
Resonance-Oriented Software
Design and Development

FLEISSNER, Sebastian

A Thesis Submitted in Partial Fulfiliiient
of the Rxxiuiroiiiciits for the Degree of

Doctor of Philosophy
in

Coinpiitor Sc ieiK;e And Engineering

The Cliiiiese University of Hong Kong
,l\ilv 2069

©The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or whole of the iiiatorials in the thesis
in a proposed publication imist seek copyright release from the Dean of the
Graduate School.

h . ‘
C . ."： “ •； •‘ ：’

pp ip| j|||||||| j l|||||||p i|| i i i i p i ____ 關 隱 瞧 i i p p j p w i l i l

UMI Number: 3514539

乡 All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted. • ，

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these Will be noted. Also, if material had to be removed,

a note will indicate the delation.

UMI
Di8S«rtat)on Publ«h«ng

• UMI 3514539

Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

^ i ^ u e s f

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor. Ml 48106-1346

�

_

Abstract of thesis entitled: ‘
Resonance-Oriented Software Design and Development
Submitted by FLEISSNER, Sebastian
for the degree of�Doctor of Philosophy
at The Chinese -University of Hong Kong in July 2009.

Software evolution draws its complexity from a variety of factors, in-
cluding extensibility, maintainability, and the difficulty, of changing a
program's design. It is widely accepted thar objecr-orienred, programs
become brittle as they evolve, because their design has to be fixed in

. *
the early stages of development, and the more their implementarion
has progressed, the more difficult it becomes ro adjust interfaces of

and relationships between objects. •

This thei?is introduces the notion of resonaiice-oriented software design
and development, a family of software development approaches direcrly
or indirectly inspired by concepts found in Asian philosophy, such as
harmony, resonance, and fields of inreracrions, which significantly differ
from-the principles object-oriented programming is based on.

In particular, this thesis proposes two concrete resonance-oriented ap-
proaches called harmony-orieuted programming, a paradigm rhar re--
laxes strong encapsulation and information hiding, and epi-aspecrs,
a self-sustaining software architecture based on the notion of consci-
entious software. Apart from introducing the priucipl^^* construcrs
and conceptual architecture of tlift two proposed resonance-oriented ap-
proaches, rliis research describes concrete implementations，in panic-
ular runtime and development environments. These"implemenrarions
are used to conduct, studies aimed at supporting the hypothesis that,
in comparison to traditional object-oriented programming, resonance-
oriented software development is a more suitable approach for dealing
with software evolution effectively.

摘要

很多w桌構成了軟件演化的袍雜性，t!i枯"r摘權性、"丨維持性，以及改

變祝序設計的闲雖度。現在人們将遍郞認為，“而丨對&祝序”（或稱

為“物件辟向柯式”）越發演變就越不楹)w為它們� r i設計 i i ^須在祝

序開發-丨期就丨彳卜•來，W此随著朽丨序的繼總發展，就越來越雖il^gil草對

象問的接丨丨和關系。闽此fr必要發展一骇較穩定的祝序設計。

此論文捉出 / “反舞玲丨丨，jf則iii^計”的概念，並介紹r一資相丨樹的軟件

問發方法。反赞得丨丨•]槐序設計的原理大人不丨nj於而向對象朽丨序設計的丨a

现，它的靈感和猫礎主要足來丨‘丨於!li方料學的思想，例如和諧、鳴、

瓦勒，以及關系等文化形態。

此論文特別提出了N彳稀典微的軟件開發方法，一倘足“和諧冷丨朽Ui^設

計’：，足一種"J以調低封裝件和资訊p^藏的範式：W—倘足“n生系統

稱而”，是一稀建立在 “1^1赀軟件”觀念猫礎1 :的、 " r以我維持的體

系結構。

除了介紹反赞導向槐序設計的原理、個相關的軟件開發方法的树際建

構和概念性體系結構外，本文也描述了J4體的程序設計，特別是迎行時

問和集成問發環境。作菩丨H]時利用逭些程序進行f 一些試驗來支持本研

究的主要假設：要有效地處理軟件演化中出現的問题，與傳統的而向對

象禾引字設計扣比較，反簿導向程序是一倘更適當的稅序。

k

Acknowledgement

I would like to express iny deep gratitude to my adviser Elisa Baniassad
for sponsoring and supporting my research during the Ismx three years. I
also would like to thank all the researchers aiid reviewers who provkied
valuable comments and ideas for my work. Especially Ron Goldman.
Doug Lea, David Ungar, Richard P. Gabriel, Michael R. Lyu, Jimmy
H. M. Lee, and Yvonne Coady.

In addition, I would like to thank the people I met ar OOPSLA'08 for
encouraging me to discard an Objective-C baseS implementation of a
harmony-oriented runtime and development environmenr aiid to switch
to Smalltalk instead. Switching to Smalltalk made programming fun
again and saved me a lot of time.

My appreciation also goes to Sui-Chu Wu for helping me to rranslarc
the abstract of this thesis into Chinese and my former and currenr
lab-mates: Jacky Chan, K.K. Lo, Brian Cliiu, and Clayton Myers.

Finally, I would like to rhank Blizzard Entertainment for nor releasing

Starcrafr 2 during my Ph.D. studies, and thus allowing me to graduate

on schedule.

Ill

This work is (k�di(at(�d to iny parents
Dr. .lorg Floissiior aiid Dr. Gabriele Floissiior-Busso.

IV

Contents

Abstract ,

Acknowledgement �

1 Introduction

1.1 The Gravity Attribute

1.2 Greek Philosophy and Object-Oricntatioii

1.3 Brittleness Through Software Evolution . . .

1.4 Resonancc-Orientcd Software Dcvelbpmciit

1.5 Hypothesis

1.6 Thesis Organization .•::...‘

Ill

2

:3

3

4

G

2 Research Background 8

2.1 The Geography of Thought ^

.2.1.1 Western Obsession with Modularization 9

2.1.2 Eastern and Western Reasoning 9

2.1.3 Control Flow 10

2.1.4 Substances Versus Objects 10

2.2 Conscientious Software 11

2.2.1 Allopoietic Part . . . 12

2.2.2 Autopoietic Part 12
,i • - � • *

'2.2.3 Epimodulcs 12

3 Preliminary Study 14

3.1 Picture Description Interviews 16

3.1.1 Descriptions of Context 18

-3.1.2 Relationships

3.1.3 Puzzlement 22

3.1.4 Common Observations 22

3.2 Analysis 24

3.2.1 Identification of Disharmony 24

3.2.2 Collective Action 27

3-3 Harinoiiy-Oricntation In Software 27

4 Approach I: Harmony-Orientation 29

• 4.1 Principles of Harmony Orientation 30

4.1.1 Balance 31

4.1.2 Exposure 31

4.1.3 Spaciality ‘ 32

� 4 . 1 . 4 Information Sharing and Diffusion 33

4.2 Harmony-Oriented Programs 34

4.2.1 Spatial Constructs 35

4.2.2 Spaces “ 37

4.3 Harmony-Oriented Smalltalk . 40

4.3.1 Runtime Environment. Overview 41

4.3.2 Snippet Runtime Intcrfa<:c 44

4.3.3 Data Descriptions and Tagged Data 48

4.3.4 Snippet Scheduling 49
« »

4.3.5 Data Management and Diffusion 49

4.3.6 Visual Development Environment 51

4.3.7 Debugging 57

4.4 Summary - 57

v i

5 Approach II: Epi-Aspects 58

5.1 Proposed Architecture 59

5.1.1 Allopoiotic Application GO

5.1.2 Autopoictic system 60

5.1.3 Epi-Asixicts 62

5.2 Epi-Aspects Java Framework 67

5.2.1 Ba.s(̂ Classes and Inr.crfa.(:(̂ s 69

5.2.2 Advico and Annotations 70

5.2.3 Autopoictic Simulator 71

5.3 Summary 74

6 Studies and Validation 75

6.1 General Study Design 76

6.1.1 Construct Validity 76

6.1.2 Internal Validity

6.1.3 External Validity 78

6.2 Changeability and Extensibility Studies 79

6.2.1 Changeability: Relationships 79

" 6.2.2 Changeability: Processing Chains bG

6.2.3 Extensibility and Maintainahility 90

6.2.4 Analysis and Discussion of Validity 96

6.3 Error Feedback and Recovery Study • 97

6.3.1 Part 1: Conscientious CMS 100

6.3.2 Parr, 2: Software Update Experiment 104

• 6.3.3 Part 3: Finc-Grained Error Monitoring 109
f
6.3.4 Analysis and Summary I l l

-6.4 Software Evolution Study 112

vii

6.4.1 Harmony-Oriented Epi-Aspects 112

6.4.2 Study -Description IIS

6.4.3 Analysis and Summary - . . 133

6.5 Hypothesis Validation 133

6.5.1 Evidence Siipportin<^ Claim 1 135

. 6.5.2 Evklcncc Supporting Claim 2 136

6.5.3 Evidence Supporting Claim 3 138

7 Discussion 139

7-1 Rcsonance-Oricntod Devolopmciit Style 139

7.2 — (一 . 、 . . . 140

7.2.1 Encapsulation and Information Hiding 140

7.2.2 Software Reusability 141

7.2.3 Applications and Limitations 142

7.2.4 Harmony-Orientation on Many core CPUs . • . 144

7.2.5 GPU-Acccleration 144

7.3 Conscientious Rcsonancc^Orientatioii 145

7.3.1 Limitations of Epi-Aspects 146

7.3.2 Realizing an Autopoietic system 147

8 Related Research and Comparison 149

8.1 Agent-Oriented Software Dovclopnienr. 149

8.1.1 Agent-Oriented Programming 149

8.1.2 Diffusion-Based Agent Systems 150

• , 8.1.3 ^Comparison With Harmony-Orientation . • • . 150

8.2 Software Evolution 151

8.3 Programming Approaches 152

Vlll

8.3.1 Spreadsheets. Subtext and Coh(Tcii(:(, 152

8.3.2 Erlang 153

8.3.3 Dataflow Programming 153

8.3.4 Blackboard Architectures 154

8.3.5 Phcii()troi)ic Computing^ 155

8.4 Sclf-Siistainrnorit and Reliability 155

8.4.1 Autopoictic Software Systems 155

8.4.2 Autonomic Computing 15G

8.4.3 Cornmensalistic Softwan^ 15G

8.4.4 R(!fi(K:tivo and Adaptive Middl(�\van: 157

8.4.5 Moiiitoririg-Oriciitcd Programiniiig 157

8.4.0 R(K;()verv-()riciito(l Computing 158

^.4.7 Acceptability Envelope .

‘ ^.4.8 Software Reliability Engineering 158

8.4.9 Comparison With Epi-Aspccts / . . 159

9 Conclusions 160

9.1 Summary 100

9.2 Contributions 161

9.2.1 Research Contributions 101
�

9.2.2 Software Contributions 162

9.3 FuturAvork 1G3

A A Semantics for HOS � 164

A.l Semantics for Producing Data 166

A.2 Semantics for Consuming Data 167

A.3 Semantics for Observing Data 172

A.4 Semantics for Snippet State 174

� Lx

B Common Observations 176

C Original GMA Database Design 178
1

Bibliography 181

List of Figures

3.1 Nygaard's Restaurant Picture 16

3.2 Annotated Restaurant Picture 17

3.3 Identified Long Distance Relationships 21

3.4 Man unable to pay 23

3.5 A mother perceivc^i to ignore her crying child 23

3.6 • A chef perceived a.s out of place 24

4.1 -Principles of Harmoriy-Orieiitcci Programming 31

4.2 Exposure Principle 32

4.3 Spaciality Principle 32

4.4 Information Diffusion Principle 33

4.5 Anatomy of Harmony-Oriented Programs 34

4.6 Space with Sub~Space 37

4.7 Substances and Diffusion 39

4.8 Harmony-Oriented Smalltalk 41

4.9 HOP Parts Bin 52

4.10 Location Inspector . . 厂 53

4.11 Space Main Menu 54

4.12 Snippet Console 56

4.13 Diffusion Inspector 56

XI

4.14 Snippet Editor 57

5.1 Epi-Aspects Architecture^ 59

5.2 Epi-AJ Base Classes 70

5.3 Epi-AJ Autopoietic Simulator 73

6.1 The Observer Design Pattern ([37]) 60

6.2 Account Subject aiid Account Observer (HOP) • . . • 84

6.3 HOP Filter Chain

6.4 Object-Oriented Filter Chain 89

6.5 Harmony-Oriented Extensible Application Server . . . 91

6.6 Minimal Object-Oricntod EAS Design 93

6.7' Object-Oriented EAS Design (Simplified) 94

6.8 Change 1: Rename interfaces 95

6.9 Change 2: Add ha.se interfaces 95

6.10 Change 3: Add stream-based interfaces 96

6.11 CMS Application Scenario 98

6.12 CMS Classes 99

6.13 Databa.^ Epi-Aspect 101

6.14 XML-RPC Epi-Aspect • 102
€

6.15 Software Maintenance "Epi-Aspect 103

6.16 CMS Epi-Aspect 105

6.17 Harmony-Oriented Epi-Aspects 113

6.18 Space Events , 116

6.19 GMA Application Model (Simplified) 120

6.20 GMA Server Using Harmony-Oriented Epi-Aspects . . 127

-6.21 "Data Management" Snippets . : 129

C.l Original GMA Database Design (Left Part) 179

C.2 Original GMA Database Design (Left Right) 180

xii

List of Tables

4.1 Object-Orientation and Harmony-Orientation 30

5.1 Autopoietic Recommendations G1

,5.2 Autopoietic Queries 62
• -

5.3 Epi-Message Attributes 64

5.4 Application Advice . . • 66

6.1 ^ Harmony-Orientation and Software Evolution Factors . 97

6.2 Software Update Experiment Phase 1 Results 107

6.3 Software Update Experiment Phase 2 Log 108

6.4 Epi-Aspects and Software Evolution Factors I l l

6.5 Methods of SpatialEpiAspect 117

6.6 Combined Approach and Software Evolution Factors . 134

B.l Common Observations 177

Xlll

Chapter

Introduction

1.1 The Gravity. Attribute

It is the year 350 BCE� . Arisrotelian physics [2], a theory developed by
the philosopher Aristotle, suggests that gravity can be considered ro be
an attribute that resides within objects. Heavy objects, such as sToncs
and rocks, possess a stronger gravity attribute than lighter objecrs. In
fact, very light objects like gas and air have a "levity" aTrribure instead
of a gravity attribute. Since gravity is an attribute of objects and nor
an outside force, Aristotelian physics posit the view rhar the world can
be understood and described as a collection of more or less independent
objects categorized by their attributes..

�Forward to the year 2009. The slides of a tutorial on objecr-orienred
design from an unknown author [92] illustrate aii example of modeling
fluids and pipes as classes. The example introduces a Pipe class rhat
has a gra-vity attribute: a static double precision floating point number
that is initialized with a value of 9.8. The reasons of the author for
assigning a gravity attribute to pipe objects are nor clear. But even
though this decision might seem peculiar in the* conrexr of modern

^BCE: Before (the) Common Era.

CHAPTER 1. INTRODUCTION 2

science, it is acccptablo in the contcxt of object-oriented software do-
sign and development, which encourages isolation of objects from thoir
environment.

1.2 Greek Philosophy and Object-Orientation

Object-oriented programming (OOP) is strongly influenced by ideas of
ancient Greek philosophy and thought. As described in [73, 17. 43 .
ancient. Greeks had a strong sense of personal agency and considered
themselves to be individuals with unique, distinctive attributes and
goals. Greek philosophers, such as Plato and Aristotle, posited the view
that the world is a static and unchanging collection of objects that can
be described and analyzed through categorization and formal logic. It
was the habit of Greek philosophers to regard objects, such as persons,
places, and things, in isolation from their context and to analyze their
attributes. The attributes were used as the b^is of categorization of
an object, and the resulting categories arc employed to construct rules
governing the behavior of the object. The relevance of possible outside
forces that can affect, an object was completely ignored.

In object-oriented design and programming, it is common practice to
.isolate objects from their context and then describe them by their at-

tributes (i.e. methods and instance variables) and static relationships
to other objects. Isolation is achieved by applying the principles of
information hiding and encapsulation. Program units, such as objects,
components, and modules, interact through well-defined interfaces that
expose functionality. As interfaces hide the implementation details of
each program unit, internal changes do not affect, other parts of the
program. Because the focus is on objects, modeling relationships is
not straightfonvard in object-oriented programming and often requires

CHAPTER 1. INTRODUCTION 3

significant negotiation for establishing and breaking off relationships
between two or more objects.

1.3 Brittleness Through Software Evolution

The term software evolution refersVo changing both design and code
of software repeatedly over time in omtff^to comply with changing re-
quirements or initially imexpecred usage scenarios. As software evolves,
it becomes more brittle: the difficulty of maintaining and fixing rhc
software increases, and partial or complete failure occurs, when small
changes are made or unexpected data is encountered.

To cope with software evolution, The traditional object-oriented ajv
proach of making a complete software design before coding has been re-
placed with other strategies, such as design for extensibility and main-
tainability. However, designing for extensibility and maintainability is
non-trivial in object-oriented programming, as interfaces and object
relationships have to be fixed at some point. Any subsequent" c:hange
to the interface of one object can lead to many potential changes to
dependent objects. As pointed out in [16] and [72], software evolu-
tion eventually causes brittleness even in well-designed object-orienred
programs.

1.4 Resonance-Oriented Software Development

The purpose of this thesis is the proposal and evaluation of resonance-

oriented software development a family of software development ap-
proaches baised on a school of thought that promotes holism and the
idea of mutual influence of everything on almost everything else. This
school of thought, which originated in Asia, posits the view that the

CHAPTER 1. INTRODUCTION 4

world cannot, be described by focusing on objrctts and their attributes
alone, but rather by considering the broad context and sec the world in
terms of resonance, harmony, and context. For example, as describocl
in [44] and [35], philosophers in ancicnt China described the world as a
mass of continuously interacting substances rather than a collection of
discrete objects, and each substaiicc and every event in the world m�r(�

considered to be related to each other.

Resonance-oriented software development approaches have the follow-
ing characteristics:

• The runtime environment, of resonance-orientcd programs is woll-

defiiicd.

• Code entities always run inside the well-defined environment and
can direc'tly or indirectly interact with it.

• The execution of code affects or changes the environment .

• The environment (or changes inside the environment) can affect,

the behavior of code.

This thesis proposes and evaluates two concrete resonancx^orient cd
software development approaches. The first approach is a new pro-
gramming paradigm called harmony-oriented programming [31. 32. 6 .
The second approach an architecture based on the theoretical notion
of conscientious software [36] called epi-aspects [30 •

1.5 Hypothesis

Software evolution is significantly affected by the following factors:

CHAPTER 1. INTRODUCTION 5

• Ea.se of changing the program's dosign (changeability).

• Extensibility of the program.

• Maintainability of the program.

• Quality feedback.

• Error recovery.

Ease of changing the design refers to the complexity of changing a
program's structure. This includes relationships between parts of rh(�

program, such as a.ssoc:iar.ions and iiiheritance relationships in ohjccr-
oriented programming.

Extensibility refers to the ease of extending a program with or wirhoiu
changing the program's overall structure. Extensibility can be affectcxl
by the eâ ê of^changing the program's design.

Maintainability refers to the ease of changing a program in general. It
is affected by both extensibility and ease of changing the program's
design.

Quality feedback and error recovery refer to mechanisms that facilitate
reporting, observation and correction of problems and errors.

The hypothesis of this research is that in comparison to object-oriented
* •

programming, resonance-oriented programming improves the case of
dealing with the above mentioned issues, and thus the ease of dealing
with software evolution effectively. In particular, this hypothesis posits
that the combination of the proposed rosonance-oriented programming
approaches provides the following advantages over traditional object-
oriented programming:

u

CHAPTER 1. INTRODUCTION ^

Z
1. Fewer changes are required in order to refiecr. adjustments of a

program's design in the code. Changes iiidude source codo mod-
“ifications and other adjustments to a program.

2. Extending a program requires kiss effort (stops/chaiigc^s).

3. Implementation of reliable feedback ai^ error rc(:ov(，ry iri(K:ha-
iiisms requires fewer stops.

1.6 Thesis Organization

The rest of this thesis is organizocl as follows:

Chapter 2: Research Background
• . ^

This- chapter provides an- overview of research that inspired rhc work
presented in this thesis. In particular, it introduces the work of Richard
Nisbett on how "Easterners" and "Westerners" think differently, and
the conscientious software paradigm proposed by Gabriel and Gold-
man. •

Chapter 3: Preliminary Study

This chapter describes a preliminary study that explores how Xisbett's
findings regarding different reasoning styles of individuals from different,
cultural backgrounds apply to the realm of software development.

Chapters 4 and 5: Proposed Approaches

These chapters introduce the proposed resonancc^orientcd software
sign and development approaches: Harmony-oriented Prograinini^g

^ i
and Epi-Aspects. Apart from providing conceptual descriptions of ihe

• I
approaches, these chapters introduce concrete implementations acid'de-
velopment environments. ‘

C / M P T E R J. INrnODUCTION 7

Chapter 6: Case Studies and Validation

This (•.lia])tor (los(;rib(\s s(;v(ual ease studies aimed a1 supporting t hv
liyi)othosis formulated in scct ioii 1.5. In i)art icular, several sccjiiarios m.(�

used to c-oiiipaix^ tin; ix!‘s()naiK:<�-ori(�nt.(ul approaches to object-oriented
programming. The results of the various st udies am siiiiiinarizcd and
analyzed to validate the hypothesis.

Chapter 7: Discussion

This c.haptor disciissos various fusjxK t.s ()f tlic i)r()|)os(ni rcsoiiaiicc-oricMitcd
software^ (l(�vdopiu(�iit ai)i)rmi(:li(�.s，such as prm tiral issues and limit m-
tioiis.

Chapter 8: Related Research

This clmptcr (covers various approaclu^s rclHlcd to rcsoiiaiicc-oriciitcd
software dcvc^lopmont, such as (liH.usi()ii-haM�(l agent sys((;iiis, software
evolution rcisoaixtli, related])r()graiiiiiiiiig appnmchcs，solf-sustainiii^
systems，and error ixxtovory. The in()r(; (:l()sdy reflated work is coiii-
])aro(l with tho proposed n^soiiaiice-orioiitcd software (l(�v(�l(>i)iiK;ut ap-
l)r(>a(:li(\s. “

Chapter 9: Conclusions

This c;hai)tor suiiiiiiariz(\s th<，ixisearcli present(，(1 in this tli(\sis, (l(�s(:iil)(�!s
its contrihiitions, and disciissos futiiro work.

• End of chapter.

Chapter 2

Research Background

This chapter provides an overview of R^soarch that inspinid the work
presented in this thesis. In particular, it introduces tho work of Richard
Nisbett on how "Ea.stcrner.s" ̂ and "Westerners”2 think differently, and
the conscientious software paradigm proposed by Gabriel and Goki-
maii.

2.1 The Geography of Thought

In his book The Geography of Thought [73] Nisbett makes the ca ĵc that
individuals from different cultural backgrounds roâ son about objects
and spaces differently from one another. In particular, he a.ss(irr.s, and
shows through peer reviewed studies, that subjects from Chinese and
Japanese cultures do not relate in the same way to objects as those from
the west. According to Nisbett, “Western” thinkers identify tho world
by objects and view the world as a set of individuals, working essentially
indepen'dently, maintaining their own world view, aiid dieting upon it.
"Eastern" thinkers, on the other hand, view the context of objects a,s

'The term "Easterners" is used to refer 10 people from C'hinosc and Japanctic cultures.

'The term "Westerners" is used to refer to individuals from Europe and America.

8

CHAPTER 2. RESEARCH BACKGROUND ‘ � ‘ 9

centrally as the objects themselves. They noticc chaiigcis in a scencry
before they notice dianges in individuals within that scroiKiry. When
considering objects, thoy consider tho fields of interactions between
those objects, rather than so(nng tho objcicts a,s autonomous.

2.1.1 Western Obsession with Modularization

According to Xislxitt, ''Westeriuirs" aro k(ienly iritcjrosted in atom/izmfj

the world. Ho notes that this contributed largely to economic advancx̂ s
and industrialization: allowing rnanufa t̂turo to happen iii gcricrk: ways,
which enhanced efficiency and interoperability of approa<(:h(，s. Hĉ goes
on to say tHat this modular viow carries through ro social mfrastruc-

鬌

ture. He a.sked "Easterners" and "Westcrnors" to (:oiisi(i(，r phrasers
that described companies as either social networks wlioro people work
together, or as an institution with a goal, where people are hired to
perform functions. Most "Westerners" related best to thc'atoinizcd
view described in the second statement. "Easterners" predominantly
chose the first statement as moro accuratc [73], p M.

.31

2.1.2 Eastern and Western Reasoning

Nisbett arid other researchers, such ai> Peng-[77], Morris [70], and Grios
41], contrast “Eastern” versus "Western" rea ĵoning by describing di-

alectic reasoning from the ca.st, and identity and non-contradiction in
the west.

*

Dialectic rea îoning held in eastern traditions involves:

• The Principle of Change: this captures the constantly changing
nature of reality. .

CHAPTER 2. RESEARCH BACKGROUND ‘ � ‘ 10

• The Principle of Contradiction: duo to constant chaiigo. para-
doxes arc constantly being introduced. Both A and \A might ho
true at the same time.

• The Principle of Relationship; Holism: nothing exists in isola-
tion. Everything must bo <icscrib(xi by its relationship with other
things.

"Westerners". on the other hand, hold two logical principles dear: ‘ *
r

• The Law of Identity: A is always A. regardless of coiitoxt.

• The Law of Noncontradiction: A and \A cannot, both hold true.

2.1.3 Control Flow

Nisbett's research indicates that "Wcstoirncrs" plac:c great iiiiport.aiia，

ill feeling a sense of control, whereas "Easterners" are more likdy to
acknowledge that they arc out of control, and make adjustments to fit
into an uncontrollable situatiojti ([73], p 97). Adjustments for "W'ostcrii-
ers”，on the-other hand, were assessed to feci unnatural or "awkward".
"Westerners" are also more interested in knowing who is in control, as
is evidenced by "Westerner's" dislike of working in groups, where (:()n-
trdl may be ambiguous. "Easterners", on the other hand, would rather
work in a group, regardless of the quality of that group, and simply
adjust to the group dynamics without establishing explicit control.

2.1.4 Substances Versus Objects

Nisbett's book refers to an experiment by Imae and Gentncr [48] called

The Dax Experiment In it, Imae and Centner showed "Easterners"

CHAPTER 2. RESEARCH BACKGROUND ‘ � ‘ 11

and "Westerners" a shape made out of some substance, and told the
subject to “look at tliis dax”. Then, tvhey showed the subjocts r‘w()
trays of objects, one carrying objcicts inacic from the.same substancc
as the dax, and 6ther carrying objects that w(ire the same shapo as
the dax. They were then asked to identify the rray with the dax on
it. •'Westerners" prcxioiniiiantly chose the tray with objects of the
same shape, whcrca.s "E^Lstorners" diosc the tray with ohjccts of the
same siibstanc:̂ i. Nisbott points out that this study indicates r.har. while

•s
"Westerners" see the world a.s a set, of disconnected objects, modorn
“Easterners” view the world as continuous nia,sses of matr(ir. %

4

2.2 Conscientious Software
J •

Conscientious software is a theoretical paradigm and philosophy for cl(�-
veloping reliable, self-sustaining software systems proposed by Gabriel
and Goldman in [36]. Unlike other approaches for self-sustaining soft-
ware, such a.s IBM's autonomic computing [54, 71], conscientious soft-
ware consists of two distinct parts written in fundaincntally (iifforont.
programming languages: an allopoietic^ part that encapsulates applica-
tion functionality, and an autopoietic^ part that continuously Rvcrcatos
itself and is entirely devoted to keeping the system running smoothly.

Conscientious software is based on the realization that., even though
error recovery and monitoring arc well-understood concepts, its tcch-
niques are not frequently applied in practice. The separation of soft-
ware into autopoietic and allopoietic parts is meant to encourage devel-

^ “Allopoiesis is the process whereby a system produces something other than the syti-

tem itself. One example of this is an assembly line, where the final product (such â i a car)

is distinct from the machines doing the producing. This is in contraiit with autopoiesis."

(FVom {102]). . •

4 "Autopoiesis literally means auto (self)-creation (from the Greek: auio - for self- and

poiesis - for creation or production)." (FVom [lOi]).

CHAPTER 2. RESEARCH BACKGROUND ‘ � ‘ 12

opors to devote equal efforts towards iinplcirKintin;̂ application func-
tionality an(i error recovery.

2.2.1 Allopoietic Part

The allopoietic parr, encapsulates traditional applicaxion functionaliry.
It is written in a general purpose programming language, such as C十十

or Java, and produces some computational results or provides scrviccs
to users.

2.2.2 Autopoietic Part

The autoj)oictic part monitors and adapts to onvironiiieiiTal changes,
and observes and evaluates the health of the allopoietic parr. In ease
the allopoietic part fails, the autopoietic parr, a.ssisr,s with error recov-
ery. Since general purpose programming languages are potentially frag-
ile and hence pose a tiireat to the stability of the system, the autopoi-
etic “part is written in a dedicated autopoietic programming^ language
designed to make it difficult, for programmers to irnplemenT. programs
with critical bugs.

2.2.3 Epimodules

To maintain the health of the application, the autopoietic parr iiiusr he
able to observe and affect the operation of the allopoietic part. In [36],
Gabriel and Goldman propose the concept of epimodules, which serve as
a bridge between the autopoietic and allopoietic parts. Epimodules are
attached to allopoietic components and monitor their behavior. When
necessary, epimodules can affect and alter allopoietic components. For

C H A P r E I i 2. RESEARCH BACKGROUND 13

(^xaini)lo opiiiiodulos can instruct allopoiet ic coinponcnts to run tests,
ix^start, upgrade, cloiio, 'or kill t,lieinsdv(，s.

• End of chapter.

Chapter 3

Preliminary Study

This study [6] is an exploration on how Ni.sl)ett's Hiiclings ix^gardiiig

different roasoiiiiig stylos of individuals from different cultural hack-

grounds apply to the i,(\alm of vsoftwan* developinont. As rxplaim'd in

section 2.1，Nishett asserts that individuals from ''Western" smi(»ti(�s

tend to focus on ohjects isolated from their context and thoir attributes,

while iifdividvials from “Ea.stmi” societies rather (:oiisi(i(T fields of in-

teractions hot wool 1 ol)je('ts and, a])pareutly, look for harmony.

Most major programming languages, especially objoct-orieiitecl lan-

guages, were developed in the west, by, what Xishott would classify,

as individual thinkers. The roots of object-oriontatioii wore to lielj)

j)rograiiiiners model the world as they saw it and to hotter align th(�ir •
prograinniatic rei)reseiitatioii.s with their mental models of a prohloiii

space.

Problems arise, however, when systems do not align well with a pure

object-oriented modularization. This inisaligniiieiit is often evidoiit in

systems"'that involve a great deal of object interaction and m�gotia-» >
tioii. Since the rise of object-oriented programming, attempts have

been made to break apart the rigid adherence to the indiviclual nature

14

CHAPTER 3. PRELIMINARY STUDY 15

of object-oriented languages. Aspect-orient at ion is an example of such
an attempt: through aspects, developers can describe concerns rhar
crosscut objects [57], or can capture, in one locarion. the relationships
between them [76]. This multidimensional niovemenr may fir into rhc
concepts of postmodern programming, as described by Xoble and Bid-
die [74]. It is also possible that these at tempts are edging towards
capturing a more "Eastern" philosophy of programming, where fields
of interaction are as importanr a.s the objects themselves, and where
writing a working program means airaining progTammaric； harmony.

This study is motivated by how closely the object-oriented paradigm
resembles typical "Western" thought. Ir investigates rhc use of an
"Eastern" reasoning approach for capturing objecr dynamics and in-
teractions between objects. As object-orienration grew from the minds
and reasoning style of "Westerners", the purpose of this study is ro
look deeper into the minds of "Easterners" in an attempt to capture
their world view, and then distill their descriptions into rhe guidelines
for a new, more harmony-oriented, programming paradigm.

The main part of this study j s an experiment to c^p.riire rhe way in
whicli "Easterners" would describe what would be considered a typical
object-oriented scene: Nygaard's, now famous, Restaurant Picture [28
(shown in Figure 3.1). Xygaard introduced this picture as a mechanism
for teaching students about object-orientation. He motivated rhe use of
this image by saying Ho teach object-orientation, you need a sufficiently

complex example". The .idea, as he presented it, was that students
would be able to look at this * picture, and identify different kinds of
people, their traits, and rhe activities in which they were engaged.
This would help them think about objects (individuals).

During the experiment, "Eastern" subjects were interviewed about how

CHAPTER 3. PRELIMINARY STUDY 31 31

Figure 3.1: Nygaard's Restaurant Picture

they would describe the i)ictuie. The following soc tioiifi suiiiiiiarize the
analysis of the subjects' responses, and, based on that analysis, suggest
possible avenues for pursuing hamiony-oiiented prograniining: a new
paradigiii that allows for straightforward modeling of how program
entities and their behaviors affect one another. • t

1

3.1 Picture Description Interviews

The picture description interviews were conducted with two groups of
subjects. The first group consisted of three pai tidpmits from Eiiroi)e
and served as control group. The subjects of this “Western” group
were university students of non-engineering majors: two females and
one male between 22 and 26 years old. The second group consisted

CHAPTER 3. PRELIMINARY STUDY 32

of university students from Hong Kong and mainland China: 3 female
students of non-engineering majors and 8 male computer science stu-
dents.

During the interview sessions, the subjects were asked to describe the
scene shown in Nygaard's picture. They were instructed to clesc:ribo
anything they saw. with no restriction, and they were allowed speak
for as long as they felt comfortable (durations ranged from 2-8 min-
utes). Additionally, the subjects were, allowed to annotate a copy of
the Nygaard's picture if they wished (figure 3.2).

pother + OOTily amvinĝ ^̂ —^

Figure 3.2: Annotated Restaurant. Picture

The subjects were not aware that they were being interviewed because
of their cultural background. Instead, its was indicated that they were
taking part in a study" on how pictures are described by different indi-
viduals. •

CHAPTER 3. PRELIMINARY STUDY 18

After the interviews, the transcripts w(�r(�analyzod in two j)a.sses. The
first pass was a cursory read to derive general coiiiiiioiialitios l)(�t\v(�(�ii
tlie descriptions, and arrived at a set of stateineiit-catogorios. The
second pass includocl performiiig a detailed analysis to (.at(�goHz(�(uich
statement made by (�a(:li subject.

As Nisbett's findings proclictod, tlio Euiopcan subjec ts focused on de-
scribing individual objects in isolation, while the Cliiiiose subjects did
not coiiiiiieiit to any great oxtont on individuals or their t rails. Iii‘st(�ml.
any descriptions of individuals wore (.()u(h(�(l in descriptions of how an
individual related to a grou]).

The following sections provide an overview of the dosc;ri])ti()iis l)y the
Chinese subject^, whidi can be grouped in three main catcgorios: coii-

/
！

text, relation '̂hi])s and piizzloiiieiit. Tho first two of tlies(» can ho furtlicr
decomposed inftrThe following c-.atcgorios:

• Context: Environment

• Context: Iiitcipietatioii

• Context: Observation

• Context: Role

• • Relationship: Short Range
* _

“ • Relationship: Long Range

3.1.1 Descriptions of Context .
•

t

Context refers to a descriptioii of the situation in which objocts are
placed. As mentioned above, this can be siilxtategorizeci into:

CHAPTER 3. PRELIMINARY STUDY 19

• Context: Environment

• Context: Interpretation ，

• Context: Observation

• Context: Role

Context: EnviroTiment

This category covers remarks that pertain to the environm(nir of rhe
restaurant. For instance, one subject talked about rhe poor light
inside the restaurant. Other remarks placed objects (people in the
restaurant) in context. Seven quotations that fit into this (:ar(�goi.y
were identified.

Context: Interpretation

This category covers remarks where the respondent is interpreting what
is going on in the restaurant, and perhaps trying to detcrinine the r(�-
ality behind something they perceived to bo unclear. For example, one
subject provided an interpretation why a small child with his mother
near the entrance of the restaurant is crying. 20 remarks were catego-
rized as Context: Interpretation.

Context: Observation

This category includes remarks that are simply observations about the
restaurant in general (not the environment or ambiance). A total of 21
remarks that fit into this category were identified.

Context: Role

This category includes the different roles that respondents identified.
Respondents identified:

CHAPTER 3. PRELIMINARY STUDY 20

• Waiter (Respondents 1. 4. G. 7, 8. 11)

• Pianist or Musictian (Respondent 8)

• Cook or Chef (Respondent 3. (5. 7)

• Boss (Respoudciit 4)

• Doctor (Respondent 4)

• Workers (Respondent 4)

• Guest. (Respondent. 8)

A total of 17 remarks related to roles was identified.

3.1.2 Relationships

Two categories related to relationships between people iii the restaurant
were identified: long and short distance. Short, distance relationships
arc between people at the same table (or in some way involved with
the table), whereas long distance relationships arc between tables.

Long Distance

Long distance relationships refer to remarks that describe how two srts
of people relate, when those people are not seated at. or in some way
involved with, the same table, t

•Ten such quotations were identified, some of which were duplicates of
others. They are depictcd in figure 3.3 as white lines linking the groups
of people included in the remark. The longest distance rela'bi^n^/)
spanned from the highlighted area A to 決e highlighted area B. A shows
two people from table 20. and B highlights what is identified as a cake.
The two respondents who noted this relationship stated that the people

CHAPTER 3. PRELIMINARY STUDY 21

Figure 3.3: Identified Long Dist,mi(_(�R(�lfit.i(mshii>s

ill area A w(;ro watching and wait iiiji； for thoir (:ak(，，which was Ix'iii^
brought to t.hoi 11 from ami B.

Short Distance

As (Inscribed above, short (listanco relationships i,d.(T to roinarks (1(�-
s(:ri})iiig how people at a single tablo relate. The following short dis-
tance relationships w(u.(5 found:

• Mother and Son (table 1-’RospoiKhuit 2，4，G, 7, 11) (table 7

Rospondont 3) .

• Friends (Rc^spondoiit 3, 4, 7)

• Dating (Respomkmt; 3, 4, 11)

• Family (Rospciiicloiit G) -

CHAPTER 3. PRELIMINARY STUDY 22

3.1.3 Puzzlement

A total of 15 remarks that rdaycd confusion about the n^stauraiit sctuio
were identified. For instance. Respondent 9 nniiarkcKl that the piano
area of the rostaiirant is cut off from the r(�st of the restaurant. and
another respondent, commented that the man at tho coat.-clKxtk did m)t
fit in well with the rest of the guests.

3.1.4 Common Observations

Several observations w(�rc made by multiple rcspoiident.s. Tablo B.l (in
appendix B) provides th(�results of the analysis of Ui(�observations,
and shows wiiicli category the responses fit under. Soirn�obsc^rvatioiis
fit into multiple categories. The total number of responses counts th(�

individual responses from all categories; the same rospondoiit may havr
Tittered more than one ix^sponso for a particular observation.

The four most popular observations were:

1. Table 6: Man unable to pay

Thrce respondents comiiiciitcd on the inaii at tabic G (highliglitcd
in area "A" in Figure 3.4) who is apparently unable to pay his
bill, and the women at table 4 who arc pcrccivcd to observe him
(highlighted in area "B” in Figure 3.4).

2. Empty seats, hut people arc waiting

Several of the participants in the study noted, with consternation,
that there were people waiting outside the restaurant while there
were empty seats inside (at tabic 3). They wondered why the
waiter would not scat peopk at that tabic, and croinmeiited that
the restaurant was. "strange' bccause of it.

CHAPTER 3. PRELIMINARY STUDY 23

Figure 3.4: Man unable to pay

3. The “bad” mother

Another groat cause for coiicorn among the parddpaiits was the
mother sitting at table 1 with her child (shown in figure 3.5). Five
of the participants noted something very similar to one another:
that the mother is covering her oars attempting not to hear hor
child crying.

Figure 3.S: A mother perceived to ignore her crying child

4. The misplaced chef

The fourth most frequently observed element of the restaurant,
was the chef, who is, apparently, out of place. Many of the ro-
si)ondonts noted that the chef wai> not in the kitchen, that he was
lazy, or that he was simply taking a break.

y

 ；
;
麻
、

 ̂v

0

CHAPTER 3. PRELIMINARY STUDY 24

Figure 3.6: A' chef perceived as out of -placc

3.2 Analysis

This section presents a. qualitative analysis of the subjects'
All of the most common responses (listed in Table B.l) c:aii

responses,
bo distilled

into two major kinds of observations: identification of (iishanmmy in
the restaurant, and collective action. ‘

3.2.1 Identification of Disharmony

The respondents were overwhelmingly troubled by the "strange" or
crazy nature of the restaurant, where things were not a»s they should
be, and where imbalance reigned supreme. This generally fits into
several categories:

• People or things being physically out of plac(，.

• People who .did not fit in, visually, •with others.

• People shirking their responsibilities. •“

• Things simply going wrong'

People or Things Physically Out of Place ‘

CHAPTER 3. PRELIMINARY STUDY 25

There were many instances when rcspondoiits noted that p(�opl(�or
things were not where they should bo. but the two most common W(T(、

the out of placc cook and the iion-soquontial tabic numbers.

The respondents who commciitcxi on the cook all iiotcxl that he wsus b(�-
having strangely, and that his placo was supposed to be in the kitchcii.
They wondered why he was not inside the kitchcn. This can be intor-
prctcd as an identification of disharmony, bcc.ausc tho cook's resting

• 产
state was to be working in the kitchcn, and he was upsetting tho bal-
anc:c of the restaurant by leaving that state and emerging into the
dining area.
The respondents who commented on the tabic numbers s(�(’ni(xi jarnxl
by what they pcrceivcd to be a gap in the continuous spaco of thr
restaurant. This was also found in the statement about how a guest,
might climb up to the pi alio area (a fnistraUxl respondent notcxl that
there was no dear way to get up to there). Tho respondents suggestx^d
solutions to tho disharmony identified: that there must be more tables
that arc not shown in the restaurant, and there must be hidden stairs
somewhere.

Another example of a discontinuity was the pcrceivecl lack of tocriagers

in the rc^aurant. No solution wai> given for this discontinuitv.

People Not Fitting In

Many respondents referred to people who did not look quite right, and
described this visual disharmony as the fault of the persons who arc
improperly dressed. Some respondents jlijied to find reasons that the
people were crazily dressed, not willing to simply accept that it might
just be a scene that was beyond reasonable explanation.

CHAPTER 3. PRELIMINARY STUDY 26

For instance, the man by the coat chock, who is coinodically dressed
in north pole regalia, and who is holding a fish on a sk(̂ w<ir, was r.hc
source of much conccrn for several respondents. Explanations for why
he looked the way he did wa.s that he had found his way into the wrong
location, thinking he was going to a V)arhe(:uo, and that, he wa.s having
take out. The respondents noted that he might be about r.o take off
his coat (hence adjusting himself to bkiiid in with the other (liners).

The other popular observat ion about visual (lishannoiiy was tiie strange
table of party goers. This group wore costumes, and it was remarked
upon by throe respondents c： at it is not clear "what kind of people"
sat at this table, because not only did their clothes not fir in with the
restaurant, they were not ev(in a c:ohosivc group.

People Not Fulfilling Their Roles

Respondents were quick to point our. that some people in rhe restaurant
were stubbornly disturbing the peace. The mother with her crying chiki
refused to perform her duty and calm her child. The. waiter wa.s being
careless, and was about to drop all the plates, which would further
disrupt the harmony of the restaviraiit. It was perceived that none of
the guests in the restaurant were doing their jobs all that well, bec:ause
no one waii eating or having a good time. Some respondents noted that

o
guests seemed upset or distracted in some way. These observations edio
Nisbett's findings that “Ea^sterners" see a strong relationship betwc<ni
roles and harmony.

Other Imbalances

Respondents noticed other situations in which harmony wa^ not main-
tained. The most common were the imbalance between the empty
tables and the people waiting for tables, and the lack of light in the
restaurant.

CHAPTER 3. PRELIMINARY STUDY 27

3.2.2 Collective Action

Other responses coiiki be categorized as "actions". However, unless
they were counted as disharmonious (the mother with her child, the
strange man with the fish, the bad waiter), rhcy were described as
collective action: a group of people doing something together, and
feeding off each other in doing so. Once again, the people at the party-
going table were perceived to he actively waiting for their cake to arrive
(both anticipating, and looking at the arriving cake). Another popular
example of collective action was the three women sitting together and
laughing at the mail who could not pay his bill. Finally, respondents
identified a group at a table who were all trying to gain the attention
of the pianist, by waving to him.

There was no sense that the actors in tfhe groups were individuals work-
ing together - instead, the actors were considered by the respondents a.s
one larger actor: the group. The individuals were at times described as
behaving specifically within the group, but the action belonged com-
pletely to the group, not to one of the people in it.

3.3 Harmony-Orientation In Software

The analysis shows that commonalities between subjects' responses
are further categorizabla^ descriptions.of harmonio'as action, and of
harmonious situations and flow.

Both of these concepts play important roles in current sk>ftware systems,
even if they are not easHy attainable. For example, in a load balano
ing system, a harmonious situation, or equilibrium can be achieved
when various instances of a component sh^e the saine workload. This

等 ‘

V

CHAPTER 3. PRELIMINARY STUDY 28
r « ‘

- ' " • .

equilibrium is lost if sonic instances aro busy while other iiistaii(.(�s m,(�
1 ‘

idle. :

Similarly, hannonious situations are the goal f̂or systrin inoiiitoriiig
and mauagonieiit software, such as intrusion dotectioii, virus ciotoction.
and network moiiitofing systeiiis. The purpose,of such systoins is to
preserve the haririoiiy of a system of components. Such (.(>iiipoii(�iits ar(�

in harmony, if tlioy operate at full capacity and are able to interact with
each other without any disturbance. The balance of this Imnnonv can
bo (lisnii)ted by systeni anomalies, which might br caused])v vinisrs.
i 1 itniciers, or coiiiponeiif^failures. •

Harmonious action and situation also play a significant rolo for th(�（.()m-
poiieiits of a single software application or server. Within an applica-

: »

tioii, a liarriionioiis sit uation is at̂ liieved if all coiiiponent.s arc working
“ I

well. However, each time a conipoiient of the system is updated or
otlierwiso changod, tlie balance of the systoni is disturbod and has to
be rcstomi. This is especially the case when C()iii])oiioiit interfaces arc
adjusted or (�onip()ii(�nts with critical bugs arc added to the application.

,On a finer grain, harmonious action between objects in a system might
he" found when they are coninumicating well, and using iiiterfactes pro-
vided by one—another correctly. In traditional systoins, attaining this
Immiony involves negotiation V)etween objects. Ensuring up front tlmt
vsuch liariiioiiy will be achieved involves che^s by the compiler,

t

Harmony-orient eel piograiiiiiiiiig (chapter 4) is based on the findings of
this preliminary study.

• End of chapter.

Chapter 4

Approach I:
Harmony- Orient at ion

Ancient Chinese philosophers did not focus on objects and their at-
tributes, but rather considered the broad r-ontext and saw the world
in terms of harmony, context., roles, obligarions, and resonance. For
example, a person was considered not as an individual with a constanr
unique identity, but rather as a member of several collectives. As de-
scribed in [44], ancient Chinese philosophers and people saw the world
as a mass of continuously interacting substances rather than a collec-
tion of discrete objects. Each substance and eveVy event in rhc world

was considered to be related to every other event..
• • • • •

This chapter proposes a resonance-oriented software development ap-
proach called harmony-oriented programming ‘ [6, 31, 32], a new pro-

- gramming paradigm inspired by'concepts of •.Eastern” rhinking and
reasoning, such as harmon��context, and resonanceT'anci the prelimi-
nary work presented in" chapter 3.

The main idea behind harmony-oriented programming is that pieces
of a program • always interact with their emironmenr as a whole and
usually not with other program parts directly. Table 4.1 illustrates

29 .

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 80

important conceptual differences between harmony-orientcd progfam-
ming and object-oriented programming (OOP). ‘

Object-Orientation Harmony-OrientaticJ^
Individualism Holism

% Explicit Boundaries Fuzzy Boundaries

Explicit Relationships Implicit Relationships

：Protocols / Negt^fatiotr' Observation

Table 4.1: Object-Orientation and Harmony-Orientation

Harmony-oriented programming challenges established and widely ac-
cepted object-oriented design principles [9]. such as strong enca^u-

\

lation. information hiding, and inheritance, and favors more flexible
and ah-hoc approaches for structuring and implementing programs.
Apart from presenting a discussion of harmony-oriented principles,
this chapter introduces constructs of harmony-oriented programs and
a Smalltalk-based runtime and development environment.

4.1 Principles of Harmony Orientation

Harmony, resonance, and contcxt are three key co^epts found in Asian
(in particular Chinese) philosophy. These three concepts are the basis
of the principles of harmony-oriented programming, which are denoted
as balance, exposure, spaciality, information sharing, and information

diffusion. Figure 4.1 illustrates the relationship of the three key con-
cepts with the principles of harmony-oriented programming.

\

Cs.
�

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 31

Harmony Resonance

L — ，

Information
Sharing

\ r
Information

Diffusipn

Figure 4.1: •Principles of Harin()iiy-()ri(�nt(�(l Prograniniiiig

Balance ‘

The balance principle is inspired by the (:(m(:q)t of Imrnioiiy and refers
to balance of data production and cmrsumption. The ()v(�mll go'dl of h
hannoiiy-oriented program is a balanced state, which is adik�v(�(l wlioii
any data produced 丨)y one part of the program is (观sum(�(丨丨)y oiio or
more otlier parts of the |)n)graiii. For example, if a pai t of tlie program
produces data that is not coiisiiiiiod, or a part wishes to cyiisiiip^^ata
that is not available, the program is in an iiiibalaiiccd star-e^^

,1.2 Exposure

The design of pbject-orieiiteci prograinining and other programming
languages is based on the priiicij^le of encapsulatioil. Unlike eiicapsu-
lation, the exposure principle {figure 4.2) suggests decomposing a i)n>
gram into pieces called snippets^ without the need to eiicaj)siilate these
pieces using c'.oiistnic;ts with well defined bouiidaries, such as modules,
functions, and objects. Hence, snippets do not coiiforrn to or expose
any specific interface. However, tJie code inside snippets can contain

«

constructs based on the cmcapsukftioii priiici])lc\ In the simplest case,
a snippet is a single stateinont.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 32

class X {

private foo

..method bar(x) {
r

class X {

private foo

..method bar(x) {
temp - 20
foo = temp + X

}
} .

Figure 4.2: Exposure Principle

,1.3 Spaciality

Tho spadality prindplc (figure 4.3) suggests that (�vci.v part of a pro-
gram is a.s.sigii(Kl to one or more locations in a virtual space.

Figuu^�4.3: Spaciality Principle

Related paits of 'A program arc posit i(med close to one another to form
a specific context. For example, snippets that» implement a user in-
terfactc are plac(xi in oiu) another's vicinity to form a user interface

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 33

contoxt, and snipi)ots that impk�immt a cortaiii part of business logic
arc })la(;o(l soincwlicre else to form another context. Certain snippets
can be assigned to both example coiitoxts to servo a.s a bridge b(�tw(�(�ii
user interfaces and husiiioss logic.

Spaciality can be ctonsidorcd as an altxn iiat ivc to liici archics of program
outitics like tiio object liiorarc.liies found in ohj(K:t-()riciit(，(l projî raiiis.

4.1.4 Information Sharing and Diffusion

The iiifoniiation sliariiig principle suggests that all data is shared bo-
twooii the pieces of a program. This principle facilitates rrs()uaii(:(�1)(�-
twcoii program parts, ûs one part of tlio])r()graiii can ixmct to (Imiigrs
made l)y any other part of the program.

Figure 4.4: Iiiforination Diffusion Principle

Diffusion is a gradual process in which a sul).staii(:o is spread ov(�i. a
space over tinic. The iiifonnatioirdiffusion priiicipk�(figure 4.4) stat(\s

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 34

that data or a description of the data generated by any part of the
program is diffused throughout the virtual program spacc. Data has
an associated intensity that clcc.rca,scs the further it is diffiisod. The
combination of the diffusion and spaciality principles ensures that data
generated by one code snippet (or the description of that data) reac;hos
other code snippets that arc locatod closo within Ui(�virtual space first.

4.2 Harmony-Oriented Programs

Figure 4.5 illustrates the aiiatoni\' of harmony-oriented programs.

Substance

"Account Observer"
space observe: Account do:[:accl

log show: 'New blance :
acc balance asString.

I.

Spatial Constructs / Snippets

Figure 4.5: Anatomy of Harmony-Oriented Prograiiij

A harmony-oriented program consists of virtual spaces with two or
more dimensions that contain spatial Spaccs serve as the

runtime environment of the harmony-oriented program. Each spatial
construct is assigned to a specific location in a space and can interact

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 35

with the spacc by putting data into and consuiriing data from its l(x:a-
tion. Spatial constructs arc only awar(�of the spacc c-oiitaiiiing them
and cannot see or interact with other spatial constructs. Whonovor a
space rcccives data from a spatial construct, it automatically diffuses
it by generating a virtual Hvhstanca. B(K:auso of the diffusion, the data
eventually readies the locations of other spatial constructs, which thru
can consuiiic the data. Hence, tho diffusion proccss facilitate iiidinx-.t
(lata oxchangc between spatial constructs iiisidc a spa(:<�. ‘

III addition to spatial constructs, concrctc hariiioiiy-ori(nit(xl program-

ming languages and runtime oiiviroiimciits caii cliooso to support objrct-

"oriented constructs like classcs and objcc:ts for the purpose of realizing
abstract data types and ac(;essirig existing application programniiiig
intcrfaccs. As a result, harmony-oriented prograinrniiig can be rralizod
as air extension to objcctt-orieiitod programming. Howovor. when writ-
ing harmony-oriented programs, the primary decomposition is always
in terms of spaccs and spatial constructs, and not objects.

The following sections provide a detailed description of spatial con-
structs, spaccs. and-diffusion.

4.2.1 Spatial Constructs

Spatial constructs arc program constructs that arc assigncxi to a lo-
cation in a spacc. As mentioned above, spatial constructs can only
interact with the spacc containing theni and not with other spatial
constructs directly. In particular, spatial constructs can:

• Put data into its location in the space.

• Consume data from its location in the spacc. •

p

A,

CHAPTER 4. APPROACH I: HARMONY-OIUEI^TATION ^ 36
t

• Observe data inside its location in the spaco.

“ '一

Spatial constructs cannot, move themselves: Thoy arc placed into tiie
space by software dcvcilopcrs who can move t.hcin around while the
harmony-oriented program is running.

Snippets ,
• -

The most, important spatial construct is tiio sni'ppfd. As rho principle
�

of (ixposure suggests, a snippet is a piece of sourcc (:()dc that is not.
encapsulated using a construct with woll-defined boundaries.
In the simplest caijo, a snippet is a single statement or a list of sr.arcv
inents. Like objects, snij^pets can maintain a states. However, (>t�j()<:t,s

%

use encapsulation and information hiding" to isolate thoir stare froiy
\ /

other parts of the program. The state of a snippet, on the other hand,
is owneS^by the space containing the snippet； and, like any other ciata

/

placed into the space, is diffused - and*thus available to other spar.ial
constructs.

..Diffusion Barriers

Diffusion barriers arc spatial constructs thatlSl(x:k or weaken diffusion.
Programmers can use such spatial constructs to ox(̂ rc:ise fine grained

知'control on diffusion within a space.

Hole Constructs

�V
Holes are spatial constructs that consume ciata from their location and
place it somewhere outside the space containing them.-For cxainplo, a
hole co^truct can be used to allow a space to leak ciata into another
space enclosing it. Hole constructs can bo unidirectional or bidirec-
tional. An bidirectional hole can be used to facilitate data exchange
between spaces in both directions. ,

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 37

Hyper Constructs

Hypor constructs an! spatial constructs 1 hat can Ik) assigned to iiion�

than oiio location in oii(，or more SJ)MC.(\S. Possible hyi>(”. const,nu ts
aic a.si)(K;(,-like siiipjx^ts t hat can (>lw(�i v(�and aH.(�(:t mult iplc local ions
within ()ii(» or iiioro s])a(os.

4.2.2 Spaces .

Spa((�s can have t wo or more (liinciisioiis and s(�i.v(�as n runt iiiic cn-
vii'oiiiiKUit for spat ial constructs. In particular, spaccs ai,(�n�siMmsil>l(�

I
for iiiaiiit aiiiiiii; and diffusing data g(�n(�nitc(l hy spat inl const ructs.

Figure 4.G: Space with Siih-Spaco

Spa(:(�s can bo troatcd as spat ial coiistnutts tlioiiisolv(\s. As a r<\sult it
is i)()ssil)le to const ruct Hoxihlo hiorarcliicis of spaces (or liyi)(M-sj)a(:os).
Figuro 4.G shows a harrnony-orioiitod spax:(�containing one snippet and

*

one s\il)-spa(;e. Like other spat ial constructs, tlie sul)-si)a(:o can iiiovrd
aĵ mml by softwaix^ dovolopcrs, and can g(�iit�i.atc and coiisuino data.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 38

Data generated or "leaked'' by the sul)-spa(:o is diffuscxl in the par-
ciit spacc. Developers can pla(;() hole constructs into the sul)-spa(tc to
specify which data is leaked into tho parent spa(:(�.

Space Data

Harmony-oricntod programs iiso dynamic typing and support, data tag-
ging. Tags are used by spatial constructs to dcscribc and filtrr data.
When a spatial const rue： t puts data into tho spacc. it is stored in the
same location the spatial construct is-in. For example, if tho location of
a spatial c.onstruct is (30, 50) in a two-dimensional sj)a(:(�. tiien this lo-

«

cation contains the state of the spatial construct, and initially all data
the snippet explicitly puts into tho spacc (before diffusion b(^giiis). If a
spatial construct puts several values of the same data tyi)(�into a spacc.
the location stores the various values. As a result, no data gonoratcxl
by a spatial construct is ever discarded and spaccs can be considorod
•as tho memory gf a harniony-oriontcxl program.

Substances and Diffusion

Spaccs use so-called virtual substances to diffiiso the stat.(�of and data
produced by spatial constructs. Each time a new spatial construct is
creatcd, the space generates a (corresponding substanco in th(�same
location. ‘

Figure 4.7 shows two substanccs and their correspoiuiing spatial cori-
vstructs (snippets). A substancc absorbs all data tho spatial construct,
implicitly or explicitly produces, ami the spacc starts diffusing it af-
ter it absorbs data for the first time. The diffusion process gradually
increases the area covcred by the substance. At its origin, substanccs

.have a very high intensity, which decreases when ^piiig towards tho
edges. For example, the substance in the upper left area of figî rc 4.7

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 39

might have an intensity of 1.0 at its center and intensities between 0.5
and 0.0 in area where it overlaps with the other substanco corn^spond-
ing to the spatial construct on the lower right.

=space number
.print X

^

Figur(�4.7: Substances and Diffusion

As shown in figure 4.7, the diffusion procoss eventually incToas(\s thr

extent of the substance so far. that it covers the locations of other spa-
tial constructs. Once this happens, the space makes the data carricd by
the substancc available to those other spatial constructs. In particular.
when a spatial construct requests data from the spacc for coiisiimption
or observation, the space goes tlirough the substances covering the

spatial constructlocation and selects and passes a matching data. If
more than one substancc contains data matching the requirements of
• � .
the spatial construct, the spacc sclects the data from.the substance with
the highest intensity value at the spatial construct's location. This se-
lection process can be considered as a competition between substanccs.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 40

The knowledge that the siibstanc:o with the highest intensity is always
favored, allows programmers to change the semantics of a program by
adjusting diffusion parameters, such as setting the diffusion strength
for a substancc generated for the data of a specific snippet.

The example shown in figure 4.7 illustrates a two-dimensional space

with three snippets. The upper left and lower right snippets both put

a number into the space (50 and 20 respectively). The spac:c generates

corresponding substances and diffuses them. As shown in the figure,

the diffused substances both reach the center snippet, which consumes

a number from the space and outputs it to the consolo. Since tho

lower right snippet is c:loscr to the center snippet, the intensity of its

substance is higher than the intensity of the substance corresponding

to the upper right snippet. As a result, the space passes the number

20 to the centcr snippet that outputs the number to the console.

4.3 Harmony-Oriented Smalltalk

Harmony-Oriented Smalltalk (HQS) [33] (figure 4.8) is a haniiony-

orientcd runtime and visual development environment that allows pro-

grammers to implement harmony-oriented programs written in Squeak

Smalltalk [7, 42，18], a dialect of the Smalltalk programming language

59]. The visual development environment is b^ed on Morphic [88. 64:

and.provides programmers with tools for inspecting spaccs, editing

snippets, changing diffusion settings and debugging.

Since HOS is based on the Smalltalk programming language, program-

mers have access to a vast object-oriented library providing network-

ing, file access, and multimedia features. However, when constructing

harmony-oriented programs, the primary decomposition is always in

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 41

Figure 4.8: Harmony-Oriented Smalltalk

terms of spaces and spatial constructs, and not classes and objects,
even though those are available.

The following sections provide an informal description of the HQS run-
time and visual development, environment. initial 'semantics for
Harmony-Oriented SpaaJltalk is introduced in appendix A.

4.3.1 Runtime Environment Overview

The HOS runtime environment provides an object-oriented interface-
for creating and running harmony-oriented programs consisting of two-
dimensional spaces and snippets. In theory, harmony-oriented pro-
gramming is not limited to two-dimensional spaces and snippets, but

_

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 42

the ciirroiit' version of HOS does not yet support otlior spatial (.011-，

structs or spaces with more than two diiiioiisioiis.

HOS spaces provide and impl(�m(mt tho following features:

• Snippet sdiodiiliiig. The spacc is rosi)C)iisiblo for ‘s(.h(�(luling siiij)-

‘ I)et execution and controlling COIK unxMicy.

• Data nianagoinent. The space is i.espoiisihk�for storing, diffusing

and delivering data.

• Debug Iiitorfac'.e. The spa(:(�allows prograiiiiiiors to start and stop

snippets and to ohsorvo aiifl rhaiige its data.

In HOS, siii]>pets are pieces of j)lain Smalltalk code that mv a‘s‘sigm�(i to

a location within a space. Each tiino a snippet is executed, it i.(�(.(�iv(�s a

collection of ohjcKtts iinpleiiioiitiiig the so-callod snippet rmitune inter-

face. These objects allow tlio snippet to exchange data with its sj)a((\

iiiaintaiii a^^^to within the s])a(:c. and to log iiiossages. Tlie snippet

niiitime interface is covorod in dotail in section 4.3.2. H(�i.(、，one of

these objecits, which is nmuvxlspace, is considcnxi to illustrate how to

inipleiiieiit simple siiipi)ots that exchange data with thoir spa(.(�. Th(�

space object provides iiietliods for:
• �

• Putting objects (data) into the space.

• Consiiiiiiiig objects (data) from the space.
« *

參 Pecking at / observing objectts (data) in the space.

When siiij)j)ets invoke methods of the space ohjcct to placto data into

the space, they ĉ aii attacli one or more string tags. Listing 4J shows

a simple cocio snippet that puts throe objects into the space.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 43

”Example Sn ippe t 1"

spaco p u t : 20 taK: 'x ' .

space put : ‘ H(»11() World ！ ‘ .

spaco put : .(Taf5K(、(lData new

V a 111 (、: 5 0 ；

rtdclTag : ' t agOno ’ ；

addTag :，t.agTwo ‘) .

Listing 4.1: Snippet putting objcx-ts into tlio spac(\

The first ()hj(，ct is a iiuiiiber with a tag, the second object is a strin^
without, any tags, and the third object is a TaggcdData object t hat
contains aiiotlior iiuiiihor wit h two tags. The mot hods providcnl l)y th(�

Tagged Data class are suminarizcd in s(x:ti(m 4.3.3.

The methods provided by the space ol)j(�(:t for consuming data fioin the
‘si)a<:(�lot tlio prograiiiiner specify t he i.(�q”ii,(�(l data tyjx' ((�.g. Oh jcct,
Niiiiihor), recjuinul tags, and also allow passing a Smalltalk (.(k1(�block
that can be iiscxl for implementing more advanced iiuitchiiig. These
met hods either consiiiiio a single iiiatchiiig object or set up a loop for
(•onsuiiihig all availal^lo and fiituro iiiatcliiiig ol)j(�(-ts. FurtluMiiion' it
is possible to instruct the spaa� t o wait for a spocific (•()iiil)iiial ion of
multiple objects (a sot) and then consume it.

“Example Sn i ppe t 2” .

space consume : NUIUIHT do : (: nuiii

log show : iiuni asSt r i i ig .

-1. .

Listing 4.2: SiiippH consuniiug numhrrs.

Listing 4.2 illustrates a siiipj)et that coiLsuiiies all iminbci^objects. List-

ing 4.3 (leinonstrates a siiipp(»t that usVs a DataDescmpHon object to

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 59

(toiisunie all strings coiitriiiiiiig iiioro than t(�ii charactcus. Like Ta狎d-

Data, the DataDescjiptioii class is (.ovci-(�d in section 4.3.3.

"Examp le Sn ip pot 3"

1 d e s c r i p t i o n |

do s c r i p t ion := D a t a D c s c- r i {)t ion new

t ypo : S t r i ng；

a(l(ITag : ‘ Naiiu'‘；

• cons t m i n t : [: val | val s i z <、 > 10].

space consmiio : d o s c r i p t io 11 do : [: s t r 1 lofj; show : St r .] .

Listing 4.3: Consuming strings with more than ten cliaractfrs.

4.3.2 Snippet Runtime Interface

Tlio snippet ruiitinic interface is realized by tliroo ohjocts (l(、ii()t(�(l as
.space,, state, and log, which arc available a.s soon a.s a siiipp(�t\s bc^iii
oxocutioii. These three objects pn)vi(l(�a means for snippets to acccss
the spa(:(i，tlioir state, a rut thoir log.

Log Object

The l()(j ()l)j(}(:t provides a iiiethod calloci show: mot hod for out put ting
a string on tlio snippet's log. Each siiipjx^t ha^a private�loj^ that can
1)0 view(�(l by opening the siiipi)(�t,s consolo window (s(�(�section 4.3.G).

The code in listings 4.2 and 4.3 illustrate usage of t h(�lofj objoct.
V

State Object ��

！

As explaiiH^l in section 4.2.1，the state of a si\^pi)ct is owned and dif-
fused by the spaco. The state object provides a iiiraiis for a snipprt to
access and change its state. In particular, siii])])ots c an change the data
type of their state (lynainically. For example, it is possihlo to cliaiige

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 45

the type of the stat(i to Ordered Co I Ic.c ti o n，and thou treat it liko a
normal Smalltalk 0 7 xl a r 'ed Col la c 11 o 11 object. The (lifforcnco to using an
Ordeiad Co I lection object direct ly is that all changes are delegated to
the spacc automatically, which then diffuses t h(�ujxlatcd state. Apai.t
from changing the typo of their state, snippets can add tags to the
state describing its contents.

»

Listing 4.4 shows how to (lynariiically (Imi似、tho type of the snipprt
f

state to OrddTed Co I Icc t i o n and then add throe (�ntrk�s to the (:oU(�(.ti(m.

" S t a t o Example"

s t a t e t ype : O r d r r o d C o l l(Mt ion

s t a t e add : ' H e l l o ' ;

add : ‘Haciiioiiy—Orientcd ’

add : ’ World ’ .

Listing 4.4: Changing tyjx' and coiitonts of snippet state.

Space Object

The spam object facilitates iiitoraction with tho spaa�contaiiiiiig the
siiipi)(;t . Ill particular, t he space ob joct provides mot hods for putt ing;
(lata into and consuming (lata from the spar(�. Th(�most important
niethocis of the space ol)jo(t are:

• consuitie: aDcsciiption

Coiisuiiios oiio ohjcct iiiatdiing the si)(�dficd description from tho
space. The description i)araMiotor can cither bo a (lass iiaiiic,
such as Object or Numhtr, a tag, or a data (Inscription ()l)j(�(t.
If the enclosing space d()(，s not contain a matching object in th(>
snippet,S location, this method blocks and only r(、T:m.iis VVIKMI a
matching object arrives via diffusion.

CHAPTER 4. APPROACH I： HARMONY-OIUENTAriON 40

• ccmsurnc: aDesciiption do: a Block

Consumes all objcKts iiiatcliiiig the sp(，(ifi(�d (l(�s(ript i(m. This

method ol)S(UV(\'•； the siiippc.t's' location in tlio spacr and wliciicvcr

a matching ol)j(x:t arrivos, the ‘specified (.(>(1(�block is evaluated

with the iiiatcliiiig ohjoct as i)aram(�t(T. After evaluation. th(�

object is I narked a>; consuiiicd and (lis(:ai(l<�(l. S(�(�listing 4.2 for

aii example.

• coiisujnaAll: a Block

Coiisuinos fill ()l)j(Krts arriving at tli(�siiipp(�t，s location in (lie

• coiismn.aSet: fitdList do.aBlock

In certain cases, snippots might want to coiisuiiic niult ipk' objects

at the same time. For example, consider a snippet that jxTforins

a ropoatod calculation that iXHiuircs a two iiuiiibcrs as input for

oacli iteration. L(�ts a.ssuiiic a spacc coiitaiiiiiig oii(�or more siiijv

l)(，ts that i)r()(luco various kinds of iiuiiibcrs W1I(T(�each miiiihcr is

tagg(�(l with (Mtlier ’x’ or ,y’. In order for tho snippet i)(�rf.oi,iiiiiig

the calculation to retriovt，（m(�iiiiinbor tagged ’x’ and oiio iminhcr

tagg(Hi ’y，from tlio space, the consmntSet:do: mot hod can 1)(�

used as illustrated in listing 4.5.

• obscTifc: a Description do: a Block

This mot hod is similar to the consume: do: mot hod. It (�valu-

ates the si)ecifi(Kl cocle block for all ohjocts iiiatchiiig the sprd-

ficd (les(tiii)ti()ii, but does not mark the ()bj(x:t as coiisuiiicd aft cv

evalnation and discards tlieiii.

• observe: a Block

This method passes all objects arriving at the snippet's location

ill the spa(;e to tlic sprdficd code block, and retains thcMii after

CHAPTER 4. APPROACH I： HARMONY-OIUENTAriON 40

tlic codo block is evaluated. • .

• rcticveLatest: aDescription IfAvailahic: block 1 else.: hlo(:k2

This irioth()(i is difforeiit from tli(�pi.(�vi(>us iiicthods for obscu'viiig

and consuming ohjcKtt.S, l)(�(:aus(�it (1(M，‘S not block until iiiatcli-
iiig objects arrive. This inutlicKl iiis!)(�(:ts tho snipp(�t’s location

and for the most roccnil.ly arrived ()h jr(:t iiiatcliiiig t he

spo(:ifi(;cl description. If a iiiatcliiiig ()l)j(�(:t is found, I he lirst code

" l)l()(:k is (，valuat(�(l witli the object us a |)ai.mn(�t.(T. If no inatchin^

objoct is found, tli(，KOCOIKI (:O(1(�block IS ovaluatcd.

• put: (niObjcct

Puts an ()l)j(H:t into the spaco. T\iv <)hj(�(:t can he any Smalltalk

object . Wlioii (\iv met hod pro(:(»ss(xi the passed ()l) j(、（.t，it (rcatcs

a Ta(f(j((lD(Lia ()hj(K.t and places it in the spacr. If tho passrd

()i)jo(;t is c\ T<i()()((lD(ii(i ()l)j(�(:t，this iiiotliod pa.sscs it through to

the space without making any modificalions. The third line of

listing 4.1 illnstratos usa^(�of this method: •

• put: aiiObjact tag: aStrnig

This iiicthod is a (:oiiv(�iii(!ii(:(�iiicthod that crcatcs a TagfjcdData

’ object from a Smalltalk ohjcK-.t and a si)(�(ifi(�(l tag. and 1 licii puts

it into tlio spac:o.

、”Example Sn ippo t 4"

space consuiuoSot : { c ’ . ，y，} d o : (: X :y|

log show: (x+y)

1.

a s S t r i n ̂ ^ .

Listing 4.5: Snippet coiisuiiiiiig sets of <)l)j(K.t‘s.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 48

4.3.3 Data Descriptions and Tagged Data

As explained in section 4.3.1, the HOS nmtimc (uivironinoiit provides
two cla.sses for defining data descriptions and taggcnl (iat.a: DataDe.-

V

scription and its subclaims TaggcAData.

Instances of the DataD(ascription cUuss arc used by snippers to doscrihc
what kind of data they would like to roc.oivc from the spa(:(i. Th(‘ iiioth-
ods of this class allow specification of typo, tags" and Smalltalk (odt�

blocks implementing customized comparisons. Instancos of rhc Tafjgcd-

Data clâ ss are used explicitly or implicitly to wraj) data snippets pui
into tlie space. Listing 4.1 contains an oxainpk^ for using t he Tafjijcd-

Data class and listing 4.3 illusrraros the usage of tho DataDcscription

class.

The most, iinporraiit methods of the two dasses avc:

• DataDcscriptio'ii�addTag: aString

Add a now lAg to the data description.

• DataDcscri'ption�ta()s

Return a collection (:oiitaiiiiii<^ all tags.

• DataDesciiption�type: aType

Set the type of the data description. Tho aType. paxaiuotcr can
- be any Smalltalk class.

• DataDeacrl'ption�type

Return the type of the data description.

• DataDescri'ption�co'iistramt: aDLock

Specify a Smalltalk code block that can bo used for customized
a

comparisons of a data description with other objects. lino 6
. of listing 4.3 for an example.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 64

• DataDcsniptimi�constraint

urn ihv. coiist i Miiit block.

• TafjiiadData�valm:: a Value.

S(，t t he valiK； ((lat a) of a t,a哪，(1 dat a object.

• Tafjfjr.dData�value

Return the value (data) of a 1,叩[̂ <�(1 dat a (>l)j(�(.t.

4.3.4 Snippet Scheduling

T\iv. sj)ac.(;s of 1 he HOS runtiiiic use lij^htweight (� , (; (�n) 111reads fnr
V

(toutrolling (:oiK.un.(�n(:y of siiipixM <，x(，(:uti(>ii. Generally, W1K’U<�V(T M

snippet is (:i.(，at.(Hl or it is automatically (rc-)(:oiiipil(�<l and

tluMi s(.h(�dul(Kl for (^xcKuition. Spac.ĉ s provide iii()tho(ls tlmt pn)grMiii-

iiKU's can use to start, slop, rest art and discard siiipp(化s.

4.3.5' • Data Management and Diffusion

Data oxcliaiigo in luinii()iiy-ori(�iit (�(i programs is fa(.ilit at (�(l via dilfusion

of substaiic.os t hat rq)r(\scnt all data a siiipix^t lia,s put into it s ciiclosiii^i,

si)m:o. In HOS a subst micr is (，s‘s(�ut hilly a data (pKnic wit li an asso-

datrd intensity. Whoncvt^r a siiippct puts an object (data) into 1 he

spa(:(，’ it is ‘stored into t LU; data (|U(MI(�of t he (;()rr(>s])c)ii(liiij!, sul>staii(:(�

and information about all data inside tlu; (iu(�u(�is diffuscHl throuj^liout

the spat'c;.
»

For i)(�i,i.oi.iimm:(，n^asoiis, IIOS spaces do not continuously pci lbriii dif-

fusion at all t imes. Each siiipixM has a sprdtte "di{fusion limit” thai

can bo set by the projijraiiiiiuu-s. One; the limit is r(mli(、（l, dilfusion of

the (t()rrcsj)()n(liiig subst aiutr stops and nniiaiiis at. its cui roiil l(;vcl. As

a result, difi'iision only occurs following (�vei“.s:

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 65

• When a snippet puts dat a into t he ‘spacc lor t h(�first t ime.

• Aft(U- fi progrmnincr niaimally n̂ scMs the dilhisioii.

• When t he position of n snipjx^t cliaiigcs. ..
I

TIK、. H O S niiit iiiH； (uiviroiiiiunil, is dcsijî iKHl j o supimrt various (liflusion

algorit liins and st and provides fa(.ilit.i(�s foi- nmniiig diffusion

at (liH'oixnit speeds for visuali'/al.ion purposes.

(lifhisioii thill us(xi by the HOS ruiitiiiK�is M "mil)i-

iiatioii of difiusion (filiation (l(\s(.ril)(、（l in [-15] and n dist ance
('unction ov(u. local ions and siiippiM s in ordor to (�nlmn(.<�jx'riorinancc.
The (Hjuation in [45] is:

、:'.’"二 I — r").S:,.’„ + (1.1)

III the above (�quat i(m，‘S'.,." st ands for Ui(�intensity of a given sul)st miicc

S and at the posit ion (:/;,:/：) in a giv(�ii fid(l，and "人.(.7:，//) r(�pi,(‘s(�iils 1 lie
jt?

ktli iKnin^st iioiglilx)!- of. (x, y). ‘

Th(�（、(|uat i(m abovn can also ho writUni as follows: ‘

'S;r’y = (1 — 广 ") 、 . £ ’ " + 、

+、；IH L,Y + + I).

It is iiiii)()rtant to iiot(�that any diffusion algorillmi (or coinhinat ion

of algorithms) can Ix; used instoad without ailrctiiig l li(�fuiict ioiiality

of tho HOS niiitimo (mvinmmriit. However, sin(.(�Smalltalk is slow

ill coiiiparisoii with langua.g(^s like C, it is (l(�.siiabl(�to iis(�dfi(i(�iil

alj^oritlmis. •

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 66

4.3.6 Visual Development Environment

Harinony-OricMiUHl Siiialltnlk pi.(>vi(l(�s a (:oiiii>l(，t(�visiuil iiit(�grat.<�(l (1(�-
vd()i)iii(nit, (Mivironiiiont (..all(�d HOS IDE. Pro^raiiiiiKMs can (:r(�at.(�spm rs
find siiii)p(，t,s via dmg and drop, and (�xaiiiiiK�and (lumge tli(�st.atr of
harinony-oruuitcHl i>i.()f!;i.aiiis. In 丨mrt irular, t lie HOS IDE provides I lie
following!； ibat uros: > .

• Ci.(，at(�spaces and sni])|)ots via and droj).

• Edit., st art, stoj), and (k，l(�t(，snipix̂ ts

• Scroll and zoom t‘li(�coiitcMils (>f'spares. C(�iit(�r t he scroll vi(�w on
sprcifk: snipix'l.s.

• S(�t. (liflusioii |>m.am(�t (，i.s, such as diffusion ty|)(�and limit.

• Scloct local.ions (colls) of the sjnico and iiisp(�(:t. and CIU^ Ĵ̂ C ÎKMI"

(lata.

Tlio following S(H'l ions i)mvi(l(�an overview of t he main ICMI urcs pm-
vi(l(�(l by tho HOS IDE.

Creating Snippets And Spaces

Wluni ()i)(niiiig tlio HOS image, a toolbox (parts l)in) for creating new
s])a(:os and snip])ots is shown in tho upi)(�i. l(�lt coriior of t h(�scm»ii
(Hguro 4.9). Now spaces and snippc t̂s can 1)(�（:i.rat,(ul hy (iraggi叩 th(�

conx^sponding icon to t he s(:n�(�ii.

Siiii)i)ots (tail also IK�crratiHl by l(�ft clicking a locat ion in a spm (�. A
now HOP parts bin can 1>(�prograiiniiatically (>i)(�n(Hl hy <�x(�(.ut iiig th(�

following (todo in a woikspm c:

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 52

—

Spac< e Sni|>pet

Figuiv 4.9: HOP Parts Bin

HopPartsBin new openlnWorld.

Space Context Menu • • »

Tlu; si)a(t(! (;()iit(*xt iiKMiu is shown when clicking a local ion in a space.
It. providers t lio iollowiii^ opt ions:

• Ci,(，at.(�Siiii)p(�t.
Ci.(，at’(�a new snippet in t lu�S(�1(�(1(M1 local ion.

• liisp(�(.t丨 Locat ion.

()l)(�ii an iiisjxHtor window that allows the prograiiiiiKU- to view
and iiiaiiipulato dat a at th(�locat ion.

Figure 4.10 shows an oprii location insp(K:t(H, for a (:(�11 t hat coin ains

two suhstaiK;(\s. TIK�upper part of the insixH lor shows all sul)staii(:(�s

available at tho hx-at ioii. For (，a(:h suhstaiur, tli<�local ion inspector

displays its color and int ensity, which luus a valm�bet ween ().() and 1.0.

Tho lowor i)M.t of tlio location insjMH'tor shows tUv (.(mt(�nts of t IK�sul)-

stan(;o, which is a suiniiiary (>1 all UIICOIISUIIKHI data the (onrsiMMidiiig

snippot has PUT, into th(，spau，. IT is possible to s(�l(H.t tliosr values mikI

iiisp(H:t tliriii using Scjuoak's default obj(，(:t inspector.

The location iiispoctor allows iMogiainincrs to iiisiXH-t hihI chaiigc t he
(lata, and to find out, what kind of data a iiowly (.iratcMl siiipix^t in tlu�

sol(x to(i location could coiisuim�. Th(�substances m.(�（)i.(i(�rcd according

j

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 53

續：口 X

^^0.1748982667922 |
• 0.1671778261661

u

5malllnteger->22

H L
Inspect Selected Data

Figure 4.10: Location Insp(x*t.or *

to the values of their intensities. As explained in sec.tioii 4.2.2, th(�

higher the value of the intensity the higher is priority tho spac:c uses
for passing data to a snippet, if multiple substaiK:cs provide data that
matches the kind of data a snippet, wishes to (xmsuim�.

Space Main Menu

The spac:c main menu (figure 4.11) is opcntxl by clicking the iiicnu k:()ii
ill the upper right corncr of a spacc. It. provides the following options:

• Hide / Show Grid
Hide or shows a grid indicating the locations (cdls) of tho spaco.

�

• Hide / Show Diffusion
Hide or shows diffusion of substances.

• Snippets (Submenu)
A submenu for sclccting a specific snipprt. After a snippet is

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 54

Hide Grid 3丨X
Hide Diffusion 胃
Show Data Flow

胃

B3g S B E S S i)
25% 1 "Example 3"
50% � "Example 2"
75% "Example 4"
100% "Example 1"
150% 1 t

V

200% r
t

300%
J

t
(
!

Figure 4.11: Spaco Main Moiiu
i>

sel(x!tcxi tiix�spax:c SCTOIIS aiitoniatically to ensure the snippet is
visible.

• Zoom
The zoom options allow the prograiniiicr to zoom the spa(:(�. 丁h(�

niaxiinuni zoom is 300 porc;cnt and the minimum zoom is 25 pcr-
cent.

Snippet Context Menu

The snippet contcxt menu is shown when clicking a snippet iiisicio a
spacc and provides the following options:

Pick Up

Pick up the snippet (startfragging the snippet).

Hide / Show Label

Hide or show a label displaying the first line of code of the snippet.
The sample programs shown in this paper follow the convention
that the first line of cac-h snippet is a coiniiiciit that names or

�
describes the purpose of the snippet.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 70

• Hide / Show Console
Hide or show the consolo of a snippet. Any log m(�ss叫(�s a siiipp(�t
goiunatos are (lisplaycnl in its console.

• Iiisi)(�(.t Location
()])on an inspector window t hat allows th(�pmgmiiiiiKT to view
and iiiaiii))iilato data at th(，location of t,h(�siiipprt .

• Inspcx t Diffusion
()l>(�n an iiispcxtor window that allows prograiniiKM- to virvv
and s(�t diffusioii paraiiietors for the siiipprt.

• Edit;
•

OjuMi an (alitor for chaiigiiig tli(，siiipjx t̂ (:o(l(�.
‘

• D(�l(�t(�

D(�l(�t<�t li(» siiipp(�t.

• Hun / Stoj)
St arts or stops t in�exec ution of th(�snippet.

Figun�4.12 shows t ho snippet consolo. It (lisi)lays all loj:, (�iitri(�s siiij)-
p(�t.s prodiu-o by sending thv show: messagê to tli(�log object. The
snipi)rt console provides a iiieini that allows c.loariiig all oiitrics.

The diffusion inspector window (Hgiiro 4.13) allows programiiuMs to ad-
just diffusion parameters for the siihstaiKO iussociatod with the s(�kK:t(、（i
“ /

»

snippet. When opoiunl, the difiiision inspector shows th(�s(�l(�(.t(�(i dii-
fusicMi typo and th(�um.(�iit l(�v(�l (progmss) of diffusion.

The prograiiiiiior can sot th(�diH,usi('m typ(�to “quick” or “slow”. The
former iiistnic^ts tho sptu-o, to poribnii (lifiusii)ii as qui(:kly a.s possible,
aiulf the lat,(�i, instructs the space to i)(�rfoi,iii diffilsioii slow onoiigh that

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION ‘ 56

'Example 2

B
20

5 0

a s G j

专，

Figure 4.12: Snippet Console

.1 produce numbers'

Diffusion Type: Quick.

Diffusion Level:

Quick

Figure 4.13: Diffusion Inspector

programmers can watch its progress. The "slow" option is provided for
visualization/demonstration purposes. /

The diffufjiion level indicates the current progress of diffusion. Pro-
grammers can use the slider to adjust the diffusion level manually. As
a result, the diffusion level both serves as progress indicator and limit
for the diffusion of the substance corresponding to the selectcxi snippet.

The snippet code editor shown in figure 4.14 is similar to standard
Smalltalk workspaces and provides basic： editing features. When the�

programmer presses the Apply button, the snippet codc is c-oinpikxl
and executed iminediatelv. '

/

CHAPTET? APPROACH I: HARMONY-ORIENTAriON

Figure 4.14: Snippet Fxlitor

.3.7 Debugging

HOS snippets can 1>(�（1(�1MI微、(1 like any other Smalltalk code. II an
error occurs or the snippet s(�ii(ls the halt iiiossago to itself, th(�standard
S(|U('ak (l(̂ l)ugg(u' window is shown.

4.4 Summary

This (liaphT introduces tli(�first i(�s(>uaii((M)ri(�iitr(l software (Irvrlop-
V

iiioiit approadi: hai,ni(my-m.i(�ut(�d prograiniiiiiig. Tli(�first part of the
chaptxM' describes th(�priiiciplrs of hanii(>iiy-oii(�iitati(>n and the (on-
coptiuil stn let lire and c^oiistnicts of hmm(my-(ui(�ut(�d prograins.

The S(H:()II(1 half of the (.hapt(�r introduces HOS, A Smalltalk-hascd
liarnioiiy-orioiitod nmtiiiio and visual <i(�v(�k)imi(�nt oiiviroiiinciit. Th(�

(los(:ri])tioii of HOS (:ov(�rs details of prograiiiiiiiiig iiitoifacos and t he
main elements and features of thv visual (k�v(�l(>i)iiit�.iit oiiviroimioiit.

• End of chapter.

Chapter 5

Approach II: Epi-Aspects

This chaptrr proposes a second resoiiaiicc-oriciitcHl approach (allrd r / " -

asparts [30]. The (�i)i-aMi)(xts arcliitoctiirc is l)as(�(l on asp<�(t-(>i,i(>ntr(l

j)r()graiiiiiiiiig [57] and conscicMitious softwares Its fî oal, MIKI that ofron-

sciontious software, is to allow tli(�s(�pm.ati(>ii of the core application

functionality (th(�allopoietic part) from the inoiiitoriii*^, r(^gulation.

and rn.or i.(、（.（>v(�ry concerns, as provided by th(�aiitopoictic part. Tlic

0i)i-asj)0(ts ai(.hit(H.tui,(� is tlir first concrctc realization of tli(� th(�(>r(�t-

ical notion of c()iis(i(�iit i(Mis software eiivisioiiod by Gabriel and Cold-

iiiaii. Since coiiscicMitious software consists of distinct allopoicHic and

autopoietic parts, aspects are a natural choice for tlic two

parts together to form a (tonscieiitious system.

The proposed arcliitc^ctmofigure 5.1) consists of throe» portions: th(>

all()j)()ieti(' part (i.(»f(，m�d to as the application), the autopoi(�ti(- system,

and 0])i-a.s])0(ts, wliic.li arc tlie glue tliat binds tlio ot her two port ious.

Ei)i-asi)ec.ts are able to a(lvis(�on join points in bot h th(�application and

autopoiotic systcnh, and so facilitate rosoiiaiice and f(�(�(il)m.k. and assist

the autopoietic system in keeping th(�software in a luirinonioiis state.

Ill i)Hrtic\ilar, they (�xt(�iid the application with functionality i.(�quiml

for evaluating its health, and for porformiiig adjust iiKUits i,(�qu(\st(�(i by

58

CHAPTER 5. APPROACH II: EPl-ASPECTS ()() ()()

the autopoictic system. Such (extensions include functionality for t(�st-

iiig, ui)gracliiig, cloning, restarting, and killing allopoictic (ompoiK^nts.

As a result, 0j)i-as])0(ts can be used to upgnidr existing applications

into conscientious software in a non-invasive iiiaiiiicr.

Autopoietic System Application (Allopoietic)

n j Component

Component

Figure 5.1: Ej)i-Aspects Arcliitccturc

This cliaptfT (U^scribos tlio conceptual design of (�pi-asp(�(.ts and j)r()-

posos a concietc fraiiunvork for dcvoloping ('i)i-a.sp{K ts in .lava.

5.1 Proposed Architecture

The (�i)i-a«siM�(.ts arc liitocture (figiin^ 5.1) consists of thnv jKH tioiis:

All application (thr all()i)()i(�tic system) that iiiipkuiiciits sonic dc

s i m i functionality.

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

• An autopoietic systc.iji, responsible Jor k(�(�i)iiig t lie ‘syst(�m running:,

smoothly.

• Epi-aspcT.ts, which act as a bridge bet wcjcii 1 lie ot Ikm" two portions

by extending the application with functionality i(�lat(�(l to scli-

sustaiiiiHoiit, such as t(!st rout iiios and iiiaintcMiaiicc luiict ion.

The following sections pmvi(l (�a detailed dcscription of the pmjmsrd

('l)i-a,sp('(ts architocturr. S(�(:ti(>ii 5.1.1 (.()v(�i.s t ho allopoict ic applira-

tion, section 5.1.2 illustrat(^s th(�featurcs and behavior of t he autopoi-

ctic- sysl(Mii, and s(，(.ti(m 5.1.3 (l(�s(Til)(，s the anatomy of cpi-asjx'cls.

5.1.1 Allopoietic Application

This portion of th(�proposal architecturc is a traditional application.

siKtli as a (.oiiUmt iiiaiuigciiKMit systcnii. No alteration of this applirat ion

is no(!(^ssaiy siiicc; all consciciitious functionality is cncapsulalcHl in the

other two portions of tlio system. This chaptcr assuiiK^s objcu t-oi icntcd
>

or (:om])()n('iit-based applications and the term (Lpplimtion entity is

iisod to rof(n- to an instance of an ohj(，<.t or coiiipoiuMil.

5.1.2 Autopoietic system

The aut.Qi)()ioti(： systoni is a network of instances that constfiiitly ol)-

scrvcs itself, its onviroiiiiicMit, and the state of th(�apj)li(ation, which

is exposed by oi)i-a.spoc;ts. In (:as(�of any problems, such MS errors

ill the application，the autopoictic systoni makos queries, and rccorn-

inendations to (:(>n.(x:t the prohlciii. Tlio autopoictic syst.ciii dors not

(uriploy artificial iiitolligcnco: software (l(�v(，l()i>(�i,s explicit ly implement

the coiKlitioiis for trigg(n inj4 aiitopoictir rccoiiiiiiciKlat ioiis and (iu(�i,i<�s.

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

C^uorics aid usod by the HUtopoirlic system to monitor the licaltli of
t HE APPLICATION. HxKoiiiiiKMiclatioiis arc IIIMCIC cit her rout iiicly, or based
oil th(�result of a (jiKny. Both nHoiiiiiKMidat ions and (lucrics CMII hr (Ir-
H 110(1 and custoinizcd by t lie (l(�v(>lop(�r of the autopoict ic- system. Tli(�

l)i.()p(>s(�(l archiUKituro provides a core s(，t of each, as listed in table 5.1
(roconiiiKMidations) and tahl(�5.2 ((|u(Ti(�s).

Start, Stoj), Create,
Destroy, Clone

Th(，Kr suggest ions arc (lircclcd at applirat i<>ii cut i-
ti(\s.

Update I《(，(:oiimicmls to uj)(lat(' tht» application software,
riiis can he (lircctcd at t lie whole application or
application entities.

Revert After a software' update, tlic aiitopoictic syst(��

an advise t.h(�application to revert to the previous
version. This ro('<mmi(”i(hitioi丨 is used if a 丨)ml>-
IcMiiatic soft ware iijxlatc is applied.

lost HccoiiiinciKls to test an applicat ion cut it y.

Custom This rccoiiiinciKlation allows tlie aiit()|)()i('tic sys-
tcni to advise the appliratioii to p(Tl.(>门ii a custoiii
task.

Tahk�5.1: Aut()j)()i('t ic HccoiiimciKlat ions

In order to facilitates (ipi-aspc^cts, which iinpU'iiiciit advice for m.om-

iiioiKlHtions and qii(，ri(�s, the autopc^ic system iii(lml(�s an iiitcnial

niii-tiiiio woavcu" for (!i)i-asp(�(.t‘s, c.alkHl t h(�api-wcavcr. Tli(�（;pi，w?iav(T

(l(”)(�ii(is on t h(，programming language used to imploiiKnit the î pfr
V .. �

as])(H:ts, b(�(.aus(�not all piogimiiiiiiiig laiignagc^s provide (:()iiipa言 il)l(�

ai)immdi(\s for invoking methods or routiiirs. In onlcu" to support a

specific j)i()graiiiiniiig a (iistoniiztHl weaver h比s to IM�cUivcl-

��

CHAPTER .5. APPROACH II： EPI-ASFECTS 62

This query indicates that the aiitopoietic system requires in-
formation about specific application entities or the applica-
tion as a whole. For example, in order to evaluate the health
of a component, autopoictic instances have to be ablr to ex-
amine its internal state.

This query indicates that an autopoietic sysUnn wishes to
obtain infortilation about the cTirrcnt spoed (pcrforrnanco) of
a certain application entity.

Allows sp(X!ification of custom queries. The purix)so of cus-
tom queries is to provide a flexible mcdianism for extending
the antopoiotic: system.

Table 5.2: Autopoictic Queries

oped and integrated with the autopoietic system.

5.1.3 Epi-Aspects

The purpose of epi-aspects is to facilitate rosonan<;c and fccdback by

making the application visible to aud controllable by the autopoietic

system. In particular, cpi-aspccts arc responsible for implementing

self-sustaining concerns and any functionality required for smooth in-

teraction between the autopoietic system and application.

Since epi-aspects crosscut the autopoietic system and application, they

support two types of advice. The first type advises on rocomnicndations

and queries of the autopoictic systoiir, and performs required tasks,
»

such as testing and other maintenance. The second type advises on join

points in the application and is responsible for keeping the autopoictic；

system updated on the application's status and performance.

Each epi-gfepect contains:

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

1. All cpi-queue, which is used to dispatch iiiforiiiatioii from (�pi-
aspec.ts to the autopoiotic systoiii.

2. Application advicc, which arc responsible for providing food back
on tlio application's health to Uic autopoic^tic sysU r̂ii. This fo(xl-
back is passed to the autopoiotic. system through th(�（，pi-qu(�u<�.

3. A incx-.haiiisiii for defining advico on autopoiotic： nxtoiiiiiKMidatioiis
and queries. Such qucTy advice, and mcoTrnticndaf.imi admcc. p(T-
forin iiiaiiitonaiico or update operations according t.o si ingestions
by tlic autojjoiotic system, or to provide inforiiiatioii t.o satisfy mi
auto])oioti(! query.

As q�i-asp(�(:ts iiriplcnicrit. advicc for both application and aut-opoi(�ti<.
system, they liavc to bo woven twic:o by different weavers�One w(�a<v(�r
is responsible for weaving application advicc during compilation or at
run time. The other weaver is the (�pi-w(，avcr of th(�aut.()p()i(�ti(: sys-
tem. For example, lot's c.oiisiclor an cpi-a^sprct. (icnotod as DatahoscEjyi-

Aspect which is part of an upgrade to turn an application using a
database into conscicntious software. Tho-application advicc of this
epi-aspcc-t arc.woven into the (:()(k? of the application's databa.sc (�iigiii(�

during cojnapilc-tinio, and tlio rccoiiiincndation and qmTV advi(:(�arc
• �

woven into the autopoiotic： system dirriiig nin-tiiiir.

Epi-Messages and Epi-Queue -

The autopoictic system and cpi-aspccts coiiiiiiunictato by rxc.liaii^iiig
cpi-message.�which consist, of the attributes shown in table 5.3. Th(�

autopoictic. systoin can pa.ss cpi-inossag(\s as parameters to rocoiiiiiKMi-
dation and query advice iinpleineiited Hy cj)i-as|xx-.ts. _

丨 Aspoct weavers coinbiiio aspects atui the cocfc tlicy advise on.

�

CUAPTEn 5. APPUOACini: EPl^ASPECTS Vy\

Sender,
R(�(*(�iv(�r

Type

ConlcMii.K

Bot li autopoictic iiist,}inc(\s MIUI upplicat IOU cut ity can act s JUS

sciidor and nnuMvcr.

Indicates t.li(� type of. 1 he <�|)i-mrssa|̂ <�. Can l>(�<>"(�of tlie
following:

• ParaiiK'tcr: Epi-m(�ss叫(�is |)a.ss(�(l to an aulopoict ic n�(‘-
oniiiK^ndalion or query mlvirc as paranictcr.

• A us we
query.

/l)i-in(\ssag(' is an answer to an autopoicl ic

• F(�(�(ll)m�k: Epi-iucssagc contains fo(Hll)ack regarding tlic
all()|)()i(M.i(' appli(.ati(m.

參 I2IT(>I': r(�p(>rt.s an cnor that occurred in
the all(>iM)i(�tic application. ‘

• Epi-Error: Epi-nicssag(> reports an cnor t hat occurred
in an (�pi-a«s|M�(l.

Contains t he coiitcMits of t he iii(�ss叫(�.TIK�foniial of t liis
ni(\ssag(' could l>(' anytliing from strongly t.ypcd data over
XML to natural laiî îuigo. TIK̂ only nHiuirciiicnt is tlial hot h
aut()|)()i('t ic iiist.auc(»s and an* able to iiitcrpnM t his
Ibrinat.

Tfil>l(�5.3: El)i-Message AUiil>ut(�s

Each (!i>i-asi>(H:t, luus mtcoss to an ('.pi-qucm', wliicli can h<�used to dis-

])at.(:li infonnat ion to UK�autopoictk; sysUMii. Bd(u(�an (�pi-a!sp(�(:t is

woven into t he aut.op(>i(，ti(: systcMii, it iiioroly contains a st ub for t h(�（、pi-

(liiouo that (loos not contain any functionality. WIkmi the (�pi-w(�}iv(�r

l)r()('.(\ss(»s an (�pi-a叩(�rt., it doos not. only w(，av(�i(�((mim(�ii(lat.ioii and

(|Uory }wlvi(:(、，l)ut also inj(K;ts a (:on(TCt(�iinpUMiunitation of th(�（、pi-

qu(m(\ This oiisiirrs that ()pi-{“sp(，(:ts do not doixuid on 1 lie

coiicroto roali'/at.ioii of t ho aiit,"poi(»t i(: system.

春

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()
* t

Application advice

Application a(lvi(:(; (t,al)l() 5.4) arc (l()fiu(�(l on joint points in the al-
l()p()i(，t,i(: api)li(:al.i()ii. Thoir purpose* is to observe one or more sp(�(ific
application (”it‘iU(，s and to (�xp()‘�(�t h(�ir st.at(�to Ui(�autoi>oi(�t i(. (uivimn-
iiuMil.. I)q>(�ndinA on tli(�join point, it. a(lvis(�s on, t h(�implrmriiUit i<m
of an appluatioii ad vice gat.h(T.s and optionally tbrwards inloniuit ion
to the m“(>i>(>i(�t,ir syslinii. hil.oi.iimU(� is (lispatcJird to t h(�aiit.<>i>oi(�t i(.
systoni via t lie (»i>i-(|m�m�.

Exist ing a«i)(K:t.-oi i(�iit(Hl prograinniiiig laii^iuigrs, such ius Asjx'ct.) [50],
provide suHiciont. pointc.ut primitive's to (l(�s(Til>c most, of (he applica-
tio'ii join j)()iiit.s nujuirod hy (ii)i-a.s]K;(t.s. As a r(\siilt, ('i)i-MSi)(H t .s can
1)0 rralized as an (�xt(�iisi<m of existing asiKH.t-oi.irntrd iH.ogrammiiiii；

laiiguajijcs.

Th(�following applical.ion-lcvol joiiipoiiits ai.(�icquii.rd hy I li(�（、pi-asp(�(.l

archiUHiuro:

• Create: Creation of a new application (Mil ity. such MS 1 he con-

st riK'tioii ol" an (>l)j(K t.

‘ • Dc.stj'oy: D(̂ st ruct ion of an applirat.ioii riiUty， such as i\ (oinpo-

lUMlt or ()l)j(Ht(..

• Eirov. lJm�xp(，(:t(�(l errors or (�>:(:(�pt i(ms.

• hivomtioii/ExcruUoii.: Invocat ion and (�x(，(_ut i (� of iiuM hods.

• Event: Ev(uil.s, in an (�v(mt handling system.

• Set: Sott ing of a variahlt̂ or proprn ty valm�.

Tal)l(» 5.4 provides the details ol" how a S(�1(K.U(� of tli(�application

advico might bo usod.

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

Error

Creation

P(M(brinaii((»

Advico for errors or cxcoptioiis gatluM' as iiiucli iiifoniia-
tioii oil tlio (�m>i. ius possible, including the soui.a�of and
i(*}\,s()ii for Ui(�error, and then (lispaU.li t his iniorniat ion
to the aut()jK)iot ic syst,(�� via t he iiiiorinat ion ({IKMIC. For
oxaiiiplo, in U K � O I M s(Tvi(.(、，riTor applimt.ioii advice Ccin
Ik; (loHiiod for (�x(.(�i)t,i<>ns thrown l>y tlic database engine
and XML-IIPC s(�rvi(.(�.
Advicc lor creation join points arc r(�spoiisil>l(�lor iiiforin-
ing the aulopoic t̂ic syst.<、川 which application entities, such
as ohjccts, coinpoiKMits, and luodulos, exist. Tlû aut.opoi-
ol ic syst (nil uses l liis infonnat ioii to decide vvliicli ent it ies
should l)(�immit.orrd.
rVri.ommiia�advico arc invoked b(�t.or(�and after (.(�rt.aiu
111(4 lux Is or i)ro(vdur(�s in the applimt.km. Tli(�ir purpose
is to im�asim�t.ho (�x(�nit.i(>u tiiiio of lurtliods and i-(�i>(>rt
it to the aiit()i)()i('ti(' system, This allows t,h(�aiitojxHctic
syst CMu to k(x�i) t ruck of t lio iii)i>li(.a.t.i(m，s iHTfbniiancc aiul
(Ictoct |>(>SSil)h�tillKMMltS.

lablo 5.1: Ai)j)lic{it ion Advicc

Query ami Rccoiniiiendatioii Advice

CJiuuy an(l'r(H:()iniiu'ii(lati()ii mlvi((，impkMiicnl iiiaiiitciiaiKc and iiiloI'-
ll i at ion ietri(̂ val operations pmp(>s(�d by the autopoiciic syst(、川.Tliry
ar(�w()V(Mi into the aut.()p(>i(�t ic syst oni by t lie (�pi-\v(�av(”. at niiit iin(\

l)(，v(�l(>p(�rs of a softwai,(�systom might. impUMiuMit r(�r()mm(�u(jat ion ml-
vi(:(�to iiiii)loinont a unit. t(，st to v(�i.ity th(�projxM- (>p(�iati(m of a luM-
work (•()iiiiiiiiiii(;ati()ii coinpoiioiit, or to apply iip(lat(�s to ihv systcMii.
Th(\v may iinploiiiont a (iiioiy advicr to impk�m()iit an rvaluator 1 hal
evaluates tlio ixM lbriuanco (si>(�(�(l) of t he network comiimnicatioii coiii-
ponoiit. That impknnoiitat ion would mlvis(�on tlir Speed si概(�sti(m,

I and would h(�lp th(�mit(>p(>i(�t ic system to k(�(�i> t rack of tlu�siz(�of t ho
workload on t lio inetwork coiniimiiication (.(>mpom�iit . ,

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

CJiuny mid n�(:omim�ii(lati(m advi(.(�consist, of t wo pm.t ioiis:

• Header: Contains t lio at t ril)iit(\s tuniic and r(vrzi.v(.�r-patt.('ru. Tlir

name at t ril)utc is t lie luuiir of M pi(Ml(�fin(Kl (sc(�tables 5.1 and

5.2) or ciist.oiii rocoiniiKMidatioii or (|U(Ty. 'Y\\v rciT/ivcr-paiUini

attril)ut(' conlains a r<� î;ular <�>q>r(�ssi(>ii for niatc.hiii^ th(� targrt

applicat ion oiit ity.

• Im.'plr.mcntdtioii: Contains t lie allopoirtic codc lor implr� (�nt iiig

thv. rc(iu(�st (�(l fUttioiL It uses (�pi-iii(�ssag(�s as input and out put pa-

rainctors as a moans for (ommuuk at i(m l><�tw(�(�u t he autopouM ic

system and (�i>i-a.siM�(t.

5.2 Epi-Aspects Java Framework

This soct ion spcH iHos a fraiiiowoik lor (l(�v(�l()ping asp(、（:t,-(M.i(�nt(、（l con-

scioiit ious softwarr in Java. This (VaiiKiwork, which is (.all(�(l Epr-A./,

provides an autopoiol ic simulator and const ruc t s for impl(�im�iiting <�pi-

asixH'ts ill t he .lava prograinininp, laiigm»g(�. Th(�mit,()p(>i(�t ic siiimlalor

iiichulos a woavcu' lor (�pi-iLsp(�(.ts, and contains a logic engine lm.s(�(l

on (l(K,lmativ(�nilos, which iiiiplrnionts tho Ix^havior of th(�autopoict ic

system d(»sc'rihc(l in srct ioii 5.1.2. ”

Tho Epi-A.l (VaiiHnvork is (losignod as M suppk�川(�nt to Asjxrt-J [5(). «
SiiK'.o V(nsi()ii 5, Asi)(�(.t,J ha»s supj)()rt(Hl the usage of .]<iva annotations

()9] tor (lofiiiing aspects and a(lvi(x\ Epi-A.I provides n s(?t of Java
s _
annot ations, which'allow t h(�(ioKiiitioii of autojjoiotic 丨\x (>mm(�ii(lat imi
* 參 ••奏 •

and (1華(�1.>: a(lvi(:(，. As a result, an opi-ius})(X'.t can ho in”)l(�im�iit.(�d iisiiij;

a (•oiiibjiialion of Aspcct J aiiiiotHt ions and Epi-A.I aiiiiot atioiisl Tli(� * "
usage of annotations is (:<mv(�iii(�iit in A seiis(̂ t hat it is iiot IUH ossarv

身 .！

CHAPTER .5. APPROACH II： EPI-ASFECTS 68

to use tools like the Aspec;tBench compiler [5.] to exteiicl tho grammar

of the Aspect J pointcut language with new])oiiitcTit primitives for cpi-

aspects. Listing 5.1 illustrates tho definition of an epi-aspcx:t using tho • - .
combination of Aspcct-J and Epi-AJ.

1

2
3
4
5

7
8

9
10

@ As pec
{

public class XMLRPCEpiAsp^xrt extends EpiAspoc

After this (s) && exorutioii (XMLRPCScrvico. m̂ w (. .))
public void mnvliistancc (XMLRPGScrvico s) { / * . . . * / }

@AftcrThrowing (“ target (s) &&
execution (* XMLRPCSorvire. run (. .)) ")
public void roportExccption (XMLRPCSorvico s)
{/*••• * / }

^Rocoramcndation Advlco (rccommciidat ion=" star t � � ,
rocipicntPatter 11=" . * ")
public EpiMessagc
startXMLrRPCServcr (EpiMessago mcssa<j;o) { / * " . . . * / }

Listing 5.1: Epi-Aspoct, Example Cocio (Epi-AJ Framework)

•
Tlie Epi-AJ framework is divided iiito three Java pac:kag< ŝ:

1. The package cxniscientious. cpiaj {shown • in figuro 5.2) contains * , _
• - the base classes and interfaces of the framework.

* •

• jt •

2. The padkagc coTL4ci<mtious• cpiaj• annotatioris contains annotations
•， - ‘

� . f o r declarifi^-^utopOietic recommeydation and query advk-o in epi-

aspects. ‘

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

3. The pm.kagc coiiscicMtUyHs.siiiiuUiior contains tlio .Java])art of
t li(�aiitopoiotic simulator, sucli as t lio iiuj)l(Mncnl at ions of t ho (�i)i-
w(，av(，r and (，pi-(|mm(，.

5.2.1 Base Classes and Interfaces

As illust,iat(�(l in Hguio 5.2, Th(�Epi-A.] IVaiiK^work provides the fol-
lowing s(�t of l)as(�classics and iiitcn facĉ s for miliziiig cpi-asjxH ts, (�i>i-
niossages, and (，pi-(iu(�u(�s: EpiAspdrt, EplQuruv, and EinMc.ssafjr.

As (loscriluHl ill sect ion 5.1.3, opi-MSpcH ts and t lû aiitopoiot ic syst em
(oiniiiunicat.o by exchanging (�i>i-iii(，ssag(�s. Eadi opi-risjxH-.t. luus a(',(.(�ss
to an 0pi-(|U0U0 t hat allows them to (lispatdi (�pi-iii(�ssag(�s to t li<�au-
topoiotiit systoiii. ‘

Th(�ahst itU't class EpiAsjx'ct is t l i (� c l a s s tor (�pi-asi>(H t iinplniKMi-
tations, EpiQuc.uc dcfinos the iiit(�rfa((�of opi-cjiuMio iiiiplriiHMitat ions,

v M I K I tho class f^pi-Mcssaffc is tli(�iinplcMnoiitat ion of th(�（、pi-iii(�ssag(�

ilhist ratcHi in tahUi 5.3. /
I

Th(�EpiAspect daMs*contains an iiislanco vmial)l(�wliosr tvp(�is Ihv

EpiQucuc interface. Whrii an t h(�iiiiploinoiitation of an opi-aspect is
w()v(�ii’ the aut(>i>(>k�t i(: syst em (or autopofot ic siiinilator) assigns a (.(m-
(T(，t(�（*pi-(iu(m(�iiiiploiiKMitatioii to tliis instaiKto varial)k\ Aftri. t luU，

the (，pi-asp(�(t iiupl(�iii(�utatioii Vmi start (likpatdiiug (�i)i-ui(�ssa似、s to
t he autopoict ic systcnn.

* * .
*

Tho Epi-M('s.s(i()(' c.huss coutaiiis four inst ances variahles, which aro (�(|uiv-
alont to the o|)i-inossago att ributes Sender, Rvcvivri\ Type, and Con-

tdUs (loscrihtHl in tal>l(�5.3.

CHAPTER 5. APPROACH II: EPl-ASPECTS ()() ()()

conscientious.epiaj

Figure 5.2: Epi-A.J Bju>e CUisscs

5.2.2 Advice and Annotations

The Ej)i-A.] framework })r()vi(les the following set of Java annotations

for declaring rccoiiiineiulatioii and qiiory advice:

• (QR(H:oiiiiiicn(lati()iiA(ivice(iiaiiie, roceivorPattcrii)

• @CJiieryAdvi(!o(iiainc, recdvcrPaUcrii)

• @RevealQA (roceiverPatteni)

• @Si)e(，dQA(receiver Pattern),

@Tcst;RA (rcccMverPattorn'

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

• CciUpdatoRA

• @R(�v(nt R A(i.(�(:(�iv(u.PaUmi)

• @Ck)iieR A (roccn vcrPat t (uii)

• @Cr(，at(�I�A / («l>stroyHA{i('cxMveiPatt('iii)

• ((iStartRA / 灿StopRA(r(M:(�iv(�i.Pan(�rii)

All annotations havo n ivat.%i)crPattern attri})iitr that can l)(�us(、（l to
s])(K:ify a regular cxpmssioii for matching t ho cla.ss/opi-asjx'ct at which
tho autopoiotic rocoiiiinoiKlation or quriy is (lir(�(t(，(l. The '<iR(H()in-
iiicii(lati()iiA(lvict(' and (“Qii(”,yAdvi((，aiiiiotations arc gciunic annota-
tions that can be used to (loclaro advice on any autopoiHi(‘ i.(�(.omm(�u-
(latioii aiid qu(u.y，iiicludiiig custom recoiiiiiioiulatioiis and qm�ri(�s. Tho
roiiiaiiiiiig aiiiiotatioiis m.(�i>i()vi(i(�(l for coiivcniioiicc and can \)v us(�(l
to specify advi(:(�on the pro-dofiiied autopou^tic r(�(‘(>miii(�ii(lati()iis and
(jiiorios (l(，‘s(:i.il)(�(l in tables 5.1 and 5.2.

As shown ill listing 5.1, tho iiiiplrmciitatioii part ()f th(�rcconiiiKnidation

and qmu.y aclvico is a Java met hod that receives an EpiMc.ssaqc objoct

a.s paramotor and rcturiis anothor EpiMessagc objoi^t to the autojx)!-

oti(! systein. The EpiMcssage paraiiK^ter is sot up by the aiit(>i)()i(�tic

systcin to spccify details regarding the recoinniondatioii or (|u(Ty. and

the EpiMcssage return value contains f而、dbax.k or other iiifonnatioii

for tho autoi)()ieti(t system.

5.2.3 Autopoietic Simulator

The Epi-A.J framework provides an aut()p()i(�ti(. simulator that can 1)(�

us(xi for (levoloj)iiig and testing (�pi-asp(�cts. This simulator consists

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

of a nintinie, an epi-weaver wiitt(�ii in .Java, and uses the Prolog jno-
graiiiiiiiiig language [10, 89) to iiiii)leiiioiit the iul(，‘s of thr autopoiotic
system 1. Prolog is not an autopoiot ic prograiiimiiig language that is

spocifictally (l(，sigii(�(l to pr(�v(mt bugs that can l(»a(l.�o piogrmii (Tasli(�s.
H()w(�v(n,，a.s tlio dosign of an aut()i>oi(，ti(: pmgramiiii叩 laugim以、is 丨lot
within tlu; scopo of this pap(T，Prolog is a suitable substitute�for sini-
iilation])iiri)()sos, b(，(:aus(�it is cloclaiHt ivc and it is not easy to wi.itr m
Prolog program that craslK^s.

The aiit()j)()i(̂ ti(： siiiiulator can h(�iiiv()k(�(l from a .Java pm职im hy

cmUiiig and coiifiguriiig an iiistaiico of the Siitmlaior class shown in

figure 5.3. 11 it.on 1 ally, t lie Simulator clâ ss uses tli(�SW I-Prolog (ui^iiic

100] to simulate the bdiavior of t‘li(�aiitopoietic system. Iiit(�ni(.ti()ii

l)(»tweoiiJhc Simulator instance and tlir SWI Prolog (uigino is accoiii-

plisli(�(l through the .JPL (.lava Iiit(�rfa(:(� to Prolog) API, which is part

of th(�SWI-Prolog (listrihiitioii.

VVhoii a new iiistanco of the Simulator class is crcatcd, the calling

application j)i()vicl(»s a list of cj)i-asjK'(:ts. During its initialization, tlic

Simulator instance performs tlio following tasks:

1. The SWI Prolog oiigiiK^ is initialized and the Prolog pr()^rain(s)

iiiiiiiickiiig the autopoiot ic systoins are l()ad(�d.

2. All iiistanc^ of the AdvictiRcposiUynj shown in figure 5.3 is (roatcd.

3. An instaiKx，of the Waivar class is creatod and the list of cpi-

aspocts is passed to it.

4. The Weaver iiistaiK-e weaves tli(» ('])i-a.s|)0(:ts into tlio Advicvliepos-

itouj instaiico. Moix^wer, it injects an iiistniK-o of the EpiQucucJinp

class, which iiiiplemoiits the simulators (�pi-(iu(�u(! into each woven

opi-a,si)e(:t.

CHAPTER 5. APPROACH II: EPl-ASPECTS ()()

SW! Prolog

Figure 5.3： Epi-AJ Autopoietic Simulator

5. The Simulator instance issues the autopoietic rccoriftnondat ion

Start which is dispatched to all woven epi-aspcx:ts.

Once the autopoictic simulator is running, the woven cpi-asp(vts can

dispatch epi-messages to it via the EpiQueucImj) instance. Whenever

an epi-message is received, the Prolog program(s) are invoked and the

result can be an autopoietic recommendations or query. Autopoietic

recommendations and queries are dispatched to relevant advice of the

woven epi-aspects.

a %

CHAPTER 5. APPROACH II: EPl-ASPECTS 71

5.3 Summary

This diapt(u. introduces a socoiid rosoiiaiicc-oricuitiKl approacli called

(»l)i-fusj)0(;ts. Apart from (h>s(;iihing thv (:(>ii(.(�pt iml m.diit(M:t ur(、，Ej)i-

A.I, a Java frain(�woi.k for (，pi-a‘sp(K:ts is introduced.

/

V
• JEnd of chapter.

Chapter 6

Studies and Validation

This diaptcr doscribos studk^s aiiinxl at supporting the hypothesis for-
mulated in scction 1.5. The hy])othosis states that, in «>mpari.soii with
traditional ot)j(x:t-()ri(mt石(1 prograiiiiiiing, r(，s()iiaii<:(M>ri(’iit.(�(l software
design and (IcYclopinciit improves the oa.sc of dealing with t,h(�main
factors affec-.ting software ovolutioii: ease of changing a program's de-
sign and structure (changoability). extensibility, inaiiitaina})ility. quaJ-
ity fco(lbac:k, and error fccovcry. Th(�studios (�valimt’(�how the ĵ ro-
j)osc<l rosonaiKxvoricnitod approaches improve tlû ŝo factors in coiiipar-
isoii with objoct-oriontcKl programming.

Scc.tiori G. 1 iii^piuces the general design for the studies pr(\s(�iit(�(l hi
this chaptor and discusscs how possible threats to validity ar() ad-
dressed. Scctiori 6.2 compares tiic first rosoiianc-xvorientcd software
development approach, iiarmoiiy-oriciitcd prograininiiig. with objoct-

Nr.

oriented programming in terms of changeability, oxtoiisibility. and iriain-
tainability. In scctiori G.3, the quality feedback and error rocovory ca-
pabilities of epi-aspects are ovaluatcxi and cornparcxl to objoct-oriciiUxl
prograiumiiig. Scctiori 0.4 dcscribcs a software evolution study bas(，(i
on a rc^ world example using an architecture callccl harrnony-ori,anted

«

• 75
. �

' � 、 ‘

八 ' •

CHAPTER i'>. STUDIES ksD VALIDATION ！>91

c . j n - a s p c A ' . i s that. conihiiK^s t he st nuigl lis ol" l lic t wo prop(>s(ul rcsoiiaiicc-

{)ri(»iit(Hl soft.wan^ (Icvdopiiiciit. appioarlics.

6.1 General Study Design�

The g(ui(»ral s(，t.ifp for t lie si udics pr(，s<�i“<，(l iii t liis (]mi>t (�r is as follows:
(̂ ach st udy consists of one or iiioni cxjM'riiiuMit.s, and (�a(.li (�xp(Tiiii(�iit
litLS at IcfiHt, oiKi part that conducts a s(”,i(�s of design or (l<�v(�lo|川i(>nt
tasks using a rcsoiianccvorHuitcKl aj)|)i()M(li, mtd al. Û asl. one otlicr pjirt
that ixu foniis t LIC SMIIK; s(Ti(，s of tasks usiii^ t radit ioiial objcct-or'KMilcd
lM,(>jz;nimmi叩.At t he v.nd of (，m:li (,xp(，rim(�nt, l.lic design and (l<�v(�l"|>-
II KM it i)r()(:(\ss(;.s arc coiiipMnid.

The studies HI(5 (L<�si片II(，(1 (O achieve coiislmet validity, iiit(�nml validity,
and (，xt(，nml validity by {iddrcssiii^ (-oiiiinoii 1 lirents.

6.1.1 Construct Validity

()i…i)().ssil)lo (hrcat to consl.nKtt validity is lliat rxprrimrnis do not

t,(\st, factors to be (waluat tul. The aim of t li(�si udics prr-

•s(mt,c(l ill t his chaptcu* is to evaluate and roiiipan� t he following fac-
«

lors in th(，c.onU^xt of rcsomm(.(w>i.i(�iit(�(l software (l(�vrl(>piii<�iit and

()l)j(H;t-()ii(Mil(Hl prograiniiiiii^;: (;liang(*al)ility, (ixtcnsibilily, inaintaiii-

Mhility, quality fcHulhack, and error r(�<:(>v(u.y.

• ('haiig(uil)ility rdeis to c.liaiigiiig a pro幻miis design and st.rnc-

tiiie. Ill ihi) context of ohjoct-oricnUHl jHOf^iaiinning, (.lmiig(�-

ahility n，f,(TS to adjusting iiit.(”.fm.(，s of hikI n l̂at ionsliips l>(,t.w(�(�ii

()l)j(K;ts. Tlu! (:iiaiig(uil)ilily st udios in s(，(:Uons G.2.1 and ().2.2 tlins

focus on relationships and iiilxnact ion l>(’tw(KUi pn) î,raiii parts.

CHAPTER i'>. STUDIES ksD VALIDATION ！>77

,ExUnisihi l i ty and niainlainahilily r(�l(�r to 1 lie vixsv ol rxlrndiiig or

changing a pi.ograiu with or wit lioul. having to chnn^^c 1 he, pro-

grain's ov(T}ill st.nu;t:nr(\ This incliulcs u!ipr(�(n(.t.(�<l (�xt(�usiniis
and cJiMngcs t hat w(u.(�not (.<msid(�ml in t he iiiil hil dcsip；!! of t Uv
program. Th(�studies in S(H:U()IIS 6.2.3 MI id (j.'l rvalimtr exten-
sibility and iiiaint aiiiribilit.y by (•()in|)aring I Uv impl(�nu�nt;“ ioii of
<�xt,(，nsi(m iiKKthaiiisiiis ruid um�x丨>(u.t(，(l (hfiii沖、s.

• F(;(Kil)M(:k and (�n.<>r rccovciy iclci" to 1 he (� f � s (� o l iiiiplciiKMit iii^

n̂ lial)l(； iiKU'liaiiisiiis lor ^(nicrat iii^ iiiforiiialioii Ml)()ut Ui(�stat us
(lioalt.h) of j)r()grain parts and assisting t h(�iii vvil li rccovcriii^ IVoin

crroi s. Tli(’ .stu(li(\s in sect ions (i.iJ and “.‘1 (�vahmt(�tli(�s(�1 vv(>
facl.ors by st udying Ui(�impl(�nirnt.at,i(>ii of sucli iiiccliMnisiiis. MIKI

^oiicrat iii^ and siiiiulal iii^ lailures.

Bifusos, siKtli MS t he inono-oixMat ioii bias mikI (he “rrsr^mclirr bias", arc

another coniiiioii I lircad to const ruct validity.

Th(i ni()ii(>-()i)(M at.i()ii l)ias r(�l.(T.s to (^valuat iii^ n (ritaiii met hod or pro-

graiii oncd in a single phi"�at, a sin|i,l(' point in tim(�. Tli(, shulirs
l)iosoiit(Ml in 111 is (thaptiir avoid this hias hy using each of 1 he two pro-

j)()S(h1 r(\s()iiaii('.(5-()ii(;iit(Hl approacin^s lor VMiioiis studies and coiiihiiiiii^
tlû two fippr(mdi<\s into a ii<�w one in s(H:t ion G.4.

Tlic hifus" i,d,(�is to fh(，fart, l.lial a jXM Son conducl iii^ an

(»xi)(Miin(!nl. c-aii aiibct its n^sult consciously and iiiicoiisciously. Whil(�

it, is inii)()ssil)l(' to (:ompl(，t.(，ly (，limiimt(，t his bia ŝ, Ui(�sl.iulics at Iciiipt

to iiiako fair comparisons l)otw(H'n tli(，i.(�s(>imu(:(�-(>ri<�iit<�(l ai>i>nm(.h<�s
and ()l)j(K:t-()ri(nitcHl prograiiiiiiiiig by avoiding sccMiarios whose condi-

tions significantly favor ()ii(: ov(u. t li(，ot.lKir. For rxaiiiph�l . lic soft ware

evolut ion study in scK-.t ion i)A uses t.li(�saiii(，init ial (Hawcnl) aj)i)lic.at ion

CI IA mm (). STUDIES AMD VAIJDATION , 7S

(l(�si]^ii lor hot!I i'cs(m".n(.(�-(>.ri(�iit.(�<l and (>l>.j(�(:t.-"ri(�iih�(l approarhrs lo

avoid giving an unfair mlvant.a|j;(，lo tli(�loiiiicr.

6 .1 .2 Internal Validity

Within (，m:li <�xi)(�riinriil I wo pro 职 immiiig ;q>|>mm.li(�s arc used to I)(T-

loriii U i (�same s(Ti<�s of t asks: M i.(�somm<.(�-(>ri(�iit(�(l approm h and t ra-

(lit.ioiial (>bj()(:t.-(>i,i(�ut,(、（l pro^raiilining. Thv iMograinniiug approach is

t lie iii(l(�i)(�ml(�nr variable of (nicli ("Xpcrinicnt. :rh(�s(.(”)(�of" t lie rxprr-

i i iKMit s c o i K l u c t c u l w i t h i n t h e st mli(、‘s i n 1 l i i s c l i M p t c r is r c l a t i v c l y s m a l l

Mild (Iocs not. (̂MKM atc large amount s of (ImI M. AS M result, cxI raucous

varial)l('S coniinoii in lai•沖、‘s<.al(�M’u(li(�s，siicli liislory, mal \iral ion, test-

iiig,- inst ruiiKMit.al ion, slat ist ical icgn^ssion, schu-t ion, nnd iiioiiality, do

>|i()t aHr(1: th(�OUICOIIK^ of tli(�（、xp(Tim(�iit‘s and t hus do not 1 lircMlcii �•

t hdi. inlcnial validit y. Tli(�only vai inhlc niircl iii^ t lie onlcoinc is t \\r

in(l(�|)(�n(l(�iit‘ varial)l(> and thus iiiUM iial validity is achieved.

6 . 1 . 3 External Validity

Tli<�st,u(li(is PI.(，S(、I“.(H1 ill t his (�xampl(�use concnMc scciiMi ios, such as

sul)j(H-.t-()l)S(U V(n" n^lalionsliips, an a])])li('nt ion server, a contcnl niaiiagr-

m(，nt, syslcni, mid an oi.(l(”. and inv(�ntoiy niMiiiî ciiKMil syst.rm. Results

that, ai.” not. G (�m�ni l i za l> l (�m(�a t hr(�ml to rxlcnial validity. 11(>W(、V(T,

Um studios do not locus on any asixu-.ts si)(、<:nic to {.liosc |)mi1 iculMr

sc.oiiarios. For (�xaiiii)l(\ Ui(�a])|)ii(-at.i()ii wM vcr rxaiiiph�（l(�;Us willi as-

jXH-.ts l ik(�network protocols and culding lu'vv featur(»s in {̂ cikmmI, and

the sul)j(H;t-()l)S(nv(n- n^lationshii) (\xaiiii>l(�(^xaminrs how to f>.stal)lisli

(lynainic relationships in a programiiiiiig (MivironnuMil t liat. docs not

provide any sixu iHc. const ruct s for doing so. Hriic.o, Uk�results of tli(�s(�

studies also apply l.o ot.lirr kinds of s(M-v(»rs and dyiiamic irbitioiiships.

CHAPTER i'>. STUDIES ksD VALIDATION ！>79

6.2 Changeability and Extensibility Studies
�

, \
T h e studies drs(Til)(、（l in t lie iollowing sect ioi^ coinpMrc t liTH^rst pro-

1)()S('(1 r(、s(>iian(:(、-(>i.i(、nt.(、<l so f tware (lrv(、l(>i>iiM、iil a p p r o a c h , l i a rmony-

orici i t at ioi i , wit h ()l>.j(、(:t-m,i(、i“r(l p m 职 i n i m i n g in t(、niis o f r l i a i i奶山 i l -

il.y, (extensibi l i ty, MIKI i n a i n l a i n ah i l i l y .
•V "•

Tli(、st u d y ill s(、(:l i (⑴ (> .2 .1 (.(⑴i|>ar(、s (ha叩”山 i l it、， in ha i nioiiy-or'uMitcd
t

and ()l)j(H:l,-oriented proj i jai i i i i i iug 1 l irou^h tlu、rxaiiiplr (>1. sul>.j(、rt-<>l>-

s(�i.v(”. r(�lat ioiisliips, and th(�study in s(�(ti(m ().2.2 coiiiparcs (ha叩(�-

fihilit V 1 luouj^h I he (example of i i"pl(� i i i (� i i t iii片 prorrssiug chiniis of pr"-

(lu(:(TS，consuiiKM's, and liltcrs, "Tlu�study |)i.<�s(�nh、（l in srrtion (J.'i.ii

(.mi"mr(�s (�xt(�usihility and niaiiitMinability.

6.2.1 Changeability: Relationships

S(、v(、m.l object-oriented design i)at Icriis 1 liMt racilitntc dyi ia in ic rchil ioii-

sUips l)('t.w(HMi objects, such as th(�Observer j)a(tciii, aic |)i.(>i)(hs('(l hi

37]. TIK�piu.i>()s(�of th(�（）l>s<Tv(T \rM Icrii is t a i,(�ali'/(�a "m�-t�-umny

(l(̂ |)('n(l(Mi(y l>(�t\v(�(�ii objects, such t hat wlicn one (>hj(、（.t cliaii'̂ ics its

stat(\ all other ohjrrls ai(�iiolificMl.

Figure (). 1 illust rates t he coiicc])! iinl (l(�si幻i of t lie ()hs(�rv(�r pnt tci ii.

T\u) pai'tic'ipaiits of (his paUci.n mv classes CM11(HI Suhjccl. Observer.

ConnvtcSubjvi‘U and Coiinvic.Obscrvcr, Th(�Sahjcct (lass <l(�Hii(�s t lie

inl(u.im.(、(cUhI thus a |i.(mm、t(、‘ and lixcd pml.ocol) foi' at 1 ncli in^ ami

d(、t,m:hiug iiislancc^s o f l\w. Oh.scrvcr class. T h (、 O h s v r v n ' c lass (l(、fim、s

th(�iiit(u.�.m:(�lor updating ol>S(M.V(、IS (hat M,(、notiii(Ml, WIKMI t\\v state

o f t h(、sul)j(、(.T d i a i i g c s . T I K I CoucrcJ.rSuhjcct a n d CoiinTtcOhscrvcr

(•.la,ss(»s m,<、（.(m(:r(、t(: iniphMiuMil at.ioiis <>f (>hs<Tv(、rs a n d suhjccls.

CHAPTER i'>. STUDIES ksD VALIDATION ！>80

«abstract>:>
Subject observers «abstract»

Attach (Observer) observers Observer Attach (Observer) Observer
Detach (Observer) UpdateO
NotifyO . —f\ -…-——

ConcreteSubject
subjectState
GetStateO
SetStateO

subject ConcreteSubject
observerState
UpdateQ

P.iguR�6.1: The 01>s(Tvcr Pa.t.UTii ([37])

To attach and dctach observcn-s to a .suhj(�(.r.，rh(�Attacii ami DrUich

inctluKls liav(�to ho invoked for cach O1>S(TV<T. Th(、S<、iu(�t IKKIS (.HAII‘ii;(�

an iiit(Tiial ohs(�rv(T list that the suhjcct iiist aiico luaintaiiis. \\，h<�ii(�\'(T

the stat.o of a suhjoct <:han<>(\s, t.h(�following; .s<�(iu(�nc(�of staK^nuMiis

(protocol) is executed:

1. The sul)j(x:t invokes its Notify method.

. 2 . The Notify inclhod iterates rhrough t.h(�subject 's (>l>s(�mT list

aiul invokes r.lio U-pdatc inothod of o<u:h ohs(�rv(T.

3. T h e Update iner h o d o f (、ax:h (>hs(、rv(、r i nvokes x ho GctStaic n un h o d
k �

of t,bc subject, and proc:oss(̂ s the IK�\V srai(\

- ^ - - , • -

111 (iyiianiicaiiy typed ohjk:t.-ori(�iUc(i pro^Taiiimiiig laiij>iuv̂ (\s lik(�Ruby

find Sinallralk, the abstract siiporcdfusses ar(�not n(�c(�ssary. Also, ih(�

subject's stat(̂ can be passed as a paraiiK^tor of tiie observer's Update

niothod, so that the observer does not hav<�to iuv(>k(�rlic subject 's Gci-

State method (iiiriii^' tlio third stej) of rho protocol (l(\s(:rih(Hl above.

Although riio iinploinciir.ation of the Ohsci.v(�r pat::t.(�m is nor v(�ry com-

plex, its oxistenco aloiu" uiKiorHiies tho hick of mecluinisiiLs for defin-

CHAPTER i'>. STUDIES ksD VALIDATION ！>81
• • 、 -

ing relatioiishi]>s, other than static inhcritmico rdationships. Ix^twoon

objects in OOP. Furtlioriiiorc. <�v(�n though tlir Observer pattern fa-

cilitates a small <logrco of flexibility, the int(Tfa(:(�s/pr(>tocols for rogis-

toring-. unrcgistering. and notifying observers haw to be fixed during

the design plia.sc and later even small changes, sudi as adjusting t.h(�

parainct(n'8 of t.h(�Update() method, can result in a snowball (�ff(�ct. that

forces modification of many other obj(x;t.s. AnotlKT issue is that th(�

Observer pattern requires th<�subjcxtt to be aware of its c)hscrv(ns. to

inaiiitaiii a list, and to oxplicdtly dispatch iiiforination to (�m:h of thriii

whenever its statr diaiig;(�s. Howcvcn". thr spirit of observation is that

an obscn'vOr- should be able to obsrrvr a subject that is oblivknis of

being obs(Tv(�d.

Ill harinoiiy-oricntrd prograniniiiig, coclo snippets ifit.rnu.t with tli(�ir

spacc cxc:lusivoly and m'<�not mvai.(�of (舞.h(T snippets. Hmv(�v(�r. pro-

grainiuors can s(�t up subjo<:t-()bs(�i.v(�r and other rdatioiisliips through

tlie spaciality prindpk、： A relationship b(�tw(X�ii two snippets can IK、

established by moving tliciii closc to oiyc another in th(�spax:(�. and bro-

ken off by moving thciu apart from OIK�aiioUi(�r. For (�xaiiipk�. roiisidrr

a snippet S that pr(�(iu(:(�s iiuiiibrrs that arc aiitoinatic^ally diffused by

the space. Sin(:(�the diffusion proc.oss is not infinite, thr iiuiiibcrs ar<�
p �

only (lifFiiscxl insido a liiiiiUxl virtual aroa s i irrouiKi i i ig snippet S. Fur-

thcrinoro consider a sccond snij^pct O that observes iiunibcTs. If this

sni]>pct is far away from the uumbcr produdng snippet S (i.e. outside

limited clifFusiou area), it docs not process tlic griKn'atcxI imiubcrs.

However, as soon snippet O is iiiovecl into tlir aroa coiitaiiiiiig tlir

diffused iiuiiibcrs, it starts pnxtrssiiig thcni and. as a result, a subj(�(:t-

obscrver Kdationship is established. If snippet O is inovcxl outside th(�

area again, the J>\ibjcc:t-obscrvcr relationship is b](|ok(�n off. *

This study c:oiisickM's an iini)lcincntatk)ii of a subjcKtt-c^bsorvrr relation-

CHAPTER 6. STUDIES AND VALIDATION ‘ 82
* ‘ . .

ship between a siibjcct that maintains a hank accoiinr. sratc and an
observer that "is interostoci in being notified whenever the balance of
the ac:(:oimt c:haiigcs. The following soc-.tioiis proV îiit. an ohjecr-c/ritnited
iniplement.ar.ion, a haniiony-orientwi iniploiiicntation, an<i a conipari-
son of the two imi)leiiicntaT.ions. <

»

ObjectTOriented Implementation
. - •

The subjoc.t. is an iiisr.aiKte of a class called AccountSuhjcrX rko ohs(�rv(�i.
is an instaiKte of. a clâ ss c:allcd AcrmmtObserver, aiui r.lic st.au�itself
is inciintainod by an instance of a�class called Account that provicios
methods related to inanaging the account's balance, such as doposir
and withdraw methods. Wlionevor the subject. (:hanj>-os the sf.aro of

I

the account., the observer is notified and provided with the Account

instance. ‘ �

Listings 6.1 and 6.2 show the mcThods of the AccountSubject and Ar-

(uyantObaervcr classes. As shown in listing 6.1, the ohj(�(:t.-(>ri(�nu�d ini-
plenientar.ion maintains its observers in an ordered colloction. Lisrin̂ :̂
6.3 contains a Smalltalk script, setting up iiisr.aiicos of A cconntSuhject

and AccountObsaroer, and changing the stare of th<�siihjccr inulriple
times.

Harmony-Oriented Implementation

The haxniony-orieiiteci iniplcnientation consists of a single spa(:(�and
two snippets called “account: subject" aiid "accoiuit. observer” snij>-

•

pets. T1K> "account subject” snippet rcmsos the Account class from
the object-oriented implciiieiitation to realize its state. As explained

；in section 4.2.1, the state of a snippet is owned and (iiffus(xi by rhe
space,just .like all other data in harnioiiy-orieiitcd programs. The iin-
plenientation of the "account subject;" snippet is a list of stateinonis
that perform the foUowinj;̂ actions: ~

CHAPTER i'>. STUDIES ksD VALIDATION ！>83

2
%

3
4
5

mm

i
8
9

10
11

12

14
15
16

17
18

i n i t i a l i z e
observers := Ordered Collection new.
account. := Account, new.

attach: anObscrvcr •
observers add : anObsorvor .

detach: anObscrvcr
* X

observers remove: anObscrvcr .
notify

observers do : 1: obsorvor ! obsorv(-�r update : account
balance : aNumber.

account balance: aNumbor.
self ,notify . • �

withdraw: aNumbcr -
ac c o n n t withdraw: aN mnbor.
self no t i fy . ^ ^

deposit : aNumbor
account deposit : aNumbor.-• • •
self noti fy .

Listing 6.1: Methods of AccountSubjecf, class (OOP). «

» � _. • �

• Change the typo of the snippet state to Account

- • Use the state to change tlio balancc . . - “ •
(deposit, withdraw, ctc).

The implementation of tlK^ "accoimt observer" snippet observes the
>

space and processes any Account objcc:ts that are diffuscxi to its k>-

cation. Figure 6.2 ilhistrataos the harmony-oriented iniploiiientatioii of

the account subject-observer relationship and listings 6.4 and 6.5 show
. �

the code of the. subject and observer snippets.
� /

In the harmony-oriented program siiowi^ in. figure 6.2. the account.
" . - - - -

subjec!t-observcr relationship is established already, siiicc the substance

. • 一 广

CHAPTER G. STUblES AND VALIDAriON 84

updatfe: an Ac count

T r a n s c r i p t c r ； shmv : ‘ Ohso r v o r * .

an Account h a l a i u o asS t r i ii g .

Listing G.2: Methods of .4rcountOhservcr \ \ass (OOP).

s u b j e c t A f c o u n t Sub jec t new,.

su l) j oc t a t t r i c h : Account() l)S(' rvo]
« •

r n e w -

V) a 1 a n c o : 1 00 :

depos i t : 5 0 5 ;

w i t h d r a w : 2 0;

(lot acl i A11 . .

Ltstiiig G.3: Account subject and obs(�rv(�r example (OOP).

Figure 6.2: Account Subject and Account Observer (HOP)

CHAPTER i'>. STUDIES ksD VALIDATION ！>85

“Accoun t S u b j e c t ”

state type: Account ；

balance: 100;
deposit : 50.5
withdraw : 20.

Listing 6.4: Account subject snippet (HOP).

“Account Observer"
space observe: Account do

log show: 'Observer
ac(.

acc balaiicc asSr ri ng

� - Listing 6.5: Account observer snipper (HOP).
I

• 一，
^ /

diffusing the state of rhe account subject snippet reac-lios -rho accounr
I •

observer snipper. Moving the rwo snippers further apart from each

other results in breaking off rhe siibjecr-observer relationship.
‘ “ / •

Comparison

As r.Ke implementations in lisrings 6.4 and 6.5 sliow. ir is not necessary

to explicitly implement siipport for subjecr-ohservef relarionships in

harmony-oriented programs. It is enough ro define two snippets: a

subject snippet whose stare is of type Account and an obser\'er snipper

that consumes data of type Account.

In the object-oriented implementation, however, support for rhe subjecr-

observer relationship has to be implemented explicitly. Apart from

defining rhe AccountSubject and AccountObserver classes, the program-

mer has to:

Define nine methods (eight methods in AccountSubject and one

method in AccountOhserver).

CHAPTER i'>. STUDIES ksD VALIDATION ！>86

參 IiiipleiiiCMit the met hods (coiitaiiiiiig a t otal oi. 18 inossagr sonds).

The minimal iiiii)leiiientatioii ov(�ili(�ml lor supporting sul)j(�(t-()bs(�i.v(T
relationships in ohjrct-orioiitod jno^raiiis is as follows:

• Subjec t class:

- C r (� a t (� a list for iiiaiiitaiiiiiig ohscrvcrs.

—Provide method for attaching (>hs(Tv(�rs.

一 Provide mot hod for detaching ()hs(�n'(TS.

一 Provide mot hod for notifying ohs(�rv(�i.s.

- A d d cotle to iiivok(�notification iii(�tli(Ki aft(�i, any ((KIO that
changes the state. ,

V

• ()I>S(TV(T class:

-Croato mot hod procossing ujxlated state.

Th(�process of ostahlishiiig and broakiiig off siihject-ohscM vor rolation-
ships, oiico support tor them has been impl(�ni(�iit(�d, is simple in both
iiiil)l(Miieiitati()iis. The diffonnico is that rolatioiisliips m.(�ostahlishod
and l)n)keii off by moving snippets in tho lianiioiiy-orioiittHl version,
and j)rograniniatically in the ol)jo(t-()iieiitocl voisioii. Tho prograiiiiiiri.
can iiiako (haiigos to the relationship (luring niiitiiiir in the harniony-
oriented version, but has to stop, edit, ami then n^stait tho objoct-
orieiited version.

t

6.2.2 Changeability: Processing Chains

r »

This study provides a (ompmathx�example for creating and chang-
ing processing chains (like producer, coiisuiiier, and fik(�i. chaiiis) in

CHAPTER i'>. STUDIES ksD VALIDATION ！>87

hannony-oriented and object-oriented programs. Ir (.onsi(i(�rs rho fol-
lowing example processing chain:

1. A producer producing numbers borween 0.2 and 10.0.

2. A filter rliat negates numbers.

3. A filter that rounds numbers down.

4. A consumer consuming numbers.

Figure 6.3: HOP Filter Chain

Figure 6.3 shows a harmony-oriented program implementii堪 rhe exam-
ple. The processing chain elements are implemenred by four snippers
whose code is shown in listings 6.6, 6.7，6.8 aiid 6.9.

The two filters are implemented as snippets that consume numbers,
perform an operation on rhem, and then pur them back into the space.
None of them contains any code for establishing a processing chain.

C H A P T E R i'>. STUDIES ksD VALIDATION ！>88

1 “Nuinbor Pro'ducor"

2 1 t o : 50 do : [: i(lx 1

3 I spacv put : (i(lx / 5) asF Ioa

Listing G.G: Siiippot proclucing iniml>(�rs.

1 “ Nuiiihor Consuiiu'r"

2 SPACE (o i i s u i n o : NUIHIMM' d o : [: NUIII

3 log show: imni a s S t r i i i g .

Listing 6.7: Siiipprt coiisuining IIUHIIMMS.

” Negator"

spacc coiisuiiio : XunilM^r do : (: iiuiii

spa CO put : iiuiii lu 'gatod .

Listing G.8: Siiippot iiegatiiij^ imml)(�i.s.

” Rouiulor"

space coiisumc : Numl>or do : [: iiuiii |

space put : imm rounded

Listing G.9: Siiipp(�t rounding IIUIHIHTS.

The processing chain (-an bo construc ted and (haiigrd (luring runtime

by moving the siiipp(�ts around in the space.

To cioate tlio same processing chain in an objex t-oriontod program, an
intcrfacte for c haining objects and passing data from oiio to anot her has
to b(�designed first. Object-oiionteci pi()(:(�sshig cliaiiis can ho realized

CHAPTER i'>. STUDIES ksD VALIDATION ！>89

by applying design patterns like chain of responsibility [9G}. iiit.(T(-:cpt ing
. r 1 • r 1. •‘

filters [34], and composite filters [104]. Figure 6.4 shows a possible
design that defines a superclass called ChainLink that can be ‘ used
for creating chains of objects. In addition, the diagram iiK:ludos four
classes derived from ChainLink corresponding to tho snippets of tho
harmonv-orientcd version. “

ChainLink

sucessor: ChainLink

setSucessor(successor:ChainLink)
process(num:Number)

NumberProducer
mmm

NumberConsumer

Figure 6.4: Objcct-Oriented Filter Chain

The ChainLink class provides the method sctSuccessor for setting th(�

next object, (successor) in the chain. To build the exainplo processing
chain, instances of all four subclasses have to be created and then the
following sequence of commands has to be executed:

1. Set Rounder instance as succcssor of NumberProducer instance.

2. Set Negator instance as succcssor of Rounder instance.

3. Set NumberConsumer instance as successor of Negator instance.

CHAPTER a. STUDIICS AND VALIDATION ‘ ‘ DO
• - . :

* *

T h e process m e t h o d s h o w n in f i gu re ().4 is ovt、n.i(l(I(、ii b y cac l i o f tli(、

• f ou r {'la,ss(\s. T h i s i i u i t l i o d h a s t w o r(\sj)<)nsil)iliti('s: p r ocess t he r(K.Hv(、（l

(l a t a a n d t l i o i i , i f tli(、ol)j(、(:t h a s a sii(.((、ssor. p a s s t he i)m (rss(>(l (l a t a

o n .

6.2.3 Extensibility and Maintainability

T h e (、xt(、usU>ilit'v a n d ina i i i t a . i u ab i l i t y st i i d y coi is idc.rs t l ie c x a n i p l r o f a n

(、xt.f、iisil)l(、application S(TV(、I. (P ' A S) t h a t ic((、iv(、s r(,(iu(、‘st‘s fro i i i c l i e n t s

v i a M T (T sockc l a n d 1 l ion i>ass(、s tl、i(、s(' r r q u r s t s t o reg i s t e red app l i cH-

t i ons , w l i i c l i pr(>(.(、ss t IKMII HIHI p r o d u c e n r(、i)li(、s. E A S is rxt(、iisihl(' in

t w o ways : f i rs t ly , it is p o s s i h l r t o a d d n e w p r o t o c o l s lor i n l c r ac t i i i ^ wit li

c l i o i i t s , s u c h as X M L - H P C , S O A P a n d (>tli(、is. S c co i i d l y . h is p o s s i b l r

t o r(、gist.(、i, a n d u i i rc 's is tor a p p l k . a t io i i s chirinjz^ n i n t i i i ic .

Hariiioiiy-Oriented EAS

Figui .<、6.5 s h o w s a p(>ssil>l(、haniioiiv-(>i.i(、iit(、(l iiiii>lrm(、iitat io i i o f t l ie

E A S . T h i s j)ar t i (i i l a r i i i i i>lt、m(”itat i(m c o j i l a i i i s t w o r e s i s t c t c d appl icM-

t i o i i s c a l l o d " B a n k A c c o u n t A p p l i c a t i o n ” a n d ' C o u n t e r A p p l k . a t i o i i ”，
\ •

a n d s u p p o r t s t l i (、 X M L - H P C p m t o c o l for i n t e r a c t i i i ^ w i t h c l i en t s . ,

T h v s n i p p e t s i i n i) l o i i uM i t i ng l l i o S(TV(、I' an、：

• ''Sock(d Rcadar'

A s i i i p p r t t h a t listtuLs o n a spcc i f i c d T C P p o r t , c r c a t c s socke t s loi-

inc-.oiiiiiig con iKK t i o i i s , a n d p u t s a n y d a t a c h u n k s rece ived {roii i

thm、s()ck(、ts i n t o f h(、spm.r .

• “XML-nrC — Action Ilequcsr

A s n i p p e t t h a t c o n s u i i i e s d a t a c h u n k s co i i t f i i i i i i i ^ X M L - H P C . Th (、

X M L - R P C is c(mv(Tt(、(l i n t o a p r o t o c o l iii(l(>i)(”i(l(>iit ActiojiRe-

quest ()l)j(»ct, w h i c l i is i)u t i n t o t l i o ‘spa(:(、.

CHAPTER i'>. STUDIES ksD VALIDATION ！>91

Figiirr (5.5: Harni()ny-Ori(�iit.(»(l Ext (nisi bk̂ Application SCTVCT

• "Dank Acamni Application “ and "Counter Applic/iUoji,“

These two siiipjK^ts r(�pix，S(�nt registered applications. T1K\V ()}>-

s(�rv(�the spaco and coiisurnc any Action Request ohj(�<:ts riiatch-

iiig the functionality th(，>. provide. After an AciionRcqux'si

bwn coiisiiiiKxi. th<�snipprt jx^-foriiis thv (:(>iT(\^p()ii(liii^ act ion.

gonoratos an ActionResponse obj(x-t and puts it into the spm c.

• “Action Response — XML-RFC"

A snippet that consuiiics AcHoTiResponsr. objcrts converts tlirm

into a XML-RPC rcs])oiisc string. The goiKTatrd XML-RPC

string is put into the spm:(�as a data (tiiuiik.

• “Socket WiiU'x"

A snippet, that consumes data chunks and pass(\s th<�m to thr

client.

To add support for additional protocols, it is siifficioiit to iiiiplcimmt

CHAPTER i'>. STUDIES ksD VALIDATION ！>2

t w o a d d i t i o i i a l s n i p p e t s co i i vc r l i i i ^ i('(jU('sts a n d r(、sj>(>usrs t o a n d f r o m

AcUonRcqiU'st, and Act%ouRcsjjo 11 sr. l or ('XMiiij)l('. to ；tdd support foi'

t l i c S O A P p r o t o c o l , t w o si i i j) j) (' ts CMllcd ''SOAP — Action Hccfucsf “

Mild “AcUon Itr/ply —> SO A I imvc t o l) c iiii|)l<、iiiriil('<l mikI |)la(T<l next

t o t h(； "XMIj-llP(' Action Ilcqucsf “ MIKI "Adion Rcspov.sc XML-

R P C s i i i p j x ' t s in Mic s p a c c .

M(�\v a|)j)li(at ions ran l)c Mddcd by cicat in̂ i, n new siiippH hnj)l(,i"rut iii^

1 he (lrsii.(Kl riiiicl ioiiality MI id it hi t he (.(�nt(T of I lie spjicc. close

t o t l ie ot l icr t w o “Mppl i r f i l io i i ” sni i)J)(' ts . PIk^SC app l icMt ioirs c a n h e

unregistered without Ix'iiî i, shut down by moving t hem (ar nway tVoiii

t h e ()l he r s i i i p p H s o f t h e c x l c i i s i b l c M])|)li(-Mt i on server .

O b j e c t - O r i e n t e d E A S

All ()hj(u l-oriented version of t he of t lie cxtciisihlc M])])ii(at ion server

i(;(|uii('s s i^ i i i f icMii l d e s i g n h c l o r c cod i i i j ^ . I n jKirt icu lr i r , 1 he p ro^ rMi i i i i i c r

1 m s to (Icsî îi iiitcrfMccs foi'：

參 hnpl(�iii(�nt iiij; and (l(�ploying new i)n>t<>(.(>l iniplciiiciit MI ions.

• Im i) l (、m(mt ing， reg i s te r i ng . MIKI unr('«z,ist('rii i^ n e w a p p l i c a t i o n .

() i i (、 j)()ssil)l(' i i i i i i i i i i a l oh j cc t-or i en t (KI d d s i ^ n is s l i ow i i in f i gu re (j.(). It

(l(、fiii(、s a Server chuss hikI t w o a b s t r a c t b a s e c lasses for a p p l i c a t io i is

a n d p r o t o c o l s c a l l e d Ajyplwalioii a n d Prot.oroL

The Server class iM()vi(l(�s met hods for r<�gist(Tiii|!> and um.rgist rriiig

a p p l i c a t i o n s a n d p r o t o c o l s .

T h e Protocol el ass p r o v i d e s a me t h o d for (l i o c k i n g \v(、th(、r a (r r t a i i i

i(、qu(、st s t r i n g r(K.(、ivr(l l)y a socket is a va l i d r(、qu(;st in t l i (、p ro toco l

it iiiipl(�iii(�iits. In addition, the protocol CIHSS has t wo met hods for

CHAPTER i'>. STUDIES ksD VALIDATION ！>93

Server

register(Application)
register(Protocol)
unregister(Application)
unregister(Protocol)

_LIII.

\f
«abstract»
Application

process(Action Request): Action Response
TPTIWIIUI.J.I.Y.III.I»I.IUII I I L... LUIIJ .IJI , •IWIM L.,L LJ, J -..

«abstract»
Protocol

isRequest(String): Boolean
decodeRequest(String): ActionRequest
encodeResponse(ActionQesponse):String

Figim' 6.(i: Minimal Ohjcct-Orioutcd EAS Design

(encoding and decoding n‘quasrs and rcspoiisc^s into aiui from iiisraiic(̂ s
of prot()(:ol-iii(l(^j)ori(lcnt Action Request and ArtioiiRcspoiisc classes.

The. A'p'pl'Lcation cUuss exposes a siiiglo iiunhod thai takes an Actioii-

R&.qu(:st <)hj(x:t as a paraiiuiKir and n îurns an Act/ionRrspirnsr ohj<�(-T.

Using this design, protocols and applications can h(�r(�gist<T(�<i pro-
graininatically during startup. However, to supporr loadinji； aiui n�g-
istoring applications and protocols during runriinc, a«s ir is possibk�in

i
the harniony-(jriciir<Kl version, the (>bj(x:i>oi.k�iit.('<l cxt<�iLsihk�applica-
tion server has to provide a plugiii mechanism that c:aii he m ccsscd via
a client (like a W(，b browser) ro load and r(̂ gist(ir plugiiis.

Comparison: Dealing With Unpredicted Changes

The following paragraphs briefly examine the complexity of applying
initially uiiexpoctxxi extensions to both versions of EAS. Lets consider

CHAPTER i'>. STUDIES ksD VALIDATION ！>94

a scenario where EAS is updaxc(i to support appli(tar ions rliai procoss

continuous data stni^iins, such as video or audio, and do not us(�a

reciuost-rospoiiso inockil for interacting with rh<nr clients.

To support stream based EAS applications in the haTmony-ori(�m(，(i

version of tho s(TV(ir, it is sufficient to update rh(i "Socket R.c.adar'^

snippet to acid tags ro data chunks that indicate which di(，nr rh<iy come

from. A stream-based EAS application can then impleirioiitcd as a

snippet <:<)nsuiniri<< (iara chunks tliat axe nor COUSUIIKKI by UK�snipjM'ts

j)ro(:o.ssing protocol messages. After a chunk ha-s processed, ii is

put hack into the sp^ico. The socket writer then the processed

chunk and passes ir hack to liu? client. Xo major (:han<̂ (\s To snippers

or data arc nxjuirod.

In tho objcKrt-orionr.ecl version of the EAS, both logical and st nicrural

changes arc r(，(iuiix，(i for supporting stream-based applicaxions.

ure 6.7 ilhigtrares a simplified version of the (�bj<x:t-oricme(i EAS desî n̂

including tho Sct'dct clâ ss and the Protocol and Application interfaces.

Figure 6.7: Objcct-()rienteci EAS D<?sign (Simplified)

The first structural change required for supporting streairi-ha.se(i appli-

cations is to rename the two interfaces to indicate that they are riieaiit

for applications that operate according to a rncssage-based model, where

applications generate responses for requests ihey receive. Figure 6.8

CHAPTER i'>. STUDIES ksD VALIDATION ！>95

illustrates this acijust.in(int: the intcrfaccs Protocol and Application

ar(i renameci to MessageProtocol and MfissafjeA'p'/jlicatiori resp(乂:lively.

Since the interfaces are reiianiocl, all existing- classes containing a})pli-

catioris and protocols have to be updated to rcfbr to the new inrcrface

iianics. •

Figure 6.8: Change 1; Ronainc^ inixtrfacos:

The SOCOIKI structural chaiigc is adding now, rnon^ goiuiral interfaces for

protocols and applications, which encapsulate methods siianxi by horh

rn(issage-based and stream-based applications and protocols. These

new inrc^rfacos and rheir rolationsiiip to rho inessagci-hasc^d inrcrfacc^s

are (iepict.ed in figure 6.9.

Figure 6.9: Change 2: Add base, interfaces.

The final structural change, which is shown in figure 6.10, is adding

two new interfaces for stream-based protocols and applications that

CHAPTER i'>. STUDIES ksD VALIDATION ！>96

arc derived from the general iiitorfacos.

Server

«abstract»
Protocol

«abstract»
Application

«abstract»
MessageProtocol

« a b s t r a c t »

«abstract»
MessageApplication

«abstract»
StreamApplication

Figtiro 0.10: Change^ 3: Add stroain-bascKi iiit.orfacc .̂

In addition to the three (;harig(\s descrilxxl above, thr iiitcrfacc of thr
Server class has to be adjusted to support registration of all types of
applications ami protocols. Moreover, the logic of the Sender ha.s to he

chaiigcxl to treat, and pro(:(\ss incoming data as a stream, if noiir of thr
tcgistorcxl Prvtocol classcs can proccss it.

6.2.4 Analysis and Discussion of Validity

Sections 6.2.1, 6.2.2. and 6.2.3 provide cvidcnc:e that, in comparison
to traditional object oriented programming, the strengths of hariiioiiy-
oriciited programming arc caso of changing the prograiirs ex-
tensibility. and maintainability.

Table 6.1 surniriarizcs how factors affcctins software (^vohitioii- arc ful-
filled by hannony-orientcxi programming. .•�

C H A P T E R i'>. STUDIES ksD VALIDATION ！>97

Factor Harmony-Oriented Programming

Ease o f chaiigc; Eas…r t h an in O O P , IxH-ausc t he st ruct i i rc oi. pn)-

g r a m s can he changed Crusily l>y " l o v i 叫 sn ippe ts

a r ound .

Extensibility
t

\
B(»tt(T t l i an in OOf)，hccausc new sn ip ix ' ts can l>(、

a(l(l(»(l fit r un t i n i c , a nd ex is t ing s i i ippnts d o not have

to be ('liaiig(Hl.

Ma i n t a i n a b i l i t y S^e t t ^ t han in O O P , IxH ausc sn ippe ts d o not l iavc

any (lirrrt. (lopci idci icics on (vich o ther .

equality feedback Not ava i lab le .

Error rccovcMy Not avai lab le .

y

Tahl(，G.l: Har ino i iy-Or ic i i ta t ion a iu i Sof tware Evo l u t i on Factors

6.3 Error Feedback and Recovery Study

Tli(�following sections pmseiit a shidy rompm.ing t li(，s(�(:oml r(�s(>min(:(�-

oriontcd softwm.(�（l(�vcl()pim”it approach，()|)i-a,sp(H;ts, to a traditional

ol)j(K t-()ii('iit('(i ap])li(',ati()ii in n^gard to quality {(H'dbcwk and error r(�-

(tovory. Th(» study consists of tlir(�(�parts that aro hasted on a concrote

applicat ion sttcnario: H .lava-based contxuit iiiaiiagciiKMit syst(�ni (CMS)

for a logistics company whose ntafi" fn�qu(�iitly shares and distributes

(iocuiiionts.

As shown in Kgurc G.l 1, this system (:(msist,s of a HSQLDB database

ciigiiK! [86], an applicathm scMV(;r, and client applications that a(x:(\ss

this s(�rv(u, through the XML-RPC i)roto(:ol [103]. Th(�application

CHAPTER i'>. STUDIES ksD VALIDATION ！>98

server contains two major components called Re叩osito飞飞j and Policies

that implement a document repository and access rules.

Content Management System (Server)

c z j p C M S
i H Serv ice

I

1
EI Pol ic ies

.Repository

] H S Q L D B
] E n g i n e

r ： X M L - R P C Database

mKmmm^^^fmmmmm

X M L - R P C Protocol

Figure 6.11: CMS Application Scenario

The staff of the company frequently request new features, and the sys-

tern is continuously updated by a small team of developers. Also, as the

properties of shared content and requirements regarding searching for

and presenting content are changing over time, occasional modifications

of the database are necessary. As a result, adjusting the application

CHAPTER i'>. STUDIES ksD VALIDATION ！>99

- J

server, database, and user interface of th(�client a])plk-atious is com-
V

mon. and the system as a whole is constantly evolving. How(�v(�r. siiico
the system is essential for the operation of the logistics conipaiiv. long
down times due to programming errors or mainteiiaiico operations ai.(�

unacceptable. The CMS is developed and improved with the foc\is on
features that are explicitly requested by staff of the logistics company,
and mechanisms for solf-maiiitenancc and error rccoverv cither ixx-oivo
a low priority or are omitted completely. As a result. th(�systoin is
bound to become more fragile over time, and ovpiitually a coiiipletr
failure is possible.

.Figure 6.12: CMS Classes

Figure 6.12 shows a more detailed view of the content management sys-

JL

CHAPTER i'>. STUDIES ksD VALIDATION ！>100

tern's design, and highlights the main Java classes of the sysroin: XinlR-

pcService, Docu'm.("ntRepository. CMSSc.rHct. PolicyManafjcr. DhCon-

nectionPool User Accounts and Dh Connection.

The XmlRpcService class uses Apache's XML-RPC disTribution [93] ro

initialize a HTTP server that accepts XML-RPC requests. This server

uses reflection to map incoming XML-RPC reqiiesrs ro an insranco of
\ -

the CMSSeroice class. AddiTionally, ir coiiverrs rerurn values prm'kW
€

by methods of the CMSStroict instance into XML-RPC responses.

Even though Apache'sJ<ML-RPC distribution is inaniro and srablo.
i

these classes can generate crit ical except ions in case of invalid rocjuosrs

and network problems. • .

The core of the CMS is implemented by the Docimie/ntReposUorij, Pol-

icyManager. and User Accounts classes> > The class User Accounts im-

plements user manageiiienr and authenricarioii. The CMS uses rho

HSQLDB darat^e engine, and the database is accessed via rhe classes

DbConnectionPool and Dh Connection.' The class DhCoanectionPool

maintains a pool of re-usable DbConnection instances, which provide

access to the database via the JDBC driver supplied with rhe HSQLDB

distribution.

6.3.1 Part 1: Conscientious C M S

The purpose of the first part of this case study is ro use epi-aspecrs

and the Epi-AJ framework to upgrade the CMS into conscientious soft-

ware. The aim of this upgrade is to make the CMS observable and

controllable by an autopoietic system. The following sections describe''

the implementation of four epi-aspects, which add liecessary conscien-

tious extensions ro the CMS: software maintenance, ^ML-RPC mon-

itoring, database monitoring, and CMS monitoring. This upgrade is

CHAPTER i'>. STUDIES ksD VALIDATION ！>101

non-invasive, since it is unnecessary to modify rhe existing source of

the CMS, the HSQLDB engine, and Apache's XML-RPC distribution. • •

Database Epi-Aspect

The databasf^ epi-aspect (figure 6.13) encapsulates funcrionaliry rhar

allows the autopoietic system to observe and interfere with rhe opera-

tion of the HSQLDB database engine.

�

« e p i
>ataba； iseEpiAspect

« a d v i s e s »

CMS Service

DbConnection
Pool

HSQLDB

jdbcConnection

jdbcStatement

Autopoietic
System

Start

Stop

Create

Clone

Destroy

Test

<5
Speed

•

Figure 6.13: Database Epi-Aspect

In addition, the database epi-aspk^t, implements database backup and

recovery features. The backup feature periodically backs up rhe data-

base files and allows restoring the database to a previous version.

CHAPTER i'>. STUDIES ksD VALIDATION ！>102

It is useful for i)r(�v(�iitiiig pr<)l)k�iiis rolatod to data corniptioii. Tho

(latabasc epi-a.spect records all SQL coiiiiiiaiids that m.(�issued to th(�

HSQLDB (Migiiio from within tho CMS. This rccordod history can h(�

used for uiidoiiig chaiigos to th(�(lata))asc and its schtMiia.

X M L - R P C Epi-Aspect

The CMS is accossod by clients via the XML-HPC protocol. The s(�rvi((�

providing this access is impl(�iii(�iit(�(i by th(�XiJilRpcStrvia-- class, which

utilizes Apache's XML-RPC distribution. It is iiiii>(Tativ<�for t li(�CMS

tliat the XML-RPC seivice docs not fail.

«epi-aspect»
XmlRpcEpiAspect
mmmmmmmrn^ssmmm

« a d v i s e s »

CMS Service

XmlRpcService <r

Apache XML-RPC

Webserver

XmlRpcServer

Autopoietic
System

Start

Stop

Create

Clone

Destroy

Test

Speed

Figure 6.14: XML-RPC Epi-Aspect

CHAPTER i'>. STUDIES ksD VALIDATION ！>103

The XML-RPC epi-aspect (figure 6.14) is rosi)onsiblc for implement:iiig
error recovery, testing and application iiioniroring concerns. Ir also
implements an observer feature to evaluate and store rho current speed
of the XML-RPC scrvice. The sp(�e(l is clofined a.s rho riino n�(iuimi to
execute a dummy XML-RPC recjiiesr.

Software Maintenance Epi-Aspect

The software maintenance e])i-aspect (figure 6.15) iini)lem(uits fuiicrioii-
aliry for updating and reverting the componenrs of rho CMS sysroin.
It provides advice for the aiitopoietic Update and Revert re(.oiiiiii(�ii(ia-
tions.

Figure 6.15: Software Maintenance Epi-Aspect

When the software maintenance epi-aspect is initialized, it creates a
minimal HTTP service, which developers can use to submit software
updates via a web-browser. Whenever the software maintenance epi-

CHAPTER i'>. STUDIES ksD VALIDATION ！>104

aspect receives an update through the HTTP scrvicc, it does nor im-
mediately install the update, but stores it for later use, and (iispat.(:h<，s
an epi-niessage to notify the aiitopoietic system that an ujxiate is avail-
able. If the aiitopoietic： system approves of rho updau：, it first issues
recommend at ions ro affected components to j>ro]>aro for an iinininont
update, and then issue the Update rocomniendation, which causes rho
software maintenance epi-asp(ict to install the update.

If the aiitopoietic system notices that certain components oxpc^rioncc
problems after an update, such as uneven performance, it can issue a
Revert recommendation that indicates that the problematic conipononr
should be reverted to a previous version. The software maintenance
epi-aspect implements an advice on the Revert recoiiiinoiKiation that
checks if a previous version of the affected coniponcrit exists. If a
previous version is available, the advice disables rhe curronr version,
and rc-iiistalls the previous version.

CMS Epi-Aspect

The CMS epi-aspect is shown in figure 6.16, It is responsible for ox-
posing the health of the main classes of the CMS, namely UserAc-

counts, CMSSerirlce, DocumeniRepository, and Policy Manager ro rho

autopoietic system. Additionally, the CMS epi-aspcct. extends these
main classes with functionality to comply recommendations issued by
the autopoietic system.

6.3.2 Part 2: Software Update Experiment

ft

In this phase, working and buggy updates are applied to the original
and conscientious versions of the CMS, and the behavior of the systems
during and after the update is observed, compared, and evaluated.

C H A P T E R i'>. STUDIES ksD VALIDATION ！>105

Figure G.IG: CMS E|)i-AsiKH t

Tho (�xp(，riin(�nt consists of two pluusos and oacJi phase; consists of two
f •

parts：

In the first, part, th(，expeiimciit is condiictod with tlu! original CMS,
%

wliich (iocs not make use of any cpi-a^sixntts. In the s(�mu(i part, the

oxiM^riiiioiit is repeated using the conscioiitioiis v(，rsion of tlu; CMS and

the autoi)()ieti(； simulator.- Then the i.(\sults of both parts an�coiiipanxl

and (，valimt(，(l. "N

The exporiiiioiit iist̂ s the original CMS, tlio consciontioiis CMS, tlio

autopoietic： simulator; and an additional simulator that mimics the

behavior of a' client application that a(:(:(，ss(，s the CMS. This cliont

application simulator can he configurrcl to goiiorato a sj)ccifi(! iiiiinbor

CHAPTER 0. STUDIES AND VALIDATION lOG

of nxiuests per minuto. allowing adjustiricuit of th<�workload that the
CMS Has to handle. The cliont application siiriiilator iis(�s a log file to
record requests results and exceptions that occur when accossing th(�

CMS. “

Phase 1: Install Working Update

A working update of the XwlRpcScnncc clâ ss is iristalkxl. and thv

noccssary steps and time required for updating tho original ar^coii-
scieiitioiis CMS arc cornparod. This phase is initiali/.od byj^foriiiin^!；

the following stops:

1. Start tho original CMS.

2. Start tho consciontious CMS and autopoiotic simulator.

3. Start two instances of the clicnt simulator and coiifigiiro thciii
to issue one request per sccond to tho original and conscientious
versions of the CMS. These instances aro denoted as client sim-

ulator' L which issues requests to the original CMS scrvĉ r. and
client simulator 2-, which issues ro(j[iiosts to tho coiiscicntious CMS
server.

After phase one has been initialized, the following st(�i)s ar(�cx(�(:ut()d
in sequcncc:

1. Manually overwrite the Java class file of the XmlRpcScTvice. clâ ss
in the original CMS with the new version. ‘ �

2. Shutdown and restart the original CMS.

3. Use the HTTP update servicc of tho software maintenance q)i-
、气

aspect to submit the source code of the updated XrnlRpcService

class to the conscientious version of-the CMS.

CHAPTER 6. STUDIES AND VALIDATION 107

* •

The results of the first phausc arc shown in table G.2. While the iij>-
ciate is successful for both the original and conscientious versions of the
CMS, the original CMS has to bo restarted which niakos the system
unavailable for approximately 17 seconds. This short period causes a
number of XML-RPC requests- issued by the client simulator 1 to fail.
The conscientious CMS, however. oxpcri(̂ iK;os no (k)writim(，，hccmisc
the software update epi-aspect applies and initializes the updated ver-
sion of the XmlRpcScrvice class in the background and then inimodiato
replaces the old instance with the new one. This result indicates that
the conscicntiotis CMS is more suitable for being updated during pro-
duction use.

Original CMS Update successful. Approx 17 seconds downtime,
becausc; the entire CMS system is restarted.

Client Simulator 1 Log file indicates 19 failed requests.

ConscientioiLS CMS Update successful. No downtime�.

Client Simulator 2 Log file indicates no failed requests.

Tabic 6.2: Software Update Experiment Phase 1 Results

Phase 2: Install Buggy Update

In the second phase a buggv update of the XmlRpcService class is in-
stalled. The bug in this update is a latent bug that causes critical
failure after the Xm,lRpcServi,ce instance has been running for approx-
imately one hour. This phase uses the same steps as the first phase,
except that the updated version of the XmlRpcSemce class contains a
latent critical bug that starts causing failures after approximately one
hour. After the updates arc applied to both versions of the CMS. their

CHAPTER i'>. STUDIES ksD VALIDATION ！>108

behavior is observed for three hours.

Experiment
Time (Min)

Event

I T

61:23 First exception in the XmlRpcSennce instance th(:�original i
CMS.

61:27 First exception in the XmlRpcScnnce iiLStanĉ e the (x)nsci-
entious CMS.

“

61:27
I

The autopoictic simulator rccommends to restart the Xml-
RpcService instance of the conscientious CMS, which is
done by the XML-RPC sorvico epi-aspect.

！

61:29 The XmlRpcSenricc instance of the original CMS termi-
nates. Original CMS not accessible-

Exception in the XmlRpcServ7,ce instance the conscien-
tious CMS. Autopoietic simulator recommends reverting

XmlRpcService to a previotis version, which is done
by nie software maintenance epi-aspect.

<

�180:00 Conscientious CMS is still running properly.

Table 6.3: Software Update Experiment Phase 2 Log
：了―

Table 6.3 shows the observation log of the second phase. As the obser-
vation log indicates, the XML-RPC service of the original CMS fails
after approximately 61 minutes. The conscientious CMS restarts the
XMLrRPC service after it causes an initial exception in the 61st minute
of the experiment. The restart prevents further exceptions for approx-
imately one hour. When exceptions start occurring again in the 12.5th
minute of the experiment, the conscientious CMS reverts the XML-

CHAPTER i'>. STUDIES ksD VALIDATION ！>109

RPC scrvico to its previous version and (:()iitiiiu<，s nmiiiiig smoothly
until the end of the cxporiiiiciit.

6.3.3 Part 3: Fine-Grained Error Monitoring
/

The third part of this study illustrates extending th(�conscientious CMS
with a fincr-graincci error monitoring and rocovory iriodianisni. This
extension involves extending thv. CMS (’pi-aspc(:t as well as writing nvw
rules for the autopoictic： simulator. Here, we describo the design a.ri(i
iinplemontatioii. and the approach for testing the cxtonclcd (:onsd(m-
tious CMS.

The fiiicr-graincd error monitoring and rcxxrv'cry ni(?(:hariisiri maintains
a history of oxccptioiis for the each of the classes User Accounts. CMSSar-

vicc. DocvmentReposiUm/. and Policy Manager. The functionality for

the exception history, is implemented by a component that is added
to the CMS cpi-aspoct. Whenever an exception occurs in one of thr
CMS's main classes, this component makes an entry into a log filr asso-
ciated with the class that threw the exception.- Apart from creating the
entries, the component counts the number of oxccptioiis in pre-defined
intervals. The number of exceptions per interval is recorded and sub~
mitted the numbers of exceptions for the five most roccnt intervals ar(�

submitted to the autopoietic system via the opi-qiieuc.

The autopoietic simulator requires additional rules for processing the
epi-messagcs containing the exception counts of the five previous inter-
vais:

鲁

1. If the number of exceptions for the current interval is greater
than zero, issue a Test suggestion. The corresponding advicc
in the CMS epi-aspect verifies the responsiveness of the CMS

CHAPTER i'>. STUDIES ksD VALIDATION ！>110

sysreiii classes. If the test fails, rhc (iofauir rules of r.hc aiiropoitaic

simulator trigger a Resta-rt suggestion.

2. If the riuinhor of exceptions botw(;cn the four previous and current

interval have in<:roas(’(i more than a prc"dcfinc(i threshold, issue

‘ a ReMart suggestion.

To tost the proper operation of the iinplciiientation of rhc f inogmimxi

monitoring feature, iipclarod versions of the CMSScnrlcc and Docurnen-

tRt'pository classes, which randomly throw non-critical and critical ex-

ceptions, are added to the conscueiit-ious CMS. Non-critical exceptions

do not affect the proper operation of iiistanc:es of tlicse two classes, and

critical exceptions lead r.o a crash of the CMS. The rest is n in according

to the following protocol:

1. The ujxiated C M S epi-a.sp(K:t, autopoietic rules, new versions of

CMSSe'rmce and Docurne'/itRtpoaitory are deployed in the consci-

eiitious CMS.

2. The component in the CMS q)i-aspecr. is configured to use inter-

vals of three minutes.

I

The autopoietic simulator is configured to use 10 (jxceprions a.s

the threshold value for triggering Resta-rt suggestion.

4. One instance of the client simulator is started with the same con-

figuration used in the software update experiment described in

section 6.3.2.

5. Let the experiment run for 120 minutes.

This test can only fail if there is an implementation error in the C M S

epi-aspect. After the test is run successfully, the development of the

fine-grained monitoring feature is completed.

CHAPTER i'>. STUDIES ksD VALIDATION ！>111

6.3.4 Analysis and Summary

The previous sections demonstrate how to use the epi-aspects-architec-

ture for software maintenance, quality feedback, and error rec;ovcry in

a content management system for a logistics company.

Factor Epi-Aspects Architecture

Ease of change No improvement. Same as in plain O O application. |

Extensibility No improvement. Same as in plain O O application.

Maintainability Better than in plain O O application, as epi-a<^pocts

can bo tiscd to facilitate upgrades and downgrades.

Quality feedback Better than in plain O O application, as quality feed-

back is provided through epi-a<;pocts.

Error recovery Better than in plain O O application, as error recov-

ery is provided through the autopoictic system and

epi-aspects.

»

Table 6.4: Epi-Aspects and Software Evolution Factors

The experiment conducted dur ing the second part of the study provides

strong evidence, that epi-aspects are sufficient to keep real software

systems running smoothly and to ease the burden of software evolution

in relation to maintenance, qual i ty feedback, and error recovery. In

particular, the experiment shows that in comparison with a plain Java

application, an aspect-oriented conscientious application adapts better

to changes and problems. Table 6.4 summarizes how factors affecting

software evolution axe fulfilled -by the epi-aspects architecture.

CHAPTER 6. STUDIES AND VALJDAriON •、 139

6.4 Software Evolution Study

Sections 6-2 rand 6.3 show that harmony-orientation and epi-aspects

have different strengths in relation to the hypothesis. These are ease

of changing the program's design, extensibility, and maintainabil ity for

harmony-orientation. and maintainability, quality feedback, and error

recovery for epi-aspects. -•

This study uses a combination of harmony-orientation and epi-aspects

called harmony_oriented epi-aspects to evaluate resonancc-oricnted soft-

ware development in the context of the evolutionary stages of an actual

software development, project that was conducted by a German com-

pany.

哔

Section 6.4.1 briefly introduces the combined ‘ harmony-oriented epi-

--

aspects architecture and its implementation in HOS. and section 6.4.2

presents the details of the study. - “

6.4.1 Harmony-Oriented EIM-Aspects ；-

. • *、. > 4•厂• 、
The combined harmony-oriented epi-aspects architecture is illustrated

in figure 6.17., It consists of harmony-oriented spaces (as described in
4

section 4.2), an autopoietic evaluatorbased on declarative rules (similar

to the autopoietic system introduced in section 5.1.2). and a modified

version of epi-aspects denoted as spatial epi-aspects. Harmony-oriented

spaces and spatial constructs are used for implementing allopoietic pro-

grams. j .

«
- . . . • ^ ‘

To support, spatial *cpi-aspects. the harmony-oriented space is supple-
«

mented with a mechanism that allows aspects to advise on events re-

lated to snippets, data, and diffusion. These events include:

CHAPTER 6. STUDIES AND VALIDATION

、
113

Autopoietic Evaluator

Spatial
EpI-Aspect

Harmony-Oriented Space

Area Advice H
Area Advice V Spatial

Epi-Aspect

Figure 6.17: Hariiiony-Orioiited Epi-Asperts

Creation of snippets and other spatial coiistnicts.

Destruction / terniination of spatial constructs.

Clmnge of a spatial constiu(:t，s location.

Occiirronco of errors within spatial constructs.

f-\

A spatial construct put t ing data into the space.

CHAPTER i'>. STUDIES ksD VALIDATION ！>114

• A spatial construct consuming data into the spaco.

• Arrival of data in a location via diffusion.

/

The following paragraphs provide detailed description^^ of spatial opi-

aspects. the autopoietic cvaluator, and their implementation in HQS.
产.

Autopoietic Evaluator

The autopdietic evaluator implements rules for keeping the system ruii-

ning smoothly. Spatial epi-auspects forward events that occur in th(、

space to the autopoietic evaluator for processing. Whi le processing, the

autopoietic evaluator issues autopoietic recommendations and cjuerios

to either instruct the spatial epi-aspccts what to do or to request more

information. 广_

Whi le the autopoietic evaluator supports the same recoiiimendations

as the autopoietic system of the cpi-aspects architecture (see table 5.1).

it defines new, harmony-oriented versions of autopoietic queries. Tli<?se

are:

Reveal Location Data

This query indicates that the autopoietic system wishes to obtain

the data currently available in a specific location in a specific

space. “ -

Examine Construct Activity

This query indicates that the-autopoietic system Vishes to receive

‘information on construct acti\ity. For example, information on

when the spatial construct consumed data from t h e s j ^ e fo i^he

last time, and how much aiiS \vhatJkiRd'''6rdata the construct

produojs. d

CHAPTER i'>. STUDIES ksD VALIDATION ！>115

Spat i ^ Epi-Aspects

Like the aspects proposed in the epi-aspects architccturc. spatial (、pi-

aspects implement advice on autopoietic recommendations and queries.

However, spatial epi-aspocts do not advise on join points in a appli-

cation's code (application advice), but on events within one or more

specified virtual areas in one or more harmony-oriented spaces. For ex-

ample. the spatial epi-aspect in the bottom right corner of figure 6.17

advises on two areas (marked by rectangles) in a harmony-oriented

space. The spatial epi-aspect. in the upper left corner only advises on

one area. This kind of advice, which is defined on areas of a liarmonv-- 、 •

oriented space, is called area advice.

Additionally, spatial epi-aspects do not use epi-messages to coniniuni-

cate with the autopoietic evaluator. but simply return an object or a

hierarchy of objects from advice on autopoietic queries.

* , *
HOS Implementation

The HOS implementation of harmony-oriented epi-aspects extends spaces

to generate space events, when spatial constructs and data changes,

and to provide a mechanism for spatial epi-aspects to advise on such

events. Space events are realized as instances of the class SpaceEvent

and its various subclasses (figure 6.18). The SpaceEvent class provides

instance variables to store information on:
A

•• -

• The space in which the event occurred.

、•

• The exact location ̂ n the space where the event occunred.

- • • . •>

• If applicable, the construct involved in the event.

CHAPTER i'>. STUDIES ksD VALIDATION ！>116

SpaceEvent
�

OataPut

1 -• • 1
Created Started Stopped Destroyed Failed Moved

Figure 6.18: Space Events

Additional information can be stored in the various subclasses of the

SpaceEvent

The autopoietic evaluator is implemented by a singleton called Autopoi-

eticEvaluator, which^ l lows defining autopoietic rules via Smalltalk

code blocks and associations. The autopoietic rules have the following

format:

[Condition Block] -> [Action Block]

or '

[Condition Block] -> {Recommendations}

Both blocks take an instance of a SpaceEvent class (or subclass) a.s

parameter. For example, a rule for recommending to restart a snipper

that failed because, of an error looks like:

[:event I event isKindOf:Failed] -> {‘Stop).‘Start，}

After the autopoietic evaluator has come to a decision regarding a space

event, it issues an autopoietic recommendation or query accompanied

CHAPTER i'>. STUDIES ksD VALIDATION ！>117

by a RQTarget object containing attributes like space, location, and

construct The information in this object helps advicc in spatial epi-

aspects to determine at which location or spatial construct the query

or recommendation is directed.

•Spatial epi-aspects are defined by creating instancies of the class Spa-

tialEpiAspect As shown in table 6.5. this class provides methods for

defining area advice on spaces and advice on autopoietic rocoinniencla-

tions and queries.

name: aTVame Specifies the narno of the

spatial opi-aspcx't.

defineAdvice:block on:e?''t? in:.space at:areas Specifies an area acivico

on one or more areas in a

specific space.

ciefineAdvice: block oiiRecomiiiendation: rec
1

Specifies an advicc on an

autopoietic rwoninienda-

tion.

defineAdvice: block onQ^xiotvy: query Specifies an advice on an
•

autopoietic query.

Table 6.5: Methods of SpatialEpiAsped

The block argument of the advice definition 'methods shown in table
• y,

6.5 contains the code implementing the advice. The code blocks passed

to these methods takes one parameter. When the advice is invoked.
this parameter is an instance of one of the SpaceEvent classes, if the

>

^advice is an area advice, or a RQTarget object, if the advice is on an

autopoietic recommendation or query.

Listing 6.10 provides a sample definition of a spatial epi-aspect.

CHAPTER i'>. STUDIES ksD VALIDATION ！>118

5
6

7
8

9
10

11

12
13

SpatialEpi Aspoct new name: " Exaiup(» ‘ :
def ineAdvice: [: ovt |

Autopoict icEvaluator evaliiarc : ovt .
] o n : Failed in : spaco at : (2()'<J*2() O X K M I T :5()<»5()
defineAdvice : [: r argoi j

r arget . <• oiist ru<• x. stop .
)oiiRecommendaiion : ‘ stop ‘ : •
defineAdvice : [: target [

t a r g e t . c o n s t r u c i s t a r t .
]ouRecommendation : ' s tar t ' ;
defineAdvice : {: target j

target , spaco . daiaAt: (rargot, locar ion).
j onQuery : ' r e v o a l - l o c a t i o n

Listing 6.10: A Spatial Epi-Aspect.

6.4.2 Study Description

The software evolution study is based on a real-world software (i<、

velopment project within a German company called "Grofihandol fiir

Modernes Antiquariat - Diinker & Nellissen GmbH" (GMA) spociali/-

ing in wholesale of antique books and books with minor dofocts^ The

project, which wa^ conducted in the years 1998 r(> 2001, was rho ciovol-

opment of an inventory and order management system optimized for

the special nature of the company's business. It serves a.s a good ox-

ample for a constantly changing and evolving software thar ovenrually

b e c ^ e brittle and was discarded.

The software evolution study repeats the development process of the

G M A inventory and order management system using the harmony-

oriented epi-aspects architecture. This repeated development process

^ Permission to disclojie'̂ etails of the project in this thesis has been obtained.
/

CHAPTER i'>. STUDIES ksD VALIDATION ！>119

is no t a (:(>mi)l(、t(，hariiiony-oricntcd rc- i i i ip lcn icnta l ion of 11"、cut ire sys-

toi i i , b u t r a t he r a si irmlat ion o f th(、changes a n d fa i lures I hat o(.(.urr(、（l

(h i r i n g th (、evolu t ion o f (h e sys tem .

The f o l l ow ing p a m g n i p l i s first p r ov i de m o r e hMckj^round o n th(、iial u rc

o f t h e c o m p m i y ' s lmsim、ss a n d 1 lie h i s to ry o f t lie i nv r i i t o ry a n d order

i na i i agcn ic i i t s y s t em ' s cvo lu t ion , a n d t l ien j)i(\s(Mil a (let a i led dcscrii)-

t ion o f th(、st u d y si i i iuhU iiiji； a i(、i>(、t it i(>ii o f 1 lie cvolut ion usiiifj, t li(>

l i an i io i iy-o i i on tcd ()i)i-a‘si)(H:t s arch i tect urc .
I

Company Background

C M A is s|)(Hializ(;(l in selling aiit i(|U(' l)o(>ks and hooks wit li slight (l(,-

'fo'cts to hook shops throughoiit Gorinaiiy. Ant icpic books a i r m (|uir(�(l

in small v()liuii(\s from various sources and dcfcct wv books arc hoii^iil

from publishing houses iii lar^^c voliiiiK^s. G M A sells books to other

l^usiiK^ssos, Hucli as Imoksh叩s and resellers, and (lo(�s have any n � t a i l

outlets. Tho (•oiiipaiiy has M small I T depart incut that is i.(�‘sp(msi-

l)lc for (l('vcl()i)ing custoiiiizcd soft wan� i i i - l iousc ami iiiaiiitriinin«i, tli(�

c o m p a n y ' s w(、h sit(，. ^ a f f o f t l ie c.oi i ipai iy is (、n(.()urag(、(l hy t h e nian-

agei iK' i i t t o nx j i ios t n e w so f twm.r f(、at,ur(，‘s, if they feel tl i(、soflWriic is

l a ck i ng i n s o m e a«p(、(:t.

G M A Software Evolution
•

The G M A iiiveiitm.y and ()r(l(，r iiiaiiagoiuoiit system started in 1998 MS

a (iatabasocoiitric application wit h an application server (lcv(、l(>i)(ul in

.lava and client piogiMiiis in C + + that mtccssod ihv S(uv(t through a

custom rcinoto [)r(>(:(xlui.c call (R P C) protocol. The original database

(losign of the G M A softwaic is sliown in appriKlix C. Tlio iiiipl(miru-

t at ion of tho application s(、i.v(u- provides model cUisscs corn^spoiiding

to the ontitios (IOHIKKI in t ho dalahasc (l(»sigii. Figun、6.19 provides a

CHAPTER i'>. STUDIES ksD VALIDATION ！>120

simplified overview of the application scrv<»r's most iinportanr model

classes and their relationships.

Figure 6.19: GMA Application Model (Simplified)

The following list highlights the major stages, including changes, chal-

lenges, and failures, the G M A inventory and order management system

went througl^^during its evolution: ‘ «

CHAPTER i'>. STUDIES ksD VALIDATION ！>121

1. Unique, identifierfi for books �

T h e o r i g i n a l dc^sign o f t h e G M A a p p l i c a t i o n im”ms (* (l u s i n g I S B N s

as a L)()()k's m i i qu (、 i den t i ty. A f t (U- t h(、first VCM s io i i o f 1 IK; soft ware>

WHS i i n p kn iKU i t o d , it w a s us(，(l wi t h o u t p r o b l e m s foi- a vvliilc. T h e

m a j o r i t y o f b o o k s passin^^ t h r o u ^ h t li(、wai.<.h(>u‘s(、s o f 1 he c o m p a n y

ai(» iiK)(l(U ii h o o k s wi t li m i n o r dcfcK ts t l i a l a l l h n v c I S B N n u i i i b c f s .

Whoii anti(juo books, which usually don't have ISI3N iniiiilx'is,

w(”.r (Mit (M(Kl into t he system, t he si ail assigiKHl uniqm, nuiiibcrs

l)y t.li(»iiis('lv('s.

II()W(;v(U-, a t s o m e po i n t it t u i . n r d ou t t hat I S B N m i i i i l xMs a r c not

t r u l y uni(|u(、’ as s o m e p u b l i s h i n g h o u s e s rc-iisc I S B N n u i n l x M s

froiii books that w(�iit' out of print. As a result, t he iiiaiiHgcniciil

(l(,(:i(lc(l thai all hooks should 1)(�t a卿、(1 with an addit ioiial iiiii("H'

i(l(mtifi(M.，and t h(，software was diaiigcKl so t hat Book CIMSSCS SU])-

j)()i t an addit ional propei ty. Apart from changing t h(�applk.a後 i(>ii

iiiodol and DATABASE design and (iu(，i.i(，s, the US(T int(’RFA((> LM (i to

1)(�adjusted. TIK; chaiigos w(�n，applied hy tlic (l(、V(小>I>(TS wit li-

ou t a n y m a j o r i)n>l)l(»ms, b u t t l u ; ‘system h a d t o 1) (、shutdown for

(、xt(，iid(、d p e r i o d s o f t i i i i r , a n d t h u s lh (T(、was a n e g a t i v e i m p a c t

(m l,li(» hus i i i o s s o f t h e c o m p a n y .

2. hiitially mipTediciad data quaHcs

D u r i n g tin? i n i t i a l d o s i g n o f t l i (、 i nvo i i to ry a n d o n lor iiiaiia只(、iii(;iit

a])pl i (;at i () i i , t h e s t a f f o f G M A w a s a,sk(、(l t o h e l p d r s i g i i i n g h.(、-

(j iKi i i t ly u s e d q ue r i e s , s u c h a s s(?archi i ig for h o o k s h y a i i t l i o r , t i t l e ,

I S B N i i i i i i i ho r . T l i (、 a p p l i c a t i o n ‘S(”.V(T a n d C + + cl io i i t a p p l i c a -

t i o n s i i i i p l o i i i o i i t od t o s u p p o r t a set o f pi,c-(l(、fiii(Kl (juoricrs

l>a‘s(、d o n t h o s u g g e s t i o n s o f t l i o s t a f f . H o w o v o r , a f tc i . t h e i n i t i a l

v e r s i o n o f t h e G M A softwaix^ w a s dop loycx l , i t h cca i r i o a p p a r e n t
*

t h a t t l i o i) i (v(lef i i i (x l set o f q u e r i e s wa.s n o t sufficic^tit t o cover a l l

CHAPTER i'>. STUDIES ksD VALIDATION ！>122

situafions staif cncoiiiitcMcd during work. As a result, stal l IVc-

(|U(!iitly nHjiu^stcKl support for ii(�w (iu(Ti(，s. In tli(�l>(�片iiiiiiiig, t lie

r(K|U(\st,s w(u.(， (;nl(?rlaiii(;(l by the developers cliMii^in^ t he a})])li-

(;ation s(nv(n- and user intculacc of t l i(� C + + cliciit Mp])li(at ions.

How()v(，i.， as t.lir r(H|ii(\sts i.(>i' adding new or ml.justiiig existing

queries l)(K;aiii(» iiiorc frcciuciil, the iiiaiiagciiicnt dccidcd to cliaii^c

the G M A software* to allow staff to define and run custom (|U(>ri(�s.

Adding support for crcMting cusloni (|u(Ti(�s involved chan^cs to

tli() us(u- iiit(，rfm:(，of t.lir C + + (:li(�iit applications, and iiiiplciiMMi-

t at ion of sĉ t of new classics in t IK; applicat ion server for mam»只i"[；.

interpreting H I K I running custoiii (|unii(�s.

3. Piiuj-iii sujypmi

Apart from (|U(�ri(，s on the application model, the stafl" of (JMA

fn�qii(� i i t ly rrqurst nd new iniport and t foat iii (\s. For cxaiii-

])lc, V L B , a association of Gcriiiaii book publishers inaint aiiis a

list of all publisluMl and curnMitly available Gcn inaii l)()()ks. This

list up(lat(�(l and dist i ihiitcd via C D - R O M qum,t(�rly. 丁h(� st aff of

G M A wished to l)c al)l(» to iiiiporl this V L B list and also hook

lists from ot her, fonugii, associations. Since t lui various lists \V(T(�

(listrihut(Kl in diffonnit file formats, and it vvrus not chvir at that

t ime what other export and import functions might l>(� i (�quii . (�(l

in the futiiro, it wa«s d(，(:i(l(Kl to u p g m (i (� t h (� G M A sysf(�m with a
••H

plug-ill inochaiiisin.

T h e mjuircnients for the plug-in inochaiiisin w e n � (l i a t it allows

loading and unloading plug-ius w l i i l (� the applicat ion s(�i-v(�r is niii-

iiiiig, and t hat it (;x])()sos t l i (�(uit iro applicatkm iiiodrl to plug-iiis.

Since the application s(wor wa*s writ ton in .lava, ihv])lug-in I I K H I I -

anisiii was (losigncd to load and initialize JAVA archivos during

ruiitinie. Each plug-in was (l(，sigii(Kl to contain import or export

CHAPTER i'>. STUDIES ksD VALIDATION ！>123

logic and a HTML-ha^icd user iiiT.erfa<:<̂ description that could be

rendered by the C+十 client applications. The (iovelopnient and

deployment of the j)iug-iii mechanism required sigiiificaiit c:haiig(\s

and took two devolopeSLS a total of 7 months to (.omplcu、.

The first two plug-ins developed for the G M A ap]>licati(>ii wore

an import plug-in for the VLB list and an exporr plug-in rliar

generates barcodes for the ISJBN numbers of books.

4. Authentication support

The initial ciosigii of the G M A inventory and order maiiageiiK'iit

application did not consider user authentication and ac:(:(̂ ss poli-

cies, since the company's computers were initially lo(:ar,c(i in a

restricted area only accessible by authorized staff. However, rhe

inanagemont decided to set, up coiiiputors in other locations, such

as the warehouse to facilitate more convenient inventory iiiana^e-

rnent. The computers in rhe warehouse wen) eq^iipped with bar

code readers that could he ust̂ ci by staff to update in inventory

faiJtcr.
>

Since fine-grained authentication and access policy support would

have required significant changes to the design of the application's

model, it wa:s decided that once a user was authenticated, lie or

she could use any function provided by the G M A application.

Authentication was done against a list of staff user names and

passwords stored in the application server.

5. Support for articles other than books

At some point the management of G M A decided to trade artic;les

other than books, such as calendars, paintings, and small mer-

chandise ba^sed on characters in popular books and comic books.

To support such articles, the model of the inventory and order

CHAPTER 6. STUDIES AND VALJDAriON •、 139

.iiianag(Miioiit syst(nn had to be changed again. A model class

callod Artie Ic was introduced MI id (lasses iiiiplcinciit ing th(、prop-

crtic^s of the various itoiiis, such as books and j)aiiit iiigs, were

derived from this class. Apart from the application model, the 、

(lat al)a,s(! iiiodol was updated to r(、fl(、(:t t he changes. 'Flu! updated

database and ap])licati(>ii s(,rv(，r w(”r dcploycvl during night time,

but on tli(! iK^xt workiiij^ day, data entry did not work projxMly,

aiui som(、(latA VVMS lost, l l i c original datahfisc and application

sci.v(、r wen; restored and t,h(、IK、W versions \v(Tr nHlcploycd ai^aiii

aft(U' a low (lays of finding and Hxiiiji, hugs.

(>.Upfpudc of])iit(f-ni iiiechamsjn

The changos to the iiiodol cla.ssc^s of the G M A inventory and (>r(l(T

nianagoiiuMil system resulted in r(，(iiiir(、d changes to th(、plug-iii

inochaiiisin, which wa,s (l(、v(、lo|)(，d to expose tlio original applira-

tioii model, W1KT(、hooks w(、i‘(； the only tyix' of artirh、. Aj)art

from upgrading t.h(、plug-in iiu'cluiiiisiii, parts of tUv two pliig-iiis

ill use, 1 he VLB list iiiiportcu and harc.ixU? gonorator, had to IM、

rewritten.

7. Upfpdde of custoin quarij rn.ccfuniisin and cxistnig qm rLCs

Th(、(tlmiigcs of t he iiiodol cUusses also aif(、（.t(、（i tlio custoiii query

mechanism. It wa.s upgraded to support searching for art icles

other than books. 丁lie format for defining custoin (iu(、i,i(、s Wfhs

(:luuig(、d and so w(、n、the classos in the application sorv(»r for iiian-

aging, intorprotiiig, and niiuiiii^^ the custoin queries. Slight ad-

justinonts wore also made to the US(T interface of th(，C++ clioiit

applications.

Since the format for dofiiiiiig custom (iuerios was altorod, all ex-

isting (nistoni ([uerios d(、fin(、(l by staff of the coiiipaiiy haci to he

CHAPTER i'>. STUDIES ksD VALIDATION ！>125

rewritten using the now format.

8. Data coTTuption discover-y and system, downc/rudc

Several weeks after stages 5 to 7 were coiiiplctod. staff of t he coin-

pany noticcd that some custom queries did not work as rxpcctoci.

For example, when scarc:hirig for books, other articles, such as

calenders were inc-ludcd iii the search results. Aii investigation

discovered that slight mistakes had been iriado wh(’ii changing

the database to the new application model and as a result, var-

ious (mtrios had b()cn corrupted. For example, some books \V(T(、

classified as other articles and vice versa. To control damage, tho

management of the (•.ornpaiiy deddeci to restore the database and

application server to versions that were backcd up before stages

5 to 7 were implemented and deployed. The outdated data was

updated by hiring people to help conducting a company-wide in-

ventory.

9. Decision to develop a new application frvm scratch

Shortly after the downgrade, the management of the company

decided not to add any more features to the existing version of

the G M A inventory and order management system, and to begin

development on a new application from scratch. It was decklcxi

that this new application should be a web-bsused application that

can be accessed by staff via browsers instead of C + + clients.
、

Evolution W i t h Harmony-Oriented Epi-Aspects

/

The following paragraphs dcscribc a repetition of the evolution pro-

cess of the G M A inventory and order management system with the

harmony-oriented epi-aspects architecture. This study is" not meant

to bo considered as a direct Comparison to the implementation of the

參

CHAPTER 6. STUDIES AND VALJDAriON •、 139

t

G M A application, which used Java and C++, two languages whoso pro-

grams are more inflexible and less maintainable than prograflis written

in Smalltalk, the language HOS is based on. Rather, tjiis study ex-

plores what the development and evolution proctess would be like, if a

harmQny-orieiit^ cpi-aspects architec:turc wa.s IIS(K1 to inipleniont th(、

G M A application. The focus is on harmony-orient atioii and (、pi-asi)(x.ts

features, but not on the programming languages themselves. lFh(、study

describes a harmony-oriented design of the G M A application and ex-

plores necessary changes and results for the stages the G M A system

、

went through during its evolution. It focuses on the application serVcr

only and does not consider client programs and their user interfaces.

To avoid creating an unfair advantage for the siiriulated harmony-

oriented epi-aspects version of the G M A application, the model classes

from the initial design previously introduced in figure 6.19 are re-usod.

When designing a now harmony-oriented application from scratch, a

different application model with more loosely coupled abstract, data

types would likely be chosen.

Figure 6.20 shows the initial design of the G M A application server using

harmony-oriented epi-aspccts. Apart from a group of snippets imple-

menting communication with clients (“RPCT snippets), the harmony-

oriented space contains snippets managing the data (model)' of the

G M A application ("data manasgement" snippets), and snippets imple-

menting pre-defined queries ("query" snippets). The “RPC" snippets

group consists of snippets almost identical to the snippets used by

the extensible application server Used in the study described in sec-) *

•^iDn 6.2.3:

• "Socket Reader'
• «

A snippet that listens on a specified T C P port. cTcates sockcts for

C H A P T E n G. STUDIES AND VALIDATION ‘ 142

Figuro 6.20: GMA Server Using Harinony-OriciitI Ei)i-Aspo(ts

iiKtoiniiig connections, and piits any data (hunks r(x.(、iv(Hl from

these sockets into tluv space.

"Custom RFC Command “

A snippet that consumes data cliuiiks coiitainiiig ciistoni R P C

instructions. These are conv'ert(»(l into a protocol iiKlepoiKleiit

Command object, which is })iit into the space.

CHAPTER 6. STUDIES AND VALJDAriON •� 139

• "Result -> Custom RFC'' …
• ‘

‘ , ‘

A snippet that ctoiisunios Result ()l)j(、(.ts, (•oiiv(、\;ts th(、iii into a

biliary custom R P C respoiiso strings, a i ^ puts into the spa((、as

(lata diiiiiks.

參 “Socket Writer

A snippet that coiisuiiics data chunks and passes th(、iii to 1 h(>

‘ client.

The “data maiiagenieiit" snippets group consists of a set of siiipprts

that iiuiiiag(? and dmiig(、the data (model) of tlio G M A application

based on coiniiiaiKls rc(:(、iv(、d from clients. Each of the snippets in this

group is responsible for om) type of model objects. For example. (m(、

snippet is responsible for iiiaiiagiiig Book obj(、(.ts aii少aiiothor siiipprt

is resi)oiisiblc for iiiaiiagiiig Publisher objects. Eacli of these siiipprts

iiiaiiitaiiis a state that contains a list of all model objects of the t\vi)(、it

is responsible for. As those states arc ()wii(、(l and diffused throughout

the space, it is acc.ossible by other snippets. The snippets belonging

to the "(lata iiiaiiageiiioiit" ar(、named ait or t he m(Kl(、l objects th(\v arc

responsible for:
• »

• "Books" snippet.

• "Categories" snij)j)ot. ^

• “Authors” snippet.

• "Buyers" snippet.

• ''Wislilists" snippet.

• "Reservations" snipp(、t.

• "Publishers" snippet.

Qir. /

CHAPTER i'>. STUDIES ksD VALIDATION ！>129

Apart from luaintai i i ing lists of the model ()l)j(、(:t‘s. thosr snippets iiii-

pleirierit persistence. Figur«3 6.21 shows th(、area of the spaco coiitainiii^

the "(lata inaiujgenioiit" snii)pets group and an open location inspector

tliat lists the coiitonts (data) available to other snippets.

,F igure�G.21: "Data Maimgoiiieiit" Snippets

Apart from the sni|)pets groups, the initial design shown in figure 6.20

contains three spatial epi-as])e(:ts that a(lvis(» on the areas occupied by

tlie snippet groups: the “crrcn. recovery” aspect, the “siiipp(、t Imckup”

aspect, and the "data backup" aspect. The "error recovc^rv" aspect

is responsible for informing the aiitopoietic evaluator about any curors

that occur within snippots. In addit ion, it contains code to a(:(,om-

inodate autoj)oiotic jecoiiiiiienclatioiis, such as cloning and restarting

snippets. The two bac:ku[) spatial q)i-asp<?(.ts are responsible for back-

CHAPTER 6. STUDIES AND VALJDAriON •、 139

iiig up data and (;o(ie and reverting to older vrrsioiis. if r(H (>iiiiii(、ii(i(、（l

by the autopoietic ovaluator. For oxaiiiplo, wlicnovcr a siiipprt is mod-

ified by a ijrograniiiicr, tlio "siiipi)rt backup" aspoct mak(、s a hackuj).

and keei)s all previous versions.

Evolution fitaqe 1: Unique idcniifiars for books

Adding ail additional attribute to th(、Book class and assiji,iiing uiii(|uc

identifiers to all existing Book objects can 1>(、achieved by following

these steps while the scrv(»r is ruiiiiiiig:

• Stop the “hooks” siiippct. No data is lost, Ix'causc it is located

in the spac-.c aiici not in the snippet.

• Add an additional attribute callod UID and convspomliug getter

and setter methods to the Book class.^

• Change the code in t he “books” snippet to it(、iate t lirough t he list

of hooks stonxl in its location and.update each ()bj(、(t by assigning

, a value to the now UID attri))Ut(\

• Rostoro the previous code in the “books” siiipprt and change it

to a^ssigii iini(|\io idciitifiors to each newly (T(她、(i iiislaiicc of thv

Book cla«s.

Evolution stage 2: Initially mipTcdicted data qutiics ‘

New (lattt queries can ho added by i)r()grainnicrs by creating now “qu(T\，”

snippets and placing them lu^xt to the existing ones. Since this pmcrss

is trivial, that development of a custom query feature for staff of the

(;oinpaiiy appears uiiiiocossary. .

^Changing dasses during ruutiine is only possible in (lynamic lanRuagcs like Smalltalk
[59], Ruby [90], mKl"l)yth(m [05].

CHAPTER i'>. STUDIES ksD VALIDATION ！>131

Evolution stage 3: Phufiii support

Since all data is dittusod in th() harnioiiy-oricntcxl spm r , it is not nec-

essary to explicitly iiiiploiiiciit suppmt for plug-iiis. It is suHiciciit for

l)i.()gramm(�ns to add new snippets.

For ex{iiiii)le, to ruld tlio V L B import f (�a tm. (� to the server, it is sufli-

c-.iont to c.niato a now snipp(�t in t lie vicinity (>f t i i (� ‘ ‘ (lahi im»mig(�m(�nt•’

snippet group. This siiipi)ot can read th(� i i i for i i ia t ion from (lie V L B

C D - R O M , generate (:oiT(�si)()ii(liiiji> coiiiiiiands for creating th(� r (� l (�vai i t

(lata, and pla(:(� it into t lu^ spacc. Once t he comiiiaiKls reach t he VMI ioiis

snippets of tlio "(lata iiiaiiageiiK'iit" group via diffusion, tiio snipprts

process t he (oiiiiuaiids and add t he iiiip()i t(Kl flat a t o Ui(� ir lists.

Evolution stage 4- AuUiciitimtioii Support

Aiitlieiiticatioii support can be ad(l(、(l to the scrvtu- hy adding an at-

trilMite to Command ohjcntts that iiulicatos \vh(、t 1i(t the coiiiiiiaiKl was

sent hy an authenticated user. TIK; aiitlioiit icat ion can (、itli(T be p(,r-

formed by a inoclified version of t ho "Custom R PC —>• Coii i i i iand"

snippet or an addit ional siiipi)(、t 丨)la(:(Kl into its vicinity. Additionally,

one or more "aiithoiitic.atioii filter" siii])])ots lmv(、to be j)la(:<、(l l)(、tw(、(、ii

tlio " R P C " siiippc^ts and other groups to automat if:ally ((msuim! (and

discard) any Coftimaud ol)j(、(:ts whose attribute's indicates that tIK\V

have not boon authent icated.

Evolution stage 5: SuppoH for articles other than hooks

During this stage, the ohjoct-orioiit.ed version of the G M A introduced

an ATticle superclass and dorivod (:(m(:i(�t(�art iclcs, such a.s hooks and

paintings，from it. In tlie lianiioiiy-orioiitod (�pi-a«pe(:ts vcjrsioii of the

server, now classes for articles are (T(�at(�(l without defining an iiilicri-

CHAPTER i'>. STUDIES ksD VALIDATION ！>132

tance rclatioiishij) b(、t,w(、(、n thcni. For each newly (T(’at(*(l class a cor-

rosi)cHiding “(lata niaiuigoiiiont" snipjxU is created. These arc:

• "Calendars" siiippct.

• "Merchandise'" snippet .

• ‘‘Artworks’，snipixM.

Evolution sia<)('. 6: Uptpmld of plu(}-iii mcciiamsiji

Sincc! t.h(，liariii()iiy-()ri(nil(Kl cpi-asjx'cls version of the server docs not

have an cxplidt plujij-in iiicchanisiii only tin; i)liig-iiis 11 KM use Ives hav(、

to ho slightly inodificHl to process instaiKtos the IK、W articlc (.la.ss(、s in

addition to hooks.

Evolution stage 1:

Upgrade of custom, qiterij inccfuinism and axistnig qiKyncs

The hariii()iiy-()ri(-iit(Hl oj)i-a,sj)(Hts version of the S<TV(、I. docs not have

a custom qmny iiiecliaiiisiii and existing (jucrios do not have to h(、

(thaiig(i(l, IxHuuiso tlio existing model rlassrs have not l)(、(、n cliaii'i.cd.

However, now qmuies lmv(、to be (l(、fiii(、(l to ‘support st'arcliing for arti-

des other than books.

EvoliLtion stage. 8: Data cajTuptioji discovari) and systcju. dmim!pmlr

The harmoiiy-oriciitod cpi-a^spccts arcliitcH turo docs not prevent j)i()-

grainiiKUs from making mistakos and introducing hugs. As a result,

oven though soino of the (^volution stages r(、quir(、loss otibrt, data cor-

ruj)ti()ii or ()th(u' kiiuls of failpujfl of the G M A sorvdr at some point arc

likely. Tlio throe spatial opi-^uspccts iiitroducod rus part of tlie init ial

<iosigii iiiiploiiiciit quality fcH'dhack and (UTOI. i(、R()v(，iy foatiircs that (tan

CHAPTER i'>. STUDIES ksD VALIDATION ！>133

li(，ll) to k(H，i) a buggy syst(nii running and mi^^ht giv(�（l(>v(�l(>p(”-s enough

room to fix critical buj^s without liaviiig to .shut down the systriii for

()xtoii(l(»cl j)orio(ls of t iiiK�.

6.4.3 Analysis and Suininary

T h e soft wan; evolution study shows how t he evolution of th(� C M A

iiiv(uit()iy and order iiiaiiag(niic!iil system iiiiglit liav(； i)i.()gi.(�ss(Hl, if a

Iiariii()iiy-()ii(Mit('(l (，pi-asi)(，(:ts architecturc liacl I)(M、II used. This study

illust ial.(;.s that , (luring ccutain stages of th() cvoliit ion, t he liMiiiioiiy-

orioiitcd 0pi-rus])0(:ts version of the G M A s(”.v(�i- is easier to (:haii<i,(\

extend, and iiiaiiitaiii , and that it is poss ihh� to use the architectnvv to

p r (”)an� fo r and a(laj)t to failures l)y iin|)l(mi(，iiti 叩 quality food back and

error rocovtuy iiKH hanisins. H()wcv(、I•，tli(�ar(:hit(K:hm�cannot pmvriit

prograiiiiiKns from introducing critical hugs into t he system, so {'ailurc

is still possible. Table G.G siiiiiiiiariz(is how factors affect ing software

evolution are fulHlhul by the liarinoiiy-oriciitcd cpi-asix^cls arcliilcctiirc.

6.5 Hypothesis Validation

T h o results of the stndic^s coiuhictod in this d iapt (T and t lirii. rclat ion to

factors affocting software evolution suiniiuiri /cd in tables G. 1, 6.4, and

G.G supjxnt the hypothesis foriiiulatod in scK-tioii 1.5 : T h a t , in coiii-

parisoii to ohjoct-oricMitod i)r()graiiiniiiig, i,es()iiaii(:(�-(>ii(�iit(�(l software

(lovol()})iii(Mit improvers t he (，M,S(，of dcuiliug wi th t ho above m(�iit i (� (� (1

issues, and tin is the (vi.se of doaling wi th software ovolut ion (� t t (� (t iv(� ly .

T h e hypotlK^sis posits that tli(�pi.(>i)()s(，d i(，s()mui(:(w)i,i(mt(Hl s(>ftwm.(�

(losigii and dovclopiiKuit approachrs 丨)i.(>vid(�the following advantages

over tradit ional objcH't-oricuitocl prograiniiiing:

CHAPTER i'>. STUDIES ksD VALIDATION ！>134

Factor C o m b i n e d Approach：

Harmony-Or ien ted Epi-Aspects

Eaise of change Easier than in OOP, bec-aiise the siruciurc of pro-

grams can changed oa.sily by moving" snippets

around. ^

Extensibility Better thaii in OOP, bcxraiiso now snippets can

added at runtime, and existing snippets do not have

to be changed. 、

Maintainability Better than in OOP, because snippets do not have

any direct dependencies on earh other. Also, spatial ！

epi-fispects can be used to facilitate upgrades and

downgrades. 、
•

/

、
- -

Quality feedback

• ' /

i
Better than in OOP，as quality feedbacic is provided

through spaltial epi-ai»|>ects.
*

Error recovery
• *

Better than in OOP, a.s error rccovcry is provided

through the auiopoieiio evaiuator and sp^xiai opi- j

aspects.

• - i

Table 6.6: Combined Approach knd Software Evolution Facrors

1. Fewer changes are required in order l o reflect adjustments of a

program's design in the code. Changes include source code m<><i-

ifications and other adjustments to a program.

2. Extending a program requires less effort (steps/changes)..

3. rmplement^ition of reliable feedback and error recovery inccha-

nisms reciuires fewer steps.

CHAPTER i'>. STUDIES ksD VALIDATION ！>135

The following sections suiimiarizc how tho studios in this diapt.cr su\y-

I)()rt theso claims.

6.5.1 Evidence Supporting Claim 1

“Comfpared to traditional object-oriented pTograTtmmuj. fewer rJianrfcs

arc ix^qutTXid in n^sonancc-oiicnted prvgrmns to Tcflact adjiiMrnrjUs of a

program design in the coda.“

The first changeability study regarding siibjcK-.t-obsorvor r(、lat,i(mships

in section G.2.1 shows that, in traditional objc(:t.-()ri(，nt(、d prograniiiiiiig.

establishing and breaking off subjoct-obsorvx^r rdationships bot.wmi

objects requires the oxplic.it iinplcinciitation of a registration and no-

tification mcxdiaiiisiii. In tho coiicrotc Snialltalk-baMxl (、xauipl(、giv<、ii

in section 6.2.1 implementation of this iriochaiiism requires (irfinition

of eight methods coiitaiiiiiig a total of 18 message sends. In haririoiiy-

oriciitcxl programming however, it is not iiocossary to iniplcmciit such

a iiicchanisin, siiicc the iiiforriiatioii diffusion principle allows (\ t̂.ablish-

ing and breaking off subj(x:t.-obsorvor rolationshij)s by moving snipp(、ts

around.

The second changeability study (section G.2.2) cxainiiiing i)r()(:(、ssiiig

chains of producers, consumers, and filters is another example su|)-

portiiig the claim that fewer changes arc required in rcs(>naii(:(、-ori(、iit,(、(l

programming when changing a program's design. In tho c^xampk、us(xl

in the study, members of a processing chain arc set up by dcrivhig

classes from a superclass defining methods and attributes to sp(、(:ify thc^

next objects in a processing chain. Changes in the super class results

ill changcs to all classcs used for establishing i)roc:essiiig chains. Also,

each class participating in a processing chain has to manually forward

data to the next objcc-.t. As a result, there is a tight coupling between

CHAPTER i'>. STUDIES ksD VALIDATION ！>136

classcs, which makes c:haiigcs more coiiiplox. In the hariiioiiy-orioiit.cd

version, it is not necessary to explicitly iiii]>lcin(nit a mcchanisin for

creating and operating a processing chain.

Further eviclcnc;o supporting claim 1 is provided by tho software ovo-

hition study using the harinoiiy-orioritod q)i-aspc(:ts architcxtturo <lo-

scribcd in scction (3.4.2. Especially the software evolution stages wh()r(、

plug-in and authentication support arc added uiidcrliiio how small,

in coriiparison to traditional object-orioiited programming, the im-

pact of fundamental changos to a program's design is in a rosoiiaiicr-

oriontcd software doveloj>iiiont approach. Both stages require signifi-

cant chaiigcs in the objcc^t-oricntcd version . For example, in the objcct-

oricritcd version only a limited form of authentication was implemented

to avoid chaiigos throughout the application. In th(、harni(>ii.v-ori(、iit(、(i

version, however, autheutication can be irn]>lemoiitod by adding au-

thentication filter snii)pets at various locations to ciiforcc acctoss poli-

>

cicvs. and the majority of existing snippets docs not hav(、to be

6.5.2 Evidence Supporting Claim 2

“Compared to traditional ohjcct-oriented pTogimmning. codcnding a pTo-

gmm requires less effort (steps/changes) when using rcsonancc-oiie.ntc.d

software development approaches.“

Section 6.2.3 presents a study comparing extensibility and iiiaintaiii-

ability in luxrmony-orientation ami .object-orientation. This study uses

the example of EAS, an extensible application server, that can b(、(ex-

tended with new applications and network protoc:ols. To support such

extensibility, the object-oricntcd version hsû to implement a mec:hanisiii

for registering and unrcgistcring now protocols. This iiiechanisni

fines strict intorfaccs applications and protocols have to adhoro to..The

CHAPTER i'>. STUDIES ksD VALIDATION ！>137

study shows that extensions that do not fit thvsv fixed iiitorfacos r(、quir(、

significant changes in the extension iiicc:hariisin of the objoctt-orioiitcd

EAS version. It further shows that the harmony-oriontod version of the

EAS docs not require explicit implementation of an cxtoiisioii inccha-

iiisin, and that it can bo easily adjusted to support initially uiiexpoctod

types of applications and protocols. As a result, significantly Iĉ ss effort

is rcxiuircd for extending the harmony-oriented version of th(、EAS.

Claim 2 is also siipp()rt(、(i by the software evolution study using th(、

harniony-oricntcd epi-aspects architoc-.turc (6.4.2). The following evo-

lution stages ill particular show that extensions to (and iiiaintoiiancx^

of) the harmony-oriontcxl epi-aspects version require f(、\v<、r changes:

• Stage 2: Initially unprcdicUid data qucjics

This stage shows that the liariiioiiy-orientoci q)i-asp(、(:ts version

can be extended with now queries by adding new snippets dur-

ing runtime. However, adding new queries during runtime is not

•possible in the <)bjcct-oriciit(xi version. As a result, a complex

mechanism for defining and managing custom queries is added to

the objcct-oricntcd version.

• Stage 3: Plug-in suppoii.

To support, phig-ins a coinplcx plug-in iiiochanisiii that allows

adding and changing plug-ins during ruiitimo has to b(、iiiiplo-

, ‘ merited in the object-orientcxl version. In the haniionv-oriontcxi

version; iio plug-in mcdianisin is ncctcssary. Phig-ins can hv real-

ized as conventional snippets.

• Stage 6 and 7: Upgmde of custom query and plug-in mechanisms

Changes to the application's >niodcl result in required upgrades of

the custom query and plug-in mechanisms in the object-oriented

CHAPTER 0. STUDIES AND VALIDATION 138

vorsioii. H()W(;vor, siiic.o no such m(、diaiiisiiis had to l>(、iiiipk、-

inont(!(l in the liariiiony-orimtcKl ci)i-a>;p(、(.t.‘s viMsion, no upgrades

(apart from slight changes to (existing plug-ins) arc nccossary.

6.5.3 Evidence Supporting Claim 3

''Compared to traditioiiat object-oriented progiminnnui, rm'pkmcnfatwn

of Tcliable, feedback mid (-mm. rec.ovcrt/ iiiacJianisins requires fewer sirjfs

when using rvsomincc-orUmicd softwarr dfwlopmciit approachds. ”

Tlio (、pi-a,sp(、(l‘s studios in socrtioii 6.3 show that i,(、s()imii(:r-oi.i(、iit(Ml

software (l(»V('l()j)ineiit approaches (tan 1>(、used to add quality feedback

and (、n.(>r recovery iiioc'haiiisins to applications in a iion-invasive iiian-

iior: the (:o(l(、within applications (lo(，‘s not have to l)(、changed, as all

(jiiality feedback aiui error rocovcny coiKtonis arr. handled by th(、au-

topoiotic. systoin and (，i)i-msp(、(.t,s. Significant (、tt.oi.t is i.(、(|uin、d to add

quality f(x、（ihark and (、n.(>r i(、(:（)v(、ry to a traditional ohjoct-orioiited

api)li(;ati()ii without using (、pi-a.sp(H:ts or other fraiiioworks for croat-

iiig solf-sustaiiiiiig soft wan、. Additionally, tlie software^ evolution study

using the lianiiony-orioiitod o])i-asp(H ts arcliitoctiin^ (6.4.2) suggests

that (l('vel()j)nient of only thr(、(，spatial epi-tuspccts iiii])leiiiontiiig qiial-

ity food back and error rcHovery f(uituros can IK; siiftic.ieiit to help k(、(、I> a

l)Uggy iiiii)loiiientati()ii niiiniiig, and to provide (l(�v(�l(>p<Ts with (niougli

room to fix ciit im l hugs.

• End of chapter.

Chapter 7

Discussion

This chapter disciisscs various aspects of resonaiiccvoriGiitcxi software

development, such as practical issues and limitations, and compares

them to approaches proposed by other researchers.

7.1 Resonance-Oriented Development Style

As explained in section 1.4, resonance-oriented software dcvelopineiit

is characterized by a well-defincxl environment that interacts with code

entities. Executing code results in changes to the environment, and

c-.hanges in tKe environment caii affect the behavior of codc.

The environment of rcsonance-oriented programs is always active. As a

result, developers interact with the running environment when adding

new codc entities and applying c:hanges. This dcvolopiiient style is

comparable to the living objects concept found in image-based pro-

gramming languages, such as Smalltalk and Self, and the hot codc

swapping feature of Erlang. However, the mutua l and continuous ef-

fect of environment and code entities in resonanc:e-oricntcd programs

on each other results in an even more dynamic development style. In

it-

CHAPTER 7. DISCUSSION ‘ 140

particular, the rcsonance-orientcd dcvdopmcnt stylo can b(、character-

ized as follows:

• Software is not developed in terms of dearly defined, distinct

phases (i.e. design, "implementation, test).

• Thorough design before coding is discouraged, because of tho com-

plexity of interdependencties between environment and code onti-

^-ties. •

• Developers can simulate and analyze changes to environment an(i

code entities, before they actually apply them.

7.2 Harmony-Orientation
* -

The following sections provide a discussion of conceptual and practical
- t

issues of harmony-orientatipn and harmony-oriented programming.

) - . _ • • ‘

7.2.1 Encapsulation and Information Hiding

’ . 丨 . /
Harmony-oriented programming is based on the principles of informa-

tion sharing and information diffusion. As a result, spatial constructs

in harmony-oriented programs do not encapsulate and hide their data

like objects. Snippets can have a state, but the state is owned and

diffused by the space. y •

v . • 、
» • • ••

However, Spatial constructs only reccive copies of diffused data. Thus

the staf e of snippets, should thev decide to mainta in one. is protected

and cannot accidentally be changed by other spatial constructs.

、

Also, the da ta diffusion process itself can be considered a kind of

flexible or temporary kind of encapsulation and information hiding.

CHAPTER 7. DISCUSSION 141

For example, after a spatial constnict puts data into the spare and

before the diffusion starts, tliis da ta cannot be accessed by any oth(T

spatial construct. At this i)arti(ii lar iiioiiHMit,])orf(Ht rii(.apsulati(m

and informat ion hiding is achirvod. Then, ()ii(.(、th(、diffusion bcj^ins

and the further it pr()(:c(、ds，th(、iiioro sj)atial coiistnicts can access tlio

(lat a, (locioasiiig tlie (l(、ftT(、(、of ciicapsiilatioii and iiiforiiiatioii liidinj^.

Eventually, the diffusion n、a(hrs all spatial constructs.

In Hariiiony-OrieiitcKl Smal l ta lk , pi.ogi.amm(、i.s can use the dittusioii

inspector to adjust or even disable diffiisioii. H O I K C . prograiiiiiiors can

(lynaiiiically cliaiige the degn^o of encapsulation and inforiiiat ion hiding

wi th in spaces.

7.2.2 Software Reusability

Ohject-orioiitcci design and i)r()graniiiiiiig supports soft W M I C reusability,

because objec ts ar(、dofiiiod and iiiipleiiioiitc^cl as more or l(、ss indcpcn-

deiit ontitios. The more iii(lo])('ii(leiil and goiieric an ()l)j(，(.t is. the

liighor is the probabil i ty that it can bo i,(ms(、(i in other projzjams. For

oxaiiii)le,\)bj('(;t-oiieiite(i libraries provide reusable objects like contain-

ers, such as linked lists, maps, and trees.

As explained in [Gl], code RMisahility can be classified as "lousahil ity in

the large" and .“reusability in the smal l" . Code reusabilit y in th(、small

refers to tak ing a pic((、of code (or object) from one program and reusing

it ill a closely related program. Code reusability in the larg(、r(、f<、rs to

ii i i l)lementing a goiicral a lgori thm, such a.s a sorting algorithm, and

mak ing it reusable widely through libraries or appl ication fraineworks.

Even though haniiony-orientod prograinmiii^i, ixUaxes t he prim.iples of
< 、

encapsulat ion and i i i fonnatioi i h iding and is based on the spac iality

— ^

CHAPTER 7. DISCUSSION ‘ 142

principle, it does support reusability. For exai i ip l (\ single si i ipprts that

per form generic or specifics algori thms, sucli as a data ttlt(�r. can be

reused in the large or in the small.

H()w(�vcr, because of the spaciality pi i i iciplr. nnisiiig gi'(mi)s ()f. ‘siiipprts

tha t cooixnate to provide funct ional i ty is d m l k m g i叩 .E s p r d a l l y if the

nil 1 liber of snippets is largo, it h(�(:()m(�‘s difficult to insert them into

auothor v i r tua l space without having to rcairangc t he siiipjjcts a 1 ready

exist ing in that space. T h e challcngo of reusing a j^rou]) ()f.(�nt i t irs is not

l imi ted to hani ioi iy-orioi i tod prograinini i ig and also applies to ohjcct-

orieiitod i)r()grainiiii i ig. However, t h (� s p a d a l i t y principle iji(T(�as(�s t l i r
/

(•(>iiil)loxity of nnisahil i ty in Imri i ioi iy-oi ie i i trd pi.ogranis.

7.2.3 Applications and Limitations

,Har i i iony-or iontod prograinini i ig is most suital)lc for developing appli-

cations whoso parts pro(:<»‘ss data fiows or iiiossagos. As oxi^laiiird in t he

prol i i i i i i iary stiuiy on ImniKJiiy-orioiitatioii in scH-tioii 3.3, possible con-

crete applicat ions arc load Im la i idug systrii is and system moni tor ing

and nianageniont software. Addi t ional ly , the studies in section G.2 indi-

cate tha t l iari i ioiiy-orioiitod])r()grainiii ing is suitahlo for iiiipl(Mii(Mitiiig

servers and various kinds of da ta jHoccssing filters.

T h e most i inporta i i t l i ini tat ioi is of hannoi iy-oriei i t t 'd prograi i imi i ig a n �

ptuforniaiKto and meinory rtKiuireiiioiits. C(>iupar(�(i to t rad i t iona l object

oriented programs, harinoiiy-orieiitcKl programs i , (�qu i r (�add i t iona l i.(�-

sources for per forming diffusion and exchanging data bc^twoeii spatial

x:() i istructs and sj)aces. Assuming that diffusion iiitcnsitios are s t o m l

ill 32-b i t Hoating point iiuiiibors and a two-diii ioiisioiial w i t h a

(liineiisioii of 500 by 500 is used, t hou the requir(Kl ii ioiiiory for the dif-

fusiou-data of spat ial (constructs can hv as high a.s almost ()n (�megabyte

CHAPTER 7. DISCUSSION ‘ 158

(97G KB) . In jHactico, the iiieiiiory issue can bo tackled l)y limit ing dif-

fusion of each spatial construct to a iiiaxiiiiuiii (^xtcnt. such as 50 by 50

or 100 by 100.

Another l imitat ion of limiiioiiy-oricntod piogi.amiiiiiig is related to se-

curity and safety. In lianiioiiy-orieiitcd prot^raiiis, all data is oponly

availal)le insido the spa((，(or spacc^s) and can be easily m(.(、ssr(l and

modified during nin-tiiiic. As a n^siilt, in coiiiparison with oth(、r pro-

graiiiiniiig appnmdies . it is oasi(M' for attackors to obtain potoiitially

confidential data, cliaiigo programs, and plant viruses. Hmv(;v(T, in ac-

tual implement at ions of harimmy-()ri(、iit(Kl nii it i ino ciiviroiiiiiciits, this

probloiii can bo partially mitigated through t(、(liiii(|u(、s lik(、（.()(1(、sî iiifig

and (l(、v(、l(>i)w aiitheiiticatioii.

A further l imitation is that. iKicause of the Hoxihlo iiHturc of haniiony-

orioiitcd i)i'ogimiis, the (:(mii)l(、xity of testing iiu roascs and that, coin-

])aro(l to otlier prograiiiiiiiiig ai)i)i.()a(:h(、s，it is easier for prograiiiimTs

to write c()(l(、that behaves in an unpn、di(t(、(l way. Th(、coiiiploxity of

testing is incroasod, hocaiiso tli(、output of a snippet or ot her spat iril

construct is not only defined by its iinpleiiioiitation. hut also by its

location in tlic space. However, bocanso all data is hold by the spa(.(、.

it is possible to iiiii^loiiioiit devdopiiicmt oiiviroiiiiionts that can simu-

late changes to code and location before tlioy arc actually applied by

a prograiiinier. As a result, the complexity of testing and probability

of writing code that l)ehav(\s in unpicdicted ways can be r(、(lii(‘(、(l l)y

concrete impk、iii(，iitati()iis of visual (levolopinent (niviroiiineiits.

CHAPTER 7. DISCUSSION ‘ 159

7.2.4 Harmony-Orientation on Manycore CPUs

As siiggxistcd by David Uiigar, hariiioiiy-oricntat ioii might 1>(、a possi-

ble model for prograininiiif^ future "iiianycorc" processors丨[4] that have

huiidrods or even thousands of cores. ()ii(、issue with future "manycore"

processor architectures is how synclironization and coiniimiiicatioii Ixv

twerii processors is roalizcHl, and how to write programs that effect ivcly

utilize the pr()yi(l(、(l computing power. Global synchronization of thou-

sands of processor cores would hav(、a serious perl'oriiiaiK o impact and

is thus not a viable option. Local ‘syn(:hi,(mi'/ati()n is mon) jHoniisiiig,

be(aus(» of the r(、(lu(:(，(l ov(n.li(，a(L

If the (;t)rrs of a future "iiiaiiyc.orc" procc^ssor were logically arranged

into one or mm.(，a two-diiiieiisioiial grids, those grids could 1)0 coiisid-

crod as harmoiiy-orieiitcKi s])a<:os with each c()n、being ()u<、'iocatioiT

of the space. Using the haniioiiy-oi.kmtwl approach, cacli (orr would
»

only interact with its dii,(、(:t iieigliljors to ()x(:liaiig(、data. Eac h piece of

(lata would have an associatcxl intensity, which is decioascd wh(、ii(、v(、r

it is passed from oii(、（x)i.(、to aiiotlior. Oiico tlio intensity n、a(.h(;s zero,

the (lata is not pass(Hl on. Such an appnmdi would he (、quival(、iit to

the diffusion of harinony-oriontccl prograiiiiiiiiig.

7.2.5 GPU-Acceleration

Graphics piomssiiig units (GPUs) opcnato in a pm.alld，pipdiiicd fksh-

ion, and are optimizcHl for operations with low arithiiietic density.

Fourth and later geiuuation GPUs provide prograiiiiiiability of v(Tt(、x

and pixel transfoniiations. GoiKual piirposo GPU computing (GPGPU)

2G] reftn's to the coiiccpt of exploiting the processing p()\v(、i. of GPUs for

Also calltHl massively mulli-rorc processors.

CHAPTER 7. DISCUSSION ‘ 15

l)erf()riii ing gciioral purpose calciilat ions. T o set up a (I P y J\)r m g(� i i(�rfU

purpose? (:()iiii)utati()ii, a so-callcxi fiufpit.ciit pTOfjiuni i ini)lrni(� i i t . ing 1 he

(losirod computa t ion in a high l (�v (� l shading language, such as C g [27

and the O p c i i G L Shading Laiigiiago (G L S L a i i g) [55], IS loMclcd onto t IK、

G P U , and two or more two-diii ioiisioiial textures a n � c n v i t c d ins i (l (� t l i (�
/

gra])hi(;s memory. . T h (� U � x t iii<，s ai(； used for (ixcluuigiiig data wit li th()

(;()nil)iitors i i iain i)r(K:(�‘ss(>r or processors w i th (> i i (� tex ture holding t h(�

input for and ()ii(! texture. i.(’(:(�iviiig the output of tli(» g (� m � r a l puiposr

computat ion .
. •

I larinoiiy-oriciitcHl spaces JXMloriii diffusion to faci l i tate data cxcliaii^c.

T h e laTg(n, a spaco, the mon) serious is the impact \ \ iv didusioii pro-

has on the ()v(*rall j)orf()iinance of the progiai i i . Various diffusion

c(|uatic)iis, such as [45] , l m v (� b e e n opt iiiii'/(>(l for i iuplri iu' i ihit i()ii on

G P U s . As a result, tlio poiforinaiic.o of hari i ioi iy-orici i tcd runt iiiic vn-

vironiiKUits (a n improved significantly by oHioadiiig all diflusion

computat ions to tlio G P U .

T h e iiiipUniioiit at ion of t l i (� H O S niut i i i i (�oi iv i roi i i iKui t iis(�s t vvo-diiiicii-

sioiial arrays for holding the various iiitfnisity values for (�a(.li siikstaiicr.

D u r i n g eacli diffusion st(�p’ those arrays ar(�pi.occsswl scquriit ially and

tlio intensity vahu^s are updated. T l io H O S ruiit i i i io could h(�a(. (: (� l (�r -

atcd significantly by stor ing the iiitxnisity valiuis for c a d i substance in

toxtur(\s and le t t ing the G P U perform the calculations.

7.3 Conscientious Resonance-Orientation

T h e discussion in tlio following scnttioiis applies to hot h (�pi-asi)(>(ts

and the coinbiiuHl approach clesctrihcd iii soction G.4 (l iaii i ioiiy-orHMitcd

o])i-a,spe(;ts).

、
CHAPTER 7> DISCUSSION I Ki

• •

7.3.1 L im i t a t i o n s o f Ep i-Aspects

Tli<，(̂ i)i-fLS])octs arc'-hit (K:t urc oncouragc^s a clear s('j)arMt ion Ix'twccii ap-

plicat ion fuiictioiialit.y and an aiitoixiictic svst(、m (or iiioiiitoriiig, r(、j;-
v. ‘ •

Illation, and (nror i.()(:(>v(Ty. Tliis arcliitcK；! ural s(�pai.atioii is a shift in

software (，ngim、(，riiij; pi.acti(.(，，wliicli focuses on application functioiuil-

ity and oft,(m iiegl(、(:ts w(、ll-kii()wii (u.ror i,(、(:ov(Ty and adaptation Iccli-

uiqm，s. Since tlio autopokiti(‘ system is not an artificial iiil('lli{i,(MK(\
*

l)Ut iiiij)l('iii(iiil('(l by (IcvoloiKTS who hav(； <l(，sigm、(l rul(\s for

an application niiiniiig as smoot hly as iM)ssil)l(、，ccrtaiii uni)i('(li(t jiblc

(toiiditions can st ill (:aus(、th(、aj)pli(Ht ion to pcrforiii unwanted act ions.

Crit ical faihircs t LUIT crash t IK; system CH I I IK: handled by t he Mutojx)!-

et.ic system. How(、v()i.’ it is not j)()ssil)l(' to i>i.(、v(”it an aj)[)li(.Hti(m froiii

doing something it is not supp()s(、(l to do. As siicli, t lie rpi-asi>(、(.ts

m.diit(、(tui.(、is i>i.(>n(、to human failure.

A pract ical issue of (jpi-asjx'cts not a(l(ln;‘ss(Kl in 1 he pi(�vi<Mis (Imph'rs

is tlio i)r()l)loin of i>()t(，iitial hugj^y (、i)i-asi)(、(.ts. Siii(.(、cpi-ri.sjxH ts can

contain a sigiiiftc.aiit ainomit of codc, tli(、int roduci ion oi" latent bii^s

is possible. As a n^sull., epi-aspwls have to pmvidr a iiuH luinisiii t hat

reliably i>(、rf()ruis s(、lf-up(lat(\s. One iK)ssil)l(、approach is th(、usfi只(、of" a

"iiiota" (，pi-asp(H:t that monitors th() (、i)i-a‘sp(，(.ts for iiit(Miial i>ml>l<、ms.

Allot her issue is the uixlatc of (、pi-a>q)()(:ts. Tlic st luly i>r(、s(、iit (、（l in

soctioii G.3 only iiiipkMiunits a (l(、di(:at(ul (”)i-a‘si)(，(t t hat provides a

iii(H;lianisiii for updating th(» (:lass(、‘s of 1 ho CMS system, l)ut not 1 he

epi-a.si)0(tt.s. The most straightforward approach for (l(、aliiig with the

issue is to impl(，m(、ut a (l(，(li(:at,(、(l opi-aspcct, t hat. provides fiiiict ioiuility

for roliahly updating ot her opi-aspocls and it-self.

Human failure, in g(m(、nil，is an impm taiit factor when (l(、v(、l()i>iiig self-

CHAPTER 7. DISCUSSION ‘ 162

sustaining systoins. It is impossihl(、to i>r(、vn" (1(、V(、1(> IK， I-S from (.r(、at-

ing i)r()bl(Miiat,i(： opi-a-spccls t hat diroct ly or indiixu t ly harm 1 he system.

Even if" iK^ar-porfbc.t aut(>i)(>i(、ti(; j)i,(>gimiiiiiiiij^ and M st nhlc

autopoiot i(t sysUnii arc availa])l(；, t,li(、i.(、 is st ill room for failiirr. For

oxainplo, a (Icvdoprr is si ill able to (l(�v(�loi) (�i>i-asp(，(.t s 1 liat arc not

optiiiial and (-ausr minor iiT(、 !̂;ulm.it ics. If such irrc^ularit \v.h ncciiiiiu-

Ifitc，t,h(，n the syst(nn may iail to deliver rxprr t rd results dcspitcMhv

mitoi)oi(�t i(: part kocipiii^ it alive.

7.3.2 Realizing an Autopoietic system

Tl ic aut()j)()i('t ic simulator of. the Kpi-A.J f.nimrwm.k is nu^aiil for (1(�-

vcl()])in(Mit and t(;.st purposes. To use (�pi-asi>(�(:ts iii real worlcl applica-

t ions, t h(，（l(，v(�l(>iMn(�iit of a full autopoirt i(. syst,<�iii is necessary. Apart

from t l i<� lack of autopoictic j)r()grainiiiin«!； languages MS cnvisioncHl by

CabiH^l and Goldman in [36], t h(� fol lowing issues lmv(� to 1>(�addressed.

T h e first ("i(，stion is how to impl(�m(�nt and deploy an aiHopoiH ic sys-

tem. Olio opt ion is to iiiiphniKUil is as a program (hat runs direct ly

on tlio coinputxii's ha id wan; and provides a virtual iiim.liinr lor run-

ning an operating system, similar (o V M W a r c [98], V i r tua l Box [94],

and Coliiiux [1]. Tho advaiitago of t liis approach is (hat l i i (�aiit .opoi-

otic systxiiii (loos not doixMid on othcu' soft ware, which mi沙 t l>r bii^^y.

Fm.tlimmm、，cioniponeiits, drivcus, and applications of th (�ojxMat iii^

systxnii can Ix* nnilizcul ns aspect ()i.i(»iit.(，d r(ms(.i(�iili(ms soft ware t hat
«

is w(>v(m into tho autopoiet ic systcMii on startiij).

Another similar oj)! ion is ruiiiiiiig t l i (�autopoie t ic syst,(�iu on t.oj) of

an existing, stahlo operating system k(�m<� l ’ which j)r()vi(los lmr(lwm<�

abstraction, basic. s(�i vi(:(�s, mihI includes (li.iv(，i.s.

CHAPTER 7. DISCUSSION • 118

A third option is to iinj)l('iii(Mit 1 he autopoirt i(. syst,(�m JLS an fq>|>H(.at,i<m

niiiniiij»; on an operating syslciii or inside a virtual i iuuli inr. Advan-

tage's iivv, tha i this approach has lower ini|)l(Mn('iil at ion (oinplrxity. T l i r

major (lisa(lvfiiitag(^ is 1 liat t he Hutopo'uM ic s\tstciii (1(�I)(�IK1S OH an op-

(uating systcnii or virtual i im(. l i in(�and 1 lien'lore is only MS st able as t Ijc

niidorlyiiig soft war(\ 一

Another technical issiu; t liat has lo he resolved nvv t he (�xa(.t m(�(.ha-

nisiiis for invokiii^z, rr(:omim”i(lati(川 and (|u(Ty mh, i ((�woven into th(�

a\it.()iK)i(itic syst.ciii, and lor t raiispoit iiig in(\ssMg(\s froin ('pi-asprrts to

th(i autopoicM ic ‘system via an (”)i-(iii(�u(�. If auU>|>oi(�t ir systciii and

application iMin in the saiiic i>r(K(�ss"wliidi is the approarli usr(l hy

t,li(�aut:()i)oi<�t ir siinulatoi-, this issue is trivial. However, nii inin^ t he

aut()j)()i('tic syst(!iii and application in the same j>m(.(»ss (l(�f(”�t_‘s t he

imi poso of coiisciciit ions software, Ixn auso a crit ical failure in th(�MJ)-

plication iiii^iit tcnii i i iatc 1 li(» process and thus 1 h(» autopoirt ic syshMn.

• End of chapter.

J

Chapter 8

Related Research and

Comparison

Th is cluiptcu" (overs various approadics reflated t-o r(�s(>iuiii(.(�-mi<�iih、（l

softwaix^ (l()v(� lopiii(� i it , SUCIJ a.s (liffiision-ba.stKl AG(�iit systems, soft ware

(^volul ion i.(�s(�m.(:h，related p m职u i m i i i i g appi.om.lies，sclf-siistainiiig

systoiiis, and ciror i(H(>v(;ry. T h e ii ioic closely r(�hit(、（l work is coiii-

l)arc(l w i t h tho proposit i i.(�somuK:(�-oii(mtr(l software^ (l(�v(�l<>imK�i“ aj)-

proa(:li(�s.

8.1 Agent-Oriented Software Development

8.1.1 Agent-Oriented Programiiiiiig

Ag(mt.-oi.i(�ut(�(l j)r()gr<u I l ining, first, proposed by Sholiaii i in [84] and

85], (.haiigcs the not ion of programs iVoiii lii(�im.(:lii(�s (>1. (�iit it i(�s wi th

static relat ions into s(K:i(�ti(�s of ac-tivcly interact ing Mutoiioiiious ai;(”its

w i th goals and iiitoiitioiis. Agent-orioiitxul prograii i i i i i i ig laii{j;uag(\s al-

low (lovolopors to t ackle a pr(>hl(�iii by abst ract ing in t(�i.iiis of individ-

uals w i t h rolos and iiit.(�iiU(ms. Unl ike (>bj(�(ts in (>hj(，(:t-(>ri(�iit(�(l pro-

149

CHAPTER H. RELATED IlESEAUCH AND COMPARISON ‘ 150

graiiiniing, agcnits nrv. constnicts t hat possess -iwi iml(�p(�ml(�nt t l m � m l

of (toiitrol, arc adaptable, and ac t ivdy piiisuo gonls.

8.1.2 Diffusion-Based Agent Systems

Diffusion ha« h(�(m a(“ipt<�(l fus a iiiOMiis lor interaction in various coii-

(:i.(，t.c inulti-ag(uit systxMiis, such as [49] an(i [4()]. For cxMiiiplc, Tsui

(�t, al. pmpofsr a (liffiisi()ii-l)aso(i iiiiilt iagoiit ham(�wm.k lor solving oj)-

t i ini ' /ation tasks in [91]. In part icular, dilfusioii is used for allowing

ag(nit,s to (: ()op(�n“.(� towards finding m 沙>l)al opt imal solution in th(�ii,

f m m (� w m k .

H(� l>(� i i i i i i ig i)r()|)()sos i'()llal)()iativ(^ difFiisioii as an ag(�iit-lms(Hl artificial

iiitolligciico. syst,(�m for (.omputri, in [80] and [81]. In t his syst cMii.

a|5(�iit.s (tan (uiiit a "scent" that is (liHus()(l by t he t ilcs of a ganir and

can b(�US(K1 by ol her agents for t racking.

8.1.3 Comparison Wi th Harnioiiy-Orientation

Like agont-()i i(Mito(l piogi.aniiiiiiig，lianii(my-(>i'i(�Ht(�(l pio^^i aiii i i i i i ig docs

not uso st atic hiorarchios of pi.ograui (Mit il ics: spat ial const n u t s can

h (� a r r a n g e d hy dovolojxns dur ing niii-t iiiic to change th(�proj^rain.

O n t.li(� surfa(t(% lia.i.iii(>iiy-(>i,i(�iit(xl piograii i i i i i i ig ai>i>(�ars to l>(� simi-

lar to (liftusioii-based iimlti-agont systciiis, such a.s [80], in part icular.

Howovcr, spat ial coiistnu^ts in liarinoiiy-orioiitcd j)r()graiiiiiiiii^, such as

siiipi>(�t.s，arc fiiiKlaiiKMitally difforont from agcMit.s. Consider the follow-

ing typical ag(Mit IV^aturos:

• Autonomy: Agents operate vvitlioiit th(、diroct i i i t (� iv(�ut ioii of

liuinaiis or othors, and hav(�sonic kind of control over th(�ii. ac-

CHAPTER H. RELATED IlESEAUCH AND COMPARISON ‘ 151

l ions and internal sUit . (� (an a|:;(�i“ usually ha.s it s own t lircad of

oxoc.ution).

• Social ability: Agents interact with otli(�i. apmt.s (and possibly

Iniiiians) via soi i i (�kind of agcMit-coimimnicat ion laiiguagr.

• Reactivity: y\g(�iit‘s iMT(.(�iv(， their onviroiniKMit and rospoiid to

cliangos that occur in it.

• Goal-orientation: A^2;(�iits do not siiiiply act, in r (�sp(ms(� to their

onviroiiiiuMit, ihoy nvv able to (�xhil>it g(>al-dii.<�(.t<�<l Ix^havior hv

taking t.h() initiat ive and (xnidiictiiig nogot iat ions.
、

• A d a p t i v e i i c s s : Agents learn and chaiigc th(� i r Ix^havior hasr(l on

its previous (�xp(Ti(�n((� .

A spatial const ruct, on t in，（)t li(T hand, is just a i>i(�((� o f logic that runs
«

ill an (MivironiiKUit that facilitates i,(�a(.tivity. It is possible to write

snii)|)(>ts and ot hor spat ial const l uct.s (hat iiiipl(�iu(�iit some or all of t h(�

ag(Mit feat ure al)(>v(、，hut as a (.(>n((�pt ual const ruct, spat in 1 const ructs

ai . (�not (toiiipMiablo to aj^oiit s.

8.2 Software Evolution

R(�s(�ai.di(Ts arc iiivost.if^atin^ various approaches and sti,at(�gi(�s for (l(�al-

ing with software ovolutioii more (�tt.(�(.tiv(�ly. () i i (� fu . (�a is thr evalua-

tion of benefits (>i. a�sp(�(言-()i.iciit(�(l soft waiv <k�v(，l()piii(�iit , i.(�fl(�(t i(>ii, and

iii(Ha-(lata to ‘softwm.o ovohitioii. For i^xampk，，in [60] Liu (�t al. (1(�-

scribo an approach (toiiihiiiiii^ aspocts, X M L , and iiiaiiagriiKMit tools

for (Miabliiig systoin-wido software evolution, ami Rank iiiak<�s the (.a‘s(�

for i.di(�(:tiv(�softWciro architoctums to facilitate software^ ovohit ion in

781.

CHAPTER 8. RELArED RESEARCH AND COMPARISON 152

Like tho various arcli i trctuics i>i.(>pos(�d wi th in tliis i,(�s()ar(.li area, the

i(，s()mm(:(，-()i,i(�i“,(�(i apimm(.h(�.s oii (�pi-asp(�(.t‘s make use of aspoct -

orioiitat ioii. I IOWOVCM' AMIXHTT-orioiitat ion is only oiio of many i)F)ssihl(�

(tlioicos for realizing a (:(m(:i.(�t(�i.cs(mmi(.(�-oii(?iit<�d software architec-

tures, and cannot be considrnKl as a design piinci])!^ ol. rcsonancc-

()rioiit(Hl piogramining.

Anotlior i.cs(mr(.h fi(�l(l is soft ware rvolvahil i ty in g(Mi(�ml. Publications

in this H(�ki r (m T topics like modds for and siiimlation of software

ovohitioii [99], software cliaiigo predict ion [53], and tools for software

(woliit ion iiianag(Mii(Mit [51 .
•

8.3 Programming Approaches

8.3 .1 S p r e a d s h e e t s , S u b t e x t a n d C o l i e r e n c e

Spi'(�mlslK�(�ts can l>(�coiisidcnxHl as visil>l(、， functional pio^raius that

m � � h o i i i g ox(K:utr(l coiit inuoiisly. Subtext [19, 20, 21] is a non-trxt i ia l

prograiiiii i i i ig language inspired by sprracisluH^s whose pro^rmiis con-

sists of tr(H\s of n()(l(\s. Programs constnictcHl by copying iio(i(，s and

run by evaluating t h (� t r e o . Subtext luus ()volv(�(l into t h (� C o h (� m i (. (�

22] language, which is ha^stnl on a iu(>(i(�l ofcliaiigo-drivoii (omimhit imi

that rolives |)r()graiiinu>rs from t h (� b u n i o n ot" iiiaiiagiiig si(i(�（、ff(、（.ts.

S|)r(»a<ish(H^t p i .ogmmmiug languages and langiiag(\s iiispinnl by sprcml-

shoots, such as Subtoxt , sliar(、llio following siniilarities with liariiioiiy-

orioiitod progiMiniiiing: firstly, siH(、adsh(、t、ts and liarmoiiy-()ri(、nt(、(i pro-

grams are cont inuously oxocutiiig, (、v(、ii wlioii (:(>(k、and data arc br ing

(Hlit.ed. H(、.mx、，any cliango is inuiKHliatoly applkxl and visualized. S(�(-

ondly, liko harnioiiy-oriontod])rograiiis spr(�adsli(�(�Ls arrange code and

(lata in a two (liinousioiial spmx、and ai(、data driven. The ditf(、r(、iK.t、

、

CHAPTER H. RELATED IlESEAUCH AND COMPARISON ‘ 153

is that spreadsheet languages arc functional programming languages

while harmony-oriented programming is ba^od on principles like infor-

mat ion diffusion, balance, and code exposure.

8.3.2 Erlang

Erlaiig [3, 12] is a general purpose, functional pro沿.amming language

and runtime enviromiiont designed for conc.urrcncy and robustness.

The Erlang runtime environment, is designed to reduce the coiiiplcxiry

of software inaiiitenauce and error recovery through hot (:o(ic swajy-

piiig and incremental code loading. The hot code swapping feature

allows developers to change running programs, and provides facilities

for phasing out or recovering old code. Iiicreineiital code loading allows

developers to specify how much code is loaded (or unloaded) ar what

time, and heiic-.e facilitates isolation and correction of buggy code in

running programs.

lu harnioiiy-orieiited j>rograins, it is also possible to change or replace

code and make other c.hanges during runtime. However, hannony-

orientation itself does not provide mechanisms for improved luainto-

nance and error recovery. Suc;h iiiiKttionality is realized by epi-a.sj)ocr.s,

the second resonance-oriented approach, and the combined liannoiiy-

orienteci epi-aspecr.s approach introduced in socr.ion 6.4.1.
« *

8.3.3 Dataflow Programming

Dataflow programming languages like Luicd [97] and LabVicw's "G"

language [50] allow prograiiiiiiers to model programs as graphs that (ie~

fine how data is pa^sstxi from one operation to another. Many dataflow

programming languages are visual, languages that provide a user in-

terface for programmers to define operations that can be connected to

CHAPTER H. RELATED IlESEAUCH AND COMPARISON ‘ 154

create a (lii.c(:t(，(i graph. T h e y arc typical ly us(�(l for applications iiiiplc-

i i ionting (lata t ransformat io i i or acquisition, sucli as image and video

filters. .

T h e first rosoi ia iKooriei i tod approach, l iar inony-oricntcd prograii i i i i i i ig,

shares some dmra(:t(”isti(:s w i t h datafiovv pi .ogiammii ig, b(�(aus(�s])a-

t ia l constructs and the spaces (�x(‘ lusivdy interac t via (�x(.hanging clal a.

Also, like i i iaiiy clatafiow languages, the ha im(my-o i i (� i i t r (l n u i t i i m � a n d

(lovclopnioiit ciiviroii i i ioiit , Hani iony-Or io i i t t 'd Smal l ta lk , is visual. T h (� . �

m a i n (lift'oronco botweoii lianii()uy-(>ri(�iit(、（i])r()^raiiii i i i i ig and dataf low

languages is that the lat ter encourage t l i r 丨)n>gi.miim(�r to sprcHv M

{ .oi i ipk化 (� (lataHow description in t l ie form of a (l i r (� r t r (l ^rapl i l>(�f.(>r(�

the progia in is lu i i . II()W(、V(T，hanii()iiy-()i.i(�iit(�(l p iog ia iu i i i iug does not

rcquiro th(» prognii i i i i icr to th ink al)()iit a (:(>iiii)l(�U» (Icscript i (� of t l i r

program ’s da ta How. Rath(n \ the])rc)graiiiiiier focuses on small parts

(areas) of t h (� p r o g r a m and iiicrciiKMitally develops it while it is run-

ning-

8.3.4 B lackboard Archi tectures

Blackl)c)ar(l ai 'di i“� (: t i i i , (�s [47, 25] faci l i tate iiiforiiiat ion exchange b(�-

twoen program entit ies through a global (latal)a«(� . Th is (latal)as(\

which is callod a blackboard, caii he f r (� (� ly accosscd by all entit ies to

piiblivsh and obta in data . A n i i i ipo i tant clmractc'iistic is that all data in

the b lackboard is available to al l entit ies at al l tiiiios. Coiic rctc black-

board iii i i)lciiiontati()iis allow entit ies to subscril^c to desired kinds of

(lata, and to rcntoivo notif ications wlK� i it�v(u. matching da ta is pul)lish(�(l

or modif ied. As explained in [47], a coii inioii appl icat ion of blackboard

architcx^tures is prohlcii i solving: a sot of problem solving oiititios iisos the b lackboard to publish, process, and i (�sp(md to hierarchically stnic-

y

CHAPTER 8. RELArED RESEARCH AND COMPARISON 155

t iir(、（i liy])()tliesos.

I l l lmi.m(my-()i , i(�ntc(l j)r()graiii i i i i i ig, t h (� d a t a put into s|)a(.(�s by siiip-

j)ots can bo f.R(H�ly COUSU I I KH I by ot LIRR snippets. Hmv(、V(�r. Ix 'CA I ISC of

tho diffusion process, the d a t a is not avai lable global ly at all t im(�s Vikv

ill I j lackboard ai(hit(K-tur(\s. Hat her, t l i (� v i r tua l location of a spat ial

coiistnic-t inside a spaco and t l i r ex tend of diHusion (l(�t(，i m i n (� w h i c h

(la ta a spat ia l construct can access. Also, a spat ial construct can not

(l iroctly ([uory or soarcli the spaco for])ar t i (i i lar da ta , and t h (� s p m r

controls which (lata siiip])('ts n� (: r iv (� .

8.3.5 Pheiiotropic Computing

Lanier projxisos j)lioii()tropics as an a l t (� n i a t i v (� t o ar^iiiiHMit-based in-

torfa(:(\s in [58]. T h e m a i n idea of i)hcii()tropics is t hat coiiipoiKMits luivr

surfaces that display i i i for inat ioi i ahout tl ioir fu i ict ional i ty rather than

r igid i i i tcrfaco (loHiiitioiis. In te rac t ing (.()INPGN(�nts ()1)S(T \ ' (�and ii itcr-

pr (� t and tl io i i ioanii ig of oacli other 's smfaccs, and react accordingly.

Un l ike ii itcrfaccs, phei iotropics iis(�s app iox i i i i a t im i rather t l ia i i d e a r l y

(loHiicd protocols.

8.4 Self-Sustainment and Reliability

8.4.1 Autopoietic Software Systems

Ai i topoiot ic software systems W (T (� f i r s t proposed in the 1970s [95

T l i c y have l) (� (� i i w ide ly ((ms id r r rd a coi i iputat io i ia l iiiodol and appl ied

il l the field of art i f ic ia l i i i t (� l l ig (�m:(� [105 , (i(i]. D u r i n g the 198()s the coii-

copt received loss attoiit ion and was n、（lis(:ov(�r(Kl in tl io lato 199()s [67 .

Siiicto aut()i)()i(\sis is wide ly (:oiisi(kT(�(l a coi i iputat io i ia l concept, most

CHAPTER 8. RELArED RESEARCH AND COMPARISON 171

research fcx-usos on algorithms awd siinulritioiis of ‘siiiiplr auU)|)()i(�t ir

systems. Various versions of such simulations iiiipk�iii(�iit(、（l in Pascal

and Fort ran i)r()graininiiig languages arc availal)lr [52. (38 •

8.4.2 Autonomic Computing

I B M clovis(Hl tlic notion of autonomic (omput i i ig [54. 71]. It refers to

(:()ii(:(»])ts and technologies that (Miahlc softwarr to l)(H.()m(、more sclf-

iiiaiiagiiig. To H(lii(;vo this goal，autoiioinic (omput i i ig pi,()p()s(、s four

l)i.iii(iplcs: scH-configiiratioii, s(、lf-h(、alin仏 s(、lf-optiiiiizat ion. and self-

protect ion. According to [54], sclf-coiiHguratioii i,(�f(Ts to software coiii-

poiioiits and systciiis that automatical ly follow a set of high-level coii-

f igmat ion pol idrs . In case of policy cliaiigcs, the (nitiic system adjusts

itself automatical ly. vSclf-optiiiiization is a procoss in whicii coinjx)-

iioiits coiit iiiually s(，(、k opportuiiiticis to improve their own pcrfonnaiicc.

TIK、solf-lioaliiig I)ro(:(、ss allows th(、system to autoii iatically (L(、t(、(.t and

repair software and hardware pi.oblriiis and the sclf-protcction inccli-

aiiisiii (l(、f(、iKls the systoiii against malicious attacks and failures. T l i r

self-protection niccliaiiisiii us(�s mi vi\r\y warning system that allows

anticipation and pi.(�v(�iiti(>n of system failures. RescarcluMs arc explor-

ing aspoct-oiientcd approaches for roaliziiig autoiioinic (.(miputiiig. For

example, Eiigol (� t al.. propose tiio usages of (lyiiaiiiic operating systriii

aspects'for realizing autoiioinic software in [24], and Gnnniwood (�t al.

(inscribe how to use (lynaiiiic fuspoets for imi)l(�m(�utiiij^ an autoiioinic

system in [40 .

M
V

8.4.3 Coiiiniensalistic Software •

Coinnionsalistic software [29] is a hypothetical coiisciciitious software

arcliitcH-ture bas(�<l on coiiiiiiciisalist ic symbiosis i)roi>()s(ul by Fl(�i‘ssii(;r

CHAPTER H. RELATED IlESEAUCH AND COMPARISON ‘ 157

and Baniassad, Coiiiinoiisalistic software' and ('])i-asp(>(:t s arc t he first

arcliitocturoH in‘spir(�(l l)y the tli(�oix�ti(:al notion of consciciitions sofl-

wai,(�.

8.4.4 Reflective and Adaptive Middleware

R(�s(�m,(.h in the Hold of rcHcct iv(； and a(laj)t ivc mi(l (l l (� \vm(� [8 , 83, 63. 23

shares s()m(�goals wi th autonomic (omput i i ig and coiiscicuitious sofl-

wm.(). As (l(\s(:iil)(Hl in [39], (>p(�iim�ss and (lynaiiiic sclf-adaptat ion aic

fuiKlaiiioiital projXTt ios of r(�M(,(:tiv(，middleware, mid t h(T(�foi.(�. rcflrc-

tivo middleware is suited to support autonomic (omput i i ig and srlf-

sustaiiiiiig syst(Miis.

For instance, t i i (�approac l i by Hasdic ot al. [79] i>i()i>o!s(*s t h(�usag(> of

(lyiiainic aspect weaving for icconHguratioii. 丁h(�Raii i l) () \v framework

])1()I)()S(k1 by Garia 11 (�t al. in [38] is a coiicrrto adaptive iiii(l(ll(�\vai,(�

m’(.liit(�(:tui,(�that uses moii i toi i i ig and const rail it (n'aluat ion lor adaj)-

tatioii.

8.4.5 Monitoring-Oriented Programming

Monitorii ig-orioiitod prograiiiniiiig, as described by Ch(�n ct al. in

14，15, 13], is a practical programming paradigm that uses monitoring

as tlio fiiiidaiiioiital i)r i i i (: ipl(�for iiiipl(Mnoiitiiig i ' (� lhibl(�software. Thv

formal ‘specification of an application is iis(�(l as th(�basis for ^(Micratiii^

a set of monitors that a i . (� i i i togratcd into th(�softwrirc . Dur ing niii-

t i m (� t hese monitors observe^ t ho n m t i i i K � h d m v i o r of th (�app l ica t ion

and trigger nsor-dofiiiod routiiu^s, wlicn a ‘sp(，cifi(.ati(m is validated or

violated.

CHAPTER 8. RELATED RESEARCH AND COMPARISON 158

r\

8.4.6 Recovery-Oriented Computing

V

R(;(:()v(，i,y orient('(1 computing (R O C) , (explored l)y Patterson, Brown

(化 al. ill [75] and [11], suggests planning to inroi,i)(>i.at(�or recover

from a certain class of errors, ratli(jr t lifiii t ry ing to prcvrii言 t hri i i fVoiii

arising T h (� m a j o r aim of recovery ori(”it(、（l (•()inj)utin«i, is to iiiiiiiiiiizc

thv. moan tiiiio to repair in case n system failure occurs. In order to

ciiahlo fast recovery aft(�i. a fa i lun \ H O C oinploys t h (� f o l l o w i n g six

TE(:hiiic|uos: I () (: ()V (TV (�xi)(� i . ini(�uts, diagnosis. j)Mrtiti()iiin^. icvcrsil)!^

systoins, dcfoiisc in (l(� i)th, and redundancy.

8.4.7 Acceptability Envelope

RiiiMid ol al. (�xplor(� inii)(Tf(K:t l)ut a(:(:()pt ahl(�soft ware syst(”iis in .

The i r i(�s(�ai.(:h j)i()posos an acceptability cnvfdopc. a (oiiccpt rc^lri riii<i；

to software that is Haw(�(l，l)ut (l(�liv(�i.s a(-(:(�ptal)l(�s(” vi(() to us(;r.s. Ac-

cording to Ri i iard, iiiaiiy (lq>l()y(，(i systrms do an accept al)l(' jol) despite

errors aiul at tonipt ing to (l()v(�lop a Hawl(\ss system can considered

as (:(miit.(，i.-pro(lii(:tiv(�hccausc of thv burden placed on t he developer.

8.4.8 Software Reliability Engineering

Compared to tho various software m.(:liit(»(.tm,(�s and i)hil()s()i>lii(�s re-

garding solf-sustaiiiiiig systems and error i()(:(>v(!i,v introduced in t he

previous sections, softwaixi roliahility oiigiiiocring if'tVis to clearly (Un-

filled software ongiiKUMiiig i)n)(:(�sscs and practices. As indicfitcd in

('hapter 1 of [62], software reliabil ity started "evolving from an art into

a practical oiigiiiwniiig (l isdpli iK�” ([62], p 9) in the mid 199()s.

CHAf'TEH 8. RELATED RESEAIICH AND COMPAIUSON 159

8.4.9 Comparison With Epi-Aspects

As i l lustrated in t l i (� i) i . (�v ious sect ions, error nn.ovrry, self-sustaining

software, and software reliabil i ty arc w(� l l -ui i (l (�rst� (>(l concepts.

Conscientious soflvvarc, the j)ara(ligin that insj)ir(ul (�pi-asp(>(.ts. is in-

spirod by the nia l i /at io i i that., r v r i i though various error recovery M])-

proac'lu^s exist., tli(，y arc not f r rqurnt ly applied in |>ra(:ti(.(�l>y tlic soft-

wfii.c (Miginccriiig and prograiinning coiiiinuiiitics. Conscientious sofi-

vvarc i.(�quirc,s two dist inct syslciii pmts writ ten in diflrnMit pm幻 am-

iniii^ laiiguag(;s wl i (�r (�hy one part is sol(�ly i.(�si)(>iisU>l(�for (�n.oi. rccovci y

and koopiiig thv syst.(�m alive, and t h (� o t h e r part im|) l (�m(�uts appli-

cation fuiictioiiali ly. Th is approach is iiicMiit to riu.oui.agr s(>l,t\vair

(l(;v('l()i)(us to all(K;al(^ sufH(;i(Mil r(�‘som.(.(，‘s for implrni (� i i t i i ig each pari .

T h e (>pi-a.si)(K;tK archil(H:tur(' goes one st(jp f'urt li(;r. It MIIOVVS (l(、V('l(>j)(Ts

to wr i te an applicat imi wit hout coiisidcn iiig si abil i ty and error rccovcM v

at all, and then latcM" upgrade th(�appl i (.at , imi into s('H"-sustainin«2, soft-

ware; ill a non-iiiva^sivc iiuuhkm'. Unlike iiiaiiy (�xisti i ig appi .oarlirs. the

(•l)i-a.sj)0(ts arcliitcct urc d()(，s not i.cqiiii.r design l)(�f.(>i(�coding in regard

to (^rror n�(:(>v(Ty and s c l f - s u s t a i i i i n c i i t . (� � ”) () n < � i i t tests, mrrhaii isii is

for rn.oi. i i ioii itorii ig and i’(K(>v(Ty’ and soltwarr niaintciiHiicc^ ni(、（.lia-

nisiiis can Ix* a(ld(�(l at a later sta^c via (�i)i-a>;p(K ts without iiiodifyiiij^

t he exist ing applicat ion.

“ V .

Addit ional ly , (�v (� i i though the (�|)i-a,sp(�rts an.hitrct u r (� i s (l (� i j ; i i (�d (or

realizing fbatun^s i,(�lat:(Hl to st^lf-sustaiiiiiiont, opi-aspccts (ajj l) (�used

to imi)loiiioiit various oIIkm- f(，at un�s, such as plug-in incclianisHis and
. . . 、 乂.

appl icat ion cxUuisioiis. j 从

• End of chapter.

Chapter 9

Conclusions

This c.haplcr summm iz(，s t lie r(，s(�ar(:li iM(�s(”it"l in t his 1 licsis, (Icsci ibcs

it s cont ril)ul.i()iis, and (lis(.uss(�s fill lire work.

9.1 Summary

The aim of this i(�s(�ai.(h VVMS to iiit roducc t lie not ion of rcsonancc-

()ri(;iit(Kl s()fl.WFIR(； dosigii and (l(�v(:l(>i)ni()iit and to sliow t iiat, in (ninpar-

isoii wit h t raditional ()l)j(K:t-orient(h1 pm以am川 i i ig, concictc rc^soiiancc-

()ri(Uit(Hl a.i)pr(m(.h(�s allow i>mj;Tamm(�rs to <l(�al with software cvolntion

more df.(，(:t;iv(�ly.

A{'1(U- (l(�s(:ril)ing ti preliminary study aimed at pxploriiig how didr i -

01 it ix^asoiiiiig styl(，s of individuals from (liM.ci.riit cult ural back^rouiids

apply to the icalm of soft.vvarc (l(�vd()i)ni(� i it, t wo coiicrctc rcsoiiaiicc-

oriontcd approaches calhxl hm.in(my-(>i.i(，nt(，(l pi.ogimiiiuing and cpi-

asjXKtls w(T(� introduced.

T h e main idea Ix^hind limm(my-()i.i(�nt(Hl 丨) io职 immii ig is that |)i(�(.(�s

of a program always interact wit h tlicir ciiviroiiiiKMit a.s a whol(�MIK I

CHA PTER U. CONCL USK)NS 1 (i 1

usually not wit h otlior program parts (linn l ly. I laniioiiy-oricii lcd])i(>-

grainining (:1m.11(、叩(，s (�sl,al>lisli(�(l and widely ncccptcd objcct-oricnicd

pi im:ipl(，s, such as st rong nicapsulat i(m, iiiioriiiHt ion hiding, MIH I 'HIIKM -

it aiicc, and favors more fl(�xU>l(�and ah-hoc appi.om h(�s for st nict iirin^

and im|)l(�m(，nt.i叩 pro^rmns,

Epi-aspccl.s arc >i concn't r(�s(maiic(M>ri(�nt.(�(l arcliil cct urc l)ns('(l on

AS])(K t-oriented pmgraii imiug M IK I conscicnl ious soltwaic t hnt "ml ro-

(luces (�i>i-ajsi)(x:ts as a constnict for (:()inl)iiiin|； an " u t � p � i (� t 1 (- system

and applicat ions into sclf-susl aiiiiiig soft wan' hy lacilit Mt iiiji, f<�(�("Ki(.k

and rcsoiiMiicc.

D(�v(�loi>nu'nt (MivironiiKMit.s for hot li im>|>(>s(�d n|>|)r(Ki(.li(�s wwv iinplc-

iii(Mit.(Kl and used to evaluate n�s(>i…m.(MM.i(�iitr(l |)r<)^rMimiiiii^ 1 hrou^li

various stu(li(�s. As part of the studies， a third r(�soimn((�-ori(�nh、（l

apiMom.li, (:nll(Kl lianii(>iiy-(>ri(�iit‘(�(l (�i)i-a,s|)(�(.(.s, coinl)!!!!!!^ linriiiony-

ori(�iit.(;(l prograniinin^ and ('j)i-MS])(u ls was int roduccd and cvalufitcd.

T h (� s t u(li(\s sh()W(Ml t hat r(�s(>uan((�-ori(�iit.r(l sot'lware <lrvrl(>|>in(�i“（、n-

haiiccs faclors Mffoctiiig soft ware» ('volut ion, such as case of chan^^c. (�x-

(.(Misil)ility, iiiaiiilMinahility, and error r(�(:(>v(�iy，in (omparison to Irmli-

t.ioiial ()l)j(H:t.-()ri(Mil('(l prognuiiiiiiiig.

9.2 Contributions

111 addit ion to pmposiiig and va l idaU叩 n^sonancc-oricnU'd soil ware

(l(»sigii and (l(，v(，l()|)m(�iit ’ t his n^scarcli makes various coiit ribut ions.

9.2.1 Research Contributions
« 、

Tli is i(�s(，ar(:li mak(\s t.li(�following cont rihul ions t o soft wmic r i igi i i rr i ing

and prograiiiiiiing languages r(�s(，ardi:

CHAPTER 9. ̂ ^CONCLUSIONS 162

1. It illustrates a now way of prograniiiiing that rolax(\s encapsula-

tion and information hiding without increasing r.lio dcixuidencios

of program parts on awh other. In fact, direct <le])oiKieiK:i<>s h(、-

twoeii program parts are <kx:rca»sed.

(Harmony-oriented programming).

2. It proposes the first concrete ardiit(x:ture i)a»sc(i on the t.h<H>r(、t.i-

cal notion of consciontious software as envisioned hy Gahrk^l and

Goldman. (Epi-aiipocts).

3. It illustrates a concreto fUspoct-oricnUxl arc,hit(x:ture where a冲(x:ts

advise oil program parts written in two fundamentally (iifforent

programming languages. (Epi-a,specr.s).

4. It introduces a now kind of aspect that is ahlc to axivis(、on ar(、a»s

ill virtual spaccs. (Spatial oj)i-a.spocts).

5. It shows that cultural difforcnccs in reasoning can he applkul to

the arca.s of programming languages and software cii^iiieerin<^.

(Preliminary study and hariiiony-oricntod progTaininiiig).

9.2.2 Software Contributions

The major software contribution of this research is HOS, tiie hannony-

orientod runtime and development ciiviroiiiiient descrihod in diapt.(、i- 4.3.

• HOS is an open source projcct hosted on ScjueakSoiiixx^:

h-ttp: //www. squeaksource. com/hos. html .

， I t s cuiTonr. version provides visual support for harnioiiy-orieiir.eci

spaces and siiipp(化s, and non-visual supixirt for spatial (>pi-a.sp(x:t.s.

CHAPTER ！J. CONCLUSIONS KiiJ

9.3 Future Work

The work in this thesis can only 1>(、considcMcd 1 h(、first

st,(，i>s towards dciiiiiii^ and validat ing rcsoiKUicc-oriciit aiioii MS a solY-

W{ir(» (l(，v(、l(>i>m(、iit paradigm. Evon t hough Ui(、stu<li(、s i>i.(、s(、nt(Hl in

t his l.li(»sis provide strong (、vi(l(m(:(、in favor of r(、s(manr<、-oi in“.(、d sol't-

wm,(，(Ic^volopiiKUil, l licy c-.annot be considered as a <l(、tinit iv(、pi.ool,

that i.os<>iiaii(:(、-(>ri(、nt.(、（l software (l(、v(、l(>i)iii(、iit is I IKUHHI iiioic suilahl(、

for act ual s(.al(、soft ware' dcvclopiiiont, projocl.s t han t radit ional

(>hj(K:l.-(Mi(、nt(、(l prograniiniii^. H(、ii(<、，fiirtIHM" oxpcriiiKMital stu(li(、s arc

r(Hiuii(Hl to cvaluat(5 n、s(Mmii(.(、-(>ri(”it(、(l s(>i.t.war(、（l(、v(、l(>pin(、ut in tli(,

c(>ut (、xt. of loiig-runiiing indust rial soil ware (l(、v(、l()piii(、nt project s.

Aiiol fut uix、topic is Ui(，(l(\sî n of n、s(Mmu(:<、-ori(、nt(、(l laii^ua^cs and

c.oin^spoiHlin^ virtual machines, such ns n pure lmriii(my-(>ii(、iit.t、(l i>i<>-

graniiniiig huigufigc that (toiild ho us(、(l iust.(，a(l of Snuillt alk in lli(、HOS

runtiino and (l(、v(、l()pm(、iit. (uiviroiiiiuMit.. Addit ioiially, (、pi-as|>(、(.ts and

()l.li(M' software arcliitoct.uros using an aiitopoietk. part would l>(、ii(、fit

from (.(>ii(i.(，t() aut(>|>(>i(、ti(: progiaimiiing laiigua|;(\s, t hat " i r

(l(、sigm、d in a way to iimko it, diliiciilt for j)rc)}j,raimn(us to iiitrodiicc

l)ngs.

Additionally, llio iinpleiiiciitat.ions of (ho (k)v(、l(>i)m(、iit (MiviromiuMils

for the pi.op()s(、(l r(、s(>iiaii(:e-()ii(、iit(Ml approm.hrs arc st ill in an (、arly

stago. Esprdally tlio HOS (l(，v(、l(>pm(、ut. oiiviroiimoiit and its

for limiii(my-(>ri(mt.(Kl (ipi-asjx'cts r('(|uiros more work in both tlir virtual

iiiacliino and j^raphical us(、r iiitcn l'ac.c to IXMOI IK^ suit‘al>l(、for larg(、-s(al(、

projects and st.mlk、s.

• End of chapter.

Appendix A

A Semantics for HOS

This app<�ii(lix is an initial scnuiiit.ics for t lie ('xpcrinuMital version of

Mariii()iiy-()rieiil(Hl Siiiallt.filk (H O S) iiit io(lu(.<�(l in seel ion 1.3 locns-

ing on spm:(\s，siiii)p(�t.s，and didusioii of substaiiccs. In part iculrir t l ir

following paragiaplis (l(�s(.i.ibr t hr scnnaiit i('S Ibr th(� i iu^thods provided

by the spare and state (>l>j(�(.ts <l(!s(Tih(、（l s(�(:tion 1.3,2, vvliicli facili-

tate niaiiitciiancc of snipprt. slate M I K I iiilcMMclion l>(�t\v(�(�n snippets

and si)a((\s.

' r i i (� i io t .a l io i i used in 1 his appendix is iiispinnl by axioiiiMt ic sciiiaii-

tics, as (U^scrilxMl in [87], and us(\s th (� fo l low ing ibr mat lor defining

soniaiitics:

參 pnH'ondit ion 丨>l(K k.

• l lariiiony-OrunittKl Siiuilltalk stat(� immt (s).

• A result, l)l()(k.

T l i r prrcoiidition bloc-.k (l(�s(:i.il)(�s \ \w s t a t (� o f spacc, snipprts and sul)-

st,aii(x�s l>(�i,()i.c the H O S statoiiKMits arc (�x(�(.ut(�(l，and t l i (�result block

(i(\s(:ril)os tlio (、FFT、(.T tho HOS statements lmv(�. T1H» Ibllowing notations

ai,(�US(MI to (L(;nii(�t IK) st ate ot" spacc^s, snippet s and suhst au(.(�s:

‘ l(il

APPENDIX A. A SEMANTICS FOU IIOS 1()5

space (width, height)

snippet (posX, posY, limit, log)

state (posX, posY, type, value)

substance (originX, originY, area, data)

substance-particle (posX, posY, intensity, data)

Spar(、‘s ar(，（ldiii(、(l 1)y t heir widt li and IKM ^ I I I . Siiip|)(、t‘s arc (l(、fiur(l

hy th(、“. posit ion iusi(i(、Ihv spacr (posX and posY)，a limit value t luit

controls the niaxi i inun (ixlriid to which <\ substance carryiiig data pio-

(luccd 1)V th(» siii])pct is (HHuscmI, and t \iv coiitcMits of t Iumt associalcd

lof；. Stat(、s an、（l(，fiii(、(l by their position in th(、spm.c (which tlu、same

as Ui(、siiii>p(、f t,h(、y an、associatcnl with) , t.li(、ir typr, and th(、ir valu(、.

Thm、Mi(i two no!ions for (I d i n i叩 suhs(an((\s. Th<、first notation (Ir-

fiiios a sul)staii((' hy its origin, th(、siiif.M:(、ar(、a it (:(>V(TS，and th(、data it

(..allies. The SCHOIKI i iotaiioii , (UMIOIXHI as “substaii(T-part i(.lr”，（l(、fin(、s

tho intxuisity a sul)stan(;(、has at a given position in th(、s|>m.(、and its

(lat a. Th(、dat a of siihst ancos is drliiKnl as follows:

data := [taggedValues]

taggedValues := taggedValue I taggedValues, taggedValue

taggedValue := typeOrValue I typeOrValue ••_{•• tags "}••

typeOrValue := [a - z, A - Z, 0 - 9 , “]

tags := tags 丨 tag

tag := [a - z , A - Z , 0 - 9]

For oxaniplo, a possible^ dotinit ioii of a‘siibstmi(.(�’s data nii«z;ht look lik(� » «

this: - ...

data = ["Hello", 22, 50_{tagl, tag2}]

APPTCNDIX A. A SEMANTICS FOR II()S IGG

111 a(i(iiti()ii to the notat ions for spares, suipprts and siihstaiiccs, t h(�

s(niiaiit i(' (l(»s(ripl ions in t . l i (�panigi.aphs below u s (� t h v following ‘sp(�(.ial

tags:

• r i M E . Th is t ag (loiiotcs t h(�（ un.riit t iinc in iiiillis(�(.(>u(ls.

• I) F . Th is t A G doiiolrs M t'actoi- t hat cont rols how niiu li a sul)st M I ICC

cxtinids (Im.iiig (� a d i (iiffusion step.

A. l Semantics for Producing Data

Siiii>i)(�t. put t ing an object into t l i (�s!…cc for t h (� H i s t t i i i ir:

Precondition:[
snippet (posX = x, posY = y, limit = 1, log = [])
substance (

originX = x,
originY = y,
area = 0,
data = []

)
t = TIME

space put: object.

Result:[
s u b s t a n c e (

originX = x, originY = y,
area = max(l, (TIME - t) DF)) n
data = [object]

)

APPENDIX A. A SEMANTICS FOU IIOS 1()5

Siiip])ot put t ing M tagg(Hl ohjcH-t. into t ho spa(‘ (� \v1k� i i sul)st.an((» has

alroady r(*adi(�(l niaxii ini in diffusioii:

Precondition:[
snippet (posX = x, posY = y, limit = 1, log = [])
substance (

originX = x, originY = y,
area = / TT ' 2, *
data = [10, 20, 30]

)

] » .

space put: 'Sebastian， tag:'Name'.

Result:[
substance(

originX = x, originY = y,
area = / 7r^2,

. d a t a = [10, 20, 30, "Sebastian".{Name}]
) ，

]

A.2 Semantics for Consuming Data

Siiippot cousiiiiiiiig on<�ol>j(�‘:t of t yp (�Strh i f f w i th t l i < � t a g Name

P r e c o n d i t i o n : [‘、
snippet (posX = 5, posY
substance-particle(

posX = 5, ,,
posY = 5
intensity = 0.5,
data = ['Sebastian',

) -

]

5, limit = 1，log = [])

‘Tilman，_{Name}, 'Stefan']

APPENDIX A. A SEMANTICS FOU IIOS

description := DataDescription new
type: String;
addTag:’Name‘；

name := space consume: description.

Result:[
substaiice-particle (

posX = 5, posY = 5, intensity = 0.5
data = ['Sebastian', 'Stefan']

) .

1()5

Snippet (X)iisiiiniiig one object of tyj)o Stiing wlioii siibsl aiic(^ carryiiij:;

ii iatchiiig (lata does not roach snippet:

Precondition:[
snippet (

posX = 5, posY = 5,
limit = 1,
log = []

)
substance-particle(

posX = 5, posY = 5,
intensity = 0.5,
data = ['Sebastian'

)
]

Tilman，_{Name}, 'Stefan

name space consume: String.

Result:[
substance-particle(

posX = 5, posY = 5, intensity = 0.5,
data = [‘Sebastian,, 'Tilman'_{Name}, 'Stefan']

) 、

APPENDIX A. A SEMANTICS FOU IIOS 1()5

Snippet consuming one ()hj(，(:t of typ(、Str i ju j wlion t wo suhstaii(.(、s chi-

ryiiig 111 a telling data ar(、available:

Precondition:[
snippet (

posX = 5,
posY = 5,
limit = 1,
log = •

)
substance-particle(

posX = 5,
posY = 5,
intensity = 0.5,

data = [(Sebastian，，'Tilman'_{Naine}, 'Stefan']

)
substance-particle(

posX = 5,
posY = 5,
intensity = 0.83,
data = ['Gabi', (Wolfgang，]

)

]

name := space consume: String.

Result:[
substance-particle(

posX = 5,
posY = 5,
intensity = 0.5,
data = ['Sebastian", 'Tilman'.{Name}, 'Stefan']

)
substance-particle(

posX = 5,
posY = 5,
intensity = 0.83,
data = Wolfgang，]

)

APPENDIX A. A SEMANTICS FOR HOS ‘ 170

Snippet coiisuiiiiiig all ()hj(、(:ts of type Nunibar when two substances

(tarrying inatcliing data ar(、available:

Precondition:[
snippet (

posX = 5, posY = 5,
limit = 1, log = []

)
substance-particle(

posX = 5, posY = 5，
intensity = 0.5,
data = [10, 30, 50]

)
substance-particle(

posX = 5, posY = 5,
intensity = 0.83，
data = [20, 40, 60]

)

]

space consume: Number do:[:numI
log show: num asString.

Result:[
snippet (

log = [20, 40, 60]

)
substance-particle(

posX = 5, posY = 5,
intensity = 0.5,
data = [10, 30, 50]

)
substance-particle(

posX = 5， posY = 5,

intensity = 0.83,

data = []

)

(

APPENDIX A. A SEMANTICS FOR HOS ‘ 171

Snippet, coiisiiiniiig all olejects of tyi)o Ninnhcr whose value is l(、ss than

six:

Preconditiion:[
snippet (

posX = 5,
posY = 5,
limit * 1,

“ log = •
)

substance-particle(
posX = 5,
posY = 5,
intensity = 0.5,
data = [1, 2, 3, 4, 5, 6, 7, 8]

«

description := DataDescription new
type: Number；
constraint:[:valI val < 6].

space consume: description do: [:nm
log show: num asString.

Result:[

snippet (
log = [1’ 2, 3, 4, 5]

)
substance-particle(

posX = 5,
posY = 5,
intensity = 0.5,
data = [6, 7, 8]

)
]

APPENDIX A. A SEMANTICS FOU IIOS 1()5

A.3 Semantics for Observing Data

Snippet observing all OBJCH TS ol type Niiinhcr wliusr VH IUC is less t.haii

six:

Precondition:[
snippet (

posX = 5,
posY = 5,
limit = 1

)
substance-particle(

posX = 5,
posY = 5,
intensity = 0.5,
data = [1, 2, 3, 4, 5, 6, 7, 8]

)

description := DataDescription new
type: Number;

constraint:[:valI val < 6].

space observe: description do: [:niim|
log show: num asString.

].

Result:[
snippet (

log = [1’ 2, 3, 4, 5]

)
substance-particle(

posX = 5,
posY = 5,
intensity = 0.5,
data = [1, 2, 3, 4, 5, 6, 7, 8]

APPENDIX A. A SEMANTICS FOU IIOS 1()5 1

M Ml M M II i| I MM M M I I >1 ‘

Snippet observing ail objects:

Precondition:C

I "••丨 u ,
snipper (

posX
M M

log =

Y
 s

o

p

#
>

5
]

I
 I„_

5, limit = 1,

HI III

,，》• ‘ I ‘ ' I » » r T * t i l t I ‘ •

subsrance-parcicle(

posX = 5,

posY = 5,

intensity = 0.5,…

daT:a = ['SebasT^ian', 'Tilian'一{JJaie}，'Sxefan-
• • • M I • till II • I I I _ . , •丨 I ,

subszance-parzi cie(

Rpsx = 5,

posY = 5,

intensity = 0.83,
I • ly ‘ ‘ • I • I • ‘ - i I ‘ • h • H 1 1 >

da-ca = ['Gabi), 'Wolfgang']

• i I) I I I I f I 1 I 1 I < I * ' (! I ‘ • I

space observe: [: sicr

log show: str.

Restil-c:[

snippet (
••III,

log = LGabi, Wolfgang, • , I …• •-… • ‘ •……,‘’•，，丨 ‘"|

Sebastian, Tilman, Sicefan"
» • 1 I * I r ^ I « r t • I I ' 1 I - I I I ‘

subs-cance-pazxicle (

posX = 5, posY = 5,
* H • H11 1 ' • ’ * ', ‘

inxensii^y = 0.5,

data = ['Sebastian'

‘Tilman'_{Name}, 'Stefan']

substance-particle(
• " … * MMM I

posX = 5, posY 二 5,

intensity = 0.83,
MP

<ia"ca 'Wolfgang'

........
 .1

-A

APPENDIX A. A SEMANTICS FOU IIOS 1()5

A.4 Semantics for Snippet State

Siiipp(?t cliaii^iiig the t,yi>(�of its striic to N u m h . r MIKI scl 1 inji, its value

to s(，v(m:
J

^^recondition:[
snippet (

posX 二 10,
posY = 10,
limit = 1, log = []

、
)

substance (
originX = 10, originY = 1 0 ,
area = 0, data = •

)
state(

posX = 10, posY = 10,

type = ？, value = ？
)
)

t = TIME

]

state type: Number
state value: 7.

Result:[,
state(

posX = 10,
posY = 10,
type = Number,

value = 7

)

substance(
originX = 10, originY = 1 0 ,
area = max(l, (TIME - t) DF)) TT
data = [7]

)

]

APPENDIX A. A SEMANTICS FOR IIOS 7rj

SnippcM changing t.h(，tyjx' of its s h “ . (� t o OnlcTcdXUdlcctto11 and adding

VM IUCS:

Precondition:[
snippet (

posX = 10, posY = 10,
limit = 1, log = •

)
substance (

originX = 10, originY = 10
area = 0, data = []

state(
posX 10, posY = 10
type = ？, value = ？

= T I M E

OrderedCollection
‘Hello,;

‘Harmony-Oriented‘
'World'.

state type
state add

add
add

Result:[

state(
posX = 10, posY = 10,
type = OrderedCollection,
value = ['Hello', 'Harmony-Oriented', ‘World']

)
substance(

originX = 10, originY = 10,

area = max(l, (TIME - t) DF)) 7r'2,

data = ['Hello', 'Harmony-Oriented', 'World']

• End of chapter.

Appendix B

Common Observations

Table B . l provides the results of tho aiuilysis of ohscu'vations rccoix 1(̂ (1

(luring the proliniiiiary study on how Nishert's fiii(liii<>s r(̂ «;ar(iiiij2； diffor-

ciit reasoning stylos of iiKlivkluals from difFcrenr. cultural ba(:kj»T(>uii(ls

apply to the realm of softwares (icvdopmcnt (soction 3). It shows which

category the respoiisas fit. under, and some ohsorvations fit. into iiiul-

tiplo categories. The total nuinhor of counts the in<livi<hial

responses from all categories; the same respondent, may haw m.uuxxl

more than one response for a particular observation. The mmih(T of

individual rosi)()nd(nir.s who rq>(>it(xi an obscrvat.ioii is shown in panni-

tlu\se.s iiiuicT Total Nw/iibc/n

1 7 (5

APPENDIX B, COMMON OBSERVATIONS

UiMiiurk Total C \»iit«*xf ：
K"v

(！Ollt.fXl ：
III)

(；nnl«>xl:
()1)S i{*)l«>

1{<,1:
Shoil

l“、l:
I'O'iK

l'n//l«Mn'l

Kmpiy soutH，
but 丨MM>ph、arc
wailinjir

(i (r,) 2:1 1:5，
2:1, 2:(),
(i:r>, H:8,
11:11

Bml m"t li<T G (5) 2:8, ；{：：{ •2:8,

(»:；<,

7:12.
1 1:1

Ma" "iml>l(，lo
附

G (1) 3:1"，
1:3, 7:3

1:1 ；»: 1 1 .
1:10

MisphuHHl
(•<>uk

(.1) (i:l 1

“:10,
7:15

.Mr,, 7:1(1

l“》ukiiig Hi lUv
piiiun playor

t ⑶ ：{：：,.

1:12.
7:2.
7:7

Tahlrs iiiuir-
COUIIUMI for

3 (：<) \

\
•2:2,(>:(>. 2:2

Slmiiĵ t* Inhlo 3 (3) > 1:2. -AAA.
«): 1

Mail "hVoiu
iUv nort li poir"

3 (；<) (i; 12.
7:1 1

1:1

P(H)|)h' art*
(iriiikiiiii；, iu)l
mliiig

⑶ 2:1, S:l,
！):；{

Busy \v“rk(、rH 3 (2) S:(i 1:18
IMaU^ will fall •2 (2) ()：!,

1 1:1
11:1 11:1

(>yi"K vhvf •2 (2) 2:7. 1 l.i
StmnK(，piH m.(， •2 (2) 1:3 S:l()
"ark H'stHU-
raiit

2 ⑵ (i:7

Sml pianist •2⑵ (»:«

1 1:2
IVopl(» outsUIr 2(2) (»:!：{ H:2
Man iiii(l(M* Ui-
1山、

•2 (2) t:l 1,
7:«)

7:H

C Uikv coming* •2⑵ 3:1 1,
i:ir)

Tal> l (�n. l : Common Observations

• End of chaptcr.

Appendix C

Original G M A Database

Design

F、î ;ui.(、s C. 1 and C. 1 show 1 he oi.ifi^iiial database' design of t lie CJMA

order and iiivcMilory inana|!,(MiuMil systoiii. T h e figures show mii (miI ity-

rolat ionsliip m m i d with G(uiiiaii IM IX' IS . Kv(m TH (M I ; h ol>j(、(‘t-ORIR"TR(l

prograiniii i i i^ was used for iinpUMiuMitiiig Ui(、applications, tli(、initi;il

(l(*si^i;iis w(u,(、(la(.al)as('-c.(Mit l ie. In thr init ial versions appl in i l i(m, t licrc

wa,s no direct iiuippiiig hotwocii ()l)j(»(ts and tlir tal)l('s ol t\w (latMl)MS(\

M()W(^vor, ill lal(M' vcMsioiis ol>j(�(.ts r(�i)i.(�s(�i“ iiig 1 lie (�iitii.r a|)|)li(-<it ion

1110(1(̂1 vv(M(' introduced and niapiKul to t h(、tabk̂ s in t hv (latal)as(\

Figim、C.l shows Ui(、left part of t ho cut it.y rdat ioiishi]) iiiodd. Tli(、

main riititirs drliiird in this part ai(，Bucli (book), Kmidc ((.ustonirr),

Auffr<i(j (onUn), Wan nfj'ntppc (catc^^ory), Il(scivicrunfjcn (rrs(、i.vat i(ms),

and Vonticrkmifjcn (holds).

Figuro C.2 shows tho right imrl of tlio entity rolatiousiiip in(>(l(、l. Tl“、

main out it ics (lofiiiod in t his part an、Laf/crorf (.storag(、local ion), A u-

Umii (anthois), Vcrlag (puhlislu^r), Aiisprcrlrpartnef (contact p(、i.‘s(m),

AdrTcxIuw (contact iiilbrinatioii), mid V.IJistorij ((l(、liv(Ty history of

l)iil)lislKMs). .--

� . 178

APPENDIX a ORIGINAL GMA DATABASE DESIGN 79

Resofviefung

Reseivteffungen

-M ID (FK)

Res ID (FK)
LO ID (FK)
ISBN (FK)

Vofmerkung
Vormofk 丨0 <FK>
LO ID (FK)
ISBN (FK)

VofmefKunflon PiCklislO

-M
VoriTiork

Vormefkung Buch
VormerV ID (FK)
ISBN (FK)

ISBN (FK)
Auf NR (FK)
Preis
Aaeahl
Uelormengo
Rochnungsmongo
WertXJkennzetcbon

—

Rabati
TGJJ
PrWision

LO 10 (FK)
ISBN (FK)
Auf NR (FK)

Tilol
Untortitoi

nag ID fm I

fausget>
Jband

Erjahr
I Formal
I Gowictit

Wafonflfuppe
Gru Nr
Bozotĉnung

Warengruppe
ISBN (FK)
Qru Nr (FK)

Kundo ID 0
Bezotchnung
Vers ID (FK)
Adr ID (FK)
BLZ<FK)
Konlo, Nr
Verueior ID (FK)
ZZ ID (FK)
VSB KdNr

.—
, — —

^ — —

Bezotchnung
Vers ID (FK)
Adr ID (FK)
BLZ<FK)
Konlo, Nr
Verueior ID (FK)
ZZ ID (FK)
VSB KdNr
VerKohrs Nr
UST
KûRat)att
Worbesporro

知 一 —

LtofGfSporro
t>ag
bag limit
bag skonto AufKleber Txt
EU
Ausland

0——‘

Vertroief ID
Bozoichnunq
Adf 10 (FK) BL2 (FK)
Konto Nr

Figure C . l : Orij^iiial G M A Dal abase Design (Lcii Part)

)

ID (FK)

y Histofy
HNr

Venag ID (FK)
av Menge
gel. Mengo
Ltel Koslen
Rech Summo
Zahlung

V Ansprechparln̂

to (FK)
lag ID (FK)

AdrTdFax
' I

片
Firma
Name
StrassoNr

ISBN (FK)
Autor ID (FK
CoAulOf

LKZ

Ansiwchpaftner

Vomame
GoscWochl

Qoburtstag
Wethna
Momo

-O

Ansprechpatlnef

xle ID (FK)
.•D(FK)

、igur(、C.2: ()rif;iual C M A Datahiusc Di\sign (L(、f‘t Right)

APPENDIX a ORIGINAL CM A DATABASE DESIGN 180

• End of chapter.

f
i
l
l
s
 I
 Vi

Bibliography

D. Aloiii. Cooperative liimx. In Proceedings of the Liiivx Syrnpo-
simn, vohnno 1. })ag(^s 23 31, 2004.

2] Aristotk、. Physics. 350 BCE：

3] J . Armstrong. Pivgiuimrmig Erlang: Software for a Concmrmi
World. Pragmatic. Bookshelf. 2007.

4] K. Asaiiovic., R . Bodik, B. C. Ca ta i J I ro . .] . .】.Goh is . P. H\is-

baiids. K. Kcutzcr, D. A. Patterson. W . L. Plishker. J . Slialf,

S. W . Wil l iams, and K. A. Yclick. The landscape of parallel

(•-omputiiig rcscarc'h: A view from berkclcy. Tcxthiiical report.

University of California at Berkeley, 2006.
» ‘

5] P. Avgiistinov. A. S. Christcnson, L. H(、iidix、n. S. Kuziiis.

J . Lliotak, O . Lhotak, O . de Moor, D. Scr(、ni, G . Sittaiiipalaiii,

and J . Tibbie, abc. : An extensible aspcctj compiler. In Proccc.d-
mgs of the Eleventh IntcTv.ational Confcivitcc on Tools and AUjo-
mtfnm for the covj<1/niction and analysis of systcrn^s (TACAS'05).
volume 3440 of LNCS�pages 293-334. Springer-Vcrlag, 2000.

6] E. Baniassad and S. Fleissnor. The gcx>grapliy of programming. In

OOI^SLA 2006: Companion to the 21st annual A CM SIGPLAN
conference on Objcct-oriented progmnmimg. sysUmts. languages,
and applicatiorLs, pages 560- 573. A C M Press, 200(5.

A. P. Black, S. Ductassc. O . Nicrstrasz, D. Pollct, D. Cassou, and

M. Dcnkc]^. Squeak by Example. Square Bracket Publishing. 2008.

"[8] G. S. Blair, G . CouLsoii, aud P. Grace. Rcsearc-.h dirtx-.tioiis in

roficctiv<> middleware:、the laiicastor cxpGriciico. In ARM '04：

Pjvcecdmgs of the 3rd workshop on Adaptive and refl.e.c.twe m.id-
dlewarx'., pages 262-267, New Yori^ NY , USA, 2004. A C M Press.

9 __ . • •

G. Boo<'h.' Objeci-Ori.ented Analysis and Design wifh Applica-
tions. Addison-Weslcv Professional. 2 edition. 1993.

181

BIBLIOGRAPHY 182

10] I. Bratko. Prolog Prograniinriig for
Addison-Wesley, 1990. “ •

Artificial Intelligence^

l l j A. Brown. A Recovery-Oiiented Ap-proacli to Dependahla^ Ser-
, vices: Repairing Past Errors with,System- Wid(i Undo. P h D r lie-

sis, University of California, Berkeley, 2003. .

12

13

F. Cesarini and S.' Thompson.

Media, Inc., 2009.

Erlang Prograninitng. O'Reil ly

F. Chen and G. Roiju. Mop: Reliable software dcvelophienr using

abstract aspects. Technical Report UIUCDCS-R-2006-2776. Do-

-‘parrment of Computer Science. University of Illinois ar Urhana-

Champaigi i , 2006. •

14] F. Chen and G. Ro§u. Towards moniroriiig-orieiitcd prograiii-

ining: A paradigm combining specification and iinplemeiiraTion.

Ill Workshop on Runtime Verification (RV'03), volume 89(2) of

ENTC67\ya^es 108 - 127, 2003.

15] F. Chen and G. Ro§u. Java-mop: A inoniToring orienred p i . (、

graniriiing environment for Java. In Proceedings of the Ekrenth
International Conference on Tools and Algorithms for the con-
struction and analysis of systems (TACAS'Oo), volume 3440 of

LNCS, pages 546- 550. Springer-Verlag, 2005.

16] O . Ciupke. Automat ic detection of design problems in object-

.oriented reengineeriiig. In TOOLS ,99: Proceedings of the.
Technology of Object-Oriented Languages and System.�pa^e 18.

Washington, DC , USA, 1999. I EEE Compurer.Sociery.

17] A. Cromer. Uncommon Sense: The Heretical Nature of Science.
Oxford University Press, Xew York, 1993.

18] S. Ducasse. Squeak: Learn Progranwrmg with Robots. A press.

“ 2005. ‘

19] J . Edwards. Example centric programming. In OOPSLA '04：

Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applica-
tions, pages 124-124, New York, XY，USA:2004. ACM .

• « ^

20] J . Edwards. Subtext: uncovering the simplicity of programming.

In OOPSLA ,05: Proceedings of the 20th annual ACM SIGPLAN
conference on Object oiiented programming, systems, languages,

”and applications, pages 505-518, Xew York, X Y , USA, 2005.

A C M Press.

V

BIBLIOGRAPHY 183

21] J . Edwards. Xo ifs, ands. or buts： uncovering rhe simplicity of

conditionals. SIGPLAN Not” 42(10):639-658. 2007.

22] J . Edwards. Coherent reaction. .2009.

23] F. Eliassen, E. Gjorven, V. S. \V. Eido. and J. A. Michaelsoii.

Evolving self-adaptive services using planning-based reflect ive

middleware. In ARM ,06: Proceedings of the 5th workshop on
Adaptive and reflective middleware (ARM '06). page 1. Xew

York, NY , USA/2006. A C M Press.

24] M. Engel and B. Freisleben. Supporting autonomic compiiTing

functionality via dynamic operating system kernel aspects. In

A OSD '05; Proceedings of the 4 th international conference on
Aspect-oriented software development pages 51 62. Xew York.

X Y , USA, 2005. A C M Press. ‘ .

25] R . Engelinore. Blackboard Systein-a. Addison-Wesley, 1988.

、 .
2G] R . Fernando. GPU Geni^: Programming Techniques, Tips, and

Tricks for Real- Time Graphics. Addison-W esle^y2004.

27] R. Fernando aiid M: J . Kilgard. Tlut Cg Tutorial Addison-

Wesley, Xew York； 2003. ‘

28 A. Fjiik. Co'inprehensiue Object-Oriented Learning: The
Learner，a Perspective. Informing Science, 2006.

29].S. Fleissner and E. Baniassad. A coininensalisric software sys-

tem.'^ In OOPSLA 2006: Compar^on to the 21 at‘ annual ACM
SIGPLAN conference on Object-oriented programming, systcma.
languages, and applications, pages 510-520. A C M Press,- 2006.

30

31

32

S. Fleissner and E. Baniassad; Epi-aspecrs: aspect-oriented con-

scientious software. In OOPSLA '01: Proceedings of the 22nd
annual ACM SIGPLAN conference on Object oriented program-
ming systems and applications, pages 659-674. A C M Press. 2007.

S. Fleissner and E. Baniassad. Towards harmony-orienred p r o

graniining. In OOPSLA '08: Companion to the 23rd ACM SIG-
PLAN Conference on Object- Oriented Programming, Systems.
Languages, and Applications, pages 819-822. A C M Press, 2008.

S. Fleissner and E. Baniassad. Harmony-oriented programming

and software evolution. In OOPSLA '09: Companion to the 24th
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. A C M Press. 2009.

BIBLIOGRAPHY � � 184

33

34

S. Fleissner and E. Baniassad. Hannony-orieiiTed SmallTalk. In

OOPSLA W: Companion to the 24th ACM SIGPLAN Confer-
ence on Object-Oriented Programming. Systems. Languages, and
Applications. ACXf Press, 2009.

X I Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

35] Y . L. Fung. A Short History Of Chinese Philosophy. Simon and

Schuster Inc., 1997.

36] R . P. Gabriel and R. Goldman. ConscieiiTious software. In OOP-
SLA '06: Proceedings of the 21st annual ACM SIGPLAN con-
ference on Object-oriented progininming systems, languages, and
applications, pages 433-450. Xew York. NY . USA. 2006. A C M

Press. ‘

[37] E. Gamma , R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object- Oriented Software. Addison

Wesley Professional Comput ing Series. Addison Wesley. 1995.

littp://ww^v.aw.coin. ‘ • •

38] D. Garlan，S.-W. Cheng, A.-C. Huang.； B. Schinerl and

P. Steenkiste. Rainbow: Architecture-based self-adaprarion wirh

reusable iiifrastrucrure. Computer, 37(10):46-54, 2004.

39] P. Grace, G. Coiilson, G. S. Blair, and B. Porrer. A distributed

archirecture meta-inodel for self-managed middleware. In ARM
'06: Proceedings of the 5th workshop on Adaptive and reflective
middleware (ARM，06), page 3, Xew York, X Y , USA. 2006. A C M

Press.

40] P. Greenwood and L. Blair. Using dynamic aop to implemeiir an

autonomic system. In Proceedings of the 2004 Dynamic Aspects
Worksh'op (DAWO4), Lancaster, pages 76-88. R ICAS . March

2006. •

41] P. H. Gries and K. Peng. Culture clash? apologies east and west.

Journal of Contemporary China, 11 (30): 173-178. 2002.

42] M. J . Giizdial. Squeak: Object-Oriented Design with Multimedia
Applications. Prentice Hall，2000. , •

43] E. Hamilton. The Greek Way. Avon, 1973.

44] C. Hansen. Language and Logic in Ancient China. University of

Michigan Press, 1983.

BIBLIOGRAPHY � � 185

45] M. J . Harris, G. Cooinbe. T. Scheiierniaiin. and A. Las-

tra. Physicallv-based visual simulation oii graphics hardware.

In HWWS ’ok: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware, pages 109--118.

Aire-la-Ville, Switzerland,. Switzerland, 2002. Eiiroj>Taphics As-

sociation. '

46] T. Hogg. Coordinating microscopic robots in viscous fluids. .4"-

tonomoiLS Agents and Multi-Agent Systems. 14{3):271-3()5, QOOT.
r •

47], J. Hunt. Blackboard Architectures. J ay Dee Technology Ltd.. 2002.

AS] M. Iniai and D. Geiitner. A cross-linguistic study of early word

meaning: Universal onrology and linguistic influence. Cognition.
62(2):1G9 200, 1997.

49] Y . Jiang, J. Jiang, and T. Ishida. Agent cooixiinarioii by rrade-off

berweeii locally diffusion effects and socially structural infiiiences.

In A AM AS '07: Proceedings of the 6th internatioiial jomt conjer-
ence on Autonomous agents and multiage/nt ^^ystejiis, pages 1 3.

New York, X Y , USA, 2007. ACM. .

50] G. Johnson and R. Jennings. Lab VIEW Graphical Progranrming.
McGraw-Hill Professional. 4 edition, '2006.

51 P. Joiisson. The anatomy - an iiistruiuent for inanaging sofr-

vvare evolution and evolvability. In Second International IEEE
Workshop on Software Evolvability�pages 31- 37. IEEE, 2006.

；52] F. Jullien and B. McMiill in. FRJ ' s Simple Auropoiesis Program,

1995. Program source in Pascal, for MS-DOS platform.

53] H. Kagdi and J. Maletic. Software-change prediction: Esti-

mated十actual* In Second International IEEE Workshop on Soft-
ware Evolvability, pages 38-43. IEEE , 2006.

54] J . O. Kephaxr. aiid D. M. Chess. The vision of auronomic- com-

puting. Com-puter, 36(l):41-50, January 2003.

55] J . Kessenich. The OpenGL Shading Language. The Khronos

Group, 2008.

56] -G. Kiczales, E. Hilsdale, J . Huguniii, M. Kersten, J . Palm, and

W . Griswold. Getting started with aspectj. Communcatioris of
the ACM, 44(10):59--65, 200L

:57j G. Kiczales, J . Lamping, A. Meiihdhekar, C. Maeda, C. Lopes,

J.-M. Loingtier, and J. Irwin. Aspect-orienred programming. In

BIBLIOGRAPHY � � 186

M. Ak§it and S. \Iatsiioka, editors. Proceedings European Confer-
ence on Object-Oriented Programmi'ng, volume 1241, pages 220

242, Berlin, Heidelberg, and New York. 1997. Springer-Verlag.

58 J. Laiiier. Why gordian software has convinced nie to believe in

the reality of cats and apples. Edge. 128. Xoveniber 2003.

59] C. Liu. Smalltalk, Objects, and Design. I Universe, 2()()().

60] C. R. Liu, C. Gibbs, and Y . Coady. Safe and sound evolution wirh

sonar. Transactions on A spect- Oriented Software Development
4:163-190, 2007.

61] M. D. Lubars. Code reusability in the large versus erode reusabil-

“ ity in the small. SIGSOFT Softw. Eng. Notes, 11(1):21 28, 1986.

62] M. R. Lyu, editor. Handbook of Software Reliability Engineering.
IEEE Computer Society Press, 1996.

63] R. Maia, R. Cerqueira, and F. Kon. A middleware for experi-

mentation on dynamic adaptation. In ARM '05: Proceedings of
the 4 th workshop on Reflective and adaptive middleware systems.
New York, X Y , USA, 2005. A C M Press. _

64] J. Maloiiey. An Introduction to Morphia: The Squeak User hi-
« terface Framework. \Valr Disney Iinagineering. 2000.

65] A. Martelli, A. Ravenscrroft, and D. Ascher. Python Cookbook.
O'Reilly Media, 2 edition, 2005. .

66] B. McMull in. Computational autopoiesis: The original algo-

rithm. Working Paper 97-01-001, Santa Fc Insriture, Santa Fe,

NM 87501, USA, Jan. 1997.
»

67] B. McMul l in and F. J . Varela. Rediscovering compurarional

autopoiesis. In Foui-th European Conference on AHificial Life.
(ECAL'97), pages 38-47，1997.

68

69

.70

J . Mingers and B. McMull in. JM's Simple Autopoiesis Program,

1997. Program source in Pascal, for MS-DOS plarforin.

R. Mordani, editor. Common Annotations for the Java Platform：

Sun Microsystems, Inc, 2006.

M. W . Morris and K. Peng. Culture and cause: American and

Chinese attributions for social and physical events. Journal of
Personality and Social Psychology, 67(6):949-971, 1994.

71] R . Murch. Autonomic Computing. I BM Press, March 2004.

BIBLIOGRAPHY � � 187

一.
72] C. L. Nchaiiiv..]. Hewitt. B. Christiaiison. and P.,Wcriii(tk. What

software evolution and biological evolution don't havr in coniriioii.

In Second InteinMional IEEE Workshxrp on SoffAnani Evolrabil-
ity. I EEE Computer Sodety. 2006.

73] R. E. Xisbett. The Geography of Thought Froo Press. 2003.

74} J . Noble and R. Biddlc. Notes^ on notes on postmodern pro-

gramming: radio edit. In 00 PS LA '04： Conipanimi to the lOih
anrmal ACM SIGPLAN conference on Object-mi.cjitcd pTogram-
Triing .systems, languages, and applicafAoJis. pag(、s 112 115. Now

York. NY . USA. 2004". ACM Press.

75] D. Patterson. A. Brown. P. Broad well. G. Candca. M. Clioii,

J. Cutler. P. Enriciuez. A. Fox. .E. Kiciniari. M. Merzbachor.

D. Oppcnhciiiior. X. Sastry. W . TctzlafF. J. Traupinaii. and

N. Trcuhaft. Recovery oriented computing (roc): Motivation,

dofinition. techiiiciucs.. Techiiic:al report. B(、rkrlc\v. CA. USA.

2002. •.二 卜、

76] D. J . Pearco and J. Noblo. Relationship aspects.- In fJie A CM
confcTencc op, A sped- Oriented Soffira-re Development (A OSD '00)
(to appear), 2006. :•、..

- - .

K. Peng. D. R. Ames, and E. D. Kiiowles. Culture and Hum(m
Inference: Perspectives from Three. TiuditioJis. ()xibr(l University

Press. 2000. “

78

80

81

S. Rank. Architectural reflection for software ovohitioii. In 2nd
EC OOP Workshoj) on Reflection. AOP arid Me.ta-Data for Soft,-
ware Evolution, 2005.

79] A. Rasche. W . Schult. and A. Poize. Self-adaptive iiiultithrcadccl

applications: a case for dynamic aspcct weaving. In ARM '05:
Proceedings of the 仲.workshop on Reflective and adaptive mid-
dleware systems. New York. NY . USA. 2005. A C M Press.

A. Repenning. Collaborative diffusion: programming antiobjects.

In OOPSLA '06: Companion to the 21st ACM SIGPLAN con-
ference on Object-oriented programming systerm, languages, and
applications, pages 574-585. New York. NY . USA. 2006. ACM.

A. Repenning. Excuse me, i need better ai! employing collabora-

tive diffusion to make game ai child's play. In Proceedings of the
ACM SIGGRAPH Video Game Symposium. A C M Press. 2006.

82] M. Rinard, C. Cadar. and H. H. Nguyen. Exploring the ac-

ceptability envelope. In OOPSLA '05: Corn.panion to the 20th

BIBLIOGRAPHY � � 188

\an7iual ACM SIGPLAN confc.mncc, mi Object-oiicmtrd protjimfi-
ming. systcrn.s. languages, and applicatioTLs. pages 21 30, Nrw .

York. NY . USA. 2005. A C M Press.

83] M. A. S. Sallcrn and F. J. <la. Silva o Silva. Adapta: a framework

for dynamic reconfiguration of distributed appli(:ati()iis. In ARM
'06: PTOcecdings of the 5th woTkshop on Adaptive, and ivflectivc
middleware (ARM '00'). page 10. Xcnv York. NY. USA. 2006.

ACM Pn^ss. .
• .

84] Y . Shohani. Agont-oriciitod programming. Technical report.

Computer S(:ieii(:(、Department. Stanford University. Stanford.

1990.

85] Y. Shohani. Agont-orioiitcd prograiiiiriiiig. Aiiificial Intcdliqcncc.
60(l):51-92. 1993. ‘

86] B. Simpson, editor. Hsqldb User Guide. Th(、HSQLDB Dovck)i>

iiiont Group, 2007.

87] K. Sloniiogor. Foiyrial Syntoj： and Semantics of PTOfprnimmuj
Languages: A Laboratory Based Approach. Addison-Woslcv.

1995."‘ ‘

88

8 9 ；

90

R. B. Smith, J. Maloiicy, and D. Ungar. The solf-4.() user in-

terface: niaiiifostiiig a system-wide vision of coiicrotonoss. iiiii-

formity. and flexibility. In OOPSLA '95: Proceedings of the
tenth annual conferrmcc on Objcct-oiidnted pTogjumining systems,
languages, and applications, pages 47-60. Now York. XY . USA.

1995. ACM. \

L. Sterling and E. Shapiro. The AH of Pivlog. Second Edition:
Advanced Programming Techniques. M IT Press. 1994.

D. Thomas, C. Fowlor, and A. Hunt. PTogimrmiing Ruby: The
Pragmatic Programmers ‘ Guide. Pragmatic Bookshelf. 2 edition.

2004. . ‘

91] K. C. Tsui and J. Liu. Multiagent diffusion and distributed opti-

mization. In AAMAS '03: Proceedings of the second intem.ational
joint conference on Autonowmis agents and multiagent systerm.
pages 169 -176. New York. NY , USA. 2003. A C M . “ ‘

92] Unknown. Tutorial 3: A 5-stcp guideline for objcctt-oricntcxl

design. http:/ /www. universia.com. br / mi t /1 / lOO/PDF/slides-

3.pdf. 、-

c

•卞

BIBLIOGRAPHY � � 189

93] Unknown.' Apachc XML-R^p API. The Apacho Software Foun-

dation, 2001 •

94] Unknown. Sun Vi.HualBox User Manual. Sun Mi(:r()svst(、ius,

•2009.

95] F. J . Vareia. H. R. Maturana. and R. Uribe. Autopoiesis: Th(、

organization of living systems, its characterization and a model.

BioSysteWrS. 5:187-196. 1974. -

96] S. Vinoski. Chain of responsibility. IEEE Inicjiicd Cornpidiufj.
6(6):8() 83, 2002. •‘

97] W . W . Wadgc and E. A. Ashcroft. Lucid, the. Dataflow PTocpmn-
w.ing Languag. Acadcinic Press. 1S986.

98] B. Ward. The Book of VMtvarc: The Complete Guide to VMiuarr.
WorkHatioii. No Starcli Press. 2002. 、 ，

99] P. Wernk'k, T. Hall, and C. Nchaniv. Software (^vohitionarv (Iv-

namies rnodellod as the activity of an actor-network. In ！Second
InteTn.ational IEEE Workshop on Software Evolvahility.
74-81. IEEE. 2006.

100] J. Wieknnaker. SWI-PTOIO(J 5.6 Raferrmcc Manual. University of

Amsterdam. 2 0 0 8 . ‘

1()1] Wikipc^dia. Autopoicsis. WikipcAia - Thr, Fir.a Encydoj)rdi(L
200:3. -

102] Wikipcxiia. Allopoicsis. Wikipedia • The FTee Encyclopedia. 2005.

103] D. Winer. XML-RPC SpecAficafAon. Us<，rLaii(i Software. 1999.

104] S. M. Yacoub. Compofitc filter pattern. Technical report, HP

Laboratories Palo Alto, 2001.

105] M. Zeleiiy. Self-organization of living systems: A formal model of

autoi)oiesis." Irdemational Journal of General SysUmLs. 4:13-28.

1977.

