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ABSTRACT 

Crew costs are the second highest costs for airlines therefore they represent a key 

factor for an airline survival and crew scheduling is one of the hardest combinatorial 

problem. The scheduling process is broken down into crew pairing and crew rostering and, 

in this thesis, a robust solution is described in detail for the former one. 

The purpose of the thesis is to present an efficient and robust crew pairing 

optimization tool which minimizes the pairings costs and reduces unnecessary overcovers. 

The model framework is based on a new concept which involves four stages. During the 

first stage all roundtrip combinations are generated then in the second stage the roundtrips 

generated are optimized and the optimal solution is used in the third stage to generate all 

pairing combinations.  And the last one, the fourth stage, optimizes the pairings obtained 

from the third stage. 

An augmented set covering problem is used to for the problem formulation where 

the unknown variables can take just integer values. A mixed integer programming solver 

from Google OR has been used to solve the optimization problem. 

In the last chapter numerical results are presented which show the efficiency of 

using this model framework. 

  





x 

 

ROBUST CREW PAIRING OPTIMERING FÖR 
FLYGGBOLAG PÅ KORTDISTANS FLYG 

SAMMANFATTNING 

Besättningskostnader är den näst största kostnadsposten för ett flygbolag. De spelar 

därmed en nyckelroll i ett flygbolags överlevnad. Schemaläggning för besättning är ett 

mycket svårt kombinatoriskt problem. 

Schemaläggningsprocessen är indelad i två delmoment: crew pairing och crew 

rostering. I detta arbete presenteras en robust lösning på det tidigare problemet. 

Syftet med rapporten är att presentera ett effektivt och robust optimeringsvektyg 

för att minimera kostnaderna för pairingar och minska ickenödvändig övertäckning. 

Ramverket för modellen är baserat på ett nytt koncept vilket involverar fyra steg. 

I första steget skapas pairingar som rundresor, dvs. de slutar så snart en flight i 

pairingen når flygplatsen som pairingen började på. I det andra steget löses ett 

optimeringsproblem för attt hitta den optimala kombinationen av dessa rundresor, 

därefter genereras pairingar på nytt i det tredje steget. I detta steg genereras 

pairingar baserade på lösningen i det förra steget.  

Slutligen i det fjärde steget erhålles en optimal lösning baserat på en 

optimeringsmodell som använder sig av pairingar från det tredje steget, 

Optimeringsproblemet är formulerat som ett utvidgat övertäckningsproblem där 

variablerna enbart kan anta heltalsvärden, och en heltalslösare från Google OR tools 

används för att lösa detta problem. 

I det sista kapitlet presenteras numeriska resultat från modellen. 
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NOMENCLATURE 

Leg - flight 

Non-stop flight – a flight between two airport which does not touch the ground until the 

destination. 

crew complement – crew configuration needed on a flight. 

duty - any task that a crew member performs for the operator, including flight duty, 

administrative work, giving or receiving training and checking, positioning, and some 

elements of standby [1]; 

duty period - a period which starts when a crew member is required by an operator to 

report for or to commence a duty and ends when that person is free of all duties, 

including post-flight duty [1]; 

flight duty period (FDP) - a period that commences when a crew member is required to 

report for duty, which includes a sector or a series of sectors, and finishes when the 

aircraft finally comes to rest and the engines are shut down, at the end of the last sector 

on which the crew member acts as an operating crew member [1]; 

rest facility - a bunk or seat with leg and foot support suitable for crew members’ 

sleeping on board an aircraft [1]; 

positioning -  means the transferring of a non-operating crew member from one place to 

another, at the behest of the operator [1]; 

home base -  the location, assigned by the operator to the crew member, from where the 

crew member normally starts and ends a duty period or a series of duty periods and 

where, under normal circumstances, the operator is not responsible for the 

accommodation of the crew member concerned [1]; 

acclimatized - a state in which a crew member’s circadian biological clock is 

synchronized to the time zone where the crew member is. A crew member is considered 

to be acclimatized to a 2-hour wide time zone surrounding the local time at the point of 

departure. When the local time at the place where a duty commences differs by more than 

2 hours from the local time at the place where the next duty starts [1]; 

 



xii 

 

RMP – restricted master problem 
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1. INTRODUCTION 

 Airline Planning and Scheduling 

Airline business has greatly evolved in the last decades and automatically implied 

more and more complex planning and scheduling requirements. As it is a highly 

competitive industry the cost of operations is a key factor of this business and most of the 

airlines are using operations research techniques, which have been used in this field since 

1950s [1], to survive and to make sure that their resources meet the demands and are used 

in an efficient way. 

The number of variables in this process is gigantic and not even the computational 

power in these days is able to solve such large problems. Therefore, due to its complexity, 

the planning process is divided into multiple stages and usually airlines have departments 

assigned for each stage. There are four main stages and they have a logical sequence being 

approached (see Fig. 1) as the result of some stage is dependent on the data provided from 

a previous stage. 

The first stage is the Flight Scheduling. Here, the answers of two questions are 

sought; “where to fly?” and “when to fly?”. In this process, the flight network is created 

where the destinations to fly to and the time at which the flight should take place are 

decided. These decisions are usually influenced by many factors. Some of them are market 

demand forecast, types of fleets, number of aircraft, benchmarks etc. [2]. 

The timetable is created with all the destinations and the times of each flight but 

there is no information regarding the fleets which will be flying these legs (nonstop flights). 

This stage is known as the Fleet Assignment. The purpose of the fleet assignment is to 

assign as many flights as possible to the right fleet (not to be confused with the fleet 

planning, where the number of the aircraft to be purchased is decided). The airlines which 

operate multiple fleets must take into considerations different characteristics of each fleet 

such as the cost of operating them, maintenance required and maintenance cost, fuel 

information, seating capacity etc. [2]. 

Now, with the solution from the previous step, the problem can be divided by fleet 

and the next stage is taking place, the aircraft routing, where each leg from the network 
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must be assigned to a specific aircraft. Also known as the aircraft rotation or tail assignment, 

this stage aims at reducing the operating cost by assigning each aircraft within a fleet to a 

specific set of legs. In this process each flight must be covered by one aircraft, a balance 

utilization load is required for each aircraft and the required maintenance must be assured 

as well  [2]. 

The fourth main stage is the crew scheduling. Each flight has a crew complement 

and the aim of this process is to satisfy the required crew complement for each leg by 

minimizing the operating cost or maximizing the crew utilization. As the crew cost is one 

of the largest costs, this stage has been deeply researched both by academia and industry. 

 

Airline Crew Fuel Maintenance Ownership Total 
Continental $510 $430 $651 $698 $2,291 

United $927 $487 $1048 $510 $2,974 

Southwest $388 $537 $251 $350 $1,526 

Example: Boeing 737-500 flight operating cost per block hour. Source: ICAO 

 

Since this is amongst the most computational intensive combinatorial problems [2], 

crew scheduling is divided into two subproblems: crew pairing optimization and crew 

rostering optimization. The reason for this is to reduce the size of the problem by first 

creating the pairings to cover all the flight legs and then assigning them to the crew. Finding 

an optimal solution to the former subproblem, crew pairing optimization, is the aim of this 

thesis.  

 

 

Figure 1: Main stages in airline resource planning 

 Crew Pairing Concept and Constraints 

Crew pairing is the impersonal phase of the crew scheduling process where we 

design all the routes to be flown by a crew, but we don’t know which crew will be flying 

them. As mentioned before, the main idea under this concept is to reduce the size of the 

Flight schedule
Fleet 

assignment
Aircraft 
routing

Crew 
scheduling
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problem. Therefore, a definition of the crew pairing can sound like this: Airline crew 

pairing is a set of flight legs within the same fleet or fleet family flown by an unknown crew, 

which ends at the same crew base it started.  

Airlines can have, and usually do have, multiple crew bases. These crew bases are 

locations assigned by the operator. The operator is not responsible of the accommodation 

of the crews when they are at the base they have started from [3] that is why, normally, the 

crews are living at one of these bases. Therefore, the reason of bringing the crew back to 

the same base is because we want to bring them back home. 

A pairing must contain at least two sectors to satisfy the round-trip requirement. 

The time between the sectors within a pairing is called sit connection and together create a 

Flight Duty Period (FDP). The sit connection is when the crew is waiting to board for the 

next flight. Usually the sit connection can’t be more than couple of hours, as the crew is 

waiting in the airport. The maximum time of a sit connection is mainly decided by the 

operator and if it becomes too high the crew must be provided with a rest facility. The FDP 

is part of a duty period as the crew is required to perform some activities other than the 

ones inside the FDP. At this point we have described a pairing which is composed just of 

one duty period. 

There are many rules and regulations imposed on all the concepts above, both from 

the governmental regulations and collective agreements. As there are maximum values for 

FDP or duty period the crew might be in the situation where it has exhausted all their 

allowed working time, but it is located at a base other than the home base. In this case the 

operator must provide the crew with an overnight accommodation. This time is called 

layover. If there is a layover the crew will automatically work two duty periods. As stated 

above that a pairing must end at the same base it has started it means that the two duty 

periods will be in the same pairing. Therefore, a pairing can contain two or multiple duty 

periods if there are layovers to separate them. 

Figure 2 shows a two duty periods pairing and each of them contains three flights 

inside. The overnight rest/layover can be seen in between duties. 

 



4 

 

 

Figure 2: Pairing with two duty periods and one layover/overnight rest. Pairing starts and ends at JFK. 

Source: [2] 

 

1.2.1 Rules and Regulations 

Aviation sector has many rules and regulations due to the high requirements for 

safety. For the case of the crew, the rules and regulations often become complex both 

because of safety and working regulations. All these restrictions on pairings usually come 

from different sources. From EASA in Europe or FAA in USA and from unions and 

operators as well. Therefore, the task of creating pairings becomes very difficult as the 

rules are very complex.  

Defining all the rules is out of scope for this thesis hence this matter is briefly 

explained under this heading. A simple FDP limit rule from EASA can be seen in Figure 3. 

The crew pairing optimization tool described in this paper is using RAIDO’s 

legalities engine called Mimer. RAIDO is an aviation management system which puts the 

user in complete control of all strategic, financial and operational business processes [4]. 

After the pairing generation phase is done, as explained more in Chapter 3, Mimer is 

checking all the pairings to decide if they are legal or not. A legal pairing varies a lot, as 

different operators have different rules; the same with the union regulations. The rules can 
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be further broken down to the crew type level. For example, for pilots some rules are 

different compared to the ones for cabin crews. 

 

 

Figure 3: Maximum daily FDP – acclimatized crew members. Source [3] 

 

 

1.2.2 Problem Decomposition 

The crew is usually licensed on a single aircraft type or a aircraft family therefore 

the problem is decomposed by fleet or aircraft type. Also, the crew category must be taken 

into consideration as some of the regulations are different based on the crew category. This 

leads to a further decomposition of the problem, the crew category decomposition.  
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Figure 4: Example of crew pairing problem decomposition 

 

It can be seen from Figure 4 that optimizing the crew pairings over the entire 

schedule has to be done separately for each fleet and crew category. It is important for the 

data not to be mixed up as this can lead to unnecessary overcovered legs and illegal pairings. 

Here the RAIDO filters are used to decompose the schedule correctly. The filters can be 

created by the user and saved as templates into a database. 

 

1.2.3 Possible Approaches 

Section 1.2.2 described how the problem must be decomposed and the reason for 

that was the licensing regulations. But it is important to mention that the fleet 

decomposition reduces the search area in both the pairing generation and optimization 

phases, which will be introduced in the next chapters.  

As the crew scheduling is one of the most intensive combinatorial problem one 

should understand that any method that will reduce the search area might have a big impact 

on the overall computational time. 

This section describes three different approaches on the crew pairing problem, the 

daily problem, the weekly problem and the full dated problem. The reason for having these 

approaches is that the first two can greatly reduce the search area and provide the same 

solution as using the fully dated approach.  

Carrier

Airbus

Cabin crew A320

Pilots

Cabin crew

A319

Pilots

Cabin crew

Boeing

B737

Pilots

Cabin crew

B757

Pilots

Cabin crew



7 

 

The daily solution assumes that the schedule within a timespan is daily repetitive 

with some exceptions during the weekends. A solution for an arbitrary day is calculated 

and repeated until the schedule is fully covered. The pairings here can’t be longer than a 

day. It is also important not to get overcovers because of the reduced search area. This type 

of approach does not work in most of the situations as operators don’t have a daily 

repetitive schedule. 

The weekly approach considers the schedule weekly repetitive within a timespan. 

The pairings here can be as long as a week. A solution for an arbitrary week can be 

generated and used for the rest of the weeks. This approach compared with the daily 

approach is better as layovers are allowed within a week. But the search area is bigger 

which leads to more computational time required. Here, it is important that all the legs 

within a week must be covered. The weekly approach is more common compared to the 

daily one as some operators have weekly repetitive schedule. 

The fully dated approach is considering no repetitive schedule. This solution is the 

preferred one in terms of optimal solution, but it is expensive in terms of computational 

power required. Usually, an entire month is loaded and solved. 

The crew pairing optimization model presented in this paper can use all the 

approaches from this section.  
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2. PROBLEM APPROACH 

 Basic Problem Framework 

Usually airline crew pairing optimization is formulated as a set partitioning problem 

or set covering problem where a subset of feasible pairings which minimizes the total cost 

by covering all the flights is sought [4].  

 𝑚𝑖𝑛 ∑𝑐𝑗𝑥𝑗

𝑗𝜖𝐽

 (1) 

 

                                       𝑠. 𝑡. ∑𝑎𝑖𝑗𝑥𝑗 = 1

𝑗𝜖𝐽

     ∀ 𝑖 𝜖 𝐼 
 

(2) 

           𝑥𝑗  𝜖 {0,1} (3) 

𝐽 – set of pairings 

𝑐𝑗 – cost of pairing 𝑗 

𝑥𝑗  – decision variable which is an integer and it is 1 if pairing 𝑗 is part of the optimal 

solution and 0 otherwise. 

𝐼 – set of flights 

𝑎𝑖𝑗  – binary constraints coefficient matrix. Rows represent the flights and columns 

represent the pairings. If flight 𝑖 is part of the pairing 𝑗, 𝑎𝑖𝑗 = 1 otherwise is 0. 

 

The set partitioning model above reflects a basic optimization model for the crew 

pairing problem. The basis of the optimization model used in this paper is an extension 

from the one above. The constraint of this model is basically allowing one coverage per 

flight. The inputs for this are the flight schedule, the pairings and the costs. After the 

schedule is loaded into RAIDO, a functionality of selecting the timespan is available. Based 

on the schedule within the time horizon selected we start creating the pairings. All the 

connections between the flights are stored in a network structure and a depth-first search 

algorithm is used to search and return all the feasible pairings. Now, after the pairings have 
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been created, the costs are calculated, and the model is ready for being optimized with a 

branch-and-bound solver. 

 

 

Figure 5: Basic problem framework 

 

Solving this crew pairing model is difficult. First, even generating pairings for a 

small schedule is usually very difficult, given the wide array of legalities that must be 

enforced. The number of pairings is often more than millions for a small schedule and this 

leads to difficulties in the optimization phase, as the number of variables is equal to the 

number of pairings. Second, having the constraint that the solution must be integer, further 

complicates the process [4].  

There are three reasons for which these problems are difficult. First, as it is a 

combinatorial problem, even finding combinations which are feasible can be non-trivial. 

Second, due to the huge number of variables, it makes it hard for any optimization 

algorithm to provide optimal or near optimal solutions. And third, all the variables are 

integer which complicates the process even more. 
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 Previous Approaches 

The methodology from Figure 5 can work for small airlines but it will be infeasible 

for big carriers. Excluding the big CPU time required to get a solution, a normal computer 

will run out of memory before generating all feasible pairings (see Table 1). The larger the 

number of pairings the larger the columns set for the optimization problem. The more 

columns the constraints matrix has the more CPU time is required.  

 

Flights Time 

horizon 

No. of 

bases 

RAM 

memory 

Processor CPU 

Time 

until 

crash 

Pairings 

generated 

until 

crash 

6,000 30 days 6 16 GB Inter Core 

i7-6600U 

CPU: 2.80 

GHz 

4 hours ~ 20 

million  

Table 1: Example of a solution attempt with a basic methodology 

 

Table 1 shows an example where multiple constraints had been applied on the pairing 

generation algorithm. If the searching algorithm was not constrained the basic approach 

wouldn’t have been feasible not even for small carriers. These constraints have been 

applied in previous research work as well and will be discussed in more details under 

chapter 3. 

Different methods have been studied where feasible solutions can be generated for 

big carriers. We will briefly discuss a couple of them. 

2.2.1 Flight- Based Network Pairing Generation 

This approach uses a flight network. Flights are represented by nodes and the 

connections between flights are represented by links. If the departure of a flights is the 

same with the arrival of another flight and the connection is possible (the time difference 

between the arrival of the first flight and the departure of the second flight is greater than 

a specified minimum connection time) a connection between them can be created. After all 

the connections have been created a depth-first search algorithm is used to generate all the 

legal pairings. An experienced user can create many constraints on the searching algorithm 

where useless pairings are pruned to be generated. This will greatly improve the 
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computational time. Constraints can be also enforced when creating the links. All the 

constraints enforced on this approach should not affect the final solution and if that is not 

the case then we must refer to the partial pairing generation. 

After all the pairings are generated a branch-and-bound algorithm can be used to 

solve the optimization problem. For complex networks with millions of pairings generated 

it can be difficult to solve the optimization problem. Therefore, different heuristic methods, 

out of scope for this paper, can be used to get a close to optimal solution.  

2.2.2 Duty- Based Network Pairing Generation 

Pairings can also be generated based on duties (see [5], [6], [7]). First, all duties are 

created based on a flight network. A duty does not necessary have to end or start at a crew 

base. In this way all the schedule can be covered. After the duties are generated based on a 

depth-first search algorithm, they can be used for generating pairings.  

This approach together with the pairing generation based on flight network should 

generate the same pairings in the end. The advantage is that, duty network based pairing 

generation, is faster in terms of computational time. 

A branch-and-bound algorithm is used here as well to optimize the problem with 

the generated pairings as unknown variable. 

2.2.3 Partial Pairing Generation 

This approach has been described in [7] and focuses on generating just a subset of 

all possible pairings. It is better in terms of computational time and memory needed 

compared to a complete pairing generation as it allows just a limited number of possible 

connections between flights to be created. This will reduce the complexity of the network 

and implicitly will reduce the number of generated pairings. On the other hand, there is the 

risk that the flight schedule will not be fully covered, and the final solution will be far from 

optimality. An experienced user might be able to cut “bad” connections to prune the 

algorithm from creating pairings which won’t be used in the final solution. 

This approach uses a flight network where nodes are represented by flights and 

links by connections. 
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A branch-and-bound algorithm is then used to find the optimal solution for the 

generated pairings. 

2.2.4 Branch-and-Price 

A state-of-the-art solution based on the literature (see [6]) for solving crew pairings 

for airline industry is column generation combined with branch-and-bound for obtaining 

an integer solution. Columns are generated at each node of the branch-and-bound tree to 

improve the LP relaxation. 

Variables are generated based on the reduced cost and introduced into the restricted 

master problem (RMP) until no pairings with reduced cost can be generated. For large 

schedules it is time consuming or impossible to generate all reduced costs columns to find 

which one has the lowest reduced cost. There are different heuristic algorithms to find good 

column for the RMP. One of them is label-pulling or label-setting algorithm which is said 

to be one of the most efficient and it is described in [9].  

The RMP needs an initial solution to start. The easiest way is to provide slack 

variables with high penalty costs which will be eliminated during the iterations. 

The advantage of this approach is that it uses less memory which does not increase 

with the running time as there is a maximum number of possible pairings which can be 

saved at each iteration. But when it comes about the computational time it has a big 

drawback as it must check if a pairing is legal for each label. 

 Methodology Proposed 

The methodology proposed in this section is meant to improve both the pairing 

generation and optimization phases. 

For the pairing generation phases a constrained depth–first search algorithm for 

short pairings and another one for long pairings are proposed and integrated accordingly to 

the framework from           Figure 6 will reduce the number of variables used in the 

optimization problem. 
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          Figure 6: Framework proposed 
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3. PAIRINGS GENERATION 

 Concept 

The optimization model searches to find an optimal pairing solution, therefore one 

of the model’s inputs are the pairings. The pairings along with the flight schedule create 

the constrained matrix from Eq (2). The rows represent the flights and the columns 

represent the pairings. 

In the pairing generation phase, all the feasible pairings are sought and given to the 

optimization model as columns for the constraint matrix. The input for the pairing 

generation is the flight schedule. When generating pairings, one should cover the entire 

given schedule. In previous approaches on pairing generation, solutions are given just for 

schedules where the first and last flights in a pairing must have the same base. When a 

schedule is loaded for the crew pairing generation stage, not all the flights which don’t start 

at a base have a previous connection and not all the flights which don’t end at a base have 

a successor connection. These flights are called carry in and carry out flights and, in this 

paper, we present covering solution for these types of flights as well. An example of a 

minimal flight schedule with carry in and carry out flights can be seen in Figure 7. There is 

one base with the short code ABZ but it can be seen that flight 397 starting from EDI has 

no previous connection to ABZ and flight 357 ending at LSI has no successor connection 

to ABZ neither. Therefore flight 397 is called carry in and flight 357 is called carry out. 

 

 

Figure 7: Example of schedule with carry in and carry out concept where ABZ is a base. The rectangles 

represent flights and the numbers inside them represent the tail number. The three letter codes represent the 

airports. 
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The methodology framework uses two types of network, Flight based network and 

pairing based network. 

 Roundtrips 

How pairings are generated is an important factor for any airline crew pairing 

optimization tool as this can lead to high computational time. Both the searching algorithm 

and the number of pairings generated are a key factor not just for the computational time 

of the pairing generation stage but also for the pairing optimization one. 

One of the main goals of this paper is to provide a solution for an efficient tool. The 

concept behind the roundtrips fulfils this goal by improving the computational time of 

creating pairings and decreasing the number of generated pairings. It is important to 

mention that from the operational point of view the final solution is not affected if we 

compare it with the traditional pairing generation concept presented in other papers (see 

[10], [11]) and which will be also described below. 

 

Flights Departure Arrival Departure 

Time 

Arrival 

Time 

FL1 Stockholm Oslo 0800 1000 

FL2 Oslo Copenhagen 1100 1300 

FL3 Copenhagen Stockholm 1330 1530 

FL4 Stockholm Oslo 1600 1800 

FL5 Oslo Stockholm 1830 2030 

Table 2 : Example of a simple flight schedule to emphasis the difference between the traditional pairing 

creating and roundtrips creation 

 

 

Considering the schedule from Table 2 where Stockholm is a base. If one would 

create all the possible pairings to be used as variables for the optimization problem with 

the traditional approach one would get the pairings from table below. 

 

P1 FL1 - FL2 - FL3 

P2 FL1 - FL2 - FL3 - FL4 - FL5 

P3 FL4 - FL5 

Table 3: Pairing creation based on the schedule from Table 2 
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Paring P2 from Table 3 touches the base in between. It starts at Stockholm and 

reaches Stockholm again with FL3 after which continues to Fl4 and then ends at FL5 when 

the pairing reaches the base from where it left. It can be noticed that an optimal solution 

for the schedule above, if the cost would increase with the number of variables in the 

solution, is to use just P2 as just one variable is needed.  

Now, let us describe the simple idea behind the roundtrips. Say that the searching 

algorithm which generates pairings is constrained such that it can’t generate pairings which 

touch the base at the arrival destination if that is not the final flight in the pairing. Using 

the same schedule as above, suppose one uses a search algorithm and constraints the 

generation as it has been described above. The generated pairings solution will be the same 

as the one from Table 3 but one would not generate P2. 

Indeed, as mentioned before P2 is the optimal solution found. But from the 

operational perspective using P1 and P3 instead of P2 is the same because if one merges 

P1 and P3 one will end up with the same pairing as P2. 

Generating roundtrips will reduce the search area for the depth-first search 

algorithm used in this paper and it will also reduce the number of pairings generated after 

which a new process will take place which will be using the optimal solution from 

roundtrips to create the optimal pairings. 

 Network 

The network concept is used to represent the flight schedule of a carrier making it 

easier for different searching algorithms to be applied. Often, these networks have a huge 

number of connections even for small carriers, many of them being useless. To reduce the 

searching space different link constraints will be applied to eliminate “bad” connections. 

In this paper all the constraints presented are general and can be applied for most of the 

carriers. But there can be airline-specific constraints as well which can reduce the 

complexity of the network even more, making it more efficient for the searching algorithms 

to find paths. 
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3.3.1 Flight-Based Network 

This network is used by the depth-first search algorithm to generate the roundtrips 

described in Section 3.2. Nodes are represented by flights and links are represented by 

flight connections. If the arrival of a flight matches the departure of another flight and the 

time difference between the departure of the second flight and the arrival of the first flight 

is positive, then a link between those two flights can be created. Each flight starting from 

one of the bases or if it is a carry in flight represent a source node and each flight ending at 

one of the bases or if it is a carry out flight represent a sink node in the network. 

 

Flights Departure Arrival Departure 

Time 

Arrival 

Time 

Day Type of 

Flight 

Tails 

F1 Stockholm Oslo 0800 1000 1 Source T1 

F2 Bucharest Helsinki 0700 1100 1 Carry In T2 

F3 Oslo Copenhagen 1100 1300 1 Node T3 

F4 Oslo Helsinki 1100 1400 1 Node T1 

F5 Helsinki Copenhagen 1500 1700 1 Node T1 

F6 Helsinki Stockholm 1600 1700 1 Sink T2 

F7 Copenhagen Stockholm 1800 2000 1 Sink T3 

F8 Stockholm Oslo 0800 1000 2 Source T3 

F9 Oslo Stockholm 1100 1300 2 Sink T3 

F10 Copenhagen Madrid 1200 1400 2 Carry 

Out 

T1 

Table 4: An instance of a simple schedule where Stockholm is the base 

 

Links 

F1 F3, F4, F9 

F2 F5, F6 

F3 F7, F10 

F4 F5, F6 

F5 F7, F10 

F6 F8 

F7 F8 

F8 F9 

F9  

F10  

Table 5: Links based on the nodes from Table 4 
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Table 5 shows all possible links of the schedule from Table 4. Based on the links the 

network from  Figure 8 is created and a search algorithm will be applied to generate all 

possible short pairings described above. 

  

 

 Figure 8: Timeline flight network based on the network from Table 5  

 

Airlines usually have a huge number of links and the network can become more 

complex than one could handle. Therefore, different link constraints are applied to reduce 

the number of links but not to affect the optimal solution.  

The following link constraints are used in this paper: 

 Minimum transit time 

 Maximum transit time 

 Minimum layover time 

 Maximum layover time 

 Maximum duty time 

 Maximum pairing time 

The values of the constraints differ from a carrier to another. Let us assume: 

 Minimum transit time = 15 minutes 

 Maximum transit time = 5 hours 

 Minimum layover = 8 hours 

 Maximum layover = 24 hours 
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 Maximum duty time = 13 hours 

 Maximum pairing timespan = 2 days 

Using the values from above, the new links of the schedule from Table 4 can be seen 

in Table 6. The link from F1 to F9 has disappeared as the maximum layover time is violated. 

Links 

F1 F3, F4 

F2 F5, F6 

F3 F7, F10 

F4 F5, F6 

F5 F7, F10 

F6 F8 

F7 F8 

F8 F9 

F9  

F10  

Table 6: Flight links with constraints 

3.3.2 Pairing-Based Network 

In a pairing based network, the nodes are represented by pairings or duties and the 

links by the connections between them. The input given to this network is the optimal 

solution from the roundtrips. A depth-first search algorithm will be applied here as well, 

but this time longer pairings will be created. The length of a pairing depends on the user 

preference.  

A connection between two nodes of this network is created in the same way as the 

one from the flight-based network. If the arrival of the last flight in a pairing matches the 

departure of the first flight in another pairing and the difference between the departure time 

of the first flight from the second pairing and the arrival time of the last flight of the first 

pairing is positive, and all the constraints are satisfied, then a link can be created between 

these two pairings.  

 

Pairings Flights Departure Arrival Departure 

Time 

Arrival 

Time 

P1 F1-F3-F7 Stockholm Stockholm 0800 (day 1) 2000 (day 1) 

P2 F1-F4-F5-F7 Stockholm Stockholm 0800 (day 1) 2000 (day 1) 

P3 F1-F4-F6 Stockholm Stockholm 0800 (day 1) 1700 (day 1) 

P4 F1-F3-F10 Stockholm Madrid 0800 (day 1) 1400 (day 2) 
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P5 F1-F4-F5-F10 Stockholm Madrid 0800 (day 1) 1400 (day 2) 

P6 F2-F6 Bucharest Stockholm 0700 (day 1) 1700 (day 1) 

P7 F2-F5-F7 Bucharest Stockholm 0700 (day 1) 2000 (day 1) 

P8 F2-F5-F10 Bucharest Madrid 0700 (day 1) 1400 (day 2) 

P9 F8-F9 Stockholm Stockholm 0800 (day 2) 1300 (day 2) 

Table 7: Input for the pairing-based network 

 

Links 

P1 P9 

P2 P9 

P3 P9 

P4  

P5  

P6 P9 

P7 P9 

P8  

P9  

Table 8: Pairing links 

 

The same constraints as the ones described in 3.3.1 are applied to the pairing links 

created in Table 8. 

 

 

Figure 9: Timeline pairing network 

 

In Figure 9 it can be noticed that the complexity of the network has reduced as less 

possible connections from a node to another exist. If just a flight-based network would be 
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used, and the searching algorithm would be applied such that a pairing can touch base 

multiple times, then a larger search area would have been used compared to the search area 

used in the approach presented here. 

The purpose of the pairing base network is not to create a network with the pairings 

generated in the first stage but to create the network with the optimal solution of those 

pairings. 

 Searching Algorithm 

The searching algorithm used in this paper to find all possible paths inside the 

network is the depth-first search (see [12]). 

Given a network all possible paths which satisfy different pairing constraints will 

be created between all pair nodes. Pair nodes are created between two flights or pairings 

which create a round trip starting from the base, starting with a carry in flight and ending 

at any base. If there are carry out flights in the network then one should add an extra set of 

flights in the schedule starting after the arrival of the last flight in the current schedule, so 

there can exist round trips for carry out activities as well.  

 

Pair Flights Comments 

F1 - F6 - 

F1 - F7 - 

F1 - F9 - 

F8 - F9 - 

F2 - F7 Carry in 

F2 - F9 Carry in 

Table 9: Example of pair flights based on Table 4 

 

Pair Pairings Comments 

P1 - P9 - 

P2 - P9 - 

P3 - P9 - 

P6 - P9 Carry in 

P7 - P9 Carry in 

Table 10: Example of pair pairings based on the network from Figure 9 
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3.4.1 Searching on a Flight Based Network  

Let us explain the way in which the depth-first search algorithm is implemented for 

a flight-based network and let us also see the difference of creating roundtrips compared 

to pairings. 

When applying the searching algorithm, before a new flight is added to the partial 

path a set of constraints must be checked. All constraints must be satisfied for a flight to 

be added to a path. The reason behind it is to reduce the search area and implicitly the 

number of pairings generated by avoiding useless nodes. 

The constraints are allocated to two different categories. One category contains 

hard constraints and another one contains soft constraints. If the hard constraints are not 

satisfied the current loop which iterates over the adjacent nodes will terminate. If the soft 

constraints are not satisfied the current iteration will be skipped and the algorithm will go 

to the next adjacent node (see Algorithm1). 

Before calling Algorithm 1 the flights must be ordered increasingly based on 

departure time inside the data structure which contains them, in our case a list. If this has 

been done, then the hard constraints are satisfied if: 

 When iterating over the adjacent nodes of a node, the departure time of the 

current node is less than the departure time of the target node; 

 The number of duties is within the parameters selected by the user; 

 The number of sectors inside a duty is within the parameters select by the user; 

whereas the soft constraints are satisfied if: 

 The maximum pairing timespan is less or equal than the maximum pairing 

timespan allowed; 

 All link constraints are satisfied. 

Algorithm 1 shows the pseudocode of the depth-first search algorithm which has been use 

for testing purposes in this paper to generate the traditional pairings whereas Algorithm 2 

has been used for generating roundtrips. startNode is a variable which represent a flight. 

When calling the algorithm for the first time, startNode will be the departure flight of the 

pair flights whereas the endNode will always represent the arrival flight of the pair flights. 

The visitedList is a data structure which is a list in our case and it is used for holding partial 

paths and pathList is the list which saves the created pairings. 
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Consider the network from Figure 8. Applying the algorithms above on this network 

with Stockholm as a base and F2 as carry in and F10 as carry out one would get the set of 

pairings from Table 11 when using Algorithm 1 and the set of pairings from Table 12 when 

using Algorithm 2. 

 

P1 F1 - F3 - F7 

P2 F1 - F3 - F7 - F8 - F9 

P3 F1 - F3 - F10 

P4 F1 - F4 - F5 - F7 

P5 F1 - F4 - F5 - F7 - F8 - F9 

P6 F1 - F4 - F5 - F10 

P7 F1 - F4 - F6 

P8 F1 - F4 - F6 - F8 - F9 

P9 F8 - F9 
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P10 F2 - F5 - F7 

P11 F2 - F5 - F10 

P12 F2 - F5 - F7 - F8 - F9 

P13 F2 - F6 

P14 F2 - F6 - F8 - F9 

Table 11: Pairings generated with Algorithm 1 based on network from Figure 8 

 

P1 F1 - F3 - F7 

P2 F1 - F3 - F10 

P3 F1 - F4 - F5 - F7 

P4 F1 - F4 - F5 - F10 

P5 F1 - F4 - F6 

P6 F8 - F9 

P7 F2 - F5 - F7 

P8 F2 - F5 - F10 

P9 F2 - F6 

Table 12: Pairings generated with Algorithm 1 based on network from Figure 8 

 

3.4.2 Searching on a pairing-based network 

Generating pairings from a pairing-based network is almost the same as generating 

pairings from a flight-based network. As a pairing contains multiple flights, it is 

recommended to assume that the pairing has departure and arrival times, and departure and 

arrival stations. The departure time and station of a pairing is the departure time and station 

of the first flight of the pairing and the arrival time and station is the arrival time and station 

of the last flight of the pairing. The only algorithm used to generate pairings based on a 

pairing-based network is Algorithm 1. In this case startNode and endNode are pairings. 

Given the pairings from Table 12 and the network from Figure 9, if one would apply 

Algorithm 2 one would end up with the same pairings as in  Table 11. 
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4. OPTIMIZATION MODEL 

 Problem Formulation 

The problem is formulated as a set covering problem. The set covering problem is 

almost the same as the set partition problem with the difference that the former requires 

each set element to be found in at least one subset whereas the latter requires each set 

element to be found in exactly one subset. One reason for which the set covering model is 

preferred in crew pairing optimization is because, for real schedules, the problem will be 

almost always infeasible if the set partition model is used, as usually overcovers are 

required which excludes all the possibilities of a partition to exist. 

 

 

𝑚𝑖𝑛 ∑𝑐𝑗𝑥𝑗

𝑗𝜖𝐽

 

 

                          𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗 ≥ 1

𝑗𝜖𝐽

     ∀ 𝑖 𝜖 𝐼 

          𝑥𝑗  𝜖 {0,1} 

(4) 

   

   

 

As it can be seen the only difference between the formulation above and the one 

from the heading 2.1 is that the equality constraint has been changed to inequality.  

The cost model is assumed to be a linear function. The scope is to fit as many 

flights as possible inside a pairing, therefore three different costs will compute the final 

cost of a pairing. One of it is a constant (CT) which is a fix cost for all pairings, another 

one is the sit connection cost (SCC) which is a function of the time spent inside a duty 

between flights and the last one is the layover cost(LC) which is a function of the rest 

time spent between duties. 

The pairing cost (PC) is a sum of the costs described above. 

 𝑃𝐶 = 𝐶𝑇 + 𝑆𝐶𝐶 + 𝐿𝐶 (5) 
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Example 1: Set covering formulation for the traditional pairings 

 

Input Data: 

 

Pairings: Table 11  

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

Solver: Google OR MIP 

 

Optimization problem 

 

min𝑥∈[0,1]14  [26 41 44 23 36 41 23 29 21 25 43 38 25 41 ] [

𝑥1

⋮
𝑥14

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 1
1 1 0 1 1 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 0 1 0 0 1 0 0 0 0 1 0 0 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮

𝑥14]
 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

   

(6) 

 

The optimal solution of the problem above is selecting variables 𝑥3, 𝑥7, 𝑥12 to be 1 and rest 

of them 0, and the objective value is 105. 

This optimization problem can’t be formulated as a set partition problem because there is a 

position required and the problem would turn to be infeasible.  
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Example 2:  Set covering formulation for the roundtrips.  

 

Input Data: 

 

Pairings: Table 12 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

Solver: Google OR MIP 

 

Optimization problem 

 

 

 

min𝑥∈[0,1]9  [26 44 23 41 23 21 25 43 25 ] [

𝑥1

⋮
𝑥9

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1 0
0 0 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑥9]

 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(7) 

 

 

 

 

The optimal solution of the problem above is selecting variables 𝑥2, 𝑥3, 𝑥6 , 𝑥9 to be 1 and rest 

of them 0, and the objective value is 113. 

 

Now, based on the optimal solution from the roundtrips one should create the optimization 

formulation for the next step which takes the variables input based on the pairings generated 

from the pairing-based network. 

It is easy to see that all possible combinations are: P3-P6 and P9-P6. 
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Example 3:  Set covering formulation for the roundtrips solution  

 

Input Data: 

 

Pairings: Table 12 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

Solver: Google OR MIP 

 

Optimization problem 

 

 

min𝑥∈[0,1]6  [44 23 21  25 36 41 ] [

𝑥1

⋮
𝑥6

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 0 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 1 1
0 0 1 0 1 1
1 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑥6]

 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(8) 

 

The optimal solution of the problem above is selecting variables 𝑥1, 𝑥4, 𝑥5  to be 1 and rest of 

them 0, and the objective value is 105. 

It can be noticed that the pairing solution is different compared to the Example  1, but the 

objective value is the same and this is due to fact that the optimization solution from Example  

1 has multiple optimal solutions. 

 

 

 

 

 Overcover Penalty 

The set covering formulation let the possibility of having unnecessary overcovers 

open. For real world schedules there are usually multiple optimal solutions and many of 

them will lead to overcovers which are neither required nor cheaper.  
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One overcover requires that an extra set of crew must be on the flight as this could 

be the only link to another flight or the solution is optimal. The purpose of the inequality 

in (4) is exactly to take care of the instances where the only possibility to cover some flights 

is by making use of the overcovers. Take into consideration the Example  1 where the 

optimal solution requires one overcover to be feasible as both F3 and F4 have a predecessor 

connection just to F1. 

 

 

𝑚𝑖𝑛 ∑𝑐𝑗𝑥𝑗 + ∑𝑃𝑖 (∑𝑎𝑖𝑗𝑥𝑗 − 1

𝑗𝜖𝐽

)

𝑖𝜖𝐼𝑗𝜖𝐽

 

  𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗 ≥ 1

𝑗𝜖𝐽

     ∀ 𝑖 𝜖 𝐼 

 𝑥𝑗  𝜖 {0,1} 

(9) 

 

In (9) can be seen that one more term has been introduced. This term is P and 

represent the penalty coefficient for each flight. The reason for having penalty coefficients 

on each flight assumes that from the operations point of view there is a priority on which 

flights to be overcovered as some of them might be fully booked and others might still have 

some free seats. 
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Example 4: Set covering formulation for traditional pairings with overcover penalty  

Input Data: 

 

Pairings: Table 11 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

- 𝑃𝑖: 10 

Solver: Google OR MIP 

 

Optimization problem 

 

 

min𝑥∈[0,1]14  [56 91 74 63 96 81 53 79 41 55 73 88 45 81 ] [

𝑥1

⋮
𝑥14

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 1
1 1 0 1 1 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 0 1 0 0 1 0 0 0 0 1 0 0 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮

𝑥14]
 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(10) 

 

 

   

 

 

The optimal solution of the problem above is selecting variables 𝑥3, 𝑥7, 𝑥12 to be 1 and rest 

of them 0, and the objective value is 215. 
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Example 5: Set covering formulation for roundtrips with overcover penalty  

Input Data: 

 

Pairings: Table 12  

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

- 𝑃𝑖: 10 

Solver: Google OR MIP 

 

Optimization problem 

 

 

min𝑥∈[0,1]9  [56 74 63 81 53 41 55 73 45 ] [

𝑥1

⋮
𝑥9

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1 0
0 0 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑥9]

 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(11) 

 

 

The optimal solution of the problem above is selecting variables 𝑥2, 𝑥3, 𝑥6 , 𝑥9 to be 1 and rest 

of them 0, and the objective value is 223. All penalty coefficients for all flights have been 

considered equal. 
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Example 6: Set covering formulation for roundtrips solution with overcover penalty 

 

Input Data: 

 

Pairings: Table 12 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

- 𝑃𝑖: 10 

Solver: Google OR MIP 

 

Optimization problem 

 

 

min𝑥∈[0,1]6  [44 23 21  25 36 41 ] [

𝑥1

⋮
𝑥6

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 0 0 1 0
0 0 0 1 0 1
1 0 0 0 0 0
0 1 0 0 1 0
0 1 0 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 1 1
0 0 1 0 1 1
1 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑥6]

 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(12) 

 

The optimal solution of the problem above is selecting variables 𝑥1, 𝑥4, 𝑥5  to be 1 and rest of 

them 0, and the objective value is 215. 

It can be noticed that the pairing solution is different compared to the Example 4, but the 

objective value is the same and this is due to fact that the optimization solution from Example  

1 has multiple optimal solutions. 

 

 

 

 Robustness Penalty 

Airlines usually create the pairings six months in advance as it is a time-consuming 

stage and they also need to create the crew rosters which are depended on the pairings 

solution. But usually in the day-of-operations many of the pairings created won’t be used 
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anymore due to a disruptive schedule. Therefore, many airlines adjust and create some of 

the pairings manually in this stage. Disruptive schedules can appear due to the weather 

conditions or if some technical problem appears to an aircraft. There can also be many 

other reasons for a schedule to change and all these changes will lead to flight delays and 

it can become impossible for some of the crews to be in time for their connecting flights. 

Here, a method through which the disruptive schedules are handled is presented.  

As flight delays can make the crew’s connections impossible one way to remove 

this situation is to keep the crew with the tail. This will be impossible in some of the 

situations due to the rules and regulations which apply for crews, therefore enforcing a hard 

constraint to keep the crew with the tail will lead in infeasible solutions. The solution 

proposed in this paper is to keep the crew with the tail by eliminating the hard constraints. 

This can be achieved by applying a penalty for the number of tails changes inside a pairing 

where the connection is less than a specified threshold. Basically, the penalty to be applied 

will try to keep the crew with the tail and this will happen at a higher cost. 

Equation (13) shows the mathematical formulation of the set covering problem with 

the vehicle change penalty. 𝑇 represents the coefficient of the penalty and 𝑛𝑗  represents the 

number of tails changes inside pairing 𝑗. 

 

 

𝑚𝑖𝑛 ∑𝑐𝑗𝑥𝑗 + 

𝑗𝜖𝐽

𝑇 ∑𝑛𝑗𝑥𝑗

𝑗𝜖𝐽

 

 

  𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗 ≥ 1

𝑗𝜖𝐽

     ∀ 𝑖 𝜖 𝐼 

𝑥𝑗  𝜖 {0,1} 

(13) 

 

Let’s consider the schedule form Table 4 and the paring from Table 11. Say 4 hours 

is the threshold for the penalty to be applied on a vehicle change and 100 is the coefficient 

of the penalty. If a connection is larger than 4 hours, then no vehicle penalty will be applied. 

Table 13 shows the number of tail changes inside a pairing. 
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Pairings 𝑛𝑗  𝑇𝑛𝑗 
 

P1 1 100 

P2 1 100 

P3 1 100 

P4 1 100 

P5 1 100 

P6 0 0 

P7 1 100 

P8 1 100 

P9 0 0 

P10 2 200 

P11 1 100 

P12 2 200 

P13 0 0 

P14 0 0 

Table 13: No of tails changes and the associated penalties for the schedule from Table 4 when the threshold 

is set to 4 hours and the coefficient of the penalty is 100. Traditional pairings. 

 

The optimal solution of this schedule with the vehicle change penalty is to be found in 

Example 7. 
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Example 7: Set covering formulation for traditional pairings with vehicle change penalty. 

 

Input Data: 

 

Pairings: Table 11 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

- 𝑇: 100 

- Threshold for penalty: 4 h 

Solver: Google OR MIP 

 

Optimization problem 

 

min𝑥∈[0,1]14 [126 141 144 123 136 41 123 129 21 225 143 238 25 41 ] [

𝑥1

⋮
𝑥14

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1 1
1 1 0 1 1 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 1 0 0 1 0 0 1 1 0 0 1 0 1
0 0 1 0 0 1 0 0 0 0 1 0 0 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮

𝑥14]
 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(14) 

 

   

 

The optimal solution of the problem above is selecting variables 𝑥2, 𝑥6, 𝑥13 to be 1 and rest 

of them 0, and the objective value is 207. 

It can be noticed that now we have just one vehicle change in the solution which can lead to 

an disruptive schedule compared to the solution from Example 1, where 𝑥3, 𝑥7, 𝑥12were set 

to 1 and there was 4 vehicle changes. 

 

 

 

 

Now, let us consider the instance with the schedule from Table 12. The same 4 hours 

we apply for the threshold and we set the penalty coefficient 𝑇 to 100 as well. Table 14 

shows the number of changes and the penalty to be applied for each variable. 
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Pairings 𝑛𝑗  𝑇𝑛𝑗 
 

P1 1 100 

P2 1 100 

P3 1 100 

P4 0 0 

P5 1 100 

P6 0 0 

P7 2 200 

P8 1 100 
P9 0 0 

Table 14: No of tails changes and the associated penalties for the schedule from Table 4 when the threshold 

is set to 4 hours and the coefficient of the penalty is 100. Roundtrips. 

Example 8:  Set covering formulation for roundtrips with vehicle change penalty. 

 

Input Data: 

 

Pairings: Table 12 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

- 𝑇: 100 

- Threshold for penalty: 4 h 

Solver: Google OR MIP 

 

Optimization problem 

 

 

min𝑥∈[0,1]9  [156 174 163 81 153 41 255 173 45 ] [

𝑥1

⋮
𝑥9

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1
1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1 0
0 0 0 0 1 0 0 0 1
1 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑥9]

 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(15) 
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The optimal solution of the problem above is selecting variables 𝑥1, 𝑥4, 𝑥6 , 𝑥9 to be 1 and rest 

of them 0, and the objective value is 213.  

It can be noticed that the optimal solution is different compared to the one from Example 2, 

as now the solution has one vehicle change compared to two vehicle changes in Example 2 

 

If the depth-first search algorithm is applied on the paring solution from Example 

8 and the result is added in the optimization problem along with the pairings from the 

solution, Example 9 can be created. All possible combinations are 𝑃1 − 𝑃6 (which is 𝑃2 

in Table 13) and 𝑃9 − 𝑃6 (which is 𝑃14 in Table 13). And the associated penalty table for all 

pairings is: 

 

Pairings 𝑛𝑗  𝑇𝑛𝑗 
 

P1 1 100 

P2 0 0 

P3 0 0 

P4 0 0 

P5 1 100 

P6 0 0 
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Example 9: Set covering formulation for pairings out of the roundtrips with vehicle change 

penalty. 

 

Input Data: 

 

Pairings: solution from Example 8 + all feasible combinations (𝑃1 − 𝑃6 and 𝑃9 − 𝑃6) 

Costs:  

- CT: 20 

- SCC: 1/h 

- LC: 1/h 

- 𝑇: 100 

- Threshold for penalty: 4 h 

Solver: Google OR MIP 

 

Optimization problem 

 

min𝑥∈[0,1]6  [156 81 41  45 141 41 ] [

𝑥1

⋮
𝑥6

] 

 

[
 
 
 
 
 
 
 
 
 
1 1 0 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 1
1 0 0 0 1 0
0 0 1 0 1 1
0 0 1 0 1 1
0 1 0 0 0 0]

 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 
 
𝑥1

⋮
⋮
⋮
⋮
⋮
⋮
⋮
⋮
𝑥6]

 
 
 
 
 
 
 
 
 

 ≥  

[
 
 
 
 
 
 
 
 
 
1
1
1
1
1
1
1
1
1
1]
 
 
 
 
 
 
 
 
 

 

(16) 

 

 

 

The optimal solution of the problem above is selecting variables 𝑥2, 𝑥4, 𝑥5  to be 1 and rest of 

them 0, and the objective value is 207. 

It can be noticed that both the objective value and the pairing solution is the same as in 

Example 7. 

 

 

 Integrated Optimization Model 

The overcover and the vehicle change penalties are two very important factors in 

an airline crew pairing optimization tool. With the model described in this paper one can 
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prioritize vehicle change over overcovers or the other way around. This makes an efficient 

tool when it comes about the cost of operations and the day-of-operations. 

Equation (17) shows the integrated optimization formulation. 

 

 

𝑚𝑖𝑛 ∑𝑐𝑗𝑥𝑗 + ∑𝑃𝑖 (∑ 𝑎𝑖𝑗𝑥𝑗 − 1

𝑗𝜖𝐽

) + 𝑇 ∑𝑛𝑗𝑥𝑗

𝑗𝜖𝐽𝑖𝜖𝐼𝑗𝜖𝐽

 

 

  𝑠. 𝑡.∑𝑎𝑖𝑗𝑥𝑗 ≥ 1

𝑗𝜖𝐽

     ∀ 𝑖 𝜖 𝐼 

𝑥𝑗  𝜖 {0,1} 

(17) 
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5. SIMULATIONS 

In the previous chapters the problem has been described in detail and the difference 

has been emphasized between the traditional pairing generation and the pairings generated 

based on the roundtrips solution. Under this heading different simulations to compare the 

processing time on a real schedule will be presented. 

The difference between our model framework and crew pairing optimization 

traditional framework will be compared.  Recall that the traditional framework is when one 

generates all feasible pairings and then one optimizes over them whereas our model 

framework is represented by four stages; in the first stage, all feasible end-at-first-base 

pairings are generated using Algorithm 2, then, in the second stage we optimize over the 

pairing generated in the previous stage and then we generate  pairings again based on the 

solution from the second stage and using Algorithm 1, and, finally, in the fourth stage we 

optimize over the pairings generated in the third stage. 

The processing time presented in Table 15 represents the sum between the generation 

time and the optimization time,   TP generated represents the number of pairings generated 

using the traditional method, NCP generated represents the pairing generated with the 

model framework presented in this paper and it is the sum of the pairings from stage 1 and 

3. 

The following constraints are enforced for the results presented in Table 15: 

 Minimum transit time = 30 min 

 Maximum transit time = 240 min 

 Minimum layover time = 10 h 

 Maximum layover time = 15 h 

 Maximum duty time = 12 h 

 Maximum pairing time = 2 days 

 Maximum number of duties = 2 
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Scenarios A B C D 

No of Flights 421 873 1524 3085 

TP generated 21884 79149 222076 574916 

NCP generated 3604 10125 27145 73835 

Processing Time with TP [sec] 19 93 388 3171 

Processing Time with NCP [sec] 1,47 9,89 44,68 196 

Table 15: Results which show the efficiency of the model framework presented in this paper. 

 

 

Looking at Table 15 it can be noticed the superiority of the concept presented in here.  

The processing time of using the new concept is significantly lower compared to the old 

approach. This plays a key role for an efficient airline crew pairing optimization tool. A 

mixed integer programming solver from Google OR has been used to solve the 

optimization problems. All the algorithms have been programmed in C# and the tests took 

place on a laptop with the following specifications: 

 Processor: Inter Core i7-6600U CPU @ 2.60 GHz 

 RAM: 16,0 GB 

 System type: 64-bit Operating System  
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6. CONCLUSIONS 

 

Crew pairing optimization problem plays an important role in airline’s industry as 

it can reduce the crew costs significative. This thesis has presented a complete approach 

for this problem with robust pairings and unnecessary overcovers elimination. One of the 

key factors was the roundtrips generation which led both to a reduction of the search are 

when generating pairings and to a reduction of the number of pairing generated. Reducing 

the number of pairings plays an important role in the optimization stage. As the variables 

from the optimization formulation represent all the generated pairings it is crucial to reduce 

them as the processing time of the optimization stage is polynomial. Two types of network 

have been presented, a flight-based network used to generate the roundtrips and a pairing-

based network which has been used to generate new combinations of pairings from the 

optimal solution of the roundtrips. It has been shown in the examples from Chapter 4 that 

this approach leads to the same objective value compared to the traditional approach when 

all feasible pairings were generated and then the optimization stage was taking place.  

One could consider as an extension from this thesis, for future work, to implement 

a method through which base manpower constraints is taken into consideration for each 

base. Many carriers would prefer a tool where, they can distribute the crews to be used by 

the pairings created.  

The idea behind pairings is to reduce the crew scheduling cost but as this stage is 

divided in crew pairing and crew rostering the final solution will be heuristic. Therefore, 

another extension would be to integrate these two stages rather than using them separately 

and to find a solution closer to optimal. 

Even with the model presented in this paper, sometimes the generated pairings 

could reach a high number and so the optimization time needed. A heuristic preprocessing 

of the constraints matrix to reduce the number of columns and implicitly the optimization 

processing time could be a good extension from this thesis. 
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