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Abstract
Multicomponent superconductivity arises as a natural extension of

the conventional theory, when materials have more than one supercon-
ducting band. The triviality of the extension does not reflect at all the
multitude of new possible exotic phenomena. The topic of this thesis
is to analyze some of them, in the context of a microscopically derived
Ginzburg-Landau two-band model. In particular the model studied has
repulsive interband coupling interaction and interband impurity scatter-
ing. The model hopes to describe some of the physics of iron-based su-
perconductors, a new class of high temperature superconductors recently
discovered. The impurity will have a central role in the model, allowing
transitions between gap states, from s± to s++. This transition can hap-
pen abruptly with a crossover, producing a new form of vortex matter,
the so called “moat-core” vortices or can happen smoothly through an in-
termediate s+ is state. The latter is an example of broken time-reversal
symmetry state (BTRS), impossible in conventional superconductivity,
and presenting peculiar magnetic properties, like the appearance of spon-
taneous magnetic field inside the material, in contrast with the usual
London electrodynamics. BTRS states also affects vortex interaction,
opening the possibility of type-1.5 superconductivity, an intermediate new
state involving vortex clusterization. Apart from vortex, other topologi-
cal defects are possible in multicomponent systems, like Skyrmions and
domain walls, that will be studied during the thesis. All the phenomena
above mentioned have been extensively analyzed inside the model and
numerically simulated, within a finite element framework.

Key words: superconductivity; multicomponent superconductivity;
two-band model; BTRS; s+ is state; topological defects; type-1.5;
vortex matter.
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Chapter 1

Introduction

In this chapter a small introduction about the field of superconductivity,
along with an historical overview, is given. A comprehensive treatment
can be found in references [1, 2] or any introductory book. After stating
some basic concepts in the subject, the new field of multiband super-
conductivity is put in perspective. Finally the objective of the thesis is
defined.

1.1 Conventional superconductivity

Superconductors (SC) have an history longer than a century, started in
1911, when Kamerlingh Onnes used the liquid helium-4 (produced for the
first time few years before) to cool down mercury and reach a state with
zero electrical resistivity, after a sudden drop at 4.2 K [3]. This is not
the only remarkable property of superconductors, indeed years later in
1933 the so called Meissner-Ochsenfeld effect [4], the perfect diamagnetic
response of these materials, was discovered.

Nonetheless the theoretical physics could not keep pace with the ex-
perimental one. The first phenomenological macroscopic theory, the Lon-
don equations, was developed by the London brothers in 1935 [5]. This
theory was able to explain the Meissner-Ochsenfeld effect,but only pos-
tulating a new fundamental law for the electromagnetic field valid only
in superconductors, that physically describes the onset of a supercurrent
(Meissner current) on the surface of the material in order to screen the
external magnetic field. Later in 1948, F. London interpreted the su-
percurrent as coming from a sort of condensation in momentum space,
similar to the Bose-Einstein condensation. A natural consequence was
that the magnetic flux has to be quantized in a toroidal superconductor
with a trapped magnetic flux inside, due to the coupling between phase
of the wave function condensate and the vector magnetic potential [6].

A phenomenological description, with a more solid background and
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capable of describing superconductors in a more complete way, was put
forward by Ginzburg and Landau in 1950 [7]. This model is based on the
theory of second-order phase transition, developed by Landau in 1937 [8],
where the cornerstone of the theory was the notion of order parameter,
an emergent entity characterizing the degree of spontaneous symmetry
breaking. Differently from other phase transitions, the superconducting
one was described through a complex-field order parameter ψ, in powers
of which the free energy functional was assumed to be expanded near
critical temperature. The Ginzburg-Landau (GL) free energy reads as

F −FN =
~2

2m∗

∣∣∣∣(∇+ i
e∗

~c
A

)
ψ

∣∣∣∣2 +α |ψ|2 +
β

2
|ψ|4 +

(∇×A)2

8π
, (1.1)

where FN is the free energy in normal state, A the vector potential, m∗

and e∗ are the effective mass and charge, that can vary depending on the
normalization of the order parameter. In particular e∗ it is linked with
the electric charge of the elementary particle of the condensate.

The phenomenological GL theory still do not explain how fermions
can form a condensate, maturing a long-range order. For this we had
to wait until 1957, when Bardeen, Cooper and Schrieffer developed the
homonym theory, that describe how fermions can bound in pairs when
a small attractive coupling, mediated by phonon, is present [9]. After
the publication of BCS theory, the relation between this microscopic the-
ory and the Ginzburg-Landau approach was unclear. However in 1959
Gor’kov, formulating the BCS theory in the language of Green functions,
managed to derive the GL equations, as an effective free energy func-
tional emerging near the critical temperature, giving finally a physical
meaning to the order parameter ψ [10]. We will sketch how this was
done in Section 3.2. This finally closed the circle about superconductor
understanding, at least until new unconventional superconductors were
found...

Let us now return on the Ginzburg-Landau free energy Eq. (1.1),
since we will deal with it during the entire thesis. As the theory of
second-order phase transition states, the coefficient of the quadratic term
behaves like α ∝ (1−T/Tc), therefore is the one driving the transition at
temperature Tc, being negative for T < Tc and making favorably having
ψ 6= 0. Moreover the quartic term must have a positive coefficient β > 0,
to ensure that the free energy is bounded from below.

If we interpret the order parameter as a wavefunction, we can see
how Eq. (1.1) resemble a quantum mechanical non-linear Schrödinger
equation, where |ψ|2 can be identified as the density of superconducting
particles. From this point of view we can attach a physical meaning to the
GL free energy, where now the term containing the gradient is related to
the kinetic energy of a particle in external magnetic field, the quadratic is
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related to a potential that make favorable having superconducting state,
and the quartic is a self-interaction between superconducting particles (a
density-density potential) that limits the presence of the superconducting
state.

This equation was a breakthrough in many respects. First of all the
theory covers egregiously all the physics of London equations (and thus
the Meissner-Ochsenfeld effect) and magnetic flux quantization. Sec-
ondly, the already highlighted complex parameter, that for the first time
was associated to supertransport phenomena, therefore essentially asso-
ciating a classic-field behaviour to quantum particles (later this equation
has been used for superfluid, in the limit e∗ → 0). A complex order
parameter means that the spontaneously broken symmetry is U(1), i.e.
the circle group, coming from the rotational phase invariance of ψ in the
free energy Eq. (1.1). Moreover being the matter field ψ electromagneti-
cally coupled with A through the kinetic term, the U(1) symmetry is not
global, but a local gauge symmetry, therefore the free energy is invariant
under a shift of phase that can vary from point to point in the space.
When this U(1) symmetry is spontaneously broken, the Anderson-Higgs
mechanism [11] gives a gapped mode to the gauge field A (i.e. a mode
with finite energies at zero wavevector, so in field theory nomenclature a
non-zero mass mode), through a mutual “cancellation” of gapless modes,
i.e. gapless photons and a gapless mode in the superconducting state
(phonons).

The gapped mode in the vector field A is the one that effectively ex-
pels the magnetic field in SC material. In fact we can define the magnetic
penetration length λ as inverse of the non-zero gauge mass, so physically
describing the length scale at which the magnetic field is screened from
the bulk. Therefore it is the gapped mode that produces the new elec-
tromagnetic fundamental law postulated by London brothers.

A second characteristic length in this theory is the so called coherence
length ξ, that describes how the superconducting density |ψ|2 recovers
from a perturbation. A remarkable prediction of GL theory is the exis-
tence of two fundamental different types of superconductor. Indeed we
can define the so called Ginzburg-Landau parameter as

k =
λ

ξ
. (1.2)

Type I superconductors have k < 1 (traditionally would be k < 1/
√

2,
but here we absorb the

√
2 in ξ in the modern way). This state is char-

acterized by a positive surface energy between SC and normal domains,
therefore it is convenient to form macroscopically large domains well sep-
arated, with the minimum interface between them. This is the Meissner-
Ochsenfeld effect, where inside the bulk of the material there is no normal
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state and the field cannot penetrate. The field cannot penetrate until it
does not reach the thermodynamic critical field Hc, corresponding to the
condensation energy (i.e. simply when Eq. (1.1) is equal to zero, meaning
the energy consumed to screen the field is the same as the one gained
with the condensation). In this case the material goes directly from the
Meissner state to the normal state.

Type II superconductors have k > 1. This state is characterized by
a negative surface energy instead, so it will try to maximize the surface
between superconductor and normal state. However the system will be
in the Meissner state up to the first critical field Hc1, that corresponds
to the energy required to form a single “defect”, an inclusion of normal
state inside the SC bulk. This inclusion is more precisely a vortex, due to
the coupling of the phase with the gauge field A. Therefore for H > Hc1

the system enters in a new phase of matter, the vortex state, where a
hexagonal lattice of vortices is present (Abrikosov lattice [12]). Each vor-
tex can be seen as a depletion of the SC state in favor of the normal
one, so the magnetic field can pierce the material with tubes of magnetic
flux, those are then screened from the rest of the material by the super-
current generated around the vortices (that is why the defect has to be
a vortex). Additionally each vortex bears precisely a quantum of flux
Φ = 2π~

e , where e is the electrical charge. The vortex density increases
with the external field, and eventually the SC state will be suppressed at
Hc2, called the second critical field. The field Hc2 is always higher than
the thermodynamical field Hc in type I, in fact type II superconductor
can resist more, letting the magnetic field penetrate.

It has to be noted however that, especially in clean type II material,
the real limiting factor is often the critical density current Jc that the
superconductor can bear before being suppressed. The critical current
is due to vortex movement, indeed vortex interacts with each other and
with the Meissner current, producing a sort of friction able to suppress
the SC state. Mathematically this is described as the break down of
the topological invariant that gives superconductivity and superfluidity
in field theory. In fact the total flux inside a closed path is not constant
anymore, having the vortices the possibility of going in and out from it.
However vortices are often pinned by defects in the lattice, and therefore
can resist to be teared away up to the critical current, that strongly
depends on the amount and strength of the pinning centers.

1.2 Multiband superconductivity

Soon, after the publication of the BCS theory, generalizations of super-
conductivity to multiband case came out. In 1964 Tilley [14] generalizes
Gor’kov’s microscopic derivation of GL theory to multiband case, obtain-
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the red and green arrows in Fig. 2(e)]. The distribution of
the first neighbor separation of the VS obtained by simu-
lations of a two-component material has also a three-peak
structure which is fairly broader when compared to the one
obtained in the case of a one-component conventional
type-2 superconductor [Fig. 2(f)]. The peaks at short dis-
tances in Figs. 2(e) and 2(f) correspond to an average
minimum separation between vortices.

Figure 3(a) shows a Bitter decoration image of the VS in
MgB2 crystals at H ¼ 5 Oe and T ¼ 4:2 K. The vortex
distribution appears also to be inhomogeneous at this field
but in a rather different manner than in the experiment
described above. In some regions of the sample, vortices
agglomerate forming stripes while voids are formed on
considerably larger areas [29]. The present experimental
results seem to be in contradiction with previous reports of
the VS at low fields in MgB2 samples [30]. However, it is
important to note that in Ref. [30] the authors show an
image of the VS at 4 Oe in a very small region of the
sample (approximately 10� 10 �m2). Therefore, it is not
possible to determine whether the vortex distribution in the
samples studied in Ref. [30] is uniform all over the sample
or not.
Although the vortex stripe pattern is rather disordered,

it is still possible to determine an average direction of
vortex stripes as the one defined by the dashed yellow
lines in Fig. 3(a), and to calculate the vortex density in
lines parallel to the vortex stripes as a function of the
distance measured along the direction of the yellow arrow
in Fig. 3(a). In the inset of Fig. 3(b) we plot the linear
vortex density normalized by the average value for both the
MgB2 and NbSe2 VS at 5 Oe. In the case of MgB2,
fluctuations of the vortex density of the order of 50% are
observed. A similar calculation along lines perpendicular
to the stripes shows that the standard deviation of the mean
value is of the order of 30%. The large fluctuations of the
vortex density in MgB2 are in contrast to what is observed
in NbSe2 crystals where the standard deviation of the
vortex density is approximately 1% of the average value.
A remarkable similarity is found between experiments and
simulations at still low density but higher than the one
shown in Fig. 2. Disordered vortex stripes are formed in the
two-component superconductor while a homogeneous dis-
tribution is apparent in the case of a conventional type-2
material [Figs. 3(c) and 3(d), respectively]. Consistently,
the vortex density is seen to fluctuate in the direction
perpendicular to the vortex stripes in the type-1.5 material,
as shown in the inset of Fig. 3(d).
Composition analysis (via an electron microprobe in a

field emission scanning electron microscope) in an area
across the stripes [in the direction of the yellow arrow in
Fig. 3(a)] shows no significant variations in Mg or B
content, thus ruling out the possibility to attribute the stripe
formation to inhomogeneous surface pinning distribution.
There is also no observed correlation between the vortex
positions and localization of microdefects.
AtH ¼ 10 Oe, the VS inMgB2 samples is similar to the

one in NbSe2 crystals indicating that this novel supercon-
ducting phase in two-component type-1.5 superconductors
is only accessible at very low applied fields as predicted in
Ref. [6].
In conclusion, the type-1.5 superconductivity is a totally

new state which combines two regimes (type-1 and type-2)

FIG. 2 (color). (a) Experimental vortex locations in a selected
part of the image shown in Fig. 1(a). The vortex configuration
resulting from the numerical simulations in a two-component
superconductor at low density is shown in (b) evidencing an
inhomogeneous spatial distribution of vortices. In both cases, the
regions enclosed by the dashed white line indicate voids of
vortices caused by the inhomogeneous distribution. In (c) the
vortex pattern obtained by a magnetic decoration of the NbSe2
crystal at 1 Oe is shown and (d) corresponds to the vortex pattern
obtained by a numerical simulation of a type-2 superconductor.
The white scale bars correspond to 10 �m. (e) and (f) display
the distribution of first neighbor distance, Pa, of the experimen-
tal and theoretical vortex structures, respectively. In the case of
MgB2, Pa shows additional peaks at distances shorter and longer
than the most probable separation (see the red and green arrows).
The pair of vortices separated at the distances where the addi-
tional peaks are located are highlighted in (a) and (b) by red and
green circles. The light blue circles correspond to pair of vortices
separated by the most probable distance.

PRL 102, 117001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

20 MARCH 2009

117001-3

Figure 1.1: (a),(c) experimental vortex locations coming from a Bitter
decoration inMgB2 and NbSe2 (known type II superconductor). (b),(d)
corresponding numerical simulation. In MgB2 is clear the presence of
voids and clusters of different sizes, characteristic of type 1.5. Taken
from reference [13].

ing a multicomponent classical field theory. These models can describes
materials where electrons from different bands generate several supercon-
ducting components, where each component is not necessarily conserved.
The non conservation is due to the possibility of Cooper pairs tunneling
between bands, this phenomenon is called Josephson coupling and it is
reminiscent of the Josephson effect, where a macroscopic supercurrent
can tunnel from a superconductor to another separated by a weak link.
Also more exotic situations can be described, for example a mixture of
superconductors and superfluids, such as in neutron stars, where there is
the possibility of condensates made of neutrons, protons and electrons.

A natural consequence of multiple components is the presence of mul-
tiple coherence lengths ξi, therefore the simple Ginzburg-Landau param-
eters in Eq. (1.2) cannot be defined anymore, and therefore the simple
classification dichotomy type I/type II breaks down [15]. In fact a new in-
termediate regime can arise, when there is at least one coherence length
larger and one smaller with respect to λ. In this case, as we will see,
vortices do not form a lattice, but they regroup in clusters, having an at-
tractive long-range and repulsive short-range interaction with each other.
This regime was named Type 1.5 superconductivity or semi-Meissner
state, and was first recently observed in MgB2 in Fig. (1.1).
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MgB2 is also the first clear two-band superconductor discovered (in
2001), and it has attractive coupling between bands. After that the set
of discovered multiband materials kept growing, especially with the dis-
covery of iron-based superconductors in 2008 [16]. These materials are
the second class of high temperature superconductors observed, after the
well known cuprates. Iron-based materials are thought to be described
by several bands that can range generally from two to four. Additionally
here, repulsive coupling interactions are present between bands, making
these materials more interesting and complex than MgB2, as we will see.

1.3 This thesis

1.3.1 Objective

The aim of this thesis is generically to apply numerical methods, princi-
pally the finite element method, in the study of Ginzburg-Landau models
for unconventional multiband superconductors. In particular the thesis
focuses on the microscopically derived two-band model with repulsive
coupling interaction and with interband impurity scattering. This is a
simple model that hopes to describe some physics of iron-based super-
conductors. The impurities in the material will have a central role in
the thesis, not as pinning centers, but as scattering ones. This scatter-
ing centers help the two bands to be more coupled, producing transition
from a physical state to another and especially allowing a new state of
the matter, the broken time-reversal symmetry state (BTRS).

The objective of my thesis can be summarized as follow:

• Investigate the existence of BTRS states in ground states through
phase diagrams.

• Investigate coherence lengths effects on vortex solutions, focusing
on the experimental signatures.

• Investigate the possibility of skyrmionic solutions.

• Investigate general magnetic property of BTRS states.

• Investigate the presence of “moat” core solutions.

All these concepts will be unraveled during the chapters of the thesis.

1.3.2 Outline

This thesis is divided in six chapters which can be summarized as follow:

• Chapter 1 (Introduction) This chapter sets the project into the
context of superconductivity, introducing some basic knowledges.
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• Chapter 2 (Multicomponent Ginzburg-Landau) This chapter in-
troduces the new field of multicomponent superconductivity and
all the needed concepts through the studying of the U(1) × U(1)
model, with special consideration for type 1.5 superconductivity
and topological defects.

• Chapter 3 (Dirty two-bands superconductors) The model studied
in the thesis is presented here from the basis. The first part of the
chapter will put the model in the context of iron-based superconduc-
tors, then the microscopical formalism of modern superconductivity
will be sketched and used to derive our model. Finally its ground
state and length-scale properties will be analyzed.

• Chapter 4 (Numerical methods) The numerical methods used,
like finite element and nonlinear conjugate gradient method will
be shortly introduced here.

• Chapter 5 (Results) This chapter presents all the numerical re-
sults obtained during the thesis work, and the necessary material
to understand them.

• Chapter 6 (Conclusions) Summary and short discussion of the
results.

7
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Chapter 2

Multicomponent
Ginzburg-Landau model

Multicomponent superconductors are described by several complex fields,
and their properties can be radically different from single component case.
For example in this case the quantization of magnetic flux may be nonuni-
versal, and the magnetic field behaviour inside the material cannot be
reduced to the usual London electrodynamics. Moreover we can have dif-
ferent type of topological defects, like domain walls and Skyrmions. The
microscopic origin of the multiple complex fields can be the most differ-
ent. They could arise from different bands in a superconducting material,
and therefore being intrinsically intertwined with each other. However
they could also be generated from a mixture of different particles, like
Cooper pairs of electrons and protons in liquid metallic hydrogen, or in
neutron stars where also neutron condensate is possible. The common
denominator in this last case, is that the particles are physically differ-
ent in each channel, and therefore independently conserved. This fact
simplify a lot the model, and we will use it to introduce multicompo-
nent superconductivity. An exhaustive treatment about multicomponent
superconductivity can be found in Ref. [2].

2.1 U(1) x U(1) model

The mixture of two coexisting superconductor components can be de-
scribed by the straightforward generalization of Eq. (1.1)

F =
2∑
j=1

{1

2
|Πψj |2 + αj |ψj |2 +

βj
2
|ψj |4

}
+

(∇×A)2

2
, (2.1)

where the constant normal state free energy FN is neglected, Π = ∇ +
iqA and the complex fields (also called matter fields) have the form
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ψj = |ψj |eiθj . The free energy has been rescaled in order to obtain di-
mensionless units, and q is the new defined parameter for gauge coupling
between the matter fields and the vector potential, that is the same for
both components (indicating the same elementary charge). As we can
see from the potential, there are no terms with both the matter fields,
that therefore are independent. This is only true regarding particle con-
servation, in fact through the kinetic term Π there is an unavoidable
electromagnetic coupling, mediated by the vector field A.

As we can note the model has a U(1) × U(1), being independent on
both phases according the invariant transformation:

ψ′j = eiφjψj , (2.2)

where φj is any constant. Indeed in the free energy only gradients of
the phases matter, related physically to the velocities of the condensates.
In the invariance Eq. (2.2) is included also a discrete Z2 symmetry, so a
symmetry having two equal states, not continuously connected (as spin up
and down in Ising model). The Z2 here is called time-reversal symmetry,
and mathematically is just the invariance in complex conjugation ψj →
ψ∗j that is equivalent to the transformation t → −t. In this chapter
this symmetry will play no role, being always conserved in independent
mixture of superconductors.

The equilibrium configuration of the functional Eq. (2.1) is found by
minimizing it with respect the three different physical functions ψ1, ψ2

and A, obtaining the so call GL equations:

Π2ψj = 2αjψj + 2βj |ψa|2ψj (2.3a)

J =
∑
j

−q|ψj |2(∇θj + qA) = −q2ρ2A+
∑
j

(−q|ψj |2∇θj) , (2.3b)

where the supercurrent density J has been introduced through Ampere’s
law J =∇×∇×A. In Eq. (2.3b) the term −q|ψj |2 is the electric charge
density (q assumed positive), and we can see directly how the gradient
∇θj , being related to velocity, is also linked with supercurrents. Also the
gauge coupling is more clear, in fact are the gradients of the phases that
couple with A, in particular through the total density ρ2 =

∑
j |ψj |2.

Lastly it is useful sometime to use different formulations of current
density, and also separate the two partial currents, so that the total cur-
rent can be written as J =

∑
i J

(i). Hence we have

J (i) = −q|ψi|2(∇θi + qA)

=
iq

2
(ψ∗i∇ψi − ψi∇ψ∗i )− q2|ψi|2A

= −q Im(ψ∗iΠψi) . (2.4)
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2.2 Neutral and charged sectors

A stronger physical interpretation can be achieved by expanding the ki-
netic term in the free energy Eq. (2.1) as

F =
2∑
j=1

{1

2
(∇|ψj |)2 + αj |ψj |2 +

βj
2
|ψj |4

}
+

(∇×A)2

2

+
J2

2q2ρ2
+
|ψ1|2|ψ2|2

2ρ2
(∇θ12)2 , (2.5)

where we have introduced the phase difference θ12 = θ2 − θ1. Doing that
we have separated two contributions, in the last line of Eq. (2.5). The first
dependent on J is called charged (or superconducting) sector, and it is
associate with the coflow of both components. The coflow can be seen in
the definition of J in Eq. (2.3b), where the phase gradient of both super-
conducting components are codirected. In this sector the transportation
of charge is possible, and so it is the one related to superconductivity. The
second term is dependent on the ∇θ12, i.e. counterdirected flows. This
one is called neutral (or superfluid) sector because it cannot transport
charge, but only matter, being the two flows compensating each other
with opposite currents.

This transformation allows us also to be more precise about the sym-
metry. Now the characteristic local gauge symmetry U(1) of supercon-
ductivity is evident, enclosed in the charged sector. The free energy is in
fact invariant under the transformation

θ′1 = θ1 + φ(r)

θ′2 = θ2 + φ(r)

A′ = A− q−1∇φ(r) , (2.6)

where φ(r) is a single-value real function.
Separating the sectors in Eq. (2.5) we produced also a term that

regards changing in the density (∇|ψj |), and this together with the flows
can have peculiar effects on the electrodynamics of the SC mixture. To
see this clearly let us invert Eq. (2.3b) as

A =
1

q2ρ2

[
− J +

iq

2

∑
j

(ψ∗j∇ψj − ψj∇ψ∗j )
]
. (2.7)

Now applying the curl we can use it to compute the magnetic field as:

B =∇×A =−∇×
(

1

q2ρ2
J

)
(2.8a)

+∇×
(

i

2qρ2

∑
j

(ψ∗j∇ψj − ψj∇ψ∗j )
)
. (2.8b)
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We see that B necessarily contains terms with products of density gra-
dients and gradients of the phase:

∇
( |ψj |2

ρ2

)
×∇θ12 . (2.9)

If the two gradients are not collinear they can generate a spontaneous
magnetic field in the material, even in absence of supercurrents. In gen-
eral also these terms mix with the supercurrent effects and this makes
the electrodynamics of the SC mixture dramatically different from the
London electrodynamics in single component (where we have a theory of
a massive vector field only, so the magnetic field has just the behaviour
of being screened following the penetration length λ, coincident with the
inverse of the mass).

A physical interpretation can be traced analyzing terms in Eq. (2.9).
The phase difference gradient ∇θ12 is associated to the counterflow of
the two components, but this is not enough, otherwise we would have
had neutral flow that cannot produce a magnetic field. We also need a
relative density gradient with a component perpendicular to the coun-
terflow, in this way the two flows do not balance each other anymore,
even if counterdirected, and a resulting current is possible (different from
the supercurrent J) . If a spontaneus field is produced in a sample, the
Meissner current will be automatically “activated” screening this effect,
that anyway can be still detectable.

2.3 Ground states and length scales

The ground state is the state at lowest energy, the one which should
be recovered after a perturbation in the system is performed. Since in
Eq. (2.1) the kinetic term is always positive, it will never be convenient to
have gradients in the system, so the ground state will be homogeneous and
we can neglect that term in the calculation (Πψj = 0). Also the magnetic
energy is quadratic, so always positive therefore it will be favourable
having ∇×A = 0. Hence the vector potential is a pure gauge (A =∇φ
for arbitrary φ) that can consistently be chosen to be zero.

The ground state will be then the extremum of the remaining part,
i.e. the potential part V . From U(1) × U(1) symmetry we know that
each phase has an arbitrary ground state θ̄j , which is constant due to
homogeneity requirement. Finally the ground state density can be found
minimizing the potential as

∂V

∂|ψj |
= 2αj |ψj |+ 2βj |ψj |3 = 0 . (2.10)
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The solutions are two,

|ψ0j | =
{

0√
−αj

βj
≡ uj .

(2.11)

Therefore the possible ground states can be written as

(|ψ01|, |ψ01|) =


(u1, u2)

(u1, 0)

(0, u2)

(0, 0) .

(2.12)

From the ground states we can see how there is the possibility to have
the components superconducting independently. Now we are in position
to study relevant informations about the system through an expansion in
small parameter ε around the ground states found, as

|ψj | = uj + εfj

θj = θ̄j + ε
φj
uj

A = εa , (2.13)

where the terms proportional to ε are the fluctuations around the ground
states and φj has been normalized for convenience. Inserting the expan-
sion in the free energy Eq. (2.5) we order the term by power of ε. The
constant part F (0) is the ground state energy, F (1) is zero by definition of
ground state, and therefore the first relevant term is the F (2) that reads
as

F (2) =
1

2
ΥT (∇2 +M2)Υ +

1

2
(∇× a)2 +

1

2
q2ρ̄2a2

=EKlein-Gordon + EProca , (2.14)

where we have defined the fluctuation basis as Υ = (f1, f2, φ1, φ2), the
ground state total density ρ̄2 =

∑
j u

2
j and the mass matrix M. We

can see how, at a linear level, the vector potential decouples from the
matter fields. In particular the F (2) splits in two energy functionals of
well-known equations. In fact minimizing with respect to Υ and a we get
the linearized GL equations (with respect the full Eq. (2.3)), reading as

∇2Υ =M2Υ (2.15a)

∇×∇× a = m2
aa , (2.15b)

where we have defined the (squared) gauge field mass m2
a = q2ρ̄2. The

first equation is a system of Klein-Gordon equations, while the second a
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Proca equation. The two are closely related being equations for massive
fields, both with second order derivative in space (the difference is in the
vectorial nature of A with respect to the scalar nature Υ elements).

The easier to solve is the Proca equation, being usually the mass
matrix complicate (not in this case). Since we are eventually interested in
vortex excitations in 2D we can assume axially symmetric perturbations
in the form a = (a(r)

r θ̂), in this way Proca equations simplify and we
easily get a solution that in the limit of r →∞ is a decaying exponential,
with characteristic length reading as

λ =
1

ma
=

1

q
√
ρ̄2
, (2.16)

where λ is exactly the penetration length. Here we can see indirectly
the Anderson-Higgs mechanism. In fact if the superconductor was sup-
pressed, ma = 0 and therefore a would not be massive anymore. The
equation Eq. (2.15b) would reduce to the Maxwell equations (without
current), and therefore the gauge symmetry would be restored. While
with ma 6= 0 we can see how Eq. (2.15b) is gauged-fixed, and this process
comes exactly from the “mutual cancellation” of massless modes between
the vector field and the condensates.

Now shifting the attention to the Klein-Gordon equation, its mass
matrix reads,

M2 =


2α1 + 6β1u

2
1 0 0 0

0 2α1 + 6β1u
2
2 0 0

0 0 0 0
0 0 0 0

 , (2.17)

and its eigenvalues are the masses of each normal mode of Eq. (2.15a).
The (squared) mass matrix corresponds exactly to the initial free energy
Hessian matrix, evaluated at the ground state, with respect the matter
fields variables. As done for the Proca equation, we can solve easily
the Klein-Gordon equations for each normal mode. In total the normal
modes are 4 but only 2 are massive as we can see from the eigenvalues.
The two massless modes (Goldstone bosons) are related to the phases
and reflect the symmetry U(1) × U(1). In particular a combination of
these two will be the massless mode that, coupling with A in full theory,
yields a massive vector field with mass ma. This kind of mode (usually
related to the total phase of the components) is always present and it is
the hallmark of superconductivity. The other combination of phase will
be related to the remaining U(1) symmetry, that usually is not present in
electronic superconductors (due to coupling between components in the
potential).
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Finally the two remaining massive modes are related to the densities,
and for different ground states yield

|ψ0j |2 = 0 → ξ0j =
1√
2αj

|ψ0j |2 = uj → ξj =
1

2
√−αj

, (2.18)

where both have to be well defined to be associated with stable solution
(due to Hessian eigenvalues positiveness requirement). Indeed as we know
from the theory of the second order phase transitions we have αj ∝
(T −Tcj), so it is positive when T > Tcj (no superconducting phase) and
negative when it condensates (in multicomponent SC obviously we can
have different critical temperatures).

The last thing to note is that in multiband superconductors the mass
matrix is more complicate, and this can have several consequences. The
first one is that usually normal modes are associated not to indepen-
dent components, but to a linear combination of them (hybridization), so
the coherence length are not linked to the single condensates. The sec-
ond consequence is that we can have massive pure phase modes, called
Leggett modes [17], and this is a drastic difference with respect to single
component case, especially regarding vortex interactions. Additionally,
in case like the presence of impurity and/or broken time-reversal sym-
metry, the phase modes can hybridize with density modes, and therefore
exciting a phase will also perturb the densities, and this can produce new
exotic feature.

2.4 Vortex solutions

As we said at the beginning, multiple components can bring with them
a non universal flux quantization. Let us consider an infinite 2D super-
conductor, with a small hole in the center and an external magnetic field.
Being the external field screened, it will penetrate mostly through the
hole with a total magnetic flux

Φ =

∫
S
B · dS =

∮
Γ
A · dl , (2.19)

where S is the surface normal vector and Γ a path inside the superconduc-
tor, such that all flux is included. Inverting now the relation Eq. (2.3b)
we can substitute the value of A in the previous equation. Also being
the path Γ well inside the SC, we can consider, for the Meissner effect,
that the density current is J = 0 on it and also the ground state recovers
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in general. Therefore we get

Φ = −1

q

∑
j

u2
j

ρ̄2

∮
Γ
∇θj · dl

 = −Φ0

∑
j

u2
j

ρ̄2
Nj , (2.20)

where we have identified the flux quantum Φ0 = 2π
q and the winding

integer number Nj in each component. The winding number is a neces-
sary condition, being the phase functions θj single-valued in the space.
Therefore around a close path they have to return to the same value, and
due to the periodicity θstart = θend + 2πN , they can enclose N windings.
Formally we can define the vortex charge as

N =
1

2π

∮
∇θ · dl ∈ Z , (2.21)

where it can assume any integer value, also depending on the phase wind-
ing orientation (positive and negative integer).

In one component the total flux Eq. (2.20) would reduce to Φ =
−Φ0N , and so we would have a quantized flux, that can be multiple only
of Φ0. In two components we see that this is not true in general. In fact
the ground states uj can continuously vary, and so it is not possible to
define an universal quantum, even if the single windings are still quan-
tized. However in case the windings are the same N1 = N2, Eq. (2.20)
reduces to the classic one. This usually happens in vortex solutions, let
us try to understand why.

Physically vortices are points (lines in 3D) around which the phase
winds and the superconducting density is suppressed. These are field
defects related to the intrinsic U(1) symmetry in SC models. The phase
winding around the center produces a gradient, that without the vector
field A, would be present also at infinite distance from the vortex center.
Being the free energy dependent on these gradients (i.e. on condensates
velocities) we would have to pay an infinite energy to produce a vortex,
due to the infinite flow around it (like in superfluids). Nevertheless in
superconductors we can see from the charge sector in Eq. (2.5), that the
vector potential could wind itself to compensate the phase gradients of
the condensates and limit the energy of a single vortex to a finite value.
Physically what happens is that asymptotically from the center, the gauge
coupling manages to suppress the current (according to the penetration
length, with the Meissner effect).

When we have two components, the situation is a little bit different,
since we can have windings in each one and only a single vector potential
to compensate. Indeed here we can have a composite vortex with winding
N1 in the first component and winding N2 in the second one, shortly
indicated as (N1, N2). Obviously is also possible to have a winding in
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one component only, these are called fractional vortices, indicated as
(N1, 0) or (0, N2). Vortex ansatz solutions are in the form

ψj = fj(r)eiNjθj

A = a(r)θ̂ . (2.22)

These ansatz can be inserted in the GL equations Eq. (2.3), to find the
solutions (numerically). But important informations can be found just
analyzing how these solutions affect the free energy Eq. (2.5). To ensure a
stable solutions, the ground state has to be recovered, so fj(r →∞) = uj ,
additionally not to have infinite energy we need the density going to zero
at the point of ∇θj singularity, i.e. the center of the vortex, so fj(0) = 0.
Also the charge sector requires that current circulation is zero far away
from the vortex in order not to give an infinite energy contribution, hence

∮
Γ
J · dl = −q2ρ̄2

∮
Γ

A+
1

qρ̄2

∑
j

(u2
j∇θj)

 · dl = 0 , (2.23)

which is satisfied for

a(r →∞) = −N1u
2
1 +N2u

2
2

qρ̄2
. (2.24)

Here we can see how the vector potential compensates the vortex windings
in superconductors. But in multicomponent we have also another term
in the free energy, the neutral sector that gives an energy contribution:∫ |ψ1|2|ψ2|2

2ρ2
(∇θ12)2 ≈

∫
u2

1u
2
2

ρ̄2

(
N2 −N1

r

)2

πrdr

∝ (N2 −N1)2 ln
R

ξ
, (2.25)

where we have approximate the integral considering an infinite system
with size R→∞, and we use as cutoff the smallest coherence length. The
energy therefore diverges logarithmically if the windings are not the same,
so the only stable vortices are composite with (N,N). That does not
mean that fractional vortices are impossible to create, they can be created
in bound states with equal number N in both components, such that they
asymptotically reduce to a composite vortex (N,N). Physically the fact
of having same winding numbers, means that we can have vortices in
the charge sector (the superconducting one) but not in the neutral sector
(the superfluid one), and this reflects perfectly what usually happens in
superconducting and superfluid materials.
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2.5 Vortex interactions

For well separated vortices one can linearize the GL equations Eq. (2.3)
and calculate the interaction energy. In this way vortices have a particle-
like behaviour, interacting logarithmically with different contributions.
For now on we will talk about composite vortex (N,N). In linear theory
we can generally separate two interaction contributions.

The first comes from the magnetic interaction of currents around vor-
tices, this is repulsive if the currents are codirected, while attractive if
they are counterdirected. This interaction prefers to split a vortex with
winding number N > 1 into N vortices with single winding and with in-
finite separation, producing a type II behaviour. Coming from magnetic
contributions, the characteristic length governing this interaction is the
penetration length λ.

The second one is the core-core interaction, and it is always attractive
coming from the density contributions. Indeed vortices are defects in the
bulk density, so it is always convenient to merge them in a megavortex,
to minimize the density suppressed. The megavortex represents a macro-
scopic normal state, well separated from the bulk, so a type I behaviour.
The characteristic lengths governing this interaction are the coherence
lengths. In the simple case of U(1)× U(1), we can separate clearly each
contributes. So the coherence length ξ1 affects the interaction of the first
component vortices, and respectively does the ξ2. However being the
fractional vortices bound together, the composite vortex will feel both
(in hybridize case we cannot even separate the contributions).

Finally the energy interaction between two codirected vortices reads

Eint = C2
BK0(r/λ)− C2

1K0(r/ξ1)− C2
2K0(r/ξ2) , (2.26)

where the prefactors are dependent on the GL free energy parameters
as well, and K0(x) are the modified Bessel function, that asymptotically
K0(x → ∞) → e−x/

√
x. As we can note from the characteristic length

dependence, the first term is the current-current repulsion, while the last
ones are the attractive core-core interactions.

In the limiting case where one of the SC components is suppressed
u2 → 0, then C2 → 0 and we end up in the usual single component limit.
Here the interaction between vortices has only two possibilities and it
is always monotonic. If λ > ξ then CB > C1 and the total interaction
will be repulsive for any distance, driving a type II behaviour. While if
λ < ξ we have CB < C1 and so a type I behaviour, and the vortex always
attract themselves up to create a megavortex.

The things can be different if we rehabilitate the second component.
Let us consider it still weak, so that u1 � u2 and therefore ξ1 � ξ2, indeed
being u1 strong, the free energy wants to recover its density rapidly. Also
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Figure 2.1: Numerical solutions for a cluster of N=9 flux quanta in type-
1.5 U(1) × U(1) superconductor. The parameters of the potential are
(α1, β1) = (−1, 1), (α2, β2) = (−0.6, 1) and q = 1.5. The quantities
displayed are: |ψi| the density of first and second component, B magnetic
field, |Ji| the current densities in each component, and |Jtot| the total one.

let us take an intermediate penetration length such that ξ1 < λ < ξ2. In
this case being u2 weak we do not expect a so different behaviour from
the single component case, where if ξ1 < λ we get a repulsion. However
even if weak, the second component has attractive forces that are longer
than the ones related to λ. So eventually the system will have short-
range repulsive and long-range attractive forces, and this non-monotonic
behaviour creates clusters. This new SC state was predicted theoretically
in [15] and then termed type-1.5 superconductivity when was the first
time experimentally observed [13].

In Fig. (2.1) we can see a numerical simulation of U(1)×U(1) in type
1.5 regime, where the first component is the strongest one. From the
densities plots, it can be clearly seen how the ψ2 is completely depleted
inside the cluster, forming a sort of megavortex, while the strong com-
ponent ψ1 has well defined vortices, that anyway are subjected to the
long-range attractive forces of the weak component. Also the behaviour
of the currents in the single components is quite explicative regarding the
competition of type II and type I tendencies. Currents in ψ1 are mostly
around the vortices, while in ψ2 around the cluster. Finally we note how
the magnetic field resembles more the strong component. This is clear if
we remember Eq. (2.20), in fact fractional vortices carries a fraction of the
flux quantum weighted by their relative strength (i.e. relative density).
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2.6 Skyrmion solutions

In multicomponent superconductors another kind of topological defect is
possible, namely Skyrmions. Their physical interpretation is somehow
more difficult with respect the well-know Skyrmionic defects in magnetic
materials, so let us start by analyzing fractional vortices.

As we said fractional vortices are not stable alone, giving a contri-
bution in the neutral sector that cannot be compensated by the gauge
field. However balanced bound state of fractional vortices of different
components can be stable, if the free energy allows it. In between their
positions, there are gradients of phase difference, which give positive con-
tributions in the neutral sector, making unfavourable the splitting for a
free energy like Eq. (2.5). Therefore if we start with an initial guess of
two fractional separated vortices (1, 0) and (0, 1), they will merge in (1, 1)
to find the minimum solution.

However if we add to the free energy Eq. (2.5) quartic terms, like
the repulsive density-density interaction γ|ψ1|2|ψ2|2 where γ > 0, we can
stabilize the two fractional vortices. In fact, if γ > 0, it is convenient
to have this term the smallest possible, and that can be achieved by
separating the fractional vortices, in order to maximize the area with the
product of the densities equal to zero. Obviously separating the vortices
creates a positive energy contribution in the neutral sector, so γ has to
be big enough to overcome it.

In between the two fractional vortices all possible values of relative
densities are taken. The same is true for the phase differences, therefore
their gradients cause the counterflow to wrap itself up in all direction.
This is what physically causes the Skyrmionic defects, this self-generated
counterflow term, coming from Eq. (2.8b). The 2D Skyrmion topological
charge can be written as

Q[Ψ] =

∫
iεji

2π|Ψ|4
[
|Ψ|2∂iΨ†∂jΨ + Ψ†∂iΨ∂jΨ

†Ψ
]
dxdy ∈ Z , (2.27)

where Ψ† = (ψ∗1, ψ
∗
2, ..., ψ

∗
N ) for a N component system, and εji is the per-

mutation symbol. For the case of 2 components, the charge density inside
the integral reduces to the term in Eq. (2.8b) (up to a flux quanta). Again
the charge is an integer number, reflecting how many time the counter-
flow wrap itself up in all direction, and also its orientation (positive and
negative integer). In our case the bound state of (1, 0)− (0, 1) will have
a charge Q = ±1. In fact Q equals the number of enclosed flux quanta
(Φ0Q =

∫
BdS).

To have an even more physical intuition, and in particular to trace a
parallelism with Skyrmions in the magnetic case, in two components we
can project the matter fields vector Ψ on a Riemann sphere, with the so
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properties, as compared to singular vortices. These can be
seen by introducing the unit vector n, defined as the
projection of the superconducting d.o.f. η† ¼ ðΔ�þ;Δ�

−Þ
onto spin-1=2 Pauli matrices ~σ, as n ¼ η† ~ση=η†η. That
is, the x and y components of the vector n depend on the
phase difference, while the z component is determined by
the ratio of the moduli of the complex fields. The associated
projection is a map from the one-point compactification of
the plane (Re2∪f∞g≃ S2) onto the two-sphere target
space spanned by n. That is n∶ S2 → S2, which is classified
by the homotopy class π2ðS2Þ ∈ Z. This defines the integer-
valued CP1 topological invariant, as

QðnÞ ¼ 1

4π

Z
Re2

n · ∂xn × ∂yndxdy: ð8Þ

If η ≠ 0 everywhere (coreless vortex), Q is an integer
number. In a way,Q counts the number of times the texture
of n covers the target two-sphere.
Figure 3 shows the texture of the unit vector n that

corresponds to the vortices in the nematic phase. The left
panel corresponds to the single-quantum vortex displayed
in Fig. 1. It illustrates that the unit vector n wraps the target
two-sphere (once), thus implying this configuration has
unit Skyrmionic charge Q ¼ 1. The right panel shows the
texture corresponding to the bound state of Fig. 2 that
originates in long-range dipolelike forces. Note that this
illustrates the dipole nature of the long-range interaction.
Indeed, the pair of Skyrmions alternates the north (red) and
south (blue) poles of the target sphere.
It is worth noting that various coreless vortices were also

considered to exist in a number of models of multi-
component superconductivity. There are, however, substan-
tial differences in the structure and properties of these
solutions, and they should have distinct experimental
manifestations. For example, in the framework of various
models of p-wave superconductors, it was advocated that
multiquanta coreless vortices may be favored over single-
quanta singular vortices [32–34]. The recent numerical
studies show that two-quanta Skyrmions in the GL models
of a chiralp-wave superconductor are energetically favored,
and hence single-quanta Skyrmions do not form in the
ground state in an external field [27,31,35–37]. Different
types of chiral Skyrmions were also discussed for sþ is
superconducting states [31,38,39]. The structure of chiral
Skyrmions is significantly dissimilar compared to the
nematic Skyrmions, since the former have fractional vortices
andmagnetic flux pinned on domainwalls between different

FIG. 2. A close-up view of a bound state of two coreless
vortices carrying one flux quantum each. Each coreless vortex is a
well-localized bound state of two HQVs. The dipolelike forces in
the relative phase yields a long-range attraction that binds the
single-quantum vortices together. Note that the dipoles are
antialigned in the bound state as dictated by relative phase
interaction. Displayed quantities are the same as in Fig. 1.

FIG. 3. Texture of the unit vector n defined as the projection of the superconducting d.o.f. onto the spin-1=2 Pauli matrices. The left
panel shows a single-quanta solution corresponding to Fig. 1, while the right panel corresponds to the bound state displayed in Fig. 2.
Inspection of the single-quanta solution show how nwraps the target two-sphere. The north (respectively, south) pole signals zero ofΔþ
(respectively, Δ−) and thus the position of respective HQVs. From this one, can see structural difference of nematic Skyrmions,
compared to Skyrmions in chiral superconductors [31]. Here the solution has clearly the form of weakly interacting well-separated
Skyrmions with unit topological charge each. By contrast, in the chiral case the Skyrmionic topological charge tends to be relatively
uniformly spread along closed domain walls.
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Figure 2.2: Texture of the pseudo-spin n. The left panel shows a single-
quanta solution with two fractional vortices, while the right panel cor-
responds to a bound state of 2 single quanta Skyrmion. The north (re-
spectively, south) pole signals zero of ψ2 (respectively, ψ1 ) and thus the
position of respective fractional vortices. It can be noted how the bound
state has in the middle a uniform pseudo-spin, signaling the dipolar at-
tractive force. Figure taken from reference [18].

called “pseudo-spin” map

n =
Ψ†σΨ

Ψ†Ψ
, (2.28)

where σ are the spin-1
2 Pauli matrices. We will see in the next section

why this mapping is not magic. For now let just look inside n,

n =

[
2|ψ1||ψ2|

ρ2
cos θ12,

2|ψ1||ψ2|
ρ2

sin θ12,
|ψ1|2 − |ψ2|2

ρ2

]
. (2.29)

The planar component xy are related to the counterflow of the two com-
ponents (neutral sector), while the “zenith coordinate” to the relative
density. Therefore we will be at zenith nz = 1 when only the first com-
ponent is present, so at the center of the ψ2 fractional vortex (“spin up”),
while we will be at nadir nz = −1 when only the second is present, so
the center of ψ1 vortex (“spin down”). It can be easily checked that the
module of the pseudo-spin is always one, being n living on the Riemann
sphere.

Therefore the pseudo-spin behaves exactly like the unit vector of the
local magnetization, and as in magnetic system its Skyrmion charge can
be computed as

Q[n] =
1

4π

∫
n · (∂xn× ∂yn) dxdy ∈ Z , (2.30)

where this equation is equivalent to the Eq. (2.27) in two components.
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properties, as compared to singular vortices. These can be
seen by introducing the unit vector n, defined as the
projection of the superconducting d.o.f. η† ¼ ðΔ�þ;Δ�

−Þ
onto spin-1=2 Pauli matrices ~σ, as n ¼ η† ~ση=η†η. That
is, the x and y components of the vector n depend on the
phase difference, while the z component is determined by
the ratio of the moduli of the complex fields. The associated
projection is a map from the one-point compactification of
the plane (Re2∪f∞g≃ S2) onto the two-sphere target
space spanned by n. That is n∶ S2 → S2, which is classified
by the homotopy class π2ðS2Þ ∈ Z. This defines the integer-
valued CP1 topological invariant, as

QðnÞ ¼ 1

4π

Z
Re2

n · ∂xn × ∂yndxdy: ð8Þ

If η ≠ 0 everywhere (coreless vortex), Q is an integer
number. In a way,Q counts the number of times the texture
of n covers the target two-sphere.
Figure 3 shows the texture of the unit vector n that

corresponds to the vortices in the nematic phase. The left
panel corresponds to the single-quantum vortex displayed
in Fig. 1. It illustrates that the unit vector n wraps the target
two-sphere (once), thus implying this configuration has
unit Skyrmionic charge Q ¼ 1. The right panel shows the
texture corresponding to the bound state of Fig. 2 that
originates in long-range dipolelike forces. Note that this
illustrates the dipole nature of the long-range interaction.
Indeed, the pair of Skyrmions alternates the north (red) and
south (blue) poles of the target sphere.
It is worth noting that various coreless vortices were also

considered to exist in a number of models of multi-
component superconductivity. There are, however, substan-
tial differences in the structure and properties of these
solutions, and they should have distinct experimental
manifestations. For example, in the framework of various
models of p-wave superconductors, it was advocated that
multiquanta coreless vortices may be favored over single-
quanta singular vortices [32–34]. The recent numerical
studies show that two-quanta Skyrmions in the GL models
of a chiralp-wave superconductor are energetically favored,
and hence single-quanta Skyrmions do not form in the
ground state in an external field [27,31,35–37]. Different
types of chiral Skyrmions were also discussed for sþ is
superconducting states [31,38,39]. The structure of chiral
Skyrmions is significantly dissimilar compared to the
nematic Skyrmions, since the former have fractional vortices
andmagnetic flux pinned on domainwalls between different

FIG. 2. A close-up view of a bound state of two coreless
vortices carrying one flux quantum each. Each coreless vortex is a
well-localized bound state of two HQVs. The dipolelike forces in
the relative phase yields a long-range attraction that binds the
single-quantum vortices together. Note that the dipoles are
antialigned in the bound state as dictated by relative phase
interaction. Displayed quantities are the same as in Fig. 1.

FIG. 3. Texture of the unit vector n defined as the projection of the superconducting d.o.f. onto the spin-1=2 Pauli matrices. The left
panel shows a single-quanta solution corresponding to Fig. 1, while the right panel corresponds to the bound state displayed in Fig. 2.
Inspection of the single-quanta solution show how nwraps the target two-sphere. The north (respectively, south) pole signals zero ofΔþ
(respectively, Δ−) and thus the position of respective HQVs. From this one, can see structural difference of nematic Skyrmions,
compared to Skyrmions in chiral superconductors [31]. Here the solution has clearly the form of weakly interacting well-separated
Skyrmions with unit topological charge each. By contrast, in the chiral case the Skyrmionic topological charge tends to be relatively
uniformly spread along closed domain walls.
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Figure 2.3: A close-up view of the bound state of two Skyrmions in right
panel Fig. (2.2), carrying one flux quantum each. Each one is a well-
localized bound state of two fractional vortices. The quantity displayed
are: b(R) magnetic field, ϕ−−ϕ+ phase difference, |∆±| first and second
component densities. The dipole-like forces in the relative phase yields
a long-range attraction, that binds the single-quanta vortices together.
Note that the dipoles are antialigned in the bound state as dictated by
relative phase interaction. Figure taken from reference [18].

An example of Skyrmion charge in two component system can be
seen in Fig. (2.2). In the left picture, a single quanta solution with
2 fractional vortices, is clear how n wraps in all possible direction on
the Riemann sphere. The right picture represents a bound state of two
Skyrmion charges, coming from their dipole-like long-range interactions.
It is exactly this property that make them interesting defects.

A pair of fractional vortices in a flux quanta have a dipole-like config-
uration of the relative phase, and this creates long-range forces, opening
the possibility to multi-Skyrmion structure. Indeed the phase difference,
that wants to minimize the area where it is different from its ground
state, attracts the other Skyrmion, as can be seen in Fig. (2.3). Being a
dipole force, the other Skyrmion must have an alternate north and south
pole, otherwise they will repel. This property of Skyrmions can influence
a lot the vortex lattice formation, for example the usual hexagonal sym-
metry could be unfavourable [19–21]. Moreover Skyrmions can have also
long-range attractive interaction with boundaries, suggesting the possible
abundance of these defects near them [18].
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2.7 Topological solitons in GL model

A good reference for the underpinning mathematics of topological defects
and topological solitons in general is [22]. In this section we will briefly
focus on these mathematical details, always with an eye towards the
physical meanings. This section is however not necessary to appreciate
the results of the thesis, so the uninterested reader can safely skip this
section.

The topological defects we are interested in, such as vortices and
Skyrmions, fall into the broad category of topological solitons, where
solitons are any solution of a set of partial differential equations that is
stable against decay to the “vacuum solution” (the ground state). The
most astonishing property of solitons, is that they behaves like particles,
even if they come from continuous fields. This finite nature is due to
the localized energy lump-like solutions that they exhibit. Solitons play
an important role in effective field theory models of condensed matter
systems, for example, as solutions to the Ginzburg-Landau equations.

The difference between topological solitons and other kinds of soliton,
is that their stability is derived from the topological nature of the theory.
Topological soliton solutions can be classified in homotopy classes, i.e.
equivalence classes, with equivalence relation being the ability to linearly
deform one map into another. Therefore each homotopy class cannot
be transformed continuously into another class. So a solution with non-
trivial class, exposed to a perturbation, can decay into other lower energy
solutions in the same equivalence class, but it cannot alter continuously
its class, reaching the vacuum solution for example. To do that a discon-
tinuity need to be introduced, which requires infinite energy, due to the
presence of gradients in the free energy.

For topological solitons to exist as stable solutions to a field theory,
multiple requirements need to be satisfied, combining topological and
energetic considerations. Obviously to apply topology the field needs to
be continuous, but that is not sufficient. The first energetic consideration
is that our theory, to be physical, has energy density decaying as ρ→∞,
where ρ is the distance from the origin of our physical space. Having
solitons finite energy density, we need boundary conditions imposing the
field to be in its ground state on the boundary (ρ → ∞). Therefore, in
physical dimensions d, a field configuration φ : Rd → Y , where Y is a
general target manifold, defines the asymptotic map

φ∞ : Sd−1
∞ 7→ V , (2.31)

where V is the space that contains all possible ground states, and the
symbol Sn stands for n-sphere space, so for example S1 is the circle, S2

the surface of a 3D sphere, and so on. Hence Sd−1
∞ is the (d-1)-sphere
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closed boundary at infinity in Rd, that is homeomorphic to a sphere at
ρ→∞.

In topology a linear theory is defined when a solution can be linearly
transformed to any other solution with similar asymptotic map, for ex-
ample GL equations Eq. (2.3). In this case if two different field solutions
have homotopic asymptotic maps, then they are homotopic. Therefore
the topological character of a field φ in a linear theory is determined
uniquely by the homotopy class of its map φ∞, which is an element of
πd−1(V) homotopy group. The n-th homotopy group ofM , πn(M), is de-
fined as the group that collect all the maps from Sn into a given manifold
M (space at least locally euclidean), where all the maps are subdivided
in equivalent homotopy classes.

If we now consider the nonlinear case, we can exploit the finite energy
condition in a different way. We can state that due to the presence of
gradients in the free energy, at the infinite boundary we need φ∞ to be
a constant map, with a specific value picked out from V produced by
the potential terms if present. In this way we are breaking any allowed
symmetry in the ground state, and we can identify all points on the
boundary as one. That allows us to do a topological compactification of
the physical space Rd to Sd (in practice we are setting all the points on
the boundary Sd−1

∞ as they were one single spatial point, the same as we
take a paper, R2, and we merge together all its edges until we get a paper
ball S2). Our physical space is now a d-sphere, with homotopy group
πd(Y ) (where Y is again the target space of φ which is a closed compact
manifold).

So reassuming, the non-trivial topological nature of the map from the
physical space (boundary Sd−1

∞ or bulk compactified Sd for linear and
nonlinear maps respectively) to the target space (V or Y respectively)
leads to solitons. These topological solitons are classified then by the
maps homotopy groups, and these homotopy groups will often coincide
with the topological degree of the map (as we will see later in practical
examples).

The requirements above are necessary for the existence of topological
soliton solutions, but are not yet sufficient to demonstrate that such solu-
tions are stable to spatial rescaling. This stability condition is addressed
by Derrick non-existence theorem or scaling argument. This theorem ap-
plies to field theories defined in flat space, like Rd, and it states that if
the energy functional F(λ) has no fixed points with respect the spatial
rescalings x 7→ λx, then there are no static solutions with finite energy
other than the vacuum configuration, so no solitons are allowed. Heuris-
tically it means that if we have a solution different from the vacuum, like
a topological defect, we can spatially shrink it (λ decreasing) or stretch
it (λ increasing) indefinitely while decreasing the energy. If there is a
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minimum point with respect to λ with λ 6= ∞ then the soliton is ener-
getically stable about this point and there is no way to shrink or stretch
the defects indefinitely. The fact that there are not energetic reasons to
not have a solitons does not imply immediately that we can have it al-
ways, but in general works (in fact it is just a non-existence theorem).
The fixed point usually is produced by two terms in the free energy, one
that decreases with λ and one that increases with it. The GL equations
satisfy this condition due to the competition between the potential and
derivative terms.

Now let us try to apply what we have learnt, in the case of ordinary
vortices and Skyrmions, which on topological grounds are very different,
as vortices belong to the “linear” category above, while Skyrmions belong
to the “nonlinear” one.

Vortices, either fractional or composite, are complex field configura-
tions characterized by the winding on the vacuum map (boundary map)

ψ∞ : S1
∞ 7→ V = S1 . (2.32)

As we said in Eq. (2.31) for general d dimensions, the first circle S1

denotes the closed path faraway from the vortex core (that is homeomor-
phic to a circle) while the second one (the target circle) corresponds to
the U(1) rotations of the ground state. So heuristically the map has the
following meaning: it counts how many times the target circle is covered
while going along the closed path faraway from the vortex core.

Therefore any map ψ∞ has a characteristic winding number N and
therefore it belongs to the homotopy class of the maps ψ∞ with charge
N. All together these classes can be collected in the homotopy group
π1(S1) = Z. The homotopy group π1(S1) is an infinite cyclic group, and
is isomorphic to the group Z of integers under addition: a homotopy class
is identified with its winding number.

Skyrmion charges are derived instead by defining the vector of com-
plex fields Ψ† = (ψ∗1, ψ

∗
2) (in two components), which is a smooth holo-

morphic map R2 7→ C2, for 2D solutions. The crucial point is that
Skyrmions only exist if the vortices in each component do not have coin-
cident zeroes and hence the target space becomes C2\{0}. Now we can
define the projection Σ : C2\{0} 7→ CP1 ' S2, which is roughly speak-
ing the stereographic projection of C2 on the Riemann sphere identified
with the complex projective line CP1, and so topologically equivalent to
S2. Finally, we note that Ψ recovers its ground state value as ρ → ∞
and we can perform a one-point compactification of the plane, which is
then homeomorphic to a sphere R2 ∪ {∞} ' S2. Therefore now the
composition φ = Σ ◦Ψ is

φ : S2 7→ Y = S2 . (2.33)
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which has non-trivial topology due to winding, called Skyrmions (actually
baby Skyrmions, as the real Skyrmions have one dimension more being
S3 7→ S3).

Note that as we required the zero of Ψ to be removed from the tar-
get space for non-trivial topology to exist, the winding number here
or Skyrmion charge can only be energetically conserved. This can be
achieved by making it energetically favourable for the fractional vortices
that form the composite multicomponent vortex not to coincide. This
means their zeroes will not coincide and the zero has been effectively en-
ergetically removed from the target space of Ψ ' Ψ/{0} : R2 7→ C2/{0}.

The topological charge, rewritten for Ψ, is identical to Eq. (2.27).
This equation can be safely used also for N-component case, where we
can have CPN−1 Skyrmion, where their charge Q can be viewed as QN
spatially separated fractional vortices with combined flux adding up to
Q flux quanta.

From the sketched derivation above, it is clear why the pseudo-spin n
mapping works, indeed Eq. (2.28) has the role of stereographic projection
Σ, so that n : S2 7→ S2, with the charge Eq. (2.30) (Σ is just more easily
extendable to multiple components). As with the vortex, we can define
the homotopy class π2(S2) = Z. It is also important to note that for
the one-point compactification it is necessary to have n constant (i.e. Ψ
recovers its ground state value) at the boundary of integration domain,
so if there are Meissner currents, Q will be non-integer.

The critical difference between Skyrmions and vortices, is that the
former required its map to be uniform at infinity (boundary) and its
topological charge is set by the field distribution inside the infinite radius,
while the latter has a non-uniform map at infinity and its charge is set
by the boundary map. This difference is reflected by how we computethe
charge, while both have an integral form, for vortices we must compute
a closed line integral sufficiently faraway, while for Skyrmions we must
perform a bulk integral.

As we have seen topological defects stem often from symmetries, in-
deed vortices and Skyrmions come from the U(1) (where Skyrmions need
multiple fields). In the following chapter we will have a model break-
ing time-reversal symmetry, so Z2. This symmetry is discrete and the
topological defects that stems from it are domain walls (DWs).

Domain wall treatment can be easily generalized from the defect called
a kink in the 1D Sine-Gordon equation. In fact going to higher dimen-
sions we have kink solutions that are independent of all but one spatial
dimension (x), and these are what we call domain walls. Their homotopy
group can be written as π0(V) = Z where V is the vacuum space of the
variable having Z2. In our case this variable will be the phase differ-
ence θ12 with ground state θ±12. The zero-sphere at infinity is just the set
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x = ±∞, so the boundary in 1D. The charge can be trivially computed
as

N =
1

θ+
12 − θ−12

∫
θ′12 dx , (2.34)

where θ′12 is the derivative along x as θ12 is assumed to be independent
of y. Physically what happens is that multiple ground states become
disconnected, and θ12 for continuity has to interpolate between them,
taking values outside the ground state.

The difference presented above between vortices, Skyrmions and do-
main walls characterizes the two main types of topological soliton; those
in which the topology arises due to non-trivial vacuum values of a linear
field at spatial infinity and the topological charge is an element of the
homotopy group πd−1(V), and those in which there is a nonlinear field
which is equivalent at infinity and the topological charge is associated
with the mapping of the whole space into a target manifold Y , which
gives an element of the homotopy group πd(Y ) [22].
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Chapter 3

Dirty two-band
superconductors

The minimal model U(1) × U(1) serves as introduction of multicompo-
nent superconductivity, but it implies independent matter conservation
in each component, a condition rarely met. In particular in multiband
superconductivity, i.e. when different components come from different
electronic bands in the material, interband transitions of electrons lead
to non-conservation of the particle number in each individual compo-
nent. At the macroscopic (classical-field) level, this results in Josephson
terms with structure ψ1ψ

∗
2 + ψ∗1ψ2 (and higher orders), expressing the

tunneling of a pair (or more) from a band to another one. These new
terms bring along new physics inside the multicomponent GL equations,
as for example the existence of phase modes (Leggett modes [17]) or the
possibility of states with broken time-reversal symmetry (BTRS). BTRS
states, like s + is, have been proposed for iron-based superconductors
in particular range of parameters, and recently experimental evidences
for Ba0.27K0.73Fe2As2 have been reported [23]. In this chapter, after the
background about iron-based superconductors and the microscopic the-
ory is laid down, the simplest possible model that supports s+ is state is
discussed, a two-band superconductor with interband impurity scatter-
ing.

3.1 Iron-based superconductors

This section has the purpose to highlight some important concepts in
iron-based superconductors and to put the following model in a physical
prospective, a complete discussion on these materials can be found in
[24–26].

Iron-based superconductors (FeSCs) were discovered in 2008 with the
compound LaFeAsO1−xFx, having a critical temperature of 26 K [16].
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AxFe2−ySe2 (where A = K, Cs, Tl) were made,
raising the Tc from 8 K for FeSe to above 30 K
(9). The common chemical building block of
these superconductors is FeX, where X = As, P,
S, Se, or Te. Structurally, FeX forms a trilayer
consisting of a square array of Fe sandwiched
between two checkerboard layers of X (Fig. 1A,
inset). These trilayers are separated by “bridging
layers” consisting of alkali, alkaline-earth, or
rare-earth atoms and oxygen/fluorine. It is widely
believed that superconductivity in this family
originates from the electrons of the d orbitals of
Fe in the FeX trilayers.

Most of the stoichiometric parent compounds
exhibit antiferromagnetism at ambient pressure.
With the exception of FeTe, the spatial arrange-
ment of the magnetic moments in an FeX trilayer
is represented by the red arrows in Fig. 1B (10–12).
This magnetic order has been explained from
both the itinerant- (13, 14) and the localized-
electron (15) point of view. Along the crystalline
c axis (see Fig. 1A for the definition of a, b, and
c axes), the nearest-neighbor magnetic moments
can be either parallel or antiparallel. This mag-
netic order couples intimately with a structural
distortion. For the stoichiometric (122) system
[for example, BaFe2As2 (11)], the structural and
antiferromagnetic transitions occur at the same tem-
perature (the zero doping axis of Fig. 1E) through
a first-order phase transition in which the AF or-
der appears discontinuously. In the low-temperature
phase, the ab plane Fe-Fe distance elongates in
the direction parallel to the magnetic moment and
contracts in the direction perpendicular to it (blue
arrows in Fig. 1B). For the (1111) system [for in-
stance, LaFeAsO (10) and CeFeAsO (12)], the
structural transition occurs at a slightly higher tem-
perature followed by a magnetic transition (Fig. 1,
C and D). Thus, there exists a temperature win-
dow inwhich the stoichiometric (1111) compounds
are paramagnetic, but the crystal 90° rotation
symmetry is broken by the structural distortion.
The above phenomenon suggests that, in samples
where static magnetism is suppressed but fluctu-
ating magnetism still exists, the electron-lattice
coupling will be enhanced (16). This coupling
could impede or assist the electron pairing dis-
cussed later in this review.

The AF state is a “semimetal” with equal
density of negative and positive charge carriers.
This is in sharp contrast with the cuprates where
the AF compounds are insulating; however, semi-
metallicity does not necessarily imply that the
electron-electron correlations is weak (17).

The fact that antiferromagnetism needs to be
suppressed for superconductivity to thrive (Fig.
1, C to E) also applies to the cuprates, as well as
many other materials in nature. It is this fact that
leads many to the proposition that dynamic rather
than static antiferromagnetism (or AF fluctua-
tions) is favorable for high-temperature super-
conductivity. This point of view is supported by a
recent neutron-scattering experiment which found

that, in BaFe1.85Co0.15As2 (a FeSC), the AF fluc-
tuation is as strong as that of YBa2Cu3O6+x (a
cuprate superconductor) (18).

The Pairing Problem
After the discovery of superconductivity in mer-
cury and other metals, many theories were put
forward to explain the phenomenon. Eventually,
the Bardeen-Cooper-Schrieffer (BCS) theory
(19) was proven to be the correct description,
and it remains one of the most successful theories
in physics to date. The two basic ingredients of
the BCS theory are (i) an “effective” attraction
between the electrons and (ii) pairing of electrons
into bosonic “Cooper pairs” (Fig. 2A). The Cooper
pairs then form a Bose-Einstein condensate in the
superconducting state. However, according to

Coulomb’s law, electrons should repel rather than
attract one another. BCS theory addressed this
apparent contradiction by invoking the attraction
mediated by phonons (the quanta of atomic ion
vibration) (Fig. 2, B and C). But how can the
phonon-mediated attraction be strong enough
to overcome the Coulomb repulsion? The answer
to this question involves a bizarre property of
metals: Despite the strong Coulomb repulsion,
at low energy (or low temperature) a metal be-
haves as if its electrons were noninteracting enti-
ties called “quasiparticles.”Now all that is needed

is a source of attractive interaction between the
quasiparticles; according to the BCS theory, it is
the phonons.

To give the reader a rough idea of how this
works, we consider two helium atoms. When
the atoms do not overlap, their interaction is
very weak and attractive: weak because the
He atoms are neutral so the Coulomb interac-
tion between their nuclei and electrons cancel,
and attractive because the presence of one atom
virtually (temporarily) excites the other atom into
a high-energy state possessing an electric di-
pole moment (Fig. 2D). The attractive force is
a result of the interaction between the virtual di-
pole moments.

Similarly, phonons are the key virtual excita-
tions that turn the repulsive Coulomb interaction

into weak attraction in conventional materials
such as mercury. However, for the high-Tc su-
perconductors such as the cuprates and the
FeSCs, there is a widely held belief (but not
proof) that the electron-phonon interaction alone
is not sufficient to overwhelm the residual Cou-
lomb repulsion. This makes the electron pairing
in these materials more perplexing. In fact, the
residual Coulomb interaction in the cuprates is so
strong that the energy is raised by a few electron
volts (this is called the charge gap) when two
electrons run into each other in the same crystal
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Figure 3.1: (A) Structural building block of FeSCs. (Inset) Top view of
the FeX trilayer. The arrows a, b, and c are the crystallographic direc-
tions. (B) The AF order effect on the lattice. The red arrows represent
the magnetic moments, and the blue ones indicate the directions of struc-
tural distortion. (C-E) Schematic phase diagrams for three families of
Fe-based compounds (from left to right CeFeAsO1−xFx, LaFeAsO1−xFx,
and Ba(Fe1−xCox)2As2). OTR, orthorhombic; TeT, tetragonal crystal
structure; AFM, antiferromagnetic; SC, superconducting; PM, paramag-
netic phase. Taken from reference [25].

The following years entire families of materials were synthesized, reach-
ing the critical temperature of 55 K, and capturing the attention of the
superconductivity community. The existence of this new class of high
temperature superconductors is important because parallelisms and dif-
ferences with the well known cuprates could shed some light on the es-
sential ingredients that drive these materials to have an high Tc.

The discovered FeSCs come in many chemical compositions, but the
common building block is FeX, where X is typically a pnictide like As or P
(when this is the case these materials are also called iron pnictides). The
structure of FeX is a trilayer consisting of a square array of Fe sandwiched
between two checkerboard layers of X (see Fig. (3.1)). These trilayers are
separated by layers of alkali, alkaline earth, or rare earth atoms and oxy-
gen/fluorine with a bridging function. The superconductivity is believed
to originate from d orbitals of Fe in FeX trilayers [25].

Like cuprates superconductors, they are obtained from antiferromag-
netic compounds (AFs) by doping or even by applying pressure, and phase
diagrams like in Fig. (3.1) are very similar between the two classes. In
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both cases the superconductivity region is a "dome", so there is always
an optimal doping for reaching the highest critical temperature for that
compound. But there are also many differences between cuprates and
pnictides, for example while in cuprates the AF phase always vanishes
before superconductivity appears, in FeSCs can happen that they coexist
in a limited region (see Fig. (3.1E)). More importantly the undoped state
is a semimetal in FeSCs, while in cuprates is a Mott insulator, so effects
of correlations between electrons are smaller in FeSCs. Finally the sym-
metry of the gap in cuprates is universally d-wave, while in FeSCs can
be different from material to material. Nevertheless, it seems possible
that the ultimate source of the pairing interactions is fundamentally sim-
ilar, therefore what causes different symmetries is the different geometry
of Fermi surfaces (FSs), especially the fact that in FeSCs we can have
multiple FSs in contrast to cuprates.

3.1.1 Gaps symmetry

In iron-based superconductors usually we can have 3-4 bands crossing
the Fermi energy, producing hole and electron pockets. An example of a
typical Brillouin Zone (BZ) can be found in Fig. (3.2). In pnictides the
physical key aspects can be grasped by analyzing the 2D BZ of the Fe
square lattice, instead of the full 3D, in fact the pockets are more or less
cylindrical. In almost all pnictides we have two concentric hole pockets
around Γ point and electrons and hole pockets, varying with doping, in
tetragonal M or X points (in Fig. (3.2) we have only electron pockets in
X points). Each pocket has, in principle, the possibility of having its own
gap function that depends in general on intra- and inter-band pairing
interactions.

It has been conjectured that the pairing interaction is repulsive and
driven by AF spin fluctuations for both cuprates and FeSCs. This pairing
interaction has a potential U (k,k′), where k and k′ are the wave vectors
of the interacting electrons. U (k,k′) is peaked for some value of Q =
k′ − k, called nesting vector, and figuratively we can see it as a vector
connecting Fermi surfaces in the BZ (for example in Fig. (3.2) the nesting
vector is Q = (π, 0), where the lattice points distance is set to 1). The
most favorable nesting vector is the one able to connect as more FS states
as possible (and so being more effective than others), therefore typically
coincides with the one linking parallel pieces of FSs.

For spin singlet pairs, so for even spatial symmetry of gap wave func-
tion like s- or d-wave cases, AF spin fluctuations are repulsive, and can
lead to pairing if there is a sign change in the gap functions. Naively the
sign change is crucial to extract an attractive component from the repul-
sive screened Coulomb interaction due to AF spin fluctuations. Such in-
teraction could be written as

∫
dkdk′∆i (k)U (k,k′) ∆j (k′), where ∆i (k) =
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the kinetic energy bandwidth. In the language
of the aforementioned He atom analogy, a RG
analysis keeps track of the effects of all virtual
excitations above a “cutoff energy” and calcu-
lates the change of the effective interaction as the
cutoff energy is lowered. A particular realization
of the RG method, functional RG, further com-
bines these features with the band structure in a
single framework (35). Functional RG is capable
of surveying all electronic instabilities on equal foot-
ing; hence, it is the least biased method (34, 36).
Despite the diversity in the methods used, all
of these theories come to the con-
clusion that when the antiferro-
magnetism is suppressed, s± pairing
is favored. In addition, they agree
that the most important virtual
excitations that trigger the s± pair-
ing are the “AF spin fluctuations,”
namely a dynamic version of an-
tiferromagnetism. Interestingly, a
thorough analysis of the function-
al RG results reveals that, in ad-
dition to the antiferromagnetism
and superconductivity, the FeSCs
have a propensity to FS distor-
tion and charge-density wave or-
der as well (Fig. 4) (37).

Most of the theoretical meth-
ods mentioned above work best
when the electron-electron inter-
action is weak. Through measure-
ment of the electron effectivemass,
it has been concluded that FeSCs
are intermediate coupling mate-
rials (17). Hence, it is worthwhile
to look at the pairing problem
from the opposite, strong-coupling
limit. In this approach, one posits
that FeSCs are equivalent to doped
Mott insulators (15, 38, 39) with
an effective nearest- and second-
neighbor antiferromagnetic ex-
change interaction generated by the virtual
excitations above the assumed charge gap. In
this way, antiferromagnetism (15, 38) and s±
pairing (38, 39) are also found.

Finally, a variational Monte Carlo calculation
that treats the FeSCs as an intermediate correlated
metal has been done recently (40). The results are
qualitatively consistent with the functional RG
predictions.

At this point, we would like to contrast the
cuprates and the FeSC. They are similar in the
sense that both possess strong effective AF inter-
action at low energies. This interaction is respon-
sible for antiferromagnetism and likely Cooper
pairing as well. However, for the cuprates, the
states below the charge gap are subjected to the
constraint that there can be no more than one
electron per unit cell. This constraint is believed
to be responsible for many unusual properties of
the lightly doped cuprates. These include the high

pairing temperature and low Cooper-pair conden-
sation temperature. Fe-based compounds do not
have the occupation constraint. This is probably
why the order of these two temperatures are re-
versed in FeSC (24).

The Pairing Symmetry
Presently, two types of experiments exist that
bear more direct information concerning s±
pairing. One of them is the detection of neutron
resonance mode in the superconducting state. As
suggested in (41, 42), if the pairing symmetry is

s±, one expects a neutron resonance at the anti-
ferromagnetic ordering wave vector upon enter-
ing the superconducting state; this peak was first
observed in (43). The second experiment is based
on the quasiparticle interference of scanning tun-
neling spectroscopy. If the superconducting order
parameter has opposite signs on electron and hole
FSs, it will impact the elastic scattering of quasi-
particles by impurities (44, 45). Specifically, non-
magnetic impurities will scatter quasiparticles
from hole to electron FSs (and vice versa), but
not from hole to hole or from electron to electron
FSs. If the impurities are magnetic, the reverse is
true. This behavior is observed in a recent Fourier-
transform scanning tunneling spectroscopy ex-
periment for the Fe1+x(Se,Te) compounds (46); the
relative strength of magnetic versus nonmagnetic
scattering is controlled by a magnetic field.

In other phase-sensitive experiments, a scan-
ning superconducting quantum interference de-

vicemeasurementwas performed on polycrystalline
NdFeAsO1−xFy and found no evidence of half-
integer flux quantum (47). Zhang et al. found a
substantial c-axis Josephson tunneling between
Pb and Ba1−xKxFe2As2 (48). These two results
make nonzero angular-momentum pairing, such
as d-wave, unlikely. In the third experiment,
electromagnetic pulse-induced half-flux quantum
jumps were observed in a loop formed by Nb
and polycrystalline NdFeAsO0.88F0.12 (49). This
suggests that there are “p junctions” along the
current path resulting from Cooper pairs tunneling

between opposite-sign supercon-
ducting regions. Taken together, the
three experiments are consistent with
the proposed s± pairing.

The simplest s± pairing pre-
dicts a nodeless superconducting
gap. However, the order parameter
can, in principle, vary substantially
around different FSs as suggested
in (27, 29, 31). An illustration of the
variation is given in Fig. 3C. In cer-
tain cases, this variation can be so
strong that “accidental” nodes are
produced (29, 50). A node in the
superconducting gap is the location
on the FS where the energy gap van-
ishes. Measurements of the super-
conducting gap in several different
FeSCs by angle-resolved photoemis-
sion spectroscopy have revealed a
more-or-less uniform gap on all ob-
servable FSs (51, 52). However,
there is also experimental evidence
(for example, from nuclear magnet-
ic resonance and penetration-depth
experiments) for the existence of gap
nodes in somematerials (20, 53–56).
Recently a direct comparison between
the results of the surface-sensitive
scanning tunneling spectroscopymea-
surement (46) and a bulk-sensitive,

angle-resolved specific-heat measurement (57)
for Fe1+x(Se,Te) became available. Whereas the
tunneling spectra of Hanaguri et al. (46) in-
dicate a nodeless superconductor, the result of
Zeng et al. (57) shows evidence for either nodes
or minima of the energy gap. Chubukov et al.
and Vorontsov et al. have argued that these re-
sults are consistent so long as the nodeless gap
exhibits angular variation (such as shown in Fig. 3C)
(58, 59). Thus, with a dose of cautious optimism,
it seems that substantial evidence supports the
notion that at least one FeSC shows s± pairing.
However, this does not mean that every FeSC has
to do so.

Some Nonuniversal Properties of FeSCs
Many important properties of the Fe-based com-
pounds vary from system to system. For example,
there is clear evidence that some of the FeSCs do
have nodes (55), whereas others seem to have a

A B

C

Fig. 3. (A) Electron- and holelike FSs of FeX trilayers are indicated by the red and blue
curved lines, respectively. We use the “unfolded zone” representation corresponding to
one Fe atom per unit cell. The color shading reflects the electron occupation at each
momentum point (increasing from white to blue). (B) Inter-FS pair scattering. (C)
Schematic representation of the superconducting order parameter obtained from several
weak coupling theories. Thewidth of the blue and red bands represents themagnitude of
the order parameter. The color represents the sign: blue, positive; red, negative. The order
parameter associatedwith four extra-small holelike FSs at the corner of the Brillouin zone
is also shown here. These extra hole FSs are present in materials with large hole doping.
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Figure 3.2: Schematic sketch of the Fermi surface sheets in the BZ of
Ba1−xKxFe2As2 at moderate doping level of x = 0.4, with two small
concentric hole pockets around Γ = (0, 0) point and slightly elliptical
electron pockets around X = [(±π, 0), (0,±π)] points. For simplicity the
"unfolded" BZ is sketched, i.e. the one containing 1 Fe atom, even if the
physical one should have 2 Fe atoms per unit cell, having the As atoms an
alternating pattern above and below the Fe layer as seen in Fig. (3.1A).
The colors are related to the sign of the gaps, blue positive and red
negative. The vectors represents the quasi-nesting vectors (quasi- due to
different shapes of FSs) Q = (π, 0) responsible for inter-FS scattering.
Taken from reference [25].

|∆i|eiϕi are the complex gap functions [26]. In cuprates there is only one
gap function ∆ (k), so if the U (k,k′) is positive (repulsive) and peaked at
Q = (π, π) (as for cuprates), the only possibility to have a negative value
for the previous interaction energy is to have a d-wave symmetry, which
implies that the gap changes sign between k and k′ = k +Q (therefore
with a phase difference of π).

However in FeSCs, having multiple pockets, there is also the possibil-
ity to retain s-wave symmetry but changing sign between different Fermi
surfaces [27]. This gaps structure is called s± and the majority of the
superconductivity community believes it applies for weakly doped FeSCs
(for higher doping we can have also the presence of d-wave characters).
For example in Fig. (3.2) we can see how the vector Q = (π, 0) is enforc-
ing a changing in sign between hole pockets in Γ and electron pockets in
X.

The simplest model that can have s± structure is a two-band model,
and has the ability to capture some of the physics, being the two concen-
tric holes close in size, so in certain situations approximable as one band.
In this way we can have a simple description of the pairing mechanism,
where there is a sign change of ∆i (k) between electron and hole pock-
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electron bands are shifted with respect to each other by up
to 70 meV, so that the hole and the electron Fermi surface
become smaller relative to DFT predictions. This holds both
in magnetic [23] and nonmagnetic [24] cases. It has been
ascribed to correlation effects [25], but the comparison with
MgB2 demonstrates that these effects beyond the local density
approximation (LDA) are, if anything, less severe than in
MgB2, which is not generally considered to be a correlated
metal.

1.2.3. Conceptual importance. While the FeBS may not
signify a particular advance in terms of practical applications—
their Tc is only 15 K higher than that of MgB2, and, just
as the cuprates, they are expensive to make and difficult
to work on—their conceptual value is hard to overestimate.
Indeed, fullerides and MgB2 clearly belong to a different
class than the cuprates, being in certain respects exotic, but
still phonon-driven superconductors. Not surprisingly, there
had been a growing feeling among physicists that phonon
superconductivity will probably never grow past 50–60 K,
while true high-temperature superconductivity is a strong-
correlation phenomenon limited to the unique family of layered
cuprates. It had been justly pointed out that the CuO2 layers
have many unique properties, largely coming from the fact
that Cu is the last 3d transition metal and as such is by far
the most strongly correlated of all, yet its simple one-orbital
electronic structure provided a simple and large Fermi surface
when doped. One can point to many aspects in which cuprates
are unique, and many people did.

What the discovery of the FeBS brought to the table
was the understanding that however unique cuprates may be,
these features are not prerequisites for non-phonon, high-
temperature superconductivity. And, if that is true, there are
likely many other crystallochemical families to be discovered,
some of which may have higher critical temperature or be better
suited for applications than cuprates and FeBS.

In a twisted way, we are lucky that FeBS and cuprates
are so different in so many aspects. This makes it more
reasonable to look for those few commonalities which exist
and to assume, even without profound theoretical insight, that
these commonalities are important for high Tc. Some of
these obviously include proximity to magnetism and quantum
criticality, or substantial anisotropy of the Fermi surface
(quasi-2D) and it has already been argued by many that one
should look for a combination of these factors to search for
novel superconductors [26].

1.2.4. Gap symmetry and structure. The group
theoretical classification of gap structures in unconventional
superconductors is somewhat arcane and has been amply
reviewed elsewhere [27]. Here we present the simplest notions
relevant to the discussion of symmetry and structure of the
order parameters under discussion in the FeBS at present. In
the absence of spin–orbit coupling, the total spin of the Cooper
pair is well defined and can be either S = 1 or S = 0.
Experimental data appear to rule out spin triplet states (see
section 4), so we focus on the spin singlet case. We focus first
on simple tetragonal point group symmetry. In a 3D tetragonal

Figure 1. Cartoon of order parameters under discussion in the
Fe-pnictide superconductors represented in the 2D 1-Fe Brillouin
zone (see section 2). Different colors stands for different signs of
the gap.

system, group theory allows only for five 1D irreducible
representations: A1g (‘s-wave’), B1g (‘d-wave’ [x2 − y2]), B2g

(‘d-wave’ [xy]), A2g (‘g-wave’ [xy(x2−y2)]) and Eg (‘d-wave’
[xz, yz]) according to how the order parameter transforms
under rotations by 90◦ and other operations of the tetragonal
group. In figure 1 we have illustrated two of these symmetries,
namely s-wave and dx2−y2 -wave. Note that the s++ state and
s± states represented all have the same symmetry, i.e. neither
changes sign if the crystal axes are rotated by 90◦. In contrast,
the d-wave state changes sign under a 90◦ rotation. Note further
that the mere existence of the single hole and single electron
pocket shown lead to new ambiguities in the sign structure of
the various states. In addition to a global change of sign, which
is equivalent to a gauge transformation, one can have individual
rotations on single pockets and still preserve symmetry; for
example, if one rotates the gap on the hole pocket for the d-wave
case in figure 1 by 90◦ but keeps the electron pocket signs
fixed, it still represents a B1g state. Note also that B2g states,
while not shown in the figure, are also possible by symmetry
and would have nodes on the electron pockets. Further, more
complicated, gap functions with differing relative phases on
the different pockets become possible when more pockets are
present, and/or when 3D effects are included (see section 3.5).

These symmetry properties are distinct from gap structure,
a term we use to designate the k-dependent variation of an order
parameter within a given symmetry class. Gaps with the same
symmetry may have very different structures, as also illustrated
in the figure, where three different types of s-wave states are
shown. The isotropic, fully gapped s++ and s± states differ only
by a relative phase of π in the latter case between the hole and
electron pockets. On the other hand, in the nodal s case, the gap
is shown vanishing at certain points on the electron pockets.
This particular situation is a case we will sometimes refer to as
‘nodal s±’, in that the sign of the hole pockets is still opposite
the average sign of the electron pockets. Nodes of this type
are sometimes described as ‘accidental’, since their existence
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Figure 3.3: Cartoon of the order parameters in the 2D 1-Fe Brillouin
Zone for a two-band FeSCs with s-wave symmetry. The thickness stands
for the module of the order parameter while the different colors stands
for the different signs of the gaps. Q = (π, 0) is the quasi-nesting vector
that enforces the sign changing. Taken from reference [24].

ets. In case no sign change happens we call the state s++ as depicted
in Fig. (3.3). It is worth noting that both s± and s++ belong to the
same symmetry class (s-wave or more properly A1g), the only difference
is in the order parameter structure, defined as the k-dependence of ∆i (k)
within a given symmetry class. Different gap structures can anyway lead
to many different properties.

3.1.2 Impurities effects on s± states

Impurities effects were studied in the context of conventional s-wave su-
perconductors by Anderson [28]. His result was named Anderson theorem
and states that the bulk Tc as well as the average bulk superconducting
gap are unaffected by weak non-magnetic impurity scattering [29]. The
reason is naively understandable in the following way: scattering mixes
states inside the band, but for isotropic s-wave each state is equivalent
to another one, contributing in the gap with the same phase. That is no
longer true in cuprates for example, where a d-wave symmetry like dx2−y2
makes the states k1 = (kx, 0) and k2 = (0, ky) contributing with differ-
ent phase, so scattering between them brings the system toward a s-wave
situation and effectively suppresses the order parameter being s-wave not
favorable for superconductivity in these materials.

In two-band s± systems the effect depends on two factors: the type
of impurity scattering and the pair interactions. The impurity scattering
could be only intra-band, and therefore producing a mixing of states just
inside the different pockets, making Anderson theorem still valid with
the subsequent no effect of the impurities. But the defects can also scat-
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ter carriers with large momentum change and therefore give comparable
intra-band and inter-band scattering. In this case the s± state is not fa-
vorable, and the impurity scattering gradually averages out the two gaps
and the closer they get to each other, the less effective the pair-breaking
from impurities is [30, 31]. This averaging weakens the SC state and de-
creases the critical temperature. Now what happen depends on the pair
interactions, if they can sustain a s++ symmetry the SC states can survive
and Tc saturates, on the contrary if s± is necessary for the existence of
superconductivity, the order parameter is completely suppressed. These
two scenarios are decided by the interplay between spin fluctuations (re-
pulsive) and electron-phonon coupling (attractive) [32]. This interplay
can be effectively described by the coupling matrix Λ̂, which has as ele-
ments the intra-band pairing interactions λii and the inter-band ones λij .
In the context of pnictides usually λii are positive (attractive) while λij
are negative (repulsive). So if the determinant of this matrix is positive
(attractive intra-band interactions dominate) the system can sustain s++,
while if it is negative not.

The disorder induced transition s±-s++ can happen in two qualitative
different ways as shown in Fig. (3.4): the first one is a crossover where
the weaker gap goes to zero and then reappears with opposite phase, in
order to have same phase as the stronger one; the second way involves a
continuous transformation through the intermediate complex s+ is state
(can be thought as an s±+ is++) where the phase difference between the
two gaps is a value different from 0 or π and where the gaps modules
never go to zero [30, 31, 33].

3.1.3 s+ is time-reversal symmetry breaking

The s+ is state is called in this way because it breaks the time-reversal
symmetry (BTRS), in fact complex conjugation (s± is) leads to another
ground state that cannot be rotated back to the initial ground state by a
gauge transformation. Complex conjugation is related to the transforma-
tion t → −t, i.e. time-reversal transformation, and here the name of the
symmetry. Therefore s + is states do not break any crystal symmetries
and represents a new type of superconducting state beyond the lattice
point group-based classification. Such states were discussed in a wide
range of systems, and in particular in three-band superconductors with
frustrated interband interactions [34–38].

The s +is states have been predicted to host a broad range of inter-
esting new phenomena, among which can be mentioned different massless
[39] and “phase-density mixed” [36, 37, 40, 41] collective modes, uncon-
ventional thermoelectric properties [42, 43], additional mechanisms of
damping of the vortex motion [44], and unconventional magnetic signa-
tures induced by defects [45, 46].
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Complex state induced by impurities in multiband superconductors
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We study the role of impurities in a two-band superconductor, and elucidate the nature of the
recently predicted transition from s± state to s++ state induced by interband impurity scattering.
Using a Ginzburg-Landau theory, derived from microscopic equations, we demonstrate that close to
Tc this transition is necessarily a direct one, but deeper in the superconducting state an intermediate
complex state appears. This state has a distinct order parameter, which breaks the time-reversal
symmetry, and is separated from the s± and s++ states by continuous phase transitions. Based
on our results, we suggest a phase diagram for systems with weak repulsive interband pairing, and
discuss its relevance to iron-based superconductors.

It has been long recognized that nonmagnetic im-
purities strongly influence properties of multiband
superconductors1–6, especially in the case of an order
parameter with sign change between different bands
(s± state)2,7–9. Recently, it has been pointed out that
impurities-induced interband scattering can continuously
change the order parameter of a two-band superconduc-
tor from s± to s++ state10–12 . This is particularly rel-
evant for iron-based superconductors13,14, most of which
are believed to be in some form of the s± state, see recent
reviews15,16.

As we demonstrate in this Letter, the s±-to-s++ trans-
formation may follow a nontrivial scenario, and occur
via an intermediate complex state at which a finite
phase shift develops between the gap parameters in the
two bands. We derive the simplest possible two-band
Ginzburg-Landau (GL) free energy of the system from
microscopic theory, and show that the presence of in-
terband impurity scattering has important consequences
for the different possible order parameters the theory can
support. In the case of repulsive interband pairing we in-
deed observe the s± to s++ transition17 with increasing
the degree of disorder. We demonstrate that the transi-
tion is necessarily a direct one only close to the critical
line; deeper in the superconducting state the s± state
gives way to an intrinsically complex order parameter
(which can be thought as an s± + is++ state), and only
then to a pure s++ state. This complex state breaks time-
reversal symmetry and is separated from the other two
superconducting states by continuous phase transitions.
We discuss the reason and conditions for the appearance
of this state. Based on our results, we propose the phase
diagram shown in Fig. 1 for two-band superconductors
with weak repulsive interband coupling.

We consider a system of two parabolic bands, with
partial and total densities of states (DOS) N1, N2, and
N = N1 + N2 respectively. The pairing interactions are

described by 2× 2 coupling matrix λ̂, with det[λ̂] ≡ w =
λ11λ22 − λ12λ21. In the superconducting state there are
two gap parameters ∆1 and ∆2, which are assumed to be
complex constants for each band ∆m = |∆m|eiφm . The
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FIG. 1. Phase diagram of systems with weak repulsive inter-
band pairing. The x-axis represents the interband impurity
scattering rate. The orange dashed line denotes the direct
s± to s++ transition, and the orange region represents the
complex s± + is++ state. The phase transition lines between
the complex state and the other states are shown with red,
and the dashed red indicate the conjectured extension of the
complex state at low temperatures.

relative phase ϕ = φ1 − φ2 is a gauge-invariant quan-
tity, and it is 0 or π in the s++ or s± states respec-
tively. The presence of impurities introduces scattering
rates parametrized by γmn, where m,n = (1, 2) are the
band indices. For the interband terms (m 6= n) we can
write γmn = NnΓ, with Γ = nimpπu

2, where nimp and
u are the impurities’ concentration and potential respec-
tively. On general grounds, point defects, such as atomic
substitutions or vacancies, can scatter carriers with large
momentum change and therefore are expected to give
comparable intraband and interband scattering rates. In
the case of the iron-based superconductors this was in-
deed confirmed by the first-principles calculations18.

Close to the critical temperature the free energy can
be expanded in powers of |∆1| and |∆2|. (Although

Figure 3.4: Phase diagram of two-band SC with weak repulsive inter-
band pairing. The x-axis represents the inter-band impurity scattering
rate Γ. The orange dashed line Tγ(Γ) denotes the temperatures at which
we have the direct s± to s++ transition (crossover), and the orange region
represents the complex s± + is++ state. We can notice how in this case
Tc saturates to a constant value. Taken from reference [31].

Multiple broken symmetries in s+ is superconductors give rise to sev-
eral strongly disparate coherence lengths. This can lead to a state with
attractive intervortex interaction, originating in the magnetic field pene-
tration length being smaller than some, and larger than other coherence
lengths, thus leading to type 1.5 superconductivity [36, 47].

Besides vortices, the s + is state also allows other types of topolog-
ical excitations that include domain walls and Skyrmions [48–50]. The
s +is state also exhibits complex beyond-mean-field physics with new
fluctuation-induced phases [51–53]. We will see some of these properties
in the following sections.

3.2 Microscopic theory of superconductivity

An important characteristic of the Ginzburg-Landau model under study,
is that it is derived directly from the microscopic theory of multiband
superconductors, and therefore its phenomenology can be linked directly
to microscopic parameters. In this section we review rapidly the modern
microscopic apparatus used for superconductors, arriving at the so called
Usadel equations, microscopic equations for superconductors in the dirty
limit, stressing in particular all the approximations done along the way.
The reader interested mainly in the physical phenomena rather than in
the microscopic derivation of standard equations may skip this section,
and go directly to Section 3.3.
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3.2.1 Gor’kov equations and Matsubara Green functions

The complete microscopic formalism treatment can be found in [54, 55],
here we limit ourselves to a simple review, highlighting the fundamen-
tal steps. The microscopical theory of superconductivity was developed
by Bardeen, Cooper, Schrieffer (BCS) in 1957 [9, 56, 57], where it was
noted that a normal state of a metal is unstable to the formation of
bound states of electrons with opposite spins and momenta. The BCS
theory is written in standard particle creation and annihilation operators
for Bloch states, specified by a wave vector k and spin σ. However, the
elementary excitations of a SC state are no longer single particle states,
but instead broken Cooper pair states. This produce a very cumbersome
treatment, especially for finite temperature. A new mathematical for-
mulation of BCS was therefore developed by Bogoliubov [58], where he
introduced the concept of coherent mixtures of particles and holes, where
an excite state has always an electron-like and a hole-like part, and this
led to the Bogoliubov-deGennes (BdG) equation. BdG equation is how-
ever still difficult to solve in general case and not ideal to work with in
case of random impurity. The pursuit of a more manageable treatment
brought to the introduction of Green function formalism, and their qua-
siclassical approximation, which is currently the modern framework for
superconductivity.

The application of the quantum field theory to BCS model was per-
formed by Gor’kov in 1958 [59]. To derive Gor’kov equations we start
from the BCS Hamiltonian:

Ĥ =

∫
dξ1ψ̂

†(ξ1)Ĥkψ̂(ξ1)

+
1

2

∫
dξ1

∫
dξ′1V(|r1 − r′1|)ψ̂†(ξ1)ψ̂†(ξ′1)ψ̂(ξ′1)ψ̂(ξ1) , (3.1)

where ξ1 ≡ (r1, α1) is the particle state coordinate with r1 spatial coor-
dinate and α1 spin state. V(|r1−r′1|) is a two-particles potential and Ĥk
the kinetic single particle Hamiltonian (containing also the vector poten-
tial A to include phenomena in magnetic field), while ψ̂†(ξ1) and ψ̂(ξ1)
the creation and annihilation operator. For the following derivation it is
better to use the notation

ψ̂1(ξ1) ≡ ψ̂(ξ1) , ψ̂2(ξ1) ≡ ψ̂†(ξ1) , (3.2)

so that ψ̂†i (ξ1) = ψ̂3−i(ξ1) holds (i = 1, 2). Now we introduce the field
operators, in the Heisenberg representation, and their equation of motion

ψ̂i(1) ≡ ψ̂i(ξ1, τ1) ≡ eτ1Ĥ ψ̂1(ξ1)e−τ1Ĥ , (3.3)

∂ψ̂i(1)

∂τ1
= eτ1Ĥ [Ĥψ̂i(ξ1)− ψ̂i(ξ1)Ĥ]e−τ1Ĥ , (3.4)
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where τ1 → it1/~ is the imaginary time variable. Now inserting Eq. (3.1)
in Eq. (3.4) we can obtain

∂ψ̂i(1)

∂τ1
= (−1)i

[
Ĥikψ̂i(1) +

∫
dξ′1V(|r1 − r′1|)N̂ψ̂2(1′)ψ̂1(1′)ψ̂i(1)

]
,

(3.5)
where N̂ is the normal-ordering operator that places the creation opera-
tors to the left of the annihilation ones multiplying by σ = −1 for each
exchange.

Now it is arrived the moment to introduce the Matsubara Green func-
tions, defined as

Gij(1, 2) ≡ −θ(τ1 − τ2)
〈
ψ̂i(1)ψ̂3−j(2)

〉
+ θ(τ2 − τ1)

〈
ψ̂3−j(2)ψ̂i(1)

〉
=
〈
T̂τ ψ̂i(1)ψ̂3−j(2)

〉
≡ Gij(ξ1, ξ2; τ2 − τ1) , (3.6)

where θ(x) is a step function and 〈...〉 is the ensemble average that ac-
counts for all possible paths from (ξ1, τ1) to (ξ2, τ2). T̂τ is the time-
ordering operator that depends only on τ2 − τ1 for stationary problem,
and which rearranges field operators to its right in descending order of
τ , with the right sign. Diagonal elements Gii(1, 2) are composed of a
pair of creation and annihilation operators, which remain finite even for
normal states. In contrast, the off-diagonal elements are characteristic of
superconductivity, and are composed by two annihilation or two creation
operators, and therefore are called "anomalous" Green functions. It is
also sometimes convenient to explicitly separate them using the notation:

G11(1, 2) ≡ G(1, 2) , G22(1, 2) ≡ −G†(1, 2)

G12(1, 2) ≡ F (1, 2) , G21(1, 2) ≡ −F †(1, 2) . (3.7)

Regular Green functions hold information about the transport probabil-
ities of single particles. More precisely G(1, 2) (resp. G†(1, 2)) describes
the probability amplitude for a particle(hole) to move coherently from the
state ξ1 to ξ2 in time interval τ2 − τ1, affected by all kind of interactions
(note that here the time is imaginary, in fact they are called "Matsubara"
Green function, to be distinguished from the real-time ones). Therefore
once they are known, all the system single-particle properties are known
(like density of states and electrical current).

Differently the "anomalous" Green functions are related to Cooper
pairs and their pairing coherence, in fact F (1, 2) (resp. F †(1, 2)) can
be seen as the probability to "find", or better to annihilate, in ξ2 the
remaining electron(hole) in a Cooper pair, after a time interval τ2 − τ1

from the first electron(hole) annihilation in ξ1. Therefore it describes pair
correlations and it is related to the superconducting order parameter,
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which is a measure of the strength of the superconducting energy gap
(indeed it uses the same symbol).

∆(ξ1, ξ2) ≡ V(|r1 − r′1|)F (ξ1, ξ2; 0) . (3.8)

More precisely we can see in Eq. (3.8) how the SC order parameter is pro-
portional to the value of the anomalous Green function at coincident tem-
poral arguments, and so corresponding to the wave function of a Cooper
pair. This quantity is called "order parameter" because it will appear
naturally as effective order parameter, when Ginzburg-Landau expansion
close to Tc will be performed, linking finally the phenomenological theory
of the SC phase transition with microscopic physics [10].

After this digression on Green functions we are now in position to
derive Gor’kov equations. In order to do that we differentiate the Green
functions obtaining

∂Gij(1, 2)

∂τ1
=− δ(τ1 − τ2)

[〈
ψ̂i(1)ψ̂3−j(2)

〉
+
〈
ψ̂3−j(2)ψ̂i(1)

〉]
−
〈
T̂τ
∂ψ̂i(1)

∂τ1
ψ̂3−j(2)

〉
, (3.9)

where δ(x) is the Dirac delta. Now substituting Eq. (3.5) in Eq. (3.9)
and doing simplifications we get

∂Gij(1, 2)

∂τ1
=− δijδ(1, 2)− (−1)i

[
Ĥik
〈
T̂τ ψ̂i(1)ψ̂3−j(2)

〉
+

∫
dξ′1V(|r1 − r′1|)×

〈
T̂τ [N̂ψ̂2(1′)ψ̂1(1′)ψ̂i(1)]ψ̂3−j(2)

〉]
,

(3.10)

where the last term is a two-particle Green function. Now we apply
the first serious approximation, using Wick’s decomposition theorem and
transforming the ensemble average of four field operators (the two-particle
Green functions) in pair averages combinations. This is equivalent to
adopt a mean-field approach, indeed basically we are replacing some op-
erators (actually pair of operators) in the Hamiltonian by their mean
values, assuming that deviations from those are small. And exactly in
this process, the Cooper pairs condensation manifest itself analytically as
the appearance of anomalous Green functions, described in the previous
digression. Following the Wick’s theorem we can approximate (for i = 1
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and so without N̂)∫
dξ′1V(|r1 − r′1|)

〈
T̂τ ψ̂2(1′)ψ̂1(1′)ψ̂1(1)ψ̂3−j(2)

〉
≈
∫
dξ′1V(|r1 − r′1|)

[〈
ψ̂2(1′)ψ̂1(1′)

〉〈
T̂τ ψ̂1(1)ψ̂3−j(2)

〉
−
〈
ψ̂2(1′)ψ̂1(1)

〉〈
T̂τ ψ̂1(1′)ψ̂3−j(2)

〉
+
〈
ψ̂1(1′)ψ̂1(1)

〉〈
T̂τ ψ̂2(1′)ψ̂3−j(2)

〉]
=−

∫
dξ′1

[
UHF (ξ1, ξ

′
1)G1j(1

′, 2) + ∆(ξ1, ξ
′
1)G2j(1

′, 2)

]
. (3.11)

In the equation Eq. (3.11) we identify the Hartree-Fock potential (also
called generally self-energy) UHF (ξ1, ξ

′
1), that includes all single particle

interactions, and the pair potential ∆(ξ1, ξ
′
1), that express the energy

gained by forming pair bound states and it coincides with the order pa-
rameter in eq. Eq. (3.8). From this point we substitute equations like
Eq. (3.11) in Eq. (3.10), and we write equations for the Fourier coef-
ficients (τ → ωn) where ωn are the Matsubara frequencies (and their
cut-off frequency is Ωd, the Debye frequency). We can express then con-
cisely all the 4 equations (i, j = 1, 2) in 2 × 2 matrix notation (these
matrices live in the particle-hole space, called Nambu space, that is a
generalization of the phase space, involving multiple Hamiltonians). In
addition we can explicit the spin degree of freedom as matrices, so for
example F (ξ1, ξ2, ωn) ≡ Fα1α2(r1, r2, ωn) → F (r1, r2, ωn) where α =↑, ↓
and F (r1, r2, ωn) a 2× 2 matrix . In this way the final Gor’kov equation
will be in a 4× 4 Nambu⊗Spin space:[
(i~ωn − Ĥk)σ0 0

0 (i~ωn + Ĥ∗k)σ0

]
Ĝ(r1, r2;ωn)−

∫
d3r3 ÛBdG(r1, r3)Ĝ(r3, r2;ωn)

= δ̂(r1, r2) , (3.12)

where σ0 is the identity matrix and we have identified:

Ĝ(r1, r2;ωn) ≡
[
G(r1, r2;ωn) F (r1, r2;ωn)

−F ∗(r1, r2;ωn) −G∗(r1, r2;ωn)

]
, (3.13)

ÛBdG(r1, r2) ≡
[
UHF (r1, r2) ∆(r1, r2)

−∆∗(r1, r2) −U∗HF (r1, r2)

]
, (3.14)

δ̂(r1, r2) ≡
[
δ(r1, r2)σ0 0

0 δ(r1, r2)σ0

]
. (3.15)

The matrix ÛBdG(r1, r2) is the same appearing in the Bogoliubov-deGennes
eigenvalue equation, where eigenstates are expressed in quasiparticles
while here in Green functions. Therefore the two equations are exactly
the same, just two different formulation of a mean-field treatment of su-
perconductivity.
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3.2.2 Quasiclassical approximation and dirty limit

As they are, Gor’kov equations are not easier to solve with respect to
BdG equations, but they are a convenient starting point for introduc-
ing simplifications. The first one to be introduced is the quasiclassical
approximation, that reduce enormously the complexity of the equations.
Cooper pairs are non-local objects with size of the order of the coherence
length (for conventional SC) and therefore much larger than the Fermi
wavelength λF . However the Green functions contains also fast oscillation
on the scale of λF due to self-interference effects. These fast oscillations
can be neglected when one is interested solely in superconductivity, which
only feels the average of such oscillations. The main idea of the quasi-
classical approximation is that the relative coordinate r12 = r1 − r2 is
responsible for the fast oscillations in the Green functions, while the cen-
ter of mass R = (r1 + r2)/2 for the slow ones. Therefore to neglect the
irrelevant information coming from fast part, one could just average out
the relative coordinate. Quantitatively this approximation holds when
the energy gap is much smaller than the Fermi energy (|∆| � EF ).

A way to do this procedure is through the Wigner transform ap-
plied to the Green functions, i.e. the Fourier transform with respect their
relative coordinates. In this way we can separate the fast and slow
part of the spectrum, obtaining a relative momentum k that eventu-
ally will be integrated over all the possible energies (through the variable
ξk = ~2k2/2m− µ). In this way we can define the 4 quasiclassical Green
functions as

ĝ(R,kF ;ωn) ≡ i

π

∫
dξk

∫
d3r e−ik·r12Ĝ(r1, r2;ωn) , (3.16)

where only the dependence on the shape of the Fermi surface (FS) it
is left (kF variable) and the matrix ĝ has elements like g, f and their
complex conjugations. Applying the quasiclassical approximation to all
Gor’kov equation Eq. (3.12) we get the so called "Eilenberger" equation
[60]. In addition we do for now another strong approximation, placing
UHF → 0, so consider electrons independent (apart from the attractive
pair potential). In this case we don’t have spin dependence so we use
spin-independent green function (f → f). Now exploiting symmetries
between quasiclassical Green functions and the normalization condition
|g|2 + ff † = 1 we actually just need to solve the (1,2) element of the
Eilenberger equation, that can be written as:

~vFΠf + 2ωnf − 2∆g = 0 , (3.17)

where vF is the Fermi velocity and the kinetic operator is defined as
Π = ∇ + iqA where q = 2e/~ is the gauge coupling, related to Cooper
pair charge. Here we can see where the name quasiclassical came from, in
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fact the Eilenberger equation Eq. (3.17) describe a mixture of classical and
quantum mechanics. It makes use of quantum mechanical field operators
to find the probability amplitudes (the Green functions) of the motion of
classical particles with velocity vF (it is a transport-like equation). This
equation can be already used to describe very clean superconductors like
in [61, 62].

In presence of impurity the independent electron approximation can-
not be used, and we are forced to introduce an additional impurity self-
energy due to impurity scattering. To do that we assume a large amount
of random non-magnetic impurities in the Born approximation, which im-
plies that the scattering potential is small compared to the characteristic
atomic potential (therefore integration will be just on the FS). Therefore
we have to add to Eq. (3.17) a new term

nimp

∫
dAq

vq
|ukq|2[g(k)f(q)− f(k)g(q)] , (3.18)

where dAk
vk

means integration over the FS with the local density of states
1
vk
, ukq is the scattering amplitude, nimp the density of impurities, vk the

normal group velocity on the FS, the wave vectors k and q lie on the
FS, and the other dependencies of g(k, r, ωn) (resp. f) are not expressed
(here we change notation R→ r).

As we said the dependence on k of quasiclassical Green functions
makes them sensitive to the shape of the FS, and this greatly complicate
solving the non-linear Eilenberger equations, especially in case of com-
plicated FS or disconnected FS sheets, like in multiband SC material.
However the situation can be simplified in the dirty limit, for which the
impurity scattering within each FS sheet averages out the angular depen-
dences of green functions, making them independent of k. The dirty limit
can be applied when the elastic electron mean free path satisfies the con-
dition `e � ξ, where ξ is the smallest coherence length. That means that
a particle scatters a lot before loosing its phase coherence and this re-
sults in the loss of the initial momentum direction, so the Green function
associated will be essentially isotropic, with a first order linear correction:

f(k, r, ωn) ≈ f(r, ωn) + (vF δf(r, ωn)) , (3.19)

Inserting this expansion in the Eilenberger equations and averaging over
the momentum directions results in the much simpler Usadel equations
[63], in which all microscopic details are hidden in the electronic diffusiv-
ity Di for each FS sheet and the interband scattering rates γij . Usadel
equations are diffusive equations where we can express the electron dif-
fusivity as D = 1

3vF `e, with `e = vF τimp and τimp impurity scattering
relaxation time.
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3.3 Dirty two-band model

Now we shift our attention to the model under discussion in this thesis:
the dirty two-band model. As we said this model can describe part of the
physics of iron-based superconductors, and it is the simplest presenting
broken time-reversal symmetry. In this section we firstly introduce the
microscopic set of equations that stands as starting point for the model, in
continuation with the previous section. After that we derive and discuss
the Ginzburg-Landau free energy from them, as an expansion close to
critical temperature.

3.3.1 Usadel equations

For the case of a two-band superconductors, the Usadel equations where
computed in [64] and gives:

ωnfi =
Di

2

(
giΠ

2fi − fi∇2gi
)

+ ∆igi + γij(gifj − gjfi) , (3.20)

where i = 1, 2 is the band index. Here the quasi-classical propagators
fi and gi obey the normalization condition |fi|2 + g2

i = 1 in each band.
It should also be noted that the only impurity scattering terms γij that
survive after averaging over the momentum direction are the one related
to interband scattering (while intraband scattering is ineffective, in accor-
dance to Anderson’s theorem, seen in Section 3.1.2). The components of
the order parameter ∆j = |∆j |eiθj are determined by the self-consistency
equations

∆i(r) = 2πT

Nd∑
n=0

∑
j

λijfj(r, ωn), (3.21)

that come exactly from the definition in Eq. (3.8). Here, T is temperature,
Nd = Ωd/(2πT ) is the summation cut-off at Debye frequency Ωd and the
Matsubara frequencies are ωn = (2n+ 1)πT , with n ∈ Z.

The coupling matrix Λ̂ effectively describes the potential that brings
the formation of bound pairs so the interplay between spin fluctuations
(repulsive, negative term) and electron-phonon coupling (attractive, pos-
itive term). The diagonal elements λii describe the intraband pairing,
while the interband interaction is determined by the off-diagonal terms
λij (j 6= i). The interband coupling parameters and impurity scattering
rates satisfy the symmetry relation

N1λ12 = N2λ21 and γij = ΓNj , (3.22)

where N1,2 are the partial densities of states of the two bands and Γ the
impurity scattering strength defined as Γ = nimpπu

2, with nimp and u
impurities’ concentration and potential respectively.
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Finally the electric current can be computed as

J(r) = 2πeT
Nd∑
n=0

∑
j

Njv
(j)
F Im gj(r, ωn) . (3.23)

3.3.2 Ginzburg-Landau expansion

We focus now on the two-band dirty model near Tc, in this way we can
simplify the above Usadel equations in the Ginzburg-Landau ones. It
should be stressed that the multiband expansion relies on the existence
of multiple small parameters, and that is in contrast with the usual single-
band GL expansion that is justified by a single small parameter (1−T/Tc).
In multiband using a single parameter would be in general incorrect, in
fact we can have multiple broken symmetries or anyway even if the sym-
metry is one (like in this model when we are outside BTRS state) the
expansion with a single parameter has vanishingly small applicability
range [61]. In addition we should note the difference between the terms
multiband and multicomponent, the first adjective is related to the mi-
croscopics while the second one to the phenomenology. A multiband SC
is a material that can sustain superconductivity in different bands, and
so can have different gaps ∆i. While a multicomponent SC is a material
that has to be described by different “order parameters” in the GL equa-
tions, usually identified with ψi (“order parameter” are called like that
just for historical reason, since in case of multicomponent SC not every
ψi is always related to a broken symmetry). There are cases where the
order parameters can be a linear combinations of the gap functions and
furthermore we can have for example a 3 bands SC described effectively
by a 2 component GL free energy [62]. However in our case gap func-
tions and components will coincide, and to stress this point (as well the
microscopic origin) we will call also the order parameter ∆i.

To obtain the GL equations we solve equation Eq. (3.20) perturba-
tively with respect to the gap functions ∆i(r) by expanding the quasi-
classical Green functions as

fi =
∞∑
ν=0

f
(ν)
i , gi =

∞∑
ν=0

g
(ν)
i , (3.24)

where the νth order is with respect the power of ∆(r). Now substitut-
ing these expansions into Eq. (3.20), regarding differential operators as
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Π,∇ ∼ O(∆), and collecting same orders we get:

f
(ν)
i =

Di

2ωn

ν−3∑
k=0

(
g

(k)
i Π2f

(ν−k−2)
i − f (ν−k−2)

i ∇2g
(k)
i

)
+

∆ig
(ν−1)
i

ωn

+
ν−1∑
k=0

γij
ωn

(g
(k)
i f

(ν−k)
j − g(k)

j f
(ν−k)
i ) . (3.25)

From the self consistency Eq. (3.21) as well from the above equation we
can see that f (0)

i = 0. From the Green function normalization condition

g = sign(ωn)
√

1− |f |2

g(ν) = sign(ωn)

(
δν0 −

1

2

ν−1∑
k=0

f
(k)
i

†
f

(ν−k)
i

)
, (3.26)

where we can see how g(0) = sign(ωn) and g(1) = 0.
The interesting physics of the model can be studied including all the

terms up to the quartic ones in the final free energy, so in the expansion
we just need to collect terms up to ν = 3 order. Therefore inverting the
self-consistency equation Eq. (3.21)

2πT

Nd∑
n=0

3∑
ν=1

f
(ν)
i (ωn,∆1,∆2) = Λ̂−1

(
∆1

∆2

)
. (3.27)

These two equations coincide with the GL matter field equations δF
δ∆∗i

= 0.

To complete the GL equations we need the gauge field equation δF
δA = 0,

which can be found inserting in the Maxwell equation ∇×B = J the
electric current equation Eq. (3.23) with the appropriate expansion.

Finally the Ginzburg-Landau functional free energy linked with those
GL equations is:

F =
2∑
j=1

{kjj
2
|Π∆j |2 + ajj |∆j |2 +

bjj
2
|∆j |4

}
+
B2

2
(3.28a)

+
k12

2

(
(Π∆1)∗Π∆2 + (Π∆2)∗Π∆1

)
(3.28b)

+ 2
(
a12 + c11|∆1|2 + c22|∆2|2

)
|∆1||∆2| cos θ12 (3.28c)

+ (b12 + c12 cos 2θ12) |∆1|2|∆2|2 , (3.28d)

where θ12 = θ2−θ1 is the relative phase. The coefficients of the Ginzburg-
Landau functional aij , bij , cij and kij can be calculated from a given set
of input microscopic parameters λij , Di, T and Γ (appendix A).

The coefficients of the gradient terms depend on both electronic dif-
fusivity coefficient D1 and D2. Therefore the parameter space can be
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reduced by absorbing one in the gradient term. Without any loss of gen-
erality, we choose D1 to be the largest diffusivity coefficient (D1 > D2).
Thus, in the dimensionless units, the coefficients of the gradient term
depend only on the ratio of the diffusivities, or diffusivity imbalance
rd = D2/D1 < 1. In practice, the dimensionless variables are defined
by normalizing the gaps by Tc and the lengths by ξ0 =

√
D1/Tc. The

magnetic field is scaled by B0 = Tc
√

4πN1, where N1 is the density of
states in the first band, and the free energy by F0 = B2

0/4π. The elec-
tromagnetic coupling constant is q = 2πB0ξ

2
0/Φ0, where Φ0 is the flux

quantum. In these units, the London penetration length λL is given by
λ−2
L = q2(

∑
i kii∆

2
i0 + 2k12∆10∆20), where ∆i0 is the bulk value of the

dimensionless gap. From the new value of the gauge coupling constant q
we can see now how we can play with this parameter, to change the type
of our superconductor. For example a high q means a strong effective
coupling with the magnetic field, so the SC will be pushed toward type
I. This stronger coupling comes from the fact that inside q we find for
example the density of states at Fermi energy, and increasing it the SC
state is stronger, so it goes more toward type I.

3.3.3 Ginzburg-Landau free energy

Let us comment on the GL free energy, especially focusing on the in-
tercomponents terms, indeed the part regarding the independent terms
Eq. (3.28a) is exactly the same as in the U(1)×U(1) model already seen in
Chapter 2. The two components can be seen as coupled in three different
ways: electromagnetically coupled by the vector potential A through the
gauge derivative Π; via the mixed gradient term Eq. (3.28b); and finally
via the potential intercomponent terms Eq. (3.28c) and Eq. (3.28c). In
particular the last one is the one that break U(1) × U(1) symmetry in
the ground state, by enforcing a particular value for the phase difference
θ12, and therefore makes the components intertwine with a leftover U(1)
gauge symmetry related to the total phase.

Fundamentally important is the so called biquadratic Josephson terms
related to the coefficient c12, in fact being proportional to cos 2θ12 allows
to have non-trivial phase difference. In fact if we had only this term in the
GL free energy, when c12 > 0, to minimize the energy would be convenient
to have θ12 = ±π/2 . As we said in Section 3.1.3, this is equivalent to
break time-reversal symmetry, i.e. a discrete symmetry with 2 possible
physical ground states, therefore being a Z2 symmetry. This is obvious,
because θ12 can be π/2 or −π/2, and these are two physically distinct
states but with same energy, and we can pass from one to another just
complex conjugating (while θ12 = ±π or ±0 have just one ground state).
If now we introduce again the other intercomponents terms, we can see
how the bilinear Josephson term (proportional to cos θ12) prefers having
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θ12 = 0 or π but never something else. So for c12 > 0 there will be
a competition between the biquadratic Josephson and the bilinear one,
resulting anyway in a complex states with θ12 6= 0, π.

It is also worthy to compare the free energy Eq. (3.28) with the one
computed from the clean case with the Eilenberger equations [61]. In
that case the free energy was much simpler and apart from Eq. (3.28a),
we just had the bilinear Josephson term a12. This term is sufficient
to get a U(1) symmetry but not for producing BTRS states. The less
intricate free energy is due to the fact that different components are
coupled microscopically only through the interband coupling term in Λ̂,
i.e. through the pairing potential. However in the dirty case we have
also impurity scattering contributions from the new term Eq. (3.18), that
produces the last term in Eq. (3.20), proportional to γij . The impurity
scattering has an enhancing entangling effect for the components, that
manifests in the GL free energy as new intercomponent terms.

We investigate now the physical meaning of the various GL interband
terms, with the help of GL free energy microscopic origin. First of all we
rewrite the intercomponent potential part with complex conjugate fields:

V12 =
(
a12 + c11|∆1|2 + c22|∆2|2

) (
∆∗1∆2 + c.c.

)
(3.29a)

+ b12|∆1|2|∆2|2 +
c12

2

(
∆∗1

2∆2
2 + c.c.

)
. (3.29b)

As we said the term proportional to a12 is called Josephson coupling
(more specifically bilinear Josephson coupling) and the reason is that it
is the microscopical equivalent of the Josephson current that tunnels from
a superconductor to another through an interface. In fact if we interpret
∆∗1∆2 as creation and annihilation gap operators, the term indicates a
tunneling of a Cooper pair from a band to another one. The biquadratic
Josephson c12 is similar, but it is the contributions of two simultaneously
tunneling Cooper pairs. The b12 term is the density-density interaction,
associated with the interaction between the two gap densities and as
we have seen in Chapter 2, if b12 > 0 could lead to fractionalization in
vortex cores due to repulsion between the two components. Contributions
like c11 and c22 are still related to tunneling of single Cooper pairs but
modulated by densities in each band. Finally the mixed gradient term in
Eq. (3.28b), is still a tunneling but in momentum space, so a "quantum
of current" tunnels from a band to another one.

All this physical interpretations are very appealing, but we still have
to remember that the Ginzuburg-Landau equations regard classical com-
plex fields, that describe effectively and macroscopically the physics inside
the superconductor. Only indirectly, after seeing from where the GL can
be derived, we can attach some physical interpretation to the different
coupling terms.

46



3.4 Phase diagrams

Eventually, for a given set of input microscopic parameters, λij , Γ, rd,
and T close to Tc, we can reconstruct the coefficients (while q just controls
the coupling with A) and investigate the ground-state properties of the
GL theory by minimizing the free energy Eq. (3.28) with respect to |∆j |
and θ12 [65]. Being the parameter space very big to explore, let us do
some physical consideration.

First of all the diffusivity imbalance rd is ineffective in the ground
state property, in fact it is present only in the gradient terms and being
the ground state homogeneous, these are zero. Secondly, we focus on
repulsive interband coupling λij < 0, these indeed are quite generic in
iron-pnictide superconductors. Therefore the clean ground state (Γ = 0)
will always have a s± gaps structure, with a critical temperature of Tc0.
As we said s± states are not favoured by the impurity scattering, which
tends to average out the order parameter over the whole Fermi surface,
suppressing the critical temperature. However, provide that interband
pairing is weak, it can be transformed in a s++ state, and survive even
in the extreme dirty limit where Γ � Tc0 (i.e. Γ � 1, being Γ always
measured in unit of Tc0). In this case the critical temperature is Tc∞,
which reads as [31]:

ln(Tc0/Tc∞) = N1(w11 + w12) +N2(w22 + w21) , (3.30)

where ŵ = Λ̂−1 − λ−1Î and λ is the maximal eigenvalue of the coupling
matrix Λ̂. According to Eq. (3.30), one can see that the interband inter-
action should be sufficiently weak, in order to avoid a drastic suppression
of the critical temperature in the s++ state. To derive a criterion, note
that N1w11 + N2w22 > 0, so that the r.h.s. of the Eq. (3.30) is larger
than N1w12 +N2w21 = (N1|λ12|+N2|λ21|)/(λ11λ22). Therefore in order
to have a Tc∞ which is not much smaller than Tc0, we require the follow-
ing condition (N1|λ12|+N2|λ21|)/(λ11λ22) < 1 to be satisfied, as we can
see from Fig. (3.5).

The most important degree of freedom for the physics under discussion
is the relative phase θ12, therefore we will explore the ground states as
phase diagrams. Also, thanks to the previous consideration,we are now
in the position to construct physical meaningful phase diagrams, in the
plane of parameter Γ, T . For that purpose, we numerically minimize the
free energy Eq. (3.28) using a nonlinear conjugate gradient algorithm (see
Chapter 4 for details). The results in Fig. (3.6) demonstrate the role of
impurities on the ground state properties, for various representative cases.

Those diagrams illustrate the well understood fact that disorder may
induce a transition from s± to s++ in two-band superconductors [31–33],
as sketched in Fig. (3.4). The transition can happen in two qualitative dif-
ferent ways. Either via a crossover when one of the superconducting gap
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Figure 3.5: Critical temperature Tc(Γ) as function of the impurity scatter-
ing strength, for nearly degenerate bands with λ11 = 0.29 and λ22 = 0.3.
The different curves correspond to different repulsive interband coupling
λ12 = λ21. We can see how increasing this last term, the Tc is expo-
nentially suppress with Γ. The critical temperature manages to reach
a saturation value Tc∞ in the extreme dirty limit for values of λ12 that
respect the criteria stated above.

vanishes as a function of impurity concentration, or via an intermediate
complex s+ is state that break time-reversal symmetry with θ12 6= 0, π.

As can be easily note, the BTRS dome is very narrow (sometimes
infinitesimal as in panel (A)), thus is extremely unlikely to observe the
impurity-induced s + is states here. The BTRS region generally grows
wider with increasing interband scattering (panels (A)-(C)), but Tc is
simultaneously exponentially suppressed, according to eq. Eq. (3.30), so
that basically it does not allow a significantly size increase. In addition,
the transition lines go almost parallel to the T axis, and therefore can
be observed practically only by changing impurity concentration, making
it extremely challenging to detect. However, its presence can influence
properties in a wider region, so it is still important as we will seen.

The crossover region generically occurs for temperature close to Tc(Γ),
where being close to criticality is not so energy expensive to suppress
totally one gap to invert its sign, while at lower temperature the s + is
is more usual. In addition more the bands are degenerate and more
the BTRS region starts close to Tc (when they are exactly degenerate
λ11 = λ22, the transition s± → s+ happens always through a BTRS
domain, it is never convenient to suppress one the gaps having equal
weights).
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Figure 3.6: Phase diagrams of the Ginzburg-Landau free energy
Eq. (3.28). These show the values of the lowest-energy-state relative
phase θ12, as function of the interband scattering strength Γ and the
temperature T (note that now T is rescaled with respect to Tc(Γ)). The
different pictures corresponds to different values of the coupling matrix
Λ̂. Panels (A), (B), and (C) respectivelly correspond to nearly degener-
ate bands with λ11 = 0.29 and λ22 = 0.3 with weak λ12 = λ21 = −0.01,
intermediate λ12 = λ21 = −0.05 and strong λ12 = λ21 = −0.1 repulsive
interband pairing interaction. The last panel (D) describes the case of
intermediate band disparity λ11 = 0.25 and λ22 = 0.3 with intermediate
λ12 = λ21 = −0.05 repulsive interband pairing interaction. The solid
black line shows the zero of ∆1, that is the crossover between s± and s++

states. In panels (A), (B) and (C), the crossover line is attached to a
dome of time-reversal symmetry breaking s+ is state. In the panel (D),
the crossover line does not connect to an s+ is state.

It can be shown analytically that s + is dome can in general start
from two different temperatures, T ∗± ≥ T ∗++, depending if we are in the
s±/s+ is or s++/s+ is transition [33]. Therefore there are three possible
case: when T ∗± = T ∗++ the crossover line is attached to the summit of the
BTRS dome as in panels (A) and (B); when T ∗± > T ∗++ the dome peak is
detached as in panel (C); lastly there are cases, when there is important
band disparity, where T ∗++ = 0 so the dome is totally separated from the
crossover line and is totally immerse in s± state [33].

The important difference between the crossover and the s + is tran-
sition, is that the former occurs without additional symmetry breaking
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(actually is not even a thermodynamical transition) while the latter spon-
taneously breaks the time-reversal symmetry, and both s±/s + is and
s++/s + is transitions lines are of the second order, at the mean-field
level [33]. The existence of the second order phase transition on the phase
diagram dictates that there is softening of one of the normal modes near
that transition. This softening has a number of possible physical conse-
quences. In the next section we consider normal modes and fluctuations
in this system.

3.5 Coherence lengths

A perturbative analysis around classical solutions like the ground state,
or the normal state provides important informations such as the length
scales of the theory, massless modes or second critical field. In this section
we limit ourselves to the analysis of coherence lengths and normal modes.
The perturbative analysis in this model was performed by Julien Garaud,
Mihail Silaev and Egor Babaev in the upcoming article.

As we said in Chapter 2, the length-scales that characterize matter
fields are called coherence lengths and they are associated to the exponent
with which these fields recover asymptotically from a small perturbation
(see e.g. [2, 66, 67]). Note that for the simplest single-component s-
wave model the coherence length is often indirectly defined, for example
through overall vortex core size or slope of the order parameter near
the center of the vortex core. While in this case the results are somehow
consistent, in general they are not, especially in multi-component systems,
due to the intercomponent interactions.

Another consequence of intercomponent interactions, that was not
present in the U(1) × U(1) case, is that one cannot a priori expect that
independent coherence lengths are associated with single fields ∆i. In-
stead one can expect to find linear combinations of the complex fields that
recover from a perturbation with different exponential laws, and therefore
one ∆i can be characterized by different coherence lengths, with differ-
ent weights. In general, in multi-component GL models different from
U(1) × U(1) , determination of the various coherence lengths cannot be
done analytically but has to be carried out numerically.

To determine the coherence lengths one thus consider small pertur-
bations in all relevant field degrees of freedom around the ground state
solution and linearize the theory around it. The eigenvalue spectrum of
the infinitesimal perturbation operator are the (squared) masses of the
normal modes, and the coherence lengths are the inverse masses. The
model we consider here has four degrees of freedom associated with the
matter fields: two moduli and two phases of the complex fields. If one
neglect coupling to vector potential (this is possible because in linear the-
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ory the vector potential decouples from the matter fields) then the sum
of the phases forms a mode with zero mass (Goldstone mode), since it
is associated with U(1) gauge symmetry. When coupling to the vector
potential is included this mode becomes massive via London-Anderson-
Higgs mechanism. The inverse of that mass is the London’s magnetic
field penetration length, as already discussed in Chapter 2.

For the clean two-band s++ material, i.e. when the only intercompo-
nent term is the bilinear Josephson one, the phase difference constitute a
massive mode that is called Leggett’s mode [17]. The length-scale associ-
ated with this mode (i.e. length scale at which the phase difference recov-
ers from a perturbation) is also called Josephson length. Being this mode
a pure phase mode, a phase perturbation does not affect the densities di-
rectly, but it is very important in the interaction between vortices, with
the possibility of phase string connecting fractional vortices and bound-
ing them together asymptotically linearly instead of logarithmically as in
U(1)×U(1).

However it was discussed in clean three-band superconductors, that
when time reversal symmetry is broken there is no Leggett-type (phase-
only) mode, and instead the phase difference mode is hybridized with the
density (Higgs) modes [36, 37, 40, 41]. In our case we find the same for
the BTRS region, but in addition also outside this region there is some
mixing for the softest mode, as we will see.

The perturbation theory is constructed as follows. The fields are ex-
panded in series of a small parameter ε: ∆i =

∑
a ε

a∆
(a)
i and collected

order by order in the functional. The zero-th order is the original func-
tional, while the first order is identically zero provided the leading order
in the series expansion satisfies the equations of motion. Therefore the
physically relevant correction appear at the order ε2 of the expanded
Ginzburg-Landau functional. Choosing the following expansion in small
perturbations around the ground state

|∆i| = Ui + εδ|∆i| , θ12 = θ̄ + εδθ12 . (3.31)

where Ui and θ̄ denote the ground state while δ|∆i| and δθ12, stand for the
perturbations. ε is the arbitrarily small parameter of the series expansion.
Collecting the perturbations in a single vector Υ = (δ|∆1|, δ|∆2|, δθ12)T ,
the term which is second order in ε reads as:

1

2
ΥT
(
K∇2 +M2

)
Υ , (3.32)

where K is the matrix containing kij elements, and M is the so called
mass matrix. Now deriving with respect to vector Υ and setting to zero,
the GL equations read as:

∇2Υ = K−1M2Υ = M̃2Υ , (3.33)
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where M̃ is the mass matrix in a new basis, called rotated basis. In this
basis the free energy Eq. (3.28) is without the mixed gradient and easier
to deal with for coherence lengths computation, even if the potential is
more complicated (actually to benefit from this transformation you have
to perform it before the application of the perturbation operator). The
advantage in this basis is that now the perturbation operator Eq. (3.32)
has off-diagonal terms coupling various excitations only in the mass ma-
trix.

Finally, the length scales are given by finding the eigenvalues m2
a

of the (symmetric) mass matrix M̃2, that are the (squared) masses of
the elementary excitations. The corresponding coherence lengths are the
inverse (eigen)masses: ξa = 1/

√
m2
a (and a = I, II, III). Similarly, the

London’s penetration depth of the magnetic field is the inverse mass of
the gauge field: λ = 1/mA. The mass of the gauge field is similar to
the U(1)×U(1) case due to decoupling in linear theory, i.e. m2

A = (q%)2

where % =
∑

ij kij∆i∆
∗
j (here we account for mixed gradient terms),

which implies that London’s penetration depth reads as λ = 1/q%.
The theory thus comprises four elementary length scales associated

with different elementary perturbations of the ground state. The length
scale associated with the gauge field excitations is the penetration depth
λ, and the three remaining quantities are the coherence lengths ξa (with
a = I, II, III). The eigenstates associate with the coherence lengths
are different linear combinations of the complex fields moduli and phase
differences. Being mixed modes, if one perturbs just one gap’s modulus,
several modes will be excited since it enters several linear combinations
corresponding to different normal modes. Therefore there will, in general
be several length scales in the recover of gap modules from perturbation.

The general behaviour of these characteristic length is the following.
Both the largest coherence length ξI and the penetration depth λ natu-
rally diverge at Tc, thus signaling the restoration of the U(1) symmetry
via a second order phase transition. Additionally the model features
additional phase transition associated with the time-reversal symmetry
breaking: from s++/s± to the s+ is state there is a breaking of Z2 sym-
metry. Being this a phase transition of second order, as demonstrated in
Ref. [65], then the largest coherence length ξI will be divergent at that
line as well, while here λ stays finite.

The second largest coherence length ξII is always finite (except at a
single point of the phase diagram that corresponds to the summit of the
s+ is dome). The shortest length scale ξIII is always finite. In addition,
all length scales are finite at the crossover lines where there is no phase
transition but just one of the gap vanishing.

In order to analyze better the different normal modes, it is convenient
to introduce the perturbations associated to the total (δ|∆+|) and relative
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Figure 3.7: Behavior of the coherence lengths and corresponding eigen-
modes of a dirty two-band superconductor with nearly degenerate bands
and intermediate repulsive interband pairing interaction (corresponding
to panel (B) of diagram Fig. (3.6)). This shows the length scales and
the corresponding eigenmodes Υ(i) as functions of the temperature for a
given interband scattering Γ = 0.7275, thus corresponding to a vertical
scan in Fig. 3.6(B). There are clearly four different regimes corresponding
to different phases. [68]

(δ|∆−|) density variations, defined as δ|∆±| = δ|∆1| ± δ|∆2|. Fig. (3.7)
shows the length scales and the corresponding eigenmodes as functions
of the temperature for a given interband scattering Γ = 0.7275. This
corresponds to a vertical scan in the panel (B) of diagram Fig. (3.6),
going across s±, s+ is and s++ phase.

That vertical scan, covers four qualitatively different regimes. At low
temperature, the system is in the s++ state. There, the mode charac-
terized by the largest coherence length mixes relative phase and relative
densities and is decoupled from the total density variations. This phe-
nomena is produced by impurity-scattering and is in contrast to clean
two-band case where phase difference is decoupled from densities at lin-
ear level, producing a Leggett mode [17].

At a higher temperature, the system goes to the time-reversal sym-
metry breaking s+ is state. This is a second order phase transition that
is signaled by the divergence of the largest coherence scale. In the s+ is
state, all modes mix density and relative phase. Further increasing the
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Fig. (3.7). Interband scattering is Γ = 0.7275, gauge coupling constant
is q = 0.8 and equal diffusivities (rd = 1). The core size is computed as
full width at half maximum (FWHM) of the densities profiles.

temperature drives the system through another second order phase tran-
sition to the s± phase where the mode with the lightest mass again mixes
relative phase and relative densities but is decoupled from the total den-
sity variations. Interestingly, upon further increase of the temperature
within the s± phase, there is a sharp crossover at which the character of
lightest mode changes. It becomes a pure density mode from which the
relative phase mode decouples. This mode is associated with the coher-
ence length that diverges at the superconducting phase transitions. So
to summarize we can see how outside the BTRS region, there are always
two pure density modes, and one hybridized with phase difference, while
inside BTRS all the three modes have mixed contributions.

We can hope somehow to see the effect of the coherence lengths be-
havior analyzing the vortex cores in the two different components, as in
Fig. (3.8). This plot shows the overall vortex core size evolution as the
system is cooled down from Tc. In general the size of a vortex solution in
a nonlinear theory should not be expected to be determined by coherence
lengths, which are coming from a linear approximation valid only asymp-
totically. Nonetheless, in this particular model the general behavior of
the two cores sizes as a function of temperature resembles the coherence
lengths related to the pure density modes. In particular it has an overall
smooth increasing trend from s++ to s± region, and then a divergence
close to Tc when a pure density mode becomes the lightest one and the
coherence length associated with it diverges. In addition it can be noted
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how in s+ is there are maxima, related to the changing in modes mixing
that happens in this region. Finally, the densities of the two components
have different relative contributions from the pure density modes and
that explains their quantitative difference.

Complicated variations of the coherence lengths in dirty case, as well
as the existence of diverging coherence lengths, is a consequence of com-
peting s± and s++ and the s + is state. They should have physical
manifestations in various responses that involve spatial or dynamical vari-
ations of the fields. The mixed modes dictate nontrivial thermoelectric
properties [42, 43] and their softening manifests itself in anomalies of flux
flow viscosity [44]. Likewise by the same mechanism the mode mixing
produces nontrivial magnetic signatures of impurities [45, 46]. Existence
of mixed soft modes also alter the magnetic response. In the Chapter 5
some manifestations of this exotic physics will be presented, but before
that, the numerical methods will be introduced.
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Chapter 4

Numerical methods

The numerical simulations in this thesis are based on Finite Element
Method (FEM) and NonLinear Conjugate Gradient method (NLCG).
This chapter will introduce shortly these two methods, without going
in depth, since they are all well-known methods used in all branches of
physics and engineering. In the last section all the particular implemen-
tation choices will be described.

The actual numerical computations were performed using the library
FreeFem++ [69, 70], which is a partial differential equation solver, im-
plementing FEM in C++ language. In order to have a performing code
and to exploit external computer clusters, the code has been parallelized
with the Message Passing Interface (MPI) standard, through the Open
MPI library [71]. Regarding the final plots, they are all produced with
gnuplot [72], a command-line program that can generate two- and three-
dimensional plots.

4.1 Finite Element Method

The finite element method (FEM) is a numerical method for solving
boundary value problems for partial differential equations on general do-
mains [73, 74]. It allows to pass from analytical to algebraic system of
equations. To do that the domain has to be subdivided into discrete parts
through a tessellation, obtaining a mesh. On each of these discrete parts,
piece-wise functions are defined (the finite elements), the number of which
depending on the order of the function. Together they will approximate
the analytical function on the total domain, yielding a coefficient for each
finite element, that can be stored in a vector transforming the system into
an algebraic one.

To better see how this works let us take as toy problem the solution
of the Poisson equation on a general domain Ω. The problem is than to
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find u belonging to a general Hilbert space V , satisfying{
−∇2u = f Ω

∂nu = 0 ∂Ω ,
(4.1)

where f is a source term, ∂Ω the boundary of our domain and ∂nu = 0 the
boundary condition, in particular we choose an homogeneous Neumann
boundary condition, indeed this kind of condition will be relevant for
GL implementation. To implement finite element, two steps are needed:
rephrasing the original problem in the weak formulation, and then apply-
ing the Galerkin projection.

The weak formulation is an alternative formulation of Eq. (4.1) but
with respect to weaker solutions, therefore solutions with less “regularity”.
So the space of the solutions in the weak formulation will be larger with
respect to the strong formulation Eq. (4.1), in particular in this case while
the strong form requires that the solution u is at least continuous in the
second order derivative, in the weaker form we just need the solution to
be L2(Ω) integrable with respect its first derivative, i.e. belonging to the
first Sobolev space.

Practically the transformation is done by multiplying Eq. (4.1) by
a test function v, belonging to the same solutions space of u, and then
integrating as

−
∫

Ω
dr v∇2u = −

∮
∂Ω
dS v ∂nu+

∫
Ω
dr∇u∇v =

∫
Ω
dr fv , (4.2)

where we have used the first Green identity in the first equality. Now it
is the moment to use the Neumann boundary condition, so the boundary
integral on ∂Ω will be zero. So we are left with the weak formulation∫

Ω
dr∇u∇v =

∫
Ω
dr fv → a(u, v) = F (v) , (4.3)

where we have introduced the bilinear form a(u, v) and the linear func-
tional F (v) to represent the integral operations. We can see how now we
only need the solution to have integrable gradient. A fundamental prop-
erty of weak formulation is that the existence and uniqueness of a solution
can be formally demonstrated by the Lax-Milgram theorem. This the-
orem requires the bilinear form a(u, v) to be continuous (i.e. bounded)
and coercive (i.e. positive constrained), and the functional F (v) to be
continuous, all conditions that are easily met in physics.

Once we know that the solution exists, the main obstacle to solve
the equation is that u, being defined on an Hilbert space V , has infinite
dimensions. Here the second step toward finite element comes into play,
the so called Galerkin method. The idea is to project the infinite Hilbert
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space V onto a subspace Vk with dimension k, so that increasing the
finite dimensions we should get a better approximation. Choosing a base
φ1, φ2, ..., φk for Vk we can then express the solution as

u =
k∑
i

ui φi . (4.4)

Now we are in position to pass from the analytical equation Eq. (4.3) to
an algebraic one:

a

(
k∑
i

uiφi , φj

)
= F (φj) ∀j = 1, ..., k , (4.5)

where Eq. (4.5) is the so called Galerkin problem, and being a(u, v) bi-
linear can be transformed in the matrix form,

Au = f , (4.6)

where Aij = a (φi, φj) is the stiffness matrix, fj = F (φj) is the source
vector, ui the solution vector. Now that the problem is in algebraic form
can be easily solve with standard numerical procedure.

In GL case the difference is that we have to deal with nonlinear equa-
tions, so we cannot reduce the system to an easy matrix form. However
in the case a(u, v) is also symmetric, we can exploit another result of
the Lax-Milgram theorem, which states that the solution of Eq. (4.3)
corresponds to the function v that minimizes the “energy” functional

E(u, v) =
1

2
a(u, v)− F (v) , (4.7)

which in GL equations corresponds to the free energy functional. There-
fore now discretizing Eq. (4.7) with Garlekin method, the problem reduces
to find the minimum of E(u, v) in a k dimensional space.

Specifically in GL case, taking the simple U(1)×U(1), to find the min-
imum of its free energy Eq. (2.1), we need to set the functional differential
(or variational form) to zero

DF [ψ1, ψ2,A] =

∫
Ω
dr

∑
j

(
δF
δψj
· δψj

)
+
δF
δA
· δA

 = 0 , (4.8)

where the functional derivatives are the terms of the GL equations Eq. (2.3)
and the small variations can be considered as the test function v in
Eq. (4.2), in each degree of freedom. Now to decrease the regularity
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we apply similar identities as before, obtaining the possibility to set the
boundary condition with the terms∮

∂Ω
dS δψj (Πψj) · n = 0 (4.9a)∮

∂Ω
dS (δA×∇×A) · n =

∮
∂Ω
dS (δA×Bext) · n , (4.9b)

where both are conditions on the derivatives, so generalized Neumann
conditions. The first condition Eq. (4.9a) physically implies that no cur-
rents are flowing through the boundary (to understand that check the
last current formulation in Eq. (2.4)), and with the second Eq. (4.9b) we
can impose an external magnetic field when needed.

As previously said the weak form cannot be reduced to a matrix for-
mulation since the equations are not linear, therefore is impossible to
solve exactly the equation. However treating the test functions as small
variations, so having defined Eq. (4.8) as a differential, allows us to move
in the free energy space, looking for the minima in an iterative way. To
do that we will use the nonlinear conjugate gradient method.

4.2 Nonlinear Conjugate Gradient method

Nonlinear conjugate gradient (NLCG) is an iterative unconstrained op-
timization method for nonlinear problem, exploiting only the gradient
information. A complete reference for this method can be find in Ref.
[75] while a faster and more intuitive understanding can be gained by
reading Ref. [76].

NLCG derives from the simpler steepest descent method, or simply
gradient method, which similarly exploits the knowledge of the gradient
of a function to find its minima. The foundation of the steepest descent
method can be analyzed from the simplest example, when the energy to
minimize takes a quadratic form as

E(u) =
1

2
uTAu− uTf , (4.10)

which is the matrix parallel of Eq. (4.7). If now we suppose that the
matrix A is symmetric positive definite, than Eq. (4.10) has a paraboloid
shape in the space of solutions, so the presence of a single minimum is
assured. The gradient of this quadratic form is

∇E(u) = Au− f . (4.11)

Obviously if we move oppositely to the gradient we are decreasing the free
energy the most quickly. We start then from an initial guess u(0) and we
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move with a step u(1) = u(0) − α(0)∇E(u(0)). We could choose a static
α but then the convergence will be very slow in case α is too small or we
are not assured that the energy will decrease if α is too big. The better
thing is therefore to choose dynamically α(n) every step. The procedure of
choosing the best α(n) is called line search, and corresponds to minimize
E(u) along the search line dn, where in this case dn = −∇E(u). With
a quadratic form this choice is simple:

α(n) =
||∇E(u(n))||2

∇E(u(n))T A∇E(u(n))
, (4.12)

where the numerator is the norm squared. It is easy to see how this
constant will always assure that we are decreasing our energy, at least at
the second order, in fact expanding with Taylor with respect to the step
−α(n)∇E(u(n)) reads as

E(u(n+1)) = E(u(n))− α(n)||∇E(u(n))||2 +
1

2
(α(n))2∇E(u(n))T A∇E(u(n))

= E(u(n))− 1

2

||∇E(u(n))||2
∇E(u(n))T A∇E(u(n))

< E(u(n)) , (4.13)

where the Hessian matrix of E(u) coincide with A, in the last passage we
substitute α(n) and finally we used the positive definite hypothesis. This
choice geometrically coincides with the fact that the new gradient will
be orthogonal to the previous search direction (but not with respect to
all the directions searched before) Now we can build the algorithm (after
initial guess u(0)):

1. Compute the search direction dn = −∇E(u(n))

2. Compute the step size constant α(n)

3. Move to the new point u(n+1) = u(n) − α(n)∇E(u(n))

4. Check the stopping criterion, if not satisfied iterate

If the stopping criterion is met the algorithm stops and the last point
is the closest to the minimum. Usually as stopping criterion one uses
the ratio between the magnitude of the new gradient and the initial one,
comparing it with a tolerance.

The problem of the steepest descent method is that, in more compli-
cate systems, it has a really slow convergence due to the fact that it often
found itself taking steps in the same direction as the previous ones. The
idea is therefore to improve the algorithm by assuring that every search
direction dn is “conjugated” with all the previous ones, i.e. A-orthogonal
satisfying the relation

dTnAdi = 0 ∀i = 0, 1..., n− 1 . (4.14)

61



In this way in a linear system we are sure that we need at maximum
as many steps as the dimensions of the space of solutions to reach the
minimum. To satisfy Eq. (4.14) the conjugate Gram-Schmidt process is
exploited, so we construct every steps as

dn = βndn−1 −∇E(u(n))

where βn =
∇E(u(n))T∇E(u(n))

∇E(u(n−1))T∇E(u(n−1))
. (4.15)

Being the new search direction different from the pure gradient the new
optimal step size constant will be

α(n) =
||∇E(u(n))||2
dTn Adn

, (4.16)

The final algorithm will be therefore (after initial guess u(0) and the first
pure steepest descent step):

1. Compute the search direction dn = βndn−1 −∇E(u(n))

2. Compute the step size constant α(n)

3. Move to the new point u(n+1) = u(n) + α(n)dn

4. Check the stopping criterion, if not satisfied iterate

In case we have nonlinear system obviously the matrix A cannot be de-
fined globally, but it can be defined locally as a linear approximation,
therefore the concept of conjugacy Eq. (4.14) is not completely lost. The
main changes in the algorithm are two. First there is not an optimal
Gram-Schmidt constant βn, but there are several possibilities, each one
with different properties and complexity, and find new performing con-
stants is still an ongoing research [77, 78]. Two of the classical and most
used choices, when high performances are not mandatory (defining the
gradient of the nonlinear energy in un as gn):

βFRn =
gTn gn

gTn−1gn−1
βPRn =

gTn (gn − gn−1)

gTn−1gn−1
, (4.17)

where the first one is the Fletcher-Reeves formula (equal to Eq. (4.15)),
while the second one the Polak-Ribière formula.

The second difference is about the computation of α(n), in fact now
A is not defined. Two possible solutions are based on minimization of
the nonlinear function on the search line. The Newton-Raphson method
consists in calculating the Hessian matrix in un and uses that as A matrix
(in fact we have seen that they coincide if we have a quadratic form), while
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the Secant method is similar but avoids the computation of the Hessian
by approximating it with gradients in different positions.

Two important considerations are in order to utilize the nonlinear
conjugate gradient at the best. The first one is the importance of the
initial guess in nonlinear system. In fact having these problems more
local minima, the solution will tend to the closer one with this method.
Second we have seen how in linear systems the solution is found after at
maximum the number of steps equal to the space dimensions, when the
conjugacy is complete. In case of a nonlinear system this obviously will
not happen, but it is still true that after that number of conjugated steps,
the conjugacy will be “complete” and so there is no reason to keep going,
and it is better to restart with a clean steepest descent step. Additionally
we have seen how actually the concept of conjugacy is only locally defined
(the Hessian changes in every point of the system), therefore if the Hessian
changes a lot the conjugacy will be lost even faster, and this imply a clean
restart well before the number of dimensions.

4.3 Numerical implementation

In this thesis we mostly used the dimensionless Ginzburg-Landau the-
ory in Eq. (3.28), simulating it in two-dimensions, in the xy-plane, while
neglecting the contribution coming from the z direction. The solutions
therefore describe a purely two dimensional problem or a bulk configu-
ration assuming translational invariance. The actual numerical investi-
gation was performed on a bounded domain Ω ⊂ R2, which can assume
different shapes, in general rectangular or circular.

In this thesis two usual configuration are studied: the one with in-
trinsic topological defects and the other with topological defects driven
naturally by external field. The first configuration is useful to study
defects without any other contribution. Having topological defects an
energy higher than the ground state, the initial guess is fundamental to
create them, without external field. In general, vortices are generated by
enforcing a winding in the starting condition, and due to the topology
protection the components will not be able to unwind toward the ground
state. Therefore the minimization procedure will bring the system to the
local minimum, related to that exact given number of vortex charges.

The only possibility to decrease the charge numbers is by moving
the vortex across the boundary. Indeed, as we said in Eq. (4.9a), the
boundary condition where always chosen such that n ·Π∆j = 0, where
n is the normal vector to the boundary ∂Ω. Physically this implies that
no currents is flowing through the boundary. This boundary condition
allows a topological defect to escape from the domain, since without
external field, there is no Meissner current to prevent that. To avoid
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this situation the grid had to be chosen large enough with respect to
the size of the topological defects, such that the attractive interaction
with the boundaries is negligible. The problem of this choice is that,
needing large numerical grids, leads the computation to be demanding.
The advantage, however, is the certainty that the obtained solutions are
not influenced at all by the boundaries. Most of the plots are indeed
close-up views of the real domain Ω.

Regarding the second type of configuration, the one with external
field, we have two usual kind of experiments. In both the external field is
imposed through the boundary condition Eq. (4.9b). One experiment is
the magnetization process, where the external magnetic field is increased
slowly, such that the superconductor from the initial Meissner state goes
through all the different states up to the normal state when Hext >Hc2.
The other experiment is the field-cooling, where the temperature of the
system is lowered while keeping the external magnetic field constant.

For the actual numerical implementation, as we said, the variational
problem of minimizing the free energy is defined using finite element for-
mulation provided by the FreeFem++ library. The tessellation of the
domain Ω is done via a homogeneous triangulation, based on Delaunay-
Voronoi algorithm. Functions are then decomposed over a continuous
piecewise quadratic basis on each triangle. This means that on a given
triangle, each of the six physical degrees of freedom of the problem
(Re ∆1, Im ∆1,Re ∆2, Im ∆2, Ax, Ay) is parametrized by the six coeffi-
cients of the second-order interpolating polynomials (there are six in-
dependent coefficients for a second-order polynomial in two dimension).
The second-order Lagrange interpolation defines the six coefficients at
vertices and midedges, for a total of 6 × 6 = 36 numerical degrees of
freedom per triangle.

The overall accuracy is determined by the number of triangles that
constitute the mesh, as well as the order of the interpolation method and
the order of the quadrature formula for computing the integrals in each
triangle. Generally the number of triangles used is around 3 ∼ 6× 104.

A nonlinear conjugate gradient algorithm is used to solve the varia-
tional nonlinear problem (i.e. to find the minima of F). The algorithm
is iterated until the relative variation of the norm of the functional F
“gradient” with respect to all degrees of freedom in Eq. (4.8) is less than
10−6 - 10−8, and anyway one verifies always that the final configuration is
not changing. Due to loss of conjugacy, the nonlinear conjugate gradient
algorithm is restarted every 100 iterations, to better perform.
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For studying the intrinsic properties of the topological defects the
initial guess is very important, and was generally constructed as follows:

∆j = |∆j |eiθj

|∆j |(x, y) = Uj

Nj∏
k=1

√
1

2

(
1 + tanh

(
4

ξj
(Rj,k(x, y)− ξj)

))

θj(x, y) =
1

2
φjj′ +

Nj∑
k=1

arctan

(
y − yj,k
x− xj,k

)
Rj,k(x, y) =

√
(x− xj,k)2 + (y − yj,k)2 , (4.18)

where (N1, N2) is the total topological charge, i.e. the number of fractional
vortices in each condensates, and (xj,k, yj,k) the position of the k’s vortex
in the condensate ∆j . The ground state module in each condensate is
Uj , and is calculated by minimizing the potential for the specific GL
parameters. The initial phase difference φjj′ between the two condensates
can be used to initialized a domain walls when we have a BTRS state.
Also ξj parametrizes the core sizes, and they can be derived from the
coherence lengths, even if not necessary, in fact the core size will adjust
immediately after the first minimization iteration.

Finally, the starting configuration for the vector potential A is deter-
mined by solving the Ampère’s law equation ∇ × B = J , where J is
the supercurrent given by the initial guess winding. Being the equation
linear in A, this operation is directly solved with a matrix system similar
to the one obtained in Eq. (4.6) starting from the Poisson equation. In
this way we have a perfect initial guess forA given the condensates guess,
so a faster convergence will be reached in the NLCG. Once the starting
configuration is constructed, we can proceed by relaxing all degrees of
freedom simultaneously.
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Chapter 5

Results

Two-band superconductors with interband scattering have a complicated
coherence lengths behaviour, arising from terms in the Ginzburg-Landau
free energy (3.28) that compete with each other. In Chapter 3 it has
been also stressed how the coherence lengths can diverge in the presence
of s+ is, due to a second order phase transition connected to the break-
ing of the discrete Z2 symmetry. Therefore the multiband nature of this
model plus the presence of time-reversal broken symmetry (BTRS) can
lead to characteristic phenomena, that can signal the presence of this par-
ticular physics in real materials. In this chapter we present some of these
peculiar responses, starting with the presence of type-1.5 superconduc-
tivity and a possible way to observe it experimentally. The appearance
of Skyrmionic charges will be also discussed, in connection with the clus-
tering effect of type-1.5 and domain wall defects. Next we address BTRS
states signatures, like the presence of spontaneous magnetic fields as re-
sponse of domain walls or impurity fluctuations. Finally we will see how
the competition between s± and s++ at the crossover can be signaled
by the presence of new moat-core vortex solutions, characterized by the
coexistence of the two s-wave phases.

5.1 Type-1.5 superconductivity

5.1.1 Clustering effect

The first phenomena that we will address is the clustering effect due
to the divergence of the softest coherence length ξI during the s + is
transition. Indeed, from Fig. (3.7) it immediately follows that near the
s+is phase transition the system necessarily falls into a regime where one
of the coherence lengths is the largest length scale of the system. Since
the other length scales, including the magnetic field penetration length,
are finite at this transition, there are only two possible hierarchies of the
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Figure 5.1: Phase diagram corresponding to a coupling matrix Λ̂ with
nearly degenerate bands (λ11 = 0.29 and λ22 = 0.3) and intermediate
pairing interaction (λ12 = λ21 = −0.05), like panel (B) in Fig. (3.6). It
shows the ground state value of the relative phases θ12 for different tem-
peratures and impurity scattering Γ. The yellow region correspond to the
BTRS region and the pink arrow corresponds to the cooling experiment.

length scales near that transition: (i) all coherence lengths are larger than
λ (which is a type-1 behavior), (ii) ξI is larger than λ but λ is larger than
some of the other coherence lengths.

As said in Chapter 2, a regime where some coherence lengths are
smaller and some are larger than the magnetic field penetration length
... < ξi < λ < ξj < ... was earlier termed “type-1.5". When this hierarchy
of the length scales holds one expects vortex solutions with long-range
attractive, short-range repulsive interaction forces [15, 36, 79]. The range
and strength of attractive intervortex interactions depends on the largest
coherence length, therefore vortex clusters size should also be temperature
dependent, following ξI behaviour.

To analyze this effect, we construct isolated vortex solutions, by im-
posing the same windings to both components ∆1 and ∆2, and minimiz-
ing the energy. The minimization procedure leads, after the convergence
of the algorithm, to a vortex configuration that carries the number of
flux quanta that is specified by the initial phase winding. The evolution
of these bound states of vortices is then studied, while decreasing the
temperature. This is equivalent of scanning the phase diagram like in
Fig. (5.1).

In Fig. (5.2) we can see a cluster of 20 vortices at four different tem-
peratures, corresponding to different regions in the phase diagram in
Fig. (5.1). We start at temperature close to TC completely in s± re-
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Figure 5.2: Evolution of bound state of 20 vortices during a cooling ex-
periment like in Fig. (5.1). The interband scattering is Γ = 0.7275, the
gauge coupling constant is q = 0.8 and diffusivities are equal (rd = 1).
The different lines respectively display the magnetic field B, majority
(∆2) and minority (∆1) gap components, and lastly the relative phase
θ12, that also signals the different ground state s-wave regions.

gion. Here both the components are clearly in type II region, and the
vortices repel each other, theoretically up to infinite separation. Practi-
cally the numerical approximation limits this behaviour, in fact vortices
do not feel each other after a critical separation. In real world pinning
centers and general lattice potentials inside the material influence the
intervortex distance in type II superconductors.

Decreasing the temperature the weaker component ∆1 begins to form
a cluster while ∆2 is still in type II. In fact, being ∆1 the weaker com-
ponent, is more related to the softest coherence length ξI , and as we can
see from Fig. (3.7), ξI increases rapidly cooling down after the transition
between the two different s± regions.

After that point the type-1.5 character is always more evident, with
the ∆1 component being the one that shrinks the cluster more. Inside the
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BTRS region we find the smallest cluster size, that is sensibly reduced
with respect the starting point. The ∆1 forms almost a macrovortex,
signaling to be very close to type I region, while the second component
retains visibly the short repulsive inter-vortex forces character.

Finally decreasing the temperature again we enter in s++ state, where
even if the vortex sizes are smaller, there is repulsive interaction between
vortices. Also the transition type-1.5 - type II is sharper here. From the
behaviour of the bound states of vortices through this scanning is clear
how the s+ is transition drives the clustering effect.

Additionally another important effect can be noted in Fig. (5.2). In
the s + is region, the cluster form a s++ state inside the vortex. This
phenomenon can be explained with renormalization of Josephson coupling
parameters, similarly as was noted in Ref. [36]. In fact in a cluster the
densities tend to be depleted more with respect to isolated vortices (espe-
cially for the weakest component), and that affects the effective Josephson
coupling. Qualitative the renormalization can be understood as follows.
Let us consider the bilinear Josephson density energy term in Eq. (3.28c)
in the form:

2a12U1U2f1(r)f2(r) cos(θ12(r)) , (5.1)

where Ui are the ground states amplitudes and fi(r) is an ansatz rep-
resenting the modulation of the densities due to vortices in the system.
Hence the free energy in a domain Ω with N uniform distributed vortices
can be written as:

VJ = 2a12U1U2

∫
drf1(r)f2(r) cos(θ12(r))

≈ 2a12U1U2 cos(θ12(r))

∫
drf1(r)f2(r)

= 2ã12U1U2 cos(θ12(r)) , (5.2)

where ã12 is the renormalized bilinear Josephson parameter defined as

ã12 = a12

∫
drf1(r)f2(r) . (5.3)

In Eq. (5.2) we have made the assumption that θ12 varies slowly in com-
parison with inter vortex distance, therefore considered constant as first
approximation with uniform distribution of vortices (if this does not hold
we cannot define a ã12 without spatial dependence).

We can see from Eq. (5.3) how the new parameter is depending on
the modulation of the densities caused by vortices. The same can be
done for the biquadratic Josephson coupling in Eq. (3.28d) obtaining
(and similarly for the other Josephson terms depending quadratically on
the densities):

c̃12 = c12

∫
drf2

1 (r)f2
2 (r) . (5.4)
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Now inside a cluster the components are very depleted so fi � 1. There-
fore the quadratic renormalized parameter c̃12 will be more suppressed
with respect to ã12.

Inside the s + is region a12 < 0 in the ground state, so the bilinear
Josephson prefers an s++ state, but normally its contribution would be
really small being a12 the one that changes sign close to s+is (driving the
transition from s± to s++) and therefore close to zero. Nonetheless when
big depletion is present it acquires strength and can drive a transition
to s++ even if the ground state would be s+ is (note also that here the
mixed gradient terms like in Section 5.4.1 do not have much effect being
away from crossover, and therefore being Josephson terms much greater
than it).

This mechanism could be very important in situation of high exter-
nal field. In fact being the vortex density very high, it could prevent
the formation of s + is state driven by quadratic Josephson term, like
in this model (this however does not apply in BTRS states produced by
frustrated bilinear Josephson couplings like in three-component super-
conductors [36]).

5.1.2 Muon-spin rotation signatures

Here we focus on the unconventional magnetic response that the clus-
tering effect explained above could produce in the vicinity of the s + is
transition. Indeed the temperature dependence of vortex cluster sizes can
be deduced from µSR data in a similar way as it was done in Ref. [80]
for Sr2RuO4.

Muon-spin rotation experiments are able to quantify the fraction of
sample containing magnetic flux and subsequently the local internal flux
density inside this area. This technique exploit spin polarized muons, that
are brought at rest inside the sample, where they can precess if an internal
B is present, at angular frequency ω = γµB where the gyromagnetic
ratio of the muon is known. They then decay with a known lifetime,
emitting positrons preferentially along the spin direction. The difference
between the signal of two positron detectors placed at opposite edges
of the sample can be used to evaluate the time evolution of the decay
asymmetry A(t) = (NR(t)−NL(t))/(NR(t) +NL(t)) where NR(t) is the
right detector signal andNL(t) the left one. This signal will oscillates with
weights coming from different angular precessions ω. These weights can
be separated by Fourier transforming, in order to obtain the probability
of internal flux density p(B), so we can know how much of the sample
has a certain internal field B (equivalent to the local flux density). Now
imposing a low threshold we can divide the sample in two part, one
containing magnetic field and the other in Meissner state.

Now lowering the temperature across Tc we can see how the area
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Figure 5.3: Evolution of a bound state of 7 vortices during a cooling
procedure as in Fig. (5.1). The interband scattering is Γ = 0.7275, the
gauge coupling constant is q = 0.8 and equal diffusivities (rd = 1). The
displayed quantities are the area of the region where the magnetic field
B is above the threshold δ = 0.01Bmax (normalized with respect its
maximum), and the internal mean magnetic flux density (corresponding
to the magnetic field average) computed inside this area. A strong peak is
produced in correspondence of the s+ is transition due to the divergence
of the largest coherence length.

containing flux behaves. What happens usually for a type II material in
external field, is that in normal state obviously the area containing flux is
the total area, while at Tc there is a strong decreasing, in fact only in the
vortices of the Abrikosov lattice the flux will be present. In a conventional
type II this area would decrease really slowly lowering the temperature,
in fact the vortices cores slowly decrease, due to the presence of a stronger
condensate at lower temperature.

On the contrary if the superconductor allows the onset of type-1.5
at T ∗ < Tc, then exactly at this temperature we would see a fast fall in
the area containing flux, as result from clustering. In addition being the
number of vortices the same, and being the flux quantized in each vortex,
the total flux will be the same, but on a smaller area. Therefore the flux
density, i.e. the average magnetic field inside the flux area, will have a
jump exactly at T ∗.

The divergence of a coherence length is general in s+ is phase transi-
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tion, so our model even if very simple, can helps to understand what would
happen in material having this kind of time-reversal broken symmetry.
Also very important is the fact that the substantial variation of the co-
herence lengths as a function of the temperature, dictates that in general
vortex cluster size will also be temperature dependent. This opens up a
possibility to discriminate the effect from pinning in muon-spin rotation
measurements, in fact if the clustering was produced by inhomogeneous
pinning center, the cluster would be independent of temperature, being
the impurities not mobile.

In order to show the effect that this strong clusterization could have
on the local mean magnetic flux density measured by this kind of exper-
iments, we simulate a group of 7 vortices in Fig. (5.3) going through a
cooling procedure as in Fig. (5.1). The strong peak in the magnetic flux
density in correspondence of the s + is transition is due to a type-1.5
state. Note that being the s + is really small in this model, the effects
of the two divergences of ξI in s++/s + is and s + is/s± transitions are
merged, producing a single peak in the long-range attractive intervortex
force in the full non-linear theory.

5.2 Skyrmionic states

Skyrmion were introduced in Chapter 2 as a different kind of topological
excitation. In two components, they can be represented as a bound states
of two spatially separated fractional vortices [81]. Skyrmions have usually
a dipolar nature, that can strongly influence long-range proprieties of the
model in which they develop. For example they can alter dramatically
the collective behaviour of vortex matter, like during a magnetization
process [19]. They can also form a Skyrmion lattice that could be easily
observable [20]. In this model Skyrmions are produced in two different
ways, one through the effect of type-1.5 superconductivity and the other
as domain wall stabilized states [48].

5.2.1 Skyrmions driven by type-1.5

The clustering effect seen in the previous section can bring about the for-
mation of Skyrmion on the border of the cluster. Indeed, in Section 5.1.1
it has been noted that it is the weaker component that tends to shrink the
cluster, being more correlated with the softest coherence length. The frac-
tional vortices of this component have therefore the tendency to shrink
more toward the center with respect to the fractional vortices of the other
component. This produces a radial splitting on the border of the cluster,
which is more accentuated the bigger the cluster is.

The relevant signatures of Skyrmions can be noticed observing the
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Figure 5.4: Cluster of 7 vortices showing 6 Skyrmion charges. Parameters
corresponding to Fig. (5.2). The plots correspond to s+ is (T/Tc = 0.71)
and s± (T/Tc = 0.73) states. The first line shows the pseudo-spin, with
nz in color while other components as vectors, while second line shows the
phase difference. Numerical Skyrmion charges have been also computed,
resulting in Q(n) = 5.98 for s+ is while Q(n) = 5.95 for s±.

phase difference and the pseudo-spin n quantities. As explained in Chap-
ter 2, the phase difference shows the dipolar and long-range nature of
these defects, associated with the normal phase modes. In this model
away from Tc we have always mixed phase-density modes, therefore the
long-range nature is even more complicated. The pseudo-spin n, shows
the topological defects itself, as a wrapping of all the possible relative
configurations of the two complex fields ∆i around a sphere derived from
the compactification of the 2D region, as explained in Chapter 2. In par-
ticular the nz component regards the densities, so to have a complete
Skyrmion charge it has to go from nz = 1, i.e. the presence of only the
first component, to nz = −1 meaning the presence of only the second
one, passing through all the possible relative densities.
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In figure 5.4 a small cluster of 7 vortices is analyzed, in type-1.5 region.
As seen in previous section the type-1.5 region can be present both in s+is
and in s± close to s + is. Therefore this confirms that Skyrmions are
produced by the clustering and are not correlated to the s-wave structure
of the gaps. In both regions the phase difference signature is present. The
pseudo-spin n also shows clearly 6 Skyrmions on the border, while the
central fractional vortices are concentric. We can notice that nz does not
reach +1, but it has been checked that it is just a problem of convergence
of the numerical procedure.

5.2.2 Skyrmions and domain walls

Skyrmion can be obtained also in an alternative way. In fact in BTRS
states, having broken the Z2 symmetry it is possible to have new topo-
logical defects called domain walls (DWs). To pass spatially from a state
to its complex conjugate, the gaps have to change their relative phase.
In this region the superconducting state will be weaker and the density
of the gaps will be generally lowered. The presence of vortices or general
impurity defects, can stabilize domain walls, being parts of the material
were the SC state is weaker as well [50, 82].

Additionally was noted in Ref. [48, 49] that domain wall can stabilized
Skyrmionic charges. In fact at the domain wall one has unfavorable values
of the phase difference, and that could generate energetic terms that
prefer to split integer flux vortices into fractional ones, to attain more
favourable phase differences in between the split fractional vortices.

To see if this stabilization happens also in this model, we proceed with
a field-cooling experiment in type II range of parameters, therefore with
a lower gauge coupling q (to avoid type-1.5 effects). In this simulation a
ground state outside s+ is is exposed to an external magnetic field, and
its energy minimized. After that, it is cooled down, entering in s + is
region with constant external magnetic field, and with vortices inside.

It is well known that going through a phase transition allows uncor-
related regions to fall into different ground states [83, 84]. This is the
Kibble-Zurek (KZ) mechanism for the formation of topological defects
[85, 86]. As different regions fall into either of the Z2 states, domain
walls are created. Since their energy increases linearly with their length,
closed domain walls contract and collapse or are absorbed by boundaries.
However in the presence of defects, like vortices produced by the external
magnetic field, they can stabilize.

In Fig. (5.5) we can see the field cooling simulation, where big temper-
ature steps have been chosen to facilitate KZ mechanism. At the begin-
ning the system is in s± state with T/Tc = 0.6. Lowering to T/Tc = 0.55
the system enter in s+ is region and the vortices manage to pin two do-
main walls. These domain walls will last up to T/Tc = 0.45 where they
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Figure 5.5: Field cooled experiment for nearly degenerate bands (λ11 =
0.29 and λ22 = 0.3) and strong pairing interaction (λ12 = λ21 = −0.1).
The interband scattering is Γ = 0.867, the gauge coupling constant is
q = 0.25 and equal diffusivities are assumed (rd = 1). The external field is
Bext = 0.0475. The different lines respectively display the magnetic field
B, majority (∆2) and minority (∆1) gap components, and the relative
phase θ12.

are absorbed.
Analyzing the phase difference we can notice dipolar signatures on

the domain walls. This is even easier to see in Fig. (5.6), where the close-
up of one domain wall is plotted. The absolute phase difference and the
pseudo-spin n signal the presence of 3 Skyrmions at T/Tc = 0.55 and 4
at T/Tc = 0.50.
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Figure 5.6: Zoom of the bottom-right domain wall in Fig. (5.5), presenting
Skyrmions. The first line represents the pseudo-spin n vector and the
second the absolute relative phase. Planar components of n as arrows,
while nz in color.

5.3 Spontaneus magnetic field

Spontaneous magnetic field can be produced in multicomponent super-
conductor that break time-reversal symmetry. This peculiar phenomena
can be exploit to discern indirectly that a material is in BTRS state. In
fact the direct measuring of the relative phase of the gaps is an hard job,
while measuring indirect effects like spontaneous field can be easily done,
with multiple techniques.

As we analyzed in Chapter 2, the spontaneous field is generated by
an interband counterflow in the presence of the relative density gradi-
ents. The counterflow does transport current, even if the components
flows are opposed, because the presence of gradients in the relative den-
sities assures that the two flows are not balanced if these gradients have
components perpendicular to the flows. This counterflow currents will
generate the magnetic field, that will be then partially screened by the
Meissner current.
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Figure 5.7: Geometrically pinned domain wall in non-convex domain.
The superconductors is with nearly degenerate bands λ11 = 0.29 and
λ22 = 0.3 and strong pairing interaction λ12 = λ12 = −0.1. The tem-
perature is T/Tc = 0.5 and the strength of the interband scattering is
Γ = 0.867. Gauge coupling constant is chosen as q = 0.25 and equal
diffusivities are assumed (rd = 1). The different plots display from the
top left, the density of gap ∆1, ∆2, the phase difference θ12, the energy
density F , the magnetic field B, and finally the field produced by the
counterflow.

From Chapter 2 we generalize the formula Eq. (2.8) for the total
magnetic field, in the mixed gradients case:

B =−∇×
(

J

q2
∑

i,j kij∆i∆∗j

)

+∇×

 i

2q
∑

i,j kij∆i∆∗j

∑
i,j

kij
(
∆∗i∇∆j −∆i∇∆∗j

) , (5.5)

where the first contribution is the one coming from the Meissner cur-
rent while the second one from the counterflow. In the simulations the
counterflow will be generated in two different ways, through domain wall
solutions and through impurity fluctuations.

5.3.1 Counterflows induced by domain walls

Domain walls by definition ensure an interpolation between different
phase differences, and in addition can produce a variation of both fields
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Figure 5.8: Geometrically pinned domain wall in non-convex domain with
same parameters as Fig. (5.7). Here however the mixed gradient terms
are switched off manually, imposing k12 = k21 = 0. The more pronounced
magnetic field and counterflows are easily noted.

densities. Therefore they can in principle support counterflows, as was
noted in Ref. [50].

To stabilize domain walls a geometrical barrier is produced. The DW
is pinned by a non-convex geometry of the domain, in fact the wall to
be absorbed would need to join its ends and collapse, but that means in-
creasing its length first, so increasing the total energy. It is thus in stable
equilibrium while trapped by the bumps of the domain. Another char-
acteristic of the non-convex domain is that produces gradient in relative
density and phase that are not collinear, so ensuring a counterflow.

In Fig. (5.7) it can be noted how the domain wall carries opposite,
nonzero magnetic fields at its ends, therefore the total net flux in the
material is still zero. The magnetic field produced is however very weak,
with respect to the one in three-band clean model[50]. Nonetheless could
be observable, being approximately 1‰ of the magnetic field in a vortex.
Different gauge coupling q and different diffusivity imbalance rd have been
tried without obtain notably different results.

The mild spontaneous magnetic field could be caused by compen-
satory effects in the interband counterflow due to mixed gradient terms,
not present in the clean model. To check this hypothesis, the simulation
was repeated with same parameters as Fig. (5.7), but manually switching
off the mixed gradients terms (k12 = k21 = 0). The results are shown in
Fig. (5.8).
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In this case the magnetic field generated is more pronounced, and
around 10 times greater than the previous one. This fact seems to confirm
that the mixed gradient terms has a compensatory phenomena.

In both Fig. (5.7) and Fig. (5.8) the magnetic field is lower with
respect to the field produced by the counterflows, and also in general more
distributed in space. That is due to the Meissner currents circulating
around the bumps and screening the counterflows contribution.

5.3.2 Counterflows induced by impurity fluctuations

An alternative mechanism that could produce spontaneous magnetic field
inside the sample, when it is in BTRS state, is a modulation of impu-
rities. In fact the local ground state of the system changes with the
impurity scattering strength Γ, being the Ginzburg-Landau parameters
of Eq. (3.28) all dependent on Γ. So a fluctuation in space of Γ(x, y)
can yield gradients in the phase difference and densities, and therefore
counterflows in principle.

Moreover the recent paper Ref. [23] reported experimental evidence
for broken time-reversal-symmetry breaking state in multiband supercon-
ductor Ba0.27K0.73Fe2As2, one of the material thought to have an s+ is
state in some window of doping [34–38, 62]. The conclusion was obtained
through a zero field muon spin rotation measurements that signaled ap-
pearance of spontaneous magnetic fields at a certain characteristic tem-
perature well below superconducting phase transition, after the sample
was ion-irradiated to produce controlled defects inside.

It was demonstrated that the s+ is states can host spontaneous mag-
netic fields and currents in different ways. They could originate from
domain walls interacting with defects and boundaries similarly as the
previous discussion [50], or they can be generated from non-axially sym-
metric impurities states [45, 46]. Another possible mechanism is the
counterflows produced by impurity fluctuations, as said above.

In Fig. (5.9) a sinusoidal modulation of the impurity scattering strength
Γ(x, y) is imposed in a dirty two-band superconductors, without any other
constrain. The modulation effect is clearly visible in the pattern formed
by densities and phase difference. The spontaneous magnetic field is pro-
duced where the sinusoidal modulation has its maximum gradient, so in
between the maximum and minimum of Γ(x, y).

As the domain wall case, the sample is crossed by a zero total mag-
netic flux. Furthermore in this case the magnetic field B is even weaker
than in domain wall case, being around 10−5 of the usual magnetic field
inside a vortex. This mild effect is due to the very narrow s + is dome
with respect to Γ variation. Therefore it is not possible to have big Γ fluc-
tuations (otherwise we go outside the BTRS region), and consequently is
not possible have big relative density gradients.
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energy density F , the magnetic field B, and the phase difference θ12.

5.4 Impurity-driven s±/s++ crossover

In Chapter 3 it has been seen how the presence of disorder can lead to
a crossover between s± and s++ in dirty two-band superconductors with
repulsive interband pairing. The crossover always happen closer to Tc
with respect to the s+ is state, being in this region the subdominant gap
weak enough to be suppressed. In addition in the s++ region close to the
crossover, there is a strong competition between terms in the free energy
associated with mixed contributions. These energy terms competition
can produce exotic phenomena in vortex structure, like the appearance
of s± inside the vortex, while outside the ground state prefers a s++

state. Moreover the weakness of the subdominant gap can drive changes
in its vortex structure, forming the so called “moat-like” cores [87]. The
coexistence of s± and s++ can be accentuated in the presence of external
field, up to drive a field-induced s± phase transition for elevated fields.

5.4.1 Moat-core vortex structure

It was recently demonstrated that the crossover line is accompanied by
a non-trivial transition in the core structure of vortices [87]. Indeed typ-
ically singularities that occur in quantum vortices are point-like: i.e. in
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two dimensions, the modulus of the complex order parameter (the density
of superconducting electrons) vanishes at some point in the vortex core
[12, 88, 89].

In this model however the vortices can acquire a circular nodal line
around the singular point in one of the superconducting components
∆i(r0) = 0, in the vicinity of the crossover line. This singular nodal
line, which in three dimensions extends to a cylindrical nodal surface sur-
rounding the vortex line, results in the formation of a peculiar “moat"-like
profile in the subdominant superconducting gap.

As a result, the inner region of the vortex core shows a π relative phase
between the gaps while it is zero in the outer region. This means that
these moat-core vortices consist of an s± phase inclusion in the vortex
core, which is separated from the bulk s++ phase by the nodal line.

Figure (5.10) shows the numerically calculated single vortex solutions
in the vicinity of the impurity-induced crossover, in the case of a two-band
superconductor with nearly degenerate bands and weak repulsive inter-
band pairing interaction. The vortex profiles features a non-monotonic
distribution of the subdominant component ∆1 when approaching the
s±/s++ crossover line.

It can be observed that ∆1(r) exhibits a strong increase near the
core, strongly overshooting its ground-state value, which is then retained
asymptotically at r → ∞. Small density overshoot effects were also
obtained in a two-band model in the context of ballistic and diffusive
bands [90]. However here the near-core overshoot can be very large,
reaching about 100% of the subdominant ground-state amplitude.

Once the s++ ground state is reached, we can see the formation of
the circular nodal lines of the subdominant component ∆1 = 0. Due to
the competition between energetic terms, it is more favorable to achieve
a θ12 = π (s± state) in the vicinity of the core singularity, while the
ground state recovers far from the vortex center θ12 → 0. The transition
between the localized “core" states with θ12 = π and the asymptotic states
θ12 = 0 is realized by nullifying the subdominant gap ∆1(r0) = 0 at a
given distance r0 from the center.

The effect should be present rather generically in the presence of the
interband impurity scattering since it originates from the mixed-gradient
term in Eq. (3.28b) that tend to become negative. In addition a similar
effect, not driven by mixed gradient terms, was found in clean three
component case, due to the renormalization of Josephson couplings close
to the vortex core [36].

To qualitative understanding the phenomenon we can analyze the free
energy functional in Eq. (3.28) as in [87], assuming a axially symmetric
vortex ansatz for the order parameter components, i.e. ∆j(r) = ∆̃j(r)e

iθ,
where ∆̃j(r) are the real-valued profiles of the order parameter compo-
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Figure 5.10: Transition in vortex solutions in the vicinity of the impurity
induced crossover line of a two-band superconductor with nearly degen-
erate bands and weak repulsive interband pairing interaction (λ11 = 0.29,
λ22 = 0.3, and λ12 = λ21 = −0.01), and with equal electron diffusivities
(D2/D1 = 1). The temperature is T/Tc = 0.95, q = 0.25, and tuning the
strength of the effective interband impurity scattering drives the system
from bulk s± to bulk s++. The quantities displayed are the same as in
Fig. (5.2). The third column shows a vortex solution that has a point
like and a “moat"-like zero in ∆1. The figure is a reproduction of the one
in [87].

nents and the polar coordinates r, θ are determined relative to the vortex
center. Therefore the GL contribution from the mixed-gradient can be
written as

FG ≡
k12

2

(
(Π∆1)∗Π∆2 + c.c

)
(5.6)

= k12

(
∇r∆̃1∇r∆̃2 + r−2∆̃1∆̃2

)
,

where the vector potential contribution is neglected since it is small inside
the vortex core. This term has a spatially-modulated contribution that
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is in a way similar to the interband Josephson energy in Eq. (3.28):

FJ ≡ 2
(
a12 + c11|∆̃1|2 + c22|∆̃2|2

)
∆̃1∆̃2 . (5.7)

In the homogeneous bulk phase the gradient energy is zero FG = 0 and
the phase locking corresponds to the s++/s± state depending on the
sign of the effective Josephson coupling J = a12 + c11|∆̃1|2 + c22|∆̃2|2,
therefore the crossover line can be defined parametrically in the Γ, T
plane as J(Γ, T ) = 0.

In spatially non-homogeneous states, e.g., in the presence of vortices,
the relative sign of the gap functions ∆̃1,2 is determined by the local in-
terplay of two phase-locking energies FG and FJ . Let us consider what
happens within the vortex core, where the order parameter profiles can
be approximated by linear dependencies ∆̃j(r) ≈ rd∆̃j/dr, thus yielding
FG ≈ k12(d∆̃1/dr)(d∆̃2/dr). In this case since the mixed-gradient coef-
ficient is always positive k12 > 0 (see appendix A), the energy FG favors
the opposite signs of the order parameter slopes, e.g. d∆̃2/dr > 0 and
d∆̃1/dr < 0, leading to the opposite signs of the gap function near the
vortex center ∆̃2 > 0 and ∆̃1 < 0.

This tendency competes with that favored by the Josephson energy
if J < 0, corresponding to the bulk s++ phase when the gaps have the
same signs far from the core. Therefore, provided that the gradient energy
dominates close to the vortex center (|FG| > |FJ |), one can expect the
non-monotonic distribution for the component ∆1(r), crossing zero at
some finite distance r = r0 determined by the competition of FG and FJ
The scenario discussed above is therefore generic for any two-band s++

superconductor with interband impurity scattering, having that mixed
gradient terms.

Additionally it should be noted that this effect is stronger away from
the SC phase transition. Indeed being the system breaking only a single
symmetry, at mean-field level only one (critical) mode survives in the
limit τ ≡ (1−T/Tc)→ +0. Therefore close to Tc the other subdominant
modes are much smaller in amplitude, and the slopes of the gap func-
tions near the core can be estimated through |d∆̃i/dr| ∝ |∆(0)

i |/ξc(T ),
where ξc(T ) ∝ 1/

√
τ is the critical coherence length and ∆

(0)
i the ground

state value of the gap parameter. Hence the magnitude of the mixed
gradient term is |FG| ∝ k12|∆(0)

1 ∆
(0)
2 |/ξ2

c (T ) which should be compared
to the Josephson energy FJ ∝ J∆

(0)
1 ∆

(0)
2 . The condition of the vortex

transition |FG| > FJ is satisfied only provided that the coupling is small
enough, |J | � k12/ξ

2
c (T ), which certainly does not hold near the critical

temperature in the limit τ → 0 when ξc(T )→∞. However, one can ex-
pect that inside the vortex core the gradient energy always dominates in
the vicinity of the impurity-driven s±/s++ crossover where the effective
Josephson coupling disappears, J(Γ, T ) = 0.
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Figure 5.11: Phase diagrams of the Ginzburg-Landau free energy
Eq. (3.28) with same panels as Fig. (3.6). This shows the values of the
lowest-energy state relative phase θ12 and the regions of existence of moat-
core vortices, as functions of the temperature and interband scattering Γ.
The solid black line shows the zero of ∆1, that is the crossover between
s± and s++ states. It is clear here that vortices with nodal zero-line are
quite generic solutions in the vicinity of the crossover line.

Accordingly to the qualitative analysis, we find that existence of this
kind of “moat-core" vortices does not depend on the specific values of the
pairing coefficients. Rather, the investigation of the vortex solutions for
various parameter sets, shows that the moat-cores are common feature
in the proximity to the crossover line. The region of the existence of
moat-core vortices is shown in Fig. (5.11). It is is clearly visible that the
region with moat-core vortex solutions shrinks close to Tc and eventually
suppress (panel A,B). For the investigated regimes the moat-core-vortices
“region” increases in width (δΓ) increasing bands disparity λii, i.e. com-
pare panel B and D. Furthermore in these regimes the moat “region”
increases in width increasing interband coupling λ12, compare panel A-
B-C. Moreover, we find that typically, the region of moat-core vortices in
the Γ, T phase diagram tends to become larger with the increased ratio
of diffusion coefficients D2/D1. This effect can be explained by the soft-
ening of the order parameter in the subdominant band which facilitates
the formation of additional zeros in the ∆1(r) gap distribution.
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Figure 5.12: Magnetization process of a dirty two-band superconduc-
tor. The coupling parameters are those of Fig. (5.10), the temperature is
T/Tc = 0.9, q = 0.25, and the strength of the interband impurity scatter-
ing Γ = 0.7625 places the system in bulk s++ state, in the vicinity of the
crossover line. The different lines respectively display the magnetic field
B, the majority (∆2) and minority (∆1) gap components. The last line
shows the relative phase θ12 that specifies whether the superconducting
ground state is s++ or s±. The preferred phase-locking in the bulk is
θ12 = 0 (the s++ state).

5.4.2 Field-induced coexistence of s++ and s± states

The inner s± phase in the vortex structure close to the crossover in s++

ground state, can obviously have consequences on the phase diagram of
the system in an external field. Here, following the upcoming article by
Garaud et al. , we study the properties of this system, under different
magnitudes of external field. In a low applied external field the lattices
and liquids of such moat-core vortices represent a macroscopic phase sep-
aration or a microemulsion of such s± inclusions inside the bulk s++

state. At elevated fields the system has a field-induced phase transitions
between the s± and s++ states.

In Fig. (5.12) is shown the external-magnetic-field-driven crossover
between the s± and s++ states, where the sample is place in s++ state
really close to the crossover. At low external field the preferred phase-
locking in the bulk is θ12 = 0. Upon increasing the external field, vortices
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Figure 5.13: A field cooled simulation for a dirty two-band superconduc-
tors, in the vicinity of the impurity induced crossover line. The displayed
quantities are the same as in Fig. (5.12). The constant external magnetic
field is B = 0.09. The preferred phase-locking at high temperatures is
θ12 = π (s± state), while it is θ12 = 0 (s++ state) at low temperatures.

start to enter the system, introducing small inclusions of θ12 = π state
in their core. When the density of vortices becomes important, the cores
of the subdominant component start to overlap until the whole system
shows a θ12 = π phase-locking everywhere. Thus the crossover here is
driven by the external magnetic field.

Interestingly even in low applied field, below the first critical field,
the Meissner state also exhibits particular properties. As can be seen
from the first column of Fig. (5.12), the system can be in s± near the
boundaries, while s++ in the bulk. Close to the boundaries the region is
carrying Meissner currents, and what happens is really similar to what
occurs in vortex cores. The phase separation is indeed achieved through
the formation of a line of zero subdominant component.

Also a field-cooled simulation show unusual properties. Figure (5.13)
displays this kind of experiment, where the system is at high temperature
in s± phase and cooling down the sample at constant field, it reaches
the s++ phase. We can see how the sharp crossover found in ground
state is rather washed-out to a finite temperature range. Indeed it can
be seen in the second column how after the ground state crossover, the
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regions is still mostly with s± phase, due to the overlap between the
subdominant gaps vortices. When lowering the temperature, they do
not overlap anymore, the s± phase remains only as inclusions in the
bulk. Therefore the lattice (or liquid) of moat-core vortices represents a
macroscopic phase separation or a microemulsion of s± inclusions inside
the s++ state. Such configurations can in principle be resolved in local
phase-sensitive probes [91].
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Chapter 6

Conclusions

6.1 Summary

Recent discovery of iron-based superconductors motivated research on
two-band superconductors where the pairing between electrons is pro-
duced by interband electron-electron repulsion [24, 26, 27]. This two-band
model is the simplest one that can shed some light on these materials,
having the tendency to be in s± state, i.e. possessing a relative phase
between the complex gaps of π, in contrast to the more usual s++ that
has a zero relative phase.

Additionally the presence of disorder is known to potentially lead in
such a systems a transition from s± to s++. The transition can be either
direct [32] or via an intermediate state called s + is which breaks time-
reversal symmetry [30, 31, 33], and characterized by a relative phase
between the gaps that is neither 0 or π. Therefore this model it is also
the simplest one endowed with s+ is state, and all its properties.

The Ginzburg-Landau dirty two-band model for superconductors in
this thesis is consistently derived from the Usadel equations, microscopic
equations based on Green functions in their dirty limit. This GL model
has generally more complicated free energy terms with respect to the
clean case, these new terms describe the physics arising from impurity
interband scattering.

The objective of the thesis was generally to study numerically topo-
logical defects and their possible experimental magnetic signatures in this
kind of model. The focus was mostly on the BTRS region, and all its
peculiarity. The existence of BTRS states in ground states was assessed
through phase diagrams in the two dimensional temperature-impurity pa-
rameter space (T,Γ), for different values of coupling coefficients λij be-
tween gaps (always with repulsive interband pairing, i.e. λ12 = λ21 < 0).
An s+ is dome was found frequently away from Tc, even if the width in
Γ results always very small, and probably impossible to evaluate directly

89



by experiments.
Furthermore the coherence lengths effects on vortex structures were

studied. The coherence lengths have a really complicate behaviour in
this model, thanks to the presence of impurities which tend to produce
mixed normal modes. Additionally the presence of BTRS phase causes
the divergence of the softest coherence lengths during second order phase
transitions s±/s+ is or s++/s+ is. These divergences can yield stunning
changes in the behaviour of vortex matter, due to the connection between
the coherence lengths and the attractive intervortex forces. In particular
it has been seen how the vicinity of s + is region can drive the system
from a type II behaviour to a type-1.5 one, where vortices are stable in
cluster configurations, where intervortex forces are short-range repulsive
and long-range attractive. Additionally it has been simulated how this
effect could be detected through characteristic signatures in muon-spin
rotation experiments like the one in Ref. [80].

The above cited clustering effects can bring about new topological de-
fects, called Skyrmions. These defects are basically bound states of sepa-
rated fractional vortices. Type 1.5 superconductivity is involved helping
the radial splitting of fractional vortices on a cluster boundary. In fact one
component is more in the attractive region, and tries to shrink more the
cluster, while the other component has still strong short-range repulsive
forces, therefore a radial splitting between the two is obtained. Skyrmions
were also found in concomitance with domain walls, during field cooling
experiments. The domain walls pinned by vortices and boundaries, help
the stabilization of Skyrmion formed in proximity of the walls, with a
similar mechanism noted in Ref. [49].

Subsequently the project focuses on one of the experimental ways to
detect BTRS states, i.e. spontaneous magnetic field inside superconduc-
tors. Thanks to their multicomponent nature this materials can have
counterflow of the two components. When this counterflow is associated
with gradients of relative density, it becomes unbalanced and supports
currents, which generates internal fields. In this thesis two ways of gener-
ating counterflow in BTRS phase were explored, firstly through a domain
wall pinned by non-convex geometry of the domain and secondly through
impurity fluctuations in the sample. Both ways generate spontaneous
field, even if very weak with respect to other models like in Ref. [50]. The
milder effect has been hypothesized to originate in compensatory con-
tributions of the mixed-gradient terms coming from impurity interband
scattering. Greater spontaneous field when these terms are switched off
manually seems to confirm it.

Finally the impurity-driven s±/s++ crossover has been analyzed in
light of the previous article [87]. This crossover produces new vortex-core
structure on the s++ side, named “moat”-core vortices, characterized by
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a nodal density line around the usual singular point of the vortex. The
nodal line is formed as consequence of different relative phase states inside
and outside the vortex. In the inner part of the core we have a s± state,
while outside a zero phase difference ground state is preferred. These
unconventional vortex solutions have also consequences on the behaviour
of the crossover in an applied field. Indeed, in contrast to the zero-field
picture of sharp crossover, the lattice or liquids of moat-core vortices
represent a macroscopic phase separation, a sort of “microemulsion” of
s± inclusions inside the s++ state. Moreover raising the external field, a
field-induced phase transition to s± state can be obtained.

6.2 Discussion

The dirty two-band model reveals itself as a very useful model for studying
exotic properties in iron-based superconductors. Indeed in its simplicity
manages anyway to show important phenomena like type 1.5 supercon-
ductivity or broken time-reversal symmetry, that could happen in real
world iron-based materials.

The first significant aspect to notice is that in this model the BTRS
region is very narrow and for all practical purposes directly unobservable.
Nonetheless is fundamental to study what happens theoretically in the
vicinity of it, in fact there are a lot of different cases where the s + is
region is very broad. For example in clean three bands superconductors
BTRS regions are easily obtained by a different mechanism of frustration
between interband interactions [34–38]. Therefore adding a new band,
making it a dirty three-band model, most likely increases the size of the
s + is regions. Furthermore the s + is domes in this model are usually
somehow parallel to the temperature, and this is another problem for
possible experimental signatures. The only way to detect it would be with
impurity variation, definitely harder and less controllable with respect
to temperature. However even if very small, the BTRS can influence
properties in a broader region, through softening of the normal modes,
that have direct impact on intervortex behaviour, opening the possibility
for type 1.5 superconductivity.

Secondly, the demonstration that s+ is phases are able to produce a
spontaneous field, is also considerable. Indeed nowadays there is a lot of
attention in the SC community to detect BTRS states in material. This
model has the great characteristic of being directly linked with micro-
scopic parameter, such as impurity variations, hence it can be easier to
interface experimental results and theory with respect to other models.

Lastly the moat-core phenomenon represents a new kind of vortex
physics inside superconductors. This physics could be utilized to de-
tect a crossover between s± and s++. In fact in the ground state this
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crossover is really sharp and hard to detect, while under external field
condition, where vortices are present, the crossover is washed out and the
“microemulsion” of s± in s++ could be resolved with local phase-sensitive
probes.
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Appendix A

Ginzburg-Landau coefficients

The coefficients of the Ginzburg-Landau functional aij , bij , cij and kij
can be calculated from the inputs λij , T and Γ of the microscopic self-
consistency equation. Ni are the densities of states and Di the electron
diffusivities. We always assume Ni = 1 during the simulations, since
densities imbalance does not influence much the calculations. First, the
coefficients of gradient terms are given by

kii = 2πTNi

Nd∑
n=0

Di(ωn + γji)
2 + γijγjiDj

ω2
n(ωn + γij + γji)2

(A1a)

kij = 2πTNiγij

Nd∑
n=0

Di(ωn + γji) +Dj(ωn + γij)

ω2
n(ωn + γij + γji)2

, (A1b)

with j 6= i. The coefficients of the potential terms can be found for
example from Ref. [31] and they read as

aii =
Niλjj

det(λ̂)
− 2πT

Nd∑
n=0

(ωn + γji)Ni

ωn(ωn + γij + γji)
, (A2a)

aij = − Niλij

det(λ̂)
− 2πT

Nd∑
n=0

γijNi

ωn(ωn + γij + γji)
. (A2b)
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The other parameters read as

bii = πTNi

Nd∑
n=0

(ωn + γji)
4

ω3
n(ωn + γij + γji)4

(A3a)

+ πTNi

Nd∑
n=0

γij(ωn + γji)(ω
2
n + 3ωnγji + γ2

ji)

ω3
n(ωn + γij + γji)4

,

bij = −πTNi

Nd∑
n=0

γij
(ωn + γij + γji)4

(A3b)

+πTNi

Nd∑
n=0

γij(γij + γji)(ωn(γij + γji) + 2γijγji)

ω3
n(ωn + γij + γji)4

,

and

cii = πTNi (A4a)
Nd∑
n=0

γij(ωn + γji)(ω
2
n + (ωn + γji)(γij + γji))

ω3
n(ωn + γij + γji)4

,

cij = πTNi

Nd∑
n=0

γij(ωn + γji)(ωn + γij)(γij + γji)

ω3
n(ωn + γij + γji)4

. (A4b)

Thus for a given set of input microscopic parameters, λij , Γ and T close
to Tc, we can reconstruct the coefficients Eq. (A1)–Eq. (A4) and investi-
gate the ground-state properties of the GL theory by minimizing the free
energy Eq. (3.28) with respect to |∆j | and θ12.
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