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Decision support systems (DSS) have been used to a very limited extent in pond

aquaculture. This study documents the development of a DSS (POND) which allows

representation of an entire pond aquaculture facility, and provides analysis capabilities in

the form of simulation models and an economics package. Simulation tools in POND

include temperature, water budget, fertilization, and fish bioenergetics models.

Verification of the water temperature model at sites in Thailand, Honduras and Rwanda

indicated that it would accurately predict daily temperatures over entire seasons or diurnal

temperatures over one day intervals if complete input weather datasets are available.

Similarly, adequate estimates of water requirements can be obtained from the water

budget model. Sensitivity analysis with the former model, and results obtained from the

latter, indicate that input weather datasets should include air temperature, relative

humidity, short-wave solar radiation, precipitation and wind speed measurements. The

fertilization model estimates fertilizer application rates on the basis of nutrient

concentrations, gross primary productivity and nutrient recycling processes. Model

output was more conservative compared to rates used in Honduras, Thailand and the

Philippines, suggesting that responsive fertilization strategies which account for ambient

pond water conditions are more efficient than fixed input strategies.



The bioenergetics model accounts for the effects of size, water temperature,

photoperiod, dissolved oxygen and unionized ammonia on fish growth. The model was

calibrated and validated for Nile tilapia (Oreochromis niloticus), tambaqui (Colossoma

macropomum), pacu (Piaractus mesopotamicus), common carp (Cyprinus carpio), and

channel catfish (Ictalurus punctatus). Model experiments generated useful information

regarding supplemental feed initiation and fish feeding rates. A resource substitution

function was also used in this model to analyze the consumption of endogenous and

exogenous food resources by Nile tilapia. This function suggests that adding

supplemental feed to tilapia ponds may increase phytoplankton biomass because feed is

preferentially consumed. A genetic algorithm-based technique was developed to

automatically calibrate the bioenergetics model. This technique generates best-fit

parameters by comparing results of multiple model runs to observed data. In general,

results obtained from all the models suggest that POND should be a useful tool for

managers, planners and researchers involved with pond aquaculture.
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DEVELOPMENT OF A DECISION SUPPORT SYSTEM

FOR POND AQUACULTURE

INTRODUCTION

It is generally well accepted that marine and many inland fishery resources are heavily

exploited, or overexploited. Aquaculture is widely perceived as having the potential to

meet at least in part the ever-increasing global demand for fishery products. The

combined contribution of cultured finfish and shellfish to the overall output of global

fisheries has increased steadily since 1984 (Rana et al., 1996). In 1994 (the year for

which most recent global statistics are available), aquacultural production of finfish and

shellfish amounted to 18.6 million metric tonnes (mt) out of a total global fisheries output

of 109.6 mt, a proportion of nearly 17% (Rana et al., 1996). In terms of growth rates,

aquaculture has been outpacing livestock meat production two- to four-fold since 1984,

with an estimated increase of about 10.2% per year (Tacon, 1996).

As with other agricultural activities, the rapid increase in both the overall aquaculture

output as well as area that is being farmed has raised concerns regarding the long-term

sustainability of such production systems (Pillay, 1992; New et al., 1995). In reviewing

global aquaculture trends, Tacon (1996) concluded that the keys to long-term

sustainability and growth of aquaculture are improved efficiency of resource use and the

development of environmentally friendly, economically viable, and socially acceptable

production systems.

Among the various types of aquaculture systems, pond aquaculture is by far the most

prevalent both in terms of the overall output as well as area under production. Improved

resource use efficiency in such systems is therefore particularly important. The most



important resources used in pond aquaculture include water, feeds, fertilizers, liming

materials, fish fingerlings (for stocking) and energy (e.g., for pond aeration)

(Schaeperclaus, 1933; Hickling, 1962; Boyd, 1990). In general, the intensity at which

one or more of these resources are used at a given location may be based either on initial

experimentation at the site or adapted on a trial and error basis from the experience of

practitioners in the same or other regions. However, pond aquaculture technology that

has been found to be appropriate at one location may not necessarily be applicable

elsewhere (Colt, 1986). The failure of such types of technology transfer is attributable to

a variety of reasons.

Firstly, fish production in earthen ponds is a function of water and soil quality, as well

as climatic characteristics (Lannan et al., 1986). For example, fish species such as tilapia

and carps which derive a substantial portion of their dietary requirements from natural or

endogenous food (i.e., resources such as phytoplankton, zooplankton and benthos) will

thrive better in ponds that respond positively to management practices such as liming and

fertilization (Hepher, 1978; Boyd, 1979). It is important to note that water and soil

quality can be radically different even within relatively small geographic areas, implying

that fine-tuning of the aquaculture practices prevalent in the region may be necessary for a

particular location. For example, Batterson et al. (1988) reported that source water

alkalinities in two adjacent drainage basins in West Java (Indonesia) were 20 and 180 mg

CaCO3 El respectively; because the principal source of inorganic carbon for

photosynthesis in fresh water is the carbonate-bicarbonate alkalinity (Arce and Boyd,

1975), ponds located in the two drainage basins will likely have different productivities

and require different fertilization and lime application rates. Climatic characteristics

typically exert their influence over larger regions. Thus, ponds located in the tropics are

more productive than those in the sub-tropics because year round warm temperatures in

the former will likely enhance both endogenous food as well as fish productivity

compared to those located at the higher latitudes (Boyd, 1979). It follows that

management practices will likely be different between these two broad geographic

regions even if the target fish species are identical.
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Direct transfer of technology may also not produce acceptable results because of

differences in the availability and costs of resources (e.g., liming materials, fertilizers,

feed, fingerlings, etc) among locations. Thus, it would be somewhat inappropriate to

attempt the production of a fish species such as the channel catfish (ktalurus punctatus)

which requires high quality protein in its diet (typically met by the use of artificial feeds;

Lovell, 1989) in a region where such feeds are either not available or are very expensive.

Similarly, Molnar et al. (1996) reported that subsistence farmers in Rwanda typically

avoid the use of synthetic fertilizers and manures in tilapia ponds because the former

nutrient source is expensive and the latter a scarce commodity. Introduction of pond

management practices from other locations where such sources are plentiful and

inexpensive into Rwanda is therefore not appropriate.

Finally, marketing and socio-economic factors are also extremely important in

determining the suitability of a production technology for a new region. Examples of

marketing factors include demand for fish species, proximity of the farms to actual

markets, and the potential for farm gate sales (Allen et al., 1983; Kapetsky, 1994). Socio-

economic factors include ownership rights, cultural issues, reluctance of farmers to adopt

new technologies, goals of individual fish farmers, and interactions of the farmers within

a community (Chambers et al., 1989; Harrison, 1994; Molnar et al., 1996). The degree of

importance of marketing and socio-economic factors varies according to whether fish

farming is primarily a commercial or a subsistence operation. Effects of marketing and

socio-economic factors on pond aquaculture systems are not considered in this

dissertation.

It is relevant to point out that the current propensity for pond production technology to

be transferred without taking into account differences among locations may very well be

due to the lack of appropriate tools that would help decision makers in rapidly assessing

fish production potential under different environmental, management and economic

conditions. Such tools, termed decision support systems (DSS), integrate various types of

knowledge (e.g., quantitative models, heuristics, and/or databases) into user-friendly

3
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software focused on developing, analyzing and optimizing management strategies

(Hopgood, 1991). DSSs that have been developed for aquaculture may be classified into

two broad categories: farm management/planning tools (e.g., Gempesaw et al., 1992;

Lannan, 1993; Ernst et al., 1993; Silvert, 1994; Itoga and Brock, 1995) and macro-

economic tools (El-Gayar and Leung, 1996). Software in the former category deal

primarily with decisions relevant to short- and medium-term farm management

operations (e.g., fertilizer and lime recommendations for ponds as in Lannan, 1993; site

selection for marine fish culture operations as in Silvert, 1994; fish disease diagnosis and

treatment as in Itoga and Brock, 1995), as well as long-term planning tasks that may be

required during the design phase of a physical farm (e.g., financial assessment relevant to

the target fish species as in Gempesaw et al., 1992). Macro-economic tools, on the other

hand, have been developed to assess the economic feasibility of aquaculture development

of one or more culture species in larger regions varying in size from districts to perhaps

entire countries (El-Gayar and Leung, 1996).

With the exception of the system described by Ernst et al. (1993), none of the farm

management/planning DSSs were designed to serve as a framework for representing

aquaculture facilities and providing capabilities for comprehensive analysis of these

facilities under various management scenarios. An overview of a DSS (POND) that was

developed to provide such functionality for pond aquaculture facilities is presented in

Chapter 1 of this dissertation.

However, the primary focus of the work accomplished deals with the analysis of inter-

relationships among environmental, management and economic variables via the use of a

variety of simulation models. These variables are important in estimating fish production

potential, and the simulation models that link them are expected to generate information

that will likely be important in arriving at decisions pertinent to the operation and

planning of individual pond aquaculture facilities. A family of simulation models ranging

from relatively simple descriptions of pond systems to much more complex ones (see

Chapter 1) have been developed and implemented in POND. However, the types of data



needed to calibrate and validate the latter category of models are currently either not

reported by aquaculture researchers or not collected during their experiments.

Therefore, it was decided to present only the more simplified simulation models that

were verified for pond aquaculture systems during this research effort. These models

include a water temperature model (Chapter 2), a water budget model (Chapter 3), a

fertilization model (Chapter 4), a fish growth model (Chapter 5), and a model that

describes natural food and supplemental feed consumption patterns by fish in ponds

(Chapter 6). During the active phase of model development in this research work, it

became evident that model parameter estimation would be greatly assisted by the

development of an automated calibration technique. The final chapter of the dissertation

(Chapter 7) deals with development of such a technique and its application to the fish

growth model described in Chapter 5.
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CHAPTER 1

AN OVERVIEW OF THE ARCHITECTURE, SIMULATION

MODELS AND APPLICATIONS OF POND

Shree S. Nath, John P. Bolte and Douglas H. Ernst

Department of Bioresource Engineering

Oregon State University, Corvallis, OR 97331, U.S.A.
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ABSTRACT

Decision-making for pond aquaculture requires knowledge of the effects of

management practices on fish performance, soil and water quality. It is also necessary to

examine economic and environmental consequences of various practices. A decision

support system POND' which enables definition of an entire aquaculture facility (in terms

of location, ponds, fish populations, and species), and provides analysis capabilities in the

form of simulation models and an economics package has been developed. The software

requires an IBM-compatible personal computer running the Microsoft Windows

operating environment. POND models can be used to examine the implications of

management practices such as feeding, fertilization, liming, stocking and water exchange

rates on facility-level fish production. Fish growth models in POND can be automatically

parameterized for different species. Economic analysis is accomplished by the use of

enterprise budgets which account for fixed, depreciable, and variable costs, as well as

income based on fish yields predicted by the models. POND provides a useful

framework for integrating various components that define a pond aquaculture facility.

Applications of decision support systems such as POND for technology transfer,

management, planning and research are discussed.

INTRODUCTION

Pond aquaculture planners and managers are often confronted with a variety of

decisions regarding site locations, target fish species and appropriate practices such as

fish feeding, pond fertilization and liming, stocking densities, aeration, and water

exchange (Hickling, 1962; Boyd, 1979; Allen et al., 1983; Colt, 1986; Hepher, 1988).

These decisions typically have considerable effects on resource use efficiency and

POND is a copyright of Oregon State University.
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therefore the economics of an aquaculture facility (Allen et al., 1983). The decision-

making process typically requires some expertise on the part of the planner, manager or

extension agent. Such expertise includes an understanding of the principles of pond

aquaculture and the implications of various decisions on facility-level economics (Shang,

1981; Allen et al., 1983). In certain situations, it may also be necessary to address socio-

economic issues such as receptivity of farmers to new technology, and alternative uses of

available resources (Chambers, 1989; Harrison, 1994; Molnar et al., 1996). Decision-

makers usually acquire the required knowledge via a combination of formal education

and experience. Often, the immediate need for pond aquaculture technology may cause

decision-makers to apply or recommend management practices developed and tested at

one location to a new site.

The use of technology that has been found to be suitable for one location may very

well be inadequate when applied elsewhere (Colt, 1986). This may be due to differences

in fish production potential caused by the variability in climate, water and soil

characteristics among sites (King and Garling, 1986), and because of differences in the

availability and cost of resources used in pond production (Shang, 1981). For example, a

decision as specific as the calculation of feed requirements for a pond requires

consideration of fish biomass, natural food availability, and water temperature which vary

both with time and among different locations (Hepher, 1988). Similarly, calculation of

fertilizer application rates requires a basic understanding of soil and water chemistry both

of which also vary among different sites (King and Garling, 1986). In both cases,

availability and cost of appropriate inputs should be factored into the decision-making

process (Shang, 1981).

The complexity of decision-making for an aquaculture facility suggests the need for

analytical tools that can integrate biological, physical, environmental, economic, and

social components of the knowledge base required to arrive at a decision. Such tools,

termed decision support systems (DSS), integrate knowledge in the form of mathematical

models, rule-based (expert) systems, and/or databases into user-friendly software systems
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focused on developing, analyzing and optimizing management strategies. These tools

have emerged as powerful tools for capturing expert knowledge about particular domains

and providing that knowledge in a friendly, easy-to-use manner to end users. In a broader

sense, DSSs address the problem of packaging a large domain of scientific and technical

knowledge into a form that is of practical value to a diverse audience, including non-

scientists (Lannan, 1993). The power of such systems results from their capability for

representing and manipulating both quantitative and qualitative knowledge that describe

objects in the domain of interest and their inter-relationships.

A key component of any DSS is the knowledge base(s) upon which decisions are

made. Expertise exists in many forms, ranging from highly qualitative 'rule of thumb'

approaches useful for representing subjective information, to databases containing

historical data, to more rigorous and quantitative mathematical algorithms that describe

explicit relationships among components of the domain in question (Hopgood, 1991).

In agriculture, DSSs have been developed for the diagnosis of plant diseases

(Michalski et al., 1982), crop production (Smith et al., 1985), analyzing marketing

alternatives (Uhrig et al., 1986), selection of appropriate crop cultivars (Lodge and

Frecker, 1989; Bolte et al., 1990), pesticide application (Ferris et al., 1992) and many

other applications. DSSs that have been developed for aquaculture can be classified into

two broad categories: farm management/planning tools (e.g., Lannan, 1993; Gempesaw et

al., 1992; Silvert, 1994; Ernst et al., 1993; Itoga and Brock, 1995) and macro-economic

tools (Pedini et al., 1995; El-Gayar and Leung, 1996). DSSs that fall into the former

category deal primarily with decisions relevant to farm management operations (e.g.,

fertilizer and lime recommendations for ponds as in Lannan, 1993; site selection for

marine fish culture operations as in Silvert, 1994; tilapia disease diagnosis and treatment

as in Itoga and Brock, 1995), as well as long-term planning tasks that may be required

during the initial design phase of a farm (e.g., financial assessment relevant to the target

fish species as in Gempesaw et al., 1992). Macro-economic tools, on the other hand,

have been developed to evaluate project proposals (e.g., Pedini et al., 1995) and to
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examine the economic consequences of aquaculture development of one or more culture

species in larger regions varying in size from districts to perhaps entire countries (El-

Gayar and Leung, 1996). The development of both categories of aquaculture DSSs are

relatively recent, and the presently available tools should be considered to be more or less

first generation products.

With the exception of the system described by Ernst et al. (1993), none of the farm

management/planning DSSs were designed to serve as a framework for representing

aquaculture facilities and providing capabilities for comprehensive analysis of these

facilities under various management scenarios. This paper provides an overview of the

design aspects, functional modules and application areas of POND, a decision support

software that has been developed to specifically enable analysis of pond aquaculture

facilities via a combination of simulation models and enterprise budgeting. The

development of POND is supported by the Pond Dynamics/Aquaculture Collaborative

Research Support Program (PD/A CRSP) funded in part by the U.S. Agency for

International Development.

GENERAL FRAMEWORK AND ARCHITECTURE

The main focus of the POND software is to provide a view of pond dynamics at both

the individual pond as well as at the facility level. This involves providing capabilities

for (i) representing a pond aquaculture facility, (ii) simulating processes within individual

ponds, (iii) enabling users to impose certain management or planning decisions on a

given facility prior to executing a specific simulation scenario, and (iv) undertaking

economic analyses of simulation scenarios.

The term 'facility' is used in POND to describe a physical aquaculture system that

consists of a specific geographical location, source water quality, pond(s) associated with
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Figure 1.1. General architecture of POND indicating databases, functionality and
applications. Experts involved in facility-level simulations are also shown.

the site, fish lot(s) or populations (comprising one or more species) associated with each

pond, and a soil type for each pond. Mini-databases are maintained to record user-

specified information for each of the above entities, and for other functional components

of the software (Fig. 1.1). POND is programmed in Borland® C++, and requires an IBM-

PC2 compatible personal computer running the Microsoft Windows3 (version 3.1 or

higher) operating environment. It requires approximately 1.5MB of available hard disk

space and a minimum of 4MB RAM. An 80386 CPU is required, and an 80486 or

greater CPU is recommended.
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In the POND software, information is encapsulated, exchanged and manipulated

using an object-oriented programming (00P) paradigm. 00P provides a powerful

mechanism for representing real world entities in the form of objects or classes, which are

self-contained collections of data and algorithms. Because these objects mirror reality at

both conceptual and implementation levels, object-based software tend to be flexible, and

are easier to design and maintain compared to conventional software. Code reusability is

also promoted by the use of object-oriented principles. Further advantages of 00P may

be found in Meyer (1988) and Budd (1991).

Use of the 00P approach for information representation and management in the

context of aquacultural decision support systems has previously been demonstrated (e.g.,

Bolte et al., 1991; Ernst et al., 1993). In a manner similar to the management of actual

farms, these authors conceptualized the simulation of aquaculture facilities to involve

theintervention of various experts from areas such as aquatic biology, aquatic chemistry,

soil chemistry, fish biology, fish culture, aquacultural engineering, and economics. In an

actual simulation, methods available in these experts are used to manage specific

components (such as ponds and associated fish populations) of the aquaculture facility.

Simulations are conducted by the use of an object-oriented simulation environment (Bolte

et al., 1993). A similar approach is used in POND, where the simulation of a pond

facility is conducted by assembling instances of various 'experts' (Fig. 1.1) and a

collection of facility entities (e.g., one or more fish pond instances, each representing a

pond in the facility, and one or more fish lot instances, each representing a single fish

population of a particular species). POND simulations are dynamic, providing time series

results for a range of variables. During a simulation, time series data for each variable are

stored; these data may be viewed in plots or tables at the end of the simulation run.



FUNCTIONAL MODULES

The functionality of POND encompasses four general areas (Fig. 1.1): (i) routine

fertilization and liming protocols, (ii) pond simulation capabilities, (iii) economic

analysis, and (iv) parameter estimation. These modules are discussed in greater detail

below.

Routine Fertilization and Liming Protocols

POND provides simplified methods for estimating fertilizer and lime requirements of

individual ponds without invoking more complex simulation methods. These methods

are intended for routine management of actual ponds. Fertilizer requirements are

assessed on the assumption that fish production in fertilized ponds can be enhanced by

appropriate management of primary productivity levels (Boyd, 1979; Hepher, 1978;

McNabb et al., 1990; Schroeder et al., 1990; Lannan, 1993). The methodology (see also

Chapter 4) involves the use of a site-specific gross primary productivity level, calculation

of primary plant (i.e., inorganic carbon, nitrogen and phosphorus) nutrient requirements

based on ambient pond water quality conditions, and the generation of least cost fertilizer

combinations that would meet these requirements.

Addition of lime to ponds with acid muds or water of low alkalinity is a widely

accepted aquacultural practice. The amount of calcium carbonate required to neutralize

the exchange acidity of a pond soil is called the lime requirement, which depends on ion

exchange processes that occur on the surface of soil particles (Boyd, 1979). Bowman and

Lannan (1995) developed a simple technique based on soil pH to estimate lime

requirements. This approach is used to estimate the amount of lime to be added to a pond

of a given soil type in the POND program.

13



Pond Simulation Capabilities

Previous simulation modeling efforts for pond aquaculture have focused only on

certain aspects of the pond ecosystem (e.g., water quality and natural food as in Svirezhev

et al., 1984; water quality as in Piedrahita, 1990; fish bioenergetics as in Cuenco et al.,

1985a and Cacho, 1990). Further, simulation models in the above studies were developed

primarily to understand pond ecosystems. Use of these models for decision support has

received very limited attention, both in terms of their relevance to actual management

practices and their implementation in a manner that is accessible to decision-makers.

Simulation models were chosen as the primary analysis tool in POND for several

reasons. Firstly, they provide an opportunity for knowledge synthesis, whereby a large

body of knowledge about pond aquaculture can be integrated into a comprehensive

representation of the system which can be used to explore the effects of different

management scenarios. Simulation model development also imposes a rigorous

framework on the model builder. This forces the model builder to clearly articulate

knowledge of the fundamental relationships that govern a pond's response to external

stimuli, simultaneously exposing gaps in the knowledge base. The rigorous nature of

model specification results in a testable hypothesis about the pond system, i.e., the model

can be run for a known set of pond management and environmental conditions to

determine whether its output is adequate to represent our knowledge of systems

processes, and useful in the context of decision-making.

Simulation models are also valuable tools for predicting system response to

conditions that are either too complex or expensive to explore experimentally. Because

model-based experiments can be completed in seconds on a computer, rather than in

months or years in the field, models provide opportunity to explore a much larger set of

operating conditions, environments, management strategies, and constraints compared to

physical experiments. Results of numerical experiments are also useful in evaluating

14



15

model assumptions, and refining the models. Further discussions about the general use of

simulation models for biological systems can be found in Grant (1986) and Haefner

(1996). Similarly, detailed descriptions of their applications in pond aquaculture systems

are available in Cuenco (1989), Piedrahita (1991) and Piedrahita et al. (in press).

One of the design constraints of the POND software was that it should provide

capabilities to meet the needs of pond aquaculture managers, planners and researchers

alike. However, these three groups of potential users likely have very different needs.

For example, in terms of fertilizer use in ponds, managers are more interested in

determining regular application rates (e.g, at weekly or biweekly intervals) for different

ponds. On the other hand, planners perhaps need rough assessments of the total fertilizer

requirements for a given facility over longer time periods (e.g., one season). For the same

problem, researchers are perhaps interested in examining the biological (e.g., plankton

growth) and physico-chemical (e.g., changes in nutrient concentrations) responses of

ponds to fertilizer additions. Moreover, the targer user groups of POND are likely to

have different types of input data available for use in the software.

In order to enable the three target groups of POND users to perform different kinds of

analyses based on output resolution requirements and differences in input data

availability, simulation models in the software are organized hierarchically into three

levels (Levels 1-3; Fig. 1.1) which are more fully discussed in a later section of this

paper. A list of the various state variables and associated processes considered at each of

the modeling levels is provided in Table 1.1.

POND simulation models are deterministic in nature, and are formulated as a set of

ordinary differential equations which are solved numerically over time by the use of a

Runge-Kutte integrator. The software supports both daily and diurnal simulations of

pond facilities, and provides capabilities to address fish growth, water temperature and

volume changes, water/sediment quality dynamics, and primary and secondary

productivity under different pond management and environmental conditions.



Table 1.1. A summary of state variables maintained in POND and the source/sink processes considered at the three modeling levels.
Processes directly manipulated by management practices are italicized. For some variables (e.g., nitrogen, phosphorus), mass balances
may vary depending on the modeling level, and separate state variables are maintained for 'sub-components' (e.g., total ammonia-
nitrogen, organic nitrogen, etc). In such cases, the table lists processes that may be considered at all the modeling levels, as well as the
additional ones (e.g., atmospheric diffusion of ammonia-nitrogen) specifically affecting the sub-component.

State Variable
Fish Mass

Water Temperature

Water-column Nitrogen (N)
Total-N
Dissolved inorganic-N

Total Ammonia-N

Can be either a source or a sink.

Modeling Level Sources
1, 2, 3 Natural food uptake

Artificial feed uptake
2, 3 Net short-wave solar radiation

Net long-wave atmospheric radiation
Influent heat

I, 2, 3 Influent water
3b Fish respiration + excretion

1 Wasted feed
Phytoplankton respiration + death
Zooplankton respiration + death
Bacterial respiration + death
Fertilization

3 Ammonification

Sinks
Feeding catabolism
Fasting catabolism
Long-wave back radiation
Evaporative heat loss
Conductive heat transfee
Non-flow related volume changesa
Effluent heat
Effluent water
Evaporative water loss
Seepage'
Overflow
Effluent discharge
Non-flow related volume changes'
Phytoplankton uptake
Bacterial uptake
Sediment exchange'
Miscellaneous sinks/sources a

Nitrification
Volatilization a

Nitrate-N 3 Nitrification
Organic-N 3 Ammonification

Water Volume 1, 2, 3 Influent water
Direct precipitation
Runoff



Table 1. 1, Continued.

a Can be either a source or a sink.
b Calculated from concentrations of inorganic and organic forms at Level 3.

State Variable Modeling Level Sources Sinks
Water-column Phosphorus (P) 1, 2, 3 Influent water Effluent discharge

Total-P 2, 3b Fish respiration + excretion Non-flow related volume changes'
Dissolved inorganic-P 1 Wasted feed Phytoplankton uptake

Phytoplankton respiration + death Bacterial uptake
Zooplankton respiration + death Sediment exchange'
Bacterial respiration + death Miscellaneous sinks/sources a
Fertilization

Inorganic-P 3 Mineralization
Organic-P 3 Mineralization

Water-column Carbon (C) 1, 2, 3 Influent water Effluent discharge
Total-C 2 Fish respiration + excretion Non-flow related volume changes'
Organic-C 3 Wasted feed Phytoplankton uptake

Phytoplankton respiration + death Bacterial uptake
Zooplankton respiration + death Sediment exchange a
Bacterial respiration + death Miscellaneous sinks/sources a
Fertilization

Dissolved Inorganic-C 3 Sediment respiration Atmospheric diffusion'
Total Sediment-N 2, 3 Supply of water column material: Water column exchange a

Sediment Inorganic-N 1, 3b From fish excretion, wasted feed,
and phytoplankton, zooplankton
and bacterial death.

Sediment Ammonia-N 3 Ammonification Nitrification
Sediment Nitrate-N 3 Nitrification
Sediment Organic-N 3 Ammonification



Table 1.1, Continued.

a Can be either a source or a sink.
b Calculated from concentrations of inorganic and organic forms at Level 3.
c Assumed to remain at steady-state levels for Level 1 and 2 models.
d Not currently supported.

00

State Variable Modeling Level Sources Sinks
Total Sediment-P 2, 3 b Supply of water column material: Water column exchange a

Sediment Inorganic-P 1, 3b From fish excretion, wasted feed,
and phytoplankton, zooplankton
and bacterial death.

Sediment Inorganic-P 3 Mineralization
Sediment Organic-P 3 Mineralization

Total Sediment-C 2, 3 Supply of water column material: Water column exchange'
From fish excretion, wasted feed,
and phytoplankton, zooplankton
and bacterial death.

Sediment Organic-C Sediment respiration
Carbonate-bicarbonate Alkalinity 3' Influent water Effluent discharge

Phytoplankton uptake of nitrate-N Non-flow related volume changes'
Ammonification Nitrification
Lime addition Bicarbonate uptake

Hydrogen ion production
Phytoplankton uptake of bicarbonate
Phytoplankton uptake of ammonium ion

Dissolved oxygen 3 Influent water Effluent discharge
Phytoplankton growth Non-flow related volume changes'
Aeration d Respiration

Fish, phytoplankton, zooplankton,
bacteria and sediments

BOD of organic fertilizers
Atmospheric diffusion'



Table 1.1, Continued.

a Can be either a source or a sink.

State Variable Modeling Level Sources Sinks
Phytoplankton 2, 3 Influent water Effluent discharge

Growth Non-flow related volume changesa
Respiration + death
Fish consumption
Zooplankton consumption

Zooplankton 2, 3 Influent water Effluent discharge
Growth Non-flow related volume changesa

Respiration + death
Fish consumption

Bacteria 3 Influent water Effluent discharge
Growth Non-flow related volume changesa

Respiration + death
Zooplankton consumption
Fish consumption
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Simulation models used in POND are based on principles of mass and energy (for

water temperature calculations) balance. Ponds are assumed to be continuously stirred

tank reactors (CSTR) with unsteady flow (Benefield and Randall, 1980). Real ponds

seldom satisfy the assumption of fully mixed conditions required of CSTR's. For

example, shallow earthen ponds are typically stratified, resulting in distinct vertical

profiles of variables such as pond water temperature and dissolved oxygen levels

(Cathcart and Wheaton, 1987; Losordo, 1988; Losordo and Piedrahita, 1991). However,

simulation models that specifically account for stratification typically require a large

number of weather data inputs collected over diurnal time intervals, are relatively

computation-intensive, and difficult to use (e.g., Losordo and Piedrahita, 1991).

Therefore, the assumption that actual ponds conform to CSTR conditions is retained in

the POND models. The differential equation expressing the change in concentration of a

state variable in such reactors (e.g., Benefield and Randall, 1980; McDuffle, 1991) is

given by:

dC Q. C; C dV
dt V V

+R-
- dt

(1)

where C = concentration of the material (e.g., g m-3), Qi = influent rate (m3 d-1), =

effluent rate (m3 d1), Ci = material concentration in the influent (g m-3), Co = material

concentration in the effluent (g m-3), V = pond volume (m3) and Rc = sum of the source

and sink processes affecting the material (e.g., g 111-3 (1-1). Equation 1 addresses the three

typical conditions (Boyd, 1990) under which aquaculture ponds are operated: (a) ponds

with a constant volume (i.e, Q, , Qo and dV/dt = 0), where Equation 1 reduces to the form

used for continuously stirred batch reactors (Benefield and Randall, 1980), (b) ponds

without regulated flow (i.e., Qi and Qo =0) but in which substantial volume changes may

occur due to seepage, evaporation and/or runoff events, and (c) ponds in which significant

flow is maintained. For the latter two conditions, volume changes can have important

implications for fertilization and effluent quality management. Use of Equation 1 also

implies that the POND simulation models can be used to analyze fish culture in tanks

where flow considerations are particularly important.



As previously indicated, simulation models in POND are organized into three levels

as follows:

Level I: Simulation models at this level are fairly simple and require minimal data
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inputs. They are intended for applied management and rapid analysis of pond facilities.

State variables simulated are fish growth, inorganic nitrogen and phosphorus in the pond

water and sediments, water temperature, and pond volume (Fig. 1.2; Table 1.1). Weather

data required for the latter two variables may either be generated by a simple weather

generator embedded in POND (Appendix 1) or read from ASCII files provided by the

user. Consumption of natural food by fish is assumed to be a function of fish biomass and

appetite. Nutrient exchange between the pond water column and the underlying

sediments is assumed to depend on the concentration gradient between these two

components. Fertilizer and feed application rates may either be user-specified or

optionally generated by the software.

Level 2: Models at this level provide a substantially more sophisticated view of pond

dynamics, allowing prediction of phytoplankton, zooplankton and nutrient dynamics

(total carbon, nitrogen and phosphorus) in the pond water, in addition to all the

functionality of Level 1 (Fig. 1.3; Table 1.1). These models allow for more detailed pond

analysis, management optimization and numerical experimentation. At Level 2, steady

state bacterial concentrations are also maintained. Fish can feed from a pool of natural

food resources and/or artificial feed. Consumption of natural food (phytoplankton,

zooplankton and bacterial pools) by fish is predicted on the basis of a resource

competition function (Tilman, 1982), and is dependent on the concentrations of the

natural food pools and artificial feed (if specified), food preference of fish species, and

fish appetite (see also Chapter 6). At this level, too, both fertilizer and feed requirements

may be user-specified or optionally generated by the model.
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Figure 1.2. State variables and system inputs/outputs for Level 1 modeling in POND.

Level 3: Simulation models at this level include all the functionality of Level 2, and

provide additional capabilities for simulating bacterial kinetics, and detailed pond

water/sediment quality dynamics (Fig. 1.4; Table 1.1). These models are useful for

exploring fundamental aspects of pond dynamics (e.g., detailed nutrient transformations

in pond water and sediments, atmospheric diffusion, etc). Additional state variables for

Water sources & sinks Fertilizer Feed
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Figure 1.3. State variables and system inputs/outputs for Level 2 modeling in POND.

pond water include dissolved oxygen and alkalinity. Further, state variables are also

maintained for organic, ammonia and nitrate nitrogen, as well as organic and inorganic

phosphorus and carbon in both pond water and sediments. User-specified fertilization

and feeding regimes, coupled to pond process-based nutrient mass balances, are used to

estimate nutrient consumption and production rates.
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Figure 1.4. State variables and system inputs/outputs for Level 3 modeling in POND.

Economic Analysis

POND enables economic analyses of facilities to be accomplished by the use of

enterprise budgets. Although such budgets do not provide a comprehensive means of

analyzing the economic viability of aquaculture enterprises, they do enable rapid

comparisons of different management practices (Allen et al., 1983; Amir and Knipscheer,

1989). Enterprise budgets in POND allow definition of various types of cost and income

items, and associated interest and depreciation expressions, all of which can be used to
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assess the overall economic viability of a particular production enterprise. Three cost

categories are supported: (i) fixed, (ii) depreciable and (iii) variable costs. Fixed costs do

not change over the course of facility operation (e.g., construction cost for a pond).

Related to fixed costs are depreciable costs which apply to items such as equipment that

may have a redeemable value after some period of time. POND incorporates depreciation

schedules that describe the loss of value of the depreciable asset over time. Variable

costs are neither fixed or depreciable, and typically vary according to the scale of

production (e.g., labor costs, fertilizer and feed costs).

To generate an enterprise budget, income sources are also required. POND allows the

specification of any number of income sources, based on either a per unit area, per unit of

production, or per facility basis. Income sources relating to fish production are

automatically fed to the economics package at the end of a simulation run. Finally,

interest rates used for calculating fixed and variable investment costs are to be provided

by the user. Once all the items to be included in the enterprise budget are specified and a

simulation completed, the economics package in POND summarizes costs on an areal

(e.g., per ha), per unit of production (e.g., per kg of fish produced) or overall facility

basis, balances these costs against income, and reports the results in a tabular form. By

including or excluding particular costs/incomes, or adjusting cost/income details, users

can quickly 'experiment' with various facility configurations and/or management

strategies to examine their effects on the economic performance of the facility.

Parameter Estimation

Users of the POND software may often be interested in tailoring fish growth model

(Chapter 5) to one or more species at a given location. This may be accomplished by

calibrating (adjusting) model parameters such that the simulations result in fish growth

profiles that are consistent with the user's experience or match their growth data

adequately. Although the task of calibration can be accomplished manually, it is tedious



because of the large number of parameters in the models. Therefore, a parameter

estimation technique is embedded within the POND program. This technique involves

the use of a non-linear, adaptive search algorithm (Chapter 7) that generates best-fit

model parameters by comparing the results of multiple runs of the models with user-

provided fish growth data.

APPLICATIONS

DSSs such as POND can provide valuable information in the context of pond

management, planning, extension (including technology transfer) and research. Specific

applications where POND is likely to be useful within each of these broad focus areas are

discussed in greater detail below (see also Fig. 1.1).

Estimation of Water Requirements

Examination of water availability is one of the primary planning tasks that is

undertaken at the time of assessing the suitability of a site for pond aquaculture (Yoo and

Boyd, 1994). Because there may be costs associated with using a certain water source or

procuring the amount of required water (e.g., via pumping), planners are likely to benefit

from a tool that can be used to estimate water requirements over long-term periods. Such

a tool has been implemented in POND in the form of a water budget model (Chapter 3).

This model offers an alternative to site-specific water budgets (e.g., Szumiec, 1979a;

Boyd, 1982) that require routine measurements of water sources and sinks into ponds.

Moreover, the model can be applied to new locations where such measurements may be

difficult or costly to conduct.
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Estimation of Fertilizer and Lime Requirements

Application rates of fertilizers to aquaculture ponds are typically arrived at by trial

and error (Colt, 1986), or adapted from strategies that appear to be optimal at one

location. However, the use of a fertilizer loading rate that is appropriate for a particular

site can result in substantially different fish yields when applied elsewhere because of the

variability among sites (Lannan, 1993). The approach used in POND to estimate

fertilizer requirements takes into account ambient pond conditions and climatic

characteristics (Chapter 4). This approach is expected to result in increased cost and

fertilizer use compared to more traditional fixed input fertilization strategies. Generation

of fertilization schedules as one of the outputs of the POND models is useful from the

viewpoint of assessing fertilizer requirements for an entire facility and gauging the

viability of certain pond aquaculture systems (e.g., subsistence fanning) from a planning

perspective.

Lime requirements recommended by POND take into account soil properties, and

once again are expected to be more efficient compared to traditional approaches which

involve the application of fixed amounts of liming materials without adequate

consideration of such properties (Bowman and Lannan, 1995). However, the

requirements obtained from the approach used in POND are likely to be more applicable

to new ponds that have not accumulated substantial amounts of organic matter (Bowman

and Lannan, 1995). Older ponds may have different lime requirements because the

original nature of the soil is modified as organic matter accumulates (Boyd, 1979).

Estimation of Feed Requirements

Artificial feeds often represent the single most important component of variable costs

in an aquaculture facility (Allen et al., 1983; Hepher, 1988). Therefore, assessment of

feed requirements (in terms of both quantity and quality) and subsequent effects on
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facility-level economics will likely be useful for various pond aquaculture user groups

(e.g., managers, planners and extension agents). Estimation of feed requirements are

required for large aquaculture operators (regardless of the target species) so as to manage

feed inventory properly and gauge the economic benefits of different feeding rates.

Water and Sediment Quality Management

Analyses of the effects of management practices on pond water/sediment quality are

important from planning, extension and management perspectives in terms of resource

flows, facility-level economics and verifying whether effluent standards (e.g., nitrogen,

phosphorus and organic carbon levels) are met. It may also be possible to assess short-

term aeration requirements for ponds by the use of Level 3 models once they are fully

validated. Because many pond processes are not fully understood, the POND models

may also be used to guide experimental work that specifically focuses on these processes.

At the current time, Level 1 and 2 models provide some capabilities of predicting and

estimating nutrient sources and sinks in ponds.

Species/Facility Customization

The POND framework is generic in that it can be adapted for different species and

culture conditions. This feature may be useful for pond managers who wish to explore

the use of alternate species or want to compare model output and recommendations (e.g.,

feeding or fertilization rates) to their current practices. Such analyses may also be

important for planning, research and extension activities (e.g., feasibility studies for

different species and/or locations). Factoring in local costs for various resources by the

use of the POND enterprise budgets as well as market factors should be of use to pond

planners and managers in selecting the appropriate species and culture techniques for

their location.



Economic Optimization

The simulation and economic analysis capabilities of POND can be useful for

economic optimization. From a management perspective, such analyses may focus on

identifying suitable practices (e.g., levels of fertilization and feeding, water exchange) for

an already existing facility. From a planning perspective, optimization may provide

useful information for feasibility studies that focus both on facility configurations (e.g.,

combinations of ponds, lots and species) and management strategies. Optimization may

also be of interest to researchers involved in the comparison of economic benefits from

different pond aquaculture systems.

CONCLUSIONS

POND represents the first effort to integrate simulation models and economic analysis

capabilities into a comprehensive framework for analyzing pond aquaculture facilities.

The approach of using 'experts' to manage ponds and lots in an aquaculture facility

(derived from Bolte et al., 1991 and Ernst et al., 1993) has resulted in both a powerful and

flexible mechanism of representing and simulating fish production in such facilities. The

software appears to have considerable potential for meeting the needs of pond planners,

managers, and researchers. However, further work is needed to verify the simulation

models in the software at different geographical locations. Future research should

concentrate on such types of model verification. Efforts should also be undertaken to

address analyses of other types of pond farming systems (e.g., integrated farming

systems) within the overall POND framework.
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ABSTRACT

A simulation model for water temperature in completely mixed aquaculture ponds has

been developed. Heat gains considered include influent heat, net short-wave solar

radiation, and atmospheric long-wave radiation, whereas heat losses include effluent heat,

back radiation, and evaporation. Additionally, conductive transfer which may either be a

heat gain or loss is considered. The model can be used to project both daily mean and

diurnal profiles of water temperature in static ponds or those with regulated flow. Model

performance has been verified at four geographical locations in Thailand, Honduras and

Rwanda. Input weather data for model verification were obtained from weather records

(RW) or estimated by the use of a weather generator (GW). The model accurately

predicted seasonal profiles of daily mean water temperature at all the four sites; model

accuracy was much better in the RW compared to the GW simulations. Further, the

availability of daily relative humidity and cloud cover data for the two sites in Thailand

apparently resulted in improved predictions of daily mean water temperatures compared

to the sites in Honduras and Rwanda. One day simulations that were also conducted at all

the four sites to examine diurnal temperature predictions suggested that the model would

generate profiles that are consistent with actual measurements. However, predicted

values tended to be lower that measured temperatures towards the end of the 24h

simulation periods, perhaps a result of the lack of adequate data and the assumptions of

constant weather conditions (e.g., cloud cover, relative humidity and wind speed over the

course of a day). Sensitivity analyses indicate that predicted water temperatures for

seasonal-long daily simulations were most sensitive to mean air temperature, followed by

relative humidity, short-wave solar radiation, cloud cover, and wind speed. Similar

trends were obtained for diurnal simulations, with the exception that temperatures were

somewhat more sensitive to wind speed than to cloud cover. Improved model

performance can be expected if existing weather data collection protocols for

experimental facilities are expanded to include collection of humidity and cloud cover

data. In general, the model is relatively robust, and should therefore be useful for a
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variety of planning and management applications including assessment of aquaculture

potential for species with different temperature preferenda, estimation of feed

requirements and in routine water quality management.

INTRODUCTION

Water temperature is a crucial driving variable for several biological (e.g., growth and

respiration) and physico-chemical (e.g., nutrient transformations and gas diffusion)

processes in earthen aquaculture ponds. Consequently, a number of management

decisions (e.g., stocking and harvest rates, feed and fertilizer application rates) are also

temperature-dependent (Wax et al., 1987). Further, knowledge of seasonal temperature

profiles in ponds may also be useful for assessing the suitability of different sites in

relation to temperature preferenda of one or more targeted culture species. Water

temperature models can be a useful tool to assist aquaculture planners and managers with

these decisions.

A variety of pond water temperature models have previously been developed. These

include empirical formulations (e.g., Wax et al., 1987) and mechanistic models, which in

turn can be categorized into models that assume ponds to be completely mixed reactors

(e.g., Krant et al., 1982; de Jaeger and Walmsley, 1984; Klemetson and Rogers, 1985), as

well as those that specifically account for temperature stratification in ponds (e.g.,

Cathcart and Wheaton, 1987; Losordo and Piedrahita, 1991; Culberson and Piedrahita,

1992). Empirical models such as those developed by Wax et al. (1987) rely on the

availability of long-term, historical databases for pond and air temperatures which can be

'mined' to develop regression relationships between these variables. As pointed out by

Wax et al. (1987), these empirical models are of limited use outside the regions for which

they have been parameterized. Mechanistic models, although typically more complicated,

attempt to avoid such limitations of empirical models.
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It is well known that shallow aquaculture ponds tend to stratify, and that their

stratification profiles vary both diurnally and seasonally (Cathcart and Wheaton, 1987).

However, mechanistic pond temperature models that specifically account for stratification

typically require a large number of weather data inputs collected over diurnal periods

(e.g., Losordo and Piedrahita, 1991; Culberson and Piedrahita, 1992). Such datasets are

rarely available, except from sophisticated research stations. Further, stratified models

are also relatively computation-intensive and difficult to use.

Previously developed models that assume ponds to be fully mixed have either not

been validated (e.g., Klemetson and Rogers, 1985), been subjected only to validation at

one locality (e.g., Krant et al., 1982) or developed for somewhat different systems (e.g.,

plastic-covered ponds for algal culture as in de Jaeger and Walmsley, 1984). This paper

documents a model that can be used to project both diurnal and seasonal trends in earthen

ponds, and its verification for sites with different geographical characteristics.

MODEL STRUCTURE

Earthen aquaculture ponds are typically analyzed assuming one of the following three

conditions: (i) a constant volume, (ii) no regulated flow, but significant volume changes

may occur due to seepage, evaporation and/or runoff events, and (iii) regular flow is

maintained resulting in substantial volume changes. These three conditions can be

addressed if it is assumed that ponds are continuously stirred tank reactors (CSTR) with

unsteady flow. Based on the energy balance equation for CSTR's (e.g., Benefield and

Randall, 1980; McDuffie, 1991) and previous pond temperature models (e.g., Velz, 1970;

Ryan and Stolzenbach, 1971; Fritz et al. 1980; Fig. 2.1), the following expression can be

used to describe heat changes in an aquaculture pond:



HiN

an (1)ws (1)e

He/V

Figure 2.1. Energy transfer processes affecting water temperature profiles in a pond
assumed to be a CSTR with unsteady flow. See text for explanation of the symbols.

dT H, He Om As

= - - voiPwCpwdt V V

where dT/dt = rate change of pond water temperature (°C d- I),Pw = density of water (kg

Cpw = heat capacity of water (kJ kg-1 °C -1), V = pond volume (m3), IL = influent heat

(kJ d-1), He = effluent heat (kJ d-1), d = pond depth (m), 0:1)net = interfacial heat transfer due

to various processes that occur at the pond surface (kJ m2 d-1), and Ovoi = heat changes

due to non-flow related volume variations (kJ 111-3 d). Influent and effluent heat fluxes

apply only when pond water is exchanged, either via source water supply or by pond

water discharge, and can be computed as follows:

Hi-= pw cpw Qi Ti
V
He

= Pw cpw Qe Te
V

where Q, = influent flow rate (m3 cl-/), Q, = effluent flow rate (m3 d-/), T1 = influent or

source water temperature (°C), and Te = effluent water temperature (°C). The change in

water temperature caused by non-flow related volume variations can be calculated

(1)
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following McDuffie (1991). Using his expression together with Equations 2 and 3, the

following ordinary differential equation can be derived from Equation 1 to obtain the rate

of temperature change in a pond:

dT QiTi net T (dV)
dt V V ID, d V dt

_ (4)

where dV/dt = rate change of pond volume (m3 d-i). Pond water temperature at any time

can be obtained by integration of Equation 4.

Heat transfer processes that are typically considered in the calculation of net for

ponds include the net short-wave solar radiation penetrating the water surface (0), net

atmospheric long-wave radiation (an), long-wave water surface or back radiation (Ows),

evaporative heat transfer (00, and conductive heat transfer (0c) (Ryan et al., 1974; Fritz et

al., 1980; Henderson-Sellers, 1984; Fig. 2.1). The general expression for One is given by:

Onet = sn 1)an (1)ws (1)e ± (1)c (5)

Energy gained or lost via precipitation is usually considered to be negligible

(Henderson-Sellers, 1984). Further, sensitivity analysis conducted by Losordo and

Piedrahita (1991) suggests that pond water temperatures are only marginally sensitive to

heat transfer between the water column and the underlying sediment; this process was

therefore assumed to be negligible in the current work.

Short-wave Solar Radiation

When short-wave (400-1100 nm) solar radiation (Os) strikes the water surface, part of

the energy is reflected and the remainder (i.e., Osn) penetrates the water surface (Fig. 2.1),

and is given by (Henderson-Sellers, 1984):

Osn =
1

(1 - As) (6)
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where As = short-wave reflectivity or albedo, which is a function of the solar altitude

angle, water surface and local atmospheric characteristics, and the surrounding

topography (Wetzel, 1983; Henderson-Sellers, 1984). According to the latter author, it is

sufficient to assume that As = 0.06 for daily mean calculations of

Net Long-wave Atmospheric Radiation

Any material with a temperature above the absolute zero emits radiation according to

the Stefan-Boltzmann fourth-power law (Henderson-Sellers, 1984). This law is used to

calculate the net long-wave atmospheric radiation into the pond ((pan) and the water

surface or back radiation losses (4s; see below) from the pond.

When solar radiation enters the atmosphere, a proportion of it is absorbed by clouds

and CO2, which reradiate this energy as long-wave radiation to the earth's surface. When

this incident long-wave atmospheric radiation reaches the water surface, a portion of it is

reflected back to the atmosphere. an is the difference between the incident and reflected

components of long-wave radiation, and can be approximated by (Henderson-Sellers,

1984):

4) an = (1 - r) Ea a Tak 4 (7)

where r = water surface reflectance to long-wave radiation (decimal fraction), La =

atmospheric emissivity (dimensionless), a = Stefan-Boltzmann constant (4.896 x 10-6 kJ

Trl-2 cl- I K-4), and Tak = absolute air temperature (°K). Water surface reflectance is

typically assumed to be 0.03 (e.g., Henderson-Sellers, 1984; Losordo and Piedrahita,

1991). Several empirical formulae have been proposed for atmospheric emissivity (see

Henderson-Sellers, 1984, p. 49). From this list, the formula developed by Swinbank

(1963) and subsequently modified by Wunderlich (1972) provided the best results in trial
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simulations. This formula, which accounts for the effects of cloud cover (Cc) is

expressed as follows:

Ea = 0.937 X 10-5X Tak2 (1 + 0.17 Cc2) (8)

Water Surface Radiation

Water surface radiation is the result of heat emission from pond water, and can be

estimated as follows (Henderson-Sellers, 1984):

OwsEw -r
wk

(9)

where ev,, = emissivity of water (approximately 0.97), and Twk = absolute water

temperature (°K).

Evaporative Heat Loss

Another component of the heat balance for pond water is the energy loss associated

with the process of evaporation (i.e., via the latent heat of vaporization). As indicated by

Losordo and Piedrahita (1991), evaporative heat losses from water bodies have been

exhaustively studied and several expressions are available to estimate such losses.

Although these authors reported that good estimates of 11)e could be obtained by the use of

expressions given by Fritz et al. (1980), our experience (see also Chapter 3) suggests that

more accurate evaporative heat and associated water loss estimates can be obtained using

the approach of Ryan et al. (1974). This is consistent with the observations of

Henderson-Sellers (1984). The formula developed by Ryan et al. (1974) is also the only

one that accounts for both mechanical (forced) heat removal as a result ofwind action,

and convective heat removal of water vapor which is a function of the air-water

temperature difference. The Ryan formula is expressed as follows:



= (es - ea) [A, (T- Tav)113 + 1710 u2]

where es = saturated vapor pressure at the current water temperature (mm Hg), ea = water

vapor pressure immediately above the pond surface (mm Hg), T,,,,, and Tay are the virtual

water and air temperatures respectively (°K), A. and bo are constants with values of 311.02

kJ m-2 d-i mmHg-1K° and 368.61 kJ 111-2 cri mmHg-1 (111.S-1)-1 respectively, and u2 =

wind velocity (m s-1) at a reference height of 2m above the pond water surface.

It should be noted that the convective heat removal component of Equation 10 is valid

only when Tw, is greater than Ta, (Ryan et al., 1974). Vapor pressures (es and ea in

Equation 10) can be approximated as follows (Troxler and Thrackston, 1977):

es = 25.37 exp[17.62
5271]

[ea = Rh x 25.37 exp 17.62 .- .-2711
Tak

where Rh = relative humidity (decimal fraction), Twk = absolute water temperature (°K)

and Tak = absolute air temperature (°K). The virtual water and air temperatures are given

by (Ryan et al., 1974):

Twv

Tav

where P = barometric pressure (mm Hg). According to Colt (1984), P can be

approximated from the site altitude as follows:

760
P 1 0z/19748.2

Twk

Twk

[1.0 - (0.378x es / P)

Tak

[1.0 - (0.378 x ea / P)

(12)

(15)
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where z = site altitude (m).

Conductive Heat Loss or Gain

Heat may be removed or added to pond water because of conduction between air and

the water surface, a process that also depends on the air-water temperature difference.

Conductive heat flux can be estimated as follows (Ryan et al., 1974):

= x 0.61 x 10-3p x (Twk Tak)

(es - ea)

Model Implementation

The water temperature model has been implemented in the decision support system

POND, a software that uses simulation models as the primary analysis tool for pond

aquaculture facilities (see also Chapter 1). These models are solved by the use of a

fourth-order Runge-Kutta integrator, which supports both daily and diurnal simulations of

variables such as water temperature.

Data Requirements

Use of the water temperature model for both daily and diurnal simulations requires a

considerable number of data inputs, which can be classified into site, pond, source water

and weather categories. The site data required include latitude, longitude and altitude.

Pond data that are needed include dimensions and initial water temperature.

Additionally, if water levels are routinely replenished in static ponds or if flow-through

conditions are maintained in the ponds, use of the model requires water inflow rates and

the temperature of the source water.

(16)

39



40

For seasonal-long simulations of daily pond water temperature, input weather data

required for the model include mean daily air temperature, short-wave solar radiation,

relative humidity, cloud cover and wind speed. When weather data are unavailable for

such simulations, they can be approximated by the use of the simple weather generator

described in Appendix I. Ideally, hourly measurements of weather variables are required

for diurnal simulations. However, due to the non-availability of such data and because

such frequent measurements of weather data are impractical under most conditions,

verification of the temperature model for diurnal simulations has involved the use of

reduced weather data inputs as documented below.

MODEL VERIFICATION

Verification of the water temperature model has been accomplished for four sites

(Table 2.1) maintained by the Pond Dynamics/Aquaculture Collaborative Research

Support Program (PD/A CRSP). Among the selected sites, those in Thailand (Table 2.1)

are located at low elevations, and are considered to be in the warm, humid tropics. The

El Carao station in Honduras is located in the dry tropics, and the Rwasave station in

Rwanda is a high elevation site in the tropics characterized by relatively cool air

temperatures (Table 2.1). Further details regarding these sites may be obtained from

Bowman and Clair (1996).

Weather data and pond information required for model verification were primarily

extracted from the aquaculture database maintained by the PD/A CRSP. Two sets of

model verifications namely seasonal-long simulations of mean daily pond temperature

(referred to as daily simulations) and one day simulations of diurnal water temperature

trends (diurnal simulations) were undertaken (Table 2.1). Diurnal trends were ignored in

the former set of simulation runs. Time steps of one day and one hour were used to solve

the model for daily and diurnal simulations respectively. Predicted and observed water

temperatures were compared by the use of the two sample t-test procedure (Zar, 1984).
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Table 2.1. Site and pond characteristics (including initial water temperatures) of four
PD/A CRSP sites used for model verification. Dates for diurnal and daily simulations are
also indicated (JD = Julian Day).

a Refers to the typical operating depth of the ponds. Although pond depths in all cases
varied over time due to water losses and gains, they were assumed to be constant for
seasonal long simulations of the mean daily water temperature.

b Refers to daily temperature simulations over a season.
C Refers to diurnal simulations that started at 0600h and lasted 24h.

Daily simulations are expected to be useful in planning or long-term farm

management applications (e.g., screening of potential sites for the culture of particular

fish species, use of water temperature as an input for forecasting fish yields, water

chemistry calculations, estimation of fertilizer and feed requirements, and economic

analysis). On the other hand, diurnal temperature simulations may be beneficial for short-

term management tasks (e.g., coupled with dissolved oxygen models to assess aeration

needs) or useful for research applications (e.g., analysis of short-term temperature

fluctuations on fish performance or plankton dynamics).

During the physical experiments undertaken by PD/A CRSP researchers, ponds at all

the sites were maintained at a more or less constant depths (Table 2.1) by periodic

Bang Sal
(Thailand)

AIT
(Thailand)

El Carao
Honduras

Rwasave
Rwanda

Latitude
Longitude

14°45' N
100032' E

14°41' N
100°29' E

14°26' N
87°41 W

2°40' S
29°45' E

Elevation (m) 5 5 583 1700

Pond size (m2) 220 380 1000 700
Deptha (m) 1 1 0.78 1.2

Year 1993b, 1988c 1991 1991-92b, 1989' 1989-90b, 1988'
Simulation time' (d) 222 140 122 159

Temperature (°C)
Daily simulation 28.7 (JD 15) 31.0 (JD 156) 26.1 (JD 252) 19.9 (JD 286)
Diurnal simulation 28.8 (JD 40) 28.8 (JD 296) 28.0 (JD 229) 22.0 (JD 323)
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replenishment of water lost via evaporation and seepage. For simplicity and because

source water temperatures were not routinely measured, the effects of these

replenishments on the pond heat balance were assumed to be negligible (i.e., inflow was

set to zero and ponds were assumed to have constant volumes).

Daily Simulations

For each of the four sites where seasonal-long simulations were conducted, water

temperature was predicted by the use of both data from actual weather records (RW), as

well as generated weather (GW) data obtained from the weather model in POND. Solar

radiation and air temperature values are generated in the weather model following

Wunderlich (1972) and Straskraba and Gnauck (1985) respectively (see also Appendix I).

For simplicity, the weather model assumes that cloud cover, relative humidity and wind

speed are constant for the period simulated, and that they correspond to the mean of data

recorded for the season simulated (if such data are available).

predicted values were compared to water temperature measurements reported in the

PD/A CRSP database. For the Bang Sai site, observed water temperature refers to the

average value of daily measurements made at three depths in the pond water column.

Water samples at this site were collected during mid-morning hours. For the Rwasave

site, 'observed' water temperature refers to the mean of two depth-averaged daily

measurements, typically collected at 0700h and 1600h. For the AIT and El Carao sites,

complete datasets were available only for diurnal measurements of water temperature

recorded at three depths. These measurements were recorded at one week intervals for El

Carao and two week intervals for AIT. 'Observed' daily water temperature for these two

sites refers to the mean values of diurnal water temperatures recorded at the three depths,

which were averaged once again to arrive at a single value for the overall pond water

column



A comprehensive weather dataset (short-wave solar radiation, cloud cover, air

temperature, relative humidity, and wind speed) was available only for the AIT site,

where daily measurements were made by the use of an international standard weather

station located next to the ponds (C.K.Lin, Asian Institute of Technology, personal

commn.). Daily mean air temperature was assumed to be the average of the daily

minimum and maximum values. Cloud cover data at this site were reported in oktas,

which were converted to decimal fractions following FAO guidelines (FAO, 1977).

Measured weather data for use in the seasonal-long RW simulations at the other three

sites were primarily retrieved from the PD/A CRSP database. Missing points in these

datasets were estimated by linear interpolation. Daily mean air temperature was again

assumed to be the average of minimum and maximum air temperatures. Although

measurement of Os is not a requirement of the PD/A CRSP data collection protocol, daily

photosynthetically active radiation (PAR; E m2 d-1) of wavelength 400-700 nm is

measured. For the Bang Sai and Rwasave sites, PAR measurements were converted to 4:Is

estimates by multiplication with a factor of 505.67. This conversion factor is based on

the assumption that 1 E 217.44 J of energy, and that only 43% of the overall radiation is

photosynthetically active (Withrow and Withrow, 1956). For El Carao, PAR

measurements were converted to Os by the use of an empirical relationship developed for

this site (Piedrahita and Teichert-Coddington, 1993).

Relative humidity and cloud cover measurements are not a requirement of the PD/A

CRSP data collection protocol. Because the Bang Sai site is located close to AIT and has

similar weather characteristics, daily cloud cover (in oktas) and Rh data collected at the

latter site were used for the RW simulations. Cloud cover data were converted to decimal

fractions as indicated for the AIT site above. For El Carao and Rwasave, we used mean

monthly Rh estimates from weather stations in the vicinity of these sites as archived in an

FAO agroclimatic database (FAO, 1995). For the GW simulations, Rh was set to the

average value estimated from the above sources. These values corresponded to 73.7,

73.1, 74.3 and 76.3% for Bang Sai, AIT, El Carao and Rwasave respectively. Because
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short-wave solar radiation values were already estimated (from PAR measurements) in

the RW simulations, cloud cover data were only required to estimate atmospheric

emissivity (Equation 8). Calibration runs indicated that a value of 0.75 for cloud cover

(indicating broken cloud cover conditions) was adequate for El Carao and Rwasave.

For the OW simulations, cloud cover data are also needed to approximate the daily

incident short-wave solar radiation (see Appendix I). For both AIT and Bang Sal, the

mean Cc of 0.5 (indicating scattered cloud cover conditions) from the observed values

was used in GW simulations. For El Carao and Rwanda, it was necessary to indirectly

estimate an appropriate value of Cc by comparing observed PAR values (after conversion

to short-wave solar radiation estimates) to those predicted by the use of the POND

weather model (Appendix I). This calibration process again suggested that setting Cc =

0.75 was adequate for these two sites. Finally, RW simulations used wind speed data

recorded in the PD/A CRSP database. The overall mean wind speed estimated from these

data were used for the GW simulations. These means were 1.47, 1.19, 2.32 and 0.93
-1m s for Bang Sai, AIT, El Carao and Rwasave respectively.

Diurnal Simulations

Sources identical to those described above for daily simulations were used to obtain

data for verification of diurnal simulations at the four PD/A CRSP sites. However, model

verification was accomplished by the use of recorded weather data only. It was necessary

to perform additional calculations to arrive at hourly air temperature and short-wave solar

radiation values. The sinusoidal function developed by Card et al. (1976) was used to

estimate hourly air temperatures under the assumption that the daily minimum and

maximum temperatures (recorded in the PD/A CRSP database) occurred at 0600h and

1500h respectively (Culberson and Piedrahita, 1992; see also Appendix I). Similarly, the

function given by Monteith (1973; Appendix I) was used to estimate hourly radiation

values from daily total short-wave insolation estimates.



Sensitivity Analysis

It is often desirable to know model sensitivity to input data. Such sensitivity analyses

are useful to assess and modify data collection protocols, and often lead to improvements

in model structure and predictive capabilities. The water temperature model developed in

the current study was subjected to a generalized sensitivity analysis with regard to input

weather data, particularly because water temperature profiles are sensitive to these

variables (e.g., Losordo and Piedrahita, 1991). This analysis was accomplished for both

daily and diurnal simulations by a +10% adjustment in the values of the recorded weather

data. Simulation results from these multiple runs were compared to model output

(referred to as the base runs) generated by the use of the original weather dataset. Other

simulation conditions were as described above (see also Table 2.1). Sensitivity analysis

was performed only for the Bang Sai and AIT sites, where more or less complete weather

records were available.

For all the sensitivity analysis scenarios described above, absolute changes in model

output were summarized in terms of the average shift in water temperature with respect to

the change in each of the input (I) weather variables (i.e., AT/AI). Dimensions of the

weather variables were chosen to enable easy interpretation of the results. Thus, instead

of expressing AT for a 10% change in air temperature, sensitivity analysis results were

summarized in terms of AT for a one degree change in air temperature. Finally, in order

to rank the weather variables on the basis of the magnitude of their effects on model

output, relative sensitivities (RS) were also calculated as follows:

ATr riTw

RS

where: Tn,,,, = mean water temperature (°C) for the base run, and In, = mean value of the

weather variable in the original dataset.

(17)
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RESULTS AND DISCUSSION

Simulation results for daily and diurnal simulations at the five sites are summarized in

Table 2.2 and discussed in detail below.

Daily Simulations

Temperatures predicted from RW simulations and observed water temperatures were

not significantly different (P> 0.05) for all the four sites (Table 2.2; Figs. 2.2-2.5).

Observed water and air temperatures (data not shown) tended to have similar profiles at

all the sites. Water temperatures predicted by the use of the weather model were

significantly different from observed values at the AIT and Rwasave sites (Table 2.2; see

also Figs. 2.3 and 2.5). The discontinuities at the beginning of the simulation results for

the GW runs at Bang Sai (Fig. 2.2), El Carao (Fig. 2.4) and Rwasave (Fig. 2.5) are an

artifact of initial conditions (i.e., observed water temperatures) used in the simulations.

The temperatures used to initiate these simulations were either higher (as in Bang Sal) or

lower (as in El Cara° and Rwasave) than the equilibrium water temperatures resulting

from the use of data generated by the POND weather model.

For both Bang Sai and AIT, the RW predictions accurately followed patterns of the

observed temperatures (Figs. 2.2 and 2.3). However, at both sites, the model appeared to

slightly under-predict temperatures (see also Table 2.2). For the AIT site where diurnal

measurements were used to estimate 'observed' daily mean temperatures (as indicated

earlier), large discrepancies in model predictions tended to occur on the days when ponds

were severely stratified, and surface water temperatures exceeded 35°C for part of the

diurnal period. Presumably, similar conditions occurred in the Bang Sai ponds as well.

Under such circumstances, it is debatable whether averaging temperatures over both time
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Table 2.2. Summary of results obtained with the water temperature model at four PD/A
CRSP sites. For daily simulations, the results are reported in terms of the means and
standard deviations (SD) of the observed and predicted temperatures (obtained from both
RW and GW simulation runs). For diurnal simulations, the mean and range of deviations
between observed and predicted values are indicated.

Predicted mean calculated for the days when observed temperatures were available.
2 Refers to the mean difference between predicted and observed temperatures.
3 Refers to the lower limit of the deviation between predicted and observed temperatures.
4 Refers to the upper limit of the deviation between predicted and observed temperatures.

Observed and predicted temperatures not significantly different at the 0.05 alpha level.
Observed and predicted temperatures significantly different at the 0.05 alpha level.

Bang Sai
(Thailand)

AIT
(Thailand)

El Carao
(Honduras)

Rwasave
(Rwanda)

Daily Simulations
Observed mean 28.56 29.96 25.21 22.37

SD 1.73 0.52 2.06 1.01

RW Runs
Predicted meanl 28.02" 29.66 25.42" 22.05'
SD 1.43 0.66 2.74 1.13

GW Runs
Predicted mean 28.18' 31.57s 25.51ns 22.96s

SD 1.66 0.58 1.42 0.31

Diurnal Simulations
Deviations

Mean2 0.01' 0.06" 41.07ns 0.01ns
Minimum3 0.55 0.39 0.67 0.29
Maximum4 0.23 0.47 0.37 0.92
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Figure 2.2. Daily pond water temperatures predicted by the use of recorded (RW) and

generated (OW) weather data for Bang Sai.
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Figure 2.3. Daily pond water temperatures predicted by the use of recorded (RW) and

generated (OW) weather data for AIT.
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Figure 2.4. Daily pond water temperatures predicted by the use of recorded (RW) and

generated (GW) weather data for El Carao.
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Figure 2.5. Daily pond water temperatures predicted by the use of recorded (RW) and
generated (GW) weather data for Rwasave.
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and pond depth as was done for Arr results in values that are representative of the daily

mean temperature for the overall water column.

RW temperature predictions for El Carao (Fig. 2.4) and Rwasave (Fig. 2.5) were also

relatively comparable to observed values, although the deviations over the course of the

simulations were fairly high, particularly for El Carao (Table 2.2). For Rwasave,

differences between RW predicted and observed water temperatures may have been

caused by the lack of daily cloud cover and relative humidity data. As indicated earlier, a

constant cloud cover value (0.75) and monthly relative humidity estimates were assumed.

Model discrepancies at this site may also be due in part to the use of daily mean air

temperatures to estimate evaporative and conductive heat fluxes. As indicated earlier, the

daily simulations ignored diurnal trends in variables such as air temperature. This

assumption may not have resulted in substantial errors for sites such as Bang Sal, MT and

El Carao where the average difference (i.e., amplitude) between daily minimum and

maximum air temperatures was about 10-11°C. On the other hand, the high-elevation

Rwasave site experienced average daily air temperature amplitudes of over 15°C with a

seasonal range of 7-21°C. Thus, the use of daily mean air temperature values at such

sites may not result in adequately accurate estimates of energy fluxes (e.g., evaporation)

that are dependent on this variable, particularly on days when the air temperature

amplitude is high. This problem may be circumvented by the use of diurnal simulations

for seasonal-long periods. However, such simulations are computation-intensive, and

more importantly, the benefits of diurnal simulations are unlikely to be fully realized

without the additional availability of cloud cover and relative humidity measurements.

Reasons for the fairly high deviations between RW predictions and observed

temperatures at El Carao may be caused by several factors. Firstly, the weather datasets

for this site were the least comprehensive among all the tested sites, not only from the

perspective of the lack of daily cloud cover and relative humidity data, but also because

apart from short-wave solar radiation, there were several missing points for the other

weather variables which were replaced by estimates obtained by interpolation. Another
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possible explanation for the above deviations is that the El Carao pond was shallower

than the other ponds simulated (Table 2.1). The water temperature model used in this

study assumes fully mixed conditions so that the various energy transfer processes are

also assumed to be effective across the entire pond water column. In reality, many of

these processes (e.g., radiation, evaporation) principally impact the surface water layer.

Stratified pond temperature models which assume the pond water column to be composed

of distinct horizontal segments (e.g., Losordo and Piedrahita, 1991; Culberson and

Piedrahita, 1992) perhaps better account for the effects of such processes by performing

the relevant energy transfer calculations for the surface water segment only. For shallow

ponds such as those at El Carao, it is possible that the water temperature model used here

may tend to cause day-to-day trends in the predicted daily temperatures to be more

pronounced than the actual pond temperature profiles (Fig. 2.4).

It is interesting to note that although El Carao and the Thailand sites are located at

similar latitudes (Table 2.1), water temperatures at the former location were lower than

those at Thailand by an average of about 4°C (Table 2.2). Presumably, this is the result of

the higher altitude of the El Carao station (Table 2.1) as well as the surrounding

mountainous terrain (Bowman and Clair, 1996).

Compared to the results of the RW simulations, GW predictions were less accurate

for all the four sites, particularly in terms of the general trends in seasonal water

temperature profiles (Figs. 2.2-2.5). This was particularly true for AIT where GW

predicted temperatures always exceeded observed values (Fig. 2.3; Table 2.2). These

discrepancies appear to be related to inadequately accurate predictions of daily air

temperature and/or short-wave solar radiation values by the POND weather generator at

the different sites.

At Bang Sai, the GW predicted water temperatures were lower than observed values

(Fig. 2.2; Table 2.2), presumably because the air temperature values generated by the

POND weather generator were lower than the observed values by an average of 0.8°C

over the course of the simulation period. The predicted water temperature profile also
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closely followed trends in the air temperature estimates generated by the POND weather

model. Measured air temperatures tended to lag behind these estimates. Generated daily

short-wave insolation values were, however, comparable to observed values.

At AIT, generated values for both air temperature and short-wave insolation were

higher than the observed values. However, as was the case for Bang Sai, the former

variable appeared to be the main reason for the poor GW predictions of water temperature

(Table 2.2), because the overall mean of the predicted daily air temperatures (29.9°C)

substantially exceeded the mean of the observed values (27.7°C). Further, the predicted

water temperature profile (Fig. 2.3) closely matched the seasonal air temperature profile

predicted by the POND weather generator.

GW predicted water temperatures tended to slightly exceed observed values at El

Carao as well (Fig. 2.4; Table 2.2), apparently because predicted air temperatures

exceeded observed values by an average of about 0.5°C. Mean short-wave insolation

estimates from the POND weather generator at this site were, however, comparable to

values obtained from PAR measurements. Finally, at Rwasave, higher short-wave

insolation estimates presumably caused the GW predicted water temperatures to exceed

observed values by about 0.6°C on average (Fig. 2.5; Table 2.2). Predicted short-wave

insolation values exceeded those obtained from PAR measurements by about 3700 kJ M-2

over the course of the simulation. In contrast to the results for the other three sites,

mean predicted (20.9°C) and observed (20.8°C) air temperatures were very comparable

for this location.

Results of the GW simulations suggest that improvements in water temperature

predictions via the use of the POND weather generator will likely require more accurate

methods of estimating air temperature and short-wave solar radiation. Use of more

sophisticated weather generators (e.g., Richardson and Wright, 1984; Geng et al., 1988)

may enable this goal to be achieved. On the other hand, with the exception of the AIT

site (Fig. 2.3), GW temperature predictions were perhaps accurate enough for most long-
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term planning applications. Further, the POND weather generator is easy to use, and

should be beneficial in the preliminary analysis of water temperature profiles at locations

for which complete weather datasets are either not available or not readily accessible.

The POND weather generator has, for example, been used to generate water temperature

profiles for Latin America which were in turn used to estimate potential fish yields for the

inland regions of the continent (Kapetsky and Nath, in prep.).

Diurnal Simulations

Predicted water temperature profiles over diurnal periods were consistent with

observed temperatures at all the four sites where the model was tested (Figs. 2.6-2.9;

Table 2.2). Differences between predicted and observed temperatures were also not

significant (P> 0.05). For the Bang Sai and AIT sites in Thailand, deviations between

predicted and observed temperatures were approximately in the range of + 0.5°C (Figs.

2.6 and 2.7; Table 2.2). This degree of accuracy is likely to be adequate for most

management and research applications where routine estimates of diurnal water

temperatures are required.

Deviations between predicted and observed values at El Carao and Rwasave were

higher than those for the Thailand sites (Figs. 2.8 and 2.9; Table 2.2), and were

presumably caused by the same factors previously discussed in the section on daily

simulations. The model also predicted a much higher water temperature for Rwasave at

0930h (Fig. 2.9), a discrepancy that may in part be due to the assumption of symmetrical

diurnal distributions for air temperature and short-wave solar radiation. A tendency for

the model to consistently under-predict water temperatures towards the end of the 24h

simulation period is noticeable for the Bang Sai, AIT and El Carao sites (Figs. 2.6-2.8),

and may also be related to the assumptions of a constant cloud cover, relative humidity
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and wind speed over the course of a day. These variables do show pronounced diurnal

trends that were ignored in the analysis. From a practical standpoint, it is unlikely that

diurnal measurements of such variables can be justified in terms of the additional cost and

effort. Model discrepancies may possibly be related to the assumption of fully mixed

conditions in the ponds as well. For diurnal simulations lasting about one day, these

discrepancies are unlikely to be a cause for concern. However, if such simulations are

conducted over longer time periods (e.g., one week or more), it is possible that the

cumulative errors may be fairly substantial.

Sensitivity Analysis

Water temperatures generated from daily simulations were most sensitive to mean air

temperature, followed by relative humidity, short-wave solar radiation, cloud cover, and

wind speed (Table 2.3). This ranking of model sensitivity towards the weather variables

for daily simulations was identical at both Bang Sat and AIT, although there were some

differences in the magnitude of the sensitivities between the two sites (Table 2.3). For

diurnal simulations at both sites, the ranking of model sensitivity was similar, with the

exception that the sensitivity of water temperatures to wind speed was marginally higher

than that for cloud cover (Table 2.3). Further, sensitivity of model output towards all the

input weather variables was lower in the diurnal simulations compared to seasonal long

daily simulations. Direct comparison of these two sets of simulations is, however, not

strictly valid because the daily runs ignored diurnal trends and were conducted for several

months (Table 2.1), whereas the diurnal simulations lasted only 24h.

The generally high sensitivity of model predictions to air temperature is not surprising

because both seasonal and diurnal profiles of water and air temperatures in shallow static

ponds are closely correlated (e.g., Wax et al., 1987; Losordo and Piedrahita, 1991;

Kapetsky, 1994). However, the comparatively low sensitivity of model response to
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Table 2.3. Relative (RS) and absolute (AS) sensitivities of water temperature model
output to a +10% change in the values of input weather variables for daily and diurnal
simulations. The units for AS with regard to air temperature (Ta), relative humidity (Rh),
short-wave solar radiation (O.), cloud cover (Cc) and wind speed (u2) respectively are:
°C/°C, °C/%, °C/MJ 111-2 IT I , °C/tenth, and °C/m Negative values indicate that water
temperature decreases with an increase in the value of the input weather variable.

changes in Om is somewhat surprising because this variable varies substantially from day

to day according to atmospheric conditions (Henderson-Sellers, 1984). Moreover,

previously developed pond water temperature models (e.g., Fritz et al., 1980; Krant et al.,

1982; Losordo, 1988) are apparently quite sensitive to (1),. Results of the sensitivity

analysis in the current study, however, indirectly suggest that both daily mean as well as

diurnal water temperatures are closely related to evaporative heat flux, which is

predominantly a function of ambient air temperature, relative humidity and wind speed

(see Equations 10-14). These results also suggest that weather data collection protocols

for aquaculture facilities such as those established by the PD/A CRSP should include

routine measurements of relative humidity in addition to variables that are already

measured. It may also be useful to measure daily cloud cover if more accurate predictions

of water temperature are desired. Availability of comprehensive weather datasets will

Bang Sai AIT
RS AS RS AS

Daily Simulations
Ta 0.959 0.942 0.788 0.855

Rh 0.210 0.080 0.204 0.084

4)sn 0.091 0.308 0.149 0.295

C, 0.045 0.244 0.063 0.268

U2 -0.038 -0.701 -0.053 -1.324

Diurnal Simulations
Ta 0.379 0.391 0.677 0.618

Rh 0.085 0.036 0.157 0.061

Osn 0.083 0.173 0.115 0.264

U2 -0.021 -0.634 -0.036 -1.340
Cc 0.004 0.050 0.024 0.142
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likely be of use in improving water temperature predictions, and enabling better estimates

of water requirements for pond aquaculture (see also Chapter 3). Moreover, if such

datasets are collected over long time periods (i.e., several years), they may ultimately find

use in the refinement and parameterization of stochastic weather generators.

CONCLUSIONS

The water temperature model developed in this study has been verified for

geographically distinct sites. In general, the model predicts daily water temperature

profiles over long-term periods with a reasonable degree of accuracy at all the sites,

especially when actual weather data are used as inputs. These results suggest that the

model is relatively robust, and should therefore be useful for applications such as

regional-scale assessment of aquaculture potential for species with different temperature

preferenda, as well as in other planning and management tasks (e.g., estimation of feed

requirements and water quality management) where seasonal-long temperature

predictions are needed. However, the model may exaggerate trends in daily mean water

temperature for sites with shallow ponds (<0.8m in depth) or where there are large

differences (>15°C) between daily maximum and minimum air temperatures. It is

advisable to compare predicted and measured pond temperatures at individual locations

to gauge whether the POND weather generator may be used for seasonal-long simulations

in lieu of routine measurements of weather variables.

Simulations of diurnal water temperature profiles for short-term periods at different

sites consistently resulted in good agreement between predicted and observed

temperatures. However, a tendency for lower water temperatures towards the end of the

simulation period was observed. It would be interesting to examine whether this

tendency leads to larger errors over longer simulation periods (e.g., one week or more).

More frequent water temperature measurements would, however, be necessary for such

validation exercises. For experimental sites such as those operated by the PD/A CRSP
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(where routine water quality data collection occurs), this could be achieved by the use of

temperature sensors attached to automatic data loggers (as in Losordo et al., 1988).

Diurnal temperature projections will probably be most beneficial in systems models

(designed to understand and analyze the dynamics of ponds), where temperature is likely

to be one of many state variables.

Sensitivity analyses indicate that the water temperature model is most sensitive to air

temperature, relative humidity and short-wave solar radiation. Therefore, increased

accuracy in water temperature projections can be expected when measurements of at least

these three weather variables are available as input to the model.



CHAPTER 3

A WATER BUDGET MODEL FOR POND AQUACULTURE
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ABSTRACT

Previous water budget studies for aquaculture ponds have involved the identification

and measurement of different water sources and sinks, but the methodology used in these

studies has not been synthesized in the form of a general purpose tool for forecasting

pond water requirements. The development of a water budget simulation model for

aquaculture ponds is the focus of this study. Water gains considered in the model include

regulated inflow, precipitation and runoff, whereas water losses include evaporation,

seepage, effluent discharge, and overflow. The model has been validated for ponds

located at the Asian Institute of Technology (AIT), Thailand and at El Carao, Honduras

which are respectively located in the humid and dry tropics. Simulation results indicate

that precipitation accounted for 69.8% of the total water gains for AIT and 43.2% for El

Carao. Similarly, regulated inflow provide 27% of the gains for AIT and 52.8% for El

Carao. Runoff gains were minimal at both locations, presumably a result of small

watershed areas. Evaporation accounted for 54.9% and 40.1% of the overall water loss

predicted for the AIT and El Carao locations, whereas seepage accounted for the

remaining loss. The difference between actual and predicted amounts of regulated water

inflow for the AIT pond was only 20.3 m3 over a simulation period lasting five months.

For El Carao, predicted water requirements were 141.3 m3 lower than the amounts

actually added, apparently due to poor estimates of evaporative water loss which averaged

0.32 cm c1-1 compared to pan evaporative measurements of 0.43 cm (1-1. In contrast, the

predicted evaporative water loss for the AIT pond (0.47 cm d-1) was comparable to the

pan evaporation estimate of (0.45 cm d1) for this site. More complete weather datasets

for AIT compared to El Carao appear to explain the higher accuracy in evaporative water

loss estimates for the former site. If such comprehensive weather datasets are available

for different locations, the water budget model shows considerable potential for the

estimation of pond water requirements at individual facilities as well as over larger

regions. The model can also be used as a tool to compare the benefits of water use for

aquaculture relative to other agricultural practices.
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INTRODUCTION

Development of pond water budgets is important from the perspectives of estimating

water requirements for ponds that rely on rainfall events and runoff as primary water

sources (Boyd, 1982), and for flow-through pond facilities (which mainly use levee

ponds). Such budgets are also useful in assessing whether a potential or existing source

will meet the projected water demand of aquaculture facilities. Water budget analysis

may also be useful in comparing the value of available water for different agricultural

crops as suggested by Green and Boyd (1995), and may have implications for examining

the environmental effects of pond water discharge either by intended water release or

overflow.

Although various research efforts have focused on developing water budgets for

different pond aquaculture systems (e.g., Szumiec, 1979a; Boyd, 1982; Teichert-

Coddington et al., 1988; Green and Boyd, 1995), the general methodology used in these

studies has not been synthesized in the form of a model that can be easily adapted to new

locations as a general purpose tool for forecasting water budgets over long-term periods.

The focus of the research presented in this paper is on the implementation and validation

of a water budget model that can be used for short- and long-term assessment of pond

water requirements at locations with different weather, soil and watershed characteristics.

MODEL STRUCTURE

Sources of water into a pond include regulated inflow (Q;), precipitation on the pond

surface (P), and runoff from the watershed area around a pond (R) (Boyd, 1982). For

many levee ponds, the latter source may be negligible. Water sinks include regulated

water discharge (Q.), overflow (0), and evaporation (E) (Boyd, 1982). Water seepage (S)

may occasionally be a source of water (e.g., for ponds constructed in areas with a high
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water table), although it is typically considered as a loss term. Typical pond water

sources and sinks are summarized in Figure 3.1. The differential equation that expresses

the change in pond volume over time (dV/dt; m3 d-i) can be expressed as:

dV
= Qi + P + R Q0 -0-E+S

r:

Seepage

(1)

d
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Figure 3.1. Schematic diagram showing typical water sources and sinks for an
aquaculture pond. dmin and d. respectively refer to the minimum desired and maximum
possible pond water depth.

Regulated Inflow

Pond water inflow may be either intermittent (e.g., when adequate water is supplied to

maintain a desired pond depth) or continous (e.g., a flow-through pond). In the latter

situation, the influent rate (L.; % pond volume per day) is assumed to be a known factor

and Qi is calculated as:

Influent/Effluent Evaporation Precipitation Runoff

Overflow



x V
100

Estimation of the water needed to maintain a minimum pond depth (dmin; m) requires

calculation of water sink and source terms other than Qi in Equation 1. Re-arrangement

of this equation provides an estimate of the net water demand (Nwd):

Nwd = (Q0 + 0 + E ± S) - (P + R) (3)

A negative value for Nwd indicates that the pond water sources exceed the sink terms (i.e.,

the water level is in the range depicted by the stippled area in Fig. 3.1), in which case

water addition is not required and Qi is set to zero. However, a positive value for Nwd

indicates that it may be necessary to add sufficient water to ensure that the pond is

maintained at dmm (because the current water depth dcuff < dmm). For the latter situation

is approximated by:

A (dmin dcurr)
Qi

dt

where A = surface area of the pond at the current water level (m2) and dcu,, = current pond

depth (m). Equation 4 may tend to slightly over-estimate the amount of water required

for ponds that have a sloped levee because it assumes that the slice of water

corresponding to the difference between dcm, and dinin is rectangular rather than

trapezoidal in shape. This is evident in Figure 3.1 if it is assumed that dcurr = dmax.

However, this error will likely be negligible except in very small ponds that have shallow

slopes and substantial flux in water levels.

(4)
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Precipitation

Water gain from rainfall falling on the pond surface can be calculated from

precipitation data for a given location as follows:

A pp d

1000

where pd is the daily rainfall (mm d-1).

Runoff

Hydrological methods that are commonly used in aquaculture for estimating runoff

have been presented by Yoo and Boyd (1994). According to these authors, the curve

number method developed by the U.S. Soil Conservation Service (SCS) (1972) offers a

simple procedure for estimating runoff from ungauged watersheds. The method involves

assessment of the antecedent soil moisture, hydrologic soil group, land use and

hydrologic condition for a given location. The SCS developed a series of curves that

relate combinations of the above factors with the expected runoff given the amount of

rainfall produced by a storm. Curve numbers (CN) for different combinations of soil,

land use and hydrologic conditions have been tabulated by the SCS (see also Yoo and

Boyd, 1994). The SCS equation for the maximum watershed retention (wr; mm d-1) is as

follows:

wr - 10) x 25.4
(1000

CN
(6)
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Combining the SCS equation that relates runoff and rainfall depths with the effective

watershed area (W; m2) around a pond results in the following empirical equation for the

amount of daily runoff (m3 d-1):

R = W

Regulated Water Discharge

Pond water may be discharged continually (e.g., in a flow-through pond) or

intermittently (e.g., at harvest time or to alleviate poor water quality). The latter situation

is difficult to assess a priori and is therefore not considered in the present model.

However, if the rate at which effluent is released from a pond (Er; % pond volume per

day) is known, Q0 can be calculated as:

Er x V (8)
100

Overflow

Pond water overflow occurs when the water level exceeds the maximum depth for the

pond basin (Fig. 3.1), a situation that typically depends on the depth of the drain pipe.

Overflow can be calculated as follows:

0 A (cic dff,a.)

dt
(9)

i,
03'd - 0.2 Wr)2 1

1 X
Pd + 0.8 wr 1000

)

(7)
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As in the case for influent water requirements (Equation 4), the above equation may also

tend to slightly over-estimate the amount of water lost by overflow, because the slice of

water corresponding to the difference between dcurr and dmax (Fig. 3.1) is assumed to be

rectangular rather than trapezoidal in shape. However, this error is probably negligible

except in very small ponds that have a sudden increase in water depth. Another

assumption implicit in Equation 9 is that excess water completely overflows within the

time step dt.

Seepage

Pond water loss or gain by seepage depends primarily on the soil porosity, methods

used for pond construction, structural changes that have occurred to the pond basin over

time, and pond management practices (Boyd, 1982; Teichert-Coddington et al., 1989). If

the daily seepage rate (sr; mm d-1) for the soil is known, S can be simply approximated as:

s _
A s, (10)
1000

Note that in Equation 10, the surface area of the pond at the current water level is used to

estimate seepage losses. This is a simplified assumption to avoid estimation of the actual

area (i.e., pond bottoms and sides) from which seepage may occur. The use of a constant

Sr value in Equation 10 for long-term simulations is somewhat questionable because pond

seepage rates do vary substantially with time, particularly during rainy seasons when

rainwater infiltrates ponds via the dikes resulting in lower net seepage rates (Boyd, 1982).

This is also evident in the results of Green and Boyd (1995) who reported a 25%

reduction in daily mean seepage rates between rainy and dry seasons for the El Carao

ponds. During trial simulations, we observed higher than expected seepage losses for

both the El Carao and AIT ponds. However, more consistent results were obtained when
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seepage losses calculated by the use of Equation 10 were reduced by 25% during rainfall

events.

Evaporation

Significant amounts of water can be lost from ponds via evaporation (Thornwaite and

Holzman, 1939; Hounam, 1973; Szumiec, 1979). Evaporative water losses are primarily

a function of ambient air temperature, relative humidity and wind velocity, and several

empirical equations based on mass transfer concepts have been developed to estimate

evaporative water losses (Hjelmfelt and Cassidy, 1975). Use of these equations results in

very different evaporative water loss estimates for identical conditions (Yoo and Boyd,

1994). Gray (1970) has demonstrated the use of thermal budgets to estimate evaporative

heat losses from water bodies. Although Yoo and Boyd (1994) argue that such an

approach is too complicated for practical applications in aquaculture, it was decided in

this study to use estimates of evaporative loss obtained from pond thermal budgets. This

was because such a budget was developed in a parallel study to predict water temperature

in static as well as flow-through ponds (see also Chapter 2). From this thermal budget, is

convenient to estimate water loss by evaporation as follows:

E PL
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where 0.= evaporative heat loss (kJ 111-2 d-I), pw = water density (kg m-3) and L = latent

heat of vaporization of water (kJ kg- /). Among aquacultural researchers, it is

conventional to express evaporative water loss in terms of the daily decrease in pond

depth, which can be obtained by neglecting A in Equation 11 and converting the resulting

value (m d-i) into appropriate units (e.g., mm d-1).

Evaporative heat losses have been exhaustively studied in shallow water bodies and

several expressions derived from the original work of Dalton (1802) are available to

estimate such losses (Henderson-Sellers, 1984). Although Losordo and Piedrahita (1991)

reported that good estimates of (pe resulted from the use of expressions given by Fritz et

al. (1980), our experience suggests that more accurate evaporative heat and associated

water loss estimates can be obtained using the approach of Ryan et al. (1974; see model

verification section below). This is consistent with the observations of Henderson-Sellers

(1984). The formula developed by Ryan et al. (1974) is also the only one that accounts

for both mechanical (forced) heat removal as a result of wind action, and convective heat

removal which is a function of the air-water temperature difference. The Ryan formula

for 0, is as follows:

= (es - ea) [X, (Twv- Tav)113 + b0

where es = saturated vapor pressure at the current water temperature (mm Hg), ea = water

vapor pressure immediately above the pond surface (mm Hg), Twv and Tav are the virtual

water and air temperatures respectively (°K), X, and b0 are constants with values of 311.02

kJ m2 d mmHg -I K-113 and 368.61 kJ rr1-2 (I-I mmHg-I (m s-I)-1 respectively, and ti/ =

wind velocity (m s-I) at a reference height of 2m.



es = 25.37 exp[17.62
5271]

ea = Rh X 25.37 exp[17.62
52711-
Tak

where Rh = relative humidity (decimal fraction), Twk = absolute water temperature (°K)

and Tak = absolute air temperature (°K).

The virtual water and air temperatures are given by (Ryan et al., 1974):

Twv =

Ts,

where z = site altitude (m).

Twk

[1.0 - (0.378 x es/ P)L

Tak

J1.0 - (0.378 x ea / P)},

(15)

(16)

where P = barometric pressure (mm Hg). According to Colt (1984), P can be estimated

from the site altitude as follows:

760
P oz/19748.2
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It should be noted that the conductive heat removal component of Equation 12 is valid

only when Twv is greater than Tav (Ryan et al., 1974). Vapor pressures (es and ea in

Equation 12) can be approximated as follows (Troxler and Thrackston, 1977):

(17)

(
Twk



Model Implementation and Data Requirements

The water budget model has been implemented in the decision support system POND,

a software that is oriented towards the use of simulationmodels for management and

planning applications in pond aquaculture (see also Chapter 1). Simulation models in

POND are solved by the use of a fourth-order Runge-Kutta integrator.

Daily weather data required for the water budget model include air temperature,

precipitation, relative humidity and wind speed. Pond-related data that are required

include pond dimensions, minimum and maximum water depths, watershed areadraining

into the pond, average seepage rates, and water temperature. For flow-through ponds,

daily influent and effluent rates are also required, whereas only regulated inflow amounts

are necessary for ponds maintained at more or less steady state volumes.

MODEL VERIFICATION

The water budget model outlined above has been tested by the use of the POND

software for two shallow earthen ponds at the Asian Institute of Technology (AIT),

Bangkok, Thailand (14°41' N, 100029' E, 5 m above MSL) and the El Carao National Fish

Culture Research Center, Comayagua, Honduras (14026' N, 87°41 W, 583 m above MSL).

These ponds were maintained as part of the research activities of the Pond

Dynamics/Aquaculture Collaborative Research Support Program (PD/A CRSP). Model

verification was accomplished from May 30 to October 31, 1991 for AIT, and from

September 1, 1990 to January 2, 1991 for El Carao. Simulation trials were conducted to

estimate pond water sinks and sources at both locations, and to determine net water

demand required to maintain the ponds at or above the minimum water depth for the

overall period of simulation. A time step of one day was used for both simulations.
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Data Sources

Sources for weather and pond data were as described below.

Weather data

For the AIT site, daily weather data (air temperature, precipitation, relative humidity

and wind speed) recorded at an international standard weather station located next to the

ponds were used as inputs to the water budget model (C.K.Lin, Asian Institute of

Technology, personal communication). For the El Cara° site, weather data reported in

the centralized database of the PD/A CRSP were used as model inputs. However, the

datasets for this site did not include relative humidity measurements because this variable

is not included in routine PD/A CRSP data collection protocols. Instead, we used mean

monthly relative humidity estimates from a weather station in the Comayagua Valley that

are reported in an FAO agroclimatic database (FAO, 1995). For both AIT and El Carao,

missing data points in the weather datasets were estimated by linear interpolation.

Together with the water budget calculations. water temperature was also predicted

using the simulation model described in Chapter 2. Additional weather data required for

temperature predictions include short-wave solar radiation (kJ 111-2 CI-1) and cloud cover

(decimal fraction). The former variable was available in the AIT weather dataset. Cloud

cover data reported in oktas, and were converted to decimal fractions as suggested by

FAO (1977).

For the El Carao site, only daily photosynthetically active radiation measurements

(PAR; E 111-2 c1-1) were available in the PD/A CRSP database. These were converted to

short-wave solar radiation estimates by the use of an empirical relationship reported for

this site (Piedrahita and Teichert-Coddington, 1993). Cloud cover data were unavailable

for the Comayagua Valley and a constant value of 0.5 (equivalent to scattered cloud

conditions; Fritz et al., 1980) was assumed for each day of the simulation.
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Pond data

At both AIT and El Carao, the ponds were maintained at more or less steady state

volumes by the intermittent addition of water to compensate for evaporative and seepage

losses. Data from the PD/A CRSP database indicate that overflow did not occur at either

site during the simulated periods. The AIT pond has a surface area of approximately 375

m2 at the typical operating depth of 1 m, and has a very limited watershed area more or

less restricted to the pond sides that approximates 60 m2 (C. K. Lin, ATT, personal

communication). For this pond, minimum and maximum pond depths were assumed to

be 0.9 and 1.1 m respectively.

The El Carao pond has an area of about 1000 m2 at a typical operating depth of 0.78

m (Egna et al., 1987). Minimum and maximum pond depths were assumed to be 0.75

and 0.9 m respectively. Green and Boyd (1995) reported that ponds at this site have an

average watershed of 308 m2. A runoff CN of 85 corresponding to hydrologic soil group

D and pasture soil use type (see SCS, 1972) was used for both the El Carao (Green and

Boyd, 1995) and AIT (assumed) sites.

Class A evaporation pans were used by PD/A CRSP researchers to estimate daily

evaporative water losses. It has been shown that evaporation estimates from such pans

must be adjusted downwards by the use of suitable coefficients, because pans have a

smaller volume and are subjected to different weather conditions compared to water

bodies such as lakes and ponds (Hounam, 1973). Pan coefficients have not been

estimated at either the AIT or El Carao sites. Hounam (1973) estimated pan coefficients

ranging from 0.60 to 0.81 (mean = 0.70) for several lakes. However, Boyd (1985a) found

that pan coefficients for small, shallow ponds varied from 0.72 to 0.90 (mean = 0.81)

over different months at one location in Alabama, USA. Green and Boyd (1995) used the

mean value from the latter study to adjust Class A pan evaporative water loss

73



measurements for El Carao. Following FAO guidelines (FAO, 1977) that take into

account local weather and soil cover type conditions, we arrived at a pan coefficient

estimate of 0.75 for both AIT and El Carao.

Daily seepage rates (sr) for the ponds at both sites were estimated from the change in

water depth between consecutive days in a rainless period corrected for evaporative water

loss. However, for the El Carao site, because daily pond depth measurements were not

reported in the centralized PD/A CRSP database for the simulation period (September 1,

1990 to January 2, 1991), pond data from a similar period in the preceding year were used

to approximate sr. The resulting estimates were 4.43 and 5.82 mm c1-1 for the AIT and El

Carao ponds respectively. During rainfall events in the simulation runs, these values

were reduced by 25% to adjust for rainwater that likely infiltrates the pond as discussed

earlier.

RESULTS AND DISCUSSION

There are no reported hydrological studies for the AIT ponds to compare model

results. However, the water budget analysis conducted by Green and Boyd (1995) for the

El Carao ponds provides a benchmark for the comparison of results generated at this site

during the current study.

Total water gains and losses predicted by the water budget model for the AIT pond

were 504.2 and 497.8 m3 respectively. Mean predicted pond volume was 365 m3, which

is comparable to the typical operating volume of about 375 m3 (C. K-Lin, Arr, personal

communication). Mean predicted depth at 0.96 m was marginally lower than the 0.99 m

calculated from depth measurements reported in the PD/A CRSP database for this pond.

Data from the latter database also indicate that water was added 12 times (totaling 116

m3) during the period of simulation for the AIT pond. In comparison, the net water
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demand projected by the water budget model was 136.3 m3 (27% of the overall predicted

water gain). The model predicted that precipitation was the primary source of water

accounting for 69.8% of the total water gain. This is not unexpected because the

simulation coincided with periods of heavy monsoon rains. Total rainfall during this

period was 92.8 cm. Runoff gains amounted to only 3.2% of the water gain, again likely

due to the small watershed area for this pond (about 16% of the pond area).

Evaporation and seepage contributed 54.9 and 45.1% of the overall water loss

predicted by the water budget model for AIT. There was close agreement between

evaporative losses predicted by the model and corrected Class A pan evaporation

estimates (i.e., observed values) for the period simulated (Fig. 3.2). Overall water loss for

the simulation period estimated from pan evaporation data in the PD/A CRSP database

amounted to 264.5 m3 compared to the amount of 273.4 m3 predicted by use of the Ryan

formula. Daily mean and standard deviations for observed evaporative losses were 0.45

and 0.14 cm respectively, whereas those predicted by the Ryan formula were 0.47 and

0.11 cm. Daily means were not significantly different (P <0.01). Much poorer

predictions of overall evaporative losses (221 m3) and daily means (0.38 cm) resulted

from the use of the Fritz formula (Fritz et al., 1980).

Direct comparison of seepage water loss predicted by the model to pond hydrological

studies conducted elsewhere is difficult because seepage rates vary substantially from

location to location (Stone and Boyd, 1989). For example, Boyd (1982) reported that

seepage accounted for about 66% of the overall water loss for Auburn ponds. Mean daily

seepage rates for the latter ponds varied from 4.8-7 9 mm d-1, which is higher than the

range of 2.7-6.9 mm cl."1 (mean = 4.4) estimated for the AIT pond in the current study.

The somewhat higher values of predicted water requirements for the AIT pond

relative to actual additions are partly accounted by the slightly higher evaporative losses

estimated
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Figure 3.2. Daily observed and predicted evaporative water loss (in mm (1-1) for the MT

pond from May 30 to October 31, 1991. Observed values represent pan evaporation
measurements corrected by the use of a pan coefficient as described in the text.

by the model. Differences between actual and predicted seepage losses perhaps

accounted for the remaining discrepancy, although this cannot be directly verified.

The water budget model predicted total water gains and losses of 973.2 and 985.5 m3

respectively for the El Carao pond. Mean predicted pond volume and depth were 756.5

m3 and 0.76 m respectively; although actual volume and depth data for this pond were not

available in the PD/A CRSP database for the simulation period, the predicted values are

comparable to average volumes and depths of 783 m3 and 0.78 m previously reported for

El Carao ponds (Green and Boyd, 1995).
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Data from the PD/A CRSP database indicate that water was added nine times

(totalling 650 m3) for the El Carao pond. In comparison, the net water demand projected

by the water budget model was only 508.6 m3 (52.3% of the overall predicted water gain).

Precipitation was the other significant source of water for the El Carao pond, accounting

for 43.2% of the total water gain predicted by the model. This proportion is similar to the

value of 45.5% reported by Green and Boyd (1995) for the period June to November

1986. Precipitation gains were lower compared to those for the AIT pond because the

total rainfall recorded at El Carao over the simulated period was only 41.1 cm. Runoff

gains predicted by the water budget model in the current study amounted to only 4.5% of

the water gain. This is consistent with the observations of Green and Boyd (1995) who

reported that runoff contributed little to water budgets for El Carao presumably because

of the small watershed area relative to the pond area.

Evaporative and seepage losses contributed 40.1 and 59.9% of the overall water loss

predicted by the water budget model for El Carao. These proportions are very different

from the values of 70 and 30% reported for this site by Green and Boyd (1995) for

evaporation and seepage respectively. The discrepancy, in part, appears to be due to the

lower evaporative losses predicted by the model relative to corrected Class A pan

evaporation estimates (i.e., observed values) for the period simulated (Fig. 3.3). Overall

water loss for the simulation period estimated from pan evaporation data amounted to 536

m3 compared to the amount of 394.7 m3 predicted by use of the Ryan formula. Daily

mean and standard deviations for observed evaporative losses were 0.43 and 0.19 cm

respectively, whereas those predicted by the Ryan formula were 0.32 and 0.13 cm

respectively. Daily means were, however, not significantly different (P < 0.01). Once

again, even poorer predictions of overall evaporative losses (370.4 m3) and daily means

(0.29 cm) resulted from the use of the Fritz formula.

The difference of 141.3 m3 between predicted and actual amounts of regulated inflow

is accounted for by the poor predictions of evaporative loss, which may have been caused

by deficiencies in the weather dataset (e.g., lack of cloud cover and Rh data, and several
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Figure 3.3. Daily observed and predicted evaporative water loss (in mm d-1) for the El

Carao pond from September 1, 1990 to January 2, 1991. Observed values represent pan
evaporation measurements corrected by the use of a pan coefficient as described in the

text.

missing points in other variables that were replaced by interpolated values). It is also

possible that use of a constant pan coefficient may not be appropriate, a situation that

merits further experimentation at individual locations along the lines of the study

conducted by Boyd (1985a). The possibility that the Ryan formula for evaporation may

not be appropriate at all locations should not be completely excluded. However, based on

he validation work reported by Ryan et al. (1974), comparison of different formulae for

evaporation (Henderson-Sellers, 1984) and the close agreement between model

predictions and the AIT observations reported in the current study, the inadequacy of the
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weather dataset for El Carao appears to be the principal causative factor for the poor

correlation between observed and predicted daily evaporative water losses.

Seepage losses predicted by the water budget model were higher compared to the

results of Green and Boyd (1995) for the El Carao ponds. As indicated earlier, the daily

mean seepage rate of 5.82 mm d1 used in the model was estimated from data reported in

the PD/A CRSP database between 1 September 1989 and 2 January 1990 because daily

depth measurements were not available for the period simulated in the current study.

This rate is higher than the values of 3.5 mm efor the dry season of 1987 and 2.6 mm

d-1 for the rainy season of 1986 reported for the El Carao ponds (Green and Boyd, 1995).

It is possible that structural changes in the pond basin (e.g., increased cracks in the dikes)

may have occurred over time leading to a higher estimate of mean daily seepage loss.

The proportion of water lost due to seepage is, however, comparable to the results

reported by Boyd (1982) for ponds with similar daily seepage rates.

CONCLUSIONS

In general, with the exception of the poor predicted evaporative loss estimates at El

Carao which appear to be attributable to inadequate weather datasets as discussed earlier,

the water budget model provided estimates of the other components of pond water

budgets that are consistent with previous work (e.g., Boyd, 1982; Green and Boyd, 1995).

The model can be used for flow-through facilities as well as other operations where water

is routinely added to maintain desired pond depths. The model can also be adapted for

different locations and/or seasons, and requires minimal measurements from ponds

compared to the studies cited above. This is a particular advantage for situations where

analysis of water requirements is to be done in the planning phase of aquaculture

operations before physical ponds exist. The need to estimate appropriate curve numbers

for use in the model can possibly be circumvented by the development of a rule-based
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expert system to generalize U.S. Soil Conservation Service guidelines on runoff flow

from various watersheds.

Although adequate model predictions require the availability of comprehensive

weather datasets (as evidenced by the difference in the accuracy of the results for AIT and

El Carao), this is not a particular disadvantage because such weather datasets are

increasingly becoming available from various locations world-wide (e.g., FAO, 1995),

partly a manifestation of the increased demand for regional-scale studies. Indeed, one of

the likely applications of the water budget model developed in this study is in regional-

scale planning and analysis of water resources for aquaculture, where it can be combined

with models of evapotranspiration, soil evaporation and infiltration to predict water

fluxes across large regions. Green and Boyd (1995) suggested the need to compare the

intensity and costs of water use for aquaculture and various terrestial agricultural

activities in order to compare alternate benefits of water use - the model developed in this

study provides one tool to facilitate such types ofanalyses.
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ABSTRACT

Application rates of fertilizers to freshwater aquaculture ponds are typically arrived at

by trial and error, or adapted from strategies that appear to be optimal at one location.

The use of a fertilizer loading rate that is appropriate for a particular site can result in

substantially different fish yields when applied elsewhere because of the variability

among sites. Field testing of a previously developed framework that generates fertilizer

recommendations on the basis of limnological principles suggests a tendency towards

excess fertilizer addition when ambient nutrient concentrations are already relatively

high. This appears to be primarily due to inadequate consideration of algal growth

potential and nutrient cycling processes in ponds. A fertilization model was developed

during the course of this study to address these limitations. The model assumes that a

maximum level of gross primary productivity (GPPx), limited only by light availability, is

possible for any pond. The effects of nutrient concentrations on algal growth rate are

assessed by the use of Michaelis-Menten kinetics, whereas a skewed normal function is

used to describe temperature effects. Liebig's minimum factor rule is used to

approximate the combined effect of temperature and nutrient levels on algal growth,

which when applied to GPPx provides an estimate of the realized GPP for a given pond.

The carbonate-bicarbonate alkalinity of pond water is assumed to be the main source of

inorganic carbon. Simplified mass balance equations are developed to account for

processes that affect nitrogen and phosphorus concentrations. The primary sink for these

nutrients is assumed to be algal uptake, whereas algal respiration and fertilizer addition

are the main sources. An additional term that accounts for miscellaneous processes by

the use of first-order kinetics, and which may be either a nutrient source or sink, is also

considered. For nitrogen, available data suggest that there is a net gain of this nutrient via

these processes, whereas phosphorus is generally lost from the pond water to the

underlying sediments. Model verification was undertaken by comparing fertilizer

application data obtained from ponds in Honduras, Thailand and the Philippines to those

generated by the fertilization model presented here. This comparative analysis indicates

that the fertilization model generates nutrient application rates that are in general more
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conservative compared to those actually used in the above ponds when nutrient

concentrations were already fairly high. Model verification results are consistent with

previous work in that responsive fertilization strategies (i.e., strategies designed to

account for ambient pond water conditions) are likely to be superior in terms of fertilizer

use and cost efficiency compared to the more traditional fixed input strategies.

INTRODUCTION

The practice of fertilizing fresh water earthen ponds to increase fish yields is common

in many parts of the world (Hickling, 1962; Hepher, 1978; Boyd, 1979). The addition of

fertilizers stimulates primary productivity leading to an increase in food availability and

therefore enhanced fish yields (Boyd, 1979; Hepher, 1978; Schroeder et al., 1990).

Because of the strong correlation between fish yields and primary productivity, it should

be possible to increase fish yields by management of net primary productivity (NPP)

levels in ponds (McNabb et al., 1990). This can be accomplished by the use of

limnological concepts that focus on the role of inorganic phosphorus (P), nitrogen (N)

and carbon (C) as key nutrients which can potentially limit phytoplankton growth (Knud-

Hansen et al., 1991a).

Boyd (1990, pg. 241) pointed out that evaluation of fertilizer requirements for ponds

must be conducted on the basis of ecological characteristics of each individual pond

because of the considerable variability among ponds. He also indicated that simplified

procedures to evaluate fertilizer requirements for ponds have not been forthcoming.

Lannan (1993) developed a set of guidelines that directly addresses these two issues.

These guidelines were designed to provide a framework for evaluating the nutrient

requirements (i.e., P, N and C) of freshwater ponds and generating fertilizer

recommendations that would meet these requirements (Fig. 4.1). The guidelines were

developed as part of the activities of the Pond Dynamics/Aquaculture Collaborative

Research Support Program (PD/A CRSP). Use of the guidelines requires an estimate of
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the maximum level of NPP (NPP.) possible for a given location in the absence of

nutrient limitation, as well as water quality data. The latter data include measurements of

carbonate-bicarbonate alkalinity, pH, temperature, dissolved inorganic nitrogen (DIN)

and phosphorus (DIP). The former three variables are used to estimate the availability of

dissolved inorganic carbon (DIC) for algal uptake under the assumption that the

carbonate-bicarbonate alkalinity is the major source of DIC in freshwater ponds.

Lannan's (1993) guidelines were implemented in the decision support system

PONDCLASS I, and represent perhaps the first attempt to synthesize information about

fertilization practices in aquaculture ponds and limnological concepts into a unified

framework that can be applied at different locations.

The guidelines developed by Lannan (1993) also represent a departure from

traditional fertilization recommendations which typically involve the addition of fixed

quantities of fertilizer materials at specific time intervals, without adequate consideration

of water quality conditions in the ponds. Traditional fertilization recommendations are

referred to as fixed input fertilization strategies in this paper. Lannan's guidelines are

conceptually similar to field-based bioassay techniques that have been developed to

assess pond nutrient requirements (Knud-Hansen and Guttman, in prep.). The

fertilization approaches developed by Lannan (1993) and Knud-Hansen and Guttman (in

prep.) can be categorized as responsive fertilization strategies because they account for

ambient nutrient conditions in the pond water prior to generating fertilization

recommendations.

Recent testing of the fertilizer recommendations generated by PONDCLASS in

aquatic microcosms (Franco et al., 1993) and in PD/A CRSP ponds located in the

Philippines (Hopkins et al., 1994) and Thailand (Szyper and Hopkins, 1995) has been

fairly successful in that the amount of fertilizer required to produce one unit of fish

1 PONDCLASS is a copyright of Oregon State University.
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production was typically lower compared to control treatments or prevailing practices.

This is apparently because the software accounts for ambient nutrient concentrations in

the pond water at the time of calculating fertilizer needs. Similar findings were also

obtained for two groups of ponds that were managed on the basis of bioassay results and

PONDCLASS recommendations (Hopkins and Knud-Hansen, in prep.).

However, fish growth in Honduran ponds that were managed using PONDCLASS

(Teichert-Coddington and Ramos, 1995) appeared to be limited by the build-up of

ammonia nitrogen (NH3-N). Reasons for high NH3-N concentrations at this location are

unclear but may be due in part to the use of an NPPrna, value (4 gC 111-3 CrI) that appears to

be high, at least in terms of consistent primary productivity, for this location and which

may result in excessive N loading. In contrast, Szyper and Hopkins (1995) typically set

NPPmax to 3 gC IT1-3 CI-1 in the PONDCLASS software while estimating weekly fertilizer

needs at the Thailand site where primary productivity is usually higher than at the

Honduras site. Additionally, the effects of high NH3-N concentrations onfish growth in

Honduras were presumably amplified because of relatively high pH's in the range of 8-10

(Teichert-Coddington and Ramos, 1995). At these pH's, the fraction of NH3-N that

exists in the toxic, unionized form would be quite high (Emerson et al., 1975). Finally,

the poor results obtained with PONDCLASS at Honduras may also have been due to

inadequate consideration of nutrient cycling within the software. Water quality data for

the PONDCLASS experiment in the Philippines (Hopkins et al., 1994) that are recorded

in the aquaculture database maintained by the PD/A CRSP also indicate frequent

occurrence of high total ammonia concentrations.

In general, these results suggest that revisions to the guidelines developed by Lannan

(1993) are perhaps advisable so as to avoid similar problems of nutrient build-up which is

both economically and ecologically inefficient. The objectives of the research presented

in this paper are (i) to critically examine the assumptions and rationale of the fertilization

guidelines developed by Lannan (1993), (ii) to modify the guidelines in the form of a

simplified model that can be used to estimate nutrient requirements for freshwater ponds,



and (iii) to assess results obtained from the above model at different geographical

locations.

Gross or Net Primary Productivity

As indicated in Figure 4.1, the starting point in the PONDCLASS fertilization

guidelines is an estimate of NPP,.. Based on work by Bowman (1992), Lannan (1993)

provided a table that lists suggested ranges of NPPn. for different geographical locations

that could serve as initial estimates for use in the PONDCLASS software. However, the

rationale for using NPPmax instead of the maximum gross primary productivity (GPP.)

in arriving at fertilizer recommendations is unclear because most models developed to

predict phytoplankton productivity involve estimation of GPP and respiration, with NPP

obtained as the difference between these two rates (e.g., Di Toro et al., 1971; Straskraba

and Gnauck, 1985). This is because the overall or gross productivity is a function of light

(X), temperature (t) and nutrient (v) limitations as follows (e.g., Straskraba and Gnauck,

1985):

GPP = B f(X, v) (1)

where 'Amax = maximum specific phytoplankton growth rate (d-i), and B = phytoplankton

biomass (gC m-3). If none of the environmental variables limit growth, Equation 1

provides an estimate of GPPmax.

Although there are models that provide estimates for limax (e.g., Eppley, 1972;

Bannister, 1974; Smith, 1980), use of Equation 1 also requires phytoplankton biomass

estimates, in addition to an evaluation of the effects of light, temperature and nutrients on

phytoplankton growth. Under most pond aquaculture operating conditions, it is difficult

to estimate plankton biomass and evaluate ambient light conditions. Other water quality

parameters (temperature and nutrient concentrations) are, however, routinely measured

especially on commercial farms. If we assume that there is an upper limit to the gross
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productivity which is set by the light conditions in a given pond, Equation 1 can be

simplified as:

GPP = GPPx, f(r, v) (2)

where GPPA, is the gross productivity for the phytoplankton biomass in the pond under its

particular light regime. We propose that GPPA, should be the starting point for evaluating

nutrient requirements of a pond rather than NPPmax because it is theoretically a more

appropriate rate in terms of the growth response of phytoplankton to environmental

conditions. In other words, it is the realized GPP for a pond that is a measure of the

combined effects of environmental variables on algal productivity, rather than NPP

because the latter rate depends on algal respiration which is highly variable (Reynolds,

1984). Equation 2 assumes that the effects of light on phytoplankton growth are

independent of other environmental parameters. This is not strictly valid because both

light and temperature are known to affect photosynthetic rates; further, relationships

between ambient light levels and nutrient concentrations have also been observed under

both natural and experimental conditions (see discussions in Reynolds, 1984 and Kirk,

1994). However, because A. is difficult to estimate under typical production conditions, it

is assumed that ambient light conditions in a given pond will determine its GPPA..

Nutrient and Temperature Limitations

Fertilization guidelines developed by Lannan (1993) assume that pond managers are

interested in estimating the amounts of N and P required to ensure that phytoplankton

growth is not limited by these nutrients. It was also noted that C limitation may occur in

ponds that have low alkalinity (e.g., McNabb et al., 1990), and that such limitation could

be alleviated by increasing the alkalinity (see detailed discussion in the section on

Nutrient Cycling below). However, it may occasionally be desirable to examine the

effects of limiting phytoplankton growth by manipulating nutrient levels either to reduce

algal biomass, alter phytoplankton species composition, or for reasons associated with the
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cost and availability of fertilizer resources. This suggests that retaining the v term in

Equation 2 is desirable.

Nutrient limitation of phytoplankton growth can be approximated by the use of the

Monod equation to describe Michaelis-Menten enzyme kinetics (Dugdale, 1967). Droop

(1973) used a slight modification of the Monod equation to account for nutrients that are

actually available for algal uptake. Because such thresholdconcentrations may exist for

N, P and C in ponds as well, the Droop equation is used to describe growth limitation by

each of the three primary nutrients (v8) as follows:
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Vs
(S - S0)

ks + (S - S0)
(3)

where S, So and lc, are respectively the ambient concentrations, threshold concentrations

and half-saturation constants for inorganic N, P and C. The abbreviations of the terms in

Equation 3 for nitrogen are vn, DIN, kN, and No. Similarly, the terms for phosphorus are

vp, DIP, kp, and Po. Finally, those for carbon are vc, DIC, kc, and Co. Equation 3 is

similar to the one given by King and Garling (1986) for uptake kinetics of inorganic C,

where it was assumed that a minimum threshold concentration of this nutrient is required

to initiate photosynthesis.

There appear to have been very few attempts to analyze nutrient limitation in

aquaculture ponds by the use of Michaelis-Menten kinetics. One example involved the

demonstration of carbon limitation of net primary productivity by McNabb et al. (1990)

in ponds from Indonesia and Thailand. However, the same methodology has not been

used to examine N and P limitation. Instead, most researchers (e.g., Knud-Hansen et al.,

1990) have preferred to demonstrate algal growth versus nutrient relationships by the use

of linear regression fits between primary productivity and nutrient concentrations. Such

regressions cannot be used to identify when a given nutrient (N, P or C) adversely

impacts algal growth, or to assess minimum threshold concentrations for nutrient uptake

by algae. Moreover, such relationships do not indicate when a given nutrient is present at

a concentration that is non-limiting.
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We examined water quality data from experiments conducted by PD/A CRSP

researchers at Bang Sai, Thailand to assess nutrient limitations of algal productivity. Data

were extracted from the aquaculture database maintained by the PD/A CRSP. NPP was

estimated for these ponds from losses of DIC between dawn and dusk (Vollenwieder,

1974), and averaged over the duration of the experiment. Average GPP was assumed to

be equal to NPP x 1.5 to account for algal respiration. The adjustment factor of 1.5 is

more conservative than the value of 3.3 obtained by Colman and Edwards (1987).

However, because tanks in the latter study were loaded with high amounts of septage and

had a high algal biomass, respiration rates were presumably much higher than typical

rates in earthen ponds. Early morning DIC calculated from alkalinity, pH and

temperature measurements (Harvey, 1955; Park, 1969) was assumed to be the reservoir of

carbon for algal uptake during the day. Average GPP was plotted against DIN, DIP and

DIC concentrations (Figs. 4.2-4.4) to examine nutrient limitation. In all the cases,

temperature was assumed to be non-limiting (i.e., = 1) because pond temperatures were

typically in the range of 25-30°C, which is likely to be near optimal for algal growth at

the Bang Sai site.

Several ponds in treatment set I appear to be DIN limited (Fig. 4.2). However, at least

five ponds in this treatment set do not show a kinetic relationship between GPP and DIN

(Fig. 4.2). These ponds were presumably limited by some other factor, most likely very

low DIP concentrations (Fig. 4.3). Compared to treatment set I, ponds in set II were more

productive (Fig. 4.2) and in general also showed a lower tendency towards nitrogen

limitation. Data presented in Figure 4.4 clearly show that ponds in treatment set I were

not limited by DIC. Some tendency towards DIC limitation can be seen in the ponds

comprising treatment set II (Fig. 4.4) where DIN and DIP concentrations were relatively

high (Figs. 4.2 and 4.3). Figure 4.4 also includes data from McNabb et al. (1990). NPP
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Figure 4.2. Gross primary productivity (GPP) in relation to dissolved inorganic nitrogen

(DIN) concentrations in two sets of ponds (I and II) at Bang Sai, Thailand. Dark circles

represent the ponds in set I that were severely phosphorus limited (see also Fig. 4.3). The

Michaelis-Menten curve was fitted using the following parameters: GPPx, = 7.0, kN = 0.3,

and No = 0.

reported by these authors for DIC limited ponds were also converted to GPP values using

the adjustment factor of 1.5.

In general, the data presented suggest that although minimum threshold concentrations for

N and P appear to be close to zero (Figs. 4.2 and 4.3), the value of Co seems to be about

4-5 gC 111-3 (Fig. 4.4). Data presented in these figures also indicate that GPP may be

limited at any given time by DIN, DIP or DIC. Such plots are a valuable tool to assess

which of these three nutrients most limits algal growth, and to develop site-specific

Michaelis-Menten curves that can be used as a guide for fertilizer management. Further,

the lack of a kinetic relationship between algal productivity and one of these nutrients
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Figure 4.3. Gross primary productivity (GPP) in relation to dissolved inorganic
phosphorus (DIP) concentrations in two sets of ponds (I and H) at Bang Sai, Thailand.
Dark circles represent the ponds in set I that did not show a kinetic response to DIN (see
also Fig. 4.2). The Michaelis-Menten curve was fitted using the following parameters:
GPPx = 7.0, kp = 0.035 and Po =0.

suggests that further addition of this nutrient by fertilization is not warranted unless

growth limitation by another nutrient is alleviated.

Lannan (1993) did not consider the effects of temperature on primary productivity.

Input temperature data were only used to calculate dissociation constants for the

carbonate-bicarbonate alkalinity system, which in turn affect the availability of inorganic

C. However, phytoplankton growth rates do vary with temperature (e.g., Clendenning et

al., 1956; Eppley, 1972; see also Reynolds, 1984), typically reaching a maximum within

some optimal temperature range, with reduction in growth rates on either side of this
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Figure 4.4. Gross primary productivity (GPP) in relation to dissolved inorganic carbon
(DIC) concentrations in three sets of ponds at Bang Sai, Thailand. GPP and DIC for set I
and II were estimated from data reported in the PD/A CRSP database, whereas the set of
ponds labelled M represent data from McNabb et al. (1990). The Michaelis-Menten
curve was fitted using the following parameters: GPPx = 7.0, kc = 6, and Co =4.

plateau. Effects of temperature are likely to be more important at locations where

pronounced changes in seasonal water temperatures occur. The following "skewed

normal" function can be used to approximate temperature dependence of algal growth

rates (Lehman et al., 1975; Svirezhev at al., 1984):



94

where Trnin, Topt and Troax are the minimum, optimum and maximum temperatures for

algal growth.

Multiple Resource Limitations

It is generally accepted among aquaculture researchers (e.g., Boyd, 1990; Lannan,

1993: Knud-Hansen and Guttman, in prep.) that algal response to growth factors (i.e.,

temperature and nutrient concentration in the current context) follows Liebig's minimum

factor rule. However, such a response does not appear to have been verified on the basis

of data from experimental ponds. Algal physiologists have developed a variety of

empirical relationships to describe the combined effects of multiple limiting factors on

phytoplankton growth (Straskraba and Knauck, 1985). The most commonly used

expressions include Liebig's minimum factor rule and the multiplicative effect function

(de Groot, 1983). Additional relationships, derived from experiments with bacterial

cultures, that could also be considered based on their simplicity include the mean effect

approach and the inverse sum function (Benefield and Randall, 1980). These four

functions in order can be expressed as follows:

V = min('r, vn, vp, vs), (Liebig's minimum factor) (5.1)

= x vn x vp x vs), (Multiplicative effect) (5.2)

= + vn + vp + vs) / 4, or (Mean effect) (5.3)

= 4/ + vn + vp + vs) (Inverse sum) (5.4)

The functions given in Equations 5.1-5.4 were used together with Equation 2 (in which

GPPA, was set to 7 gC 111-3 CI-1) to predict GPP for the Thailand site. As before,

temperature was assumed to be non-limiting (i.e., t = 1). DIN, DIP and DIC data for use

in Equation 3 were extracted from the PD/A CRSP database (as discussed above; see also

Figs. 4.2-4.4). GPP values predicted in this manner for all four functions were compared

with 'observed' GPP data by the use of Student's t-test with a significance level of 0.05.

This analysis indicated that GPP values predicted by the use of the inverse sum function

and Liebig's minimum factor rule were not significantly different from observed values



(P > 0.05), whereas those predicted by the use of the mean and multiplicative functions

were significantly different (P < 0.05).

Predicted GPP values were also regressed against observed GPP data for comparative

analyses. Regression results are consistent with previous work (de Groot, 1983) in that

the multiplicative function (Equation 5.2) is the poorest predictor of algal response to

multiple nutrient limitation (Table 4.1) and represents perhaps the worst-case scenario of

algal growth. The mean effects function (Equation 5.3) is the most optimistic among all

the four functions in that it will over-predict GPP, as is evident from the high value for

the intercept term in the regression relationship between predicted and observed values

(Table 4.1). The inverse sum function (Equation 5.4) resulted in the lowest residuals

between predicted and observed GPP (Table 4.1). However, because this function also

shows some tendency towards over-prediction of GPP, a more conservative approach

would be to use Liebig's law of the minimum (Equation 5.1), at least until more evidence

accumulates to support the use of Equation 5.4. Model users should be aware that GPP

values predicted on the basis of Liebig's law may underestimate actual production rates in

their ponds (Table 4.1).

Table 4.1. Linear regression relationships between GPP predicted by the use of
Equations 2 and 5.1-5.4, and observed GPP for Bang Sai, Thailand. Mean values of the
residuals between predicted and observed GPP's are also indicated.
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Intercept Slope r2 Mean Residual

Liebig's law (Eq. 5.1) -0.388 0.935 0.69 -0.641

Multplicative model (Eq. 5.2) -0.972 0.744 0.64 -1.967
Mean effect model (Eq. 5.3) 2.247 0.576 0.57 0.599
Inverse sum model (Eq. 5.4) 0.666 0.866 0.63 0.146



Nutrient Cycling

The main allochthonous sources of C, N and P in pond aquaculture are fertilizers and

feeds. For simplicity, the present discussion assumes that ponds do not receive

supplemental feeds. In aquaculture ponds, the primary source of inorganic C for algal

uptake is the carbonate-bicarbonate alkalinity of the pond water (Arce and Boyd, 1975).

Fertilizer materials that add C to a pond include lime and manures (Schroeder, 1987).

The former material increases alkalinity, unless pond soil are acidic enough to neutralize

some of the pond water alkalinity in which case additional lime must be added to

compensate for this loss (Boyd, 1979; Bowman and Lannan, 1995). Decomposition of

allochthonous organic matter such as manures as well as autochthonous material (e.g.,

precipitated algae) is an important source of CO2 for algal uptake (Schroeder, 1974;

Schroeder and Buck, 1987). Respiratory activities of pond biota including fish also add C

to the pond water (Schroeder, 1987). Losses of C include assimilation by algae and

heterotrophs, as well as accumulation in fish flesh (Zur, 1981). CO2 may also be lost or

gained via diffusion at the air-water interface (Schindler et al., 1972).

In the case of N, apart from fertilizer addition, other sources include algal respiration,

excretion from pond biota (including fish), and recovery from sediments (Schroeder,

1987). Algal growth is the predominant sink for pond water N. Further, some N is lost

via denitrification and diffusion (Bouldin et al., 1974), via seepage and to the fish

biomass in the pond (Boyd, 1985a). Schroeder et al. (1991) indicate that the expected

accumulation of N in the water column does not occur presumably because rates of N

turnover in the pond sediments are fairly rapid.

As noted by Delince (1992), there is limited information on P cycling in ponds. In

general, the interactions of pond water and sediment P are typically more complex

compared to those relevant to N, and vary substantially according to soil type and

chemical composition (Boyd, 1995). According to this author, the predominant sources
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of P include fertilization, algal respiration, and excretion by pond biota. The main sinks

for P include accumulation in the pond sediments and assimilation into fish biomass.

It is evident from the preceding discussion that a variety of processes are involved in

the cycling of C, N and P within the pond water-sediment system. The rates of these

processes are also likely to vary substantially with environmental conditions (e.g.,

temperature, substrate availability, etc) and are very difficult to quantify. In terms of

practical guidelines, the most important issues relevant to nutrient cycling are to assess

whether C, N and P supplementation is required, and to estimate the amount of fertilizer

material(s) that would meet this requirement.

With regard to the inorganic C balance, the carbonate-bicarbonate alkalinity system

typically acts as a battery in which carbon is removed during the day primarily by

photosynthesis and replenished by respiratory activities at night (King, 1970). Thus,

management of this system indirectly controls DIC supply. Carbon supplementation may

be necessary for ponds with low alkalinity or when initially high alkalinities drop

drastically in chemically fertilized ponds which have high rates of primary production

(Knud-Hansen et al., 1993; Szyper and Hopkins, 1995). The potential for such changes

in the alkalinity of freshwater systems induced by intense photosynthesis has been

discussed by King (1970). Research by various PD/A CRSP researchers (e.g., Green et

al., 1989; McNabb et al., 1990; Knud-Hansen et al., 1991b, 1993; Diana et al., 1991a;

Hopkins et al., 1994) indicates that routine pond manuring in the range of 250-500 kg ha-1

wic-1 chicken manure (CM) on a dry matter basis or the addition of soluble carbonates

tends to stabilize pond water alkalinities at levels where DIC is unlikely to limit algal

growth. Recent field experiments (Hopkins and Knud-Hansen, in prep.; J. Szyper,

University of Hawaii, personal communication) also suggest that maintaining carbonate-

bicarbonate alkalinities in excess of 50 mg L-1 will ensure that adequate DIC is available

to maintain high algal production rates. Finally, data presented in the current study (Fig.

4.4) indicate that early morning DIC concentrations in the range of 15-20 gC 111-3 would

preclude carbon limitation from occurring. The mid-value of this range (17.5 gC m-3)



corresponds to a carbonate-bicarbonate alkalinity of 60 mg L-1 for a pond with a

temperature of 30°C and pH 7.

It is difficult to assess the amounts of manure that may be required to increase pond

water alkalinity both due to the variability in their composition and because the actual

mechanisms by which manure addition helps to regulate alkalinity changes are not clear.

On the other hand, the increase in alkalinity that follows the addition of lime, or other

chemical compounds such as Na2CO3 or NaHCO3 can be calculated stoichiometrically.

For example, C limitation is likely to occur at a carbonate-bicarbonate alkalinity of 20 mg

L-1, assuming other nutrients required by algae are non-limiting and the water temperature

is in the optimal range for growth. The amounts of CaCO3, Na2CO3, or NaHCO3

required to increase alkalinity to 50 mg L-1 (i.e., a change of 0.6 meq L-1) are about 300,

500 and 320 kg ha-1 respectively. Local production economics will determine whether

such alkalinity enhancement is appropriate, and will dictate the types of materials that are

suitable for the purpose.

For inorganic pond water N and P, there is no analogy to the carbonate-bicarbonate

alkalinity system. Therefore, it is necessary to estimate the amounts of these nutrients

that are recyled within the pond. Lannan (1993) suggested that the amounts of these

nutrients required from fertilizer addition should be calculated as the difference between

the theoretical quantities required to achieve NPP,a and ambient concentrations in the

pond water (Fig. 4.1). Similarly, other researchers (e.g., Batterson et al., 1988; Yusoff

and McNabb, 1989; McNabb et al., 1990) used DIN and DIP concentrations to assess the

supply of inorganic N and P for algal uptake. However, use of ambient concentrations

does not reflect the rates at which N and P become available from their respective pools

in the pond within the duration between fertilizer applications. Data extracted from the

PD/A CRSP database for the Honduras experiment where PONDCLASS was tested

(Teichert-Coddington and Ramos, 1995) illustrates the drawbacks of using concentrations

as a measure of nutrient supply.
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For one pond where ambient DIN (all in the form of total ammonia nitrogen) was

1.97 mg L- PONDCLASS recommended a weekly addition of 206 kg ha-1 CM and 51.5

kg ha-I of urea. Based on the NPPmax value of 4 gC r11-3 Cr', the weekly N requirement for

algal growth is about 4.9 g 111-3. Because this requirement was greater than the existing

DIN pool, the PONDCLASS software recommended addition of a nitrogen source.

However, a good portion of the DIN pool is likely to be recycled within the pond via the

processes identified earlier. Thus, the pool of 1.97 mg L-1 may have been adequate to

meet algal N requirements for several days and the addition of fertilizer N may not have

been warranted at the time.

The generally high quantities of N added to Honduran ponds managed by the use of

PONDCLASS over the entire experiment were economically wasteful and presumably

the result of inadequate consideration of N cycling in the pond. Based on water

temperature and pH data for the sampling date discussed above, the unionized ammonia

concentration was about 0.12 mg L-1, which is in the range where tilapia growth is

adversely affected (Abdalla, 1989). It is also likely that the deleterious effects of high

NH3-N concentrations were increased by the addition of urea, prolonged use of which

may cause an increase in water pH (e.g., Vlek and Craswell, 1979; Knud-Hansen and

Pautong, 1993). We observed a similar situation in Philippine ponds managed using

PONDCLASS (Hopkins et al., 1994) where addition of nitrogenous fertilizers (16-20-0

and/or urea) was recommended even though total ammonia concentrations exceeded 2.0

mg U'. Based on the typical pH and water temperature conditions reported in the PD/A

CRSP database for this location, such concentrations correspond to unionized ammonia

levels of 0.25-0.5 mg 1, which again are in the range where Nile tilapia growth is likely

to be severely limited (Abdalla, 1989). Hopkins and Knud-Hansen (in prep.) also

reported the occurrence of unionized ammonia concentrations in excess of 0.5 mg L-1 in

ponds managed by the use of PONDCLASS in Thailand.

Work by Schroeder (1987) suggests that 30% of the DIN required for daily gross

photosynthesis in the ponds studied originated from fertilizer N and that about 50% was

the result of algal respiration. Miscellaneous processes in the pond presumably met the
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remaining needs. Because daily GPP varies with geographical locations, it is likely that

the N required for algal growth (Nag) and the proportion of fertilizer N that supplements

the overall DIN pool will vary accordingly. Based on the above observations, a

simplified differential equation can be developed for the rate change of DIN (gN III-3 d-1)

as follows:

dDIN
N fert + N - Nag N miscdt

where Nfert and Nar are the rates of daily N supply from fertilizer addition and algal

respiration respectively. Nag can be estimated as the product of GPP (from Equation 2)

and the N:C Redfield ratio (0.175 on a weight basis; Redfield et al., 1963) in a manner

similar to previous authors (Yusoff and McNabb, 1989; McNabb et al., 1990; Lannan,

1993), with the exception that they used daily values of NPP. If it is assumed that algal

respiration (Nar) returns half of the N assimilated to the DIN pool (Schroeder, 1987), then

N, = 0.5 x Nag.

Nmisc is a lumped variable that reflects the net result of miscellaneous processes (i.e.,

that are not related to algal growth and respiration or fertilizer addition) affecting DIN in

the pond. Unfortunately, these processes have not been adequately studied in fish ponds

(Boyd, 1990). Depending on the specific culture conditions (e.g., water quality, soil

characteristics and fish biomass), it is possible that the variable Nmisc may reflect a net

source or sink for N. Based on the nitrogen budget and steady-state total ammonia

concentrations (0.5 mg L-1) reported by Schroeder (1987), it would appear that there is a

net daily gain of about 15% of the DIN pool from processes not associated with fertilizer

addition and algal dynamics For the current study, we assumed a more conservative

estimate (10%) for the DIN pool that is recycled on a daily basis as a result of

miscellaneous processes (i.e., Nmisc = 0.1 x DIN). Integration of Equation 6.1 over the

time period between fertilizer additions (e.g., one week) will result in the expected DIN

concentration in the pond.

(6.1)



dDlP (7.1)
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If we assume that the fertilization regime is such that nitrogen limitation does not

occur (i.e., vn = 1), the difference between Nag and the sum of N, and Nmisc reflects the

net nitrogen demand (N,) for the pond. A negative Nreq value indicates that the nitrogen

sources exceed the sink term (Nag), in which case fertilizer addition is not required and

Nfert is set to zero. Conversely, a positive Nrori value indicates that fertilizer addition may

be warranted. Sometimes, however, surplus nitrogen or Ns (defined as the amount of N

in excess of the minimum threshold concentration No required for algal uptake) may be

available in the pond. This occurs when DIN concentrations greatly exceed daily algal N

needs as discussed in the earlier example from Honduras. To estimate N it is necessary

to approximate the expected DIN concentration within the current time step used in the

integration. If the time step is one day, this concentration (DIN*) is the sum of the present

DIN and the result of Equation 6.1 with Nfert =0. The difference between DIN* and No is

an estimate of N. Nfort can then be calculated by applying the following rules:

Nfert Nreq + (N0 - DIN*) , if DIN* <N0

Nreq - Ns if 0 <N < Nreq

0 if Ns > Niori (6.2)

Finally, Equation 6.1 is re-evaluated by inserting the value of Nfort from Equation 6.2 so

as to obtain the rate change of DIN. The sum of Nfort calculated at each time step over the

entire integration period is a rough estimate of the overall fertilizer N requirements for

that period.

A set of calculations similar to those for nitrogen can be developed for phosphorus.

Thus, the rate change for DIP (gP m3 cli) is given by:

dt Pfert Par - Pag Pmisc

where Pfer, and Par are the rates of daily P supply from fertilizer addition and algal

respiration respectively. Pag is estimated as the product of GPP (from Equation 2) and the

P:C Redfield ratio (0.025 on a weight basis; Redfield et al., 1963). Presumably the

quantity of P returned to the pond water via algal respiration is comparable to that for N,
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in which case Par = 0.5 X Pag. Because pond sediments typically act as a large sink for

phosphorus (Hepher, 1958; see also Boyd, 1995), the Pause term (i.e., P loss/gain due to

miscellaneous processes) likely reflects a net loss from the DIP pool. Over a one month

period, 70-90% of the DIP was lost from the overlying water due to uptake by sediments

in laboratory mud-water systems (Boyd and Musig, 1981). These data suggest that P loss

to sediments follows more or less first order kinetics with a daily magnitude of about 6%.

A daily P loss of 10% was used in the current study to account for accumulation in fish

biomass as well as sediments (i.e, the lumped variable Prnisc is a negative term with a

magnitude of 0.1 x DIP. Using a rationale identical to that for N above, the amount of

fertilizer P (Pfert) that is required can be calculated by applying the rules below:

Pfert = Preq (P0 - DIP*), if DIP* < Po

Preq Ps ifO<P,<Preq

0 if P, > Preq (7.2)

where Pmq = net phosphorus demand, DIP* = intermediate DIP concentration obtained

from Equation 7.1 by setting Pfert = 0, and P, = surplus P in the pond. The sum of Prert

calculated at each time step using Equation 7.2 over the integration period is an estimate

of the overall amount of phosphorus required from fertilizer addition.

Fertilization Guidelines

The fertilization model developed in the current study comprises Equations 1-7 and

has been implemented in the decision support system POND2. The steps involved in

evaluating nutrient requirements and generating fertilizer application rates by the use of

this model are summarized in Figure 4.5.
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Figure 4.5. A refined scheme based on the fertilization model developed in this study that
can be used to assess nutrient requirements of ponds, and estimate associated fertilizer
needs.



MODEL VERIFICATION

It is difficult to accomplish rigid validation of the fertilization model developed in this

study without actually conducting physical experiments that are designed to test the

performance of the model and its assumptions. Such experiments would ideally involve

the management of a set of ponds on the basis of recommendations obtained from the

fertilization model together with routine measurement of nutrient fluxes, light conditions,

and algal productivity in ponds. In the absence of such experiments, an alternate

approach that involved the comparison of fertilizer recommendations generated by

PONDCLASS to those obtained from the fertilization model for identical water quality

conditions was used for model verification.

Water quality and fertilizer composition data for PONDCLASS experiments

conducted at the Asian Institute of Technology (AIT) in Thailand (Szyper and Hopkins,

1995), at the El Carao research station in Honduras (Teichert-Coddington and Ramos,

1995) and at the Freshwater Aquaculture Center (FAC) in the Philippines (Hopkins et al.,

1994) were extracted from the PD/A CRSP database. These data were then used in

POND to generate weekly fertilization rates for four sampling dates per site. It was

assumed that the fertilization protocol was such that adequate N and P would be added to

prevent algal growth limitation by these nutrients (i.e., vn and vp were set to 1). This was

done to ensure as much similarity between the PONDCLASS and POND fertilization

approaches as possible. The following parameters for carbon uptake (assumed from

PD/A CRSP experiments at Bang Sai, Thailand; see also Fig. 4.4) were used in the

fertilization model: kc = 6 and Co = 4. The nutrient threshold parameters No and Po were

set to zero. Phytoplankton temperature parameters Tmtn, Topt and Tmax were assumed to be

20, 30 and 35°C respectively.

GPPx was assumed to be 5, 6 and 7 gC 111-3 C1-1 for El Carao, FAC, and AIT

respectively. A lower value was used for El Carao because algae are typically less
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productive for this site compared to AIT, as previously indicated. The highest value of

GPP given by Green (1992) for ponds at El Carao was 16.80 g02 rI1-3 01-1, which is

equivalent to 4.84 gC 1113 d-1 assuming that 1 gC is fixed for each 3.47 g02 produced

(Stumm and Morgan, 1981). Because GP132, is to be interpreted as an upper limit to

primary productivity, the value of 5 gC I11-3 d-1 assumed for El Carao appears to be

reasonable. The AIT and Bang Sai sites are located in the same geographical region of

Thailand, and therefore the GPPx value obtained from an examination of the data for the

latter site (Figs. 4.2-4.4) was used for the AIT analysis. PD/A CRSP data also suggest

that the FAG ponds are somewhat less productive compared to Bang Sal and AIT;

therefore, GPPx was set to a lower value (i.e., 6 gC I11-3 C1-1) for this location.

Fertilizer application rates recommended by POND were compared to the amounts

actually used at El Carao, AIT and FAC (i.e., the least cost fertilizer combinations

generated by PONDCLASS that were reported in the PD/A CRSP database). The POND

software also includes an optimization routine that generates least-cost fertilizer mixes

that are expected to satisfy the predicted nutrient requirements for a pond. Cost data were

included in the comparative analysis to ensure that differences in fertilizer application

rates between PONDCLASS and POND, if any, were not caused by assumptions of

different costs. Fertilizers that were used in the PONDCLASS experiments at El Carao

included chicken manure (CM), urea and diammonium phosphate (DAP), respective costs

of which were 0.016, 0.28 and 0.33 US $/kg (Molnar et al., 1996). For AIT, available

fertilizers were CM, urea and triple superphosphate (TSP), with respective costs of 0.01,

0.27 and 0.47 US $/kg (Molnar et al., 1996). For FAG, urea and an N:P:K (16-20-0)

mixture were the two fertilizers used in the PONDCLASS experiments with respective

costs of 0.29 and 0.30 $/kg (K. Hopkins, University of Hawaii, personal communication).

An additional assumption in fertilizer calculations for El Carao and AIT was that only

50% of the total N and 75% of the total P in chicken manure (CM) becomes available for

algal uptake following fertilizer application (Nath, 1992).
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GPP rates predicted by the fertilization model for El Carao (Table 4.2) are within the

range of 2.01-4.84 gC 111-3 d' previously reported for this site (Green, 1992). For the

PONDCLASS experiment conducted at this site (Teichert-Coddington and Ramos, 1995),

an organic matter requirement for the pond was always specified. This requirement

resulted in the addition of CM for each sampling date. However, because such a

requirement is not imposed in the POND fertilization model, CM addition was not

recommended (Table 4.2) apparently because it is a more expensive N source compared

to urea or diammonium phosphate.

Application rates of urea recommended by POND at El Carao are much lower than

those generated by PONDCLASS for all the four sampling dates (Table 4.2). This is

particularly noticeable on June 29th, 1993 when DIN levels were already very high. These

results suggest that the likelihood of high NH3-N levels limiting fish growth is reduced,

whereas the application rates of urea recommended by PONDCLASS (Table 4.2)

apparently led to ammonia toxicity (Teichert-Coddington and Ramos, 1995). Moreover,

the lower application rates of urea suggested by POND will likely minimize upward

changes in pH, which in turn should reduce the effects of NH3-N on fish growth.

Diammonium phosphate (DAP) additions were recommended at El Carao for the last two

sampling dates (Table 4.2) so as to meet P requirements. Until then, DIP concentrations

appeared to be high enough to meet algal growth requirements. Reduction in N and P

requirements as predicted by the POND fertilization model were presumably due to a

more complete consideration of nutrient cycling processes in ponds. Results similar to

those obtained for El Carao are possible only when responsive fertilization strategies are

adopted, as opposed to fixed input approaches, which involve the addition of a certain

amount of fertilizer N, P and/or C to aquaculture ponds irrespective of their water quality.

In general, DIC levels at El Carao appear to be adequate to preclude the occurrence of

C limitation of algal growth (Table 4.2). However, it is possible that DIC losses and

therefore reduced alkalinities (similar to those reported for PD/A CRSP ponds in

Thailand) may occur over time if the fertilizer recommendations from POND (Table 4.2)



Table 4.2. Weekly fertilizer recommendations generated by PONDCLASS on four occasions at El Carao, AIT and FAC compared to
those obtained from the model (in italics) developed in this study. PONDCLASS fertilizer application rates and water quality data
were extracted from the PD/A CRSP database. Mean GPP predicted by the use of the POND fertilization model is also shown.

a Dates of fertilizer application. PONDCLASS experiments were conducted in 1993 at El Carao and FAC, and in 1994 at AIT.

b Zero DIP values in the PD/A CRSP database for AIT presumably indicate negligible concentrations of soluble ortho-phosphate.
Calculated from pH, alkalinity and water temperature data.
Weekly nutrient requirements predicted by the use of POND. Data in parentheses are requirements expressed in kg ha-1 WI.

e CM = chicken manure on a wet weight or as-is basis. This fertilizer was used only at El Carao and AIT.
f Refers to other synthetic fertilizers that were used principally for P supplementation. These included DAP (diammonium phosphate)

at El Carao, TSP (triple superphosphate) at AIT, and a 16-20-0 mix at FAC.

Date' Mean GPP
(gC m-3 d-1)

Ambient nutrient
concentrations (g m-3)

Nutrient requirements
(g I11-3 Wk-1)6

Weekly fertilizer
recommendations (kg ha-1 wk.)

DIN DIPb DICc N P CMe Urea Other'

El Carao
May 25 3.50 0.04 1.50 11.0 2.21 (15.75) 0 230 (0) 81.3 (35.0) 0(0)
June 29 4.33 1.97 0.95 23.4 0.07 (0.53) 0 230 (0) 81.4 (1.1) 0 (0)

Aug 10 3.98 0.31 0.49 15.7 2.22 (15.82) 0.07 (0.52) 206 (0) 77.6 (34.2) 0(2.2)
Sept 18 4.26 0.89 0.25 21.3 1.74 (12.43) 0.25 (1.75) 240 (0) 61.7 (24.0) 0 (7.7)

AIT
Jan 24 6.38 0.06 0 34.8 4.04 (29.74) 0.68 (4.99) 437.7 (582.7) 56.9 (51.6) 0 (0)

Feb 04 4.87 0.31 0 35.4 2.79 (20.58) 0.52 (3.81) 242.5 (210.2) 38.0 (40.4) 0(0)
Feb 11 6.20 0.92 0 27.3 2.98 (21.98) 0.66 (4.85) 242.5 (266.7) 47.6 (42.1) 14.1 (0)

Apr 08 6.10 1.13 0.02 24.4 2.67 (19.64) 0.63 (4.64) 242.5 (254.6) 15.5 (37.3) 11.7 (0)

FAG
Jan 15 5.58 0.66 0.45 43.6 2.87 (21.90) 0.24 (1.82) 72.0 (41.2) 14.8 (21.1)

Jan 29 5.61 2.41 0.79 47.4 0.40 (3.07) 0.06 (0.42) 46.0 (4.9) 0 (5.3)

Feb 12 5.14 0.19 0.15 22.0 3.10 (23.67) 0.40 (3.15) 68.2 (39.8) 52.8 (36.0)

Feb 26 5.42 2.52 0.93 32.0 0 0 44.0 (0) 0 (0)
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are adopted because CM addition was not suggested by the software. If such trends are

noted in real ponds, the ameliorative strategies discussed earlier may be warranted.

GPP values predicted by POND for the AIT site (Table 4.2) were higher than those

for El Carao, an outcome that was expected because of the higher GPPA, value used in

Equation 2. Compared to El Carao, fertilizer application rates (particularly of urea)

obtained by the use of POND at this site are fairly similar to those recommended by

PONDCLASS (Table 4.2), with the exception that triple superphosphate (TSP) addition

was not suggested. The initial application of CM in the PONDCLASS-treated pond at

the AIT site was much higher than subsequent rates (Table 4.2), and may have been

related to changes in fertilizer costs over time. The latter rates (242.5 kg ha-1 NW' on a

wet weight basis; see Table 4.2) roughly correspond to the minimum amounts of CM that

would be recommended by PONDCLASS if an organic matter requirement for the pond

is specified (Lannan, 1993). Even though such a requirement was not forced in the

POND fertilization model, CM addition was recommended by this model (Table 4.2).

This was due to the need for P amendments at this site as is evident from the low DIP

concentrations, and because the least-cost optimizer presumably found CM to be a

cheaper source for this nutrient compared to TSP.

Except for the last date on which comparisons were undertaken at AIT (April 8,

1994), the amounts of urea recommended by POND and PONDCLASS were very

comparable (Table 4.2). A tendency towards lower additions of this fertilizer with time

can also be observed in recommendations obtained by both software applications at AIT,

and were likely due to the increase in DIN concentrations (Table 4.2). This tendency was

more pronounced in the recommendations obtained using POND. As was the case for El

Carao, DIC levels at this site appear to be adequate to prevent C limitation; nevertheless,

a tendency towards decreased concentration over time can be observed (Table 4.2).

Under actual management conditions, ponds that show such tendencies may benefit from

increased manure addition or other ameliorative strategies (as previously discussed),



especially if the carbonate-bicarbonate alkalinity drops below about 50-60 mg L-1 of

CaCO3 equivalents.

For the FAC site, POND predicted much lower nitrogen requirements compared to

PONDCLASS as evidenced by urea application rates shown in Table 4.2. In particular,

the requirements for this nutrient were much lower on two sampling dates (January 29th

and February 26th, when DIN concentrations were high). Addition of limited quantities of

phosphorus in the form of an N:P:K mixture (16-20-0) was also recommended by the

POND (Table 4.2). On the last sampling date, relatively high DIP concentrations

presumably resulted in the software not recommending addition of a phosphorus

fertilizer.

DISCUSSION

The comparative analyses of fertilizer recommendations generated by PONDCLASS

and POND for El Carao, AIT and FAC presented above indicate that both software

programs adjust fertilizer quantities in response to ambient nutrient concentrations in the

pond water. However, such adjustments are more pronounced in the fertilizer application

rates recommended by the latter software on occasions when ambient nutrient

concentrations are already relatively high. On such occasions, fertilizer application rates

obtained using POND are in general more conservative than those obtained from

PONDCLASS. This is likely due to a more comprehensive consideration of nutrient

cycling processes in POND, which should translate into lower fertilization costs. Further,

the probability of unionized ammonia reaching levels that impede fish growth is also

likely to be reduced when real ponds are managed using the POND fertilization protocol.

On the other hand, recommendations obtained from both software programs are

comparable when ponds require high dosages of nitrogen and/or phosphorus to ensure

rapid algal productivity rates.
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Schelske (1984) noted that application rates of fertilizers to fish ponds are often very

high relative to algal requirements, rarely take into consideration which nutrients limit

primary production, and how much of the limiting nutrients need to be added to ponds.

This situation is primarily the result of the prevalence of fixed fertilization strategies.

Model verification results presented herein contribute to mounting evidence (e.g.,

Hopkins et al., 1994; Szyper and Hopkins, 1995; Knud-Hansen and Guttman, in prep.;

Hopkins and Knud-Hansen, in prep.) that responsive fertilization strategies are likely to

result in improved economic efficiency of fertilized pond aquaculture systems compared

to fixed input strategies. Further, because nutrient concentrations in pond water vary

substantially over time, it is highly unlikely that fixed application rates of nitrogen,

phosphorus and/or carbon fertilizers which are expected to be economically optimal can

be determined. The term 'economically optimal' is used in the current context to indicate

fertilizer application rates which result in the highest economic efficiency measured in

terms of fertilizer costs required to produce one unit of fish, and does not address

alternate uses of the fertilizers in terrestial crop production. Arguments in support of

responsive management strategies are further strengthened by the fact that in addition to

the variability of nutrient concentrations in a given pond with time, there is also

variability among ponds at a given location, as well as among geographical locations due

to differences in pond water, soil and climatic characteristics.

As with any computer-assisted management tool, users of the POND fertilization

guidelines should observe certain precautions when the software is used. For instance,

although the effects of nutrient cycling are considered in the fertilization model, fairly

high application rates of N can still be suggested particularly for locations where algal

productivity is likely to be high (e.g., results for AIT in Table 4.2). If urea is chosen to

meet this demand and its use is prolonged, fairly high pH's and total ammonia levels may

occur simultaneously in ponds. Because the toxicity of unionized ammonia varies among

fish species (Colt and Armstrong, 1981), tables such as those given by Emerson et al.

(1975; see also Boyd, 1990) should be used to determine the proportion of total NH3-N

that exists in the unionized form for the ambient water pH and temperature. If the
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potential for growth limiting concentrations of unionized NH3-N for the cultured fish

species exists, alternate N sources should be used or fertilization with synthetic

nitrogenous fertilizers should be suspended for a few days so that NH3-N concentrations

can drop to levels that are safe for fish. As a general rule, available data seem to suggest

that fertilization with synthetic N sources should be deferred if total ammonia levels

exceed about 1.0 mg L'i and water pH's are routinely higher than about 8.0. N

fertilization rates should also be adjusted downwards when local weather conditions (e.g.,

prolonged cloudy periods) are likely to impede phytoplankton growth or when plankton

blooms crash because uptake of nitrogen will drop under such circumstances possibly

leading to accumulation of ammonia N in the pond water.

Despite the encouraging results obtained with the fertilization model, field

verification of its recommendations should be undertaken in the form of pond

experiments designed to enable estimation of various parameters used in the fertilization

model. In particular, it would be beneficial to develop nutrient budgets for locations with

diverse pond water and soil conditions, and to estimate the rates of nutrient fluxes. This

is particularly important for nitrogen because very little is known about the fate of this

nutrient in aquaculture ponds. For phosphorus, there is much evidence to suggest that it

may in fact be returned to the water column at relatively high rates once equilibrium has

been established between the pond water and the underlying sediments after long periods

of heavy phosphorus fertilization (e.g., Eren et al., 1977; Boyd, 1995; Shrestha and Lin,

1996). Under such conditions, the Prnisc term in Equation 7.1 will be positive, with a rate

constant that is likely to vary depending on the soil type and its phosphorus adsorption

capacity.

Experiments should also be conducted at different locations to examine ranges of

nutrient addition, to develop associated GPP-nutrient relationships, and to evaluate

economic consequences of forcing ponds to be nutrient limited. For instance, it may be

advisable to reduce nitrogen loading rates in order to minimize the possibility of



unionized ammonia accumulation. Further, it may also be useful to vary N:P ratios in

ponds either for cost concerns, or to manage the composition of algal species in ponds.

It is also important to note that there is currently no upper limit to the amounts of

manure that may be recommended by POND because the maximum amount of manure

that can be applied to ponds likely varies according to several factors including dissolved

oxygen levels in the pond, manure source, and fish biomass. Model users should

therefore be somewhat cognizant of the maximum manure loading rates that their ponds

can withstand on a routine basis. For example, application rates of CM that were

generated by POND for the MT site are less than the highest amount of this fertilizer

(1000 kg ha-1 wk-1 on a dry matter basis) that has been used without any apparent

problems at a similar site in Thailand (Diana et al., 1991b).

CONCLUSIONS

Substantial refinements of the fertilization guidelines developed by Lannan (1993)

have been accomplished in the form of a model that has been implemented in the decision

support system POND. This model is conceptually similar to Lannan's (1993) approach

in that it is based on limnological principles and is a responsive management strategy, but

differs in the following ways:

An estimate of the light-limited gross primary productivity (GPPx) is used as the

starting point for fertilizer calculations instead of the maximum net productivity

(NPPmax),

The fertilization model accounts for the effects of temperature and nutrient limitations

on algal productivity (and therefore fertilizer needs), and

Recycling of N and P in ponds is more fully considered in estimating nutrient

requirements.
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Verification of the POND fertilization model on the basis of PD/A CRSP data from

Honduras, Thailand and the Philippines suggests that fertilizer application rates generated

by the model are likely to be more conservative than those obtained by the use of

PONDCLASS. It is also expected that improved consideration of nutrient cycling will

reduce the probability of unionized ammonia accumulation in ponds. Experimental

verification of the fertilization model for different locations should be undertaken to

assess its performance under field conditions. Nevertheless, model verification results

support previous work which indicate that responsive fertilization strategies such as the

model developed in this study are likely to result in better nutrient utilization in ponds

compared to fixed input approaches, and should result in improved cost efficiency of

fertilization practices.
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ABSTRACT

Bioenergetic models are potentially useful tools for analyzing fish growth in relation

to different pond management practices. However, existing models have provided

limited opportunity for practical use either because of their complexity and high data

requirements, or because they do not adequately estimate endogenous food consumption

by fish in ponds. Therefore, a study was undertaken to develop a simplified bioenergetics

(BE) model for fish growth in ponds. This model predicts growth as a function of fish

size, food consumption, photoperiod, temperature, dissolved oxygen and unionized

ammonia concentrations. A new approach which involves the use of the pond's critical

standing crop is used in the BE model to predict the proportion of endogenous food in the

diet of pond fish. The BE model also allows for the estimation of supplemental feed

requirements (as well as wasted feed) for single or multiple fish populations in a pond by

the use of either a specified satiation feeding level or on a percent body weight (%BW)

basis.

In contrast to previous fish growth models which have typically been applied to only

one fish species, the BE model has been successfully calibrated for Nile tilapia

(Oreochromis niloticus), tambaqui (Colossoma macropomum), pacu (Piaractus

mesopotamicus), common carp (Cyprinus carpio), and channel catfish (ktalurus

punctatus). Further, model validation has also been accomplished for these species

across various production scenarios such as fertilization regimes, feeding levels, and

stocking densities. Sensitivity analysis indicates that among the ten parameters in the BE

model, output is very sensitive to three anabolic, one catabolic and two temperature

parameters.

Numerical experiments conducted with the BE model indicated that fertilized tilapia

ponds with higher fish stocking rates will require supplemental feeding to be initiated

earlier compared to those stocked at lower rates, and that the amount of supplemental

115



116

feed required to maintain a target feeding level increases rapidly with increasing fish

biomass. A second set of model experiments indicated that traditional fixed feeding rates

(in terms of %BW fish -I d- I) results in higher feed requirements, increased waste feed,

and higher food conversion ratios compared to satiation feeding rates predicted by the BE

model for locations with different water temperature profiles. For fed ponds, feeding

curves obtained from the BE model decrease monotonously with increasing fish weight in

a manner similar to published feeding tables, but are likely to be more useful compared to

such tables because they are automatically adjusted for the effects of various variables

such as fish size, water temperature and photoperiod on fish appetite. For fertilized and

fed ponds, BE model feeding curves are characterized by an initial increase followed by a

gradual reduction or leveling-off in the feeding rates, apparently because the model

accounts for the contribution of natural food to the diet of pond fish. The BE model

appears to be a robust and flexible tool for describing fish growth in aquaculture ponds,

and can be of use both in routine pond aquaculture management and planning

applications, and to explore production scenarios that have not previously been studied in

physical experiments.

INTRODUCTION

Bioenergetic models are useful both for analyzing factors that affect fish performance,

and as management tools for fish production (Cuenco et al., 1985a). In the present

context, the term peifonnance refers to growth, feeding, and metabolism of fish in a

particular environment. Management tasks relevant to pond aquaculture that may be

addressed by the use of such models include prediction of fish yields under conditions

where endogenous (natural) food is the only source of nutrition to fish (e.g., Liu and

Chang, 1992), generation of supplementary feed schedules based on endogenous food

resource production and fish biomass, analysis of observed fish yields relative to

production targets, management of fish densities and harvest schedules, and assessment
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of water quality management as a potential tool for increased production. Some of these

tasks require consideration of water quality processes, oxygen consumption and

metabolite excretion by fish, as well as production economics which are beyond the scope

of this study.

Key variables that significantly influence fish growth are size (or weight), food

availability, photoperiod, temperature, dissolved oxygen and unionized ammonia

concentrations (Piitter, 1920; Fry, 1947; Winberg, 1960; Ursin, 1967; Warren and Davis,

1967; Brett et al., 1969; Stauffer, 1973; Huisman, 1976; Corey et al., 1983; Cuenco et al.

1985a). These variables appear to affect fish growth via their impacts on food intake

(Brett 1979). Further, activities associated with the development and maturation of

reproductive structures reduce growth because energy that might otherwise have been

used for tissue build-up is diverted to these structures (Brody, 1945; Brett and Groves,

1979).

Consumed food is used to meet energy losses associated with bioenergetic processes

such as fecal and metabolite excretion, standard (maintenance) metabolism, stress

response, heat increment (specific dynamic action), active metabolism (swimming), and

gametogenesis (Winberg, 1960; Brett and Groves, 1979). Energy in excess of these

losses is reflected in fish growth. The fate of consumed food has been modeled for

different fish species by the use of comprehensive bioenergetic models (e.g.,Machiels

and Henken, 1986; Cacho, 1991; van Dam and Penning De Vries, 1995). Following the

observations of earlier workers (e.g., Putter, 1920; Winberg, 1960; Paloheimo and Dickie,

1965; Warren and Davis, 1967), these bioenergetic models assume that growth is

manifested as a result of the difference between food intake and metabolism.

Comprehensive bioenergetic models provide a fundamentally sound basis for

modeling fish performance, but they tend to be extremely detailed and data intensive.

Therefore, such models perhaps best serve as a theoretical framework for understanding

fish performance rather than as practical models for pond management. Simplified
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versions of bioenergetic models that can be used in a management context to analyze

factors that affect fish growth have been developed. For example, Stauffer (1973) and

Corey et al. (1983) developed models which account for the effects of fish size, varying

ration size and temperature on fish growth. However, their models were only calibrated

for salmon, and do not address the effects of low dissolved oxygen and/or high unionized

ammonia concentrations on fish growth. More importantly, these two models are not

necessarily applicable to pond aquaculture systems because they assume that exogenous

feed is the sole source of fish nutrition, whereas many species of pond fish grow quite

effectively on the natural food resources available in such systems. Cuenco et al. (1985a)

developed a useful and flexible bioenergetics model applicable to various aquaculture

systems. This model was parameterized for different fish species (e.g., trout, catfish and

tilapia). In the Cuenco model, bioenergetic processes associated with energy

consumption (i.e., excretion, standard metabolism, stress response, heat increment and

active metabolism) were grouped into a generic pool of metabolic losses, and fish growth

expressed as the difference between food intake and losses within this pool. The Cuenco

model accounts for all the key variables that influence fish growth, with the exception of

photoperiod and reproductive losses. The model also does not adequately quantify

endogenous food consumption, a principal source of nutrition to pond fish (Hepher,

1978).

An alternate bioenergetic model for modeling Nile tilapia (Oreochromis niloticus)

growth in warrnwater ponds has been developed by Liu and Chang (1992) on the basis of

principles previously outlined by Ursin (1967). Conceptually, this model is similar to the

Cuenco model in that bioenergetic processes are grouped into tissue synthesis or

anabolism (which includes food intake) and tissue breakdown or catabolism, with the

difference between them being realized as fish growth. Variables considered by Liu and

Chang (1992) include body weight, gametogenetic activities and endogenous food

consumption. The amount of endogenous food consumed was assumed to be a function

of the stocking density of fish in the pond (rather than standing crop as demonstrated by

Hepher, 1978) and the amount of fertilizers added.
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In general, currently available bioenergetic models that can be used for pond

aquaculture management have either not adequately addressed the effects of key variables

on fish growth and or have not been parameterized for many species of pond fish.

Moreover, these models have been subjected only to limited validation and have rarely

been used in an experimental manner to explore different pond production scenarios. The

development of a management-oriented bioenergetics (BE) model, together with relevant

calibration and validation results for different species is presented herein. Results from a

generalized sensitivity analysis exercise and from various model experiments are also

presented.

MODEL STRUCTURE

From an energetic standpoint, the Ursin model views fish growth as the difference

between food consumed (anabolism), and the sum of energy required to process food

(feeding catabolism) as well as maintenance requirements (fasting catabolism). In the BE

model (as described in detail below), the amount of food consumed is assumed to be a

function of fish size, photoperiod, temperature, dissolved oxygen (DO) and unionized

ammonia (UIA) concentrations following Ursin (1967), Brett (1979) and Cuenco et al.

(1985a). These five variables also affect feeding catabolism because its rate is

proportional to the amount of food consumed. Fasting catabolism, however, depends

primarily on fish size and temperature (Ursin, 1967). Because it is difficult to predict the

onset of maturity and the proportion of intake energy that may bediverted for

gametogenetic activities (Brett, 1979), the BE model assumes that energy losses due to

these physiological changes are negligible (e.g., as might be the case in intensive carp

ponds or in a monosex culture of Nile tilapia). Another fundamental assumption of the

BE model is that the composition of fish and their diet is identical (Ursin, 1967).



Size effects

It is generally accepted that the growth rate of fish increases at a declining rate with

size or weight (W) (Putter, 1920; von Bertalanffy, 1938). In its simplest form, this

relationship is often expressed as a power function (e.g., Winberg, 1960; Hepher, 1978).

However, von Bertalanffy (1938) and Ursin (1967) indicated that anabolism and

catabolism may be paced at different rates in relation to fish weight, with subsequent

effects on fish growth. This is captured in the following equation for fish growth rate

which has separate exponents for anabolism and catabolism (m and n respectively)

(Ursin, 1967):

dW = HWm - kwn (1)
dt

where H = coefficient of anabolism (dim) and k = coefficient ofcatabolism en).

Food Consumption

The parameter H in Equation 1 can be expanded to consider daily ration, feeding

catabolism and digestibility of the food consumed as follows (Ursin, 1967):

= b(1- a) R - kWn (2)

where a = fraction of the food assimilated that is used for feeding catabolism (0-1), b =

the efficiency of food assimilation (0-1), and R = daily ration (g d-1), which is the sum of

the endogenous or natural food (Rn) and supplemental feed (Rs) consumed. The term

b(1 - a) in Equation 2 represents energy that is available for growth and fasting

catabolism.

dW

dt
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Based upon previous work (e.g., Winberg, 1960; Ursin, 1967; Warren and Davis,

1967), daily ration can be calculated as a function of fish size, food consumption (f) and

environmental conditions (E):

R = hfEWm (3)

where h = coefficient of food consumption.

The parameter f (0-1) as defined by Ursin (1967) is the ratio of the actual food intake

rate (R) to the intake rate at complete satiation (R.). In ponds that receive supplemental

feed, f is the sum of the proportion of natural food resources (f,i) and feed (fs) in the diet,

with associated intake rates given by the product of each of these proportions and R.

(e.g., Rn = fn R.). When the BE model is used to simulate fish growth in fertilized

ponds, f, =0 and f = fn. Similarly, for ponds that receive only feed inputs, =0 andf =

Because one of the potential applications of the BE model is to estimate the amount of

feed required for a given pond, it is convenient to also define a satiation or target feeding

level parameter"; (0 1). This is essentially a management parameter that controls

the degree of satiation to which stocked fish should be fed. The daily ration at ft is

denoted as R.

Cuenco et al. (1985c) modeled natural food consumption as a function of feed added

to the pond under the assumption that waste feed has a fertilizing effect on the pond

environment. This function is, however, not useful for ponds that are not fed. The

parameter fn was modeled by Liu and Chang (1992) on the basis of a function developed

by Ivlev (1961), who observed that food intake by fish tends to increase asymptotically

towards a maximum intake level. The Ivlev function depends on the quantity of food

resources available and the number of fish present in the pond. Liu and Chang (1992)

used a fertilizer richness parameter (equivalent to the loading rate of chicken manure in

the experiments simulated) to estimate endogenous food consumption. However, the

approach used by Liu and Chang (1992) cannot be easily extended for use in ponds that

receive various levels of fertilizer inputs or a mixture of organic and synthetic fertilizers
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because some estimate of the fertilizer richness parameter would be required. Moreover,

Liu and Chang (1992) assumed endogenous food consumption to be function of the

number of fish, instead of fish standing crop as demonstrated by Hepher (1978). This

assumption implies that the amount of food consumed by pond fish is constant for a

particular fertilization regime and culture period, unless the number of fish is

substantially altered either due to mortality or partial harvest.

In reality, endogenous food consumption by fish in fertilized ponds that are treated

identically typically varies over time (Hickling, 1962; Hepher, 1978). During the initial

phase of fish production, adequate endogenous food appears to be produced in properly

fertilized ponds thus sustaining fish at satiation feeding levels (i.e., f = 1), but once the

fish biomass (FB) or standing crop in the pond exceeds the "critical standing crop"

(CFB), the proportion of endogenous food relative to the amount required to satiate fish

declines until the carrying capacity of the pond is reached (Hepher, 1978). Although the

parameter f can potentially decline to zero, this situation does not appear to occur in

fertilized ponds perhaps because there is adequate food to meet maintenance requirements

of fish even at relatively high biomass levels as a result of adaptation to conditions of

limited food availability (Hepher et al., 1983; Hepher, 1988).

There have been very few efforts to determine the quantity of supplemental feed that

is to be added to fertilized ponds so as to ensure that a desired target satiation level is met.

The task is especially difficult for fish species such as Nile tilapia and common carp

which may derive a substantial portion of their nutritional requirements from natural food

resources. The parameter fs in the BE model is intended to enable estimation of

supplemental feed requirements. Functions developed for ft, and fs in the model depend

on fertilization and feeding practices, and are described below.



Natural Food Only

A simple expression to approximate the relationship between endogenous food

consumption and fish biomass is as follows:

f n = 1.0, if FB < CFB

= CFB/1-13, if FB > CFB (4)

This expression appears to capture the pattern of decreasing proportions of natural food in

fish diet when fish biomass exceeds CFB, and approaches the carrying capacity of a pond

(Hepher, 1978; see also Fig. 5.1A). Fish biomass in the BE model is expressed on a

volumetric (kg m-3) rather than the traditional areal basis (kg ha') to account for

differences in pond volumes.

Use of Equation 4 requires estimates of the CFB, which can be obtained from fish

growth data because the short-interval growth rate of individual fish in fertilized ponds

tends to increase initially, reaches a maximum at the CFB and then decreases thereafter

(Hepher, 1978). Nile tilapia growth rates estimated from data reported in the aquaculture

database maintained by the Pond Dynamics/Aquaculture Collaborative Research Support

Program (PD/A CRSP) indicate similar patterns (Fig. 5.2). These data originated from

fertilized ponds located at Bang Sal, Thailand. The ponds labeled SD1, SD2 and SD3

(Fig. 5.2) were stocked with 33g fish at 1, 2 and 3 fish m12 respectively, whereas the

remaining pond was stocked with lg fish at 2 fish 111- 2. If we assume that CH3

corresponds to the fish biomass at the point when growth rates reach a maximum, Figure

5.2 suggests that CFB appears to have been reached by day 30 for the SD2 and SD3

ponds, by day 60 for the SD1 pond, and only by day 90 for the remaining pond

(presumably because of the smaller stocking weight). For the SD2 and SD3 ponds, it is

possible that the CFB actually occurred prior to the first sampling interval (30 days after

stocking), but this is difficult to ascertain from the available data.
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Figure 5.2. Mean short-interval growth rates for Nile tilapia in fertilized ponds located at
Bang Sai, Thailand. The pond labeled SD2 (small) was stocked with 1 g fish, whereas the

others were stocked with 33g fish.

Natural Food Plus Supplementary Feed

The BE model assumes that supplemental feed is not required in ponds if fish

biomass is less than CFB. Another implicit assumption is that fish attempt to satisfy their

nutritional requirements from endogenous food resources before supplemental feed is

consumed. If the model is used to predict supplemental feed requirements, it is necessary

to specify ft, which replaces f in Equation 3. The parameter fs is set to zero unless two

conditions are satisfied: (i) the CFB is exceeded, and (ii)f, < ft. The difference between

the latter two parameters represents fc. The daily supplemental feed amount (Ra; g

can then be calculated as follows:
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Ra = = Rmax (5)

where q = feed quality coefficient (0-1). This coefficient is to be interpreted as a measure

of both the quality of the supplemental feed as well as feeding practices. Feeds like rice

bran that are widely used in tropical pond aquaculture may not be particularly palatable to

some fish species and consequently a large proportion is not directly consumed. A lower

value for q should be used in such cases. Conversely, a high quality feed together with

good feeding practices warrants the use of a higher value for q.

The supplemental feed actually consumed by fish and the amount of feed wasted (12w)

in g (flare calculated as follows:

R= q Ra (6)

R= (1 - q) Ra (7)

In practice, fish ponds may occasionally contain one or more fish lots or populations (of

either the same or different species). For such scenarios, the total amount of feed

supplied and wasted are assumed to be the sum of the rates calculatedby the use of

Equations 5 and 7 respectively for each of the fish lots.

In situations where the feeding rate is specified as a percentage of the body weight per

day (%BW d-1), Ra is calculated directly and Equation 5 is not evaluated. It is difficult to

estimate the amount of feed reaching fish that belong to different lots in a single pond

even if identical feeding rates are specified. For instance, a pond may contain two

populations (e.g., tilapia and catfish), each being fed at the same rate on a %BW basis.

However, the actual feed consumed by fish within each lot is likely to differ because of

differences in fish size and appetite. In such situations, the total amount of feed added to

the pond is calculated and then averaged over the number of lots in it to arrive at a single

rate (Ra) for each lot.
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When feeding rates are specified on a %BW c1-1 basis, and complete satiation is not

reached (i.e., f < 1), Equations 6 and 7 are used to estimate Rs and Rw respectively.

However, if feed is supplied in excess of satiation levels, asituation that can occur in

ponds with an abundance of natural food, Rs and Rw are given by:

R= (1 - n) R max
(8)

R w = (1 - q) R a + {(f n R max 1- q R a) R max] (9)

Note that Rw under conditions of excess feeding comprises two components: (i) a fraction

of the applied feed that is unavailable for consumption, and (ii) an estimate of feed

supplied in excess of satiation.

Supplementary Feed Only

Sometimes, it may be desirable to analyze feed requirementswhen the cultured fish

species does not to any large extent exploit endogenous food resources in ponds or the

production of such resources is negligible. Examples of cultured species that do not

harvest natural food resources to any appreciable level include channel catfish (Wiang,

1977, cited in Lovell, 1988) and tambaqui (Merola and Pagan-Font, 1988). From a

modeling context, the above scenarios are equivalent to setting fi, =0 andf, =ft.

Equations 5-9 can then be used to estimate feed requirements or evaluate growth

responses to pre-specified feeding rates as discussed above. It should be noted that the

effects of SD are not accounted for when the BE model is used to simulate growth in fed

ponds. Possible repercussions of this assumption are discussed in a later section of this

paper.



Effects of Environmental Variables

Expressions used to evaluate the effects of each of the four environmental variables

(photoperiod, temperature, DO and UIA) on fish growth are described below.

Photoperiod: Many cultured fish including tilapias tend to feed only during daylight

hours (Caulton 1982). The daily photoperiod (h) at different sites can be obtained from

sunrise and sunset hour angle calculations (Hsieh, 1986), and the photoperiod or daylight

scaler (n) then estimated as photoperiod/24. A photoperiod of 12h for instance would

result in TC = 0.5. This linear scaler is used to adjust daily food intake in the BE model.

Temperature: Food consumption tends to increase with temperature (7) from a lower

limit below which fish will not feed (Tmin) until the optimum temperature (Lpt) for the

given fish species is reached; beyond Topt, consumption decreases rapidly to zero until an

upper limit (Tn..) is reached above which fish will not feed (Brett et al., 1969; Brett

1979). Cuenco et al. (1985a) used a triangular function to describe this relationship.

However, many fish species such as tilapias (Caulton, 1978) tend to have a maximum

food consumption rate within a temperature range rather than at a single optimum

temperature. Therefore, the "skewed normal" function used by Svirezhev et al. (1984;

see also Fig. 5.1B) which is more or less flat around a known optimal temperature

appears to be more appropriate to describe the effects of temperature on food

consumption, and therefore anabolism. This function (t) is dimensionless, and is given

by:

T = exp{-4.6 [(To/A - T) / (Topt - Tmin), if T < Topt

-14

exp{-4.6 [(T - Tot) / (Tmax - Topt ).1 if T > Topt (10)

However, catabolism increases exponentially with temperature within the tolerance limits

for a given species (Ursin, 1967; see also Cuenco et al., 1985a). In the BE model, the

exponential function of the Ursin model has been modified to include the lower
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temperature tolerance limit for the given species (assumed to be equivalent to Tnii,i) as

follows (Fig. 5.1B):

k = k min exp {s (T - Tmin )1 (11)

where k = coefficient of fasting catabolism (g1-n/day), kmin = coefficient of fasting

catabolism at Tmin (g'/day), and s = a constant to describe temperature effects on

catabolism (°C-1).

Dissolved Oxygen: DO typically does not affect food consumption if its concentration is

above a critical limit (DO) that is species dependent, but further decrease in DO levels

reduces food consumption more or less linearly until concentrations of DO below which

fish will not feed are reached (DOn) (Cuenco et al. 1985a). Following this group of

authors, such effects can be expressed by the use of the function 8 (0-1; Fig. 5.1C):

ö= 1.0, if DO > DOcrit

(DO - DO min) / (DO crn - DO min if DOmin < DO < DOcrit

0.0, if DO < DOmin (12)

Unionized Ammonia: The effects of UIA are similar to those of DO with the exception

that food consumption is affected only if UIA exceeds a certain critical concentration

(UIAer,t). Beyond UIAcrit, food consumption decreases with increasing UIA until the

latter reaches a certain maximum value (UIAmax), beyond which food is not consumed

(Colt and Armstrong, 1981; Cuenco et al. 1985a). The function u (0-1; Fig. 5.1D)

developed by these authors is as follows:

= 1.0, if UIA < UIAcrit

(UIA max UIA) / (MA max - crn ) , if Merit < UIA < UIAmax

0.0, if UIA > UIA. (13)

Combined Effects of Environmental Variables: The parameter E in Equation 3 reflects

the combined effects of photoperiod, temperature, DO and UIA on food consumption.

Brett (1979) synthesized available literature documenting the effects of these factors on

fish growth, and observed that the extent to which each factor limits growth is dependent
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on the other factors. Empirical relationships that can be used to describe the combined

effects of limiting factors on growth include Liebig's minimum factor rule, the

multiplicative effect function, the mean effect approach and the inverse sum function

(Benefield and Randall, 1980; Straskraba and Gnauck, 1985; O'Neill et al., 1989). These

functions have been developed primarily on the basis of experimental results obtained

with bacterial cultures and plant growth. They have not been extensively used for fish

growth modeling. However, Cuenco et al. (1985a) applied the minimum factor function

to examine the effects of DO and UIA on food consumption. Further model

experimentation by these authors (Cuenco et al., 1985b) suggested that the effects of DO

and UIA on growth were probably better described by use of the multiplicative function.

The latter approach is more consistent with experimental observations which indicate that

the effects of high IAA concentrations on fish growth are morepronounced when DO is

low (Merkens and Downing 1957, Thurston et al. 1981). Further, Cuenco et al. (1985b)

also found that the combined effects of temperature with DO or MA were also better

described by the use of the multiplicative function. In the absence of further information

on the combined effects of photoperiod, temperature, DO and UIA on fish growth, the BE

model assumes that their combined effects are adequately represented by the

multiplicative function (i.e., E=Tcxix8x u).

Effects of Mortality

Losses of stocked fish as a result of mortality are a major concern in aquaculture

operations. However, such losses are difficult to predict because they may occur either

due to prolonged or sudden exposure to poor water quality and/or pathogenic organisms.

The BE model does, however, enable consideration of this factor by the use of a daily

mortality or loss rate (X.; c1-1) as follows:



dP

Pdt =

where P = population size of the fish in the particular lot (P; fish ha-1), the initial

condition of which is the stocking density (SD).

Model Implementation

The BE model is one among a family of simulation models that have been

implemented in the decision support system POND (see also Chapter 1). These models

have been formulated as sets of ordinary differential equations that are solved by the use

of a fourth-order Runge-Kutta integrator. Equations 1 and 14 are the differential

equations relevant to the BE model. For the current study, a time step of one day was

used for all the simulations.

MODEL PARAMETERIZATION

Calibration of the BE model requires time-series data pertaining to fish growth, water

temperature, DO, UIA and feed application. Such data are either not routinely collected

in experimental and field trials or not often reported in the published literature.

Nevertheless, the BE model has been calibrated for Nile tilapia, common carp (Cyprinus

carpio), tambaqui (Colossoma macropomum), pacu (Piaractus mesopotamicus) and

channel catfish (Ictalurus punctatus) by the use of an automatic parameter estimation

technique (Chapter 7). Model parameters estimated for the five fish species are indicated

in Table 5.1.
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Table 5.1. Best-fit model parameters estimated for five fish species. Parameter estimation procedures are described in Chapter

7.

Bioenergetic Parameter Nile Tambaqui Pacu Common Channel

tilapia carp catfish

Anabolism Parameters
Efficiency of assimilation (b) 0.7108 0.6695 0.7719 0.7129 0.7865

Anabolism exponent (m) 0.6277 0.6855 0.7154 0.6722 0.6327

Food consumption coefficient (h) 0.4768 0.2863 0.2415 0.3282 0.2885

Catabolism Parameters
Feeding catabolism coefficient (a) 0.0559 0.1057 0.0529 0.0786 0.1133

Catabolism exponent (n) 0.8373 0.5336 0.5332 0.5166 0.5118

Minimum catabolism coefficient (kmin) 0.0104 0.0146 0.0094 0.0104 0.0227

Temperature parameter (s) 0.0288 0.0110 0.0290 0.0027 0.0119

Temperature Scalers
Minimum (Tmin) 18.7 14.4 17.5 10.1 13.3

Maximum (Tn.) 39.7 38.6 31.4 36.2 36.0

Optimum (Topi) 32.4 29.0 28.1 30.6 30.8
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For each species, data sources used in model calibration and parameter estimation

results are discussed in the relevant section below . Because DO and UlA information

were not available in the data sources, it was assumed that these variables were within the

ranges where fish growth was independent of their concentrations. Further, in the

absence of detailed information on feed quality and feeding practices, a value of one was

assumed for the parameter q. Feeding rates in the data sources were typically reported in

terms of %BW d, and were used to estimate the amount of feed added to the ponds. The

daily mortality rate was estimated from survival data reported in the various sources.

Nile tilapia

Data from an experiment conducted at the El Carao research station in Honduras

(Teichert-Coddington et al., 1991) were used for model calibration. Experimental details

reported by these authors are briefly summarized here. The experiment involved the

following four treatments (replicated three times in 0.1 ha earthen ponds): (a) chicken

litter only (CL), (b) chicken litter for the first month, followed by feed (CL1), (c) chicken

litter for the first two months, followed by feed (CL2), and (d) chicken litter for the first

three months, followed by feed (CL3). For all treatments, chicken litter and feed were

supplied at 1000 kg ha-1 WIC-I (DM basis) and 3% of the estimated fish biomass

respectively. Sex-reversed Nile tilapia (mean weight of 28.5g) were stocked at 1 fish 1112

and harvested after 147d. Growth and survival data for the above experiment were

extracted from the PD/A CRSP aquaculture database. Daily water temperature for use in

growth simulations of this species was predicted by use of the model described in Chapter

2; weather data required as input to the latter model were also extracted from the PD/A

CRSP database. Only growth data from the CL1 and CL3 treatments were used for

model calibration. Data from the other two treatments were used for validation purposes

(see Model Validation section below). Mean CFB's for the CL1 and CL3 treatments

were estimated from observed growth data to be 0.156 and 0.143 kg I11-3 respectively.
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The simulation runs assumed that feed consumption would commence only once the CFB

was exceeded.

Parameters estimated from this experiment (Table 5.1) resulted in good predictions of

Nile tilapia growth (Fig. 5.3; Table 5.2). Reduced growth rates for the CL3 treatment

presumably resulted from food limitation because supplemental feeding commenced well

after the CFB was reached. Periods of slow growth predicted by the model for both

treatments (Fig. 5.3) were apparently the result of low water temperatures (in the range of

19-22°C). It is difficult to observe such effects in actual growth data because of the

relatively long sampling intervals (about four weeks).

Data from a 255d experiment conducted at the Centro de Pesquisa e Treinamento em

Aquicultura (CEPTA) in Itiquira, Brazil (Merola and Pagan-Font, 1988) were used to



Table 5.2. Summary model calibration and validation results for the five species chosen for analysis.

Fish Species Site Data
Source

Period Simulated Treatment' Final Fish Weights (g)

Observed Predicted

Percent
Relative
Errorb

Calibration

Nile tilapia El Carao, Honduras 1 27/7/89 to 21/12/89 Feed + Fert (CL 1) 276.4 294.2 +6.4
1 27/7/89 to 21/12/89 Feed + Fert (CL3) 258.4 251.4 -2.7

Tambaqui Pirassununga, Brazil 1/10/84 to 13/6/85 Feed' 298.0 304.6 +2.2

Pacu Itiquira, Brazil 3 26/4/86 to 11/03/87 Feedd 699.6 727.9 +4.0

Common carp Golysz, Poland 4-6 10/6/72 to 10/10/72` Feed 400.0 401.8 +0.5

Channel catfish Stoneville, MS, USA 7 1/5/94 to 1/10/94 Feed 463.0 454.6 -1.8

Validation

Nile tilapia El Carao, Honduras 1 27/7/89 to 21/12/89 Fertilizer only (CL) 206.4 197.8 -4.2
1 27/7/89 to 21/12/89 Feed + Fertilizer (CL2) 256.5 275.3 +7.3

El Carao, Honduras 8 11/8/88 to 20/12/88 Fertilizer 131.3 124.7 -5.0
Bang Sai, Thailand 9 2/2/87 to 1/7/87 Fertilizer, SD 1 fish 1112 189.7 204.9 +8.0

Fertilizer, SD 2 fish lif2 116.7 126.1 +8.0
Fertilizer, SD 3 fish 121.2 86.0 101.9 +18.5

Bang Sai, Thailand 10 9/10/91 to 19/3/92 Feed 325.7 369.6 +13.5h

Tambaqui Gualaca, Panamaf 11 Feed 426.0 375.7 -11.8h

Colombiaf 12 Feed 1240.0 1068.1 -13.9h



Table 5.2, Continued.

a Refer to text for explanation of treatment codes, if any.
b Calculated as [(P - 0)/0]* 100, where P and 0 are the final predicted and observed weights (g) respectively.

Organic fertilizers (cattle or poultry manure) were added during the initial phase of the study, but suspended thereafter because a
parallel study suggested that its contribution to fish growth was minimal.
d Cattle manure was added for the first eight months of the study, but its effects on growth were difficult to assess and therefore not
considered in the current analysis.
e Stocking and harvest dates are approximate estimates because growth data were read off a graph.
r See text for additional assumptions that were made to accomplish model validation.
g Data for this experiment were obtained from Dr. Newton Castagnolli (personal commn.).
!' Possible reasons for these relatively high error values are discussed in the text.
'The year of the experiment was not mentioned by Lovell (1977).

Data Sources:
1. Teichert-Coddington et al., (1991); 2. Merola and Pagan-Font (1988); 3. Lima et al. (1988); 4. Szumiec (1979a); 5. Szumiec
(1979b); 6. Szumiec and Szumiec (1985); 7. Robinson and Li (1995); 8. Teichert-Coddington et al. (1990); 9. Diana et al. (1990);
10. Diana et al. (1993); 11. Peralta and Teichert-Coddington (1989); 12. Gomez et al. (1995); 13. Bernardino and Ferrari (1989);
14. Rappaport and Sang (1979); 15. Lovell (1977).

Fish Species Site Data
Source

Period Simulated Treatment' Final Fish Weights (g)

Observed Predicted

Percent
Relative
Errorb

Pacu Pirassununga, Brazil 13 25/2/82 to 25/2/83 Feed 624.0 649.2 +4.0
Pirassununga, Brazil 22/2/82 to 22/2/83 Feed 567.0 589.7 +4.0

Common carp
Golysz, Poland 4-6 10/6/72 to 10/10/72e Feed 920.0 889.4 -3.3
Haifa, Israel 14 9/5/78 to 30/6/78 Feed 482.0 503.3 +4.4
Haifa, Israel 14 7/7/78 to 28/8/78 Feed 533.0 540.6 +1.4
Haifa, Israel 14 5/9/78 to 23/10/78 Feed 335.0 347.9 +3.9

Channel catfish Auburn, Alabama 15 15/4 to 15/10i Feed 500.0 449.9 -10.0
Notes:
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Figure 5.4. BE model calibration results for tambaqui at Pirassununga, Brazil.
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calibrate the BE model for tambaqui. Fish of mean weight 11.7g were stocked at a

density of 1.7 fish I11-2 in a 0.71 ha earthen pond. Feed was applied at rates varying from

3.5% to 2% BW dI depending on fish size. Time-series water temperature data reported

by Merola and Pagan-Font (1988) were used as input to the BE model. Parameter

estimation for this species assumed that feed was the only source of nutrition.

Model parameters for tambaqui (Table 5.1) result in the growth profile shown in Fig. 5.4

(see also Table 5.2). Predicted fish weights tended to be slightly lower than observed

weights during the entire simulation except towards the end. It is possible that the

estimated model parameters are not adequate to accurately predict growth of this species

when temperatures are within its optimum range. The availability of additional replicates

for the experiment conducted by Merola and Pagan-Font (1988) would have been

beneficial in generating a parameter set more representative of tambaqui growth.
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Pacu

Data for this species were obtained from Lima et al. (1988), a study which involved

two phases in 0.1 ha ponds, namely fingerling culture for 230d (two replicates) followed

by a grow-out phase that lasted 89d (three replicates). Stocking rates were 2 and 0.6-0.8

fish 111-2 respectively for the two phases. Because the BE model does not account for the

effects of SD in fed ponds, data from both phases were combined for model calibration.

This enabled analysis of growth over a longer culture period. Feeding rates ranged from

1.5-3% BW cll. Lima et al. (1988) do not provide details regarding adjustment of feeding

rates; therefore, it was assumed that these rates decreased with increasing biomass. Time-

series water temperature data reported by the above authors were used as input to the BE

model. Estimated parameters are indicated in Table 5.1. Simulations with the calibrated

model result in good correspondence between observed and predicted growth (Fig. 5.5;

Table 5.2). The model also accurately predicted periods of poor growth associated with

low water temperatures during the initial phase of culture.
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Figure 5.5. BE model calibration results for pacu at Itiquira, Brazil.
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Common Carp

Data from experiments conducted during 1969-1974 at the Golysz experimental

station in Poland were used to calibrate the BE model for common carp. These data have

been published in a variety of reports; thus, mean monthly water temperatures for the

Golysz station were obtained from Szumiec (1979a), feeding rates from Szumiec (1979b)

and growth data from Szurniec and Szumiec (1985). For parameter estimation, growth

data for 1-2 year old fish (C1_2) were used. Excellent correspondence between fish

weights predicted by the use of the calibrated model and observed weights was obtained

for this species throughout the simulation period (Fig. 5.6), and the relative error was the

lowest among the five fish species tested (Table 5.2). Slower growth rates towards the

end of the simulation period were presumably due to low water temperatures, a trend that

was accurately predicted by the set of growth parameters for the common carp.
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Figure 5.6. BE model calibration results for common carp at Golysz, Poland.
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Channel Catfish

Model calibration for catfish was accomplished using growth, feeding and water

temperature data for experiments conducted at the Stoneville Research Station,

Mississippi (Robinson and Li, 1995). Biweekly fish weights reported by these authors

were apparently only estimates and not obtained by regular sampling since this practice

increases stress and mortality (Dr. Menghi Li, Mississippi State University, personal

commn.). 50g fish were stocked in the ponds on May 1 at a density of 2.47 fish 111-2, fed

to satiation, and harvested after 153d. Model predictions with the best-fit parameter set

(Table 5.1) compared very favorably to observed weights for this species (Fig. 5.7). The

final harvest weight predicted by the growth model was only marginally lower than the

actual weight reported by Robinson and Li (1995; Table 5.2).
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Figure 5.7. BE model calibration results for channel catfish at Stoneville, Mississippi,
USA.
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MODEL VALIDATION

The BE model was validated for each of the five fish species as described below.

Unless otherwise noted, model validations used the same assumptions listed in the Model

Parameterization section.

Nile tilapia

As indicated earlier, data from two of the treatments (CL and CL2) in the experiment

conducted by Teichert-Coddington et al. (1991) were used for model validation. Mean

CFB's for these two treatments were estimated from growth data in the PD/A CRSP

database to be 0.144 and 0.204 kg m3 respectively. Growth predictions were in general

quite good (Fig. 5.8; Table 5.2), although predicted weights tended to exceed observed

weights for CL2 treatment. This discrepancy may have resulted from the higher CH3

value estimated for the CL2 ponds compared to the range of 0.143-0.156 kg 111-3 for the

other treatments in this experiment. We assume CFB to be the fish biomass at the point

where individual growth rates calculated from routine samplings are the highest. In

reality, this point may occur in between sampling intervals and can result in errors in CH3

estimates. Although more frequent sampling intervals (e.g., two weeks instead of one

month) would perhaps provides opportunity for increased accuracy in the estimation of

CFB's, increased stress to stocked fish may result from such practices.

As was the case with the calibration trials for tilapia, low growth phases in the

simulated growth profiles (Fig. 5.8) were apparently the result of sub-optimal water

temperatures. It is also interesting to note that fish weights up to day 60 in all the four

experimental treatments (Figs. 5.3 and 5.8) were not substantially different. This lends

further support to Hepher's (1978) argument that supplemental feed addition may not be

warranted in well-fertilized ponds until the CFB is reached.
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Figure 5.8. BE model validation results for Nile tilapia growth in fertilized (CL) and both
fertilized and fed (CL2) ponds at El Carao, Honduras.

Additional validations were conducted to evaluate model predictions at CRSP sites in

Honduras (El Carao) and Thailand (Bang Sai). The relevant experiments are described in

Teichert-Coddington et al. (1990) and Diana et al. (1990, 1993) respectively.

Fish growth information and weather data (used to predict water temperature by the use

of the model described in Chapter 2) from these experiments were extracted from the

PD/A CRSP database.

The BE model provided good predictions of fish weights for the fertilization trial at El

Carao (Teichert-Coddington et al., 1990), except towards the end of the experiment when

the predicted weight was somewhat lower than the mean of the observed weights (Fig.

5.9; Table 5.2). The above authors reported large fluctuations in natural food resources

during the last phase of the experiment, effects of which are not captured in the simplified
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Figure 5.9. BE model validation results for Nile tilapia growth in ponds fertilized with
chicken litter (500 kg ha' wk-1) at El Carao, Honduras.

expression (Equation 4) used to account for natural food consumption in the BE model.

It is worthwhile pointing out that the mean estimated CFB of 0.066 kg 111-3 in these ponds

fertilized with chicken litter at 500 kg ha-1 WO on a DM basis was much lower than the

values of 0.144-0.204 kg III-3 that we estimated for the same set of ponds fertilized with

twice the amount of litter (Teichert-Coddington et al., 1990). Clearly, in addition to SD,

fertilizer loading rates influence the CFB for a given location. CFB's are also likely to

vary according to climatic, soil and water quality characteristics among other factors.

This variation has implications for feeding practices because ponds that have lower

CFB's likely require supplemental feeding to commence earlier compared to fertilized

ponds that can support a higher biomass of rapidly growing fish.

The first Bang Sai experiment (Diana et al., 1990) examined the effects of three

stocking densities (1, 2 and 3 fish 111-2) on tilapia growth in ponds fertilized with chicken

manure at 500 kg ha-1 wk./. Mean CFB's were estimated to be 0.077, 0.078 and 0.11 kg
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Figure 5.10. Predicted (P) and observed (0) weights for validation trials of Nile tilapia in
ponds stocked at 1 (SD1), 2 (SD2), and 3 (SD3) fish IT1-2 at Bang Sai, Thailand.
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rr1-3 for ponds stocked at 1, 2 and 3 fish 111-2 respectively. Predicted fish weights tended to

be somewhat lower than observed growth profiles for the 1 and 2 fish 111-2 treatment (Fig.

5.10). Final predicted fish weights were, however, comparable to harvest weights for

these treatments, but somewhat higher for the 3 fish I11-2 treatment (Fig. 5.10; Table 5.2).

The latter result may be due to errors in the CFB estimate for this treatment (i.e., a higher

CFB compared to the lower SD treatments) or because the CFB-based function (Equation

4) may not adequately represent sharp decreases in the proportion of natural food in fish

diet caused by a combination of inadequate fertilizer addition and high fish biomass. In

this context, it is important to point out that Hepher (1978) developed the critical standing

crop concept based primarily on observations of common carp growth in Israeli ponds.

The stocking density in his fertilized ponds was only about 0.12 fish 111-2 and the critical

standing crop estimated to be about 140 kg ha-1. Unfortunately, Hepher did not report the

time period that had elapsed prior to fish standing crops reaching the critical standing

crop. Nevertheless, his estimate is much lower than that calculated for Nile tilapia ponds

in the current study (e.g., 790 kg ha."' for the Bang Sal ponds stocked at 2 fish m-2).

200
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Validation results for the above experiment do, however, indicate that the CFB

approach provides capabilities for examining fish growth at different stocking densities in

ponds where fish depend on natural food resources. This also implies that the CPB

function provides a means of estimating when supplemental feeding should commence in

ponds that are stocked at different densities, as well as the quantity of feed that should be

added.

For the second experiment at Bang Sai, fish were stocked at 2 fish M-2 and fed to

complete satiation (Diana et al., 1993). Because a high quality feed was used throughout

this experiment, the digestibility coefficient (i.e., the parameter b in Equation 4) was

assumed to be 10% higher than the calibrated value given in Table 5.1. Validation results

suggest that the model tends to under-predict growth at this site (Fig. 5.11; Table 5.2).

The discrepancy between final simulated and mean observed weights (Table 5.2) may be

due to the fact that the simulations assumed that DO is in the range where growth is

unaffected, whereas Diana et al. (1993) reported a correlation between fish growth and

periods of low DO concentrations for the above experiment.

For both of the Bang Sai experiments, the BE model tended to under-predict Nile

tilapia weights (Figs. 5.10 and 5.11) except towards the end of the simulation runs. This

may be a function of differences in growth potential and temperature sensitivities of the

tilapia strains cultured at the Honduras and Thailand locations. The latter strain appears

to grow much more rapidly during the initial culture phase. If improved accuracy is

required at a new location, it may be advisable to re-calibrate the model (e.g., by use of

the methodology outlined in Chapter 7) using locally available growth, feeding,

temperature and SD data.
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Figure 5.11. BE model validation results for Nile tilapia growth in fed ponds at Bang Sai,
Thailand.

Tambaqui

Published reports on tambaqui growth that include fish growth, water temperature and

feeding data as well as stocking and harvest details are limited. The only report that

provided complete details (Merola and Pagan-Font, 1988) was used for model calibration.

For the purpose of validation, two other reports that provided some experimental details

of tambaqui culture were used. The first of these reports pertains to a 129d experiment at

Gualaca, Panama (Peralta and Teichert-Coddington, 1989). Fish were stocked at

densities of 0.25 and 1 fish 1112; data from the latter treatment were used for model

validation. Feeding rates reported by the authors were used as input to the BE model.

Because stocking and harvest dates were not reported, we assumed a culture period from

April to August. Only monthly fish weights and feeding rates for a 11 month culture

period were available in the second report (Gomez et al., 1995). Fish were stocked at a
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density of 1 fish M-2. A culture period of January 1 to November 30 was assumed For

both experiments, water temperature data were not available and the weather model in

POND (see Appendix 1) was used to predict pond water temperatures.

Final fish weights predicted by the BE model for both of these experiments (Table

5.2) were about 12-14% lower than reported weights. These discrepancies may be the

result of poor predictions of water temperatures resulting from use of the POND weather

model (which assumed constant wind, cloud cover and relative humidity conditions) or

different culture periods in the actual experiment compared to the ones that we assumed.

The discrepancies may also be due to less than ideal model parameters because tambaqui

in both of the reports used for validation were grown to a larger size compared to the

experiment that was used for model calibration (Merola and Pagan-Font, 1988; Table

5.2). Peralta and Teichert-Coddington (1989) reported that the growth rate of tambaqui

increases after it has reached several hundred grams, a tendency that may not be

adequately reflected in the current parameter set for this species. However, in the absence

of additional fish growth data and other grow-out culture details for tambaqui, the

presently calibrated model can be used to obtain initial growth estimates of this species

under different culture conditions.

Pacu

Model validation for pacu was accomplished by the use of data from experimental

trials conducted at another CEPTA station in Pirassununga, Brazil. The first set of

growth, water temperature and feeding data were obtained from an experiment conducted

during 1982-83 (Bernardino and Ferrari, 1989). The second set of data were obtained

from unpublished data collected by a CEPTA researcher (Dr. Newton Castagnolli,

personal commn.) during 1983-84.
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Figure 5.12. BE model validation results for pacu during 1982-83 and 1983-84 at
Pirassununga, Brazil.
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Validation results for this site (Fig. 5.12; Table 5.2) suggest that the estimated growth

parameters will result in very good predictions of pacu growth. The discrepancy between

predicted and observed fish weights during the intermediate phase of culture for the 1983-

84 experiment (Fig. 5.12) may have been caused by the use of inaccurate feeding rates

during model validation. The original reports indicated that feed was supplied at 5% BW

d' the first month of culture followed by feed at the rate of 1-3% BW d-1. However, it

was unclear as to how and when feeding rates were adjusted. Model validations assumed

a decrease in feeding rate with increasing fish biomass, which may not have been the case

in the actual experiment.
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Common Carp

For model validation, growth data from the Golysz research station in Poland

(Szumiec and Szumiec, 1985) for 2-3 year old fish (C2..3) were used. Temperature and

feeding data were obtained from the sources listed in the Model Parameterization section.

Growth predictions (Fig. 5.13; Table 5.2) were somewhat lower than observed values,

and may be due to different temperature sensitivities of the two age classes (e.g., Hepher,

1988). It is also possible that water temperatures for the time period from which the

growth data were obtained (see Table 5.2) were different from the average temperature

data for the Golysz station (Szumiec, 1979a) that were used as input to the model.

Further, feeding rates used as model input are also only typical ones that are followed at

the station (Szurniec, 1979b), and may have been different for the actual time period that

was simulated.

Additional validations were conducted to compare model output to carp growth

results reported from Israeli ponds (Rappaport and Sang, 1979). Water temperature data

were also obtained from this report. Only stocking and harvest fish weights were

reported by the above authors. For carp stocked at 1 fish m2, predicted weights were

comparable to harvest weights obtained for three experiments (Table 5.2). In general, the

validation results obtained for Polish and Israeli ponds suggest that predictions using the

parameter set for common carp are likely to be adequate for most management and

planning applications of the BE model.

Channel Catfish

Lovell (1977) summarized growth, feed allowance and water temperature data from

pond feeding studies on the channel catfish. These data were used for model validation

(Fig. 5.14). Final predicted fish weights were lower than the values reported by Lovell
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Figure 5.13. BE model validation results for common carp ponds at Golysz, Poland.

(1977; Table 5.2). SD's for the experiments from which Lovell (1977) derived his

feeding tables ranged from 0.59 to 0.74 fish 111-2. These densities are about three to four

times as high as the SD used in the experiment (Robinson and Li, 1995) from which

growth data was extracted for model calibration. It is possible that discrepancy between

predicted and observed fish weights for Lovell's dataset is a result of the BE model not

accounting for the effects of higher SD's on growth in fed ponds, particularly because the

model predicts fish weights upto about 200g quite accurately (Fig. 5.14).

Another explanation for the discrepancy between model predictions and observed

data relates to the type of diet used. A diet with 36% protein was used in the studies

summarized by Lovell (1977), whereas diets with lower protein content (28-32%) were

used by Robinson and Li (1995). The former diet may enable more rapid growth in

catfish, but its effects are not directly captured by the BE model because of the

assumption of identical composition of fish and their diet (following Ursin, 1967). The
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Figure 5.14. BE model calibration results for channel catfish ponds at Auburn, Alabama,
USA.

parameter q does allow adjustment of feed quality and provides one avenue of increased

model accuracy. Alternately, model re-calibration using culture conditions that are

typical of the relevant locality can be accomplished using a parameter estimation method

such as the one described in Chapter 7.

SENSITIVITY ANALYSIS

The BE model was subjected to a generalized sensitivity analysis with regard to the

10 model parameters (M) listed in Table 5.1. Sensitivity analysis was conducted only for

Nile tilapia at the El Carao research station. Other model experimental conditions were

as described for the CL1 treatment in the Model Parameterization section above (see also



(15)

where Wm = average fish weight (g) for the base run, and Mi = original value of the ith

parameter (from Table 5.1).

Results of the sensitivity analysis (Table 5.3) indicate that the model is extremely

sensitive to the the anabolism exponent (m), followed in order by the optimum

temperature scaler (T0), the food consumption coefficient (h), the catabolism exponent

(n), the efficiency of assimilation (b), and the minimum temperature scaler (T min) . The

model is, however, only marginally sensitive to the other parameters (Table 5.3). Further,

there was no response to the changes in Tnax because the effects of this parameter occur

only when ambient water temperatures exceed T pt (see also Equation 12), a situation that

was not encountered at El Carao where model output was somewhat sensitive to Lim.

This situation will likely be reversed if T01 < T < T max. Thus, the effects of parameter

changes on model output are in part a function of site characteristics. Model sensitivity to

these three temperature parameters will, of course, change if any one of them is varied

because the parameters are related (Equation 10). Parameters to which the model is very
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Table 5.2). Sensitivity analysis was accomplished by a +10% adjustment in the values of

the model parameters for tilapia (Table 5.1). Simulation results from these multiple runs

were compared to model output (referred to as the base runs) generated by the use of the

original parameter set.

For all the sensitivity analysis scenarios, absolute sensitivity (AS) was summarized in

terms of the average change in fish weight over the simulation period of about five

months with respect to the change in each of the model parameters (i.e., AW/AM).

Further, in order to rank the sensitivity of the model parameters on the basis of the

magnitude of their effects on fish weights, relative sensitivities (RS) were also calculated

as follows:

rAw

\RS Wm)
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sensitive should be estimated as accurately as possible, via a combination of careful field

experimentation (e.g., frequent sampling, estimation of food consumed, etc) and

appropriate use of available parameter estimation techniques (e.g., as in Chapter 7).

Table 5.3. Relative (RS) and absolute (AS) sensitivities of Nile tilapia weight predicted
by the bioenergetics model to a +10% change in the values of parameters given in Table
5.1 that were obtained from model calibration. Parameters are ranked according to the
magnitude of the sensitivity of the model output. Negative values indicate that fish
weight decreases with an increase in the parameter value.

Although the BE model is substantially different from the model developed by Liu

and Chang (1992) due to the higher number of variables considered in the former, there

are some similarities in these models because they are extensions of Ursin's (1967) work.

Comparison of the results of the sensitivity analyses for parameters that are common to

the two models is therefore of interest. Thus, Liu and Chang (1992) reported that model

output was extremely sensitive to the parameter n, with an RS of 8.80 (i.e., about five

times as sensitive as the BE model's response to a change in the same parameter). It is

not clear whether this is due to the additional parameters that are included in the catabolic

component of the BE model or related to the different parameter values in the two

Bioenergetic Parameter RS AS

Anabolism exponent (m) 5.3461 87.5213

Optimum temperature scaler (Lp) -1.9374 -31.7167
Food consumption coefficient (h) 1.6916 27.6932

Catabolism exponent (n) -1.6696 -27.3342
Efficiency of assimilation (b) 1.6617 27.2034
Minimum temperature scaler (Tmin) -0.8272 -13.5413

Minimum catabolism coefficient (kmin) -0.4292 -7.0258
Temperature parameter (s) -0.1080 -1.7674
Feeding catabolism coefficient (a) -0.0992 -1.6247
Maximum temperature scaler (Tmax)
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models. On the other hand, the sensitivities of both models to the parameters m, h and b

are fairly comparable.

MODEL APPLICATIONS

Simulation models are useful tools for predicting the response of ecosystems such as

aquaculture ponds to conditions that are too complex or too expensive to explore

experimentally, or have not previously been tested in physical experiments (Grant, 1986;

Cuenco, 1989; Haefner, 1996). Model-based experiments can also provide useful

insights into ecosystem behavior, which increases our understanding of the principles

governing different systems, enables improved designs for physical experiments, and

provides opportunity to identify management strategies that lead to increased biological

and economic efficiency. The use of the BE model for these purposes is discussed below.

Unless otherwise indicated, these model experiments used the same assumptions listed in

the Model Parameterization section.

Supplemental Feeding in Fertilized Ponds

Two key elements of any supplemental feeding strategy for pond aquaculture systems

include: (i) initiation of feed addition, and (ii) quantity of feed to be added (Hepher, 1978;

1988). For species such as tilapia and carp that efficiently use natural food resources in

fertilized ponds, the arguments of Hepher (1978) as well as evidence presented in this

paper and other reports (e.g., Teichert-Coddington et al., 1990; Green, 1992; Diana, 1996)

suggest that supplemental feed addition is not required until the CFB for a pond is

reached.
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Although it is necessary to specify the CFB for a pond prior to a simulation run, the

BE model can be used to determine when feed addition should commence at various

locations. This is because the model accounts for differences in fish growth rates caused

by variations in environmental conditions among geographical regions. Consequently,

the time period required to reach CFB (as predicted by the model) also varies from region

to region, and can be used to determine when supplemental feeding should be initiated.

Effects of temperature

Consider, for instance, the problem of estimating supplemental feed requirements for

Nile tilapia culture at three sites with altitudes 0, 500 and 1000m above MSL

respectively. For convenience, it is assumed that all the sites are located at the same

latitude and longitude as El Carao. Ponds at these sites are expected to show decreasing

water temperatures with increasing elevation; therefore, fish growth rates and appetite

levels are also likely to decline with elevation. Model experimental conditions were

assumed to be identical to those reported by Teichert-Coddington et al. (1991; see also

Table 5.2).

Two sets of simulations were conducted to predict fish growth at the three sites using

the weather model in POND to provide inputs for generating water temperature profiles.

For the first set of simulations, a fixed feeding rate (FFR) of 3% BW d-1 was provided

after the first month of culture. For the second set, the fish were allowed satiation feeding

rates (SFR). CFB's at MSL, 500m and 1000m were assumed to be 0.20, 0.15 and 0.10 kg

111-3. The value of 0.15 kg I11-3 assumed for the 500m site is similar to that estimated for

the El Carao ponds (see Model Parameterization and Validation sections above). A

higher value was assumed for the site located at MSL, which is consistent with previous

estimates from heavily fertilized ponds at a warm water site in Thailand (Bolte et al.,
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1995). The lower value assumed for the 1000m site reflects the likelihood of slower rates

of natural food production in cooler waters.

Mean predicted water temperatures (°C) at MSL, 500m and 1000m were 29.6, 26.8,

and 24.1 respectively. Final predicted fish weights at these elevations for both the FFR

and SFR simulations were 431.7, 340.4, and 144.2g respectively. Total feed

requirements for the FFR simulations at MSL, 500m, and 1000m were 7410, 6579 and

3773 kg ha-1 respectively. Corresponding food conversion ratios (FCR) were 2.15, 2.52,

and 4.01 respectively. For the SFR simulations, feed requirements at the three elevations

were 1913, 1742, and 455 kg ha-1 respectively. Similarly, FCR's were 0.55, 0.67, and

0.48.

Results of the FFR simulations suggest this practice is likely to be economically

inefficient presumably because it does not take into account the proportion of natural food

in the diet of pond fish, and changes in fish appetite caused by increasing size and varying

temperature conditions. Apart from economic considerations, wasted feed also

contributes to poor water quality in ponds which can depress fish growth, and may

adversely the surrounding environment if water is routinely discharged from the pond

facility. On the other hand, feeding curves predicted for the SFR simulations (Fig. 5.15)

take into consideration factors affecting fish appetite as well as contributions to the diet

from endogenous food resources. These curves also provide some indication as to when

feeding should commence at the different elevations (Fig. 5.15). In a similar manner, the

BE model should also be of use in generating supplemental feeding guidelines for

locations that show seasonal differences in water temperature and photoperiod.

The above results are pertinent to supplemental feeding practices in real ponds

because currently available feeding tables for fish such as tilapia (e.g., Marek, 1975;

Hepher, 1988; Lim, 1989) and carp (e.g., Hepher, 1988) only suggest that feeding rates

(as %BW) in ponds should decline with increasing fish weight. This is certainly true for

situations where the artificial feed is the primary source of nutrition (because the relative
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Figure 5.15. Feeding curves generated by the BE model for Nile tilapia that are assumed
to use both natural and supplemental food resources in ponds located at three different
elevations (MSL, 500m and 1000m). Points A, B, and C in the curves indicate when
supplemental feeding should commence.

food requirements of fish decrease as they grow). However, the above feeding tables are

not directly applicable to well fertilized ponds because they do not account for the

proportion of natural food in the diet of pond fish. Further, although authors such as

Hepher (1988) indicate that supplemental feeding rates developed for a given set of

conditions should be adjusted according to local conditions (primarily ambient water

temperatures, stocking density and fish size), it is unclear as to how the adjustments

should be made. On the other hand, feeding curves (e.g., Fig. 5.15) generated by the BE

model account for the combined effects of all of these factors, and clearly indicate that

supplemental feeding rates in fertilized ponds may not necessarily decrease monotonously

with increasing fish weight.
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500m
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Effects of stocking density

In the BE model, SD does not directly impact growth rates. Rather, stocking density

affects the biomass of fish in a pond, which in turn is used to estimate the parameter f.

Thus, for a given CFB, ponds stocked at higher densities may be expected to reach this

biomass earlier, and require larger amounts of feed thereafter if a certain satiation level is

to be maintained. These concepts are illustrated for the Nile tilapia in the model

experiments below.

Fish were assumed to be cultured over a 150d grow-out period at El Carao. The CFB

was set at 0.15 kg 1113. The treatments are as follows: (i) SD of 1 fish I11-2, no feed (SD1-

NF), (ii) SD of 1 fish IT1-2, fish fed to full satiation after the CFB is reached (SD1-F), (iii)

SD of 2 fish 1112, no feed (SD2-NF), and (iv) SD of 2 fish III-2, fish fed to full satiation

after the CFB is reached (SD2-F). The non-fed treatments are included in this analysis to

compare the effects of SD and supplemental feeding on fn as predicted by the BE model.

For all the treatments, the initial stocking weight was set to 30g. Pond water temperature

for use in the BE model were predicted using input data from the weather generator in

POND.

Final predicted fish weights for the SD1-NF, SD 1-F, SD2-NF, and SD2-F treatments

were 224.0, 294.6, 147.2, and 294.6g respectively. These results are within the ranges for

similarly treated ponds at El Carao (Green et al., 1994). Of more interest, however, are

profiles for the natural food index (which corresponds tofu expressed on a percentage

basis) obtained from the CFB-based function (Fig. 5.16). As expected, these curves

indicate that increasing fish biomass causes the proportion of natural food in fish diet to

decrease rapidly for all treatments. However, within each of the SD treatments, this trend

is more pronounced for the fed ponds. Further, supplemental feed should perhaps be

added earlier in ponds stocked at higher densities (compare points A and B in Fig. 5.16)

because the CFB will be reached earlier. These concepts have previously been described

by Hepher (1978), but not illustrated in a quantitative manner. Another advantage of the

BE model, of course, is that it can be used to generate NFI profiles for other culture

158



100

90

80

70

60

47 50

40

30

20

10

SD1-NF
SD 1-FSD2-NF
SD2-F

50 100 150 200

Time (d)

Figure 5.16. Natural food index (NFI) profiles for ponds stocked at 1 and 2 fish 111-2

which either did not receive feed (NF) or were fed (F). Points A and B indicate when
supplemental feeding should commence in ponds stocked at 1 and 2 fish ni2 respectively.
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conditions (e.g., different species, temperature conditions, and/or management strategies).

Feed requirements predicted by the BE model for the SD 1-F and SD2-F treatments were

1118.8 and 5051.6 kg ha-1 respectively. Although gross yields for the SD2-F treatment

were about twice as high as those for the SD 1-F treatment, local feed costs will determine

whether use of the higher SD is economically superior. These types of comparative

analyses may be of considerable use to aquaculture planners and managers.

The conclusions reached in the above discussion are valid only for conditions in

which feed is added after the CFB is reached, and where natural food is preferred over

supplemental feed. It is possible that profiles of the natural food index different from

those indicated in Fig. 5.16 may be obtained when the fish species shows a marked

preference for supplemental feed over natural food resources. An alternate approach that

enables analysis of such preferences is described in Chapter 6.



Supplemental Feeding in Unfertilized Ponds

Simulations were conducted with the BE model to examine feeding rates at MSL,

500m and 1000m elevations in ponds that were not fertilized. Model assumptions were

identical to those made for the comparison of fish growth in fertilized ponds at these

elevations (see above), with the exception that Nile tilapia were fed to satiation from the

beginning of the experiment and the contribution of natural food resources to the diet of

fish was assumed to be zero.

The BE model generated somewhat different feeding curves for the MSL, 500m and

1000m sites (Fig. 5.17). Over time, feeding rates decreased from 7.1 to 2.1% BW d-I for
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Figure 5.17. Feeding curves generated by the BE model for Nile tilapia in fed ponds
located at three different elevations (MSL, 500m and 1000m).
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the MSL site, from 6.6 to 1.4% BW c1.1 for the 500m site, and from 1.5 to 0.6% BW

Predicted feeding rates for the MSL and 500m sites are within the ranges reported in

feeding tables for tilapia (Hepher, 1988; Lim, 1989). As noted by Goddard (1996),

currently available feeding tables represent a general guide to feed intake and typically

account only for differences in fish size and water temperature. They do not account for

short- and long-term fluctuations in appetite associated with physiological and

environmental factors. Such fluctuations are accounted for in the feeding curves

generated by the BE model (e.g., Fig. 5.17).

Goddard (1996) also observed that extant feeding tables likely reflect maximum food

intake by fish. However, depending on the economics of feeding and marketing, it may

be necessary to reduce feed application rates. The BE model offers such capabilities in

that different feeding curves can be generated by adjusting the parameter ft. Such curves

will likely be useful for making decisions regarding the intensity of the fish culture

operation. A further advantage of the BE model is that feeding curves similar to those for

tilapia can be generated by applying it to other species for which model parameters have

been estimated.

As noted earlier, predicted fish weights obtained by use of the BE model for fed

ponds (i.e., =0) are independent of SD. In reality, growth rates of fish stocked at high

densities may be depressed due to accumulation of metabolites in the pond water, or

because of behavioral changes. Such behavioral changes in fish cannot be easily

addressed by the use of simulation models. However, it may be possible to address the

effects of water quality variables (e.g., low DO, high UIA) by linking the BE model either

to time-series data for these variables or to suitable models that describe the dynamics of

such variables in aquaculture ponds. Until such refinements are made, stocking densities

that are consistent with typical practices for the selected species should be used when fish

growth in fed ponds is simulated with the BE model.



Feed Quality

All the simulation experiments previously described assumed that the feed quality

parameter q was equal to 1.0. To examine the effects of this parameter on fish growth

and feed requirements, model experiments were conducted assuming culture conditions

as described for the feed only treatment in an experimental study conducted at El Carao

(Green, 1992). Additionally, the following treatments were assumed: (i) a high quality

feed (HQF; q = 1.0) expected to correspond to the pelleted ration used by Green (1992),

and (ii) a low quality feed (LQF; q = 0.7).

For the HQF treatment, predicted fish weights at harvest and feed requirements were

266.7g and 9680 kg ha' respectively. Corresponding experimental results reported by

Green (1992) were 262.3g and 8971 kg ha-1. Although predicted and observed fish

weights are very similar, the predicted feed quantities are somewhat higher than the

reported values perhaps due to differences between the fish biomass calculated from the

BE model during the simulation run compared to the biomass estimated by Green (1992)

on the basis of routine samplings. For the LQF treatment, predicted fish weights at

harvest and feed requirements were 91g and 5288 kg ha-1 respectively.

These results indicate that the use of a lower value for q will lead to depressed fish

growth rates, as might be expected with poor quality feeds. Apparently, model output is

very sensitive to the value of q used because decreasing its value from 1.0 to 0.7 caused a

large difference in the estimated harvest weights and feed requirements. If results from

actual experimental trials using different feed types are available, the appropriate value of

q to be used in the BE model could perhaps be more accurately determined by calibration.

Such values can then be used in comparative analyses to gauge the economic benefits of

using feeds of various qualities in pond aquaculture.
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CONCLUSIONS

A generalized bioenergetics model which accounts for the effects of key variables

affecting fish growth in aquaculture ponds has been developed. The function used to

estimate natural food consumption as a function of fish biomass appears to provide a

reasonable estimate of the contribution of such resources to fish diet without the need for

complicated mathematical formulations, and is particularly useful in estimating when

supplemental feed addition should commence in ponds and the feed amounts required to

reach a target feeding level. The model has been successfully calibrated and validated for

five fish species under various production conditions, indicating that it is a relatively

robust and flexible tool for describing fish growth in aquaculture ponds. Sensitivity

analyses suggests that the model is very sensitive to three anabolic, one catabolic and two

temperature parameters. As with other simulation tools, there are limitations in the

applicability of the model to all culture conditions that may be found in ponds.

Specifically, the current version of the BE model does not adequately represent the effects

of stocking density in fed ponds, food preferences and artificial diets of differing quality

on fish growth in ponds. Further work is also required to estimate appropriate parameters

in the DO and UIA functions for different species.

On the other hand, simulation experiments suggest that the BE model can be of use in

practical pond management situations including assessment of growth of different target

fish species at various geographical locations, estimation of feed application rates, and

examination of different stocking density regimes. Specifically, model experiments

suggest that fertilized tilapia ponds stocked at higher rates will require supplemental

feeding to be initiated earlier compared to those stocked at lower rates given a fixed target

feeding level. Moreover, supplemental feed requirements to maintain this target feeding

level increases rapidly with increasing fish biomass. The model experiments also

generated different feeding curves (in terms of %BW of fish) for ponds assumed to

receive feed only, or those receiving both fertilizer and feed. For fed-only ponds, model

experimentation suggests that the use of traditional fixed feeding rates apparently leads to
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higher feed requirements, increased waste feed, and higher FCR's compared to satiation

feeding rates for locations with different water temperature profiles. However, for

fertilized and fed ponds, the feeding curves generated by the BE model do not decrease

monotonously with increasing fish weight as is the case with published feeding tables, but

are characterized by an initial increase followed by a gradual reduction or leveling-off in

the feeding rates. This is because the BE model accounts for the amount of natural food

in the diet of pond fish such as tilapia. Model experiment results have important

implications for resource use efficiency in aquaculture farms. Further verification of the

BE model under actual pond conditions would be beneficial in terms of generating data

that can be used for further calibration, to critically evaluate model assumptions, and to

examine the degree of correspondence between results obtained from model

experimentation and those collected during field trials.
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ABSTRACT

Fish species like tilapias and carps consume different food resources such as

phytoplankton, zooplankton and feed when cultured in aquaculture ponds. Changes in

consumption of these resources are known to affect plankton structure in ponds, and may

have implications for pond management strategies such as feeding and fertilization

practices. Previously developed simulation models for pond ecosystems have not

adequately addressed these issues. Therefore, a study was undertaken to incorporate a

resource substitution function in an existing fish growth model, and to develop models to

predict phytoplankton and zooplankton concentrations in aquaculture ponds. An iterative

algorithm was also developed to estimate the contribution of supplemental feed in the diet

of fish raised in ponds where natural food resources are available. Model experiments

were then conducted to examine changes in the plankton structure of Nile tilapia

(Oreochromis niloticus) ponds stocked at 1, 2 and 3 fish M-3. These experiments

assumed that the overall phytoplankton biomass in ponds can be divided into two pools

(Pool A and B), of which the former was assumed to be the preferred type by tilapia.

Simulation results indicate that the models would predict a decrease in natural food

availability with increased fish biomass, as would be expected in real ponds. These

results were caused by lower phytoplankton biomass in ponds with a higher fish standing

crop, except in fed ponds where uptake of supplemental feed apparently allowed an

increase in the overall phytoplankton biomass. Moreover, the resource substitution

function also predicted a sharper decline in the biomass of the preferred form of

phytoplankton (Pool A) as fish stocking density increases, followed by a reduction in the

biomass of Pool B as a result of increased uptake of this resource. Model results are

consistent with reports documenting phytoplankton changes in Nile tilapia tanks. The

iterative algorithm converged to adequate estimates of supplemental feed uptake within 6-

13 iterations. The model recommended a supplemental feed requirement from the

beginning of the numerical experiment, which raises questions about the availability and

quality of natural food resources during the initial phase of tilapia culture that should be
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addressed in physical pond experiments. The resource substitution function appears to be

an effective tool for predicting changes in the pattern of foodconsumption by pond fish.

Complex pond aquaculture simulation models such as the ones presented herein are a

powerful tool for understanding the behavior of pond ecosystems and provide opportunity

for knowledge synthesis relevant to such systems.

INTRODUCTION

Many fish species such as tilapias and carps commonly cultured in ponds derive a

substantial portion of their dietary requirements from natural or endogenous food

resources in ponds (Spataru, 1977; Hepher, 1978; Schroeder 1980; see also review by

Colman and Edwards 1987). Consumption of these resources may be a function of either

the species preference for various types of resources (such as phytoplankton and

zooplankton), concentration of these resources in the pond (Svirezhev et al., 1984), fish

species in the pond, and stocking densities (Milstein et al., 1985a, b; Colman and

Edwards, 1987; Costa-Pierce, 1992). For example, silver carp can only harvest

endogenous food resources that are larger than the spacing between their filtering

apparatus (Spataru, 1977; Cremer and Smitherman, 1980; Opuszynski, 1981; Milstein et

al., 1985a; Smith, 1985; Laws and Weisburd, 1990; see also review by Costa-Pierce,

1992). Many of these studies demonstrated that harvest of net-plankton (>10-30,um) by

fish during the initial culture period resulted in a standing crop of nanoplankton (<10,um)

that was essentially unavailable for fish consumption. Schroeder (1980) demonstrated that

most pond fish species can switch from a preferred food resource to another one;

however, reduced fish growth and yields may occur as a result of reduced food intake or

poor nutritional quality of the switching feed.

In addition to the effects of fish species and their biomass (which determines the

grazing intensity), endogenous food production also depends on environmental conditions

(e.g., nutrient concentrations, temperature) and management practices (e.g., fertilization)
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(Hiclding, 1962; Hepher, 1978). Depending on the quality of supplemental feed added to

the pond, there may be preferential feeding for this additional resource as well.

Estimating the rates of natural food and supplemental feed consumption by pond fish is

important in assessing the efficacy of fertilization and feeding practices. Moreover,

models that enable quantification of such rates are likely to result in improved

understanding of pond ecosystems under various other management practices as well

(e.g., monoculture vs. polyculture).

Svirezhev et al. (1984) developed a simulation model that predicts endogenous food

resource (phytoplankton, zooplankton, detritus and benthos) concentrations in fish ponds

and the consumption of such resources by different carp species in polyculture. These

authors assumed that each fish species had a high uptake probability of a preferred food

resource until it was depleted to some critical concentration (due to over-grazing), at

which point the fish would switch to another resource designated as the substituting food.

Thus, for silver carp, phytoplankton was designated as the preferred food, and detritus the

substituting food. However, this modeling approach which considers only two resources

at any given time and is not easily extendible to multiple resources, appears to be

inadequate to describe simultaneous consumption of several resources including

supplementary feeds of differing quality. An alternate feeding function that does not have

these limitations is the resource substitution function proposed by Tilman (1982). As

with the uptake probability model of Svirezhev et al. (1984), use of this function also

requires concentrations of the various food types to be available.

This paper focuses on the use of the Tilman function in the fish growth model

(Chapter 5) to predict consumption of natural food resources and supplemental feed by

pond fish. Models are also developed in this paper to predict concentrations of various

natural food resources (phytoplankton and zooplankton) in ponds.



MODEL DEVELOPMENT

In this section, only the functions developed to model food availability for pond fish

are presented. Functions used to account for the effects of other variables (i.e., size, food

availability, photoperiod, temperature, dissolved oxygen and unionized ammonia

concentrations) on fish growth are documented elsewhere (Chapter 5). A description of

the models that are used to predict concentrations of natural food resources in ponds is

also presented. All of these models are implemented in the POND decision support

software (see also Chapter 1).

Fish Growth Model

According to Ursin (1967), the change in fish weight over time is given by:

dW = HW m - kw n (1.1)
dt

where W = fish weight (g), H = coefficient of anabolism (dim), m = anabolism exponent,

k = coefficient of anabolism (d1-n), and n = catabolism exponent.

The parameter H in Equation 1.1 can be expanded to consider daily ration, feeding

catabolism and digestibility of the food consumed as follows (Ursin, 1967):

dW = b(1- a) R - kW"
dt

where a = fraction of the food assimilated that is used for feeding catabolism (0-1), b =

the efficiency of food assimilation (0-1), and R = daily ration (g d-/), which is the sum of

daily intake of endogenous or natural food (Rn) and supplemental feed (Rs). The term b( 1

- a) in Equation 1.2 represents energy that is available for growth and fasting catabolism.
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Daily ration is a function of fish size, the proportion of food consumed relative to

satiation requirements (f) and environmental conditions (E):

R = hfEWm (1.3)

where h = coefficient of food consumption.

The parameter f as defined by Ursin (1967) is the ratio of the actual food intake rate

(R) to the food intake rate at complete satiation (Rm.). In ponds that receive

supplemental feed, f is the sum of the proportion of natural food resources (fn) and feed

(fs) in the diet, with associated intake rates given by the product of each of these

proportions and Rm. (e.g., Rn = fn Rm.). For fed ponds, it is also convenient to define a

target or satiation feeding level (ft; 0-1), which is essentially a control parameter that can

be used to adjust the amount of feed added to a pond.

The parameter fn was modeled by Liu and Chang (1992) on the basis of a function

developed by Ivlev (1961), who observed that food intake by fish tends to increase

asymptotically with resource availability. Liu and Chang (1992) used a fertilizer richness

parameter as a measure of available endogenous food resources. However, their approach

assumes that endogenous food availability depends on the number of fish in a pond

whereas it is really a function of fish biomass or standing crop (Hepher, 1978). This

author showed that in carp ponds, adequate endogenous food appears to be produced in

properly fertilized ponds during the early phase of fish culture thus allowing satiation

feeding (i.e., f = 1), but that once the fish biomass (FB) or standing crop in the pond

exceeds the "critical standing crop" (CFB), endogenous food availability declines until

the carrying capacity of the pond is reached. Based on Hepher's observations, we have

previously estimated f from the CFB for a pond (see also Chapter 5). However, the CFB

approach does not account for consumption of different food types. The Tilman feeding

function is expected to be useful in addressing this problem. This function is essentially

an extension of Monod uptake kinetics to multiple resources (Tilman, 1982). Use of the
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Tilman function requires calculation of the specific consumption rate of various food

resources by fish (lip.; (1-1) as follows:

11F liTax

i=1
NF.1+!

J=1
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(1.4)

where 1.tr = maximum specific consumption rate (d-1) calculated as Rmax/W, Fi =

effective concentration of the ith food resource, c, = half-saturation constant for uptake of

the jth food resource, and N = total number of food resources being considered. There is

no restriction on the number of food resources that can be considered in Equation 1.4.

Further, the half-saturation constants are a measure of food preference because lower

values force a more rapid uptake of the associated resource. Therefore, adjustment of ci

for different food resources provides a means of ranking these resources according to

their preference by the target fish species. Units for Fi and C, depend on the resource

under consideration (e.g., gC 111-3 for phytoplankton, g 111-3 for zooplankton). Because

there may be minimum threshold concentrations below which fish cannot consume a

particular resource, the term 'effective concentration' was used in the current study for Fi.

This term denotes the concentration of the resource i that is actually available for fish

uptake, and is calculated by subtracting the associated threshold concentration ti from Fi.

Supplemental feeding rates in aquaculture are typically expressed in terms of the

percent body weight (%BW) of the fish or in terms of kg ha-i, and not on a volumetric

basis. However, because the Tilman function requires resource concentrations, it is

assumed that the 'concentration' of supplemental feed in Equation 1.4 can be expressed in

dimensionless terms by the use offs. Consequently, the half-saturation constant for feed

is also dimensionless.

The resource substitution function also permits calculation of the specific

consumption rates of individual resources as follows:



NF.

l+ j=1 ci
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(1.5)

where ,uA,F refers to the specific consumption rate (d-1) of the particular food resource A

(phytoplankton, zooplankton, bacteria or supplemental feed) by fish. Calculations

involved in estimating fn and fc by use of the Tilman function for ponds where only

natural food resources are available, and those where supplemental feed is also added, are

discussed below.

Pond with Natural Food Only

If only natural resources are consumed, the sum of the specific consumption rates

calculated by the use of Equation 1.5 reflects overall natural food consumption (Ai, F) for

a particular fish population (lot) in the pond, and fn is given by:

R r,

f
W

R max

For fertilized ponds, as calculated above replaces! in Equation 1.3.

Ponds with Natural Food Plus Supplemental Feed

In contrast to feed calculations used in Chapter 5 where the composition of fish and

feed is assumed to be identical, the ratio of the dry matter content of fish (DMfish; g dry

matter per g fish) to the dry matter content of feed (DMfeed; g dry matter per g feed) is

(1.6)
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used herein to account for differences in the composition of supplemental feed and fish.

Thus, an inherent assumption of the Ursin model (i.e., the compositions of fish and their

dietary sources are identical) continues to be retained in part because it is still assumed

that the composition of various endogenous food resources is similar to that of fish. This

is due to the difficulty in gauging the composition of such resources as well as their large

variability (Hepher, 1988; Lim, 1989). A complication introduced by the use of the dry

matter contents of fish and feed is that it becomes necessary to distinguish between rates

relevant to fish (as g fish (14) and those that are relevant to feed (as g feed d-1). As in the

simpler version of the fish growth model (Chapter 5), feed requirements may either be

estimated or specified by the user.

Feed Requirements Estimated by the Fish Growth Model

If supplemental feed requirements are to be estimated for lots of fish which can also

consume endogenous resources, f, is calculated by Equation 1.6. The working

assumption is that feed addition is not required unless <f (i.e., = 0 and f fn).

However, once f, drops below ft, the approach used herein automatically adds feed as an

additional pool to the list of specified natural food resources and estimation of

supplemental feeding rates is accomplished by an iterative algorithm (Table 6.1)

combined with the resource substitution function (Equation 1.4). The aim of the iterative

algorithm is to estimate R as the sum of R, (= PF;n X W; g fish d-1) and R., (= attF,, x W; g

fish d-1), where juF,, is the specific feed consumption rate from Equation 1.5. This enables

calculation of f, andf.

An iterative method is required because the proportion of supplemental feed in the

diet consumption is not known a priori and cannot be automatically assumed to equal ft -

fn. This is because the proportion of supplemental feed in the diet is likely to be a

function of fish species preference for feed among other factors. For example, if feed is



Table 6.1. Pseudo-code for the iterative algorithm used to estimate supplemental feed

consumption by pond fish.

// Initial value for the supplemental feeding rate
R=R-R;
// Fraction of diet from supplemental feed
fs = (Rt - Rn)/Rmax;
// Difference between Rt and R

= 0;
// Tolerance level for convergence
tol = 0.05 * Rt;

while( TRUE)

// > R?
if AR >0

// Increase proportion of supplemental feed in diet

fs = fs * (1.0 + AR);
if AR <0

// Decrease proportion of supplemental feed in diet

fs = fs *095.
// Evaluate Equations 1.4 and 1.5 with endogenous food resource pools and f,
representing the proportion of supplemental feed in the fish diet

Evaluate /IF
II Compute new feeding rate
R = W * 14;
// Update difference between& and R
AR = Rt - R;
// If convergence criteria are met, exit the while loop
if (AR >0 AND AR < tol )

exit;
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added to a pond with fairly abundant natural food (although inadequate to meet ft), some

species may preferentially consume supplemental feed whereas others may not. In other

words, the proportion off, in the diet of a given fish species will likely differ depending

on whether feed is present or not.
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As with most iterative methods, it is necessary to provide an initial guess for the

parameter to be estimated (Rs in this case) and to define stopping criteria. Setting Rs

equal to the difference between the target feeding rate Rt (g fish d-1) and the natural food

consumption rate (Rn) provided adequate convergence during trial simulations. The

stopping criteria are: (i) Rt > R, and (ii) (Rt - R) < tol, a tolerance parameter which is

arbitrarily set to 5% of Rt (Table 6.1). The first criterion ensures that the specified target

feeding level f, is not exceeded, and the second one facilitates (faster) convergence to an

acceptable value for R.

Once fc is estimated, daily supplemental feed (Ra; g feed d-1) to be added for a

particular lot is given by:

W f s DMfish
Ra =

DM feed

where q = a feed quality coefficient (0-1). The amount of feed wasted (R,v; g feed d-1) is

obtained as the product of Ra and the proportion of waste feed (/ - q).

Feed Requirements Specified

When supplemental feeding rates are specified (as %BW d-1), Ra is known. However,

if a given pond contains more than one lot, it is difficult to estimate the amount of feed

reaching the fish within each lot even if identical feeding rates are specified. For

instance, a pond may contain two populations (e.g., tilapia and carp), each being fed at the

same rate on a %BW basis. However, the actual feed consumed by fish within each lot

will likely differ because of differences in fish size and appetite. In such situations, the

total amount of feed added to the pond is calculated and then averaged over the number

of lots in it to arrive at a single rate (Ra) for each lot. Feed that may be available for daily

uptake (Ravaii; g fish d-i) is then calculated as follows:

(1.7)



Ray:in = q Ra x
DMfeed

DMfish

The additional variable Ravaii is required because f, in the iterative algorithm (Table 6.1) is

initially set to the ratio of Ravailaina, unless Ravaii > Rmax, in which case f, is forced to one

because consumption cannot exceed fish appetite. As before, actual consumption rates of

supplemental feed (Rs = x W) and endogenous food (12 = auF,,z x W) are then

calculated by the use of the resource substitution function (Equations 1.4 and 1.5).

Finally, the amount of feed wasted Rw (g feed d- 1) is estimated as follows:

Rw = (1 - q) Ra + [(Ravad - Rs) x DM fish

DM feed

Note that Rw under conditions of excess feeding comprises two components: (i) a fraction

of the applied feed that is unavailable for consumption, and (ii) an estimate of feed

supplied in excess of satiation.

Models of Natural Food Resources

Fish such as tilapia and carp can consume various kinds of natural foods such as

phytoplankton, zooplankton, detritus and benthos in aquaculture ponds (e.g., Ivlev, 1961;

Hickling, 1962; Reich, 1975; Hepher, 1988). For simplicity, the current study assumed

that phytoplankton and zooplankton are the two primary groups of natural food resources

available for consumption. In part, this was because model experiments concentrated on

the Nile tilapia (Oreochromis niloticus), which is primarily a plankton feeder (Caulton,

1982). However, this species also consumes detritus (Bowen, 1982); we therefore

assumed that ponds would also contain steady state concentrations of this resource

(referred to as bacteria hereafter) that is available for uptake by tilapia.
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(1.9)

For modeling purposes (as indicated in Chapter 1), ponds in the POND software are

assumed to be continuously stirred tank reactors (CSTR) with unsteady flow. The



differential equation expressing the change in concentration of state variables like

phytoplankton and zooplankton in such reactors (e.g., Benefield and Randall, 1980;

McDuffie, 1991) is given by:

dC Q C, Q. co C dV (2.1)
dt V V dt

where C = concentration of the material (e.g., gC M-3 for phytoplankton and g 1113 for

zooplankton), Qi = influent rate (m3 (1-1), Qo = effluent rate (m3 d-1), Ci = material

concentration in the influent (g m-3), Co = material concentration in the effluent (g rn-3), V

= pond volume (m3) and Rc = sum of the source and sink processes affecting the material

(e.g., g rn-3 d-1). In the current study, we assumed that ponds are operated at steady state

volumes without flow. Thus, it only becomes necessary to address the Rc term for

phytoplankton and zooplankton.

Phytoplankton

As previously discussed, pond experiments have shown that grazing of phytoplankton

by pond fish can result in depletion of net-plankton and accumulation of nanoplankton

(which either cannot be consumed or efficiently harvested). This suggests that ponds can

be assumed to contain two pools of phytoplankton (designated as Pool A and B in this

study). Processes that are considered in modeling these two pools (discussed below) in

aquaculture ponds are identical, with the exception that fish are assumed to have different

preferences for Pools A and B.

Based on previous work (e.g., Di Toro et al., 1971) the following differential equation

can be developed to express changes in phytoplankton over time (dP/dt; gC Ir1-3 d-1):

dP = PGR - PRR - PDR - FPR - ZPR (2.2)
dt
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where PGR = phytoplankton growth rate (or gross primary productivity), PRR =

phytoplankton respiration rate, PDR = phytoplankton death rate, FPR = consumption rate

of phytoplankton by fish, and ZPR = consumption rate of phytoplankton by zooplankton.

PGR is a function of light (k), temperature (t) and nutrient limitations as well as the

daily photoperiod scaler (n) (e.g., Steele, 1962; Straskraba and Gnauck, 1985). Nutrients

typically considered to be limiting in freshwaterponds are nitrogen, phosphorus and

carbon; their respective limitation terms are denoted as vn, vi,, and V. The general

equation for PGR is then given by:

PGR = utr,lax x min(k, vn, v, vc) x it x P (2.3)

where axmaximum specific phytoplankton growth rate (d-1), and P = phytoplankton

biomass (gC nf3). The daily photoperiod (h) at different sites can be obtained from

sunrise and sunset hour angle calculations (Hsieh, 1986), and it then estimated as

photoperiod/24. A photoperiod of 12h for instance would result in it = 0.5. It should be

noted that several functions (de Groot, 1983; Straskraba and Knauck, 1985; see also

Chapter 4) can be used to assess the effects of multiple limiting factors on phytoplankton

growth. For simplicity, Liebig's minimum factor rule is assumed to apply.

Temperature dependence of phytoplankton (and zooplankton) growth rates is based

on the "skewed normal" function of Lehman et al. (1975) and Svirezhev at al. (1984):

where Trnin, 'Copt and Tmax are the minimum, optimum and maximum temperatures for

growth (assumed to be the same for phytoplankton and zooplankton).

Nutrient limitation of phytoplankton growth can be approximated by the use of the

Monod equation to describe Michaelis-Menten enzyme kinetics (Dugdale, 1967). Droop

= exp

exp

1

- .6 [(ropt T) / (Topt - Train
)]4},

-4.6 {(T - Topt ) / (Tmax - Too )]4 ,

if T < Topt

if T > Topt (2.4)
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(1973) used a slight modification of the Monod equation to account for nutrients that are

actually available for algal uptake. Because such threshold concentrations may exist for

nitrogen, phosphorus and carbon in ponds as well, the Droop equation is used to describe

the growth limitation term in Equation 2.3 for each of the three primary nutrients (v5) as

follows:

vs ks + (S - S0)
(S - So) (2.5)

where S, S. and k, are respectively the ambient concentrations, threshold concentrations

and half-saturation constants for the nutrient being considered.

The light limitation term (X) for aquaculture ponds can be approximated using the

following expression (Piedrahita et al., 1993):

= exp[1. - exp(I°--)]
Isat d

(2.6)

where E = the light extinction coefficient, I, = photosynthetically active light radiation

(PAR; Einst 111-2 Cri), I = optimum or saturating solar radiation (Einst I11-2 CrI), and d =

pond depth (m). Smith (1980) assumed 'sat to be equal to 30% of the daily PAR. Trial

simulations for the current study suggested that setting Ism = 50% of the daily PAR would

be more appropriate.

The coefficient E can be estimated using the following expression (e.g., Poole and

Atkins, 1929):

E -
SDV

where c = a constant and SDV = secchi disk visibility (m). The value of c ranges from

1.2 to 2.7 (Straskraba and Knauck, 1985). A value of 2.0 was assumed for this study.

SDV was predicted by the use of the following function (see also Appendix II):

(2.7)
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SDV x (2.8)
(Chl - a + T) 100

where Chl-a = chlorophyll a concentration (mg m-3), T = baseline turbidity (CM-a

equivalents), and a and 13 are non-linear regression parameters. CM-a is estimated by

converting the phytoplankton biomass (P in gC m-3) using the chlorophyll-a to carbon

ratio. According to Reynolds (1984), this ratio can vary from 12.5 to 50; an intermediate

value of 30 was used in this study.

Phytoplankton respiration (PRR) is typically estimated as function of water

temperature and biomass (Di Toro et al., 1971; Lehman et al., 1975). The former group

of authors used a linear function to express this relationship; however, because respiration

rates tend to increase exponentially with temperature (Thomann et al., 1975), we used the

following expression (Tchobanoglous et al., 1991) to estimate PRR:

PRR = k P (2.9)

14 is a temperature dependent parameter given by (Tchobanoglous et al., 1991):

= le, 20
x 0i(T-20)

p
(2.10)

where 14,20 (d-1) and 0; are constants. The latter is commonly assumed to have a value of

1.024 (Tchobanoglous et al., 1991).

Phytoplankton death (PDR) is assumed to be biomass dependent as follows (Di Toro

et al., 1971):

PDR = kdp P (2.11)

where kdp is the phytoplankton death parameter (d-i).

The rate of consumption of phytoplankton by fish (FPR) is obtained from Equation

1.5 after conversion into the required units (i.e., gC m-3) as follows:
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FPR = II" X FB x Fcar (2.12)

where ,up,F is the specific consumption rate (d-1) of the phytoplankton by fish, FB = fish

biomass or standing crop (g fish m-3), and Fcar is the carbon content of fish (gC per g fish)

assumed to be 0.10 (Ryther, 1969).

As discussed below, Equations 1.4-1.5 are also used to describe zooplankton feeding.

Hence, the rate of phytoplankton consumption by zooplankton (ZPR) is obtained in a

manner analogous to Equation 2.12 as follows:

ZPR = x Z x Zcar (2.13)

where ,up,z is the specific phytoplankton consumption rate by zooplankton (e), Z =

zooplankton biomass (g m-3), and Zear is the carbon content of zooplankton (gC per g

zooplankton) assumed to be 0.063. This value is based on the assumption that the

moisture content of zooplankton ranges from 85-90% (Creswell, 1993) and that organic

carbon represents about 50% of zooplankton on a dry matter basis.

Zooplankton

Di Toro et al. (1975) provide the following differential equation to express changes in

zooplankton with time (c1Z/dt; g Tr1-3

dZ = ZGR - ZRR - ZDR - FZR (3.1)
dt

where ZGR = zooplankton growth rate, ZRR = respiration rate, ZDR = death rate, and

FZR = consumption rate of zooplankton by fish. ZRR and ZDR are calculated using

Equations 2.9-2.11 and the relevant parameter values are assumed to be identical to those

for phytoplankton.
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ZGR is a function of food consumption, temperature and biomass (Di Toro et al.,

1971). The resource substitution function (Equation 1.4) is also used to estimate the

specific consumption rate of the two pools of phytoplankton as well as bacteria by

zooplankton (uz; d-i) by substituting the appropriate parameters including Rzmax (the

maximum specific zooplankton growth rate; d-1). Half-saturation constants and minimum

threshold concentrations for zooplankton uptake of these resources are assumed to be

different from those for fish. The effects of temperature (T) are assessed using Equation

2.4. The expression for ZGR is as follows:

ZGR = xtxZ (3.2)

In a manner analogous to phytoplankton uptake by fish (Equation 2.12), FZR is given by:

FZR = p, x FB x Fear / Zcar (3.3)

where juz,F is the specific consumption rate (d-1) of the zooplankton by fish.

MODEL VERIFICATION

The models developed to analyze food consumption by pond fish constitute the sets of

Equations 1-3 presented above, and are implemented in the decision support system

POND (Chapter 1). As previously indicated, only the functions used in the fish growth

model to express natural food and supplemental feed uptake have been presented in detail

because the other components of this model (including species parameters) are described

in Chapter 5.

Adequate verification of the models presented herein requires routine time-series data

pertaining to fish growth, phytoplankton and zooplankton biomass, water temperature,

water flow rates (if applicable), nutrient concentrations, and feed application. It would
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also be necessary to classify phytoplankton on the basis of their size. Data of this nature

are either rarely collected in pond experimental trials or not reported in the published

literature.

Nevertheless, the models have been used to examine Nile tilapia growth in earthen

aquaculture ponds located at Bang Sai, Thailand (14°45' N, 100032 E). The primary

focus of the verification trials was to examine whether the models developed herein were

capable of generating results that are consistent with observations of fish growth and their

food consumption patterns in aquaculture ponds. In other words, the main interests in

this study were on the use of simulation models as tools to understand pond ecosystems

rather than to accurately predict system performance, and to examine implications of

model output for pond management.

Ponds of area 220 m2 at the Bang Sai site were stocked at 1, 2 and 3 fish m2

treatments respectively, and were fertilized with chicken manure at 500 kg ha."1 (DM

basis). These treatments are designated as SD 1, SD2 and SD3 respectively. Other

experimental details are given by Diana et al. (1990). Tilapia growth and survival data in

the above ponds were extracted from the aquaculture database maintained by the Pond

Dynamics/Aquaculture Collaborative Research Support Program (PD/A CRSP). Daily

water temperature for use in verification trials was predicted by use of the model

described in Chapter 2; weather data required as input to the latter model were also

extracted from the PD/A CRSP database. Ponds were assumed to be maintained at steady

state volumes and the flow terms in Equation 2 were set to zero. Because of the lack of

data on phytoplankton and zooplankton biomass in the CRSP database, initial conditions

listed in Table 6.2 were assumed for the simulation runs. The initial conditions for fish

weight and water temperature in Table 6.2 are, however, the mean values for the ponds as

reported in the PD/CRSP database.

The simulations assumed that nutrient concentrations (i.e., nitrogen, phosphorus and

carbon) were such that phytoplankton growth limitation by these nutrients would not
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occur (i.e., v 4 1 in Equation 2.3). Table 6.2 also lists various parameters that were used

in the simulations. With the exception of the parameters T, a and (which were fitted to

SDV and chl-a measurements for Bang Sai; Appendix II), the rest of the model

parameters were either obtained by calibration or assumed. An additional numerical

experiment was conducted for Bang Sai ponds stocked at 2 fish m2 using the same

conditions as described above, with the exception that fish were fed to 80% satiation with

a supplemental diet. This treatment is designated as SD2F.

RESULTS AND DISCUSSION

Final predicted fish weights were 191.9, 136.1, and 106.8g for fertilized ponds

stocked at 1, 2 and 3 fish 111-2. Weights predicted for the lowest SD compared favorably

with observed harvest weights of 189.7g (Diana et al., 1990); at the other two densities,

predicted weights exceeded observed weights by about 20g. For the SD2F pond, the final

fish weight was 303.9g, which is comparable to the mean weight of 301g reported by

Diana et al. (1993) for fertilized and fed ponds at the Bang Sal site. Reasons for the

discrepancy between observed and predicted fish weights for the SD2 and SD3 treatments

are unclear, but may in part be due to errors in the estimation of the amount of natural

food actually consumed by fish. Profiles for the natural food index (NH) (which

corresponds tofu expressed on a percentage basis) for all the four treatments simulated

are indicated in Fig. 6.1.

These profiles suggest that the total amount of natural food in the diet of Nile tilapia

(as predicted by the models developed herein) may exceed the amount that one may

expect this species to derive from actual ponds stocked at 2 and 3 fish m-3, particularly

towards the end of the simulation period. For example, NFI reached a maximum of about

62% satiation in both SD2 and SD3 treatments (Fig. 6.1). Although this proportion



Table 6.2. Initial state variable conditions and parameter values used in the Bang Sai

simulations of tilapia growth.
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a Same parameter value used for zooplankton.
b For use in Equation 2.8 as parameterized for Bang Sai (see Appendix II).

Symbol Description Value Units

Variables

W
Pa (Pool A)

Fish weight
Biomass of phytoplankton Pool A

33.0
7.0

at,
gC IT13

Ph (Pool B) Biomass of phytoplankton Pool B 2.0 gC ill-3

Z
B

Biomass of zooplankton
Biomass of bacteria

1.0
2.0

g 1113

ma
tp

-3

Parameters

Fish
CP(A),F

Half-saturation constant for phytoplankton Pool A uptake 2.0 gC 111-3

Cp(B),F Half-saturation constant for phytoplankton PoolB uptake 6.0 gC mi3

Cu
CB.F

Half-saturation constant for zooplankton uptake
Half-saturation constant for bacteria uptake

2.0
6.0

g m
ma

z,
-3

Cs,F Half-saturation constant for supplemental feed uptake 0.05 __

tp(A),F Threshold concentration for phytoplankton Pool A uptake 2.0 gC nf3

tp(B),F

tz,F

Threshold concentration for phytoplankton Pool B uptake
Threshold concentration for zooplankton uptake

2.0
1

gC In-3
g In-3

tp.,F Threshold concentration for bacteria uptake 1 g 111-3

tu Threshold concentration for supplemental feed uptake 0 --

DMfish Dry matter content of fish 18.5 %

Fcar Carbon content of fish 10 %

Phytoplankton
Tnim Minimum temperature for phytoplankton growth' 20.0 °C

Trna. Maximum temperature for phytoplankton growth' 35.0 °C

Topt Optimum temperature for phytoplankton growth' 30.0 °C

c Secchi constant 2.0

a Intercept parameter for SDV function 80.22"

13

T
Slope parameter for SDV function
Baseline turbidity

0.33"
3.371'

--

mg 111-3

P,rpnax Maximum specific phytoplankton growth rate 2.25 (I-1

k rp,20 Phytoplankton respiration parameter' 0.1 d-1

(14
la Phytoplankton death parameter' 0.05

Chl-a:C Chlorophyll-a to Carbon ratio 30



Table 6.2. Continued.

Assumed to be the same for both phytoplankton pools.

80

20 SD 1
SD2
SD3
SD2F
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Symbol Description Value Units

Zooplankton
Maximum specific zooplankton growth rate
Half-saturation constant for uptake of phytoplanktonc
Half-saturation constant for uptake of bacteria
Threshold concentration for uptake of phytoplanktonc
Threshold concentration for uptake of bacteria
Carbon content of zooplankton

0.3
4.0
2.0
1.0
1.0
6.3

d."1

gC na-3

g m-3
gC ni3

g m-3
%

1-trx

cp,z

cs.z
tP,Z

tB,Z

Zcar

Feed
Dry matter content of supplemental feed
Feed quality coefficient

10
1.0DMfeed

0 40 80 120 160

Time (d)

Figure 6.1. Profiles of the natural food index (NFI) in tilapia ponds.
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dropped fairly quickly after the maximum values were reached, particularly for the SD3

treatment (Fig. 6.1), the models suggest that the fish were still able to harvest enough

natural food to enable NFI's of about 40-45% until the end of the simulation runs.

Tilapia growth data presented by Diana et al. (1990) suggest that the fish gained very

little weight during the last month of culture in the SD2 and SD3 treatments implying that

available natural food was perhaps sufficient to only meet maintenance requirements.

Because data relevant to natural food availability were not collected by Diana et al.

(1990), it is difficult to assess whether the predicted NFI profiles (Fig. 6.1) are realistic.

An alternate hypothesis is that the simulation models have not been appropriately

calibrated. For the SD2F treatment, however, the models predict a downward shift in the

proportion of natural food in the diet compared to the SD2 treatment (Fig. 6.1) apparently

caused by the consumption of supplemental feed.

Examination of the biomass of individual natural food resources suggests that

changes in the consumption patterns of the two pools of phytoplankton are the main

reason for differences in fish production among the four treatments (Figs. 6.2-6.4). In the

SD1 treatment, the biomass of phytoplankton Pool A increased slightly at the beginning

of the simulation, and then began to decline after about 40d (Fig. 6.2). The biomass of

phytoplankton Pool B, however, increased steadily with time suggesting that this resource

(as predicted by the simulation models) was not harvested to a substantial extent by

tilapia. In the SD2 treatment, the decline in the biomass of phytoplankton Pool A was

more rapid, and Pool B after an initial increase remained more or less constant (Fig. 6.3)

due to grazing pressure of the fish. Profiles of the two phytoplankton pools in the SD2F

treatment (Fig. 6.3) are more similar to those obtained for the SD1 treatment (Fig. 6.2)

presumably due to the consumption of supplemental feed as previously indicated. It

would appear that the addition of supplemental feed to fertilized ponds containing a filter

feeder such as tilapia results in an increase in phytoplankton biomass. At the highest SD,

the biomass of Pool A dropped sharply before reaching steady-state conditions whereas

the Pool B increased slightly at the beginning of the simulation, and then began to decline

gradually as consumption of this resource by fish increased (Fig. 6.4). In general, the
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resource substitution function predicted lower phytoplankton biomass in ponds with a

higher standing crop of fish, except in the fed ponds where uptake of supplemental feed

apparently allowed an increase in the overall phytoplankton biomass.

Although absolute changes in zooplankton are less pronounced (Fig. 6.5) presumably

because the minimum threshold concentration for uptake of this resource by fish was

assumed to be the same as the initial zooplankton biomass (Table 6.2), discernible

patterns in the consumption of this resource by tilapia also can be observed. For the

treatments without feed, there is a trend towards slightly lower zooplankton biomass with

increasing fish density; for the SD2F treatment, the zooplankton biomass is marginally

higher than the SD2 treatment (Fig. 6.5). These results are similar to the trends for the

two phytoplankton pools (Figs. 6.2-6.4) discussed above. The two sharp declines in

zooplankton biomass for all the four treatments within the first month or so of the

Figure 6.2. Simulated profiles of phytoplankton Pool A and Pool B in fertilized tilapia

ponds stocked at 1 fish M-2.
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Time (d)
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Figure 6.3. Simulated profiles of phytoplankton Pool A and Pool B in tilapia ponds

stocked at 2 fish 11f2. SD2 refers to the treatment in which only fertilizer was added,

whereas feed was also used in the treatment labeled SD2F.
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Figure 6.4. Simulated profiles of phytoplankton Pool A and Pool B in fertilized tilapia

ponds stocked at 3 fish r11-2.



Figure 6.5. Simulated profiles of zooplankton in tilapia ponds.

simulations were associated with low water temperatures as predicted by the heat balance

model (Chapter 2). Similar trends, although not to the same extent, can be observed for

the phytoplankton pools as well (Figs. 6.2-6.4).

Diana et al. (1990) did not measure biomass changes of different pools of plankton in

their ponds, and it is therefore difficult to directly evaluate the model output generated in

the current analysis. However, comparison of model results to those reported by Colman

and Edwards (1987) and Colman et al. (1990) is instructive. Experimental work with

Nile tilapia in septage loaded tanks as reported by the former group of authors indicated a

decrease in algal biomass in tanks with the highest fish biomass. Similar results were

also reported by Colman et al. (1990). In both of the above studies, a shift in dominance

towards smaller algal species was observed over time, presumably due to increased

consumption of net-plankton. The simulations conducted herein clearly demonstrates the

suitability of the resource substitution function as a tool to predict such shifts in the
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consumption of natural food resources by fish such as tilapia. As previously noted, the

function is especially advantageous over the approach used by Svirezhev et al. (1984)

because it can be used for multiple resources and food preferences are inherently captured

in the half-saturation constants. Further, although the numerical experiments were

limited to tilapia, it should be possible to calibrate the resource substitution function for

other fish species, and to examine patterns of food consumption under mono- and

polyculture situations. Such analyses may be useful in determining the appropriate mix

of species for a given set of pond environmental and management conditions.

In terms of phytoplankton biomass profiles for the SD2F treatment, there are no

published reports on size structure changes of plankton in fertilized and fed Nile tilapia

ponds. Therefore, it is difficult to assess whether the increased biomass of phytoplankton

predicted by the models (Fig. 6.3) is a trend that occurs in actual ponds. Phytoplankton

blooms commonly occur in fed aquaculture ponds (Boyd, 1990). Such blooms are

problematic in terms of oxygen depletion and the accumulation of off-flavor compounds

in species such as channel catfish raised in the Southern US (Tucker and Robinson,

1990). The occurrence of blooms in such systems is apparently the result of high nutrient

concentrations (due to high feeding rates), rapid increases in phytoplankton biomass, and

possibly the lack of efficient filter feeders to lower this biomass.

Diana et al. (1993) reported the accumulation of unionized ammonia as well as low

dissolved oxygen levels in fed and fertilized Nile tilapia ponds at Bang Sal. Such trends

often occur in static ponds with a large phytoplankton population where the net

productivity is low or when plankton die-offs occur (Boyd, 1990; Delince, 1992). If

similar conditions did consistently occur in the ponds maintained by Diana et al. (1993),

it may indicate that tilapia preferentially consumed supplemental feed, resulting in lower

grazing pressure on phytoplankton and therefore an increase in their biomass. Results

obtained for the SD2F treatment (Fig. 6.3) are consistent with this hypothesis in that

models developed herein predicted large phytoplankton biomass compared to similar

ponds that were not fed (i.e., the SD2 treatment). Moreover, increased nutrient

concentrations do not account for the higher phytoplankton biomass predicted by the
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Figure 6.6. Number of iterations required to converge to an adequate estimate of
supplemental feed consumption in the SD2F simulation.
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models for the SDF2 treatment because all the simulation runs assumed that the ponds

were not nutrient limited. In other words, changes in the consumption of natural food by

tilapia as manifested by the simulation models are primarily caused by the availability of

supplemental feed in the SD2F treatment.

The iterative algorithm (Table 6.1) used to calculate supplemental feed consumption

provided relatively rapid convergence throughout the SD2F simulation. However, the

number of iterations required to converge to adequately accurate estimates of

supplemental feed consumption in the SDF2 treatment (Fig. 6.6) appears to be inversely

correlated with the NFI predicted for this treatment (see Fig. 6.1). Thus, more iterations

seem to be necessary when the difference between NFI and the target feeding level (80%

satiation in this case) is large. This trend may also have been caused by predicted

changes in the proportions of the various natural food items (particularly phytoplankton

Pool A and Pool B) consumed by tilapia over time.
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Figure 6.7. Supplemental feed requirements estimated during the SD2F simulation.
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An interesting outcome of the SD2F simulation is that the models suggest a

supplemental feed requirement right from the beginning of the experiment (Fig. 6.7). In

Chapter 5, we used an estimate of the critical standing crop or fish biomass (CFB; kg 1113)

to judge whether supplemental feed addition is required in fertilized ponds. Following

Hepher (1978), this approach assumes that natural food is adequate to meet fish

requirements until the CFB for a given pond is reached, and that feed addition was only

required thereafter. A CFB of 0.078 kg IT1-3 (roughly equivalent to 790 kg ha.-1) was

estimated (see also Chapter 5) from data reported in the PD/A CRSP database for the

fertilized ponds at Bang Sai that were stocked at 2 fish 1112. This CFB apparently

occurred around day 30 after stocking. In other words, the simplified fish growth model

would recommend supplemental feed addition in such ponds only after a month of

culture.
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In part, the differences in the initiation of supplemental feeding between the

simplified growth model (Chapter 5) and the more complex simulation models described

herein for the same experiment could be due to errors in CFB estimates. CFB is assumed

to occur at the point when individual fish growth rates reaches a maximum (Hepher,

1978). Diana et al. (1990) sampled fish at intervals about a month and the value of CFB

(i.e., 0.078 kg m-3) was estimated (see also Chapter 5) to correspond to fish biomass at the

end of the first month of culture. However, the CFB may have actually occurred prior to

the end of the first month of culture, in which case the simplified growth model described

in Chapter 5 would have recommended the addition of supplemental feed prior to the end

of the first month of culture. More frequent sampling (e.g., every two weeks) during the

first two months or so of tilapia culture in ponds should help in clarifying this issue. It is

also possible that the fish biomass at stocking exceeded the CFB, as suggested by Diana

(in press). This author synthesized results from a variety of PD/A CRSP fertilization and

feeding experiments with tilapia in Thailand. In some of these experiments, fish were

sampled at biweekly intervals. His analysis indicated that there were differences in the

growth response of this species from virtually the beginning of a variety of experiments

which used the following treatments: fertilizer only, fertilizer plus feed, and feed only.

Diana (in press) concluded that the CFB must have occurred very early on in the culture

period when fish were in a size range of 30-40g. Results obtained in the SD2F

simulations herein tend to support Diana's conclusions.

Alternate hypotheses to explain Diana's (in press) observations, as well as the

differences in the initiation of supplemental feeding predicted by the approach used

herein and that used in Chapter 5 are that the quantity and/or quality of natural food

produced in the fertilized ponds at Bang Sai may not have been adequate to meet all the

requirements of tilapia during the initial phase of culture (irrespective of the stocking

size), or that fish may not be able to harvest natural food as efficiently as being offered

exogenous feed. These possibilities raise questions as to whether the conclusions drawn

by Hepher (1978) following his development of the critical standing crop concept based

on carp experiments are necessarily applicable to intensive and semi-intensive culture of
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other fish species such as Nile tilapia. For instance, results obtained herein and those

discussed by Diana (in press) may very well be caused by one or more of the following

reasons: (i) natural food in some ponds is not adequate in terms of quantity, despite fish

biomass being relatively low, (ii) species such as tilapia may not be feeding upto satiation

in ponds where natural food is apparently plentiful, because the efficiency at which such

resources can be harvested is low, and (iii) lower nutritional value of available natural

food compared to that of a complete artificial feed (i.e., an issue of food quality).

CONCLUSIONS

As noted by several ecological modeling practitioners (e.g., Straskraba and Gnauck,

1985; Haefner, 1996 among others), simulation tools can generate information that is

beneficial in terms of understanding system behavior, translating such understanding into

improved management practices, designing better experiments and improving the original

models. Results obtained in this study are encouraging from the viewpoint of using

complex pond aquaculture simulation models for such purposes. Specifically, the models

predicted a decrease in phytoplankton biomass with an increase in the standing crop of

fish in fertilized tilapia ponds. This result is consistent with the tank culture work of

Colman and co-workers (Colman and Edwards, 1987; Colman et al., 1990).

Moreover, the models predict a change in the dominant phytoplankton pool within

such ponds, a finding that is also consistent with the experience of many pond

aquaculture researchers. Interestingly, the models suggest that adding supplemental feed

to tilapia ponds results in a shift in food consumption patterns accompanied by an

increase in phytoplankton biomass that is independent of the nutrient concentrations in

ponds. Further, supplemental feed addition appears to be required even within the early

phase of tilapia culture, a finding is contrary to the arguments of Hepher (1978) and the

results obtained by the use of a simplified function to estimate natural food availability

(Chapter 5). These results have practical implications for feeding practices because pond



aquaculture managers are often interested in determining when supplemental feeding

should commence in fertilized ponds.

The verification trials described in this paper must be considered preliminary, and it is

important to conduct physical experiments to further validate and refine the models

developed herein. Such experiments may initially be conducted at microcosm or

mesocosm levels because better control can be exerted in such systems, prior to being

done in experimental or production ponds. In particular, it would be beneficial to further

examine changes in the size structure and biomass of plankton as fish standing crop

increases under both fertilized and fed conditions. It would also be useful to conduct

similar experiments with various fish species under polyculture conditions. Routine

monitoring of water quality conditions in these systems can also generate data that will be

useful both in terms of understanding the performance of aquaculture systems, and in the

refinement of the models developed herein to address overall system performance.

One of the drawbacks of simulation models is the need to parameterize them

periodically to new conditions (Richter and Sondgerath, 1990; Haefner, 1996). This is a

particularly complex and tedious procedure for parameter-rich models such as the ones

described in this paper. In conjunction with the verification experiments suggested

above, it would be very beneficial to further refine recent parameter estimation techniques

(e.g., Sequeira and Olson, 1995; see also Chapter 7) so as to enable automatic calibration

of more complex simulation models (such as the ones developed during this study) for

different culture conditions.

Finally, the verification trials conducted demonstrate the power of combining data

analysis and synthesis via a combination of physical and simulation model

experimentation, wherein the latter raise questions that can be examined by specific pond

experiments. Results from such pond experiments can then be used in an iterative

manner to refine the simulation models by including the new knowledge gained. This
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scheme of data collection, analysis and synthesis could also include other modeling

techniques such as stochastic models, qualitative approaches, and rule-based systems.
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ABSTRACT

Manual parameterization of complex simulation models is time-consuming, tedious

and complicated because of interactions among variables considered and the large

parameter space to be searched. Numerical parameter estimation techniques that have

been used in lieu of manual calibration require partial derivative evaluations. Because of

the difficulties in accurately estimating partial derivatives for complex simulation models

that consider several variables, the use of genetic algorithms (GA) to automatically

calibrate a fish growth model for five species important in pond aquaculture was

explored. The objective function chosen for GA testing was the minimization of the

absolute error between observed and predicted fish growth. Implementation details of the

GA technique developed during the study are presented. Parameters were generated by

the GA's in relatively short time periods and provided good correspondence between fish

weight predicted by the model and observed data for all the five species. GA-based

parameter estimation appears to be an appropriate approach for the automatic calibration

of complex simulation models, a finding that is consistent with previous research efforts.

INTRODUCTION

The use of simulation models that have been calibrated for one set of fish culture

conditions to other locations or for other candidate fish species is often impeded by the

need to manually adjust model parameters for the new set of culture conditions.

However, estimating suitable parameters for complex, nonlinear simulation models such

as the fish growth model described in Chapter 5 by manual calibration is extremely

tedious because of the potentially high degree of interaction among variables, and the

large size and dimensionality of parameter spaces to be searched. Piedrahita (1990) also

noted the need to develop methods for parameter estimation of aquaculture simulation

models other than manual calibration.
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Several approaches have been developed in the past to estimate parameters for

nonlinear, ordinary differential equation based (ODE) simulation models (Bard, 1974;

Press et al., 1992). Richter and Sondgerath (1990) and Marsili-Libelli (1992) have

demonstrated the use of some of these methods for parameterizing ecological models.

Traditional parameter estimation approaches typically involve the specification of an

objective function (e.g., error sum of squares between predicted and observed values) that

is to be minimized, and a procedure for finding a set of parameters which in fact

minimize this function. Thus, model parameter estimation may be considered to be an

'optimization' problem. In general, numerical algorithms for minimizing objective

functions require evaluation of partial derivatives of the function with respect to each of

the parameters to be estimated. For relatively large nonlinear models, such derivative

evaluations can rarely be accomplished analytically, and are usually calculated

numerically (Bard, 1974). However, it is difficult to achieve accurate results with

numerical methods for derivative calculations, and the techniques that do exist tend to be

relatively computation-intensive. In general, the difficulties associated with these

methods has severely limited their application in biological models (Haefner, 1996).

Recently, however, a variety of nonlinear optimization strategies that may be broadly

categorized as evolutionary computation techniques and which show considerable

promise for parameter estimation of nonlinear biological models have been developed

(Schwefel, 1981, 1995; Haefner, 1996). Genetic algorithms (GA's) represent an

evolutionary computation technique that attempts to circumvent the problems of

traditional parameter estimation methods (Schwefel, 1981; Davis, 1992). Within the

agricultural sciences, GA's have previously been used as a tool for parameter estimation

of a simulation model for cotton (Sequeira and Olson, 1995). The need to extend

applications of the fish growth model (Chapter 5) to a variety of pond aquaculture species

stimulated a study that examined the use of GA's to estimate suitable bioenergetic

parameters for these species.



MODEL PARAMETERS

The fish growth model (Chapter 5) can be used to examine the effects of fish weight,

food availability, and environmental variables on growth. The model has been

implemented in the Microsoft Windows-based decision support software POND (Bolte et

al., 1995). In its simplest form where the dissolved oxygen and unionized ammonia

concentrations are assumed to be such that fish growth is not adversely affected, a total of

10 parameters are required for each species (Table 7.1). Five fish species which are of

considerable interest in pond aquaculture were chosen to examine the suitability of a GA-

based parameter estimation technique for the fish growth model. The selected species

were Nile tilapia (Oreochromis niloticus), tambaqui (Colossoma macropomum), pacu

(Piaractus mitrei), common carp (Cyprinus carpio), and channel catfish (Ictalurus

punctatus). Parameter estimation for the model requires time-series data pertaining to

fish growth, water temperature, and feed application. Data sources that were used to

estimate best-fit parameters for the five species and brief details regarding the actual

experiments are listed in Table 7.2. Additional details regarding fish culture conditions in

these experiments are summarized in Chapter 5.

GENETIC ALGORITHMS

Background

Only a brief review of GA's is presented here because more detailed discussions are

available elsewhere (e.g., Holland, 1975; Davis, 1992; Michalewicz, 1992; Schwefel,

1995). GA's are based on the process of natural selection which tends to favor the

propagation of those organisms that are better suited for a particular environment

(Holland 1975). Such propagation occurs via the promotion of genes that cause the

organism to become better adapted to its environment. The performance measure used to

judge the success of an organism is its fitness - in genetics, this refers to the ability of the
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Table 7.1. Listing of fish growth model parameters estimated by use of the GA's, together with their biological interpretation.

Anabolism exponent (m)

Food consumption coefficient (h)

Efficiency of assimilation (b)

Feeding catabolism coefficient (a)

Catabolism exponent (n)

Minimum catabolism coefficient (kmm)

Temperature parameter (s)

Minimum temperature scaler

Maximum temperature scaler (Tmax)

Optimum temperature scaler (Lpt)

Describes the relationship between fish weight and anabolic processes

Rate parameter for food consumption

Proportion of food intake (gross energy) that is available as metabolizable energy

Proportion of the food assimilated (metabolizable energy) that is used to process it

Describes the relationship between fish weight and catabolic processes

Rate parameter for catabolism at the minimum temperature for the species

A constant that describes temperature effects on catabolism

Lower temperature limit below which fish will not feed

Upper temperature limit above which fish will not feed

Temperature at which food consumption reaches a maximum

Bioenergetic Parameter Biological interpretation



Table 7.2. Data sources used to estimate parameters for the five fish species together with relevant experimental details.

'Data for this species were extracted from the tropical aquaculture database maintained by the Pond Dynamics/Aquaculture
Collaborative Research Program.

bCL I refers to the treatment in which chicken litter was used for the first month of culture followed by feed.
cCL3 refers to the treatment in which chicken litter was used for the first three months of culture followed by feed.

Fish Species Site Period Simulated Treatment Data Source

Nile tilapiaa El Carao, Honduras 27/7/89 to 21/12/89 Feed + Fertilizer (CL1)b Teichert-Coddington et al., (1991)

Feed + Fertilizer (CL3)c

Tambaq u i Pirassununga, Brazil 1/10/84 to 13/6/85 Feed Lima et al. (1988)

Pacu Itiquira, Brazil 26/4/86 to 11/03/87 Feed Merola and Pagan-Font (1988)

Common carp Golysz, Poland 10/6/72 to 10/10/72 Feed Szumiec (1979a), Szumiec

(1979b) & Szumiec and Szumiec

(1985)

Channel catfish Stoneville, MS, USA 1/5/94 to 1/10/94 Feed Robinson and Li (1995)
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organism to survive and reproduce, measured as the number of offspring of the individual

which survive to reproduce.

GA practitioners use terminology that is borrowed from genetics. Thus, the term

individual or genotype is used to represent a member of a population. These individuals

are also called chromosomes because GA's typically consist of only a single chromosome

(i.e., the population is made up of single chromosome individuals), which in turn is made

up of genes located at certain places called loci on the chromosome. These genes can

assume different states called alleles. The key aspects of adaptation that are exploited by

GA's are (i) the chromosomes contain all the information that the population has found to

be useful in adapting to its environment, and (ii) as long as there is scope for increased

adaptation to their environment, the proportion of fit structures will continue to rise (i.e.,

fitness increases).

Traditionally, GA implementations involve the use of chromosomes that are

represented as binary vectors (i.e, bit strings). These strings are manipulated by the use of

genetic operators, namely "crossover" and "mutation" (Holland, 1975), to enable

evolution of suitable solutions to the problem being analyzed. In the former, genes of two

parent chromosomes are swapped to produce two offspring which may have very

different characteristics. In mutation, bits are selected at random and altered so that a 1

becomes 0 or vice versa.

For optimization problems, it is assumed that each chromosome in a GA represents a

potential solution to the problem. If the problem is one of parameter estimation and there

are n parameters, the chromosome is set up as an array of length n with each element in

the array (i.e., a gene) corresponding to one of the parameters to be estimated. The GA

proceeds by setting up an initial population of individuals, evaluating each chromosome

by estimating its "fitness" in relation to the optimization problem by the use of the

objective function, selecting a new population of individuals from the existing one in a
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manner that is proportional to their fitness, and reproducing the chromosomes using

genetic operators such as crossover and mutation (Davis, 1992). The procedure is then

repeated for each new population until a population of individuals with a higher mean

fitness than the original population results. The best individual in the final population

will likely represent a highly evolved solution to the problem being solved. The link

between the problem and the population of chromosomes is the objective function which

provides a measure of the performance (i.e., fitness) of each chromosome in relation to

the problem. The evaluation function thus plays an analogous role to the environment

which a natural organism may encounter.

The basic assumptions of GA's in problem solving are related to the conventional

concept of evolution. That is, (i) potential solutions to a problem can be represented as a

population of single chromosome individuals, (ii) at any given time, the individuals in the

current population are the repository of information that has proven useful in adapting

successfully to its environment, and (iii) individuals which have a higher fitness

reproduce more often than those with lower fitness so that the new population tends to

have a higher average fitness compared to the previous one. This is because GA's

implicitly assume that the best solutions are likely to occur in the region which contains a

relatively high proportion of good solutions; therefore, they tend to sample these solutions

more than others.

Implementation Details

Implementation of GA's for optimization problems vary depending on the

requirements of the specific problem that is being analyzed (Davis, 1992; Haefner, 1996).

However, in general, all GA's including the one implemented in the current study follow

the steps indicated in Figure 7.1. Specific features of the GA used herein are discussed

below. The GA code used for the study was programmed in Borland® C++, and accessed



Initialize population of chromosomes with
random solutions

' ' : 1117*"'11

Generation number
exceeded?

Create the new population (P') from the sets of
individuals c and m

Adequate convergence
to an optimal solution9

Evaluate fitness of current population (P) using
the objective function

Select individuals c to be carried over
to the next generation

Apply genetic operators to individuals in the
original population P to produce modified

individuals m

Yes

Yes

Terminate GA procedure

Figure 7.1. Steps involved in GA-based optimization.
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from within the POND software. Parameter estimation was accomplished on an IBM-

compatible personal computer with a Pentium CPU.

Objective Function and Fitness Evaluation

A variety of objective functions can be used in parameter estimation techniques

relevant to dynamic simulation models (Bard, 1974; Press et al., 1992). These functions

typically involve the minimization of some measure of 'goodness of fit'. Commonly used

objective functions (e.g., Bard, 1974; Press et al., 1992) include minimization of (i) the

absolute error between observed (0) and predicted (P) data, (ii) the sum of the squared

error between 0 and P data, or (iii) the chi-square estimate between 0 and P data.

Sequeira et al. (1994) compared various goodness of fit measures for GA-based

parameter estimation, and concluded that minimization of the absolute error between 0

and P data resulted in the most consistent behavior of the GA's. Consequently, this

measure which can be stated as follows was used in the current study:
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(1)

where P, and 0, refer to the predicted and observed fish weights respectively at the ith

sampling time, and m = total number of observations. Because growth data were

typically measured at intervals of two to four weeks for all species, observed fish weights

were linearly interpolated to enable computation of the objective function at each time

step (one day) of the simulations.

The absolute error calculated from Equation 1 is used as a measure of the fitness of

each individual in a population. Ranking of the population is also based on the fitness of

its individuals (a lower absolute error indicating a more fit individual) Another statistic
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that is used to evaluate GA's is the average fitness of each generation which is the sum of

the fitness of all individuals divided by the population size.

Representation

As previously indicated, chromosome representation in GA's has primarily been

accomplished by the use of binary vectors. This approach was also used by Sequeira and

Olson (1995). However, there is evidence to suggest that floating point representations of

chromosomes are computationally more efficient for numerical optimization problems,

produce more consistent results among runs, are more precise, and are conceptually closer

to the problem space compared to binary vectors (Michalewicz, 1992). Chromosomes for

the current study were therefore represented as floating point arrays of length n with each

element (gene) corresponding to one of the parameters.

Genetic Operators

Our GA code uses two operators namely crossover and mutation. A one-point

crossover mechanism that works as follows was used. First, the number of allowable

crosses is determined. This is a constant number for each GA run obtained as the product

of the crossover rate (a control parameter that is user-specified) and the population size

divided by two. For this work, the crossover rate was set to 0.25 (i.e., 25% of the

individuals were assumed to be available for crossover). Secondly, to ensure that

individuals with higher fitness were preferentially selected for crossover, selection of

these individuals was accomplished by ranking the current population according to

fitness, and then stochastically sampling this population using an exponential distribution

with a mean obtained as the product of the number of individuals and another control

parameter that was arbitrarily set to 0.20. Use of this value implies that the upper 20% of
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the population has a higher probability of being selected for crossover. Thirdly, once the

individuals were selected, the cleavage point was stochastically determined on the basis

of a uniform distribution, the range of which was set to the number of parameters (10 in

the current study) minus one, which ensures at least a minimal exchange of 'genetic

material'. Finally, one-point crossover between two individuals (Cl and C2) occurs by

exchanging the material beyond the cleavage point in individual Cl with that of C2, and

vice versa (Fig. 7.2). This final step is repeated for all the allowable crosses in the current

generation.

Mutation is assumed to occur on the basis of all the genes in the population, which is

given by the product of the number of genes per individual (i.e., the parameter count

equal to 10 here) and the population size. The number of allowable mutations is then

given by the product of a user-specified parameter, the mutation rate, and the total

number of genes in the population. The genes to be mutated in each generation are

stochastically selected on the basis of a uniform distribution with a maximum value equal

to the number of allowable mutations. The new or 'mutated' value of the parameter

represented by the gene selected for mutation is obtained as a uniform random number

that is within the allowable range for the specific parameter.

Selection Strategy

A number of different approaches have been used to select individuals that appear in

the next generation during a simulation run (see review by Michalewicz, 1992). These

include deterministic approaches such as the elitist strategy in which the best

chromosome is always carried over to the next generation and variants around this

general idea. Stochastic approaches have also been used in which individuals with higher

fitnesses have an increased probability of appearing in the next generation. We used a

modified version of the elitist strategy by specifying a carryover rate of 0.20, which



Cleavage points

C2 I 0.7078 I 0.7524 I 0.2288 1 0.1035
1

0.6514 I 0.0135 I 0.0089 I 16.9 I 34.9 I 27.7 I

Figure 7.2. Schematic representation of a one-point crossover exchange between two
individuals Cl and C2 from the current population, which results in two different
individuals C l' and C2' that enter the next population.

implies that a proportion (20%) of the individuals in the current generation ranked on the

basis of their fitnesses have to be carried over to the new generation. For the typical

population size of 20, this implies that the four best individuals in the current generation

would be selected into the new generation.

Parameter Estimation Procedures

GA settings used in this study are summarized in Table 7.3. Parameter estimation for

the fish growth model proceeded according to the general procedure for GA-based

parameter estimation of simulation models (Fig. 7.3). More specifically, the steps

involved in parameter estimation for all the fish species in this study were as follows:
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Cl I 0.6719 I 0.8251 I 0.1923 I 0.0738 I 0.5412 I 0.0197 I 0.0267 L 15.5 33.4 I 29.3
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34.9 I 27.7

C2' I 0.7078 I 0.7524 I 0.2288 0.1035 I 0.6514 I 0.0135 I 0.0267 I 15.5 I 33.4 I 29.3



Setting Value/Method

Number of generations 20
Chromosome length 10
Population size 20
Crossover rate 0.25
Crossover type One point
Mutation rate 0.15
Carryover rate 0.20
Selection strategy Elitist based on carryover rate
Fitness criteria Minimization of absolute differences
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An initial population of individuals was created by uniform random sampling from

the allowable range for each of the parameters to be fitted. Allowable parameter

values for each of the five fish species were established on the basis of literature-

derived information for the individual species and from trial simulation runs in which

model parameters were adjusted to obtain reasonable predictions of fish growth.

Parameters for which baseline values were established from literature sources (Table

7.4) included those relevant to the relationship between temperature and fish growth

(i.e., the parameters T,,,in, Tni., Top, and s in Table 7.1). The parameter ranges to be

searched for all the parameters were typically set to + 25% of the baseline values.

The fitness of each individual in the current population was evaluated by the use of

Equation 1, with the observed values of fish weights for each of the species obtained

from the sources listed in Table 7.2. This step involves a simulation run for each of

the individuals in the population.

Next, a new population of individuals was created by applying the genetic operators

and selection strategy described earlier. The fitness of this new population was then

evaluated as indicated in Step 2 above.

Once the preset number of generations (i.e., maximum number of GA iterations) was

reached, a final simulation run was made with the best individual and model

predictions compared to observed fish weights.

Table 7.3. GA settings used for automatic calibration of the fish growth model.



Fix population size 0)), number of generations
(g), crossover, carryover and mutation rates

Set up a gene array of length n for each
chromosome with individual elements

corresponding to parameter values selected
randomly from the allowable range

Calculate absolute error (residual) between
model predictions and observed values

Run p simulations, each of which uses
parameters from the respective chromosome

Apply crossover,
carryover and mutation

rates to create
a new population

Yes

Observed values

Figure 7.3. Procedure for GA-based parameter estimation of a simulation model.
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Fish Species Data Source

Nile tilapia Gannam and Phillips (1992), Denzer (1967), Caulton (1982)
Tambaqui Saint-Paul (1989), Lovshin (1995)
Pacu Saint-Paul (1989)
Common carp Szumiec and Szumiec (1985), Hepher (1988)
Channel catfish Tucker and Robinson (1990)

RESULTS AND DISCUSSION

The GA-based parameter estimation technique resulted in adequate convergence for

all the five species tested. Results obtained for each species are presented below,

followed by analyses of various GA statistics collected during the course of the parameter

estimation.

Nile tilapia

The individual with the best-fit parameters (Table 7.5) resulted in good predictions of

Nile tilapia growth compared to the observed weights (Fig. 7.4). Final fish weights were

not substantially different from the mean of the observed weights (Table 7.6). Periods of

slow growth predicted by the model for both the CL1 (chicken litter for one month

followed by feed) and CL3 (chicken litter for three months followed by feed) treatments

used by Teichert-Coddington et al. (1991) were apparently caused by low water

temperatures (in the range of 19-22°C). Such trends are difficult to observe in actual

growth data because of the relatively long sampling intervals (about four weeks) used by

the above authors.
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Table 7.4. Data sources used to arrive at baseline values of the temperature parameters for
the five fish species chosen for analysis.



Table 7.5. Best-fit model parameters estimated using GA's for five fish species.

Bioenergetic Parameter Nile tilapia Tambaqui Pacu Common carp Channel
catfish

Anabolism Parameters
Efficiency of assimilation (b) 0.7108 0.6695 0.7719 0.7129 0.7865

Anabolism exponent (m) 0.6277 0.6855 0.7154 0.6722 0.6327

Food consumption coefficient (h) 0.4768 0.2863 0.2415 0.3282 0.2885

Catabolism Parameters
Feeding catabolism coefficient (a) 0.0559 0.1057 0.0529 0.0786 0.1133

Catabolism exponent (n) 0.8373 0.5336 0.5332 0.5166 0.5118

Minimum catabolism coefficient (kmin) 0.0104 0.0146 0.0094 0.0104 0.0227

Temperature parameter (s) 0.0288 0.0110 0.0290 0.0027 0.0119

Temperature Scalers
Minimum (T,in) 18.7 14.4 17.5 10.1 13.3

Maximum (Tmax) 39.7 38.6 31.4 36.2 36.0

Optimum (Tont) 32.4 29.0 28.1 30.6 30.8
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Figure 7.4. Calibration results for Nile tilapia at El Carao, Honduras.

Table 7.6. Final observed (0) fish weights compared to those predicted (P) by the growth
model for five fish species. The percent relative error was calculated as [(P - 0)/0] x 100.

100 150
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Fish Species Final fish weights (g) Percent relative

error

Observed Predicted

Nile tilapia 276.4 294.2 +6.4

258.4 251.4 -2.7

Tambaqui 298.0 304.6 +2.2

Pacu 699.6 727.9 +4.0

Common carp 400.0 401.8 +0.5

Channel catfish 463.0 454.6 -1.8



Tambaqui

Best-fit model parameters for tambaqui (Table 7.5) resulted in the growth profile

shown in Figure 7.5. Although the relative error (calculated as indicated in Table 7.6)

between the final fish weight predicted by the growth model with the above parameters

and the actual harvest weight reported by Lima et al. (1988) was only about 2.2%, there is

a tendency for predicted fish weights to be slightly lower than observed weights during

the entire simulation except towards the end (Fig. 7.5). It is possible that the estimated

model parameters are not adequate to accurately predict growth of this species when

temperatures are within the optimum range for this species, or that the model is not

flexible enough to accomodate the growth of tambaqui. Nevertheless, the set of best-fit

parameters produces a growth profile for tambaqui that does closely follow the pattern of

observed weights.
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Figure 7.5. Calibration results for tambaqui at Pirassununga, Brazil.
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Pacu

For this species, there was a close correspondence between observed data and weights

predicted using the set of best-fit parameters (Fig. 7.6; Table 7.5). Among the five

species chosen for parameter estimation, this species was cultured for the longest time

period of close to 11 months (Table 7.2) and it might therefore be expected that there

would be an appreciable difference between the final observed weight at harvest and that
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Figure 7.6. Calibration results for pacu at Itiquira, Brazil.

predicted by the growth model. However, because the GA-based calibration procedure

generated a good set of parameters for pacu, the relative error between the actual and

predicted harvest weights was only 4% (Table 7.6). The good fit may in part be

attributable to more frequent sampling weights reported by Merola and Pagan-Font

(1988), use of which likely reduces any errors that may be introduced by applying linear

interpolations to observed weights so as to calculate the absolute error (Equation 1).



Common Carp

Excellent correspondence between fish weights predicted by the use of the calibrated

model and observed weights was obtained for this species throughout the simulation

period (Fig. 7.7), and the relative error was the lowest among the five fish species tested

(Table 7.6). Slower growth rates towards the end of the simulation period were

presumably due to low water temperatures, a trend that was accurately predicted by the

set of growth parameters for the common carp.
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Figure 7.7. Calibration results for common carp at Golysz, Poland.
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Channel Catfish

Best-fit parameters generated by the GA (Table 7.5) resulted in model predictions that

compared very favorably with observed weights (Figure 7.8). The final harvest weight

predicted by the growth model was only marginally lower than the actual weight reported

by Robinson and Li (1995; Table 7.6).
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Figure 7.8. Calibration results for channel catfish at Stoneville, Mississippi, USA.

GA Performance

As indicated above, GA's proved to be an acceptable approach for the complex task

of automatically calibrating the nonlinear fish growth model described in Chapter 5.

Moreover, the technique generated suitable parameters for the five species which were

cultured under different conditions. Thus, the technique appears to adequately address

site-specific characteristics (e.g., temperature, feeding rates, etc.) while parameters are

being estimated, which is consistent with the observations of Sequeira and Olson (1995).
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Three statistics were collected during the current study to further assess the performance

of the GA-based parameter estimation technique: the average fitness of the extant

population, the individual with the best fitness in the current population (prior to the

carryover individuals being blended in), and the fitness of the best individual from the

commencement of the GA run. The latter two statistics are respectively referred to as the

best current fitness and best cumulative fitness in the remainder of this paper. Similar

patterns for these three statistics were obtained for all the fish species; discussion is

therefore limited to results for tilapia and pacu.

After a slight increase in values for the average fitness in the first generation for

tilapia (Fig. 7.9), this statistic decreases sharply until the sixth generation, following

which its value is more or less constant. For pacu, the trend for average fitness values is

similar, although the overall tendency is towards a slight decrease with an increase in the

generation number (Fig. 7.10). Trends obtained for this statistic are similar to those

obtained by Sequeira and Olson (1995). The slight increases even towards the end of the

GA runs (Figs. 7.9-7.10) are likely due to mutation, which can actually create individuals

whose fitness may be much lower (i.e., high absolute error in the current context) than

expected (Michalewicz, 1992) much in the same way that unfit stuctures can show up in

natural populations.

Trend in the best current fitness statistic are fairly similar to the average fitness for

both species, but the actual value as expected is substantially lower (Figs. 7.9-7.10). The

best cumulative fitness shows a sharp decline within the first few generations for both

tilapia (Fig. 7.9) and pacu (Fig. 7.10); thereafter, its value changes very slowly. For the

former species, the best individual was obtained in generation 14 whereas the best

individual for pacu was obtained in generation 19. It is possible that an individual with

even better fitness could have been obtained for pacu if the generation size was larger.

However, because growth model predictions for this species using the best individual

were very good (Fig. 7.6), it was decided that substantial benefits would not accrue by

increasing the generation size and repeating the parameter estimation procedure.
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Figure 7.9. GA statistics for tilapia.
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The absolute values of the GA statistics collected for tilapia (Fig. 7.9) and pacu (Fig.

7.10) differ substantially. This appears to be a surprising result given that a better growth

model fit was apparently obtained for the latter species (compare Figs. 7.4 and 7.6).

However, the higher values for pacu are explained by the fact that the duration of

experiment for tilapia was only 147d (Teichert-Coddington et al., 1991) whereas Merola

and Pagan-Font (1988) cultured pacu for 321d (Table 7.2). Because the absolute error

111.4.
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Figure 7.10. GA statistics for pacu.

represents the sum of the errors over an entire simulation (Equation 1), its value may

increase with the simulation duration.

An additional performance measure for any parameter estimation method is the time

required to obtain a sufficiently calibrated model. In the current context, this

performance measure is especially important because the fish growth model is packaged

within a decision support framework and the parameter estimation package will likely be

used by pond aquaculture managers to either adjust parameters in accordance with site-

specific conditions for one of species that the model has already been calibrated for, or to

generate best-fit parameters for new fish species. In other words, relatively rapid model

calibration is desirable. Convergence to the best individuals in the current study was

typically obtained within about 30-45 minutes for all the species considered, a time frame

that should be satisfactory under most conditions.
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It is important to note that Sequeira and Olson (1995) actually estimated only five

parameters (out of a total of 50) for the cotton model GOSSYM using GA's, whereas the

current study has demonstrated that GA-based model calibration can be used to estimate a

larger number of parameters (i.e., a total of 10 for the fish growth model). This has

considerable significance for ecosystems models where the number of parameters may be

very large, and where manual calibration is particularly tedious and time-consuming. For

such models, calibration by numerical techniques (as previously pointed out) is also

difficult. Apart from parameterizing models using GA's alone, it may bepossible to

combine available optimization techniques to generate the most suitable set of

parameters. For instance, Davis (1992) discusses the combined use of expert systems,

numerical techniques and GA's for industrial problems. Such an approach has yet to be

explored for parameter estimation of complex ecological models and may very well be

useful because each of the above optimization techniques have some inherent advantages.

For instance, expert systems may be useful in setting parameter ranges to explore as well

as in automatically evaluating optimal parameters. Numerical techniques can be very

powerful particularly when derivative evaluations are possible, whereas GA's areuseful

in identifying parameter spaces where good solutions exist.

CONCLUSIONS

A GA-based technique for calibration of a nonlinear fish growth model has been

developed. The technique generated parameters for five fish species within relatively

short time periods. These parameters resulted in good correspondence between fish

growth predicted by the model and observed data. GA-based parameter estimation is a

useful mechanism for the automatic calibration of complex simulation models, a finding

that is consistent with previous research efforts.



CONCLUSIONS

Research presented in this dissertation has dealt with the POND decision support

system, and the development, verification and use of pond simulation models that have

been implemented within this software. The POND framework apparently represents the

first effort to integrate simulation models and economic analysis capabilities into a

unified software tool specifically targeting pond aquaculture systems. This is a major

departure from traditional analysis tools in which simulation model development and

economic analysis capabilities have been viewed as separate activities. For instance,

available pond simulation models which were developed either by the use of conventional

programming tools (e.g., Cuenco et al., 1985; Cacho, 1990) or within software

specifically designed for implementing simulation models (e.g., Piedrahita, 1990; van

Dam and Penning De Vries, 1995) have not been linked to economic analysis tools.

Similarly, economic analysis tools previously developed for aquaculture (e.g., Gempesaw

et al., 1992) have transferred to the software user the responsibility of providing inputs

about proposed farm operations. In other words, users of such tools are assumed to be

familiar about the extent of resource use in the farm under consideration, whereas POND

attempts to generate estimates of resources used in the form of simulation model outputs.

Another distinct feature of the POND software is that it is specifically designed to

enable analysis of entire facilities. That is, the software provides capabilities to represent

a physical aquaculture system which consists of a specific geographical location, source

water quality, pond(s) associated with the site, fish lot(s) or populations (comprising one

or more species) associated with each pond, and a soil type for each pond. This scheme

of facility representation, coupled with the simulation models and the enterprise budget

package in the software enables rapid analysis of facilities under a wide variety of

potential operating conditions.
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Simulation models implemented within the POND framework are organized

hierarchically into three levels according to their complexity, availability of input data

and output resolution requirements. From the viewpoint of information representation,

manipulation and application, this scheme of model organization has allowed a single,

generic analysis tool to meet the decision-making needs of different user groups such as

pond aquaculture planners, managers and researchers.

However, there are a number of areas where future work on software improvement

(apart from continued model verification which is discussed in detail below) is required.

Firstly, the POND software in its current form is primarily a facility-level simulator

wherein users can represent existing or planned pond facilities and explore different

production scenarios. For management applications, such types of analyses can greatly

benefit from linking the POND software to database tools which contain real-time

information collected during routine farm operations. Apart from the obvious advantages

of automation, use of actual farm data would be particularly beneficial for short-term

management forecasting tasks relevant to practices such as pond fertilization and feeding.

A second shortcoming of POND is that the economic analysis capabilities of the software

are currently limited to enterprise budgeting. It would be beneficial to improve these

capabilities to include cost-benefit, risk assessment and optimization techniques. Thirdly,

the POND software does not presently enable analysis of other production systems (e.g.,

integrated animal and crop farming) which are often closely allied with pond aquaculture

practices, particularly in developing countries. Addition of such functionality will likely

be useful to aquaculture development planners and other decision-makers.

As indicated in Chapter 1, the more complex models in POND have yet to be fully

verified. This is an area that should receive priority, in part because detailed simulation

models offer a powerful mechanism for conducting various types of experiments and

generating information that is useful both in understanding pond ecosystems and

improving management practices. Further, a current weakness of the POND simulation

models is that they do not adequately address the prediction of water quality in ponds. In
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particular, arriving at estimates of dissolved oxygen and unionized ammonia levels is

important because these two variables often set the limits of fish production in more

intensive aquaculture operations. Such estimates are required to assess the effects of

reduced fish output as well as ameliorative strategies (e.g., aeration, water exchange, etc)

on the economic performance of a given facility. Simulation models capable of

generating realistic water quality profiles will also enable users of decision support

systems such as POND to analyze effluent management practices in aquaculture facilities

(e.g., shrimp farms) where substantial water exchange may occur, with potentially serious

consequences for the surrounding environment.

With regard to the simulation models that have been presented in this dissertation, the

water temperature model (Chapter 2) appears to be a very useful tool for predicting both

long-term daily and short-term diurnal temperature profiles in aquaculture ponds that are

assumed to be completely mixed. Previously developed temperature models have not

provided this dual functionality. The model generated daily and diurnal temperature

profiles with a reasonable degree of accuracy at geographically distinct sites in Thailand,

Honduras and Rwanda suggesting that it is a relatively robust tool. As expected, daily

water temperature predictions were more accurate when actual weather measurements

were used as model input compared to data obtained from the POND weather generator.

Sensitivity analyses indicated that among the various weather variables required as inputs,

the water temperature model is most sensitive to air temperature, followed by relative

humidity and short-wave solar radiation. Increased accuracy in water temperature

projections can be expected when measurements of these three weather variables are

available as input to the model. Potential applications of the model relevant to long-term

daily water temperature projections include regional-scale assessment of aquaculture

potential for species with different temperature preferenda, species selection for specific

locations, estimation of feed and fertilizer requirements, and water quality management.

The capabilities of the model to generate diurnal temperature profiles are likely to be of

more interest to researchers involved in the analysis of ponds via the use of complex

systems models. In the context of research applications, however, it may be more



beneficial to explore the use of stratified water temperature models such as those

developed by Losordo and Piedrahita (1991) or Culberson and Piedrahita (1992)

especially if comprehensive weather datasets are available.

The water budget model (Chapter 3) is apparently the first attempt to synthesize

observations on pond water sources and sinks into an analysis tool that should have

general applicability to assess water requirements for most pond aquaculture facilities.

These facilities may include operations that depend on routine water replenishment to

maintain desired depths, are rainfed, or maintain a constant flow through the ponds.

Water gains considered in the model include regulated inflow, precipitation and runoff,

whereas water losses include evaporation, seepage, effluent discharge, and overflow.

Verification of the model at locations in Thailand and Honduras suggests that sufficiently

accurate estimates of pond water requirements can be obtained provided comprehensive

weather datasets that include air temperature, precipitation, relative humidity and wind

speed measurement are available as inputs. However, this requirement is not a particular

disadvantage because such weather datasets are increasingly becoming available from

various locations world-wide. A current weakness of the water budget model, especially

relevant to situations where water gain by runoff may be important (e.g., rainfed

aquaculture), is that it requires an estimate of the curve number for the surrounding soil,

land use and hydrologic conditions. Such estimates can be obtained from published

tables, but it may very well be appropriate to develop a simple expert system which can

recommend curve numbers based on qualitative information provided by model users and

embed it within POND.

Nevertheless, the water budget model is relatively flexible and can easily be adapted

for different locations ancVor seasons. Its use requires minimal measurements from ponds

compared to previous pond water budget studies, a particular advantage for situations

where analysis of water requirements is to be done in the planning phase of aquaculture

operations before actual ponds exist. The model may also find use in regional-scale

planning and analysis of water resources for pond aquaculture.
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The fertilization model (Chapter 4) developed during this research effort is

conceptually similar to a previous approach (Lannan, 1993) in that it is based on

limnological principles and is a responsive management strategy (i.e., one designed to

account for ambient pond water conditions prior to recommending fertilizer application).

However, it differs from the study cited above in that (a) an estimate of the light-limited

gross primary productivity is used as the starting point for evaluating fertilizer needs

rather than the maximum net productivity, (b) the model accounts for the effects of

temperature and nutrient limitations on algal productivity (and therefore fertilizer needs),

and (c) recycling of nitrogen and phosphorus in ponds is more fully considered in

estimating nutrient requirements. Evidence for a kinetic response of algal growth to

concentrations of dissolved inorganic carbon, nitrogen and phosphorus in fertilized ponds

was also presented in Chapter 4.

Verification of the fertilization model at locations in Honduras, Thailand and the

Philippines suggests that fertilizer application rates generated by the model are likely to

be more conservative than those obtained by the use of approach developed by Lannan

(1993). It is also expected that improved consideration of nutrient cycling will reduce the

probability of unionized ammonia accumulation (potentially detrimental to fish growth)

in ponds. Field trial of the fertilization model for different locations should, however, be

undertaken to confirm verification results. Nevertheless, these results do support

previous observations in that responsive fertilization strategies are likely to result in better

nutrient utilization in ponds compared to traditional fixed input approaches, and should

lead to improved fertilizer use efficiency.

The development of a management-oriented fish bioenergetics model (Chapter 5) has

been a key focus area of the research presented in this dissertation. The model accounts

for the effects of key variables (fish size, water temperature, photoperiod, dissolved

oxygen and unionized ammonia) on fish growth in aquaculture ponds. The function

developed to estimate natural food availability as a function of fish biomass is consistent

with evidence from fertilized ponds, and appears to provide a reasonable estimate of the
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contribution of such resources to fish diet. The function has proven useful in estimating

when supplemental feed addition should commence in ponds and the feed amounts

required to reach a desired feeding level.

The fish bioenergetics model has been successfully calibrated and validated for five

fish species namely Nile tilapia (Oreochromis niloticus), tambaqui (Colossoma

macropomum), pacu (Piaractus mesopotamicus), common carp (Cyprinus carpio), and

channel catfish (ktalurus punctatus) under various production conditions, suggesting that

it is a relatively robust and flexible tool for describing fish growth in aquaculture ponds.

Application of the model to different pond species represents a departure from most of

the previously developed fish growth models which have typically been calibrated only

for one species. Sensitivity analyses suggests that the model is very sensitive to six out of

a total of 10 parameters. As with other systems analysis tools, there are limitations in the

applicability of the model to all culture conditions that may be found in ponds.

Specifically, the current version of the model does not adequately account for the effects

of stocking density in fed ponds, food preferences and artificial diets of differing quality

on fish growth in ponds. These represent areas for future work, which should also

include parameterization of the dissolved oxygen and unionized ammonia functions for

different species.

Various simulation experiments conducted with the fish bioenergetics model point to

its applicability in practical pond management situations such as growth potential of

different fish species at various geographical locations, estimation of feeding rates, and

examination of different stocking density regimes in fertilized ponds with or without

supplemental feed addition. Specifically, these experiments demonstrate that fertilized

tilapia ponds stocked at higher rates will require supplemental feeding to commence

earlier compared to those stocked at lower rates assuming the same target feeding level.

Numerical experiments with the fish bioenergetics model also resulted in different

feeding curves (in terms of percent body weight of fish) for ponds assumed to receive

feed only, or those receiving both fertilizer and feed. For fed-only ponds, model
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experimentation suggests that the use of traditional fixed feeding rates (as percent body

weight of fish) apparently leads to higher feed requirements, increased waste feed, and

higher food conversion ratios compared to satiation feeding levels which account for

variations in water temperature among different locations. However, for fertilized and

fed ponds, the predicted feeding curves do not steadily decrease with increasing fish

weight (as is the case with published feeding tables), but are characterized by an initial

increase followed by a gradual reduction in the feeding rates. This is because the

energetics model accounts for the contribution of natural food to the diet of pond fish

such as tilapia. These findings have important implications for feed management

practices and the efficiency of feed use in aquaculture farms. As with the other models

developed herein, further verification of the fish bioenergetics model under actual pond

conditions would be beneficial.

In contrast to the models described in Chapters 2-5 of this dissertation, where the

focus was on the applied aspects of simulation modeling (e.g., in pond management and

planning tasks), Chapter 6 dealt with the development and use of more complex models

to understand pond ecosystems. The fish growth model used in the latter chapter is

similar to the one described in Chapter 5, with the exception that a resource substitution

function (Tilman, 1982) was used to analyze the consumption of various food resources,

endogenous and exogenous, in aquaculture ponds. Chapter 6 also documents the

development of models for phytoplankton and zooplankton from the available literature.

Simulation experiments conducted with these models predicted changes in the

dominant phytoplankton pool of fertilized Nile tilapia ponds that are consistent with the

experience of pond aquaculture researchers. These changes were more pronounced in

ponds stocked at higher fish densities, and were correlated with increased fish biomass in

the ponds. The overall phytoplankon biomass was also lower in ponds stocked at higher

densities. An interesting outcome of the model experiments was that the addition of

supplemental feed to tilapia ponds resulted in a shift in food consumption patterns

accompanied by an increase in phytoplankton biomass that is independent of the nutrient
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concentrations in ponds. Further, supplemental feed addition appears to be required even

within the early phase of tilapia culture, a finding is contrary to the arguments of Hepher

(1978) and the results obtained by the use of the simplified function that was used in

Chapter 5 to estimate natural food availability. It is unclear whether this fmding is simply

an artifact of the over-estimation of critical standing crops in tilapia ponds, or whether

growth of the Nile tilapia in fertilized and fed ponds is more rapid during the initial phase

of culture compared to ponds that receive only fertilizers. If the latter situation does

occur in actual ponds, it may be necessary to further examine the underlying causes such

as inadequate quantity/quality of natural food in fertilized ponds (which in turn may be

related to pond water quality) and poor grazing efficiency of fish on natural food

assemblages. Efforts should also be undertaken to enhance the pond systems models

embodied in Chapter 6 by including descriptions of pond water quality (as discussed

earlier), and parameterizing the models for different fish species as well as culture

conditions.

The issue of simulation model parameterization is one of the main factors that has

limited the use of such models in applied research fields such as aquaculture. The

amount of time and effort expended in manually calibrating the fish bioenergetics model

(Chapter 5) during the early part of the research presented in this dissertation motivated

the development of the automated GA-based parameter estimation technique described in

Chapter 7. As with other parameter estimation techniques, the GA-based method also

requires an objective function to be optimized, which in this study was the minimization

of the absolute error between predicted and observed fish weights. However, in contrast

to more traditional numerical optimization algorithms that are used for parameter

estimation, the GA-based technique does not require partial derivative evaluations of the

objective function. The technique consistently generated parameters which resulted in

good correspondence between fish growth predicted by the bioenergetics model and

observed data for all the five fish species tested within relatively short time periods. In

the future, this technique should be used to calibrate the more detailed pond ecosystem

models such as those described in Chapter 6. Apart from applications to the current



work, the GA-based technique should also be of use in parameterizing other complex

ecological models.
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APPENDIX I

GENERATION OF WEATHER DATA FOR POND SIMULATIONS

The water temperature and water budget simulation models described in Chapters 2

and 3 of this dissertation require several weather data inputs, including short-wave solar

radiation, air temperature, cloud cover, wind speed, relative humidity and precipitation.

A simple weather generator has been implemented in POND to provide users of the

decision support system with an alternate means of obtaining some of these data

(discussed below) if locally measured values are unavailable. Although more

sophisticated weather generators are available to predict the required weather data (e.g.,

Richardson and Wright, 1984; Geng et al., 1988), we have chosen not to use them

because their parameterization requires several years of historical data.

Suitable methods to generate relative humidity and precipitation data could not be

identified; the former variable is therefore assumed to be a constant when the weather

generator is used. When simulations are conducted, relative humidity should be set to the

mean of observed values if they are available or a value of 75% (which is likely to be

adequate for most locations) can be assumed. When the POND weather generator is

used, precipitation is assumed to be zero.

Short-wave solar radiation

The method used to calculate short-wave solar radiation (4) in POND is principally

based on the calculations given by Wunderlich (1972; cited in Fritz et al., 1980).

According to this author, Os can be calculated as:
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res
sin a Am( 1 - 0.65 Cc2)

where Lc = solar constant (1.2043 x 105 kJ m2- ), cx= solar altitude (radians), At =

atmospheric transmission coefficient, m = optical air mass, re, = relative distance

between the earth and sun, and Cc = fraction of the sky that is covered by clouds at the

site (0-1).

The relative distance between the earth and sun varies on a daily basis because of the

elliptical nature of the earth's orbit, and can be approximated by (Ryan and Stolzenbach,

1971):

(186 - JD)]
res = 1 + 0.017 cosr2E

L 365

where JD = Julian day of the year (1-365).

Solar altitude (a) is the angle between the sun's rays and a horizontal surface on earth

(Hsieh, 1986), and is given by:

sin a = sin Lt sin 5 + cos 5 cos Lt cos ha (1.3)

where Lt = site latitude, 5 = declination of the sun, and ha = hour angle, all of which are

expressed in radians.

Solar declination (5), which changes on a daily basis, refers to the angular distance

between the center-to-center line from the sun to the earth, and the projection of this line

on the equatorial plane of the earth (Hsieh, 1986). By convention, the declination is

considered to be positive in the northern hemisphere, and negative in the southern

hemisphere. It can be calculated as (Henderson-Sellers, 1984):

(1.2)
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8 = 0.4093 sin[27c
(JD - 79.751

365

The hour angle of a given point on the earth's surface is the angular distance through

which the earth must turn to bring the meridian of the point directly below the sun, and

can be calculated as (Fritz et al., 1980):

ha =
(t

s
- 12) it

12

where 13 = 0.01726 ( JD - 81 ).

9.87 sin 2 p - 7.53 cos [3 - 1.5 sini3
Act = 60

(1.5)

(1.7)

The longitude correction term (La) accounts for the time taken by the sun to traverse

10 of longitude (4 min), and is computed as (Hsieh, 1986):

where ts = true solar time (h), which refers to the angular movement of the sun across the

sky. Local solar noon occurs when the sun is immediately above the meridian of the site.

ts can be calculated from the local clock time at the site (0, an astronomical correction

term or the equation of time (Au), and a longitude correction term (L0t), all of which are

expressed in h, as follows (Hsieh, 1986):

t = Act + Lct (1.6)

The astronomical correction term accounts for variations in daylength caused by

changes in the velocity of the earth as it revolves in an elliptical orbit around the sun, and

is given by (Hsieh, 1986):

260

(1.4)



Ls - Lg
Lt =

15

where Ls = standard meridian for the time zone (°), and Lg = site longitude (°).

The atmospheric transmission coefficient is a function of the geographic location of a

site and time of the year, and may be empirically calculated as (Fritz et al., 1980):

At = 0.0685 cos[2n
(JD + 10)

365

1
+ 0.80 (1.9)

The optical air mass varies with the barometric pressure, and therefore with altitude

(z, in m). Following Kasten (1964; cited in Fritz et al., 1980), m is given by:

(1.10)

Once Os has been calculated by the use of equations (1.1-1.10), it is necessary to

account for short-wave reflectivity (As; see Equation 6 in Chapter 2) to arrive at the solar

radiation that actually penetrates into the pond water (46). Henderson-Sellers (1984)

suggests that it is adequate to assume As = 0.06 for mean daily calculations of.

However, it may be desirable to account for the effects of solar altitude angle and

cloud conditions on As in which case the following expression (Fritz et al., 1980) can be

used:

Osn = [ 1 - x (57.3 a)Y] (1.11)

where the term x (57.3 a)Y corresponds to As, with x and y being empirical factors, values

of which are dependent on the cloud cover (Cc; Table Al. 1). Cloud cover data to estimate

[(288 - 0.0065 z)/ 28815'256-
[sin a + 0.15(a + 3.885)1'2'3
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Represent the actual C, values used in POND depending on the selected cloud type.

Daily vs. Diurnal mode
POND allows users to perform both daily and diurnal simulations. In the former type

of simulation, diurnal trends in variables such as short-wave solar radiation and air

temperature are ignored and the mean values of these variables are used as model input.

There are minor differences between short-wave solar radiation predictions under each of

these simulation scenarios.

To arrive at total daily insolation values for daily simulations, it is necessary to

integrate Equation 1.1 over the time period between sunrise and sunset. To avoid these

additional calculations during daily simulations, it is assumed that the maximum incident

short-wave solar radiation (4),, max) occurs at the local solar noon (i.e., when ha = 0) and

that incident radiation during daylight hours has a symmetrical profile around this

maximum value. Thus, the mean solar radiation during daylight hours is given by fl)s, max

/2. This value needs to be further scaled by the photoperiod p to arrive at the daily

average as follows:
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the factors x and y are generated by the procedures that are described later in Section 3

below.

Table AU. Cloud type, cloud cover values (Cc), and estimates of empirical factors (x

and y) from Fritz et al. (1980).

Cloud type Cc

Clear 0.0 1.18 - 0.77

Scattered 0.1-0.5 (0.5)I 2.20 - 0.97

Broken 0.6-0.9 (0.75)
1

0.95 - 0.75

Overcast 1.0 0.35 - 1.45



Omnax]
(1)s = P [ 2

p is expressed as the fraction of a day that is daylight and can be calculated as -tan

(Hsieh, 1986), where hr = local sunrise angle given by:

hr = -cos-1 (tan Lt tan 8) (1.13)

The sunset hour angle (hg) is equivalent to hr but with the sign reversed, and is positive by

convention (Hsieh, 1986).

For diurnal simulations, Os is set to zero at night, and is estimated during daylight

hours (i.e., when hr < ha < hg) as follows (Monteith, 1973):

4)S = 4)S, max sin(7t t / p) (1.14)

where t is the time (d) elapsed since sunrise.

Finally, for both daily and diurnal simulations, 0, is adjusted for short-wave

reflectivity (see Equation 1.11 above) to arrive at estimates of

Air Temperature

Air temperature is required to estimate two components of the energy balance (net

long-wave atmospheric radiation and conductive heat flux) used to predict water

temperature in ponds (see Chapter 2). As with the other weather parameters, air

temperature is difficult to predict because of seasonal and diurnal trends. Therefore, we

(1.12)
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use empirical equations developed by other researchers to predict daily and diurnal air

temperature.

Daily vs. Diurnal mode

The following polynomial equations (Straskraba and Gnauck, 1985), which only

require latitude, altitude, and Julian Day inputs are used to predict mean air temperature

(Ta; °C) for daily simulations:

264

where Tarn = annual air temperature mean (°C), Taa = semiamplitude of annual air

temperature variations (°C), Tr = temperature change with each 100m rise in altitude

above mean sea level (usually in the range 0.5-0.8), L't = correction factor applied to the

site latitude (= IL - 3.41; with Lt in degrees), and Pa = phase angle (220° for the Northern

hemisphere and 100° for the Southern hemisphere).

For diurnal simulations, values of air temperature at each time step (Tad) are required

during numerical integration. If the maximum (Tamax) and minimum (Tamin) air

temperatures are known (e.g., from weather files), diurnal temperatures at different times

of the day can be calculated under the assumption that air temperature follows a more or

less sinusoidal pattern (Card et al., 1976). If it is additionally assumed that Tamin and

Tamax occur at 0600h and 1500h respectively, the Card algorithm reduces to the following

expression (Culberson and Piedrahita, 1992):

Tam = 25.92 + 0.4893 L't - 0.02739 L't2 + 0.0001782 L't3 (2.1)

Taa = 1.536 + 0.05735 L't - 0.01296 L't2 + 0.0001312 L't3 (2.2)

Ta = T T (. ji) + Pal Tr z (2.3)
180 j



Tad = Tdm + (Ta max - Ta min) x 0.4484 x

- 2.7489
{sin(n(tt -

2.7489)
12

+ 0.2706 x sin[2(7c(tL
12

where Tamp = typical daily temperature amplitude or mean difference between Tamin and

Tax (°C). In the POND weather generator, Tamp is assumed to be constant for the period

of simulation.

Cloud Cover

Values for the fraction of the sky that is covered by clouds (Cc) are required for each

day of the simulation, for both direct use in the water temperature model (Chapter 2) and

to estimate the empirical factors x and y (Equation 1.11; see also Table Al.1) for short-

wave solar radiation prediction. Models suitable for the prediction of such data could not

be identified.

Some simplified methods are therefore provide to arrive at Cc values for use in POND

simulations. For example, when weather data are generated, users may optionally select

the type of cloud cover (clear, broken, scattered or overcast) that best matches the season

to be simulated, in which case the appropriate values of Cc, x and y from Table Al.1 are

automatically used in Equations 1.1 and 1.11.

If Tamax and Tamin data are not available, they are approximated as follows:

Tamp (2.5)
Ta max = Tdm 2

IT \amp
(2.6)Ta min = T'dm

2
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However, like other weather variables, the degree of cloudiness at any given site tends

to vary both seasonally and diurnally, and is a function of air humidity, cloud altitude and

cloud density. In addition, the degree of cloudiness may also vary in a random fashion.

Therefore, use of a single cloud category for a full season may not adequately reflect

changing weather conditions.

The alternative approach provided in POND is to generate cloud cover data from a

normal distribution wherein users are required to specify whether the season is

predominantly wet or dry. If wet conditions are assumed, Cc values are drawn from a

normal distribution with a mean of 0.625 and standard deviation of 0.1. The lower and

upper bounds enforced on Cc for wet season simulations are 0.25 and 1 respectively.

Values for x and y corresponding to the stochastic values of C, are then set based on the

cut-off point of Cc for each category indicated in Table Al. 1. Thus, if the generated value

of Cc is greater than 0.9, overcast conditions are assumed (x = 0.35, y = -1.45; Table

Al. 1). Similarly, for dry conditions, Cc values are drawn from a normal distribution with

a mean of 0.375 and standard deviation of 0.1; lower and upper bounds enforced on Cc

for such simulations are 0 and 0.75 respectively. Thus, if the stochastically generated

value for C, is less than 0.1, we assume clear conditions (x = 1.18, y = -0.97; Table AI.1).

It should be noted that the statistically valid approach for examining the effects of a

stochastic random variable on simulation results is to run the model repeatedly (at least

30 times), and summarize the state variables (e.g., water temperature) in the form of a

mean and standard deviation. This applies to stochastic analysis of wind speed as well

(see below). At this time, we have not examined the effects of these stochastic

approaches on the distribution of water temperature profiles in ponds.

Wind Speed

Wind speed (in m s-1) data at reference height of 2m are required to estimate

evaporative and conductive heat flux from a pond (see Chapter 2). Such data are not
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often collected in aquaculture facilities, with the possible exclusion of research sites.

Further, wind patterns also exhibit substantial seasonal and diurnal trends, and may also

vary in a stochastic manner. A suitable model to predict wind speeds has not been

identified for use in POND.

If users do not have local wind speed measurements, they may either assume a

constant mean wind speed for simulation runs or make use of an approach similar to

stochastic cloud cover generation (as discussed in Section 3 above). If the latter approach

is used, users are required to specify both the mean and standard deviation for the

distribution of wind speed. POND then generates normally distributed random values of

wind speed for the simulation runs.



APPENDIX II

A METHOD TO ESTIMATE SECCHI DISK VISIBILITY FROM

CHLOROPHYLL A CONCENTRATIONS IN FISH PONDS

BACKGROUND

Almazan and Boyd (1978) developed a simple model to express the relationship

between chlorophyll a and Secchi disk visibility in earthen ponds from Central and

Southern Alabama. The relationship is of the form:

a
Chl - a (1)

SDVb

where Chl-a = chlorophyll a concentration (mg m-3), SDV = Secchi disk visibility (SDV;

m), and a and b are non-linear regression parameters. Using regression fitting

procedures, a and b were estimated by the above authors to be 19.14 and 1.976

respectively.

This simple model is useful in estimating phytoplankton density when SDV

measurements are available. However, for pond systems modeling efforts where

phytoplankton is one of the state variables, it is often important to estimate SDV based on

the current phytoplankton biomass. This is because typical phytoplankton models (see

also Chapter 6) require the use of light extinction coefficients to account for the effects of

ambient light conditions on plankton growth; such coefficients can be indirectly estimated

from SDV measurements (e.g., Poole and Atkins, 1929).
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Thus, contrary to the approach used by Almazan and Boyd (1978), SDV becomes the

variable dependent on phytoplankton biomass. Once a suitable function has been

developed to express this dependency and the necessary parameters estimated for

different locations, it is expected that the predicted values of SDV can be used to

approximate light extinction coefficients in simulated ponds.

An effort was undertaken to develop such a function and parameterize it for several

locations maintained by the Pond Dynamics/Aquaculture Collaborative Research Support

Program (PD/A CRSP).

METHODS

SDV (cm) and chlorophyll a (mg m-3) data were extracted from the aquaculture

database maintained by the PD/A CRSP for sites in Thailand (Bang Sai), Honduras (El

Carao) and Rwasave (Rwanda). Data from all the ponds for the experiments conducted

by CRSP researchers during Work Plan 5 (PD/A CRSP, 1989) were pooled together for

these sites (see also Table All. 1). Averages of SDV were used for situations when two

measurements of this variable were made.

Table A11.1. PD/A CRSP data sources for SDV and chlorophyll a data.

Bang Sal (Thailand) April 10, 1989 March 19, 1991

El Carao (Honduras) November 11, 1989 March 17, 1990

Rwasave (Rwanda) February 19, 1990 December 12, 1990

Site Start Date End Date
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As expected, data for all the locations (Figs. AILl-A11.3) indicate an inverse

relationship between SDV and chlorophyll a. Further examination of the relationship

between SDV and chlorophyll a data for these sites suggests that, particularly for El

Carao (Fig. AII.2), some factor other than phytoplankton density influences light

penetration. Although plankton density is the primary source of turbidity in ponds, mud

turbidity (either due to the water source or fish-induced bioturbation) may also be

important under certain conditions (Boyd, 1979). A suitable expression to account for the

additional source of turbidity appears to be of the form:

0 200 400 600 800

Chl-a (mg ni3)

Figure All. 1. Relationship between Secchi disk visibility and chlorophyll a

concentrations for Bang Sai, Thailand.
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Figure AI1.2. Relationship between Secchi disk visibility and chlorophyll a

concentrations for El Carao, Honduras.
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Figure AI1.3. Relationship between Secchi disk visibility and chlorophyll a

concentrations for Rwasave, Rwanda.
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SDV (2)
(Chl - a + T)

where SDV is expressed in cm, T = baseline turbidity (Chl-a equivalents), and a and 13

are non-linear regression parameters. The parameter T is assumed to be a measure of the

non-plankton turbidity inherent in the pond for the given location. Low values of T imply

that phytoplankton-derived turbidity is the major factor influencing light penetration (as

appears to be the case for Bang Sal; Fig. A11.1).

Parameter Estimation

The parameters a, ri and Tin Equation 2 were estimated using Marquardt's method

for non-linear regression in the statistical package SAS (SAS, 1988) applied to the SDV

and Chl-a data for the three CRSP locations.

RESULTS

Model fits obtained using Equation 2 are shown in Figs. A11.1-11.3. These fits (Table

A11.2) in general had relatively high r2 values. The parameter 13 appears to be more or

less constant among the three sites with a range of 0.31-0.38 (Table AII.2). The

parameter a is essentially an intercept term in Equation 2, and does vary from site to site

(Table AII.2). Finally, as expected, the baseline turbidity estimate differs substantially

among these sites, and is particularly high in El Carao. This parameter shifts the function

curve along the x-axis (compare Figs. A11.1 and AII.2).
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Table AII.2. Regression model parameters estimated from PD/A CRSP data for Bang

Sai, El Carao and Rwasave.

Site a 13
r2
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In summary, the function developed appears to be adequate to predict SDV values

provided Chl-a measurements (or estimates in the case of phytoplankton modelling) are

available. The function does not, however, address the possibility of the parameter T

changing with pond conditions (e.g., different fish species or seasonal mud turbidity in

the source water). This situation can be addressed if measurements of Tare also made in

ponds over time.

Bang Sai (Thailand) 80.218 0.331 3.373 0.83

El Carao (Honduras) 114.727 0.376 43.693 0.94

Rwasave (Rwanda) 124.739 0.306 3.000 0.95


