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Two weakly singular forms of the hypersingular boundary integral
equation (HBIE) in three-dimensional potential theory are presented. The
hypersingular and singular integrals in the HBIE were regularized, either
over the entire boundary of the domain using a linear state representa-
tion of the density function, or locally in the vicinity of the source point,
expressing the added back terms as a combination of weakly singular geo-
metric curvature integrals , path integrals transformed by Stokes’ theorm
and differential solid angle integrals. A new computational strategy which
follows an external limit to the boundary of the domain is introduced for
the locally regularized boundary element method (BEM). With this ap-
proach, the free term is computed as part of the regularization and no
special treatment is required for corners and edges. The regularized inte-
grals and the added back terms are computed using numerical integration
schemes.

The weakly singular boundary integral forms were implemented for
two geometries, a tetrahedron obviously dominated by edges and corners
and a sphere chosen to demonstrate generality for arbitrary curved sur-
faces. The results show significant improvements in accuracy with every
p-version refinement. For a given element order the locally regularized
form is shown to be more accurate than the globally regularized form.



 



P -VERSION REFINEMENT STUDIES IN THE BOUNDARY

ELEMENT METHOD

A Dissertation

Presented to

the Faculty of the Graduate School

Tennessee Technological University

by

Sivakkumar Arjunon

In Partial Fulfillment

of the Requirements for the Degree

DOCTOR OF PHILOSOPHY

Engineering

May 2009



 
 
 
 

UMI Number: 3356389 
 
 
 
 
 
 
 

INFORMATION TO USERS 
 
 

The quality of this reproduction is dependent upon the quality of the copy 

submitted.  Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript  

and there are missing pages, these will be noted.  Also, if unauthorized  

copyright material had to be removed, a note will indicate the deletion. 

 
 
 
 
 

        ______________________________________________________________ 
 

UMI Microform 3356389 
Copyright 2009 by ProQuest LLC 

All rights reserved.  This microform edition is protected against  
unauthorized copying under Title 17, United States Code. 

        _______________________________________________________________ 
 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106-1346 

 



Copyright c© Sivakkumar Arjunon, 2009
All rights reserved

ii





DEDICATION

To Divya

iv



ACKNOWLEDGMENTS

“I feel a very unusual sensation - if it is not indigestion, I think it must be

gratitude” -Benjamin Disraeli

Little does chaos teach that all those seen, unseen and foreseen factors nonethe-

less do indeed work in tandem, I am thankful to the God Almighty for making me

see this wonderful tapestry that He indeed specially created for me. A lesson well

learnt, makes me appreciate life all the more. With a deep sense of gratitude and

immense pleasure I write this section to thank every single soul who have made this

thesis possible. Dr.Jospeph D. Richardson who picked this just another graduate

student from the corridors of Brown Hall and invited me to his office to talk about

this interesting project that he had. That day marked the beginning of seven years in

association with this great person, quite a long journey indeed, eventful I should say.

He introduced me to BEM and a lot of what I am today, I infact owe it to Joe. Thanks

for all the encouragement, support and the countless hours that have made this the-

sis a reality indeed. To my graduate advisory committee Dr.Deivanayagam, Dr.Hoy,

Dr.Wilson, Dr.Peddieson, Dr.Buchanan and Dr.Liu for all your valuable suggestions

and support. The Department of Mechanical Engineering which is really close to my

heart, for financially supporting my graduate study. I will not forget the days that

I spent in the labs of Brown Hall handling my courses. The CAE lab, Mike Renfro

v



vi

and Joel Seber for being so accessible and providing the computational support for

this thesis. I am grateful to the Graduate school and TTU for supporting me in each

and every single step of my graduate life in Cookeville. Last but not least, I would

like to remember the love and support of my family, for being there for me no matter

what, and it is to them I dedicate my thesis



TABLE OF CONTENTS

Page

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Chapter

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. FORMULATION AND APPROACH . . . . . . . . . . . . . . . . . . 3
2.1 Gradient BIE Formulation . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Special Interpretation of Integrals . . . . . . . . . . . . . . . 8
2.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Method of Fundamental Solutions . . . . . . . . . . . . . . . . . . 23

3. NUMERICAL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . 25
3.1 Higher Order Elements and Shape Functions . . . . . . . . . . . . 27
3.2 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Numerical Integration Rules for Triangles . . . . . . . . . . . . . . 32

4. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

vi



LIST OF TABLES

Table Page

3.1 p-version elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Higher order quadrature schemes. . . . . . . . . . . . . . . . . . . . . . . 34
3.3 1/r calculation over a triangle using class I and class II rules for various

locations of source point P . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 Temperature results on tetrahedron using globally regularized BEM. . . 40
4.2 Temperature results on tetrahedron using locally regularized BEM. . . . 41
4.3 Example 3: Flux values at (0,0,1). . . . . . . . . . . . . . . . . . . . . . 43

vii



LIST OF FIGURES

Figure Page

2.1 Domain with the boundary Γ and a sphere surrounding the source point
P: interior and boundary forms. . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 One-dimensional CPV integral. . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Discretized Boundary showing the local part of the boundary with source

point P at the junction of second and third element. . . . . . . . . . . . 13
2.4 Contours for various cases of elements sharing the source point P. . . . . 16
2.5 Tangent plane and normals associated with local regularization. . . . . . 16
2.6 Evaluation of Stokes and Differential solid angle terms over E1 and E2. . 19
3.1 Differential area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Node placement and numbering for quadratic, cubic, quartic elements. . 30
3.3 Mesh generation with cubic elements using ANSYS. . . . . . . . . . . . . 32
3.4 Development of a 2-D 12-point scheme from 2×2 schemes on quadrilaterals. 33
3.5 Development of a quadrature rule for cubic element for corner, side and

interior source point locations . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Boundary conditions on Tetrahedron. . . . . . . . . . . . . . . . . . . . . 38
4.2 Example 1: Temperature along one of the edges using different element

types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Example 1 : Temperature along one of the edges computed using a three

cubic elements and single octic element using globally regularized BEM. 40
4.4 Example 3: Flux variation on sphere from θ =0 to θ =90 on Y-Z plane . 43

viii



CHAPTER 1

INTRODUCTION

The boundary element method (BEM) has established itself as an effective

numerical method for solving engineering problems in potential theory, elasticity, and

acoustics. Some of the remarkable advantages of this method include reduction in the

dimensionality of the problem by at least one, efficient modeling of infinite domains

and accurate modeling of problems involving complex geometries and singularities.

The BEM has been implemented primarily using low order interpolations in

the past, with due consideration given to the treatment of singular integrals, as an-

alytic integration formulae for higher order elements become unavailable in closed

form. Unlike the Finite Element Method, which results in a sparse system matrix,

the BEM leads to dense system matrices so that using large numbers of elements

as in h-version refinement is inefficient. The primary focus of this research is to

advance the state of the art for higher order elements (p-version refinement) in the

BEM. The use of regularized algorithms allows numerical integration which in turn

can facilitate p-version refinement in the BEM. The p-version refinement can reduce

the system size for a given level of accuracy, reducing computational expense. It has

been observed for two-dimensional potential problems that, for a given system size,

errors may be reduced by five orders of magnitude [1]. It is also mentioned solely for
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reference that the dense nature of BEM systems has also spurred interest in various

fast summation methods (FSM) [20, 27, 31, 30, 11]. The regularization methods in

the current research target a simpler and more direct approach for computational

efficiency. This document presents an overview of regularized algorithms for a collo-

cation BEM as well as an overview of the method of fundamental solutions (MFS),

followed by numerical results for p-version collocation BEM.

Among the various regularization approaches [35], whole body regularization is

arguably the simplest for p-version BEM implementation [5, 19]. It has been observed

that regularization and p-version refinement share some mutual dependence for their

respective success [29]. The presented p-version algorithm differs significantly from

other p-version algorithms [15, 14, 33, 34, 26] in terms of its ease of implementation

for general problems with curved boundaries.

Many boundary element applications involve solutions of the standard bound-

ary integral equations (SBIEs). However, problems involving coincident surfaces such

as cracks and thin bodies in acoustic scattering problems show a degeneracy [9, 10].

For such problems it becomes necessary to solve the gradient boundary integral equa-

tions (GBIEs) and thus computational treatment of GBIEs involving hypersingular

integrals holds significance. A weakly singular gradient boundary integral equation

(BIE) formulation is therefore presented followed by a discussion of implementation

strategies.



CHAPTER 2

FORMULATION AND APPROACH

The BEM can show significant computational savings over the FEM because

of the inherent advantage in modeling only the boundary variables. The BEM is

based on the formulation of a differential equation as a singular integral equation

comprising the unknown boundary data. Laplace’s equation,

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
= 0 (2.1)

in three dimensions for a scalar potential φ may be transformed into an integral form

as briefly reviewed below.

2.1 Gradient BIE Formulation

Applying the divergence theorem to any two twice continuously differentiable

functions φ and ψ, over a domain Ω with a surface Γ, and integrating by parts gives

Green’s second identity,

∫
Ω

(φ∇2ψ − ψ∇2φ)dΩ =

∫
Γ

(φ
∂ψ

∂n
− ψ∂φ

∂n
)dΓ . (2.2)

3
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The key consideration in the development of the BEM is to introduce the fundamental

solution G into the second Green’s identity Eq. 2.2,

∫
Ω

(φ∇2G−G∇2φ)dΩ =

∫
Γ

(φ
∂G

∂n
−G∂φ

∂n
)dΓ . (2.3)

The fundamental solution G, also known as the free-space Green’s function,

to the Laplace’s equation satisfies

∇2G = −D(p,q), (2.4)

where D(p,q) is the Dirac delta function, p and q are referred to as the source and

field points, respectively. The important property of the Dirac delta function is that

its value is zero everywhere except at q = p so that the fundamental solution satisfies

Laplace’s equation in the region exterior to p. The fundamental solution of Laplace’s

equation in three dimensions is [16]

G(p,q) =
1

4π

[
1

r(p,q)

]
, (2.5)

where r(p,q) is the distance between p and q given by

r(p,q) =
√

(xp − xq)2 + (yp − yq)2 + (zp − zq)2 . (2.6)

Due to the singular nature of the fundamental solution, special consideration

has to be given to the integrals in the region of p. One approach is to surround p by
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p

Figure 2.1: Domain with the boundary Γ and a sphere surrounding the source point
P: interior and boundary forms.

a small sphere of radius ε and then to evaluate the expression in the limit as ε →0.

The region exterior to p is denoted as Ω−Ωε. In the domain Ω−Ωε, Eq. 2.3 becomes

∫
Ω−Ωε

(φ∇2G−G∇2φ)dA =

∫
Γ+Γε

(φ
∂G

∂n
−G∂φ

∂n
)dΓ . (2.7)

Since φ and G satisfy the Laplace equation in the region exterior to p, ∇2φ = ∇2G =

0, and Eq. 2.7 becomes

0 =

∫
Γ

(φ
∂G

∂n
−G∂φ

∂n
)dΓ +

∫
Γε

(φ
∂G

∂n
−G∂φ

∂n
)dΓ . (2.8)

The first term in the integral over Γε in Eq. 2.8, written for the specific case of a

sphere of radius ε, is regularized as follows:

∫
Γε

φ(Q)
∂G

∂n
dΓ =

∫
Γε

[φ(Q)− φ(p)]
∂G

∂n
dΓ + φ(p)

∫
Γε

∂G

∂n
dΓ. (2.9)
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Substituting dΓ = ε2dω, where dω is the differential solid angle, in Eq. 2.9 gives∫
Γε

φ(Q)
∂G

∂n
dΓ =

∫
Γε

[φ(Q)− φ(p)]
∂G

∂n
ε2dω + φ(p)

∫
Γε

1

4πε2
ε2dω. (2.10)

When [φ(Q)− φ(p)] is Hölder continuous such that

|φ(Q)− φ(p)| ≤ A|r(p→Q)|α (2.11)

where A and α are positive constants, the first integral on the right of Eq. 2.10

becomes 0 as ε→ 0, ∫
Γε

φ(Q)
∂G

∂n
dΓ = 0 + φ(p)(

4π

4π
) = φ(p). (2.12)

The second term in the integral over Γε in Eq. 2.8 becomes zero in the limit as ε→ 0

as shown below:

lim
ε→0

−
∫
Γε

G
∂φ

∂n
dΓ

 = lim
ε→0

−
4π∫

0

1

4πε

∂φ

∂n
ε2dω

 = 0 . (2.13)

Thus, the third Green’s identity written for interior points p is given as

φ(p) = −
∫
Γ

φ(Q)
dG(p,Q)

dn(Q)
dΓ(Q) +

∫
Γ

dφ(Q)

dn(Q)
GdΓ(Q) . (2.14)

It should be noted that the kernel in the first integral on the right-hand side of

Eq. 2.14,

dG

dn
=
−1

r2
(
dr

dn
) (2.15)

is O( 1
r2

) and is the differential negative of the solid angle subtended by the surface

at Q as seen from p.
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A square system of equations is typically generated in the BEM through a

series of boundary integral equations where p→ P on the boundary. The boundary

integral equation contains a singularity and thus requires special consideration. One

of several approaches is to intersect the boundary with the spherical exclusion region

as shown on the right of Fig. 2.1 and then to take the limit as ε→ 0. The standard

boundary integral equation is

cφ(P) +

∫
Γ

−φ(Q)
dG(P,Q)

dn
dΓ(Q) =

∫
Γ

dφ(Q)

dn
GdΓ(Q) . (2.16)

In Eq. 2.16, the value of c depends on the geometry and takes the value 1/2 for

smooth surface points. The single tick mark in the integral in Eq. 2.16 implies that

the integral is to be interpreted as a Cauchy Principal Value (CPV), as explained at

the end of this section.

The integral representation for the flux of potential is given by the gradient of

the third Green’s identity. Differentiating Eq. 2.14 with respect to the source point

coordinates p gives

dφ(p)

dxi(p)
=

∫
Γ

φ(Q)
d2G(p,Q)

dxi(Q)dn(Q)
dΓ(Q)−

∫
Γ

dφ(Q)

dn(Q)

dG(p,Q)

dxi(Q)
dΓ(Q) , (2.17)

where

dG(p,Q)

dx(p)
= −dG(p,Q)

dx(Q)
. (2.18)
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a bε

ε

q

−ε p

Figure 2.2: One-dimensional CPV integral.

Taking the limit to the boundary and then the inner product of the result with the

normal gives the gradient BIE,

dφ(P)

dn(P)
=

∫
Γ

= φ(Q)
d2G(P,Q)

dn(P)dn(Q)
dΓ(Q)−

∫
Γ

−dφ(Q)

dn(Q)

dG(P,Q)

dn(P)
dΓ(Q) . (2.19)

The double tick mark in Eq. 2.19 implies that the integral is to be interpreted as a

Hadamard finite part (HFP) [13]. A discussion of the HFP is also included at the

end of this chapter.

2.1.1 Special Interpretation of Integrals

A discussion of the special interpretations of integrals is given here. The CPV

of a one-dimensional integral arising from a two-dimensional problem for a function

φ is computed by splitting it into two integrals, one on either side of the exclusion
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region as shown in Fig. 2.2 as

b∫
a

− φ(q)

q − p
dq = lim

ε→0


p−ε∫
a

φ(q)

q − p
dq +

b∫
p+ε

φ(q)

q − p
dq

 . (2.20)

It is noted that the singular kernel in two-dimensional potential theory is O(1
r
) and

the hypersingular kernel is O( 1
r2

). Integrating the right side of Eq. 2.20 by parts gives

b∫
a

− φ(q)

q − p
dq = lim

ε→0

φ(q) ln |q − p|

∣∣∣∣∣
p−ε

a

−
p−ε∫
a

ln |q − p|dφ
dq

dq

+ φ(q) ln |(q − p)|

∣∣∣∣∣
b

p+ε

−
b∫

p+ε

ln |q − p|dφ
dq

dq


= lim

ε→0

{
ln |ε|[φ(p− ε)− φ(p + ε)]− φ(a) ln |a− p|

+φ(b) ln |b− p| −
p−ε∫
a

ln |q − p|dφ
dq

dq −
b∫

p+ε

ln |q − p|dφ
dq

dq

 .

(2.21)

The result is finite in the limit when the coefficient of ln |ε| in Eq. 2.21 is zero which

is the case when φ(q) ∈ C0,α. The contour integral over the arc of radius ε shown

in Fig. 2.2 gives rise to the free term coefficient in boundary integral formulations.

As noted earlier, the CPV shown in Eq. 2.20 exists only if φ(q) satisfies the Hölder

continuity condition given in Eq. 2.11.
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The HFP is formed by differentiating the CPV given in Eq. 2.20 in accordance

with Leibniz’ rule [25] as

d

dp


b∫

a

− φ(q)

q − p
dq = lim

ε→0


p−ε∫
a

φ(q)

q − p
dq +

b∫
p+ε

φ(q)

q − p
dq


 (2.22)

d

dp


b∫

a

− φ(q)

q − p
dq

 = lim
ε→0


p−ε∫
a

φ(q)

(q − p)2
dq − φ(p− ε)

p− ε− p

+

b∫
p+ε

φ(q)

(q − p)2
dq − φ(p + ε)

p + ε− p


Without loss of generality, p can be assumed to be zero, and hence the HFP of a

one-dimensional integral is given as [25]

b∫
a

=
φ(q)

q2
dq = lim

ε→0


−ε∫
a

φ(q)

q2
dq +

b∫
ε

φ(q)

q2
dq − 2φ(0)

ε

 . (2.23)

The integrals on the right of Eq. 2.23, can be integrated by parts twice to give

b∫
a

=
φ(q)

q2
dq =

[
−φ(−ε)
−ε

+
φ(a)

a

]

+

 [φ′(−ε) ln |ε| − φ′(a) ln |a|]−
−ε∫
a

ln |q|φ′′(q)dq


+

[
−φ(b)

b
+
φ(ε)

ε

]

+

 [φ′(b) ln |b| − φ′(ε) ln |ε|]−
b∫
ε

ln |q|φ′′(q)dq

 − 2φ(0)

ε
.

(2.24)
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The terms in Eq. 2.24 can be rearranged as

b∫
a

=
φ(q)

q2
dq =

{
φ(−ε)
ε

+
φ(ε)

ε
− 2φ(0)

ε

}
︸ ︷︷ ︸

=0 for φ∈C0,α

+ ln |ε| [φ′(−ε)− φ′(ε)]︸ ︷︷ ︸
=0 for φ∈C1,α

− ln |a|φ′(a) + ln |b|φ′(b) +
φ(a)

a
− φ(b)

b

−
−ε∫
a

ln(q)φ′′(q)dq −
b∫
ε

ln(q)φ′′(q)dq. (2.25)

As seen in the first line of Eq. 2.25, the HFP is bounded when the density φ(q) is

C1,α.

There has been some concern among BEM researchers regarding the smooth-

ness requirements of density functions in the hypersingular integrals, many of which

stem from concerns over spurious results. The validity of using C0 elements (piece-

wise C1 elements) has been questioned, based on the argument that the underlying

density function in hypersingular integrals should be at least C1,α continuous [12] for

the hypersingular integrals to exist. However, the likely source of spurious results

is discussed in [5, 23, 28] along with the notion of relaxed regularization which has

gained some acceptance. It has been established through some successful convergence

studies [29, 28, 4] that conforming C0 boundary elements will produce very accurate

numerical results when properly employed. It is noted that regularization, or any

collocation method, for that matter, will fail at points where the boundary flux is

singular. The proposed relaxation strategy may not be used for problems with sin-
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gular surface gradients, though the need to attempt to model a singular surface flux

is rare.

The following section discusses the use of regularization in order to facilitate

the computational treatment of boundary integral equations .

2.2 Regularization

Regularization, in general, involves singularity reduction through the subtrac-

tion of some series expansion. The standard BIE can be regularized by subtracting

φ(P) from the integrand with the strongly singular kernel. The gradient integral

equation can be regularized by subtracting the first two terms of a Taylor series ex-

pansion of the density φ taken around P from the integrand of the integral with

the hypersingular kernel. The terms added back may be computed either indirectly

through comparison with simple solutions [32, 21] or through some computational

approach, often based on Stokes’ theorem [6]. Regularization for the gradient equa-

tion can be based on a linear state solution for the unknown field. The linear state

is given by

φL(p,Q) = φ(p) + φ,i(p)[xi(Q)− xi(p)] . (2.26)

The following relations

φ(P)

∫
Γ

d2G(P,Q)

dn(P)dn(Q)
dΓ(Q) = 0, (2.27)
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P

E1

E2

E3

E4

Γloc

Figure 2.3: Discretized Boundary showing the local part of the boundary with source
point P at the junction of second and third element.

dφ(P)

dn(P)
=

∫
Γ

= φL(P,Q)
d2G(P,Q)

dn(P)dn(Q)
dΓ(Q)−

∫
Γ

−dφL(Q)

dn(Q)

dG(P,Q)

dn(P)
dΓ(Q) (2.28)

hold true for a closed domain, considering that a constant potential and linear vari-

ation in potential are solutions to Laplace’s equation. Subtracting Eq. 2.28 from

Eq. 2.19 gives the regularized form as

0 = −
∫
Γ

[
φ(Q)− φL(P,Q)

] d2G(P,Q)

dn(P)dn(Q)
dΓ(Q)

+

∫
Γ

[
dφ(Q)

dn(Q)
− dφL(Q)

dn(Q)

]
dG(P,Q)

dn(P)
dΓ(Q) . (2.29)

In Eq. 2.29 the term [φ(Q)− φL(P,Q)] is O(r2) and the term [dφ(Q)
dn(Q)

− dφL(Q)
dn(Q)

] is O(r)

for continuous flux so that the integrals are, at most, weakly singular.

The BIEs can also be regularized by a localized approach using tangent plane

regularization as shown below. The gradient BIE shown in indicial notation is

Fφ,i(p)ni(P) = ni(P)

∫
Γ

φ(Q)G,ji nj(Q)d(Q)dΓ(P)

−ni(P)

∫
Γ

dφ

dn
(Q)G,i dΓ(Q)dΓ(P), (2.30)
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where F =0 for exterior problems, F = 1 for interior problems, and F = 1/2 for

(p = P) on smooth boundaries. Considering the boundary as Γ = Γloc + Γnon−loc,

Eq. 2.30 can be written as

Fφ,i(P)ni(P) = ni(P)

∫
Γnon−loc

φ(Q)G,ji nj(Q)d(Q)dΓ(P)

+ni(P)

∫
Γloc

φ(Q)G,ji nj(Q)d(Q)dΓ(P)

−ni(P)

∫
Γnon−loc

dφ

dn
(Q)G,i dΓ(Q)dΓ(P)

−ni(P)

∫
Γloc

dφ

dn
(Q)G,i dΓ(Q)dΓ(P).

(2.31)

Regularizing the integrals over Γloc in Eq. 2.31,

Fφ,i(P)ni(P) = ni(P)

∫
Γnon−loc

φ(Q)G,ji nj(Q)d(Q)dΓ(P)

−ni(P)

∫
Γnon−loc

dφ

dn
(Q)G,i dΓ(Q)dΓ(P)

+ni(P)

∫
Γloc

[φ(Q)− φ(P)− φ,α(P)ξα]G,ji nj(Q)dΓ(Q)dΓ(P)

︸ ︷︷ ︸
Weakly Singular

+ ni(P)φ(P)

∫
Γloc

G,ji nj(Q)dΓ(Q)

︸ ︷︷ ︸
Ai
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+ni(P)φ,α(P)

∫
Γloc

ξαG,ji nj(Q)dΓ

︸ ︷︷ ︸
Biα

− ni(P)

∫
Γloc

[
dφ

dn
(Q)− dφ

dn
(P)

]
G,i dΓ(Q)

︸ ︷︷ ︸
Weakly Singular

−ni(P)
dφ

dn
(P)

∫
Γloc

G,i dΓ(Q)

︸ ︷︷ ︸
Ci

. (2.32)

The term Ai may be expanded as shown below:

Ai =

∫
Γloc

G,ji nj(Q)dΓ(Q) =

∫
Γloc

[(G,j) ,i nj(Q)− (G,j) ,j ni(Q)] dΓ(Q)

︸ ︷︷ ︸
A1i

+

∫
Γloc

∇2GnidΓ(Q)

︸ ︷︷ ︸
=0

.

(2.33)

The integral A1i can be computed using Stoke’s theorem as

Ai = A1i = εmji

∮
G,j dxm (2.34)

where the contour of integration is chosen to avoid the singularity as shown in Figure

2.4.

The normals in terms of the tangent plane coordinates ξα, ξβ, X3 may be writ-

ten as

ni(Q) = n3(Q)δi3 + nβ(Q)δβi (2.35)
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P inside an element P shared by two elements P shared by more than two
elements

Figure 2.4: Contours for various cases of elements sharing the source point P.

P Q

ξ̂β

ξ̂α

X̂3

~r
n̂β

n̂α

n̂Q
n̂P

n̂3

Figure 2.5: Tangent plane and normals associated with local regularization.

where the sum on β is over 1 and 2. As Q approaces P, nβ tends to zero as r2 and

n3 tends to one as shown in Figure 2.5.
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The term Biα from Eq. 2.32 may be written as follows:

Biα =

∫
Γloc

ξαG,ji nj(Q)dΓ(Q) =

∫
Γloc

[ξαG,j ] ,i nj(Q)dΓ(Q)−
∫

Γloc

ξα,iGjnjdΓ(Q)

=

∫
Γloc

[(ξαG,j ) ,i nj(Q)− (ξαG,j ) ,j ni(Q)] dΓ(Q)

︸ ︷︷ ︸
B1iα

+

∫
Γloc

(ξαG,j ) ,j ni(Q)dΓ(Q)

︸ ︷︷ ︸
B2iα

−
∫

Γloc

ξα,iGjnjdΓ(Q)

︸ ︷︷ ︸
B3iα

.

(2.36)

The various terms may be treated as

B1iα = εmji

∮
Γloc

ξαG,j dxm

B2iα = δαj

∫
Γloc

G,j nidΓ +

∫
Γloc

ξα∇2Gni(Q)dΓ

︸ ︷︷ ︸
=0

=

∫
Γloc

G,α nidΓ

=

∫
Γloc

(G,α ni −G,i nα) dΓ +

∫
Γloc

G,i nαdΓ

= εmiα

∮
Γloc

Gdxm +

∫
Γloc

G,i nαdΓ

︸ ︷︷ ︸
B2aiαWeakly Singular
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B3iα = −δαi
∫

Γloc

dG

dn
dΓ.

(2.37)

The term Ci may be expanded as

Ci =

∫
Γloc

G,i dΓ(Q)

=

∫
Γloc

G,i [1− n3(Q)]dΓ(Q)︸ ︷︷ ︸
Weakly Singular

+

∫
Γloc

n3(Q)G,i−ni(Q)G,3 dΓ(Q)︸ ︷︷ ︸
C1i

+

∫
Γloc

G,3 nα(Q)δiαdΓ(Q)︸ ︷︷ ︸
Weakly Singular

+ δi3

∫
Γloc

dG

dn
dΓ(Q)︸ ︷︷ ︸

C2i

−δi3
∫

Γloc

G,α nα(Q)dΓ(Q)︸ ︷︷ ︸
Weakly Singular

where

C1i = εmi3

∮
Γloc

Gdxm .

The Stokes’ integral
∮

Γloc

Gdxm found in B2iα and C1i cannot be computed directly

when the source point is on the boundary of the integration region. It will be shown

that B2iα and C1i may be combined along with their corresponding coefficients into

a single term S and evaluated over the local elements as explained below. The case

of a source node P on an edge is shown in Fig. 2.6. One may define φ1
,α(P) as the

gradient of φ associated with E1 and dφ
dn

1
(P) as the normal derivative associated with
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ΓE1
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Figure 2.6: Evaluation of Stokes and Differential solid angle terms over E1 and E2.

E1. For the expressions on E1 one has

S1 = εmiαn
(avg)
i (P)φ1

,α(P)

∮
ΓE1

Gdxm + εmi3
dφ

dn

1

(P)n
(avg)
i (P)

∮
ΓE1

Gdxm

= n
(avg)
i (P)

[
εmiαφ

1
,α(P) + εmi3

dφ

dn

1

(P)

] ∮
ΓE1

Gdxm . (2.38)

Writing dφ
dn

1
(P) as φ1

,3n
1
3 which is same as φ1

,3,

S1 = n
(avg)
i (P)

[
εmiαφ

1
,α(P) + εmi3φ

1
,3(P)

] ∮
ΓE1

Gdxm

= n
(avg)
i (P)εmijφ

1
,j(P)

∮
ΓE1

Gdxm

=
[
n̂(avg)(P)× ~∇φ

]
.

∮
ΓE1

Gdx. (2.39)
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Similarly, for E2,

S2 =
[
n̂(avg)(P)× ~∇φ

]
.

∮
ΓE2

Gdx. (2.40)

It should be noted that, for the case of φ ∈ C1, ~∇φ is continuous on both contours.

Therefore, the contributions on the common edge ΓE1 and ΓE2 will cancel due to

the reversal of the direction of the path integration on the two contours as shown in

Fig. 2.4. Though this has been shown for an edge for the present case, the results

are similarly valid for corners. Since the contributions from the common edge cancel,

the effective path of integration around the the individual areas E1 and E2 may be

replaced by the contour around the combined area of E1 + E2 which excludes the

common edge. Since P is interior to the combined area, there is no singularity on

the contour and the integral may be computed by numerical integration, combining

S1 and S2 according to

S = S1 + S2

=
[
n̂(avg)(P)× ~∇φ

]
.

∮
Γ(E1+E2)

Gdx. (2.41)

As previously mentioned, dG
dn

is O( 1
r2

). Various possibilities exist [22] for com-

puting the differential solid angle term
∫

dG
dn

dΓ found in B3iα and C2i. It will be

shown that the differential solid angle integrals may be combined in a manner sim-

ilar to the treatment of the contour integrals. Denoting the differential solid angle

integral on E1 as Θ1 and considering, for present, P as external to the domain, one
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has Eqn. 2.42,

Θ1 = δαin
(avg)
i (P)φ1

,α(P)

∫
ΓE1

dG

dn
dΓ + δi3n

(avg)
i (P)

dφ

dn

1

(P)

∫
ΓE1

dG

dn
dΓ(Q)

= n1
α(P)φ1

,α(P)

∫
ΓE1

dG

dn
dΓ + φ1

,3(P)n1
3

∫
ΓE1

dG

dn
dΓ(Q)

= n1
α(P)

[
φ1
,α(P) + φ1

,3(P)
] ∫

ΓE1

dG

dn
dΓ(Q)

=
[
n̂1
α(P) .~∇φ

] ∫
ΓE1

dG

dn
dΓ(Q)

where the averaged normal is written in the local coordinate system and dφ
dn

1
has been

written as φ1
3.

Similarly, one may express the differential solid angle integral on E2 as

Θ2 =
[
n̂2
α(P) . ~∇φ

] ∫
ΓE2

dG

dn
dΓ(Q) .

The motivation to combine these terms stems from the difficulty in computing each

as P approaches an edge or corner. As before, when φ ∈ C1 the gradient of φ is

continuous and the integrals Θ1 and Θ2 have the same coefficients and therefore be

combined

Θ = Θ1 + Θ2

=
[
n̂(avg)(P) . ~∇φ

]
.

∫
Γ(E1+E2)

dG

dn
dΓ(Q) . (2.42)

The differential solid angle integrals over a boundary show a discontinuity when P

approaches that boundary. The discontinuity is the source of the well-known jump



22

in the free term coefficient in BIEs. It is common in BEM formulations to embed

the jump term in the free term coefficient, resulting in a complicated interpretation

of differential solid angle integrals. The perspective taken in the present limit to the

boundary is based on an external representation where the free term is zero. The

approach taken is to let the jump term in the differential solid angle integral as P

approaches the boundary annihilate the jump term in the free term coefficient and

consider the smooth part of the differential solid angle integral. The smooth part

integrates to zero over a closed surface so the integral on the local elements equals

the negative of the integral on the non-local elements,

Θ = −
[
n̂(avg)(P) . ~∇φ

]
.

∫
Γ−Γ(E1+E2)

dG

dn
dΓ(Q) . (2.43)

It is worth noting that the fictitious enclosure method could also be employed, though

this has not been employed in the present case.

In summary, the singular integrals appearing in the BIEs can be regularized;

the resulting integrals added back can be decomposed into either contour integrals

using Stokes’ theorem or weakly singular integrals involving surface curvature or non-
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singular integrals involving differential solid angles.

0 = ni(P)

∫
Γnon−loc

φ(Q)G,ji nj(Q)d(Q)dΓ(P)

−ni(P)

∫
Γnon−loc

dφ

dn
(Q)G,i dΓ(Q)dΓ(P)

+ni(P)

∫
Γloc

[φ(Q)− φ(P)− φ,α(P)ξα]G,ji nj(Q)dΓ(Q)dΓ(P)

︸ ︷︷ ︸
Weakly Singular

− ni(P)

∫
Γloc

[
dφ

dn
(Q)− dφ

dn
(P)

]
G,i dΓ(Q)

︸ ︷︷ ︸
Weakly Singular

+ ni(P)φ(P) [A1i] + ni(P)φ,α(P) [B1iα +B2aiα +B3iα]︸ ︷︷ ︸
Weakly Singular

−ni(P)
dφ

dn
(P) [curvature terms]︸ ︷︷ ︸
Weakly Singular

+
[
n̂(P)× ~∇φ

]
.

∮
Γloc

Gdx−
[
n̂(P) . ~∇φ

]
.

∫
Γ−Γloc

dG

dn
dΓ(Q) .

In this fashion, the integrals in the BIEs may all be computed exclusively using

numerical integration.

2.3 Method of Fundamental Solutions

The method of fundamental solutions (MFS) is a class of approaches for bound-

ary value problems for which a free-space Green’s function is known. The formulation

of the MFS was first proposed by Kupradze [17]. In its various implementations, the

MFS avoids the singularity in the integral equations by locating the source points
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outside the problem domain and building a linear system from the exterior forms

of the integral identities [7]. This is equivalent to using an auxiliary boundary as

done in [37]. In the current implementation, the location of external source points is

investigated and a square system of linear equations is obtained by writing the exter-

nal identity at different locations. It is reported that the disadvantages of the MFS

may include ill-conditioned systems and reduced accuracy in comparison to the BEM

[8, 38]. This reduction in accuracy may possibly be attributed to the approximations

in the calculation of integrals which are nearly singular when the source points are

close to the boundary. On the other hand, a possible reason for ill-conditioned sys-

tems may be due to the fact that the system of equations appears to be not linearly

independent at some level of finite precision when the source points are too far from

the boundary. Though the focus of the current work is the BEM, the developed al-

gorithms can be used for MFS as well, by choosing an optimal placement of source

points external to the domain.



CHAPTER 3

NUMERICAL IMPLEMENTATION

This chapter discusses the various aspects involved in numerical implementa-

tion of globally and locally regularized boundary integral formulations as discussed in

Chapter 2. The numerical implementation follows the collocation procedure wherein

the source point is placed at every boundary node.

In the BEM, in general, an isoparametric representation is typically taken for

both the potential φ and its flux ∂φ
∂n

,

φ(Q) ≈ φ(ξ, η) =
M∑
i=1

Ni(ξ, η)φi (3.1)

∂φ(Q)

∂n
≈ ∂φ(ξ, η)

∂n
=

M∑
i=1

Ni(ξ, η)
∂φ

∂n

i

(3.2)

xk(Q) ≈ xk(ξ, η) =
M∑
i=1

Ni(ξ, η)xik, (3.3)

where the functions Nj(ξ, η) are the polynomial interpolation (shape) function, ξ and

η are the elemental intrinsic coordinates, and M is the number of nodes on each

element. Numerical integration is performed over the boundary following the trans-

formation to intrinsic coordinates. The integrands contain the Jacobian as part of

this transformation from the physical coordinates. The Jacobian, in three dimen-

sions, is obtained by the ratio of differential elemental area in the physical space dA

25
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Figure 3.1: Differential area.

to the differential area of the element in the intrinsic space dA. A differential area is

given by the vector product of two differential vectors in the tangent plane as shown

in Fig. 3.1. Taking

~r(ξ, η) = x(ξ, η)̂i+ y(ξ, η)ĵ + z(ξ, η)k̂ , (3.4)

d ~A =
∂~r

∂ξ
dξ × ∂~r

∂η
dη = (~r,ξ × ~r,η)dξdη . (3.5)

Writing dA=J dA, it is seen that

J(ξ, η) = |~r,ξ × ~r,η|. (3.6)

In the linear state expression Eq. 2.26, the gradient of the unknown potential

is needed in the global coordinate system. This is readily obtained through inversion

of the following system. 

dφ
dξ

dφ
dη

dφ
dn


=


dx
dξ

dy
dξ

dz
dξ

dx
dη

dy
dη

dz
dη

nx ny nz





dφ
dx

dφ
dy

dφ
dz


.
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3.1 Higher Order Elements and Shape Functions

This section explains the steps followed in the development of the shape func-

tions associated with higher order elements as shown in [2], taking the simple case of

a cubic element as an example. Triangular elements were chosen instead of quadri-

lateral elements based on their advantage for meshing curved surfaces. A quadratic

triangular element has six nodes, three of which are corner nodes and three of which

are midside nodes. A cubic element has ten nodes with one interior node at the cen-

troid of the element. An interpolation function to represent the unknown function φ

is given by

φ = C1 + C2ξ + C3η + C4ξ
2 + C5ξη + C6η

2 + C7ξ
3 + C8ξ

2η + C9ξη
2 + C10η

3. (3.7)

It should be noted that the interpolation function should be a complete polynomial

represented by the Pascal’s triangle as shown in Eq. 3.8. For example, the cubic
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element should contain all linear, quadratic, and cubic coordinate terms.

1

ξ η

ξ2 ξη η2 −→ quadratic ↑ (6 terms)

ξ3 ξ2η ξη2 η3 −→ cubic ↑ (10 terms)

ξ4 ξ3η ξ2η2 ξη3 η4 −→ quartic ↑ (15 terms)

ξ5 ξ4η ξ3η2 ξ2η3 ξη4 η5 −→ quintic ↑ (21 terms)

ξ6 ξ5η ξ4η2 ξ3η3 ξ2η4 ξη5 η6 −→ sextic ↑ (28 terms)

The various constants may be written as a vector to give

φ =
[
1 ξ η ξ2 ξη η2 ξ3 ξ2η ξη2 η3

]



C1

C2

C3

C4

C5

C6

C7

C8

C9

C10



(3.8)

= [PT ]{C}.

Writing this for the ith node on an element and organizing a system of equations

(10×10 for the cubic element) gives

φi = C1 + C2ξi + C3ηi + C4ξ
2
i + C5ξiηi + C6η

2
i + C7ξ

3
i + C8ξ

2
i ηi + C9ξiη

2
i + C10η

3
i ,
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which is written in matrix form as

{φ} = [X]{C} (3.9)

where [X] is a matrix involving polynomial expressions of the coordinates of nodal

locations. The previous expression may be inverted to give

{C} = [X]−1{φ}. (3.10)

Substituting Eq. 3.10 into Eq. 3.9, gives

φ = [PT ][X]−1{φ}

= [N ]{φ} (3.11)

where [N ] is the vector of shape functions. Computing [PT ][X]−1 using a symbolic

processor, a few of the shape functions for the cubic case are given as

N1 = 1− 5.5ξ − 5.5η + 9ξ2 + 18ξη + 9η2 − 4.5ξ3

−13.5ξ2η − 13.5ξη2 − 4.5η3

N2 = 9ξ − 22.5ξη + 27ξ2η + 13.5ξη2 − 22.5ξ2 + 13.5ξ3

...

N10 = 27ξη − 27ξ2η − 27ξη2.

The general methodology can be extended for deriving shape functions of any order.
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Figure 3.2: Node placement and numbering for quadratic, cubic, quartic elements.

This method for the development of shape functions leads to increasingly large

systems for increasing element orders. However, the availability of symbolic compu-

tational tools makes the implementation tractable. The symbolic processor used in

this work was Maple R© which can output code in several programming languages

including Fortran. One needs to have only the polynomial vector [PT ] and the nodal

locations matrix [X] of a particular order to derive the corresponding shape functions.

The node numbering sequence and the node placement, shown in Figure 3.2

for the quadratic, cubic, and quartic elements, can be arbitrary. However for the

sake of simplicity, the node placement has been chosen to follow a pattern of similar

triangles. Though it is possible to derive shape functions for an element of any order,

for the current study only the elements shown in Table 3.1 have been formulated. It

is also noted that numerical results are presented only for cubic, quartic, sextic, and
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Table 3.1: p-version elements.

Element No. of nodes
Quadratic 6

Cubic 10
Quartic 15
Sextic 28
Octic 45

9th order 55
12th order 91
16th order 153

octic element types. Motivation for the choice of these elements stemmed from the

fact that the mesh generation technique described in the next section required prime

factors of two and three due to constraints in the meshing software.

3.2 Mesh Generation

The lack of higher order elements in the element library of commercial mesh-

ers makes discretization of the model geometry using p-version elements a challenging

task. In the current study, the test geometry was meshed with higher order elements

using some macros written for the commercial finite element software ANSYS. The

element refinement capabilities of the software was used to generate elements of vari-

ous orders. The geometry was first modeled using 3-noded linear triangular elements

and then successively refined to generate nodes in the same pattern as that of the

standard p-version elements formulated in the previous section, and shown for a cu-
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one 10−noded cubic
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Figure 3.3: Mesh generation with cubic elements using ANSYS.

bic case in Figure 3.3. As previously mentioned, the refinement selections available

in ANSYS limit the present consideration to elements of orders of prime factors of

two and three. The current approach works well for flat surfaces and the area of a

tetrahedron intercepting coordinate axes at one was calculated to fifteen significant

figures of accuracy using cubic, quartic, sextic, octic, and 9th order elements. How-

ever, this approach generates some distortion while meshing curved boundaries. The

optimal node placement on curved geometries is an ongoing task outside the scope

of the present effort.

3.3 Numerical Integration Rules for Triangles

The presence of integrals which have kernels of reciprocal powers in |r(p,q)|

in conjunction with systems which are not particularly well-conditioned requires ac-
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Figure 3.4: Development of a 2-D 12-point scheme from 2× 2 schemes on quadrilat-
erals.

curate integration schemes. Since numerical integration will be used in the proposed

algorithms, the effort was focused on developing much higher order Gaussian quadra-

ture schemes than those commonly used. Cowper [3] has provided quadrature for-

mulae for symmetrically placed points, though this approach cannot be extended to

very high orders of integration since the equations for the sampling point locations

and weights are nonlinear and cannot be solved easily. Lynnes and Jesperson [24]

have listed rules using polar coordinates, that can integrate any polynomial of degree

eleven, while Laursen and Gellert [18] have suggested symmetric integration formulae

of tenth degree precision. Even though specific transformation formulae are available

to integrate specific weakly singular integrals, [36, 39] for the sake of simplicity, in

the current work two classes of higher order Gaussian quadrature schemes for a tri-

angle with vertex coordinates (0,0), (0,1), (1,0) were developed. The first class of

quadrature rules were developed by first considering an N×N scheme on multiple

quadrilateral regions and then mapping these quadrilaterals to the triangle. The
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Table 3.2: Higher order quadrature schemes.

N× N scheme 3 quads 5 quads
2× 2 12 20

...
...

...
10× 10 300 500
12× 12 432 720
14× 14 588 980
16× 16 768 1280
18× 18 588 1620
20× 20 1200 2000
32× 32 3072 5120
64× 64 12288 20480
96× 96 27648 46080

number of points in the quadrature scheme depends on the number of quadrilaterals

mapped onto the triangle and the order of integration on each quadrilateral. The var-

ious schemes are shown in Table 3.2. For example, when the triangle is sub-divided

into five quadrilaterals, each with an 8×8 rule, a 320 point (8×8×5) rule is obtained

for the triangle. This 320 point rule can be applied to evaluate an integral of any

function f(ξ, η) over the triangle as

∫
∆

f(ξ, η)dξdη ≈
5∑
i=1

8∑
j=1

8∑
k=1

f i(αij, β
i
k)J

i(αij, β
i
k)wjwk =

320∑
l=1

f(αl, βl)Wl . (3.12)

where Wl = J i(αij, β
i
k)wjwk. It is noted that α and β are taken from sampling the

one-dimensional Gaussian quadrature and J is the Jacobian of the transformation of

the quadrilaterals from their orientation on the triangle. A list of some of the schemes

generated is shown in Table 3.2.



35

P P

P

Figure 3.5: Development of a quadrature rule for cubic element for corner, side and
interior source point locations

These first class of integration routines, though effective when used with the

method of fundamental solutions, was not very accurate when it came to calculat-

ing the integrals with kernels involving inverse powers of |r(p,q)| in the boundary

element method. This was evident when these integration rules were used to inte-

grate 1/r(p,q) over a triangular region 3.3. This necessitated the development of

the second class of quadrature rules. In the second class of quadrature rules, sepa-

rate schemes were developed for each element type. For example, a cubic model has

an exclusive quadrature rule with a separate set of abscissas and weights for each

of the ten nodes. Similarly, quartic elements have separate schemes for each of the

fifteen nodes. The basic idea behind this approach is to increase the density of inte-

gration points so that the steep variation of integrands is accurately sampled. This

is achieved by mapping nonuniform quadrilateral regions, each with different N×N
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Table 3.3: 1/r calculation over a triangle using class I and class II rules for various
locations of source point P

P location Exact Class I Class II
12288 rule 32768 rule Cubic rule Octic rule

(0,0) 1.2464504802 1.27 1.26 1.246450479 1.246450481
(1,0) 0.8813735870 0.878 0.879 0.881373586 0.8813735871
(0,1) 0.8813735870 0.878 0.879 0.881373585 0.8813735869

(1/3,1/3) 2.4072299231 2.39 2.39 2.407230 2.4072294
(1/3,0) 1.7021686025 1.67 1.69 1.70216862 1.70216809

scheme, to the triangle. Smaller triangles (degenerate quadrilaterals) with a higher

N×N scheme surround and taper towards the considered nodal location, whereas big-

ger quadrilaterals with a lower N×N scheme map to the region away from the nodal

location. This is shown in Fig. 3.5. For example, a quadrature scheme for the interior

node of a cubic element is developed by mapping four triangles around the interior

node and four comparatively bigger quadrilaterals in the region away from the node.

Fig. 3.5 shows the case for a corner node and an edge node as well. The number

of points for each of these rules depends on the number of quadrilaterals mapped to

the triangle and the order of integration on each quadrilateral. These second class of

rules performed better than the previous class of rules when it was used to integrate

1/r(p,q) over a triangle as shown in Table 3.3.



CHAPTER 4

RESULTS

The algorithms developed for the weakly singular boundary integral formu-

lations were tested on flat and curved surface geometries. A tetrahedron, though

considered for a flat surface geometry, is typically considered problematic due to its

edges and corners. The approaches developed in the current work can be applied for

smooth surfaces as well as surfaces with edges and corners. It is also noted that patch

test problems on the tetrahedron involving linear potentials were solved accurately

to around nine digits.

4.1 Example 1

The results of a heat conduction problem in a tetrahedron solved using the

globally-regularized weakly singular gradient BEM formulation is presented here. The

tetrahedron and the imposed boundary conditions are shown in Fig. 4.1. The tetrahe-

dron was meshed with higher order elements using the approach explained in Chapter

3. A temperature boundary condition was applied on one node on the oblique face

and flux boundary conditions were given elsewhere. The problem is based on an

37
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Figure 4.1: Boundary conditions on Tetrahedron.

eigensolution given by

φ = e4.7xsin(4.7y + 11) + e4.7ysin(4.7z + 11) + e4.7zsin(4.7x+ 11). (4.1)

The factors 4.7 and 11 in Eq. 4.1 were chosen arbitrarily to pose a problem with steep

gradients and without symmetry.

The nodal results for temperature, when modeled using a single element on

each face of the tetrahedron, for various element orders are shown in Fig. 4.2. The

nodal results for the temperature are plotted along one of the edges of the tetrahedron

as shown in Fig. 4.3. As inferred from the plot, a single octic element models the

temperature distribution to a high level of accuracy whereas three cubic elements

show some prominent errors, especially in the corners, in spite of having around 20%



39

0 0.2 0.4 0.6 0.8 1-400

-300

-200

-100

0

Exact
Cubic
Quartic
Sextic
Octic

T
em

pe
ra

tu
re

Z-Edge of tetrahedron

Figure 4.2: Example 1: Temperature along one of the edges using different element
types

more degrees of freedom (DOF) (130 nodes in the octic model and 164 nodes in the

cubic model). An average error may be defined as

Error =

nodes∑
i=1

φExacti −φBEMi

|φMax
i −φMin

i |

Number of nodes
(4.2)

The errors for various elemental orders, shown in Table 4.1, indicate that the octic

elements show errors that are three orders of magnitude less than when using cubic

elements.

4.2 Example 2

As a second example, the problem defined in previous example is solved using

locally-regularized weakly singular gradient BEM formulation. The errors associated
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Figure 4.3: Example 1 : Temperature along one of the edges computed using a three
cubic elements and single octic element using globally regularized BEM.

Table 4.1: Temperature results on tetrahedron using globally regularized BEM.

Element Error
Cubic 1.0575

Quartic 0.5243
Sextic 0.0947
Octic 0.0083
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Table 4.2: Temperature results on tetrahedron using locally regularized BEM.

Element Error
Cubic 0.7572

Quartic 0.0437
Sextic 0.0143
Octic 0.0009

with various elemental order models of the tetrahedron are shown in Table 4.2.

The locally regularized weakly singular gradient BEM algorithm performs bet-

ter than the globally regularized form for cubic and quartic element types by roughly

an order or magnitude. This is attributed to better approximation of the density

functions in the locally regularized form as the subtracted Taylor’s series terms are

added back in an indirect form which is not the case in the globally regularized form.

This was suggested as a cause for difference in accuracy seen in locally and globally

regularized BEM given in [4].

4.3 Example 3

A unit sphere with Dirichlet boundary conditions is solved using locally-

regularized gradient BEM formulation. A temperature variation of φ = x2 + y2− 2z2

is applied.

It is important to note that there are significant differences between modeling

flat surfaces and curved surfaces. For the case of curved surfaces there is generally
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distortion in the transformation so that the only field which can be exactly inter-

polated is a uniform field regardless of element order. However, it is observed that,

for curved surfaces, the representation becomes increasingly accurate with p-version

refinement. Also, the mesh generation approach discussed in Chapter 3 was not en-

tirely successful for geometries with curved surfaces as the two commercial meshers

which were investigated introduced excessive distortion. The primary advisor of this

dissertation developed a stochastic mesh optimization algorithm on spherical surfaces

which was used to generate higher order elemental meshes on the spherical surface.

The sphere was modeled using eight elements with a single element stretching

across each octant. The flux results show symmetry across the three coordinate axes.

The results from various higher order element models are shown in Fig. 4.4 for just

one octant of the sphere on the Y-Z plane. The plot 4.4 once again shows the

enhancement in accuracy with p-version refinement. Table 4.3 shows the comparison

of flux calculated by different element orders at location(0,0,1).
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Figure 4.4: Example 3: Flux variation on sphere from θ =0 to θ =90 on Y-Z plane

Table 4.3: Example 3: Flux values at (0,0,1).

Element Flux
Exact flux=-4.00000

Cubic -4.765
Quartic -4.685
Sextic -3.963
Octic -4.004



CHAPTER 5

CONCLUSION

The primary focus of the research was the development of weakly singular

gradient BEM formulations in 3D and its numerical implementation. The presented

approaches are focused on simplicity and ease of implementation, so that any element

type may be used due to the fact that the weakly singular integrals can be computed

using numerical integration. The regularization has been shown in both global and

local forms. The computational strategy for the locally regularized BEM follows an

external limit to the boundary of the domain and effectively computes its free term as

part of the regularization. The whole body regularized form has no free term. Also,

it is significant to note that the formulations can be used for geometries with flat or

curved surfaces with edges and corners. The primary advisor for this work developed

a stochastic mesh optimization algorithm, limited only to spherical surfaces. New

quadrature rules were developed, validated, and implemented.

The tetrahedron was solved for a highly varying potential with steeply varying

gradients. The results show significant improvements in accuracy with every p-version

refinement. An octic model showed a decrease in error by an order of magnitude

using the globally regularized BEM, though the cubic model 20% more degrees of

freedom. The numerical results show the advantages in using p-version elements.

44
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Though problems involving simple geometries were considered in the current study,

it is predicted that the benefits of using p-version elements will be enhanced for bigger

and more complex geometries, subject to the possibility of accurate representation

of curved surface geometries and boundary data for cases involving potentials with

steeply varying gradients. For a given element order the local form is shown to be

more accurate [4].
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