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Smith, Rebecca M (Ph.D., Civil Engineering) 

Co-production with Water Managers to Evaluate Multiobjective Evolutionary Algorithm (MOEA)-

assisted Optimization for Long Term Water Utility Planning and Shape Future Research Agendas 

Thesis directed by Dr. Joseph Kasprzyk 

Many promising tools and methods developed in water resources systems analysis research have 

seen little uptake outside of academia. This may be due to a lack of effective communication about the 

research to water managers, or it may be because the tools are not ultimately useful or usable in practice. 

Current predominant research frameworks do not provide insight into these issues or facilitate the 

incorporation of industry needs into research agendas.  

This dissertation introduces a structured research approach called the Participatory Framework 

for Assessment and Improvement of Tools (ParFAIT) that formally connects researchers and water 

managers in purposeful, iterative exercises to educate about promising tools, evaluate their usefulness and 

usability, and draw practitioner feedback into academic agendas. The process is founded on co-production 

concepts and involves two workshops which are designed to ultimately result in: a broadly relatable 

vehicle to demonstrate the tool (a testbed), practitioner feedback about the tool resulting from hands-on 

workshop experience, tool-specific as well as more general industry context, and definitive suggestions 

for increasing the relevance of future research. 

ParFAIT is demonstrated by testing Multiobjective Evolutionary Algorithm (MOEA)-assisted 

optimization for long term water utility planning with a group of Front Range, Colorado, water managers. 

The first workshop informed the creation of the Eldorado Utility Planning Model, a complex but 

hypothetical testbed designed to be widely relatable to participants. MOEA-assisted optimization was 

performed on the testbed using workshop-informed formulations of planning decisions, objectives, 

constraints, and planning scenarios. The optimization results formed the basis of a second workshop at 

which managers worked directly with testbed output in structured activities and discussions 

This ParFAIT study found that practitioners consider the information provided by MOEA-assisted 

optimization to be useful for several aspects of their long term planning processes, but that there are 
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important considerations for ensuring usability of the tool itself and its output. One important 

consideration is the interpretation of complex MOEA results. Based on this feedback, this work presents a 

novel application of Multivariate Regression Tree analysis to extract system insights from MOEA-

assisted optimization results. 
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Chapter 1 

Introduction 

1.1 Motivation 

Water resources planning in many parts of the world has become increasingly complicated as 

populations grow and new water supply options become scarcer and more difficult to execute (Gleick, 

2002). Uncertainties stemming from climate change and predictions of future demands and regulations 

exacerbate the impending imbalances (Milly et al., 2008; Roberson and Aubuchon, 2013; Smith et al., 

2017). Municipal water providers are on the front lines of responding to these challenges; they must work 

within regulatory, funding, hydrologic, technological, and societal constraints to provide sufficient 

quantity and quality of water to meet customers’ demands.  

Recently there has been increasing awareness among practitioners and government agencies of the 

need for advanced decision support tools to meet the compounding challenges described above (Jacobs, 

2002; Means et al., 2010; National Reseach Council, 2009). While demand for new ways of approaching 

planning has become more urgent, the concept of water management innovation is not new; Water 

Resources Systems Analysis (WRSA) researchers have been developing tools and methods intended to 

improve water resources decision making since the 1950s (Maass et al., 1962), with some examples of 

successful incorporation into practice. However, the combination of increasingly technical tools and 

limited interaction between researchers and practitioners has resulted in a lack of evidence that new tools 

are useful in practice or implemented successfully (Asefa, 2015; Brown et al., 2015; Moser, 2009). 

WRSA researchers often have engineering education and training. In society, engineers are relied 

upon to use science to design systems that meet specified goals while considering practical limitations. 

Because WRSA researchers integrate engineering principles with the pursuit of knowledge, we posit that 

their charge is to advance water management practice and improve planning outcomes. To do so, they 

must make intentional, formal effort to understand how WRSA research can respond to the needs of water 
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utilities and effectively educate practitioners about new tools (Cosgrove and Loucks, 2015). Existing 

research paradigms either do not involve practitioners at all, consult them for application-specific 

information, or transform researchers into analysts of real-world projects. To increase the likelihood that 

innovations will diffuse into practice and hone future WRSA research, a co-production research model, in 

which both researchers and practitioners are integral to creating knowledge and setting research agendas, 

is needed (Lemos and Morehouse, 2005; Smits, 2002).  

This dissertation demonstrates a co-production approach that brings together academics and 

practitioners to generate tool-specific knowledge and inform future WRSA research. The study centers on 

the prospects for Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization to enhance water 

utility planning, and improves understanding of the real-world context that shapes the potential for 

existing and future decision support tools. We focus on MOEAs because of their mature body of research 

and inherent relevance to modern water resources planning. Support for these assertions is provided in the 

following section. 

1.2 Background 

1.2.1 Water Utility Planning 

Municipal water providers are subject to a vast range of geographical, climatological, and cultural 

circumstances, but all must strategically manage water supplies to meet current and future demands. Long 

term planning to meet growing demands entails supplementing an existing system with new sources and 

management policies. A long term plan is a defined set of actions and policies that emerges from several 

possible combinations of options.  

Water supply and conveyance networks are often extensive and complex. Utilities invest large 

amounts of time and expertise to develop simulation models that capture the components and dynamics of 

these systems, and rely heavily on them to answer “what if” questions (Labadie, 2004). One line of 

questioning these models support is how new water sources, infrastructure, and policies will perform 
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under future supply and demand scenarios. Using models to try different combinations of actions, or 

portfolios, is the technical foundation of long term planning.  

In recent decades, growing momentum for environmental stewardship as well as transparency and 

public participation have changed societies’ expectations of water utilities’ planning processes and 

outcomes (Elkington, 2004; Kenway et al., 2007). In the past, utilities’ plans were primarily driven by 

meeting target demand reliability at minimum financial cost; now they must directly consider social and 

environmental costs as well, which are often in tension with minimizing financial investment. For 

example, a high-yield reservoir at a structurally and geographically convenient site that damages a scenic 

area and/or displaces residents may be subject to wide-ranging opposition despite its potential to ensure 

future water security (Tolchin, 1990; Woods, 1994).  

The inclusion of objectives beyond yield and cost increases the complexity of developing and 

evaluating planning portfolios. Furthermore, utilities must become more creative in light of hydrologic 

challenges and limited opportunities for conventional infrastructure solutions. To navigate the tradeoffs 

between financial, social, and environmental performance, a greater variety of combinations of actions 

needs to be simulated and evaluated based on multiple objectives. Utilities have traditionally designed a 

relatively small number of portfolios by hand using expert system knowledge and subjective variations of 

portfolio decisions to accommodate social and environmental concerns. This approach limits the 

information on which decision makers and the public can express preferences, and the few modeled 

portfolios may not capture the full performance potential of the system. 

1.2.2 Multiobjective Evolutionary Algorithms (MOEAs) for Water Utility Planning 

As described above, water utility planning is characterized by multiple conflicting performance 

objectives, potentially many thousands of possible combinations of decisions that make up portfolios, and 

the need for creative approaches to meet current and future supply, demand, and regulatory challenges. 

For these reasons, WRSA researchers have studied and advanced the science of applying Multiobjective 
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Evolutionary Algorithms (MOEAs) to a variety of water resources planning problems (Maier et al., 

2014).  

MOEAs are optimization algorithms that efficiently generate portfolios of decisions, feed the 

portfolios to embedded simulation models, and evaluate them based on translating model output into 

multiple user-defined objectives. Several aspects of MOEA-assisted optimization make it an attractive 

method for water resources planning. The first is that any simulation model can be embedded into the 

algorithm search loop, so there is no need to simplify a system model in order to use the optimization 

method. Another benefit is that the algorithm evaluates performance on multiple objectives separately, so 

each objective can maintain its native units, there is no need for a priori weighting schemes, and 

performance in each objective is explicit rather than obscured within a single objective function. Finally, 

MOEA search uses the concept of evolution to create successive generations of solutions based on earlier 

high-performing portfolios, meaning that the search is intelligent and can efficiently find feasible, high 

quality portfolios. 

Because there is no single optimal solution to a problem with multiple conflicting objectives, the 

result of performing MOEA-assisted optimization is a set of non-dominated (approximately Pareto-

optimal) portfolios (Pareto, 1896), where every portfolio is better than another in at least one objective but 

not all objectives. The set of portfolios quantitatively describes the tradeoffs between objectives by 

showing exactly how much performance a user must sacrifice in one objective to achieve improvements 

in another. The results also reveal approximately how well a system can perform, and help users 

understand what impacts their preferences have across multiple types of system performance measures. 

To demonstrate the concept of tradeoffs and how they may be visualized, we present a stylized 

grocery planning problem. You are going shopping and can create a “portfolio” of food items consisting 

of varying amounts of apples, beef, bread, carrots, celery, chicken, chips, eggs, hummus, ice cream, and 

peanut butter. Each of these items has a monetary cost, and you have also given each of them a score for 

nutrition and pleasure where 1 = little nutrition/pleasure and 10 = high nutrition/pleasure.  When making 
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your list, you would ideally minimize cost while maximizing nutrition and pleasure, but (at least for the 

sake of this example), these objectives conflict. If you plotted a set of six possible grocery lists, they may 

look like Figure 1-1. 

 

Figure 1-1. Example of multiobjective tradeoffs using a simplified grocery list planning problem. 

The top plot shows performance in the three objectives, where each is represented by a vertical 

axis. Each individual grocery list is represented by a colored line that connects across the axes, where the 

height at which the line crosses an axis denotes its score in that objective. The lower a list line crosses an 

axis, the better its performance, so a straight line across the bottom would be the ideal list but it doesn’t 

exist because the objectives conflict. The bottom plot shows the items incorporated into each list, where 

each item has a vertical axis and the list is depicted by a colored line that matches the color of the 
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corresponding list in the top plot. The lower the list line crosses an item axis, the less of that item is 

included in the list. 

 Examining the top plot, you can see that lists which have very low costs tend to have poor 

nutrition, both because less nutritious foods are often less expensive but also because lists with fewer 

items haves lower cost and less nutrition. These considerations present a tradeoff, which is visually 

represented by the crossing lines between the first and second axes. The brown list has the lowest cost, 

which from the bottom plot you can see includes only five items, two of which are chips and ice cream. If 

you wanted to compromise between all three objectives, you might choose the green list, which has nine 

items and includes moderate amounts of non-nutritious (but pleasurable) chips and ice cream. 

 This highly simplified grocery example shows how combinations of decisions impact 

performance in objectives that you care about and that visualizing the sets of decisions and their 

performance can quickly convey system dynamics and provide a canvas on which to apply preferences. 

Water supply systems are of course infinitely more complex than grocery lists in terms of dynamics, 

number of possible portfolios of decisions, and performance criteria and preferences; this is why MOEAs 

test thousands of portfolios to meaningfully quantify tradeoffs between user-defined objectives and 

explore how well the system can perform in each of them. 

 In the context of a broader water utility planning process, both the process of incorporating an 

MOEA and the results it produces should be considered potential enhancements, not replacements for 

existing analyses and human judgement. Because MOEAs offer the benefit of optimizing across many 

objectives, utilities may expand their thinking about what types of system performance they care about 

and how to quantify those objectives. Once the optimization is finished, the first use of the tradeoffs may 

be to determine whether the dynamics they reveal confirm previous system understanding (e.g. the 

importance of a large new reservoir) or reveal new information (e.g. a combination of new water sources 

and demand conservation are more effective than the reservoir). Any surprises may be investigated using 

additional simulation analyses; there is no assumption of blind trust in the results. There is also no 
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requirement that a final plan be one that was produced by the optimization; in depth analysis and 

engagement with decision makers and the public should be integrated with MOEA results. The ultimate 

power of MOEA tradeoffs is the ability to efficiently find a diverse set of planning portfolios that show 

how well a system can perform, see relationships between different objectives, confirm or improve 

understanding of the system, and increase confidence in a final plan. 

There are many examples of research studies applying MOEAs to water resources problems, but 

here we present a few notable contributions. After decades of extensive development in primarily 

groundwater management applications (Nicklow et al., 2010), Kasprzyk et al (2009) applied an MOEA to 

a problem which modeled a single reservoir and the use of a water market in the Lower Rio Grande 

Valley to balance six objectives including cost, reliability, and surplus water. Mortazavi et al (2012a) used 

an MOEA to optimize infrastructure and operations decisions in consideration of three objectives for a 

simplified model of Sydney’s multireservoir network. Zeff et al (2014) expanded the use of MOEAs to a 

regional multi-utility, multireservoir model to demonstrate that cooperation resulted in financial benefits 

and improved reliability for all utilities. Finally, Smith et al (2016) demonstrated MOEA-assisted 

optimization using the full-complexity multireservoir legacy model of a Texas utility. This last 

application used the sophisticated RiverWare modeling software and an off-the-shelf desktop computer, 

unlike most previous studies which used less complex modeling software and supercomputing.  

Many factors suggest that this method can be successfully used by practitioners: industry 

recognition of need for advanced decision support tools, utilities’ widespread reliance on simulation 

modeling, access to computing resources either through powerful desktop machines or the cloud (Mathew 

and Varia, 2014), and successful research development of MOEAs to be adaptive to many problems 

(Hadka and Reed, 2013). Despite the opportunity described throughout this introduction, MOEAs for 

water resources planning have seen little use outside of academia. With the notable exceptions of 

Colorado Springs Utilities’ drought vulnerability study (Basdekas, 2014) and integrated water resources 
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plan (CSU, 2017a), there have not been any other real-world water management applications of MOEA-

assisted optimization. 

1.2.3 Push, Pull, and Co-production of Science 

Based on descriptions from Dilling and Lemos (2011), research performed in the WRSA field 

generally follows either the “push” or “pull” model of science production. In the push model, tools and 

methods are developed without input from water practitioners about what is needed or desired, assuming 

the fruits of research efforts will find their way into practice (or not). Even when practitioners are 

incorporated into research, it is often in a consultative role to assist researchers in their ongoing agendas 

(Matrosov et al., 2015; Smith et al., 2016). In the pull model, agencies commission researchers to help 

them solve specific problems, resulting in researchers-as-analysts case studies, e.g. Lempert and Groves 

(2010), which may not be seen as providing fundamental insight that can be applied to other water 

management contexts (Brown et al., 2015). 

Research on the uptake of science by practitioners finds that uptake potential is partially 

determined by the usefulness and usability of the information. Useful science “improves… decision-

making by expanding alternatives, clarifying choices and enabling decision makers to achieve desired 

outcomes” (McNie, 2007). Usable science is that which “fits decision-making processes and decision 

environments in practice” (Lemos and Rood, 2010). Achieving and ascertaining both usefulness and 

usability of science to potential users is most likely to occur through researchers’ intentional, iterative 

engagement with target audiences (Dilling and Lemos, 2011). This process is the co-production model of 

research, where the research agenda is shaped by both producers of knowledge and users (Lemos and 

Morehouse, 2005).  

Co-production is often carried out with the help of boundary organizations. Boundary 

organizations are entities that actively facilitate coordination between practitioners and researchers (Cash 

et al., 2003). Notable examples are the Center for Decision Support for Water and Environmental Systems 

(CADSWES) and the Western Water Assessment (WWA), which is a NOAA Regional Integrated 
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Sciences and Assessment (RISA) team, which are both housed at the University of Colorado and 

contributed to this work. Other examples of boundary organizations are the Water Utility Climate 

Alliance (WUCA), which is a group of water utilities from around the country who engage with a variety 

of scientists, and the eight regional USGS Climate Science Centers. However, the relationships supported 

by these organizations are the exception, not the rule. More deliberate effort to supplement WRSA’s 

“push” research activities with co-production could increase the likelihood of practitioners using tools 

like MOEAs and also help direct the tools’ future research developments toward an agenda responsive to 

practitioner feedback.  

1.2.4 Participatory Modeling 

The co-production research paradigm guided the development of this study. A team of water 

managers, engineering researchers, social scientists, and climate scientists developed questions, goals, and 

an agenda to create knowledge that would be beneficial to both practitioners and academics. To carry out 

the research, we employed techniques used in participatory modeling. Participatory modeling brings 

together researchers and stakeholders in structured settings for the specific purpose of co-developing a 

model to improve the framing or actions taken by society to solve a particular (usually) environmental 

problem (Voinov and Bousquet, 2010).  

Our study differs from traditional participatory modeling in that the purpose is to educate 

practitioners about an existing tool, generate feedback about the tool, and fold that feedback into future 

research. However, because our sequence of steps does involve formal sessions where practitioners 

provide input to a model and then evaluate output from that model, we are firmly situated in this literature 

and simply expand its scope of application. 

Please note the distinction between co-production and participatory modeling. Our use of a co-

production mode of research (in contrast with science “push” or “pull”) means that we incorporated 
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practitioner input directly into our research agenda via two water manager principal investigators1. Our 

use of participatory modeling refers to the fact that we used practitioner input to build and evaluate a 

simulation model.  

1.3 Overview of Work 

The overall goal of this dissertation is to demonstrate how co-production can improve 

understanding of an individual water resources decision support tool as well as influence the broader 

WRSA research agenda for the benefit of both researchers and practitioners. The research activities 

undertaken to achieve this goal were driven by four objectives.  

The first objective was to develop a research framework that combined the expertise of 

practitioners and academics to evaluate the potential for MOEA-assisted optimization to contribute to 

long term utility planning, and generate feedback that could be incorporated into future research. This 

objective was met through our design of the Participatory Framework for Assessment and Improvement 

of Tools (ParFAIT). ParFAIT is a generalizable sequence of steps that includes a workshop through 

which practitioners’ input influences the development of a representative application of the tool (a 

testbed) and a second workshop at which practitioners interact with testbed output to gain experience with 

and provide feedback about the tool. 

The second objective was to learn about aspects of real-world water management that researchers 

should account for when proposing and performing research. This objective was addressed through both 

ParFAIT workshops: in the first, we learned about water utilities’ challenges, management objectives, and 

the actions they can take to ready their systems to meet growing demands with uncertain supplies and 

future conditions (or states of the world); in the second workshop, we learned about the long term 

planning process itself, including the phases, players, and roles of different types of information. 

                                                      
1 Laurna Kaatz of Denver Water and Leon Basdekas of Black & Veatch, formerly of Colorado Springs Utilities 
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The third objective – to understand practitioners’ perceptions of MOEAs and their potential to 

impact long term utility planning – was built into the ParFAIT process as the main purpose of the second 

workshop. Specific activities and feedback structures at the workshop enabled us to develop knowledge 

about how the practitioners interacted with MOEA tradeoffs themselves, and how that tradeoff 

information could be useful to their agencies. 

The fourth objective was to determine and undertake additional research to address practitioner 

feedback from the second ParFAIT workshop. Practitioners’ responses to MOEA tradeoffs shaped our 

study of how the information contained within tradeoff sets can be mined to enhance the usefulness of 

MOEAs and help utilities understand the impacts that specific combinations of decisions could have on 

their planning objectives. 

1.4 Organization of Dissertation 

This dissertation is structured as follows: 

Chapter 2 is the journal article “Participatory Framework for Assessment and Improvement of 

Tools (ParFAIT): increasing the impact and relevance of water management decision support research,” 

published in Environmental Modelling and Software with co-authors Joseph Kasprzyk and Lisa Dilling 

(Smith et al., 2017). It describes ParFAIT, its theoretical foundation, and the format and results from the 

first ParFAIT workshop that informed the model, problem formulation, and planning scenarios of our 

MOEA testbed.  

Chapter 3 is the journal article “Multiobjective optimization of long term planning portfolios on 

the Front Range of Colorado,” which is in review at the Journal of Water Resources Planning and 

Management and co-authored by Joseph Kasprzyk and Leon Basdekas. It describes the MOEA testbed 

informed by practitioner input from workshop 1, including the simulation model, MOEA problem 

formulation, optimization scenario, and some tradeoff results. We show that a generic model built around 
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the hypothetical Eldorado Utility and its regional context can produce results that credibly represent 

tradeoffs faced by real Front Range, Colorado, utilities. 

Chapter 4 is the journal article “A multiobjective tradeoff charrette to engage with Colorado 

water managers about long term planning,” which is in preparation for submission to Environmental 

Modelling and Software and is co-authored by Joseph Kasprzyk and Lisa Dilling. Here we connect our 

second ParFAIT workshop to the concept of a charrette. In the context of research, “charrette” is a term 

used by construction management researchers to denote a focus group during which practitioners provide 

direct feedback and input about existing and proposed research tools and agendas. The chapter describes 

the methods and activities we incorporated into our charrette to generate both structured and un-structured 

practitioner feedback and discusses findings relevant to MOEAs specifically as well as the needs of 

utilities more broadly. 

Chapter 5 is the journal article “Combining Multivariate Regression Trees and multiobjective 

tradeoff sets to reveal fundamental insights about water resources systems,” which is co-authored by 

Joseph Kasprzyk and Balaji Rajagopalan and is in preparation for submission to Water Resources 

Research. This chapter applies a multivariate regression tree data mining technique to tradeoffs produced 

by the Eldorado Utility model to learn how specific decisions or combinations of decisions lead to 

different performance outcomes. The ability to access this information directly addresses the interest 

expressed by practitioners during the charrette to understand the relationships between decisions and 

objectives.  

Chapter 6 presents the conclusions and contributions of this research and proposes avenues of 

future work.  
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Chapter 2 

Participatory Framework for Assessment and Improvement of Tools (ParFAIT): 

increasing the impact and relevance of water management decision support research 

This chapter proposes the Participatory Framework for Assessment and Improvement of Tools 

(ParFAIT) as a way to address low uptake of Water Resources Systems Optimization (WRSO) tools. 

ParFAIT is a transdisciplinary process conducted in five stages, two of which are participatory modeling 

(PM) exercises. Herein we describe the framework, introduce our candidate tool- Multiobjective 

Evolutionary Algorithm (MOEA)-assisted optimization, and present the results of our first PM workshop. 

MOEA-assisted optimization has been put forth as a planning and decision making aid for utilities facing 

a large number of decisions and highly uncertain futures. The PM workshop, designed to solicit input on a 

tool testbed, was held in February 2015 with representatives from six Front Range, Colorado, water 

utilities. Our results include an expanded characterization of the decision making landscape, feedback on 

water utility decisions and performance goals commonly employed in WRSO studies, and new questions 

that warrant future investigation by researchers. 

2.1 Introduction 

Since its inception during the Harvard Water Project (Maass et al., 1962), water resources systems 

analysis (WRSA) research has sought to bring about improved processes and outcomes in the water 

management industry. Many WRSA “tools”- any software or method intended to facilitate resource 

management activities- have achieved prominence in industry, e.g. simulation modeling (Jakeman and 

Letcher, 2003; Loucks et al., 1981; Loucks and van Beek, 2005) and stochastic hydrology (Linsley Jr et 

al., 1975; Rajagopalan et al., 2006). However, the field still faces challenges when attempting to 

implement tools in real-world contexts, particularly in the area of systems optimization (hereafter referred 

to as WRSO- Water Resources Systems Optimization) (Brown et al., 2015; Junier and Mostert, 2014; 

Kok et al., 2008; Maier et al., 2014; McIntosh et al., 2005, 2011; Rogers and Fiering, 1986). WRSO 

involves using one or more computerized tools to automatically generate candidate solutions 
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(combinations of actions and/or policies) to complex water management problems, especially in the 

context of long term planning and decision making. 

Three reasons for this disjunction between WRSO research and water management practice are 1) 

practitioners’ lack of exposure to promising research; 2) barriers to adoption within water management 

agencies; and 3) academia’s failure to produce relevant tools. Lack of exposure is primarily due to the 

differences between research and water agency agendas (Borowski and Hare, 2006; Jacobs, 2002; McNie, 

2007). Researchers are incentivized to publish in scientific journals that are often behind paywalls, and 

they write in language that may be unfamiliar to practitioners (Cvitanovic et al., 2015). Adding to this, 

water managers have many duties and may not have time or expertise to engage with research (Brown 

and Farrelly, 2009).  

Even if water managers were able to regularly review WRSO literature, there are many 

complicated factors that impact adoption of research into water management (Dilling and Lemos, 2011). 

One is that water utilities are risk-averse, and unlikely to experiment (Farrelly and Brown, 2011). Another 

is that incorporating  a new tool or method could require the backing of high level managers, necessitating 

a “champion” within the utility to advocate for the change and sustain its development (Farrelly and 

Brown, 2011; Taylor, 2009). Though efforts by researchers cannot overcome all barriers to adoption, 

addressing the lack of exposure would substantially reduce one of them. If managers do not have 

backgrounds in recent advanced techniques and are not exposed to promising research, one of the major 

predictors for adoption (a champion within the utility) is unlikely to arise. The result of this is that tools 

produced by WRSO research have little chance of being adopted by practitioners (Díez and McIntosh, 

2009). 

Funtowicz and Ravetz (1993) contend that in an age of great uncertainty and high stakes, 

improving the quality of scientific inputs to decisions requires an expansion of traditional boundaries, 

including meaningfully incorporating the experiences and values of previously un- or under-represented 
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stakeholder communities. However, because of disincentives in academia for working with practitioners 

and across disciplinary lines, and the lack of accessibility of academic journals for many practitioners, 

there is often a disconnect between researchers and the target audience for their tools. According to the 

National Research Council (2009), “decision support strategies should be built on an understanding of 

decision makers’ values and priorities”. This calls for direct, two-way communication between 

researchers and practitioners, without which WRSO researchers may lack crucial understanding of how 

information and technology are acquired and used by water management agencies (Díez and McIntosh, 

2009). While consultants could provide one route for research to be informed by and inform decision 

making, because they are focused on near-term applications demanded by clients, they may not often 

have the capacity to provide a conduit or pathway between new tools developed by academic research and 

practitioners themselves. 

There has been a period of rapid technical development in WRSO research, but attention to 

research relevance and knowledge transmission warrant equal attention (Cosgrove and Loucks, 2015; 

Lawrence and Després, 2004; Sahota and Jeffrey, 2005; Smajgl and Ward, 2013; Thompson Klein, 2004; 

Voinov et al., 2014; Wen et al., 2015). In order to produce usable tools and methods, WRSO must avoid 

oversimplification of complex decision making environments and recognize political and social 

constraints (Allan, 1999; Asefa, 2015). Similarly to WRSO research, climate science has historically not 

seen widespread application in practice. Analysis of that field’s challenges has shown that usability is the 

product of iterative interactions between producers and users, achieved through intentional engagement 

between researchers and practitioners (Dilling and Lemos, 2011), and there are groups that have been 

engaging in such practices for many years (e.g. NOAA’s Regional Integrated Sciences and Assessments 

program). Other fields can benefit from the lessons learned by climate science; based on the dearth of 

evidence that WRSO research is influencing water management planning and decision making (Brown et 

al., 2015; Rogers and Fiering, 1986), it is likely that WRSO research may be lacking in this engagement 
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and intentionality. Indeed, studies have shown that innovations in general are most successful when they 

result from close negotiations between developers and users (Díez and McIntosh, 2009; Smits, 2002). 

Transdisciplinarity, especially as applied in participatory research, can be used to combat two of 

the three challenges for disseminating WRSO efforts- lack of exposure and low relevance (Lawrence and 

Després, 2004; Ruiz et al., 2015). Transdisciplinary research is collaboratively designed and executed by 

researchers and stakeholders to solve complex problems, often at the human-environment interface, 

incorporating methodological iteration and evolution, and with an emphasis on extended learning 

(Hadorn, 2008; Lawrence and Després, 2004; Thompson Klein, 2004; Wickson et al., 2006). One form of 

transdisciplinarity is participatory modeling (PM). The foundational precept of PM is stakeholder 

involvement in modeling as the major tool for decision making (Voinov and Bousquet, 2010). We posit 

that the definition of stakeholders for analysis of WRSO tools includes water management practitioners 

who are one of the target user groups. Researchers may use PM for anything from developing a decision 

support model, (e.g. Argent and Grayson, 2003), to creating a platform to facilitate mutual understanding 

between disparate stakeholders, e.g. (Eeten et al., 2002). Some examples of recent applications of PM are: 

participatory development of a model to solve persistent pollution problems in St. Albans Bay (Gaddis et 

al., 2010); participatory development of an integrated socio-ecological model to enable stakeholders in 

Reichraming, Austria, to understand the interactions between local policies, human behavior, and the 

environment (Gaube et al., 2009); and a workshop to assess water managers’ perceptions of the output 

from a previously-developed water quality model in northeast Mexico (Robles-Morua et al., 2014). In 

light of the fact that government-funded research programs increasingly emphasize practicality and 

applicability (National Research Council, 2009), participatory research efforts, especially those aimed at 

evaluating existing tools, are likely to become more important for WRSO research (Voinov et al., 2016). 

Thus, explicitly bringing PM concepts to bear in a structured way to advance the WRSO field is an 

important undertaking. 
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The purpose of this chapter is to present a novel participatory framework and the first stage of our 

results from its application. The Participatory Framework for Assessment and Improvement of Tools 

(ParFAIT) is designed to obtain feedback on emerging WRSO tools while directly addressing the 

exposure and relevance challenges that inhibit WRSO research impacts. The core of ParFAIT is the use of 

two PM workshops. The first combines the expertise of researchers and practitioners to design a generic 

demonstration case study, or testbed, that captures broadly relatable management context. The second PM 

workshop assesses whether the nature of the information produced by the tool is seen as valuable to 

managers as they engage with the testbed. As described above, applications of PM have traditionally 

centered on pre-defined decisions or resource management projects. However, if a series of PM exercises 

is applied as laid out in ParFAIT, the purpose can be broadened to hone future applications of a tool, 

enhance its impact, and increase the relevance of WRSO research. 

We developed ParFAIT shown in Figure 1 through the contributions of a transdisciplinary team 

made up of water managers, engineering researchers, climate scientists, and social scientists. In our 

application of the framework, we explore the use Multiobjective Evolutionary Algorithms (MOEAs) for 

long term water utility planning, and solicit participation from water managers through two workshops. 

The purpose of the first workshop was to co-design an experimental MOEA testbed, which will be used 

to generate representative MOEA output (further explained in Section 3). A second workshop will assess 

how the type of information provided by the MOEA testbed results might contribute to water managers’ 

decision processes in the context of long term utility planning.  

In Section 2 we provide a detailed description of the elements of our framework. In Section 3 we 

introduce the MOEA research tool we will subject to our assessment framework, as well as the water 

management agencies participating in our study. Sections 4 and 5 will present the results of Workshop 1 

and synthesize the insights they contribute to WRSO research. Section 6 will provide concluding remarks. 
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2.2 Participatory Framework for Assessment and Improvement of Tools 

Several studies that reflect on forms and functions of participatory research agree that emphasis on 

a process, template, or framework is an important early consideration in any PM undertaking; it improves 

the chances that roles of actors and purpose(s) of different phases of the project are clearly defined (Seidl, 

2015). This conclusion underscores the value of defining and implementing the sequence of steps in the 

Participatory Framework for Assessment and Improvement of Tools (ParFAIT). Going forward, we will 

refer to specific steps as depicted in the diagram in Figure 2-1. 

 

Figure 2-1. Participatory Framework for Assessment and Improvement of Tools (ParFAIT). 

Step 1 of ParFAIT is to identify a promising tool and a proposed use for the tool. An appropriate 

combination of tool and purpose should be informed by two factors. The first is the maturity of the tool.  

Has it been applied to multiple problems? Has it been systematically evaluated? The second factor is 

whether or not the tool has a ripe opportunity to be useful for water management practice. Tool maturity 

can be confirmed through knowledge of WRSO literature, but opportunity for practical application should 

be based on practitioners’ experiences and input. 
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Purposeful interaction with practitioners about their needs and capabilities is the ideal way to 

design a ParFAIT study, and is a fundamental aspect of transdisciplinarity (Hadorn, 2008; Lang et al., 

2012). Working with managers to assess the state of practice and identify their goals or interests (i.e. 

formulate the research goal) results in substantive contributions from water managers- the practitioners’ 

involvement is necessary to ensure the quality of both the project and the knowledge it produces. Their 

continued involvement throughout the project also serves normative goals- to demonstrate the value of 

soliciting feedback about promising research tools as well as real-world context from intended users 

(Fiorino, 1990). 

There are several avenues by which researchers can identify and recruit practitioners for the 

framework, such as exploiting existing relationships or surveying local managers who might be interested 

in contributing to a research project.  The particular approach to identifying and recruiting practitioners is 

beyond the scope of this paper. Some useful resources for engaging practitioners in research are research 

foundations and professional societies such as the Regional Integrated Sciences and Assessments (RISAs) 

(http://cpo.noaa.gov/ClimateDivisions/ClimateandSocietalInteractions/RISAProgram.aspx), Climate 

Science Centers (https://nccwsc.usgs.gov), the Water Utility Climate Alliance 

(https://www.wucaonline.org), or the Water Research Foundation (http://www.waterrf.org). 

The choice of tool and purpose will determine the elements of a “testbed”, or generic, 

representative platform that serves as a vehicle for communicating a tool’s capabilities to practitioners. 

These testbed elements are general categories of components, e.g. hydrologic data, models, and analytical 

tools. The rest of the framework is structured around the particular components needed to demonstrate the 

tool for the purpose. 

During the framework’s first workshop, Step 2, managers play a consultative role (Pretty, 1995); 

in-depth, substantive input from water managers is elicited to inform the foundation of the testbed and 

define the “problem” the tool will analyze (Reed and Kasprzyk, 2009). When planning this workshop, 

researchers and the workshop participants must decide what type of testbed to work on – the specific 
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system of an agency (i.e., choose one city upon which to perform optimization) or create a generic 

testbed.  When a tool is demonstrated via a case study using a specific agency’s system, the modeling and 

forcing data are intrinsically relevant to a single utility. It may be difficult to engage a utility in 

experimental applications, however, because of risk aversion and data sensitivity (Farrelly and Brown, 

2011), and the resulting insights may not be accepted as fundamentally valuable beyond the sponsoring 

agency (Brown et al., 2015). Therefore, our suggestion for achieving broad relatability and eliminating 

the need for any agency to commit to a new technology is to demonstrate a tool on a hypothetical, yet 

realistic, testbed. To produce a credible hypothetical testbed that captures important but generalized 

dynamics, input from practitioners is crucial (Jakeman et al., 2006). 

The first workshop is intended to have a relatively low level of structure, or formalization, 

compared to the second workshop. Formalization refers to how researchers design the mechanisms for 

interaction, and therefore how open the design is to receiving unanticipated input. More formal structure 

includes mechanisms such as closed-ended questionnaires or pre-determined modeling exercises. In 

contrast, less formal mechanisms might include interviews or discussion groups where the conversations 

may be initiated from a specific question but allowed to generate responses in a more open, unrestricted 

manner (Newig et al., 2008). Since structure within a workshop acts as a filter, designing this workshop to 

be less structured meets the goal of casting a wide net around topics that are relevant to the construction 

of a testbed. We recommend open-ended questions or prompts to initialize brainstorming and discussions. 

Note that while limiting workshop structure to capture nuance and context for subject matter is desirable, 

researchers should take steps to ensure that they hear from all participants (e.g. actively facilitating 

discussions). 

This workshop is an example of a co-learning, or social learning process wherein parties with 

different perspectives collaborate to develop a product but also achieve a better understanding of a 

problem (Mostert et al., 2008; Pahl-Wostl and Hare, 2004). Previous studies suggest that the results of co-

learning experiences are valuable (McNie, 2007; Thompson Klein, 2004), and publishing the content can 
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contribute to more relevant WRSO tools by informing a scientific agenda that is better able to reconcile 

supply and demand for the tools (Sarewitz and Pielke, 2007). Additionally, the results presented in this 

paper significantly shape the evolution of the project, and warrant full discussion apart from the results of 

Workshop 2. 

The first workshop is designed to not only brainstorm direct responses about testbed components 

(e.g. modeling platform preferences and physical supply infrastructure to be modeled), but also to 

generate discussion and commentary on the real-world context of those components. In Step 3, 

researchers translate the participants’ input from Step 2 into the hypothetical testbed on which the tool 

will be demonstrated. This enables researchers to convert the potentially diverse experiences and concerns 

of the managers into a coherent set of testbed components that a large group of participants will be able to 

connect with. The specific mechanics of the tool in question will dictate the testbed components. 

Regardless of tool or components, the process of building the testbed should include informal iteration 

with one or more practitioners to ensure proper scope, conceptual validity, and appropriate data and 

assumptions (Jakeman et al., 2006). 

Step 4 is a second workshop with the same participants as the workshop in Step 2 (or at least 

significant overlap and participants with similar backgrounds to the original attendees), during which the 

managers again play a consultative role (Pretty, 1995). In this second PM exercise, attendees should have 

direct interaction with output from the testbed’s representative tool output2, with researchers, and with 

each other. This type of exercise is similar to previous studies such as Gaddis et al. (2010) and Smajgl and 

Ward (2013) in that participants interact with results. However, in our study, the purpose is not to use the 

results to make a decision, evaluate the testbed itself, or give feedback on the particulars of the output 

(though such feedback would be welcome). Rather, the workshop’s purpose is to assess the usefulness of 

                                                      
2 “Representative tool output” means a relatable but generic example of similar output that could result from 

adoption of the tool by participants’ agencies. The meaning of representative tool output could vary in the 

application of ParFAIT – some applications could focus more specifically on creating a usable tool for agencies 

compared to a hypothetical tool. Regardless of the application, the goal of Step 4 is to have an interactive workshop. 
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the nature of the information provided by the tool and the practicality of using it. In other words, through 

a combination of hands-on exercises and feedback, water managers can share how the type of information 

provided by the tool may or may not influence their utilities’ planning or decision making approaches. 

For this workshop, using highly structured activities results in participation and responses that are more 

focused than those sought in Workshop 1 (Newig et al., 2008). 

The second workshop is designed to address two challenges- lack of exposure and low relevance- 

that have inhibited the ability of WRSO tools to impact real-world decisions. The participants are exposed 

to a promising tool and they interact with representative tool output that is directly relevant to their 

management concerns. The use of the hypothetical water supply system allows them to react candidly 

because they are not responding to sensitive real-world decisions. This low-pressure interaction can 

provide the type of information that a water manager in search of planning solutions needs in order to 

begin petitioning for the tool’s use in her/his agency. The data collected from practitioners’ activity 

responses and discussions will be directly applicable to future development or application of the tool in 

question, and also broadly useful to WRSO researchers in their future innovations.  

2.3 Application of the Participatory Framework for Assessment and Improvement of Tools 

Although ParFAIT can be applied to a number of different WRSO tools, we provide an illustrative 

example here on a specific tool and its proposed use in practice. WRSA researchers have paid great 

attention to the call for decision support tools to help water providers develop long term plans for highly 

uncertain future conditions (Cosgrove and Loucks, 2015; Hallegatte, 2011; Ray and Brown, 2015; Reed 

and Kasprzyk, 2009; Sahota and Jeffrey, 2005). A tool that has been gaining prominence in academic 

long term planning studies in the past decade is Multiobjective Evolutionary Algorithm (MOEA)-assisted 

optimization. To confirm industry opportunity and practitioner openness to the tool, we built upon 

relationships that the Western Water Assessment (WWA) RISA has been developing since 1999 

(http://wwa.colorado.edu/), and in the design of the study we consulted closely with two Colorado water 
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managers3 who are champions of innovation. Thus, the literature review and practitioner consultation for 

Step 1 of our ParFAIT application resulted in the goal of testing MOEA-assisted optimization for long 

term water utility planning. 

Our geographic focus is the Front Range region of Colorado, USA.  In the following section, we 

will describe the broad planning challenges faced by water utilities in this region, recognizing that many 

areas, especially in the Western U.S., face similar adverse conditions. After briefly introducing our 

participating utilities, we will present the tool choice we made in Step 1: Multiobjective Evolutionary 

Algorithm (MOEA)-assisted optimization. We describe the necessary components of an MOEA testbed 

that informed not only how we conducted our Step 2 workshop, but also how we structured the results 

presented in this document. 

2.3.1 Front Range, Colorado, Background 

The Front Range region is an urban corridor located just east of the Rocky Mountains that 

includes several large and many small cities. The region is projected to experience a 70% population 

increase by 2050 (State of Colorado, 2017), and since at least 1900 there have more claims on local water 

sources than can be met in most years (Eschner et al., 1983). Colorado experiences great seasonal and 

interannual precipitation and streamflow variability; over half of the state’s precipitation falls as snow that 

runs off from about mid-April to mid-July (National Climatic Data Center, 2015), and annual streamflows 

can vary by up to 600% between lowest flow years and highest (Lukas et al., 2014). As the impacts of 

climate change intensify in the coming decades, Colorado will face anywhere from a 1.4 ˚C to a 3.6˚C 

temperature increase by 2050 relative to the 1970-2000 baseline (Lukas et al., 2014). The projected 

changes in precipitation are less clear, though; under a medium-low emissions scenario, the state could 

see anywhere from -15% to +25% change in precipitation, depending on hydrologic region and time of 

                                                      
3 Leon Basdekas, a consultant with Black & Veatch (who worked for Colorado Springs Utilities at the time of this 

study) and Laurna Kaatz of Denver Water contributed to the design of this research. 
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year (Lukas et al., 2014). Given these substantial supply and demand challenges and uncertainties, water 

providers on the Front Range are highly motivated to pursue careful, adaptive, and innovative planning. 

The Front Range utilities participating in this project are: Aurora Water, the City of Boulder, 

Colorado Springs Utilities, Denver Water, the City of Fort Collins, and Northern Colorado Water 

Conservancy District. All are operating under the same regulatory, population growth, and climatic 

circumstances, but they are diverse in their size, infrastructure, and water rights. The number of customers 

served ranges from about 113,000 (Boulder) to over 1.3 million (Denver) (City of Boulder and MWH, 

2009; Denver Water, 2015a). The amount of storage controlled by each utility ranges from over 1.3 

billion cubic meters (bcm) (Northern) to under 0.017 bcm (Fort Collins) (AMEC Environment and 

Infrastructure, 2014; Northern Water, 2015), and all have varying portfolios of storage, direct flow, and 

groundwater rights. All six utilities use water from the Colorado River and South Platte River basins and 

two also have Arkansas River basin resources (Aurora and Colorado Springs). Their current broad goals 

include balancing sources, increasing flexibility, or developing more storage (City of Boulder et al., 2009; 

Denver Water, 2015b; Gertig, 2015). 

2.3.2 MOEA-assisted Optimization 

This section presents our chosen WRSO tool, its research background, and the components 

necessary to apply it. The tool we have chosen to test is Multiobjective Evolutionary Algorithm (MOEA)-

assisted optimization. Both workshops, as well as the testbed development, are structured around the 

attributes and purposes of the targeted tool, so it is important to explain the elements of our test case that 

inform our application of the framework. Later sections will present contrasts between previous 

approaches to MOEA applications and what we learned at our workshop.  

MOEA-assisted optimization consists of four parts: the evolutionary algorithm, the problem 

formulation, a water supply simulation model, and visualizations of tradeoffs. The MOEA is a search 

technology that finds solutions to optimization problems.  The problem formulation is a set of structured 
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concepts that define the “problem” or system to be optimized. The water supply simulation model is used 

to evaluate the performance of potential sets of actions. The output from the tool is a set of tradeoffs that 

quantitatively demonstrate the relationships between conflicting system performance objectives, which 

can require creative visualization approaches to enable effective analysis of the results. The following 

three sub-sections will describe evolutionary algorithms, problem formulations, and simulation modeling. 

The problem formulation and modeling sections describe two aspects of our testbed that are informed by 

water managers in the Step 3 workshop. 

2.3.2.1 Multiobjective Evolutionary Algorithms 

MOEAs are engines used to perform simulation-optimization: the MOEA search intelligently 

finds new planning or operations alternatives for a system, and those alternatives are evaluated by the 

algorithm based on user defined output from a simulation model.  In the context of balancing water 

system objectives, the output of MOEA search is a set of portfolios that together demonstrate how 

improvement in one objective impacts performance in another. This quantified objective tradeoff 

information lends itself to visual analytics (discussed in Section 3.2.4).  

Since the early 1990s, MOEAs have been used in research settings to explore objective tradeoffs 

in a variety of water management problems, including groundwater pollution (Ritzel et al., 1994), 

monitoring (Cieniawski et al., 1995; Reed and Minsker, 2004), and remediation (Erickson et al., 2002; 

Piscopo et al., 2013); water distribution (Farmani et al., 2005; Walters et al., 1999a); planning and 

operation for multiple reservoirs (Labadie, 2004; Smith et al., 2015; Zeff et al., 2014); watershed 

management (Muleta and Nicklow, 2005), and water marketing for drought management (Kasprzyk et al., 

2009). Notably, prior work by two co-authors of this paper contributed an application of MOEA-assisted 

decision support using a Texas utility’s complex and sophisticated multireservoir supply model (Smith et 

al., 2015), and Basdekas (2014) offered his utility’s use of an MOEA as proof of their readiness for 

industry application. However, the most prominent use of MOEAs in WRSO has been in the context of 
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research. The success of MOEAs in research settings warrants conducting a structured study to 

investigate their potential for broader application by practitioners. 

2.3.2.2 Problem Formulation 

The problem formulation is a structured characterization of a real-world management problem, 

which instructs the MOEA on how to construct candidate solutions and judge the solutions’ 

performances.  MOEA problem formulations have three components: decision levers, objectives, and 

constraints. Figure 2 provides a schematic of how the elements interact within an MOEA search loop. 

 

Figure 2-2. MOEA optimization loop and how its components were informed by water managers. The 

MOEA automatically generates combinations of user-defined decision levers which are fed to a 

simulation model. The simulation runs in one or more supply and demand scenarios, and outputs values 

for user-specified system metrics that are translated into objectives. The MOEA evaluates the portfolios 

of decisions and recombines “traits” of high-performing portfolios to produce new generations of 

portfolios. 

Decision levers are the set of all options at a utility’s disposal to meet its performance goals.  A 

decision lever can take different forms.  For example, a binary decision lever might have values that are 

either “on” or “off”, such as a decision of whether or not to build some infrastructure.  A real-valued 

decision lever may have many different potential values, such as the capacity of a new reservoir, or the 
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amount of new water supply to obtain. The set of enacted decisions makes up a portfolio. The levers 

relevant to this particular study range from estimated water savings from conservation education 

campaigns to new reservoirs, and the act of cataloguing and quantifying them is a useful undertaking in 

itself (Girard et al., 2015; Miller and Belton, 2014). Within the MOEA problem formulation, the utility’s 

planning goals are represented with a set of quantitative variables termed objectives. Defining objectives 

requires a utility to translate goals into quantifiable metrics that intelligently and comprehensively 

represent those goals. It is informative for water managers to separate objectives from constraints, or 

limits to acceptable performance. A solution satisfies a constraint if it meets a particular criterion (e.g., 

reliability being over a given numerical threshold). As long as the solution meets this performance, the 

solution is considered feasible. An objective, on the other hand, is a quantity that is minimized or 

maximized, and a decision maker does care about the relative magnitude of a solution’s performance in 

an objective. In other words, the difference between these categories, objectives and constraints, is the 

difference between “we want to…” and “we have to…” achieve a particular goal. Because the problem 

formulation is one quarter of the MOEA-assisted optimization tool, defining the problem formulation is a 

critical, often iterative process through which new system insights and evolving goals are revealed 

(Piscopo et al., 2014; Smith et al., 2015). It is most beneficial for both the optimization results and the 

parties seeking information through optimization if the process involves stakeholders (Hitch, 1960; 

Liebman, 1976). 

2.3.2.3 Simulation Model and Scenarios 

To represent the system that is being optimized, a water supply simulation model is embedded 

into the search loop of the MOEA. Simulation models play an increasingly important role in utilities’ 

planning and management (Labadie, 2004). Though many different approaches and platforms are used, 

they all seek to provide detailed representations of water collection and delivery infrastructure to help 

managers quantify system performance under “what if” scenarios. In the MOEA-assisted optimization 

process, a solution from the MOEA represents a particular operations and/or infrastructure scheme, fully 
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defined by values of decision levers.  This solution is loaded into the simulation model, which simulates 

multiple time steps until the end of the time horizon. At the end of simulation, the model returns values to 

the algorithm that describe how the model (i.e. the water supply system) performed using that solution; 

the values could be timeseries of system performance or scalar quantities (e.g., average pumping rate, 

total volume spilled). These values are translated into user defined objective values, and the MOEA 

assesses the solutions’ performances based on those objectives. 

With advances in modeling software and computing power, simulation models have improved in 

detail and fidelity to real systems, increasing water managers’ trust in the simulations (Rani and Moreira, 

2010). Because these models are becoming more trustworthy and ubiquitous, optimization tools that use 

them to search for promising solutions should become more appealing. However, system models 

developed within utilities, or “legacy” models, have rarely been coupled with MOEAs, and this fact 

suggests an investigation into the applicability and relevance of MOEA-assisted optimization is 

warranted. 

Using simulation models in water resources planning requires hydrology and demand inputs that 

reflect plausible states of the world. Multiple scenarios can be useful for utilities since their systems face 

substantial uncertainty in future demand trajectories  (Black et al., 2014; Mahmoud et al., 2011), as well 

as uncertainties introduced by climate variability and change (Means et al., 2010; van der Keur et al., 

2010). These multiple scenarios can also contribute to MOEA studies, since their use within optimization 

can help identify management strategies that are robust (Hamarat et al., 2013; Herman et al., 2014; 

Kasprzyk et al., 2013; Smith et al., 2015). 

2.3.2.4 Tradeoff Visualizations 

MOEA-assisted optimization produces performance information about multiple objectives, often 

with three or more objectives. In order to fully appreciate the complicated tradeoffs between different 

objectives, many objectives must be shown simultaneously. Previous MOEA studies have used glyph 
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plots that can show up to seven dimensions at once (see Figure 2-3) or parallel coordinates plots that can 

represent one objective per vertical axis, with no limit on the number of axes (see Figure 2-4) (Kasprzyk 

et al., 2013; Smith et al., 2015; Zeff et al., 2014). These visualizations, when interactive, can greatly 

enhance the ability to work with the tradeoffs and enable users to apply subjective criteria to reduce the 

often large sets of portfolios down to a more manageable number of solutions (Kollat and Reed, 2007; 

Wu et al., 2016a). 

 

Figure 2-3. Glyph plot of the results from a multi-reservoir MOEA optimization study, adapted from 

Smith et al. (2015). It is presented here to illustrate how to use three-dimensional plots to show MOEA 

results. The optimized portfolios are shown in six dimensions (for six objectives), and three solutions 

have colored boxes around them to call attention to different management approaches. These boxed 

solutions are also highlighted in Figure 2-4. 
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Figure 2-4. Parallel plot of the results from Figure 2-3 adapted from Smith et al. (2015). The results are 

presented again to demonstrate another visualization approach where each of six objectives is represented 

by a vertical axis. The full set of optimized solutions is shown in grey lines, while the highlighted 

solutions are representative of the different management strategies highlighted in Figure 2-3. 

In accordance with components presented in Section 3, our first workshop included educating 

participants about MOEAs, and eliciting input on 1) specific challenges they faced in planning and 

managing water supply; 2) decisions, objectives, and constraints to inform problem formulations; 3) 

preferred simulation software; 4) critical infrastructure and management dynamics to include in our 

testbed model; and 5) supply and demand scenarios of interest. We did not consult the participants about 

visualization techniques. 

2.4 Workshop 1 Results 

We focus in this paper on presenting the results from Steps 1 and 2 of the framework, including the 

first workshop. Workshop 1 was a participatory modeling exercise used to elicit practitioner input on the 

MOEA testbed, extract relevant water management context, and co-learn for a better understanding of 

water utility planning. We begin by briefly describing how the workshop was designed and carried out. 

The remainder of the section is devoted to presenting and discussing the findings from the workshop that 

will influence the production of our MOEA testbed as well as contribute to improved understanding of 
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real-world water management context for future WRSO research: water management challenges, decision 

levers, objectives, constraints, modeling considerations, and scenarios. 

Effective PM workshops involve preparatory activities (Stave, 2002). After identifying and 

establishing contact with our participant group with the help of WWA, we consulted with a subset of 

managers several months prior to the workshop to develop a workshop agenda. We also emailed an 

“Introduction to MOEAs” background document and short survey to all participants three weeks 

beforehand in order to make efficient use of workshop time. 

The workshop was held on 3 February 2015 at the University of Colorado Boulder (CU) and lasted 

six hours. Twelve water managers from six agencies attended, along with seven researchers from different 

departments and organizations associated with CU. Throughout the workshop, the facilitator and 

researchers encouraged all water managers to share their experiences through direct conversation and 

individual prompts. These efforts, along with the pre-workshop survey, ensured that every utility was 

represented on fundamental topics (e.g. relevant decisions and objectives, scenarios of interest, etc.). 

Discussion developed as a result of questions from researchers to water managers as well as through 

interactions between water managers. Our workshop program consisted mainly of open-ended prompts to 

discuss testbed components, creating space in order to gather a wide range of information from 

participants (Newig et al., 2008). To promote discussion and brainstorming, researchers presented 

examples of decisions levers, objectives, and modeling considerations that were subsequently updated 

throughout the workshop as participants shared ideas and feedback. Please note that the content included 

below is summarized from across the six utilities, and was produced in a research context; it is not 

reflective of any one utility’s position or intentions. 

2.4.1 Water Management Challenges 

One of the fundamental areas WRSO researchers should understand is the decision making 

landscape in which managers operate. Greater appreciation for the complexities of decision making will 
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help researchers recognize the limitations of technical contributions, spur creative approaches to address 

problems that may not be well-characterized in previous literature, and gain insight into the ultimate 

usability of research (Dilling and Lemos 2011). Therefore, we began our workshop by asking participants 

to discuss the management challenges they face both within and outside their organizations. Because we 

laid this foundation, we were better able to understand the later discussions about specific testbed 

elements and ask more relevant follow-up questions. Presenting this information here provides context for 

the content in subsequent sections of the results. 

The first concept we established was that water managers face management challenges that are 

different depending on the time scale. The development of WRSO tools, and their demonstrative 

applications, should be aware of how these challenges operate across timescales and which ones might be 

important to the development of new tools and their testbeds. Our participants identified challenges in the 

following time ranges: operational, <1 year; short term, 1-5 years; mid term, 5-20 years; long term, >20 

years. A complete list of the challenges brought up during the workshop can be found in Table 2-1, but 

below we will discuss some of the responses that were particularly important. Not all of these challenges 

can be addressed through the use of better decision support tools of course, but understanding the larger 

context for water management helps to identify the opportunities for innovation and advancing decision 

support as well as the limits that might be anticipated. 
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Table 2-1. Full list of challenges described by water managers at Workshop 1. 

Short Term (1-5 years) 

Politics- lack of continuity on city councils/utility boards; Prioritizing capital development projects; 

Lack of reliable hydrologic forecasting; Wildfires; Floods; Budgets; Conflicting objectives- 

conservation that reduces revenues vs. maintaining financial ability to invest in system adaptability; De 

facto rate ceilings due to public fatigue; Incorporating lessons learned from crises; Drought restrictions 

Mid Term (5-20 years)  

Capital planning; Budgets; Population growth; Changes in water use & population density; Lack of 

conjunctive land/water use planning; Social values; Extremes (floods/droughts); Aging infrastructure; 

Increasing uncertainty (in every arena); Regulatory/governance changes; Major ecosystem shifts; 

Renegotiation of Upper and Lower Colorado Basin dynamics; Costs of compliance with Endangered 

Species Act (ESA), National Environmental Policy Act (NEPA) 

Long Term (>20 years) 

*Everything from mid term category but with increased uncertainty; Climate change; Opportunity 

hardening (for new supply); Lack of clarity on the State of Colorado's response to potential Colorado 

River shortages; Impact of increased reuse on return flows; Regional responsibilities between utilities; 

Unforeseen takeovers of neighboring utilities/changes to buildout expectations; Ecosystem 

management 

 

All of the utilities agreed that the biggest challenge they face is “politics”, and it was mentioned 

for all time periods. Politics, from the level of utility boards all the way to interstate negotiations, have 

major implications for their water planning (Blomquist and Schlager, 2005; Cocklin and Blunden, 1998). 

In the short term, water managers felt they generally had answers to looming problems, but political will 

could prevent them from moving quickly enough to address them. For short and mid terms, participants 

noted that councils and boards change, often triggering a shift in support for a planning direction or 

various projects, tools, and policies (especially if there is not a mandate from local citizens). Regardless 

of any particular administration continuity or lack thereof, the planning perspective of water utilities is 10 

or 15 years further into the future than that of any board member or politician, and it can be a major 

hurdle to get sustained support to achieve acceptable water management outcomes. On a longer timescale, 

lack of certainty about how the state of Colorado will respond to potential future shortages in the 

Colorado River Basin is considered a major factor in these utilities’ plans (they all rely heavily on water 

from Colorado River tributaries). Furthermore, renegotiation of Interim Guidelines for shortage sharing 
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between Lakes Powell and Mead will begin around 2020, and the outcomes could have major 

implications for utilities across the western United States (U.S. Bureau of Reclamation, 2007). 

Another issue that researchers had not considered, which is related to politics, is the importance 

of “buildout” conditions and the uncertainty around them. Every utility is planning toward a future with 

specific parameters related to which land will be within their service area and the expected population 

density and water use. Several utilities expressed some doubts about whether they could expect the future 

to play out as delineated, but they are prevented by sensitive political circumstances from including other 

possibilities in their plans. In reality, most of the participating utilities are surrounded by smaller 

providers and there could very well be a future where changes to development or tax codes (which 

currently prohibit annexations) lead to the exploitation of economies of scale, meaning service areas 

would combine and increase the responsibilities of our participating utilities.    

Federal regulations, local control, and social and environmental stewardship greatly impact utility 

planning and decision making. Managers said that their organizations “think hard” before pursuing a 

project that requires a lengthy and expensive NEPA permitting process with uncertain outcomes. In 

Colorado, utilities must also contend with the requirement to satisfy the concerns of county governments 

who may legally block a project that does not adequately address the impacts of the project on their 

communities (Stengel, 2009). These regulations hold utilities accountable for environmental and social 

impacts, but utilities are increasingly taking proactive steps to gain more local acceptance in recognition 

that negotiating directly with community and environmental stakeholders contributes to good will and 

more equitable sharing of costs and benefits as growing cities pursue new water supplies and 

infrastructure. One recent successful example of this new dynamic is the Colorado River Cooperative 

Agreement between Denver Water and 17 regional stakeholders (“Colorado River Cooperative 

Agreement,” 2012). 
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Finally, participants brought up the fundamentally conflicting nature of several of the 

expectations placed on municipal utilities. For instance, in this water-scarce region, conservation is 

advocated by many groups, and water utilities are generally held responsible for promoting conservation; 

however, conservation may result in revenue reductions, making it difficult to meet fixed costs and 

maintenance needs, and thus impacting the ability of water utilities to build adaptable systems without 

unpopular rate increases. 

In WRSO research, these realities are often not acknowledged due to the fact that they are not 

strictly engineering problems. Some of the feedback directly informs the technical work in this study, e.g. 

modeling a Lower Colorado River demand. Other information, e.g. buildout demand, helps us understand 

the motivations for certain planning scenarios over others. Such context is important, and our results 

strengthen recent arguments for greater integration of engineering research with social sciences to ensure 

a more comprehensive approach to difficult water management problems (Lund, 2015; Rosenberg and 

Madani, 2014).  

2.4.2 Decision Levers 

Water utilities must have infrastructure and operations in place to react to potential supply and 

demand imbalances. In order to be prepared for challenging times, they take actions to either increase 

supply or reduce demand; these actions are called decision levers. There is no “right” answer or perfect 

decision combination to insure a utility against all possible futures. In the workshop, Front Range water 

providers described a complicated water management context with many independent actors and 

discussed using a wide range of decision levers to try to maintain or increase future security. 

The discussions of decision levers were separated into two subtopics: supply and demand levers. 

Supply levers included any decisions a utility might make to increase the amount of water available to 

them overall, improve the security or quality of their existing supplies, or manage their supplies to 

account for various supply situations. In advance of the workshop, researchers used their previous 
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experience, literature findings, and knowledge of the region to create the list of examples found at the top 

of Table 2-24. Participants agreed that all of the suggestions provided were relevant decisions that their 

agencies would consider, and they provided additional ideas, listed below in Table 2. One action that 

researchers found particularly interesting was deliberate watershed management, which could serve both 

to increase the security of supply (several of the utilities obtain water from basins that were impacted by 

recent forest fires) as well as to promote environmental stewardship. A participant compared watersheds 

to other types of infrastructure and noted that they needed to be maintained just as are pipes, pumps, and 

dams. Decisions about maintaining infrastructure were considered very important.  Thus, it would be 

helpful to incorporate maintenance in this and future optimization studies. A participant noted that there 

was a substantial difference between levers that increase yield and those that prevent failure/increase 

resilience, and that an exploration of which category of levers is more important to achieving good 

objective performance in different scenarios would be interesting. Some participants also suggested that 

levers could be ranked according to various criteria such as social acceptability, cost, length of time to 

results, and probability of successful permitting and achieving expected yield.   

                                                      
4 Because the participating utilities all operate under similar social, regulatory, and hydrologic conditions, there was 

general consensus around acceptance or rejection researchers’ suggestions. This consensus, developed through 

discussion, is reflected in the tables below. Wherever we encountered opposing views, we explore those in the text. 
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Table 2-2. Supply levers proposed by researchers and water managers at Workshop 1. 

Supply Levers Suggested by Researchers Managers’ Response 

Buy agricultural rights Agreed and expanded 

Exercise dry year options/other interruptible supply options Agreed and expanded 

Buy shares from water wholesalers Agreed 

Develop new transmountain water Agreed 

Develop groundwater  Disagreed 

Build/expand reservoir Agreed and expanded 

Maintain more carryover storage Agreed 

Negotiate temporary contractual storage Agreed 

Additional Levers Proposed by Water Managers  

Buy any senior water rights (not just agricultural) 
 

Lease water from agriculture  

Watershed management  

Add redundancy to facilitate maintenance  

Develop reuse- indirect or direct, potable or non-potable  

Build any type of storage- aquifer, gravel pit, on channel, off channel   

Increase efficiency- e.g. line canals, enlarge pipes  

Cloud seeding  

 

Both researchers and participants found it difficult to come up with more than a handful of 

demand levers; the “appropriate” level of municipal water use is a social, political, and environmental 

issue, and water utilities have a first priority of simply meeting demands, whatever they may be.  

Managers emphasized the fact that utilities are limited both legally and socially in the influence they have 

over customer behavior and future demand growth; their rates must be based on their cost of service, and 

they are not involved in the land use planning decisions made by separate agencies or departments. 

Despite these limitations, it was clear that the participating utilities take seriously their duty to promote 

responsible water use in a region where water is a very sensitive issue.  

Managers rejected several of the demand levers suggested by researchers (see the top of Table 

2-3). Rate changes were roundly dismissed as a lever; though utilities do use a tiered pricing structure to 
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encourage low water use (Bonbright et al., 1988; OECD, 1999), our participating utilities do not 

implement price increases to lower demand. Even the phrasing “temporary rate increases” was deemed 

too broad; participants said that although pricing has substantial impact on their customers’ use, a 

potential supply shortfall is not a socially or politically acceptable reason for increasing rates, even 

temporarily. These utilities only temporarily increase their water prices to recover lost revenue after a 

period of restrictions by enacting “drought surcharges”. Other demand levers were already being 

implemented regularly and thus seen as standard operating procedure in this region: non-drought 

conservation, education campaigns, and appliance rebates.  

For modeling purposes, the utilities seemed to agree that representation of a utility’s influence on 

demand was commonly undertaken in a lumped and bracketed fashion. That is, the utilities’ demand 

management actions are lumped together into a single percentage reduction in demand. Then, uncertainty 

about the impacts is incorporated by creating high and low estimates around the reduced demand, where it 

would be desirable to meet the higher estimate. Example scenarios around these brackets are developed, 

more as conceptual description as example of how savings might be achievable. 
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Table 2-3. Demand levers proposed by researchers and water managers at workshop 1. 

Demand Levers Suggested by Researchers Managers’ Response 

Non-drought conservation  Disagreed (already standard procedure) 

Rate changes  Disagreed 

Change triggers for various restriction levels Agreed 

Temporary rate increases Disagreed (rephrased) 

Education campaigns Disagreed (already standard procedure) 

System improvements- e.g. fix leaks Agreed 

“Behavioral water efficiency” (e.g. smiley faces on bills) Disagreed (already standard procedure) 

Additional Levers Proposed by Water Managers  

Drought surcharges 

Encourage xeriscaping/lawn replacement 

 

Change building codes  

Provide incentives for appliance updates  

Land use planning (politically difficult; rare and 

informal) 

 

 

2.4.3 Objectives 

Water suppliers seek to provide water responsibly and efficiently. In order to evaluate their 

system’s ability to meet these broad goals, a utility must define quantitative ways to measure how well 

their system is performing, or how well proposed system modifications will perform. For MOEA-assisted 

optimization, these measures are called objectives.   

During our objectives section, we learned that “reliability” is by far the most important objective 

for all utilities. In WRSO literature, reliability has a specific meaning: the frequency of a metric being in a 

satisfactory state, which is defined by a failure threshold. For example, a reservoir that must stay above a 

certain elevation for its outlets to work would be considered 99% reliable if it fell below that elevation 

threshold for 1 day out of 100. Researchers developed this definition to help characterize system 

performance that varies over time (Hashimoto et al., 1982). Since its formal definition, reliability has 

figured prominently in optimization research as an objective that is maximized (Herman et al., 2014; 
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Karamouz and Nazif, 2013; Kasprzyk et al., 2013; McMahon et al., 2006; Moy et al., 1986; Paton et al., 

2014) 

We found that the utilities use the term “reliability” to refer to the ability of their system to satisfy 

customer demands. As the participants explained in the workshop, they treat the achievement of a reliable 

system as more important than any other performance measure. One participant commented that 

reliability was so important that it trumped the marginal costs (not necessarily monetary) of not meeting 

other goals. In other words, reliability may not be considered an objective where, through multiple 

simulations, various outcomes of the objective function are compared (e.g., 98% vs. 99%). This finding 

challenges some previous conceptions of optimization problem formulations that presumed that water 

suppliers might sacrifice reliability performance once the benefits of doing so were quantified. 

Additionally, each utility has a different definition for reliability: one considers their system to be reliable 

if they can meet 100% of average annual demand through a 1-in-50 drought event without going into 

restriction; another uses a threshold of maintaining at least 1.0 years’ worth of annual demand in storage 

at all times; several utilities used definitions of reliability that refer to different levels of drought 

restrictions.  

Other objectives were offered over the course of the discussion (see the bottom of Table 3 for the 

full list): minimizing spills (and flooding, though not much detail was provided on this), minimizing 

pumping (one utility has a mandate to minimize greenhouse gas emissions), and minimizing uncollected 

water (complicated water rights schemes and spatial limitations of infrastructure make it a challenge to 

move water around a system to take full advantage of spring runoff). We had an interesting discussion 

about how realistic it is to minimize costs in the mid- to long-term; many aspects of costs, whether they 

are associated with new infrastructure, pumping, or other activities, are very uncertain. Though the 

managers confirmed that it is a critical consideration in any plan or decision, a participant noted that 

including cost as an objective may unjustifiably affect the results produced in multiobjective optimization. 

In response, another participant noted that other aspects of planning, such as population density affecting 
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peak demand and sizing of water treatment plants or distribution pipes, were also uncertain. This 

discussion helped researchers recognize that accounting for supply and demand uncertainty through 

simulation scenarios can partially address some types of uncertainty, but that the scenarios that affect cost 

may not be adequately represented in most simulation models. In light of this, care should be taken before 

including cost in a problem formulation. A final interesting note on the objectives discussion is that only 

one utility referenced resilience and vulnerability, or speed of recovery after a failure and severity of 

failure (Hashimoto et al., 1982). These are well-established objective definitions in optimization 

literature, but seem not to have been widely adopted by practitioners at our workshop. It is unclear 

whether this is due to a failure of knowledge transfer or if the objectives do not translate well in practice. 

Table 2-4. Objectives proposed by researchers and water managers at workshop 1. 

Objectives Suggested by Researchers Managers’ Response 

Minimize time spent in restriction Agreed 

Minimize costs Agreed (with caution) 

Maximize total year-end storage Agreed 

Maximize time a reservoir spends above a given elevation Agreed 

Additional Objectives Proposed by Water Managers  

Meet reliability criteria (various) 
 

Minimize spills  

Maximize hydropower production  

Minimize pumping 

Minimize greenhouse gas emissions 

 

Maximize resiliency  

Minimize vulnerability  

 

2.4.4 Constraints  

In optimization studies, constraints can be used for many purposes, such as physical infrastructure 

limitations, limits for decision variables, or preserving mass balance restrictions, which may be especially 

important in classical optimization methods (Rani and Moreira, 2010). However, when an analyst sets up 

an MOEA to be linked to a sophisticated simulation model, physical feasibility constraints may be 
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handled internally within the simulation model itself (Smith et al., 2015). Therefore, at our workshop, the 

discussion of constraints was oriented toward the managers' ideas for acceptable management outcomes.   

Past studies have used performance constraints such as maintaining 98% supply reliability 

(Kasprzyk et al., 2009) or 99% reservoir elevation reliability (Zeff et al., 2014). Because we anticipated 

that there would be a fairly limited number of constraints, we opted not to provide examples and instead 

let the managers lead. They widely agreed on the absolute requirement to meet 100% of indoor demand 

no matter what, as well as meeting environmental flow agreements. Refer to Table 2-5 for the complete 

list of managers’ suggestions. 

Table 2-5. Constraints proposed by water managers at Workshop 1. 

Constraints Proposed by Water Managers 

Meet 100% of indoor demand 

Meet environmental flow requirements 

Do not strand assets- e.g. pursue projects that fail permitting process, acquire 

unusable water rights 

 

2.4.5 Modeling  

Utilities build simulation models in order to simulate how their systems will react to different 

internal and/or external circumstances. Models are useful for exploring a range of future supply and 

demand scenarios and for evaluating new infrastructure or operations schemes. The nature of the “what 

if” questions being asked will dictate modeling choices.  

We discussed four issues related to modeling during the workshop: time horizon (length of 

simulation), timestep, modeling platform, and network features. No participants voiced a strong 

preference for any particular time horizon, but they were interested to compare optimization results from 

shorter simulations (10-25 years) with optimization over a longer period. There were also no strong 
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feelings about using a daily versus monthly timestep, but it was pointed out that changes in snowmelt 

timing on the order of days or weeks could not be captured by a model that used a monthly timestep. 

To inform the discussion of choosing a modeling platform, researchers began by presenting some 

important things to consider when choosing software to be part of an MOEA search loop: simulation 

time, ease of linking to the MOEA, and ease of defining levers and objectives. A complex water supply 

network on a sophisticated platform with advanced, intricate features such as MODSIM (Labadie and 

Baldo, 2000) or RiverWare (Zagona et al., 2001) will enable out-of-the-box, in-depth investigation into 

properties of solutions but may entail a longer simulation time that leads to compromises on scenarios and 

simulation horizons. A platform with minimal or no graphical user interface (GUI) and fewer pre-

packaged features, like the Central Resource Allocation Model (CRAM) or StateMod (Brendecke et al., 

1989; Parsons and Bennet, 2006) could mean a streamlined MOEA link and fast simulation time but 

potentially limit a user’s ability to explore the implications of solutions in detail. Having performance 

information that was not officially recorded in the problem formulation, e.g. a timeseries of reservoir 

elevations, readily available was shown to be useful in Smith et al (2015). The attendees generally agreed 

that the specific platform was not important, as long as relevant model structure and levers were well 

represented.  

This study’s simulation model is a representation of a hypothetical water supply network 

designed to resemble the systems of participating utilities. Though it may have been possible to use a 

specific model of one participating utility, we deliberately chose to create a hypothetical, more generic 

model to increase the generalizability of our findings. Brown, et al, recently asserted that the prevalence 

of context-specific models has impaired the water resources systems analysis community’s ability to 

provide fundamental insights (2015).  

In order for the hypothetical network to be engaging and capture a reasonable amount of the 

complexity of Front Range water management dynamics, we asked workshop participants for a list of 
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important water supply system features. We recognize that no model can fully capture the complex 

interactions within a built system or between different users, nor the impacts that utility decisions have on 

water and environmental quality. Our intention is to capture our participating agencies’ current approach 

to long term modeling even though the systems represented are incomplete (Glynn, 2015). The structure 

of the network will be informed by the feedback on levers, objectives, and features, as well as take into 

account the real systems of the participating utilities. The feature list is located in Table 2-6.  

Table 2-6. Important hypothetical water supply network features as suggested by water managers at 

Workshop 1. 

Network Features Proposed by Water 

Managers 

Complicated water exchanges 

Priority system with suites of rights that vary by 

seniority and season 

Significant reuse 

Downstream requirements- e.g. competing rights, 

environmental flows 

Multiple water sources 

Return flows 

Alter use of groundwater (but no new groundwater 

sources) 

Water-type tracking (for reuse purposes) 

Alternative transfer methods, e.g. dry-year options 

Leased water to and from agriculture 

 

2.4.6 Scenarios  

Planning for climate change and climate variability via scenarios is an important part of the 

modeling process within the MOEA Testbed. Fortunately for our study, the participating utilities were 

very familiar with the concept of climate change scenarios through their involvement in a 2012 project 

called the Joint Front Range Climate Change Vulnerability Study (JFRCCVS). In that study, the utilities’ 

feedback was used to develop a methodology and set of hydrologic traces that incorporated for 

downscaled GCM output (Woodbury et al., 2012). The JFRCCVS used output from CMIP3 (Meehl et al., 
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2007) to develop temperature and precipitation offsets with which to calculate streamflows at important 

points around Colorado, encompassing five temperature and precipitation scenarios applied to two 

different time horizons (2040 and 2070). During our study’s workshop, attendees expressed that this 

previously developed approach to incorporating climate change was acceptable, and that it was 

unnecessary to update the offsets using CMIP5 output (Taylor et al., 2011). Along with climate change 

scenarios, participants asked that this study incorporate scenarios not necessarily related to climate change 

as well. They felt strongly that the historic hydrology should be included, as well as a resequencing of the 

record to develop more challenging droughts that still resemble what they have experienced. Of particular 

importance was the sequence from 2000 through 2002 which can be roughly summarized as a very dry 

year followed by a moderately dry year and culminating in an extremely dry 2002 that resulted in severe 

regional supply challenges (Pielke et al., 2005). Other scenarios, such as wild fires and infrastructure 

failures were also considered important. 

2.5 Synthesis of Results 

Typically, research in water resources decision support has relied on modeling and methods created 

without input from those who might use the insights or findings (Lund, 2015; Voinov and Bousquet, 

2010). However, a wide range of sources suggest that it is critical to work with water management 

practitioners when conceptualizing and developing WRSO tools (Jacobs, 2002; Liu et al., 2008; McNie, 

2007; Melillo et al., 2014; Tsoukias, 2008). To that end, ParFAIT is applied as a process for researchers 

and practitioners to engage directly over the design and assessment of an MOEA testbed. By using a less 

formal structure for Workshop 1, we were able to take advantage of the diverse knowledge and 

experience of attendees to efficiently hone in on ideas that will improve the relevance of the testbed and 

future research (Newig et al., 2008). Specifically, the managers very readily compiled a list of model 

features that reflect the attributes they consider important in their systems that will feed into the 

hypothetical supply systems designed in Step 4. Also, the managers added to and refined our potential 

decision levers and objectives, increasing the pertinence of our problem formulations. Workshop 1 
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revealed some of our faulty assumptions. For example, we overestimated the role that groundwater will 

play in improving future supply outlook, and underestimated the prominence of different types of reuse. 

We had made the assumption that non-drought conservation was a lever, but the managers roundly agreed 

that on the Front Range there is a culture of water conscientiousness regardless of drought status. Finally, 

throughout the workshop, but especially during the Challenges section, we gained substantial insight into 

the context of water management in the region. The influence of water politics and regular politics on 

management decisions is hard to overstate. Utilities must be respectful of geographical and sectoral 

sensitivities (for example, a utility may consider enacting restrictions before supply shortfalls require it if 

its neighbors are forced to cut back). They must also navigate changing local, regional, state, and 

interstate political agendas while maintaining or increasing their future water security. 

During the Objectives section of the workshop, several issues arose which have not formally been 

addressed in multiobjective optimization research to date. First, each utility has a different set of criteria 

to define the achievement of a reliable system. There were two broad categories of definitions: storage-

based and restrictions-based. An example of storage-based criteria is requiring a minimum of 100% of 

average annual unrestricted demand in storage at all times. An example of restrictions-based criteria for 

establishing that a system is reliable is not exceeding a Level 1 restrictions frequency of 13 times in 3505 

years, not exceeding a Level 2 restrictions frequency of 7 times in 350 years, and so on (where increasing 

restriction Levels correspond to greater water use reductions). Most of our utilities use a combination of 

both types of reliability, but note that if both types were individually incorporated as objectives into a 

multiobjective problem formulation, they could conflict. The variety of reliability definitions prompts 

several questions:  

1. How do the two reliability categories impact performance in other objectives? 

2. Is one category sufficient, and if so, is one or the other more useful? 

                                                      
5 Water management agencies sometimes use tree ring data to extend their hydrologic records and expand the range 

of conditions for which they can test their modeled systems. See http://www.treeflow.info/applications. 
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3. If a composite definition of reliability is warranted, are there any general insights to be gained 

about how it should be constructed? 

Future optimization research that investigates these interactions may yield information that improves 

utilities’ approaches to defining system-wide reliability. 

Though the deficiencies of the concept of reliability have been noted (Brown, 2010), it appears to 

be alive and well in the water management industry. The participants overwhelmingly focused on system-

wide demand reliability as the most important planning goal, but seemed to discuss it in a way that 

suggests it should be represented as a constraint in the problem formulation, and not as an objective that 

could have varying levels of performance. One manager said that degraded performance in other 

objectives is always warranted in pursuit of achieving a policy-specified level of system reliability. As a 

general statement about the priorities of water utilities, this makes sense, but if managers were presented 

with quantified information about how other objectives benefit from minor reduction of the value 

(magnitude) of their reliability objective (one that is likely to be defined very conservatively), would they 

consider making small sacrifices to reliability? In other words, if managers perceive a particular level of 

reliability as inviolable, can tradeoff information change their minds? This is especially relevant in the 

context of uncertainty in defining reliability in these simulations, since changes in the input data or 

assumed scenarios could lead to different values of a reliability output. It was evident from workshop 

discussions that, in practice, utilities do end up violating their 100% reliability standard. The discrepancy 

between stated priorities and practical experience creates ambiguity around whether the optimization 

problem formulation reflect the utilities’ ideals and define reliability as a constraint or reveal tradeoffs by 

defining it as an objective?  

Throughout WRSO research history, cost has been a prominent metric by which water 

management options are evaluated (Cui and Kuczera, 2003; Kasprzyk et al., 2009; Maass et al., 1962; 

Watkins and McKinney, 1997; Zhu et al., 2015); indeed, monetized costs and benefits have often been the 
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most influential factors in making project decisions (Arnold, 1988; Maass, 1966). Some reasons to 

optimize using direct project costs (not necessarily monetized estimates of the costs of other impacts) are 

readily apparent- funds are limited, public funds must be used responsibly, etc. However, the calculation 

of project costs is highly sensitive to the chosen discount rate, among other assumptions (Hallegatte, 

2011), and there is a long history of over-budget projects to suggest that predicting costs is a very 

uncertain endeavor (Liu and Frangopol, 2005). During our workshop, a participant noted that although 

cost considerations would influence plan adoption during later phases of planning, allowing the MOEA to 

evaluate a solution based on such an uncertain calculation may prevent ultimately preferable (to decision 

makers) solutions from surviving the optimization. Another participant pointed out that if utilities did not 

consider cost, they would build (or the algorithm would suggest) completely drought-proof systems that 

could meet demands in any scenarios, but they do not. In considering this exchange, we find another 

reason that cost is frequently used as an objective in optimization literature: unless there is an objective 

that penalizes solutions that require more resources than other solutions, an algorithm will prefer solutions 

that bring all resources to bear in order to improve, for example, reliability objectives. The larger point 

being made by the first participant was that cost is not the most important consideration when searching 

for solutions to very challenging potential supply shortfalls. For researchers, it is worthwhile to examine 

how including or excluding cost in a problem formulation can impact optimization results, and possibly 

investigate avenues other than highly uncertain cost calculations to penalize the incorporation of 

expensive projects. For example, one potential alternative to cost is to give each decision lever a 

complexity score. This could capture the relative challenges inherent to different projects, thereby 

signaling a cost-like preference to the algorithm, since the algorithm would be less likely to select 

portfolios that would be too complex to implement. 

Research applications of MOEAs have shown them to be useful for efficiently suggesting 

innovative solutions, promoting learning about a system via iterative problem formulation, and 

quantifying objective tradeoffs, (Kasprzyk et al., 2009; Paton et al., 2014; Smith et al., 2015; Zechman 
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and Ranjithan, 2007), but we recognize that many issues that influence water utility decision making 

cannot be addressed by application of the MOEA-assisted decision support tool. Consider uncertainty, for 

example; using an MOEA method can incorporate, but not reduce, hydroclimate and demand 

uncertainties. Similarly, when planning under a challenging political climate, considered to be the greatest 

challenge for our participants, MOEAs can generate innovative solutions that may lead to more politically 

palatable management options, or provide quantitative tradeoff information to help justify politically 

challenging decisions, but they cannot shield water utilities from changing political agendas.  

2.6 Conclusion 

Rogers and Fiering (1986) noted several reasons that WRSO research tools had not played a more 

prominent role in water management decision making.  Among them were the existence of conflicting 

objectives, a focus on finding a single optimal solution, the challenge of high dimensionality in water 

resources problems (i.e. many system variables and performance metrics), and the oversimplification of 

system representations. Many of these shortcomings have been addressed through technical advancements 

such as greater access to computing power and the advent of tools like MOEAs that incorporate a full-

complexity model and generate many solutions that capture performance across conflicting objectives.  

Despite these developments, however, there are still fewer examples of successful WRSO tool 

adoption than might be expected by researchers and practitioners familiar with the field (Asefa, 2015; 

Brown et al., 2015; Maier et al., 2014). We posit that there are three main challenges that account for the 

discrepancy: water managers’ lack of exposure to promising tools; institutional and cultural adoption 

barriers within water management agencies; and low relevance of WRSO tools. The Participatory 

Framework for Assessment and Improvement of Tools (ParFAIT) contributes a formal approach, 

anchored by two participatory modeling workshops, through which researchers and practitioners can 

work together to overcome the exposure and relevance challenges. The results discussed here demonstrate 

that the early steps of this framework are particularly important for improving the relevance WRSO 

research as a whole.  
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By integrating practitioner experience, social science concepts and methods, and engineering 

innovations, ParFAIT may increase the impact of a specific tool by exposing practitioners to the tool in an 

in-depth but risk-free way that inspires new thinking about the tool and empowers managers to consider 

whether the resulting information can help them. Furthermore, their feedback may improve the tools 

itself. Additionally, as demonstrated in this paper, the framework provides a channel through which 

researchers can elicit information from practitioners about their management context and the needs of 

water supply agencies. Here, we report the direct feedback on our suggestions for decision levers and 

objectives for use with MOEAs. This information was constructive not only for building our testbed but 

also in reshaping our understanding of the roles that modeling and optimization can play in what are 

ultimately political decisions. We have also provided direct input from managers about ideas they have 

for future studies: comparing the effects of actions that increase supply yield (e.g. building a reservoir) to 

those that help prevent failures (e.g. managing watersheds to lower the risk of forest fires); methods to 

determine how long term planning outcomes interact with shorter term decision making; and how the 

introduction of subjective decision lever assessments would affect quantitative optimization.  

In this study, we demonstrate the application of ParFAIT to assess MOEA-assisted optimization for 

long term water utility planning, but the framework is much more broadly valuable. The field of WRSA 

could greatly benefit from similar evaluations of other tools, e.g. agent-based modeling (Zechman 

Burgland, 2015) and hydroeconomic modeling (Harou et al., 2009). ParFAIT can test water resources 

systems methods (i.e. not necessarily highly-technical tools themselves), e.g. info gap (Hipel and Ben-

Haim, 1999) and dynamic adaptive policy pathways (Haasnoot et al., 2013). Furthermore, other fields 

with emerging but under-utilized tools and methods can easily adopt this research approach. 

Ultimately, we hope that the further use of this methodology can help to impact WRSO research 

agendas at small and large scales, thereby improving the relevance of tools intended for use by 

practitioners. The framework and subsequent results demonstrated here represent a new approach that can 

be followed to deliberately engage water managers so that the interaction and collaboration necessary for 
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more usable decision support tools can be “built in.” The dialogue facilitated by an intentional, less 

formal workshop approach designed to elicit more open input and responses was critical to researchers 

selecting the most relevant elements of the problem formulation, which increased the chances of building 

a suitable and usable tool testbed.  While this framework requires additional time and resources to 

implement, we believe in the end it results in a more effective method for shaping WRSO tools. As 

WRSA research increasingly seeks to improve “real-world” outcomes in water management, ParFAIT 

may provide a useful path to that future. 
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Chapter 3 

Multiobjective optimization of long term planning portfolios on the Front Range of 

Colorado 

A variety of studies using Multiobjective Evolutionary Algorithms (MOEAs) have shown these 

tools to be useful for quantifying performance tradeoffs that enhance utilities’ pursuit of balanced long 

term planning portfolios. To enable exploration of multi-reservoir planning in the western U.S. and 

support experimentation in MOEA applications, this study contributes the Eldorado Utility Planning 

Model. The hypothetical but complex model demonstrates the potential for MOEAs to help utilities 

navigate the challenges associated with highly-regulated and tightly-constrained supply, rapidly growing 

demand, and regional sensitivities. Because it generically captures relevant water management context, 

the model is a useful platform for MOEA innovation; it is not bound to any specific agency’s needs or 

political sensitivities. Here, this advantage is demonstrated through an innovative set of planning 

objectives that provide an alternative to optimizing with cost projections and reveal performance tradeoffs 

through which utilities can express fundamental policy preferences. The results of this study capture the 

western U.S.’s tradeoffs between pursuit of major infrastructure and acquisition of regional agricultural 

water. 

3.1 Introduction 

This paper contributes a realistic multireservoir case study that explores long term water utility 

planning in Colorado and the western U.S. in order to experiment with, and communicate, the use of 

Multiobjective Evolutionary Algorithms (MOEAs). Utilities often refer to a general set of performance 

metrics for long term water sustainability as the “triple bottom line” – a framework through which they 

try to assess social, financial, and environmental impacts (Elkington, 2004). The potential conflicts 

inherent in these goals are especially dramatic in Colorado and other water-limited areas because utilities’ 

decisions are made within strictly-regulated and constrained systems of complex physical, temporal, 

legal, and cultural dynamics; in other words, the decisions are likely to have broad regional impacts. 
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MOEAs are tools that generate thousands of decision portfolios to discover tradeoffs between objectives 

that represent these conflicting performance goals, and can inject valuable information into utility 

planning processes as agencies navigate the tradeoffs. The model presented here is a platform through 

which researchers can innovate with MOEAs while producing results that are realistic and generic enough 

to be communicated to a wide range of water managers in Colorado and beyond. 

Since the 1990s, MOEAs have gained prominence in Water Resources Systems Optimization 

(WRSO) research (Nicklow et al., 2010). They have been applied to many types of water supply 

problems, including planning and operation for multiple reservoirs  (Labadie, 2004; Smith et al., 2016), 

regional groundwater aquifer management (Siegfried et al., 2009), and water marketing for drought 

management (Kasprzyk et al., 2009). One particularly active area of MOEA research is optimization of 

long term water supply portfolios. Encouragingly, several recent studies have applied MOEAs to models 

that are based on real systems, using input from water managers at the respective real-world agencies: the 

Lower Hunter region of New South Wales (Mortazavi et al., 2013); Adelaide in South Australia (Wu et 

al., 2016b); London supply in the Thames Basin (Matrosov et al., 2015); and the Research Triangle of 

North Carolina (Zeff et al., 2014). In summary, MOEA applications to long term planning have benefited 

from a mature body of research, increasing frequency of studies, and, recently, an application by 

Colorado Springs Utilities (Basdekas, 2014; CSU, 2017a). 

Given this ripe opportunity for MOEA applications in the field, there is a need to develop more 

guidance on best practices for agencies seeking to use MOEAs (Maier et al., 2014). Though there is a 

wide spectrum of case studies to date, they are limited in their ability to facilitate experimentation that 

leads to practical insights and relatable results. On one end of the spectrum are the studies using highly 

simplified models that may not represent the complexity of real-world decision spaces or tradeoffs 

recognizable to practitioners. On the other end of the spectrum are studies that use real-world systems. 

Though more complex and relatable, these real-world studies can have drawbacks. First, they produce 

results that may be politically sensitive and use difficult-to-obtain data. The second drawback relates to 
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defining the MOEA problem formulations. The problem formulations are informed by the agencies’ 

existing practices, but directly translating existing practices into MOEA search can be problematic 

because it limits the space of solutions that can be suggested by the MOEA (Mortazavi et al., 2013).  

Two examples of ways that an agency’s direct influence on a problem formulation can potentially 

limit MOEA results are the use of existing reliability definitions and the inclusion of cost as an objective. 

Water utilities have supply reliability policies that they use to evaluate their current systems and future 

plans; these policies are based on historic climate conditions and possibly outdated social perspectives, 

and may arbitrarily constrain their systems’ performance potential. In other words, using different 

performance metrics associated with reliability in an MOEA search could yield better plans overall. 

Another example is using cost as a measure of performance for long term planning portfolios, which is 

common in MOEA research. While it is true that the financial cost of a plan is an important consideration 

for water suppliers, calculating a portfolio’s cost is problematic because it involves choosing an uncertain 

discount rate, estimating project life-cycle costs, and combining cost estimates of projects that are in 

different phases of study (EU Framework, 1998; Maheepala et al., 2014; Newell and Pizer, 2001; Walski, 

2001). Use of uncertain portfolio costs with an advanced optimization tool can inappropriately preference 

certain projects, contribute to the continuation of traditional planning mindsets, and obscure opportunities 

for MOEA innovation. Both research and real-world MOEA applications can benefit from exploring new 

ways to formulate planning objectives.  

One way to develop new techniques that can contribute practical MOEA guidance is to experiment 

with generic case studies. An example of the power of a generic case study to transform a field is the 

Anytown, U.S.A. water distribution system model. Originally developed for use in a “battle” of 

optimization techniques in 1985, Anytown was devised as a realistic platform that could bring together 

researchers and practicing engineers to compare approaches to solving pipe-sizing problems (Walski et 

al., 1987). Over the years, a variety of researchers have used the case study to demonstrate new 

techniques, often adding complexity without changing the fundamental nature of the problem (Farmani et 
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al., 2005; Murphy et al., 1994; Walters et al., 1999b). Continued relevance and evolution are testaments to 

the initial proposal and design of the model. To this day, Anytown remains a vehicle for WRSO 

innovation, including being used in a recent six-objective MOEA study (Fu et al., 2013).  

Another example of a generic case study supporting MOEA experimentation is “the lake problem”, 

which models the dynamics associated with lake eutrophication and was originally introduced in 1999 

(Carpenter et al., 1999). In the model, a city must make a series of decisions about how much 

phosphorous to discharge into a shallow lake in light of conflicting management priorities. The problem 

is interesting and broadly relevant because it demonstrates the implications of interdependent decisions 

over time, multiple equilibria, and performance thresholds that often arise at the interface of human 

activity and ecological systems (Grüne et al., 2005). It has recently been used to: demonstrate Many-

Objective Robust Decision Making (MORDM) (Singh et al., 2015); explore the implications of 

constraints on MOEA search behavior (Clarkin et al., In Review); and combine direct policy search with 

the concept of environmental tipping points (Julianne D. Quinn et al., 2017). 

Anytown and the lake problem provide researchers the ability to develop and combine WRSO tools 

and techniques for water distribution and environmental water quality with complete creative freedom. 

The benefits that come with this license have not been realized for multireservoir supply systems, though, 

because there is no generic case study. Multireservoir supply planning problems offer particularly rich 

opportunities for WRSO research to enhance traditional processes and outcomes because they are 

spatially distributed and often involve multiple sources of water, competing uses, and complex 

interactions within the system and with external actors and regulations (Labadie, 2004).  

This chapter introduces the Eldorado Utility Planning Model, a generic case study that focuses on 

the long term planning of one utility within a regional context and is based on conditions on the Front 

Range of Colorado. Like many areas of the southwestern and western U.S., the Front Range is projecting 

vigorous population growth in the coming decades (State of Colorado, 2017). Also like much of the 

southwestern U.S., it is water supply-limited and highly dependent on snow pack to meet demands 
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(Rajagopalan et al., 2009). Climate change is expected to increase regional temperatures but the impacts 

of those increases and the altered precipitation patterns on timing and magnitude of streamflow are 

unclear (Lukas et al., 2014). On top of seasonal and interannual variability, uncertain climate change 

impacts, and growing demands, the Front Range operates within a strict regulatory environment. The 

supply and management decisions that Front Range water providers face are extremely complex and 

highly interdependent on each other as well as on future streamflows. These are the types of planning 

conditions in which the insights provided by MOEA-derived analyses may prove critical to better 

understanding of current and future water security issues. 

The major elements of this case study – the model and the MOEA problem formulation (explained 

in the MOEA-assisted Optimization section) – were developed through direct, structured input from 11 

Front Range water managers (Smith et al., 2017) as well as iterative feedback from a subset of those 

managers. This process produced relatable results that are communicable to a broad practitioner audience 

and avoids limiting the configuration and output to a specific utility’s interests. Thus, this case study 

extends MOEA-assisted optimization to a new geographic region while facilitating innovation and 

dissemination of MOEA research. In short, development and use of the Eldorado Utility Planning Model 

represent a new paradigm for extending multireservoir WRSO research within academia and beyond.  

3.2 Background 

3.2.1 MOEA-assisted Optimization 

Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization is a technique that 

employs a search algorithm to explore how portfolios of inter-related decisions impact conflicting 

performance objectives in complex systems. There are four components of the technique: the MOEA, a 

simulation model, a problem formulation, and visualization of results. There are several choices for state-

of-the-art MOEAs; this study uses the Borg algorithm (Hadka and Reed, 2013) which has been shown to 

perform favorably on challenging problems (Reed et al., 2013; Zatarain Salazar et al., 2016).  
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The problem formulation consists of a set of decision levers, objectives, and constraints. Decision 

levers are the set of options available to a water utility to improve its current supply system or operations, 

e.g. building a reservoir or enacting conservation. Objectives are measures of performance that quantify 

the utility’s planning goals, e.g. minimizing frequency of restrictions. Constraints are limits to acceptable 

performance, e.g. maintaining at least 90% of annual demand in storage.  

The MOEA intelligently searches for portfolios (sets of decision levers) that perform well across 

all objectives by feeding portfolios to an embedded simulation model and evaluating output from the 

model based on the user-defined objectives and constraints. The search process produces a set of non-

dominated portfolios (in which every portfolio performs better than another in at least one objective, but 

no portfolio performs better than another in all objectives) that together quantify the tradeoffs between 

conflicting objectives. MOEA results are high-dimensional in that there are many relationships between 

decisions and objectives that are best understood when viewed together, and this fact prompts the use of 

visual analytics such as interactive parallel plots (Fleming et al., 2005; Jones, 2014) or glyph plots 

(Kollat, 2015; Kollat and Reed, 2007). 

3.2.2 Practitioner Input on Model and Problem Formulation 

The Eldorado Utility case study was created as part of a larger participatory research effort. That 

process, termed the Participatory Framework for the Assessment and Improvement of Tools (ParFAIT), 

engaged Front Range water managers from six utilities to evaluate whether MOEAs would be useful to 

their agencies and identify future research avenues to increase their value to practitioners. Details beyond 

the brief content below can be found in Smith et al (2017). 

In February, 2015, researchers held a workshop with 11 Front Range water managers to solicit 

their input on the Eldorado problem formulation and model features. It is widely recognized that defining 

the problem formulation is a critical aspect of using an MOEA (Kasprzyk et al., 2012; Loughlin et al., 

2001; Reed and Kasprzyk, 2009), and researchers increasingly incorporate practitioner input into the 

process (Mortazavi et al., 2013; Wu et al., 2016b). For each element of the problem formulation, 



58 

 

 

researchers and practitioners engaged in open-ended discussion and brainstorming to determine a variety 

of decision levers, objectives, and constraints that combined their individual utilities’ experiences as well 

as their shared wisdom. Their ideas, mixed with some novel research concepts, are incorporated in this 

study’s problem formulation, described in the Optimization Configuration section. 

To produce relatable, relevant optimization results, the simulation model embedded in MOEA 

search must credibly represent reality, even when the model is hypothetical. At the workshop, the group 

of managers suggested aspects of their systems and their regional management context that would need to 

be represented for them to be able to engage with optimization results at a second workshop. Almost all 

of these features are represented in the model description in the Eldorado Utility Planning Model section.  

3.2.3 The Front Range of Colorado 

The Front Range region of Colorado is an urban corridor located just east of the Rocky 

Mountains that encompasses several mid-sized cities and many smaller communities. The mountain range 

runs north and south, forming the continental divide, and is a significant physical, hydrologic, and 

political demarcation within the state. Like other regions in the Western U.S., Colorado is experiencing 

rapid population growth; the number of residents on the Front Range is forecasted to increase by 70% by 

2050 (State of Colorado, 2017). Currently, 80% of the state’s population lives on the East Slope of the 

mountains, with only 30% of the surface water supplies (State of Colorado, 2015). Since the early 1900s 

there have been more claims on the East Slope rivers than can be met in most years (Caulfield Jr. et al., 

1987; P. O. Abbott, 1985). A result of this disparity is that around 72% of the water used by Front Range 

cities comes from transmountain diversions (TMDs), or water imported from basins on the West Slope 

through large infrastructure projects or water wholesalers (“Colorado Springs Utilities 2014 Water Tour,” 

2014). 

All of Colorado’s major rivers begin in the Rocky Mountains, above 8000 feet, and are primarily 

fed by snow that falls from October through May. Because the water provided by snowpack melts within 

a two-month window, users in Colorado (as in many Western U.S. states) depend heavily on storage in 
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both snowpack and reservoirs to meet demands throughout the year (Rajagopalan et al., 2009). On top of 

the seasonal precipitation variability, the region experiences high inter-annual streamflow variability, 

making reservoirs even more crucial to ensuring water availability for economic, agricultural, and 

ecosystem health (Doesken, 2014).  

Impacts of climate change in Colorado could result in anywhere from 1.4 to 3.6˚C temperature 

increase by 2050 relative to the 1970-2000 baseline. The projected changes in precipitation are less clear; 

under a medium-low emissions scenario, Colorado could see anywhere from -15% to +25% change in 

precipitation depending on hydrologic region and time of year (Lukas et al., 2014). However, increases in 

precipitation may not fully offset increases in temperature; more evapotranspiration and lower soil 

moisture may result in decreased streamflow despite more precipitation (Udall and Overpeck, 2017; 

Woodbury et al., 2012). 

In Colorado, as in most of the western U.S., water use is tightly regulated by the prior 

appropriation doctrine (Hobbs, 2004). The right to use water is granted to entities by the state based on 

the date of first use; is for finite amount of water; and is legally bound to a specified purpose and location. 

The earlier in time that a right was granted, the more senior it is, and senior users take the full amount of 

their right before juniors can take any water. This means that, except in high streamflow years, many 

junior rights in Colorado do not receive their full allotment (i.e. a water right does not guarantee a specific 

yield). Water rights can be granted for diversion from the stream for direct application to their purpose (a 

specified flow rate), they can be storage rights (with a maximum annual volume of storage), or they can 

be instream rights, where a designated flow rate must be present at a specified point in the river. In 

Colorado, agricultural users own the vast majority of senior water rights. 

As their populations increase and streamflow potentially decreases, municipal water utilities in 

Colorado are seeking to increase their supplies and manage growing demands. Building new storage may 

offer inter-annual security (if it can be filled), but it is also very expensive, difficult to permit, 

environmentally disruptive, and potentially socially unpopular. Buying senior water rights from other 



60 

 

 

users (e.g. farmers) could greatly increase supplies, but without storage, the timing or location of their 

availability may not be practical, and transferring water away from other users can cause social, 

economic, and environmental hardship in their communities. Conservation is an important tool for 

balancing supply and demand, but it can reduce utility revenues and lead to rate increases or reduced 

adaptation capacity (Leurig, 2010). Given the challenging regulatory environment, complex interactions 

between decisions, and broader impacts of utilities’ choices, innovative decision support tools could 

greatly advance long term water planning in Colorado. 

3.3 Eldorado Utility Planning Model 

In order to represent the reality that most Front Range water suppliers draw water from multiple 

basins and through multiple mechanisms, the Eldorado Utility Planning Model is regional in scope. It has 

two major basins, one on the western slope of a mountain range and one on the eastern slope. Each of 

these basins is made up of sub basins that have multiple types of competing users (agricultural, municipal, 

industrial, and instream flow) and infrastructure. Each user has one or more priority dates that dictate their 

places in line to divert or store water (or maintain instream flow). Each diverter or reservoir also has a 

specific location in the basin that its unconsumed water (return flows) or releases re-enter the stream 

system. The spatial distribution of diversions, storage, and return flows as well as the temporal 

distribution of water right priority dates are critical for capturing the extremely complex implications of 

making long term water supply decisions on the Front Range.  

Because the spatial and temporal relationships are so intricate, this case study uses the RiverWare 

modeling platform (Zagona et al., 2001). RiverWare is a generalized river system modeling tool with 

advanced features and a graphical user interface (GUI) to facilitate organization and analysis of model 

relationships and performance. Critically, RiverWare uses a policy language that allows modelers to 

create customized operating and ownership rules to capture complex system dynamics. Equally important 

are the platform’s advanced accounting functions which can allocate limited available water to different 

users based on priority dates, and also keep track of which return flows are reusable. Reusable water 
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sources are a critical component of Colorado water management; their potential yields are greater than 

single-use sources, but they also present spatial and temporal complexities that drive decision making and 

thus reusability must be carefully modeled. Finally, RiverWare is an example of the type of sophisticated 

decision support tools used by many water utilities. Smith et al. (2016) linked an MOEA with the legacy 

RiverWare model of a Texas utility to improve the operations of a large multireservoir system. This study 

builds on the work of Smith et al. but uses the Eldorado Utility Planning Model to generically capture 

Front Range, Colorado, water management context and demonstrate techniques that are broadly 

applicable to other systems.  

Going forward, the schematic in Figure 3-1 will be a reference point to describe the Eldorado 

Utility system, as well as other model features and their significance in more detail. 
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Figure 3-1. Diagram of the Eldorado Utility Planning Model’s regional water supply network.  
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3.3.1 Hydrologic Model Inputs 

The model runs at a monthly timestep and has five headwater streamflow input sites, represented 

by white circles in Figure 3-1. Streamflow in Colorado is primarily snowmelt-dependent, and different 

watersheds across a region often exhibit strong relationships because of similar annual snow volumes and 

runoff patterns. Therefore, streamflow inputs needed to be temporally and spatially correlated. To achieve 

this for synthetic flow sequences, natural historic monthly flows at five Colorado headwaters sites were 

summed to annual and then regional flows (Lins, 2012; Woodbury et al., 2012). Historic regional annual 

flow volumes were sampled using a Lag1 K-NN bootstrap technique (Lall and Sharma, 1996), then 

disaggregated spatially and then temporally to monthly flow at each site via Nowak’s proportions method 

(2010).  

Table 3-1. List of geographic locations, data sources, and historic magnitudes of the streamflow inputs 

used in the model. 

Site Name 
Model Site (Figure 1 

label) 
Data Source USGS Gage # 

1950 – 2005 

Mean Annual 

Natural Flow  

Boulder Creek near 

Orodell 
East River (A) 

Woodbury et 

al (2012) 
06727000 

87.8 MCM 

(71,169 AF) 

Middle Boulder 

Creek at Nederland 
Northeast River (B) Lins (2012) 06725500 

49.3 MCM 

(39,970 AF) 

Bear Creek at 

Morrison 
East Creek (C) Lins (2012) 06710500 

42.9 MCM 

(34,753 AF) 

Fraser River at 

Granby 
West River (D) 

Woodbury et 

al (2012) 
09034000 

187.4 MCM 

(151,963 AF) 

Upper Colorado 

River at Granby 
Southwest River (E) 

Woodbury et 

al (2012) 
09019500 

334.3 MCM 

(270,989 AF) 

 

3.3.2 Eldorado Utility 

The Eldorado Utility is a small eastern slope municipal water provider for a hypothetical city 

whose system features and demands are based loosely on real cities. It currently serves 100,000 customers 

with an average customer use of 550 liters per capita per day (Lpcd) (145 gallons per capita per day – 

gpcd). This use translates to approximately 20 million cubic meters (MCM) (or 16,200 acre feet – AF) of 

annual demand if no use restrictions are imposed. The predominant demand pattern is single family 
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residential, so demand increases substantially during summer months for outdoor ornamental landscape 

irrigation (31% of total annual use serves these outdoor purposes). The model differentiates between 

indoor and outdoor use when calculating actual water consumption, where 95% of indoor use returns to 

the stream and 15% of outdoor use returns to the stream.  

To meet current demands, Eldorado owns three eastern slope direct streamflow diversion rights, 

one transmountain diversion right (transferred under the mountains from the western slope to the eastern 

slope), two eastern slope reservoirs, and 10,000 wholesaler shares (shares are a term for fixed yields of 

water provided through the infrastructure and management of an entity other than Eldorado). All 

diversion and storage water used by the utility is taken from the stream just below the confluence of the 

Northeast River and the East River. The three diversion rights for 0.28, 0.37, and 0.42 cubic meters per 

second (cms) (10, 12, and 15 cubic feet per second, cfs) have a range of seniority, from the third most 

senior date of 1895 to the fourth most junior date of 1936, all from the East River. The 1956 

transmountain diversion (TMD) right is the most junior right and brings water from the West River under 

the mountains to be stored in the South Reservoir (SouthRes), which is owned by Eldorado. SouthRes can 

hold up to 9.87 MCM (8,000 AF) of eastern or western slope water, and collects East River water in 

offstream storage with a 1955 priority date. The two sources for this reservoir compete for space, limiting 

the yields of both rights. Eldorado’s North Reservoir (NorthRes) is an 11.1 MCM (9,000 AF) onstream 

reservoir that stores Northeast River water with a 1940 priority date. The Wholesaler shares are collected 

on the western slope and stored on both slopes, and Eldorado draws its shares directly from the eastern 

slope Wholesale Reservoir. 

TMD water is Eldorado’s only current source of reusable water; whenever the utility uses this 

water to meet demands, the resulting unconsumed return flows can be re-used to extinction either by 

some form of direct reuse, storage for later use, or an exchange mechanism as long as no intervening 

senior rights are injured. However, with no downstream ability to capture the reusable flows or any 
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upstream location to store this water, the exchanged reuse must occur concurrently with the return flows. 

Such conditions are rarely met, so this reusable source is underutilized. 

3.3.3 Other model features 

Including the utility, there are nine different water users on the eastern slope of the mountains. 

The diversion and return flow points for the other water rights holders are often disadvantageous for 

Eldorado. Eldorado’s two reservoirs are the farthest upstream water rights, and also the most junior, so 

eight other senior users draw water away from them for much of the year. For example, Agriculture User 

#1 is located directly downstream of NorthRes on the Northeast River; the farmer has a growing season 

diversion right (April 1 through October 31) that draws water down the river that Eldorado wants to store. 

Another example is Agriculture User #3, who during the growing season diverts water immediately 

downstream of SouthRes on the East River. This user also has a return point that is inconvenient for the 

utility; it is just downstream of Eldorado’s diversion point, meaning the farmer’s unconsumed water 

cannot increase streamflow at a location that benefits the utility’s opportunity to divert its junior rights. 

Similarly, Eldorado’s return flow point is just downstream of the 1900 priority date instream flow right, 

so the utility’s unconsumed water does not help to meet that flow requirement. All of the other users’ 

priority dates and diversion and return flow points create additional complicated stream dynamics and 

challenge Eldorado’s ability to access the limited water supply. 

Because Eldorado also gets water from the western slope via its TMD and Wholesaler shares, the 

model is designed to constrain those sources as well. The Eldorado TMD and the Wholesaler’s collection 

reservoir are junior to all of the other water rights on the western slope; these storage, diversion, and 

instream flow requirement rights limit the yields of the utility’s sources. The details of all water users are 

shown in Figure 3-1.  

Between the two slopes of the model, Eldorado has access to 5 different watersheds and competes 

with 12 other users (some of which are also represented in the Decision Levers section as potential supply 

sharing partners for the utility). Flow magnitudes shrink and grow at various points along the streams’ 
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lengths, and the hydrology varies by basin, season, and year. The priority system, not only physical 

availability, dictates which users get water and when. Though scaled down, these model characteristics 

are representative of the conditions faced by many utilities on the Front Range and around the western 

U.S. The model was inspired by input from water managers at a workshop as well as real utilities’ 

systems, and the complexity was necessary to make it credible to participants in an MOEA assessment 

workshop built around the Eldorado Utility case study. Future MOEA-practitioner studies may also take 

advantage of this credibility. 

3.3.4 Planning for Eldorado’s Future Population while considering Potential Impacts of Climate 

Change 

The water supply system described above is deliberately designed to provide more than enough 

water in most years to meet Eldorado Utility’s current demands under historic hydrology. With an 

average use of 550 Lpcd (145 gpcd) and 100,000 customers, the utility’s current unrestricted demands are 

20 MCM (16,200 AF) per year. However, Eldorado is a desirable place to live with a strong economy and 

has projected a 40% population increase by 2050, after which the population is expected to level off (it 

will have reached projected buildout conditions). If per capita use stays constant, 140,000 people would 

use 28 MCM (22,700 AF) per year. The firm yield of Eldorado’s current supplies is only 22 MCM 

(17,800 AF) per year given historic hydrologic conditions, so the utility needs to start taking action to 

secure future water supplies now if it wants to have enough for its buildout population. 

Climate change is already increasing regional temperatures. While the impacts of climate change 

on streamflows are uncertain, the increased temperatures will result in higher evaporation from reservoirs 

and greater lawn irrigation demands. Exploring long term plans designed for historic streamflow and 

demands will not provide adequate information for future system performance, so Eldorado is using 

perturbed supply and demand conditions from a 4°C -warmer future to bound and inform scenario 

development. Front Range climate change studies have shown this to be a plausible future (Woodbury et 

al., 2012). The utility estimates that this future would cause a 10% increase in per-capita demand (a new 
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average of 606 Lpcd (160 gpcd)), resulting in an unrestricted annual demand of 31 MCM (25,000 AF). 

Evaluation of Eldorado’s current system using hydrology perturbed by a 4°C temperature increase shows 

a firm yield of 19.9 MCM (16,100 AF) per year. Table 3-2 summarizes the system statistics. 

Table 3-2. Information about Eldorado’s historic consumption, projected demands, and system yield. 

Hydrologic Scenario Historic +4°C 

Avg per capita Use w/o Conservation 550 Lpcd (145 gpcd) 606 Lpcd (160 gpcd) 

Unrestricted Annual Current Demand (pop. = 100K) 20 MCM (16200 AF) ---  

Unrestricted Annual Buildout Demand (pop. = 140K) 28 MCM (22700 AF) 31 MCM (25000 AF) 

Current System Annual Firm Yield 22 MCM (17800 AF) 19.9 MCM (16100 AF) 

 

Eldorado has three levels of drought response that restrict outdoor water use. The different levels 

of restrictions are triggered by a storage-to-long term demand relationship (see Equation 3-4). The 

impacts of the three levels of restrictions are given in Table 3-3. 

Table 3-3. Description of Eldorado’s three restriction levels and their estimated demand reductions. 

Restriction Level Resulting Indoor Use Resulting Outdoor Use 

1 100% 80% 

2 100% 50% 

3 100% 0% 

 

Eldorado’s governing board has determined that the utility must meet certain supply reliability criteria 

(i.e. they must meet demands at a certain level). The criteria are: 

1. Eldorado must not go into Level 1 Restrictions more than 5 times in 25 years; 

2. Eldorado must not go into Level 2 restrictions more than 1 time in 25 years; 

3. Eldorado must never go into Level 3 restrictions. 

The planning problem described in this section is generic but representative of the context of many 

western U.S. cities. Using traditional planning methods, they would likely pursue a few options that 

simply meet the criteria. However, now that MOEAs have made substantial gains in research applications 

and seen successful applications by Colorado utilities, researchers should explore how to effectively 
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formulate multiobjective optimization problems in light of future real-world users. The following section 

defines the problem formulation developed with input from Front Range water managers (Smith et al., 

2017). 

3.4 Optimization Configuration 

Recall from the Background section that the problem formulation is one of the four major 

components of MOEA-assisted optimization. Carefully defining the set of decision levers, objectives, and 

constraints, is as important as the simulation model to producing useful results. 

3.4.1 Decision Levers 

Eldorado has 13 decision levers available to address its looming water supply gap. The levers fall 

into three categories: Enhancing Operations, Acquiring Supply, and Building Storage. The levers 

described below and their complex interactions with each other were incorporated in response to 

workshop input from water managers and are directly comparable to the decision spaces that real Front 

Range utilities operate within (Smith et al., 2017). Table 3-4 summarizes the levers described below. 

3.4.1.1 Enhancing Operations 

This category includes levers that increase Eldorado’s operational flexibility. The first lever is 

Exchange, which, when chosen, gives Eldorado the legal right to trade its reusable return flows from their 

downstream return location to an upstream reservoir. The Exchange can only operate when the trade will 

not injure other water rights holders. To facilitate the trading, Eldorado can lease firm (designated) space 

in an existing reservoir belonging to an unmodeled external user, through a lever called LeaseVolXRes. 

XRes is located halfway upstream between Eldorado’s return point and NorthRes, and, importantly, 

downstream of Agriculture User #1. When this farmer’s right is in priority, Eldorado can store reusable 

water in XRes until there is opportunity to trade it up to NorthRes. The amount of XRes storage space 

available is determined by the volume specified by the LeaseVolXRes lever. Another place Eldorado can 

choose to store reusable return flows is in the Ag2 Irrigation Company reservoir (Ag2Res). If LeaseAg2Res 
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is turned on, Eldorado has access to available space in Ag2Res. This is not a fixed volume; it is subject to 

availability. 

3.4.1.2 Increasing Supply 

These levers are non-infrastructure actions that Eldorado can take to increase the amount of water 

available to put toward meeting demand. The utility can choose to buy water from Agriculture User #3 

(Ag3) using the lever RightsAg3. Ag3 has a high-seniority right just below SouthRes on East River. 

Eldorado can buy up to 20% of this 1.4 cubic meters per second (cms) (or 50 cubic feet per second- cfs) 

right and store it in SouthRes (after preserving the historic return flow patterns of the farmer’s original 

usage). Eldorado can also choose to buy up to 20% of Industrial User’s downstream, mid-seniority right 

through the RightsIndustrial lever. After preserving Industrial’s historic return flow patterns, Eldorado may 

divert the rest of the water directly from the stream. Both of these sources are reusable. 

In addition to water rights, Eldorado may also acquire shares of other user’s water. The utility 

may add up to 6,000 additional Wholesaler shares to its current stock of 10,000 via SharesWholesaler. Each 

share yields approximately 863 cubic meters (0.7 AF) per year, and due to Wholesaler policies, this water 

is not reusable. The Ag2 Irrigation Co. also operates based on shares; currently they are all owned by Ag2 

farmers, but Eldorado may purchase up to 10,000, each of which yields approximately 617 cubic meters 

(0.5 AF) per year. That yield is reduced by the amount of water necessary to preserve the farmers’ historic 

return flow patterns, but the water is reusable. Another supply mechanism to help Eldorado recover from 

droughts is temporarily leasing additional shares from Ag2 Irrigation Co. These shares are “interruptible” 

because the utility may activate them in any given year when facing low storage conditions. The 

SharesInterruptible lever may option up to 10,000 shares. 

Two other levers Eldorado may use to increase available supply are to conserve water and to 

increase distribution efficiency. Long term conservation measures free up water that would have 

otherwise not been available to meet future demand, so it is a way to increase supply. ConsFactor may be 

set to no conservation, moderate, or aggressive conservation. Increasing distribution efficiency by, e.g., 
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improving metering or fixing leaks, also reclaims previously-unavailable water. DistEff is currently at 

90%, but may increase to up to 93% depending on the value of the lever. 

3.4.1.3 Building Storage 

Eldorado has three possibilities for adding permanent storage to its system. It may expand 

SouthRes from 9.87 MCM (8,000 AF) to up to 12.3 MCM (10,000 AF), so ExpandVolSouthRes may be 0 – 

2.47 MCM (0 – 2,000 AF). Adding this volume would create more space to store the 1955 East River 

right, the TMD right, and, potentially, the Ag3 right; all of these sources compete for space in SouthRes. 

Eldorado can also choose to build a West Slope reservoir (WestSlopeRes), which would store the TMD 

right on the western slope until it could be stored locally in SouthRes or used to meet demands. 

BuildVolWestSlopeRes may be 0 – 12.3 MCM (0 – 10,000 AF).  Finally, Eldorado can choose to develop 

gravel pits located downstream of its return point. When GP is on, the utility has 0.99 MCM (800 AF) in 

which to store reusable return flows that can help to meet historic return flow patterns or be exchanged 

upstream.  



71 

 

 

Table 3-4. Summary of decision levers available to Eldorado. The numbers in “Figure 1 Label” refer to 

numbered features in Figure 3-1 to orient readers to decision lever locations. 

Figure 

1 Label 
Decision Description Units Range 

Enhancing Operations 

1 Exchange 
Acquire right to exchange reusable return 

flows to NorthRes 
--- 0 - 1 

2 LeaseVolXRes 
Pay owners of XRes to lease dedicated 

space that can facilitate Exchange 

MCM 

(AF) 

0 – 3.7 

(0 - 3,000) 

3 LeaseAg2Res 
Pay Ag2 Irrigation Co. to store water in any 

available unused space; 0 = off, 1 = on 
--- 0 - 1 

Increasing Supply 

4 RightsAg3 
Purchase a portion of Ag3’s senior 

diversion right 
% 0 - 20 

5 RightsIndustrial 
Purchase a portion of Industrial user’s mid-

seniority diversion right 
% 0 - 20 

6 SharesWholesaler 
Purchase additional shares of Wholesaler 

water 
shares 0 - 6,000 

7 SharesAg2 Purchase shares of Ag2 Irrigation Co. water shares 0 - 10,000 

8 SharesInterruptible 
Negotiate agreement with Ag2 Irrigation 

Co. for optional supply leases 
shares 0 - 10,000 

9 ConsFactor 

Reduce starting per capita demand through 

conservation measures; 0 = no change, 1 = 

10% reduction, 2 = 20% reduction 

--- 0 - 2 

10 DistEff 

Improve distribution efficiency by reducing 

unaccounted-for water (e.g. fixing leaks, 

improving metering, etc.) 

% 90 - 93 

Building Storage 

11 ExpandVolSouthRes Expand SouthRes 
MCM 

(AF) 

0 – 2.47 

(0 – 2,000) 

12 BuildVolWestSlopeRes Build WestSlopeRes 
MCM 

(AF) 

0 – 12.3 

(0 - 10,000) 

13 GP 

Develop gravel pits to store reusable return 

flows downstream of the city; 0 = not 

developed, 1 = developed 

--- 0 - 1 

 

3.4.2 Performance Objectives and Constraint 

The multiobjective optimization process involves evaluating an objective function, F(x), vector. 

Each value in the vector is calculated from a different performance objective, 𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒. The result of 

performing multiobjective optimization is a set of Pareto-optimal solutions (Pareto, 1896), where every 

solution is better than another solution in at least one objective (or, conversely, within the set, 

performance improvement in one objective is only possible by sacrificing performance in another). In this 
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optimization study, x is the vector of values that define implementation levels of decision levers within Ω, 

the space of feasible lever values. Formally,  

Equation 3-1 

F(x) = (𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣2, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣3, 𝑓𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑝𝑝, 𝑓𝑁𝑒𝑤𝑆𝑢𝑝𝑝𝑙𝑦 , 𝑓𝐴𝑝𝑟𝑖𝑙1𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , ) 

∀ 𝐱 ∈ Ω 

Equation 3-2 

𝐱 = Exchange,  LeaseVolXRes , LeaseAg2Res , RightsAg3 , RightsIndustrial , SharesWholesaler , SharesAg2 , 

SharesInterruptible , ConsFactor, DistEff, ExpandVolSouthRes , BuildVolWestSlopeRes , GP   

Subject to 

Equation 3-3 

𝑐𝑈𝑛𝑚𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑 = 0 

The only performance constraint in this optimization problem formulation, 𝑐𝑈𝑛𝑚𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑, is that 

all planning portfolios must meet 100% of indoor demands. This requirement is intuitive because indoor 

water use is the highest priority type of demand, and the constraint was suggested by managers at the 

2015 workshop from the first phase of this study (Smith et al., 2017).  

Note that several of the objectives described below directly reflect managers’ input from the 

above-mentioned workshop; performance objectives related to utilities’ reliability criteria were 

considered most important, with utilities reporting a mixture of storage-based and restrictions-based 

measures. Cost was also emphasized, but the best way to use this highly uncertain measure within a strict 

mathematical optimization process was the subject of an interesting discussion (Smith et al., 2017). 

Further exploration of this topic can be found below the description of 𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒. 

The first three objectives, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣2, and 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣3 are restrictions-based measures. As 

described in the Eldorado Utility Planning Model section, Eldorado has reliability criteria that are defined 
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by frequencies of three different levels of restrictions. The restriction level is determined by storage levels 

on April 1 of every year. Because Colorado has primarily a snowmelt-dominated system, a utility can 

reasonably predict the status of its resources for the upcoming year based on existing storage levels and 

snowpack on April 1. Year-long restriction determinations are standard practice in Colorado because 

going in and out of restrictions is undesirable due to numerous implementation difficulties and negative 

customer impacts. 

Table 3-5 summarizes Eldorado’s restriction levels and the triggering storage thresholds: 

Table 3-5. Storage-based triggers for restriction levels. 

Current Storage-to-Long Term 

Avg Annual Demand 

Restriction 

Level 

> = 75% 0 

< 75% 1 

 < 50% 2 

 < 25% 3 

 

where “Current Storage-to-Long Term Avg Annual Demand” is defined as  

Equation 3-4 

𝑅𝑒𝑠𝑡𝐿𝑒𝑣 =  
𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑡𝑒𝑟 𝑖𝑛 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑜𝑛 𝐴𝑝𝑟𝑖𝑙 1

𝐿𝑜𝑛𝑔 𝑇𝑒𝑟𝑚 𝑈𝑛𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 𝐴𝑛𝑛𝑢𝑎𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐷𝑒𝑚𝑎𝑛𝑑
 × 100 

The three restrictions objectives are calculated as follows: 

Minimize the number of years that Eldorado spends in Level 1 Restrictions: 

Equation 3-5 

𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1(𝐱) = 𝐸 [∑ 𝑦𝑅𝑒𝑠𝑡𝐿𝑒𝑣=1

𝑌

𝑖=1

]

𝑡

 

 

Minimize the number of years that Eldorado spends in Level 2 Restrictions: 
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Equation 3-6 

𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣2(𝐱) = 𝐸 [∑ 𝑦𝑅𝑒𝑠𝑡𝐿𝑒𝑣=2

𝑌

𝑖=1

]

𝑡

 

 

Minimize the number of years that Eldorado spends in Level 3 Restrictions: 

Equation 3-7 

𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣3(𝐱) = 𝐸 [∑ 𝑦𝑅𝑒𝑠𝑡𝐿𝑒𝑣=3

𝑌

𝑖=1

]

𝑡

 

 

where 𝑌 is the number of years simulated per 𝑡 traces in the hydrologic ensemble. Expectation notation, 

𝐸[ ], denotes that the average across the traces was used, and this aggregation method was used for all 

seven objectives. For the three restrictions-based objectives, once the average is taken, the values are 

rounded to the nearest integer with halves rounding up. This approach was taken in order to return whole 

numbers of years for frequencies of restrictions. 𝐱 is the vector of values that describe the set of decisions 

incorporated in the portfolio. 

The fourth objective, 𝑓𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑝𝑝, is a measure of how efficiently Eldorado’s supplies and system 

components operate to meet demands. It is affected by whether the utility can capitalize on reusable water 

and also whether Eldorado acquires an overabundance of shares. As mentioned in the model description, 

in Colorado, some water can legally be reused to extinction. Recall that much of the water diverted by 

Eldorado (or any municipality) is not fully consumed. The rule of thumb used by one Front Range utility 

is that for every 1.23 thousand cubic meters (1 AF) of reusable water they have, they can get 2.46 

thousand cubic meters (2 AF) of use out of it. Thus, acquiring reusable water is desirable, but it can only 

be taken advantage of with adequate infrastructure that can: capture it in strategic storage locations for 

exchange upstream in the system; control the timing of its release downstream (e.g. from a gravel pit 
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below a utility’s return point); or make it available for specific applications such as non-potable irrigation. 

Additionally, some types of water options available to Eldorado are “use it or lose it”. Though there are 

different operational implications for capitalizing on “use it or lose it” water sources versus reusable 

return flows, here they are combined for an overall system objective. To pursue efficient water usage and 

sourcing, Eldorado seeks to minimize the average annual volume of water that Eldorado had available but 

did not use: 

Equation 3-8 

𝑓𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑝𝑝(𝐱) =  

𝐸 [
1

𝑌
∑(𝑈𝑛𝑢𝑠𝑒𝑑 𝑆ℎ𝑎𝑟𝑒𝑠𝑊ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒𝑟𝑖

+ 𝑈𝑛𝑢𝑠𝑒𝑑 𝑆ℎ𝑎𝑟𝑒𝑠𝐼𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑖𝑏𝑙𝑒𝑖

𝑌

𝑖=1

+ 𝐿𝑜𝑠𝑡 𝑅𝑒𝑢𝑠𝑎𝑏𝑙𝑒 𝑅𝑒𝑡𝑢𝑟𝑛 𝐹𝑙𝑜𝑤𝑠𝑖]

𝑡

 

Objective five, 𝑓𝑁𝑒𝑤𝑆𝑢𝑝𝑝𝑙𝑦, quantifies the amount of water that the utility obtains through 

acquisitions.  It is a measure of how efficiently Eldorado meets its demands. The increasing population 

requires that the utility seek new supply and possibly mitigate the effects of a growing population by 

enacting conservation measures. Taking all possible acquisition and demand reduction actions would 

likely result in minimizing frequency of restrictions. However, there are several factors that influence 

utilities to not take every possible acquisition decision they can make, including limited funds, engaged 

communities, and environmental awareness (i.e. triple bottom line considerations). To represent 

Eldorado’s desire to acquire water intelligently and avoid onerous demand management measures or 

efficiency efforts (which reduce utility revenue), Eldorado seeks to minimize the average annual volume 

of water “created” through: acquisition of water rights or shares, enactment of conservation, and pursuit 

of distribution efficiencies: 

Equation 3-9 
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𝑓𝑁𝑒𝑤𝑆𝑢𝑝𝑝𝑙𝑦(𝐱)

=  𝐸 [
1

𝑌
∑

(𝑦𝑖𝑒𝑙𝑑 𝑓𝑟𝑜𝑚: 
𝑅𝑖𝑔ℎ𝑡𝑠𝐴𝑔3, 𝑅𝑖𝑔ℎ𝑡𝑠𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙 , 𝑆ℎ𝑎𝑟𝑒𝑠𝑊ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒𝑟 , 𝑆ℎ𝑎𝑟𝑒𝑠𝐴𝑔2, 𝐶𝑜𝑛𝑠𝐹𝑎𝑐𝑡𝑜𝑟, 𝐷𝑖𝑠𝑡𝐸𝑓𝑓)

𝑌

𝑖=1

]

𝑡

 

 

The sixth objective, 𝑓𝐴𝑝𝑟𝑖𝑙1𝑆𝑡𝑜𝑟𝑎𝑔𝑒, measures the amount of water Eldorado has in storage on 

April 1 of every year. This is a second reliability measure that emphasizes long term performance more so 

than the restrictions-based objectives which favor immediate performance of the system. Year-to-year 

carryover storage is critical for utilities in areas like the Front Range that have high interannual snowpack 

variability; they may seek to maintain, e.g., a year’s worth of demand in storage in case of an upcoming 

drought of unknown duration. Reservoirs fill in spring when melting snow increases streamflow, and the 

stored water is used to meet demands over the winter when streamflow is low. In Colorado, April 1 is 

used as the approximate date of lowest reservoir volumes, so Eldorado wants to maximize the minimum 

April 1 storage-to-demand ratio over the course of a planning period: 

Equation 3-10 

𝑓𝐴𝑝𝑟𝑖𝑙1𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝐱) =  𝐸 [𝑦𝑚𝑖𝑛 (
𝑇𝑜𝑡𝑎𝑙 𝐸𝑙𝑑𝑜𝑟𝑎𝑑𝑜 𝐴𝑝𝑟𝑖𝑙 1 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑉𝑜𝑙

𝐴𝑣𝑔 𝐿𝑜𝑛𝑔 𝑇𝑒𝑟𝑚 𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑒𝑚𝑎𝑛𝑑
) × 100]

𝑡

 

The seventh and final objective, 𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒, seeks to minimize the volume of storage built by 

Eldorado. Storage projects are difficult and expensive to permit, expensive to build with highly uncertain 

construction and operations and maintenance costs (at the conceptual phase typically used in long term 

planning), environmentally impactful, and can be socially controversial. For all of these reasons, limiting 

the amount of new storage in Eldorado’s portfolio is desirable. Thus, Eldorado wants to minimize total 

volume of new storage: 

Equation 3-11 
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𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒(𝐱) =  ∑[𝐸𝑥𝑝𝑎𝑛𝑑𝑉𝑜𝑙𝑆𝑜𝑢𝑡ℎ𝑅𝑒𝑠 , 𝐵𝑢𝑖𝑙𝑑𝑉𝑜𝑙𝑊𝑒𝑠𝑡𝑆𝑙𝑜𝑝𝑒𝑅𝑒𝑠, (𝐺𝑃 ∗ 0.99 𝑀𝐶𝑀)] 

Note that GP is multiplied by 0.99 MCM (800 AF) because the GP lever is on/off or 1/0, but the volume 

added is 0.99 MCM (800 AF). 

Using an approach informed by the work of Colorado Springs Utilities (Basdekas, 2014; CSU, 

2017b), the combined effects of objectives five and seven are a surrogate for using monetary cost as a 

performance objective to measure the magnitude of infrastructure investments. There are several 

complications that accompany cost as an objective: choice of discount rate, confidence in the final 

lifecycle cost estimates of fully-planned projects, and cost comparisons of projects that are in different 

phases of study. This third issue is especially problematic; allowing projects to compete within the 

optimization based on essentially incomparable cost estimates could inappropriately disadvantage one or 

more projects because the algorithm cannot tell the difference between firm cost projections and those 

that are less refined. In any long term planning exercise, the infrastructure options being considered will 

almost certainly have different study-completion statuses. 

Of course, cost is an important consideration for water utility planning; when combined with, 

e.g., a reliability objective, the optimization is trying to answer the question of whether one or more 

actions is “worth it”. In long term planning, that question can be answered indirectly, though, avoiding the 

problematic assumptions associated with defining and comparing monetary costs. The supply-demand 

imbalance has to be resolved in some way, likely through a mixture of non-infrastructure and 

infrastructure actions. This problem formulation allows the algorithm to differentiate these two types of 

levers by separating them into two objectives: minimizing supply created without new infrastructure and 

minimizing newly-built storage. This distinction provides a cost-like signal to the MOEA and can also 

lead to a more holistic exploration of system responses. The results of the optimization of volume of 

storage vs.  volume of supply can be interpreted by human reasoning in a more nuanced assessment than 

the perspective of doing as few expensive projects as possible. Estimating lifecycle costs is a critical 
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component of any planning process and can be included as part of a portfolio evaluation and selection 

process at the same time that triple bottom line assessments are being weighed.  Examples of this can be 

found in the Results section.  

Table 3-6. Summary of performance objectives that Eldorado seeks to optimize. 

Objective Description Impactful Levers 

RestLev1 

Minimize frequency of Level 1 

restrictions over 25 years 
all 

RestLev2 

Minimize frequency of Level 2 

restrictions over 25 years 
all 

RestLev3 

Minimize frequency of Level 3 

restrictions over 25 years 
all 

MissedOpp 

Minimize average annual volume of 

the sum of: return flows that Eldorado 

could have captured and reused, 

foregone Wholesaler shares, and 

forgone Ag2  and Interruptible shares 

Exchange,  LeaseVolXRes , 

LeaseAg2Res , RightsAg3 , RightsIndustrial , 

SharesWholesaler, SharesAg2 , 

SharesInterruptible 

NewSupply 

Minimize average annual new water 

created by either conserving or 

acquiring rights and shares 

RightsAg3 , RightsIndustrial , 

SharesWholesaler, SharesAg2 , 

SharesInterruptible , ConsFactor, DistEff 

April1Storage 

Maximize the lowest April 1st storage-

to-annual demand ratio during the 25-

year simulation 

all 

NewStorage 
Minimize the volume of newly-built 

storage in a portfolio 

ExpandVolSouthRes , 

BuildVolWestSlopeRes , GP 

 

3.4.3 Streamflow Ensemble 

To stress the Eldorado Utility’s supply system, synthetic hydrology was generated that 

incorporated streamflow impacts that could result from a 4°C warmer future. In 2012, the Joint Front 

Range Climate Change Vulnerability Study used downscaled CMIP3 temperature and precipitation 

projections from five General Circulation Models (GCMs) in hydrologic models to simulate the impact of 

the projections on Colorado streamflows. The results of the study were sets of monthly streamflow 

percentage change deltas for multiple sites in the state (Meehl et al., 2007; Woodbury et al., 2012). In that 

study, researchers applied the deltas from Sacramento Soil Moisture Accounting (SAC-SMA) modeling 

to historic monthly records from the five direct streamflow sites and then used the method described in 

the Figure 3-1. Diagram of the Eldorado Utility Planning Model’s regional water supply network.  
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Hydrologic Model Inputs section to generate spatially and temporally correlated sequences with 

the perturbed monthly flows. Of the 100 sequences of monthly streamflow produced, each 25 years long, 

10 were randomly chosen to be included in this study. A comparison of the historic and perturbed 

regional monthly average flow volumes is shown in Figure 3-2. 

 

Figure 3-2. Plot of the average regional monthly flows for the 1950 – 2005 historic record and the 4°C-

perturbed regional flows. 

3.4.4 Computational Experiment 

The RiverWare Eldorado Utility Planning Model was embedded within the search loop of the 

Borg MOEA (Hadka and Reed, 2013). Model runtime is approximately 20 seconds to simulate 25 years 

at a monthly timestep, during which 150 custom operating policies that support complex interactions 

between objects, accounts, and water types are iteratively applied. Each portfolio proposed by Borg was 

evaluated over the course of the 25 years as a fully-implemented configuration of Eldorado’s system (i.e. 

the utility’s system did not change over time). The performance of each portfolio was averaged across ten 

hydrologic traces which were distributed to 10 computing cores using RiverWare’s concurrent multiple 

run management functionality. 

Optimization was performed using Amazon Web Services’ Elastic Compute Cloud (EC2) 

computing tier (Mathew and Varia, 2014). Based on the model’s long simulation time (relative to other 
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MOEA research applications) and a previous Borg-RiverWare study (Smith et al., 2016), researchers 

determined that 5,000 function evaluations would be sufficient to produce interesting and informative 

tradeoffs. Each optimization run took approximately 36 hours. This application of Borg made use of 

default settings for all parameters except for initial population size, which was changed from 100 to 50 so 

that evolutionary search would commence more quickly (Hadka et al., 2012; Reed et al., 2013). 

3.5 Results 

3.5.1 Exploration of Full Tradeoff Set 

This study uses parallel axis plotting (Fleming et al., 2005) to present the nondominated solutions 

produced by optimizing the Eldorado Utility’s system in a 4°C future. Parallel axis plots are useful for 

communicating high-dimensional data, and have been used in several recent optimization studies (CSU, 

2017a; Herman et al., 2014; Rosenberg, 2015; Watson and Kasprzyk, 2017a). Viewing all nondominated 

portfolios together, in all objectives, makes it possible to see tradeoff relationships between the 

objectives. Showing all of the decisions that make up the portfolios along with the objectives’ 

relationships further informs the viewer about how specific decisions, or combinations of decisions, affect 

performance. The utility of using visual analytics is demonstrated below. 

Figure 3-3 (a) shows performance in seven objectives, each of which has a vertical axis. Each 

portfolio is represented by a line that connects across all of the axes, crossing each axis at the level of 

performance in that objective. In all objectives plots in this paper, lower positioning on an axis denotes 

better performance. Crossing lines between adjacent axes indicate conflicts, or tradeoffs, in those 

objectives. Each axis has a transparent “violin” that represents the distribution of portfolios’ performances 

in the objective. 
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Figure 3-3. Parallel plots of the full set of nondominated portfolios. In plot (a), vertical axes represent the 

7 performance objectives, and a line for each portfolio connects across each axis to denote its 

performance (lower is better); transparent “violins” on each axis convey distribution of performance in 

each objective. In plot (b), vertical axes represent the 13 decision levers, and a line for each portfolio 

connects across each axis to denote the level to which each decision was incorporated (lower means 

“less” of a decision lever). Color corresponds to the number of years the portfolios entered Level 1 

restrictions (performance in the leftmost objective). 

Figure 3-3 (b) is configured similarly to Figure 3-3 (a) but the vertical axes now represent each of 

the 13 decision levers. The decision axes are in the same order as they were presented in Table 3-4: the 
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first three are operations-related, the next seven are supply-related, and the last three are storage-related. 

Again, each portfolio is represented by a line connecting across the axes, and the position at which the 

line crosses an axis denotes “how much” of that decision is included in the portfolio. For all decisions 

plots, the lower a line crosses an axis, the “less” of that lever is in the portfolio. Each portfolio line in 

Figure 3-3 (b) has a corresponding line characterizing its performance in Figure 3-3 (a). 

In Figure 3-3 (a) and (b), color corresponds to the average number of years across all traces that a 

portfolio enacted Level 1 restrictions (the same performance that is represented on the leftmost axis); 

using color this way helps to identify major trends in the results. Portfolios that are dark blue have 0 years 

in Level 1 restrictions and dark red lines have 18 years. Given Eldorado’s current reliability criteria, 

which allow up to five years in Level 1, one year in Level 2, and zero years in Level 3 restrictions, all 

solutions that are a shade of blue are satisfactory. 

Recall that Eldorado seeks to minimize its acquisition of New Supply, which is affected by levers 

that buy rights or shares, or conserve or increase distribution efficiency (which “free up” new water). In 

Figure 3-3 (a), the color gradient reveals a significant relationship between low frequency of Level 1 

restrictions and the New Supply objective: the blue-colored portfolios are almost exclusively found 

between the middle to top end of the New Supply axis. In contrast, the large span of blue lines on the 

right-most axis indicates that there is not a strong relationship between minimizing restrictions and 

minimizing New Storage. These two results suggest that Eldorado may meet its reliability criteria without 

building any new storage, but must acquire at least 12.6 MCM per year (10,250 AF per year) of New 

Supply to be compliant. There is a tradeoff between New Supply and New Storage, though – portfolios 

that have less New Storage tend to make up for it with more New Supply, and vice versa. 

The April 1 Storage objective which seeks to maintain long term storage levels does not conflict 

with Level 1 restrictions, but the crisscrossing lines between this objective and New Supply in Figure 3-3 

(a) reveal a conflict; minimal New Supply will result in very poor performance in April 1 Storage 

regardless of the amount of storage added to the system. The grouping of orange lines on the bottom of 
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the New Supply axis vs at the top of the April 1 Storage axis also reflect this relationship. Conversely, the 

lines between April 1 Storage and New Storage do not always cross – long term storage reliability is 

possible for Eldorado even with small infrastructure investments as long as adequate New Supply is in 

place. In fact, portfolios with the maximum amount of New Storage (orange, at the top of the New 

Storage axis) but only medium levels of New Supply do not meet restrictions reliability criteria. 

Several major characteristics of highly-reliable portfolios are apparent from Figure 3-3 (b). Refer 

to the ConsFactor axis, fifth from the right. In the plot, all blue lines are either in the moderate or 

aggressive category of conservation, so meeting reliability criteria requires conservation. A closer 

analysis that is not fully visible from the figure reveals that 232 of the 246 restrictions-compliant 

portfolios include aggressive conservation. Conserved water is counted as New Supply and can “create” 

over 6.17 MCM (5,000 AF) of new water per year. The other prominent attribute of highly-reliable 

portfolios is that they all include moderate to large numbers of Wholesaler shares; the clustering of blue 

lines on this decision axis (sixth from the right) shows that to meet reliability criteria, a portfolio must 

acquire at least 2,200 shares. Another finding is that all compliant portfolios selected one or more 

decisions to store reusable water. Though not visible in Figure 3-3 (b), detailed examination of the results 

reflects that portfolios use NorthRes and Xres (axes 1 and 2), or Ag2Res (axis 3), or both. This finding 

underscores the fact that improving system operations has a noticeable impact on long term planning 

performance. 

3.5.2 Further Exploration of Results using Comparisons of Individual Portfolios 

Visualizing a full set of nondominated portfolios helps to reveal ranges of performance that are 

possible, relationships between objectives, and general decision lever trends. Examining individual 

portfolios and comparing them provides a more in-depth understanding of underlying system dynamics 

and an opportunity to combine human judgement with optimization search results. The next two sections 

will present two such examples. 
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3.5.2.1 Similar Reliability, Divergent Decisions 

Figure 3-4 (a) and (b) show two highlighted portfolios in the format explained for Figure 3-3: 

performance tradeoffs in the top plot and decision characteristics on the bottom. Figure 3-4 (a) shows that 

Selection 1 (red) and Selection 2 (purple) have identical restrictions-based and storage-based reliability 

performance (see Table 3-7 for exact values) while in Missed Opportunity, New Supply, and New 

Storage they have very different performance. In Figure 3-4 (b), the two highlighted lines have very 

different patterns, signaling divergent decision lever values. With no difference in reliability, managers 

may use these two portfolios to explore preferences in other non-reliability objectives, as well as analyze 

the strategic and policy implications that the two different sets of decisions portfolios have for their 

systems. 
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Figure 3-4 Parallel plots of two highlighted solutions. Plot (a) shows portfolio performance in the 7 

objectives, and plot (b) depicts levels of the 13 decisions that make up each portfolio. The highlighted 

portfolios have similar reliability performance but divergent decisions that impact the three non-reliability 

objectives.  
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Table 3-7. Decision lever and objective values for Selections 1 and 2. 

 Selection 1 Selection 2 

Decision Levers 

Exchange on on 

LeaseVolXRes 0.86 MCM (700 AF) 0 

LeaseAg2Res on on 

RightsAg3 1% 10% 

RightsIndustrial 3% 17% 

SharesWholesaler 4,890 6,000 

SharesAg2 1,000 5,900 

SharesInterruptible 0 300 

ConsFactor aggressive aggressive 

DistEff 93% 90% 

ExpandVolSouthRes 2.34 MCM (1,900 AF) 0 

BuildVolWestSlopeRes 9.62 MCM (7,800 AF) 0 

GP on off 

Objectives 

RestLev1 3 yrs 3 yrs 

RestLev2 0 0 

RestLev3 0 0 

MissedOpp 0.48 MCM (389 AF) 2.77 MCM (2,249 AF) 

NewSupply 14.97 MCM (12,136 AF) 30.0 MCM (24,306 AF) 

April1Storage 65% 65% 

NewStorage 12.95 MCM (10,500 AF) 0 

 

Selections 1 and 2 demonstrate several Front Range performance and decision tradeoffs well. For 

example, some Front Range utilities have a positive view of new storage; they aren’t trying to avoid 

infrastructure because storage that they own outright provides more security than other types of decision 

levers. Selection 1 would be promising for a utility with a pro-storage strategy because it incorporates a 

large WestSlopeRes and a large expansion of SouthRes. Relative to Selection 2, it relies less on 

Wholesaler shares, and much less on Ag2 shares and Industrial rights. This relatively large volume of 

New Storage and smaller volume of New Supply are reflected in the performance in Figure 3-4 (a).  



87 

 

 

Conversely, minimizing New Storage represents a distinct policy or strategy to avoid relying on 

costly and potentially contentious infrastructure to meet reliability criteria. Selection 2, which adds no 

new infrastructure, may be appealing from a monetary cost perspective. However, Selection 2 requires 

purchasing large amounts of shares and Industrial rights. The avoidance of infrastructure necessitates 

drawing more water away from nearby agriculture and industry, which will likely adversely impact those 

communities (thus incurring a high social cost). Additionally, in the case of Selection 2, less New Storage 

and more reusable New Supply results in a greater volume of Missed Opportunity water; this combination 

of decisions may not result in the most efficient use of resources. 

Comparing the performances and decisions of Selections 1 and 2 shows that Eldorado has a wide 

range of paths toward achieving supply reliability. Drilling down to examine how the two portfolios 

behave within the simulation can offer more system response information. Figure 3-5 contains three plots: 

(a), (b), and (c) compare the two selections’ non-Wholesaler storage volumes through time in three 

different hydrologic traces. As before, Selection 1 is shown in red and Selection 2 is shown in green. 

 

Figure 3-5. Comparison of the non-Wholesaler storage volumes over time for Selections 1 and 2. Plot (a) 

is the timeseries resulting from the simulation of hydrologic Trace 2, plot (b) is from Trace 4, and plot (c) 

is from Trace 5. Compairng the relative storage values of the two selections across the three traces shows 

that different sets of decisions can be more or less advantageous depending on hydrology and geography. 

Despite Selection 1 building 12.95 MCM (10,500 AF) of new storage while Selection 2 builds 

none, the non-Wholesaler storage volumes do not always reflect the difference. In Figure 3-5 (a), 
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Selection 1 has for several periods approximately 9.87 MCM (8,000 AF) more water in storage than 

Selection 2, but for much of the 25 years the storage volumes are similar. Additionally, Selection 1’s 

expanded storage does not prevent Eldorado from dipping far down into reserves during a multiyear 

drought beginning in 2017. In Figure 3-5 (b), however, Selection 1 frequently has at least 4.93 MCM 

(4,000 AF) more water in storage than does Selection 2. Then, in Figure 3-5 (c), storage volumes are 

similar again, with a nine-year span during which Selection 2 has more water in storage; indeed, in 2033, 

despite having approximately 60% more storage capacity than Selection 2, Selection 1 reaches a much 

lower minimum volume. This is because with the Selection 1 portfolio, Eldorado would rely more heavily 

on stored water to meet demand rather than shares and rights that contribute annually (even if their yields 

are reduced in dry years).  

Though the 2 selected portfolios have identical average minimum storage levels across the 10 

traces used in the optimization, being able to see the variation in the storage relationships between the two 

portfolios tells more of the story. On top of substantial interannual hydrologic variability in Colorado, 

Front Range water managers must also consider the fact that, despite frequent spatial correlation, basins 

do sometimes exhibit different patterns of relative abundance or scarcity of streamflow. Selection 1 builds 

storage that enables Eldorado to take greater advantage of its western slope water right (both 

WestSlopeRes and SouthRes can store that water). Selection 2 instead buys a large number of Ag2 shares 

(stored in Ag2 Res) and Industrial rights, so it has greater supply from East River and East Creek. The 

fact that these two approaches have similar reliability performance shows that either basin can provide 

secure supply, but the storage timeseries in Figure 3-5 suggest that a geographically-balanced approach to 

planning may offer the most consistent overall water supply. 

3.5.2.2 Learning Through Objectives that go Beyond Cost and Reliability 

The advantages gained by optimizing with non-traditional objectives can be demonstrated by 

comparing the two portfolios highlighted in Figure 3-6, which is oriented identically to Figure 3-4. In 

Figure 3-6 (a), Selection 3 (blue) and Selection 4 (purple) both result in zero years in all levels of 
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restrictions. Selection 3 has slightly higher April 1 Storage reliability than Selection 4, with a minimum 

25-year storage-to-annual demand level of 86% vs. 83%. Selection 3 performs far better at minimizing 

New Storage: 4.56 MCM (3,700 AF) of newly-built storage versus 12.3 MCM (10,000 AF) in Selection 

4. Based on this analysis, Selection 3, which has far less New Storage and slightly better reliability, would 

dominate Selection 4 in a strict cost versus reliability optimization. It is only the inclusion of minimizing 

Missed Opportunity Water and New Supply, where Selection 4 outperforms Selection 3, that enables the 

algorithm to find a portfolio with very similar reliability but a different portfolio approach and likely 

different policy implications. The tradeoff generated by minimizing New Supply and New Storage 

separately is especially significant because it explicitly directs the algorithm to search for portfolios tied 

to distinct policy approaches. Decision lever and performance attributes for these selections are presented 

Table 3-8. 
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Figure 3-6. Parallel plots of two highlighted solutions. Plot (a) shows portfolio performance in the 7 

objectives, and plot (b) depicts levels of the 13 decisions that make up each portfolio. In plot (a), the 

highlighted portfolios have very similar performance in all but the rightmost New Storage objective. 

Examination of plot (b) shows that only 3 out of 13 decisions are different between the two. This suggests 

that 7.77 MCM (6,300 AF) more West Slope reservoir storage and 1.11 MCM (900 af) more leased XRes 

exchange volume (Selection 4) result in similar performance to 6,000 more Ag2 shares (Selection 3). 
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Table 3-8. Decision lever and objective values for Selections 3 and 4. 

 Selection 3 Selection 4 

Decision Levers 

Exchange on on 

LeaseVolXRes 0.12 MCM (100 AF) 1.23 MCM (1000 AF) 

LeaseAg2Res on on 

RightsAg3 12% 12% 

RightsIndustrial 9% 9% 

SharesWholesaler 5,330 5,330 

SharesAg2 9,100 3,100 

SharesInterruptible 900 900 

ConsFactor aggressive aggressive 

DistEff 92% 92% 

ExpandVolSouthRes 2.1 MCM (1,700 AF) 2.1 MCM (1,700 AF) 

BuildVolWestSlopeRes 1.48 MCM (1,200 AF) 9.25 MCM (7,500 AF) 

GP 0 0 

Objectives 

RestLev1 1 yrs 1 yrs 

RestLev2 0 0 

RestLev3 0 0 

MissedOpp 1.47 MCM (1,193 AF) 1.04 MCM (845 AF) 

NewSupply 26.5 MCM (21,477 AF) 23.55 MCM (19,095 AF) 

April1Storage 86% 83% 

NewStorage 4.56 MCM (3,700 AF) 12.3 MCM (10,000 AF) 

 

Examination of Figure 3-6 (b) reveals interesting information about certain decision levers. The 

fact that, for the majority of the decisions, only one line is visible means that the set of decisions in each 

portfolio is almost identical. Just three decision levers are different in these portfolios: Selection 4 builds 

a 9.25 MCM (7,500 AF) West Slope Reservoir, while Selection 3 builds a 1.48 MCM (1,200 AF) 

reservoir; Selection 4 acquires 3,100 Ag2 shares while Selection 3 acquires 9,100 shares; Selection 4 

leases 1.23 MCM (1000 AF) of XRes space, while Selection 3 only leases 0.12 MCM (100 AF). Or, put 

into a policy-distinguishing context, Selection 4 takes more action to capitalize on the western slope water 

right while Selection 4 takes more water out of agriculture production on the eastern slope. In terms of 

long and short term reliability, these two actions are virtually identical, and the algorithm was able to 
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quantify this subtle system response because of the explicit tradeoff between two distinct types of 

decisions: New Supply and New Storage. Presenting managers with the opportunity to express 

preferences for different types of portfolios enables MOEA-assisted optimization to support utilities’ 

human-based value judgements. 

3.6 Conclusion 

The Eldorado Utility Planning Model is unique in WRSA literature in that it represents a generic 

utility’s planning problem but incorporates three important facets that, in combination, provide an 

effective vehicle for advancing the ability of MOEA research to support real-world applications of the 

algorithms. First, it was created with the explicit input of eleven Front Range, Colorado, water managers 

using their structured feedback about important decisions, objectives, constraints, and system features 

(Smith et al., 2017). Further, it incorporated close, iterative input from a subset of those managers 

throughout model development. Second, the model captures both the dynamics of a single utility’s 

decisions within a complex regulatory environment as well as the context of those actions on a regional 

scale by including multiple actors within the model. Finally, the case study is modeled using sophisticated 

RiverWare decision support software; in contrast to many research applications of MOEAs which use 

generic programming to create models that run in fractions of seconds, using RiverWare connects MOEA 

research to the computational capabilities and types of modeling that many water management agencies 

use today (Labadie, 2004). 

Results produced by the Eldorado Utility Planning Model and this study’s problem formulation 

demonstrate that it captures real-world-relevant and relatable Front Range and western U.S. water 

management context. Through optimization of seven objectives, the MOEA developed informative 

tradeoffs and found relationships between decisions and objectives that reveal fundamental planning 

insights, e.g. the elevated importance of acquiring moderate to high volumes of New Supply, and the 

effectiveness of purchasing Wholesaler shares. A major contribution of this work is a set of objectives 

that simultaneously avoid use of problematic cost projections (EU Framework, 1998; Maheepala et al., 
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2014; Newell and Pizer, 2001; Walski, 2001) and enable water utilities to explore their planning values in 

a more fundamental way. Trading off minimization of New Supply with minimization of New Storage 

tells the MOEA to distinguish between different types of decision levers whose prevalence or absence 

within portfolios aligns with different planning strategies. The resulting set of diverse portfolios can favor 

New Supply, or New Storage, or balance between the two. Using these results, utilities can explicitly 

decide whether they want to pursue actions that draw water away from other regional users by acquiring 

rights and shares, or build costly, uncertain, potentially controversial infrastructure.  

Literal cost versus reliability optimization is intuitive, but because of the many complexities that go 

into adopting a long term plan, may ultimately not be the best way for water providers to incorporate 

MOEA-assisted optimization into their processes. As framed by Basdekas (2014) and applied by 

Colorado Springs Utilities, MOEAs can help users effectively and efficiently move away from the 

inferior decision space. The results of the optimization then form the foundation on which utility experts 

evaluate additional important system and policy considerations. The plan ultimately adopted by a utility 

may not be contained within the set of Pareto-optimal portfolios, but the information provided by the set 

is very valuable for supporting utilities’ triple bottom line assessments. This post-optimization analysis is 

an appropriate time to consider life cycle costs in a way that incorporates the human reasoning required to 

turn MOEA tradeoffs into a long term plan. Furthermore, continued focus on cost versus reliability does 

not capitalize on the opportunity offered by MOEAs to disaggregate performance measures and apply 

preferences a posteriori (Coello et al., 2007; Kasprzyk et al., 2013; Lempert, 2002). 

The ubiquity and variety of WRSA studies performed on the Anytown, U.S.A. water distribution 

model (Walski et al., 1987) and the environmental water quality Lake Problem model (Carpenter et al., 

1999) prove the creative value of having generic experimental case studies. Using the Eldorado Utility 

Planning Model, researchers can similarly innovate, expand, advance, and combine analysis techniques 

for long term water supply systems without the need to represent or protect a real agency’s interests. 

Furthermore, the complexity of this case study and the broad real-world relatability provide a platform 
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through which researchers can more easily communicate their findings to a wide range of practitioners. 

The success of this design goal was confirmed in a 2016 workshop as part of an application of the 

Participatory Framework for Assessment and Improvement of Tools (ParFAIT) (Smith et al., 2017). 
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Chapter 4 

A multiobjective tradeoff charrette to engage with Colorado water managers about long 

term planning 

Multiobjective Evolutionary Algorithms (MOEAs) generate quantitative information about 

performance relationships between a system’s potentially conflicting objectives (termed tradeoffs). 

Research applications have suggested that tradeoffs can enhance long term water utility planning, but no 

studies have formally engaged with practitioners to assess their perceptions of the proposed contributions. 

This chapter examines how practitioners themselves interact with MOEA tradeoffs and reports their ideas 

for how their agencies could use MOEA results. We hosted a group of Colorado water managers at a 

charrette, or structured investigatory workshop, where they directly interacted with tradeoffs, discussed 

how they used the information, and linked their workshop experiences to opportunities for MOEAs to 

enhance their agencies’ planning processes. We found that while managers approached tradeoff analyses 

differently, they all sought to understand relationships between decisions and performance. Managers’ 

feedback about processing tradeoffs as well as opportunities and challenges for real-world applications 

suggest promising future research directions. 

4.1 Introduction 

Decision making, whether by an individual or a group, is a process; in contrast with the 

compulsory or involuntary, when an agent desires an outcome and is able to take action, deliberation will 

occur (Aristotle, 1920). In most decision making processes, preferences are constructed based on problem 

framing, previous experience, and available information, time, and resources (Payne et al., 1992; Roy, 

1999; Slovic, 1995; Tsoukias, 2008). In combination, these factors help decision makers develop what 

Montgomery (1983) terms a “dominance structure”, which is necessary when there is no strictly-optimal 

option. The dominance structure is iteratively built up in stages using mechanisms that help decision 

makers assess relative merits of alternatives and/or alter their internal representations of situations until 

one alternative becomes dominant. This process of creating arguments for and against alternatives 



96 

 

 

develops a justification, or basis for reasoning that can be conveyed to others. Justifiability is a 

cornerstone of deliberate human decision making (Connolly and Reb, 2012; Payne et al., 1992; Slovic, 

1975; Tversky, 1972).   

Multiobjective Evolutionary Algorithms (MOEAs) have been researched and applied as tools to aid 

decision making processes concerning complex systems for which there are multiple conflicting 

performance measures. MOEAs seek to optimize system performance in multiple performance objectives, 

efficiently searching through thousands of alternatives to develop a set that quantitatively characterizes 

the best tradeoffs between those objectives. Quantified tradeoffs reveal how much performance in one 

objective must be forfeited to get better performance in another. In the context of choosing a long term 

water resources plan, MOEAs test thousands of alternative portfolios of new sources, new infrastructure, 

and new operations in order to balance between performance objectives such as maximizing supply 

reliability and minimizing environmental impact. 

Several studies have applied MOEAs to long term water resources planning problems. Long term 

plans are essentially overarching decisions about pursuing a set of actions. Three recent academic 

examples are Matrosov et al’s use of an MOEA to develop long term planning portfolios for London, 

balancing cost, energy use, resilience and environmental objectives (2015); Zeff et al (2016) optimize 

long and short term risk triggers to develop adaptation strategies and support regional cooperation 

between utilities in North Carolina; and Wu et al apply multiobjective optimization to identify portfolios 

of traditional and alternative water sources for Adelaide in consideration of cost, emissions, reliability, 

and the environmental impacts of water and wastewater reuse (2017). These studies demonstrate that 

MOEAs can produce informative tradeoffs for multiple aspects of planning in a variety of geographic 

contexts which could inform agencies’ planning decisions. However, none of these examples have 

undertaken a structured exploration of how a practitioner or agency employing an MOEA would interact 

with or perceive tradeoffs, and thus have not determined whether or how they actually aid decision 

making. 
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To study whether MOEA tradeoffs contribute to the creation of dominance structures that help 

water managers construct preferences and justify decisions, researchers need to be able to observe, 

interrogate, and analyze practitioners’ usage of tradeoffs. Efficiently producing and capturing this 

information necessitates an interface between practitioners and researchers designed specifically around 

the type of information that results from MOEA-assisted optimization. Here, we can draw on an approach 

called a “charrette” which, in non-academic settings, is used to achieve a high level of public awareness 

and input on the design or vision of a community project or plan (US EPA, 2014). Charrettes are also 

used by researchers in the fields of construction management and safety. Research charrettes are 

structured workshops that bring together industry professionals and academics in a relatively short but 

intensely-productive session in order to generate discussion and feedback about newly-created products or 

practices intended for industry use (Gibson and Whittington, 2010). Charrettes combine the advantages of 

surveys, interviews, and focus groups in an accelerated time frame, overcoming the difficulties of 

undertaking these methods individually (e.g. low response rates, time commitments from both researchers 

and practitioners, access to data, etc.). Results from applying these mixed methods to technical research 

topics have shown that charrettes can offer both short and long term benefits to participating industry 

professionals and improved validity and reliability of research outcomes (Abowitz and Toole, 2010; 

Green et al., 2010). 

This paper presents the content, methods, and results of a research charrette through which our 

transdisciplinary research team engaged with Front Range, Colorado, water managers over the use of 

MOEA tradeoff information for long term water utility planning. The workshop was designed to discover 

how practitioners used tradeoff information to make decisions, and whether and how the managers 

perceived the information to be useful in their agencies’ planning processes. The goals of the workshop 

were to expose practitioners to an emerging tool and use the collected data to hone future MOEA research 

agendas and target new applications. 
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The charrette is the culmination of a larger study that introduced and applied the Participatory 

Framework for Assessment and Improvement of Tools (ParFAIT) (Smith et al., 2017). The following 

section briefly presents work from the previous phases of our application of ParFAIT to MOEA-assisted 

optimization for long term utility planning, as well as the contributions of those efforts to this final step in 

the framework. In Section 4.3, we describe the methods and content from our workshop. Next we 

describe the results, and in Section 4.5 offer concluding remarks. 

4.2 Background 

4.2.1 MOEA-assisted optimization for long term water utility planning 

For water utilities, planning for long term, sustainable water security is a critical task and a major 

undertaking. Many utilities are required to update their long term plans at regular intervals, e.g. every five 

or six years (MWD, 2015; SPU, 2012). The planning process involves technical tasks such as analyzing 

potential supply and demand futures, identifying system vulnerabilities to climate change, policies, and 

laws, and using models to develop portfolios of decisions that achieve satisfactory system performance 

(CSU, 2017a; Kaatz and Waage, 2011). Technical staff review alternative strategies and discuss broad 

goals and needs with board- or council-level decision makers (CSU, 2017a; MWD, 2015), and public 

involvement in the process is now a high priority (WUCA, 2015). Developing and approving a final plan 

takes several years because each edition involves multiple iterations of the technical, board, and public 

participation components. On top of the process complexity, planning is inherently difficult because 

utilities face deeply uncertain futures (Knight, 1921; Lempert, 2002), and because there is no perfect plan 

due to the conflicts between financial, social, and environmental factors that utilities must navigate 

(Elkington, 2004). The ultimate goal of planning is for utilities to make smart, responsible, and justifiable 

decisions that allow their systems to meet the communities’ chosen demand reliability policies in 

combination with community values. 
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Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization has been studied 

(Matrosov et al., 2015; Mortazavi et al., 2012b; Smith et al., In Review; Wu et al., 2016a) and applied 

(Basdekas, 2014; CSU, 2017a) as a method to help utilities develop long term plans. While a traditional 

planning process compares the performance of a handful of planning portfolios, the MOEA efficiently 

designs and tests many potential portfolios, eventually characterizing how well a utility’s system can 

perform in light of conflicting performance objectives and future supply and demand conditions. 

Researchers have proposed that the resulting quantified performance tradeoffs could provide information 

that is useful for utility planning. To carry out MOEA-assisted optimization, a utility would link the 

MOEA to a simulation model of their system via a problem formulation, allow the MOEA to search 

through thousands of portfolios of actions to optimize across multiple performance objectives, and then 

analyze the resulting set of portfolios by visualizing tradeoffs. More detail about this process is provided 

below. 

A utility’s system simulation model captures important dynamics and allows managers to 

quantify system performance under “what if” scenarios. The simulation is also the vehicle that contains 

elements of the problem formulation. A problem formulation consists of a set of decision levers, 

objectives, and constraints that define “the problem” being optimized. Decision levers are a utility’s 

options to modify its system to meet performance goals, e.g. building a reservoir or enacting 

conservation. The set of chosen decisions levers makes up a portfolio. Objectives are measures of system 

performance that are quantified representations of a system’s goals or purposes, e.g. minimizing 

frequency of lawn watering restrictions or maximizing water in storage. Constraints are numeric limits to 

acceptable performance, e.g. if a portfolio cannot meet 100% of indoor demand at all times it is not 

considered a valid planning approach. 

The problem formulation is the set of directions that tells the MOEA how to construct candidate 

solutions (portfolios of actions) and how to evaluate their performance (via objectives and constraints). 

The MOEA automatically generates a portfolio which is loaded into the simulation model. At the end of 
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the simulation, values for objectives and constraints are reported back to the MOEA. This loop iterates 

thousands of times, during which the MOEA produces new populations of portfolios based on actions that 

performed well in previous generations. The results of using MOEA-assisted optimization are a set of 

portfolios that quantitatively characterize tradeoffs between objectives and form a Pareto-optimal set 

(Pareto, 1896). This means that each portfolio performs better than at least one other portfolio in at least 

one objective, but not better in all objectives. Within this nondominated set, performance improvement in 

one objective is only achieved by sacrificing performance in another, so the portfolios “trade” levels of 

performance. Analyzing the tradeoffs requires careful analysis including visualization techniques, and 

these are the final component of MOEA-assisted optimization. More information about tradeoff 

visualization is presented in Section 4.3.1. 

Water utility planning is a complex process which may benefit from new technologies. Increased 

public scrutiny, greater mandates to protect social and environmental interests, and heightened awareness 

of future uncertainty all suggest that extensive portfolio search and explicit performance tradeoff 

information would be useful to the agencies. Building on existing technical analyses, MOEA-assisted 

optimization has the potential to enhance utilities’ decision making processes and increase confidence in 

final plans. 

4.2.2 Participatory Framework for Assessment and Improvement of Tools (ParFAIT) 

Many research applications of MOEA-assisted optimization have established the ability of 

MOEAs to generate tradeoff information about water supply systems and produce innovative portfolios 

that can outperform plans developed with human expertise or previously-established operational 

approaches (Maier et al., 2014; Nicklow et al., 2010). However, to date there have been few examples of 

this promising research tool being applied in real-world settings. To understand and potentially overcome 

the limited uptake of MOEA-assisted optimization, researchers must consider the factors that lead 

industries to adopt tools and consciously seek to create usable science. That is, researchers must 
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undertake intentional, iterative interaction with practitioners to understand their needs, transmit research, 

and co-produce relevant future research directions (Díez and McIntosh, 2009; Dilling and Lemos, 2011; 

Sarewitz and Pielke, 2007; Smits, 2002). 

The Participatory Framework for Assessment and Improvement of Tools (ParFAIT) is a research 

process designed to bring academics and practitioners together in a structured way (Smith et al., 2017). 

Though demonstrated in this and the previously-cited paper as a way to bridge the gap between MOEA 

researchers and water utilities, the framework is generic and the sequence of steps may be carried out in 

any field, for any tool. ParFAIT is a four-phase research sequence that can be summarized as follows:  

Step 1: Choose a promising research tool and a practical use for it that is supported by academic literature 

and knowledge of the proposed industry; 

Step 2: Hold Workshop 1 to solicit input from practitioners that will inform development of a tool 

testbed. (A testbed is a platform on which the tool can be demonstrated to practitioners.); 

Step 3: Build the tool testbed, iterating with practitioners as necessary to ensure relatability and relevance 

to real-world tool application context; 

Step 4: Hold Workshop 2, a research charrette, to solicit practitioner feedback on the testbed results (i.e. 

results representative of what they could expect if their agencies adopted the tool). 

For in-depth discussion of the basis for developing ParFAIT and the supporting theory behind both the 

process as a whole and the particular steps, please refer to Smith et al (2017). 
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4.2.2.1 ParFAIT Workshop 1 

Workshop 1 of our ParFAIT process took place in February, 2015. It brought together water 

managers from six Front Range, Colorado, utilities6 and our research team was made up of engineering, 

social science, and climate science researchers as well as water utility practitioners. Through targeted but 

free-form group discussions, managers shared their experiences of Front Range management challenges, 

and provided feedback and suggestions to inform the elements needed to create an MOEA-assisted 

optimization testbed: supply and demand decision levers, performance objectives and constraints, future 

supply and demand scenarios, and important features for a generic but relevant hypothetical water supply 

simulation model (Smith et al., 2017).  

Creating a relatable testbed is crucial for the successful application of ParFAIT because it is the 

basis for generating representative results, and also because its components must be recognizable to 

participants in the second ParFAIT workshop. This enables them to quickly grasp the testbed and focus 

on engaging with the results. Based on the information we generated through Workshop 1 and iteration 

with practitioners on our research team, we developed the problem formulation (decision levers, 

objectives, and constraints) and water supply simulation model that make up the hypothetical Eldorado 

Utility Planning Model testbed. 

4.2.2.2 ParFAIT testbed: The Eldorado Utility Planning Model and case study 

The Eldorado Utility Planning Model and case study generically capture management context 

relevant to utilities on the Front Range of Colorado as well as other regions in the western U.S. A 

hypothetical utility embarking on a long term planning process provides the narrative and technical 

vehicle for demonstrating MOEA-assisted optimization.  

                                                      
6 City of Aurora, City of Boulder, Colorado Springs Utilities, Denver Water, City of Fort Collins, and Northern 

Colorado Water Conservancy District 
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The Eldorado Utility is a relatively small water provider currently serving 100,000 customers 

and, like much of the western U.S., is expecting rapid population growth (a 40% increase by 2050) (State 

of Colorado, 2017). The rest of this section will describe Eldorado’s supply system and problem 

formulation, the model, and minimal pertinent Front Range context. The focus of this chapter is on 

development and results from our MOEA charrettes, so the description below is tailored to information 

that enables understanding of the workshop. For more Front Range context, refer to Chapter 2 or Smith et 

al. (2017), and for more detail on the model and case study results, refer to Chapter 3 or Smith et al (In 

Review). 

Much of the western U.S. is severely water-limited and tightly regulated by the prior 

appropriation legal doctrine, or “first in time, first in right” (Hobbs, 2004). One practical outcome of these 

factors is that, as cities grow, they obtain a variety of types of water rights (e.g. storage rights and 

streamflow diversion rights), each with different temporal priorities, and which may be sourced from 

multiple geographic locations. As such, the hypothetical city of Eldorado’s system includes: two 

reservoirs on two different rivers with junior priority dates; three direct diversion streamflow rights on a 

nearby river – one senior, one mid-seniority, and one junior; one junior diversion right on a distant river 

that requires the diverted water to be conveyed under a mountain range in order to be stored closer to the 

utility; and 10,000 shares of a water wholesale company that Eldorado takes directly from a reservoir 

owned and operated by the wholesaler.  

In many years, junior rights do not all get their full allotments (Caulfield Jr. et al., 1987; P. O. 

Abbott, 1985); e.g., a reservoir does not necessarily fill or a streamflow right does not always get to 

divert. Streamflow and competition for water on different rivers varies, however, and this means that 

utilities’ water supplies strategically span entire regions. The Eldorado Utility Planning Model 

encompasses 5 basins and 12 water users besides Eldorado. The other users with senior water rights often 

limit the yields from most of Eldorado’s sources. Some also offer opportunities for the utility to acquire 

more water, though, and the decision levers to do so are presented below. 
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The problem formulation describing Eldorado’s long-term planning optimization includes 5 

objectives7 used to characterize the performance of portfolios of 13 decision levers. Formally, 

 

Equation 4-1 

F(x) = (𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1, 𝑓𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑝𝑝, 𝑓𝑁𝑒𝑤𝑆𝑢𝑝𝑝𝑙𝑦 , 𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑓𝐴𝑝𝑟𝑖𝑙1𝑆𝑡𝑜𝑟𝑎𝑔𝑒) 

∀ 𝐱 ∈ Ω 

 

Equation 4-2 

𝐱 = Exchange,  LeaseVolXRes , LeaseAg2Res , RightsAg3 , RightsIndustrial , SharesWholesaler , SharesAg2 , 

SharesInterruptible , ConsFactor, DistEff, ExpandVolSouthRes , BuildVolWestSlopeRes , GP   

Subject to 

Equation 4-3 

𝑐𝑈𝑛𝑚𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑 = 0 

 

Equation 4-1 describes Eldorado’s five performance objectives. The first, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1, measures the 

frequency with which Eldorado goes into Level 1 restrictions, which occurs when the utility’s storage 

drops below 75% of average annual demand8. Eldorado’s reliability policy dictates that the utility should 

not enact these restrictions more than 5 times in 25 years. There are two higher restriction levels, but 

satisfying the Level 1 objective satisfies the policies for those as well, and they are therefore unnecessary 

                                                      
7 Chapter 3 and Smith et al (In Review) described in detail the Eldorado Utility Planning Model and case study. The 

full problem formulation included seven objectives, but we chose to limit our charrette activities to only five 

objectives for ease of visualization and interpretation. As such, only the five incorporated in the charrette are 

presented here. 
8 When storage drops below 50% of annual demand more severe restrictions are triggered but those are not pertinent 

to this problem formulation. 
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for the purposes of this chapter. 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1 is minimized. 𝑓𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑝𝑝 measures how much of certain types 

of water that Eldorado had access to but could not use due to incompatible demand timing, lack of 

storage, etc. The inability to use the water means these are “missed opportunities”, and Eldorado wants to 

minimize the average annual volume of MissedOpp water. 𝑓𝑁𝑒𝑤𝑆𝑢𝑝𝑝𝑙𝑦 tracks the average annual volume 

of water over the course of the simulation that Eldorado acquires through decisions such as buying rights 

or shares, or conserving water (i.e. freeing up water to meet new demands). While Eldorado does need 

more water for a growing population, drawing more water than necessary away from other users creates 

social and economic disruption in their communities, so this objective is minimized. Another way to 

evaluate reliability is by measuring how much water is left in storage at the end of the winter drawdown 

season; 𝑓𝐴𝑝𝑟𝑖𝑙1𝑆𝑡𝑜𝑟𝑎𝑔𝑒 seeks to maximize the lowest April 1st storage volume over the course of the 

simulation. Finally, 𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒 minimizes the volume of newly-built storage within a portfolio because 

adding infrastructure is expensive, uncertain, and environmentally problematic. These objectives are 

summarized in Table 4-1 and explained in more detail in Chapter 3 and Smith et al (In Review). The only 

constraint on system performance is that portfolios must meet 100% of indoor demands (Equation 4-3). 

Table 4-1. Summary of performance objectives. 

Objective Description 

RestLev1 Minimize frequency of Level 1 restrictions over 25 years 

MissedOpp 
Minimize average annual volume of the sum of: return flows that Eldorado could 

have captured and reused, forfeited Wholesaler shares, and forfeited Ag2 shares 

NewSupply 
Minimize average annual new water created by either conserving or acquiring right 

and shares 

NewStorage Minimize the volume of newly-built storage in a portfolio 

April1Storage 
Maximize the lowest April 1st storage-to-annual demand ratio during the 25-year 

simulation 

 

Eldorado’s long-term planning portfolio will consist of values for the 13 decision levers presented 

in Equation 4-2. The levers fall into three general categories, and will be very briefly described below in 

the context of those categories. 
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Exchange, LeaseVolXRes , and LeaseAg2Res are all options that Eldorado can use to alter how its 

system manages reusable water. Exchange can be on or off and determines whether Eldorado has the right 

to store reusable return flows in an upstream reservoir; LeaseVolXRes  and LeaseAg2Res are both volumes of 

storage that Eldorado can lease (rather than build). These are all minimally invasive “soft path” options 

(Gleick, 2002).  

RightsAg3 , RightsIndustrial , SharesWholesaler , SharesAg2 , SharesInterruptible , ConsFactor, and DistEff are 

all sources of “new” water. Eldorado can buy rights from an agricultural user and an industrial user, the 

utility can buy shares from farmers in an agriculture cooperative or a wholesaler, or they can purchase 

“interruptible” shares from the agriculture cooperative. Enacting long term conservation measures and 

increasing distribution efficiency (by, e.g., fixing leaks or improving metering) are ways that Eldorado 

can “create” water to be put toward growing demands. ConsFactor can be none, moderate, or aggressive 

conservation. DistEff can increase efficiency from 90% to 91, 92, or 93% (or not increase at all). 

ExpandVolSouthRes , BuildVolWestSlopeRes , and GP are all options for building new storage. 

ExpandVolSouthRes is the volume of storage added to an existing eastern slope reservoir. BuildVolWestSlopeRes 

is the volume of a newly-built western slope reservoir, and GP is an on or off decision to build or not 

build gravel pits downstream of the utility to enable it to capture more reusable return flows. Table 4-2 

summarizes all 13 decisions. MCM abbreviates millions of cubic meters; AF abbreviates acre-feet. Water 

management in the western U.S. is inextricably tied to units of AF, so they are presented alongside metric 

units. 
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Table 4-2. List of decision levers. 

Figure 

1 Label 
Decision Description Units Range 

Enhancing Operations 

1 Exchange 
Acquire right to exchange reusable return 

flows to NorthRes 
--- 0 – 1 

2 LeaseVolXRes 
Pay owners of XRes to lease dedicated 

storage space that can facilitate Exchange 

MCM 

(AF) 

0 – 3.7 

(0 – 3,000) 

3 LeaseAg2Res 
Pay Ag2 Irrigation Co. to store water in any 

available unused space; 0 = off, 1 = on 
--- 0 – 1 

Increasing Supply 

4 RightsAg3 
Purchase a portion of Ag3’s senior 

diversion right 
% 0 – 20 

5 RightsIndustrial 
Purchase a portion of Industrial user’s mid-

seniority diversion right 
% 0 – 20 

6 SharesWholesaler 
Purchase additional shares of Wholesaler 

water 
shares 0 – 6,000 

7 SharesAg2 Purchase shares of Ag2 Irrigation Co. water shares 0 – 10,000 

8 SharesInterruptible 
Negotiate agreement with Ag2 Irrigation 

Co. for optional supply leases 
shares 0 – 10,000 

9 ConsFactor 

Reduce starting per capita demand through 

conservation measures; 0 = no change, 1 = 

10% reduction, 2 = 20% reduction 

--- 0 – 2 

10 DistEff 

Improve distribution efficiency by reducing 

unaccounted-for water (e.g. fixing leaks, 

improving metering, etc.) 

% 90 – 93 

Building Storage 

11 ExpandVolSouthRes Expand SouthRes 
MCM 

(AF) 

0 – 2.47 

(0 – 2,000) 

12 BuildVolWestSlopeRes Build WestSlopeRes 
MCM 

(AF) 

0 – 12.3 

(0 - 10,000) 

13 GP 

Develop gravel pits to store reusable return 

flows downstream of the city; 0 = not 

developed, 1 = developed 

--- 0 – 1 

 

The Eldorado Utility and regional system are modeled using the generalized, sophisticated 

RiverWare platform (Zagona et al., 2001). The optimization was performed on a 25-year simulation 

horizon with monthly timestep. We used the Borg MOEA (Hadka and Reed, 2013), which performs 

similarly to or better than other MOEAs in difficult benchmark problems (Reed et al., 2013; Zatarain 

Salazar et al., 2016). Optimizations were performed in three different hydrologic scenarios: historic, 
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streamflow resulting from a 1°C-perturbed future, and streamflow resulting from a 4°C-perturbed future. 

More information about the choice of these scenarios can be found in Chapter 3 or Smith et al (In 

Review) and Woodbury et al (2012) and a description of their generation is in Chapter 3 and Smith et al 

(In Review). The historic optimization run was stochastic, and objective values were reported as the 

average of 10 hydrologic traces. The 1°C and 4°C runs were performed using a single trace for each in 

order to more clearly convey to workshop participants the impacts of the future scenario. 

4.2.3 Background summary 

This research was undertaken to study how managers respond to tradeoff information produced 

through MOEA-assisted optimization, learn from them if and how it could enhance their long term 

planning processes, and determine future research directions. The novelty of the tool and the type of 

information it provides necessitated a strategic process to ensure that our research team could present a 

broadly-relatable MOEA testbed. Our application of ParFAIT solicited practitioner feedback at a 

February, 2015, workshop which informed the construction of our MOEA testbed – the hypothetical 

Eldorado Utility Planning Model and problem formulation. We used the testbed to generate multiple 

tradeoff sets of long term planning portfolios for use in our second ParFAIT workshop. This workshop, or 

charrette, was designed to engage managers over hands-on experience in analyzing MOEA tradeoffs. To 

create the experience, we developed charrette content, engagement mechanisms, and activities. The 

methods we applied are described below. 

4.3 Methods 

4.3.1 Interactive tradeoff visualization workbooks 

To explore and understand the quantitative tradeoffs contained within a set of nondominated 

portfolios produced by MOEA-assisted optimization, users need to be able to see the complex 

relationships between the portfolios. This is facilitated by visualizing multiple portfolios at a time in 

several objectives, or dimensions. Being able to see relationships across all dimensions simultaneously 

provides the greatest opportunity to see tradeoffs, since only seeing a subset of the objectives can obscure 
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higher-dimensional relationships (Kollat and Reed, 2007). Understanding and exploring a large dataset in 

many dimensions requires advanced visualization techniques called visual analytics (Keim et al., 2006; 

Liu et al., 2017; Thomas and Cook, 2006; Woodruff et al., 2013).  

Parallel axis plotting is a visual analytics technique frequently used in MOEA studies. The plots 

use a series of vertical axes to represent as many dimensions as desired (Fleming et al., 2005; Herman et 

al., 2014; Inselberg, 1985; Watson and Kasprzyk, 2017b). This study also uses parallel axis plots, and 

example results from optimizing the Eldorado Utility case study are presented in Figure 4-1. Briefly 

discussing the example results will facilitate readers’ understanding of the information that water 

managers used during the charrette. 
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Figure 4-1. A screenshot of a Tableau worksheet that corresponds closely with what participants used in 

the charrette (the only differences are that here we use color to enhance the clarity of a static picture and 

there is no pane to record portfolio selections). The top half of the figure shows Eldorado system 

performance in five objectives, where each objective has a vertical axis. Each line represents the 

performance a portfolio of decisions across each objective and the lower on an axis a line crosses the 

better a portfolio has performed in that objective. The bottom half of the figure is a plot of decision levers 

and has 13 axes- one for each lever. A portfolio is depicted as a line connected across all of the axes, 

where crossing position denotes “how much” of that lever is included in the portfolio (lower means less). 

Two portfolios are highlighted to demonstrate tradeoffs. 

The plots in Figure 4-1 show 20 portfolios9 that resulted from optimizing the Eldorado Utility 

case study using hydrology generated for a 4˚C-warmer future. The top plot has five vertical axes- one for 

each performance objective. Each of the lines connecting the axes is a portfolio. The vertical position at 

                                                      
9 The full tradeoff sets produced by the Eldorado Utility optimizations included approximately 1000 portfolios each 

(Smith et al., In Review). In order to make the most of limited workshop activity time, we only showed participants 

20 alternatives that were hand-selected to represent performance tradeoffs.  
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which a portfolio line crosses an objective axis denotes its performance, where lower intersection is 

better. The portfolios are colored based on how many years of Level 1 restrictions they produced (i.e. the 

performance on the rightmost axis); blue lines all have five years in restriction, red lines all have nine 

years. Two portfolios are highlighted to demonstrate the tradeoffs presented in the plot. The blue portfolio 

has the best possible performance in April 1 Storage-to-Demand and Years in Restriction 1, has medium-

poor performance in New Storage and Missed Op Water, and the worst possible performance in New 

Supply. These levels indicate the tradeoffs between reliability measures on the right two axes and other 

system performance considerations. Conversely, the red portfolio performs the worst in April 1 Storage-

to-Demand and Years in Restriction 1 but better, sometimes much better, than the blue portfolio in the 

other three objectives. Depending on Eldorado’s preferences and priorities, they might choose portfolios 

with different performance characteristics. 

The bottom plot shows decision lever attributes using a vertical axis for each of the 13 levers. As 

in the objectives plot, the lines connecting across axes are portfolios, and the position at which they 

intersect an axis denotes “how much” of a decision is included in the portfolio. The lower a portfolio line 

crosses, the “less” of that lever is present. Each portfolio line in the objectives plot has a corresponding 

line in the decision levers plot, so we can compare a few of the decisions led to the contrasting 

performance of the two highlighted alternatives described above. Looking at the second axis from the left, 

we see that the blue portfolio pursued a far larger share of the Industrial rights than the red portfolio; 

continuing rightward across the plot, another divergent decision lever was the size of the West Slope Res 

each portfolio built- the red portfolio did not build any reservoir and the blue portfolio built a relatively 

large one. Examining the rest of the axes shows there are many small and large differences between the 

decisions in each portfolio. We showed workshop participants the objectives and decisions together to 

provide all information about the portfolios and enable them to evaluate tradeoffs between different 

objectives and also express decision preferences. 



112 

 

 

Studies have shown that if parallel plots are interactive, first-time users can learn to use them 

effectively with 5-10 minutes of training (Johansson and Forsell, 2016; Siirtola and Räihä, 2006). 

Previous research has assessed whether users can evaluate multiple dimensions to complete a closed-form 

task with the plots, e.g. “Which one of the cars manufactured in 1982 has the slowest acceleration?” 

(Siirtola and Räihä, 2006). Our workshop differs in that we asked participants to use the information from 

the plots to make their own choices, so our results will reflect on how practitioners used parallel plots to 

weigh tradeoffs and make judgements. 

To enable the water managers to use parallel plots for subjective analyses, we created plots that 

supported extensive browsing, multiple selections, and comparisons between portfolios and across 

workshop activities (described in Section 4.3.2.3). We used Tableau, a commercially-available business 

analytics program (Jones, 2014), to create a series of interactive worksheets on which participants could: 

hover over portfolios to get full decision and performance information, select one or more portfolios to 

highlight them, and enter portfolio IDs that changed the colors of those portfolios to register their choices 

for the activities described below. Critically, the workbooks allowed us to save their choices which both 

recorded them for later research analysis as well as allowed us to show managers how their choices 

changed (or did not change) over the course of the workshop. We provided each participant a laptop pre-

loaded with the workbooks. 

4.3.2 MOEA research charrette: June, 2016 

Step four of our application of ParFAIT, a research charrette, provided water managers with hands-on 

experience with MOEA-assisted optimization results. Our goals for the workshop were to:  

1. provide exposure for the emerging tool; 

2. observe managers’ analyses of tradeoff information; 

3. understand how managers relate the tradeoff information to their current needs and practices; 

4. get feedback about what potential uses and barriers managers see in the tool; 

5. learn about the general process of utilities adopting a new tool; and 
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6. report any opportunities for future research to meet the needs of practice. 

4.3.2.1 Participation 

Nine total participants from six Front Range utilities attended the workshop. The utilities capture 

a wide range of system sizes, and the individuals themselves also represented a range of experience 

levels: 4 managers had over 16 years of experience in Front Range water management; 1 had between 11 

and 15 years; 1 had between 6 and 10 years; and 3 had 0 to 5 years of experience. We also had 

participants with different roles within their respective agencies: four were at a management level and 

five were technical staff. This variety was helpful in getting different perspectives, and the presence of 

both technical and managerial practitioners was especially encouraging since having advocates at multiple 

levels of administration increases the likelihood of innovation uptake (Daniell et al., 2014). 

4.3.2.2 Supporting materials 

In order for participants to fully engage in the workshop and provide researchers with thoughtful, 

relevant feedback about using the tool, they needed to be able to  

1. understand why MOEA-assisted optimization has been proposed as a useful tool for water 

planning;  

2. understand the concept of performance tradeoff sets; 

3. have sufficient understanding and acceptance of the hypothetical utility, its supply and demand 

context, and its policies to be able to focus on tradeoffs; 

4. understand and relate to the problem formulation and planning scenarios; and 

5. effectively operate the Tableau workbooks and interact with parallel plots.  

We covered these topics in a 90-minute introductory presentation. After explaining and taking questions 

about MOEAs and the testbed (content similar to that found in the Background section of this chapter), 

we held an interactive parallel plot training session. 
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In order to introduce parallel plots and tradeoff analysis, we created a simple multiobjective 

grocery shopping problem. Each participant used a Tableau worksheet set up identically to those that they 

would see in later activities that showed plots of performance and decision levers. We defined three 

conflicting objectives –  minimize cost, maximize nutrition, and maximize pleasure – through which to 

optimize a set of eleven potential shopping items such as apples, ice cream, eggs, etc. As a group, we 

went through closed-form exercises finding the shopping lists that found the least expensive list, the most 

nutritious list, etc. The exercises required participants to analyze the plots and learn their interactive 

functions. 

To support the managers in the day’s activities, we gave them printed packets that included a 

diagram of the Eldorado Utility Planning Model, current and future utility demands, utility policies, 

descriptions of the decision levers and objectives, and descriptions of the different hydrologic scenarios. 

The diagram, reproduced in Figure 4-2, conveys the spatial and temporal complexity of the system using 

icons, colors, dates, and arrows. 
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Figure 4-2. Diagram of the Eldorado Utility Planning Model given to charrette participants. 
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4.3.2.3 Charrette design 

The majority of the charrette was spent on a series of activities during which we presented 

participants with tradeoffs and asked them to make two portfolio choices after approximately 15 minutes 

of independent analysis. Managers were free to use any logic (or dominance structure) they wanted to 

make the choices, and in fact understanding their logic was an intention of the workshop. In groups of 

three, participants completed a series of decision-making activities and engaged in facilitated small-group 

discussion that were led by facilitators and based on specific questions. We designed the activities and 

questions to prompt participants to consider specific multiobjective optimization concepts, generate 

insights about how they used the tradeoffs, and lay the foundation for an end-of-day discussion. Intense 

preparation and attention to charrette form, function, and sequencing made it possible for both 

participants and our team to approach the actual experience as a fun day of learning.  

As described above, this workshop used a detailed format, custom computer workbooks, and 

concrete tasks associated with the activities, all of which guided information flows between participants 

and researchers. Compared to our first ParFAIT workshop, which relied on free-form discussions about 

targeted topics, this workshop was a relatively formal participation mechanism (Newig et al., 2008; Smith 

et al., 2017). However, the facilitated small group discussion sessions built into each activity captured 

less-filtered impressions from participants and allowed us to access subtleties of how utilities plan and 

operate and how managers relate to their systems. After the workshop we electronically surveyed 

participants about their perceptions of MOEA usefulness. This mixture of methods is fundamental to the 

success of charrettes (Gibson and Whittington, 2010). The incorporation of focus group-type activities 

and discussions was particularly useful for bridging the gap between researchers and practitioners because 

the interactions “provide a clear view of how others think and talk” (Morgan, 1993). 

To provide context for the results presented in Section 4.4, brief descriptions of workshop 

activities and their purposes are necessary. The sequencing is especially relevant because of the complex 
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and, for most participants, novel quantitative tradeoff information that was the focus of this study. Table 

4-3 summarizes the content below. 

The purpose of Activity 1 was to establish initial preferences and create a basis for managers to 

compare decision making with and without tradeoff information. The participants chose one of three 

portfolios developed heuristically by an expert “consultant” (researcher familiar with the model and case 

study). Each portfolio was characterized by its constituent decisions and its firm yield in historic 

hydrology, but no performance tradeoff information was offered. The chosen portfolios from this activity 

were brought back in Activity 4. 

The Activity 2 sequence was designed to ease the managers into evaluating tradeoffs in complex 

plots, to create space for analyzing tradeoffs without the dominant influence of reliability (Smith et al., 

2017), to have managers be able to explicitly compare their usage of different amounts of information, 

and to do all of this without considering the likelihood or implications of climate change on Front Range 

supplies. In Activity 2, Exercise 1, participants were shown performance of 20 algorithm-optimized 

portfolios in a two-objective tradeoff (along with a plot of all of the portfolios’ decisions) and asked to 

select two “portfolios of interest.” The portfolios resulted from optimizing for historic hydrology, and 

were constrained to meet Eldorado’s restrictions-based reliability policy. This was made clear to 

managers so they knew they did not have to worry about reliability in this first activity. In Activity 2, 

Exercise 2, managers were shown the same set of 20 portfolios as in Exercise 1, but now were given 

performance information in a four-objective tradeoff plot (along with the decisions plot). In Activity 2, 

Exercise 3, participants were shown the choices they made from Exercises 1 and 2 in one plot to compare 

the preferences they expressed with different amounts of tradeoff information.  

Activity 3 introduced the frequency of Level 1 restrictions objective and perturbed hydrology. 

The exercises allowed researchers to probe how the presence of the Level 1 restrictions objective 

influenced participants’ perceptions of other tradeoffs and added hydrologic challenges to their decision 

calculations. In Exercise 1, participants were shown 20 algorithm-optimized portfolios that resulted from 
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optimizing in a 1°C warmer future. To understand the implications of the different hydrology, managers 

referred to the informational packets where plots showing a slightly lower magnitude of peak runoff, 

slightly earlier peak timing, and similar regional flow variability. They were again asked to choose two 

portfolios and had to directly trade off reliability policy performance with the other four objectives from 

Activity 2. Exercise 2 was identical to Exercise 1 except that the 20 portfolios were from a set produced 

by optimizing for a 4°C warmer future. This scenario had a much lower peak runoff magnitude, much 

earlier peak timing, and lower variability due to lower magnitude high-flow years.  

Activity 4 was designed to emphasize to participants that portfolios developed for or optimized 

under specific futures may not be acceptable if the future is different than they planned for. Managers saw 

the exact same set of portfolios from Activity 3, Exercise 2, but now their performance in a set of varied 

hydrologic traces was shown (i.e., in a supply scenario that they were not optimized for). The set of 10 

traces were drawn from all other scenarios, so performance reflected the portfolios’ average performances 

in a wide set of futures. They were again asked to make two choices from this set, and while making the 

choices they could see how each portfolio performed in varied as well as 4°C hydrology (so they had two 

parallel plots of objectives and one plot of decision levers). Managers were also shown how their hand-
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crafted solution from Activity 1 performed in both scenarios and asked to reflect on how they felt about 

those portfolios, which were developed using historic hydrology.  

Table 4-3. Summary of charrette activities. 

Exercise # Objectives Hydrology Description 

Activity 1 0 Historic Choose 1 of 3 handmade portfolios 

Activity 2, Exercise 1 2 Historic Choose 2 portfolios based on 2 objectives 

Activity 2, Exercise 2 4 Historic Choose 2 portfolios based on 4 objectives 

Activity 2, Exercise 3 4 Historic 
Compare choices from 2- and 4-tradeoff 

exercises 

Activity 3, Exercise 1 5 1°C 

Choose 2 portfolios while evaluating explicit 

tradeoffs between reliability and other 

objectives 

Activity 3, Exercise 2 5 4°C 

Choose 2 portfolios while evaluating explicit 

tradeoffs between reliability and other 

objectives 

Activity 4 5 Varied, 4°C 

Choose 2 portfolios with knowledge of how 

they perform in both varied and extreme (4°C) 

hydrology; reflect on choices from Activity 1. 

  

At the workshop, the managers played the roles of engineers at the hypothetical Eldorado Utility 

who were evaluating a new tool for its potential to enhance their upcoming long term planning process. 

Asking them to play a fictional role and use hypothetical (but realistic) tradeoff results helped participants 

to engage more candidly by distancing them from physical, social, and political pressures of their own 

systems. Similarly, for each activity, we asked the managers to choose two portfolios “to subject to 

further analysis” to avoid comparisons with the real-world, complex process that a utility undertakes to 

actually decide on one plan. It was important, however, to ask them to make individual choices; this 

forced them to really grapple with tradeoffs and to use some logical process, and thus created a more 

defined experience for them to discuss with researchers and each other. 

For each exercise (except for Activity 2, Exercise 3 during which participants just compared two sets 

of portfolio choices), small group facilitators asked three main questions to prompt discussion: 

A. What objective performances or tradeoffs made the two portfolios you chose interesting to you? 

B. What decision lever attributes made the solutions interesting to you? 
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C. Based on the objectives’ performance, as a manager at your utility, do you think you would have 

chosen the same solutions to investigate further? Why or why not? 

Questions A and B were designed to separate the ways that performance and decision levers impacted 

choices, and question C was designed to emphasize that we wanted the managers to choose freely but also 

provide as much real-world decision making context as they could. 

Data from this workshop includes the portfolio choices that managers made as well as discussions 

about the MOEA testbed tradeoffs, managers’ analytical processes, utilities’ planning approaches, tool 

adoption, potential for MOEAs overall, and workshop content. As such, we made sure to capture 

participants’ portfolio choices but also took audio recordings and notes of each small group of managers. 

Having three types of information allowed us to ensure accuracy and produce results that synthesized 

both qualitative and quantitative responses. Additionally, post-workshop surveys recorded participants’ 

overall perceptions of the usefulness of MOEA-assisted optimization. 

4.4 Results 

Throughout the day managers engaged with tradeoffs, facilitators, and each other. They took the 

purposes of the workshop seriously and combined openness to the activities with reflections about their 

own agencies’ planning contexts. As we prompted them with specific concepts, they each interpreted and 

applied them differently. A result of this was that, across nine managers, the portfolio selections often 

varied widely and sometimes the processes they used to make them also varied significantly. Rather than 

report each individual’s choices and processes, below is a description of common themes and examples of 

how logic changed over the course of the day. 

4.4.1 Managers’ usage of tradeoffs 

Within this section about how managers used tradeoff information, there are four subsections. 

The first discusses findings from Activity 2, which presented managers with first two, then four 

objectives to analyze. The second subsection of results is based on Activity 3, which introduced a fifth 
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objective (Level 1 restrictions) and two new, more challenging, hydrologies. Subsections three and four 

present findings that emerged throughout all four activities. 

4.4.1.1 Tradeoffs in two objectives vs. in four objectives 

In Activity 2, Exercise 1, where participants saw tradeoffs in two objectives, three general 

strategies emerged for choosing portfolios of interest. Five managers weighted performance in the 

objectives equally, two performed cost-benefit analyses between the two objectives, and two managers 

prioritized performance in one objective over the other. For example, Figure 4-3 shows the results of 

Manager B3’s process. After spending time analyzing how different sets of decisions affected 

performance and which levers were more common, the manager ultimately chose two solutions that were 

relatively good across both objectives but allowed each choice to prioritize one of the objectives: the 

green portfolio is lower (better) on the Missed Op axis but not as low as possible because the portfolios 

that perform the best in this objective only achieve this by building medium-high to high volumes of 

storage; the purple portfolio is nearly at the bottom of the New Storage axis (i.e. almost the best 

performer) but this manager chose to add a very small volume of storage (relative to the smallest amount 

possible at the very bottom of the right axis) to greatly reduce the amount of Missed Op water from the 

maximum amount that would have occurred with the least-storage portfolio.  
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Figure 4-3. Screenshot of manager B3’s portfolio selections for Activity 2, Exercise 1. 

Figure 4-4 (below) shows the results of Manager B4’s cost-benefit analysis. The manager started 

by picking the portfolio with the least storage, then worked incrementally up the New Storage axis to find 

out how much better the performance in Missed Op could get. The manager ultimately tried to find the 

portfolios where the tradeoff was “reasonable”- where the sacrifice in one objective came with a 

worthwhile gain in the other. Consider Selection 1, in green: the manager started at the bottom of the right 

axis with the minimum possible New Storage, and, finding that this portfolio had the worst possible 

Missed Op performance, chose to allow incrementally more New Storage and evaluate the improvement 

in Missed Op. Ultimately the manager was satisfied with the tradeoff of  2.0 million cubic meters (MCM) 

(1,600 acre feet (AF)) more of New Storage to reduce Missed Op by 3.3 MCM (2,672 AF) per year. 
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Selection 2, in purple, was the result of the same process, but it started at the bottom of the left axis with 

the minimum amount of Missed Op water. The two next-best performing portfolios (in terms of Missed 

Op) did not come with significant improvements in New Storage, but the next portfolio did reduce 

required storage by 4.9 MCM (4,000 AF) and only resulted in 0.4 MCM (318 AF) more Missed Op 

water. The strategies used by managers B3 and B4 demonstrate how practitioners could use optimization 

results to find solutions that achieve balanced performance and how quantified tradeoffs allow users to 

calculate how much performance they are willing to give up in one objective to improve in another. 

 

Figure 4-4. Screenshot of manager B4’s portfolio selections for Activity 2, Exercise 1. 

In Activity 2, Exercise 2, managers were asked to make two selections from the same set of 

portfolios that they saw in Exercise 1, but they did so with performance tradeoffs in four objectives 
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instead of just two (so it was possible to choose the same portfolios in both exercises). Indeed, two 

managers chose the exact same portfolios as they did in Exercise 1, three managers chose one matching 

portfolio, and the other four participants chose two new solutions when presented with more tradeoff 

information. In Activity 2, Exercise 3, where managers were shown the two sets of choices they made, the 

managers who had identical sets of choices said that they used the same criteria in the second exercise as 

they did first. For example, Manager C2 did pay attention to portfolios’ performances in the New Supply 

objective that had been added to the screen in Exercise 2, but ultimately focused on decision levers that 

maxed out conservation and turned on the exchange of reusable water (two “soft path” options) while 

balancing the initial two objectives from Exercise 1. This is a good reminder that new tools and new 

information do not necessarily result in changed preferences or different choices; tools may also provide 

value by reinforcing understanding and increasing confidence in decisions. 

For the seven managers who chose at least one new portfolio in Exercise 2, they tended to 

balance their two choices against each other. For example, if they chose one portfolio that was “middle of 

the road” across the objectives (i.e. balanced), they allowed themselves to choose a second portfolio that 

prioritized one objective regardless of whether it performed poorly in another. Figure 4-5 is the result of 

Manager B2’s first choice to balance, and second choice to disregard Missed Op and focus on New 

Storage: Selection 1, in blue, has middling performance in all four objectives, indicating that no objective 

was prioritized; Selection 2, in maroon, achieved the best possible performance in New Storage but 

exhibited moderately-poor to poor performance in the other three objectives. When discussing the process 

used to make choices with two tradeoffs versus four, this manager said “More objectives is better in terms 

of understanding the system and its performance. I assume that at some point it gets too noisy, but I 

definitely see value in going from two to four. Even if I end up prioritizing one or two objectives, it helps 

to see the implications that has on the others.” 
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Figure 4-5. Screenshot of manager B2’s portfolio selections for Activity 2, Exercise 2. 

4.4.1.2 Use of the Level 1 Restrictions objective 

The tradeoff analyses from Activity 2 included only portfolios that complied with Eldorado’s 

restrictions-based reliability criteria (defined as not exceeding 5 years in Level 1 restrictions over the 25-

year simulation). This condition was explicitly conveyed to participants, and they were not presented with 

an objective that measured restrictions performance. By omitting an objective about restrictions 

performance, the participants were able to consider their performance and decision preferences without 

directly grappling with level-of-service or policy consequences. Once frequency of restrictions was 

introduced as the fifth objective in Activity 3, all participants used it as their initial screening criterion. 

Additionally, both exercises in this activity used a climate change-perturbed hydrology: the portfolios in 
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Exercise 1 resulted from a 1°C warmer scenario, and portfolios in Exercise 2 resulted from a 4°C warmer 

scenario. 

Though they had many options that resulted in only two years of restrictions, five of nine 

managers considered portfolios that exhibited from three to five years in Level 1 Restriction in Activity 3, 

Exercise 1. However, only two managers ended up choosing portfolios with three or more years in 

restriction because the other managers did not find that the performance gains in other objectives 

warranted the extra years. Seven of nine participants expressed satisfaction with the balances they were 

able to strike, while two expressed concerns that their decision preferences seemed less effective in the 

warmer scenario. 

While all managers chose to outperform Eldorado’s reliability requirement in Exercise 1, it was 

difficult to even meet the criteria in Exercise 2; there were no portfolios that had fewer than five years in 

Level 1 restrictions (the maximum allowed by Eldorado’s policy). All portfolios that met the criteria 

required great sacrifices in at least two other objectives. For the three participants who stayed within the 

criteria, two focused on performance in one other objective and one tried to balance three other objectives 

within the compliant portfolios. Of the six other managers, four determined that one or two extra years in 

restrictions was worth the gains in other objectives, noting that this thinking would trigger policy 

discussions with their decision making boards- “this tool would be really useful in demonstrating just how 

much service we would have to give up in order to avoid unpopular storage or supply decisions.” Two 

managers felt that once the climate had warmed by 4°C, norms would have changed, lawns would have 

disappeared, and people wouldn’t expect the same levels of service that they had seen in the past, so they 

chose portfolios with nine years in restrictions and were able to avoid big storage projects. So, given 

difficult tradeoffs, three managers made painful concessions to comply with restrictions policy, four 

bargained (relatively) small policy deviations thinking that the trade could become the focus of broader 

negotiations, and two managers reframed the problem in order to justify alternative(s) that they 

considered superior. 
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4.4.1.3 More information, divergent choices 

In analyzing all managers’ specific portfolio choices over the course of the day, we found that as 

more information was added and tradeoff experience increased, the group’s choices started to diverge. 

Three participants made identical choices to one another in Activity 2, Exercise 1; the same was true in 

Activity 2, Exercise 2. The sets of participants and the choices were different, though, and there were no 

correlations with experience level of the participants or size of utility. Overall, seven different portfolios 

were chosen in Exercise 1 and five different portfolios were chosen in Exercise 2 (out of 18 total choices 

made per exercise: 2 choices for each of 9 participants). There were no sets of identical choices in 

Activities 3 and 4. In Activity 3, Exercises 1 and 2, 10 and 12 different portfolios were chosen, 

respectively, out of 18 total choices that were made for each exercise. Finally, 12 different portfolios were 

chosen in Activity 4.  

Adding the Level 1 Restrictions objective and using more challenging hydrology resulted in more 

divergent choices than those in historic hydrology with only two or four objectives in play. The finding 

that more information can lead to a wider variety of choices is perhaps not surprising because there are 

more avenues for creating dominance structure. However, it is worth considering how increasing 

information and greater divergence would affect a real-world planning process that involves several levels 

of scrutiny by many employees, decision makers, and the public.  

4.4.1.4 Using objectives vs. decisions to make choices 

For all participants, objective performance was the main focus when choosing portfolios of 

interest. Whether they tried to balance across all objectives or prioritized a subset of them, managers 

tended to structure preferences primarily around performance. From the subset of portfolios that had 

satisfactory performance, they would sometimes try to find the ones that had decisions they preferred. 

This secondary screening based on decision levers almost always centered on avoidance or pursuit of 

certain types of storage and/or moderate or aggressive use of soft path options (e.g. interruptible shares or 

conservation). One manager who was focusing on portfolios that minimized New Storage was also 
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concerned that some portfolios that performed relatively well in this objective could actually be hard to 

pursue because they had small amounts of storage in multiple locations (i.e. a medium expansion of 

SouthRes and building a small WestSlopeRes). Another manager noted that they were all “starting with 

performance and then looking at the levers. We want to see the results first and then work backwards. 

That’s not how a lot of things are done in reality; normally we look at sets of levers and then model 

outcomes.” Another reflected that “if you pick totally on performance and ignore decision levers, you 

pick solutions that you wouldn't have chosen just based on decisions; conversely, if you pick based on 

decisions first, you'll probably be surprised about their poor performance.” 

Use of decision levers to make choices varied throughout the day. In the first exercise with two 

objectives, four of nine participants considered decision levers, while only three of nine did so in the four-

objective exercise and the 1°C warming exercise. This slight drop off may at least partially be due to the 

fact that complexity was added via number of tradeoffs and (in the case of the 1°C exercise) new 

hydrology. These changes may have taken up some extra cognitive bandwidth for participants, as 

suggested by one manager: “How many objectives is too many? What can we handle versus what do you 

miss if you don't include all of the objectives?” In the 4°C scenario, seven of nine participants looked at 

decision levers while making choices. One reason for this could be the fact that only hydrology changed 

between 1°C and 4°C. Besides participants’ greater comfort with the complex data visualizations, the 

increased consideration of decision levers in 4°C was related to the fact that limiting the number of years 

in restrictions required large sacrifices in New Storage and/or New Supply. In coming to terms with this 

tradeoff, managers tried to reduce reliance on storage or permanent agriculture dry-up, but ended up 

having to weigh this tradeoff against meeting reliability criteria. 

Whether or not they used decision lever characteristics to choose portfolios of interest, all participants 

expressed surprise and curiosity about the relationships between decisions and performance. Comments 

like the ones below came up frequently throughout the day: 

- Why do the decisions change so much but give me similar performance? 
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- Why do very similar portfolios perform so differently? 

- Why didn’t this certain lever ever get turned on in the portfolios I was focusing on? 

- Why can’t I have this performance but with more conservation? 

- What are the differences in decisions with these two extremes in performance? 

- Why aren’t these levers ever turned on? Are they not effective? 

One participant wondered: “Is the impact that subtle changes in decisions can have on performance 

something that utilities miss in the way we currently do things?”  

4.4.2 Opportunities and challenges to using MOEA-assisted optimization 

4.4.2.1 Opportunities 

Over the course of the exercises, as well as during the large group discussion, participants noted 

how the type of information produced by MOEA-assisted optimization could be used to enhance their 

utilities’ long term planning processes. Managers proposed two uses that support the technical 

foundations of planning:  to help staff understand complex dynamics of their supply sources and 

infrastructure interactions, and to use surprising dynamics to interrogate the accuracy of their planning 

models. One manager focused on the public participation aspect of planning, suggesting the results could 

be used to show community members how much service they would have to give up (via more frequent 

restrictions) in order to avoid unpopular and expensive infrastructure projects. Another manager brought 

up the council-level component of planning when considering how the tradeoffs could help make the case 

for changing reliability policy to decision makers or board members. 

One participant had ideas to tie the tool to two common water utility planning concepts: triple 

bottom line assessments (Elkington, 2004) and robust decisions. Regarding the triple bottom line, the 

manager wondered whether each lever could be scored by knowledgeable utility staff based on its 

economic, social, and environmental costs. These scores could then be used as objectives, minimized by 

the MOEA. Although this scoring would be somewhat qualitative, subjective, and may possibly under- or 

overestimate costs of specific projects that have not been thoroughly studied, connecting tradeoffs directly 
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to fundamental utility planning concepts may prove useful. Utilities are also concerned with elucidating 

robust decisions, or those that support good system performance in a wide range of climatic futures. The 

manager suggested that finding specific decisions that featured prominently in portfolios that achieved 

desired performance balance in multiple planning scenarios could mean that they are robust.  

One participant thought it might be useful to give each portfolio an area under the curve score 

based on the objectives as a way to objectively compare portfolios. Another reflected that with the current 

trend of relying on algorithms make choices based on a priori weighting, this application of optimization 

was appealing because it still focuses on human decision making but with extra information. 

Table 4-4 below shows the results of a post-workshop survey that asked participants two questions: 

1. How useful do you think the quantitative tradeoff information produced by the MOEA would be 

for learning about your utility's system?  

2. How useful do you think the quantitative tradeoff information produced by the MOEA would be 

for enhancing your utility's approach to long term planning? 

The scale for responses was from 1 (not useful) to 5 (very useful). 

Table 4-4. Results of post-charrette survey. 

 Count 

Score Useful for system learning Useful for planning 

1.0 0 0 

2.0 0 0 

3.0 4 2 

3.5 0 2 

4.0 4 3 

5.0 1 2 

Average 3.7 3.9 

 

There were no response patterns based on either length of career or size of utility. The only 

notable correlation was that the two managers who responded that they thought the tool was “very useful” 

for planning both came from utilities who had recently used the tool in their long term planning processes. 
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4.4.2.2 Challenges 

The challenges brought up by participants fall into three general categories: modeling, personnel, 

and conveying process and results. A manager from a utility that had just used MOEA-assisted 

optimization in their planning asked a simple question: “How much do you trust your model?” When the 

participant’s agency was confronted with surprising tradeoff results, in some cases the results provided 

verifiable, novel system understanding; in other cases, they were the product of model errors. This issue 

was exacerbated when existing models were run in extreme hydrologic and portfolio combinations, and 

underscored the importance of having system and project experts review portfolios. On the topic of 

modeling, other managers noted that you have to have the right kind of planning model- one that provides 

a useful timestep resolution, an appropriate level of internal system detail and external context, and that 

can run reasonably quickly.  

Managers from the two utilities that had MOEA experience agreed that training staff to 

understand the tradeoff results and maintaining those skills was a struggle. Understanding and interacting 

with tradeoffs requires a particular cognitive approach, and the managers reported that for many members 

of their teams, seeing results from their consultants once a month required a review at each appointment. 

Furthermore, to continue to see benefits from using the tool, one or more staff members would need to 

maintain proficiency with the results and potentially be able to produce new optimization runs. The 

managers also said that when technical staff who had often spent years developing certain projects were 

confronted with portfolios that performed well but did not incorporate their projects, discussions and 

negotiations could become difficult. 

The inner workings of the MOEA, the process of employing one, and the results it produces are 

complex. In order for a utility to use one, one or more staff would have to make considerable effort to 

build understanding about the tool within the agency. Because the results are so complex, technical staff 

also must simplify the message to decision makers without sacrificing confidence in the tool or alienating 

their audience. Managers with and without MOEA experience agreed that this is a difficult task. A critical 
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component of understanding, simplifying, and conveying the results is having visualizations that are as 

easy as possible to understand. A manager suggested that this is so important that it may be worth 

consulting someone with training in data visualization for input. 

4.4.3 Adoption of new tools 

Researchers asked participants to discuss their utilities’ experiences with the process of adopting 

new tools. The process starts when technical staff become aware of new tools. According to these 

managers, the water management industry is bombarded with great ideas and they have to sift through 

them and think about what they can apply. Sometimes the ideas come from consultants, e.g. through 

Integrated Water Resources Plan (IWRP) requests-for-proposals, and sometimes the ideas come from 

conferences, workshops, and/or co-production with researchers. They agreed that case studies of real-

world applications are helpful for opening utilities up to new tools, and the cases are especially influential 

when they involve neighboring utilities. Managers from one of the utilities that had used an MOEA said it 

took sustained effort to convince upper management to become that case study. 

Once a tool is being considered by a utility, many conditions must be met before it can be 

adopted. Managers report that getting broad acceptance is very challenging; it can take years, and requires 

at least one champion within the agency, but preferably two because this lends credibility and force to the 

proposal. Ultimately, upper managers and boards trust technical staff to do analyses once they have boiled 

down the details and shown need for, and potential benefit from, the tool. However, in order for staff to 

buy in, they need to understand the background and “guts” of using the new tool, they need to be heavily 

involved in developing and integrating it, and they need to have access to technical assistance once they 

are using it.  

One manager offered a distilled version of the above: “We need proof that the tool works, trust in 

the people proposing it, and we need evidence that it is useful and usable.” In other words, the tool needs 

to be credible, legitimate, and salient (Cash et al., 2003). 
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4.4.4 Real-world planning and decision making context 

During small group discussions, participants answered the specific questions posed by 

facilitators, but also had discussions among themselves that provided insight into how utilities think about 

difficult planning questions. One such conversation was around level of service versus customer billing 

rates. If utilities try to avoid costly infrastructure as much as possible, rates don’t have to go up to pay for 

it. But, in the long term future when Colorado utilities will potentially be even more dependent on wet 

years to recover system storage, the only way to take advantage of that is to have adequate capacity. If 

avoiding infrastructure means greater frequency of restrictions that can lead to long term reduced utility 

revenues, rates may slowly creep up anyway. Once rates increase, they will never go back down, so how 

do customers want to experience this? “Where do you want the pain to be in your system- low reliability 

or high rates?” 

Another group discussed the drawbacks of conservation and demand hardening. For smaller 

service areas, conservation has very little impact compared to the yield of new supply, and may only 

displace the need for new supply in the short term. Conservation is really most effective at saving water 

used on lawns in wetter years; in dry years, watering is already reduced via restrictions. Once 

conservation sets off demand hardening or years of restrictions creates a “drought shadow” (persistence of 

lower demand than pre-drought levels), restrictions don’t produce as much savings and deeper, more 

invasive restrictions become necessary. 

We also learned about some practical realities of how utilities make decisions. Managers noted 

that opportunism plays a big role in determining which projects go forward and when; e.g., if a cable 

company is ripping up a road, a utility will go ahead and fix leaks in the nearby pipes. Another major 

factor for whether utilities take on a project is whether it involves federal permitting; agencies strongly 

prefer not to undertake this process which commonly takes more than 10 years, millions of dollars, and 

relies on highly uncertain outcomes. Sunk costs also motivate utility decision making; any projects that 

have already seen some investment may be pursued regardless of optimization results. 
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In the large group discussion at the end of the day, several managers lamented the realities of 

planning at five-year intervals. Long term planning has become such an undertaking that the preparation 

involved in creating a plan can take many months, after which the planning process itself is so arduous 

that staff need time to recuperate. Once normal staff functioning resumes, it may be time to start thinking 

about the next plan. Researchers should consider how existing their current expertise or future research 

can contribute tools or processes that support sustained planning. 

4.5 Conclusions 

In the charrette tradeoffs often, but not always, influenced managers’ construction of preferences. It 

was clear that the ability to directly compare alternatives across several dimensions helped managers 

reason out a dominance structure; sometimes they iterated until they found a satisfying alternative and 

sometimes they worked backward to justify a choice. In a few responses, though, managers simply 

applied their preferences to the set of options they were given and chose, e.g., the portfolio with the least 

new storage. This suggests that the other objectives were not compelling enough to warrant compromises, 

and/or that additional information does not always affect core priorities. On another level, managers often 

used the opportunity to make two selections to balance their indecision and actually seemed to trade 

performance between their two choices.  

Beyond using tradeoffs to justify their own selections, managers came up with ways that tradeoff 

sets could bring justification to broader aspects of the utility planning process. They suggested that the 

tradeoffs could support policy negotiations with boards or councils as well as communications with the 

public. If the tradeoffs revealed that a minor relaxation of reliability criteria could drastically reduce 

reliance on new storage, that information could be a valuable point of discussion. Similarly, if a 

community opposed a specific project, tradeoffs could explicitly show sacrifices that would be necessary 

to avoid it. This feedback from the participants clearly points to how MOEAs can enhance many aspects 

and phases of planning. 
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Though there are challenges to incorporating MOEAs, e.g. appropriate and trustworthy modeling, 

maintaining tradeoff fluency, and securing technical support, many managers found their distinct 

capabilities appealing. They appreciated the ability to see relationships between objectives. We heard that 

it was refreshing to be able to combine an optimization tool with human reasoning- that the tradeoffs 

empowered managers instead of diminishing their input. 

The results from this charrette suggest to us at least two promising avenues for further research to 

support MOEAs for long term water utility planning. We draw the first from what we heard about the 

relationships between decision levers and objectives and how each traditionally influence planning. 

Generally, utilities devise portfolios to see how they perform; in the workshop, a manager pointed out that 

they were choosing performance and then seeing which levers that entailed. This shift prompted many 

questions about what influence one or more levers had on performance. Future research that quantifies 

relationships between levers and performance could increase the value of tradeoff sets to the agencies that 

use MOEAs. 

The other avenue is to begin exploring the role that MOEA tradeoff sets can play in sustained 

planning. Can the system information attained through the tradeoffs and the large set of potential 

portfolios form the basis of adaptation? As supply or demand information solidifies or infrastructure 

projects do or do not come to fruition, can future actions be informed by tradeoffs and portfolios that have 

already been generated, thus reducing the burden of planning cycles?  

The MOEA research charrette was an effective approach to engaging with water managers about 

the potential for MOEAs to enhance long term water utility planning. Through the workshop we 

exchanged and created new knowledge with our participants. This success was possible through the 

application of the Participatory Framework for Assessment and Improvement of Tools (ParFAIT), which 

created a roadmap for research activities and structured the relationships with our practitioner partners. 

This transdisciplinary, participatory venture resulted in deeper understanding of water management 

context, inspired future research directions, and forged new links between academia and industry.  
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Chapter 5 

Combining Multivariate Regression Trees and multiobjective tradeoff sets to reveal 

fundamental insights about water resources systems 

This chapter presents a data mining method to reveal fundamental system information contained 

within Multiobjective Evolutionary Algorithm (MOEA)-generated tradeoff sets, and demonstrates its 

value on a long term water utility planning problem. MOEA-assisted optimization produces a large set of 

non-dominated solutions, each of which represents an observation of how multiple independent variables 

(decision levers) impact performance in multiple response variables (objectives). Multivariate Regression 

Trees (MRTs) succinctly reveal how a small number of decisions produce large variations in 

performance. Unlike other decision tree methods, MRTs accommodate multiple response variables, and 

can thus preserve the performance relationships found in multiobjective tradeoff sets during splitting. We 

generate an MRT for each set of tradeoffs that resulted from optimizing the Eldorado Utility long term 

planning problem under two climate change scenarios. A single MRT can be a vehicle for determining 

core planning decisions, e.g. reservoir size or demand conservation level, that lead to preferred 

performance; it can also demonstrate how decision preferences may impact performance in such 

objectives as minimizing restrictions and maximizing long term storage. Comparing MRTs from two 

optimization scenarios allows managers to identify decisions that are common across scenarios, i.e. 

robust. The information provided by MRTs can help technical managers and decision makers understand 

large, high-dimensional tradeoff sets. This work is part of an ongoing research agenda informed by 

practitioner feedback obtained during a hands-on MOEA workshop. 

5.1 Introduction 

Increasing access to digital storage and computing power has expanded the scope and capabilities 

of water resources management practice and research. As data volume and availability have grown, so too 

has the potential for the field to employ data mining techniques to gain value from the stores (Babovic, 

2005; Loucks et al., 2005; Velickov and Solomatine, 2000). While the term “data mining” is often used 
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interchangeably with terms like knowledge discovery or information harvesting, here we use it to refer to 

an automated process of extracting new, useful, and, ideally, comprehensible knowledge hidden within a 

large data set (Fayyad et al., 1996; Hand et al., 2001). The earliest and most frequent examples of water 

resources data mining applications have been in hydrology (Jain and Srinivasulu, 2004; Lohani and 

Loganathan, 1997; Nasseri et al., 2013; Wei and Watkins, 2011) and reservoir operations (Bessler et al., 

2003; Wei and Hsu, 2008; Yang et al., 2016) due to the volume of records that had already been building 

for decades.  

More recently, Water Resources Systems Analysis (WRSA) research has begun incorporating 

analytical methodologies that produce large data sets for the purpose of using data mining techniques to 

gain valuable information. For water providers seeking portfolios of policies and actions that are likely to 

perform well in a wide range of futures (i.e. are robust), evaluating one or more portfolios under 

thousands of possible future conditions can help them learn under which subset of future conditions a 

portfolio may fail. A prominent approach to this is scenario discovery using the Patient Rule Induction 

Method (PRIM) data mining algorithm (Friedman and Fisher, 1999; Lempert et al., 2006), which seeks to 

define a small number of conditions that strongly predict plan failure. PRIM has seen many successful 

applications in WRSA literature, e.g. (Groves and Lempert, 2007; Herman et al., 2015; Kasprzyk et al., 

2013; Lempert and Groves, 2010). Similarly, if water providers want to know to which external 

uncertainties their systems are most vulnerable, they might perform a Sobol’ global sensitivity analysis. 

By subjecting a system model to a large number of variations of external forcings, Sobol’ sensitivity 

analysis identifies the relative contributions of each of the uncertain factors to variations in system 

performance. This data mining method has been applied in several recent water resources planning 

studies, e.g. (Beh et al., 2015; Herman et al., 2015; Kasprzyk et al., 2012). 

Another eminent method in WRSA that produces large data sets is Multiobjective Evolutionary 

Algorithm (MOEA)-assisted optimization. Water resources systems generally strive to meet conflicting 

performance goals, and planning for the future of these systems to achieve good performance in those 
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conflicting objectives involves making many decisions which themselves exhibit complex interactions 

and dynamics. MOEAs are search engines that efficiently generate and evaluate thousands of portfolios of 

decisions to try to optimize across the multiple conflicting objectives. The optimization process results in 

a set of nondominated, or Pareto-optimal portfolios (Pareto, 1896), where performance in one objective is 

only possible through sacrifice in another, conflicting, objective; the set of portfolios enumerates 

performance tradeoffs.  

These Pareto tradeoff sets consist of hundreds and often thousands of portfolios that contain hidden 

information about the water resources system and the optimization problem. To date, WRSA research 

applications of MOEAs have mostly relied on visual analytics (Kasprzyk et al., 2009; Kollat and Reed, 

2007; Matrosov et al., 2015; Smith et al., 2016), or Cartesian plots (Mortazavi et al., 2012a; Wu et al., 

2017) for insights, performing relatively subjective assessments on the tradeoffs to frame assertions of 

different performance priorities. In several studies previously mentioned, MOEA results have also formed 

the bases for performing scenario discovery (Kasprzyk et al., 2013), or sensitivity analyses (Beh et al., 

2015), or both (Herman et al., 2015).  

However, studies combining multiobjective Pareto sets and data mining have been conducted in 

other fields, particularly frequently in the areas of product and industrial design and optimizing 

production systems. Here we briefly discuss some specific examples. For a thorough treatment and 

comparison of the many ways that knowledge can be extracted from multiobjective optimization sets (not 

just automated data mining), see the survey by Bandaru et al (2017a).  

Early applications of data mining methods to product design were problematic; either they did not 

relate decisions to objectives or used very complex mining algorithms that did not produce easily 

understandable information: Ulrich et al (2008) used dendrograms on the classical knapsack problem to 

group portfolios in decision space; Obayashi and Sasaki  (2003) and Obayashi et al (2005) applied self-

organizing maps (SOM) to the decision spaces of supersonic wing and wing-fuselage design problems 

and then translated the decision maps to objective space; and Oyama et al (2010) used proper orthogonal 
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decomposition to characterize how a few decisions affected three categories of performance in the 

optimization of transonic airfoil shapes. Deb and Srinivasan (2006), early proponents of mining MOEA 

results, coined the term “innovization” for the process of learning innovative design principles from 

optimization results; however, the first automated version of their concept still required user intervention; 

in Bandaru and Deb’s (2011) demonstration of innovization on the design of trusses and welded beams, 

the researchers had to pre-specify basis functions before the automated process analyzed the set for design 

rules. 

The results of more recent efforts to apply data mining to Pareto sets are easier to understand, at 

least in part due to expansion of methods. Ulrich (2013) used an MOEA to optimize clustering of bridge 

designs in objective space vs. decision space so that the results of different sets of clusters were 

themselves tradeoffs between describing sets of similar decision variables or similar performance. 

Sugimura et al (2010) used the optimization results of a two-objective centrifugal impeller design 

problem to mine decision trees, producing a straightforward tree for each objective. Dudas et al (2011) 

and (2014) also used decision tree mining on a three-objective automotive manufacturing problem; in 

2011 they produced a tree for each objective, and in 2014 they created portfolio clusters in objective 

space and generated a tree for each cluster. The growth of studies combining Pareto sets and data mining 

seems to be gaining momentum: Bandaru et al (2017b) developed and compared four new methods, 

including classification trees, on three different production system problems. 

Decision trees (which can be classification or regression trees and are further described in Section 

5.2.1) are desirable data mining techniques because the resulting diagram clearly relates the inputs or 

decisions of an optimization problem to outputs or objectives via simple rules. However, Sugimura et al 

(2010), Dudas et al (2011) and (2014), and Bandaru et al (2017b) were all limited to producing trees one 

objective at a time or developing innovative ways to reduce multiobjective optimization results to a single 

output variable; in doing so, they necessarily lost explicit information about relationships between 

objectives, which is one of the benefits of performing multiobjective optimization. 
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Our study overcomes the limitations of applying single-objective decision tree data mining to 

multiobjective optimization Pareto sets through the use of Multivariate Regression Tree (MRT) analysis 

(De’Ath, 2002; Larsen and Speckman, 2004). MRTs are a variation of decision tree that develops data 

splits using information about how sets of decision inputs affect all objective outputs simultaneously. 

Furthermore, we introduce the benefits of data mining to applications of MOEA-assisted optimization in 

the WRSA field though the use of a complex long term water resources planning study called the 

Eldorado Utility Planning Model. 

5.2 Methods 

5.2.1 Regression trees 

5.2.1.1 Classification and Regression Tree (CART) 

The Classification and Regression Tree (CART) is a data mining technique that builds a 

predictive or descriptive model based on relationships between one or more predictor variables and a 

single response variable (Breiman et al., 1984). The algorithm recursively partitions data into two 

mutually-exclusive sets using successive values of predictor variables in order to create groups of similar 

values of the response variable. Classification trees are built for qualitative or categorical data; here we 

will only discuss regression trees, which are produced from quantitative data sets.  

Starting with the full data set, or root, all possible splits in values of all predictor variables are 

analyzed to find the one that produces the greatest reduction in deviance in the response variable. 

Deviance within a group of observations is equal to the sum of squared distances to the mean value of the 

response variable (the sum of squared errors).  

For each of these subsets, another split occurs using the value of any predictor variable that 

attains the maximum reduction in response error from its parent node. Branching continues until some 

stopping criterion is met. There are multiple ways to define stopping criterion; one is to specify that if a 

subsequent partition does not result in subsets that reduce error by at least 1% of the total original (root) 

error, a branch will not split. For example, if the total root error was 300, each split would have to reduce 
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the error within the subgroup by a value of at least 3 or there would be no split. When a branch can no 

longer split because the next split does not comply with the criterion, that node becomes a leaf.  

Once a tree is completely grown (and possibly pruned to provide an interpretable amount of 

information), it reports: the number of observations at each leaf; the constituent partition rules (or 

decisions) to arrive at the leaf; and the predicted value (mean) of the response variable. 

Regression trees are versatile and easy to interpret. The partitioning process does not assume any 

relationships between predictors and response, and can uncover hidden structures and interactions 

between hierarchical and nonlinear variables (Prasad et al., 2006; Verbyla, 1987). Among many predictor 

variables, the method can determine which have the greatest influence on response (Lawrence and 

Wright, 2001). The binary rules are clear; those who are not experts (either in statistics or the problem 

domain) can understand the decisions that lead from the root node to a leaf. Finally, the decision tree 

structure itself is an intuitive way to visualize a model. 

5.2.1.2 Multivariate Regression Tree (MRT) 

The Multivariate Regression Tree (MRT) is a data mining technique derived from CART. The 

method was originally developed for ecologists to analyze data sets describing assemblages of multiple 

species and their observed habitat characteristics (De’Ath, 2002; Larsen and Speckman, 2004). 

Importantly for De’Ath, the MRT made no assumptions about the underlying relationships (e.g. co-

occurrence or aversion) between the different species (the response variables). And, as with univariate 

regression trees, there were also no assumptions about the relationships between species and 

environmental characteristics (predictor variables). 

The extension from CART to MRT is straightforward: instead of the univariate response, MRT 

considers a multivariate response. Error calculations are the summed squares of observations’ distances 

from all response means; in geometric terms, the Euclidian distances of all points from the centroid. Thus, 
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the best split will use the value of a single predictor variable that minimizes the multivariate error of the 

resulting two subsets: 

Equation 5-1 
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where 𝑦 is an observed value of the response variable, �̅�  is the mean value of the subset’s response 

variable, 𝑘 = the subset formed by the split, 𝑛 = the number of observations in a subset, and 𝑚 = the 

number of response variables. 

The resulting distinctions in response variables between branches may come from a large 

reduction in error in one response variable (where the two subsets have very different means in that 

variable) or smaller differences in means in multiple response variables. That is, the error reduction may 

be concentrated in one variable or dispersed across several. 

Total tree error across all leaves is given by: 

Equation 5-2 
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And explanatory power of the tree model is defined as: 
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Equation 5-3 
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Where a CART regression tree reports the univariate response mean of the group of observations 

within each leaf, MRT typically reports the within-group mean for each response variable (as described in 

Section 5.4, our MRT application reports the distributions instead of just the means). The benefits of 

CART – versatility and interpretability – are also realized with MRT. 

5.2.2 Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization 

Multiobjective Evolutionary Algorithms (MOEAs) are a search technology used to efficiently 

generate and evaluate alternative solutions to systems whose conflicting performance objectives are 

impacted by many decisions that exhibit complex interactions. In MOEA-assisted optimization, a system 

is represented by a model which is embedded within the search loop of the MOEA. The MOEA interacts 

with the system model by feeding it portfolios of decision levers and evaluating the performance of each 

portfolio based on simulation outputs that produce values for objectives and constraints. This loop iterates 

thousands of times during which the MOEA tries to optimize the multiple, possibly conflicting, objectives 

by producing new generations of portfolios based on traits (decision lever values) of previously-evaluated 

portfolios with good performance; hence, the search is evolutionary. When objectives conflict there is no 

universally optimal portfolio, so the result of MOEA-assisted optimization is a set of nondominated 

portfolios in which improvement in one objective is only possible through sacrifice in another (i.e. the set 

is approximately Pareto-optimal (Pareto, 1896)).  

The set of decision levers, objectives, and constraints make up the MOEA problem formulation. 

In water resources planning, the problem formulation would include decision levers such as how many 

water rights to purchase, how much to conserve, or what size reservoir to build; examples of objectives 
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are maximizing water demand reliability or minimizing incidence of reservoir levels below a certain 

elevation; a constraint could be a measure such as ensuring delivery of 100% of indoor municipal 

demand. An MOEA would try thousands of combinations of supply and demand decisions and produce a 

set of portfolios that quantitatively describe the tradeoffs between objectives defined by an agency 

seeking to balance economic, social, and environmental system goals (Elkington, 2004). 

Each portfolio within the nondominated set produced by MOEA-assisted optimization is an 

observation of how multiple independent predictor variables (decision levers) affect a system’s 

performance in multiple response variables (objectives). We propose applying MRT analysis to tradeoff 

sets as a way to discover relationships between multiple decision levers and between levers and objectives 

that are not readily apparent via visual inspection and which are not necessarily revealed by sorting and 

filtering on pre-determined dimensions-of-interest. The branches of the resulting trees can clearly 

communicate decision lever paths that lead to different leaves of performance outcomes, connecting 

subsets of high-impact decisions with different tradeoff regions.  

5.3 Case study 

5.3.1 Front Range, Colorado 

The Front Range of Colorado is an urban corridor on the eastern slope of the Rocky Mountains 

that encompasses several mid-sized cities and many smaller communities. Water providers in the region 

rely heavily on runoff from highly variable annual mountain snowpack, so storage is critical for 

weathering intra- and interannual water supply fluctuations (Doesken, 2014; Rajagopalan et al., 2009). 

The long term impact that climate change will have on Colorado’s hydrology is unclear; temperatures are 

expected to continue increasing, but precipitation could increase or decrease (Lukas et al., 2014). Recent 

studies have shown that none of the potential precipitation increases in current climate projections would 

offset the higher temperatures, however, so there is likely to be less water available in the future (Udall 

and Overpeck, 2017; Woodbury et al., 2012). In addition to the natural supply variability and uncertainty 
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from climate change, the Front Range is experiencing the compounding challenge of rapid population 

growth; the regional population is projected to increase by 40% by 2050 (State of Colorado, 2017).  

Water management in Colorado is further complicated by the prior appropriation doctrine, a legal 

framework that bases the succession of streamflow access on date of first use (“first in time, first in 

right”) (Hobbs, 2004). Farmers and energy companies own the vast majority of senior water rights in the 

state, and by 1900 most of the water in eastern slope rivers was fully appropriated (Eschner et al., 1983). 

This means that as cities grew, they collected a mixture of supplies from multiple locations (including the 

western slope of the Rockies) by acquiring junior streamflow diversion rights, building junior reservoirs, 

buying senior diversion rights from agriculture, or buying shares in other water companies. All long term 

utility planning involves making many decisions and balancing conflicting objectives; on the Front 

Range, these inherent difficulties are exacerbated by rapidly increasing demand, highly uncertain impacts 

of climate change, complex regulations, and contentious social and environmental issues. This context is 

the basis of our MOEA case study, briefly described in the next section. 

5.3.2 Eldorado Utility Planning Model 

The Eldorado Utility Planning Model was designed based on input from 11 Front Range water 

managers to generically capture important regional management features and challenges (Smith et al., 

2017). It encompasses the region surrounding a small municipal water provider called the Eldorado 

Utility. Eldorado is located on the eastern slope of a mountain range along with eight other water users 

that directly compete with the utility to divert and store water. Eldorado has mostly junior diversion 

rights, junior storage rights in two reservoirs that it owns, and also has shares in a water wholesale 

company that it takes out of a reservoir owned by that entity. One of Eldorado’s diversion rights comes 

from the western slope, where an additional four users impede the utility’s access to water.  
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Figure 5-1. Schematic of the Eldorado Utility Planning Model. Many different users on both slopes of the 

mountain range impact Eldorado’s ability to collect and divert water via their priority dates, the locations 

of their diversions, and the locations of their return flows (precise diversion and return flow locations are 

indicated by arrows). The Eldorado Utility is represented by a green star on the eastern slope. Shapes and 

colors represent different types of rights and different types of users- see the key within the diagram and 

the details in Table 5-1. Each user in the diagram has a priority date associated with it where applicable. 
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Table 5-1. Detail for water users in Eldorado Utility Planning Model. Abbreviations refer to those found 

in Figure 5-1. The order of users going down each table column corresponds approximately to reading 

left-to-right on the diagram. Bolded users are particularly relevant to the results presented in Section 5.4. 

Superscripts in the table are defined as follows:  ARes = Reservoir; BMCM = million cubic meters; CKAF 

= thousand acre feet; DAg = Agriculture; Ecms = cubic meters per second; Fcfs = cubic feet per second. 

Abbr. Name 
Magnitude of 

Rights 
 Abbr. Name 

Magnitude of 

Rights 

SB Southern Basin varying flow 
 

A2R 
Ag2 Irrigation 

Co. Res 

24.7 MCM  

(20 KAF) 

WC Western City n/a  Ag2 Ag2 User n/a 

WCR 
Western City 

ResA 

24.7 MCMB  

(20 KAFC) 

 

EU 
Eldorado 

Utility 

0.28 cms (10 cfs);  

0.34 cms (12 cfs);  

0.42 cms (15 cfs) 

WAg 
Western AgD 

User 

4.3 cmsE (150 cfsF) 

seasonal 

 
WS2 

Wholesaler Res 

2 

123.3 MCM  

(100 KAF) 

PP Power Plant varying flow  IsA Instream Flow A varying flow 

WSR West Slope Res 
varying vol;  

2.2 cms (80 cfs) 

 
GP Gravel Pit 1.0 MCM (800 AF) 

WS1 
Wholesaler 

Res1 

616.7 MCM  

(500 KAF) 

 
Ind Industrial User varying flow 

NR North Res 11.1 MCM (9 KAF) 
 

Ag4 Ag User 4 
1.4 cms (50 cfs) 

seasonal 

SR South Res 9.9 MCM (8 KAF)  IsB Instream Flow B 0.42 cms (15 cfs) 

Ag3 Ag User 3 
1.4 cms (50 cfs) 

seasonal 

 
XFC 

External Farms 

& Cities 
n/a 

Ag1 Ag User 1 
1.4 cms (50 cfs) 

seasonal 

 
Ag5 Ag User 5 

2.9 cms (100 cfs) 

seasonal 

XR External Res varying vol     

 

The model incorporates a wide range of water rights dates to capture the temporal complexity 

created by prior appropriation. It also has great spatial complexity to reflect the fact that in Colorado, 

water is constantly being diverted from and returned to the stream. Overall, there are five distinct basins 

in the model, each with a streamflow input site at its headwaters. The model was designed such that, 

under historic hydrology, Eldorado’s existing system and sources could meet 100% of current demands 

with only rare need for restrictions. Different future streamflow scenarios that alter timing and volume of 

streamflow require the utility to take action in order to meet growing demands. These scenarios and 

demands are described in Section 5.3.4. For more detailed model information refer to Chapter 3 or Smith 

et al (In Review). 
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The Eldorado Utility Planning Model was built using the RiverWare modeling software (Zagona 

et al., 2001). RiverWare’s advanced capabilities facilitated our use of prior appropriation water allocation 

and enabled us to manage ownership of water through its accounting functionality. The model uses over 

150 custom rules to operate the intricate relationships between objects, users, and accounts, and is an 

example of the kind of complex decision support system that many utilities have incorporated into their 

planning (Labadie, 2004). 

5.3.3 Problem formulation 

5.3.3.1 Decision Levers 

Eldorado Utility has a total of 13 decision levers available to enable it to meet growing demands 

with potentially more challenging streamflow conditions. Some increase the system’s operational 

flexibility, some involve acquiring or freeing up water, and some develop new storage. They are briefly 

described below and summarized in Table 5-2. Where applicable, lever descriptions include a reference to 

the relevant user in igure 5-1. 

5.3.3.1.1 Enhancing operations 

Certain water sources in Colorado are reusable; cities carefully monitor their return flows from 

unconsumed water so that they can re-divert reusable return flows to meet demands. This is only possible 

by legally acquiring the right to exchange the water from downstream to upstream and only works well 

with strategic storage options. Three levers help Eldorado take advantage of reusable return flows: 

Exchange determines whether the legal right is acquired to store reusable water in a reservoir owned by 

Eldorado; LeaseVolXRes determines the amount of dedicated exchange storage space Eldorado rent in the 

External Res (XR); and LeaseAg2Res determines whether Eldorado is allowed to use available space in Ag2 

Irrigation Co. Res (A2R) to store reusable water.  

5.3.3.1.2 Increasing supply 

There are three ways that Eldorado can gain access to “new” supplies. The utility can acquire 

portions of water rights of other users in the model, it can buy shares of water companies in the model, 
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and it can create water through conservation or increasing distribution efficiency. Eldorado may purchase 

up to 20% of the rights of Ag3 User (Ag3) (RightsAg3) and Industrial User (Ind) (RightsIndustrial). Ag3 rights 

are very senior and may be stored but are not available year-round; Industrial rights are mid-seniority and 

must be directly diverted from the stream, but are available year-round. Eldorado may buy shares from 

either Wholesaler (WS1, WS2) (SharesWholesaler) or Ag2 Irrigation Co. (A2R) (SharesAg2). Through 

SharesInterruptible the utility may also execute a contract for access to A2R shares that is triggered when 

Eldorado’s storage is severely depleted. Acquiring water from any of these sources will draw water away 

from regional agriculture and industry and potentially disrupt those communities. Finally, Eldorado may 

enact none, moderate, or aggressive conservation measures (ConsFactor) or increase distribution 

efficiency (DistEff) by up to 3%. 

5.3.3.1.3 Building storage 

There are three opportunities for Eldorado to increase the amount of storage it owns. The utility 

may expand the existing South Res (SR) to help store both existing and new eastern slope and western 

slope water (ExpandVolSouthRes). Eldorado can build a new West Slope Res (WSR) to store its existing 

western slope diversion right (BuildVolWestSlopeRes); this is a very challenging proposition because of 

regulatory, social, and environmental considerations. Lastly, the utility can develop gravel pits (GP) 

downstream of its return point to capture reusable flows (GP). 
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Table 5-2. Summary of Eldorado Utiltiy decision levers. 

Figure 

1 Label 
Decision Description Units Range 

Enhancing Operations 

1 Exchange 
Acquire right to exchange reusable return 

flows to NorthRes 
--- 0 - 1 

2 LeaseVolXRes 
Pay owners of XRes to lease dedicated 

space that can facilitate Exchange 

MCM 

(AF) 

0 – 3.7 

(0 - 3,000) 

3 LeaseAg2Res 
Pay Ag2 Irrigation Co. to store water in any 

available unused space; 0 = off, 1 = on 
--- 0 - 1 

Increasing Supply 

4 RightsAg3 
Purchase a portion of Ag3’s senior diversion 

right 
% 0 - 20 

5 RightsIndustrial 
Purchase a portion of Industrial user’s mid-

seniority diversion right 
% 0 - 20 

6 SharesWholesaler 
Purchase additional shares of Wholesaler 

water 
shares 0 - 6,000 

7 SharesAg2 Purchase shares of Ag2 Irrigation Co. water shares 0 - 10,000 

8 SharesInterruptible 
Negotiate agreement with Ag2 Irrigation Co. 

for optional supply leases 
shares 0 - 10,000 

9 ConsFactor 

Reduce starting per capita demand through 

conservation measures; 0 = no change, 1 = 

10% reduction, 2 = 20% reduction 

--- 0 - 2 

10 DistEff 

Improve distribution efficiency by reducing 

unaccounted-for water (e.g. fixing leaks, 

improving metering, etc.) 

% 90 - 93 

Building Storage 

11 ExpandVolSouthRes Expand SouthRes 
MCM 

(AF) 

0 – 2.47 

(0 – 2,000) 

12 BuildVolWestSlopeRes Build West Slope Res 
MCM 

(AF) 

0 – 12.3 

(0 - 10,000) 

13 GP 

Develop gravel pits to store reusable return 

flows downstream of the city; 0 = not 

developed, 1 = developed 

--- 0 - 1 

 

5.3.3.2 Objectives 

The problem formulation includes seven objectives which are briefly described here and 

summarized in Table 5-3. For more detail and discussion about the problem formulation, see Chapter 3 or 

Smith et al (In Review). The first three, RestLev1, RestLev2, and RestLev3, seek to minimize the total 

number of years (within the 25-year simulation) that Eldorado goes into the three different, increasingly 
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invasive, levels of restriction. To comply with Eldorado’s current reliability policy, the utility can only go 

into each level 5, 1, and 0 years out of 25, respectively. 

The fourth objective, MissedOpp, minimizes the average annual volume of water that the utility 

“misses”, i.e. when timing of demand or availability of storage space prevent Eldorado from capitalizing 

on the full amount of its water rights. Optimizing how efficiently Eldorado uses the water it has helps 

prevent wasteful acquisitions. 

Objective five, New Supply, seeks to minimize the average annual volume of water Eldorado uses 

from new sources. Though the utility does need to acquire or create new water to meet growing demands, 

they do not want to take more than they need for future water security. 

The sixth objective, April1Storage, maximizes carryover storage of the lowest storage-to-annual 

demand percentage recorded during the 25-year simulation. April 1 is the approximate date when 

reservoirs would be at their lowest levels before spring runoff begins to fill them again. Compared with 

the restrictions-based objectives, this captures a longer term reliability signal. 

Finally, NewStorage minimizes the volume of newly-built storage within each portfolio. Because 

storage is difficult to permit and socially and environmentally contentious, Eldorado seeks to carefully 

consider the number and size of storage projects it pursues. The combination of this and the NewSupply 

objective provide a cost-like signal and allow the utility to consider planning policy on a broader level 

(Smith et al., In Review). 

Formally, the optimization problem is defined as  

Equation 5-4 

F(x) = (𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣1, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣2, 𝑓𝑅𝑒𝑠𝑡𝐿𝑒𝑣3, 𝑓𝑀𝑖𝑠𝑠𝑒𝑑𝑂𝑝𝑝, 𝑓𝑁𝑒𝑤𝑆𝑢𝑝𝑝𝑙𝑦 , 𝑓𝐴𝑝𝑟𝑖𝑙1𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , 𝑓𝑁𝑒𝑤𝑆𝑡𝑜𝑟𝑎𝑔𝑒 , ) 

∀ 𝐱 ∈ Ω 
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Equation 5-5 

𝐱 = Exchange,  LeaseVolXRes , LeaseAg2Res , RightsAg3 , RightsIndustrial , SharesWholesaler , SharesAg2 , 

SharesInterruptible , ConsFactor, DistEff, ExpandVolSouthRes , BuildVolWestSlopeRes , GP   

 

Performance was subjected to a single constraint, which is that all planning portfolios must meet 100% of 

indoor demands. 

Equation 5-6 

𝑐𝑈𝑛𝑚𝑒𝑡𝐷𝑒𝑚𝑎𝑛𝑑 = 0 

Table 5-3. Summary of Eldorado Utility performance objectives. 

Objective Description 

RestLev1 Minimize frequency of Level 1 restrictions over 25 years 

MissedOpp 
Minimize average annual volume of the sum of: return flows that Eldorado could 

have captured and reused, forfeited Wholesaler shares, and forfeited Ag2 shares 

NewSupply 
Minimize average annual new water created by either conserving or acquiring right 

and shares 

NewStorage Minimize the volume of newly-built storage in a portfolio 

April1Storage 
Maximize the lowest April 1st storage-to-annual demand ratio during the 25-year 

simulation 

 

5.3.4 Scenarios 

The optimization runs using the Eldorado Utility Planning Model assumed a buildout demand 

based on a 40% population increase by 2050, when the simulation time horizon starts. The demands 

exhibit single family residential patterns, i.e. use increases substantially during summer months when 

lawns are irrigated. The irrigation demands go up slightly during dry years and are affected by 

conservation and distribution efficiency levers, but the baseline population demand does not change 

throughout the simulation. 

Because future streamflow in Colorado is highly uncertain, the set of studies associated with this 

model use several hydrologic scenarios. The scenarios relevant to this chapter are the 1°C- and 4°C-
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warmer futures, which were chosen based on a Front Range climate change study (Woodbury et al., 

2012). The perturbed hydrology used monthly deltas from that study and generated sets of stochastic 

headwater streamflow input for the model using KNN resampling (Lall and Sharma, 1996) and 

proportional disaggregation (Nowak et al., 2010). See Chapter 3 or Smith et al (In Review) for more 

detail. Figure 5-2 shows a comparison of the average annual regional hydrographs for the two scenarios 

plus the historic record; the differences in timing and magnitude of flows summarize the relationships 

between the three scenarios. 

 

Figure 5-2. Average annual regional hydrographs for the historic record and two climate change 

scenarios. 

5.3.5 Computational experiment 

We used the Borg MOEA for this study (Hadka and Reed, 2013), which tests have shown to 

perform similarly or favorably compared to other state-of-the-art algorithms on difficult benchmark 

problems (Reed et al., 2013; Zatarain Salazar et al., 2016). The RiverWare model embedded in the search 

loop simulates the supply and usage dynamics of Eldorado Utility and other regional water users over 25 
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years (from 2050 to 2075) at a monthly timestep. Portfolios were tested as fully-implemented 

configurations of Eldorado’s system.  

Performance of each portfolio was evaluated across ten hydrologic traces, each distributed to a 

separate computing core of an Amazon Web Services Elastic Compute Cloud (EC2) instance (Mathew 

and Varia, 2014). Each distributed simulation took approximately 20 seconds. This relatively long 

simulation time prompted us to limit search to 5,000 function evaluations, a number shown to produce 

sufficiently-diverse tradeoff sets in previous work (Smith et al., 2016). We used the default Borg settings 

except for changing initial population size from 100 to 50 (Hadka and Reed, 2012; Reed et al., 2013). 

5.3.6 Eldorado optimization tradeoffs 

To facilitate readers’ understanding of how MOEA tradeoffs sets, the Eldorado Utility Planning 

Model, and the Front Range of Colorado are all captured in the MRT results in the next section, here we 

present and briefly describe a set of Eldorado Pareto-optimal portfolios from a 1°C-perturbed 

optimization run. The performance and decision tradeoffs of the set of 961 portfolios are presented using 

parallel axis plots, which are a visual analytics technique commonly used in multiobjective optimization 

studies (Herman et al., 2014; Kasprzyk et al., 2013; Watson and Kasprzyk, 2017a). 
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Figure 5-3. Parallel plots of the tradeoff set resulting from optimizing the Eldorado Utility Planning 

Model under 1˚C-warmer hydrology. Plot (a) shows the relationships between different performance 

objectives, with color indicating performance in Level 1 Restrictions. Plot (b) shows the portfolios of 

decisions that resulted in the performance from plot (a). 

In Figure 5-3a, each of the seven performance objectives is represented by a vertical axis. Each of 

the 961 portfolios is represented by a segmented line that crosses each axis at the level of performance it 

achieves in that objective, where crossing lower on an axis denotes better performance. The portfolio 

lines are colored based on the number of years they were in Level 1 restrictions, with dark blue 
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corresponding to zero years at the bottom of the leftmost axis. Presenting the set of portfolios as a group 

and in many dimensions is advantageous for seeing broad tradeoff patterns that are not necessarily 

perceivable in lower dimensions (Kollat and Reed, 2007). A disadvantage of this is that it can be difficult 

to discern trends within each objective because of the overlapping lines; the “violins” on the axes assist 

with this by showing the portfolio densities. Figure 5-3b is oriented identically to Figure 5-3a except that 

there are 13 axes – one for each decision lever. Every portfolio line in Figure 5-3a has a corresponding 

line in Figure 5-3b that conveys the amounts or levels of all of the decisions within the portfolio. The 

lower a line crosses an axis in Figure 5-3b, the less of that decision has been chosen. 

In Figure 5-3a we can see relationships between the objectives. Color enables us to tell that all of 

the dark blue portfolios with zero years in Level 1 restrictions have medium to high levels of New Supply 

(fifth axis from the left), medium to high levels of April 1 carryover storage10, but may have anywhere 

from 0.2 to 15.4 MCM (200 to 12,500 AF) of New Storage (rightmost axis). This means that to minimize 

years in Level 1 restrictions, it is imperative that Eldorado attain new water sources but may choose to 

build or avoid large amounts of new reservoir storage. However, portfolios that do not build much New 

Storage perform more poorly in April 1 Storage and tend to require greater volumes of New Supply. This 

shows an important tradeoff within the Eldorado model as well as on the Front Range: utilities often have 

to choose between meeting growing demands with new supplies that come from conservation and other 

users’ shares and rights, which may be socially and economically disruptive to communities, and relying 

on contentious, expensive infrastructure that is difficult to permit. For further discussion on this topic, 

refer to Chapter 3 or Smith et al (In Review). 

Looking at Figure 5-3b we can see several trends relating decisions to performance by using color 

as a guide. All of the portfolios with zero years in Level 1 restrictions are plotted at the top of the 

ConsFactor axis (fifth from the right), denoting that they all include aggressive conservation (ConsFactor 

                                                      
10 April 1 Storage is the only maximization objective, so even though higher levels of storage are better, that is still 

represented by lower positioning on the axis. 
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= 2). It is possible to achieve acceptable reliability performance (fewer than five years in Level 1 

restrictions) with only moderate conservation, but aggressive conservation is an overwhelmingly 

promising strategy. We also see that portfolios with few years in Level 1 restrictions tend to have medium 

to high numbers of Wholesaler Shares (sixth axis from right). Beyond these two visible trends, no other 

insights are readily apparent.  

Interactive parallel plots are known to be helpful when working with this type of high-

dimensional data (Johansson and Forsell, 2016; Siirtola and Räihä, 2006). However, while shown to be 

useful in finding or choosing a specific portfolio (Siirtola and Räihä, 2006; Smith et al., In Review), the 

large number of ways to manipulate the visualizations (e.g. through reordering axes, changing colors, 

filtering, etc.) may impede unbiased understanding about the problem itself. 

MOEA tradeoff sets contain information about relationships between decision levers and objectives 

as well as interactions between groups of decisions. In any optimization problem with many complex 

decisions, some levers are going to be more consequential, and some will be more flexible. In the context 

of water resources planning, this information could indicate which water sources or infrastructure projects 

are more core to a reliable system and which are more peripheral contributors. As we demonstrate in the 

next section, large data sets produced by MOEA-assisted optimization offer an opportunity for water 

providers to gain this information through data mining.  

5.4 Results 

A Multivariate Regression Tree (MRT) generated from a set of MOEA-produced Pareto-optimal 

portfolios relates independent predictor variables (decision levers) to observations of response variables 

(performance objectives). Because the objectives used in MOEA-assisted optimization of a water 

resources system are often measured in different units with different scales, it is necessary to scale the 

observations in each objective to a range of zero to one; otherwise, the objective with the largest range 

and units would dominate the regression splits and the decision levers’ impacts on an objective with a 

smaller range and small units would have very little impact in reducing error. Values of decision levers 
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are not scaled. Another consideration when generating the trees is specifying the stopping criterion that 

tell the tree when to stop splitting. Requiring at least a 1% reduction in error compared to the root error is 

common; here, we used a 1.6% reduction to grow trees that provide good explanatory power but also fit 

on a page. Alternatively, you could grow a very large tree and prune it by hand.  

We used the mvpart R package (De’Ath, 2002, 2014; R Core Team, 2016), which is archived but 

still functional. The mvpart package generates a set of bar plots for the mean objective values at each leaf, 

but we replace the bars with boxplots to give more information.  

For every set of tradeoffs produced by an optimization run we produced a tree. Below, we 

introduce the results of an MRT with the tree from the 1°C-perturbed portfolios described in the previous 

section, and we follow that discussion with a tree from a tradeoff set produced by a 4°C-perturbed run. 

Comparing trees from different optimization scenarios results in additional problem and system 

understanding. 

5.4.1 MRT for 1°C-perturbed tradeoff set 

Figure 5-4 presents the MRT generated from the 961 portfolios in the 1°C-perturbed tradeoff set 

described in Section 5.3.6. We will first orient the reader to the features of the tree and then discuss 

different approaches to interpretation and insights from it. 
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Figure 5-4. Multivariate regression tree generated from the Eldorado Utility 1˚C optimization tradeoffs. 
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5.4.1.1 Features of an MRT 

At the top of the tree is the root node, where the information about number of portfolios and total 

root error are presented. Here we also see that the first split is based on the conservation level 

incorporated into each portfolio. No conservation is ConsFactor = 0, moderate conservation is ConsFactor 

= 1, and aggressive conservation is ConsFactor = 2. The left branch includes portfolios where ConsFactor 

is greater than or equal to 1.5, i.e. portfolios that have aggressive conservation. The split value reported is 

the average between the levels of decision above and below the split. As another example, following the 

left branch, the next split is on the volume of West Slope Res. To the left are portfolios that have 

reservoirs up to 6.5 MCM (5300 AF), and to the right go the portfolios that have reservoir volumes 

starting at 6.7 MCM (5400 AF). The granularity of the split value depends on the discretization of a 

decision lever (i.e. some levers are continuous, while other levers increase by steps of, e.g., 10). 

Following splits down to the leaves, we find that each leaf has a set of boxplots. There is a 

boxplot for each of the seven objectives, each with a color denoted in the legend. The ranges for each 

objective can also be found in the legend (the same ranges in Figure 5-3a). The order of the boxplots is 

the same as the order in which the objectives were first described, which is also their order in Figure 5-3a. 

And, like the parallel plots, the lower a boxplot is positioned within the plot area, the better the 

performances of the portfolios within the leaf.  

Also located at each leaf is the number of portfolios contained within the leaf and the total error 

across all objectives within the leaf. Notice that leaves with larger numbers of portfolios tend to have 

higher error because there are more errors to sum, and also that leaves that have a large distribution of 

performance in one or more objectives (i.e. large boxplot ranges) will also have higher in-leaf error; this 

makes sense because when a group has a wide distribution in one or more objectives, the portfolios 

contained in the leaf have objective values that are further from the objective mean(s), and error is a 

measure of these distances. Finally, the error number reported at the bottom of the tree is the amount of 

error leftover after growing the tree. It is equal to the sum of all within-leaf errors divided by the root 
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error. The remaining error for this tree is 0.347, so the tree explains 65.3% of the performance objective 

variance within the data set. This can be understood as a measure of how well the tree was able to 

organize the set of portfolios into groups of similar performance characteristics, where this tree reduced 

the disorganization from 100% to 34.7%. 

5.4.1.2 Interpreting the tree: leaves-first 

One way to use the information contained within the tree is to start at the leaves, consider the 

ranges of performance for the objectives, assert a set of priorities to direct focus on a single leaf, and then 

follow the branches up to the root to see what decision rules produced that leaf. For example, Eldorado 

Utility managers may want to prioritize reliability-related objectives (Smith et al., In Review). Given that 

criteria, leaves that have boxplots that are very low with small ranges in the first three objectives (blue, 

grey, and red) would contain portfolios of interest. Examining the leaves shows that there are three that 

meet that boxplot configuration- leaves 1, 2, and 5. Focusing on leaves 2 and 5, which are superior to 

Leaf 1 in years in Level 1 Restrictions, will help illustrate the value of MRTs and connect them to 

recognizable tradeoffs. Figure 5-5 provides a close up comparison of the two sets of boxplots. 

 

Figure 5-5. Comparison of two leaves from the 1˚C MRT. Note that both leaves incorporate Aggressive 

Conservaton and have very similar amounts of Ag2 Shares. 

The decision rules that lead to Leaf 2 are: aggressive conservation; a West Slope Res smaller than 

6.6 MCM (5350 AF); 5,200 or more shares of the Ag2 Irrigation Co.; and at least 8% of Industrial User’s 

water rights. None of the portfolios have any incidence of any level of restrictions, they have moderate to 

high volumes of MissedOpp water, a very high range of NewSupply (the highest range of all the leaves), 
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medium-high April 1 carryover storage, and moderate to low volumes of NewStorage. Despite having 

zero years in restrictions, the April 1 carryover storage objective is not as high (i.e. positioned a low) as 

might be expected because the portfolios within the leaf have relatively low amounts of NewStorage. 

The path to Leaf 5 includes aggressive storage, a West Slope Res 6.6 MCM (5350 AF) or larger, 

and at least 6300 Ag2 Shares. The performance ranges in Leaf 5 are notably different than in Leaf 2. 

Among the portfolios in Leaf 5, there is one occurrence of Level 1 restrictions and 1 occurrence of Level 

2 restrictions, moderate volume of MissedOpp water, moderate to high NewSupply, high to moderate 

volumes of April 1 carryover storage, and high to very high volume of NewStorage. Incorporating the 

larger West Slope Res reduced Leaf 5’s reliance on NewSupply (e.g. via the Industrial Rights required in 

Leaf 2), but the portfolios are therefore more likely to have large amounts of NewStorage. The 

comparison of the two leaves confirms the tradeoff between NewSupply and NewStorage discussed for 

the parallel plot in Figure 5-3a, and also confirms that even with large storage volumes, moderate 

NewSupply is still required for high reliability. We also note that the correspondence of two decisions- 

ConsFactor and Ag2S Shares- underscores that these are promising decision levers. 

Emphasizing leaves 2 and 5 as superior to others in reliability objectives does not preclude other 

leaves and other sets of decisions from containing portfolios that match Eldorado’s performance 

priorities. The leaves simply indicate that after sequentially splitting the portfolios based on all of the 

relationships within the tradeoff set, these particular sets of decision levers are most likely to result in 

appealing portfolios. Furthermore, the decisions in the paths to highly reliable leaves must still be 

accompanied by actions in the other decision levers; there is just more flexibility in the values for these 

levers. Figure 5-6 shows revisits the parallel plots presented in Figure 5-3 but now emphasizes the 27 

portfolios in Leaf 2. 
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Figure 5-6. Parallel plots from the 1˚C Eldorado Utility tradeoff set, with the portfolios contained within 

Leaf 2 of the 1˚C MRT darkened. Plot (a) shows porformance tradeoffs. Plot (b) shows constituant 

decisions and uses red dashed axes to highlight the four decisions from the branches that lead to Leaf 2. 

Figure 5-6a and Figure 5-6b are oriented almost exactly like the plots in Figure 5-3: the 7 

objectives all have axes in Figure 5-6a and the 13 decisions all have axes in Figure 5-6b. The only 

difference is that in this figure, color is used to distinguish the set of 27 portfolios from Leaf 2. In Figure 

5-6a, the pattern and ranges of the portfolios’ performance across the seven objectives matches the 

boxplots from Figure 5-5a. The ranges of ConsFactor, West Slope Res, Ag2Shares, and Industrial Rights 

in the decision levers in Figure 5-6b also reflect the decision rules, and red dashed axis lines highlight the 
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restricted ranges of those decisions. In eight of the remaining nine decision dimensions, there is 

considerable variety in potential values to accompany the constrained decisions. The levels of Wholesaler 

Shares are almost universally very high, though, so this decision lever correlated closely with one of the 

other decision rules that produced a split.  

5.4.1.3 Interpreting the tree: root-first 

Approaching the tree from the leaves up means asserting performance preferences and learning 

which decisions are likely to lead to good performance. Starting from the root and working down allows 

users to learn how their decision preferences impact performance.  

Using the tree in Figure 5-4, we can simulate the path an Eldorado manager might take down the 

tree. At the first split, a manager may choose to go to the right because even though conservation is a part 

of any serious long term plan, she or he does not want to have to rely on aggressive conservation to meet 

performance goals. At the next split, a manager may choose to go left because Wholesaler Shares are a 

reliable water source that do not require infrastructure. At the next split, a manager may want to avoid a 

large West Slope Res because of cost, permitting, etc., so would go left and end up at Leaf 7. The 

boxplots in Leaf 7 reveal that these decisions will likely result in good performance in NewSupply and 

NewStorage but poor to terrible performance in the other objectives. This manager would have learned 

that the combination of decisions in this path will likely result in non-preferable performance regardless 

of the other 10 decisions in the portfolio.  

5.4.2 MRT for 4°C-perturbed tradeoff set 

All previous discussions of tradeoffs, portfolios, and trees have referred to a set of portfolios 

generated from optimizing for a 1°C-warmer future. Planning in consideration of multiple possible future 

scenarios is beneficial in and of itself, and it also increases the impact of MOEA-based MRTs. Below we 

present an MRT generated from a set of portfolios optimized for 4°C-perturbed hydrology. After briefly 

describing a few features specific to this tree, we discuss findings from comparing the 1°C and 4°C trees. 
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Figure 5-7. Multivariate regression tree generated from the Eldorado Utility 4˚C optimization tradeoffs. 
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The root error and total number of portfolios are given at the root node of the MRT in Figure 5-7. 

Splits, leaves, boxplots, colors, and objective ranges are all oriented the same as in Figure 5-4, but note 

that the objective ranges are different. This is especially relevant in the first three objectives (years in 

levels of restrictions); the more challenging hydrology resulted in more frequent restrictions and fewer 

portfolios with low incidence. The final error for this tree, located at the bottom, is 0.341, so it explains 

65.9% of the performance variance found within the tradeoff set.  

If we repeat the same leaf-first exercise from the 1°C tree, where we determined that the 

performance preference was to have minimal years in all three levels of restrictions, that criteria reduces 

viable leaves down to two: Leaf 1 and Leaf3. The decision path to Leaf 1 includes aggressive 

conservation, at least 4060 Wholesaler Shares, a West Slope Res less than 4.3 MCM (4350 AF), and at 

least 7% of Industrial Users rights. The decision rules for Leaf 3 are, like Leaf 1, aggressive conservation 

and at least 4060 Wholesaler Shares, but then instead of a small West Slope Res and a percentage of 

Industrial rights, Leaf 2 includes a West Slope Res at least 5.4 MCM (4350 AF) in volume. A comparison 

of the two leaves shows that they exhibit the same NewSupply-NewStorage tradeoff seen in the 1°C MRT 

and the original parallel plots of the 1°C tradeoffs. 

5.4.3 Comparing MRTs 

Comparing the broad characteristics of the two trees provides valuable information. First, we note 

that the decisions on which splits occur are very similar across both trees: ConsFactor, West Slope Res, 

and Industrial Rights are prominent in both trees. In the 1°C tree, Ag2 Shares are more important while in 

the 4°C tree, Wholesaler Shares are more important. Since Wholesaler Shares are a western slope source 

and Ag2 Shares are eastern slope, this may be indicative of a shift in basin yields with warmer 

temperatures. The general agreement in splits suggests that these decisions are the most influential factors 

in a portfolio in either scenario, and this is a fundamental insight about the Eldorado system. 

We can expand on this general decision lever agreement by comparing sets of leaves from the 

two trees. First we will compare Leaf 2 from the 1°C tree and Leaf 1 from the 4°C tree, as shown in 
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Figure 5-8. The decisions that lead to these leaves with very similar objective patterns include three 

nearly identical splits: aggressive conservation, a medium or smaller West Slope Res, and approximately 

7% or more of the Industrial rights. Ag2 Shares in 1°C are traded for Wholesaler Shares in 4°C. 

 

Figure 5-8. Comparison of Leaf 2 from the 1˚C MRT and Leaf 1 from the 4˚C MRT. Note that 

Aggressive Conservation, West Slope Res, and Industrial Rights have identical or similar values in both 

leaves. 

Now compare Leaf 5 from the 1°C tree and Leaf 3 from the 4°C tree in Figure 5-9. Like the 

previous comparison, the patterns of objective performances are similar, and they share two almost 

identical splits: aggressive conservation and medium to large West Slope Res. Again, Ag2 Shares in 1°C 

are replaced by Wholesaler Shares in 4°C.  

 

Figure 5-9. Comparison of Leaf 5 from the 1˚C MRT and Leaf 3 from the 4˚C MRT. Note that these 

leaves both incorporate Aggressive Conservation and a moderate-to-large West Slop Res. 

Recall from Figure 5-2 that the 1°C- and 4°C-perturbed hydrologies are substantially different in 

runoff timing and magnitude and overall hydrograph shape. The overlap in the two sets of leaves suggests 
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that when seeking portfolios with high reliability, there is a fundamental strategy for preferring to 

minimize NewStorage at the cost of more NewSupply (leaves 2 and 1 in Figure 5-8) and a fundamental 

strategy for preferring to prioritize minimizing NewSupply instead of NewStorage (leaves 5 and 3 in 

Figure 5-9). As discussed in Chapter 3 and Smith et al (In Review), these strategies may map to broader 

planning policies agreed upon within a utility.  

5.5 Conclusion 

Large MOEA tradeoff sets are valuable sources of hidden system information that data mining can 

efficiently access. MRTs can relate performance variations within and across multiple objectives to 

distinct subsets of specific decisions, providing users with information about the most consequential 

decisions and their most productive ranges. Once MOEA tradeoffs are on hand, MRTs are very simple to 

generate and present easily comprehensible insights.  

The trees generated for the Eldorado Utility long term planning case study clearly demonstrate how 

the combination of MOEAs and MRTs can benefit a water provider. Within one tree, a user can start at a 

leaf and learn which few decisions, that, when included in a broader plan, would likely result in preferred 

(e.g. reliable) system performance. Because the ultimate success of any given decision is itself uncertain, 

prioritizing outcomes in the core, consequential decisions could allow for greater flexibility in the 

remaining decisions. Furthermore, as uncertainty in decision outcomes lessens over the course of 

implementing a plan, alternative values of the flexible decisions could be exchanged. Reading an MRT 

from top to bottom can also help managers or, equally importantly, high level decision makers, quickly 

understand what types of performance would likely materialize if their decision preferences were to shape 

a plan. Comparing leaves and decisions across trees generated from very different optimization scenarios 

can shed light on decisions that will result in good performance in a wide range of futures, i.e. decisions 

that are robust. Whether or not a utility chooses a specific portfolio from within one of the leaves (or one 

generated directly by the MOEA at all), the information offered by MRTs can quickly and objectively 
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organize system understanding for the many technical staff and decision makers who must work together 

to devise and adopt a plan. 

The method presented in this chapter was developed in response to direct feedback from a group of 

Front Range water utility managers. In 2016, we held a hands-on MOEA charrette at which we presented 

managers with multiple sets of tradeoffs generated from the Eldorado Utility optimization case study 

(Smith et al., In Review). Over the course of the day-long workshop, nine managers remarked frequently 

that they would like to understand how decisions were affecting performance – information that was 

difficult to deduce from interactive parallel plots alone. The managers’ responses highlighted the need to 

undertake research that could help agencies make practical sense of the voluminous, high-dimensional 

results of performing MOEA-assisted optimization for long term water utility planning. In keeping with 

the philosophy developed over an extended participatory study, we hope this area of research further 

develops with continued practitioner input. 
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Chapter 6 

Concluding Remarks 

6.1 Summary 

This dissertation presented a participatory framework designed to explore the usefulness and 

usability of research-developed tools, learn about industry context directly from practitioners, and develop 

future research avenues based on tool-specific as well as general feedback from participants. We 

demonstrated the Participatory Framework for Assessment and Improvement of Tools (ParFAIT) on 

Multiobjective Evolutionary Algorithm (MOEA)-assisted optimization for long term water utility 

planning with water managers from six Front Range water provider partners. The introduction of this 

document established the reasons for carrying out the framework on this tool and application; it described 

the ripe opportunity for MOEA-assisted optimization based on a growing number research case studies, 

utilities’ reliance on simulation models, access to computing power, and the interest expressed by 

practitioners. This is the first step of ParFAIT.  

Our processes and results from performing the remaining steps were described in subsequent 

chapters of this dissertation. Step 2, to hold a workshop with practitioners to elicit planning context and 

solicit their input on a tool testbed, was presented in Chapter 2; we described how a structured set of 

topics organized free-form discussions between practitioners and researchers. The workshop resulted in 

ideas for decision levers, objectives, constraints, modeling, and scenarios to inform our MOEA testbed, 

and also expanded our understanding of Front Range water utilities’ challenges. Chapter 3, corresponding 

with ParFAIT step 3, introduced the testbed we created – the Eldorado Utility Planning Model – and 

presented MOEA optimization results and analysis demonstrating its ability to capture Front Range 

management complexity and relevant planning tradeoffs. Chapter 4, i.e. step 4, detailed the careful design 

and content of our second workshop (or charrette), and reported practitioners’ responses to tradeoff 

analysis activities and discussion prompts about their broader planning processes. Finally, Chapter 5 
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introduced Multivariate Regression Trees (MRTs) to reveal fundamental system information contained 

within MOEA tradeoff sets.  

6.2 Conclusions 

Throughout this document, we provide evidence of the efficacy of ParFAIT. The structured process 

allowed practitioners make the case to us that MOEA-assisted optimization could be useful in their 

planning processes. In the second workshop, managers found the tradeoffs beneficial in identifying and 

justifying planning strategies, and they reported that the tradeoffs could also support policy discussions 

with decision makers and help to achieve plan buy-in from the public. Discussions at the workshop also 

resulted in insights about important usability considerations, e.g. the importance of having the right type 

of model and appropriate visualization techniques. Furthermore, workshop 2 successfully generated 

actionable feedback about MOEA-assisted optimization that has already begun to shape our research 

agenda via the application of MRTs; this data mining method can shed light on the types of questions 

about decisions vs. objectives that came up frequently for workshop 2 participants.    

Besides the benefits of the structured process of the framework, we also recognize that using a 

specific tool as the main organizing concept helped ParFAIT in its other goal: to draw information about 

important water utility planning context into Water Resources Systems Analysis (WRSA) literature. The 

pre-defined topics relevant to performing MOEA-assisted optimization led to nuance that may not have 

come out if we asked more general questions; for example, asking utilities in the first workshop to give 

examples of planning objectives as they related to an MOEA problem formulation resulted in a revealing 

discussion about different ways of defining reliability and its relationship to other types of objectives. In 

workshop 2 we heard a discussion between managers about the tradeoff between increasing rates now to 

pay for new infrastructure vs. slowly increasing them to balance the reduced demand that would result 

from frequent restrictions or aggressive conservation measures. 

A final conclusion is that investing time and effort into soliciting direct input from practitioners and 

then iterating with practitioner PIs can result in a valuable testbed simulation model. As with other 
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models designed for research purposes, the Eldorado Utility Planning Model comes with the freedom to 

experiment, but it advances the art by bringing in far greater complexity than previous WRSA research 

simulations. Knowing which types of complexity to incorporate, e.g. water ownership and intricate return 

flow patterns, was only possible because of interactions with water managers. Additionally, the necessity 

of testing our modeling and problem formulations with managers at workshop 2 provided important 

motivation and feedback. 

6.3 Contributions 

This study contributes the ParFAIT framework itself. Though demonstrated here on MOEA-

assisted optimization for long term water utility planning, it can be used by any research field for any tool 

and any proposed purpose to ascertain usefulness and usability of a tool and inform future research 

agendas. Through published and in-preparation articles, we have shown that the work is publishable, and 

thus not a diversion from an important traditional research motivation. Ideas for research that respond 

directly to input from practitioners provide greater confidence in WRSA research within the academic 

community and among practitioners, and building relationships that span the boundary between academia 

and practice can result in greater long term water resources sustainability. Finally, practitioners benefit by 

getting hands-on experience with an emerging tool, which may also increase the likelihood that the tool is 

(more widely) adopted in practice. 

Through two workshops, this study has drawn into academic literature important insights about 

water utilities’ experiences, challenges, planning processes, decision levers, and objectives. Importantly, 

we present them clearly and for the explicit purpose of informing future WRSA research rather than 

framing them as byproducts or inferences. We hope that these can broadly impact future work and that 

this effort will encourage future studies that incorporate practitioners to do the same. 

We contribute the complex, credible, relatable, and practitioner-tested Eldorado Utility Planning 

Model. Through this model, future MOEA research can be conducted in consideration of challenges that 
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more closely resemble real-world context than previously-developed models. This advantage can 

facilitate communication of results and new techniques to a practitioner audience. 

Finally, this research contributes a novel application of MRTs to mine MOEA tradeoffs. This is a 

contribution relevant not only to WRSA research but also to other fields that use MOEA-assisted 

optimization. While we learned that MOEA tradeoffs are perceived as useful and usable, we also realized 

that techniques which support the interpretation of the tradeoffs are needed. MRTs offer a way to connect 

multiobjective performance to individual and groups of decisions, providing fundamental system 

information and potentially offering guidance in formulating robust long term water utility plans. 

6.4 Future Work 

6.4.1 Workshops 

The success of our second workshop, where practitioners were able to work with MOEA 

tradeoffs and provide thoughtful feedback, suggests that additional workshops addressing different 

aspects of MOEA-assisted optimization would be fruitful. One logical extension, and an idea we heard 

during the workshop, is to design exercises to investigate how tradeoffs can support group decision 

making. This could focus on either building group understanding, negotiating around different priorities, 

or both. Recent research using MOEAs for transboundary operations in the Nile River basin suggests that 

developing and testing approaches to this in a hypothetical application could benefit future real world 

efforts (Wheeler et al., In Review). Another workshop idea would be to follow up with Front Range 

managers to determine how the information provided by MRTs could enhance the usefulness of tradeoffs 

and what role the trees could play. Finally, we have determined that practitioners see potential for MOEA 

tradeoffs in the context of long term planning, but evaluating the tool in the context of optimizing short 

term operational policies is a different proposition and would be an interesting iteration of the ParFAIT 

approach.  
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6.4.2 Technical Studies 

Our inaugural application of MRTs to MOEA tradeoffs can be a starting point for several 

different research directions. First, the standard partitioning method for the trees is to minimize deviance, 

but other partitioning algorithms could produce different results. Development and comparison of 

partitioning techniques could potentially improve on this first effort. Another useful avenue would be to 

test the efficacy of MRTs on tradeoff sets from operations-scale MOEA studies; this would ask whether, 

e.g., identifying a small number of core rule curve elevations or releases would be meaningful for 

reservoir operation. Finally, MRTs should be only the beginning of applying data mining to WRSA 

tradeoff sets. Other data mining techniques should be tested on these troves of system information. 

MRTs could be useful for identifying vulnerabilities in a planning portfolio, similarly to how the 

Patient Rule Induction Method (PRIM) is used to hunt for a small number of comprehensible conditions 

that lead to plan failure. If traces are characterized by dimensions such as lowest 10-year average flow, or 

longest span of annual flow below X acre feet, the MRT algorithm could determine splits in those 

dimensions (the independent variables) that produce different types of portfolio performance across 

multiple objectives (the response variables). Lempert et al (2008) recognized the potential of both tree 

algorithms and PRIM for scenario discovery, and found that Classification and Regression Tree (CART) 

performed comparably to PRIM, though the two methods had different strengths and weaknesses.  

Two weaknesses of PRIM are that it only accounts for success or failure to meet a user-defined 

threshold (i.e. it can only be used for binary classifications), and it struggles when there are both 

categorical and continuous dimensions of uncertainty. Kwakkel and Jaxa-Rozen (2016) recently tested 

avenues of addressing these shortcomings, including incorporating elements of CART. Considering that 

there are multiple measures of performance for any plan, and quantitative performance information could 

be desirable for assessing performance, MRTs should be explored in the context of scenario discovery. 

A fundamental MOEA research need is to develop more guidance on how objective calculations 

should be aggregated across multiple traces. Academic studies have commonly minimized the mean 
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performance, or maximized performance in the worst trace, but aside from Quinn et al (2017), which 

compared the robustness of minimizing either the single worst trace, the worst first percentile trace, or the 

mean, there has been little study of the most appropriate aggregation functions. Other conceivable 

functions such as the median or geometric mean should be considered. Researchers need to develop a 

formal framework that any user can apply which accounts for: the number of hydrologic traces (or traces 

of other uncertain factors) used, the range of those traces (i.e. are there extremes?), the type of objective 

in question, and a process for assessing how that objective can vary under different scenarios. 
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