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Abstract

While signatures of attention can be observed in widespread areas within and outside
of cortex, the control of attention is thought to be regulated by higher cognitive brain ar-
eas, such as the prefrontal cortex. In their recent study on mice Kim et al. [1] could show
that successful allocation of attention is characterized by increased spiking of a specific
type of inhibitory interneurons, the parvalbumin neurons, and higher oscillatory activity
in the gamma band in the local prefrontal network.

It was recently demonstrated that encoding of working memory in prefrontal areas
is linked to bursts of gamma oscillations, a discontinuous network process characterized
by short periods of intense power in the gamma band. The relationship between atten-
tion and working memory is unclear, and it is possible that these two cognitive processes
share encoding principles. To address this gap, the electrophysiological data collected in
the Carlén Lab have been analyzed with advanced spatio-temporal approaches.

In particular, we have analyzed bursting gamma activity in medial prefrontal cor-
tex during attentional processing and investigated the similarities to gamma bursting
observed during working memory. Gamma-band bursts during attention were reliably
detected with several methods. We have characterized several features of the bursts, in-
cluding the occurrence, duration and amplitude. The neuronal firing rates during and
outside of bursts have also been computed. We investigated the correlation between dif-
ferent criteria characterizing the gamma burst and successful vs failed allocation of atten-
tion. Control data were generated to discuss the obtained results. The aim of the study
was to explore the hypothesis that the medial prefrontal cortex encodes attention through
gamma bursts, which could reveal some similarities and differences in coding of central
cognitive processes.

No clear difference was found in the characterization between successful and failed
allocation of attention. In addition, results were very similar in control set and original
data. No underlying mechanism could be identified from this analysis. Therefore, as the
bursts occurring in the gamma band in the prefrontal cortex (PFC) were not discrimina-
tive with respect to the different tested conditions, they do not seem to encode informa-
tion related to attention.
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Sammanfattning

Även fast flera olika hjärnområdens aktivitet kan korreleras med uppmärksamhet,
anses kontrollen av uppmärksamhet regleras av högre kognitiva hjärnområden, såsom
främre hjärnbarken. I en nyligen publicerad artikel studerade Kim et al. [1] hjärnaktivi-
teten hos möss och kunde visa att en framgångsrik uppmärksamhet kännetecknas av en
ökad aktivitet av en specifik typ av inhiberande nervceller, parvalbumin celler, och högre
oscillerande aktivitet i gammafrekvens i främre hjärnbarkens lokala nätverk.

Det har nyligen visats att kodning av arbetsminne i främre hjärnbarken är kopplat till
utbrott av gamma-oscillationer, en diskontinuerlig nätverksprocess som kännetecknas av
korta perioder av intensiva oscillationer av det lokala nätverket i gammafrekvens . Rela-
tionen mellan uppmärksamhet och arbetsminne är oklar, och det är möjligt att dessa två
kognitiva processer delar kodningsprinciper. För att minska detta gap av kunskap har
den elektrofysiologiska datan som samlats in i Carlén Lab analyserats med avancerade
spatio-temporala tillvägagångssätt.

I synnerhet har vi analyserat utbrott i gammaaktivitet i främre hjärnbarken under
uppmärksamhet och undersökt likheterna med gamma- utbrott observerade under ar-
betsminne. Gamma-bandutbrott under uppmärksamhet påvisades på ett tillförlitligt sätt
med flera metoder. Vi har karaktäriserat flera funktioner hos utbrotten, inklusive före-
komsten, varaktigheten och amplituden. De enskilda cellernas aktivitet undersöktes även
under och utanför utprotten av gamma-oscillationer.

Vi undersökte sambandet mellan de olika kriterier som karakteriserar gamma-utbrott
under framgångsrik mot misslyckad allokering av uppmärksamhet. Kontrolldata gene-
rerades för att diskutera de erhållna resultaten. Syftet med studien var att utforska hy-
potesen att den främre hjärnbarken kodar uppmärksamhet genom gamma-utbrott, vilket
kan avslöja vissa likheter och skillnader i kodning av centrala kognitiva processer. Ingen
klar skillnad hittades i karaktäriseringen mellan framgångsrik och misslyckad allokering
av uppmärksamhet. Dessutom var resultaten mycket likartade i kontrolluppsättningen
och den ursprungliga datan. Ingen underliggande mekanism kunde identifieras ur denna
analys. Eftersom de utbrott som uppstod i gamma-bandet i främre hjärnbarken inte var
unika med hänsyn till de olika testade förhållandena, tycks de därför inte koda informa-
tion relaterad till uppmärksamhet.
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SPECT single-photon emission computed tomography.

STD standard deviation.
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Chapter 1

Introduction

1.1 Current knowledge and related studies

The brain is a complex organ about which the current scientific knowledge is still very
incomplete. It is a gigantic network of neurons. The human brain is for instance esti-
mated to be made up of 15 to 30 billion neurons [2] which are highly interconnected, 100
trillions synapses linking them together [3]. And even though each individual neuron
can only accomplish quite basic computational operations, the whole network makes it
possible for animals and especially humans to develop advanced capabilities.

Among our many skills, we are able to acquire and use knowledge. All the processes
linked to this ability are part of cognition. It consists for instance in treating accessible
information in order to extract meaningful elements. This requires to make a selection to
focus only on what is relevant. This cognitive mechanism is referred to as attention: if a
stimulus is considered useful, then it is emphasized; otherwise, if it is either distracting
either irrelevant, it is suppressed [4]. A deficit in attention is observed in several diseases
such as schizophrenia [5, 6, 7] or autism spectrum disorder [8]. It makes attention par-
ticularly interesting, as understanding the underlying mechanisms might lead to new
treatments in the future.

Several methods have been used in science in order to correlate behavior with brain
activity. When a macroscopic overview is sufficient, neuroimaging is an effective and
non-invasive way to correlate brain areas with a cognitive task. In the literature, positron
emission tomography (PET) [9], functional magnetic resonance imaging (fMRI) [10] or
single-photon emission computed tomography (SPECT) [11] are widely used. Another
approach consists in observing the brain at the mesoscopic scale. In that case, the focus
is put on networks and neuron level correlates of behavior. This typically involves elec-
trophysiology, which is based on measuring the electrical properties of neural cells and
tissues. Indeed, electric fields are generated in the cortex because of the electrical activ-
ity occurring in neurons and synapses. They can be recorded by placing an electrode on
the scalp in the case of electroencephalography (EEG), or in the brain for recording local
field potential (LFP). The recorded voltage usually presents oscillatory patterns at differ-
ent frequency scales.

While signatures of attention can be observed with many methods in widespread ar-
eas within and outside of cortex, the control of attention is thought to be regulated by
higher cognitive brain areas such as the PFC [12, 13]. Studies also linked attention to os-
cillatory activity of the LFP in the gamma band [14, 15, 16, 17, 18, 19, 20] (30-100 Hz). In
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2 CHAPTER 1. INTRODUCTION

the recent study on mice by Kim et al. [1], the Carlén group showed that successful al-
location of attention is characterized by increased spiking of a specific type of inhibitory
interneurons, the parvalbumin neurons, and a higher oscillatory activity of the local field
in the gamma band in the local prefrontal network. These results are consistent with pre-
vious work [21]. However, we still lack understanding of relationship between spiking
activity of individual neurons and discrete oscillatory burst events observed in the extra-
cellular space (local fields) in processes underlying attention in the local prefrontal cir-
cuit. Therefore, further investigations need to be conducted.

It is indeed quite common to observe short periods of intense activity called bursts
when studying gamma oscillations [22, 23, 24], but their functional role and dynamical
interpretation are still under investigations. Lundqvist et al. [25] showed that gamma
power is increasing with memory load in an attractor network model. They then went
further and researched these power variations in biological recordings. In a noteworthy
study [26], they established a link between the cognitive process of working memory and
bursts of gamma oscillations in the PFC. Based on these elements, their study proposed
a new perspective on working memory. Thanks to single neuron analysis instead of typi-
cal averaging of neural data over trials and/or electrodes, Lundqvist et al. [26] concluded
that working memory would actually be a discrete process rather than being coded by
sustained activity, bursts being the manifestation of discrete memory loads.

This result is very important as it goes against the most commonly adopted theory in
the last decades of working memory that presumes persistent neural activity as the hall-
mark and mechanism of memory maintenance[27]. Working memory has been thought
to result from a very sustained activity in higher-order cortical areas such as the PFC.
This has been supported by numerous studies originating as early as in 1970s [28] and
continuing until now [29, 30].

1.2 The project

1.2.1 Problem identification and formulation

As mentioned in section 1.1, gamma oscillations in the PFC are strongly believed to
correlate with the cognitive process of attention allocation. Kim et al. [1] observed in-
creased gamma power in successful allocation of attention, but the origin of this fast os-
cillatory activity is still unclear. In several studies, bursts were observed in the gamma
activity [22, 23, 24]. They have recently been related to encoding and decoding of work-
ing memory [26], which has even led to proposing a new point of view on the mecha-
nisms behind this cognitive function. Based on this knowledge, the possibility that atten-
tion allocation might be linked to bursts in the gamma band is worth an investigation.
Bursting phenomenon could explain the observed increase of gamma band power in the
PFC because periods of intense activity would increase the overall power, and also be a
correlate of neural mechanism underlying the allocation of attention.

Therefore, this study tackles the following question: does bursting gamma oscillatory
activity occur in the PFC during attention, and if so does the modulation of bursts reflect
any distinct and behaviorally relevant aspect of cognition such as a reduced attention
span?
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1.2.2 Goals and delimitations

The main project goal is to re-analyze electrophysiological data which were collected in
an attentional task by the co-supervisor, Dr. Hoseok Kim, in the Carlén lab, in relation to
the findings in Lundqvist et al. [26]. As all the data were already collected before, there
is no need for conducting any new experiment.

The first step is to develop a reliable method for detecting gamma bursts. Several
possibilities are presented in the literature. They shall be investigated and adapted to the
dataset in order to decide which one is the most suitable.

Then, quantitative measures should be defined in order to characterize the gamma
bursts. As we are looking for an increased power, the occurrence - number of bursts per
second - and duration of bursts seem to be the two most relevant characteristics. Because
of the stronger activity, it is expected to find in correct trials either more bursts, either an
higher duration, either both. However, other aspects such as amplitude, distribution or
correlation between bursts might also give interesting results and could be analyzed.

During the initial study, a significant difference in the spiking activity of a specific
type of interneurons, the Fast Spiking Parvalbumin (FS-PV), was found between correct
and failed allocation of attention. Also, in Lundqvist et al. [26], bursts were linked to an
increased spiking activity of specific neurons. Therefore, it seems relevant to analyze how
fast-spiking parvalbumin (FS-PV) neurons behave during gamma bursts. The expected
outcome is to find correlated patterns between gamma bursts and single neuron spiking
during attention.

The study outcome will determine whether there is any convincing correlation be-
tween gamma bursts and attention allocation. It will also be possible to compare the
bursts observed during attention with those described in literature during other tasks,
especially during working memory.



Chapter 2

Background

2.1 Attention in neuroscience

Attention is a fundamental cognitive process when it comes to organizing thoughts
and acting in a meaningful manner. It is the ability to focus on necessary information
while ignoring anything superfluous. In everyday life, many examples can illustrate this
mechanism. For instance, somebody reading a book in public transportations will not
hear surrounding conversations, as otherwise he could not integrate properly the content
of the text. He might even miss his stop if he is too deeply focus, as every information
not related to the reading would be suppressed, including visual or audio hints about
the proximity of the station. Two main functions of attention are usually distinguished
in neuroscience. The top-down attention is goal-driven and under direct control of the
individual who decides to focus on specific stimuli. The bottom-up attention, also known
as stimuli-driven, is induced by an intense stimulus such as a loud noise or a flash and
attract the attention without anticipating it [31, 32].

Because attention is a central component for cognition, an improper functioning of
this process can strongly decrease the quality of life. Attention deficit is the main symp-
tom of attention deficit hyperactivity disorder (ADHD) [33], a mental disorder which can
be a real impairment in modern society and is characterized by difficulties to pay atten-
tion, impulsive behavior and excessive activity. Attention impairment is also observed in
many common diseases such as Alzheimer [34], Parkinson [35], schizophrenia [5, 6, 7] or
autism spectrum disorder [8]. Identifying the mechanisms underlying attention would
be of great use for developing new treatments. This knowledge could be applied in psy-
chopharmacology, in order to design drugs with very specific targeting [36, 37]. It would
also improve therapies based on directly stimulating the brain, such as vagus nerve stim-
ulation (VNS) therapy and transcranial magnetic stimulation (TMS) [38].

Attention can by studied through many approaches. For this work, a neuroscience
perspective was chosen. It consists in studying the process by analyzing the nervous sys-
tem, which is the network formed by all nerves and nervous tissues together. In brief,
the nervous system is split in two parts. The peripheral nervous system essentially re-
lays information, while the central nervous system integrates and commands most of the
body. It contains the majority of the nervous system and especially the brain, which can
be split into different areas (lobes, Brodmann, etc.) based both on anatomical and func-
tional properties. Among other, the prefrontal cortex (PFC) is a well studied area. It is
the cerebral cortex covering the front part of the front lobe (figure 2.1). It is well known
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CHAPTER 2. BACKGROUND 5

Figure 2.1: Schematic view of the PFC in human, in red (mid-sagittal section). Taken from
Database Center for Life Science (DBCLS), under the license CC BY-SA 2.1 JP

for being involved in decision making [39], planning [40], execution of complex cogni-
tive tasks [41], social behavior [42] and personality [43]. On the overall, it is essential for
goal-oriented behavior [44], and in particular the PFC seems to have a crucial role for
regulating the control of attention [45, 46]. Therefore, this study focuses only on the neu-
ral manifestations of attention in the PFC, omitting activity occurring in other part of the
nervous system.

In order to study a cognitive process such as attention, the common practice in neu-
roscience is to design a test requiring attention and in which the quality of attention allo-
cation can be evaluated or quantified from the comportment. This can be for instance by
looking at a reaction time, the success or failure of a task, the time spent doing a specific
behavior [47, 48], etc. Several experiments can be done based on this test. First, it is pos-
sible to look for a correlation between the activity of the nervous system and the atten-
tion level. The activity can be captured trough several techniques including neuroimag-
ing or signal recording. When doing electroencephalography, tetrodes are placed on the
scalp to record voltage. Electrocorticography is more invasive and consists in recording
inside the brain by inserting electrodes under the skull, but it usually provides more ac-
curate data such as the local field potential (LFP). When several electrodes are placed
very close to each other, it is possible to isolate the activity of single neurons (see 3.1.1.4
for more details about this procedure). A second approach consists in altering the func-
tioning of some specific elements of the cortex which are believed to play a role in at-
tention, and then observe the influence on task execution. This can be accomplished in
many ways, including pharmacology when injecting drugs [49], optogenetics for target-
ing specific group of neurons [50] or surgery for whole brain parts [51].

The neuroscience knowledge of attention is still sparse. Desimone and Duncan [4]
proposed that when it comes to sensory inputs, different pathways with different infor-
mation compete using mutual inhibitory interactions. Attention would be a way to select
one of these pathways according to what we decide to focus on. Thanks to a top-down
control believed to mainly occur in the PFC, excitatory signals introduce a bias toward
neurons representing to-be-attended features. This makes them more likely to win and
remain active, establishing a pathway where information expected to be important is
transmitted.

Miller and Cohen [12] went deeper and presented an integrative theory of the PFC
function. The PFC would exert cognitive control by maintaining actively patterns of ac-
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tivity representing goals and means to achieve them. These patterns would be used to
introduce a bias in neural pathway, in order to establish the proper mapping in the neu-
ral net between input, internal functions and outputs required to achieve a specific task.
This can be any sensory input, but also response execution, memory retrieval, emotional
evaluation etc. Attention would only correspond to the case where the bias is relative
to information, exactly as in Desimone and Duncan [4]. But with this theory, it becomes
only one facet of a more global mechanism.

Several processes could explain the change of connectivity in the whole network. Be-
cause of the quickness with which changes appear, this is most likely not linked to any
anatomical evolution. The main mechanism at the network level seems to be synchrony.
It was shown that increasing inputs synchrony to a single neurons does not influence the
output in a linear way, but has instead a super-additive effect [52]. Therefore, increas-
ing synchrony in a group of neurons would strongly change their downstream impact.
A study by Fries et al. [53] corroborates this hypothesis. They put in evidence that dur-
ing visual attention, neural synchrony increases in the gamma band while decreasing in
lower frequencies such as delta and theta band, in a specific neural population coding
for the attended visual location. Synchrony was also observed across region in various
studies [54, 55]. It puts the neurons in these regions into co-excitable state, which boosts
connectivity [56].

On the neural level, other mechanisms are involved. During spatial attention, neu-
rons present an increased response to stimulus if their receptive fields are in attention
focus [57]. Attention can also increase the sensitivity of neurons to stimulus [58], which
improves behavior performance [59]. Other effects of attention on neurons were also put
in evidence, such as decreasing noise correlation to increase the information capacity of a
population [60] or resolving competition between stimuli [61].

2.2 Gamma activity during attention tasks

Electrophysiology is an effective way when it comes to understanding neural activ-
ity. The local field potential (LFP) is a measure, at a specific spatial location in the tis-
sue, of the voltage related to neighboring electric current flows from neurons firing. It
gives a representation of the overall activity in the neurons surrounding the electrode.
The LFP is a continuous signal from which different frequency components can easily be
extracted. LFP dynamics normally range from 0.1 to 100 Hz. This means that at the LFP
time scale, single neuron recordings can be simplified as a binary process "firing or non-
firing". Indeed, the basic dynamic of a single unit is the action potential whose duration
is around a few milliseconds, making it instantaneous when compared with LFP fluctua-
tions.

The different frequency components from a LFP signal are commonly split in bands,
each band being associated with a specific kind of activity. However, the boundaries are
arbitrary and the band delimitations are based on an usual agreement, often depending
on the studied species. The gamma band corresponds to frequencies ranging from 25 Hz
to 100 Hz, typically around 40 Hz, and is particularly interesting when it comes to atten-
tion.

Several studies proved that the gamma band is involved in sensory inputs. Stimulus-
specific gamma oscillatory activity was observed in both anesthetized [62] and awake
animals [63]. However, it was also observed in more advanced functions. Tallon-Baudry
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and Bertrand [64] demonstrated that gamma oscillations have a crucial role in object rep-
resentations, which is based on sensory information. Gamma role in cognitive processes
was underlined at several occasions, in particular for working memory [65, 66] and at-
tention [67, 20].

More precisely, Gregoriou et al. [68] showed that attentional processing leads to an
increase activity in the gamma band of the prefrontal areas. Kim et al. [1] made further
investigations and found that not only gamma oscillations are essential in the control of
attention, but also that the signal power is slightly but significantly stronger when alloca-
tion of attention is successful than when it is failed.

2.3 Bursts analysis during working memory tasks

The central nervous system generates neural oscillations both at neuron and network
levels. As regards neurons, they can fire rhythmic patterns of action potentials [69] and
membrane can follow oscillatory variations [70]. When observing the network, synchro-
nized activity of large number of neurons can induce oscillations at macroscopic scale
[71]. These oscillations can be captured by extracellular recordings such as EEG or LFP.

Sometimes, oscillations get higher amplitudes and frequencies, which gives raise to
periods of short but intense activity known as bursts. They can be observed in some fre-
quency bands of the LFP during cognitive processes such as attention, as presented in
section 1.1. This phenomenon, was deeply studied by Lundqvist et al. [26] for working
memory, a cognitive process that makes it possible to temporarily hold information be-
fore its use. In that case, the bursts analysis led to proposing a new point of view about
how working memory works.

Until now, there was a strong consensus in favor of working memory being based
on sustained neurons spiking. The mechanism was supposed to be very simple: some
event that needs to be remembered starts a spiking activity that is maintained until the
information is needed [72]. This can be modeled by an attractor network, in which the
information is held in a persistent state corresponding to a dynamic attractor. The state
is supported by recurrent connections which sustain the pattern of activity. Therefore the
information is lost if activity is interrupted [73]. Several studies in the last years under-
lined problems with this theory, especially as regards the behavior of individual neurons.
Most of them show brief bouts of activity [74], which is not coherent with the sustained
spiking theory but suggests instead an highly dynamic activity [75].

Alternative attractor models based on changing the synaptic plasticity of recurrent
connections offer interesting features. In this simulation, states correspond to expres-
sion of the information instead of being the information itself. Spiking activity is only re-
quired during the short lifetime of state, i.e. when replaying stored information [76]. This
method is more energy efficient because it requires less spikes. In addition, it is very ef-
fective for storing multiple items without perturbations. The relevance of these networks
for modeling working memory is supported by analysis in which known biological con-
straints were added to it [25]. The model predicted that memory load would correlate
with bursts of gamma oscillations. These bursts were indeed observed in monkeys [26],
giving strong support in favor of the intermittent replay theory.

When it comes to attention, the continuous or discrete nature of this process is still
very unclear. When studied as a behavior, it seems to be a continuous focus on some-
thing. However, when looked at in terms of neural activity, several studies [77, 78] present
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evidence in favor of a discrete model. Busch and VanRullen [79] revealed for instance
that performance for attended stimuli fluctuated around 7 Hz (theta band) while for
unattended stimuli it does not, thereby supporting the idea of periodic attention.

Even though no direct link can be established at the moment between working mem-
ory and attention, these abilities share some similarities. Both of them are important
cognitive processes when integrating sensory inputs, attention being linked to selection
while working memory makes storage possible. Moreover, working memory was also
related to sustained activity in the PFC [80], the same specific brain area as attention. Fi-
nally, the discrete or continuous nature is still in debate for both of them. The possibil-
ity that they are based on the same underlying mechanisms such as bursts is therefore
worth investigating.



Chapter 3

Methods

3.1 Electrophysiological data

All the data used in this thesis were retrieved during the study presented in Kim et al.
[1]. I did not personally gather the data, I only did analysis and did not take part in the
work presented in section 3.1. However, understanding the project requires to know the
methods and the reasons of this data collection.

3.1.1 Experimental protocol

3.1.1.1 Study presentation

This study focuses on the control of attention. Two main results are presented. First,
it confirms the importance of gamma oscillations in the control of attention. But mostly,
it reveals the central role of a particular type of inhibitory interneuron in the PFC, the
FS-PV neurons.

During this study, two main methods were applied. As regards data collection, elec-
trophysiology was used to gather information about neural activity. To control and mod-
ulate the activity of specific neuron groups, optogenetic manipulations were practiced.

For detection and characterization of gamma bursts, only data relative to natural neu-
ral activity was analyzed. Therefore, despite the very broad possibilities it offers, optoge-
netics will not be treated in this paper. Interested reader might refer to Fenno et al. [81]
for a proper introduction about this recent technology.

3.1.1.2 Experimenting on animals

In neuroscience, experimenting is extremely difficult. Because of the complexity and
very incomplete understanding of the nervous system, there is usually no effective alter-
native to conducting experiments on living organisms at the moment in neuroscience.

Even though the human brain is by far the most advanced brain known to exist, and
the most interesting one to understand as regards medical treatment, it is unacceptable to
conduct invasive experiments on humans for obvious ethical reasons. Therefore, most of
experiments are done on animals according to a very strict ethical code.

A lot of animal species can be used in neuroscience according to the experiment re-
quirements. A very important group is called non-human primates (NHP). The main
interest of working with monkeys is that they share a lot of similarities with humans,

9
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especially when it comes to brain functions and anatomy. They are able to accomplish
advanced tasks and to understand more complex protocols than any other animals. A lot
of studies about social behavior, face recognition, mental illness or language can exclu-
sively be conducted on NHP. They usually produce brain signals of very high quality.

However, NHP present a lot of cons. It can be difficult to handle them, making it
necessary to use some physical and chemicals restraining methods [82]. They are also
among the most expensive animals for experimenting, both in buying and maintenance
costs. This reduces substantially the number of subjects that laboratories can afford. Usu-
ally, only one female and one male animals are used in order to avoid a potential sex-
ual bias. Training is longer compared with most of other animals and NHP can be very
sensitive to a change of carer. Also, breading lineage of genetically modified animals is
a very common practice in neuroscience to specifically identify and manipulate neu-
rons and circuit types. But the current knowledge about NHP genomes is incomplete.
Combined with the fact that monkeys reproduce slowly, it makes it almost impossible to
work with genetically modified primates. Most of all, there are very big ethical concerns
in the use of NHP. Even though the strong brain similarities that monkeys share with
human "has scientific advantages, it poses some difficult ethical problems, because of an
increased likelihood that primates experience pain and suffering in ways that are similar
to humans." [83]

An opposite approach is to experiment on more basic organisms such as the lamprey,
fruit fly or the zebra fish. They present several interesting properties such as rapid de-
velopment, easy genetic manipulations or cheap prices and easy maintenance. The zebra
fish has a high physiological and genetic homology to mammals. In addition, embryos
are transparent, which is extremely convenient for observations [84]. The small size of its
brain enables exhaustive measurements of neuronal activity patterns [85], which is very
useful to understand the neural mechanisms underlying higher brain functions. Because
of their basic brain capabilities, using them in experiments raises fewer ethical concerns
than with more advanced animals. However, brain abilities limitation is also the main
problem with these organisms. Even though training is possible trough conditioning [86],
it cannot go further than basic tasks. Only extremely simple brain functions such as mo-
tor behavior can be studied with these animals.

Finally, some intermediate strategy is to work on rodents, especially on mice and
rats. They are mammals which are relatively close to humans. Most of human brain ar-
eas have their equivalent in both species. Rodents exhibit many of the brain functions
that exist in humans, including social skills. They can be trained to accomplish behaviors
that quantify the effectiveness of these functions such as attention, working memory, ag-
gressiveness, etc. They are cheap, easy to bread and genetically well known which make
them very convenient for creating genetically modified lineage.However, they cannot ac-
complish as advanced functions as monkeys. Recordings of brain signals are also usually
not of the same quality as the one you could obtain with NHP.

Effective tests exist on rodents for quantifying attention which makes resorting to
monkeys unnecessary. However, there is no satisfying method to study this cognitive
process on basic organisms. Therefore rodents were used in Kim et al. [1]. Mice were
preferred to rats. The main reasons is that the genetic toolbox is more developed for
mice, even though rats tend to catch up since a few years [87]. Other arguments are that
mice are smaller, easier to handle and more adapted to optogenetics. They are usually
more active, therefore it is possible to record more trials. They are also stronger and re-
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cover quickly from implant surgery.
All animal handling was done according to the Guidelines of the Stockholm munici-

pal committee for animal experiments.

3.1.1.3 Attention task

An important part of the experiment consists in designing a task for testing attention.
Various tests have been proposed in literature. They offer different approaches which
range from observing unconditioned behavior to cue detection of visual targets [47]. On
rodents, the five-choice serial reaction time task (5-CSRTT) is a widely used cue based
test for sustained attention [88, 89] with a high construct validity [90]. The 5-CSRTT is
commonly declined in different versions with two to nine choices.

In Kim et al. [1], it was decided to use a variant of the 5-CSRTT. Mice usually learn
slower than rats, making the conditioning for 5-CSRTT long, while it does not seem to
improve significantly the test quality. An odd number of choices being more popular and
supported by literature, the three-choice serial reaction time task (3-CSRTT) was chosen.

Figure 3.1: Schematic representation of the 3-CSRTT for fully trained animals; inspired by
Kim et al. [1]. After trial start, if the animal pokes a hole before cue onset, the trial is con-
sidered premature which leads to punishment. If the animal waits for the cue, it can either
poke the proper hole (correct in green, lead to reward), the wrong one (incorrect in red, lead
to punishment) or not push any hole in the 5 seconds period (omission in orange, lead to
punishment). New trial is then initiated.

The mouse is placed in an operant chamber with nine holes in the front wall, out of
which three are used. The whole process is automatized and does not require any hu-
man interaction except for starting and ending the experiment. The animal interacts with
these three holes by nose poking into them. This is captured by infrared sensors. The
animal also interacts with a reward port from which it gathers its reward. An infrared
photobeam captures both entrance and exit of the animal from the port.
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Trial is initiated by the animal approaching the reward port, breaking the photobeam.
Trial starts when the animal turns back to watch holes, reconnecting the photobeam. Af-
ter a random delay of 3,4 or 5 seconds, the cue is briefly presented for one second trough
lightning of a diode inside one of three holes randomly picked. The animal then have
5 seconds to nose poke the correct hole. If it manages, it gets a reward (15% sucrose so-
lution) and can initiate a new trial. If it fails by nose poking the wrong hole, omitting
to nose poke a hole during these 5 seconds or nose poking before cue onset, the trial is
failed. A strong light is emitted for 5 seconds as a punishment before a new trial can be
started (figure 3.1).

Animals were conditioned for this task by going trough six different levels of increas-
ing difficulty (figure A.1). They were considered fully trained when reaching at least 80%
accuracy for the final task. With this setup, attention is sustained in the period between
the trial start and the cue onset.

3.1.1.4 Tetrodes recordings

Neural signals were recorded using tetrodes that were inserted into mice brains. Each
tetrode is made of four fine wires (12 µm) which are twisted together. The point of using
four individual electrodes combined together as one tetrode is to identify single neurons
from their firing activity. Indeed, each electrode is at a different spatial location, but still
very close to the three others. Therefore, surrounding action potentials are usually de-
tected in the four channels of the tetrode but with different amplitudes because of the
slightly different position. Proper analysis then makes it possible to identify the firing
activity of several individual neurons.

In order to keep tetrodes inside the brain, the flexDrive was used [91]. It is is small
(about 2 cm high for a 1.5 cm diameter) and light (2 g) device in which four tetrodes are
loaded before being fixed on the skull during a surgery. This is a long term setup that
normally end-up being integrated by the rodent (see appendix figure A.2). Therefore,
recordings can be performed on a long period. Also, this system allows to move tetrodes
deeper each day, making it possible to record from slightly different spatial locations in
the brain every time. During experiments, the flexDrive was connected to the Digital
Lynx 4SX acquisition system and data was retrieved with the Cheetah data acquisition
software at a 32 kHz sampling frequency.

3.1.2 Signals

3.1.2.1 Splitting LFP and spiking activity

For each tetrode, the Cheetah acquisition provides a signal for every four electrodes.
This signal is mixing several phenomenons happening at different time scales. While ac-
tion potential occurs at high frequency, the LFP dynamics are much slower.

The first step is to split these two distinct activities trough filtering. Because the four
electrodes of a tetrode are very close to each others, the LFP is almost identical in the
four of them. Therefore, the LFP is extracted only from one electrode for the whole tetrode.
It is obtained by applying a band-pass filter to select low frequencies, between 0.1 Hz and
500 Hz. As its dynamics are relatively slow, it is down sampled by a factor 32 at 1 kHz.

The individual neuron spiking trains are extracted by first band-pass filtering the
high frequencies of the signal, between 600 Hz and 6000 Hz (figure 3.2). Then, single units
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Figure 3.2: Example of LFP and spiking train during 10 s of recording. On the top, the LFP.
On the bottom, the spiking train of a single neuron. Firing action potential is considered as
a binary process.

are identified by using the MClust offline sorter from A.D. Redish on the four signals of
a tetrode.

3.1.2.2 Dataset summary

Three fully trained implanted animals were used for the experiment. During each record-
ing session, about 64 to 100 trials of the 3-CSRTT were performed by an animal. The
same animal could only go trough a recording session once a day. On total 54 sessions
were recorded: 25 with animal A5G1, 23 with A1G2 and 6 with A3G2.

For each session, 4 tetrodes recordings are available. Each recording is made of 4 sig-
nals from the electrodes. One LFP is extracted per tetrode, meaning that on the overall
there are 54 ∗ 4 = 256 LFP available. One high frequency signals is extracted per elec-
trode, resulting in 54 ∗ 4 ∗ 4 = 864 signals. After units sorting, 476 single neurons in 148
tetrodes are identified from these signals. In 68 tetrodes, the signal was not good enough
to identify any neuron (figure 3.3).

3.2 Extracting gamma activity

As explained in the previous section, two types of data are available after preliminary
treatments: LFP and spike trains. However, bursts are studied specifically during atten-
tion and in the gamma band. Thus, it is first required to process the data into a represen-
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Figure 3.3: Summary of the dataset. Band-passing of low and high frequencies is simplified
as low-pass and high-pass filters.

tation of the gamma activity during the proper time period.

3.2.1 Selecting signals

3.2.1.1 Time period

During a trial, attention is sustained in a period ranging from the start of the trial,
when the mouse starts watching the holes, until the cue onset. During the rest of the
trial, different behaviors such as motor activity or reward collection are occurring.

Because of the random delay, this period can be 3,4 or 5 seconds long. This random
delay in the 3-CSRTT increases on the overall the attentional load and prevents any strat-
egy for predicting the cue occurrence. However, it raises problems when it comes to
analysis, as the period of attention varies in duration across trials which can introduce
a bias.

Analysis from Kim et al. [1] suggests that there is a short transient period of increas-
ing activity after trial start. It is followed by a stationary state of sustained activity at its
maximum level before cue onset. Any difference in bursting activity according to alloca-
tion of attention seems more likely to be observed in the intense stationary state, there-
fore, it was decided to focus on this period.

The shortest delay being of 3 seconds, looking at the 2 seconds before cue seems rea-
sonable. This 2 seconds duration was also applied for trials with 4 and 5 seconds de-
lay, as using constant time window reduces the risk of biasing data. In this thesis, the 2-
seconds period before cue is referred to as attention period (figure 3.4). If the assumption
of stationarity of the activity is correct, then there is no problem in aligning all periods
on the cue instead of trial start.
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Figure 3.4: Succession of events in a correct trial. Time is relative to the start of the trial.
The period of maximum attention is ranging from two seconds before cue to cue onset.
Trial starts when the mouse turns from reward port to face holes. In that example, the cue
onset occurs approximately 4 seconds later (3.8 s, small difference being due to some setup
inaccuracy). The animals nose pokes correctly 1.3 s after cue onset (5.1 s after trial start) and
waits 2.3 s to push the reward collection port, ending the trial (7.4 s after trial start).
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Figure 3.5: Periodogram of the LFP from one trial during the 2-second attention period.
Computed with multitapers (TW = 5; 9 tapers). Power in the lower frequencies is very
strong and therefore not in the plotting range. For frequencies higher than 40 Hz, power is
almost null. The gamma power is mostly focused between 30 Hz and 40 Hz.

3.2.1.2 Frequency band

The gamma band is commonly defined by ranging from 30 Hz until higher frequencies
up to 100 Hz. However, the activity in rodents is usually weak in very high frequencies.
In our recordings, almost no power can be observed after 40 Hz (figure 3.5). Therefore,
the analysis was limited to the band between 30 Hz and 40 Hz.
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3.2.1.3 Quality of signals

Recordings are performed on moving animals, which results in very noisy signals. It
can be linked to pure motor activity, but also to the mouse bumping its head on the box
borders. This leads to contaminated signals that are sometimes not exploitable. In partic-
ular, it can happen that the signal saturates at a constant value if it gets out of recording
range, as illustrated in figure 3.6. During the saturation, there is absolutely no informa-
tion encoded, which makes it impossible to deduce the gamma activity.
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Figure 3.6: Example of an extremely bad recording, not representative of an average signal.
It saturates at a constant value for almost the whole attention period.

The signal quality changes a lot from one trial to another. Therefore, this problem
should be addressed with a trial by trial approach. An algorithm was developed in order
to extract an exploitable signal from a contaminated one. First, all periods of saturation
are detected. After trying several set of parameters, it seemed optimal to define satura-
tion as having a constant value for three data points in a row (3 ms at 1 kHz). These de-
tected constant periods are used to split the signal into several sub-signals that never sat-
urate. Only the longest signal is selected (figure 3.7). The original LFP is returned in the
case that it never saturates. In the end, a test is applied on the signal length. If it lasts
for 1 s or less, it is considered to be too short for further analysis and the whole trial is
discarded. Otherwise, the trial is kept, either completely either in a cut version.

When the signal saturates, several periods of non-saturation can usually be extracted.
However, the previous method only uses the longest period while it might be possible
to exploit the shorter ones. Even if this would increase the amount of data available, it
would require to artificially reconnect or combine together these signals in the end of
the process. This calls for strong assumptions and presents the risk of biasing the data
and decreasing the dataset quality instead of improving it. Thus this solution was non
implemented.

3.2.1.4 Recap of selection process

The selection process for ensuring signals quality reduces progressively the size of
the dataset. The first step consists in working only with tetrodes from which single neu-
ron activity was identified. Indeed, it can be assumed that if no neuron can be detected
around the tetrode, either the signal quality is insufficient either the spatial location of
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Figure 3.7: Illustration of the cutting process. Time is relative to the start of attention pe-
riod, ranging from 0 to 2 s. The signal saturates for 121 ms (in red). Two proper signals are
extracted, of 1300 ms (in green) and 579 ms (in grey). Only the longest signal is selected for
further computations.

the tetrode is not optimal. In both cases, it is safer to avoid using these signals. This se-
lection reduces the number of tetrodes by 68 out of 216 (-31.5%).

In the 148 tetrodes, not all trials are interesting. It can happen that the animal does
not try to accomplish the trial even though it initiated it. It can be for instance scratching
itself, sniffing or exploring. This lack of motivation and investment in the task obviously
leads to a failed trial. However, the failure is not due to a bad allocation of attention but
related to a lack of will. These trials are referred to as unfocused trials in this thesis. It is
not relevant to analyze them, and they were manually detected and discarded (2,307 tri-
als out of 10,123; -22.8%) by watching video recordings of the experiments (figure 3.8A). I
did not have to sort the trials myself as this had already been done for the previous anal-
ysis.

The last step consists in the treatment presented previously, cutting or discarding sig-
nals that saturate. This reduce the dataset by 13.1% compared with the previous state.

In the end, considering the whole selection process, about 46% of recorded trials are
kept, not taking into account information lost by cutting part of the signals. This repre-
sents 7,816 trials. This seems to be a reasonable number of samples for running a statisti-
cally relevant analysis.

3.2.2 Band-pass filtering approach

3.2.2.1 Filter choice

This study focusing only on the gamma activity, a simple approach is to filter the LFP
in order to look only at the information in that range. A band-pass filter suits perfectly to
the situation: it cuts the frequencies that are too low (<30 Hz) or too high (>40 Hz). In this
thesis, an order 5 Butterworth filter was applied in the forward and reverse directions
to obtain the effect of zero-phase filtering. The implementation in MATLAB was done
thanks to the FieldTrip toolbox [92], which includes effective functions for filtering.
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Figure 3.8: (A.) Repartition of trials in the 148 selected tetrodes. After discarding unfocused
trials, most common output is correct (67.4%). Most common error is omission (19.4%).
Incorrect is the rarest situation (13.2%). (B.) Repartition of trials after the selection process.
Most of them are kept in their original form (72 to 77%). Cut signals lasting between 1 s

and 1.99 s represents 8 to 12% of trials; discarded 12 to 16%. No obvious difference can be
observed in signal quality according to the trial result.

3.2.2.2 Hilbert transform

After band-pass filtering, it is possible to observe gamma oscillations. However, the
oscillatory activity has to be analyzed in order to extract the signal intensity. A good ap-
proximation of the power can be obtained by computing the envelope of the gamma sig-
nal, a smooth curve outlining its extremes.

The Hilbert transform is a linear operator that can be used for extracting an envelope.
It returns the analytic representation of the signal, which is simply another representa-
tion of the real-valuated signal but in complex values. This is based on the fast Fourier
transform (FFT) algorithm which converts a N points signal sampled at Fs in its origi-
nal domain (in that case time) to a N points signal in the frequency domain, the point k
corresponding to a frequency of (k − 1) ∗ (Fs/N). This frequencies are bounded between
−Fs/2 and Fs/2. Therefore, when the frequency is higher than Fs/2, data points repre-
sent negative frequencies which are computed by subtracting Fs (see appendix figure B.1
for more details).

An important property of the FFT is that the transformed sequence presents an Her-
mitian symmetry about the f = 0 axis if and only if the input signal is real. If f̄ is the
conjugate of f, then it means that f̄(x) = f(−x). Thus negative frequencies can be recom-
puted from the positive ones; they can be discarded without information loss and simply
be replaced by null values.

The Hilbert transform is simply defined as the result obtained after inversing the sig-
nal without negative frequencies back into time domain. However, because the Fourier
transform is not Hermitian anymore, its inverse is now complex. It makes some manipu-
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Figure 3.9: Envelope extraction. On the top, the raw LFP signal. On the bottom, gamma
oscillations obtained after filtering (black) and the envelope extracted with the Hilbert
transform method (red). Green dashed lines represents the attention period limits. Time is
relative to the beginning of attention period. Amplitude is in different arbitrary units for
LFP and gamma activity.

lation on the signal easier. In particular, the envelope can be simply accessed at any time
point by computing the complex magnitude of the Hilbert transform (figure 3.9).

3.2.2.3 Edge margin

Some irrelevant behavior can happen at the edges of the signal. This is due to the two
transformations that are applied.

First, filtering is only done on a finite-time sequence. However, side effects can ap-
pear when filtering because selecting a window leads to an information loss. It means
that at the edges, the signal can be different than if it was observed in a wider window
in which these surrounding information would not have been lost. This phenomenon at-
tenuates quickly when moving away from the extremities. Previous empirical testing of
this dataset has shown that it usually disappears after 250 ms.

Then, the Hilbert transform envelope can also present an erratic behavior at the last
data points before the sequence limits, such as a strong increase or decrease of ampli-
tude.

The combination of these two side effects might lead to computing very irrelevant
gamma activities. In order to avoid this, a margin of 250 ms is applied to both sides of
the sequence (figure 3.10). The original 2-seconds attention period is extended to 2.5 sec-
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Figure 3.10: Interest of edges cutting. On top, signal is computed during the 2-second atten-
tion period extended by two 250 ms margin windows (delimited by green vertical dashed
lines). On the middle, signal is just computed during 2-second attention period. On the
bottom, the difference in absolute value between the two computed envelopes. Envelopes
are identical (difference < 1%, delimited by blue vertical dashed lines) except at the edges
(strong difference for 78 ms after beginning and 240 ms before ending). An important differ-
ence can be observed between the two filtered signal at the end of attention period. On the
same way, Hilbert envelope has an inappropriate tendency to increase (end of both signals)
or decrease (start of the 2-seconds signal).

onds. Then the usual algorithm is applied, first finding non saturating signal and then
filtering and computing envelope. At the end, 250 ms are cut at both extremities of the
envelope. The sequence length after cutting is checked, and the trial is discarded if the
cut envelope is shorter than 1 second. The whole signal extraction process is summarized
in figure 3.11.

3.2.3 Alternative methods

Other methods were also tried to extract gamma activity. Preliminary results were very
similar in all cases, which led to focusing only on one of them. The band-passing fol-
lowed by Hilbert transform being quite common in literature and computationally effi-
cient, it was kept in the end.
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Figure 3.11: Whole process of envelope extraction. (1.) As 250 ms of the signal will be cut at
both edges in the end to avoid side effects, the period of maximum attention (abbreviated
as AP, 2 s before cue, delimited by green dashed lines) is extended with a 250 ms margin
before and after. (2.) Non-constant LFP is extracted from this 2.5 s signal. Kept signal is
delimited by the black dashed lines (1725 ms duration). (3.) Band-pass filtering is done
between 30 Hz and 40 Hz. (4.) Envelope is the complex magnitude of Hilbert transform of
filtered LFP. (5.) When filtering and doing Hilbert transform, the signal can be irrelevant at
the edges. 250 ms are cut at both sides to avoid this. After cutting, the final signal is 1225 ms

long. This is longer than 1 second, therefore the whole trial is not discarded.

3.2.3.1 RMS

After band-pass filtering, an alternative to Hilbert transform for representing signal
intensity is to use the root mean square (RMS), also known as quadratic mean.

With digital recordings, it is computed across the signal in a moving window of an
odd size of m data points. If x1, x2, ..., xN are the N samples of the sequence and R the
RMS sequence, then:

Rk =

√√√√√ 1

m

k+m−1
2∑

i=k−m−1
2

x2i
m− 1

2
< k <= N − m− 1

2

The RMS signal cannot be defined on half of the moving window length at both be-
ginning and ending of signal because of the lack of data (see appendix figure B.2). While
testing this method, a 61 ms window gave satisfying results.

As RMS fluctuates a lot, it is necessary to smooth it. This was simply done by apply-
ing a moving window averaging, which means that every data point is the average value
of the surrounding data points in the original sequence. A 41 ms window was used.

Even though the Hilbert envelope and the RMS look different at first sight, they are
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almost identical after a standard score (Z-score) normalization. For a signal made of N
samples, the first step is to compute the mean value and standard deviation of the distri-
bution of these N samples. Then, each value is expressed as the signed number of stan-
dard deviations to the mean instead of using the original value. For instance, a Z-scored
value of 1 means that the original value is equal to mean+1∗std. With this normalization,
the focus is put on signal variations instead of values.

The burst detection algorithm used in this thesis is based on detecting period of high
activity compared to the mean. Therefore, similar signals after Z-scoring should produce
quite similar bursts characterization. As Z-scored RMS and Z-scored envelope are very
similar (figure 3.12), detected bursts were logically consistent with the two methods.
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Figure 3.12: Comparison between RMS and Hilbert envelope for one trial. (A.) Original
envelope and original filtered RMS. Envelope is more fluctuating as it follows peak values
while RMS is less variating as it is a mean value. (B.) Z-scored envelope and RMS. The two
signals are very similar, even though RMS is slightly smoother.

3.2.3.2 Spectrogram

A different approach can be to work with spectrograms. Instead of getting the power
as a simple function of time, it is more accurately defined as function of time and fre-
quency range.

Normally, one of the main interest of using spectrograms is to avoid filtering, as the
power of different frequencies can be observed distinctly. However, because of the noise
in the recordings and more specifically of lower frequencies contaminating the higher
ones, it was not possible to extract proper spectrograms without filtering the data. There-
fore, the spectrogram approach only consisted into analyzing in a different way the same
30 to 40 Hz band-passed signal already used for RMS and envelope.

Instead of computing simple spectrograms, multi-tapers estimation was applied in
order to reduce the estimation bias. The idea is to chose a set of functions for window-
ing, known as tapers, with some specific properties. The signal is then multiplied to all
of theses window functions, leading to several estimations of the signal. In the end, the
spectrogram is obtained by averaging all the estimations.

The Chronux package proposes a nice implementation of multi-tapers for MATLAB
[93] [94] and was used for these computations. It runs with Slepian functions as tapers.
After experimenting with different values, the final set of parameters was fixed at 5 ta-
pers with a time-bandwidth product of 3, a time window between 150 and 250 ms de-
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pending on the case and a time bin of 1/15 of the time window. In order to increase the
frequency resolution for plotting, padding parameter was sometimes set to 1 or 2.

However, when detecting period of intense activity, having a simple function of time
is simpler. Therefore, the mapping of signal intensity on the time-frequency plane was
converted into an amplitude signal function of time. This can be simply achieved by av-
eraging over all frequency bins, for every time bin (see appendix figure B.3). As for every
methods including a moving window, the signal cannot be computed on half of the win-
dow length and a margin is required to compensate.

As the spectrogram represents power, it cannot be directly compared with an am-
plitude such as the envelope or the RMS. The two signals were rescaled into the same
range of values for plotting. After Z-score normalization, it can be noticed that the spec-
trogram power is less fluctuating than the other methods. This is probably due to the
wider moving window (figure 3.13).

On the overall, preliminary results were similar for envelope and spectrogram ap-
proaches. The values were different, as the smoother variations of spectrogram lead to
detect less bursts of higher durations, but the same properties were observed.
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Figure 3.13: Comparison between spectrogram power and Hilbert envelope for one trial.
(A.) Original envelope and spectrogram power, divided by max value in order to rescale
them in the [0, 1] interval. This is required because the spectrogram power is not at all in
the same range of values as the envelope. (B.) Z-scored spectrogram power and Hilbert
envelope. Activity is similar, but less variations can be observed with the spectrogram
approach. These results can vary a lot with the set of parameters adopted (in this case:
time-bandwidth product = 3, tapers = 5, time window = 175 ms, time bin = 11.66 ms).

3.3 Burst detection

3.3.1 Variation of signal in time

Bursts can be defined as period of short but intense activity. A representation of the
power was extracted in the previous section trough the Hilbert envelope, therefore it is
now necessary to define formally what can be considered as an intense activity. This con-
cepts makes sense only when compared to a baseline level used as reference. This ref-
erence can be a global or local criteria, depending on the signal characteristics. Thus the
first step is to analyze the signal variations in time.

Two different time scales shall be investigated. The first one is short and corresponds
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to the variations that could be observed during the two seconds of attention period. The
second one is much longer and would be linked to the modulation happening during the
whole recording, which lasts from 45 minutes to one hour.

3.3.1.1 During the attention period

During the two seconds before the cue onset, the signal power might not be evenly
spread in time. There could be a tendency to get stronger power at some specific timing.
To investigate this possibility, the amplitude of gamma envelope during the attention pe-
riod was averaged across the dataset (figure 3.14).

No clear tendency over time can be observed, supporting the idea that power is uni-
formly split. Therefore, the analysis was made with the assumption that power baseline
is the same during the whole attention period.
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Figure 3.14: Amplitude averaged across tetrodes during attention period. In each tetrode,
an average amplitude across trials is first computed. Only full 2-seconds trials were used.
Then, these 148 trial-averaged amplitudes are averaged across the 148 tetrodes. Dashed
lines is the mean amplitude (148.6 AI). Error is the standard deviation over tetrodes.

3.3.1.2 Over recording time

Another possibility is to have variations of power between the first and the last trial
of a tetrode during the recording of an experiment (about 50-70 trials in one hour). A
simple way to address this problem is to analyze in every tetrode the mean power of
trials, ordered chronologically, and see if a trend can be extracted.

A first analysis by looking at the behavior in a few tetrodes suggests an overall loss
of power trough time (annex B.4). In order to check if this can be observed more gener-
ally, the mean amplitude of each trial in every tetrodes was computed and sorted by the
order in which trials were recorded. Then the correlation between mean amplitude and
trial number was estimated trough Pearson correlation coefficient and linear regression
computed in all tetrodes.

The Pearson correlation coefficient quantifies how linear correlation is the correlation.
It is bounded between -1 and +1. An absolute value close to 1 means that the linearity
is very strong while a value close to zero indicates an absence of correlation. The sign
informs about the correlation positiveness or negativeness. For each coefficient, a proba-
bility value (p-value) can be computed to indicate the significance of the observation. It
depends on the coefficient value and on the sample size.
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The distribution of correlation coefficients across tetrodes is presented in figure 3.15
A. Individually, 45 tetrodes out of 148 present a negative correlation with a 95 % confi-
dence. This is 30 %, which is much more than the expected proportion of type I error.
No tetrode presents a significant positive correlation.

The distribution of Pearson coefficients is centered on −0.24. This is a strong bias to-
ward negative values. Student’s t-test (assumption of normality seems reasonable from
plotting) supports this, the p-value for a zero-centered distribution being inferior to 1× 10−35.
It can therefore be concluded that there is tendency to lose power over time in a non
negligible number of tetrodes.
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Figure 3.15: (A.) Distribution of correlation coefficients among tetrodes. Student’s t-test
p-value: 5.62× 10−36 (B.) Distribution of linear regression coefficients among tetrodes.
Student’s t-test p-value: 1.39× 10−17

This only proves that a power decrease happen in many tetrodes but this does not
quantify how strong it is. However, applying a linear regression can provide an estima-
tion. The results of this second approach are consistent with the previous observations
of decreasing power as presented in figure 3.15B. Distribution is centered around -0.61
(p-value from t-test for zero-centered distribution inferior to 1× 10−17, assumption of al-
most normality is acceptable).

After doing linear regression, power loss can simply be defined by the variation of
power between first and last trial normalized by initial power, power being estimated
form the linear model (see appendix figure B.5). Even if this model fits badly to the data,
the point is not to get a proper modeling but to appreciate the phenomenon as a first ap-
proach. According to this method, the mean loss of power in a tetrode is approximately
12 % during recording (−12.2 ± 0.91 standard error of the mean (SEM)). It cannot be ne-
glect.

3.3.1.3 Criterion choice

Some conclusions can be extracted from this quick analysis. First, as power is evenly
split in the two seconds attention period, it seems reasonable that the chosen criteria is
kept the same during these two seconds.

However, it was shown in the previous section that the loss of power on longer time
periods cannot be neglected. Therefore, using a global criterion would require to intro-
duce a normalization, which is always delicate as it can bias the data. The simplest way
is to pick a local criterion for each trial.
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3.3.2 Threshold method

As the method for extracting gamma power was presented before, it is now neces-
sary to decide how to detect bursts from this signal. A common method in literature for
bursts detection is based on a threshold. Even though the exact modalities vary from one
study to another, the general idea is that when the signal power get above the threshold,
a burst is occurring. A similar method will be applied here.

3.3.2.1 General formula

Bursts are periods of intense activity. The concept of "intense" can only be defined rel-
atively to surrounding activity. Therefore, the threshold should be based on the general
characteristics of gamma power in the attention period. Defining an intense activity re-
quires both a baseline and the limits of acceptable deviation from this baseline.

This can be done with very basic statistics tool. The mean value can be used as a
baseline while the standard deviation provides relevant information on signal fluctua-
tions. Acceptable deviation from baseline is defined by multiplying the standard devi-
ation by an arbitrary coefficient. It was shown in the previous section that the criterion
has to be defined locally. Therefore, the mean value and standard deviation are com-
puted across the trial duration. The general formula is:

T = µ+ k ∗ σ (3.1)

where T is the threshold value, G the envelope of the gamma filtered signal, k ∈ IR+

an arbitrary coefficient, µ the mean value of G and σ the standard deviation of G.
This approach is exactly equivalent to using the coefficient k as a threshold on the z-

score normalized signal:

G > T ≡ G > µ+ k ∗ σ

≡ G− µ
σ

> k

≡ z > k

where z is G normalized by z-score, G positive not constant.
The coefficient applied to the standard deviation in the general formula is arbitrary

and depends on the desired selectivity for bursts. The higher it gets, the less bursts are
found (figure 3.16).

Several values were proposed in literature according to the signal properties. Rosero
and Aylwin [95] used a coefficient of 1.5 on awake rats during olfactory related tasks.
Lundqvist et al. [26] preferred applying a coefficient of 2 on monkeys during working
memory task. In this study, the coefficient value was fixed based on a preliminary analy-
sis presented in section 4.1.

3.3.2.2 Bursts characteristics

Several characteristics can be defined for bursts detected with this threshold method
(figure 3.17).



CHAPTER 3. METHODS 27

0 0.5 1 1.5 2

Mean value: 155.42
Threshold: mean + 1*std = 261.10

Time (s)

A
m

p
lit

u
d
e 1 std

A

0 0.5 1 1.5 2

Mean value: 155.42

Threshold: mean + 1.5*std = 313.94

Time (s)

A
m

p
lit

u
d

e

1.5 std

B

Figure 3.16: Burst detection on gamma-filtered signal. Detected bursts are represented by
red envelope and orange background. (A.) Case with 1 as coefficient. 4 different bursts
are found. (B.) Case with 1.5 as coefficient. Only one burst is found as threshold is higher.
Even if the envelope goes above the threshold at other points, this is not long enough to be
considered as a burst (duration smaller than 50 ms).

Occurrence. The first characteristic is the occurrence of a burst. The simple definition
is that a burst is occurring when the envelope amplitude is higher than the threshold. In
order to differentiate a burst from a simple peak activity, a minimum time spent above
the threshold is commonly imposed. In this study, it was considered that a burst was
made of several oscillations. Therefore, a minimum duration criterion of at least two os-
cillations was imposed. As the frequency band is quite narrow (30-40 Hz), one oscillation
can last from 25 to 33 ms. The shortest duration was chosen, and therefore a burst is de-
fined as an amplitude higher than the threshold for at least 50 ms.

Duration. The simple way to define a burst duration is to take the time spent above the
threshold. An alternative method proposed in another study [96] was tried. It uses two
threshold instead of one. The upper threshold is used to detect bursts, but duration is
computed by the time spent above a lower threshold. It did not seem to improve in any
way the characterization and therefore it was decided to rely on the basic method.

Timing. Even if a burst is lasting for a certain time, it can be useful to associate a spe-
cific timing to it. The middle time between begin and end of burst is defined as burst
timing.
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Amplitude. Amplitude is defined for every burst as the highest amplitude reached dur-
ing the burst. It is usually very close or identical to the amplitude at the middle of the
burst - burst timing - because bursts are most of the time almost symmetrical.

Relative amplitude. The amplitude can vary a lot between tetrodes, or from one trial
to another. In addition, the peak value of a burst might not be the most accurate repre-
sentation of its intensity. Therefore, a relative amplitude was also defined. It is computed
per trial, as opposed to the raw amplitude that is computed per burst, and is obtained
by dividing the mean power during all bursts of the trial by the mean power of the trial
outside bursts. It is therefore a ratio representing how intense are the bursts relatively to
the rest of the signal.

Interburst interval This is the time between the timings of two consecutive bursts. When
the signal has N bursts, N −1 interburst intervals can be computed. If the signal has zero
or one burst, no interburst interval can be extracted.

Coefficient of variance The CV2 is computed in order to characterize the interburst in-
terval distribution. It is defined by:

CV2 =
1

n− 1

n−1∑
i=1

2|li − li+1|
li + li+1

where l1, l2, ..., ln are n interburst intervals.
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Figure 3.17: Illustration of several burst characteristics. Attention period is only represented
from 1 to 1.35 s after it started. Threshold is represented by the red line. Two bursts are
detected. In that example, maximum amplitude is reached exactly at burst timing.

3.3.2.3 Outliers treatment

Some recordings present unexpected variations. It is complicated to say with certainty
if they correspond to neural activity, movement perturbation or simply external noise.
Usually, it consists in peaks or high amplitude cycles in the LFP (figure 3.18). After band-
pass filtering, it leads to gigantic gamma bursts. In the distribution of characteristics,
these bursts appear as outliers.
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They are problematic for several reasons. First, they might be totally irrelevant in
terms of biology and therefore it would not make sense to study them. On the other
hand, if they actually represent a neural phenomenon, discarding them would be an
important loss of information. Also, they might introduce a bias in the burst character-
ization. As their amplitude can be up to twenty times higher than a typical burst, they
would most likely strongly influence the bursts characteristics and especially the ampli-
tude.

To address this issue, outlier detection algorithms were applied. The easiest way to
recognize these undesirable bursts is their amplitude, which is much higher than in a
normal burst. Therefore, the detection is done on the distribution of bursts amplitudes:
bursts whom amplitude does not fit to the distribution according to the algorithm criteria
are considered to be outliers. As every tetrode is assumed to generate an independent
distribution of burst characteristics, outliers should be detected in the 148 distributions of
amplitudes across trials that correspond to the 148 tetrodes analyzed.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G
a

m
m

a
L
F

P

Time (s)

A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

G
a
m

m
a

L
F

P

Time (s)

B

Figure 3.18: Example of two outliers. Horizontal red line is the threshold set at mean+1.25∗
std (A.) High amplitude cycles. They usually contaminate the whole LFP frequency band,
from 1 to 100 Hz. After filtering, they cause an enormous peak that pushes the threshold
way very high. (B.) Outliers due to fast LFP variations. It causes an enormous burst.

The first implemented algorithm is the Tukey’s method. It is a very common ap-
proach, even though the classification might be unsatisfying for small sample size. It is
based on the quartiles calculation [97]. Dataset is split into four equal-size groups by
three values Q1, Q2 and Q3. The interquartile range is defined as distance between Q1

and Q3: IQR = Q3 −Q1

Two different criteria are used, according to the desire confidence for a point to be
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an outlier. Outer fences bound the interval outside of which data points are classified as
probable outliers. It is defined by Fouter = [Q1 − 3 ∗ IQR, Q3 + 3 ∗ IQR]

Inner fences limit the interval in which a point cannot be considered to be an outlier:
Finner = [Q1 − 1.5 ∗ IQR, Q3 + 1.5 ∗ IQR]. Samples between inner and outer fences are
possible outliers.

In order to decide which limit is the most suitable for gamma bursts, both criteria
were tested and then LFP and gamma activity were plotted for some of the detected out-
liers. When inner fences classification was used, several signals with strong but normal
activity were detected as outliers, which did not happen with outer fences. Therefore,
this second criterion was chosen.

Another approach consists in using the median absolute deviation (MAD) method. In
order to identify points that are not fitting into the distribution, the MAD is computed.
This value, as opposed to the standard deviation, presents the advantage of being very
insensitive both to the presence of outliers and to the sample size [98]. It is defined as
the median of the absolute deviation from data’s median, times a coefficient:

MAD = b ∗median(|Xi −median(Xj)|)

where Xj is the distribution of values and b a constant equal to 1.4826 linked to the
assumption of normality.

Then, distance from the median is computed for all the data points and normalized
by the MAD:

di =
xi −median(Xj)

MAD

where di is the normalized distance of data point xi to the distribution median.
A criterion is finally fixed to decide if the point is an outlier or not. It can be in abso-

lute value if both lower and upper outliers are expected, but in the case of gamma bursts
only too intense activity is of interest. Miller [99] proposes to fix that limit at a distance
greater than 3 when looking for a very conservative model. After testing different values
and looking at some signals classified as outliers, this value seemed satisfying.

3.4 Further burst analysis

3.4.1 Trial to trial burst patterns

The hypothesis that specific patterns of bursts would be occurring and repeating be-
tween trials was investigated. The conjecture behind is that if the allocation of attention
is not related to the number of bursts, maybe it could instead be correlated to patterns of
burst timing. Indeed temporal bursting patterns are a well-known phenomenon for neu-
rons [100] [101]. At the LFP scale, patterns of beta and gamma bursts induced by odor
stimuli were observed on anesthetized rats [102].

3.4.1.1 Bursts as a binary process

First, the bursting process was simplified into a binary model whom two states are
"bursting" and "non-bursting" respectively coded by 1 and 0. Envelope signals (Si) were
converted into these simple bursting signals (Bi) of identical length.
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Signals with only one burst were discarded. Indeed, the notion of timing patterns
with only one timing value available is not relevant.

Signals that were shorter than 2-second due to cutting were discarded to avoid bias-
ing the study by analyzing patterns extracted from signals with various lengths. As these
signals only represent a small proportion of trials, it seemed acceptable to simply ignore
them instead of trying to include them in this analysis.

3.4.1.2 Pairwise analysis

The similarity between burst timings patterns is analyzed by pair of trials. If there are
N trials in a tetrode, this corresponds to N(N − 1) pairs of trials to analyze.

However, the measure that is defined in this section is symmetric. It means that com-
puting the similarities of patterns between (S1) and (S2) is the same as computing the
similarities of patterns between (S2) and (S1). Therefore, only half of the pairs are mean-
ingful for this analysis, which corresponds to N(N−1)

2 values.

3.4.1.3 Cross-correlation

The potential patterns are not necessarily synchronized. Therefore, the first step con-
sists into realigning the binary signals to maximize simultaneous bursting. A specific op-
timal alignment is computed for all trial pairs.

This alignment that optimizes the overlapping of the binary sequences is obtained by
applying cross-correlation and selecting the lag that maximizes it. The appropriate signal
is then shifted by this lag before the next step.

3.4.1.4 Burst overlapping

Similarity of patterns is approached by introducing a coefficient that will be called
overlapping. It is bounded between 0 and 1, and defined as the number of samples with
both signals bursting divided by the number of samples with at least one of the two sig-
nals bursting.

If it is equal to zero, bursting never occurs simultaneously. This is an impossible case
when both signals contain at least one burst and optimum lag has been chosen. If it is
equal to one, then all the bursts are perfectly synchronized.

This coefficient can be defined more formally from the binary sequences Bi and Bj .
For realignment purposes, they are first extended. B′i and B′j are obtained by adding a
sequence of zeros at one of the extremities in order to align them based on the optimal
lag. Then, simultaneous bursting is simply defined by B′i ∧ B′j while at least one signal
bursting is B′i ∨ B′j . When N ′ is the length of B′i and B′j , overlapping is therefore simply

defined as

N′∑
i=1

(B′1∧B′2)i

N′∑
i=1

(B′1∨B′2)i
. An illustration of this process for two signals with high pattern

repeatability can be seen in figure 3.19.
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Figure 3.19: Example of high pattern repeatability between two signals S1 (red) and S2
(blue, 138 ms lag added for maximizing simultaneous bursting). Overlapping is of 59.8 %
(192 ms of synchronous bursting out of 321 ms of bursts). B′1 is B1 extended by 138 zeros in
the end while B′2 is B2 with a sequence of 138 zeros in the beginning.

3.4.2 Spiking activity

3.4.2.1 Neurons classification

Out of the neuron types isolated in Kim et al. [1], the focus is put on two of them: the
FS-PV interneurons and the pyramidal cells. The groups proposed in this previous study
were reused without running a new unit classification algorithm. This classification was
based on the distribution of peak-to-valley ratio and half-valley width for each spike
waveform. Firing rates were used for further separation and a gaussian mixture model
was fit to the units.

3.4.2.2 Computing instant spiking frequency

In this study, spiking activity is modeled as a discontinuous binary process: signal is
sampled at at 1000 Hz and for every time point, either one action potential is being fired
or the neuron is at rest. This discontinuous representation might not be the most appro-
priate one. For instance, spiking activity can be smoothed into a continuous representa-
tion of instant firing frequency.

An effective way to do this is to convolute the spiking train signal with a gaussian
kernel. Depending on the kernel shape, the estimation will capture more effectively dif-
ferent ranges of frequencies.

The two main types of neurons that were identified before are firing at two differ-
ent rates which lead to use two different kernels to capture them. While the activity of
pyramidal cells is usually between 3 and 10 Hz, FS-PV interneurons are more commonly
firing between 15 and 40 Hz. Therefore, a wider gaussian with 100 ms standard deviation
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was used to capture slow firing pyramidal cells and a narrower kernel with 30 ms stan-
dard deviation fit better for fast spiking parvalbumin interneurons (see figure 3.20).
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Figure 3.20: Two firing rates computed from an artificial spiking activity with different ker-
nels. Spiking activity (on the bottom, vertical lines) is made of a 5 Hz baseline spiking over
which three periods with more intense activity are added. In A1, spiking rate is 40 Hz for
250 ms. A2 corresponds to 500 ms at 20 Hz and A3 to 100 ms at 100 Hz. On the top, kernel
is a gaussian of standard deviation 100 ms computed on a 1-second window (gaussian can
be considered null outside). It captures well lower frequencies such as the 5 Hz baseline or
A2. Estimated value for higher frequencies such as A1 or A3 is very far from reality. On the
middle, kernel is narrower with a standard deviation of 30 ms computed over a 200 ms win-
dow. Low frequencies such as the baseline are badly represented while higher frequencies
during A1, A2 and A3 are correct.

3.4.3 Surrogate dataset

3.4.3.1 Utility

With this analysis, the gamma bursts from recorded LFP during attention were de-
tected and characterized in several ways. However, it would be interesting to apply the
same method to a control dataset. Indeed, nothing guarantees right now that the de-
tected bursts correspond to a meaningful property of the LFP. They might simply be ran-
dom fluctuations that could be observed in any oscillatory signal.

This control dataset can be made by generating surrogate data. The principle is to
identify a property of the signal that is assumed to influence the bursting phenomenon.
Then surrogate signals are generated from the original ones with this property erased,
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usually through randomization. If the burst detection algorithm provides a significantly
different characterization when run on the artificial signals, this would support the hy-
pothesis that the identified property influences the bursts. It would also mean that the
real bursts are more than simple random fluctuations of the signal, as a randomized sig-
nal would not be characterized the same way as the real recordings.

3.4.3.2 Generation

The surrogate data were generated based on the hypothesis that bursts are linked to
the phase of different frequency components. The idea is that the phases would be or-
ganized in a way that make the gamma bursts appear more often, or would make them
longer, or maybe more intense etc.

The phase randomization algorithm can be used to generate surrogate data in which
the phase organization of the original signal is erased. It keeps the same Fourier spec-
trum as the original data but the phases are given new values selected randomly and
uniformly in the [−π, π] interval [103].

The algorithm is applied on the gamma filtered signal in order to generate a new sig-
nal from which an envelope can be computed. The idea behind the algorithm is similar
to the principle of Hilbert transform. The original signal made of N data points is con-
verted from time domain to frequency domain trough FFT. This gives a sequence of N
complex-valuated samples.

Because the analysis is about the gamma band, only the phases of coefficients corre-
sponding to frequencies in the interval [30,40] Hz are randomized. The original magni-
tudes are kept.

As the signal is real valuated in the time domain, the transformed signal presents an
Hermitian symmetry about the f = 0 axis. This property shall be kept during all trans-
formations in order to retrieve a real valuated signal after phase randomization. There-
fore, only samples corresponding to positive frequencies will get a random phase as-
signed. Negative frequencies [-40,-30] Hz are defined by taking the complex conjugate
of the [30,40] Hz coefficients.

The modified signal is made of the original FFT coefficients, except for the [-40,-30]
and [30,40] Hz frequency range in which the phase was randomized. It can be inverted
back into the time domain and will be real valued as the algorithm makes sure to con-
serve the Hermitian symmetry (figure 3.21).
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Figure 3.21: Example of phase randomization for two different signals. On the top in blue,
the original signal Sreal. Under it, five different phase-randomized signals: Srnd1 ,..., Srnd5.



Chapter 4

Results

4.1 Fixing parameters

4.1.1 Principle

The first step of this project is to fix the parameters defined in the burst threshold for-
mula 3.1: T = µ + k ∗ σ where µ is the mean and σ the standard deviation. Choosing
an optimal value requires to adapt the coefficient k to the data properties. The main fac-
tor to consider is the number of bursts detected. If too many bursts are identified, they
might simply be periods of higher activity that can be observed in any oscillatory signal.
If not enough bursts are found, then the model is probably too restrictive and might miss
some events. In addition, it will be harder to conduct a statistically significant study with
a small data set.

However, burst rate is not the only value to consider. The other characteristics can
also be useful in order to decide the threshold value. Indeed, some variations can be ex-
pected when the threshold coefficient increases. Any unexpected variations might indi-
cate that the model presents interesting properties in a specific range of coefficients.

In order to investigate this, the burst detection algorithm was applied with different
threshold values ( k ∈ [0, 2] with 0.0125 spacing, i.e. 160 different coefficients). The char-
acterizations of bursts were then plotted function of the threshold coefficient: for each
coefficient, one value was extracted per burst characterization. This is done by averag-
ing the characterizations in each tetrode over the trials, and by then averaging across
tetrodes. The rationale behind this is that each tetrode corresponds to a specific spatial
location in the brain, and therefore provides one independent distribution of bursts. As
the values are normally or almost normally distributed across tetrodes (see section 4.2),
averaging over tetrodes gives a good and easy to read representation of the characteriza-
tion.

4.1.2 Characterization function of threshold coefficient

4.1.2.1 Number of bursts

The burst rate follows the expected variations: when the coefficient increases, the thresh-
old gets higher. Thus, less bursts are detected and the burst number function of the thresh-
old coefficient is a decreasing function (see figure 4.1.A). There is no statistical evidence
for linearity of this curve.

36
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Figure 4.1: Burst characterizations relevant for deciding the threshold coefficient. Values
are obtained by averaging first over trials then tetrodes. Error is standard deviation of the
distribution across tetrodes.
A. Occurrence rate
B. CV2 With high coefficients, it becomes very uncommon to have 2 bursts in one signal.
Therefore, few interburst intervals are computed and the CV2 value gets high deviation.
C. Relative amplitude.

Below a coefficient of 1, the number of bursts gets over 1.5 per second, which means
an average of 3 bursts in a 2-seconds trial. This seems to be an acceptable lower bound-
ary in order to avoid over-detection.

As regards the upper boundary, when the coefficient exceeds 1.5, the number of bursts
drops under 0.8, which means on average less than 2 bursts in a 2-second trial. It be-
comes very selective and interburst intervals are hard to compute as they can only be
estimated in trials with at least 2 bursts. Therefore, this will be the upper limit. This re-
duces the range of acceptable threshold coefficient to k ∈ [1, 1.5] interval.

4.1.2.2 CV2

The CV2 computed from interburst interval measures the variability of burst genera-
tion. When the value gets closer to 1, the generation of bursts is highly unpredictable.
When the CV2 is close to 0, bursts are almost generated periodically. At first when the
threshold coefficient increases, CV2 value also gets higher. When the coefficient exceeds
1.2, CV2 converges toward the constant value of 0.73 (figure 4.1.B).

The lower and increasing CV2 value at the beginning indicates that for lower thresh-
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olds, burst occurrence is rather predictable. However, bursts become more and more ran-
domly generated when the threshold increases. A hypothesis for this phenomenon is that
with lower coefficients, any high activity triggers a burst. As periods of higher activity
will naturally occur from randomness in the oscillatory signal, this would make the burst
generation quite close to be periodic. When the threshold increases, periods of random
high activity become less likely to be intense enough for triggering a burst. This would
make the burst generation less predictable, resulting in an increase of CV2.

The convergence toward a constant value at 0.73 might indicate that at some point
bursts become fairly random (CV2 getting closer to 1), even though their generation is
still quite far from following a perfect Poisson distribution (CV2 = 1). The convergence
could indicate an intrinsic property of the model. In the previous paragraph, it was hy-
pothesized that the algorithm would detect less random high activity when the threshold
increases. In continuation of this assumption, the convergence could indicate that when
the coefficient is higher than 1.2, only actual bursts are detected and therefore the real
CV2 of bursting phenomenon is computed.

For these reasons, it seems relevant to fix the threshold coefficient in the range where
CV2 is constant. Considering the previous restrictions, this means that k ∈ [1.2, 1.5]. Even
if the previous interpretations are highly speculative, they seem worth to be formulated:
if they correspond to the observed phenomenon, then they add a useful information for
establishing a relevant model. If they happen to be false, they would only add a useless
restriction on the coefficient range and therefore not strongly impact the study.

4.1.2.3 Relative amplitude

The highest amplitude reached by the envelope during a burst was defined as the
peak amplitude in section 3.3.2.2. It logically increases with the threshold coefficient:
when the threshold is set at a higher value, only high amplitude bursts are detected.
However, the variations of relative amplitude are more complex. As it can be seen in fig-
ure 4.1.C, it first decreases for coefficients smaller than 0.7. Only then, it starts increasing.

The mechanism behind these variations can be understood by analyzing the defini-
tion of relative amplitude: the mean amplitude during bursts divided by the mean am-
plitude outside bursts. When the threshold value increases, the signal samples that were
barely above the previous threshold and therefore counted in the "inside bursts" part of
the signal will be under the new threshold. They become classified in the "outside burst"
signal, which has two consequences: the mean power inside bursts increases because the
lowest values are discarded, and the mean power outside bursts also increases because
new high values are added. The variations of the relative amplitude depends on which
of these two mean values proportionally increases the most.

When the threshold coefficient exceeds 0.7, the relative amplitude starts increasing.
This is an appreciable property of the model, as it reflects bursts becoming more and
more intense compared with the baseline. Therefore, a new criterion forcing the thresh-
old coefficient to be higher than 0.7 is added. However, this was already included in pre-
vious constraints and do not reduce the range of selection.

4.1.2.4 Duration and interburst interval

Burst duration and interburst interval both presented the expected variations without
providing relevant information for fixing the coefficient. There was no statistical evidence
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for linearity. When the threshold increases, burst duration obviously decreases as more
power is required to reach the threshold value. Furthermore, less bursts are detected,
which increases the time between them. Interburst interval thus increases (see appendix
figure C.1).

4.1.2.5 Final value

The previous analysis showed that the most suitable range for the threshold coefficient
is between 1.2 and 1.5. Several values were tested during investigations and provided
very similar results. In the end, the value of 1.25 was used. When µ is the mean value
of the envelope and σ the standard deviation of the envelope over the trial duration, the
final formula for setting the threshold T is therefore:

T = µ+ 1.25 ∗ σ (4.1)

4.2 Characterization

After doing the last adjustments on the threshold in the previous section, a detailed
characterization of bursts can be run on the dataset (characteristics were defined in sec-
tion 3.3.2.2). In each tetrode, the characteristics are computed for all trials. Then, they are
averaged across trials in order to end up with one value per tetrode per characteristic. If
there are very few values for a characteristic in a tetrode, then this tetrode is not used in
order to avoid biasing the data. This limit was empirically put at a minimum of 10 val-
ues.

A tetrode can be discarded for one characteristic but not for another. For instance,
the number of bursts per second (occurrence) can only be computed once per trial while
there are as many duration values as bursts. Because one trial usually contains several
bursts, the criterion of 10 values is more easily reached for duration than for occurrence.

4.2.1 Distribution across tetrodes

The distributions of characteristics across tetrodes were plotted (figure 4.2). They are
either Gaussian either almost Gaussian. This was analyzed by running the Lilliefors test
on the 5 distributions. It tests the null hypothesis that the distribution of a characteristics
belongs to the normal family. Null hypothesis was rejected at the 5 % significance level
for burst occurrence rate (p-val = 0.02) and burst relative amplitude (p-val = 0.001).

As only few tetrodes do not follow the normal distribution, an outlier detection al-
gorithm was applied on each of the 5 distributions across tetrodes. The MAD method
described in section 3.3.2.3 for discarding trials was adapted in order to detect unusual
tetrodes. One outlier was detected in occurrence, duration and interburst distributions.
Four outliers were detected in relative amplitude distribution. These seven outliers cor-
respond to seven distinct tetrodes, i.e. the same tetrode is never classified as an outlier in
two different characteristics.

4.2.2 Averaged values

The obtained results are averaged across tetrodes. If the characteristics are normally
distributed, the average value combined with the error is a good and convenient repre-
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Figure 4.2: Distribution of several characteristics across tetrodes: occurrence rate (A), dura-
tion (B), relative amplitude (C), interburst interval (D) and CV2 (E). Dashed lines represent
the mean value. Red bars are outliers detected in the distribution by using the MAD algo-
rithm.
Number of tetrodes (of outliers): A-145(1)/B-148(1)/C-145(4)/D-146(1)/E-145(0)

sentation of the distribution. Therefore, tetrodes detected as outliers in the previous sec-
tion were first discarded from the distribution in which they do not fit. This makes the
distributions Gaussian (as expected, Lilliefors test is always negative). Only then values
were averaged across tetrodes (figure 4.3).

Burst rate is 1.19 ± 0.005 bursts/s. Therefore, most trials have between 2 to 3 bursts
occurring. Bursts are quite shorts with an average duration of 84.8 ± 0.3 ms while the
minimum duration was set at 50 ms. Bursts are 2.25 ± 0.004 times more intense than the
rest of the signal and the average time between two bursts is 576 ± 4 ms. The CV2 value
at 0.734 ± 0.006 indicates that the generation of bursts is fairly random, even though it
does not follow a perfect Poisson distribution.

4.3 Comparison with surrogate dataset

A control dataset was generated using the phase-randomization method presented in
section 3.4.3. For each real tetrode, 100 phase-randomized tetrodes were generated. Each
of these random tetrodes contains the same number of trials as the original tetrode they
are generated from. The difference is that every real signal is phase-randomized and re-
placed by its surrogate copy. Then, the burst detection algorithm is applied on the 100
randomized tetrodes. As usual, the characteristics are averaged across trials. Therefore,
for each characteristic in each tetrode, 100 surrogate values are obtained. The last step is
to average these 100 values across phase-randomized tetrodes in order to end up with
one single surrogate value per characteristic per tetrode.

The real and surrogate distributions were compared for all characteristics (figure 4.4).
Tetrodes identified as outliers in the previous section were discarded in both real and
surrogate distributions. Surrogate characteristics are normally distributed (see appendix
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Figure 4.3: Burst characteristics averaged across tetrodes. Error in SEM. The number of
tetrodes changes from one characteristic to another as tetrodes with low number of values
for a characteristic are discarded as explained in section 4.2.
A. Occurrence rate 1.19 bursts/s ± 0.005 (N = 144)
B. Duration 84.8 ms ± 0.3 (N = 147)
C. Relative amplitude 2.25 ± 0.004 (N = 141)
D. Interburst interval 576 ms ± 4 (N = 145)
E. CV2 0.734 ± 0.006 (N = 145)

C.2). Variance of surrogate distributions is much smaller than the variance of real data.
This is due to the final surrogate characteristics being the average of 100 intermediate
values. Because of these unequal variances, two-sample t-test shall be used instead of
paired t-test when testing mean equality.

No significant difference in burst occurrence can be detected between the two datasets.
In the same way, the null hypothesis of equal mean cannot be rejected at the 5 % signifi-
cance level neither for interburst interval nor CV2 distributions.

Bursts are significantly shorter in the surrogate dataset (p-val from t-test < 0.01) with
an average duration of 84.8 ms in real signals while the mean duration is 84.2 ms in sur-
rogate data. Even though significant, this is a very small difference. Identically, relative
burst amplitude is slightly but significantly higher in real than surrogate data (2.25 vs
2.23, p-val < 1× 10−6). Because the effect size [104] of these variations is very small,
no conclusion can be drawn from the observed differences between real and surrogate
datasets.

Several factors could explain this absence of difference. As any model, the burst de-
tection algorithm provides a limited estimation of a real phenomenon. This estimation
could be insufficiently accurate to underline a difference. Another alternative is that burst
generation is not related to phase values. Indeed, the surrogate dataset was generated
trough phase-randomization because it was assumed that phases matter for burst gener-
ation. If bursts are due to another property of the signal, randomizing the phase would
not change the bursts characterization. Alternatively, there could also be no meaningful
bursts occurring during attention in the PFC. If so, detected bursts would simply be in-
tense activity due to random signal variations.
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Figure 4.4: Averaged burst characteristics compared between real (grey, on the left) and
surrogate (blue, on the right) datasets. Error is SEM. As data are normally distributed with
different variances, two samples t-test, also known as Welch’s t-test, is run for all charac-
teristics. It tests the null hypothesis that real and surrogate data are normally distributed
around the same mean value.
A. Occurrence rate: Real 1.19 bursts/s ± 0.005 - Surrogate 1.20 bursts/s ± 0.001; p = 0.13

B. Duration: Real 84.8 ms ± 0.3 - Surrogate 84.2 ms ± 0.1; p = 0.0068 (**)
C. Relative amplitude: Real 2.25 ± 0.004 - Surrogate 2.23 ± 0.001; p = 4.3e− 7 (***)
D. Interburst interval: Real 576 ms ± 4 - Surrogate 584 ms ± 1; p = 0.17

E. CV2: Real 0.734 ± 0.006 - Surrogate 0.725 ± 0.001; p = 0.16

4.4 Influence of outliers on the characterization
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Figure 4.5: Proportion of outliers (black, right) and non-outliers (grey, left) in bursts (A)
and trials (B). Trials are considered outliers if they contain at least one burst classified as an
outlier.
A. Bursts 14.083 acceptable bursts, 850 classified as outliers (5.7 %)
B. Trials 6.003 acceptable trials, 788 classified as outliers (11.6 %)

Both MAD and quantile methods described in 3.3.2.3 were tested and provided very
similar results. The MAD method was chosen for further computations as it is theoreti-
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cally more robust. It classified 5.7 % of bursts as outliers. Trials that contain at least one
outlier are considered unusable and also classified as outlier trials. They correspond to
11.6 % of trials (see figure 4.5). Having twice as much outlier trials than bursts is due to
most of outlier trials containing only one very intense burst: the 850 outliers bursts are
contained in 788 trials. This corresponds to an average of 1.08 bursts per trial while non-
outlier trials contain more than two bursts on average.

Discarding outliers from the distribution have the expected influence. As outliers usu-
ally contain only one very intense burst, characterizing the dataset with outliers leads to
detect less (1.14 vs 1.19 burst/s) but longer (87 vs 85 ms) and more intense bursts (2.8 vs
2.2 relative amplitude). Detailed results are presented in figure 4.6.
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Figure 4.6: Averaged burst characteristics compared between real data after discarding
outliers (grey, on the left) and real data with outliers included (black, on the right). Error is
SEM. Paired-samples t-test is run for all characteristics with the null hypothesis that data
with and without outliers are normally distributed around the same mean value. All dis-
tribution meet the assumption of normality, but the equality of variances does not hold for
relative amplitude. In that case, the two-samples t-test was used instead.
A. Occurrence rate: No outliers 1.19 bursts/s ± 0.005/ - Raw 1.14 bursts/s ± 0.006;
p = 1e− 43 (***)
B. Duration: No outliers 84.8 ms ± 0.3/ - Raw 86.7 ms ± 0.3; p = 3e− 39 (***)
C. Relative amplitude: No outliers 2.25 ± 0.004/ - Raw 2.78 ± 0.041; p = 3e− 29 (***)
D. Interburst interval: No outliers 576 ms ± 4/ - Raw 578 ms ± 4; p = 0.12

E. CV2: No outliers 0.734 ± 0.006/ - Raw 0.734 ± 0.006; p = 0.79

4.5 Comparison between trial types

To address the hypothesis of bursts being correlated with the allocation of attention,
the characterization was computed again while regrouping trials by type: correct (C), in-
correct (I) and omission (O). Instead of working with one distribution per characteristic,
three distributions across the 148 tetrodes corresponding to the three trial types are now
calculated. As usual, characterizations in tetrodes are obtained by averaging across trials.

For each characteristic, tetrodes previously identified as outliers (section 4.2.1) are first
discarded from the three distributions. Then, tetrodes with less than 5 values for a char-
acteristic are also discarded. This lower limit than in previous sections (limit was first set
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at 10 values per tetrode in section 4.2) is due to a small number of incorrect and omis-
sion trials in many tetrodes. If the limit criterion was not adapted, only 14 tetrodes out
of 148 (9 %) would be kept for the distribution of occurrence in incorrect trials. Using a
slightly less restrictive criterion largely increases the number of tetrodes (77 instead of 14
tetrodes when limiting at 5 trials instead of 10).

Values are normally or at least almost normally distributed across tetrodes for every
characteristics and trial types. Lilliefors test only rejects the null hypothesis of normality
at the 5 % significance level for three distributions: incorrect (p = 0.02) and omission
(p = 0.04) interburst intervals and incorrect durations (p = 0.04). Based on these p-values
being barely significant and bar plots, distributions can still be assumed to belong to the
normal family.
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Figure 4.7: Burst occurrence rate comparison per trial type. Kruskal-Wallis p-val= 0.97
A. Correct: 1.19 bursts/s ± 0.007 (N = 144)
B. Incorrect: 1.18 bursts/s ± 0.017 (N = 77)
C. Omission: 1.19 bursts/s ± 0.012 (N = 126)
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Figure 4.8: Burst duration comparison per trial type. Kruskal-Wallis p-val= 0.23
A. Correct: 84.5 ms ± 0.3 (N = 146)
B. Incorrect: 86.6 ms ± 0.8 (N = 132)
C. Omission: 85.2 ms ± 0.5 (N = 137)

Because correct trials are more frequent than incorrect and omission, variance in cor-
rect distributions is smaller. A non-parametric test is therefore more suitable for testing
if samples originate from the same distribution than a classic one-way analysis of vari-
ance (ANOVA). The Kruskal-Wallis test was run for each characteristic in order to test if
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correct, incorrect and omission trials come from the same distribution.
For burst occurrence (figure 4.7), burst duration (figure 4.8), interburst intervals (fig-

ure 4.10) and CV2 (figure 4.11), the null hypothesis of samples originating from the same
distribution could not be rejected at the 5 % significance level. For burst amplitude (fig-
ure 4.9), the Kruskal-Wallis test returns a p-value of 0.008. Two-samples t-test can be
run as post-hoc test as only three pairs of distributions should be tested, thus limiting
the risk of type I error. The t-test is negative when testing equal means of incorrect and
omission distributions (p = 0.78) and correct with incorrect (p = 0.052). The null hypothe-
sis is rejected for correct and omission distribution with p = 0.008. However, even though
this is a significance difference, the effect size is too small to draw any conclusion (2.24
relative amplitude in correct VS 2.21 in omission).
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Figure 4.9: Burst amplitude comparison per trial type. Kruskal-Wallis p-val= 0.008 (**)
A. Correct: 2.24 ± 0.005 (N = 141)
B. Incorrect: 2.22 ± 0.013 (N = 75)
C. Omission: 2.21 ± 0.009 (N = 124)
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Figure 4.10: Interburst intervals comparison per trial type. Kruskal-Wallis p-val= 0.32
A. Correct: 579 ms ± 5 (N = 145)
B. Incorrect: 592 ms ± 12 (N = 99)
C. Omission: 574 ms ± 10 (N = 133)
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Figure 4.11: CV2 comparison per trial type. Kruskal-Wallis p-val= 0.076
A. Correct: 0.737 ± 0.008 (N = 145)
B. Incorrect: 0.773 ± 0.020 (N = 85)
C. Omission: 0.709 ± 0.014 (N = 126)

4.6 Trial to trial burst patterns

A method was presented in section 3.4.1 in order to quantify the repeatability across
trials of bursting patterns trough a measure called overlapping. The idea is that if the
number or duration of bursts does not depend on the trial type, maybe the temporal or-
ganization of theses bursts is important. Two hypothesis were formulated. First, it is pos-
sible that bursts happen according to some temporal patterns that have a tendency to re-
peat themselves from one trial to another. Allocation of attention could correlate with the
repeatability of these patterns. Typically, one might except that failed allocation of atten-
tion could be due to an absence of pattern, which would result into a lower overlapping.

To investigate this, overlapping between trials of the same type was computed per
tetrode. Trials with zero or one bursts were discarded because patterns are irrelevant
in that case. Overlapping was averaged across trial pairs, in order to get one value per
tetrode. Then distribution of overlapping across tetrodes were compared for correct, in-
correct and omission trials (figure 4.12.A). The Kruskal-Wallis test was used as variance
is higher in incorrect and omission distributions, due to less trials being available. No
significant difference was underlined, invalidating the hypothesis that during correct tri-
als bursts have a stronger tendency to follow specific patterns than in other trials.

The next tested hypothesis is that in each trial type, bursts would follow different
patterns. The repeatability of patterns would be the same when comparing trials of the
same type, as in all cases bursts would occur based on a pattern. However, overlapping
should be lower when crossing types, i.e. for instance when comparing the patterns of a
correct trial with an incorrect trial, as the patterns would be different.

In a first time, overlapping was computed by crossing trial types in the three pos-
sible manners: comparing correct with incorrect, comparing correct with omission and
comparing incorrect with omission. As before, the overlapping value of trial pairs is av-
eraged across tetrodes and distribution analyzed (figure 4.12.B). The Kruskal-Wallis test
did not reject at the 5 % significance level the null hypothesis that the three overlapping
groups come from the same distribution.

As no difference based on trial type was detected when computing overlapping in tri-
als of same and crossed types, the study could be simplified by averaging across types in
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order to look at only two distributions: the overlapping in trials of same type versus the
overlapping in trials of crossed types. For each of these distributions, one value is avail-
able per tetrode, value are normally distributed (Lilliefors test p-val higher than 0.25 in
both cases) and variance similar. Therefore, paired t-test can be used. It does not reject
the hypothesis that both distribution have the same mean value. This invalidates the hy-
pothesis that bursts are generated according to different patterns in different trial types.
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Figure 4.12: Repeatability of burst patterns.
A. Burst pattern similarities of same type trials: [Correct vs Correct] 33.8 % ± 0.1 - [Incor-
rect vs Incorrect] 33.1 % ± 0.5 - [Omission vs Omission] 33.9 % ± 0.3 (KW p = 0.05)
B. Burst pattern similarities of crossed type trials: [Correct vs Incorrect] 33.8 % ± 0.2 -
[Correct vs Omission] 33.9 % ± 0.2 - [Incorrect vs Omission] 33.9 % ± 0.2 (KW p = 0.87)
C. Burst patterns similarities of same VS crossed type trials: [Same types] 33.8 % ± 0.1 -
[Crossed types] 33.9 % ± 0.1 - (t-test p = 0.49)

These results can be explained in several ways. The first possibility is that gamma
bursts have the same trial-to-trial repeatability of single channel patterns in all trial types.
This would result into getting the same overlapping with all combinations. It is also pos-
sible that pattern exists and are different between trial types. However, the model for
pattern detection is pretty basic and might actually be too simple in order to reliably de-
tect patterns repeatability in our dataset. Another possibility is that no specific pattern
actually underlie the burst generation. Further analysis could be conducted by generat-
ing a surrogate dataset in which bursts do not follow any pattern, for instance by ran-
domizing the time at which a burst occurs. Then, the overlapping should be compared
between surrogate and real data.

4.7 Spiking activity

The spiking activity of two well isolated neuron groups was analyzed. The first group
is made of pyramidal cells and contains 329 different neurons that were identified in the
whole dataset. The second group corresponds to FS-PV interneurons. They are less com-
mon, with only 30 single units detected. For each of these groups, two hypothesis were
tested: is spiking activity increased during bursts? Is spiking activity different between
trial types?
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In order to address this question, the number of spikes was calculated inside bursts,
outside bursts and during the whole attention period. As neurons are associated to one
tetrode in which they were detected, firing rates of a neuron are calculated during all
non-discarded trials of this tetrode, i.e. trials that are neither saturating nor outliers. If
the neuron is inactive during a trial (less than 2 action potentials fired), then the trial is
also discarded. The number of spikes inside and outside bursts is counted, then these
values are divided by the time spent bursting and non-bursting to compute a firing rate.

However, simply counting the number of spikes occurring leads to a poor represen-
tation of instant firing activity. A more accurate estimation can be obtained by using a
Gaussian kernel smoother. This transform the spiking train into a continuous process. As
explained in methods, section 4.7, the estimate should be better with a narrower kernel
for FS-PV (standard deviation (STD) of 30 ms), while lower firing rates observed in pyra-
midal cells lead to use a wider kernel (100 ms STD).

No difference could be observed in the neuronal activity inside and outside bursts
with these two kernels, neither for pyramidal cells (figure 4.13.A) nor with FS-PV (figure
4.13.C). As firing rates of neuron are not normally distributed (see appendix C.3 A&B), a
non-parametric test equivalent to the t-test was used for comparing the two distributions:
the Mann–Whitney U test, also known as Mann–Whitney–Wilcoxon (MWW).

One could argue that smoothing the spike train by convolving it with a Gaussian ker-
nel might bias the analysis. Indeed, smoothing spreads each spike across time instead of
having it as binary process. The wider the kernel, the broader the spreading. This pro-
vides a value of firing rate at each time sample. However, when looking at a short and
continuous period such as a burst, knowing this instant firing rate is unnecessary. Fur-
thermore, a spike close to the extremities of a burst can partially be counted in the wrong
category, i.e an inside spike will spread outside and vice versa. Alternative methods for
estimating burst rates were therefore tested, including using a very narrow kernel (30 ms

window with 6 ms standard deviation) and simply counting spikes without smoothing.
All approaches were very consistent as presented in appendix C.3, which supports the
result that spiking activity is the same inside and outside bursts.

Because there is no difference in firing rate inside and outside bursts, there is no need
to differentiate bursting or non bursting state when comparing spiking activity for dif-
ferent trial types. Trial spiking rate is estimated by counting spikes occurring during the
attention period, then dividing by the duration. Values are regrouped by trial types after-
ward and averaged. Once again, no significant difference could be observed in pyrami-
dal cells (figure 4.13.B) and FS-PV (figure 4.13.D). Because firing rates are not normally
distributed, the Kruskal-Wallis test was used for checking if the three groups correct-
incorrect-omission come from the same distribution.
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Figure 4.13: Spiking activity of pyramidal cells and FS-PV interneurons. Because mean
firing rates across neurons do not follow a normal distribution, non-parametric statistical
tests are used: equality of median is tested with the Mann–Whitney–Wilcoxon (MWW) test
(equivalent to t-test) while the Kruskal–Wallis (KW) test is applied for the null hypothesis
that samples originate from the same distribution.
A. Pyramidal cells - inside VS outside bursts: [IN] 3.05 spikes/s ± 0.14 - [OUT] 3.14
spikes/s ± 0.13 (MWW p = 0.53, N = 320 neurons)
B. Pyramidal cells - trial types: [C] 3.13 spikes/s ± 0.12 - [I] 3.51 spikes/s ± 0.17 - [O] 3.50
spikes/s ± 0.18 (KW p = 0.85, N = 307/242/257 neurons)
C. FS-PV - inside VS outside bursts: [IN] 19.79 spikes/s ± 1.47 - [OUT] 19.73 spikes/s ±
1.40 (MWW p = 0.88, N = 30 neurons)
D. FS-PV - trial types: [C] 19.72 spikes/s ± 1.48 - [I] 20.30 spikes/s ± 1.48 - [O] 19.55
spikes/s ± 1.28 (KW p = 0.89, N = 30/30/30 neurons)



Chapter 5

Discussion

5.1 Key findings

In this study, a suitable criterion for detecting gamma bursts during attention was
fixed. It is adapted to our LFP recorded in the mouse medial prefrontal-cortex. From pre-
analysis results, it was defined as a threshold on the envelope of gamma-filtered signal at
1.25 standard deviations upper than the mean trial envelope (section 4.1).

Using this criterion, burst were detected and characterized in terms of occurrence,
duration, relative amplitude, interburst interval and CV2 value (section 4.2). Low-quality
recordings and outliers trials were discarded, as it was shown that outliers can strongly
bias the characterization (section 4.4).

A surrogate dataset was generated trough phase-randomization of gamma signals
and was then characterized. This dataset is designed to test the hypothesis that detected
bursts correlate with a specific distribution of phases. However, no clear difference was
detected between the characterization of the real and surrogate data. It means that ei-
ther bursts are not related to the signal phases, or the burst detection algorithm is not
accurate enough to underline a difference, or the signal does not actually contain gamma
bursts but simply power fluctuations (section 4.3).

As burst were assumed to correlate with allocation of attention, the characterization
was then split into three groups: correct, incorrect and omission trials. The rationale is
that trial output would depend on the quality of attention allocation. No clear difference
between the characterization of different trial types could be put in evidence. The hy-
pothesis that bursts are a correlate of attention could not therefore be validated (section
4.5).

As no difference could be observed between trial types with a basic characterization,
more advanced properties of burst were analyzed. In particular, the hypothesis that tem-
poral organization of burst matters was formulated. To address it, the repeatability of
potential burst patterns was estimated trough the overlapping ratio. Trial-to-trial similari-
ties of burst patterns were the same with all trial types, and therefore none of the results
could confirm neither the presence of burst patterns nor their correlation with allocation
of attention (section 4.6).

The last part of the study focuses on a potential underlying mechanism of bursts. The
hypothesis is that an increased neural activity would cause the apparition of bursts. This
was tested for two well isolated groups, the pyramidal cells and FS-PV interneurons.
The spike rate was calculated inside and outside bursts but no difference could be de-

50
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tected. This implies that if burst are correlated with spiking activity of pyramidal cells
or FS-PV, the process is more complex than a simple increased firing rate during bursts.
The hypothesis that average neural activity would depend on the allocation of attention
was tested by comparing mean firing rate in correct, incorrect and omission trials. Once
again, no significant difference was detected (section 4.7).

5.2 Methodology

Based on the preliminary tests, it was decided to use the band-pass filtering method
followed by Hilbert transform to represent the gamma power over time. However as ex-
plained in section 3.2.3, plenty of alternative methods are proposed in the literature such
as spectrograms [26] and RMS [95]. These approaches keep the principle of a threshold
in order to define bursts.

The threshold can be defined in many different ways. First, the choice of calculat-
ing mean and standard deviation during the current trial is debatable. In some cases it
is preferred to use a broader window by computing the threshold based on the last ten
trials in order to minimize a potential erasing of trial-to-trial differences [105]. In addi-
tion, the criterion does not have to be based on the mean and standard deviation. For
instance, the distribution of power across time can be split into quantiles. It is then con-
sidered that a burst happens when the signal stays in the highest quantile continuously
for more than a minimum duration [96]. Instead of adjusting the model selectivity trough
a coefficient, it can be done by extending the desired range, like to the 60th percentile in-
stead of the last quantile [106].

In addition, in this thesis the problem was simplified by considering the power to be
uniformly spread across the gamma band. With this assumption, the power becomes a
function of only one parameter (time), which greatly simplifies further calculations. More
advanced analysis involve a detection of gamma bursts as local maxima in the two di-
mensional time-frequency plane [26]. With this method, it is possible to detect separately
two bursts occurring at the same time but at different frequency ranges such as high and
low gamma. This is especially useful when the gamma band is broad. On monkeys for
instance, it can range up to 100 Hz. In our recording on mice, the band is very narrow
(30-40 Hz), making it difficult and less important to distinguish burst frequency ranges.

Furthermore, using more advanced models can lead to estimate burst characteristics
more accurately. For instance, a paper [105] proposes to recognize oscillatory bursts as
epochs during individual trials when the power exceeds a threshold value in a specific
frequency band. Another step is then added: a spectrogram is computed in the burst
neighborhood and a two-dimensional Gaussian function is fitted to this map time-frequency
map. Burst duration can be defined more accurately as the interval during which aver-
age instantaneous power is higher than half of the Gaussian local maximum.

Some researchers even work with more than the two dimensions time and frequency,
for instance by considering the spatial location of recording sites. Gamma bursts can be
detected as local maxima of a 4-D function (time, frequency, and position of recording
sites in a plane) [23]. The rationale behind is that gamma bursts would be caused by a
sustained activity of neurons at a specific location. If this activity is observed at two dis-
tant locations, then it can be considered as two distinct bursts. This would have been
difficult to implement with our data as both the number of recording sites and the infor-
mation about their spatial location were limited. This approach is more adapted for other
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recording techniques such as silicon probes which can distinguish more than 30 different
channels with accurate depth location [107].

If the definition of gamma bursts as a peak is quite intuitive, some more abstract
methods involving complex mathematical models were also proposed. In Sirota et al.
[23], gamma bursts were defined based on several criteria including the covariance of
the spectral power between recording site (space variations) and frequency bins.

In addition, Burns et al. [108] tried to distinguish noisy bursts that might occur by
chance from bursts related to the network properties, referred to as autocoherent bursts.
They are defined as persistent bursts of gamma activity with a phase bounded in a nar-
row band. They were detected by first computing spectrograms. Then, classic burst de-
tection based on the deviation from the mean being greater than two standard deviations
was applied for all frequencies. When a burst was detected, the time-dependent phase
of the corresponding frequency was calculated in order to add a second criterion. If the
burst phase wandered further than a limit angle of 45◦, the burst was considered not to
be autocoherent.

5.3 Is it bursts that were detected?

As explained in the introduction and in the background chapters (chapter 1 and 2),
many publications in the literature let think that bursts could be occurring during atten-
tion in the gamma band in the PFC. Indeed, the importance of gamma bursts was un-
derlined for cognitive processes such as working memory [26], but also in a labyrinth
orientation task [23] or simply in the visual cortex of awake animals [106].

However, none of the results obtained during this thesis really supports the idea that
meaningful bursts were detected. The most important point is that no clear difference
with the surrogate dataset was shown. In addition, none of the working hypothesis could
be validated. The burst characterization was the same in correct, incorrect and omission
trials, implying that the tested burst characteristics are not meaningful as regards qual-
ity of attention allocation. Finding an underlying mechanism of bursts such as neural
correlates would have supported that they are more than simple network fluctuations.
However, the assumption of increased spiking activity during bursts could not be vali-
dated neither. To sum up, the detected bursts are similar in real and control dataset, do
not change according to attention level and no neural correlates were identified.

As the assumptions made from literature study are not supported by the obtained re-
sults, two main explanations can be proposed. The first one is that bursts are occurring,
like previous works let think. Indeed, this hypothesis cannot be rejected only from the
results of this study. For instance, the burst model might present too many limitations
to highlight differences with control data or between trial types. Even if the model was
perfectly reliable, the phase might not be correlated with bursts. This would make the
phase-randomized signals an inappropriate control dataset and would explain the sim-
ilar characterization in real and surrogate data. Furthermore, the absence of difference
in burst characterization between trial types do not necessarily imply that there are no
bursts; it means that the events detected as bursts are not modulated by the success or
failure of the task for the tested characteristics. As regards the burst occurrence not being
correlated with an increased spiking activity, not identifying the underlying mechanism
does not presage of bursts presence.

However, the possibility that no meaningful gamma bursts happen during attention
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in the PFC should also be considered. In that case, the activity detected as bursts would
simply be the power fluctuations that can be expected in any oscillatory signal. The main
clue in favor of this is that none of the approaches provided results supporting the pres-
ence of meaningful bursts in the signal. This obviously leads to questioning the existence
of these bursts, especially as the exact nature of information processing during the 3-
CSRTT and more generally in attention is largely unknown. It is not even sure if sus-
tained attention is an active cognitive process. Therefore, hypothesizing that signal prop-
erties identified in other processes such as bursts would apply to attention is speculative
and could be totally wrong. Even if bursts were actually happening during attention, the
3-CSRTT is only an experimental model believed to reproduce accurately the sustained
attention process. Many aspects of the test such as the training, the task specificity and
repetitiveness or the reward system could mix the cognitive process of attention with
others. This might erase or hide from our recordings bursting activity related specifically
to attention.

5.4 Limitations

This analysis presents several limitations. First of all, many different algorithms can
be used for detecting bursts, but only one of them was fully applied. Several assump-
tions were made, which could lead to miss some properties. For instance, the power was
considered to be time dependent instead of time-frequency dependent [26]. This could
mix together bursts that are actually distinct because happening in different frequency
ranges. Furthermore, the spatial location was not considered at all. Instead, tetrodes were
assumed to provide independent recordings. This is a strong hypothesis, as the four
tetrodes are placed close to each others and are recording simultaneously.

More complex methods were presented in the section 5.2. They can be used for es-
timating the burst characterization (2D Gaussian fitting in the time-frequency plane for
instance) or even detecting bursts (covariance of spectral power [23]) and might have
provided different results.

As regards the overlapping value defined for evaluating burst pattern repeatability,
this method would require some validation. This could be done by creating or finding a
dataset with known patterns and look at how representative of the repetitiveness is the
overlapping.

While in the first analysis of these data published in Kim et al. [1] the firing rate was
normalized, no normalization was applied during this thesis. The observation of increased
spiking activity of the FS-PV interneurons in correct trials was not reproduced. This indi-
cate that the approach during this work might not be advanced enough in order to high-
light any interesting effect.

Apart from the analysis that was run, the task accomplished during recording ses-
sions also presents many limitations. The 3-CSRTT and its variants are commonly used
in cognitive neuroscience to assess attention. However, mice usually need more than 30
days of learning in order to execute the task properly. Each of these learning sessions
lasts around one hour. This heavy training could make the attention process during the
task differ from a more natural and spontaneous attention happening outside of an ex-
periment. Furthermore, the experimental conditions are very restrictive. The cue is ex-
pected in time (the pseudo-random delay between trial start and cue onset never exceeds
5 seconds), in space (only three holes can get activated) and nature (a one second en-
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lightenment). In addition, using moving animals can lead to many contamination in the
signals, especially when mice happen to bump their head into the box walls. This could
end into compromising some of the signal properties.

5.5 Ethics and sustainability

Even though I did not work directly with animals myself, the data used during the
thesis came from animal experiments. It is therefore important to think about the ethical
questions this raises. In my opinion, a major point to underline is that animal experi-
ments are strictly regulated, both by Swedish and European legislations. As explained in
section 3.1.1.2, the experiments conducted by the Carlén lab were done according to the
Guidelines of the Stockholm municipal committee for animal experiments. The Karolin-
ska Institutet imposes to all the staff to pass a specific course before handling animals,
which in addition to practical handling also involves theory classes and especially in-
sists on the 3R principle: replace animal experiments when possible, refine methods and
procedures to reduce pain an discomfort, reduce the number of used animals to what is
strictly necessary [109].

In neuroscience, animals are used because there is usually no satisfying alternative
for experimenting. It is actually very constraining to use animals, not only because of
regulations. Animals can get sick, they have limited life expectancy, they need training,
they need to be fed and require expensive care. As scientist have to face all of these con-
straints, using animals is most of the time more a necessity than a preference. When do-
ing cognitive neuroscience like in the Carlén Lab, no satisfying model exist at the time
to replace living organisms. However, characterizing neural phenomenons is a first step
toward modeling them. When the models are accurate enough and well integrated with
experiments, they have the potential to reduce the need for animal experimentation.

As animal experiments could not be avoided for collecting the data, and as it is very
regulated and controlled, I believe that this whole study is ethically acceptable. Even
though I consider that scientific curiosity is enough to justify animal experiment as long
as it is realized in a painless and respectful manner, one could also raise the point that
neuroscience discoveries will hopefully lay the groundwork for new medications and
treatments. Much hope is pinned on the identification of the underlying mechanisms of
brain-related diseases in order to develop target-specific drugs that would be more effec-
tive and cause less side effects. Therefore, animal sacrificed for neuroscience research do
not only contribute to improving mankind knowledge, they could also more pragmati-
cally help to heal patients in the future. Some people might consider this to be a more
legit reason for justifying animal experiments than pure scientific curiosity, even though
I believe this is a very poor idea to split science according to its supposed usefulness as
nobody can anticipate the potential discoveries.

As regards the sustainability, this analysis is based on reusing data that were already
published before for a another purpose. This prevents from unnecessarily conducting
a new set of recordings. It also spares the time and energy required to collect the data,
raise and train new animals.



Chapter 6

Conclusion

In this study, several methods were tested to detect and characterize gamma bursts.
Based on preliminary results, one of them was fully implemented and applied on the
LFP recordings of mice during 3-CSRTT. It consists in applying the Hilbert transform on
the band-pass filtered signal in order to extract the gamma power. A threshold is then
set to detect bursts.

Even though the method detected events considered as bursts, this study did not
manage to prove that they are more than simple signal fluctuations. Bursts could not be
explained by a specific distribution of the gamma phase. The characteristics that were
tested were not dependent on whether the mouse successfully responded to stimuli.
In other words, correct and incorrect responses as well as omissions could not be pre-
dicted from LFP gamma bursting patterns prior to the mouse’s response. The firing rate
of pyramidal cells and FS-PV interneurons was not increased during bursts.

Further investigations could be conducted by implementing more advanced approaches.
Bursts detection might for instance be more accurate when working in the time-frequency
plane and by fitting a two-dimensional Gaussian on them, as performed in [26]. One
could also look at spatial distribution of bursts with a higher number of recording chan-
nels. Some improvements could be done for the spiking activity analysis as the chosen
approach did not reproduce the results of Kim et al. [1].
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Appendix A

Experimental setup

Figure A.1: Animal training program used in Kim et al. [1]. For all levels, the progression
criteria had to be met for two consecutive days before progressing to the next level.

Figure A.2: Schematic representation of a mouse after surgery, with recording setup on the
head. Source: Open Ephys.
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Figure B.1: Example of a spectrum obtained after FFT. Main figure represents the whole
FFT. It is zoomed between 0 and 50 Hz in the dashed rectangle. Initial signal is 500 ms long,
gamma-filtered and sampled at 1 kHz. Therefore, transformed signal is also made of 500
data points with a space of Fs/N = 1000/500 = 2 Hz between them. Green rectangles are the
30 to 40 Hz gamma band, in both positives and negatives frequencies. As the FFT algorithm
returns a sequence of complex values, the spectrum corresponds to the complex magni-
tude of these values. Because the initial sequence is made of real numbers, the Hermitian
symmetry is respected. Most of the power can logically be found in the gamma band as the
signal is filtered.
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Figure B.2: Raw RMS signal, no smoothing. Moving window is 61 ms wide. Blue dashed
rectangle is the moving window at time point 780 ms, ranging from 750 to 811 ms. Green
diamond is the 780 ms data point at which RMS is computed. Green dashed vertical lines
are limitations of attention period. RMS cannot be computed in the first and last 30 ms of
the sequence because of the lack of data (moving window would go out of the sequence).
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Figure B.3: Defining power trough spectrogram approach during attention period. Spectro-
gram activity is synchronized with gamma oscillations (black signal). On the bottom, the
power is averaged over all frequency bins for every time bin. This reduces the spectrogram
into a one parameter function: amplitude depending on time. Computed with multitapers
approach (time-bandwidth product = 3, tapers = 5, padding = 2, time window = 175 ms,
time bin = 11.66 ms).
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Figure B.4: Mean trial amplitude in one tetrode, ordered by trial occurrence. Green, orange
and red cross respectively stand for correct, omission and incorrect trials. Linear regression
shows an overall decreasing tendency: y = −0.51 ∗ x + 146.3. Coefficient of correlation is
-0.33.
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Figure B.5: Estimation of power loss for one tetrode based on linear regression. First, linear
regression is computed. Then initial power is obtained by looking at the regression value
for the first trial. Power at the end of recording session is obtained in the same way by look-
ing at the last trial. Power variation is the difference of these two values normalized by
initial power.
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Figure C.1: Burst characteristics averaged over whole dataset. (A.) Duration, decreases
when the coefficient increases, as the threshold gets higher and therefore the signals stays
less time above it. (B.) Interburst intervals, becomes bigger with coefficient as less bursts
are detected, and therefore the gap between them increases.
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Figure C.2: Distribution of several characteristics across surrogate tetrodes. Dashed lines
represent the mean value. Lilliefors test is run on the five distributions with the null hy-
pothesis that the characteristics distribution belongs to the normal family. In none of the
distribution can the null hypothesis be rejected at the 5 % significance level.
A. Occurrence rate p > 0.5

B. Duration p = 0.24

C. Relative amplitude p = 0.055

D. Interburst interval p = 0.088

E. CV2 p > 0.5
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Figure C.3: Firing rates of pyramidal and FS-PV cells
A. Pyramidal cells firing rate distribution: Firing rate during whole attention period,
inside and outside bursts. Null hypothesis of normality is rejected by the Lilliefors test,
p < 1e− 3

B. FS-PV firing rate distribution: Firing rate during whole attention period, inside and
outside bursts. Null hypothesis of normality is rejected by the Lilliefors test, p = 6e− 3

C. Pyramidal cells - inside VS outside bursts: Alternative methods are compared for es-
timating firing rate. Raw count: counting spikes without convolving, Gaussian 100: using
a gaussian kernel with 100 ms of standard deviation, Gaussian 6: using of 30 ms gaussian
window with 6 ms standard deviation.
D. FS-PV - inside VS outside bursts: Alternative methods are compared for estimating
firing rate. Raw count: counting spikes without convolving, Gaussian 30: using a gaussian
kernel with 30 ms of standard deviation, Gaussian 6: using of 30 ms gaussian window with
6 ms standard deviation.
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