 2007.

[Sha45] Claude E. Shannon. “A Mathematical Theory of Cryptography”. Sept. 1, 1945.

[Sha71] Daniel Shanks. “Class number, a theory of factorization and genera”. In: Proc.
Symp. Pure Math, 1971. Vol. 20. 1971, pp. 415–440.

[Sho99] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer”. In: SIAM Review 41.2 (1999), pp. 303–
332. ISSN: 00361445. URL: http://www.jstor.org/stable/2653075.

[Sin68] A. Sinkov. Elementary Cryptanalysis: A Mathematical Approach. Mathematical
Association of America Textbooks. Mathematical Association of America, 1968.
ISBN: 9780883856222.

XXI

https://doi.org/10.1007/978-3-540-89754-5_29
https://doi.org/10.1007/978-3-540-25937-4_24
https://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge-faq.htm
https://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge-faq.htm
https://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge-faq.htm
https://doi.org/10.1109/MSP.2013.132
https://doi.org/10.1007/3-540-36400-5_2
https://doi.org/https://doi.org/10.1016/j.jpdc.2011.04.006
https://doi.org/10.1109/TIE.2010.2080653
http://www.jstor.org/stable/2653075

Bibliography

[SK05] N. Sklavos and O. Koufopavlou. “Implementation of the SHA-2 Hash Family
Standard Using FPGAs”. In: The Journal of Supercomputing 31.3 (Mar. 2005),
pp. 227–248. ISSN: 1573-0484. DOI: 10.1007/s11227-005-0086-5.

[SS15] A. Soltani and S. Sharifian. “An ultra-high throughput and fully pipelined imple-
mentation of AES algorithm on FPGA”. In: Microprocessors and Microsystems
39.7 (2015), pp. 480–493. ISSN: 0141-9331. DOI: https://doi.org/10.1016/j.
micpro.2015.07.005.

[Ste17] Marc Stevens et al. “The first collision for full SHA-1.” In: IACR Cryptology ePrint
Archive 2017 (2017), p. 190.

[Sug13] Jarosław Sugier. “Implementing Salsa20 vs. AES and Serpent Ciphers in Popular-
Grade FPGA Devices”. In: New Results in Dependability and Computer Systems:
Proceedings of the 8th International Conference on Dependability and Com-
plex Systems DepCoS-RELCOMEX, September 9-13, 2013, Brunów, Poland. Ed.
by Wojciech Zamojski et al. Heidelberg: Springer International Publishing, 2013,
pp. 431–438. ISBN: 978-3-319-00945-2. DOI: 10.1007/978-3-319-00945-2_39.

[SW12] Sergei Skorobogatov and Christopher Woods. “Breakthrough Silicon Scanning
Discovers Backdoor in Military Chip”. In: Cryptographic Hardware and Embed-
ded Systems – CHES 2012: 14th International Workshop, Leuven, Belgium,
September 9-12, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 23–40. ISBN: 978-3-642-33027-8. DOI: 10.1007/978- 3- 642-
33027-8_2.

[Tan03] Andrew S Tanenbaum et al. “Computer networks, 4-th edition”. In: ed: Prentice
Hall (2003).

[Tho84] Ken Thompson. “Reflections on trusting trust”. In: Communications of the ACM
27.8 (1984), pp. 761–763.

[TM14] Steve Trimberger and Jason Moore. “FPGA security: From features to capabili-
ties to trusted systems”. In: Proceedings of the 51st Annual Design Automation
Conference. ACM. 2014, pp. 1–4.

[TPM2] TPM Main Specification Level 2. Tech. rep. Trusted Computing Group (TCG),
2011. URL: https://trustedcomputinggroup.org/tpm-main-specification.

[Tri07] Steve Trimberger. “Trusted design in FPGAs”. In: Proceedings of the 44th annual
Design Automation Conference. ACM. 2007, pp. 5–8.

[UG470] Xilinx Inc. 7 Series FPGAs Configuration. User Guide 470. 1.11. Sept. 27, 2016.

[UG900] Xilinx Inc. Logic Simulation. Vivado Design Suite User Guide 900. Version 2016.4.
Nov. 30, 2016.

[UG902] Xilinx Inc. High-Level Synthesis. Vivado Design Suite User Guide 902. Ver-
sion 2017.1. Apr. 5, 2017.

[UY06] M. F. Uddin and A. M. Youssef. “Cryptanalysis of Simple Substitution Ciphers Us-
ing Particle Swarm Optimization”. In: 2006 IEEE International Conference on Evo-
lutionary Computation. 2006, pp. 677–680. DOI: 10.1109/CEC.2006.1688376.

[Wal08] John Walker. A Pseudorandom Number Sequence Test Program. Jan. 28, 2008.
URL: http://www.fourmilab.ch/random/ (visited on 08/16/2017).

[WBC13] Felix Winterstein et al. “High-level synthesis of dynamic data structures: A case
study using Vivado HLS”. In: Field-Programmable Technology (FPT), 2013 Inter-
national Conference on. IEEE. 2013, pp. 362–365.

XXII

https://doi.org/10.1007/s11227-005-0086-5
https://doi.org/https://doi.org/10.1016/j.micpro.2015.07.005
https://doi.org/https://doi.org/10.1016/j.micpro.2015.07.005
https://doi.org/10.1007/978-3-319-00945-2_39
https://doi.org/10.1007/978-3-642-33027-8_2
https://doi.org/10.1007/978-3-642-33027-8_2
https://trustedcomputinggroup.org/tpm-main-specification
https://doi.org/10.1109/CEC.2006.1688376
http://www.fourmilab.ch/random/

Bibliography

[WT86] A. F. Webster and S. E. Tavares. “On the Design of S-Boxes”. In: Advances in
Cryptology — CRYPTO ’85 Proceedings. Ed. by Hugh C. Williams. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1986, pp. 523–534. ISBN: 978-3-540-39799-1.
DOI: 10.1007/3-540-39799-X_41.

[WW16] Erich Wenger and Paul Wolfger. “Harder, better, faster, stronger: elliptic curve
discrete logarithm computations on FPGAs”. In: Journal of Cryptographic Engi-
neering 6.4 (2016), pp. 287–297.

[ZMH09] Gang Zhou et al. “Improving Throughput of AES-GCM with Pipelined Karatsuba
Multipliers on FPGAs.” In: ARC. Springer. 2009, pp. 193–203.

[ZQ14] J. Zhang and G. Qu. “A survey on security and trust of FPGA-based systems”.
In: 2014 International Conference on Field-Programmable Technology (FPT). Dec.
2014, pp. 147–152. DOI: 10.1109/FPT.2014.7082768.

XXIII

https://doi.org/10.1007/3-540-39799-X_41
https://doi.org/10.1109/FPT.2014.7082768

Appendix

A SecFPGA-Hypervisor Commands

63 56 55 24 23 0

cmd subsequent data length extra data

Figure A.1: General structure of SecFPGA-Hypervisor commands.

slo
t 5
slo

t 4
slo

t 3
slo

t 2
slo

t 1
slo

t 0

63 56 55 24 23 22 21 20 19 18 17 0

0x00 0x00000009 slots

client random

233-bit public key, x component

padded with 0

233-bit public key, y component

padded with 0

Figure A.2: Structure of command 0x00: request a new session in selected slots.

A-1

Appendix

63 56 55 24 23 0

0x01 vFPGA bitstream length padded with 0

hhh
hhh

vFPGA bitstream

Figure A.3: Structure of command 0x01: client’s vFPGA bitstream. The whole command is
encrypted with the client_write_key.

63 56 55 24 23 0

0x80 0x00000009

session random

233-bit public key, x component

padded with 0

233-bit public key, y component

padded with 0

Figure A.4: Structure of command 0x80: upload session key to client.

A-2

A SecFPGA-Hypervisor Commands

63 56 55 24 23 0

0x81 0x0000007A padded with 0 0x00

certificate 0x01
hhh

hhh

114 words for 909 bytes

0x71

padded with 0 0x72

0x73

233-bit certificate verify (ECDSA signature: r component)

padded with 0 0x76

0x77

233-bit certificate verify (ECDSA signature: s component)

padded with 0 0x7A

Figure A.5: Structure of command 0x81: upload the DER-formatted certificate and an ECDSA
signature of the “verify” hash. The whole command is encrypted with the
server_write_key.

63 56 55 24 23 0

0x82 0x00000009 padded with 0 0x00

padded with 0 0x01

0x02

“final” hash of complete handshake

0x09

Figure A.6: Structure of command 0x82: send final handshake message. The whole command
is encrypted with the server_write_key.

A-3

B Certificate of a SecFPGA

B Certificate of a SecFPGA

Certificate:
Data:

Version: 3 (0x2)
Serial Number:

7f:a1:92:82:67:90:9d:69:40:a7:31:69:56:5c:6e:7c:63:4f:1d:17
Signature Algorithm: sha256WithRSAEncryption

Issuer: C = DE, ST = SX, L = Dresden, O = SecureCloudHW,
CN = secure-accelerator.de

Validity
Not Before: Oct 23 14:13:50 2017 GMT
Not After : Oct 23 14:13:50 2019 GMT

Subject: C = DE, ST = SX, L = Dresden, O = SecureCloudHW,
CN = 13A7FC.secure-accelerator.de

Subject Public Key Info:
Public Key Algorithm: id-ecPublicKey

Public-Key: (233 bit)
pub:

04:01:b2:3b:a2:3c:3e:8e:e5:a7:99:e7:20:2e:1d:
41:ec:31:c2:98:be:1b:90:56:3c:30:6f:ff:ba:93:
70:00:c2:80:e4:8d:45:77:3e:de:2c:db:70:16:54:
b7:80:99:df:79:81:e2:90:0c:50:51:18:5c:9d:1c:
5c

ASN1 OID: sect233r1
NIST CURVE: B-233

Signature Algorithm: sha256WithRSAEncryption
6f:b9:bb:93:53:07:d3:02:d9:6d:b7:a8:74:8d:24:6f:e3:a9:
f6:c0:9b:57:13:1a:76:72:b1:8c:2b:8b:f6:e7:79:de:be:84:
f0:39:c7:59:e2:ec:74:4e:f6:e0:c6:ac:18:5a:81:85:6f:bf:
47:c1:ab:a0:a8:ff:1b:51:8a:48:c4:ba:63:d1:fc:97:76:6f:
61:44:7a:24:0e:d5:c9:3a:05:57:78:7c:c5:cc:29:6d:2c:ad:
9d:6b:e6:42:c4:61:2d:80:27:54:c0:86:1f:8a:5f:10:c1:97:
48:14:88:c0:66:f5:2b:d7:ed:60:bf:24:06:f4:44:02:e4:52:
58:50:9c:64:e0:2b:26:87:82:3a:4c:ca:05:dd:6e:75:29:25:
21:2d:59:14:98:75:89:f5:64:fc:9c:66:04:31:cb:59:d8:83:
1e:78:9b:6f:9a:77:35:94:aa:23:ba:02:6f:86:c5:f4:da:d6:
0f:85:75:6a:57:86:a3:5b:86:5f:c6:3e:44:aa:fe:0f:36:c1:
69:57:a5:26:a3:66:09:51:59:f0:03:83:92:11:0a:fa:4a:6a:
2d:91:4d:9d:7d:79:24:03:19:8f:b7:e7:48:7d:80:c5:a5:e9:
7b:7c:6f:68:83:14:28:fa:9b:8b:9c:5b:aa:e5:0e:cc:02:ef:
7d:c2:dc:fd:f8:2a:6e:78:d3:15:a1:57:b7:20:57:1a:eb:c0:
67:14:24:d6:a1:b1:31:5b:7b:a8:17:4d:da:5f:42:d8:2a:f7:
96:d8:ca:b4:bb:d6:b4:37:fe:af:cb:21:ec:9d:95:87:d3:e6:
fd:7c:e4:38:6b:cb:7c:df:fd:2c:97:4e:30:a1:cc:18:27:0d:
eb:67:2d:05:a6:8a:1d:01:2a:29:47:7b:f0:5c:06:19:2c:b0:
3b:4e:71:25:67:26:16:71:ce:41:4c:a7:a5:61:ae:55:6c:49:
10:86:94:3f:50:a7:c6:ed:78:68:9d:d3:7e:78:ee:01:20:f5:
9d:e4:29:0f:ca:ba:71:9e:f0:46:db:84:2e:7c:de:0f:72:1c:
19:d8:68:10:64:db:ac:7c:ac:75:85:c5:7c:55:aa:42:89:60:
aa:15:42:6a:b1:c8:30:07:f5:5f:c7:e2:1b:99:0b:de:bb:b1:
4a:c8:fd:53:6e:f4:3f:c4:91:7c:92:15:5c:85:00:ee:d1:f8:
49:60:d6:2f:96:81:ab:46:2f:a3:44:fd:21:20:fa:60:fc:34:
69:81:58:b4:ea:ab:b8:85:5b:30:ee:2f:8d:58:b5:8d:65:db:
65:d6:23:ca:da:fd:fb:20:36:d1:44:3e:28:81:63:b6:bc:55:
1b:ea:09:de:f9:b6:13:7c

B-1

Appendix

,

B-2

	Title page
	Abstract/Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background and Related Work
	Background
	Symmetric Cryptography
	Advanced Encryption Standard
	Other Symmetric Encryption Algorithms
	Comparison of Symmetric Cryptographic Systems

	Asymmetric Cryptography
	RSA Cryptosystem
	Elliptic Curve Cryptography
	Comparison of Asymmetric Cryptographic Systems
	Diffie-Hellman Key Exchange

	Digital Signatures
	Hash Functions
	Message Authentication Code
	Certificates
	TLS Protocol

	Related work
	Security Concerns in Cloud Computing
	Approaches on Cloud Security
	Virtual FPGAs for the Cloud
	FPGA Security Concepts
	Approaches on Security of Remote FPGAs

	Design
	Threat Model
	Trust Model
	Host/FPGA-Hypervisor
	Initializing a Secure Connection
	Data Encryption
	Sharing a Common Secret
	Authenticity of an Accelerator
	Message Authentication
	Bitstream Transfer Protocol

	Robust Virtualization of Reconfigurable Logic
	Limiting the Reconfigurability
	Overlapping Resources

	From Design to Hardware

	SecFPGA-Hypervisor Implementation
	EC Key Processor
	Elliptic Curve Multiplier
	True Random Number Generator
	Key Derivation
	ECDSA

	Command Decoder
	Hash
	Certificate

	Key Store
	Configuration Filter
	Encryption Engines

	Results
	Security Evaluation
	Deployment Delay
	Precomputations for a TLS Handshake
	Computations during a TLS Handshake

	Extra Latency Through AES
	Resource Utilization of the SecFPGA-Hypervisor
	Resource Utilization of the EC Key Processor
	Resource Utilization of the CMD Decoder
	Resource Utilization of the AES Cores
	Estimated Utilization of an Optimized Implementation

	Conclusions and Future Work
	Bibliography
	Appendix
	SecFPGA-Hypervisor Commands
	Certificate of a SecFPGA

