
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Jarno Tuovinen

MOBILE GAME TEST AUTOMATION
WITH IMAGE RECOGNITION

Master’s Thesis
Degree Programme in Computer Science and Engineering

Feb 2018

Tuovinen J. (2018) Mobile game test automation with image recognition. Uni-
versity of Oulu, Degree Programme in Computer Science and Engineering. Master’s
thesis, 50 p.

ABSTRACT

In the sequel of mobile game industry, testing is recognized as a key factor that
can either boost or halt the game development. Indeed, the growth speed of mo-
bile industry has led to decreasing quality in the apps and the employed testing
tools. The wide spectrum of device hardware and software, so called fragmenta-
tion, makes it a lot slower to test the application on devices. Besides, there are
more inherent technical issues to test games as compared to other mobile applica-
tions. The lack of efficient tools for testing robustness, quality and computational
efficiency has been acknowledged by the game industry. This unmet need has
motivated the work highlighted in this thesis which aims to explore easy and ef-
ficient approaches to generate test automation code for mobile games. First, to
identify difficulties, challenges and good practices that mobile game developers
face, a questionnaire-based analysis has been conducted and evaluated. Second,
a new Android mobile game testing tool, called MAuto, has been developed and
deployed. MAuto is developed to be compatible with Appium, open source test
automation framework. MAuto is a tool that utilizes its user’s input to generate
Appium test automation code which can be run on the same or any other Android
device. The system consists of three elements: the user, the browser, and the mo-
bile device. Once the user has launched MAuto, all the interaction between the
user and the tool happens with the browser. During the rerun, MAuto utilizes
AKAZE algorithm to recognize the location of the object and repeats the user in-
put with Appium. Consequently, MAuto has been used in developing test automa-
tion code to play the tutorial scene of the mobile game Clash of Clans. MAuto is
designed to be a friendly mobile test creator that, with minimal amendments, can
be exported to other testing applications in alternative platforms, e.g. iOS. Nev-
ertheless, the thesis also acknowledges the limitations in the image-recognition
based test automation methods where the negative impact of change of configura-
tion, lack of luminosity, and non-exhaustive list of models cannot be ignored. On
the other hand, the thesis also reviews the existing tools and current practices in
mobile game testing, providing a comparable analysis for both researchers and
developer communities.

Keywords: Test automation, Android, iOS, game testing, mobile game

Tuovinen J. (2018) Mobiilipelien automaatiotestaus kuvantunnistuksen avulla.
Oulun yliopisto, tietotekniikan tutkinto-ohjelma. Diplomityö, 50 s.

TIIVISTELMÄ

Mobiilipeliteollisuudessa testauksen on havaittu olevan avaintekijä, joka voi no-
peuttaa tai hidastaa pelinkehitystä. Mobiiliteollisuuden kasvunopeus on johtanut
applikaatioiden ja testaustyökalujen laadun heikkenemiseen. Laitteistojen ja oh-
jelmistojen laaja kirjo, niin kutsuttu fragmentaatio, hidastaa applikaatioiden tes-
tausta laitteilla. Lisäksi peleissä on enemmän niille ominaisia teknisiä ongelmia
verrattuna muihin mobiiliapplikaatioihin. Peliteollisuudessa on huomattu, ettei
ole olemassa riittävän tehokkaita työkaluja pelien vakauden, laadun ja tehokkuu-
den testaamiseen. Tämä diplomityö pyrkii vastaamaan tähän tarpeeseen. Työn
tarkoitus on löytää helppoja ja tehokkaita lähestymistapoja testiautomaatiokoo-
din kehittämiseksi mobiilipeleille. Ensimmäiseksi on toteutettu kyselypohjainen
analyysi, jotta voitaisiin selvittää mobiilikehittäjien kohtaamat vaikeudet ja haas-
teet sekä löytää heille parhaat käytänteet. Toiseksi on kehitetty uusi Android-
pelien testaustyökalu, MAuto, joka on tarkoitettu erityisesti helpottamaan pelien
testausta mutta joka toimii myös muilla applikaatioilla. MAuto on yhteensopiva
Appiumin kanssa, joka on avoimen lähdekoodin testiautomaatioviitekehys. MAu-
to on työkalu, jolla voi luoda testaajan syötteistä Appium-testiautomaatiokoodia.
Testikoodia voidaan ajaa uudelleen millä tahansa Android-laitteella. Järjestelmä
koostuu kolmesta osasta: käyttäjästä, selaimesta ja mobiililaitteesta. Kun käyt-
täjä on käynnistänyt MAuton, interaktio käyttäjän ja työkalun välillä tapahtuu
selaimessa. Kun testi ajetaan uudelleen, MAuto toistaa käyttäjän syötteen tun-
nistetussa sijainnissa hyödyntämällä AKAZE-algoritmia ja Appiumia. MAutoa
on käytetty esimerkiksi luomaan testiautomaatiokoodi, joka pelaa Clash of Clans
-peliä. MAuto on suunniteltu käyttäjäystävälliseksi, ja pienellä vaivalla sitä voi-
daan laajentaa kattamaan useampia käyttöjärjestelmiä, kuten iOS. Diplomityö
käsittelee myös kuvantunnistukseen perustuvien työkalujen heikkouksia, kuten
kuvantunnistuksen tunnistustehokkuutta verrattuna natiiviin objektintunnistuk-
seen ja muuttuvien grafiikoiden aiheuttamia ongelmia testauksessa. Myös MAu-
ton heikkouksia on käsitelty liittyen erityisesti sen nopeuteen ja toimintavarmuu-
teen peleissä, joissa grafiikan valaistus muuttuu tai peli on nopeatempoinen. Li-
säksi työ arvioi olemassa olevia tekniikoita ja työkaluja ja tarjoaa vertailukelpoi-
sen analyysin niin tutkijoille kuin kehittäjillekin.

Avainsanat: Automaatiotestaus, Android, iOS, pelitestaus, mobiilipeli

TABLE OF CONTENTS

ABSTRACT

TIIVISTELMÄ

TABLE OF CONTENTS

FOREWORD

ABBREVIATIONS

1. INTRODUCTION 7

2. STATE OF THE ART 9
2.1. Smartphones and mobile operating systems 9
2.2. Fragmentation . 9
2.3. Mobile device groups . 11
2.4. Software development for mobile devices 11

2.4.1. Application types . 11
2.5. Mobile testing . 12

2.5.1. Testing pyramids . 12
2.5.2. Test automation . 14
2.5.3. Different types of test automation tools 16
2.5.4. Record and replay . 16

2.6. Mobile game testing . 18
2.6.1. Difficulties in mobile games and test automation 18

2.7. Regression testing . 19
2.8. Appium . 20
2.9. Image recognition . 20

2.9.1. OpenCV . 21
2.9.2. Image features . 21
2.9.3. Rotation invariant . 22
2.9.4. Scale invariant . 23
2.9.5. SIFT and SURF . 23
2.9.6. KAZE . 23
2.9.7. AKAZE . 23

2.10. Tools . 24
2.11. Related application testing tools . 25
2.12. Summary . 26

3. PROBLEM STATEMENT 27
3.0.1. Methodology . 27

4. QUESTIONNAIRE 29
4.1. The biggest issues in game test automation 30
4.2. The problems with image recognition based test automation 30

4.3. The biggest issues in the replay phase of testing 31
4.4. Test automation vs. manual testing 31
4.5. The most time consuming issue in test automation 31
4.6. Conclusion . 31

5. MAUTO: EASIER MOBILE GAME TEST AUTOMATION 33
5.1. System overview . 33

5.1.1. Architectual design . 34
5.1.2. Record and replay . 35
5.1.3. Generated code . 35

5.2. Image recognition with AKAZE . 35
5.3. Summary . 36

6. VALIDATION AND RESULTS 39
6.1. Use Case — Clash of Clans . 39

6.1.1. Things we learned from the CoC use case 42

7. DISCUSSION 46
7.1. Future work . 46

8. CONCLUSION 48

9. REFERENCES 49

FOREWORD

This thesis has been done with Bitbar Technologies. They already had a tool, Testdroid
Recorder, which recorded user actions for Android applications and the actions could
be replayed on the same or any other Android device. This tool didn’t work with games
and there wasn’t any tool that could do it, so we got the idea to investigate it further.

I’ve been working on my thesis very long and I’d like to thank everybody who has
helped me in any way. I’m sure I’ve tested their patience a lot and I’ve almost given
up many times. Special thanks to my wife Sirpa who has supported me the most and
without her support this thesis wouldn’t have ever been finished. Also, Saija, Ismo,
Anita and Kari have helped a lot not to forget supervisors Mourad, Kaj, Huber and
Vassilis.

Oulu, Finland February 5, 2018

Jarno Tuovinen

ABBREVIATIONS

ADB Android Debug Bridge
AKAZE features Accelerated version of KAZE features
AOS Additive Operator Splitting
API Application programming interface
APK Android application package
AUT Application under test
CoC Clash of Clans
CSS Cascading Style Sheets
DUT Device under test
E2E End to end
FED Fast Explicit Diffusion
GITR GoogleInstrumentationTestRunner
GUI Graphical User Interface
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
iOS Mobile operating system developed and distributed by Apple Inc.
JVM Java virtual machine
KAZE features 2D feature detection and description method in a nonlinear scale space
KIF Keep It Functional - Testing framework for iOS
M-LDB Modified-Local Difference Binary
MMO/MMOG Massive Multiplayer Online Game
OCR Optical character recognition
OpenGL Open Graphics Library
OS Operating system
QA Quality Assurance
QoS Quality of Service
R&PB Record and playback
R&R Record and replay
SDK Software Development Kit
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
SUT System under test
TDD Test-Driven Development
UI User Interface
VNC Virtual Network Computing
WSGI Web Server Gateway Interface
XML Extensible Markup Language
XPath XML Path Language

7

1. INTRODUCTION

The number of smartphones has increased rapidly in the last few years. This rapid
adoption is in part due to the wide spectrum of applications that aid the users with their
daily life activities. Even though games are not helping the users directly, they take
85% of all app revenue1. The growth speed of mobile industry has lead to decreased
quality in the apps. Testing tools has not kept up with the growth and the quality
assurance people has had hard time to make sure the apps work as expected. The testing
tools provide better support for regular apps, but the game developers rely mainly on
humans. Humans can test only limited amount of different kind of devices in given
time as automated processes can test simple scenarios on more devices in less time.

However, current mobile application testing tools do not suit very well for mobile
game testing. Games on mobile devices are harder to test than regular applications,
because the objects in the games cannot be accessed as easily as objects in regular
applications. The test instrumentation usually recognizes the visible objects by IDs,
texts, descriptions and similar handles, but game content usually don’t have these han-
dles. Additionally, device diversity or fragmentation introduces extra challenges in the
testing process as different devices have different operating system and specifications.
As a result, the game is usually just tested in a minor range of devices using manual
methods. To counter this problem, in this thesis, we propose a framework for testing,
namely MAuto. The aim of the tool is to help the tester to create tests which work with
Android games. The tests can then be used to rerun the tests on any other Android
device.

MAuto can record tests from user interactions, export the tests to Appium tests for
playback and everything is done with image recognition to avoid the problem of miss-
ing element handles. The focus is on mobile games, but it works with regular appli-
cations as well. To validate MAuto, tests are created with the tool for Clash of Clans2

(version 8.551.4) from Supercell3.
The rest of the thesis is organized as follows:

• Chapter 2: covers the essential terms and tools to understand what is mobile
game testing with image recognition all about. This chapter digs deeper into test
automation and game testing. Reader learns the basics of widely used image
recognition algorithms. Background chapter also cover the related work and
similar existing tools.

• Chapter 3: explains the core problem this thesis tries to solve.

• Chapter 4: reveals the questionnaire which was used to find the core problems
in mobile game test automation.

• Chapter 5: describes the proposed testing framework called MAuto. This chap-
ter explains how the problems were fixed and how the tool works.

1http://venturebeat.com/2016/02/10/mobile-games-hit-34-8b-in-2015-taking-85-of-all-app-
revenues/

2https://play.google.com/store/apps/details?id=com.supercell.clashofclans
3http://supercell.com/

8

• Chapter 6: explains what metrics were used to measure and compare the tool to
existing tools and methods. This chapter also contains the validation results.

• Chapter 6: discusses about the results. In this chapter we tell if the tool fulfills
its purpose and are there any advantages for the user to use the tool.

• Chapter 8: concludes the thesis.

9

2. STATE OF THE ART

In this chapter, the essential terms and tools for this thesis are explained. Reader learns
the basics of widely used image recognition algorithms and the basics of mobile test
automation. This chapter will also explain related work.

2.1. Smartphones and mobile operating systems

In 2015 there were 341.5 million smartphone shipments in the world and the market
grew 13.0% in one year. Samsung (21.4%) and Apple (13.9%) are the two biggest
vendors by market share. Their combined share is 35.3% which leaves almost 65% on
the table for other vendors. This means there are many vendors to share 341.4 million
shipments, see Table 1.

Android and iOS are the two mostly used operating systems (OS) for smartphones.
Android is developed by Google. The second quarter of 2015 Android had 82.8% and
iOS had 13.9% market share3. This thesis will concentrate on Android, because at the
moment it is dominating the mobile OS niche, see Table 2.

Table 1: Smartphone shipment market shares by IDC2.

Period Samsung Apple Huawei Xiaomi Lenovo1 Others
2015 Q2 21.4% 13.9% 8.7% 5.6% 4.7% 45.7%
2014 Q2 24.8% 11.6% 6.7% 4.6% 8.0% 44.3%
2013 Q2 31.9% 12.9% 4.3% 1.7% 5.7% 43.6%
2012 Q2 32.3% 16.6% 4.1% 1.0% 5.9% 40.2%

Table 2: Mobile OS market shares by IDC3.

Period Android iOS Windows Phone Blackberry OS Others
2015 Q2 82.8% 13.9% 2.6% 0.3% 0.4%
2014 Q2 84.8% 11.6% 2.5% 0.5% 0.7%
2013 Q2 79.8% 12.9% 3.4% 2.8% 1.2%
2012 Q2 69.3% 16.6% 3.1% 4.9% 6.1%

2.2. Fragmentation

Fragmentation refers to a concern over the number of distinct devices with different
combinations of software and hardware. The number of distinct Android devices is
increasing and there were 24093 distinct devices in August 20155. In Android the

1Motorola is under Lenovo.
2http://www.idc.com/prodserv/smartphone-market-share.jsp
3http://www.idc.com/prodserv/smartphone-os-market-share.jsp

10

number of distinct devices is the biggest, but fragmentation is also a problem in other
operating systems. For example Apple has 13 iPhone, 12 iPad and 7 iPod Touch mod-
els which makes 32 models total (August 2016). Many of the models have different
hardware setups and combined with different OS versions the number of distinct de-
vices will be hundreds78. Fragmentation can cause intermitted or "unrepeatable" bugs
in applications[1]. Because of the large number of distinct devices it nearly impossible
to test the application on every distinct device in real environment and to provide the
best user experience the application must work flawlessly on any device.

In Table 3 are shown the yearly number of distinct Android devices by Open Signal6.
The number seems to increase as Figure 1 shows.

Table 3: Disctinct devices by Open Signal45.

Year Disctinct devices
2012 3997
2013 11868
2014 18769
2015 24093

Figure 1: Table 3 presented in graphical format45.

4http://opensignal.com/reports/fragmentation-2013/
5http://opensignal.com/reports/2015/08/android-fragmentation/
6http://opensignal.com/
7https://en.wikipedia.org/wiki/List_of_iOS_devices
8https://www.theiphonewiki.com/wiki/Models

11

2.3. Mobile device groups

Usually mobile devices are grouped into three groups: high-end, midrange and low-
end devices. The boundaries between these three groups are not very clear9. The
devices with the best processing power, display and latest operating system are in
the high-end group. The low-end group contains the cheapest devices with not much
processing power or any other hardware. In these devices the operating system tend to
be very old as well. All the rest are grouped into midrange group. The boundaries can
vary greatly between projects and requirements[2].

2.4. Software development for mobile devices

Mobile devices have some additional problems compared to traditional software de-
velopment. The devices can provide much more value than desktop machines, because
they have a lot of sensors for detecting movement, light, location, temperature, etc. The
memory, battery power, screen size and network connectivity are the biggest limiting
factors in mobile devices[3].

2.4.1. Application types

There are three application types for mobile devices: native, hybrid and mobile web
application. Each of them has pros and cons which the developer should know about.

The applications which are programmed purely with specific languages for the spe-
cific mobile platforms are called native applications. For Android the language is Java
and for iOS the language is Objective-C or Swift. Native applications have full ac-
cess to all platform-specific application programming interfaces (API) and libraries.
Programmer is able to use all the capabilities of the mobile device and usually native
applications have better performance than other types of applications. Updates to na-
tive applications usually require some sort of approval process and rolling the update
can take a long time[1][2].

Mobile web applications are actually websites optimized for mobile browsers. These
applications or websites are accessed from the device’s web browser. The access to
the APIs and libraries in the device is very limited. Mobile web applications can be
updated very easily, because it is enough to update only the server side. The offline
capabilities of mobile web applications are very limited, because usually the network
connection is required to access the server side[2].

Hybrib applications are a mix of native and web applications. The application is in-
stalled to the device and it launches as native application, but parts of the application’s
content comes from servers and are rendered in the device. It is also possible to write
a hybrid application without writing native code at all, because there are frameworks10

which can build the app for the developer from other languages[2].

9http://www.phonearena.com/news/What-defines-a-high-end-phonetablet_id34449
10http://mobile-frameworks-comparison-chart.com/

12

2.5. Mobile testing

Testing the mobile application thoroughly is very important, because the users can
easily remove or change the application to another application.

79 percent of the users will remove the application if it does not work within the
first two or three attempts. For 84 percent of the users the rating of the application in
app store is important. So if your application has a bad rating in the app store, it will
affect the downloads. The median expected load time for a mobile app to launch is 2
seconds11.

2.5.1. Testing pyramids

Figure 2: Traditional test automation pyramid, based on figure by Mike Cohn[2].

The traditional test automation pyramid (see Figure 2) was introduced by Mike
Cohn12. Traditional test automation pyramid has three layers. From top to bottom
they are end to end (E2E) tests, Integration Tests and Unit Tests. Manual testing is not
part of the test automation pyramid so it is drawn as a cloud on top of the pyramid.
The bottom of the pyramid is the widest and the top is the most narrow. The width of
the pyramid presents the number of tests to be written in each layer[2].

Mobile test automation tools are not yet good enough to support the traditional test
automation pyramid. Flipped testing pyramid (see Figure 3) is closer to the truth,
because the tools cannot automate the tests as easily as with desktop applications.
Mobile devices have a lot of sensors and other angles which the testing tools are not
yet supporting or the support is not easy enough[2].

11http://offers2.compuware.com/rs/compuware/images/Mobile_App_Survey_Report.pdf
12https://www.mountaingoatsoftware.com/company/about-mike-cohn

13

Daniel Knott has created another pyramid which he calls the mobile test pyramid
(see Figure 4). He has included manual testing and beta testing to the pyramid along
with unit testing and E2E testing. Bolded layers, Unit Tests and E2E Tests, indicate
the automated layers. Beta Testing and Manual Testing are manual layers. He claimed
that by doing so it provides good results in projects[2].

This thesis focuses on the E2E testing, because that is the current layer where the
improvement happens and where the need is the biggest.

Figure 3: The flipped testing pyramid[2].

Figure 4: The mobile testing pyramid[2].

14

2.5.2. Test automation

Test automation means that a piece of software runs another piece of software and
checks the output for a decision if the test passed or not.

If the automation is done properly it allows team to deliver high-quality code
frequently[4].

Some reasons why one should use test automation are listed below[4]:

• Manual testing takes too long.

• Manual processes are error prone.

• Automation frees people to do their best work.

• Automated regression tests provide a safety net.

• Automated tests give feedback early and often.

• Tests provide documentation.

• Automation can be a good return on investment.

Automated tests can deliver results quickly, but automated tests can also take a long
time to execute so it is hard to say if human tester is faster or slower than automated
test. For example simple smoke tests or unit tests can be automated to be executed
quickly. If the only function for human tester is to follow a predefined test plan without
permission to diverge from the plan then the test automation beats human tester[4].

Humans are not good doing repetitive tasks, because they get tired and bored. Hu-
man nature makes the manual processes error prone[4].

Exploratory testing has been proven to be one of the best ways to find new bugs[5].
When repetitive tasks are automated the testers can focus their effort on more important
work, such as exploratory testing[4].

Automated regression tests can provide a safety net. The programmer can get the
feedback if the part of the system he touched broke something else in the system.
Automated tests can be configured to give feedback early and often. For example it is
possible to set tests to be executed on every save in the file and soon the programmer
knows if the change broke anything the tests cover[4].

Tests with good coverage can be a good documentation of the system. To keep
the tests passing the "documentation" has to be up to date. It is not mandatory to
update static documentation to keep building the system and the documentation can
fall back[4].

Test automation has also some downsides as well. Here is a list of problems or
limitations test automation has[4][6][7]:

• Fragile

• Maintenance

• Automated tests rarely find new bugs

• Can be difficult

15

• Lose the focus

• Initial investment

Test automation can be fragile and the tests might break from seemengly trivial rea-
sons. Test automation is sensitive to changes in behaviour, interface, data and context.
Requirements of the system might change and any tests exercising the changed parts
of the system will most likely be broken. Usually automated tests use some kind of
interface to access the SUT and modification to that interface can break the tests. If the
preconditions of the tests change it is called data sensitivity. Context sensitivity means
the changes in things outside the system like network or hardware. Failure in these
areas have the ability to break the tests[6].

Because test automation is fragile it needs maintenance and the test automation
project should be treated like traditional software project1314. Projects can have more
test automation code than real application code and this leads to bigger maintenance
burden.

Automated tests rarely find new bugs, because the variety of human actions in test-
ing is the key to find new bugs in the software. The automation is good in finding
reoccuring bugs in the software and this is called regression testing[7].

Test automation can be difficult. It depends on what one tries to automate. Unit tests
are usually simple, but testing some bleeding edge system without good testing tools
can be very difficult or nearly impossible. Software cannot be tested completely[5].
Sometimes it is hard to decide what should be automated and what should not.

Team might lose the focus when applying automation. If they add automation for
automation’s sake instead of focusing on improving the quality they are on wrong
track[4].

Setting up the automated system can require bigger investment than just continuing
the old manual testing. Usually the benefits will return the investment sooner or later.
Test automation usually has a learning curve or "hump of pain" in the beginning (see
Figure 5).

Figure 5: Learning curve or the "hump of pain".

13http://www.softwaretestinghelp.com/automation-testing-tutorial-7/
14http://www.methodsandtools.com/archive/archive.php?id=33

16

2.5.3. Different types of test automation tools

The main types of test automation tools are image, coordinate-based, OCR/text and
native object recognition[2].

The tools which use image recognition try to find predefined graphical elements on
the screen and act if it finds one. For example, if the developer has a set of icons
he wants to click on the screen. He passes the icons to the tool which then tries to
find the icons in the screen and click the coordinate where the icon was found. Image
recognition is on it’s best when the UI graphics doesn’t change often. The image
recognition itself is not platform dependant, because all it cares are the two images.
These tests can be fragile if the predefined graphical elements are not carefully chosen.
Badly chosen algorithms or algorithm parameters can also lead to flaky tests[2].

Coordinate-based recognition is not really recognizing anything on the screen. The
test just blindly executes the given action on given coordinate. If the screen size varies
between devices under testing the tests can be broken easily[2].

Optical character recognition (OCR) or text recognition is similar to image recog-
nition, but the developer doesn’t have to provide graphics to the tool. The developer
inputs a text string to be found from the screen to the tool and it tries to find the string
from the screen. The UI element must contain text to work with these kind of tools.
OCR recognition tools tend to be slower than other types of tools, because they need
to scan the whole screen for the text[2].

Native object recognition is the most widely used type of mobile test automation
tools. These tools detect the UI objects with a UI element tree. There are many ways
to access the UI elements, to name a few XML Path Language (XPath), Cascading
Style Sheet (CSS) locators or the native object ID of the element. With native object
recognition the developer can define the IDs or the locators properly and build very ro-
bust tests. The biggest advantage of this approach is that it doesn’t depend on changes
in the UI, orientation, resolution or the device itself[2]. In Figure 6 is shown Eden-
blue15 application which can be automated easily with native object recognition. On
the left there is the screen of the device, on the upper right corner the complete XML
tree is shown and on the lower right corner there is the unique ID eb_b_show_balance
for the Show balance button.

Many test automation tools are a combination of these types and they are not usually
locked into single object recognition type. Every type has its pros and cons and the
developer has to choose the best approach to his needs[2].

2.5.4. Record and replay

Record and replay (R&R), sometimes called as record and playback (R&PB) or cap-
ture and replay[8], refers to the fact that the developer can record his interactions with
the application and later replay the same actions. R&R does not usually require pro-
gramming skills and if the tool is good enough it is quicker to record the test than
write the testing code for same scenario. Depending on the tool and the context R&R

15https://play.google.com/store/apps/details?id=com.rapidprogrammer.edenblue

17

Figure 6: Edenblue application can be automated with native object recognition15.

tests can be even more fragile than regular tests and re-recording the same tests will
decrease the gains of using R&R[6][9], see Figure 6.

In Figure 7 is described how R&R usually works. In production the UI is connected
to the business logic directly. When the test is recorded the signals from the UI are
intercepted by the Recording Decorator. When the signals are stored the decorator
send the signals to the business logic and the AUT will continue as it would without
the decorator. When the test is executed there is no need for the UI. Playback Driver
reads the signals from the container and sends them to the business logic.

Figure 7: Record and replay using a recording decorator[6].

The developer should consider using R&PB tools in the following cases[6]:

• He needs to refactor a legacy system to make it amenable to XUnit-style hand-
scripted tests and he feels it is too risky to do so without having regression tests.

• He cannot afford the time or cost of hand-scripting tests.

• He doesn’t have the programming skills required to hand-script the tests.

The developer should avoid using R&PB tools in the following cases[6]:

18

• He cannot fix the behaviour of the system by freezing/snapshot the data on which
the system will operate.

• The behaviour of the system is expected to change significantly between when
the tests can be recorded and when they will be played back.

• If he wants to use the automated tests as a specification and there is no existing
system that can be used for recording the tests.

2.6. Mobile game testing

Application quality is a real concern for companies around the world these days. If
the application has low quality, it can trump good idea any day. This applies to mobile
games as well. Crashes, glitches and slow response time, for example, will make
gamers change the game to similar games from competitors, and it will lead to revenue
loss. The main problem with games is that they utilize hardware usually a lot more
than traditional apps and many games use direct screen access, in form of OpenGL
or ActiveX, bypassing the OS level service. This section discusses more about these
issues.

Traditional applications are usually meant to just make some task easier for the user
and there are no other reasons why the user should use the application. Games don’t
have to be connected to the real life in any way. It is much easier to test the traditional
application, because usually it works or it doesn’t work as intended. It is much harder
to measure if the game works or not, because the outcome is dependant on the user.
The game can be the best game ever for one user and another user don’t like it at all.

2.6.1. Difficulties in mobile games and test automation

Here is the list of the biggest difficulties of the mobile game test automation:

• Game launch times can be long

• Games take a lot of processing power

• Just rarely the objects in the game can be recognized natively

• Interpreting test result is even harder than in test automation usually[7]

• Automating the fun factor testing is impossible

Games have a lot of graphics and other assets which are required to run the game.
Loading these assets can take a lot of time. If the median expected load time for a
mobile app to launch is 2 seconds16, it is very tough challenge for the game developers
to load everything in time.

If the game has heavy graphics it might be that it is unusable with the low-end
devices and could even be laggy in the midrange devices. Table 4 shows the low-end
devices can be very slow with graphical games.

16http://offers2.compuware.com/rs/compuware/images/Mobile_App_Survey_Report.pdf
17The time is average time for five runs.

19

Table 4: Clash of Clans launch times for three devices with various hardware17.

Device Number of CPU cores Memory (GB) Launch time (s)
Samsung Galaxy S6 8 3 13
Sony Xperia Z3 Compact 4 2 19
LG Optimus L5 Dual E615 1 0.5 76

Automating mobile game testing is hard. If the game is not very simple, it is almost
impossible to test the whole game with automated tools.

Games have hooks which are intented to make the player play the game again and
again[10 p. 364]. Most of the hooks are inside the game and if the game does not even
launch or run in the players device the hook will never be reached and the player will
throw the game away even before playing the game.

When gamer downloads the game, he expects the game runs smoothly. The biggest
mistake is to have a bug where the game crashes in the beginning. Smoke tests can be
automated very easily.

Normal views in regular native applications are described usually in Extensible
Markup Language (XML). The objects have unique identifiers which can be used
to access the objects on the screen. Games runs usually on graphics containers like
OpenGL container. The container is described in the XML, but the tools cannot access
the objects inside the container. Currently the only way to access the objects in the
game is to recognize the object location on the screen with image recognition or to
program the container to expose the location of the elements inside of it.

In regular test automation the test result interpretation can be hard. In games it is
even harder. Normal applications do not have the physics and randomization aspects
the games have.

Fun factor is the gut feeling of the player he experiences when playing the game[10
p. 319-320]. Even if the game does not have any bugs and the idea is good, but
the players do not feel the fun factor the game will not succeed. Because humans
are different and another person might be entertained more by particular game than
another person, it is impossible to automate the fun factor testing18.

2.7. Regression testing

Regression testing is used to make sure new changes did not break the functionality
which worked before. Regression testing is not another level of testing and it can
occur at any level of test. Automated testing tools can support testing with this time-
consuming task[11]. With games there might be a modification to scoring system and
the regression test for it could be a scene where user exceeds 1000 points and he should
win.

18http://www.gamedev.net/page/resources/_/creative/game-design/fun-factor-for-game-developers-
r1828

20

2.8. Appium

Appium19 is an open source test automation framework. Appium can test native, hybrid
and mobile web applications on Android, iOS and Windows platforms.

One special feature of Appium is that the developer doesn’t have to modify the
application binaries to test the application, because Appium uses vendor-provided au-
tomation frameworks (see Table 5)19.

Table 5: Appium vendor-provided automation frameworks19.

OS Version Automation framework

iOS
9.3 and above XCUITest
9.3 and lower UIAutomation

Android
4.2+ Ui Automator
2.3+ Instrumentation

Windows All Microsoft’s WinAppDriver

Appium uses WebDriver20 protocol to wrap the vendor-provided framework into a
single API. WebDriver specifies a client-server protocol (known as the JSON Wire
Protocol21) for the communication. The clients have been written in many major pro-
ramming languages like Ruby, Python and Java22.

Appium sets up server into the host machine. The client, where the test logic is
located, connects to the server. If the operating system of the device is Android, the
server forwards the commands from the client to the device via Ui Automator frame-
work (Figure 8). On older Android devices the server communicates with the device
via Selendroid (Android API level < 17). If the operating system in the device is iOS,
the server forwards the commands via XCUITest (iOS 9.3 and above) or UIAutomation
framework (iOS 9.3 and lower) (Figure 9)23.

2.9. Image recognition

The process of identifying and detecting an object or a feature in a digital video or
image is called image recognition. This concept is used in many applications like
systems for factory automation, toll booth monitoring, security surveillance and lately
even in mobile applications.

19http://appium.io/introduction.html
20http://docs.seleniumhq.org/projects/webdriver/
21https://code.google.com/p/selenium/wiki/JsonWireProtocol
22http://appium.io/downloads
23http://www.slideshare.net/saucelabs/appium-basic-20296603

21

Figure 8: Appium on Android architecture23.

Figure 9: Appium on iOS architecture23.

2.9.1. OpenCV

OpenCV24 is an open source computer vision library which includes several hundreds
of computer vision algorithms. It was originally developed by Intel[12]. It has C, C++,
Java, Python and MATLAB interfaces and it supports Linux, Android, Mac OS and
Windows.

2.9.2. Image features

A feature is something that can be measured in an image. Object can be characterized
by a single feature, but it is more usual to use a set of features. In object recognition the
first problem is to find a part of the image that might contain an object[12]. To detect

24http://opencv.org/

22

and locate an image in another image one needs to find the features in the image. In
Figure 10 the boxes contain flat surface (1), edge (2) and corner (3). Flat surface can
be a feature, but it is not a good one because one cannot locate the feature in another
image. Edge can also be a feature and it is better than flat surface, but still the location
is unclear. In Figure 10 the edge is locked to y-axel, but one cannot tell what is the
x-coordinate. The corners are the best features, because the coordinate of the feature
can be found easily25.

Figure 10: Flat (1), edge (2) and corner (3) features.

2.9.3. Rotation invariant

If the method is rotation invariant it can still find the same features when the image is
rotated (Figure 11)25.

Figure 11: Left is original and right is rotated.

25http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_tutorials.html

23

2.9.4. Scale invariant

If the method is scale invariant it can still find the same features when the image is
scaled. In Figure 12 the image is scaled in and the corner begins to look more like
curve. Scale invariant method can return the same feature from both images25.

Figure 12: Left is original and right is scaled25.

2.9.5. SIFT and SURF

Scale Invariant Feature Transform (SIFT[13]) and Speeded Up Robust Features (SURF[14])
are widely used algorithms to detect image in another image. SIFT and SURF blurs
the image to reduce noise, but at the same time the edges and corners drift away from
the original location[15].

2.9.6. KAZE

KAZE features are a novel multiscale 2D feature detection and description algorithm
in nonlinear scale spaces. KAZE does not use Gaussian blur to reduce the noise, but it
makes blurring locally adaptive to the image. This reduces the noise and preserve the
original edge and corner locations. KAZE features are somewhat more expensive to
compute than SURF, but compared to SIFT KAZE features have better performance
and detection[16]. KAZE uses Additive Operator Splitting (AOS) schemes to solve
the nonlinear diffusion equation[17].

2.9.7. AKAZE

Accelerated KAZE features (AKAZE) are improved version of KAZE features. Cal-
culating AOS in KAZE is computational intensive. Instead of AOS Fast Explicit Dif-
fusion schemes (FED), are used in AKAZE to speed up the feature detection in non-
linear scale spaces. AKAZE also introduces Modified-Local Difference Binary (M-
LDB) to preserve low computational demand and storage requirement. AKAZE is

24

faster to compute and gives better results than previous methods like SURF, SIFT and
KAZE[17].

Figure 13: AKAZE features in Clash of Clans screenshot

2.10. Tools

Virtual Network Computing (VNC): is a system which is able to control another
computer remotely over a network connection. Keyboard and mouse events as well as
graphical screen updates are transmitted from one computer to another.

Android Debug Bridge (ADB)26: is a toolkit for Android development. ADB can
control emulator intances or real device from command line. It is a client-server pro-
gram which consists of three components, client, server and daemon. Client runs on
the development machine and it is connected to the server. Server runs also in devel-
opment machine and is connected to the daemon which runs in the target instance.

pyadb27: is a Python wrapper for ADB. User can call ADB commands from Python
code.

Bottle28: is a Web Server Gateway Interface (WSGI) micro web-framework written
in Python. It is designed to be simple, lightweight and fast. Bottle does not have other
dependencies other than the Python Standard Library and it is distributed as a single
file module.

26http://developer.android.com/tools/help/adb.html
27https://github.com/sch3m4/pyadb
28http://bottlepy.org/docs/dev/index.html

25

2.11. Related application testing tools

This section compares existing application testing tools that might be able to solve the
problems stated in section 2.6.1 and chapter 3.

SikuliX29: automates everything on the screen. The former name for SikuliX was
Sikuli30. It uses OpenCV image recognition to find the objects to click on the screen.
SikuliX doesn’t have support for mobile devices out of the box, but it is possible to
make it work with simulators, emulators or VNC solutions where the mobile device
screen can be accessed from the desktop[18][19].

Testdroid Recorder31: is a free plugin for Eclipse32. It is a record and replay tool
(see Section 2.5.4). Testdroid Recorder records user actions with the application under
testing (AUT) and generates reusable Android JUnit, Robotium33 and ExtSolo34 tests.
The generated tests can be replayed afterwards.

Robotium Recorder35: is a commercial plugin for Android Studio, very similar to
Testdroid Recorder and it can also record and replay Robotium tests.

Appium GUI36: is a project which provides graphical user interface (GUI) for Ap-
pium (see Section 2.8). There is an inspector which can tell information about the
objects on the screen and also a recorder which can record and replay Appium tests.

JAutomate37: is a commercial tool combining image recognition with record and
replay functionality[9]. JAutomate does not support mobile devices out of the box, but
it is possible to make it work with simulators, emulators or VNC solutions where the
mobile device screen can be accessed from the desktop.

Table 6: Related application testing tool comparison.

Desktop support Mobile support Image recognition capabilities
SikuliX X X
Testdroid Recorder X
Robotium Recorder X
Appium GUI X
Jautomate X X
MAuto X X

29http://www.sikulix.com/
30http://www.sikuli.org/
31http://testdroid.com/products/testdroid-recorder
32https://eclipse.org/
33https://github.com/RobotiumTech/robotium
34https://github.com/bitbar/robotium-extensions
35http://robotium.com/products/robotium-recorder
36https://github.com/appium/appium-dot-app
37http://jautomate.com/

26

2.12. Summary

This chapter has explained the essential terms, techniques and concepts for the reader
to understand the concepts behind the tool which will be proposed later in this thesis.
We have shown how the mobile industry has grown over the past years and how the
growth has caused fragmentation effect which makes it harder to provide a quality
software for the end user. Mobile application testing is younger topic than desktop
application testing and this chapter has shown the main differences between mobile
and desktop application testing and test automation. By reading this chapter the user
has understood what is the difference between application testing and test automation
as well as the difference between mobile application testing and mobile game testing.
Image recognition is a key component in the tool this thesis proposes so the basics and
algorithms are explained in this chapter.

27

3. PROBLEM STATEMENT

In manual testing the human user gives the input to the application under testing and
verifies if the output is expected or not. To automate this the human user needs to be
removed from the equation and there needs to be a way to give the input to the ap-
plication and verify the output from the application programmatically. Current tools
for mobile application testing are focusing on native object recognition to check the
integrity of the developed functionality. However, mobile games require other com-
munication means to transmit the events back and forth, because the native object
recognition does not work for most of the mobile games (see Figure 14).

Usually, the functionality of a mobile game is executed during runtime in a graphic
container, e.g., OpenGL, to provide better graphics and physics for users. The con-
tainer wraps all the functionality of a game. Thus, it is not possible to access that
wrapped functionality to test it. Several methods have been developed to overcome this
problem. Most common and effective techniques are 1) programming the container in
a particular way to expose functionality outside the container and 2) implementing im-
age recognition approaches to identify functionality from the screen to transmit this
functionality to the testing process. Generally, image recognition is more simpler to
use. By using image recognition methods, it is possible to find and locate specific
image locations, e.g., subimage.

To use image recognition the user needs the graphical representation of the object to
find, e.g., buttons or game characters. Sometimes the user can get the elements directly
from the graphics designer, but this is not always the case. Also the game might change
the environment and context where the object is presented, e.g., shadows and lighting.
This will affect the success ratio of the image recognition, so it is better to use the
actual context from the game and take screenshots while playing the game.

To extract an object from the game in real context the user needs to take a screenshot
while the game is running in the mobile device. The screenshot is stored in to the mem-
ory of the mobile device so the user needs to transfer the image to his machine. Once
the screenshot is available in the user’s machine, the object or partial image must be
extracted from the screenshot. Once every object required to run the game program-
matically are extracted the user needs to use these objects and write the automation
code to replay the sequence he played before.

To make the cycle above easier and faster for the user we propose a tool called
MAuto. MAuto will automatically take the screenshots and extract the objects from
those screenshots while the user is playing the game. Once the sequence is ready,
MAuto will generate Appium test code to replay the sequence. We will discuss about
MAuto in more details in the next chapter.

3.0.1. Methodology

As already pointed, MAuto employs an image-recognition based methodology in order
to identify whether the icons identified in the graphical display of the mobile screen
are coherent with game functionalities. For this purpose, the following are part of key
attributes of MAuto:

28

Figure 14: The lowest native object in Clash of Clans is View.

Query image is the image cropped from a screenshot and which is used to find and
element from another screenshot in the replay phase.

Native object recognition finds the object from UI element tree.
Image recognition finds the object from video frame in the device screen.
Traditional mobile application is an application which is not a game and they

don’t use OpenGL, ActiveX or similar tools to "hide" the objects from native object
recognition.

Mobile application is a game played on mobile device, f.e. Clash of Clans.
Recording phase is the phase where the tester uses the application under testing to

record the inputs for later replay phase.
Replay phase is the phase where the earlier recorded test is rerunned on the same

or other device.
Stable test is a test which doesn’t give false results and it does what is intented. Vice

versa Unstable test is a test which can fail even if the application worked as expected
or pass even if the application had some unexpected behaviour. Tester can rely more
on stable test and unstable tests can make the test result investigations harder, because
the problem could be in the system testing the application, not in the application itself.

29

4. QUESTIONNAIRE

Five test automation experts answered to this questionnaire. The purpose of this ques-
tionnaire was to find the common problems with the test automation on mobile games
and see if the literature correlates with the real world.

The summary of the questionnaire results is that most of the experts use Appium
as their testing tool/framework. The thesis already highlighted why it is harder to
automate mobile games than mobile applications and the experts agree with this. They
think it is hard to create good query images to make the tests stable. There were not
common problems with replaying the tests on mobile devices, but they agreed that
there are wide variety of issues to overcome, also in the replay phase. They would use
test automation for repetitive tests and human testers for more intuitive testing. In their
opinion, the most time consuming issue in test automation is to make the tests stable
on wide variety of devices.

The questions raised to the experts are the following:

• What is your preferred framework/tool to create automated tests on Android?

• How easy it is to automate mobile applications which are not games?1

• How easy it is to automate mobile games?1

• What are the biggest issues with game test automation and why?

• What possible problems should be considered when doing image recognition
based test automation?

• What kind of image is a good query image for games (query image = the image
to be found from the screen in replay phase)? Does lighting or shadows matter?

• What are the biggest issues in the replay phase of testing when testing non-game
applications?

• What are the biggest issues in the replay phase of testing when testing games?

• When the tester should prefer automated tests instead of manual tests?

• When the tester should prefer manual tests instead of automated tests?

• What are the most time consuming tasks when creating automated tests (this
does not include test replay on other devices)?

4/5 of the experts preferred Appium (Section 2.8) as their primarily testing frame-
work/tool. One of the experts preferred Robot Framework over Appium. We chose
Appium as well with MAuto, because we think it is the best framework to create au-
tomated tests which work on many different devices and it can be easily modified and
extended.

The experts think it is harder to automate mobile games than other applications,
because majority say it is hard to automate mobile game and just one says the same
when it comes to applications which are not games.

1A value between 1 and 5.

30

Figure 15: Preferred frameworks.

Standard deviation for Figure 16 is 0.707106781 (scale 1-5) and 0.447213595 (scale
1-3).

Standard deviation for Figure 17 is 1.095445115 (scale 1-5) and 0.707106781 (scale
1-3).

4.1. The biggest issues in game test automation

From the questionnaire, we noticed that 3/5 of the experts think it is hard to get the
game to specific state.

Similarly, 3/5 of the experts think the games are hard to automate, because most of
the games won’t expose the elements in the game. This is one of the main reasons we
decided to create MAuto.

4.2. The problems with image recognition based test automation

The problems are mostly related to good query images. It is hard to find a query image
which works in different devices. It is also hard and time consuming to maintain a
good query image catalog. When there is a change in the UI of the application, it
might break many automated test sets. In the worst-case scenario, those tests must be
recreated from the scratch and it is very time consuming.

The experts agree that the best query image is any image that makes the test work
and it should preferably work on multiple different devices. The problem just is that
the query image that works depends on the situation. Sometimes very small or very
strictly cropped query image is the best and sometimes the image doesn’t have to be
like that. Sometimes it is a good idea to use some surrounding object and pass the
input event coordinates relatively to this surrounding object.

31

Figure 16: The results for question "How easy it is to automate mobile applications
which are not games?"

4.3. The biggest issues in the replay phase of testing

The experts didn’t have much common problems, but most of the problems were re-
lated to screen sizes and resolutions or random visible events like “battery is almost
empty”-popups. Some of the experts thought the timing of the inputs are sometimes
problematic. For example, if an element is only visible a short amount of time, it is
hard to detect the element and interact with it.

4.4. Test automation vs. manual testing

The experts agree that the automated tests should be used to test repetitive tasks and
things that are tested on each application version (regression tests). Manual testing is
preferred when the testing should be more intuitive.

4.5. The most time consuming issue in test automation

Most experts thought it takes a lot of time to stabilize the tests. For example, if a new
test step is added to the end of a long test set, the tester needs to run the whole set to
see if the added step works or not. Once it is running on a single device there might be
a lot of errors on other devices.

4.6. Conclusion

This questionnaire shows that it is not easy to create automated tests for a wide variety
of devices. Many of the problems comes from the device fragmentation. Random

32

Figure 17: The results for question "How easy it is to automate mobile games?".

events also cause a big headache to test experts when the number of tests and devices
increase.

33

5. MAUTO: EASIER MOBILE GAME TEST AUTOMATION

The purpose of MAuto is to make it easier to create image recognition based mobile
test automation and this section describes how MAuto is designed and implemented.
Section 5.1 shows the high level system design and section 5.1.1 digs deeper into the
system. In MAuto AKAZE is used to recognize the objects from the screenshots and
this is covered in section 5.2. MAuto is used to generate automation code for Clash of
Clans in section 6.1.

5.1. System overview

Figure 18: System overview.

We propose a tool called MAuto which helps the user to create Appium tests with
image recognition without coding a single line of code. The main target is to help
developer to test mobile games, but the tool can be used for other application types as
well.

MAuto is designed to be an easy to use mobile test creator. The system consists of
three elements, the user, the browser and the mobile device and it generates test sript
which the user can run later (see Figure 18). Once the user has launched MAuto all
the interaction between the user and the tool happens with the browser. MAuto takes
care of the mobile device and all the user needs to do is to plug in the USB cable, start
MAuto and interact with the application via web browser. When the user is done with
the recording MAuto will generate a test script which is able to reproduce the recorded
events. MAuto itself is not able to replay the test, but the test script can be replayed
with Appium.

34

5.1.1. Architectual design

Figure 19: Architectual design.

In Figure 19 is described a more detailed view of the system. The two physical
components are mobile device and host machine. In the beginning MAuto installs and
launches the application under test (AUT) and the VNC server to the device. Then
MAuto prepares the connection between VNC server and client. On event from the
user VNC client forwards the event with the coordinates to MAuto. MAuto takes
the screenshot from the mobile device, saves the screenshot and gives VNC client
permission to continue. VNC client sends the same event to VNC server and the view
from the mobile device will be updated to the VNC client. When the user is finished
MAuto will generate the test script from the screenshots and events.

In Figure 20 is shown how the recording sequence goes with MAuto. At first the user
launches the MAuto from command line and gives the path to the AUT. First MAuto
will install the VNC client to the device and launch it. Then it will install the AUT
and launch it. MAuto will run a webserver which the browser can access and when
everything is ready for the recording MAuto will open the webpage to the browser.
The user can now see the screen from the device in the browser. Then the user begins
to give the events to the VNC client running in the browser. The event goes first to
the VNC client. MAuto runs modified VNC client which will send the event with
coordinates to MAuto. MAuto will save the event, take a screenshot from the screen
of the mobile device and extract the query image around the event coordinates.

The API call from the VNC client to MAuto will return after the images have been
processed. Then the VNC client will pass the event to the device via VNC protocol
and the UI in the VNC client will be updated. This will continue until the user decides
to stop the recording. Finally when MAuto gets the command to stop the recording it

35

generates the test script which can be used with Appium to replay the test on any given
device.

5.1.2. Record and replay

My tool is a R&R tool. The tool records the user interactions and Appium can be used
to replay the tests. The recording decorator is modified VNC viewer in the browser
and replay driver is Appium test with image recognition (see Figure 7).

5.1.3. Generated code

MAuto stores the screenshots and query images to session folder. That folder also
has a CSV file where the events and image name are saved. See example CSV file in
Listing 5.1.

Listing 5.1: Example clicks in CSV format.

3 5 4 ; 5 5 3 ; s c r e e n s h o t −1. png ; cropped −1. png
5 3 5 ; 3 1 4 ; s c r e e n s h o t −2. png ; cropped −2. png
1 8 0 ; 3 9 1 ; s c r e e n s h o t −3. png ; cropped −3. png
1 7 6 ; 3 8 8 ; s c r e e n s h o t −4. png ; cropped −4. png

Test script generator loads the CSV file from the disk and transforms it to Appium
compatible test file. The generated test consists of the following sections.

1. Python imports

2. Helper functions

3. Driver initialization

4. Test clicks

5. Driver quit

Test click looks like this
w a i t _ c l i c k (" / Use r s / j a r n o / p r o j e c t s / dcode / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −6.png ")

5.2. Image recognition with AKAZE

AKAZE was chosen to detect the query image location in the device screen, because
it is better than widely used SIFT and SURF1[17] and it is free to use2.

We calculate AKAZE features in the query image and the current screenshot. Once
both features are calculated, we will compare those features to detect if the query

1http://www.robesafe.com/personal/pablo.alcantarilla/kaze.html
2https://github.com/pablofdezalc/akaze/blob/master/LICENSE

36

image is currently shown on the screen and what are the coordinates. This is shown
in the Figure 21. The green circles are the calculated features and the red lines are the
matching features in both images. Once we have the matching features, we calculate
the average coordinate from the inliers to get the coordinate of the query image in the
screenshot.

5.3. Summary

This chapter has proposed the tool called MAuto to make it easier and faster for the
user to create mobile test automation scripts using image recognition. MAuto is a tool
which records user inputs and replays those inputs on any Appium supported Android
device. This is the main sequence: User clicks a coordinate in the browser, MAuto
detects the click, takes a screenshot, crops query image around the coordinate and
generates Appium code that can be replayed. In the replay phase Accelerated KAZE
features are used to find the query images from the device screen.

37

Figure 20: Sequence diagram.

38

Figure 21: Matching AKAZE features in the query image and screenshot.

39

6. VALIDATION AND RESULTS

6.1. Use Case — Clash of Clans

This section shows how MAuto is used in real environment with real mobile game.
The use case shows how to automate the tutorial for Clash of Clans Android mobile
game1 (version 8.551.4) from Supercell2.

Clash of Clans (CoC) is a mobile Massive Multiplayer Online Game (MMO/M-
MOG) where the player builds a community, trains troops and attacks other players to
earn assets.

The game has a tutorial which the player must pass to play the game. If this tutorial
can be passed without serious bugs, it is a good indicator that the game works propely
without any fatal bugs.

The tutorial tells the player to click certain elements to continue. The variation is
very limited in the tutorial so it should be perfect test subject for MAuto.

Launch MAuto recording
py thon s t a r t−s e r v e r . py −−apk c l a s h−of−c l a n s −8−551−4.apk −−package com . s u p e r c e l l . c l a s h o f c l a n s −−a c t i v i t y GameApp

The browser (see Figure 22) pops up and we are ready to begin recording.

Figure 22: Browser looks like this with Clash of Clans.

The first view which requires user interaction in Clash of Clans is the important
notice view. This view can be accessed with native object recognition which usually
better than the image recognition (see Figure 23). We can see the object’s resource id
is android:id/button3 and the package is com.supercell.clashofclans.

Clash of Clans requires the user to select one Google Play account for the game.
This view can be accessed with native object recognition as well (see Figure 24).

1https://play.google.com/store/apps/details?id=com.supercell.clashofclans
2http://supercell.com/

40

Figure 23: The first view which requires interaction in Clash of Clans

Now there are no more views which can be accessed with native object recognition
so it is time to use image recognition. http://www.kranu.fi

Here is an example of the file MAuto creates to save the click coordinates, screen-
shots and query images.
7 4 1 ; 2 9 3 ; s c r e e n s h o t −1.png ; cropped −1.png
6 6 0 ; 2 5 9 ; s c r e e n s h o t −2.png ; cropped −2.png
8 9 4 ; 2 4 8 ; s c r e e n s h o t −3.png ; cropped −3.png
3 2 6 ; 5 4 1 ; s c r e e n s h o t −4.png ; cropped −4.png
4 9 8 ; 4 6 3 ; s c r e e n s h o t −5.png ; cropped −5.png
1 7 9 ; 3 8 3 ; s c r e e n s h o t −6.png ; cropped −6.png
3 9 5 ; 4 0 1 ; s c r e e n s h o t −7.png ; cropped −7.png
7 2 0 ; 5 3 5 ; s c r e e n s h o t −8.png ; cropped −8.png
1 1 9 6 ; 6 4 5 ; s c r e e n s h o t −9.png ; cropped −9.png
1 9 2 ; 3 4 0 ; s c r e e n s h o t −10.png ; cropped −10.png
5 6 7 ; 2 3 4 ; s c r e e n s h o t −11.png ; cropped −11.png
6 3 1 ; 6 4 3 ; s c r e e n s h o t −12.png ; cropped −12.png
7 2 3 ; 5 8 4 ; s c r e e n s h o t −13.png ; cropped −13.png
4 6 8 ; 4 0 6 ; s c r e e n s h o t −14.png ; cropped −14.png
4 7 4 ; 4 1 0 ; s c r e e n s h o t −15.png ; cropped −15.png
4 7 2 ; 4 5 7 ; s c r e e n s h o t −16.png ; cropped −16.png
3 6 4 ; 3 1 5 ; s c r e e n s h o t −17.png ; cropped −17.png
1 6 4 ; 1 8 5 ; s c r e e n s h o t −18.png ; cropped −18.png
1 6 4 ; 1 8 5 ; s c r e e n s h o t −19.png ; cropped −19.png
1 6 4 ; 1 8 5 ; s c r e e n s h o t −20.png ; cropped −20.png
1 6 4 ; 1 8 5 ; s c r e e n s h o t −21.png ; cropped −21.png
6 3 8 ; 6 4 2 ; s c r e e n s h o t −22.png ; cropped −22.png

Here is an example of the Appium test script which can replay the test on every
device Appium supports.
−∗− co d i ng : u t f −8 −∗−

import os
import s y s
import t ime
from appium import w e b d r i v e r
from t ime import s l e e p
from a k a z e g l u e import ∗

def l o g (msg) :
p r i n t (t ime . s t r f t i m e ("%H:%M:%S") + " : " + msg)

def w a i t (image , i n t e r v a l =5 , ro un ds = 1 0) :
g l o b a l akaze
i f not akaze . w a i t (image , i n t e r v a l = i n t e r v a l , r o u n d s = r o un ds) :

s y s . e x i t (1)

41

Figure 24: Google Play account selection

def c l i c k (image) :
g l o b a l akaze
akaze . c l i c k (image)

def w a i t _ c l i c k (image , i n t e r v a l =5 , r o un d s = 1 0 0) :
g l o b a l akaze
w a i t (image , i n t e r v a l , r o un ds)
c l i c k (image)

def w a i t _ c l i c k _ e l e m _ n a m e (name , i n t e r v a l =5 , r o u n d s = 1 0 0) :
g l o b a l d r i v e r

l o g g e r . debug (" Wai t ing f o r i t em name ’{} ’ " . format (name))
c u r r e n t _ r o u n d = 1
whi le c u r r e n t _ r o u n d <= r oun ds :

t r y :
elem = d r i v e r . f i nd_e l emen t_by_name (name)
l o g g e r . debug (" Wai t ing ended , i t em found : {} " . format (name))
elem . c l i c k ()
re turn True

e x c e p t E x c e p t i o n :
l o g g e r . debug (" S t i l l w a i t i n g f o r i t em ")
s l e e p (i n t e r v a l)
c u r r e n t _ r o u n d += 1

l o g g e r . debug (" Wai t ing ended , i t em NOT found ")
re turn F a l s e

d e s i r e d _ c a p a b i l i t i e s = {}
d e s i r e d _ c a p a b i l i t i e s [’ app ’] = ’ / Use r s / t e s t d r o i d / p r o j e c t s / dcode / c l a s h−of−c l a n s −8−332−14.apk ’
d e s i r e d _ c a p a b i l i t i e s [’ pla t formName ’] = ’ Android ’
d e s i r e d _ c a p a b i l i t i e s [’ deviceName ’] = ’ Android Phone ’
d e s i r e d _ c a p a b i l i t i e s [’ appPackage ’] = ’com . s u p e r c e l l . c l a s h o f c l a n s ’
d e s i r e d _ c a p a b i l i t i e s [’ a p p A c t i v i t y ’] = ’ . GameApp ’
d e s i r e d _ c a p a b i l i t i e s [’ newCommandTimeout ’] = 90

a p p i u m _ u r l = " h t t p : / / l o c a l h o s t : 4 7 2 3 / wd / hub "
s c r e e n s h o t _ d i r = " / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s c r e e n s h o t s "

d r i v e r = w e b d r i v e r . Remote (app ium_ur l , d e s i r e d _ c a p a b i l i t i e s)

I n i t i a l i z e AKAZE Glue
akaze = AkazeGlue ()
akaze . i n i t i a l i z e (d r i v e r)

Wait a b i t
s l e e p (1 0)

Wait f o r i m p o r t a n t n o t i c e
w a i t (" / Users / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / i m p o r t a n t−n o t i c e . png ")

C l i c k o u t s i d e t h e box

42

akaze . c l i c k _ c o o r d (1 , 1)

C l i c k b u t t o n , i d = b u t t o n 3 , t e x t = OK
w a i t _ c l i c k _ e l e m _ n a m e ("OK")

Wait and c l i c k f o r p r o f i l e
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / spedepekka−p r o f i l e−c ropped . png ")

C l i c k c a n c e l on load v i l l a g e
w a i t _ c l i c k (" / Users / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / cropped −5.png ")

w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −6.png ")

w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −7.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −8.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −9.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −10.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −11.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −12.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −13.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −14.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −15.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −16.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −17.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −18.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −19.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −20.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −21.png ")
w a i t _ c l i c k (" / Use r s / t e s t d r o i d / p r o j e c t s / dcode / s e r v i c e / modules / a s d f _ s e r v e r / s e s s i o n s /0556 f f e f / s c r e e n s h o t s / c ropped −22.png ")

l o g (" Q u i t t i n g ")
d r i v e r . q u i t ()

6.1.1. Things we learned from the CoC use case

It is important not to take query image too close to the object.

Figure 25: Good query image example.

43

Figure 26: Bad query image example.

Figure 27: Found 83 AKAZE features from the good query image example.

44

Figure 28: Found 4 AKAZE features from the bad query image example.

Figure 29: AKAZE can find the good query image from the screen.

45

Figure 30: AKAZE cannot find the bad query image from the screen.

46

7. DISCUSSION

It is very time consuming for human tester to take the screenshots in the device, transfer
them to host machine and crop appropriate query image. This task is very repetitive
and it can be automated. MAuto is designed to do this task and decrease the manual
work. It can take the screenshots and transfer the images to the host machine, but the
solution to crop the query image is not the best.

We used MAuto to create automated test scripts for Clash of Clans. MAuto crops
the images properly and can create reusable tests, but the user needs to have some
understanding to modify the scripts to improve the performance. MAuto doesn’t auto-
mate everything, but it can improve the speed of test automation script creation. The
selected query images have a huge affect on test stability on other devices.

The query image must have good features to be found later from the screen. Figure
25 is a good query image, because MAuto and AKAZE found 83 features from this
image (see Figure 27) and most of them can be found later from the screen as well (see
Figure 29). Figure 26 is the query image from the same click, but closer, and this is not
as good as the query image a bit further. MAuto and AKAZE found just 4 features (see
Figure 28) and most likely this query image cannot be found from the screen when the
test is run (see Figure 30).

Current version of MAuto has predefined box to crop the query image from the
click coordinate and sometimes it is too small to contain usable number of features.
Sometimes the user needs to manually crop better query image from the screenshot to
get better results.

The user should use native object recognition whenever possible. Native object
recognition is not as fragile as image based recognition. MAuto does not have the
capability to understand if it would be possible to use native object recognition for the
click.

When creating the tests, the screenshot operation is quite slow. It can take even
couple seconds to take the screenshot. This means the usability of the application in
the browser is not the same as in the device without MAuto. It is also harder to play
games through the browser than in the device.

Other recording tools are far better when native object recognition can be used all
the way in the application. If native object recognition cannot be used, then MAuto is
the only choice. There are no alternatives at the moment for MAuto in this case.

It is not possible to give inputs to mobile device sensors with MAuto. This means it
is not possible to test directly games which use sensor data. Appium has some support
to sensor inputs, but MAuto cannot record those inputs.

7.1. Future work

It would be good idea to make the cropped image size dynamic. At the moment it is
static 10 pixel square around the click coordinate. When cropping the query image we
could calculate the number of features in the image and if there are less features than
20 for example, then the algorithm should increase the query image size and calculate
the features again until the image has good amount of features. This would decrease
the manual work the user has to do to fix the low quality query images.

47

It should be quite easy to add iOS support to MAuto as well. Appium works al-
ready for Android and iOS. The corner problems are to find a way to take a screenshot
from iOS device and to find a quality VNC client for iOS. The image recognition so-
lution works on iOS out of the box and the browser is in the host machine so it is not
dependant on Android.

MAuto could recognize if the view can be accessed with native object recognition
and use it when ever possible. As discussed earlier, native object recognition is far
better than image recognition, but it cannot be used all the time.

MAuto cannot work with fast-paced mobile games, because it is too slow. It takes
too much time to transfer the screenshot from mobile device to host. It is impossible
to play fast-paced games with MAuto, because the game can end in couple seconds
without new inputs.

To overcome the slowness, one solution could be to compress the image in mobile
device and then send it to host machine. Other solution could be to tap into the Android
operating system and remove the VNC solution completely. MAuto takes the user
inputs from desktop browser and it is not ideal way to interact with mobile device. It
would be better to trap the inputs directly from the screen of the mobile device and
transfer the clicks and images to host machine after the test has been recorded.

If the test recording would be in the mobile device, MAuto might be able to trap the
sensor inputs as well and write those inputs to tests as well.

48

8. CONCLUSION

The thesis focused on mobile game testing. It reviewed the motivation, key milestones
and challenges. Especially, it highlighted why mobile game testing and test automation
is harder than testing of traditional mobile applications. The biggest reason to this is
that native object recognition doesn’t work with games and the tests has to use some
other object recognition methods, like image recognition.

Tools to create image based recognition test scripts doesn’t exist at the moment.
This thesis has introduced a testing tool, MAuto, to make it easier to create automated
mobile game tests. The approach is based on image recognition. MAuto is very raw
approach to solve the problems and as it is, it is not ready for end users. With some
polishing MAuto would work on slow games, but it doesn’t work with fast games that
require rapid user interactions.

The fundamentals of image recognition has been covered in this thesis to explain
why image based recognition works with mobile game testing. It is very crucial to
select good query images to make the tests stable for production use.

Experts on mobile testing has answered to questionnaire and they more or less agree
with the findings in this thesis. Overall expert opinion also supports the statement that
mobile game testing is harder than mobile application testing. There is a need for better
tools in this area. Similar tools to MAuto has not yet been released and a need for this
kind of testing tool is real.

49

9. REFERENCES

[1] Kohl J. (2013) Tap Into Mobile Application Testing. Leanpub.

[2] Knott D. (2015) Hands-On Mobile App Testing: A Guide for Mobile Testers
and Anyone Involved in the Mobile App Business. Addison-Wesley Professional,
New York, 1 edition ed.

[3] Iversen J. & Eierman M. (2014) Learning Mobile App Development: A Hands-
on Guide to Building Apps with IOS and Android. Pearson Education.

[4] Crispin L. & Gregory J. (2009) Agile Testing: A Practical Guide for Testers and
Agile Teams. A Mike Cohn signature book, Addison Wesley Professional. URL:
https://encrypted.google.com/books?id=R2DImAEACAAJ.

[5] Whittaker J.A. (2009) Exploratory software testing: tips, tricks, tours, and tech-
niques to guide test design. Pearson Education.

[6] Meszaros G. (2003) Agile regression testing using record & playback , pp. 353–
360URL: http://doi.acm.org/10.1145/949344.949442.

[7] Bach J. (1999) Test automation snake oil .

[8] Jovic M., Adamoli A., Zaparanuks D. & Hauswirth M. (2010) Automating
Performance Testing of Interactive Java Applications. In: Proceedings of the
5th Workshop on Automation of Software Test, AST ’10, ACM, New York,
NY, USA, pp. 8–15. URL: http://doi.acm.org/10.1145/1808266.
1808268.

[9] Alegroth E., Nass M. & Olsson H. (2013) JAutomate: A Tool for System- and
Acceptance-test Automation. In: 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation (ICST), pp. 439–446.

[10] Novak J. (2008) Game Development Essentials: An Introduction. Game devel-
opment essentials series, Thomson/Delmar Learning. URL: https://books.
google.fi/books?id=fnoLQAAACAAJ.

[11] Collard J.F. & Burnstein I. (2002) Practical Software Testing. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[12] Parker J.R. (2011) Algorithms for image processing and computer vision. Wiley
Pub.

[13] Lowe D.G. (2004) Distinctive Image Features from Scale-Invariant Key-
points. International Journal of Computer Vision 60, pp. 91–110. URL:
http://link.springer.com/article/10.1023/B%3AVISI.
0000029664.99615.94.

[14] Bay H., Ess A., Tuytelaars T. & Gool L.V. (2008) Speeded-up robust fea-
tures (surf). Computer Vision and Image Understanding 110, pp. 346 – 359.
URL: http://www.sciencedirect.com/science/article/pii/

50

S1077314207001555, similarity Matching in Computer Vision and Multi-
media.

[15] Alcantarilla P. (2011) Vision based localization: from humanoid robots to visu-
ally impaired people. Ph.D. thesis, PhD thesis, University of Alcalá, Alcalá de
Henares, Madrid, Spain.

[16] Alcantarilla P., Bartoli A. & Davison A. (2012) Kaze features. In: A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato & C. Schmid (eds.) Computer Vision – ECCV
2012, Lecture Notes in Computer Science, vol. 7577, Springer Berlin Heidel-
berg, pp. 214–227. URL: http://dx.doi.org/10.1007/978-3-642-
33783-3_16.

[17] Alcantarilla P.F., Nuevo J. & Bartoli A. (2013) Fast explicit diffusion for ac-
celerated features in nonlinear scale spaces. In: British Machine Vision Conf.
(BMVC).

[18] Yeh T., Chang T.H. & Miller R.C. (2009) Sikuli: Using gui screenshots for search
and automation. In: Proceedings of the 22Nd Annual ACM Symposium on User
Interface Software and Technology, UIST ’09, ACM, New York, NY, USA, pp.
183–192. URL: http://doi.acm.org/10.1145/1622176.1622213.

[19] Chang T.H., Yeh T. & Miller R.C. (2010) Gui testing using computer vision.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’10, ACM, New York, NY, USA, pp. 1535–1544. URL: http:
//doi.acm.org/10.1145/1753326.1753555.

