
Neurophysiological Measure of Effort in Program Comprehension

by Brajesh Karna, Bachelor of Science

A Thesis Submitted in Partial
Fulfillment of the Requirements

for the Degree of
Master of Science

in the field of Computer Science

Advisory Committee:

Igor Crk, PhD., Chair

Dennis Bouvier, PhD.

Mark McKenney, PhD.

Graduate School
Southern Illinois University Edwardsville

December, 2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10637810

10637810

2017

c© Copyright by Brajesh Karna December, 2017
All rights reserved

ABSTRACT

NEUROPHYSIOLOGICAL MEASURE OF EFFORT IN PROGRAM
COMPREHENSION

by

BRAJESH KARNA

Chairperson: Igor Crk, PhD.

The recent proliferation of inexpensive electroencephalography (EEG) devices is

fueling a rising interest in associating detectable indicators of brain activity with human

performance factors. In this thesis, the focus is on programmer effort in program

comprehension tasks. Traditionally, measures of effort are made using self-reported

surveys (NASA-TLX), task timing, and task accuracy. This work explores the feasibility

of using EEG to produce a more direct and quantitative measure of effort. Effort is

measured across a number of tasks with varying difficulty and comparisons are made

between traditional and EEG measures of effort. Initially, the program comprehension

tasks are ranked in order of complexity as computed by a number of classic software

complexity metrics, such as Halstead’s complexity metrics and McCabe’s cyclomatic

complexity. Likewise, we compute a ranking of tasks based on observed effort as a basis

of comparison between EEG and complexity measures.

ii

ACKNOWLEDGEMENTS

I wish to express my enormous gratitude to my supervisor and my thesis advisor Dr.

Igor Crk of the Southern Illinois University at Edwardsville for his continuous support

during my Master’s study and in this research work. I would like to thank for his patience,

motivation, immense knowledge and his guidance throughout this research work.

I would also like to thank Mr. Cagatay Bilgin from Industrial engineering through

URCA program for helping me with conducting the experiment and also all the participants

for their participation in the experiment.

I would also like to acknowledge Dr. Dennis J Bouvier and Dr. Mark McKenney of

the SIU at Edwardsville as being on my thesis committee and the second reader of this

thesis and I am grateful for their very valuable comments on this thesis.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . vi

LIST OF TABLES . vii

Chapter

1. Introduction . 1

2. Background . 3

2.1 EEG . 3
2.2 Alpha and Theta Waves . 4
2.3 Cognitive Load . 6
2.4 Software Complexity Metrics . 7

2.4.1 Lines of code (LOC) . 7
2.4.2 Example 1: lines of code 9
2.4.3 Example 2: lines of code 9
2.4.4 Halstead’s complexity metric (HCM) 10
2.4.5 Example 1: Halstead complexity metric 11
2.4.6 Example 2: Halstead complexity metric 13
2.4.7 McCabe cyclomatic complexity measures (CCM) 14
2.4.8 Example 1: McCabe cyclomatic complexity 15
2.4.9 Example 2: McCabe cyclomatic complexity 16

3. Methodology . 17

3.1 Experimental Tasks . 17
3.2 Instrumentation . 19
3.3 Procedure . 19

3.3.1 Pre-experimental session 19
3.3.2 Experimental session . 25
3.3.3 Post-experimental session 25

3.4 Signal Analysis . 26

4. Results . 29

4.1 Computation with Complexity Metric 29
4.2 Correct Response for the Tasks . 31

iv

4.3 Regression Analysis: All Tasks Individually 31
4.4 Regression Analysis: Easy vs Hard Tasks 34

5. Discussion . 36

5.1 Interpretation of Results . 36
5.2 Threats to Validity . 37

6. Future Works . 39

7. Conclusion . 40

REFERENCES . 41

APPENDICES . 44

A. NASA-TLX Survey Data . 44

B. Experimental Tasks . 45

v

LIST OF FIGURES

Figure Page

3.1 Process . 18
3.2 Electrode position . 20
3.3 Cap fitted with electrodes . 21
3.4 AutoTask program rest screen . 22
3.5 AutoTask program task screen . 23
3.6 Modified NASA-TLX . 26
3.7 Pwelch rest vs trial . 28

4.1 Correct response for tasks . 31
4.2 Task vs upper alpha . 33
4.3 Task vs lower 2 alpha . 33
4.4 Task vs lower 1 alpha . 33
4.5 Task vs theta . 33
4.6 Task vs survey mental demand . 34
4.7 Task vs survey stress level . 34
4.8 Task vs duration . 34

vi

LIST OF TABLES

Table Page

2.1 Physical and logical SLOC counting rule 8
2.2 Logical SLOC rules for counting in higher level languages 9
2.3 Source lines of code example 1 . 9
2.4 Source lines of code example 2 . 10
2.5 Halstead calculation example 1 . 12
2.6 Halstead calculation example 2 . 13

3.1 Participant pre survey . 24

4.1 Calculated code complexity . 30
4.2 Linear regression analysis . 32
4.3 Linear regression analysis . 35

vii

CHAPTER 1

Introduction

Brain-computer interfaces (BCI) based on electroencephalography (EEG) are widely

used in research for monitoring electric signals generated by the brain. This approach is

relatively new in the area of program comprehension. Building on prior work, which focused

on measures of expertise, this work likewise uses EEG-based, passive BCI measurements

to determine programmer effort in program comprehension tasks. Where prior work fixed

the difficulty of tasks and used a sample population with a range of expertise, this work

fixes the sample population to a narrow range of expertise, varying the tasks instead.

Software complexity measures, like Halstead’s measures of programming effort based

on counting operands and operators or McCabe’s cyclomatic complexity based on counting

the number of linearly independent paths through a program, provide an approximation of

effort required to write or understand code. These same measures are used here to ensure

that, at least in approximation, the programming tasks represent a range of complexity,

and so intuitively, a range of difficulty which ought to elicit different levels of effort. Using

EEG, this study explores whether near-direct measurements of effort reflect the expected

effort, given by the classic software complexity measures.

Additionally, participants were asked to report on their perceived effort on each task

after the experiments. This was done with a modified NASA-TLX pencil-and-paper

instrument.

Throughout the rest of the paper, we explore these findings, identifying brain waves

that appears in problem solving. This study may help software development agencies,

institutions or future authors to set a guideline about the effort for a particular algorithm

to be understood or written. Thus, this work may help better understand the code

complexity with respect to programmer effort.

2

This paper proceeds as follows: Chapter 2 will discuss related work, specifically the

EEG, cognitive load, traditional complexity metric, and program comprehension; Chapter

3 focuses on procedure of the experiment, experimental tasks and signal analysis; Chapter

4 and 5 provides details about the findings and statistical analysis; Chapter 6 and 7 will

discuss about future works and conclude.

3

CHAPTER 2

Background

This chapter provides an overview of the past work relating to EEG, program complexity

measures, and the role of working memory in program comprehension. This chapter

explains the following: Brief introduction to EEG (2.1), Alpha and Theta waves (2.2),

theories of cognitive load (2.3), and software complexity metrics (2.4).

2.1 EEG

Neurons are a type of cell which transmit information through electrical signal in

the brain . After the development of electroencephalography in 1924 [Ber29] it has been

used for detecting and recording the electrical impulses produced by the sum of the

synchronized activity of neurons. Electrodes are placed on scalp and the detected signal

are then amplified by a factor of approximately 1000 to record them. With the help

of EEG now it is possible to view the neural activity in the form of electrical potential

generated in the brain ranges from 5µV to 100µV . Berger et. al. [Ber29] provided

evidence that human brain has a certain rhythm. He found that when at rest with closing

eyes the electrical activity in brain produces high amplitude oscillation (10Hz) and he

termed as “alpha rhythm” and with open eyes faster rhythmic activity was observed with

lower amplitude and the 10Hz “alpha rhythm” was dominated an so he called it “beta

rhythm”. Those synchronized activity is broadly categorized as various rhythmic waves.

By the help of EEG broad range of signals having different frequency, amplitude and

phase are captured and recorded. Distinct oscillatory activity has been detected within

those frequency bands. Alpha and theta waves are specifically of interest in this study, as

these are related to cognitive load [Kli99]. The alpha wave falls in the frequency range of

8Hz to 13Hz, theta falls within the range of 4Hz to 8Hz. The alpha frequency is related

to cognitive performance. The theta wave is seen as complementary to alpha: where the

4

amplitude of one increases with performance, the other is generally expected to decrease

and vice versa [Kli99], Delta wave falls within the range of 1Hz to 4Hz and are normally

present during deep sleep [HPS02], beta falls within the range of 13Hz to 30Hz and is

widely considered to reflect motor activity [Bak07]. Gamma are withing the frequency

range of 30Hz to 70Hz and are confounded by the presence of ambient electrical noise.

Beta and gamma waves are not of interest for this study.

There are other modern neuroimaging tools used in the market such as functional

magnetic resonance imaging (fMRI), positron emission tomography (PET), but they

rely on hemodynamic response which means observing the localized blood volume and

oxygenation changes in the brain but EEG provides excellent temporal resolution in the

range of milliseconds and records neural activity in the real time [SK08], electrocorticogram

which requires surgical procedure to install into the skull, and magnetoencephalogram

which is very expensive so is commonly not used. This makes EEG the equipment of

choice to use broadly in research.

2.2 Alpha and Theta Waves

Alpha brain waves are most prominently observed under deep relaxation when the eyes

are closed with no complex cognitive tasks first reported in [Ber29]. These waves, arising

from synchronous and coherent electrical activity of thalamic pacemaker cells in brain,

may be detected by either electroencephalography (EEG) or magnetoencephalography

(MEG). Klimesch, et. al, reported that the peak frequency of alpha waves falls within the

frequency range of 8Hz to 13Hz in healthy adult person and the mean frequency of alpha

power can be calculated with the Equation 2.1 [Kli99]. While the functional significance of

alpha brain wave is unknown, they are generally seen as most prominent during cognitive

inactivity [Kli96]. In our study it was observed that when the brain is relaxing with the

absence of a task the alpha power increases, confirming prior observations [KSH07, Kli99,

CBCG06, JGKL02] and the decrease in alpha power is detected at the presence of a task

5

which shows there is cognitive load and occurs when group of neurons activate to fulfill

the task demand [KSH07, RMT07]. Prior studies [Ber29, Kli99] have also shown that

alpha slightly desynchronizes with open eyes so to find the basis for computing relative

measure for the trial and rest Fourier transform based power estimation was used.∑
(a(f)× f))

(
∑
a(f))

(2.1)

where power spectral estimates at frequency f are denoted by a(f)

Alpha frequency varies between individual and also with the age group. Is has been shown

the increase of alpha frequency from childhood to adulthood and decrease with increasing

age [Kli99] which can be seen from the equation 2.2.

Peak Alpha Frequency = 11.95− 0.053 ∗ Age (2.2)

While analyzing the signal in this study, rather than computing the overall alpha frequency,

we computed the Individual Alpha Frequency (IAF) for each participant. IAF is used to

define the alpha frequency range as three sub-bands [Kli99], termed the Lower 1 Alpha

(L1A), which ranges from IAF-4 to IAF-2, Lower 2 Alpha (L2A), ranging from IAF-2

to IAF, and Upper Alpha (UA), ranging from IAF to IAF+2. We also included theta,

which falls in the range of IAF-6 to IAF-4. Generally, power at the theta frequencies is

seen to vary inversely with the power at the alpha frequency.

Event-related desynchronization (ERD) is when all the neurons do not synchronize

together and this phenomenon can be seen when there is any observed task demand. ERD

can be calculated as the percentage of band power change between the resting period

preceding a trial and the trial itself.

ERD =
(band power)r − (band power)t)

(band power)r
× 100 (2.3)

Where r = rest and t = trial

6

The duration of the ERD and task duration are closely related [KSSW90], meaning

that we can use the entire task period for evaluating the relative change in alpha power

with respect to the resting period. Briefly then, when more desynchronization is observed

in the L1A sub-band the attentional demands of the given task are higher for the given

participant. When more desynchronization is observed in the UA sub-bands, it is indicative

of more semantic memory processing [Kli99]. These two sub-bands are therefore the

best candidates for attaining a workload estimate as it relates to participant expertise,

including something as specific as computer programming expertise.

2.3 Cognitive Load

The Cognitive Load Theory (CLT) which shows how the working memory and long

term memory are connected in human. The Working Memory, has two main characteristics,

First, it is very limited in capacity [Mil56, Cow01]. Miller et. al. shows the capacity

to hold item in working memory is 7 but based on recent study Cowan et. al. shows

the number to be 4. Second, duration is very limited [PP59]. Peterson et. al. shows

the working memory can only hold information for few seconds and it takes 20 seconds

for information to be completely lost. Working memory is the one which is responsible

for information retrieval, processing, and integration [Bad92]. Spectral change in alpha

and theta relates to the performance of working memory [Kli99, SAK11]. It can be

believed that the phasic change in alpha and theta observed during the experiment

while participant solves the programming tasks shows the working memory load. With

simple tasks like single assignment variable task the desynchronization is low and with

more complex task where the working memory has to perform more computation the

desynchronization is observed high.

In the past CLT research were performed based on the self reported measures

for participant rating their cognitive effort on an ordinal scale immediately after the

tasks [Paa92, Har06]. The working memory performance were calculated based on the

7

accuracy and time to perform tasks and based on the participant self reported data which

are approximate. But, by the help of EEG by observing the phasic change in alpha and

theta the real time performance of cognitive load can be reported.

2.4 Software Complexity Metrics

Software complexity is an interesting area of research because it can be used for

projection of cost, allocation of manpower, evaluation of program and also programmers.

The complexity are based on number of factors such as size of the program, number

of control structures, number of operators and operators in the program etc. To fully

understand the concept of software complexity metric we should know about what

makes the program complex. For example, computer complexity can be determined

by computation capacity, storage requirement and the execution time, similarly for

programmer, complexity can be determined by testing, modifying, coding the software.

Halstead et. al. explain the term “software complexity” as the interaction between a

program and a programmer working on some task [Hal77].

In this study, software complexity metrics are used to approximate the expected

effort needed to comprehend the task, which is a snippet of code with some expected

output. Tasks are ordered by difficulty, i.e. expected effort, based on one or more software

complexity metrics, to make comparison with EEG-based measures more direct.

2.4.1 Lines of code (LOC)

Counting lines of code (LOC or SLOC) is a well known, simple metric for measuring

the size of a software product, typically factoring into sizing and estimation of cost for

software products [BAC00]. A significant number of commercially available estimation

tools (such as COCOMO II, True-S, SLIM, and CostExpert), use the LOC metric and

tend to produce different results [NDRTB07], stemming from varying interpretations of

physical and logical line counts. Clearly, there is a need for a consistent and objective

8

measure of complexity.

Physical and Logical lines of code are the two most popularly accepted source lines

of code (SLOC) measures. Counting with physical source lines of code (PSLOC) is

performed by counting all the lines excluding white spaces, blanks and comments and are

independent of any languages. On the other hand logical source lines of code (LSLOC)

are based on counting statements which basically are terminated by semicolon. If the

logical statements are span into many lines or it is in one line is counted once. Some

higher languages not having semicolon in their statements contradicts the logical source

lines of code [NDRTB07].

Physical and logical source lines of code counts based on Nguyen’s SLOC counting

standard [NDRTB07] are performed on all experimental tasks and are included in Table 4.1.

Table 2.1 summarizes the rules for counting PSLOC and LSLOC. Table 2.2 summarizes

counting rules for higher-order languages, like C, C++, Java, and C#. Additionally, two

examples are given: Example in section 2.4.2 shows the LOC calculations and results for

a simple task used in the study, while Example in section 2.4.3 shows the counts for a

more complex task.

Measurement Unit PSLOC (count per

line)

LSLOC (count per

line)

Lines which execute

statement 1 language independent

Lines which do not exe-

cute

declaration 1 1 per declaration

compiler directives 1 for each directive

Table 2.1: Physical and logical SLOC counting rule

9

Measurement Unit LSLOC (count per occur-

rences)

conditional statements 1

loops 1

jumps 1

expressions 1

general statements

which ends with semicolon 1

braces, block delimeters 1 per pair

directives 1

declarations eg. struct class etc. 1

Table 2.2: Logical SLOC rules for counting in higher level languages

2.4.2 Example 1: lines of code

public class task2

{

public static void main(String arg[])

{

int a = 10;

int b = 20;

a = b;

System.out.format("%d %d", a, b);

}

}

Physical SLOC Logical SLOC

10 6

Table 2.3: Source lines of code example 1

2.4.3 Example 2: lines of code

public class task23

{

10

private static int foo(int a)

{

return a*2;

}

public static void main(String arg[])

{

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++)

{

array[i] = foo(array[i]);

}

System.out.format("%d %d %d", array[0], array[1], array[2]);

}

}

Physical SLOC Logical SLOC

17 9

Table 2.4: Source lines of code example 2

2.4.4 Halstead’s complexity metric (HCM)

HCM is a widely used software metric, named after Maurice Halstead, who, in 1977,

attempted to formalize software complexity analysis on the basis of counting operators and

operands. HCM is a model used for predicting the time and effort required for the writing

of software of varying complexity. In short, Halstead views a program as a collection of

operators and their associated operands and so the basis of HCM is the counting of the

numbers of operators and operands in the program. The main objective is to measure

program length, volume, difficulty, effort, and time required to write the program [Hal77].

Based on the Halstead metric any symbols which are used for representing data are

considered operands and any symbols or keywords of the language which specify an

algorithmic action are operators. Halstead himself defines operands as any variable or

constant, and anything that is not an operand is either an operator or part of one.

11

The base measures can be collected from:

n1 = number of unique operator

n2 = number of unique operands

N1 = total number of operators

N2 = total number of operands

Program V ocabulary (n) = n1 + n2 (2.4)

Program Length (N) = N1 +N2 (2.5)

Calculated program length (H) = n1 ∗ log2 n1 + n2 log2 n2 (2.6)

V olume (V) = N × log2n bits (2.7)

Difficulty (D) =
n1

2
× N − 2

n2

(2.8)

Effort (E) = D × V (2.9)

The time to solve the program is calculate by equation:

Time required to program (T) =
E

18
seconds (2.10)

HCM does not take into account the logical structure of the code, but the computation

is easy and are independent of programming languages. Halstead also provides an equation

to predict effort, time required to solve the problem and the bug density [Hal77].

Halstead complexity measures for all experimental tasks are included in Table 4.1.

Example in section 2.4.5 again shows the complexity calculation for a simple experimental

task, but based on HCM. Example in section 2.4.6 works a more complex experimental

task through HCM.

2.4.5 Example 1: Halstead complexity metric

public class task2{

public static void main(String arg[]){

12

int a = 10;

int b = 20;

a = b;

System.out.format("%d %d", a, b);

}

}

n1 Operator N1 n2 Operand N2

1 public class task2 {} 1 1 arg[] 1

2 public static void main {} 1 2 a 3

3 int 2 3 b 3

4 String 1 4 ”%d %d” 1

5 = 3 5 10 1

6 ; 4 6 20 1

7 System.out.format 1

8 () 2

9 , 2

n1 = 9 N1 = 17 n2 = 6 N2 = 10

Table 2.5: Halstead calculation example 1

Calculation:

n1 = 9 n2 = 6 n = 15

N1 = 17 N2 = 10 N = 27

Calculated program length (H) = 44.039

V olume (V) = 105.48

Difficulty (D) = 7.5

Effort (E) = 791.1

13

2.4.6 Example 2: Halstead complexity metric

public class task23{

private static int foo(int a){

return a*2;

}

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

array[i] = foo(array[i]);

}

System.out.format("%d %d %d", array[0], array[1], array[2]);

}

}

n1 Operator N1 n2 Operand N2

1 public class task23 {} 1 1 a 2

2 private static int foo {} 2 2 2 1

3 public static void main 1 3 arg[] 1

4 String 1 4 ”%d%d%d” 1

5 for 1 5 array[] 6

6 = 4 6 output 1

7 < 1 7 i 3

8 () 4 8 0 2

9 {} 1 9 5 1

10 , 5 10 3 2

11 * 1 11 7 1

12 int 4

13 System.out.format 1

14 ++ 1

15 ; 7

16 return 1

n1 = 16 N1 = 36 n2 = 11 N2 = 21

Table 2.6: Halstead calculation example 2

14

Calculation:

n1 = 16 n2 = 11 n = 27

N1 = 36 N2 = 21 N = 57

Calculated program length (H) = 102.053

V olume (V) = 271.028

Difficulty (D) = 15.27

Effort (E) = 4138.59

2.4.7 McCabe cyclomatic complexity measures (CCM)

Cyclomatic complexity measures (CCM) were introduced by Thomas J. McCabe in

1976. In CCM, rather than counting lines or counting operator and operands, the focus

is on logical structure of the program. The theorem given by [McC76] is as follows:

Definition 1: The cyclomatic number V(G) of a graph G with n vertices, e edge, and p

connected components is

V (G) = e − n + p (2.11)

Theorem 1: In a strongly connected graph G, the cyclomatic number is equal to the

maximum number of linearly independent circuits.

The sequence of an arbitrary number of nodes always has unit complexity and that

cyclomatic complexity conforms to our intuitive notion of “minimum number of paths”.

Several properties of cyclomatic complexity are stated below: [McC76]

• V(G) ≥ 1

• V(G) is the maximum number of linearly independent paths in G

15

• Inserting or deleting functional statements to G does not affect V(G)

• G has only one path if and only if V(G) = 1

• Inserting a new edge in G increases V(G) by unity

• V(G) depends only on the decision structure of G

All programs should have a start point and a exit point. From the definition(2.4.7)

the number of connected components is referred as p. A connected component is a node

in the graph to which there is a path from the entry node and from which there is a path

by which the exit node may be reached. So, when the graph is strongly connected then

we use the formula

V (G) = e − n + p (2.12)

and if the graph is not strongly connected then the formula

V (G) = e − n + 2p (2.13)

is used.

Cyclomatic complexity measures for all experimental tasks are included in Table 4.1.

Again, two examples are provided, Example in section 2.4.8 shows the CCM calculation

for a simple task and Example in section 2.4.9 calculates CCM for a more complex one.

2.4.8 Example 1: McCabe cyclomatic complexity

public class task2{

public static void main(String arg[]){

int a = 10;

int b = 20;

a = b;

System.out.format("%d %d", a, b);

}

}

16

Calculation:

E = 2, N = 3, P = 1

According to formula : V (G) = E −N + 2P

V (G) = 2− 3 + 2 ∗ 1

V (G) = 1

2.4.9 Example 2: McCabe cyclomatic complexity

\begin{BVerbatim}

public class task23{

private static int foo(int a){

return a*2;

}

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

array[i] = foo(array[i]);

}

System.out.format("%d %d %d", array[0], array[1], array[2]);

}

}

Calculation:

E = 7, N = 9, P = 3

According to formula : V (G) = E −N + 2P

V (G) = 7− 9 + 2 ∗ 3

V (G) = 4

17

CHAPTER 3

Methodology

This chapter describes the necessary steps for generating the results of this study.

In general, participants perform a set of 25 tasks with varying difficulty. They are

given one code snippet per task, for which they must mentally compute the output. For

all participants, tasks are presented in Java, since it is the programming language taught

in all introductory computer science courses at SIUE.

Firstly, the design of of the experimental tasks is described (3.1), followed by instru-

mentation (3.2) and experimental procedure (3.3). Lastly, signal analysis is discussed

(3.4). The complete process can be from the diagram as shown in figure 3.1.

3.1 Experimental Tasks

Some of the 25 experimental tasks used for this study are based on the tasks presented

in the work by Bornat and Dehnadi [BDS08]. The tasks constructed by Dehnadi were

intended to find strong predictors of success in learning programming; we extended these

tasks by constructing ones with additional variable assignment operations, arrays, loops,

conditionals, and function calls. Altogether, there were 25 tasks which were presented to

each participant with the help of an automated task delivery system. All tasks were written

in Java, because it is the primary instruction language at the participants’ institution, i.e.

Southern Illinois University Edwardsville. The tasks may be summarized as follows:

• Task 1: This task consisted of reading a paragraph of English prose;

• Task 2 - Task 4: Single-variable assignment operations involving two variables

and expected to be the simplest of the tasks in the experiment, with variations in

ordering of variable assignments and and naming of variables;

18

Figure 3.1: Process. Complete experimental process from collecting data to analyzing it

• Task 5 - Task 7: Two-variable assignment operations involving two or three

variables with variations in ordering of variable assignments;

• Task 8 - Task 13: Three-variable assignment operations with three variables and

variations in the ordering of variable assignments;

• Task 14 - Task 16: Three-variable assignment operations with three variables,

variations in the ordering of assignments and assignments depending on conditionals;

• Task 17 - Task 22: Array variable assignments and conditional assignments with

loops, nested loops and some computation +, *;

19

• Task 23 - Task 25: Array variable assignments and conditional assignments with

loops, nested loops, some computation +, *, simple and complex function calls.

3.2 Instrumentation

Raw EEG data was captured by BrainVision’s actiChamp amplifier, a research-grade

amplifier with 32 electrodes and capable of sampling rates up to 10kHz. The software used

included BrainVision’s Recorder, BCI2000, and the Automated Task Delivery System.

The Recorder delivers the raw EEG signal to BCI2000, which annotates it with keystrokes

and timestamps. Integration of actiChamp and BCI2000 limited the effective sampling

rate to 500Hz. The Automated Task Delivery System was developed in the lab specificially

for this and related studies at SIUE and likewise is made to communicate experimental

data to BCI2000. Participants were fitted with a cap containing the 32 electrodes (IRB

approval was granted for the subject with approval number 16-0920-1), which keeps

the electrodes relatively well fixed to the scalp, reducing noise from physical movement.

The electrode placement is seen in Figure 3.2. Conductive gel is injected through the

electrodes.

3.3 Procedure

Each experimental session was sub-divided into three main events: the pre-experimetnal

session (3.3.1), the experiment (3.3.2), and the post-experimental session (3.3.3). Each is

described below:

3.3.1 Pre-experimental session

In the pre-experimental session the participant receives a brief introduction to the

EEG device, the software used during the experiment, and a description of the procedures

encountered during the experiment. The participants were shown the cap fitted with

electrodes and shown how the electrolyte gel is to be added through the electrodes to

20

 Green Holders: Label 1-32, Hardware Channel 1 – 32 Black holder: Label & hard-wired Gnd

32Ch Standard Cap for actiCap for actiCHamp – high elasticity fabric

Electrode Names and Number Labels

EASYCAP
EEG Recording Caps and Related Products

EASYCAP GmbH Tel +49 (0) 8153 88702-00
Steingrabenstrasse 14 Fax +49 (0) 8153 88702-10
DE-82211 Herrsching www.easycap.de
Germany info@easycap.de
Delivery Address: Am Anger 5, DE-82237 Woerthsee-Etterschlag

X1

X2

X3

Plus 3 spare holders
with empty labels

Fpz
Gnd Fp2

32

F3
3

Fz
2

F4
30

F8
31

T7
9

C3
8

C4
25

Cz
24

T8
26

P7
15

P3
14

Pz
13

P4
19

P8
20

O1
16

O2
18

TP9
10

TP10
21

Oz
17

F7
4

FT9
5

FC5
6 FC1

7
FC2
29

FC6
28

FT10
27

CP5
11

CP1
12

CP2
23 CP6

22

Fp1
1

See actiCHamp 160Ch guided Standard.doc for a guided map of the numerical channel number order.

 Easycap GmbH, Steingrabenstrasse 14, DE-82211 Herrsching, Germany

Y
:\A

L\
H

au
be

n_
La

yo
ut

s\
A

C
_A

P
_a

ct
iC

A
P

_a
ct

iC
H

am
p\

A
P

\A
P

-3
2-

X
2_

hi
gh

_e
la

st
ic

ity
\A

P
-3

2-
X

2.
do

cx

Figure 3.2: Electrode position. 32 data channel provided by the actiChamp are labeled by

their placement

ensure a reliable connection between the scalp and electrodes which are shown in the

figure 3.3

A pilot study indicated that without an overview of the experiment, or tutorial,

participants become confused and have trouble entering the expected response correctly. As

a result, we briefly instruct the participant about the flow of experiment, the programming

language used, and the format of expected responses. The operation of the Automated

Task Delivery System was also described, with special attention given to the rest screen

(e.g. screen displaying the fixation cross) shown in Figure 3.4, to emphasize that they

should rest and relax during this time. Additionally, the format of the task screen,

see Figure 3.5, and the automated response to user input (screen showing whether the

response was correct or incorrect).

21

Figure 3.3: Cap fitted with electrodes. Cap fitted with electrodes and how the electrolyte

gel is added through the electrodes to ensure reliable connection between scalp and the

electrode

Participants were instructed that the rest screen was followed by the task screen

containing task, text box for input answer and buttons either to submit or skip which is

shown in Figure 3.5.

EEG is very sensitive to noise from muscle movement which has an adverse affect on the

recorded signal. So each participant wes instructed to be calm, i.e. refrain from excessive

movement of their arms, legs, head, jaws (basically any kind of muscle movement). To

make the participant comfortable and reduce muscle movement the task presentation

program is fully automated and keyboard driven so that the participant can rest their

arm on table in a position that allowed them to reach the keyboard without excessive

movement.

Following the aforementioned instruction, each participant was provided two forms: 1)

22

Figure 3.4: AutoTask program rest screen. This figure shows rest screen shown by the

automated task program which delivers tasks for the participant

informed consent form which explains the purpose of the project, risk factors, benefits

to science and the confidentiality of records. And 2) Pre-Survey form where the general

questions were asked such as: age, sex, major, years in programming, professional

experience in programming, approximate size of the largest project worked on, an estimate

of overall programming experience, Java experience, programming experience compared to

class mates, and programming experience compared to experts with 20 years of practical

experience. The response from the participant is shown in the table 3.1.

23

Figure 3.5: AutoTask program task screen. This figure shows task screen presented to

participant by the AutoTask program for delivering the the programming tasks for the

participant

24

N
o.

A
ge

S
ex

M
a
jo
r

F
ir
st

E
n
-

ro
ll
ed

C
o
d
in
g

C
ou

rs
es

L
a
rg
es
t

P
ro
je
ct

L
O
C

N
u
m
.

L
a
n
g
.

K
n
ow

n

E
x
p
er
ie
n
ce

P
ro
fe
ss
io
n
a
l

(y
rs
.)

P
ro
g
ra
m
m
in
g

(y
rs
.)

O
ve
ra
ll

J
av
a

v
s
P
ee
r

v
s
E
x
p
er
t

1
20

F
C
S

20
15

2
10
0

2
N
o

1
.5

3
4

3
2

2
22

M
C
S

20
14

4
20
0

3
N
o

2
3

2
3

1
3

22
M

C
S

20
12

9
40
0

7
Y
es

6
.5

3
3

4
2

4
19

M
C
S

20
15

4
60
0

3
N
o

3
4

4
4

1
5

21
M

C
S

20
14

6
10
00

4
N
o

3
5

3
4

2
6

21
F

C
S

20
15

N
/A

20
0

1
N
/
A

2
3

3
4

1
7

20
M

C
S

20
15

5
50
0

3
N
o

3
3

4
3

1
8

21
M

C
S

20
15

6
10
00

4
N
o

8
3

4
3

1
9

21
F

C
E

20
14

4
25
0

1
N
o

3
3

4
3

2

T
ab

le
3.

1:
P

a
rt

ic
ip

a
n

t
p

re
su

rv
ey

.
N

o.
(#

)
re

p
re

se
n
ts

th
e

p
ar

ti
ci

p
an

t
n
u
m

b
er

.
F

or
O

ve
ra

ll
p
ro

gr
am

m
in

g
ex

p
er

ie
n
ce

an
d

ja
va

ex
p

er
ie

n
ce

it
is

en
co

d
ed

w
it

h
{1

:
V

er
y

In
ex

p
er

ie
n
ce

d
,

2:
In

ex
p

er
ie

n
ce

d
,

3:
M

ed
iu

m
,

4:
E

x
p

er
ie

n
ce

d
,

5:
V

er
y

E
x
p

er
ie

n
ce

d
},

S
im

il
ar

ly
fo

r
p

ro
gr

am
m

in
g

ex
p

er
ie

n
ce

co
m

p
ar

ed
to

cl
as

s
an

d
p

ro
gr

am
m

in
g

ex
p

er
ie

n
ce

co
m

p
ar

ed
to

ex
p

er
t

w
it

h
20

ye
ar

s
of

p
ra

ct
ic

al
ex

p
er

ie
n
ce

is
en

co
d
ed

as
{1

:
M

u
ch

W
or

se
,

2:
W

or
se

,
3:

T
h
e

S
am

e,
4:

B
et

te
r,

5:
C

on
si

d
er

ab
ly

b
et

te
r}

25

3.3.2 Experimental session

Experimental session was designed to last no more than 30 minutes so that the partic-

ipant do not get overwhelmed. The experiment was conducted in a normal environment

consisting of office, chair, desk, and computer within a shielded room containing minimal

distractors i.e. exhibiting impreceptible levels of ambient noise and containing black

painted walls for no adornments.

In this module the cap was fitted on the participant head and high viscosity electrolyte

gel for active electrodes were injected through the electrode with the help of a syringe.

The gel ensures a reliable connection between the scalp and the active electrode. Active

electrodes were used because it is safe and high dry skin impedance can be omitted by

using amplifier with very high input impedance. Brain Vision Recorder software was

started to check the impedance of each channel to assure good signal quality, i.e. signal

to noise ratio, and to activate the RDA client so that BCI2000 can get access to the raw

EEG signal. The Automated Task Delivery System was used to present the experimental

tasks and tag and timestamp relevant events and keystrokes in the EEG dataset.

After starting, the Automated Task Delivery System delivers the rest screen first so

that participant can relax and prepare for the upcoming task. The time for the rest screen

is set to 10 seconds and it provides the reference point for measuring the EEG signal

power during the task. The experiment was not timed to relieve any pressure that may

affect a participants performance. Also the answer verification screen was presented with

feedback whether the answer provided by the participant was ”Correct”, ”Incorrect” or

”Skipped”.

3.3.3 Post-experimental session

Following the experiment, each participant was given a survey based on the NASA-

TLX survey, modified to include only the metrics relevant to this study. NASA-TLX

26

is a multi-dimensional scale designed to obtain workload estimates from one or more

operators while they are performing a task immediately afterwards [Har06]. In this study

the participants were only asked to report their mental demand and stress level while

solving the tasks during the experiment and it was based on NASA-TLX. An example

item from the modified NASA-TLX survey is shown in

Figure 3.6: Modified NASA-TLX. Sample item from the modified NASA-TLX survey.

3.4 Signal Analysis

The participant’s EEG is continuously recorded for the duration of the experimental

session. The raw EEG signal is broken up into individual rest and trial sections, repre-

senting each of the 25 experimental task trials and their preceding rest periods. Each of

the rests and trials are tagged and timestamped by the Automated Task Delivery System

during the experiment.

The signal was recorded using all 32 channels but specific 8 channels ware selected for

signal processing. Based on fMRI study [RTJ+00] we used electrodes: Fp1, Fz, F3, F7,

FT9, FC5, FC1 and C3 which are clustered near Brodmann areas 8 and 46 found in the

prefrontal cortex, which are confirmed to correspond to working memory activity. Figure

(3.2) shows the position of electrodes on.

To perform the analysis, the raw EEG signal was processed with Matlab (Version

R2014b), using, in part, features from the EEGLAB and Fieldtrip EEG analysis toolboxes.

The raw EEG signal was first separated to states (holds information such as time, task,

27

rest, trial, input etc.), parameters (holds information about sampling rate, subject name,

source channels, channels name etc.), signal and total sample (size of the samples). For

this study the interested signal frequency ranges within 2Hz to 15Hz i.e. frequency range

containing Theta and Alpha waves. The signal for range of 2Hz - 15Hz was adjusted by

the help of band-pass filter. Signal was normalized after the adjustment of the signal to

the mentioned frequency range and it was done by finding the mean of the signal and

subtracting from the total signal. Welch [Wel67] method was used to estimate the Power

Spectral Density (PSD).

Alpha frequency is further subdivided into the three sub-bands as described in sec-

tion 2.2 (Lower 1 Alpha (L1A), Lower 2 Alpha (L2A), and Upper Alpha (UA)), the ranges

of which are based on the Individual Alpha Frequency (IAF). The theta wave was also

included for analysis because it is expected to have an inverse relationship with alpha

wave (when alpha synchronizes, theta is expected to desynchronize). Figure 3.7 shows the

Welch’s PSD estimate of the rest versus trial state for the all participant with accurate

response to the tasks. The IAF is indicated by a circle, and vertical lines sepereate the

four sub-bands.

ERD was calculated using Equation 2.3. Each rest and trial period was split into

125ms window frames. The power of rest period for each alpha sub-band is computed

for reference and averaged over the windows to yield the baseline rest power shown in

equation 2.3. Sub-band power is similarly computed for the trial period, and finally, ERD

is computed.

Each data point was also tagged with an error rate. Any reading outside of the bounds

of −200µV to +200µV exhibit too much noise to be considered a good measure of brain

activity. The error rate for each epoch is the percentage of samples that are outside of

that range. Any rest or trial period with error rate higher than 20% is considered noisy

[Kli99] and can be excluded from the analysis.

28

Frequency (Hz)
3 4 5 6 7 8 9 10 11 12 13 14

P
S

D
 (
7

V
2
)

0

5

10

15

20

25

30

UAL2AL1ATheta

Welch's Method: Rest vs Trial

Rest
Trial

Figure 3.7: Pwelch rest vs trial. Shows Power Spectral Density between the rest and trial

states. The IAF is marked by a circle, and the resulting sub-band ranges are indicated as

Theta, Lower 1 Alpha, Lower 2 Alpha, and Upper Alpha

29

CHAPTER 4

Results

This chapter describes the findings after the experiment. We calculated the complexity,

length, and effort of the task with classical software complexity metrics (Halstead, McCabe,

PSLOC, and LSLOC), we also processed the recorded EEG signal. Linear regression

analyses with ANOVA were performed on the processed data to assess whether the

participants’ effort on the experimental tasks is seen in the Upper Alpha, Lower 2 Alpha,

Lower 1 Alpha, and Theta EEG bands. Additionally, we record task duration directly

from the task presentation system, and following the experiment conduct a modified

NASA-TLX survey to obtain mental demand and stress levels. The analyses are intended

to test whether we are observing noise or a potential indicator of effort based on the

difficulty of a task.

The rest of the chapter is followed in the following order: First, the computation of

tasks with classic software complexity metric (4.1), followed by correct response for each

task from the participant (4.2), linear regression analysis with ANOVA along with bar

charts for all the experimental tasks (4.3), and finally, we manually reduce the number of

task categories from 25 to 2, by classifying the existing tasks as either easy or hard, based

on their Halstead complexity for effort, then perform an additional analysis on these two

groups (4.4).

4.1 Computation with Complexity Metric

Complexity measurements were performed on all tasks, except for the English prose

were computed by hand, using the various classic software complexity metrics: Lines of

Code (LOC), Halstead’s metrics, and McCabe’s cyclomatic complexity. The results are

shown in Table 4.1. Complexity measurements provide us with a base understanding of

the difficulty levels of our experimental tasks, which aids in the interpretation of results

30

observed from the EEG. As shown in the table, the Halstead complexity metric appears

to show more variety in the calculated values, indicating that perhaps it has a finer

granularity than the other metrics. In any case, the results obtained from the classical

software complexity metric computation shows the tasks have varying difficulty.

Task Lines of Code Halstead McCabe
PSLOC LSLOC H V D E T V(G)

2 10 6 44.039 105.48 7.5 791.1 43.95 1
3 10 6 44.039 105.48 7.5 791.1 43.95 1
4 10 6 44.039 105.48 7.5 791.1 43.95 1
5 11 7 44.039 121.11 9 1089.99 60.55 1
6 11 7 44.039 121.11 9 1089.99 60.55 1
7 12 8 52.529 155.32 8.43 1310.43 72.80 1
8 13 9 52.529 171.67 9.56 1641.16 91.17 1
9 13 9 52.529 171.67 9.56 1641.16 91.17 1
10 13 9 52.529 171.67 9.56 1641.16 91.17 1
11 13 9 52.529 171.67 9.56 1641.16 91.17 1
12 13 9 52.529 171.67 9.56 1641.16 91.17 1
13 13 9 52.529 171.67 9.56 1641.16 91.17 1
14 16 10 62.053 199.65 13.06 2607.429 144.85 2
15 16 10 62.053 199.65 13.06 2607.429 144.85 2
16 16 10 62.053 203.90 13.06 2663.44 147.96 2
17 12 6 67.75 177.19 13 2303.47 127.97 2
18 13 7 96.32 230.32 11.66 2685.53 149.19 2
19 14 8 112.50 281.76 16.29 4589.87 254.99 3
20 16 8 86.52 265.92 15.4 4095.16 227.51 3
21 17 9 86.52 284.26 17.5 4974.55 276.36 3
22 19 9 92.52 264.70 16 4235.2 235.28 4
23 17 9 102.053 271.028 15.27 4138.59 229.92 4
24 17 9 113.11 340.05 18.81 6396.34 355.35 4
25 20 12 128.09 415 18.13 7523.95 417.99 4

Table 4.1: Calculated code complexity. Code complexity calculations using classic software

complexity measures. PSLOC = Physical Source Lines of Code, LSLOC = Logical Source

Lines of Code, H = Calculated Estimated Program Length, V = Volume, D = Difficulty,

E = Effort, T = Estimated time to solve the program (using Stroud number 18)

31

4.2 Correct Response for the Tasks

We had nine participants for the experiment where each of them was provided with

25 tasks. Figure 4.1 shows the number of participants that performed the task correctly.

Tasks 24 and 25 were correctly answered by only one participant; these tasks are hence

omitted from further analysis.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
o

rr
ec

t
R

es
p

o
n

se

Tasks

Figure 4.1: Correct response for tasks. Shows

the correct response from the nine partici-

pants for solving the tasks

4.3 Regression Analysis: All Tasks Individually

After processing the raw EEG signal with MATLAB, we perform statistical analyses

using IBM SPSS (version 24). Specifically, we performed linear regressions of task

difficulty, as represented by the set of experimental tasks sorted by Halstead complexity

for effort, and the ERD measured within each sub-band: UA 4.2, L2A 4.3, L1A 4.4,

Theta 4.5. Additionally, we perform an analysis based on task difficulty and duration 4.8,

mental demand 4.6, and stress level 4.7 As already stated, tasks were sorted by increasing

difficulty based on the tasks’ Halstead’s complexity for effort and task number was

used as an independent variable. Additionally, we ignored tasks which were skipped or

completed incorrectly; it is only for the correct responses that we can be certain that the

32

participant paid attention and performed the cognitive tasks necessary to complete the

coding comprehension task. Table 4.2 shows the output of linear regression based on the

variables described above, filtering out incorrect and skipped tasks and ignoring tasks

1, 24, and 25 (english prose, and the two tasks that were correctly answered by a single

participant).

Variables df F Sig. R2 Intercept Slope
regression residual

UA 1 173 4.050 .046 .023 33.244 .613
L2A 1 173 8.051 .005 .044 21.243 .767
L1A 1 173 3.419 .066 .19 9.336 .308

Theta 1 173 .948 .332 .005 12.747 .149
Duration 1 173 75.323 .000 .303 .588 .849

SMD 1 173 104.395 .000 .376 2.517 1.611
SSL 1 173 19.355 .000 .101 8.654 .918

Table 4.2: Linear regression analysis. Linear regression analysis for the variables UA =

Upper Alpha, L2A = Lower 2 Alpha, L1A = Lower 1 Alpha, Theta, Duration, SMD =

Survey Mental Demand, and SSL = Survey Stress Level

Simple linear regressions were calculated to predict UA, L2A, L1A, and Theta desyn-

chronization, duration, mental demand and stress levels across the tasks. A significant

regression equation was found (F (1, 173) = 4.050, p < .046), with an R2 of .023 and

participants’ predicted UA is equal to 33.244 + .613 (task number), when UA is measured

in microvolts (µV). UA increased by .613µV for each successive task.

Similarly, A significant regression equation was found (F (1, 173) = 8.051, p < .005),

with an R2 of .044 and participants’ predicted L2A is equal to 21.243+ .767 (task number),

when L2A is measured in microvolts (µV). L2A increased by .767µV for each successive

task.

A significant regression equation was found (F (1, 173) = 75.323, p < .000), with an R2

of .303 and participants’ predicted duration is equal to .588 + .849 (task number), when

duration is measured in milliseconds. Duration increased by .849 milliseconds for each

33

successive task.

A significant regression equation was found (F (1, 173) = 104.395, p < .000), with an

R2 of .376 and participants’ predicted survey mental demand is equal to 2.517 + 1.611

(task number), when survey mental demand is measured in scale of 20. Survey mental

demand increased by 1.611 scale for each successive task.

A significant regression equation was found (F (1, 173) = 19.355, p < .000), with an

R2 of .101 and participants’ predicted survey stress level is equal to 8.654 + .918 (task

number), when survey stress level is measured in scale of 20. Survey stress level increased

by .918 scale for each successive task.

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

U
p

p
er

 A
lp

h
a

Tasks

Figure 4.2: Task vs upper alpha

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Lo
w

er
 2

 A
lp

h
a

Tasks

Figure 4.3: Task vs lower 2 alpha

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Lo
w

er
 1

 A
lp

h
a

Tasks

Figure 4.4: Task vs lower 1 alpha

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Th
et
a

Tasks

Figure 4.5: Task vs theta

34

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Su
rv

ey
 M

en
ta

l D
em

an
d

Tasks

Figure 4.6: Task vs survey mental demand

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Su
rv

ey
 S

tr
es

s
Le

ve
l

Tasks

Figure 4.7: Task vs survey stress level

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
u
ra
ti
o
n

Tasks

Figure 4.8: Task vs duration

4.4 Regression Analysis: Easy vs Hard Tasks

The experimental tasks were recoded into easy and hard tasks Simple linear regressions

were calculated to predict UA, L2A, L1A, and Theta desynchronization, duration, mental

demand and stress levels across the encoded easy and hard tasks. A significant regression

equation was found (F (1, 173) = 4.640, p < .033), with an R2 of .026 and participants’

predicted UA is equal to 28.705+8.120 (task number), when UA is measured in microvolts

(µV). UA increased by 8.120µV for each successive task.

Similarly, A significant regression equation was found (F (1, 173) = 6.764, p < .010),

with an R2 of .038 and participants’ predicted L2A is equal to 17.648 + 8.744 (task

number), when L2A is measured in microvolts (µV). L2A increased by 8.744µV for each

successive task.

35

Variables df F Sig. R2 Intercept Slope
regression residual

UA 1 173 4.640 .033 .026 28.705 8.120
L2A 1 173 6.764 .010 .038 17.648 8.744
L1A 1 173 5.738 .018 .032 5.826 4.912

Theta 1 173 .516 .474 .003 12.542 1.362
Duration 1 173 47.009 .000 .214 -2.139 8.822

SMD 1 173 62.627 .000 .266 -2.691 16.767
SSL 1 173 13.379 .000 .072 5.616 9.602

Table 4.3: Linear regression analysis. Linear regression analysis for the variables UA =

Upper Alpha, L2A = Lower 2 Alpha, L1A = Lower 1 Alpha, Theta, Duration, SMD =

Survey Mental Demand, and SSL = Survey Stress Level

Similarly, A significant regression equation was found (F (1, 173) = 5.738, p < .018),

with an R2 of .032 and participants’ predicted L1A is equal to 5.826+4.912 (task number),

when L1A is measured in microvolts (µV). L1A increased by 4.912µV for each successive

task.

A significant regression equation was found (F (1, 173) = 47.009, p < .000), with an

R2 of .214 and participants’ predicted duration is equal to −2.139 + 8.822 (task number),

when duration is measured in milliseconds. Duration increased by 8.822 milliseconds for

each successive task.

A significant regression equation was found (F (1, 173) = 62.627, p < .000), with an

R2 of .266 and participants’ predicted survey mental demand is equal to −2.691 + 16.767

(task number), when survey mental demand is measured in scale of 20. Survey mental

demand increased by 16.767 scale for each successive task.

A significant regression equation was found (F (1, 173) = 13.379, p < .000), with an

R2 of .072 and participants’ predicted survey stress level is equal to 5.616 + 9.602 (task

number), when survey stress level is measured in scale of 20. Survey stress level increased

by 9.602 scale for each successive task.

36

CHAPTER 5

Discussion

5.1 Interpretation of Results

Analysis of the experimental data, as shown in the previous chapter, assumes that

for the experimental tasks, we would observe a range of cognitive effort. Prior results

have shown, for example, that power in the alpha band increases (synchronizes) when a

subject is relaxing, and decreases (desynchronizes) in the presence of mental demand. It

was also previously shown that alpha desynchronization is proporitional to the complexity

or difficulty of a task, to some extent. It is therefore reasonable to assume that given

a set of tasks ranging in complexity, we would likewise observe a range of cognitive

effort. What was not known is how sensitive EEG-based cognitive load measurement is

to small changes in task complexity. To a large extent, it is still unknown, pending an

experiment with a much larger set of participants. However, certain features are evident

even with a small set of subjects. For example, based on our statistical analysis we find

that the relationship between desynchronization in the Upper Alpha, Lower-2 Alpha, and

Lower-1 Alpha sub-bands and tasks ordered by their Halstead complexity is significant,

but with low R2, as listed in Table 4.2. This result indicates that we are likely observing

consistently increasing levels of desynchronization within the UA, L2A, L1A sub-bands.

With respect to cognitive load theory, this means that as the task difficulty increases

the demand for working memory while performing task correctly also increases. This is

corroborated by the Halstead complexity calculations, since those take into account the

number of operands in the task.

Given that our regression models are significant, but have low R2 values, the models

themselves are likely poor predictors of the exact cognitive demands for a given task.

Looking to find a model that improves the prediction of a task’s cognitive demand given

37

some EEG-based observation of effort, we simplify the task set by grouping tasks into

a set of easy tasks and a set of hard tasks, again using the Halstead complexity metric

to split the tasks. What we find is that the model comparing EEG-based measures of

cognitive load on easy and hard tasks to the computed Halstead complexity for effort of

the tasks themselves results in another significant model with a slight improvement to

the model’s predictive power.

What we can assume is that 9 participants do not provide us with enough data points

to compute a strongly predictive model. The relationship exists, but at this time there is

insufficient data to make strong predictions of cognitive effort from the tasks themselves

or accurately rate a task’s difficulty based on EEG readings alone.

5.2 Threats to Validity

Human brain function varies from person to person. When accounting for measuring

effort in humans, it is important to recognize that this kind of study has its own limitations

and ours is no exception. In this section, we briefly discuss some immediate threats to

the validity of our experiment and analyses.

First, EEG is highly sensitive to signal artifacts from muscle movement, which is briefly

explained in the above sections. In this study, participants are not restrained; instead, the

participants are encouraged to limit movement, and indeed, the experiment is designed to

minimize movement through minimal interaction. Participants have to use a keyboard

for provide answers for each task. Additionally, head and facial movements could have

occurred which were captured along with the relevant parts of the EEG signal. While we

attempt filtering out this muscle movement noise, it can never be fully eliminated from

the signal.

Second, we raise the possibility that the modified NASA-TLX survey results may

be subject to bias. The survey is performed after the experiment is completed, and all

tasks are presented together, three or four tasks per page on successive printed pages.

38

The NASA-TLX survey items were presented alongside the task that they relate to. It

is possible that the ordering of the tasks themselves, both in the experiment and the

subsequent, similar ordering of the survey, indicated to the participant that the tasks ought

to be increasing in complexity and/or difficulty and may have guided the participants to

rate them as such, influencing the strong statistical relationship of the survey to the task

complexity.

Third, we tried to control for expertise by limiting our recruitment of subjects and

actual participants to the same class level (the participants were currently taking CS

240). Moreover, our assumption was that self-reported experience data is unreliable (for

example, some people report years of experience based on exposure to a concept). It is

possible that there is a wider variety of experience even at this early stage of study in the

CS program at SIUE which this study does not account for.

Fourth, for this experiment, we rely on 25 programming tasks of increasing complexity

(based on Halstead’s complexity). There are clearly groups of tasks for which there

are no differences in Halstead complexity. It is unknown whether these tasks should

actually produce different levels of cognitive effort or not. It is clear from our results that

comparisons of our obsevations with calculations of Halstead’s effort, a relationship exists,

but it clearly is not telling the whole story.

39

CHAPTER 6

Future Works

This work demonstrates the potential applicability of EEG-based measurement for cog-

nitive load. Primarily, this would could benefit from increasing the number of study

participants to strengthen the statistical analyses. Future work could immediately include

a follow-up study that would generate additional data. Subsequently, there are other

several other research possibilities based on the this work.

First, classical software complexity metric provides approximate predictions of effort

which may be supplemented by EEG-based measures of cognitive load. Predictions of

effort made based on classical complexity measures as well as personalized EEG-based

measures, could result in new methods of software project sizing.

Second, studies like this one may make it possible to fine-tune the sequencing of

concepts in a programming curriculum. For example, understanding the cognitive load of

assignment operations, conditionals, loops, function calls, etc., and understanding how

this cognitive load changes with increasing expertise, creates the possibility of creating

a curriculum that optimizes for learnability, based on the the practice of cognitive load

theory. In effect, examples and programming assignments might be sequenced such that

they do not overload the working memory of the student, rather build on previously

learned concepts.

Finally, we think that this study is a step towards the future of understanding how the

programmer perceives a programming task. Further research may be done to construct

more effective programming language designs.

40

CHAPTER 7

Conclusion

The main purpose of this study is to show that a range of programmer effort can be

measured by the use of the EEG. Based on our methodology and findings, we observed

that desynchronization within the UA, L2A, and L1A sub-bands of the alpha frequency

range is related to task complexity, indicating that working memory demand increases

with task difficulty. This study raises the possibility of future studies approximating

programmer effort, fine-tuning curriculum sequencing, language design, and program

sizing.

41

REFERENCES

[BAC00] Barry Boehm, Chris Abts, and Sunita Chulani. Software development
cost estimation approachesa survey. Annals of software engineering,
10(1-4):177–205, 2000.

[Bad92] Alan Baddeley. Working memory and conscious awareness. In Theories of
memory, pages 11–20. Lawrence Erlbaum Associates, 1992.

[Bak07] Stuart N Baker. Oscillatory interactions between sensorimotor cortex and
the periphery. Current opinion in neurobiology, 17(6):649–655, 2007.

[BDS08] Richard Bornat, Saeed Dehnadi, and Simon. Mental models, consistency
and programming aptitude. In Proceedings of the tenth conference on
Australasian computing education-Volume 78, pages 53–61. Australian
Computer Society, Inc., 2008.

[Ber29] Hans Berger. Über das Elektroenkephalogramm des Menschen. Archiv für
Psychiatrie und Nervenkrankheiten, 87:527–570, 1929.

[CBCG06] Nicholas R Cooper, Adrian P Burgess, Rodney J Croft, and John H Gruzelier.
Investigating evoked and induced electroencephalogram activity in task-
related alpha power increases during an internally directed attention
task. Neuroreport, 17(2):205–208, 2006.

[Cow01] Nelson Cowan. Metatheory of storage capacity limits. Behavioral and brain
sciences, 24(1):154–176, 2001.

[Hal77] Maurice Howard Halstead. Elements of software science, volume 7. Elsevier
New York, 1977.

[Har06] Sandra G Hart. Nasa-task load index (nasa-tlx); 20 years later. In Proceedings
of the human factors and ergonomics society annual meeting, volume 50,
pages 904–908. Sage Publications Sage CA: Los Angeles, CA, 2006.

[HPS02] J Allan Hobson and Edward F Pace-Schott. The cognitive neuroscience of
sleep: neuronal systems, consciousness and learning. Nature Reviews
Neuroscience, 3(9):679–693, 2002.

[JGKL02] Ole Jensen, Jack Gelfand, John Kounios, and John E Lisman. Oscillations
in the alpha band (9–12 hz) increase with memory load during retention
in a short-term memory task. Cerebral cortex, 12(8):877–882, 2002.

[Kli96] Wolfgang Klimesch. Memory processes, brain oscillations and eeg synchro-
nization. International journal of psychophysiology, 24(1):61–100, 1996.

42

[Kli99] Wolfgang Klimesch. EEG alpha and theta oscillations reflect cognitive and
memory performance: a review and analysis. Brain research. Brain
research reviews, 29(2-3):169–95, April 1999.

[KSH07] Wolfgang Klimesch, Paul Sauseng, and Simon Hanslmayr. Eeg alpha os-
cillations: the inhibition–timing hypothesis. Brain research reviews,
53(1):63–88, 2007.

[KSSW90] Lloyd Kaufman, Barry Schwartz, Carlo Salustri, and Samuel J. Williamson.
Modulation of Spontaneous Brain Activity during Mental Imagery. Jour-
nal of cognitive neuroscience, 2(2):124–32, January 1990.

[McC76] Thomas J McCabe. A complexity measure. IEEE Transactions on software
Engineering, (4):308–320, 1976.

[Mil56] George A. Miller. The magical number seven, plus or minus two: some
limits on our capacity for processing information. Psychological Review,
63(2):81–97, 1956.

[NDRTB07] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A sloc
counting standard. In COCOMO II Forum, volume 2007, pages 1–16,
2007.

[Paa92] Fred G Paas. Training strategies for attaining transfer of problem-solving
skill in statistics: A cognitive-load approach. Journal of educational
psychology, 84(4):429, 1992.

[PP59] Lloyd Peterson and Margaret Jean Peterson. Short-term retention of in-
dividual verbal items. Journal of experimental psychology, 58(3):193,
1959.

[RMT07] Tonia A Rihs, Christoph M Michel, and Gregor Thut. Mechanisms of
selective inhibition in visual spatial attention are indexed by α-band
eeg synchronization. European Journal of Neuroscience, 25(2):603–610,
2007.

[RTJ+00] James B Rowe, Ivan Toni, Oliver Josephs, Richard SJ Frackowiak, and
Richard E Passingham. The prefrontal cortex: response selection or
maintenance within working memory? Science, 288(5471):1656–1660,
2000.

[SAK11] John Sweller, Paul Ayres, and Slava Kalyuga. Cognitive Load Theory. Explo-
rations in the Learning Sciences, Instructional Systems and Performance
Technologies. Springer New York, 2011.

[SK08] Paul Sauseng and Wolfgang Klimesch. What does phase information of
oscillatory brain activity tell us about cognitive processes? Neuroscience
and biobehavioral reviews, 32(5):1001–13, July 2008.

43

[Wel67] Peter D. Welch. The use of fast fourier transform for the estimation of
power spectra: A method based on time averaging over short, modi-
fied periodograms. Audio and Electroacoustics, IEEE Transactions on,
15(2):70–73, Jun 1967.

44

APPENDIX A

NASA-TLX Survey Data

Task No. Avg. Mental Demand (%) Avg. Stress Level (%)

1 21.56 17.77

2 9.24 16.19

3 7.84 14.81

4 11.76 17.03

5 13.72 18.51

6 11.02 15.83

7 17.64 17.5

8 22.87 25.92

9 20.58 22.5

10 20.16 21.90

11 22.87 26.66

12 23.52 25.18

13 22.79 25.83

14 30.39 31.11

15 30.14 32.5

16 32.67 31.85

17 26.14 23.70

18 30.88 31.66

19 37.25 32.22

20 47.05 30.47

21 40 36

22 46.32 38.33

23 56.20 49.62

24 41.17 46.66

25 52.94 60

Participant Post Survey : Average percentage of self reported Mental Demand and Stress

Level for all the 25 task which Based on NASA TLX

45

APPENDIX B

Experimental Tasks

Task1

Silently read the following paragraph:

"Consider the subtleness of the sea; how its most freaded creatures glide under water, unapparent for the

most part, the treacherously hidden beneath the loveliest tints of azure. Consider also the devilish brilliance

and beauty of many of its most remorseless tribes, as the dainty embellished shape of many species of sharks.

Consider, once more, the universal cannibalism of the sea; all whose creatures prey upon each other, carrying on .

eternal war since the world began. Please enter 135 into the input box below."

Task 2

public class task2{

public static void main(String arg[]){

int a = 10;

int b = 20;

a = b;

System.out.format("%d %d", a, b);

}

}

Task 3

public class task3{

public static void main(String arg[]){

int a = 10;

int b = 20;

b = a;

System.out.format("%d %d", a, b);

}

}

Task 4

public class task4{

public static void main(String arg[]){

int big = 10;

int small = 20;

big = small;

System.out.format("%d %d", big, small);

}

}

46

Task 5

public class task5{

public static void main(String arg[]){

int a = 10;

int b = 20;

a = b;

b = a;

System.out.format("%d %d", a, b);

}

}

Task 6

public class task6{

public static void main(String arg[]){

int a = 10;

int b = 20;

b = a;

a = b;

System.out.format("%d %d", a, b);

}

}

Task 7

public class task7{

public static void main(String arg[]){

int a = 10;

int b = 20;

int c = 30;

a = b;

b = c;

System.out.format("%d %d %d", a, b, c);

}

}

47

Task 8

public class task8{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

a = c;

b = a;

c = b;

System.out.format("%d %d %d", a, b, c);

}

}

Task 9

public class task9{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

c = b;

b = a;

a = c;

System.out.format("%d %d %d", a, b, c);

}

}

Task 10

public class task10{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

c = b;

a = c;

b = a;

System.out.format("%d %d %d", a, b, c);

}

}

Task 11

public class task11{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

b = a;

c = b;

a = c;

System.out.format("%d %d %d", a, b, c);

}

}

48

Task 12

public class task12{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

b = a;

a = c;

c = b;

System.out.format("%d %d %d", a, b, c);

}

}

Task 13

public class task13{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

a = c;

c = b;

b = a;

System.out.format("%d %d %d", a, b, c);

}

}

Task 14

public class task14{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

a = c;

if (a < b){

c = b;

}

b = a;

System.out.format("%d %d %d", a, b, c);

}

}

Task 15

public class task15{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

b = a;

c = b;

if (c > a){

a = c;

}

System.out.format("%d %d %d", a, b, c);

}

}

49

Task 16

public class task16{

public static void main(String arg[]){

int a = 5;

int b = 3;

int c = 7;

if (a >= b){

b = a;

}

a = c;

c = b;

System.out.format("%d %d %d", a, b, c);

}

}

Task 17

public class task17{

public static void main(String arg[]){

int array[] = {5, 3, 7};

for (int i = 0; i < 3; i++){

array[i] = 1;

}

System.out.format("%d %d %d", array[0],

array[1], array[2]);

}

}

Task 18

public class task18{

public static void main(String arg[]){

int array[] = {5, 3, 7, 4, 2, 6};

int output = 0;

for (int i = 0; i < 6; i++){

output = output + array[i];

}

System.out.format("%d", output);

}

}

50

Task 19

public class task19{

public static void main(String arg[]){

int array[] = {5, 3, 7, 4, 2, 6};

int output = 0;

for (int i = 5; i > 0; i--){

if (array[i] % 2 == 0)

output = output + array[i];

}

System.out.format("%d", output);

}

}

Task 20

public class task20{

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

for (int j = 0; j < 3; j++){

output = output + array[j];

}

}

System.out.format("%d", output);

}

}

Task 21

public class task21{

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

output = output * i;

for (int j = 0; j < 3; j++){

output = output + array[j];

}

}

System.out.format("%d", output);

}

}

Task 22

public class task22{

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

if (array[i] > 4){

for (int j = 0; j < 3; j++){

output = output + array[j];

}

}

}

System.out.format("%d", output);

}

}

51

Task 23

public class task23{

private static int foo(int a){

return a*2;

}

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

array[i] = foo(array[i]);

}

System.out.format("%d %d %d", array[0],

array[1], array[2]);

}

}

Task 24

public class task24{

private static int foo(int a, int b){

return a+b;

}

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 3; i++){

array[i] = foo(array[(i+1)%3], array[(i+2)%3]);

}

System.out.format("%d %d %d", array[0],

array[1], array[2]);

}

}

Task 25

public class task25{

private static void foo(int[] a, int b, int c){

int d;

d = a[b];

a[b] = a[c];

a[c] = d;

}

public static void main(String arg[]){

int array[] = {5, 3, 7};

int output = 0;

for (int i = 0; i < 4; i++){

foo(array, i % 3, (i+1) % 3);

}

System.out.format("%d %d %d", array[0], array[1], array[2]);

}

}

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	EEG
	Alpha and Theta Waves
	Cognitive Load
	Software Complexity Metrics
	Lines of code (LOC)
	Example 1: lines of code
	Example 2: lines of code
	Halstead's complexity metric (HCM)
	Example 1: Halstead complexity metric
	Example 2: Halstead complexity metric
	McCabe cyclomatic complexity measures (CCM)
	Example 1: McCabe cyclomatic complexity
	Example 2: McCabe cyclomatic complexity

	Methodology
	Experimental Tasks
	Instrumentation
	Procedure
	Pre-experimental session
	Experimental session
	Post-experimental session

	Signal Analysis

	Results
	Computation with Complexity Metric
	Correct Response for the Tasks
	Regression Analysis: All Tasks Individually
	Regression Analysis: Easy vs Hard Tasks

	Discussion
	Interpretation of Results
	Threats to Validity

	Future Works
	Conclusion
	REFERENCES
	APPENDICES
	NASA-TLX Survey Data
	Experimental Tasks

