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Abstract

The main objective of the research presented in this thesis is to improve our
understanding for the evolution of the upper mantle beneath East Asia and the
Tibetan Plateau through high resolution P-wave tomography. The approach to
high resolution tomography is based on (i) the combined use of a large range of
different types of seismic data, (ii) the use of approximate finite frequency
sensitivity kernels to account for difference in measurement technique and
frequency content of the data, (iii) the use of an irregular grid with cell-size
adapted to sampling density, and (iv) the use of a priori information, e.g., on
crustal structure from receiver function analysis. I construct a multi-scale and high
resolution seismic tomography model of the upper mantle structure beneath East
Asia and the Tibetan Plateau. The new model reveals that the mantle structure
associated with the Indian subduction varies considerably along the strike of the
collision zone. From west to east, the dip angle of Indian subduction increases and
the distance over which the plate underthrusts the Tibetan Plateau decreases.
Oblique subduction and changes of dip angle in the central part of the collision
zone may cause and determine the location of the north-south trending normal
faults in central Tibet. The eastward retreating slabs of western Pacific and
Phillipine plates are deflected in the transition zone beneath the Korea, Japan Sea,
and East China. Some of Mesozoic subducted slabs have reached as far west as
110 0E longitude under the Yangtze Craton, which might have resulted from the
Eocene subduction at the South China and Japan trenches. Precambrian
continental roots under Ordos block and Sichuan Basin, which extend to 250-300
km depth, may form a boundary of transition in tectonic regimes from the India-
Eurasia collision control in the southwest to Pacific, Philippine Sea, and Java-
Sumatra subductions control in the east and southeast. I conclude that the (direct)
influence of the India-Eurasia collision on the tectonic evolution of East Asia may
be confined to the Tibetan plateau and vicinity, whereas the tectonic development
of a large area east and southeast of Ordos, Sichuan and Burma is driven by the
stress field and 3-D upper mantle processes associated with subductions of Pacific,
Philippine Sea, and Indo-Australia plates.
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Chapter 1

Introduction

Abstract

The high resolution P-wave tomography is crucial for understanding large

scale three dimensional (3-D) tectonic evolution of East Asia. This thesis improves

the resolution of P-wave tomography by combining the P-wave travel times from

global and regional catalogs as well as temporary array networks and using

advanced methodology. In this chapter, I summarize the general motivation of this

study and the main content of the thesis.

1.1 Motivation

East Asia is a tectonically diverse and active region. There is ongoing

subduction of the Western Pacific and Philippine Sea plates with east-direction

slab rollback in the east and continental collision between Indian and Eurasian

plates in the west. These geodynamics systems form a large scale clockwise

rotation in East Asia. The tectonics of East Asia was affected and continues to be

shaped by this large scale 3-D flow/rotation in the upper mantle. The Tibetan

plateau was generated by the collision and subsequent convergence of the Indian

plate into the Eurasian plate beginning about between 50 and 65 million years ago.

The plateau is bounded by the deserts of the Tarim Basin to the north, the

Himalayas, Karakoram, and the Pamirs mountain chains to its south and west, but

its eastern margin is more diffuse. Following the India-Eurasia collision, the crust



under the central and northern parts of the Tibetan Plateau has approximately

doubled in thickness to its current thickness of -70 km, while its elevation has

increased by -4-5 km (Molnar and Tapponnier, 1975; Coward et al., 1988; Dewey

et al., 1988).

The Cenozoic Tibetan Plateau has long been regarded as a natural laboratory

for studies of continental dynamics. Over the last two decades, a series of key

observations of various disciplines from the plateau and surrounding areas have

given us a basic concept of how the convergence between Indian and Eurasian

plates is being accommodated and the mechanism for having crustal thickness of

the Tibetan Plateau nearly twice as thick as most continental crust. Beneath

southern Tibet, a weak, probably partially molten, mid-crustal layer has been

produced by crustal thickening and behaves as a fluid on the time scale of

Himalayan deformation (INDEPTH II, Nelson et al., 1996). Within large parts of

the eastern plateau and its margins, crustal thickening has occurred without

appreciable shortening of the upper crust (Burchfiel et al., 1995; Wang et al.,

1998). Geodynamic modeling suggests that crust at the margins of the plateau is

thickened from below by differential flow of the lower and middle crust from the

central portions of the plateau towards the margins, rather than shortening and

thickening by thrusting in the upper crust (Clark and Royden, 2000).

However there are still many controversies regarding the dynamics of collision

(Tapponnier et al., 1982; England and Houseman, 1988; Houseman and England,



1993; Chemenda et al., 2000; Clark and Royden, 2000). In all these models the

upper mantle structure and its relationship with the crust are enigmatic. Especially,

how far and how deep the Indian lithosphere subducts northward under the

Tibetan Plateau is largely unknown. Moreover, the large scale high wavespeed

anomalies in the lower mantle and their relationship to regional dynamics remain

enigmatic (Van der Voo et al., 1999). Indeed, in order to understand the large

scale lithosphere dynamics of East Asia, we need to consider 3-D mantle

processes associated with both the continental collision in the west and the

subduction of Pacific and Philippine Sea slabs in the east. However the resolution

of existing seismic models is not sufficient enough to reveal the interaction

between these dynamics systems.

The general motivation of this research is threefold. First, I want to improve

our capability for flexible, high resolution tomographic imaging of the lithosphere

and the upper mantle. Second, I want to apply this new technique to spectacular

new data sets in order to delineate mantle heterogeneity at different length scales

beneath East Asia, in general, and beneath the Tibetan Plateau, in particular.

Third, along with the evidence from seismicity, geochemistry, and geology, the

new models will be used to investigate the tectonics and geodynamics of the

geographical region under study.

I- high resolution seismic tomography. The increasing access to seismological

data from dense (temporary and permanent) regional seismograph networks, on



the one hand, and the desire to image structure from a global to a regional and

local scale, on the other hand, call for more powerful approaches to tomographic

imaging than is currently available. Resolving structure on a large range of length

scales requires the integration of (independent) a priori knowledge of the structure

and the use of data from a range of different seismic phases. Our study will build

and expand our expertise on travel time tomography (that is, in the future the

constraints from travel times need to be integrated with information from surface

wave propagation, but that is beyond the scope of this thesis in part because 3-D

models from surface wave tomography are currently of much lower resolution

than our P-wave model). In particular, I need to be able to (1) add independent

constraints when they become available (e.g., the constraints on crustal structure

from receiver function analysis and/or active source reflection experiments), and

(2) adapt our model if new data sets become available. Our approach to high

resolution tomography will be based on (i) the combined use of a large range of

different types of seismic data, both from global catalogs as well as from

provincial or temporary seismograph networks, (ii) the use of approximate finite

frequency sensitivity kernels to account for differences on measurement technique,

(iii) the use of an irregular grid with cell-size adapted to sampling density, and (iv)

the use of a priori information, e.g., on crustal structure from receiver function

analysis.



The envisaged improvements have general applicability: they have enabled

high resolution of the upper mantle beneath North America using USArray data,

and companies like Shell are interested in our approach for "first order

exploration" of remote regions that may have promise for future development.

Here, however, our prime interest is to improve the constraints on understanding

the 3-D structure of the upper mantle beneath East Asia and the Tibetan Plateau.

II- Mantle structure beneath East Asia and the Tibetan Plateau. The main

motivation for improving our tomographic method is to make better use of a priori

information and various new seismological data sets for the construction of a

detailed seismic tomography model of the crust and upper mantle structure

beneath East Asia and, in particular, the Tibetan Plateau. For this effort I can use

several unique data sets. First, with automated procedures I picked the arrival time

from temporary seismic arrays in and near the Tibetan Plateau. They are the MIT

array in the eastern margin of the plateau; Lehigh university array in southeastern

Tibet; Sino-American PASSCAL experiment in central Tibet; arrays from

International Deep Profiling of Tibet and the Himalayas (INDEPTH) project and

Himalayan Nepal Tibet Experiment (HIMNT) in the southern plateau (Appendix

I). Furthermore, through collaborating with Chinese scientists, I have gained

access to the wealth of teleseimic and regional data recorded (since 1967) at -1200

stations of the Chinese Seismography Network (CSN). With these unique data sets

I have constructed a higher resolution model than is currently available. Indeed,



inversion of this data set could revolutionize our knowledge of the upper mantle

structure beneath East Asia.

III- Improved understanding of tectonics and dynamics evolution of East Asia

and the Tibetan Plateau. The large scale geological features and upper mantle

structure of East Asia are influenced by two large scale geodynamic systems: the

eastward rollback of the subducted slabs beneath the western Pacific and

Philippine arcs in the east, and the collision of the Indian continental lithosphere

with the continental Eurasia in the west. By delineating the upper mantle structure

and in combination with results from other lines of research (e.g., field mapping,

seismicity and geochemistry studies), our tomographic models can provide key

constraints on effects and relative roles of these geodynamic systems.

With the improved tomographic models I can address several questions:

a) On the large-scale, what is the effect on tectonic features in East Asia of

India-Eurasia collision in the west and the subduction of Pacific and Philippine

slabs in the east? What is the structure of the upper mantle of East Asia between

these two geodynamic systems?

b) How far northward does the Indian mantle lithospheric mantle subduct

beneath the Tibetan Plateau? How deep does it go? When and where did it break

off with the old oceanic slabs ahead of it? And what is their significance for

tectonic evolution of the Tibetan plateau?



c) What is the structure of curst and upper mantle beneath the eastern

Tibetan Plateau and surrounding regions? Is the mantle lithosphere beneath the

eastern plateau strong or weak as compared to the overlying crust? Is there

correlation between mantle structure and surface deformation and active fault

systems?

1.2 Thesis structure

After the introduction in this chapter, a global model for P wavespeed

variations in Earth's mantle is presented in Chapter 2. I generally describe whole

datasets and methodology of this research and focus on a large scale structure of

Earth's mantle, such as slab, upwelling, and upper mantle structure beneath

continents.

In Chapter 3, I explore in detail how to design and implement an accurate and

efficient correction for crust structure that we cannot resolve with the data used (Li

et al., 2006) and zoom in the global P-wave model beneath the southeastern Asia.

In Chapter 4, I focus on the upper mantle structure beneath the Tibetan Plateau

and surrounding regions. I investigate the Indian subduction beneath Himalayas

and Burma, low velocity anomalies beneath Tengchong volcanic area and Red

River fault/Ailao Shan range, and high velocity anomaly beneath the Sichuan

Basin. The relationship between the Indian lithospheric subduction in the upper

mantle and Tethys oceanic slabs in the lower mantle also have been investigated



In Chapter 5, I construct a large scale 3-D picture for the evolution of East

Asia's upper mantle through high resolution P-wave tomography. I emphasize the

large scale clockwise rotation set up by the continental collision in the west and

slab rollback in the east and their relationship with recent tectonic processes in

East Asia.

The conclusions of this thesis are presented in Chapter 6. Our understanding

for the mantle evolution of East Asia, in general, the Tibetan Plateau, in particular

is summarized. Future work related to this research is discussed.

With the exception of Chapter 1 and 6, each of the body chapters of this thesis

is written for separate publications. As such, there is some unavoidable overlap

among the papers. Chapter 2 will be submitted to Geochemistry, Geophysics,

Geosystems and Chapter 3 has been published at Physics of Earth Planetary

Interior. Chapter 4 is in preparation for submission to Earth and Planetary

Sciences Letters and Chapter 5 is in preparation for submission to the Journal of

Geophysical Research.
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Chapter 2

A new global model for P wavespeed variations in
Earth's mantle'

Abstract

We present a new global tomographic model of three dimensional (3-D)

variations in mantle P-wave velocity. The model is parameterized by means of

rectangular cells in latitude, longitude, and radius, the size of which reflects the

density of sampling by high frequency travel times. The main data source is short

period (1 Hz) P, Pn, pP and pwP from the catalogue by Engdahl et al. (1998),

which is based on phase arrival information reported to the International

Seismological Centre (ISC) during 1964~2004 with phases re-identified and

earthquakes re-located. In order to improve the resolution in the deepest mantle we

use short period (1Hz) differential times of core phases, PKPDF - PKPAB and

PKPBC - PKPAB and a low frequency (50mHz) dataset of Pdiff- PKPDF (Wysession,

1996). Furthermore we use low frequency PP-P differential times (Woodward and

Masters, 1991) to improve the resolution in the upper mantle under the region with

few stations and low seismicity. Approximate 3-D finite frequency kernels are

used to integrate the long period data (Pdi, PP) and short period (P, pP, PKP)

data. This global data set is augmented with several regional catalogs and

temporary seismic arrays. These include the Chinese Seismography Network and

temporary arrays in Tibet and Australia. We implement a crust correction to avoid

crustal smearing into the upper mantle. In inversion, we use the iterative LSQR

method with norm and gradient regularization. Spatial resolution is '100 km in

'Li, C., van der Hilst, R.D., and Engdahl, E., A new global model for P wavespeed
variations in Earth's mantle, in preparation for submission to Geochemistry,
Geophysics, and Geosystems.



best sampled upper mantle regions. The model reveals relatively narrow fast

structures around mid-mantle depths that have been linked to ancient subduction

zones, and display varying styles of subduction in the upper mantle. The model

shows upwelling structures beneath hotspots, such as Iceland and Hawaii.

2.1 Introduction

Global tomography has been producing spectacular images of the Earth's

interior structure and it provides increasingly detailed constraints on the mantle

structure and the nature of the mantle (see reviews by, e.g., Dziewonski and

Woodhouse, 1987; Masters, 1989; Montagner, 1994; Dziewonski, 1996; K6rason

and van der Hilst, 2000; Fukao et al., 2001; Trampert and van der Hilst, 2005).

Although increasingly consistent spatial patterns of wavespeed variations on the

large scale have emerged, at length scales less than -1000 km conspicuous

discrepancies still exist. These differences limit our understanding of large scale

geological processes. The need of high quality tomographic models continues to

drive improvement of inversion technique as well as data coverage adequacy.

With ever increasing quality and quantity of seismic data from global and

regional seismograph networks and temporary array deployment, global

tomography now resolves structure in the Earth's mantle with unprecedented high

resolution. In this paper, we present a new global P-wave model. Compared with

our old model (van der Hilst et al., 1997; K6rason and van der Hilst, 2001) and

other P-wave global models (Zhao, 2004; Montelli, et al., 2004), we increase the

resolution by using: (1) updated global datasets of seismic waves (P, PP, pP, PKP,



Pdicf) that sample Earth's mantle in different ways; (2) data from regional networks

and temporary seismic arrays; (3) 3-D sensitivity kernels to account for effects of

different frequencies - also Montelli et al. (2004) did this; (4) an adaptive

parameterization to enhance resolution locally - also Kirason and van der Hilst

(2001) did this; and (5) a correction that reduces the artificial mapping of crustal

heterogeneity into the upper mantle.

As an example of the multi-scale aspect of our global tomography, Figure 2-la

shows P wavespeed variations on the global scale at 100 km depth, and Figure 2-

lb shows a zoom-in of the global model to illustrate structure beneath eastern

Tibetan Plateau and southwestern China, along with relief topography and major

active fault systems. Locally, fine structures in the upper mantle have been

resolved thanks to the addition of regional networks. As another example of high

resolution that can be attained locally, Figure 2-1c depicts slabs of subducted

lithosphere under South America. With more data from regional networks and

temporary arrays, multi-scale mantle structure resolved by global tomography can

help us to further understand the evolution of tectonic processes.

2.2 Data

We use travel time residuals with respect to the reference model ak135

(Kennett et al., 1995). We use 3 types of data: 1) routinely processed travel times

picked from global networks; 2) differential times measured by waveform cross-



correlation; and 3) phases arrivals at regional networks and temporary arrays. The

number of phase data is summarized in Table 1. The catalogue of Engdahl, van

der Hilst and Buland (1998) (hereinafter referred to as the EHB dataset) is the

largest single source of routinely processed global data. Engdahl et al. used arrival

times reported to the international Seismographic Centre (ISC) and calculated

travel-time residuals by the non-linear earthquake re-location and phase re-

identification. The global data coverage by the EHB is augmented by data from

regional networks and temporary arrays that do not report to the ISC. Figure 2-3A

shows global distribution of stations in the combined dataset.

Phases # records # comp. ray Cent freq. Forw. Mod. Source
P 9.4 X 106  2.7 X 106  1 HZ Rays EHB
Pn 1.2 X 106 1.8 X 105  1 HZ Rays EHB
Pg 9.8 X 105  3.7 X 104  1 HZ Rays EHB
pP and pwP 6.8 X 105  3.7 X 105  1 HZ Rays EHB
PKPAB-PKPDF/BC 2.3 X 105  8.8 X 104  1 HZ Rays EHB
PKPAB-PKPDF/BC 1,383 N/A 1 HZ Rays McSweeney
PKPdrPKPDF 543 N/A 50 MHZ Kernels Wysession
PP-P 20,266 N/A 40 MHZ Kernels Masters
P 4.7 X 105  2.2 X 105  1 HZ Rays CSN+Array
Pn 6,600 3,300 1 HZ Rays CSN+Array

Table: Data source: EHB: Engdahl et al. (1998) (EHB); McSweeney: McSweeney (1995);
Wysession: Wysession (1996); Masters: Woodward and Masters (1991); CSN: Chinese
Seismography Network; Array: arrays in Tibet and Australia.

2.2.1 Routinely processed travel times (the EHB dataset)

The EHB dataset is regularly updated and previous versions have been used in

regional (e.g. van der Hilst et al., 1991; Li et al., 2006) and global studies (e.g.,

van der Hilst et al. 1997; Widiyantoro, 1997; Bijwaard et al., 1998; Kdrason and

van der Hilst, 2000, 2001; Zhao, 2004). The EHB dataset used here contains about



ten million travel time residuals associated with more than four hundred thousand

well constrained regional and teleseismic earthquakes from 1964 to 2004 (see

Table 1 and Figure 2-2b, c, and e). From the EHB catalog, we use P, pP and pwP

(for details see van der Hilst et al., 1991; van der Hilst and Engdahl, 1991; van

der Hilst et al., 1997) and PKP (Ktdrason and van der Hilst, 2001), and - for the

first time - Pg and Pn (Figure 2-2c). The Pg phase propagates in the crust and

gives more constrains on shallow structure. In the EHB catalogue, P phases with

turning points less than 410 km are labeled as 'Pn'. In order to select turning rays

and omit Pn proper (that is, the 'head wave'), we use phases labeled as 'Pn' in the

EHB (and treated it as a turning P-wave) only if their focal depths are larger than

80 km or if their turning points are larger than 100 km depth. The depth phase pP

bounces off Earth's surface and pwP propagates also through water and bounces

off the surface of the ocean. Following Kdrason and van der Hilst (2001), we use

the EHB PKP data for records that have two or more PKP arrivals so that the

construction of differential times (PKPDF - PKPAB or PKPBC - PKPAB) is possible.

This appears to be a good quality control because most of PKP arrivals can only

be seen on the later quality data, but - as a consequence - only a fraction of the

available EHB PKP data is used. In particular, we do not use PKPDF beyond a

distance of -1500; they do not add much to the sampling of the deepest mantle and

they are sensitive to inner core structure and anisotropy. To complement the EHB

dataset, we also used high frequency PKP differential travel times (McSweeney,



1995) measured by cross-correlation of the observed PKP waveform with a

synthetic signal calculated from theoretical predictions.

The ray coverage could be improved further by including later arriving phases

from the EHB, but since most of them are harder to read in the coda, they are

typically much noisier and the improved coverage would merely give a false

impression of improved resolution, because the so-called checkerboard tests that

are often used to assess (qualitatively) resolution do not account for realistic errors

in the data. For this reason, we do not use EHB data of PcP and PP. Instead, to

complement the EHB dataset we use waveform based differential times that were

carefully measured, for instance, by cross-correlation, from digital records.

2.2.2 Waveform based differential times

To improve the sampling of deep mantle structures we use PKPDF - Pdff

differential times (K6rason and van der Hilst, 2001). These data are measured at

relatively low frequency (central frequency -0.05 Hz) by Wysession (1996). The

Pda phases are diffracted along the core-mantle boundary (CMB) and their

differential travel time residuals are very sensitive to structure near the base of the

mantle (Kdrason and van der Hilst, 2001).

To increase our ability to resolve structures in the upper mantle of intra-plate

regions with few earthquakes and stations, we use long period PP-P data,

measured at a frequency -0.04 Hz. The measurement is made by cross-correlating

the Hilbert transform of P arrival with the PP arrival while accounting for

attenuation (Woodward and Masters, 1991).



2.2.3 Regional networks and temporary arrays (e.g., PASSCAL)

Data from regional networks and temporary arrays are not always reported to

the ISC, but have much potential for improving resolving of the upper mantle

structure. As a specific example of the former, we augmented the EHB dataset

with data from the Chinese Seismography Network (CSN). This produces a large

amount of data at stations not represented in the standard ISC catalogs (Figure 2-

3B, C), while data from stations already in the EHB dataset were removed.

As an example of the latter, we add data from arrays in Tibet and Australia.

Data from the temporary arrays of the SKIPPY project (van der Hilst et al., 1994)

helps resolve the upper mantle structure under Australia. These data was already

used in the previous global inversion (van der Hilst et al., 1997). For temporary

arrays on the Tibetan Plateau, we measured P-wave travel time using a phase

picker designed by Aldersons (2003). After the station and ellipticity correction to

the raw data, we incorporate the new residuals into the EHB dataset with the

earthquake re-location (Engdahl et al., 1998).

2.3 Methodology

2.3.1 Ray tracing, composite rays, and weighting

The center frequency of the routinely processed travel time data is -1 Hz, and

for the linearized tomographic inversion we back-project the data along ray paths

calculated in the one dimensional (I-D) ak135 reference model for mantle P-wave



speed (also see, Nolet, 1987; Spakman and Nolet, 1988). For the EHB dataset, we

use weighted composite rays to reduce the size of the sensitivity matrix. To

balance the small, but high quality waveform datasets against the much larger, but

noisier EHB dataset we give them extra weights (Kdrason and van der Hilst,

2001).

2.3.2 Sensitivity kernels

Ray theory is not appropriate for the long period data that are measured by

waveform cross-correlation (Dahlen et al., 2000; De Hoop and van der Hilst,

2005), such as differential travel times Pd-PKPDF and PP-P here. For these data

we use 3-D sensitivity kernels, which effectively smoothes the part of the model

space constrained by the low frequency data without degrading the resolution in

regions of dense sampling by high frequency data.

The core-diffracted Pdiff is an evanescent wave and the magnitude of the

associated particle motion, consequently the sensitivity to structure decreases with

increasing distance from the interface. This decay is frequency dependent. To

account for this in the inversion we distribute the sensitivity over a finite mantle

volume. The sensitivity kernels for the Pdif phase are calculated from normal

model theory to estimate for exact kernels (Zhao and Jordan, 1998; Zhao et al.,

2000). The resulting kernels show that the sensitivity is distributed over a large

irregularly shaped volume (Figure 2-4a). Following the work by Kdrason and van

der Hilst (2001), we project the 3-D kernels onto the basis function used for model

parameterization.



For the low frequency PP-P differential time we follow Kdrason (2002) and

use single scattering theory to calculate kernels as shown in Figure 2-4b; we only

include the first Fresnel zone with the maximum sensitivity at the geometrical ray

and assume the travel time sensitivity to structure is zero outside the first Fresnel

zone. Figure 2-4b depicts the absolute travel time surfaces for P and PP,

respectively. The yellow surface represents the first Fresnel zone calculated from

the dominant frequency of the PP-P data. The differential PP-P kernel is obtained

by subtracting the P from the PP kernel. We project 3-D kernels onto the constant

slowness cells (2.80 by 2.80 by 90 km) and then interpolate them on adaptive grids

that are used to parameterize the mantle.

Montelli et al. (2004) use Banana-Doughnut kernels for the inversion of long

period PP-P data. However De Hoop and van der Hilst (2005) and van der Hilst

and De Hoop (2006) argue and show that the effect of the use of such kernels is

small. Indeed, from a series of inversions we concluded that, with the current data

coverage, the actual distribution of sensitivity over the Fresnel zone is of little

importance. Therefore we implement the 'fat' ray here with the maximum

sensitivity is at the geometrical ray.

2.3.3 Adaptive parameterization

The uneven sampling of mantle structures by seismic waves results in

significant lateral variations in resolution. The use of a regular grid would either

over-parameterize poorly sampled regions (also be computationally inefficient) or

average out small scale structures. An advantage of use of local basis functions is



that they can be adjusted to expected resolution (Abers and Roecker, 1991;

Bijwaard et al., 1998). We follow Kdrason and van der Hilst (2000) to construct

an adaptive parameterization scheme on the basis of sampling density (hit counts).

In this algorithm, adaptive grid is assembled of one or more cells from the base

grid to reach the ray density criterion in each cell. The base grid is approximately

0.70 in latitude and longitude and 45 km in depth throughout the mantle. The

maximum size of adaptive grid is less than the wavelength of long period data to

assure the resolution for the large scale structures resolved by the low frequency

data.

2.3.4 Crust correction

The small incidence angles of teleseismic P-waves may map unresolved crustal

heterogeneity to larger depths in the model. Following Li et al. (2006, Chapter 3),

we correct for crustal structure by means of regularization to an a priori 3-D

crustal model. We select the global CRUST 2.0 (Bassin et al., 2000) combined

with higher resolution regional models where available as the a priori 3-D crustal

model. Addition to the simplicity of implementation, the correction in the model

space can balance the crust and upper mantle contribution to a misfit and recover

the big velocity variations in the a priori crustal model. Furthermore, later addition

of data with complex ray path, such as PP phase or updates of the reference crust

model, does not require further calculations since all are accounted for in the

model space.

2.3.5 Regularization and inversion



As in our previous studies, we apply a combination of norm damping, which

tends to minimize the amplitude of the model, and gradient damping, which

produces smooth variations, both laterally and radially. We perform experiments

with synthetic data from known input models to find appropriate values for the

damping parameters, but the choice of the parameters remains subjective. In

inversion, the norm damping is small. We keep the gradient damping in the radial

direction as small as possible to reduce the vertical smearing. We also account for

effects of earthquake mislocation on the travel time residuals. We use the iterative

method LSQR (Paige and Saunders, 1982) to minimize the objective function. The

results presented here were obtained after 200 iterations, even for LSQR most of

the convergence is achieved within a small number of iterations.

2.4 Results

Figure 2-5 depicts the P wavespeed variations at selected depths in the mantle.

The new results are consistent with earlier studies (e.g. van der Hilst et al., 1997;

Kdrason and van der Hilst, 2000, 2001) but locally show more detail. At shallow

depths, slow back arc regions and fast subduction zones as well as craton

signatures are prominent. The model is marked by long and narrow traces of fast

material from the upper mantle transition zone to mid-mantle depths beneath

North, South America and southern Asia. These structures have been associated

with plate motion history and are thought to be the remnants of old subducted



slabs (van der Hilst et al., 1997; Grand et al., 1997). As noticed before, e.g. Su

and Dziewonski (1992), at a few hundred kilometers above the CMB, long

wavelength structures emerge.

In many regions the data resolve structure on much smaller scales than can be

appreciated from the global perspective in Figure 2-5, but a comprehensive

discussion of the new model is beyond the scope of this paper. Here we just

present a few examples to illustrate the new model.

2.4.1 Improvement in the upper mantle

In this section, we compare the new model (referred to as MIT-P07) with our

previous model (referred to as MIT-P02) and current P-wave travel time model

using the finite-frequency sensitivity kernels (updated from Montelli et al. 2004,

referred to as PRI-P06) in the shallow upper mantle (at 150 km) beneath East Asia

and North America (Figure 2-6).

Compared to MIT-P02, MIT-P07 has a significant improvement in upper

mantle beneath East Asia owing to data from Chinese Seismograph Network

(CSN) and temporary Tibetan arrays (Figure 2-3C, see also Chapter 4). The new

model reveals more detail in the upper mantle, which generally correlate well with

geological processes (Al and Bl in Figure 2-6). For example, the high velocity

anomalies are located beneath the Himalaya and the southwestern margin of the

Tibetan Plateau, associated with the subducted Indian lithosphere. The moderate

low velocity anomalies are prominent beneath most of the Tibetan Plateau. The

pronounced high velocity anomalies are dominant beneath the Precambrian



Sichuan Basin. Although the general pattern of MIT-P07 and PRI-P06 is similar

(B1 and Cl in Figure 2-6), MIT-P07 has significantly higher resolution and

reveals more interesting structures.

The improvement in upper mantle beneath North America is not as much as

beneath East Asia (A2 and B2 in Figure 2-6) because fewer new data were added.

The high velocity anomalies beneath the Rocky Mountains in the new model are

stronger than before; but in general MIT-P02 and MIT-P07 are very close to each

other. PRI-P06 does not resolve the high velocity anomalies in the upper mantle

beneath the Rocky Mountains and the west coast of North America (C2 in Figure

2-6).

2.4.2 Several subduction zones

As in our previous models (van der Hilst et al., 1997; Kdrason and van der

Hilst, 2000, 2001), the slabs are well resolved in the new model because the ray

coverage from intensive earthquakes in subduction zones is very dense. We

illustrate this for four active subduction systems in Figure 2-7.

In Figure 2-7a, we display cross sections through Central and South American

arcs. Sections (1)-(3) show variations in the upper mantle part of the slabs from

north to south. In section (1) the subducted slab seems connected to the surface,

deflected in the transition zone, but disconnected from the high velocity anomalies

in the lower mantle. In contrast, in section (2) and (3) the slabs continue into the

lower mantle but there is somewhat of a detachment with lithosphere at the

surface. (see also van der Hilst 1990; van der Hilst and Engdahl 1991; Engdahl et



al, 1995). Section (4) reveals the deep part of the slab and suggests that subduction

has been going on for a long time (see also van der Hilst et al. 1997; Grand et al.,

1997). Section (5) reveals an interesting subduction pattern beneath Caribbean

Sea. In the east, the slab stays in the upper mantle with a western dip angle. In

contrast, the slab in the west continues into the lower mantle with an eastern dip

angle (van der Hilst, 1990). In South America (section (6) to (9)), intervals of

detached and continuous slabs are observed and seem to be fairly well resolved.

As is the case for the southern Hemisphere in general, the resolution deteriorates

when going south and the subducted slab beneath south sandwich island is poorly

resolved (section (10)).

In Figure 2-7b, we show continuous subduction in the western Pacific Ocean,

which stretches from the Kamchatka Peninsula in the north, through the Kuril

islands and Japan, and ends south in the Mariana Trench. The style of subduction

varies dramatically along these trenches and is consistent with previous studies

(see also, van der Hilst et al., 1991; Fukao et al., 1992; Fukao et al., 2001). In the

north, the slab is rather steep and seems directly connected to lower mantle

structures and some earthquakes reached to the boundary of upper and lower

mantle (section (11), (12)). To the south, the dip angle gradually decreases to -30'

for central Japan and the slabs appear largely stagnant in the mantle transition

zone (section (13)-(15)). The stagnant slabs seem to extent far beyond the Wadati-

Benioff zone defined by seismicity and go further to the east coast of China

(Section (14), (15)). Further south, the subduction of Pacific and Philippine Sea



plates at the Izu Bonin and Ryukyu trenches, respectively, are clearly visible

(section (16)). Both of them are stagnant in the mantle transition zone. The

stagnant slabs subducted from the Izu Bonin trench are much more than that

subducted from the Ryukyu trench (section (16)). Further towards the Mariana

Trench, the vertical slab seems to sink directly into the lower mantle and lose the

connection to the surface (section (17)) (See detailed discussion in the Chapter 5).

In Figure 2-7c, we show Andaman-Sumatra subduction system (see also

Widiyantoro and van der Hilst, 1996; Replumaz et al. 2004). The subduction

zones beneath the Celebes Sea (section (21)) and through the Philippine trench

(section (22)) are more clearly defined in the new model and reach down to the

lower mantle. Beneath Indonesia the subduction is continuous to larger depth

(section (19), (20)), with an up to 1000 km thick mass of fast material in the lower

mantle. To the northwest the accumulation in the lower mantle becomes less and

the slab becomes steeper but seems to be confined to the upper mantle and the

mantle transition zone (section (18)).

In Figure 2-7d, we show major circum Pacific Ocean subduction systems.

2.5 Discussion

2.5.1 Resolution of large scale structures

In Figure 2-8 we show results of the checkerboard resolution test. The input

pattern has a half wavelength of -5o and the constant amplitude of 1.5% in the



upper half of the mantle. In the lower half of the mantle, the half wavelength is

-100. This way the real length (500-600km for half wavelength) of input pattern is

similar for near-surface and lowermost mantle. The input structure was put in each

depth at a time. Noiseless synthetic travel times were created and inverted using

the same inversion scheme as used in constructing the model.

Although the resolution is still spatially limited in the upper mantle due to the

uneven distribution of stations and zones of active seismicity, we recovered more

input fields in the upper mantle than before owing to more samplings from

regional networks and low-frequency PP-P differential data (Figure 2-8a,b).

However, due to the scarcity of stations, large areas beneath the Southern

Hemisphere are poorly resolved at all depths. The input pattern is better recovered

several hundred kilometers above the CMB owing to the high quality core phase

data. The amplitude of the recovery is significantly less than that of the input

structure, even where the pattern is retrieved well, mainly because we implement a

relatively high damping to suppress the large noises in the datasets.

2.5.2 Resolution tests for slabs

In Figure 2-9, we show some target resolution tests to assess the resolution in

several selected slabs. The left column displays four randomly selected slabs in the

model (cross sections (5), (9), (15), (20) in Figure 2-7). In order to investigate how

much anomalies in the upper mantle could be smeared into the lower mantle, we

set velocity anomalies in the lower mantle at zero and keep the anomalies in the

upper mantle unchanged (the middle column in Figure 2-9). With the synthetic



tests, we find that the amplitude of the recovery will be decreased about 50%. In

order to mimic the real smearing effect, we set the input signal in the upper mantle

at 1.5 times the amplitude of that in the global model. We also input a big positive

anomaly in the lower mantle (cross section (20)) to asses our ability to resolve

slabs in the lower mantle.

We calculate the synthetic data multiplying the same sensitive matrix (that is,

forward propagation) as in the real data inversion with the input model. Then we

implement the same damping factors to invert the synthetic data. The recovery

model is shown in the right column in Figure 2-9. In general, we recover most of

input signals, especially the slabs where the ray coverage is dense. The amplitude

of recovery is typically decreased about 50% compared to the input signal. This

implies that the real amplitude of velocity anomalies in the Earth might be about

50% larger than what we observe in the model. The smearing effect in the lower

mantle is very small compared to the amplitude we observed in the model. The

input signal in the lower mantle (cross section (20)) can also be recovered very

well. This indicates that the high velocity anomaly in the lower mantle is not an

artifact due to smearing of strong anomalies in the upper mantle, which supports

the interpretation that some slabs have directly sunk into the lower mantle.

2.5.3 Upwelling structures in the upper mantle

We resolve the upwelling structures beneath hotspots such as Iceland, Hawaii,

and Yellowstone. However, due to relatively sparse sampling, the resolution



beneath hotspots is generally low. Here we show resolution tests beneath Iceland

(Figure 2-10) and Hawaii (Figure 2-11).

Pronounced low velocity anomalies beneath Iceland are only visible in the

upper mantle (Figure 2-10a). To test if with the data used we could resolve part of

a deeper structure, we generated synthetic data from an input column anomaly of

negative 2% amplitude, from the surface down to 1700 km depth (Figure 2-10b).

With current data coverage, we have no ability to resolve most of the low velocity

anomaly input in the lower mantle (Figure 2-10c). The main reason is that most

stations are located in Iceland. With this limited station aperture, the ray paths of

earthquakes in Europe and North America do not sample the upper part of the

lower mantle. Thus, we cannot exclude the existence of deep mantle plumes

beneath Iceland. Deploying more Ocean Bottom Seismometers in the Atlantic

Ocean would help address this issue.

In our model, a low velocity anomaly is also detected beneath Hawaii. The

main anomaly is confined in the upper mantle and the amplitude is relatively small

compared to that of Iceland (Figure 2-11A1, B1). In the upper part of the lower

mantle, a low velocity anomaly appears beneath the west of Hawaii (Figure 2-11

Bl; Figure 2-5e). The model also shows the low velocity anomaly in a few

hundred kilometers above the CMB beneath the north of Hawaii (Figure 2-11Al

and Figure 2-5j). We implement the same resolution test as for Iceland. With the

current data coverage, we cannot resolve the input field in the lower mantle

(Figure 2-10A3, B3). Thus, we cannot reject the low velocity anomaly in the lower



mantle. The more high quality data from the permanent stations and Ocean Base

Seismometers is required to further explore the low velocity anomalies in the

upper mantle under Hawaii.

2.5.4 Velocity anomalies above the CMB

In Figure 2-12, we compare the lower-most mantle parts of MIT-P07, MIT-

P02, PRI-P06 and recent shear wave model (updated from Grand (2002), referrer

to as Grand-S06). The general pattern of the different models is similar.

Pronounced high velocity anomalies are beneath Asia, western Pacific Ocean, and

North America. Low velocity anomalies prevail beneath central Pacific Ocean,

Africa and east Atlantic Ocean. However, controversies on small scale remain in

the different models. For example, the low velocity anomalies are located beneath

southern Africa in the PRI-P06 model, beneath east Atlantic Ocean in the MIT-

P07 model, and beneath both regions in the Grand-S06 model.

We assess our resolution beneath southern Africa with a synthetic test. The

column input field -2.0% velocity anomalies extends upward -600 km from the

CMB (the left column in Figure 2-13). The recovery patterns are shown in the

right column of Figure 2-13. The input field is well recovered, especially at the

bottom of the mantle. This indicates that we can resolve the low velocity

anomalies at the bottom of the mantle under southern Africa if any. Our model

suggests that there might be no strong low African supper plume from the CMB.

Instead, a large area low velocity anomalies prevail at the bottom of the mantle

under east Atlantic Ocean.



2.6 Conclusions

More high quality data and advances in methodology play equally important

role in improving the resolution in the global tomographic model. To improve

sampling, we augment our dataset with both more P-wave data from the regional

networks and temporary arrays and more seismic phases that are sensitive to

different parts of the mantle. To treat low frequency datasets properly, we apply a

practical calculation for the 3-D sensitivity kernels. The results prove that this

method is appropriate for the current datasets. More sophisticated theory and

calculation is needed for the refined datasets in the future (De Hoop and van der

Hilst, 2005; Tromp et al., 2005; Dahlen et al., 2000). Variable resolution has

allowed us to extract more from our current data. We believe that this model is

well balanced with respect to the different data sets and, in the aggregate, a

significant improvement over our previous models.

The new model is available at http://quake.mit.edu/hilstgroup/robspage/ftp.
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Figure 2-1. Multi-scale global tomography. a) Global P-wave velocity variations
at 100 km depth. b) Regional wavespeed heterogeneity at 100 km in eastern
Tibetan plateau and southwestern China with topography and major active faults,
where black, white, blue and grey lines represent thrust, norm, left strike slip, and
right strike slip faults respectively. c) Four cross-sections down 1500 km depth
through the Andean subduction zone in South America. The dash lines on images
represent 410 km and 660 km discontinuities. Gray circles in the blue cross-
section show earthquake distribution. Grayscale contours display the outline of the
subduction zone, as defined by slab-related seismicity (Gudmundsson and
Sambridge 1998).
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Figure 2-2. a) Ray paths. The red stars represent sources. 'P' is the direct
compression wave and does not travel through the core. 'pP' is up-going from the
source while 'PP' is down-going, both bounce once off the Earth's surface. 'Pg'
propagates in the curst. We define 'Pn' as having a focal depth larger than 80 km
or a turning point deeper than 100 km. 'PKPAB' and 'PKPBc' travel through the
outer core, while 'PKPDF' travels both through the outer and inner cores and 'Pdiff
grazes the core. b) Theoretical travel time versus distance curves (solid lines).
Also shown are scatter plots for P (light shading) and pP (dark shading) from EHB
and waveform PP (light shading). c) Pg and Pn from the EHB. d) Waveform

PKPAB - PKPDF/BC. e) PKPAB - PKPDF/BC from the EHB. f) Waveform PKPDF -
Pdiff.
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Figure 2-3. A) Global distribution of stations (red triangles) B), C) Station
coverage before and after adding data from Tibetan arrays (magenta squares) and
Chinese Seismography Network (blue squares).
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Figure 2-4. 3-D finite frequency kernels. a) Sensitivity to slowness variations
within the Earth for low frequency PKPDF - Pdiff differential times. Red and blue
indicate negative and positive sensitivities, calculated by subtracting Pdiff from
PKPDF. b) Surfaces representing constant travel time deviations, using single
scattering for P and PP respectively. One quadrant is cut out to see the interior of
the 3-D kernels. Redder colors correspond to smaller travel time deviations. We
assume zero sensitivity outside of the yellow surface which represents the first
Fresnel Zone.
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Figure 2-5. Global P wavespeed heterogeneity at several selected depths with the
Robinson projection centered on the Pacific Ocean (left column) and on Africa
(right column).
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Figure 2-6. Model comparison at 150 km depth in the Tibetan
America. A) MIT-P02, MIT 2002 model, Kdrason H. (2002);
study; C) PRI-P06, updated from Montelli et al. (2004).
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Figure 2-7a. Subduction through Central America and South America. Same as in
Figure 2-1, the gray circles on cross section show the earthquakes and the
grayscale contours show the outline of the subduction zone.
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Figure 2-7b. Northwestern Pacific and Philippine Sea subduction, where Kam -
Kamchatka; IB - Izu Bonin; Ma - Mariana.
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Figure 2-7c. Andaman-Sumatra subduction, where Cel - Celebes Sea.
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Figure 2-7d. Circum Pacific Ocean subduction.
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Figure 2-8. Recovery fields of global resolution tests, using harmonic input
patterns with constant amplitude ±1.5% throughout the mantle. (a-e) Half-
wavelength of -5' (spatial wavelength of -550 km at the surface). (f-j) Half-
wavelength of - 100 (-600 km at the CMB).
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Figure 2-9. Synthetic tests for several slabs. Left: four selected cross-sections
from the global model. Middle: input P-wave field, with anomalies above 660km
increased by 50% and set to zero below. For cross-section 20, we added a large
fast anomaly in the lower mantle. Right: recovered field inverted by the (non-
noisy) synthetic data.
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Figure 2-10. Synthetic test for the Iceland plume. Left: MITP07 model beneath
Iceland. Middle: an input column structure with negative 2.0% anomalies, from
surface down to 1700 km depth. Right: the recovered field.
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Figure 2-11. Synthetic test for the Hawaii plume. The test design is the same as
for the Iceland plume (see Figure 2-10).
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Figure 2-12. Comparison of different velocity models at the bottom of the mantle.
(a) MIT-P07; (b) MIT-P02; (c) PRI-P06 updated from Montelli et al. (2004); (d)
the shear wave model updated from Grand (2002).
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Figure 2-13. Synthetic test for the African super plume in the lower mantle. -2.0%
velocity anomaly column extends from 2250 km to 2850 km depth (left). The
recovery pattern is shown at the right column.





Chapter 3

Constraining P-wave velocity variations in the
upper mantle beneath Southeast Asia2

Abstract

We have produced a P-wave model of the upper mantle beneath Southeast

(SE) Asia from reprocessed short period International Seismological Centre (ISC)

P and pP data, short period P data of the Annual Bulletin of Chinese Earthquakes

(ABCE), and long period PP-P data. We used 3D sensitivity kernels to combine

the datasets, and mantle structure was parameterized with an irregular grid. In the

best-sampled region our data resolve structure on scale lengths less than 150 km.

The smearing of crustal anomalies to larger depths is reduced by a crustal

correction using an a priori 3D model. Our tomographic inversions reveal high-

velocity roots beneath the Precambrian Ordos Plateau, the Sichuan Basin, and

other continental blocks in SE Asia. Beneath the Himalayan Block we detect high

seismic velocities, which we associate with subduction of Indian lithospheric

mantle. This structure is visible above the 410 km discontinuity and may not

connect to the remnant of the Neo-Tethys oceanic slab in the lower mantle. Our

images suggest that only the southwestern part of the Tibetan plateau is underlain

by Indian lithosphere and, thus, that the upper mantle beneath northeastern Tibet is

primarily of Asian origin. Our imaging also reveals a large-scale high-velocity

structure in the transition zone beneath the Yangtze Craton, which could have

been produced in multiple subduction episodes. The low P-wave velocities

beneath the Hainan Island are most prominent in the upper mantle and transition

2 Published as: Li C., van der Hilst R.D., Toksoz M.N., Constraining P-wave
velocity variations in the upper mantle beneath Southeast Asia, Phys. ofEarth and
Planet. Inter., 154 (2006) 180-195



zone; they may represent counter flow from the surrounding subduction zones, and

may not be unrelated to processes beneath eastern Tibet.

3.1 Introduction

Southeast Asia is a tectonically diverse and active region. Continental collision

in the west and eastward retreating slabs of subducting lithosphere in the east set

up a large-scale clockwise rotation (black arrows in Figure 3-1). The major large-

scale features produced by the collision and post-collisional convergence of the

Indian and Eurasian plates include the Tibetan Plateau, where the continental crust

has approximately doubled in thickness (Molnar and Tapponnier, 1975;

Tapponnier et al., 2001; Rapine et al., 2003). Offshore, oceanic lithosphere is

predominantly of early Cenozoic age, and there is ongoing subduction of the

Pacific, Philippine Sea, and Indo Australian plates beneath Eurasia (van der Hilst

et al., 1991; Fukao et al., 1992; Widiyantoro and van der Hilst, 1996) with

eastward slab roll back since at least Oligocene times (van der Hilst and Seno,

1993; Northrup et al., 1995). Between these active plate boundary zones the

continental lithosphere was subjected to extension during early Cenozoic time

(Tapponnier and Molnar, 1977; Zhang et al., 1984; Li, 1998). The extensional

features are usually regarded in the context of the Indian-Eurasian collision

(Molnar and Tapponnier, 1975). However, both the collision and the subduction

processes, along with their impact on mantle (return) flow beneath the region,

must be taken into account in order to obtain a complete understanding of the



dynamics and the tectonic evolution of SE Asia. It can be expected that this

complex tectonic environment has produced significant structural heterogeneity in

the upper mantle. Understanding this relationship is the main long-term objective

of our study; here we present preliminary results of seismic travel time

tomography.

Southeast Asia is characterized by relatively high levels of seismicity, but the

distribution of seismological stations from which data are openly available is

rather sparse (red triangles in Figure 3-2). This puts restrictions on the type of

seismic imaging that can be performed and the scale of the structure that can be

resolved. Surface wave tomography studies show pronounced high-velocity

continental roots beneath several Precambrian tectonic units (e.g. Ordos Plateau,

Songliao Basin, Sichuan Basin) of SE Asia (Lebedev and Nolet, 2003; Debayle, et

al., 2005; Lebedev, et al., 2005) and a seismically fast Indian lithosphere under

southeastern Tibet (Friederich, 2003). These features can also be inferred from

global shear-wave velocity models (e.g., Trampert and Woodhouse, 1995;

Ekstr5m, et al., 1997; Shapiro and Ritzwoller, 2002). However, the relatively low

frequency of surface wave data put limits the structural wavelengths that can be

resolved in the upper mantle.

In regions with good data coverage short-period travel times can provide

higher resolution than the surface wave inversions. A number of P-wave

tomographic studies have concentrated on complex morphology of the subducting

oceanic lithospheric slabs beneath the western Pacific, the Philippine Sea, and



Indonesia (e.g. Van der Hilst et al., 1991; Fukao et al., 1992; Widiyantoro and van

der Hilst, 1996). Using data from temporary seismic arrays, receiver function

studies have focused on the crust and shallow mantle beneath central Tibet (e.g.,

Kind et al., 1996; Kosarev et al., 1999; Kind et al., 2002). Regional and local P-

wave tomography has focused on the crust and uppermost mantle (e.g. Sun et al.,

2004; Hearn et al., 2004; Liang et al., 2004; Huang et al, 2002; Wang et al, 2003).

Global tomography has long been inadequate for detailed studies of the upper

mantle beneath China and the broad realm of continental collision. In part this is

due to the paucity of data from the numerous stations in China. But this situation is

changing. There are promising signs that data from Chinese networks may become

more openly available, and also data from temporary arrays will continue to fill in

gaps in data coverage. For example, data from arrays deployed by MIT in

collaboration with the Chengdu Institute of Geology and Mineral Resources

(CIGMR), and by Lehigh University - CIGMR (Sol, et al., 2004) are now being

processed and will soon be incorporated into the inversions.

With a better P wave velocity model of the upper mantle beneath Southeast

Asia we hope to answer specific questions, for instance: How far does the Indian

lithospheric mantle underthrust beneath the Tibetan plateau? What is the

relationship between recent tectonic processes and structures deeper in the mantle?

Which structures in the transition zone (TZ) are related to the underthrusting of

Indian lithosphere and which are due to the subduction of the Pacific, Philippine

Sea, and Indo-Australian plates? To improve the tomographic images of mantle



structure in this region we (i) combine P data from the Annual Bulletin of Chinese

Earthquakes (ABCE) (a national earthquake catalog compiled by the Institute of

Geophysics, China Seismological Bureau), P and pP data from Engdahl et al,

(1998), and PP-P differential travel time data from Bolton and Masters (2001), (ii)

use an irregular grid parameterization to enhance local parameter estimation, and

we (iii) correct for the large regional variations in crustal structure using an a

priori 3D crustal model. As regards the latter, we present a simple approach that

reduces artifacts caused by errors in the a priori crust models.

The results presented here are a subset of the new P-wave global model;

compared to our previous results - see, for instance, Kairason & van der Hilst

(2001) -the use of an irregular grid, the addition of PP-P and ABCE (P) data, and

the crustal corrections combine to provide more detail in the upper mantle region

of our current interest. The global model will be presented elsewhere (Li, van der

Hilst, and Engdahl, in preparation) but is freely available upon request.

3.2 Data

The travel time data used in our study comes from three sources. The first is

the International Seismological Centre (ISC) data that have been reprocessed by

Engdahl, van der Hilst, and Buland (1998) (hereinafter referred to as EHB).

Engdahl et al. used arrival times reported to the ISC and calculated travel-time

residuals using a non-linear process earthquake relocation and phase re-



identification scheme. In our global inversion we used ca. 9,400,000 P and

680,000 pP EHB residuals of well-constrained regional and teleseismic

earthquakes that occurred between 01/01/1964 and 15/09/2004.

As a consequence of many Chinese stations not reporting to ISC the station

coverage of EHB is not very good in SE Asia, especially in China. In order to

improve data coverage, we augmented the EHB data with Annual Bulletin of

Chinese Earthquakes (ABCE) data. This database contains nearly 670,000 P-wave

travel time residuals from 220 stations in China and surrounding areas. Combining

datasets has to be done with care. Relative to the ak135 reference velocity model

(Kennett et al. 1995), the ABCE residuals have an offset of more than 2 s. There

are two contributions to this baseline problem. One is the effect of crustal structure

in the region. If the crust is thicker than that of the reference model the arrival time

will be greater than the reference travel time, resulting in positive travel time

residuals. For example, the 0.5 s offset at Lhasa station is most likely due, in part,

to the thick crust of Tibet. We account for this in the inversion. The second and

larger effect concerns the source locations used in the EHB and ABCE catalogs;

they can differ substantially, in particular for events in the Wadati-Benioff zones

beneath the northwest Pacific island arcs. Calculating the ABCE residuals with

respect to the EHB hypocenters reduces the baseline to less than 0.2 second. Prior

to inversion we eliminated data for the 113 ABCE stations that are already

included in EHB. The study area comprises 1223 EHB stations (44 of which are



mainland China, red triangles in Figure 3-2) and 107 Chinese ABCE stations that

have not been reported to ISC (blue square in Figure 3-2).

The subset of the global model presented here also includes -22,000 PP-P low

frequency differential times measured by waveform cross-correlation (Bolton and

Masters, 2001). We account for sensitivity to structure away from the optical ray

path with 3D Fr6chet derivatives (sensitivity kernels) estimated from single

forward scattering; for details see Kirason (2002) and Van der Hilst et al., (in

preparation). For the spatial resolution sought here these low frequency data may

seem superfluous, but the PP-P differential times constrain large wavelength

variations in the region under investigation.

3.3 Methodology

3.3.1 Adaptive Grid

Uneven data coverage can produce significant lateral variation in resolution of

tomographic models. We mitigate effects of uneven data coverage by means of an

adaptive parameterization based on the sampling density of the high frequency

data (Abers and Roecker, 1991; Bijwaard and Spakman, 1998; Kairason and van

der Hilst, :2000). Each block in the grid used in the inversion consists of one or

more base blocks of 45 km x 0.70 x 0.70. The total number of free parameters (that

is, the sampled irregular blocks and the event relocation parameters) is slightly

less than 0.5 million. As an example, Figure 3-2 (green lines) displays the irregular



grid at 200 km depth. The relatively fine grid near the subduction zones of the

Indian and Philippine Sea plates, the Sichuan Basin, and Tian Shan suggests that

in these regions we can image finer structures. In contrast, the grids beneath

Mongolia, the Tarim Basin, and the center of Philippine Sea is relatively coarse,

which, of course, limits the spatial resolution beneath these regions.

For the calculation of the sensitivity matrix associated with short period data

we use a high-frequency approximation and trace optical rays (in the radially

stratified reference model). We use weighted composite rays (Kdirason and Van

der Hilst, 2001) to better balance the sampling and further reduce the size of the

sensitivity matrix. Because of noise in the data, we apply norm and gradient

damping: norm damping favors a result that is close to the reference model and

thus tends to minimize the amplitude of the model, while gradient damping

reduces the differences between adjacent blocks and thus produces smooth

variations, both laterally and radially. We perform experiments with synthetic data

and known input models to find appropriate values for the damping parameters,

but the choice of the parameters remains subjective. In our inversions, the norm

damping is small. We use the iterative method LSQR (Paige and Saunders, 1982)

to minimize

c =II Am - d 112 +4 11 Lm 112  i2 m11 , (3.1)

where A is the sensitivity matrix, d is the vector of travel time residuals, and

m is the vector of model parameters (which include slowness perturbations and



hypocenter mislocations). L is a smoothing operator, and A, and 12 are the

weights for gradient and norm damping, respectively. The results presented here

were obtained after 200 iterations, but for LSQR most of the convergence is

achieved within a small number of iterations: - 98% of the total variance reduction

is obtained within the first 25 iterations. In order to visualize the values

determined for the irregular blocks we projected and interpolated them on a

regular (0.5' x0.5ox50km) grid.

3.3.2 Crust correction

The small incidence angles of the P-waves may combine with strong crustal

heterogeneity to cause crustal anomalies to be 'smeared' (mapped) to larger depths

in the model. This could be a significant problem if the actual crust is very

different from that in the ID reference model, as is the case here. Application of

crustal correction in global surface wave tomography is common practice, see, e.g.

Boschi & ]Ekstrom (2002), but such corrections are not yet routinely considered in

regional and global travel time tomography.

In SE Asia, the lateral variation in crustal thickness is considerable. For

instance, crust of the Tibetan plateau is at least 70 km thick compared to just

several kilometers for the oceanic crust in the Philippine Sea (Figure 3-3a, from

(590E, 35°N) to (134 0 E, 14oN)). As an estimate of the 3D crustal structure we

embed the regional model by Sun et al. (2004) into the global CRUST 2.0 (Bassin

et al. 2000), calculate the difference in wavespeed with respect to ak135, and

project this a priori crustal model onto our grid (Figure 3-3b). In order to evaluate



if and how this crustal heterogeneity would "smear" into the model if unaccounted

for, we use a resolution experiment with synthetic data. The response to such a

crustal model, including all its artifacts, is shown in Figure 3-3c. Obviously, the

crust cannot be resolved by the data used, and crustal structure may be smeared to

depths of at least 200 km. Moreover, the retrieved anomalies are much smaller

than those in the input models. We try to remedy this with a crustal correction.

Crustal corrections can be done in several ways. One could calculate travel

times through the 3D crustal model, subtract these from the observed times, ray-

trace to the bottom of the 3D crust, and then solve for the structure beneath the

crust while leaving the crustal model unchanged (e.g., Waldhauser et al., 2002;

Weidle & Widiyantoro, 2005). While straightforward and intuitive, without an

explicit method for confining crustal anomalies to the crust, the relatively large

anomalies of the 3D crust can still smear into the upper mantle. Moreover,

artifacts due to errors in the crustal models are not mitigated. A practical drawback

is that later data addition and (crustal) model updates require repeated ray tracing,

which comes at considerable computational cost. Furthermore, calculating explicit

time corrections is not straightforward for phases with complicated sampling

properties, such as PP.

In view of these disadvantages, we correct for crustal structure by means of

regularization; this is accomplished through a simple modification of (3.1):

e =| AM - d 112 ++i LM 112 +•2 11 M 112 +3 11 C - M 112 , (3.2)



where C is the a priori 3D crustal model and Mc is the crustal part of the model

space M. We determine /3 through tests with synthetic data. Through such

regularization in the model space we can balance the crust and upper mantle

contribution to misfit " and recover the a priori crustal model (Figure 3-3d).

Later addition of data sets does not require further calculations since all is

accounted for in the model space.

These methods of crust correction produce the same result, but because of the

ease of implementation we use the regularization approach for the inversions

discussed below.

3.4 Results

3.4.1 Model improvements

The addition of the ABCE data and the correction for the crust improve the 3D

mantle model (Figure 3-4). For 60 and 200 km depth, Figure 3-4A (1 and 2)

depicts the model derived from the EHB and PP data. The addition of the ABCE

data, and concomitant adjustment of the grids, increases our ability to resolve the

small-scale structure (Figure 3-4B1, B2). In the mainland of China, where the

extra ABCE stations are located, more detail is recovered than before. For

example, we now begin to observe a high velocity structure beneath the eastern

part of the Sichuan Basin and the Songliao Basin and a low velocity structure

beneath the Songpan Ganzi Foldbelt (Figure 3-4B 1, B2). As expected, outside the



mainland of China, for instance beneath the Indian continent and the Philippine

Sea, the improvements are small. The crustal thickness of central Tibet (~70-90

km) differs significantly from the 35 km in ak135, but the application of our crust

correction reduces the smearing of unresolved shallow structures (compare, e.g.,

Figure 3-4 C2 and B2).

3.4.2 Resolution tests

Resolution test with synthetic data confirm that the addition of the ABCE data

increases our ability to resolve 3D structure. In Figures 2-5 and 2-6 we show the

retrieved structure from a checkerboard resolution test at different depths for box

sizes of 5ox5' and 3Nx3 0, respectively. The input structure of +1% velocity

variation (Figures 2-5.0 and 2-6.0) was computed one layer at a time, and

noiseless synthetic travel times were created and inverted using the same inversion

scheme and sampling (that is, sensitivity matrix) as used in the inversion of the

earthquake data.. In the shallow mantle, spatial resolution remains a concern. At

200 and 300 km depth the pattern is smeared beneath Philippine Sea, South China

Sea, and most of Mongolia, but in areas of our particular interest, such as

mainland China, and the Himalayas the recovery is somewhat better (Figure 3-6.3

and 6.4). The 50x5' pattern can be recovered beneath China (Figure 3-5.1 and 2-

5.2), but smaller anomalies are not likely to be resolved beneath the Tarim Basin

and the northern part of Tibet (Figure 3-6.1 and 2-6.2). At depths below 400 km,

both the 50x5 0 and 30x3o input patterns are recovered beneath most parts of our

study region (Figures 2-5.5-2-5.9; 2-6.5-2-6.9).



The near vertical incidence of rays reduces the radial resolution in the shallow

mantle. The checkerboard tests of two input patterns (400x400 km and 280x280

km) in Figure 3-7 help us evaluate the vertical resolution of structure in the four

slices that will be discussed later. These slices are about 4000 km long and extend

from Earth's surface to 1700 km depth. In general, the recovery of the input

models is adequate below 400 km depth. At shallower depth, small scale structure

cannot be recovered well in many areas beneath the study region, but larger scale

variations can be recovered reasonably well.

From our lateral checkerboard test we conclude that below 200 km depth most

of the 3ox30 input signal could be recovered, so the average resolution length at

these depths is the half of input signal dimension (Lebdev and Nolet, 2003), that

is, about 150 km. At shallow depths, the smaller scale pattern is only recovered

beneath a few densely sampled regions, such as the Yangtze Craton, the Sino-

Korean Craton, and the Himalayas (Figure 3-6.1), where we estimate the

resolution length to be of the order of 100 km. At the Tarim Basin and the north

part of Tibet, the estimated lateral resolution is ca. 200 km (Figure 3-6.2). The

vertical resolution length is about 150 km below 400 km depth (Figure 3-7).

3.4.3 Structure of the upper mantle beneath SE Asia

We show the P-wave velocity variations in map view from the surface to about

700 km depth (Figure 3-8) and in four vertical cross sections (Figure 3-9). For

presentation purpose we label the major structures as 1, 2, 3 and so on. The major

features of the model are discussed below.



3.4.3.1: Upper mantle structure beneath India and central Tibet:

A pronounced high-velocity anomaly (labeled as 1) is visible to a depth of

-300 km beneath the region of the Precambrian Indian continent (Figures 2-8a-d).

In cross section this structure appears to dip northeastward with the flexure

starting near the foreland basin about 200 km to the south of the Himalaya Frontal

Thrust (Figure 3-1, 2-9a). Even though it is not yet well resolved, we interpret this

dipping structure as the subducting slab of Indian continental lithosphere, and

perhaps part of the Tethyan oceanic lithosphere in front of it. From Figures 2-8b-e

and 2-9a we infer that only the southwestern part of the Plateau, the Himalayan

Block and the western Lhasa Block, is directly underlain by the Indian lithosphere,

the northern limit of Indian lithosphere beneath Tibet is marked by the thick blue

line in Figure 3-1. Our result is consistent with the image presented by Shapiro

and Ritzwoller (2002), but since they used fundamental mode surface waves they

could only map the structure to ca. 200 km depth. In our images the dipping

structure is detected to at least 400 km depth, and possibly continues to - 660 km

depth. At depths greater than about 660 km another high-velocity anomaly is

observable beneath north-central India (structure 2 in Figure 3-8h). In Figure 3-9a,

this structure extends just near the 660 km discontinuity to deep in the lower

mantle with a south-dipping angle, where it forms part of the large scale structure

that has been interpreted as a remnant slab of late Mesozoic Neo-Tethys oceanic

lithosphere prior to the India-Eurasia collision (van der Hilst et al., 1997; Van der

voo et al., 1999; Replumaz et al., 2004). The spatial resolution of the current data



coverage does not yet allow us to establish the structural relationship between the

northward dipping structure 1 and the southward dipping structure 2.

3.4.3.2: Upper mantle structure beneath eastern Tibet:

Our results suggest that the shallow mantle beneath the southeastern part of

Songpan Ganzi Foldbelt and eastern parts of the Tibetan Plateau is marked by very

slow P wavespeeds (structure 3 in Figure 3-8b). The wavespeeds would be

artificially low if the actual crust is even slower than that in the a priori model

used, but the resolution of shallow mantle structure is adequate (Figure 3-6.2-2-

6.4) so that leakage to large depths is unlikely. The slow velocity structure

continues to 300-400 km depth (Figures 3-8b-d, 3-9d). These results also suggest

that this slow velocity structure may extend beyond the eastern margin of Tibet

and to depths well in excess of the thick crust. In fact, our images suggest that

these slow structures may connect to the slow wavespeeds in the upper mantle

further SE beneath South China Sea coast and, in particular, Hainan Island

(Figures 3-8d-e).

3.4.3.3: Tian Shan and Tarim basin:

Slow velocities beneath the Tian Shan and western part of the Tarim Basin

seem to continue to at least 300 km depth (Structure 4 in Figures 3-8a-d and 3-

9c). In this depth range, no prominent high wavespeed feature is detected beneath

the Tarim Basin, but the resolution beneath Tarim Basin is relatively poor. The

shallow mantle beneath the Junggar Basin is marked by high P wavespeeds



propagation (Structure 5 in Figures 3-8b-d). Figure 3-9a suggests that this

structure may be dipping to the south.

3.4.3.4: Mantle structure beneath the Precambrian cratons:

Beneath the Sino-Korean Craton the most prominent feature is the high-

velocity root extending down to 200 km beneath the Precambrian nucleus of the

Ordos Basin (Structure 6 in Figures 3-8a-d and 3-9b,e). This anomaly seems to be

confined within the Ordos Basin boundary. Another high-velocity root, extending

down to 200 km, underlies the eastern half of the Sichuan Basin (structure 7 in

Figures 3-8a-c and 3-9c). Below 200 km, this high-velocity root fades and

changes to slow velocity structures. The resolution in the Sichuan and Ordos Basin

is high (Figure 3-6.2, 3-6.3), so the high velocity roots are not artifacts. Eastern

migration of high-velocity root beneath the Sichuan Basin may be affect of the

collision between Indian and Eurasia plates. A large scale high velocity anomaly

appears in transition zone (410-660 km) beneath the Yangtze Craton (structure 8

in Figures 3-8f-g and 3-9c, d) and the resolution in the transition zone is good

(Figure 3-6.5-6.8).

3.4.3.5: South East China, Hainan Island:

Beneath Southern and Southeastern China, and beneath Hainan Island, in

particular, the P velocity is very low. At shallow depths the slow anomaly may

connect westward, across the Youjiang Block, to the low wavespeeds beneath the

Red River fault and the southeastern part of the Songpan Ganzi Foldbelt (Figures



3-8a-c). At larger depth, a pronounced slow velocity feature is detected beneath

the Hainan Island and the southern coast of China (structure 9 in Figure 3-8d-g,

9d, e). Near 660 km depth, the wavespeed is not significantly different than the

reference wavespeed according to ak135 (Figures 3-8h, 3-9d, e), in the top of the

lower mantle a slow velocity feature appears again. This deeper structure is much

weaker than the upper mantle and transition zone anomalies, and it is not distinctly

slower than nearby slow anomalies. Other studies have argued for a lower mantle

origin of the Hainan structure (e.g., Montelli et al., 2004), but the observations

presented here suggest that the most prominent part is confined to the upper

mantle and transition zone.

3.4.4 Comparison to the other global model in the region

The model by Montelli et al. (2004) is more similar to our results than any

other P-models that are publicly available. For this comparison we use their latest

model (Montelli et al., in preparation), which has a different crust correction and,

therefore, has a better upper mantle structure than the one used for their 2004

publication. Figures 3-10a, b depicts the anomalies at 140 and 400 km depth, and

in Figures 3-10c, d we show it for cross sections BB' and DD'. The long

wavelengths patterns agree quite well, although there are substantial differences in

amplitude (with our amplitudes almost certainly too low). At shallow depth

(Figures 3-8b and 3-10a) we recognize similar fast anomalies beneath the

boundary of Indian and Eurasian plates, north-eastern and central China, and to the

north of Japan, and slow anomalies beneath the Tibetan Plateau, Hainan Island,



and the coast of the South China Sea and to the south of Japan. At larger depth

(Figure 3-8e and 2-10b) both models shows fast anomalies around western Pacific

plate boundaries, but differences occur that could be due to the different types of

regularization employed in these studies. These difference merit further

investigation, but since our main interest is in the sub continental mantle this is

beyond the scope of this paper. On smaller length scales our model reveals more

detail than the model by Montelli et al., which we attribute in part to our use of

ABCE data and a higher resolution model for regional variations in crust structure.

3.5 Discussion

3.5.1 The seismic evidence for subduction of Indian lithosphere

The regional tomographic image of the upper mantle beneath central Tibet

from the INDEPTH array has revealed a subvertical high velocity zone from 100

to 400 km depth (Tilmann and Ni, 2003), which has been interpreted as the

downwelling Indian lithosphere. This regional image covers the area from 29°N to

33.5 0N, and therefore does not completely image the whole underthrusting Indian

lithosphere beneath the Himalayan Frontal Thrust and the Tibetan plateau. In our

model, the high wavespeeds associated with what is presumably subducted

lithosphere is clearly visible beneath the boundary of Indian and Eurasian plates at

140 and 200 km depths (structure 1 in Figures 3-8b and 3-8c). At larger depths, it

trends further northward and mainly underlies beneath the western part of



Himalayan Block and Lasha block (Figures 3-8d and 3-8e). This is also visible in

AA' (Figure 3-9A). Although the relatively poor resolution beneath the northern

Tibet leaves some room for alternate interpretations, our images suggest that the

Indian lithosphere subducts from the foreland basin and underlies only the

southwestern margin of the Tibet Plateau (thick blue line in Figure 3-1), implying

that much of the Tibet Plateau is not underlain by Indian but by Asian lithosphere

(Tapponnier, 2001). This conclusion may be refined by analysis of the data from

the MIT-CIGMR and Lehigh-CIGMR arrays, but if confirmed it has important

implications for evolutionary models of the Tibetan plateau. The southward

dipping high-velocity structure 2 in the lower mantle (Figures 3-9a and 3-9b),

interpreted as Neo-Tethys oceanic lithosphere (van der Hilst et al., 1997; van der

Voo et al., 1999; Replumaz et al., 2004), seems to be separated from the subducted

Indian lithosphere as it sinks below 660 km discontinuity, but this relationship will

be subjected to further study.

3.5.2 Fast velocity structure within the TZ beneath Yangtze Craton

Our images show that there is a significant high-velocity anomaly beneath the

Yangtze Craton in the transition zone (structure 8 in Figures 3-8f-h, Figures 3-

9c,d), which spans almost 2000 km from northeast to southwest (Figure 3-8f). The

high resolution at this depth ensures that this fast velocity anomaly is not an

artifact. This large-scale high velocity structure may have a complex origin. The

eastern part of these anomalies has been well documented in tomographic studies

(e.g. van der Hilst et al., 1991; Fukao et al., 1992) and has been interpreted as



"slab deflection" at the 660 km discontinuity as a result of slab roll back ocean

ward (van der Hilst and Seno, 1993). The strong anomalies in the transition zone

east of -120'E can probably be explained as the subducted ocean lithosphere of

the western Pacific and Philippine Sea plates (Figures 3-8f, g). It has been

suggested that also the western part of the anomaly, between --1000 E and -120'E,

has been produced by subduction. Lebedev and Nolet (2003) interpreted the high

S-wave velocity beneath the Sino-Korean Craton as the subducted continental

lithosphere of the Yangtze Craton beneath the Sino-Korean Craton. But perhaps

the anomaly between -110 oE and -120'E is related in part to the Philippine Sea

subduction and the anomaly between -100 'E and 110 0E might be associated

with the eastward subduction of the Indian plate. We thus suggest that the

explanation of this transition zone structure may involve other subduction systems

than subduction of continental lithosphere alone.

3.5.3 Slow velocity structure beneath Eastern Tibet and South China Sea

In the image of the upper mantle beneath eastern Tibet, the most prominent

feature is the large-scale low velocity structure (Structure 3 in Figures 3-8b, c and

Figures 3-9b-d) in the depth above 200 km. This structure is probably not an

artifact of the thick crust since this contribution is corrected for, although it is

possible that the crustal velocities are even slower than in the crustal model used

for the correction. Preliminary results of receiver function and surface wave

analysis of the MIT-CIGMR array data suggest the presence of slow velocity

channels in the crust below the Sichuan and Yunnan provinces (Van der Hilst et



al., 2005). The location of slow wave propagation also coincided with areas of

local volcanism and high heat flow; for example, the P wavespeed beneath the

Tengchong volcanic area (25oN, 980E), one of the few recently active volcanic

area in mainland China, is anomalously low. Interestingly, this is also the area

where the lower crust is thought to be sufficiently hot to undergo large-scale

horizontal flow (Clark and Royden, 2000).

Our preliminary results suggest that the low wavespeeds are not confined to the

crust but extend much deeper into the upper mantle. The slow velocity

asthenospheric mantle beneath eastern Tibet is perhaps involved in large-scale

extrusion driven by the Indian-Eurasian collision. Alternatively, it may be related

to processes further to the southeast. The large low velocity anomaly beneath

Hainan Island and the south coast of China extends down to 660 km (structure 9 in

Figures 3-8c-g, 3-9d,e) may represent a regional counter flow in response to

subduction beneath nearby convergent margins. The images are suggestive of a

connection between this structure and those in the shallow mantle beneath eastern

Tibet (Figure 3-8c). This intriguing spatial relationship is a subject of further study

since it may suggest a relationship between the tectonics of eastern Tibet and

mantle processes beneath the Hainan Island and South China Sea. If corroborated

by further study, this connection would have major implications for our

understanding of the geological history of the Tibetan plateau.



3.6 Conclusion

We have combined different seismic data sets and implemented a crustal

correction in order to improve the tomographic imaging of the upper mantle

beneath SE Asia. The images reveal significant heterogeneity in the upper mantle.

First, high velocity crustal roots (- 200 km in thickness) are observed beneath

most of the Precambrian Basins (Ordos Basin, Sichuan Basin, and Songliao Basin).

Second, our results suggest that only the southwest part of the Tibetan plateau is

underlain by lithospheric mantle involved in the subduction of the Indian plate.

This implies that most of upper mantle beneath the Tibetan plateau is primarily of

Asian origin, in agreement with, for instance, Tapponnier (2001). However, better

resolution is required to establish the spatial and temporal relationship between the

shallow and deep slabs. Subducted Indian lithosphere is detected to -400 km depth

and may be detached from the sinking ocean slab in the lower mantle. P-wave

velocity is very slow beneath most of eastern Tibet where the lower crust is

thought to be sufficiently hot to undergo large-scale flow (Clark and Royden,

2000). This slow anomaly may extend across the western boundary of the Yangtze

Craton and connect with the low velocity structures deeper in the mantle beneath

the Youjiang Block and Hainan Island. If confirmed by further study, our results

pertaining to the subduction of Indian lithosphere and the possible connection

between shallow mantle structures beneath eastern Tibet and the south coast of

China may change views about the tectonic evolution of SE Asia.
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Figure 3-1. The main tectonic elements in the SE Asia. The dashed red lines are
plate boundaries, according to NUVEL-1 (DeMets et al., 1990). The thick purple
lines denote main tectonic structures, where SoB-Songliao Basin, OB-Ordos Basin,
SB-Sichuan Basin, KB-Khorat Basin, STB-Shan Thai Block, YB-Youjiang Block,
JGB-Junggar Basin, SGF-Songpan Ganzi Foldbelt, QB-Qiangtang Block, LB-
Lhasa Block, HB-Himalayan Block, KF-Kunlun Fault (modified from Li, 1998
and Tapponnier et al., 2001). Black arrows show the continental collision in the
west and slab roll back in the east set up the clockwise rotation for the SE Asia.
The blue thick line shows the horizontal limit of the Indian lithospheric mantle
beneath the Tibetan plateau. The positions of five cross sections in Figure 3-9 are
shown by black lines with grey dots.
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Figure 3-2. The distribution of stations and earthquakes (black dots) in Southeast
Asia and the irregular grids at 200km depth. The irregular grid, depicted here with
thin green lines for 200 km depth, allows us to resolve the fine structure in regions
of dense sampling. Blue squares depict 107 stations of ABCE from which data
were not previously reported to ISC. Red triangles depict the 1223 EHB stations in
the area of interest, of which 44 stations are located in the mainland China.
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Figure 3-3. Regularization for 3D crust. a) Three layers of crust through the
Tibetan plateau and Philippine Sea (From (590E 350N) to (134oE 140N)). P
wavespeeds of input model (in km/s) for each layer is shown. b) Vertical
projection of 3D crust on irregular grid. c) The recovery model using same
inversion scheme and sampling as in the construction of the final model. d) The
recovery model using the regularization in the model space for crust. After
regularization, the big velocity variation of the crust can be confined in crustal
blocks. Moho depth (red line) and irregular grid (blue line) are shown in b, c, and
d.
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Figure 3-4. Effects of data addition and crust correction; for illustration purposes
we only display the models at 60 and 200 km depth. A) Model based on EHB and
PP data only. B) EHB + PP + ABCE data. C) EHB + PP + ABCE + 3D crust
correction. Regularization in the model space not only recovers the big anomaly in
the crust, it can also balance the crust and upper mantle to best fit the travel time
residuals. Figure 3-4C1 depicts the 50, 60, and 70 km depth contours of the 3D
crust model used; within these contours the wavespeed is much lower than in the
reference values (ak135), see Figure 3-3b.
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Chapter 4

Imaging Indian subduction beneath the Tibetan
Plateau and Burma3

Abstract

The subduction of Indian lithospheric mantle under Eurasia plays an important

role in the tectonic evolution of the Tibetan plateau and surrounding regions. Due

to limited seismic data coverage, our understanding of upper mantle structure, and

hence, the evolution of Indian subduction remains enigmatic. To improve

tomographic imaging, we combine P-wave arrival time data from several

temporary seismic arrays on the Tibetan plateau and from ~1200 stations of

Chinese Seismograph Network with reprocessed data from the International

Seismological Centre. The combined datasets ensure unprecedented resolution of

structures associated with subducted plates beneath Tibet and surrounding ranges.

The dip angle of Indian subducted lithosphere increases from west to east. Beneath

western Tibet, the subducted plate underlies the entire plateau, but beneath the

center part of the collision zone the subducted Indian plate does not extend beyond

the Bangong-Nujiang Suture (-33°N). In contrast to results of surface wave

tomography, our results reveal anomalously slow P-wave propagation beneath

much of central and eastern Tibet. These observations suggest that much of the

Tibetan Plateau is underlain by lithosphere of Asian origin. The seismic images

reveal that to 250-300 km depth the Precambrian roots of the Ordos Block and

Sichuan Basin are marked by fast P-wave propagation. The Tengchong volcanic

area in southwest China is underlain by pronounced low velocity to 200 km depth,

suggesting that it is related to the eastward subduction from the Burmese arc.

3 Li, C., van der Hilst, R., Meltzer, A., Sun, R., and Engdahl E.R.. Imaging Indian
subduction beneath the Tibetan Plateau and Burma, in preparation for submission
to Earth Planet. Sci. Lett.



Another pronounced slow structure is situated beneath the Red River fault region

to at least 300 km depth and extending all the way to the South China Sea. It is

more likely related to low velocity anomalies beneath the South China Sea

induced by the subduction of India-Australia, Philippine Sea and Pacific plates.

Observed change in anisotropy, from shear wave splitting, coincides with structure

heterogeneity in the upper mantle beneath the Xianshuihe-Xiaojiang fault system

(XXFS), in between the Sichuan Basin and Burma range.

4.1 Introduction

The Tibetan plateau was generated by the collision and post-collisional

intracontinental deformation of Indian and Eurasian plates beginning between -50

and -65 million years ago. Following continental collision, the crust under the

central and northern parts of the plateau has approximately doubled in thickness to

70 km, while its elevation has increased to 4-5 km (Molnar and Tapponnier, 1975;

Coward et al., 1988; Dewey et al., 1988). North-south trending normal faults and

east-west trending fast polarization directions indicate east-west extension in

central and southern Tibet (Huang et al., 2000; Sol et al., 2007). Within the

southeastern plateau, clockwise rotational deformation suggested from Global

Positioning System (GPS) measurements is manifested by active left lateral strike-

slip fault systems (Chen et al., 2000). However, complex fast polarization

directions in southeast Tibet indicate that structure in the upper mantle is different

from active structures observed at the surface (Lev., et al., 2006) (Figure 4-1).
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Distinctly different models have been proposed for the tectonic evolution of

Tibet, such as uniform thickening and shorting of Asian lithosphere (England and

Houseman, 1986), block extrusions along principal strike-slip faults (Tapponnier

et al., 1982, 2001), southward subduction of Asian lithosphere under Tibet (e.g.,

Willett and Beaumont, 1994; Roger et al., 2000; Kind et al., 2002), and thrusting

of the Indian lithospheric mantle under Asia (e.g., Argand, 1924; Powell, 1986;

Owens and Zandt, 1997; Kosarev et al., 1999; Tilmann et al., 2003). Knowing the

3-D geometry of subduction of Indian lithosphere would help distinguish between

these evolutionary models, or inspire new ones, but many of its first order aspects,

including its present-day lateral and depth extent and how these may change

laterally along the collision boundary have remained largely unknown.

Prior to plate tectonic theory geoscientists thought that the northern edge of the

Indian lithosphere underthrust the entire Tibetan plateau and that this had

produced the Himalayan Mountains and the Plateau (Argand, 1924; Holmes,

1965). With the advent of plate tectonic theory, a number of studies based on

tectonic data have focused on reconstructing the motion of the Indian plate relative

to Eurasia since the Late Cretaceous and estimated the magnitude of Indian

subduction based on the surface area of the Indian plate before the collision

(Patriat and Achache, 1984; Besse and Courtillot, 1988; Lee and Lawyer, 1995;

Acton, 1999; Replumaz and Tapponnier, 2003). These studies are mainly based on

near-surface observations and kinematic plate reconstructions. It is likely that
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these processes have created or respond to complicated heterogeneity in the upper

mantle, but the relationship between near-surface and deeper mantle processes

remains enigmatic. Seismic imaging can provide constraints on deeper structure,

but pertinent information has been available only from relatively low resolution

global and regional studies or from high resolution studies of limited spatial

extent. This has now begun to change.

A number of studies have focused on imaging the upper mantle beneath the

Himalaya-Tibet region. Global surface wave studies have suggested that Indian

lithospheric mantle has subducted from the Himalayas beneath western Tibet to

-200 km depth (e.g., Shapiro, et al., 2002). Several regional surface wave studies

have also shown that at -150 km depth fast shear wave velocities prevail in

western and southern Tibet (e.g., Friederich, 2003). Van der Voo et al. (1999)

used results from global P-wave travel time tomography to suggest that Indian

lithosphere was sinking into the mantle almost directly beneath the Himalayan

Mountains. Regional P-wave travel time studies have suggested, however, that the

Indian lithosphere subducts as far north as the Bangong-Nujiang suture (-330N)

(Huang and Zhao, 2006) or even further north under the entire plateau (Zhou and

Murphy, 2005). In general, poor lateral resolution of surface wave studies and

sparse station coverage of body wave studies in Tibet limit the structural

wavelengths that can be resolved consequently these studies only provide weak

constraints on the subduction of the Indian lithosphere.
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In order to image the structure of the crust and mantle beneath Tibet in more

detail, a number of seismic experiments have been carried out in the Tibetan

plateau. The INDEPTH project (Nelson et al., 1996), for instance, suggested a

partially molten zone in the middle crust of southern Tibet. Surface wave

dispersion analysis showed that beneath the uppermost mantle fast velocity

anomalies prevails in southern Tibet and that slow velocity anomalies are found

only beneath northern Tibet (Raphine et al., 2003). Inefficient Sn propagation and

low Pn velocities have been found in the north Tibet and high Pn velocities are

dominant beneath southwestern Tibet (McNamara et al., 1995; McNamara et al.,

1997). Using P-to-S converted teleseismic waves along a NNE-SSW oriented

receiver network in eastern Tibet, Kosarev et al. (1999) suggested that a north-

dipping Indian lithosphere begins north of the Zangbo suture (-290 N) and

continues to a depth of 200 km beneath the Bangong suture (-330N). Teleseismic

P-wave travel time tomography based on the data from the INDEPTH project

suggested a subvertical high velocity zone from 100 to 400 km depth beneath the

area south of Bangong suture (Tilmann et al., 2003). In summary, studies from the

INDEPTH projects suggested that the Indian lithosphere has underthrust Asia to as

far north as the Bangong-Nujiang suture. However, due the almost linear seismic

network from north to south, these studies give insight only into a two-

dimensional (2-D) structure (around 900E), and lack of full 3-D sampling can

produce imaging artifacts.
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Recent areal seismic arrays deployed by M.I.T. in collaboration with the

Chengdu Institute of Geology and Mineral Resource (CIGMR) and by Lehigh

University - CIGMR (2003-2004) provided good coverage in southeastern Tibet.

The data from these arrays have already been used for surface wave tomography

(Yao et al., 2006), receiver functions (Xu et al., 2007) and shear wave splitting

studies (Lev et al., 2006; Sol et al., 2007). Here we combine data from MIT-

CIGMR, Lehigh-CIGMR, and previous seismic arrays in Tibet, and the Chinese

Seismography Network (CSN, -1200 stations) with data from the International

Seismological Centre (ISC), which has been reprocessed by Engdahl et al. (1998,

hereinafter referrer as to EHB). The denser and more uniform station coverage of

the combined datasets ensures unprecedented resolution in the upper mantle of the

plateau and surrounding regions (Figure 4-2).

We focus on 3-D images of the Indian subduction system, from Hindu-Kush,

along the Himalayas, to Burma. This study shows significant lateral variations in

the Indian subducted lithosphere along the Himalayas. The Indian lithosphere only

underlays the western portion of Tibet. The dip angle gradually increases from

west to east, which may explain the formation of Cenozoic north-south rifts in the

central plateau. Some Indian lithospheric mantle seems to subduct to -500 km

depth under the central plateau, however does not extend north beyond the

Bangong-Nujiang suture (-330N). By implication, most of the Tibetan lithosphere

is of Asian origin. The subduction beneath Burma appears to be separated from the
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Indian subduction at depths larger than -200 km and descends to -500 km depth

beneath the active volcanic Tengchong region.

4.2 Data

The data most relevant for this study come from four sources: (1) picked

arrival times from regional (temporary) seismic arrays; (2) reports from -1200

national and provincial stations of the Chinese Seismography Network (CSN)

during 1967 to 2004; (3) the EHB dataset reprocessed from the International

Seismological Center (ISC) during 1964 to 2004; (4) global PP-P dataset

Array data: we pick P-wave arrivals from local, regional, and teleseismic

earthquakes recorded at one or more of the -170 seismometers of MIT-CIGMR,

Lehigh-CIGMR, and previous seismic arrays on the plateau (Figure 4-2, see

Appendix 1 for more information about the seismic arrays in Tibet). In practice,

reliable and accurate automatic picking remains a serious challenge and an

experienced human observer might be the best picker engine. However the size of

combined datasets prohibits manual processing. Here we apply the automatic

picking software MannekenPix (Aldersons et al., 2003) to pick the first arrivals

from these arrays data. The picking engine of MannekenPix is the Baer-Kradolfer

algorithm (1987) based on the energy ratios of the short term behavior to the long-

term trend. To calibrate the algorithm to our data sets, we manually pick -20

percent of raw data and compare with corresponding automatic pickings, and we
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adjust the criteria in the picking engine to ensure accuracy and consistency. In

total, we picked -22,000 P and -13,000 Pn arrivals.

Travel time residuals are then computed by subtracting travel times calculated

based on the ak135 reference model (Kennett et al., 1995). In Figure 4-3, we show

the geographical pattern of travel time residuals (after elevation correction) of the

Tibetan arrays. For most stations we have more than 200 first arrival picks. The

pattern of travel time residuals shows a distinct direction-dependent distribution.

For all stations, including those on the southern parts of the plateau, arrivals from

earthquakes north and northwest of the arrays have large and positive residuals.

This is mainly due to propagation through thick Tibetan crust and perhaps

relatively low velocity anomalies in the upper mantle under the plateau. In

contrast, most arrivals from the south and southeast appear relatively fast. Even

without tomographic inversion, the pattern of travel time residuals thus suggests

slow P-wave propagation beneath the plateau and higher propagation speed in the

south, perhaps related to the Indian subducted lithosphere.

Chinese Seismography Network (CSN): the second part of the data used in

this study comes from -1200 national and regional stations of the CSN, of which

about 200 stations are located under the eastern plateau and SW China (red

squares on Figure 4-2). We use about 1 million P and Pn phases from 1967 to

2004, which far exceeds the number of data from the Annual Bulletin of Chinese

Earthquake (ABCE) used previously (Li et al, 2006).
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Global EHB catalog: the third part of our data comes from the global EHB

catalog. We use about 10 million P, Pg, pP, Pn and PKP phases from 1964 to

2004. About 100 stations of the EHB are located within the Indian plate and the

Himalayas (yellow triangles in Figure 4-2) and provide key constraints on the

Indian subducted lithosphere. Station coverage in the plateau and surrounding

regions is thus greatly improved and provides higher spatial resolution in the upper

mantle for our region of interest (Figure 4-2).

Global PP-P data: we use the differential times of PP-P, accurately measured

by waveform cross-correlation from digital seismogram (Woodward and Master,

1991), to resolve structures in the upper mantle of region with few earthquakes

and stations, such as northern Tibetan plateau and Tarim Basin.

Combining the global, regional and local seismic network data is not trivial,

and careful processing is required to avoid internal inconsistencies. After deleting

duplicate stations before incorporating all data from EHB, CSN and Tibetan

arrays, we calculate new travel time residuals using a non-linear process of

earthquake relocation and phase re-identification (Engdahl et al., 1998). This

ensures that data from different sources are consistent with each other. To

compensate for the relatively small volume but high quality of the datasets

compared to the routinely processed global and regional data, however, we apply

larger weights to data from the Tibetan arrays.

107



4.3 Methodology

To mitigate effects of uneven data coverage we use an adaptive

parameterization, in which the size of grid block is based on the sampling density

of the high frequency data (Abers and Roecker, 1991; Bijwaard et al., 1998;

Kirason and van der Hilst, 2000). The size of the blocks is a multiple of 45

kmx0.35ox0.35 0 in depth, latitude, and longitude beneath the Tibetan plateau and

surrounding regions (down to 800 km depth) and 45 kmx0.70 x0.7 0 elsewhere. The

total number of free parameters (the sampled irregular blocks and the event

relocation parameters in the global model) is about 0.5 million.

We use the iterative LSQR algorithm (Paige and Saunders, 1982) to minimize

an objective function combining a measure of data misfit and regularization terms:

6 =11 Gm-d 112 + 2• 1 m 112 +'2 I Lm 112 +3 II C-me 112 (1)

In the first term, m represents the model vector, including the constant slowness

perturbation in each grid cell as well as hypocenter perturbation terms. G is the

sensitivity matrix, calculated using ray theory for the short period data and 3-D

finite frequency kernels estimated from single scattering for long period PP-P data

(Kirason, 2002). We use weighted composite rays (Kirason and van der Hilst,

2001) to mitigate effects of uneven sampling further and to reduce the size of the

sensitivity matrix G. The data vector d represents the travel time residuals. The

second and third terms are traditional Tikhonov regularizations. The second term

favors a result that is close to the reference model and thus tends to minimize the
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amplitude of the model; the third term reduces the difference between adjacent

cells and thus produces smooth variations. L is a first order differential operator.

A and 22 are the weights of Tikhonov regularization.

The last term in (1) is used to reduce the crustal anomaly smearing due to

strong crustal heterogeneity along P-wave paths with small incidence angle (Li et

al., 2006), with C representing an a priori, high resolution local crustal model

(Sun et al., 2004; Xu et al., 2007) that is embedded in the global crustal model

(crust 5.1, Bassin et al., 2000), and m. is the crustal part in the model vector m.

We determine the weight 23 through synthetic tests (Li et al., 2006)

4.4 Results

4.4.1 Checkerboard resolution test

We use checkerboard resolution tests to assess the ability of the data to resolve

mantle beneath the Tibetan Plateau and surrounding regions. The input structure of

±1% velocity variation (Figures 4-4.0 and 4-5.0) was computed for each depth at a

time. The synthetic travel times were created and inverted using the same

inversion scheme and sampling (that is, sensitivity matrix) in the inversion. In

Figures 4-4 and 4-5, we show the retrieved structure from the checkerboard

resolution test at different depths for box sizes of 5°x5' and 2ox2', respectively.

In general, the 5°x50 input signals can be resolved at depths larger than 100 km

(Figures 4-4.2-4.5). At 60 km depth, some of the input signals are smeared
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beneath the Tarim basin, the northern Tibetan plateau, and the Indian Ocean

(where there are no stations). The input signal in other parts, especially the eastern

Tibetan plateau and Himalayas, is well recovered (Figure 4-4.1). For the 20x2'

input pattern, some input anomalies are damped to near zero (indicating poor

resolution) beneath Tarim basin, Indian plate, and South China sea at 60 km depth,

but the recovery is good in the areas of our particular interest, such as the

Himalayas, eastern Tibetan plateau, Sichuan Basin, and Burma (Figure 4-5.1). At

larger depths, the 20x20 input patterns can be resolved very well in most of the

area except under the Indian plate. Only -30%-40% amplitude of the input signals

has been resolved due to the regularization of the inversion. Therefore, the real

velocity anomalies in the upper mantle may be about 2 or 3 times of the amplitude

in the model.

4.4.2 Model improvement

Figure 4-6 shows the change in the model resulting from the crust correction

and data addition. For illustration purposes, we only show the model update at 60

and 150 km depth. The addition of the data from the Tibetan arrays and the

Chinese Seismograph Network (CSN) improve significantly the resolution in the

crust and upper mantle beneath the plateau and surrounding regions. Indeed, the

checkerboard resolution test at 100 km depth shows that the combined datasets can

resolve velocity variations in more detail than the EHB dataset only (Figure 4-

6A1, Bl). For example, more input signals can be recovered beneath the eastern

plateau and Red River fault area.
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Only one station (LSA, Lhasa) on the Tibetan Plateau reports to the ISC/EHB

data base. Consequently a low wavespeed "bulls-eye" is visible here, whereas the

wavespeed variations are heavily damped elsewhere beneath the plateau (Figure 4-

6A2). Since the reference Earth model has a crustal thickness of 35 km, a thick

crust will appear as a very strong 'slow' anomaly. The thickness of the crust in

most of the plateau exceeds 60 km. Without a crustal correction, we cannot

prevent such low velocity anomalies of the Tibetan crust from causing artifacts to

large depths in the mantle (Figure 4-6A3). With regularization to an a priori high

resolution crustal model, we can recover strong low velocity anomalies (-10%)

and confine it in the crust beneath the plateau (Figure 4-6B2, B3). Detailed

description of the new model will be presented in section 4.4.3.

4.4.3 Structure of the upper mantle beneath Tibet and surrounding regions

In Figure 4-7 we present P-wave velocity variations beneath the Tibetan

plateau and surrounding regions in map view. In Figure 4-8 we illustrate the

structure associated with the Indian subduction through the Himalayas and Burma

by means of vertical cross-sections. For presentation purposes, western and eastern

Himalayas are defined to be separated by the 850E meridian.

Pronounced high velocity anomalies prevail beneath the Himalayas and the

western margin of Tibet down to 300 km depth (Figures 4-7.1-7.3). The high

velocity anomalies become gradually weaken at large depths (Figures 4-7.4-7.6).

Indian subduction beneath western Himalayas: West of the Himalayas, that

is, west of -70 0E, high velocity anomalies are detected beneath Pamirs, frontal
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basin of the Indian plate and the southern Tibetan Plateau. High velocity

anomalies beneath the Hindu Kush (between Pamirs and India) are visible in the

mantle transition zone and appear to connect to high velocity anomalies beneath

the Pamirs. Dense seismicity is located above the high velocity anomalies beneath

the Hindu Kush and Pamirs in the upper mantle (Figures 4-8 A, B; Figures 4-7.1,

7.2).

Further east, near 75°E, a high velocity anomaly structure is detected beneath

the entire Tibetan plateau and reaches as far north as the western margin of the

Tarim basin. Earthquakes are mainly confined to shallow depth within the plateau

and Tarim basin (Figures 4-8 C, D). Tests with synthetic data show that the

resolution is rather poor in this region, but the fast structures beneath the plateau

cannot be explained by lateral smearing of the strong anomalies beneath the

Himalayas (Figure 4-9 D).

Further east (-80oE), a velocity anomaly with a steep dip angle is visible only

beneath the Himalayan Block (Figure 4-8 G, H). Moderately high velocity

anomalies are observable in the mantle transition zone and seem to connect the

high velocity anomalies in the upper mantle beneath the plateau and in the lower

mantle beneath the Indian plate (Figure 4-7.6; Figure 4-8 G, H). This connection is

not yet well understood, but target resolution tests demonstrate that the fast

structure in the mantle transition zone is not due to smearing between the high

velocity anomalies in upper and lower mantle and that, with the limits of our
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linearized inversions, resolution in the mantle transition zone is adequate (Figure

4-9 G).

Indian subduction beneath eastern Himalayas: In general, the high velocity

anomaly beneath the eastern Himalayas is weaker than that beneath the western

Himalayas. There are no significant fast structures in the upper mantle above 200

km under southern Tibet (Figures 4-7.1, 7.2).

At about 850E, the high velocity anomaly dips from the foreland basin of

Indian plate to a depth of 200-300 km beneath the Himalaya. Low velocity

anomalies characterize the uppermost mantle beneath most of Tibetan plateau

(Figures 4-8 I; Figure 4-7.1). A high velocity anomaly is still visible beneath the

Himalayas in the lower mantle, but there is no evidence for a connection to

shallow structure (Figures 4-8 I). Moderately high velocity anomalies are visible

from 300 to 500 km depth beneath the Lhasa block of Tibet (around (90 0 E, 32oN),

Figures 4-7.3-7.6; Figure 4-8 J). Resolution tests suggest that structures at shallow

depth beneath the Lhasa block can be resolved by the data used and that the fast

structures at larger depth are not due to smearing of anomalies at shallow depth

(Figure 4-9 J).

Around -90 0E, the high velocity anomalies are confined to shallow depth

beneath the foreland basin of the Indian plate and the Himalayas. At this

longitude, there are almost no pronounced high velocity anomalies beneath the

plateau. The fast structures in the upper mantle appear to be disconnected
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completely from the high velocity anomalies in the lower mantle (Figures

4.7.1-7.6 and Figures 4.8 K, L).

Subduction beneath Burma: At depths larger than 200 km, the linear high

velocity anomalies beneath Burma can be distinguished from the high velocities

beneath the eastern Himalayas (Figure 4-7.2). With increasing depth, the fast

structure is visible increasingly eastward, toward the Tengchong volcanic area and

the Red River fault area (Figures 4-7.3-7.6). The dip angle of high velocity

through the Eastern syntaxis is -60' , which is much steeper than that beneath the

Himalayas (Figure 4-8M). In map view, the fast structure is much narrower

(Figures 4-7.2, 7.3).

Further south, the high velocity anomaly dips almost vertically into the mantle

transition zone. To 150 km depth in the upper mantle, earthquakes occur near the

top of dipping high wavespeed structure (Figures 4-8 0, P). The shallow upper

mantle beneath the Tengchong volcanic region is marked by low velocity

anomalies (Figure 4-7.1). Pronounced high velocity anomalies appear from 300

km depth beneath Xianshuihe-Xiaojiang Fault (in east of 100oE and south of 30oN,

Figure 4-7.3). They trend NE-SW, extend to large depths, and merge with the fast

velocity anomalies beneath Burma (Figures 4-7.4-7.6).

4.5 Discussion

4.5.1 Indian subduction

Subduction of Indian lithospheric mantle plays a key role in the evolution of
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the Tibetan plateau. In the last decades, intensive geological, geomorphological,

geochemistrical investigations on the plateau have advanced our understanding of

the evolution of Tibet (e.g., Yin and Harrison, 2000; Tapponnier et al., 2001;

Chung et al., 2005). However, these near-surface studies provide limited

information about the deep structure, especially the present day subduction of the

Indian plate beneath the plateau. Seismic imaging is a powerful tool to provide

direct evidence for the subduction of the Indian lithospheric mantle (e.g., Van der

Voo et al., 1999; Kosarev et al., 1999; Shapiro et al., 2002; Tilmann et al., 2003;

Replumaz et al., 2004; Li et al., 2006). The seismic images in this study confirm

our previous studies (Replumaz et al., 2004; Li et al., 2006) but provide a more

detailed picture thanks to enhanced data coverage and resolution.

The subduction of Indian lithospheric mantle shows significant lateral

variations along the Himalayas. West of 80'E, the Indian lithospheric mantle

underthrusts the western plateau and extends about 400-500 km northeastward

from Himalayan frontal thrust (Figure 4-8 C, D, E, and F). The Indian subducted

lithosphere is confined to shallow depth (about 200 to 300 km depth, Figure 4-

7.1-7.3) and does not appear connected with high velocity anomalies in the lower

mantle. Between 800E and 850E, the dip of the Indian subducted lithosphere

gradually steepens. High velocity anomalies associated with subduction of Indian

lithospheric mantle connect locally to high wavespeed structures that have been

interpreted as Tethys oceanic slabs (Van der Hilst et al., 1997; Grand et al., 1997;

Van der Voo et al., 1999; Replumaz et al., 2004) (Figure 4-8 G, H, and I). East of
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850E, subducted Indian lithosphere is mostly confined to beneath the foreland

basin and Himalayan Mountains. Although there is evidence for subduction of

some Indian lithospheric mantle beneath the Lhasa block, perhaps down to 500 km

depth, at shallow depth most of the Tibetan plateau seems underlain by low

velocity anomalies (Figure 4-8 J). Close to the Eastern syntaxis, there is no

evidence for Indian subducted mantle beneath Tibet. Indian subducted mantle at

shallow depth has gradually disconnected from the Tethys oceanic slabs in the

lower mantle.

The debate about the Indian subduction concerns two fundamental questions:

(1) How far north has Indian lithospheric mantle subducted the plateau? (2) What

is the relationship between the Indian subducted lithosphere in the upper mantle -

if any - and the Mesozoic oceanic slabs in the lower mantle? The high resolution

seismic images in this study provide more constraints on these two essential

questions.

Our results strongly suggest that the shallow subduction of Indian lithospheric

mantle beneath the Tibetan plateau only occurs in the western part of the collision

zone. Further east, subduction is steeper, and beneath the Lhasa block (Figure 8J)

most of the plateau is underlain by low velocity anomalies. These observations

suggest that that most of the lithosphere beneath the central and eastern part of the

plateau is of Asian origin (consistent with Tapponnier et al., 2001). Teleseismic

imaging based on the data from the INDEPTH projects has generated an image

that suggests that the Indian lithospheric mantle dips steeply into the mantle south
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of Bangong-Nujiang suture zone (90 0E, 310N) (Tilmann et al., 2003, Figure 10a).

In contrast, our imaging does not reveal any pronounced high velocity anomies at

the shallower depths (Figure 4-7.1-7.3; Figure 4-10c), even if resolution tests

demonstrate that such a structure should have been well resolved by the dense data

coverage used in our study (Figure 4-9 J). The images reveal a fast structure at

400-500 km beneath the Bangong-Nujiang suture zone, which we interpret to be

the result of subduction of Indian lithosphere from the Zangbo suture (trend

depicted by black lines in Figure 4-10c). This interpretation is consistent with

Kosarev et al. (1999, Figure 4-10b) and argues against the suggestion of the

significant underthrusting of the Indian lithospheric mantle the Tibetan plateau

(e.g., Zhou and Murphy, 2005).

It is difficult to reconcile our observations with a scenario such as that of

Tilmann et al. (2003), where the Indian lithosphere sinks steeply soon after its

horizontal underthrusting to south of the Bangong-Nujiang suture. It could be that

the high velocity anomalies that they see at shallow depth are due to smearing of

high velocity anomalies at large depth as a consequence of the spatial limit of the

array data (red question mark in Figure 4-10a).

The nature of the connection between structures related to the subduction of

the Indian lithosphere in the shallow mantle and structures in the lower mantle is

not clear, but it seems to vary along the collision zone. Resolution tests show that

the fast structure in the mantle transition zone beneath the central Himalayas is not

a smearing artifact (Figure 4-9 G). However, there are no fast structures in the
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transition zone beneath the western and eastern Himalayas (Figure 4-8 C, D, K,

and L). Based on a global P-wave tomographic study, Van der Voo et al. (1999)

suggested that the Indian lithosphere had been dragging down into the mantle

directly beneath the Yarlung Tsangpo suture zone by Tethys oceanic lithosphere

that is now in the lower mantle. Our results suggest that only beneath the central

Himalayas the lower mantle slabs are still connected to the Indian subducted

lithosphere, which may suggest that the present-day structures represent a late

stage of the part of continental collision driven by slab pull. Although it leaves

some room for alternate interpretations, the steeper dip angle in the central part of

the Indian subduct may be related to the pull by the Tethys oceanic lithosphere in

the lower mantle (Figure 4-8 G, H, I, and J). In contrast, beneath western and

eastern Himalayas, absent of fast structures in the mantle transition zone suggests

that the pull by the Tethys oceanic slabs no longer affects this part of the Indian

subduction (Figure 4-8 C, D, E, K and L). By implication, the ongoing collision

between the Indian and Eurasian plates may be driven by the pushing force from

the far field spreading at the Indian Ridge and the subduction of the Indian plate

elsewhere (e.g., Indonesia). Seismic images of this study reveal the complicated

spatial-temporal evolution of the Indian subduction.

Lateral variation of Indian subduction along the Himalayas presented here, if

confirmed by the later studies, has important implications for our understanding of

the evolution of the Tibetan plateau. For example, a number of mechanisms have

been proposed for the formation of late Cenozoic north-south rifts in central Tibet,
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such as, gravitational collapse of the plateau (e.g., Dewey, 1988), convective

removal of the lower mantle lithosphere (e.g., England and Houseman, 1989), and

oblique convergence between India and Asia (e.g., Seeber and Pecher, 1998).

However, the role of the Indian subducted lithosphere in these models is largely

unknown. Our results show that the location of rifts in central Tibet (from -800E

to -90 0E) coincides with where the change in the dip angle of the Indian

subducted lithosphere occurs (Figure 4-7.1-7.4 and Figure 4-8 F-G). This

suggests that the increase in the dip angle of the Indian subducted lithosphere from

west to east may be one of sources to form rifts in central Tibet.

4.5.2 The Tibetan plateau

The crust under the Tibetan plateau has been generally well imaged and its

thickness is about double that of the normal crust (e.g., Kind et al., 2002; Li et al.,

2006). In contrast, the upper mantle structure beneath the plateau is only known

with low resolution from surface wave dispersion studies (e.g., Romanowicz,

1982; Rapine et al., 2003; Friederich, 2003) and large scale P-wave travel time

tomography (Bijwaard et al., 1998; Li et al., 2006; Huang and Zhao, 2006). The

seismic images presented here provide more constrains on the deep structure

beneath the plateau. Although the southwestern plateau is marked by pronounced

high velocity anomalies, most of the plateau is underlain by low velocity

anomalies, especially under the eastern part of the plateau (Figure 4-7.1, 7.2).

In Figure 4-11, we compare our model with the global P-wave model from the

finite frequency travel time data (Montelli et al., 2004) and the shear wave model
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from the surface wave dispersion study (Lebedev and van der Hilst, 2007) around

the Tibetan plateau. Since our model is at much higher spatial resolution than

either of these models, in order to compare with these large scale seismic images,

we apply low-frequency filter to P-wave perturbations in our model (Figure 4-

11A1, A2). At this low resolution, the basic features of two P-wave models is

similar: high velocity anomalies are situated beneath the Himalayas, Ordos block

and Sichuan Basin; low velocity anomalies prevail beneath the central and eastern

plateau and along a broad zone following the Red River fault (Figure 5-11 Al, A2,

B1, and B2). The shear wave model also show high velocity anomalies beneath

Pamirs, Himalayas, Ordos block and Sichuan Basin and low velocity anomalies

under Red River fault range. The most conspicuous differences between the P-

wave models and shear wave model are beneath the central and eastern plateau. At

200 km depth, the surface wave model shows pronounced high velocity

anomalies, however the P-wave models show low velocity anomalies (Figure 4-11

A2, B2 and C2).

The checkerboard tests show that the resolution at 200 km depth beneath the

central and eastern Tibetan plateau is adequately good (Figure 4-5.3) and crust

correction used in the inversion has prevented smearing of the thick crust into the

upper mantle (Li et al., 2006). In order to further assess our resolution we

performed the following test. For test purposes, we infer the P wave model by

assuming that the P wave perturbation is half of the shear wave perturbation

(Masters et al., 2000) (Figure 4-12a). We use this inferred P wave model as a
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priori information in the penalty function (e.g., as m e in equation (1)). The results

will be close this inferred P wave model if the constraint by data is weak. In

contrast, if the constraint by data is strong, the results will depart from this a priori

information. This test shows that low velocity anomalies are dominant beneath the

central and eastern plateau (Figure 4-12b) and that results depart from the input P-

wave model. This demonstrates that the constraint by P-wave travel time data is

strong beneath the central and eastern plateau and that low P-wave speeds are

required to fit the data.

The reason for the controversy between shear wave model and P-wave model

is not yet clear. The lateral resolution of the shear wave model is -500 km

(Lebedev, personal communication). Without further resolution tests, it is hard to

evaluate the lateral smearing in the shear wave model under the plateau. This is,

however, beyond the scope of this study. Although the seismic images in this

study could not provide precise thickness of the lithosphere beneath the plateau,

the low velocity anomalies beneath the central and eastern plateau suggest that the

Tibetan lithosphere is of Asian origin. Our results are consistent with expectation

from models of convective removal of the thickened Asian lithosphere under Tibet

(e.g., Houseman et al., 1981) and with the suggestion by Romanowicz (1982) that

little mantle lithosphere remains beneath Tibet.

4.5.3 The Burma subduction

At the comer between the Sumatra-Andaman and the Indian subduction zones,
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the Indo-Burma ranges are structurally complex and seismically active (Ni et al.,

1989). The Indian plate is subducting northward whereas the Burma microplate

descends eastward beneath the Eurasian plate (Satyabala, 1998). Seismic

tomography also reveals the east-dipping high velocity anomaly along the Burma

arc (Li et al., 2006; Huang and Zhao, 2006). However, resolution in these studies

is insufficient for the investigation of the spatial extent of subduction beneath

Burma and its relationship with the Indian subduction across the eastern

Himalayan syntaxis.

The subduction through Burma is well resolved by the data used in our study.

Close to the Eastern syntaxis, the Burma subduction is confined to the upper

mantle with a gentle dip angle of - 600 (Figure 4-8 M, N). Further south, eastward

Burma subduction is accompanied by seismicity at shallow depth and the

subducted plate sinks to the mantle transition zone with a steep dip angle (Figure

4-8 0, P). While a number of studies have shown the presence of an eastward

dipping Indian lithosphere, the issue of whether the subduction is still active has

been debated (Ni et al., 1989; Satyabala, 1998; Rao and Kumar, 1999; Guzman-

Speziale and Ni, 2000; Satyabala, 2000). The observation that the compressional

principal axes of main large earthquakes are nearly parallel to the trend of the

thrust and fold belts of the region has lead to a consensus that the subduction is no

longer active (e.g., Guzman-Speziale and Ni, 1996; Rao and Kumar, 1999).

However, from analysis of tensional stress regime within the subducting slab,

Satyabala (1998) inferred active eastward subduction of Burmese microplate. The
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continuity of subducted plate beneath the Burmese arc in the upper mantle (e.g.,

Figure 4-8P) may be evidence in support of active subduction under the Indo-

Burma region.

Another interesting question about subduction in the Indo-Burma region is its

continuity across the Eastern syntaxis with the subduction beneath the Himalayas.

Our results show that fast structure under the east of the Eastern syntaxis is

disconnected from the Indian subduction beneath the Himalayas at depths larger

than -200 km depth (Figure 4-7.2). This suggests that the eastward Burmese

subduction has been separated from the northward Indian subduction and become

an independent part during the western retreat of the Burmese arc over the

Miocene.

Tengchong is an active volcanic and geothermal area east of the Indo-Burma

arc (Figure 4-1, around (98°E, 250N)). Its most recent eruption occurred in 1609

(Qin et al., 1996). Negative gravity anomaly, high electrical resistivity, and high

heat flow indicate presence of the magma chamber in the crust beneath Tengchong

(Sun et al., 1989; Kan et al., 1996). A number of Cenozoic strike-slip faults are

located in the Tengchong area (Figure 4-1). However, the deeper seismic structure

beneath Tengchong has not been very clear, in part because of poor resolution in

previous studies (Huang et al., 2002). Our regional array data reveals that

pronounced low velocity anomaly is dominant in the shallow upper mantle

beneath the Tengchong area (Figure 4-7.1, Figure 4-8 M, N). The slow structure is

confined to -150 km depth (Figure 4-8 M, N). At large depth, high velocity
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anomaly subducted from the Burmese arc underlies the Tengchong area (Figure 4-

7.3-7.5). The volcanic activity in the Tengchong area is more likely related to the

subducted slabs from the Burmese arc.

4.5.4 Transition of tectonic regime in the Sichuan-Yunnan region

An intriguing high velocity anomaly between Sichuan and the Eastern syntaxis

separates the low velocity anomalies beneath the Songpan-Ganze of eastern

Tibetan plateau from those along Red River fault region in the shallow mantle

(Figure 4-13). Resolution tests show that this anomaly is not a smearing artifact

from nearby fast structures beneath Sichuan and Burma (Figure 4-14). Geodetic

measurements suggest that near-surface deformation is part of a clockwise rotation

around the eastern Himalayan syntaxis (King, et al., 1997; Chen et al., 2000;

Figure 4-1). Shear wave splitting measurements show east-west fast direction in

central and southern Tibet, which is consistent with near-surface deformation (Sol

et al., 2007; Huang et al., 2000). In the Sichuan-Yunnan region, Lev et al. (2006)

found a profound transition of fast polarization directions from primarily north-

south in the north to mostly east-west orientation in the south (Figure 4-13).

Coexistence of a complex pattern of fast polarization direction and high velocity

anomalies under the middle of the Xianshuihe-Xiaojiang fault system suggests a

fundamental transition in the deformation regime in the upper mantle (Figure 4-

13). This may be a boundary marking a transition in tectonic regime from

deformation due to continental collision in the NW and deformation due to

subduction (from Burma and the Pacific) in the SE. The low velocity anomalies
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beneath the Red River fault in the upper mantle (Figure 4-13) may be related to

upper mantle processes beneath the South China Sea.

Our results also reveal high velocity anomalies beneath the Precambrian crust

of Ordos and Sichuan basins to 250-300 km depth. Resolution tests show that the

data can resolve the shallow structure and that the high velocity beneath the

Sichuan basin is not a smearing artifact (Figure 4-15). These observations are

consistent with previous studies of Li et al. (2006) and Lebedev et al. (2003).

These high velocity anomalies imply a stable continental root beneath the Ordos

block and Sichuan Basin. This stable continental root may block the eastward

extrusion of crust and/or upper mantle of the eastern Tibetan plateau driven by the

continent collision. This also suggests that the tectonic processes east of Ordos and

Sichuan are more likely related to the ocean subduction system of western Pacific

and Phillipine Sea to the northeast rather than the continental collision in the

southwest (Zhang et al., 2003).

4.6 Conclusions

P-wave velocity variations in the upper mantle beneath the Tibetan plateau and

surrounding regions have been investigated using a combination of data from

Tibetan arrays, CSN, and EHB. The results lead us to the following conclusions:

a) The subduction of the Indian lithospheric mantle varies considerably from

west to east.
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b) Although part of the Indian subducted lithosphere extends to the central

Tibetan plateau beyond the eastern Himalayas and has reached to -400 km depth,

it does not extend north of the Bangong-Nujiang Suture (-33oN) and the main

Indian subducted lithosphere is situated beneath the western plateau to 300 km

depth. By implication, most of the Tibetan lithosphere is of the Asian origin.

c) Some high velocity materials are detected in the transition zone in the

central Himalayas (-85°E), which appear to connect with the Indian subducted

lithosphere in the upper mantle with the Mesozoic oceanic slabs in the lower

mantle. In the eastern and western Himalayas we do not detect such connections.

d) At depth larger than 200 km, the subduction under Burma seems to be

separated from Indian subduction through the eastern Himalayas. Volcanic activity

in the Tengchong area is more likely related to the Burma subduction than to other

deep mantle processes.

e) Coexistence of a complex pattern of fast polarization direction high velocity

anomalies under the middle of the Xianshuihe-Xiaojiang fault system suggests that

upper mantle heterogeneity may be a cause for the observed complex anisotropy

pattern.

f) Continental roots (marked by high velocity anomalies) beneath the

Precambrian Ordos Block and Sichuan basin extend to 250-300 km depth.

Together high velocity anomalies from Burma, these continental roots may form a

transition between the collision controlled tectonic regime in the NW and

subduction controlled regime to the SE.
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Figure 4-1. Red arrows denote geodetically measured surface velocities relative to
the south China block (Chen et al., 2000; Zhang et al., 2004). Black lines with
green dots show shear fast polarization direction estimated from waves splitting
studies (Huang et al., 2000; Sol et al., 2007; Lev et al., 2006). The background
shows the topography of East Asia and active faults around Tibet (blue: left-lateral
strike-slip faults; light blue: right-lateral strike-slip faults; black: thrust faults;
white: normal faults). The white triangle is the location of the Tengchong volcano.
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Figure 4-2. The distribution of stations and events in the Tibetan Plateau and
surrounding regions. The black dots represent earthquakes during 1964-2006 from
the EHB. The white triangle is the location of the Tengchong volcano. Dashed red
lines are the plate boundaries, according to NUVEL-1 (DeMets et al., 1990). The
blue lines mark the boundaries beneath the main tectonic blocks in the region,
where QDB-Qaidam Basin, KF-Kunlun Fault, SB-Sichuan Basin, SGF-Songpan
Ganzi Foldbelt, QB-Qiangtang Block, LB-Lhasa Block, HB-Himalayan Block,
YZS-Yarlung-Zangbo' suture, BNS-Bangong-Nujiang suture, JRS-Jinsha River
suture (modified from Li, 1998 and Tapponnier et al., 2001). The black arrows,
labeled as A, B ... , show the location of sixteen cross sections through the
Himalayas and Burma shown in Figure 4-8.
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Figure 4-3. The rose histogram shows the direction distribution of travel time
residuals of the Tibetan arrays after elevation correction. There are -170
seismometers and 35,000 pickings in total. The residuals are calculated based on
1-D reference model ak135 (Kennett et al., 1995). The numbers next to MIT-
CIGMR station denote the total number of picks for each station. Residuals of
arrivals from the direction of the Tibetan Plateau are quite large, mainly due to the
thick Tibetan crust and relatively low velocity perturbations in the upper mantle
beneath the plateau.
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Figure 4-4. Checkerboard resolution test for target anomalies at different depths
as indicated in left up corner in each subplot. The color scale is shown in the righ
up corner in each subplot. Input pattern (50 x50 ) is shown in 4.0. The green line is
Chinese border and the black line shows the coast line.
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Figure 4-6. Effects of data addition and crust correction at 60 km and 150 km and
resolution improvement at 100km. (Al) and (B1) depict the checkerboard
resolution test before and after adding data from CSN and Tibetan arrays. (A2)
and (A3) Model with only EHB data and without crustal correction. (B2) and (B3)
Model with data incorporated from EHB, Tibetan arrays, and CSN, and with a
crustal correction.
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Figure 4-7. P-wave anomalies beneath Tibet and surrounding areas at different
depths as indicated on the left lower corner in each subplot. The blue and red
represent high and low velocity anomalies respectively. The white triangle is the
location of the Tengchong volcano. The lines show active faults around Tibet
(blue - left-lateral strike-slip faults; light blue - right-lateral strike-slip faults;
black - thrust faults; white - normal faults). QDB: Qaidam basin; XSH-XJ:
Xianshuihe-Xiaojiang.
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Figure 4-8. P-wave velocity variations in sixteen vertical cross-sections of
through the Himalayas and Burma shown in Figure 4-2. The gray circles are
earthquakes and magenta dash lines display the Moho. Gray shadow on the top of
each subplot is the topography, where HK-Hindu Kush; HB-Himalayan block;
LB-Lhasa Block; QB-Qiangtang block; Tch V.-Tengchong Volcano.
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Figure 4-8. Continued.
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Figure 4-9. Target resolution tests for the Indian subduction along the Himalayas
(The location of cross-sections D, G and J is shown in Figure 4-2). The left
column is the tomographic image (Figure 4-8) and black boxes depict the range of
input signal; the middle column is the test input signal; the right column is the
recovery. In cross-section D, input signals beneath Himalayas can be recovered
and there is no smearing beneath western Tibet. Image recovery is poor beneath
the Indian plate. In cross-section G, the high velocity in the upper mantle and the
mantle transition zone can be resolved. The resolution in the lower mantle beneath
the Indian plate along cross-section G is not good. The cross-section J suggests
that if high velocity lithosphere were present beneath eastern Tibet our data
coverage would be sufficient to detect it. The high velocity anomalies beneath
Lhasa block at -400 km depth are not smearing effects from the structure at
shallow depth.
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Figure 4-10. Comparison with seismic imaging studies from INDEPTH projects
beneath central Tibet (around in rang of [86 0E, 900E] and [270N, 350N]). (a)
Teleseismic tomography based on the INDEPTH II and III data (Tilmann et al.,
2003); (b) Teleseismic receiver function image from the INDEPTH II and Sino-
American PASSCAL experiments (Kosarev et al., 1999); (c) this study.
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Figure 4-11. Model comparison beneath the Tibetan plateau. (Al) and (A2): this study;
(Bl) and (B2): P wavespeeds perturbation of model updated from Montelli et al., (2004)
at 100 km and 200 km depths. (Cl) and (C2) Shear wave speeds perturbation of model
from Lebedev et al., (2006).
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Figure 4-12. (A) Constraint model inferred from the surface wave model at 200
km depth (Lebedev et al., 2007). We assume P-wave perturbation is half of shear
wave perturbation. (B) Inversion results with the constraint model in the penalty
function. The results are closely similar to the model (Figure 5-8A2). This test
indicates that the constraint by the data around Tibet is strong.
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Figure 4-13. P-wave velocity perturbations (as shown on the left corner) at 100
and 200 km depths with the background of shear wave splitting results and active
faults (Figure 4-1).
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Figure 4-14. The target resolution tests for the high velocity beneath the Eastern
syntaxis and the Sichuan basin. +1.5% velocity anomalies were generated beneath
the Eastern syntaxis and Sichuan basin from 150 km to 250 km depth. The figure
shows the map view at 200 km depth. Input signals can be well resolved and there
are no smearing effects between them, thus demonstrate that the high velocities
between Sichuan and the Eastern syntaxis are not artifacts.
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Figure 4-15. Target test for fast structures beneath the Sichuan basin. The first
row is the model at 200 km depth and cross-section along profile as indicated. The
second row is recovery test for the high velocity from surface to 100 km depth.
The Third row is the recovery test for 400 km thick high velocity.
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Chapter 5

Constraints on the evolution of East Asia's mantle
from P-wave travel time tomography4

Abstract

High resolution tomographic images of the mantle structure beneath East Asia

have been obtained through inversion of travel time data from global and regional

seismograph stations and regional (temporary) arrays. These data resolve three-

dimensional (3-D) upper mantle heterogeneity in unprecedented detail. In the

west, high velocity anomalies are dominant beneath the Himalayas and the

western portion of the Tibetan plateau to 300 km depth, which represent the

northeastward subducting Indian lithospheric mantle. In the east, western Pacific

slabs subducting from the Japan and Izu-Bonin trenches are deflected in the

mantle transition zone beneath the Japan Sea and East China. These stagnant slabs

likely influence upper mantle circulation beneath East Asia and might be related to

volcanism in Korea and northeast China (such as the Changbai volcanic area).

Low wavespeed structures in the shallow mantle beneath the Red River fault

region connect to deep, slow anomalies beneath the South China Foldbelt.

Tomographic imaging also reveals high wavespeed continental roots of the

Precambrian Ordos block and Sichuan Basin (to 250-300 km depth) and strong

heterogeneity between the latter and the Burma ranges further to the west.

Together these structures may mark a transition in tectonic regime from the

continental collision control in the west to control by subduction of Pacific,

Philippine Sea and Indonesia plates to the east and the southeast.

"Li C., Sun R., van der Hilst R.D., Burchfiel B.C., and Royden L.H.. Constraints
on the evolution of East Asia's mantle from P-wave travel time tomography, in
preparation for submission to J. Geophys. Res.
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5.1 Introduction

East Asia is a tectonically diverse and active area. In the southwest, the

continental collision and post-collisional convergence between the Indian and

Eurasian plates have raised the Tibetan Plateau and have produced the Himalaya,

Pamirs and the Hindu-Kush mountains (Molnar and Tapponnier, 1975;

Tapponnier et al., 2001). The retreating western Pacific and Philippine Sea slabs

in the east have generated island arcs, marginal seas, and a number of continental

rifts and extension zones in northeast China (Northrup et al., 1995; Zhang et al.,

2003; Schellart and Lister, 2005). These two geodynamic systems form a large-

scale dynamic clockwise rotation in East Asia, which dominates the tectonic

evolution of East Asia (Black arrows in Figure 5-1). There is controversy,

however, about their relative importance for the tectonic evolution of East Asia.

One group of researchers emphasized that the eastward extrusion of large-scale

lithospheric blocks resulting from the India-Eurasia collision has controlled the

widespread deformation in East Asia (Molnar and Tapponnier, 1975; Tapponnier

and Molnar, 1977; Tapponnier et al., 1982; Replumaz and Tapponnier, 2003).

Recent studies suggest, however, that the slab rollback promoted by a reduction in

velocity of the subducting Pacific and Philippine plates produced a number of

Cenozoic back-arc or marginal basins along the East Asian margin (e.g., Northrup

et al., 1995; Schellart et al., 2003) and the rollback of the Java-Sumatra slab may

have aided southward motion of Indochina (Widiyantoro and Van der Hilst, 1996).
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It has been suggested that the back-arc deformation caused by this slab roll-back

can occur as far west as the Baikal rift zone, located some 3300 km from the

subduction zone (Schellart and Lister, 2005; Lebedev and van der Hilst, 2007) and

that subduction-induced mantle upwelling led to widespread uplift, volcanism and

extension of East China (Tatsumi et al., 1990; Tian et al., 1992; Yin, 2000). It can

be expected that the complex tectonics in East Asia have produced strong

heterogeneity in the upper mantle. Alternatively, 3-D crust and upper mantle

heterogeneity can provide crucial insight into the interaction of the continental

collision and slab rollback and advance our understanding for the tectonic

evolution of East Asia.

Seismic tomography has been used to study the heterogeneous crust and upper

mantle of East Asia for at least two decades. Surface wave tomography can

constrain crust and the shallow upper mantle when station distribution is relatively

sparse. For instance, Lebedev and Nolet (2003) have shown that Precambrian

continental roots with -300 km thickness exist beneath Sichuan Basin by inversion

of fundamental Rayleigh mode and S and multiple S waves. The inversion of shear

and surface waveforms has also revealed a seismically fast Indian lithosphere

under southwestern Tibet to -250 km depth (Friederich, 2003). Multimode surface

waveform tomography provided 3-D shear wave speed and thermal lithospheric

thickness in East Asia (Priestley et al., 2006). However, the horizontal resolution

of surface wave tomography is, typically, several hundred kilometers due to the
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relatively low frequency data and the sparse distribution of stations used.

Moreover, surface wave tomography gradually loses resolution with increasing

depth.

In regions with good data coverage, short-period travel time tomography can

provide higher resolution than surface wave tomography. A number of P-wave

travel time tomographic studies have focused on imaging subducting oceanic

lithospheric slabs of western Pacific and Philippine Sea plates and have found that

slabs subducted from the Japan trench have been stagnant beneath Japan Sea and

East China in the mantle transition zone due to the east-direction rollback (e.g.,

van der Hilst et al., 1991; Fukao et al., 1992; Fukao et al., 2001). Liu et al. (1990)

provided 3-D velocity images of the upper mantle beneath the Chinese continent

and adjacent regions with a block size of 2-5' by using the regional and

teleseismic data from Chinese stations. Since then, many tomographic studies have

focused on detailed crust and upper mantle structure beneath selected regions of

China using the travel time data from regional stations (e.g., Sun and Liu, 1995;

Liu et al., 2000; Huang et al., 2002; Xu et al., 2002). The data from temporary

seismic arrays have provided better constraints on crust and upper mantle beneath

the Tibetan Plateau (e.g., Kind et al., 1996; Kosarev et al., 1999; Kind et al., 2002;

Tilmann et al., 2003; Yao et al., 2006).

With the data from the Chinese network becoming more openly available,

seismologists have begun to combine the data from global and Chinese stations to
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provide the large scale crust and upper mantle structure of East Asia with higher

resolution than before (Li et al., 2006; Huang and Zhao, 2006). However, the

resolution of these studies is still insufficient for detailed investigations of upper

mantle structures, which hinders our understanding of the tectonic evolution of

East Asia.

In this paper we present a new high resolution P-wave tomographic model and

investigate the relationship between heterogeneous structures in the upper mantle

and the complex tectonic history of East Asia. We augmented the data set used in

Chapter 3 (that is, Li et al. (2006)) with data from -1200 Chinese regional seismic

stations and -170 Tibetan seismic array stations (Figure 5-2). The combined

datasets provide unprecedented resolution of the upper mantle structure beneath

East Asia, especially beneath the Tibetan plateau. Our results reveal that the

northeastward subducting Indian lithospheric mantle underlies only the western

portion of the Tibetan plateau, which implies that most of the Tibetan lithosphere

is of Asian origin (see Chapter 4 for a more detailed discussion). The oceanic

lithospheric slabs of the western Pacific Ocean and the Philippine Sea are very

well resolved, as is the "stagnant" slab in the mantle transition zone beneath the

Japan Sea, East China, and Yangtze Craton. In between these dynamics systems,

Precambrian continental roots beneath Ordos block and Sichuan Basin stand out

by higher than average P wavespeed to 250-300 km depth. These stable
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continental roots may form a transition in tectonic regime from subduction control

in the east and southeast to (continental) collision control in the west.

5.2 Data and Method

We combined the travel time data from the International Seismological Centre

(reprocessed by Engdahl, van der Hilst and Buland, 1998, hereinafter referred to

as EHB), the Chinese Seismic Network (CSN), and seismic arrays on the Tibetan

plateau. The station distribution of each dataset is shown in Figure 5-2. In

addition, we used the differential times of PP-P (Woodward and Master, 1991) to

add, globally, more constraints on upper mantle structure. We implemented an

adaptive parameterization, a crust correction, and 3-D sensitivity kernels to

analyze our travel time data. See Chapter 2 for a more detailed description of data

and methods.

5.3 Results

5.3.1 Checkerboard resolution tests

In order to assess the general resolution of our results, we performed

checkerboard tests at different depths for box sizes of 30x3' and compared them to

the previous resolution tests. The input structure of ±1.5% velocity variation

checkerboard (Figure 5-3.0) was used to compute synthetic travel times for each

depth at a time. These synthetic travel times were inverted using the same

inversion scheme and sampling as used in building the model from earthquake
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data. As expected, the full dataset resolves the input structure better than our

previous set of the Annual Bulletin Chinese Earthquakes (ABCE) and EHB

datasets (Figure 3-6). In particular in the shallow mantle, the input pattern is

resolved better under the mainland of China, especially around the Tibetan plateau

(Figure 5-3.1, 3.2; Figure 3-6.1, 6.2). This improvement comes mainly from the

dense data coverage provided by the Chinese Seismography Network (CSN) and

the Tibetan arrays (Figure 5-2). For larger depths, the input patterns are adequately

recovered under our regions of interest, such as the Tibetan plateau, the

Himalayas, East China, and the eastern margin of Eurasia plate (Figure 5-3.4-3.9).

5.3.2 Upper mantle structure beneath East Asia

We present the P-wave velocity variations by means of map views (Figure 5-4)

and vertical cross sections (Figure 5-5). The main faults, topographic relief,

tectonic units and major volcanic centers are shown for geological reference. The

major features of the model are described below.

The eastern margin of Eurasia: The most significant features along the

eastern margin of Eurasia are the high velocity anomalies associated with the

subducting Western Pacific and Philippine Sea slabs and the low velocity

anomalies beneath the associated back arc regions. From 100 km to 400 km in the

upper mantle, narrow fast structures along the Japan and Izu-Bonin trenches are

clearly visible (Figure 5-4(a)-(e); Figure 5-6(a)-(e), (l)-(n)). Another narrow fast

structure, which parallels the Ryukyu trench, is detected beneath the East China

Sea. (Figure 5-6(d)-(f), (i)-(k)). These structures are associated with the
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subduction of the western Pacific plate at the Japan and Izu-Bonin trenches and

the subduction of the Philippine plate from the Ryukyu trench, respectively. The

top of these fast structures are seismically active (Figure 5-6(a)-(f), (i)-(m)). In

map view, these fast structures are located further west with increasing depth and

extend to the mantle transition zone beneath the Japan Sea and East China Sea

(Structures TZ1 and TZ2 in Figure 5-4(f) and Figure 5-6(b)-(e), (j)-(1)).

Structures TZl and TZ2 in the mantle transition, interpreted as the stagnant slabs

due to the east-directed retreat of the Pacific and Philippine plates (e.g., Van der

Hilst et al., 1991; Fukao et al., 1992; Fukao et al., 2001), are visible as far west as

-120'E longitude (Figure 5-5(f); Figure 5-6(b), (c)). Low velocity anomalies are

dominant beneath the Japan Sea, East China and the northern corner of the

Philippine Sea in 100-400 km depth (structure S4 in Figure 5-4(b)-(d) and Figure

5-6(a)-(e), (1)). These slow structures are located just west of the west-dipping fast

velocity anomalies beneath the Japan, Izu-Bonin, and Ryukyu trenches (Figure 5-

4(b)-(d); Figure 5-6(b)-(e)).

TZ beneath Yangtze Craton: A large fast velocity area with a NE-SW trend

is dominant in the mantle transition zone beneath the Yangtze Craton (structure

TZ3 in Figure 5-4(f), (g); Figure 5-6(d)-(f), (g), (i)). This fast structure is detected

as the two separated parts below 600 km depth in the mantle transition zone

(Structure TZ3A and TZ3B in Figure 5-4(g), (h); Figure 5-6(e)). Structure TZ3B

extends as far west as -100 0E and connects with the fast structures in the lower

mantle beneath the Indo-China block (Figure 5-6(f)).
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Continental roots below Basins: The model reveals fast velocities beneath

some basins in East Asia, such as the Songliao, Huabei, Khorat, Ordos and

Sichuan basins (Figure 5-4(b)-(d)). Fast structure characterizes the western part of

the Songliao basin in northeast China, which is consistent with our previous study

(Li et al., 2006). Fast structure beneath the Huabei basin in East China becomes

gradually weaker with increasing depth (Figure 5-4(b)-(c)). Fast structures

beneath the Ordos block and the Sichuan Basin are pronounced down to 250-300

km depth (Figure 5-4(b)-(d); Figure 5-6(b)-(e); Figure 5-10). Pn wave studies of

the Ordos block and the Sichuan Basin show that the seismic velocity is high in

the uppermost mantle with little seismic anisotropy (Hearn et al., 2004; Liang et

al., 2004). The seismicity is very low and there are only a few large earthquakes.

These results suggest that the Ordos block and the Sichuan Basin are relatively

rigid and tectonically stable units.

Southwest China: The upper mantle beneath southwest China is characterized

by large low velocity anomalies. A pronounced slow structure is situated 100 km

depth beneath the Tengchong volcanic area (Structure SI in Figure 5-4(b) and

Figure 5-6(f)). Further southeast, another larger slow structure characterizes the

upper mantle to 300 km depth beneath region along the Red River fault (Structure

S2 in Figure 5-4(b)-(d) and Figure 5-6(g)). Beneath the South China Foldbelt,

slow velocity anomalies are visible from 200 km to 500 km depth (Structure S3 in

Figure 5-4(c)-(f) and Figure 5-6(e), (f), (h), (i)). High velocity anomalies dip from
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Burma to the east reach to the Tengchong volcanic area at depth larger 300 km

(Figure 5-4(c)-(e)).

The Tibetan plateau: At 60 km depth, P wavespeed is anomalously low

compared to global reference values because of the thick crust of the Tibetan

Plateau (Figure 5-4a). Low velocities are detected well below the crust, however,

and extend to at least 200 km depth beneath the plateau (Figure 5-4(b), (c)). In

contrast, wavespeed is high beneath the Himalayas and the western portion of the

plateau (Figure 5-4(b)-(d)). The latter was interpreted as the (sub-horizontal)

northward subduction of the Indian lithospheric mantle. The northern edge of this

fast velocity does not seem to extend to the Bangong-Nujiang suture zone

(-33°N), which places important constraints on how far north the Indian plate has

subducted beneath Tibet (see Chapter 4 for a more detailed discussion).

5.3.3 Resolution tests for stagnant slabs in the mantle transition zone

We have implemented resolution tests for the stagnant slabs in the mantle

transition zone. Here, we show two examples through the cross-section (b) and (e)

(upper parts in Figure 5-7 and Figure 5-8).

In Figure 5-7, the input pattern consists of 1.5% high velocity anomalies

confined to the range of the TZ1 structure in cross section (b). This test is designed

to evaluate the resolution in the TZ1 structure and if the TZ2 structure is a

smearing artifact. The synthetic data were calculated from the input model, and the

recovery model is shown in the lower part in Figure 5-7. Although some signals in

the western part are missed, the data can resolve most of the input pattern.
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Smearing across the box boundaries is small. This demonstrates that the TZ2

structure is not an artifact due to the high velocities of the TZ 1.

In Figure 5-8, the input signal comprises the mantle transition zone over almost

the entire width of the cross section (e). This test is designed to evaluate whether

the separated fast structures in the mantle transition zone (structures TZ1, TZ2,

and TZ3) result from incomplete sampling of a single TZ structure. The test shows

that the input pattern of a large fast structure can be well resolved and there are no

separated parts in the recovery model. Thus, the fast structures TZl, TZ2, TZ3A

and TZ3B do not come from a single large fast structure due to poor resolution of

a larger, laterally contiguous structure.

5.4 Discussion

5.4.1 Stagnant slabs in the mantle transition zone

Along the eastern margin of Eurasia, the Pacific and Philippine Sea plates are

subducting beneath East Asia, creating one of the largest trench-arc-back arc

systems on Earth (Figure 5-1). Many regional and global tomographic studies have

focused on the 3-D mantle structure of the western Pacific subduction zone and

have revealed the basic structure of the subducting slabs (e.g., van der Hilst et al.,

1991; Fukao et al., 1992; Zhao et al., 1994; Fukao et al., 2001). Compared to any

previous study, we have used denser data coverage and obtained clearer images of

the subducted slabs, especially beneath China.
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As in many previous studies, this study suggests that the subducted slabs of

Pacific and Phillipine sea plates are stagnant in the mantle transition zone beneath

Japan Sea, East China Sea and East China (e.g., van der Hilst et al., 1991; Fukao

et al., 1992), and perhaps over a larger region of the mantle transition zone than

previously thought. Only some sections (e.g., Figure 5-6 (1)) suggest a possible

connection with structure deeper in the lower mantle. Our model reveals several

separated parts of the stagnant slabs in the mantle transition (TZl, TZ2, and TZ3

in Figure 5-4(f)). The TZl is located beneath the Japan Sea and is parallel to the

Japan and Izu-Bonin trenches. The TZ2 is located beneath the Bohai and the

Yellow Sea and is west of the TZ1. The TZ3 is located beneath the Yangtze

Craton and could be separated into western and eastern parts (TZ3A and TZ3B in

Figure 5-4(g)). Resolution tests show that the separation of stagnant slabs in the

mantle transition zone is not due to the poor resolution (Figure 5-8).

The (lateral) discontinuous nature of slab fragments stagnant in the mantle

transition zone indicates that they might result from different periods of

subduction of the Pacific plate. In Figure 5-9, we show the reconstruction of arcs

in Southeast Asia since the Late Cretaceous by Honza and Fujioka (2004). The

Japan Trench retreated eastward over -3000 km since the Late Cretaceous

(-85Ma). The South China Trench gradually disappeared after the Earliest

Oligocene (-35Ma). Figure 5-10 illustrates the relationship between tomography

images at 500 km and 600 km depths and the South China Trench and Japan

Trench in the Late Cretaceous (-85Ma) and Earliest Eocene (-52Ma). These
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reconstructions suggest that structure TZ3B resulted from subduction at the South

China Trench in the Late Cretaceous (Figure 5-10(A)). In contrast, the TZ3A and

TZ2 may be related to the Japan Trench in the Earliest Eocene (Figure 5-10(B)).

These relationships suggest that the fast structures in the mantle transition zone

might have resulted from Eocene subduction at the South China and Japan

trenches, respectively. There are many uncertainties in plate reconstructions in

Southeast Asia. For example, results by Replumaz and Tapponnier (2003) suggest

little movement of the South China coast line over the Cenozoic. Therefore,

further investigation of the images of subducted slabs, such as quantification of

slab accumulation and slab sinking rate, would provide more constraints on the

evolution of arcs in East Asia. This is a topic of future research.

5.4.2 Slow structures in the upper mantle

This study reveals widespread low velocity anomalies in the upper mantle

beneath East Asia (Structure S1, S3, S3 and S4 in Figure 5-4(b)-(e)). Structure S1

is located at the uppermost mantle beneath the Tengchong Volcano and is, most

likely, related to subduction below the Burmese arc (Chapter 4). Structure S2 is

situated beneath an area along the Red River Fault zone down to 200 km depth.

Structure S3 is beneath the South China Foldbelt from 200 km to 500 km depths.

Structure S4 is beneath Japan Sea, southern Japan, and the northern Philippine Sea

and is parallel to the Pacific subduction from the Japan Trench and Izu-Bonin

Trench.
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The widespread slow structures may be important for our understanding of the

tectonic evolution of East Asia. For example, they may be related to the thinning

of the lithosphere under East China (Deng et al., 2000), Cenozoic extension in

North China (Zhang et al., 2003), active intraplate volcanism (such as Changbai,

Qiongbei and Datong volcanoes in Figure 5-4(c)), and high heat flow (Zang et al.,

2003). Although the mechanism of these slow structures is largely unknown, they

are more likely related to the subduction of the Pacific, Philippine Sea, and Indo-

Australia plates. One possible reason is the dehydration from stagnant slabs in the

mantle transition zone (Huang and Zhao, 2006). Another alternative is the

upwelling of hot mantle materials induced by the eastward rollback of Pacific and

Philippine Sea slabs. Further detailed investigation of these low velocity

anomalies would advance our understanding of the evolution of East Asia.

5.4.3 Stable units in the central East Asia: Sichuan and Ordos

In central East Asia, two regions are tectonically stable compared with the

surrounding areas: the Ordos block and the Sichuan Basin. The Ordos block is the

major Precambrian continental nucleus of the Sino-Korean Craton (Figure 5-1)

and it is surrounded by intensive intracontinental rifting and extension from the

Cenozoic. Changes in the direction of extensional stress around the Ordos block

show that the early Tertiary rifting phase east of the Ordos block was initiated by

westward subduction of the Pacific plate and that the Pliocene deformation in the

southwest of the Ordos block is mainly the consequence of late-stage India-

Eurasia convergence (Zhang et al., 2003). In the south, the Sichuan Basin is the
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Precambrian nucleus of the Yangtze Craton (Figure 5-1). The left-lateral strike-

slip Xianshuihe-Xiaojiang fault system is located in the southwest of the Sichuan

basin. Numerical modeling shows that the steep topography in the western

boundary of the Sichuan Basin has been generated due to the strong crust and

mantle of the Sichuan Basin during the eastward ductile flow of the lower crust in

the eastern Tibetan plateau (Clark and Royden, 2000). The Ordos block and the

Sichuan Basin are geographically located in East Asia between the subduction of

the western Pacific plate in the east and the Eurasia-India collision in the

southwest. Their geotectonic setting suggests that these ancient blocks play an

important role in the interaction between these two large-scale dynamics systems.

In our tomographic images, the Ordos block is characterized by fast velocity

anomalies in the upper mantle to 300 km depth (Figure 5-10(a)). Pronounced high

velocity anomalies are situated beneath the eastern part of Sichuan Basin down to

250-300 km depth (Figure 5-10(c)). This fast structure extends beyond the eastern

boundary of the Sichuan Basin and extends to the middle of Yangtze Craton

(-111 0E, Figure 5-7(b)). Low velocity anomalies are situated beneath the Qinling-

Dabie orogen between Ordos block and Yangtze Craton (Figure 5-7(d) and (e)).

The resolution test demonstrates that the fast structure beneath the Sichuan Basin

is not an artifact (Chapter 4, Figure 4-13). The two stable blocks may be composed

of rigid rock and thus have been less deformed under the compressional stress

regime caused by the India-Asia collision from the southwest. The seismicity west

of Ordos block and Sichuan Basin is very dense, whereas there are only a few
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earthquakes in the large area east of Ordos block and Sichuan Basin (Figure 3-2).

Therefore Ordos and Sichuan Basin could form a transitional boundary for the

tectonic regimes of these two dynamics systems. There are several interesting

questions about these stable blocks, such as how long do they remain stable? How

are they influenced by the India-Eurasia collision and the Pacific subduction?

These questions will be addressed in further studies.

5.5 Conclusions

East Asia is a tectonically diverse and active region. High resolution P-wave

tomography has revealed significant heterogeneity in the upper mantle under East

Asia. The main results of this study are:

a) The eastward retreating slabs of western Pacific and Phillipine plates are

deflected in the transition zone beneath Korea, the Japan Sea, and East China.

Some of Mesozoic subducted slabs have reached as far west as 110oE longitude

under the Yangtze Craton. Cenozoic extension, volcanic activity and high heat

flow in the eastern margin of Eurasia might be related to the upwelling mantle

materials induced by the eastward slab rollback and stagnant slabs in the mantle

transition zone.

b) Precambrian continental roots under Ordos block and Sichuan Basin, which

extend to about 300 km depth, may construct a boundary of transition in tectonic

regimes from the India-Eurasia collision controlling the southwest to Pacific,

Philippine Sea, and Java-Sumatra subductions controlling the east and southeast.
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Effect of the India-Eurasia collision on the tectonic evolution of East Asia might

be only confined to the Tibetan plateau and surrounding regions.
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Figure 5-1. The main tectonic elements in East Asia. The dashed red lines are
plate boundaries, according to NUVEL-1 (DeMets et al., 1990). The thick purple
lines denote main tectonic structures, where SB-Sichuan Basin, KB-Khorat Basin,
STB-Shan Thai Block, YB-Youjiang Block, JGB-Junggar Basin, SGF-Songpan
Ganzi Foldbelt (modified from Li, 1998 and Tapponnier et al., 2001). The red
triangles represent volcanoes. Black arrows depict the continent collision in the
west and slab rollback in the east and the southeast form a large scale clockwise
rotation in East Asia.
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Figure 5-2. Distribution of stations and earthquakes (black dots) in East Asia. Red
triangles depict the 1223 stations of the EHB in East Asia, of which about 20
stations are located in the mainland of China. Blue triangles represent about 100
stations of Annual Bulletin of Chinese Earthquakes (ABCE). Yellow squares are
about 1200 stations from Chinese Seismic Network (CSN). Magenta samples
represent stations from seismic arrays in the Tibetan plateau. From east to west,
starts - MIT-CIGMR array (2003-2004); diamond - Lehigh-CIGMR array (2003-
2004); inverse triangle - Sino-American array (1991-1993); dots - INDPEHT-II
(1994) and INDEPHT-III (1998-1999); squares - Himalayan Nepal Tibet array
(2001-2003).
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depth of each layer and the perturbation scale are shown on the left corner in each
subplot. White triangles represent the volcanoes in mainland of China (see Figure
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Figure 5-4. (continued)
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Figure 5-6. (Continued)
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Figure 5-6. (Continued)

182

h4k1
4'



-1% +1%

Figure 5-7. Recovery test for the Pacific slab beneath East China in the transition
zone.
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Figure 5-8. Recovery test for the Pacific slab beneath East China in the transition
zone.
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Figure 5-9. Reconstruction of Southeast Asia since the Late Cretaceous (Honza
and Fujioka, 2004).

185

80 E 100 20 1 2 160
N AN

BASIN H PACiFICN JAPAN
TRENCH

EURASIA

PLATE GH

S PLATE

3k A
20 A

N PALAWAN
SCHINA PARECE1 A
BASIN VELA

BASIN

wLUCCA
AZ'> BASIN

0 HSULA T HALMAHERA
TRENCH D

AWHALMAHERA

C A
INDIA-AUSTRALIA

PLATE
F MDDLE MIOCENE

(AHppmidI 1S M.)
40'S



Figure 5-10. The South China Trench and Japan Trench in the Late Cretaceous
(~-85Ma) and Earliest Eocene (-52Ma) with P-wave velocity perturbations at 500
km depth (A) and 600 km depth (B).
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Figure 5-11. High velocity anomalies under the Ordos block and Sichuan Basin.
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Chapter 6

Concluding remarks

6.1 Summary

The main objectives of the research presented in this thesis are twofold. The

first goal was to develop an approach toward multi-scale (travel time) tomographic

imaging of the lithosphere an underlying upper mantle that makes better use of a

priori information (such as crust structure), that can exploit new, unique data sets,

and that is flexible (with regard to addition of such data sets and the availability of

new crust models). The second goal was to use this improved capability to

construct high resolution 3-D models of mantle structure beneath East Asia and, in

particular, Tibet and surrounding regions.

Our approach to high resolution tomography is based on (i) the combined use

of a large range of different types of seismic data, both from global catalogs as

well as from provincial or temporary seismic networks, (ii) the use of approximate

finite frequency sensitivity kernels to account for differences in frequency content

and in measurement technique, (iii) the use of an irregular grid with cell-size

adapted to sampling density, and (iv) the use of a priori information, e.g., on

crustal structure from receiver function analysis.

189



Tomographic imaging of the upper mantle beneath the Tibetan Plateau and

East Asia at large has long been hindered by lack of data from seismograph

stations in the region. Therefore, an important motivation was to improve image

resolution by augmenting existing data sets with data that have hitherto been

unavailable for such research. For this effort I have used several unique data sets.

First, with automated procedures I picked the arrival time from temporary seismic

arrays on or near the Tibetan Plateau. Furthermore, through collaborating with

Chinese scientists, I have gained access to a wealth of teleseimic and regional data

recorded (since 1967) at -1200 stations of the Chinese Seismography Network

(CSN). With these unique data sets I have obtained a higher resolution model than

was previously available.

The large scale geological features and upper mantle structure of East Asia are

influenced by two large scale geodynamic systems: the eastward rollback of the

subducted slabs beneath the western Pacific and Philippine arcs in the east and the

India-Eurasia collision in the west. By delineating upper mantle structures and in

combination with results from other lines of research, our tomographic models

have provided key constraints on effects and relative roles of these geodynamic

systems. The major findings of this research are:

(1) Mantle structure associated with the Indian subduction varies considerably

along the strike of the collision zone. From west to east, the dip angle of Indian

subduction increases and the distance over which the plate underthrusts the
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Tibetan Plateau decreases. In the west, the Indian lithosphere subducts sub-

horizontally under the entire western plateau, to as far North as the western

margins of the Tarim Basin. In the east, the Indian plate underthrusts the

Himalayas and the Plateau as far North as the Bangong-Nujiang Suture (near

-33oN) and subducts steeper into the mantle to at least 400 km depth beneath the

plateau. Oblique subduction and changes of dip angle in the central part of the

collision zone may cause and determine the location of the north-south trending

normal faults in central Tibet.

(2) That - from west to east - the Indian plate underthrusts a smaller fraction of

the Tibetan Plateau implies that the lithosphere underlying the central and eastern

part of the Tibetan Plateau is of the Asian origin.

(3) Some high velocity materials are detected in the transition zone in the central

Himalayas (-850 E), which appear to connect with the Indian subducted lithosphere

in the upper mantle with the Mesozoic oceanic slabs in the lower mantle. In the

eastern and western Himalayas we do not detect such connections.

(4) At depth larger than 200 km, the subduction under Burma can be

distinguished from Indian subduction beneath the eastern Himalayas. A well

resolved low wavespeed anomaly beneath the Tengchong area suggests that

volcanic activity here is related to back arc processes associated with the Burma

subduction and not due to deep mantle processes. In contrast, the anomalously low

wavespeeds beneath the Red River Fault system extend much deeper into the
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upper mantle and seem more continuous with the slow mantle regions beneath

southeastern China and the South China Sea (including the Hainan island).

(5) The variability of the fast polarization directions across the Xianshuihe-

Xiaojiang fault system (XXFS), as inferred from shear wave splitting (Lev et al.,

2006), occurs above a mantle region with pronounced high velocity anomalies.

This suggest that upper mantle heterogeneity between the Sichuan Basin and the

Burma ranges causes (or, at least, contributes to) the observed complex anisotropy

pattern.

(6) The eastward retreating slabs of western Pacific and Phillipine plates are

deflected in the transition zone beneath the Korea, Japan Sea, and East China.

Some of Mesozoic subducted slabs have reached as far west as 110oE longitude

under the Yangtze Craton, which might have resulted from the Eocene subduction

at the South China and Japan trenches. Cenozoic extension, volcanic activity, as

well as high heat flow in East China might be related to the widespread low

velocity anomalies in the upper mantle induced by the eastward slab rollback of

Pacific and Philippine plates and the southward slab rollback of Indo-Australia

plate.

(7) Precambrian continental roots under Ordos block and Sichuan Basin, which

extend to 250-300 km depth, may form a transition in tectonic regime from the

continental collision control in the west to (oceanic) subduction control in the east

and southeast. Indeed, the (direct) influence of the India-Eurasia collision on the

tectonic evolution of East Asia may be confined to the Tibetan plateau and
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vicinity, whereas the stress field and (3-D) upper mantle processes associated with

subduction of lithosphere along (retreating) Pacific, Philippine Sea, Java-Sumatra

trenches may be prime drives of the tectonic development of SE Asia, including

Indochina.

6.2 Future work

A discrepancy remains between inferences about the upper mantle structure

beneath the Tibetan plateau either from shear (surface) wave tomography and P-

wave travel-time inversion (Chapter 4). In contrast to the surface wave models,

which suggest relatively fast S-wave propagation at 100-200 km depth beneath the

Plateau, we find that in this region the upper mantle is characterized by low P-

wave velocities. In the future, S-wave travel-time data from global (EHB) and

regional (CSN) catalogs can be used to provide more constraints on the shear

wave velocity beneath the Tibetan plateau. Further research is needed to determine

if this discrepancy is an artifact (for instance related to the differences in sampling

by and resolution of the data types used) or whether an anomalous P-S ratio is a

real feature of the Tibetan upper mantle, for which an explanation (for instance in

terms of temperature and composition) must be sought.

Tomographic inversion of the combined data sets has produced tantalizing

images of mantle structure beneath East Asia, but further study is needed to

understand the inferred mantle heterogeneity in terms of large scale geology and
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tectonics or, vice versa, to use the constraints on structure to overhaul or refine

models for the tectonic evolution of this large region over long periods of

geological time. For example, quantitative investigation of the fast structures in

the mantle transition zone under the Yangtze Craton (Chapter 5), in the context of

the regional geological and tectonic framework, could provide new constraints on

the evolution of subduction below and accretion to East Asia.

Finally, the newly developed methodology can be applied elsewhere, Whereas

our approach toward multi-scale (travel time) tomography was developed in the

context of MIT's long-term multi-disciplinary studies of Tibetan tectonics, it can,

of course, also be applied to improve upper mantle imaging elsewhere in the

world. Indeed, we have begun to apply it toward high resolution imaging of the

upper mantle beneath North America using USArray data (Burdick et al., 2007).

Reference:
Burdick S., Li C., Martynov V., Cox T., Eakins J., Astiz L., Vernon F.L., and van

der Hilst R. D., Travel time tomography with USArray data, EarthScope
Workshop, Monterey, CA, 27-30 March, 2007.

Lev, E., Long, M., and van der Hilst, R.D., 2006. Seismic Anisotropy in Eastern
Tibet from Shear-Wave Splitting Reveals Changes in Lithosphere
Deformation. Earth Planet. Sci. Lett., 251, 293-304.
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Appendixl: Tibetan Arrays

MIT-Chengdu Institute of Geology and Mineral Resource (CIGMR) array in

2003-2004; Lehigh-CIGMR array in 2003-2004; Himalayan Nepal Tibetan plateau

(HIMNT) array in 2001-2003; International Deep Profile of Tibet and the

Himalayas (INDPTH) II and III arrays in 1994 and 1997-1998; French and

Chinese array in 1991-1992.

a) Tibetan plateau Broadband Experiment, Nickname Tibetl991, network XC, 11

Broadband stations in [100.2E 88.9E 36.2N 29.2N], centered [93 33], from

1991/07/03 to 1992/07/01.

b) International Deep Profiles of Tibet and the Himalayas II, Nickname INDEPTH

II, network XR, 13 Broadband stations in [91.1E 89.1E 30.8N 27.7N], centered

[90 33], from 1994/05/28 to 1994/10/21.

c) International Deep Profiles of Tibet and the Himalayas III, Nickname

INDEPTH III, network XR, 49 Broadband stations in [91.7E 86.7E 33.8N 30.4N],

centered [90 33], two stations (LUMP and ST09) from 1997/07/11 to 1998/07/11

and 49 stations from 1998/07/12 to 1999/06/07.

d) Himalayan Nepal Tibet Experiment, Nickname HIMNT, network YL, 28

Broadband stations in [88.OE 85.2E 29.5N 26.4N], centered [87 28], from

2001/09/01 to 2003/05/01.

e) 2003MIT-China, Nickname 2003MIT-China, network YA, 25 Broadband

stations in [103.9E 99.6E 31.ON 24.2N], centered [102 28], from 2003/09/20 to

2004/09/19.

f) Namche Barwa Tibet, Nickname Namche Barwa Tibet, network XE, 48

Broadband stations in [91E 98.4E 28.9N 32N], centered [95 30], from 2003/07/15

to 2004/10/27.
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g) Nepal-Himalaya-Tibet Seismic Transect, Hi-CLIMB, network XF, 173

Broadband stations in [89.7E 83.5E 34.1N 27.ON], centered [87 31], from

2002/09/12 to 2002/12/18, and from 2003/05/01 to 2005/08/29, Data is restricted

now and didn't be used in this study.
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