Resonance-Oriented Softwaré
Design and Development

-

FLEISSNER, Sebastian

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of
Doctor of Philosophy
in
Computer Science And Engineering

The Chinese University of Hong Kong
July 2009

©The Chinese University of Hong Kong holds the copyright of this thesis.
Any person(s) intending to use a part or whole of the materials in the thesis
in a proposed publication must seek copyright release from the Dean of the
Graduate School.

UMI Number: 3514539

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deléetion.

UMI

Dissertation Publishing

UMI 3514539
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

Pro%est‘

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

e

L) g - o N =5l 3 . 2 " " 1 B .+ --_.--‘."J
s Sl o st R e B el et SR e e S e e e Gt e e gt o Tt e L et s p 2 e s e g e

Abstract of thesis entitled: -

Resonance-Oriented Software Design and Development
Submitted by FLEISSNER, Sebastian

for the degree of-Doctor of Philosophy

at The Chinese Uaiversity of Hong Kong in July 2009. .

Software evolution draws its complexity from a variety of factors. in-
clndiné extensibility, maintainability, and the difficulty of changing a
program’s design. It is widely accepted that object-oriented programs
become brittle as they evolve, because their design has 1o be fixed in
the early stages of development, and the more their implemeiu ation .
has progressed, the more difficult it becomes to adjust interfaces of

and relationships between objects.

This thesis introduces the notion of resonance-oriented software design
and devélopment, a family of software development approaches directly
or indirectly inspired by concepts found in Asian philosophy, such as
harmony, resonance, and fields of inr.cra(:r.ion.s, which significantly differ
from-the principles object-oriented programming is based on.
In particular, this thesis proposes two concrete resonance-oriented ap-
proaches called harmony-oriented pregramming, a paradigm*rhar. re-
laxes strong encapsulation and information hiding, and epi-aspects,
a self-sustaining software architecture based on the notion of consci-
entious software. Apart from introducing the pringiples, coxﬁas_tnicrs
and conceptual architecture of thg two proposed resonance-oriented ap-
proaches, this research describes concrete implementations, in partic-
ular runtime and developniént environments. Th:ese*implementations
are used to conduct studies aimed at supporting the hﬁ;porhesis that,
in comparison to traditional object-oriented programming, resonance-
oriented software development is a more suitable approach for dealing

with software evolution effectively. ‘

i

%

RE K FER A T BT, (S ol e . TR PR, AL
SRUF G R . B AR AL Ly, i g BRI (oA
Zy PPN BGN T) IR AR AR, DY Ay I B SR
Jy- B SR BLIULK IS E B A, DRl & B QBRI SRRE . i SRR Nl) % ¥t
LA VR R AT R AR RR R PR LY

SERSCHEH T R S BT (IR, AR T SRR
B A7 e IS) RS T O BELRE A ACA S 1 0 4 81
FIL, O R T 2 M (1B T PR A A, BRI
NPV TES 39187 8

B ST SR L R L T D B A, S R R

gt o kBT LA Rt P GRS ST b e TR AR
R " . SRR A ¢ R BRIt T UL SR R e
RES

I A1 2 AT B S W00 IR (SRR N TTSE QR O SRR (RS {5434
LS YER RAS RSN, A SCRHR LR et RR A 1T IR
[R R B SR TRBE . 1 & [R G S BV HE AT | 2o A SR AT
FOM - S AT A g PR b B R, LA EE 1) afy 1) ¥4
QRSN LR, I A B Y A 8] S R

ii

| Ackno_wledgé_menf

I would like to express my deep gratitude to my adviser Elisa Baniassad .
for sponsoring and supporting my research during the last three years. I
also would like to thank all the researchers and reviewers who provided
valuable comments and ideas for my work. Especially Ron Goldman,
Doug Lea, David Ungar, Richard P. Gabriel, Michael R. Lyu, Jimmy
H. M. Lee, and Yvonne Coady. '

In addition, I would like to thank the people I met at OOPSLA’08 for
encouraging me to discard an Objective-C based implementation of a
harmony-oriented runtime and development environment and to switch
" to Smalltalk instead. Switching to Smalltalk made programming fun .

again and saved me a lot of time.

My appreciation also goes to Sui-Chu Wu for helping me to translate
the abstract of this thesis into Chinese and my former and current

lab-mates: Jacky Chan, K.K. Lo, Brian Chiu, and Clayton Myers.

) Fi-na.]ly, I would like to thank Blizzard Entertainment for not releasing
Starcraft 2 during my Ph.D. studies, and thus allowing me to graduate
on schedule.

1l

This work is dedicated to my parents
Dr. Jorg Fleissner and Dr. Gabriele Fleissner-Busse.

. iv

Contents

Abstract -
Acknowledgement
o~
1 Introduction _
¥l Tilc Gravity Attributc-
1.2 Greek Philosophy and Object-Orientation . .
1.3 Brittleness Through Software Evolution
1.4 Resonance-Oriented Software Development . .
1.5 Hypothesis. SRR
1.6 Thesis Organization S ’\
2 Research Bgckground
2.1 The Geography of Thought
- 2.1.1 Western Obsession with Modularization
2.1.2 Eastern and Western Reasoning . . .' .
2.1.3 Control Flow DI
2.14 Substancés Versus ()bjects; 8
2.2 Conscientious Software st 0 R
2.2.1 Allopoietic Part
2.2.2 Autopoietic Part
'2.2.3 Epimodhicé . hr e SRR
= ¥ =

.....

.....

.....

.....

.....

il

$ ©e o« @

12

3 Preliminary Study 14
3.1 Picture Description Interviews 16
3.1.1 Descriptions of Context 18

:3.1.2 Relationships é@

3.1.3 Puzzlementooiiii 22

3.1.4 Common Observations 22

S DO s et s R A E S R RE A TS 24
3.2.1 Identification of Disharmony 24

322 Collettive ABION: « « o v v o5 v 85 % 2% = &= 27

3.3 Harmony-Orientation In Software 44

4 Approach I: Harmony-Orientation 29
-4 Principles of Harmony Orientation 30
411 BalsboeE .. vmsmrma nmam s wom 0w nw 31

4.1.2 EXposurc ioiaee e 31

4.1.3 Spaciality F% A mBEE nE 32

" 4.14 Information Sharing and Diffusion 33

4.2 Harmony-Oriented Programs 34
4.2.1 Spatial Constructs 35

422 SPAORE . i i .w s i s s EE W AN s B w .'3%

4.3 Harmony-Oriented Smalltalk 40
4.3.1 Runtime Environment.Overview 41

432 Snipy'mt Runtime Interfa:;:e 44

4.3.3 Data Descriptions and Tagged Data 48

4.3.4 Snippet Scheduling EIXIELE LIS T 49

4.3.5 Data Managcmoﬂt and Diffusion . TITITIE .49

4.3.6 .Visual Development Environment 51

B30 « DEOBETINE . i o 4 o3 s B "na £ 5o T e 57

44 SOEIBALY . . « 5 c v s u = c% s w4 YT LR, 57

5 Approach II: Epi-Aspects

5.1 Proposed Architecture

5.1.1 Allopoietic Application

5.1.2 Autopoicticsystemo ..
813 EpEAspects . . v o suv 2 95 wa e3owwn ww
5.2 Epi-Aspects Java Framework
5.2.1 Base Classes and Interfaces
5.2.2 Advice and Annotations
5.2.3 Autopoietic Simulator L.
53 Summary e e e e e e e e e e e e

6 S;tudies and Validation

6.1 General Study Design .

...................

6.1.1 Construct Validity
(f.l.? Internal Validity
. 6.1.3 External NBHERE - v 0 25 mws 0 o0 5 om0 % 5 3 W
6.2 Changeability and Extensibility Studies
6.2.1 Changeability: Relationships

6.2.2 Changeability: Processing Chains

6.2.3 Extensibility and Maintainability

6.2.4 Analysis‘ and Discussion of Validity

6.3 Error Feedback and Recovery Study=
6.3.1 Part 1 CEJnsc:ienti()us 51 b e

- 6.3.2 Part 2: Software Update Experiment
- 6.3.3 Part 3: Fine-Grained Error Monitoring

6.3.4 Analysisand Summary

-6.4 Software Evolution Study

vil

58
59
60
60

67
69
70
71
74

75
76

78
78
79
79

6.4.1 Harmony-Oriented Epi-Aspects

642 StudyDesoriphion . - r e s s n s s w w g
6.4.3 Analysis a'nd Summary - c e
6.5 Hypothesis Validation e E
6.5.1 - Evidence Supporting Claim 1

6.5.2 Ewidence Supporting Claim 2

6.5.3 Evidence Supporting Ctaim 3
Discussion
7.1 Resonance-Oriented Development Style < 4% 5
7.2 Harmony-Orientation

7.2.1 Encapsulation and Information Hiding
7.2.2 Software Reusability
7.2.3 Applications and Limitations

7.2.4 Harmony-Orientation on Manycore CPUs

2.5 GPD-Accelerafion .. 2o L V00 S s vty v w
7.3 Conscientious Resonance-Orientation
7.3.1 Limitations of Epi-Aspects
7.3.2 Realizing an Autopoietic system

Related Research and Comparison

8.1 Agent-Oriented Software Development
8.1.1 Agent-Oriented Programming
8.1.2 Diffusion-Based Agent Systems

8.1.3 _Comparison With Harmony-Orientation

8.2 Software Evolution SR E e e
8.3 Programming Approaches VRS BB E

{

viii

149
149
149
150
130

8.3.1 Spreadsheets. Subtext and Coherence . .

B3 2 EHBDE LS e e w i w 3w w3 8
8.3.3 Dataflow Programming
8.3.4 Blackboard Architectures.
8.3.5 Phenotropic Computing®
8.4 Self-Sustainment and Reliability
8.4.1 Autopoictic Software Systems
8.4.2 Autonomic Computing
8.4.3 Commensalistic Software
8.4.4 Reflective and Adaptive Middleware
8.‘4.5 Monitoring-Oriented Programming
p
8.4.6 Recovery-Oriented Computing
\\8.4.7 Acceptability Envelope . €. D
' 84.8 Software ’R,(‘.liability Engincering
8.4.9 Comparison With Epi-Aspects ¥ e

_ Conclusions

O SIONBIY . » - v s es R B A A B ES S R

202 WomnbulIoNS « -« : c s s sk kR a a8k
9.2.1 Research Contributions
9.2.2 Software Contributions

9.3 Futur('%')Work

A Semantics for HOS
A.1 Semantics for Producing Data
AZ Semantics for Consuming Data
A.3 Semantics for Observing Data

A.4 Semantics for Snippet Stateo

ix

160
160
161
161
162
163

164
166
167
172
174

B Common Observations . 176

C Original GMA Database Design 178

Bibliography ' 181
-
N

List of Figures
3.1 Nyéaard’s Restaurant Picture 16
3.2 Annotated Restaurant Picture 17
3.3 Identified Long Distance Relationships 21
34 Manunabletopay 23
- 3.5 A mother perceived to ignore her crying child 23
- 3.6° A chef perceived asoutof place~ .. 24
4.1 -Principles of Harmony-Oriented Programming 31
42 Exposure Principle 32
43 SpacialityPrinciple R
4.4 Information Diffus.ion Principle = L 33
4.5 Anatomy of Harmony-Oriented Programs 34
4.6 Space with Sub-Space 37
.4.7 Substances and Diffusion ESPHET BEREY 39
4.3 Harmony—Oriented Smalltalk 41
49 HOPPartsBin VIR PRESRESTEE 52
4.10 Location Inspector‘ simm pin W el e e 53
411 SpaceMainMenu R 54
412 Snippet Console 56
4.13 Diffu§ion Inspéctor 56
i xi
T > f
» o *

4.14 Snippet Editor 57
- 5.1 Epi-Aspects Architecture,+ <« - 89
52 Epi-AJBaseClasses 70
5.3 Epi-AJ Autopoietic Simulator 73
6.1 The Observer Design Pattern ([37]) 30
6.2 Account Subject and Account Observer (HOP) 34
6.3 HOPFilter Chain 87
6.4 Object-Oriented Filter Chain 89
6.5 Harmony-Oriented Extensible Application Sér\(er ... A
6.6 Minimal Object-Oriented EAS Design 93
6.7 Object-Oriented EAS Design (Simplified) 94
6.8 Change 1: Rename interfaces. 95
6.9 Cha.nge”2: Add base interfaces. 95
6.10 Change 3: Add stream-based interfaces. 96
6.11 CMS Application Scenario 98
O A e s U A S M 99
6.13 ﬁ’ata.basg FOIASDEO0 « « v o -« v v a5 £ 8 & o 2in 2w s 101
6.14 XML-RPC Epi-Aspect pLAIRLCINC LIy .102
6.15 Software Maintenance Epi-Aspecto v 163
6.16 CMS Epi-Aspect P TR 105
6.17 Harmony-Oriented Epi-Aspects 113
6.18 Space EVENUS , « o o o oo e 116
6.19 GMA Application Model (Simplified) 120
6.20 GMA Server Using Harmony-Oriented Epi-Aspects . . 127
6.21 "Data Management” SRS 5 v e aiw s 0 »« & 8 129
C.1 Original GMA Database Design (Left Part) 179

C.2 Original GMA Database Design (Left Right) 180

xii

List of Tables

4.1

5.1
5.2
5.3
5.4

6.1.

6.2
6.3
6.4
. 6.5
6.6

B.1

.Application Advice

‘Methods of SpaiialEpiAspect.

Object-Orientation and Harmony-Orientation

Autopoietic Recommendations

Autopoietic Queries

Epi-Message Attributes

Harmony-Orientation and Software Evolution Factors .

Software Update Experiment Phase 1 Results

Software Update Experiment Phase 2 Log

Epi-Aspects and Software Evolution Factors

Combined Approach and Software Evolution Factors

Common Observations

xiil

30
61
62
64
66

97

107

103

111

117
134

vy

Chapter |

-

Introduction

1.1 The Gravity Attribute

It is the year 350 BCE'. Aristotelian physics [2], a theory developed by
the philosopher Aristotle, suggests that gravity can be considered 1o be
an attribute that resides within objects. Heavy objects. such as stones
and rocks, possess a stronger gravity attribute than lighter objects. In
fact, very light objects like gas and air have a “levity” attribute instead
of a gravity attribute. Since gravity is an attribute of objects and not
_an outside force, Aristotelian physics posit the view that the world can
be understood and described as a collection of more or less independent

objects categorized by their attributes. .

Forward to the year 2009. The slides of a tutorial on object-oriented
design from an unknown author [92] illustrate an example of modeling
fluids and pipes as classes. The example introduc:es a Pipe class that
has a gravity attribute: a static double precision floating point number
that is initialized with a value of 9.8. The reasons of the author for
assigning a g}z.wit,y attribute to pipe objects are not clear. Bu.t. even

though this decision might seem peculiar in the context of modern

!BCE: Before (the) Common Era.

CHAPTER 1. INTRODUCTION 2

science. it is acceptable in the context of object-oriented software de-
sign and development. which encourages isolation of objects from their

environment.

1.2 Greek Philosophy'.and Object-Orientation

Object-oriented programming (OOP) is strongly influenced by ideas of
ancient Greek philosophy and thought. As described in [73. 17. 43].
ancient Greeks had a strong sense of personal agency and considered
themselves to be individuals with u-nique. distinctive attributes and
goals. Greek philosophers. such as Plato and Aristotle. posited the view
that the world is a static and unchanging collection of objects that can
be described and ahal_w:ed through categorization and formal logic. It
was the habit of Greek philosophers to regard objects. such as persons.
places, and things. in isolation from their context and to analyze their
attributes. The attributes were used as the basis of categorization of
an object. and the resulting categories are emploved to construct rules
governing the behavior of the object. The relevance of possible outside

forces that can affect an object was completely ignored.

In object-oriented design and programming. it is common practice to
isolate objects from their context and then describe them by their at-
tributes (i.e. methods and instance variables) and static relationships
to other objects. Isolation is achieved by applving the principles of
information hiding and encapsulation. Program units. such as objects.
components. and modules. interact through well-defined interfaces that
expose functionality. As interfaces hide the implementation details of
each program unit. internal changes do not affect other parts of the
program. Because the focus is on objects. modeling relationships is

not straightforward in object-oriented programming and often requires

Bt b

CHAPTER 1. INTRODUCTION 3

significant negotiation for establishing and breaking off relationships

between two or more objects.

1.3 Brittleness Through Software Evolution

The term software evolution refers Yo changing both design and code

of software repeatedly over time in order.to comply with changing re-

quirements or initially unexpected usage scenarios. As software evolves,
&

it becomes more brittle: the difficulty of maintaining and fixing the

software increases, and partial or complete failure occurs, when small

changes are made or unexpected data is encountered.

To cope with software evolution, the traditional object-oriented ap-
proach of making a complete software design before coding has been re-
placed with other strategies, such as design for extensibility and main-
tainability. However, designing for extensibility and maintainability is
non-trivial in object-oriented programming, as interfaces and object
relationships have to be fixed at some point. Any subsequent change
to the interface of one obj-ec-.t. can lead to many potential changes to
dependent objects. As pointed out in {16] and [72]. software evolu-
tion eventuatly causes brittleness even in well-designed object-oriented

programs.

.1.4 Resonance-Oriented Software Development

The purpose of this thesis is the proposal and evaluation of resonance-
oriented software development. a family of software development ap-
proaches based on a school of thought that promotes holism and the

idea of murtual influence of everything on almost everything else. This

school of thought, which originated in Asia, posits the view that the

CHAPTER 1. INTRODUCTION 4

world cannot be described by focusing on objects and their attributes
alone. but rather by considering the broad context and see the world in
terms of resonance. harmony. and context. For example. as described
in [44] and [35]. philosophers in ancient China described the world as a
mass of continuously interacting substances rather than a collection of
discrete objects. and each substance and every cvent in the world were

considered to be related to each other.
Resonance-oriented software development approaches have the follow-
ing characteristics:

e The runtime environment of resonance-oriented programs is well-

defined.

e Code entities always run inside the well-defined environment and

can directly or indirectly interact with it.
e The execution of code affects or changes the environment.
e The environment (or changes inside the environment) can affect

the behavior of code.

This thesis proposes and evaluates two concrete resonance-oriented
software development approaches. The first approach is a new pro-
gramming paradigm called harmony-oriented programming [31. 32. 6).
The second approach an architecture based on the theoretical notion

of conscientious software [36] called epi-aspects [30].

1.5 Hypothesis

Software evolution is significantly affected by the following factors:

CHAPTER 1. INTRODUCTION 5

e Ease of changing the program’s design (changeability).

[]

Extensibility of the program.

e Maintainability of the program.

[]

Quality feedback.

Error recovery.

Ease of changing the design refers to the complexity of changing a

program’s structure. This includes relationships between parts of the
program, such as associations and inheritance relationships in object-

oriented programming.

Extensibility refers to the ease of extending a program with or withourt
changing the program’s overall structure. Extensibility can be affected

by the ease of ‘changing the program’s design.

Maintainability refers to the ease of changing a program in general. It

is affected by both extensibility and ease of changing the program’s

" design.

Quality feedback and error recovery refer to mechanisms that facilitate
reporting, observation and correction of problems and errors.

The hypothesis of this research is that in comparison to object-oriented
programming, resonance-oriented programming improves the case of

dealing with the above mentioned issues, and thus the ease of dealing

with software evolution effectively. In particular, this hypothesis posits

that the combination of the proposed resonance-oriented programming
approaches provides the following advantages over traditional object-

oriented programming:

(i

CHAPTER 1. INTRODUCTION 6

o

1. Fewer changes are required in order to reflect adjustments of a
program’s design in the code. Changes include source code mod-

"ifications and other adjustments to a program.

(3

Extending a program requires less effort (steps/changes) .

3. Implementation of reliable feedback and error recovery mecha-

nisms requires fewer steps.

1.6 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2: Research Background
This chapter provides an- overview 0? research that inspired the work
presented in this thesis. In particular, it introduces the work of Richard
Nisbett on how “Easterners” and “Westerners” think differently, and
the conscientious software paradigm proposed by Gabriel and Gold-

Chapter 3: Preliminary Study
This chapter describes a preliminary study that explores how Nisbett’s
findings regarding different reasoning styles of individuals from different

cultural backgrounds apply to the realm of software development.

Chapters 4 and 5: Proposed Approaches

These chapters introduce the proposed resonance-oriented software de-

sign and development apprbaches: Harmony-oficmed Programming
/

and Epi-Aspects. Apart from providing (:onc(:pt,ual desc:riptio-ns of._f-hc

approache’s,'thesc chapters introduce concrete implementations fmd/‘ de-

velopment environments. - -

CHAPTER 1. INTRODUCTION

~1

Chapter 6: Case Studies and Validation

This chapter describes several case studies aimed at supporting the
hypothesis formulated in section 1.5. In particular. several scenarios are
used to compare the resonance-oriented approaches to object-oriented
programming. The results of the various studies are summarized and

analyzed to validate the hypothesis.

Chapter 7: Discussion
This chapter discusses various aspects of the proposed resonance-oriented
software development approaches, such as practical issues and limita-

tions.

Chapter 8: Related Research

This chapter covers various approaches related to resonance-oriented
software development, such a5 diffusion-based agent systems, software
evolution research, related programming approaches, self-sustaining
systems, and error recovery. The more closely related work is com-
pared with the proposed resonance-oriented software development ap-

proaches.

Chapter 9: Conclusions
This chapter summarizes the research presented in this thesis, describes

its contributions, and discusses future work.

0O End of chapter.

L4

Chapter 2

Research Background

This chapter provides an overview of research that inspired the work
presented in this thesis. In particular, it introduces the work of Richard

Nisbett on how “Easterners”' and “*Westerners”? think differently, and

- the conscientious software paradigm proposed by Gabriel and Gold-

marn.

2.1 The Geography of Thought

In his book The Geography of Thought [73] Nisbett makes the case that
individuals from different cultural backgrounds reason about objects
and spaces differently from one another. In particular, he asserts, and
shows through peer reviewed studies, that subjects from Chinese and
Japanese cultures do not relate in the same way to objects as those from)
the west. According to Nisbett, “Western” thinkers identify the world
by objects and view the world as a set of individuals, working essentially '
independently, maintaining their own world view, and acting upon it.

“Eastern” thinkers, on the other hand, view the context of objects as

}The term “Easterners” is used to refer to people from Chinese and Japancse cultures.
*The term “Westeérners” is used to refer to individuals from Europe and America.

*
~ -

»

CHAPTER 2. RESEARCH BACKGROUND 9

centrally as the objects themselves. They notice changes in a scenery
before they notice changes in individuals within that scenery. When
considering objects, they consider the fields of interactions between
those objects, rather than seeing the objects as autonomous.

2.1.1 Western Obsession with Modularization

According to Nisbett, “Westerners” are keenly interested in atomizing
the world. He notes that this contributed largely to c(:(:nomi(: advances
and industrialization: allowing manufacture to happen in generic ways,
which enhanced efficiency and interoperability of approaches. He goes
on to say that this modular view carries through to social infrastruc-
ture. He asked “Easterners” and "W(:st,(erxlcrrs” to consider phrases
that described companies as either social networks where people work
together, or as an institution with a goal, where people are hired to
perform functions. Most “Westerners” related best to the atomized
view described in the second statement. “Easterners” predominantly
chose the first statement as more accurate [73], p 34.

&

2.1.2 Eastern and Western Reasoning -

Nisbett and other researchers, such as Peng [77], Morris [70], and Gries
[41], contrast “Eastern” versus “Western” reasoning by describing di-
alectic reasoning from the cast, and identity and non-contradiction in

the west.

Dialectic reasoning held in eastern traditions involves:

-

e The Principle of Change: this captures the constantly changing

nature of reality. : .

CHAPTER 2. RESEARCH BACKGROUND 10

e The Principle of Contradiction: due to constant change. para-
doxes are constantly being introduced. Both A and !A might be

true at the same time.

e The Principle of Relationship: Holism: nothing exists in isola-
tion. Everyvthing must be deseribed by its relationship with other

things.

“Westerners™ . on the other hand. hold two logical principles dear:
r p T
,

e The Law of Identity: A is always A. regardless of context.

e The Law of Noncontradiction: A and !'A cannot both hold true.

2.1.3 Control Flow

5 . Nisbett’s research indicates that “Westerners™ place great importance
in feeling a sense of control. whereas “Easterners™ are more likely to
acknowledge that they are Ol;t of control. and make adjustments to fit
into an uncontrollable situation ([73]. p 97). Adjustments for “Western-
ers;’, on the-other hand. were assessed to fecl uﬁnatural or “awkward”.
“Westerners™ are also more interested in knowing who is in control. as
is evidenced by “Westerner’s™ dislike of working in groups. where con-
trol may be ambiguous. “Easterners”, on the other hand, would rather
work in a group, regardless of the quality of that group. and simply

adjust to the group dynamics without ‘establishing explicit control.

+

2.1.4 Substances Versus Objects

: R Nisbett’s book refers to an experiment by Imae and Gentner [48] called

The Dax Ezperiment. In it. Imaec and Gentner showed “Easterners”

LE

-CHAPTER 2. RESEARCH BACKGROUND = 11

and “Westerners’

il

a shape made out of some substance, and told the
subject to “look at this daz”. Then, they showed the subjects two -
trays of objects, onc carrying objects made from the.same substance
as the dax, and other carrying objects that were the same shape as
the dax. They were then asked to identify the tray with the dax on
it. “Westerners” predominantly chose the tray with obje(:trs of the
same shape, whereas “Easterners” chose the tray with objects of the
same substance. Nisbett p()inr.-s out that this study indicates thar while
“Westerners” see the world as a set of disconnected objects, modern
“Easr,(zrncrs“ view the w-orld as continuous masses of matter.

o
*

2.2 Conscientious Software

Conscientious software is a theoretical paradigm and philosophy for de-
veloping reliable, self-sustaining software systems proposed by Gabriel
and Goldman in [36]. Unlike other approaches for self-sustaining soft-
ware, such as IBM’s autopomic computing [54, 71}, conscientious soft-
ware consists of two distinct parts written in fundamentally different
programming languages: an allopoietic® part that encapsulates applica-
tion functionality, and an autopoietic® part that continuously re-creates

itself and is entirely devoted to keeping the system running smoothly.

- - - - - = -
Conscientious software is based on the realization that, even though
error recovery and monitoring are well-understood concepts, its tech-
niques are not frequently applied in practice. The separation of soft-

ware into autopoietic and allopoietic parts is meant to encourage devel-

3% Allopoiesis is the process whereby a system produces something other than the sys-
tem itself. One example of this is an assembly line, where the final product (such as a car)
is distinct from the machines doing the producing. This is in contrast with autopoiesis.”
(From [102]). | .

4«Autopoiesis literally means auto (self)-creation (from the Greek: auto - for sélf- and
poiesis - for creation or production).” (From [101]).

v
R '

.
& -

CHAPTER 2. RESEARCH BACKGROUND Sl

opers to devote equal efforts towards implementing application func-

tionality and error recovery.

2.2.1 Allopoietic Part

The allopoietic part encapsulates traditional application functionality.
It is written in a general purpose programming language, such as C++
or Java, and produces some computational results or provides services

LO uscers.

2.2.2 Autopoietic Part

The au}tyopoicti(: part monitors and adapts to environmental changes,
and observes and evaluates the health of the allopoietic part. In case
the allopoietic part fails, the autopoietic part assists with error recov-
ery. Since general purpose programming languages are potentially frag-
ile and hence pose a threat to the stability of the system, the autopoi-
etic part is written in a dedicated autopoietic programming language
designed to make it difficult for programmers to implement programs

with critical bugs.

2.2.3 Epimodules

To maintain the health of the application, the autopoietic part must be
able to observe and affect the operation of the allopoietic part. In [36],
Gabriel and Goldman propose the concept of epimodules, which serve as
a bridge between the autopoietic and allopoietic parts. Epimodules are
attached to allopoietic components and monitor their behavior. When

necessary, epimodules can affect and alter allopoietic components. For

¥]

CHAPTER 2. RESEARCH BACKGROUND 13

example epimodules can instruct allopoietic components to run tests,

restart, upgrade, clone, ‘or kill themselves.

O End of chapter.

P

Chapter 3

Preliminary Study

This study [6] is an exploration on how Nisbett’s findings regarding
different reasoning styles of individuals from different cultural back-
grounds apply to the realm of software (l(‘\'l‘i{)])lll(‘llf. As explained in
section 2.1, Nisbett asserts that individuals from “Western™ societies
tend to focus on objects isolated from their context and their attributes.
while ildividuals from “Eastern™ societies rather consider fields of in-

teractions between objects and, apparently, look for harmony.

Most major programming languages. especially object-oriented lan-
guages, were developed in the west, by, what Nisbett would classify.
as individual thinkers. The roots of object-orientation were to help
programiners model t'h(‘. world as they saw it and to better align their

programmatic representations with their mental models of a problem

space.

Problems arise, however, when systems do not align well with a pure
object-oriented modularization. This misalignment is often evident in
systems that invelve a great deal of object interaction and negotia-

tion. Since the rise of object-oriented programming. attempts have

been made to break apart the rigid adherence to the individual nature

CHAPTER 3. PRELIMINARY STUDY 15

of object-oriented languages. Aspect-orientation is an example of such
an attempt: through aspects, developers can describe concerns that
crosscut objects [57], or can capture, in one location. the relationships
between them [76]. This multidimensional movement may fit into the
concepts of postmodern programming, as described by Noble and Bid-
dle [74]. It is also possible that these attempts are edging towards
capturing a more "Eastern” philosophy of programming. where fields
of interaction are as important as the objects themselves. and where

writing a working program means attaining programmartic harmony.

This study is motivated by how closely the object-oriented paradigm
resembles typical “Western” thought. It investigates the use of an
“Eastern” reasoning approach for capturing object dynamics and in-
teractions between objects. As object-orientation grew from the minds
and reasoning style of “Westerners”, the purpose of this study is to
look deeper into the minds of “Easterners” in an attempt to capture
their world view, and then distill their descriptions into the guidelines

for a new, more harmony-oriented, programming paradigm.

The main part of this study.is an experiment to Gaprure the way in
which “Easterners” would describe what would be considered a tvpical
object-oriented scene: Nygaard’s, now famous, Restaurant Picture (23]
(shown in Figure 3.1). Nygaard introduced this picture as a mechanism
for teaching students about object-orientation. He motivated the use of
this image by saying “to teach object-orientation. you need a sufficiently
complex example”. The .idea, as he presented it, was that students
would be able to look at this picture, and identify diff_erefn kinds of
people, their traits, and the activities in which they were engaged.

This would help them think about objects (individuals).

During the experiment, “Eastern” subjects were interviewed about how

CHAPTER 3. PRELIMINARY STUDY 16

® OBJECT-ORIENTED REASONING AND WO

Figure 3.1: Nygaard’s Restaurant Picture

they would describe the picture. The following sections summarize the
analysis of the subjects’ responses, and, based on that analysis, suggest
possible avenues for pursuing harmony-oriented programming: a new
. paradigm that allows for straightforward modeling of how program

entities and their behaviors affect one another.

1

3.1 Picture Description Interviews

The picture description interviews were conducted with two groups of
subjects. The first group consisted of three participants from Europe
and served as control group. The subjects of this “Western™ group
were university students of non-engineering majors: two females and

one male between 22 and 26 years old. The second group consisted

CHAPTER 3. PRELIMINARY STUDY 17

of university students from Hong Kong and mainland China: 3 female
students of non-engineering majors and 8 male computer science stu-

dents.

During the interview sessions. the subjects were asked to describe the
scene shown in Nvgaard's picture. They were instructed to describe
anything they saw. with no restriction. and thev were allowed speak
for as long as they felt comfortable (durations ranged from 2-8 min-
utes). Additionally. the subjects were. allowed to annotate a copv of

the Nygaard’s picture if they wished (figure 3.2).

Figure 3.2: Annotated Restaurant Picture

The subjects were not aware that they were being interviewed because
of their cultural background. Instead. its was indicated that thev were
taking part in a study on how pictures are described by different indi-
viduals. -

CHAPTER 3. PRELIMINARY STUDY 18

After the interviews, the transcripts were analyzed in two passes. The
first pass was a cursory read to derive general commonalities between
the descriptions, and arrived at a set of statement-categories. The
second pass included performing a detailed analysis to categorize each

statement made by each subject.

As Nisbett’s findings predicted, the European subjects focused on de-
scribing individual objects in isolation, while the Chinese subjects did
not comment to any great extent on individuals or their traits. Instead.
any descriptions of individuals were couched in descriptions of how an

individual related to a group.

The following sections provide an overview of the deseriptions by the
Chinese subjectd, which can be grouped in three main categories: con-
text, relationships and puzzlement. The first two of these can be further

decomposed into the following categories:

Context: Environment

[]

Context: Interpretation

Context: Observation

Context: Role

Relationship: Short Range

Relationship: Long Range

+

3.1.1 Descriptions of Context

-~

-
n .

Context refers to a description of the situation in which objects are

placed. As mentioned above, this can be sub-categorized into:

-

CHAPTER 3. PRELIMINARY STUDY 19

Context: Environment

Context: Interpretation
e Context: Observation

Context: Role

Context: Environment

This category covers remarks that pertain to the environment of the
restaurant. ‘For instance, one subject talked about the poor lighting
inside the restaurant. Other remarks placed objects (people in the
restaurant) in context. Seven quotations that fit into this category

were identified.
Context: Interpretation

This category covers remarks where the respondent is interpreting what
is going on in the restaurant, and perhaps trying to determine the re-
ality behind something they perceived to be unclear. For example, one
subject provided an interpretation why a small child with his mother
near the entrance of the restaurant is crying. 20 remarks were catego-

rized as Context: Interpretation.
Context: Observation

This category includes remarks that are simply observations about the
restaurant in general (not the environment or ambiance). A total of 21

remarks that fit into this category were identified.
Context: Role

This category includes the different roles that respondents identified.
Respondents identified:

CHAPTER 3. I;RELIMINARY STUDY 20

e Waiter (Respondents 1. 4. 6. 7. 8. 11)
‘e Pianist or 1\-’{usi{:ila,n (Respondent 3. 8)
e Cook or Chef {Respondent 3. 6..7)

e Boss (Respondent 4)

e Doctor (Respondent 4)

e Workers (Respondent 4)

e Guest (Respondent 8)

A total of 17 remarks related to roles was identified.

3.1.2 Relationships

Two categories related to relationships between people in the restaurant
were identified: long and short distance. Short distance relationships
are between people at the same table (or in some way involved with

the table). whercas long distance relationships are between tables.

" Long Distance

Long distance relationships refer to remarks that describe how two sets
of people relate. when those people are not scated at. or in some way

involved with, the same table.

Ten such quotations were identified. some of which were duplicates of

others. They are depicted in figure 3.3 as white lines linking the groups
of people included in the remark. The longest distance rel\a'bi%sh/i)
spanned from the highlighted arca A to the highlighted area B. A shows
two people from table 20. and B highlights what is identified as a cake.
The two respondents who noted this relationship stated that the people

CHAPTER 3. PRELIMINARY STUDY 21

Figure 3.3: Identified Long Distance Relationships

in area A were watching and waiting for their cake, which was being

brought to them from area I3.
Short Distance

As described above, short distance relationships refer to remarks de-
scribing how people at a single table relate. The following short dis-

tance relationships were found:
F .

Mother and Son (table 1 Respondent 2, 4, 6, 7, 11) (table 7
Respondent 3)

Friends (Respondent 3, 4, 7)

Dating (Respondent 3, 4, 11)

Family (Respondent 6)

CHAPTER 3. PRELIMINARY STUDY 22

3.1.3 Puzzlement

A total of 15 remarks that relayved confusion about the restaurant scene
were identified. For instance. Respondent 9 remarked that the piano
arca of ‘th(-‘. restaurant is cut off from the rest of the restaurant. and
“another respondent commented that the man at the coat-check did mot

fit in well with the rest of the guests.

3.1.4 Common Observations

Several observations were made by multiple respondents. Table B.1 (in
appendix B) provides the results of the analysis of the observations.
and shows which category the responses fit under. Some observations
fit into multiple categories. The total number of responses counts the
individual responses from all categories; the same respondent may have

uttered more than one response for a particular observation.

The four most popular observations were:

1. Table 6: Man unable to pay

" Three respondents commented on the man at table 6 (highlighted
in area “A” in Figure 3.4) who is-apparcntly unable to pay his
bill, and the women at table 4 who are perceived to observe him

(highlighted in area “B” in Figure 3.4).

2. Empty seats. but people are waiting
Severai of the participants in the study noted. with consternation.
that there were people waiting outside the restaurant while there
were empty seats inside (at table 3). They wondered why the
.wa.iter would not seat people at that table, and commented that

the restaurant was “strange” because of it.

F}

P

i

CHAPTER 3. PRELIMINARY STUDY 23

Figure 3.4: Man unable to pay

3. The “bad” mother
Another great cause for concern among the participants was the
mother sitting at table 1 with her child (shown in figure 3.5). Five
of the participants noted something very similar to one another:

that the mother is covering her ears attempting not to hear her

child crying.

Figure 3.5: A mother perceived to ignore her crying child

4. The misplaced chef
The fourth most frequently observed element of the restaurant
was the chef, who is, apparently, out of place. Many of the re-

spondents noted that the chef was not in the kitchen, that he was

lazy, or that he was simply taking a break.

- -

CHAPTER 3. PRELIMINARY STUDY 24

Figure 3.6: A chef perceived as out of place

3.2 Analysis

This section presents a. qualitative analysis of the spbjects’ responses.
All of the most common responses (listed in Table B.1) can be distilled
into two major kinds of observations: identification of disharmony in’

the restaurant, and collective action.

3.2.1 Identification of Disharmony

The respondents were overwhelmingly troubled by the “strange” or
crazy nature of the restaurant, where things were not as they should
be, and where imbalance reigned supreme. This generally fits into
several categories:
e People or things being physically out of place.
e People who did not fit in, visually, with others.
e People shirking their responsibilities.

e Things simply going wrong.

People or Things Physically Out of Place

CHAPTER 3. PRELIMINARY STUDY 25

There were many instances when respondents noted that people or
things were not where they should be. but the two most common were

the out of place cook and the non-sequential table numbers.

The respondents who commented on the cook all noted that he was be-
having strangely. and that his place was supposed to be in the kitchen.
They wondered why he was not inside the kitchen. This can be inter-
preted as an identification of disharmgny. because the cook’s resting
state was to be working in the kitchen. and he was upsetting the bal-
ance of the restaurant by leaving that state and cmerging into the
dining arca. -

The respondents who commented on the table numbers scemed jarred

by what they perceived to be a gap in the continuous space of the

restaurant. This was also found in the statement about how a guest

might climb up to the piano area (a frustrated respondent noted that
there was no clear way to get up to there). The respondents suggested
solutions to the disharmony identified: that there must be more tables
that are not shown in the restaurant. and there must be hidden stairs

somewhere.

Another example of a discontinuity was the perceived lack of teenagers

in the restaurant. No solution was given for this discontinuity.

!

Peoplc Not Fitting In

Many respondents referred to people who did not look quite right. and

_described this visual disharmony as the fault of the persons who are

improperly dressed. Some respondents tried to find reasons that the
people were crazily dressed, not willing to simply accept that it might

just be a scene that was beyond reasonable explanation.

e

t

CHAPTER 3. PRELIMINARY STUDY 26

For instance, the man by the coat check, who is comedically dressed
in north pole regalia, and who is holding a fish on a skewer, was the
source of much concern for several respondents. Explanations for why
he looked the way he did was that he had found his way into the wrong
location, thinking he was going to a barbecue, and that he was having
take out. The respondents noted that he might be abour to take off

his coat (hence adjusting himself to blend in with the other diners).

The other popular observation about visual disharmony was the strange
table of party goers. This group wore costumes, and it was remarked
upon by three respondents tiat it is not clear “what kind of people”
sat at this table, because not only did their clothes not fit in with the -

restaurant, they were not even a cohesive group.
People Not Fulfilling Their Roles

Respondents were quick to point out that some people in the restaurant
were stubbornly disturbing the peace. The mother with her crying child
refused to perform her duty and calm her child. The. waiter was being
careless, and was about to drop all the plates, which would further
disrupt the harmony of the restaurant. It was perceived that none of
the gﬁcsts in the restaurant were doing their jobs all that well, because
no one was eating or having a good time. Some ‘resandem.:-; noted that
guests seemed upset or distracted in some \x'ray. These observations echo
Nisbett’s findings that “Easterners” see a strong relationship between

roles and harmony.
Other Imbalances

Respondents noticed other situations in which harmony was not main-
tained. The most common were the imbalance between the empty
tables and the people waiting for tables, and the lack of light in the

restaurant. .

CHAPTER 3. PRELIMINARY STUDY 27

3.2.2 Collective Action

Other responses could be categorized as “actions”. However, unless
they were counted as disharmonious (the mother with her child, the
strange man with the fish, the bad waiter), they were described as
collective action: a group of people doing something together, and
feeding off each other in doing so. Once again, the people at the party-
going table were perceived to be actively waiting for their cake to arrive
(both anticipating, and looking at the arriving cake). Another popular
example of collective action was the three women sitting together and
laughing at the mian who could not pay his bill. Finally, respondents
identified a group at a table who were all trying to gain the attention

of the pianist by waving to him.

X

There was no sense that the actors in the groups were individuals work-
ing together - instead, the actors were considered by the respondents as
one larger actor: Lr,he group. The individuals were at times described as
behaving specifically within the group, but the action belonged com-

pletely to the group, not to one of the people in it.

3.3 Harmony-Orientation In Software

The analysis shows that commonalities between subjects’ responses
are further categorizable. as descriptions.of harmonious action, and of
harmonious situations and flow.

.
-

Both of these concepts play important roles in current'éofzware systems,
even if they are not {"dbll}’ atta.mabl"- For (,mampie in a load balanc-
ing sybt,em, a harmonious z.n:uamon or equlhbnum can be achieved

when various instances of a componcnt ahare the same worl\loa,d This

" . * ¥ W -

-

CHAPTER 3. PRELIMINARY STUDY . 28

1 . . - T

-

equilibrium is lost if some instances are busy while other instances are
1

“ idle.

Similarly, harmonious situations are the goal for system monitoring
+ W [o - ‘
and management software, such as intrusion detection, virus detection.
and network monitoring systems. The pll[“])()ﬁ(’ of such systems is to
preserve the harmony of a system of components. Such components are
in harmony, if they operate at full capacity and are able to interact with

each other without any disturbance. The balance of this harmony can

be disrupted by system anomalies, which might be caused by viruses,

intruders. or component™failures. .

Harmonious action and situation also play a significant role for the com-
ponents of a single software application or server. Within an applica-
tion, a harmonious situation is achieved if all components are working
¥) - ' ! .

well. However, each time a component of the system is updated or
otherwise changed, the balance of the system is disturbed and has to
be restored. This is especially the case when component interfaces are

adjusted or components with eritical bugs are added to the application.

-

On a finer grain, harmonious action between objects in a system might
be found when they are communicating well, and using interfaces pro-
vided by one another correctly. In traditional systems, attaining this
harmony involves negotiation between objects. Ensuring up front that

such harmony will be achieved involves checks by the compiler.
Harmony-oriented programming (chapter 4) is based on the findings of

T

this preliminary study.

O End of chapter. -

e

Chaipter 4

Approach I:
Harmony-Orientation

Ancient Chinese philosophers did not focus on ‘objects and their at-
tributes, but rather fzonsidered the broad context and saw the world
in terms of harmony, context, roles, obligations, and resonance. For
example, a person was considered not as an individual with a constant
unique identity, but rather as a member of several collectives. As de-
scribed in [44], ancient Chinese philosophers and people saw the world

as a mass of continuously interacting substances rather than a collec-

tion of discrete objects. Each substance and every event in the world

was considered to be related to every other event. .

This chapter proposes a resonance-oriented software development ap-

proach called harmony-oriented programming'[6, 31, 32]. a new pro-

-gramming paradigm inspired by-concepts of “Eastern™ rthinking and

reasoning, such as harmony, context, and resonance, and the prelimi-

nary work presented in chapter 3.

The main idea behind harmony-oriented programming is that pieces
of a program-always interact with their environment as a whole and -

usually not with other program parts directly. Table 4.1 illustrates

29 -

.

s

CHAPéER 4. APPROACH I: HARMONY-ORIENTATION -80

- -

important conceptual differences between harmony-oriented program-

ming and object-oriented programming (QOP). ;

Object-Orientation | Harmony—Orientati&?
\ Individualism ’ Holism -
'-;‘&‘Ex_plicit Boundaries | Fuzzy Boundaries
Explicit Relationships implicit Relationships
" 1 Protocols / Negstation | Observation

Table'4.1: Object-Orientation and Harmony-Orientation

Harmony-oriented programming challenges established and widely ac-
cepted object-oriented design principles [9]. such as strong encagsu-
lation. information hiding. and inheritance. and favors more’ flexible
and ah-hoc approaches for structuring and implementing programs.
Apart from presenting a discussion of harmonyv-oriented principles.
. this chapter introduces constructs of harmonyv-oriented programs and -

a Smalltalk-based runtime and development environment.

% -

4.1 Principles of Harmony Orientation

Harmony, resonance, and context are three key col(cepts found in Asian
. (in particular Chinese) philosophy. These three concepts are the basis_
of the prinéiples of harmony-oriented programming. which are denoted
as balance. ezposure. spaciality. information sharing. and information
diffusion. Figure 4.1 illustrates the relationship. of the three kev con-

cepts with the principles of harmony-oriented programming.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 31

ﬂ-—'—-————-———-———1 {7
Harmony ‘L Resonance ' Context \
Information
Sharing

y v

- -

Information l

Balance Diffusion

Spaciality Exposure

Figure 4.1: Principles of Harmony-Oriented Programming

4.1.1 Balance ’

The balance principle is inspired I;)' the concept of harmony and refers
to balance of data production and comsumption. The overall goal of a
harmony-oriented program is a balanced state, which is achieved when
any data produced by one part of the program is consumed by one or
more other parts of the I)l'()“'l‘alll.'F(Jl' example. if a part of the program
produces data that is not consumed, or a part wishes to (\ynauuw'mlam
that is not avallabl(‘ the program is in an imbalanced st dh.. ' . ¥ o
i

4.1.2 Exposure U N

The design of gbject-oriented programming and other programming
languages is based on the principle of ellt'apmllariuﬁ. Unlike encapsu-
lation, the exposure principle (figure 4.2) suggests decomposing a pro-
gram into pieces called snippets, without the need to encapsulate these
pieces using constructs with well defined boundaries, such as modules.
functions, and objects. Hence, snippets do not conform to or expose
any specific interface. However, the code inside snippets can contain
constructs based on the encapsuldtion principle. In the simplest case,

a snippet is a single statement.

I) =]

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 32

class X

{

private foo foo

..method bar(x) {]
temp = 20 '—Vﬁ temp = 20

foo = temp + x foo = temp + x

}

Li."-.--.-.“;“ . .

Figure 4.2: Exposure Principle

4.1.3 Spaciality

" The spaciality principle (figure 4.3) suggests that every part of a pro-
KN gram is assigned to one or more locations in a virtual space.
Snippet A
-, [
—— Snippet B
M
-+

Figuge 4.3: Spaciality Principle
-'. -

Related parts of 4 program are positioned close to one another to form
a specific context. For example, snippets that implement a user in-
= -

terface are placed in one another’s vicinity to form a user interface

-

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 33

context, and snippets that implement a certain part of business logic
are placed somewhere else to form another context. Certain snippets
can be assigned to both example contexts to serve as a bridge between

user interface and business logic.

Spaciality can be considered as an alternative to hierarchies of program

entities like the object hierarchies found in object-oriented prograins.
4.1.4 Information Sharing and Diffusion

The information sharing principle suggests that all data is shared be-
tween the pieces of a program. This principle facilitates resonance be-
tween program parts, as one part of the program can react to changes

made by any other part of the program.

Snippet A

Snippet B

Figure 4.4: Information Diffusion Principle

Diffusion is a gradual process in which a substance is spread over a

space over time. The information diffusion principle (figure 4.4) states

"

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 34

that data or a description of the data gencrated by any part of the
program is diffused throughout the virtual program space. Data has
an associated intensity that decreases the further it is diffused. The
combination of the diffusion and spaciality principles ensures that data
generated by onc code snippet (or the description of that data) reaches

other code snippets that are located close within the virtual space first.

4.2 Harmony-Oriented Programs

Figure 4.5 illustrates the anatomy of harmony-oriented programs.

Substance

"Account Observer”
space observe: Account do:[:acc!
log show: 'New blance : ',
acc balance asString.

"Account Subject”
state type: Account.
state balance: 100.
state deposit: 50.5.
state withdraw: 20.

Figure 4.5: Anatomy of Harmony-Oriented Programs

. A harmony-oriented program consists of virtual spaces with two or
more dimensions that contain spefial corfstructs. Spaces serve as the
runtime environment of the harmony-oriented program. Each spatial

construct is assigned to a specific location in a space and can interact

[- 2 vy

- - " .

*

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 35

with the space by putting data into and consuming data from its loca-

“tion. Spatial constructs are only aware of the space containing them

and cannot see or intcract with other spatial constructs. Whenever a
space receives data from a spatial construct. it automatically diffuses
it by generating a virtual substance. Because of the diffusion. the data
eventually reaches the locations of other spatial constructs. which then
can consume the data. Hence. the diffusion process facilitates indirect

. ki N
data exchange between the spatial constructs inside a space.

In addition to spatial constructs. concrete harmony-oriented program-

ming languages and runtime environments can choose to support object-
-~

‘oriented constructs like classes and objects for the purpose of realizing

abstract data types and accessing existing application pl.'ogrmnming
interfaces. As a result. harmony-oriented programming can be realized
as an extension to object-oriented programming. However. when writ-
ing harmony-oricnted programs. the primary decomposition is always

in terms of spaces and spatial constructs. and not objects.

The following scctions provide a detailed description of spatial con-

structs, spaces. and-diffusion.

4.2.1 Spatial Constructs

-

Spatial constructs are program constructs that arc assigned to a lo-
cation in a space. As mentioned above. spatial constructs can only
intecract with the space containing them and not with other spatial

constructs directly. In particular. spatial constructs can:

e Put data into its location in the space.

e Consume data from its location in the space.

A

%

Py ,
' 4
CHAPTER 4. APPROACH I: HARMON Y-ORIE.}F_TATION - 36

e Observe data inside its location in the space.

— "

Spatial constructs cannot move themselves: They are placed into the
space by software developers who can move them around while the

harmony-oriented program is running.

Snippé{s "

The most important spatial construct is the snippel. As the principle
e Y
of exposure suggests, a snippet is a piece of source code that is not

encapsulated using a construct with well-defined boundaries.

In the simplest case, a snippet is a single statement or a list of state-
ments. Like objects, snippets can maintain a state. However, objects
use encapsulation and information hiding to is,(‘)latc their state from
;

other I}artn‘ of the program. The state of a snippet, on the other hand,
is owxﬁzf— f)y the space containing the snippet; and, like any other data
placed into the space, is diffused -andethus available to other spatial
constructs. ‘ '

Diffusion Barriers _

»

.
. - - . T) . .

Diffusion barriers are spatial constructs that block or weaken diffusion.

Programmers can use such spatial constructs to exercise fine grained

control on diffusion within a space.

» -
.

Lo

Hole Constructs R

Holes are spatial constructs that consume data from their location and

place it somewhere outside the space containing them.-For example, a

hole ‘construct can be used to allow a space to leak data into another
space enclosing it. Hole constructs can be unidirectional or bidirec-
tional. An bidirectional hole can be used to facilitate data exchange

between spaces in both directions.

.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 37

Hyper Constructs

Hyper constructs are spatial constructs that can be assigned to more
than one location in one or more spaces. Possible hyper constructs
are aspect-like snippets that can observe and affect multiple locations

within one or more spaces.

4.2.2 Spaces

Spaces can have two or more dimensions and serve as a runtime en-

vironment for spatial constructs. In particular, spaces are responsible

for maintaining and diffusing data generated by spatial constructs.

Subspace

Figure 4.6: Space with Sub-Space

. o

Spaces can be treated as spatial constructs themselves. As a result it
is possible to construct flexible hierarchies of spaces (or hyper-spaces).
Figure 4.6 shows a harmony-oriented space containing one snippet and
one sub-space. Like other spatial constructs, the sub-space can moved

appund by software developers, and can generate and consume data.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 38

Data generated or “leaked” by the sub-space is diffused in the par-
ent space. Developers can place hole constructs into the sub-space to

specify which data is leaked into the parent space.

Space Data

Harmony-oriented programs use dynamic tvping and support data tag-
ging. Tags are used by spatial constructs to describe and filter data.
When a spatial construct puts data into the space. it is stored in the
same location the .spatial construct is.in. For example. if the location of
a spatial construct is (30, 50) in a two-dimensional space. then this lo-
cation contains the state of the spa;tial construct. and initiallv all data
the snippet explicitly puts into the space (before diffusion begins). If a
spatial construct puts several values of the same data type into a space.
the location stores the various values. As a result. no data generated
by a spatial construct is ever discarded and spaces can be considered

as the memory ¢f a harmony-oriented program.
Substances and Diffusion

Spaces use so-called virtual substances to diffuse the state of and data
produced by spatial constructs. Each time a new spatial construct is
created. the space generates a corresponding substance in the same

location.

Figure 4.7 shows two substances and their corresponding spatial con-
structs (snippets). A substance absorbs all data the spatial construct
implicitly or explicitly produces. and the space starts diffusing it af-

ter it absorbs data for the first time. The diffusion process gradually

increases the arca covered by the substance. At its origin. substances

-have a very high intensity, which decreases when going towards the

edges. For example. the substance in the upper left area of figure 4.7

s

{’r

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 39

might have an intensity of 1.0 at its center and intensities between 0.5
and 0.0 in area Where it overlaps with the other substance correspond-

ing to the spatial construct on the lower right.

Space put:50

X = space number
print x

Figure 4.7: Substances and Diffusion

As shown in figure 4.7. the diffusion process eventually increases the
extent of the substance so far. that it covers the locations of other spa-
tial constructs. Once this happens. the space makes the data carried by
the substance available to those other spatial constructs. In particular.
when a spatial eonstruct requests data from the space for consumption
or observation. the space goes through the substances covering the
spatial construct’s location and selects and passes a matching data. If
more than one substance contains data matching the requirements of
the spatial construct, the space selects the data from the substance with
the highes;t intensity value at the spatial ‘izonst.rhu(:t's location. This se-

lection process can be considered as a competition between substances.

ol

:._‘\.‘_

.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 40

The knowledge that the substance with the highest intensity is always
favored. allows programmers to change the semantics of a program by
adjusting diffusion parameters. such as setting the diffusion strength

for a substance generated for the data of a specific snippet.

The example shown in figure 4.7 illustrates a two-dimensional space
with three snippets. The upper left and lower right snippets both put
a number into the space (50 and 20 respectively). The space generates
corresponding substances and diffuses them. As shown in the figure,
the diffused substances both reach the center snippet. which consumes
a number from the space and outputs it to the console. Since the
lower right snippet is closer to the center snippet. the intensity of its
substance is higher than the intensity of the substance corresponding
to the upper right snippet. As a result, the space passes the number

20 to the center snippet that outputs the number to the console.

-

4.3 Harmony-Oriented Smalltalk

Harmony-Oriented Smalltalk (HOS) [33] (fgure 4.8) is a harmony-
oriented runtime and visual development environment that allows pro-
grammers to implement harmony-oriented programs written in Squeak
Smalltalk {7. 42, 18]. a dialect of the Smalltalk programming language
[59]. The visual development environment is based on Morphic [88. 64]
and . provides f)rogrannpers with tools for inspecting spaces. editing

snippets. changing diffusion settings and debugging.

Since HOS is based on the Smalltalk programming language. program-
mers have access to a vast object-oriented librarv providing network-
ing, file access, and multimedia features. However. when constructing

harmony-oriented programs. the primary decomposition is always in

-

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION = 41

v

“t produce numbers and strings” [

“t proguce numbers and strings® T1EE
space put: 22; = | P
" put 99; = t s
ut: ‘Se an'. -
“I negate numbaers® P S’T T o

8ix

B 0.5622720255126 1.
BT 0.1557300090789 | |

“i[ByteString.>'Sebastian” 711

Figure 4.8: Harmony-Oriented Smalltalk

terms of spaces and spatial constructs. and not classes and objects.

even though those are available.

The following sections provide an informal description of the HOS run-
.time and visual development environment. An initial semantics for

Harmony-Oriented Smalltalk is introduced in appendix A.
4.3.1 Runtime En.vironment Overview

The HOS runtime environment provides an object-oriented interface
for creating and runnixig ha.rmoﬂy—oriented programs consisting of two-
dimehsional spaces and snippets. In theory. harmony-oriented pro-

;’gramming is not limited to two-dimensional spaces and snippets. but

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION < 42

the current’ version of HOS does not yet support other spatial con-

structs or spaces with more than two dimensions.

HOS spaces provide and implement the following features:

e Snippet scheduling. The space is responsible for scheduling snip-

pet execution and controlling concurrency.

e Data management. The space is responsible for storing, diffusing

and delivering data.

e Debug Interface. The space allows programmers to start and stop

snippets and to observe and vhange its data.

In HOS, snippets are picces of plain Smalltalk code that are assigned to
a location within a space. Each time a snippet is executed, it receives a
collection of objects implementing the so-called snippet runtime inter-
face. These objects allow the snippet to exchange data with its space.
maintain wu- within the space. and to log messages. The snippet
runtime interface is covered in detail .ill section 4.3.2. Here. one of
these objects, which is namedspace. is considered to illustrate how to
implement simple snippets that exchange data with their space. The

space object provides methods for:

e Putting objects (data) into the space.

1

e Consuming objects (data) from the space.

e Peeking at / observing objects (data) in the space.

-

When snippets invoke methods of the space vbject to place data into
the space, they can attach one or more string tags. Listing 4.1 shows
a simple code snippet that puts three objects into the space.

LY

CHAPTER 4. APPROACH I. HARMONY-ORIENTATION 43

1|"Example Snippet 1"

2 |space put: 20 tag:'x'. ’
Jispace put: "Hello World! ",

4| space put: (TaggedData new

5 value:50;

6 addTag: "tagOne " :

7 addTag: "tagTwo').

Listing 4.1: Snippet putting objects into the space.
The first object is a number with a tag, the second object is a string
without any tags, and the third object is a TaggedData object that
contains another number with two tags. The methods provided by the

TaggedData class are summarized in section 4.3.3.

The methods provided by the space object for consuming data from the
space let the programmer specify the required data type (e.g. Object,
Number), required tags, and also allow passing a Smalltalk code block
that can be used for implementing more advanced matching. These
methods either consume a single matching object or set up a loop for
consuming all availahle and future matching objects. Furthermore it
is possible to instruct the space to wait for a specific combination of

multiple objects (a set) and then consume it.

ot

"Example Snippet 2" |

space consume: Number do:[:mun|

log show: nun asString.

= s bk

-

Listing 4.2: Snippet consuming numbers.

Listing 4.2 illustrates a snippet that consumes all number objects. List-

ing 4.3 demonstrates a snippet that uses a DataDescription object to

CHAPTER 4. APPROACH I. HARMONY-ORIENTATION 44

consume all strings containing more than ten characters. Like Tagged-

Data, the DataDescription class is covered in section 4.3.3.

1" Example Snippet 37

[{%]

| description |

o
(]

description := DataDescription new

4 type: String:

L]

addTag: "Name " ;

. constraint :[: val| val size > 10].

+

- &

space consume: description do:[:str| log show: str.|.

Listing 4.3: Consuming strings with more than ten characters,
L

A

4.3.2 Snippet Runtime Interface

The snippet runtime interface is realized by three objects denoted as
space, state, and log, which are available as soon as a snippets begin

execution. These three objects provide a means for snippets to access

the space, their state, and their log.
Log Object

The log object provides a method called show: method for outputting
a string on the sn'ip])('t’s log. Each snippet lm{ a private log that can

be viewed by opening the snippet’s console window (see section 4.3.6).

The code in listings 4.2 and 4.3 illustrate usage of the log object.

*,

State Object

As explained in section 4.2.1, the state of a stippet is owned and dif-
fused by the space. The state object provides a means for a snippet to
access and change its state. In particular, snippets can change the data

type of their state dynamically. For example, it is possible to change
£

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 45

the type of the state to OrderedCollection . and then treat it like a
normal Smalltalk OrderedCollection object. The difference to using an
OrderedCollection object directly is that all changes are delegated to
the space automatically. which then diffuses the updated state. Apart
from (Tllﬂllgil‘lg the type of their state. snippets can add tags to the

state describing its contents.

Listing 4.4 shows how to dynamically change the type of the snippet

state to OrderedCollection and then add three entries to the collection.

"State Example”
state type: OrderedCollection.

state add: "Hello';

= L N =

add: “Harmony—OQOriented ":
add: "World '.

e

Listing 4.4: Changing tvpe and contents of snippet state.

Space Object

The space object facilitates interaction with the space containing the
snippet. In particular, the space object provides methods for putting
data into and consuming data from the space. The most important

methods of the space object are:

e consume: aDescription
Consumes one object matching the specified description from the
space. The description parameter can either be a class name,
such as Object or Number, a tag, or a data description object.
If the enclosing space does not contain a matching object in the
snippet’s location, this method blocks and only returns when a

matching object arrives via diffusion.

"HAPTER 4. APPROACH I: HARMONY-ORIENTATION 46

e consume: alescription do:aBlock
Consumes all objects matching the specified description. This
method observes the snippet’s location in the space and whenever
a matching object arrives, the specified code block is evaluated
with the matching object as parameter. After evaluation, the
object is marked as consumed and discarded. See listing 4.2 for

an example.

o consumeAll: aBlock
Consumes all objeets arriving at the snippet’s location in the

space.

o consumeSet: tttdList do:aBlock
In certain cases, snippets might want to consume multiple objects
at the same time. For example, consider a snippet that performs
a repeated calculation that requires a two numbers as input for
each iteration. Lets assume a space containing one or more snip-
pets that produce various kinds of numbers where each number is
tagged with either 'x’ or 'y’. In order for the snippet performing
the calculation to retrieve one number tagged 'x’ and one number
tagged 'y' from the space, the consumeSet:do: method can be

used as illustrated in listing 4.5.

e observe: aDescription do:aBlock
This method is similar to the consume:do: method. It evalu-
ates the specified code block for all objects matching the speci-
fied description, but does not mark the object as consumed after

evaluation and discards them.

e observe: aBlock
This method passes all objects arriving at the snippet’s location

in the space to the specified code block, and retains them after

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 47

O]

N

the code block is evaluated.

-

o retrieveLatest: aDescription ifAvailable: blockl else: block?

This method is different from the previous methods for observing
and consuming objects, because it does not block until match-
ing objects arrive. This method inspects the snippet’s location
and searches for the most recently arrived object matching the
specified description. If a matching object is found, the first code
block is evaluated with the object as a parameter. If no matching

object is found, the second code block is evaluated.

put: anQbject

Puts an object into the space. The object can be any Smalltalk
object. When the method processed the passed object, it creates
a TaggedData object and places it in the space. If the passed
object is a TaggedData object, this method passes it through to
the space without ;lliikillg any modifications. The third line of

listing 4.1 illustrates usage of this method:

put: anObject tag: aString
This method is a convenience method that creates a TaggedData

object from a Smalltalk object and a specified tag. and then puts

it into the space.

"Example Snippet 47

Al *

space consumeSet:{'x'."y"} do:{:x :y|

log show: (x+y) asString.

feting A B Qni I % roanba nl el S ke ¥
Listing 4.5: Snippet consuming sets of objects.®,

-

T — e

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 43

4.3.3 Data Des'c'riptions and Tagged Data

As explained in section 4.3.1, the HOS runtime environment provides
two classes for defining data descriptions and tagged data: DataDe-

scription and its subclass TaggcdData.

Instances of the DataDescription class are used by snippets to describe
what kind of data they would like to receive from the space. The meth-
ods of this class allow specification of type, tags, and Smalltalk code
blocks implementing customized comparisons. Instances of the Tagged-
Data class are used e..tpli(;ir,ly or implicitly to wrap data snippets put
into the space. Listing 4.1 contains an example for using the Tagged-
Data class and listing 4.3 illustrates the usage of the DataDescription

class.

The most important methods of the two classes are:

e DataDescription > addTay: aString

Add a new tag to the data description.

e DataDescription > tays

Return a collection containing all tags.

e DataDescription > type: aType
Set the type of the data description. The aType parameter can

. be any Smalltalk class.

e DataDescription >> type

Return the type of the data description.

e DataDescription > constraint: aBlock
Specify a Smalltalk code block that can be used for customized
comparisons of a data description with other objects. See line 6
of listing 4.3 for an example.

i

CHAPTER 4. APPROACH I:t HARMONY-ORIENTATION 19

o DataDesceription > constraint

Return the constraint code block.

o TuggedData > wvalue: aValue

Sct the value (data) of a ragged data object,

o TuggedDate > value

Retum the value {data) ol a tagged data object.
4.3.4 Snippet Scheduling

The spaces of the HOS rantime use lightweight (green) threads for
controlling concurrency of snippet ('x('(-Tltiun. Generally, whenever a
suippet is created or changed. it is antomatically (re-)compiled and
then scheduled for exeention. Spaces provide methods that program-

mers can use Lo start, stop, restart and discard snippets,
4.3.5 Data Management and Diffusion

Data exchange in harmony-oriented programs is facilitated via diffusion
of substances that represent all data a snippet has pat into its enclosing
space. In HOS a substance is essentially a data quene with an asso-
ciated intensity. Whenever a snippet pats an objeet {data) into the
space, it is stored info the data guene of the corresponding substance
amed information abont all data inside the guene is dittused throughout

the space.

For performance reasons, HOS spaces do not continuously perform dif-
fusion at all times, Each snippet has a specific “diffusion [hnit™ thai
can be set by the programmers. One the limit is reached. diffusion of
the corresponding substance stops and remains at its current level, As

a resnlt, diffusion only oceurs nft,nglw following cvents:
———

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 50

e When a snippet puts data into the space for the first time.
e After a programimer manually resets the diflusion.

s When the position of a snippet changes,

The HOS runtime enviromnent is designed to support varions diflusion
algorithms and strategies, and provides facilities for ranning diffusion

at different speeds for visualization purposes.

S The default diffusion algoritlon used by the HOS rundime is a combi-
uation of the general diffusion equation deseribed in [195] and o distance
function over locations and snippets in order 1o enhance performance.

The equation in [45] is:

!f.f:

.---l'—'

1
Z lu +fr!hru(ru1] (1“
[

In the above equation, S, ,, stands for the intensity of a given substance

S and at the position {ror) in o given Beld, and g (e,) vepresents the

L&l

kth nearest neighbor of {x. v).

The equation above can also be written as {ollows: ’

h'.r,y = (l - f'rf)‘s‘,a‘,;;+ -
%(‘S‘J' 1.y + S.r‘l L.y + H,r.y | + 'L".r.y+ I]‘

It is important to note that any diffusion algorithm (or combination
of algorithmms) can be used instead without aflfecting the functionality
of the HOS runtime enviromment. However, since Smallialk is slow
in comparison with languages like C, it s desirable to use efficient

algorithis.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 51
4.3.6 Visual Development Envirominent

Harmony-Oriented Smalltalk provides a complete visual integrated de-
velopment environment called HOS IDE. Programmers can create spaces
and snippets via drag and drop, and examine and change the state of
harmony-oriented programs. In particular, the HOS IDE provides the

followty feat ures:)

Create spaces and snippets via drag and drop.
e [Sdit, start, stop. and delete suippets

e Scroll and zoom the contents of spaces. Center the seroll view on

specilic snippets.
e Sct diffusion parameters, such as diffusion type and limit.

e Scleet locations (cells) of the space and inspect and l'lli{j{g(‘ heir

data.

The following sections provide an overview of the main features pro-

vided by the HOS IDE.
Creating Snippets And Spaces

When opening the HOS image, a toolbox (parts bin) for creating new
spaces and snippets is shown in the upper lelt corner of the sereen
(Agure 1.9). New spaces and snippets can be created by dragging the

corresponding icon to the screen.

Snippets can also be created by left clicking a location in a space. A
new HOP parts bin can be programmatically opened by executing the

following code in a workspace:

CHAPTER 1. APPROACH I: HABRMONY-ORIENTATION 02

Space Snippet

Fignre 1.9 HOP Parts Bin

HopPartsBin new openlnWorld.

Space Context Menu

The space context menn is shown when clicking o location i a space,

It provides the following options:

¢ Create Suippet.

Create a new snippet in the selected location,

e [nspect Loceation.
Open an inspector window that allows the programiner 1o view

and manipulate data at the location,

Figure 4.10 shows an open location inspector for a cell that comains
two substances. The upper part of the inspector shows all substances
available at the location. For cach substance, the location inspector
displays its color and intensity, which has a value between 0.0 and 1.0,
The lower part of the location inspector shows the contents of the sub-
stance, which is a simmary of all unconsimmed data the corresponding
snippet has put into the space. It is possible 1o select those values and

inspeet them using Squeak’s defanlt object inspector.

The location inspector allows programmers to inspect and change the
data, and to find oul what kind of data a newly created snippet in the

selected location could consume. The substances are ordered according

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION = 53

= D\‘; | - =

s 7 0.1748982667922
EN0.1671778261661 |
Smallinteger->22 b

L >

| Inspect Selected Data |

L

Figure 4.10: Location Inspector .

to the values of their intensitics. As explained in section 4.2.2. the
higher the value of the intensity the higher is priority the space uses
for passing data to a snippet. if mwultiple substances provide data that

matches the kind of data a snippet wishes to consume.
Space Main Menu

The space main menu (figure 4.11) is opened by clicking the menu icon

in the upper right corner of a space. It provides the following options:

e Hide / Show Grid

Hide or shows a grid indicating the locations (cells) of the space.

~

e Hide / Show Diffusion

Hide or shows diffusion of substances.

e Snippets (Submenu)

A submenu for sclecting a specific snippet. After a snippet is

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 54

'Hide Grid X
iHide Diffusion =l
Show Data Flow | =5

Snippets {"Producer 2"
_25% "‘Examp!e 3"
'50% "Example 2"
75% ‘“Example 4"
1100% "Example 1"
1150% !
1200% |
'300%

Figur;c 4.11: Space Main Menu

o

selected the space scrolls automatically to ensure the snippet is

visible.

e Zoom
The zoom options allow the programiner to zoom the space. The

maximum zoom is 300 percent and the minimum zoom is 25 per-

cent.

Snippet Context Menu

The snippet context menu is shown when clicking a snippet inside a

space and provides the following options:

e Pick Up

Pick up the snippet (start dragging the snippet). -

e Hide / Show Label
Hide or show a label displaying the first line of code of the snippet.
The sample programs shown in this paper follow the convention
that the first line of cach snippet is a comment that names or
describes the purpose of the sni‘ppct.

. ' e
A

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION D5

e Hide / Show Console
Hide or show the console of a snippet. Any log messages a snippet

generates are displayed in its console.
e Inspect Location

Open an inspector window that allows the programmer to view

and manipulate data at the location of the snippet.

e [nspect Diffusion
Open an inspector window that allows the programmer to view

and set diffusion parameters for the snippet.

o Ldit

Open an editor for changing the snippet code.

e Delete

Delete the snippet.

e Run / Stop

Starts or stops the execution of the snippet.

Figure 4.12 shows the snippet console. It displays all log entries snip-
pets produce by sending the show: message to the log object. The

snippet console provides a menu that allows clearing all log entries.

The diffusion inspector window (figure 4.13) allows programmers to ad-

just diffusion parameters for the substance associated with the selected
!

snippgt. When opened, the diffusion inspector shows the selected dif-

fusign type and the current level (progress) of diffusion.

The

programmer can set the diffusion type to “quick” or “slow”. The

formper instructs the space to perform diffusion as quickly as possible,

andf the later instructs the space to perform diffusion slow enough that

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION 26

‘7;Examp¥e >

20
50

e

4

Figure 4.12: Snippet Console

"l produce numbers” I

= _ =11
Diffusion Type: |Quick. Y QuickJ

} Siow |
Diffusion Level: [T

Figu-re 4.13: Diffusion Inspector

-

programmers can watch its progress. The “slow™ option is provided for

visualization/demonstration purposes.

The diffusion level indicates the current progress of diffusion. Pro-
grammers can use the slider to adjust the diffusion level manually. As
a result, the diffusion level both serves as progress indicator and limit

for the diffusion of the substance corresponding to the selected snippet.

The snippet code editor shown in figure 4.14 is similar to standard
Smalltalk workspaces and provides basic editing features. When the
programmer presses the Apply button. the snippet code is compiled

and executed immediately.

CHAPTER 4. APPROACH I: HARMONY-ORIENTATION

[©xomple 3 |

iy |
-1

o«

“Example 3~
|description)
description : - DataDescnption new
type: String,
addTag:'Name',
cansttant { val| val size = 10|
spare cohsume. descrniptinn do.[stri
log show skr.

3

Close ' Appty

Figure 1.1.1: Snippet Editor
4.3.7 Decbugging

HOS snippets can be debngged like any other Smalltalk code. If an
error oconrs or the snippet sends the Aaft message toitsell, the standard

Squeak debugger window is shown.

4.4 Summary

This chapter introduces the first resonance-oriented software develop-
ment approacl: harmonyv-oriented prograinming. The first part of the
chapter describes the principles of harmonyv-orientation and the con-

ceptual structure and constructs of harmony-oriented programes,

The second half of the chapter introduces HOS. a Smalltalk-Dhased
harmony-oricnted runtime and visual development environment. The
deseription of HOS covers details of programiuing interfaces and the

main elements and features of the visual developiment environment.

O End of chapter.

Chapter 5

Approach II: Epi-Aspects

This chapter proposes a second resouance-oriented approach called -
aspects [30]. The epi-aspects architecture is based on aspect-oriented
programning [57] and conscientions software. Its goal. and that of con-
scientious software, is to allow the separation of the core application
functionality (the allopoictic part} from the monitoring, regulation.
ad error recovery concerns, as provided by the antopoictic part. The
epi-aspects architeeture is the first concrete realization of the theorer-
ical notion of conscientions software envisioned by Gabriel and Gold-
man. Since conscientious software consists of distinet allopoictic and
antopoietic parts. aspects are a natural choice for “gluing” the two

parts together to form a conscientious system.

The proposed architectire (Rgure 5.1) consists of three portions: the
allopoictic part (relerred to as the application), the antopoietic svstein.
and epi-aspects, which arve the glue that binds the other two portions.
Epi-aspects are able to advise on join points in both the application and
atttopoictic systenl, and so fa('ilitat&“ resonance and feedback. and assist
the autopoietic systemn in keeping the software in a harionious state,
In particular, they extend the application with functionality required

for evaluating its health, and for performing adjustments requested by

S

CHAPTER 5. APPROACH II: EPI-ASPECTS 59

the autopoictic system. Such extensions include functionality for test-
ing. upgrading, cloning. restarting. and killing allopoietic components.
As a result, epi-aspects can be used to upgrade existing applications
into conscientious software in a non-invasive manmner.

Autopoietic System Application (Allopoietic)

Component

Autopoietic
Instance

Component

Autopoietic
Instance

’ Epi-Weaver |
Epi-
"LJJ ' Aspect

Figure 5.1: Epi-Aspects Architecture

This chapter describes the conceptual design of epi-aspects and pro-

poses a concrete framework for developing epi-aspects in Java.
5.1 Proposed Architecture
The epi-aspects architecture (fgure 5.1) consists of three portions:

e An application (the allopoietic system) that implements some de-

sired functionality.

CHAPTER 5. APPROACH II: EPLASPECTS G0

o An autopoictic system, responsible for keeping the system running,

smoot hly.

o Lpi-uspeets, which act as a bridge between the other two portions
by extending the application with functionality related to self-

sustainment . such as test routines and maintenance function.

The following sections provide a detailed deseription of the proposeed
epi-aspects architecture. Section 5.1.1 covers the allopoictic applica-
tion, section 5.1.2 ilustrates the features and behavior of the autopoi-

etic systemn, and section 5.1.3 deseribes the anatomy of epi-aspoeet s,
5.1.1 Allopoietic Application

This portion of the proposed architecture is a traditional application.

stuch as a content manapgement system. No alteration of this application

is necessary since all conscientious functionality is encapsulated in the

other two portions of the system. This chapter assumes object-otiented
,

or component-based applications and the terw application calidy s

used to refer to an instance of an object or component.,

5.1.2 Autopoietic system

The autopoictic system is a network of instances that constantly ob-
serves itself, its environment, and the state of the application, which
is exposed by epi-aspects. In case of any problems. sueh as errors
in the application, the antopoietic system makes gqueries. and recom-
mendations to correct the problem. The antopoictic system does not
employ artificial intelligence: software developers explicitly implement
the ('un(liti-(ms for triggering antopoictic reconunendations and queries.

CHAPTER 5. APPROACH II: EPI-ASPECTS 61

Queries are used by the autopoietic system to monitor the health of
the application. Recommendations are made cither routinely, or based
on the result of a query. Both recommendations and queries can be de-
fined and customized by the developer of the autopoietic system. The
proposed architecture provides a core set of ecach. as listed in table 5.1

(recommendations) and table 5.2 (queries).

Start, Stop, Create, | These suggestions are directed at application enti-
Destroy, Clone ties.

Update Recommends to update the application software.
This can be directed at the whole application or
application entities.

Revert After a software update, the antopoietic system
an advise the application to revert to the previons
version. This recommendation is used if a prob-
lematic software update is applied.

Test Recommends to test an application entity.

Custom This recommendation allows the autopoietic sys-
tem to advise the application to perform a custom
task.

Table 5.1: Autopoictic Recommnendations

In order to facilitate epi-aspects, which implement advice for recom-
mendations and queries, the autopoietic system includes an internal
3 - . r - “
run-time weaver for epi-aspects, called the epi-weaver. The epi-wdaver

* It

depends on the programming language used to implement the gpi
L -

aspects, because not all programming languages provide compatible

approaches for invoking methods or routines. In order to support a

specific programming language, a customized weaver has to be devel-

-

e
et

%
CHAPTER 5. APPROACH II: EPI-ASPECTS 62
Reveal This query indicates that the autopoietic system requires in-

formation about specific application entities or the applica-
- tion as a whole. For example, in order to evaluate the health
of a component. autopoictic instances have to be able to ex-
amine its internal state.

Speed This query indicates that an autopoietic system wishes to
) obtain infortiation about the current speed (performance) of
a certain application centity.

Custom | Allows specification of custom queries. The purpose of cus-
tom querics is to provide a flexible mechanism for extending
the autopoictic system.

Table 5.2: Autopoictic Querics

oped and integrated with the autopoietic system.
5.1.3 Epi-Aspects

The purpose of cpi-aspects is to facilitate resonance and feedback by
making the application visible to and controllable by the autopoietic
system. In particular. cpi-aspects are responsible for implementing
sclf-sustaining concerns and any functionality required for smooth in-

teraction between the autopoietic svstem and application.

Since epi-aspects crosscut the autopoietic system and application. they
support two types of advice. The first type advises on recommendations
and queries of the autopoictic systemr. and performs required tasks.
such as testing and other maintenance. The second tvpe advises on join

points in the application and is responsible for keeping the autopoictic

_system updated on the application’s status and performance.

Each epi—a}spcct contains:

CHAPTER 5. APPROACH II: EPI-ASPECTS 63

1. An epi-quene. which is used to dispatch information from epi-

aspects to the autopoictic system.

2. Application advice, which are respounsible for providing feedback
on the application’s health to the autopoictic system. This feed-

back is passed to the autopoietic svstem through the epi-queue.

3. A mechanism for defining advice on autopoictic recommendations
and querics. Such query advice and recommendafion advice per-
form maintenance or update operations according to suggestions

by the autopoictic system, or to provide information to satisfv an

autopoictic query.

As epi-aspects implement advice for both application and autopoictic
system. they have to be woven twice by different weavers'. One weaver
is responsible for weaving application advice during compilation or at
run time. The other weaver is the epi-weaver of the autopoictic sys-
tem. For example. let’s consider an epi-aspect denoted as Dafabase Epi-
Asp;cct. which is part of an upgrade to turn an application using a
databasc into conscientious software. The-application advice of this
epi-aspect are 'woven into the code of the application’s database engine
.
during compile-time, and the recommendation and query advice are

woven ‘into the autopoictic system during run-time.

Epi-Messages and Epi-Queue

The autopoictic system and cpi-aspects communicate by exchanging
epi-tnessages, which consist of the attributes shown in table 5.3. The
autopoietic system can pass epi-messages as parameters to recommen-

dation and query advice implemented by epi-aspects.

! Aspect weavers combine aspects and the code they advise on.

JHAPTER 5. APPROACHIE: EPLASPECTS G4

Sender, Both auntopoictic instances ard application entity can acts as
Receiver | sender and receiver.

Type Indicates the type of the epi-message. Can be one of the
following:

o Parameter: Epi-message is passed to an antopoictic rec-
ommendation or query advice as parameter.

e Answer: Lpi-message is an answer (o an autopoictic
query.

e Feedback: Epi-message contains feedback regarding the
allopoietic application.

e Error: Epi-message reports an error that occurred in
. . - . i
the allopoietic application.

e Epi-Error: Epi-message reports an error that occurred
in an epi-aspect.

Contents | Contains the contents of the message. The format of this
message could be anything from strongly typed data over
XML to natural language. The only requirement is that both
autopoictic instances and epi-aspects are able to interpret this
format.

Table 5.3: Epi-Message Attributes

Each epi-aspect has access to an t*p'i.-qm'm'.‘ which can be used to dis-
patch information to the antopoictic system. Before an epi-aspect is
woven into the autopoietic system, it merely contains a stub for the epi-
quene that does not contain any functionality. When the epi-weaver
processes an epi-aspect, it does not only weave recommendation and
query advice, but also injects a conerete implementation of the epi-
queue. This approach ensures that epi-aspects do not depend on the

concrete realization of the autopoietic system. .

]

CHAPTER 5. APPROACH II: EPI-ASPECTS i

Application advice

Application advice (table 5.4) are defined on joint points in the al-
lopoietic application. Their purpose is fo observe one or more specilic
application entitios and to expose their state to the antopoietic environ-
ment. Depending on the join point it advises on. the implementation
of an application advice gathers and optionally forwards information
1o the autopoietic system. Information is dispatched to the antopoietic

system via the epi-quene,

Existing aspect-oriented programming languages, such as Aspect) [H6],
provide suflicient pointeut primitives to deseribe most of the applica-
tion join points required by epi-aspects. As a resull, epi-aspects can
be realized as an extension of existing aspect-oriented progranuming,

languages.

The following application-level joinpoints are required by the epi-aspeat

architecture:

Create: Creation of o new application entity, such as the con-

struction of an object.

e Destroy: Destruction of an application entity, such as a compo-

nemt or ohject.
o [rror: Unexpected errors or exceptions.
o Invocation/Frcention: ITnvoeation and execntion of methods.
e Foent: livents, in an event handling system.
e Set: Selting of a variable or property value,

Table 5.4 provides the details of how a selection of the application

advice might be used.

CHAPTER 5.

APPROACH II: EPI-ASPECTS 66

Srror

Creation

Performance

Advice for errors or exceptions gather as much informa-
tion on the error as possible, including the source of and
reason for the error, and then dispateh this information
to the autopoietic system via the information queue. For
example, in the OIM service, error application advice can
be defined for exceptions thrown by the database engine
and XML-RPC service.

Advice for creation join points are responsible for inform-
ing the antopoietic system which application entities, such
as objects, components, and modules, exist. The autopoi-
ctic system uses this information to decide which entities
should be monitored.

Performance advice are invoked before and after certain
methods or procedures in the application. Their purpose
is to measure the execution time of methods and report
it to the autopoietic system. This allows the autopoietic
system to keep track of the application’s performance and
deteet possible timeouts.

Table 5.4: Application Advice

.

Query and Recommendation Advice

Query and recommendation advice implement maintenance and infor-

mation retrieval operations proposed by the autopoictic system. They

are woven into the antopoietic system by the epi-weaver at runtime.

Developers of a software system might implement recommendation ad-

vice to implement a unit test to verily the proper operation of a net-

work communication component, or to apply updates to the systen.

They may implement a query advice to implement an evaluator that

evaluates the performance (speed) of the network communication com-

ponent. That implementation would advise on the Speed suggestion.,

g and would help the autopoietic system to keep track of the size of the

workload on the network communication component.

L3
.

CHAPTER 5. APPROACH II: EPIFASPECTS 67

Query and recommendation advice consist of two portions:

e Header: Contains the attributes name and receiver-pattern. The
name attribute is the name of a predefined (see tables 5.1 and
5.2) or custom recommendation or query. The receiver-pattern
attribute contains a regular expression for matching the target

application entity.

o Implementation: Contains the allopoietic code for implementing
the requested action. It uses epi-messages as input and output pa-
rameters as a means for communication between the autopoietic

system and epi-aspect.

5.2 Epi-Aspects Java Framework

This section specifies a framework for developing aspect-oriented con-
scientions software in Java. This framework, which is called Epi-AJ,
provides an antopoietic simulator and constructs for implementing epi-
aspects in the Java programming language. The autopoietic simulator
includes a weaver for epi-aspects, and contains a logic engine based
on declarative rules, which implements the behavior of the antopoietic

system teseribed in section 5.1.2.
The Epi-AJ framework is designed as a supplement to Aspect-J [56].
Since version 5, AspectJ has supported the usage of Java annotations
[69] for defining aspects and advice. Epi-AJ provides a set of Java

annotations, which ‘allow the definition of antopoietic recommendation

and query advice. As a result, an epi-aspect can be implemented using
a comhjination of AspectJ annotations and Epi-AJ annotations. The

usage of annotations is convenient in a sense that it is not necessary
» < 1

D

CHAPTER 5. APPROACH II: EPI-ASPECTS 63

to use tools like the AspectBench compiler {5] to extend the grammar

of the Aspect.] pointcut language with new pointcut primitives for dpi-

aspects. Listing 5.1 illustrates the definition of an epi-aspect using the

combination of Aspect-J and Epi-A.J.

= W N

o~

©

10

12
13
14
¢ 15
. 16
17

"

@Aspect public class XMLRPCEpiAspect extends EpiAspect

{

execution (* XMLRPCService.run(..))"

@After (" this(s) && exccution (‘(MLRI’CSHVICO mw((..))")
public void newlnstance (XMLRPCService s) {/x...x/}

@Aft.or'l’hr(;wing(“ target (s) &&

_public void reportException (XMLRPCService s)
{/xooanf} ‘

@R(‘('.(‘;mm(‘ndatifmAdv'i(‘(‘ (recommendation="start™
ro(_:ilpiontl"attorn=“ A7)

public Epi;\'lvssaigo

start XMLRPCServer (EpiMessage message) {/=...=/}

-

Vi S ¥ 4

Listing 5.1: Epi-Aspect Example Code (Epi-AJ Framework)

The Epi-AJ framework is divided into threc Java packages:

+

1. The pax‘katr(‘ c(m.s('zentzous (’pm_; (shown-in figure 5.2) (ontams

-~the base classes and interfaces of the framework.

F

" 2. The packavo conscientions. cpmy annotations contains annotations

. for declanfg autopoletic recommendation and query advice in (‘pl—

aspects.

-

CHAPTER 5. APPROACH II: EPI-ASPECTS 69

3. The package conscientious.simulator contains the Java part of
the autopoietic sinulator, such as the implementations of the epi-

weaver and epi-queue.
Y
L]

5.2.1 Base Classes and Interfaces

As illustrated in figure 5.2, The Epi-AlJ framework provides the fol-
lowing set of base classes and interfaces for realizing epi-aspects, epi-

messages, and epi-queues: Epidspect, EpiQueue, and EpiMessage.

As described in section 5.1.3, epi-aspects and the autopoictic system
communicate by exchanging epi-messages. Each epi-aspect has access
to an epi-queue that allows them to dispatch epi-messages to the au-

topoietic systein.

The abstract class f£piAspect is the base class for epi-aspect implemen-
tations, EpiQuene defines the interface of epi-gquene implementations.

;and the class FEpi-Message is the implementation of the epi-message

. illust rated in table 5.3. /

The EpiAspect class. contains an instance variable whose type is the
EpiQueune interface. When an the implementation of an epi-aspoct is
_woven, the autopoietic system (or mlmpni(‘t_it- simulator) assigns a con-
crete epi-queue implementation to this instance variable. After that,
the epi-aspect illl])l(‘lll(‘lll-il!.i()ll‘ can start dispatching epi-messages to
the autopoietic system. .

The Epi-Message class contains four instance variables, which are equiv-
alent to the epi-message attributes Sender, Receiver, Type, and Con-

tents described in table 5.3.

CHAPTER 5. APPROACH II: EPI-ASPECTS 70

conscientious.epiaj

<<abstract>>
EpiAspect

#m_epiQueue: EpiQueue
<<interface>>
EpiQueue

+append(message: EpiMessage)

EpiMessage

+m_receiver: String
+m_sender: String

+m_type: int
+m_contents: Object

B e
Figure 5.2: Epi-AJ Base Classcs

5.2.2 Advice and Annotations

The Epi-AJ framework provides the following set of Java annotations
&~

for declaring recommendation and query advice:

e @RecommendationAdvice(name, receiverPattern)

@QueryAdvice(name, receiverPattern)

@RevealQA (receiverPattern)

@SpeedQA (receiverPattern)

@TestRA (receiverPattern) -

CHAPTER 5. APPROACH II: EPI-ASPECTS 71
e @UpdateRA %

o RevertRA((receiverPattern)
e @CloneRA(receiverPattern)
e @CreateRA / @DestroyRA(receiverPattern)

e @StartRA / aStopRA(receiverPattern)

All annotations have a receiverPattern attribute that can be used to
specify a regular expression for matching the class/epi-aspect at which
the autopoictic recommendation or query is directed. The @Recom-
mendationAdvice and @QueryAdvice annotations are generic annota-
tions that can be used to declare advice on any autopoictic recommen-
dation and query, including custom recommendations and queries. The
remaining annotations are provided for convenience and can be used
to specify advice on the pre-defined autopoietic recommendations and

queries described in tables 5.1 and 5.2.

As shown in listing 5.1, the implementation part of the recommendation
and query advice is a Java method that receives an EpiMessage object
as parameter and returns another EpiMessage object to the autopoi-
etic system. The EpiMessage parameter is set up by the autopoictic
system to specify details regarding the recommendation or query. and
the EpiMessage return value contains féedback or other information

for the autopoietic system.
5.2.3 Autopoietic Simulator

The Epi-AJ framework provides an autopoietic simulator that can be

used for developing and testing epi-aspects. This simulator consists

CHAPTER 5. APPROACH II: EPI-ASPECTS 72

of a runtime, an epi-weaver written in Java, and uses the Prolog pro-
gramming language [10, 89] to implement the rules of the autopoietic
system. Prolog is not an autopoietic programining language that is
specifically designed to prevent bugs that can lead 1o program crashes.
However, as the design of an autopoietic programming language is not
within the scope of this paper, Prolog is a suitable substitute for sim-
ulation purposes, because it is declarative and it is not casy to write a

Prolog program that crashes.

The autopoietic simulator can be invoked from a Java program by
creating and (‘(lllﬁglil‘illg an instance of the Sinulator class shown in
figure 5.3. Internally, the Simulator class uses the SWI-Prolog engine
[100] to simulate the behavior of the autopoictic systemn. Interaction
between the Simulator instance and the SWI Prolog engine is accom-
plished through the JPL (Java Interface to Prolog) API, which is part

of the SWI-Prolog distribution.

When a new instance of the Sumulator class is created. the calling
application provides a list of epi-aspects. During its initialization. the

Simulator instance performs the following tasks:

1. The SWI Prolog engine is initialized and the Prolog program(s)

mimicking the autopoietic systems are loaded.

2. An inst'nm{' of the Advice Repository shown in figure 5.3 is created.

3. An instance of the Weaver class is created and the list of epi-

aspects is passed to it.

4. The Weaver instance weaves the epi-aspects into the Advice Repos-
ttory instance. Moreover, it injects an instance of the EpiQueucimp
class, which implements the simulators epi-queune into each woven

epi-aspect.
3

W

CHAPTER 5. APPROACH II: EPI-ASPECTS 73

conscientious.epiaj.simulator

[y

' <<interface>>
- EpiQueuelmp f€---------———1 Epl

A A N

<<abstract>
EpiAspect

s Weaver / p
) 4 ®

Simulator

AdviceRepository > WovenEpiAspect

- SWI Prolog

LY

Figure 5.3: Epi-AJ Autopoietic Simulator

5. The Simulator instance issues the autopoietic recon®nendation

Start. which is dispatched to all woven epi-aspects.

Once the autopoictic simulator is running. the woven epi-aspects can
dispatch epi-messages to it via the EpiQueuel/mp instance. Whenever
an epi-message is received. the Prolog i)rogram(s) are invoked and the
result can be an autopoietic recommendations or query. Autopoietic
recommendations and qdcries are dispatched to relevant advice of the

woven epi-aspects.

o3

CHAPTER 5. APPROACH II: EPI-ASPECTS
5.3 Summary

This chapter introduces a second resonance-oriented approach called
epi-aspects. Apart from describing the conceptual architecture, Epi-

Al, a Java framework for realizing epi-aspects is introduced.

O End of chapter.

i

Chapter 6

Studies and Validation

This chapter describes studies aimc;l at supporting the hypothesis for-
mulated in section 1.5. The hypothesis states that. in comparison with
traditional object-orientéd programming. resonance-oriented software
design and development improves the case of dealing with the main
factors affecting software evolution: case of (hanvmp; a program's de-
sign and structure (changeability). extensibility. maintainability. qual-
ity feedback, and crror recovery. The studies evaluate how the pro-
posed resonance-oriented approaches improve these factors in compar-

ison with object-oriented programming.

Scction 6.1 mtidu('(-s the general design f()r the studies presented in
this (hapt('r and discusses how possible thrmts to validity arc ad-
dressed. Section 6.2 compares the first resonance-oriented software
development app-)roach. harmony-oriented programming. with object-
oriented programming in terms of changeability, extensibility. and main-

tainability. In scction 6.3, the quality feedback and error recovery ca-

_ pabilities of epi-aspects are evaluated and compared to object-oriented

programming. - Section 6.4 describes a software evoltion study based
on a real world example using an architecture called harmony-oriented

: 75 .

CHAPTER 6. STUDIES AND VALIDATION 76

epi-asperts that combines the strengths of the two proposed resonanee-

oriented software developiment approaches,

6.1 Gencral Study Design_s

The general setup lor the studies presented in this chapter is as follows:
each study consists of one or more experiments, and each experiment
has at least one part that conducts a series of design or developient
tasks using a resonance-oriented approach, and at least one other part
that perlorms the same series of tasks using traditional object-oriented
programming. At the end of cach experiment the design and develop-

ment processes are compared.,

The studies are designed (o achieve constrouct validity, internal validity,

and external validity by addressing common threats,

6.1.1 Counstruct Validity

One possible threat to construet validity is that experiments do not
test the factors meamt to be evaluated. The aim ol the stadies pre-
sented in this chapter is to evaluate and compare the following lac-
tors in the context of resonance-oriented software developmemt anud
object-oriented programming: changeability, extensibility, maintain-

ability, quality feedback, and errvor recovery.,

e Changeability relers to changing o prograims design and strue-
ture. In the context of object-oriented programming, chiange-
ability refers to adjusting interfaces of and relationships between
objects. The changeability studies in sections 6.2.1 and 6.2.2 1has

focus on relationships and interaction between program parts.

CHAPTER 6. STUDIES AND VALIDATION

|
|

e Lxtensibility and niaintainability refer to the case of extending or
changing a program with or withoul having to change the pro-
|] 1 . . - .
pram’s overall strachure, This includes unpredicted extensions
and changes that were not considered in the initial design ol the
program. The studies in sections 6.2.3 and 6.1 evaluate exten-
sibility and maintainability by comparitng the implementation of

extension mechanisms and unexpected changes,

e Feedback and error recovery refer 1o the case of implementing
relianble mechanisms for generating information abont the statns
(health) of program parts and assisting (hem with recovering from
crrors. The stadies in sections 6.3 and 6.1 evaluate these two
factors by studying the implementation of such wechanisins, and

penerating and simulating, failures,

Biases, such as the mono-operation bias and the “rescarcher biax™, are

another common thread to construet validity,

The Immm-n]wmt ion bias refers to evaluating o certain method or pro-
gram once in a single place at a single point in thine, The stidies
presented in this chapter avoid this bias by nsing cach of the two pro-
poscd resonance-orieuted approaches for various studies and combining

the two approaches into a new one in section 6.4,

The “researehltr bias” relers 1o the [act that a person condnceting, an
experitnent. can affeet its result conscionsly and unconscionsly, While
it is impossible 1o completely eliminate this bias, the stadies attempt
to make fair comparisons between the resonance-oriented approaches
and object-oriented progrmuming by avoiding scenarios whose condi-
Lions signilicantly Tavor one over the other. For example, the software

evolution study in section 6.4 uses the same initial (Hawed) application

CHAPTER 6. STUDIES AND VALIDATION . ™

design for both resonance-oviented and object-oriented approaches 1o

avoid giving an unfair advantage to the former.
6.1.2 Internal Validity

Witliiny each experiment two progransuing approaches are nused to per-
form the smne series of tasks: a resonance-oriented approach and tra-
ditional object-oriented programming. The programming approach is
the independent variable of caclh ('Npt'l‘illu'llt.._'l‘lu' scope of the exper-
iments conducted within the studies in this chapter is relatively small
and does not generate large amounts of data, As o resall, extrancous
variables common in large scale studies. sueh history, maturation. test-
g, inh"i runentation, statistical regression, selection, and mortality, do
gqiot alfect the outcome of the experiinemts and thus do not threaten
their internal validity. The only variable aflecting the ontcome is the

independent variable and thus internal validity is achicved.
6.1.3 External Validity

The studies presented in this example use concrete scenarios, sach as
siubject-observer relationships, an application server, acontent manage-
ment system, and an order and inventory management system. Resnlts
that. are not generalizable are a thread to external validity, However,
the studies do not focus on any aspeets specific to those particular
scenarios. For example, the application server example deals with as-
pocts like network protocols and adding new {eatures in general. and
the subject-observer relationship example examines how to establish
dynamic relationships in a prograunning envirornent that does not
provide any specific construets for doing so. Hence, the results of these

studies also apply to other kinds of servers and dynaniic relationships.

CHAPTER 6. STUDIES AND VALIDATION ™

6.2 Changcal;)ility and Extcnsibility Studics
™

\

.) LN e

Ihe studies deseribed in the following, seetiogs compare the Tirst pro-
- . -/

posed resonance-oriented software development approach. harmony-

orientation, with object-oriented progranuming in terms of chanpeabil-

iy, extensibility, and maintamability,

The stady in section 6.2.1 compares changeability in harmony-orient ed
and object-oriented progrianning through the exiauple of subject-ob-
server relationships, and the study in section 6.2.2 compares change-
ability throngh the example of implementing processing, ehains of pro-
ducers, consumers, and ilters. The stady preseoted i section 6,253

compares extensibility and maintainability,
6.2.1 Chaungeability: Relationships

Several object-oriented design patterns that facilitate dviaanic refation-
ships between objects, such as the Observer pattern. are proposed in
[37]. The prurpose of the Observer pattern is to,realize a one-to-many
dependeney between objects, such that when one object changes its

state, all other objects are notified.

Figure 6.1 illustrates the conceptual design of the Observer pattern,
The participants of this pattern are classes called Sabject. (hsereer.
ConercteSubject, and Conercle OQbserver. The Subjeet class defines the
interlace (and thas a conerete and fixed protocol) for attaching and
detaching instances of the Obsereer class. The Obsereer class detines
the interface for updating observers that are notified. when the state
of the subject changes. Tlhe CoucreteSubject and ConercteOQbsereer

classes are conerete nuplementations of observers and subjeets,

CHAPTER 6. STUDIES AND VALIDATION 30

<<abstract>>
Subject B <<abstract>
Attach (Observer) e == Observer)
Detach (Observer) Update()
Noti ‘) . 3 —_— e

. Sﬁg.gg:g::f’eumm subject | ConcreteSubject
/ - < observerState
GetState() Update()
SetState() —-
T T ——

Figure 6.1: The Obscrver Design Pattern ([37])

To attach and detach observers to a subject, the Atlach and Detach -
methods have to be invoked for cach observer. These methods change
an internal observer list that the subject instance maintains. Whenever

the state of a subject changes, the following sequence of statements

(protocol) is executed:

"~ 1. The subject invokes its Notify method.

2. The Notify method iterates through the subject’s observer list

and invokes the Update method of cach observer.

3. The Update method of cach observer invokes the GetState method

5

of the subject and processes the new state.

e R

In d_yna.mi(:afl'iy' tyl;(r(i object-oriented programming languages like Ruby
and Smallralk, the abstract superclasses are not necessary. Also, the
subject’s state can be passed as a parameter of the observer's Update
method, so that the observer does not have to invoke the subject’s Get-

State method during the third step of the protocol described above.

Although the implementation of the Observer pattern is not very com-

plex, its existence alone underlines the lack of mechanisms for defin-

-

o el
]

CHAPTER 6. STUDIES AND VALIDATION | 81

ing rélationships. other than static inhcrité.ncc rclationships. between
objects in OOP. Furthermorc. cven though the Observer pattern fa-
cilitates a small degree of flexibility. the interfaces/protocols for regis-
tering, unregistering. and notifying obserers have to be fixed during
the design phase and later even small changes. such as adjusting the
parameters of the Update() method. can result in a snowball offect that
forces médiﬁcgltion of many other objects. Another issuc is that the
Obscrver pattern requires the subject to l?c awarc of its obscrvers. to
maintain a list. and to explicitly dispatch information to cach of themn
‘whenever its state changes. However. the spirit of observation is that
an obscrver- should be able to observe a subject that is oblivious of

being obscrved.

In harm;)ny-oricnt.cd programming. code snippets ifiteract with their
space exclusively and are not awarc of ®her snippets. However. pro-
graminers can sct.—l'xp subject-observer and other relationships through
the spaciality principle: a rclationship between two snippets can be
éstablished by moving them close to onc another in the space. and bro-
ken off by moving them apart from one another. lf‘or cxample. consider
a snippet S that producces numbers that arc automatically diffused by
‘the space. Since the difft\xs’ion process is not infinite. the numbers are
only diffused inside a limited virtual area surrounding snippet S. Fur-
thermore consider a sccond snippet O that observes numbers. If this
snippct is far away from the number producixig snippet S (i.c. outside
%he limited diffusion arca), it does not process the generated numbers.
However. as soon as snippet Ois mov.ed into the arca containing the
diffused numbers, it starts pfocessing them and. as a result. a subject-
observer relationship is established. If snippet O is moved outside the

arca again, the §ubjcct—obsenfer relationship is byoken off.

This study considers an implementation of a subject-observer rclation-

-~

-

1 »

* CHAPTER 6. STUDIES AND VALIDATION . 82

-

ship between a subject that maintains a bank account state and an
observer that is interested in being notified whenever the balance of
the account changes. The following sections present an object-criented
implcmcul':ar.iou, a ‘l}armony—orielmr(l impienwn;.ar.iml._ and a cdmpnri—

son of the two implementations.

" Object-Oriented Implementation . :

» Thesubject is an instance of a class called AccountSubject, the observer

is an instance of a class called AccountObserver, and the state itself
is maintained by an instance of a_class called Account that provides
1£mthods related to managing the account’s balance, such as deposit
and withdraw methods. Whenever t.h-o subject changes the state of

the account, the observer is notified and provided with the Account

instance.)

Listings 6.1 and 6.2 show the methods of the AccountSubject and Ac-

countObserver classes. As shown in listing 6.1, the object-oriented im-

-

plementation maintains its observers in an ordered collection. Listing

6.3 contains a Smalltalk script setting up instances of AccountSubject

and AccountObserver, and changing the state of the subject multiple

times.

Harmony-Oriented Implementation

. The harmony-oriented implementation consists of a single space and
\

"

two snippets called “account subject” and “account observer” snip-
pets. The “account subject” snippet reuses the Account class from
the object-oriented .implementation to realize its state. As explained

in_section 4.2.1, the state of a snippet is owned and diffused by the

o space; just like all other data in harmony-oriented programs. The im-

plementation of the “account subject” snippet is a list of stdtements

~ - that perform the following actions: -
N .

-
w

-

- >

CHAPTER 6. STUDIES AND VALIDATION 83

. 1linitialize)
2 observers := OrderedCollection new.
3 account := Account new.
4 lattach: anObserver .
- D observers add: anObserver.
6 _detlach: anObserver
7 observers remove: anObserver.

8| notify

9 observers do:[:observer| observer update: account.|.
- 10 | balance: aNumber. -
- 11| account balance: aNumber.
12| - sclf .notify. -®
" e 43 withdraw: aNumber H , =
. 14 account withdraw: aNumber. £
‘ 1715 self notify. - ¥ ;
16 | deposit: aNumber _ .)
: . : -i? account deposit: aNumber.” l
¥ 18] sclf no-tify.

Listing 6.1: Mo’c.hoéls of AcﬁomatSnbjex:t class (OOP).

. LY

e Change the tvpe of the snippet state to Account.

- ® Usé the state to change the balance

" (deposit. withdraw, ctc).

o
- =

The ixzflplement.ation of the “sccount. observer” snippet observes the
space and processes any Account objects that are diffused to its lo-
4 cation. Figure_ 6.2 _i'llust.rams the harmon_v—oricn.ted implementation of
e " the account subject-observer relationship and. listings 6.4 and 6.5 show

the code of t.he_éu‘bject and observer snippets.

Y .z .
. In the harmony-oricnted program shows-in figure 6.2. the account

PR Ty subject-observer ;‘elat-ioﬁship is established already. since the substance

el

CHAPTER 6. STUDIES AND VALIDATION -

o

L]
I

84
' -
1 iupdate: anAccount .
2 Transcript cr; show: “Observer 3
anAccount balance asString. -
Listing 6.2: Methods of AceountObserver class (OQP).
1|subject := AccountSygbject new. ”
2isubject attach: AccountObserver new: .
3 balance:100;
4 deposit: 50.5:
5 withdraw: 20:
6 detachAll. .
/Listing 6.3: Account subject and observer example (OOP).
__ : ' N E¥]
‘Account Observer”
e a 5
e i " x
“Account Observer® =
space observe: Account do:[.acc|
tog show. 'Observer ; ',
Ty acc batance asString
i I 1 "
“Account Subject” B Close Apply
: x
"Account Subject” s
state type: Account.
state balance:100.
state deposit: 50.5. -
state withdraw: 20. _
Close | Apply
R
, AR i
a [

Figure 6.2: Account Subject and Account Observer (HOP)

¥

CHAPTER 6. STUDIES AND VALIDATION

oL
(o]

1|” Account Subject”
21 state type: Account;
3 balance:100; -
4 deposit: 50.5:
6) withdraw: 20. I
i
Listing 6.4: Account subject snippet (HOP).
]
1{” Account Observer” |
2| space observe: Account do::accj :
]
3 log show: " "Observer : ', acc balance asSrtring. i
11 !
E |
- Listing 6.5: Account observer :-_;nippe‘r (HOP).

Ty

diffusing the state of the account subject snippet reaches the account
observer snippet. Moving the two snippets further apart from each ~

_other results in breaking off the subject-observer relationship.
Comparison

As the implementations in listings 6.4 and 6.5 show. it is not necessary
to explicitly implement support for subject-observer relationships in
harmony-oriented programs. It is enough to define two snippets: a
subject snippet whose state is of type Account and an observer snippet

that consumes data of type Account.

In the object-oriented implementation, however, support for rhe subject-
observer relationship has to be implemented explicitly. Apart from

defining the AccountSubject and AccountObserver classes, the program-

mer has to:

e

e Define nine methods (eight methods in AccountSubject and one

method in AccountObserver).

Fa

-

CHAPTER 6. STUDIES AND VALIDATION 86 .

e Implement the methods (containing a total of 18 message sends).

The minimal implementation overhead for supporting subject-observer

relationships in object-oriented programs is as follows:

e Subject class:

- Create a list for maintaining observers.
— Provide method for attaching observers.

— Provide method for detaching observers.

Provide method for notifyving observers.

!

Add code to invoke notification method after any code that

changes the state.
.

e Observer class:

]

— Create method processing updated state.

The process of establishing and breaking off subject-observer relation-
ships, once support for them has been implemented. is simple in both
implementations. The difference is that relationships are established
and broken off by moving snippets in ltll(‘ harmony-oriented version.
and programmatically in the object-oriented version. The programmer
can make changes to the relationship during runtime in the harmony-
oriented version, but has to stop, edit, and then restart the object-

oriented version.

’
6.2.2 Changeability: Processing Chains

This study provides a comparative example for creating and chang-

ing processing chains (like producer, consumer, and filter chains) in

i

CHAPTER 6. STUDIES AND VALIDATION . 3

|

*

harmony-oriented and object-oriented programs. It considers the fol--

lowing example processing chain:_

1. A producer producing numbers berween 0.2 and 10.0.
2. A filter that negates numbers.
f

3. A filter thar rounds numbers down.

4. A consumer consuming numbers.

-

- |

Figure 6.3: HOP Filter Chain

igure 6.3 shows a harmony-oriented program implementing the exam-
Figure 6.3 sho harmony-oriented program implementing th
ple. The processing chain elements are implemented by four snippers

whose code is shown in listings 6.6, 6.7, 6.8 and 6.9.

The two filters are implemented as snippets that consume numbers,
perform an operation on them, and then put them back into the space.

None of them contains any code for establishing a processing chain.

v

CHAPTER 6. STUDIES AND VALIDATION

1|”"Number Producer”
2|1 to: 50 do: [:idx|
3 | space put: (idx / 5) asFloat.

al].

Listing 6.6: Snippet producing numbers.

1 [{"Number Consumer”

2| space consume: Number do:|[:num|
3 log show: num asString.
4(].

Listing 6.7: Snippet consuming munbers.

11" Negator”

2| space consume: Number do:|:num|
3 space put: nun negated.
1}

Listing 6.8: Snippet negating munbers.

1| Rounder”

. s
2 [space consume: Number do:|:num|
3 space put: num rounded.
a|].

Listing 6.9: Snippet rounding numbers.

The processing chain can be constructed and changed during runtime
}'I & (=]

by moving the snippets around in the space.

To create the same processing chain in an object-oriented program. an

interface for chaining objects and passing data from one to another has

to be designed first. Object-oriented processing chains can be realized

GHAPTER 6. STUDIES AND VALIDATION . Cogo

by applyving design patterns like chain of rosponsibili-t}" [96]‘ intereepting .
filters [34]. and composite filters [104]. Figurc 6.4 shows a possible”
design that defines a superclass called Chair‘r,Li_nk that can be-used
for creating chains of objects. In addition. the diagram in(:l.uder; four
. classes derived from ChainLink corresponding to the snippets of the

harmony-oriented version.

ChainLink

sucessor: ChainLink

setSucessor(successor:ChainLink)
process(num:Number)

ha,
4
-

Rounder

NumberProducer NumberConsumer

Figure 6.4: Object-Oriented Filter Chain

The ChainLink class provides the method setSuccessor for setting the
next object (successor) in the chain. To build the example processing
chain. instances of all four subclasses have to be created and then the

following sequence of commands has to be executed:

1. Set Rounder instance as successor of NumberProducer instance.

I3

2. Set Negator instance as successor of Rounder instance.

3. Set NumberConsumer instance as successor of Negator instance.

CHAPTER 6. STUDIES AND VALIDATION 10

The process method shown in figure 6.1 is overridden by cach of 1he
four classes. This method has 1wo responsibilities: process the received
data and then. if the object has a successor. pass the processed data

o,

6.2.3 Extensibility and Maintainability

The extensibility and maint ainability study considers the example of an
extensible application server (KAS) that receives requests from elients
via a TCP socket and then passes these requests to registered applica-
tons, which process them and produce a replies. EAS is extensible in
two wivs: {irstlyv, i1 s possible to add new protocols for interactiug with
clients. sucl as XML-RPC. SOADP and others. Secondlv. it is possible

to register aud unregister applications during runtine.
Harmony-Oriented EAS

Figure 6.5 shows a possible harmonyv-oriented implementation of the
EAS. This particular implementation contains two registered applica-
tions called "Bank Account Application™ and “Counter Application™.

and supports the XNML-RPC protocol for interacting with clients. (’

The snippets implementing the server are:

o “Socket Reader”
A snippet that listeus on a specified TCD port. creates sockets {or
incoming connections, atd puts any data chunks received from
these sockets into the space.

o “"XAML-RPC — Action Request™
A snippet that consumes data chunks containing XML-RPC. The
XAML-RPC is converted into a protocol independent Actiondie-

quest object, which is put into the space.

91

B

I

i S et Wedter 1

Figure 6.5: Harmonv-Oriented Extensible Application Server
4 \ Pi

o “Bank Account Application™ and “Counter Application”™
These two snippets represent registered applications. Theyv ob- -
serve the space and consume any ActionRequest objects match-
ing the functionality thev provide. After an ActionRequest has
been consumed. the snippet performs the corresponding action.

generates an Actionflesponse object and puts it into the space,

e “Action Response - XML-RPC™ _
A snippet that consumes ActionResponse objects converts them
into a XML-RPC response string. The generated XML-RPC

string is put into the space as a data chunk.

o “Socket Writer™
A snippet that consumes data chunks and passes them to the

client.

To add support for additional protocols. it is sufficient to implement

CHADPTER 6. STUDIES .ﬁ‘ND VALIDATION 92

two additional snippets converting requests and responses 1o andd from
Actionfequest and Actionfesponse. For example, to add support for
the SOAD protocol. two snippets called “SOAP s Aetion Request”
and “Action Reply — SOA P have 1o be implemented and placed next
tothe "XML-BRPC -5 Action Request ™ and “Action fesponse > XAAL-

RPCT snippets in the space,

New applications can be added by creating a new snippet implementing,
the desived functionality and placing it in the center of the space. close
to the other two “application” snippets. These applications can be
nnregistered withont being shat down by moving them Gar away from

the other snippets of the extensible application server.
Object-Oriented EAS

An object-oriented version of the of the extensible application server
regnires significant design before coding,. o partienlar. the programimer
has to design interfaces for:

S

e lmplementing and deploving new protocol implementations.

e [mplementing, registering., and unregistering new application.

One possible minimal object-oriented design is shown i bgure 6.6, 1t
defines a Server class and two abstract base classes for applications

and protocols called Application and Protocol.

The Server class provides methods for registering and unvegistering,

applications and protocols.

The Profocol class provides a method for checking wether o cenain
reguest string received by a socket s a ovalid request in the protocol

it implements, In addition. the protocol class has two methods for

CHAPTER 6. STUDIES AND VALIDATION 93

\.\ T
Server -
register(Application) -
register(Protocol)
unregister(Application) -
unregister(Protocol)
v
<<abstract>>
Application

process(ActionRequest): ActionResponse

<<abstract>>
Protocol

isRequest(String): Boolean
decodeRequest(String): ActionRequest
encodeResponse(ActionResponse):String

Figure 6.6: Minimal Object-Oriented EAS Design

encoding and decoding requests and responses into and from instances

of protocol-independent ActionRequest and ActionResponse classes.

The, Application class exposes a single method that takes an Action-

Request object as a parameter and returns an ActiwonResponse object.

Using this design, protocols and applications can be registered pro-
grammatically during startup. However, to support loading and reg-
istering applications and protocols during runtime, as it is possible in
the harmony-oriented version, the object-oriented extensible applica-
tion server has to provide a plugin mechanism that can be accessed via

a client (like a Web browser) to load and register plugins.
Comparison: Dealing With Unpredicted Changes

The following paragraphs briefly examine the complexity of applying

initially unexpected extensions to both versions of EAS. Lets consider

CHAPTER 6. STUDIES AND VALIDATION 94

a scenario where EAS is updated to support applications that process
continuous data streams, such as video or audio, and do not use a

request-response model for interacting with their clients.

 To support stream based EAS applications in the harmony-oriented
version of the server, it is -sllfﬁ(:icnr to update the “Socket Reader”
snippet to add tags to data chunks that indicate which client they come
from. A stream-based EAS application can then be implemented as a
snippet consuming data chunks that are not consumed by the snippets
processing protocol messages. After a chunk has been processed. it is
put back into the space. The socket writer then receives the processed
chunk and passes it back to the client. No major changes to snippets

or data are required.

}11 the object-griented version of the EAS, both logical and structural
(:liéingcs are required for supporting stream-based applications. Fig-
ure 6.7 il'In-.erar.e:-; a simplified version of the object-oriented EAS design
including the Server class and the Protocol and Application interfaces.

<<abstract>
Protocol

<<abstract>>
Application

Figure 6.7: Object-Oriented EAS Design (Simplified)

The first structural change required for supporting stream-based appli-
cations is to rename the two interfaces to indicate that they are meant
for applications that operate according to a message-based model, where

applicarions generate responses for requests they receive. Figure 6.3

CHAPTER 6. STUDIES AND VALIDATION 95

illustrates this adjustment: the interfaces Protocol and Application
- are renamed to MessageProtocol and MessageApplication respectively.
Since the interfaces are renamed, all existing classes containing appli-

cations and protocols have to be updated to refer to the new interface

names.

<<abstract>>
MessageProtocol

<<abstract>
MessageApplication

Figure 6.8: Change 1; Rename interfaces,

The second structural change is adding new, more general interfaces for
protocols and applications, which encapsulate methods shared by both
message-based and stream-based applications and protocols. These
new interfaces and their relationship to the message-based interfaces

are depicted in figure 6.9.

<<abstract>>
Protocol

<<gabstract>> ﬂ <<abstract>
. Application MessageApplication

Figure 6.9: Change 2: Add base interfaces.

The final structural change, which is shown in figure 6.10, is adding

two new interfaces for stream-based protocols and applications that

CHAPTER 6. STUDIES AND VALIDATION 96

are derived from the general interfaces.

#
<<abstract>
/ MessageProtocol
<<abstract>> <<abstract>>
/ Protocol [StreamProtocol
Server = '
SE e <<abstract>> q <<abstract>>
Application v\ MessageApplication
<<abstract>>
StreamApplication

Figurc 6.10: Change 3: Add stream-based interfaces.

In addition to the three changes described above. the interface of the
S(:T-‘L‘(ZT' class has to be adjusted to support registration of all tvpes of
applications and protocols. Moreover. the logic of the Server has to be
changed to treat and process incomfing data as a stream. if none of the

tegistered Protocol classes can process it.

6.2.4 Analysis and Discussion of Validity

Sections 6.2.1. 6.2.2. and 6.2.3 provide evidence that. in comparison
to traditional object oriented programming. the strengths of harmony-
oriented programming are ease of changing the program’s design. ex-

tensibility. and maintainability.

Table 6.1 summarizes how factors affecting software evolution are ful-

filled by harmony-oriented programming. . 1

CHAPTER 6. STUDIES AND VALIDATION 97

Factor Harmony-Oriented Programming

Ease of change Easier than in OOP, because the structure of pro-
grams can be changed easily by moving snippets
around.

Extensibility Better than in OOP, because new snippets can be

added at runtime, and existing snippets do not have

\ to be changed.
Maintainability \BFN than in QOOP, because snippets do not have

any direct dependencies on each other.
Quality feedback Not available.

Error recovery Not available.

Table 6.1: Harmony-Orientation and Software Evolution Factors

6.3 Error Feedback and Recovery Study

The following sections present a study comparing the second resonance-
oriented software development approach, epi-aspects, to a traditional
object-oriented application in regard to quality feedback and error re-
covery. The study consists of three parts that are based on a concrete
application scenario: a Java-based content management system (CMS)
for a logistics company whose staff frequently shares and distributes

documents.

As shown in figure 6.11, this system consists of a HSQLDB database
engine [86], an application server, and client applications that access

this server through the XML-RPC protocol [103]. The application

CHAPTER 6. STUDIES AND VALIDATION 98

server contains two major components called Respository and Policies

that implement a document repository and access rules.

3

. Content Management System (Server)

CMS
Service §
| %
_ Policies

%Repository | N

v
HSQLDB
_Engine

v

_ ' PR L M.
. oy

XML-F{PC\ProtocoI

Client Application

Figure 6.11: CMS Applica.tion Scenario

The staff of the company freque;ntly request new features. and the sys-
tem is continuously updated by a small t-ea_m' of developers. Also. as the
properties of shared content and requirements regarding searching for
and presenting content are changing over time. occasional modiﬁf:ations
of the database ar(-.: necessarv. As a result. adjusting the application

&)

CHAPTER 6. STUDIES AND-VALIDATION % 99

~ p
server. database. and user interface of the client applications is com-

mon. and the system as a whole is constantly (-:\-'olx'ing. However. since
the system is essential for the operation of the logistics company. long
down times due to programming errors or maintenance operations are
unacceptable. The CMS is developed and improved with the focus on
features that are explicitly requested by staff of the logistics company.
and mechanisms for self-maintenance and error recovery either receive
a low priority or are omitted completely. As a result. the svstem is
bound to become more fragile over time. and eventually a complete

failure is possible.

— UserAccounts |e—

— PolicyManager |e—

DocumentRepository

Y
| DbConnectionPool je——— CMSService

DbConnection XmIRpcService

Apache
XML-RPC

HSQLDB
Driver & Engine

4

Figure 6.12: CMS Classes

Figure 6.12 shows a mere detailed view of the content management sys-

o

CHAPTER 6. STUDIES AND VALIDATION e 100

tem’s design, and highlights the main Java classes of the svstem: XmlR-
peService, DocumentRepository. CMSSerdice, PolicyManager. DbCon-

nectionPool, UserAccounts and DbConnection.

The XmlRpcService class uses Apache’s XML-RPC distribution [93] to
initialize a HTTP server that accepts XML-RPC requests. This server
uses reflection to map incoming XML-RPC requests 1o an instance of
the CMSSemri(;{f class. Additionally, it converts return values provided
by methods of the CMSService instance into XML-RPC responses.
Even though Apache’s XML-RPC distribution is mature and stable.
these classes can generate critical exceptions in case of in‘\'alid r(‘qu;‘sts

and network problems.

The core of the CMS is implemented by the DocumentRepository. Pol-
icyManager. and UserAccounts ('.las:se'é\.\ . The class UserAccounts im-
plements user management and authentication. The CMS uses the
HSQLDB datakase engine. and the database is accessed via the classes
DbC;:J*;rmectionPool and DbConnection. The class DbConnectionPool
maintains a pool of re-usable DbConnection instances. which provide
access to the database via the JDBC driver supplied with the HSQLDB

distribution.
6.3.1 Part 1: Conscientious CMS

The purpose‘ of the first part of this case study is to use epitaspects
and the Epi-AJ framework to upgrade the CMS into conscientious soft-
ware. The aim of this upgrade is to make the CMS observable and
controllable by an autopoietic system. The following sections describe
the implementation of four epi-aspects, which add mrecessary conscien-
tious extensions to the CMS: software maintenance, ?{..\IL—RPC mon-

itoring, database monitoring, and CMS monitoring. This upgrade is

CHAPTER 6. STUDIES AND VALIDATION 101

non-invasive, since it is unnecessary to modify the existing source of

the CMS, the HSQLDB engine, and Apache’s XML-RPC distribution.

Database Epi-Aspect

The database epi-aspect (figure 6.13) encapsulates funcrionality thar
allows the autopoietic system to observe and interfere with the opera-
tion of the HSQLDB database engine.

W

1 - <<epi-aspect>> o % ‘
SQLRecorder < DatabaseEpiA L 2
‘l-

4 <<advises>>

T T T p—— 5,
CMS Service Autopoietic
System
DbConnection |
Pool i %
; Start
DbConnection (<— ST
Stop
HSQLDB : N *

Create

d . : v - %
. { | jdbcStatement i<— Cione
et ' RGN

Destroy

Figure 6.13: Database Epi-Aspect

In addition, the database epi-aspect implements database backup and
recovery features. The backup feature periodically backs up the data-

base files and allows restoring the database to a previous version.
- .

CHAPTER 6. STUDIES AND VALIDATION 102

It is useful for preventing problems related to data corruption. The
database epi-aspect records all SQL commands that are issued to the
HSQLDB engine from within the CMS. This recorded history can be

used for undoing changes to the database and its schema,
XML-RPC Epi-Aspect

The CMS is accessed by clients via the XML-RPC protocol. The service
providing this access is implemented by the XmiRpeService class, which
utilizes Apache’s XML-RPC distribution. It is imperative for the CNS
that the XML-RPC service does not fail.

<<epi-aspect>>
XmiRpcEpiAspect

<<advises>>

CMS Service Autopoietic
System

XmiRpcService |< S

Start
{ Apache XML-RPC ' SN
: : Stop

BN

XmiRpcServer |< Create

e 5 —— >N '

Clone

SR

Destroy

- ' AN
Test
@

Speed
———

WebServer |«

Figure 6.14: XML-RPC Epi-Aspect

CHAPTER 6. STUDIES AND VALIDATION 103

The XML-RPC epi-aspect (figure 6.14) is responsible for implementing
error recovery, testing and application monitoring concerns. It also
implements an observer feature to evaluate and store the current speed
of the XML-RPC service. The speed is defined as the time required to

execute a dummy XML-RPC request.
Software Maintenance Epi-Aspect

The software maintenance epi-aspect (figure 6.15) implements function-
ality for updating and reverting the components of the CMS system.
.. It provides advice for the autopeietic Update and Revert recommenda-

tions.

<<epi-aspect>>
SoftwareMaintenance

<<advises>>

o

~

Autopoietic
System

SN

Update

A4
HttpUpdateService -

Figure 6.15: Software Maintenance Epi-Aspect

When the software maintenance epi-aspect is initialized, it creates a
minimal HTTP service, which developers can use to submit software

updates via a web-browser. Whenever the software maintenance epi-

CHAPTER 6. STUDIES AND VALIDATION 104

aspect receives an update through the HTTP service, it does not im-
mediately install the update, but stores it for later use, and dispatches
an epi-message to notify the autopoietic system that an update is avail-
able. If the autopoictic system approves of the updatc, it first issues
recommendations to affected components to prepare for an imminent
update, and then issuc the Update recommendation, which causes the

software maintenance epi-aspect to install the update.

If the autopoietic system notices that certain components experience
problems after an update, such as uneven performance, it can issue a
Revert recommendation that indicates that the problematic component
should be reverted to a previous version. The software maintenance
epi-aspect implements an advice on the Rewvert recommendation that
checks if a previous version of the affected component exists. If a
previous version is available, the advice disables the current version.

and re-installs the previous version.
CMS Epi-Aspect

The CMS epi-aspect is shown in figure 6.16. It is responsible for ex-
posing the health of the main classes of the CMS, namely UserAc-
counts, CMSService, DocumentRepository, and PolicyManager 1o the
autopoietic system. Additionally, the CMS epi-aspect extends these
main classes with functionality to comply recommendations issued by

-

the autopoietic system.

6.3.2 Part 2: Software Update Experiment

-

In this phase, working and buggy updates are applied to the original
and conscientious versions of the CMS, and the behavior of the systems

during and after the update is observed, compared, and evaluated.

CHAPTER 6. STUDIES AND VALIDATION 105

: <<epi-aspect>>
. ; CMSEpiAspect
<<advises>>
' - R’ f_—.-‘
CMS Service Autopoietic
System
CMSService - SN
« : ~" Start
— | | DocumentRepository [« e NN
Stop
PolicyManager | A
Create
UserAccounts |« SR
| Clone
Destroy
Test .
b R

Figure 6.16: CMS Epi-Aspect

The experiment consists of two phases and cach phase consists of two

r -

parts:

In the first part, the experiment is conducted with the original CMS,
which does not make use of any epi-aspects. In the second part, the
experiment is repeated using the conscientious version of the CMS and
T - '
the autopoietic simulator. Then the results of both parts are compared

and evaluated. ~

The experiment uses the original CMS, the conscientious CMS, the
—

autopoietic simulator; and an additional simulator that mimics the

behavior of a client application that accesses the CMS. This client

application simulator can be configured to generate a specific number

CHAPTER 6. STUDIES AND VALIDATION 106

of requests per minute. allowing adjustment of the workload that the
CMS has to handle. The dlient application simulator uses a log file to
record requests results and exceptions that occur when accessing the

CMS. d

Phase 1: Install Working Update

the following steps:

1. Start the original CMS.
2. Start the conscientious CMS and autopoictic simulator.

3. Start two instances of t.‘hc. client simulator and configure them
to issue one request per second to the original and conscientious
versions of the CMS. These instances are denoted as client sim-
ﬁlator‘]. which issues requests to the original CMS server. and
client stmulator 2. which issues requests to the conscientious CMS

server.

After phase one has been initialized. the following steps are executed

in sequence:

1. Manually overwrite the Java class file of the XmiRpcService class

in the original CMS with the new version. ~’)
2. Shutdown and restart the original CMS.

3. Use the HTTP update service of the software maintenance epi-
aspect to submit the source code of the updated XmiRpcService

class to the conscientious version of the CMS.

-

CHAPTER 6. STUDIES AND VALIDATION 107

The results of the first phase are shown in table 6.2. While the up-
date is suc(:(:.;sful for both the original and conscientious versions of the
CMS, the original CMS has to be restarted which makes the systemn
unavailable for approximatecly 17 seconds. This short period causes a
number of XML-RPC reque.«rts:issucd by the client simulator 1 to fail.
The conscientious CMS, however. experiences no downtime. because
“the software update epi-aspect applics and initializes the updated ver-
sion of the XmlRpcService class in the background and then immediate
replaces the old instance with the new one. This result indicates that
the conscientiois CMS is more suitable for being updated during pro-

- duction use.

Original CMS | Updatc successful. Approx 17 seconds downtime,
because the entire CMS system is restarted.

Client Simulator 1 | Log file indicates 19 failed requests.

Conscientious CMS | Update successful. No downtime. : 5

Client Simulator 2 | Log file indicates no failed requests.

Table 6.2: Software Update Expeﬁment Phase 1 Results

Phase 2: Install Buggy Update

-

In the second pha:;e a buggy update of the XmiIRpcService class is in-
stalled. The bug in this update is a latent bug that causes critical
failure after the XmiRpcService instance has been running for approx-
i-l“na.tely one hour. This phase uses the same steps as the first phase.
except that the updated version of the XmiRpcService class contains a
latent critical bug that starts causing failures after approximately one

hour. After the updates are applied to both versions of the CMS. their

CHAPTER 6. STUDIES AND VALIDATION 108

behavior is observed for three hours.

Experiment | Event
Time (Min)

61:23 First exception in the XmiRpcService instance the original
CMS.
61:27 First exception in the XmiRpeService instance the consci-

entious CMS.

61:27 The autopoictic simulator recommends to restart the Xmil-
RpcService instance of the conscientious CMS, which is
done by the XML-RPC service epi-aspect.

61:29 The XmiRpcService instance of the original CMS termi-
nates. Original CMS not accessible.

125:14 Exception in the XmlIRpcService instance the conscien- |
tious CMS. Autopoietic simulator recommends reverting

| the XmiRpcService to a previous version., which is done
by The-= are maintenance epi-aspect.

+180:00 Conscientious CMS is still running properly.

Table 6.3: Software Update Experiment Phasc 2 Log

Table 6.3 shows the observation log of the second phase. As the obser-
vation log indicates, the XML-RPC service of the original CMS fails
after approximately 61 minutes. The conscientious CMS restarts the

XML-RPC service after it causes an initial exception in the 61st minute

FAL

- of the experiment. The restart prevents further exceptions for appfox—

imately one hour. When exceptions start occurring again in the 125th

_ minute of the experiment, the conscientious CMS reverts the XML-

1

CHAPTER 6. STUDIES AND VALIDATION 109

RPC service to its previous version and continues running smoothly

until the end of the experiment.

6.3.3 Part 3: Fine-Grained Error Monitoring

The third part (;f this study illustrates extending the conscientious CMS
with a finer-grained error monitoring and recovery mechanism. This
extension involves extending the CMS epi-aspect as well as writing new
rules for the autopoictic simulator. Here. we describe the design and
ixm)l(:rm'.‘.ntation. and the approach for testing the extended conscien-

tious CMS.

*

The finer-grained error monitoring and recovery mechanism maintains
a history of exceptions for the cach of the classes UserAccounts. CMSSer-
vice., DocumentiRepository. and PolicyManager. The functionality for
the exception history. is implcmoﬁtcd bv a component that is added
to the CMS cpi-aspect. Whenever an CX(:(;pti()Il occurs in one of the
CMS’s main classes. this component makes an oilt.ry into a log file asso-
ciated with the class that threw the exception.- Apart from Etroating the
entries, the component counts the number of exceptions in pre-defined
intervals.. The number of exceptions per interval is recorded and sub-
mitted the numbers of exceptions for the five most recent intervals are

submitted to the autopoictic system via the epi-queue.

The autopoietic simulator requires additional rules for processing the
epi-messages containing the exception counts of the five previous inter-

vals:

1. If the number of exceptions for the current interval is greater
than zero. issue a Test suggestion. The corresponding advice

in the CMS epi-aspect verifies the responsiveness of the CMS

-

* -

+

>

- CHAPTER 6. STUDIES AND VALIDATION 110

2y

—a

system classes. If the test fails, the default rules of the autopoietic

simulator trigger a Restart suggestion.

If the number of exceptions between the four previous and current
interval have increased more than a pre-defined threshold, issue

a Restart suggestion.

To test the proper operation of the implementation of the fine-grained

monitoring feature, updated versions of the CMSService and Documen-

tRepository classes, which randomly throw non-critical and critical ex-

ceptions, are added to the conscientious CMS. Non-critical exceptions

do not affect the proper operation of instances of these two classes, and

critical exceptions lead to a crash of the CMS. The test is run according

to the following protocol:

 §

5.

The updated CMS epi-aspect, autopoietic rules, new versions of

CMSService and DocumentRepository are deployed in the consci-
7] Y A s

-

entious CMS. B

-

The component in the CMS epi-aspect is configured to use inter-

vals of three minutes.

The autopoletic simulator is configured to use 10 exceptions as

the threshold value for triggering Restart suggestion. b

One instance of the client simulator is started with the same con-
figuration used in the software update experiment described in

section 6.3.2.

Let the experiment run for 120 minutes.

This test can only fail if there is an implementation error in the CMS

epi-aspect. After the test is run successfully, the development of the

fine-grained monitoring feature is completed.

]

£

e
ey
=

LY

CHAPTER 6. STUDIES AND VALIDATION 111

6.3.4 Analysis and Summary

The previous sections demonstrate how to use the epi-aspects-architec-
ture for software maintenance. quality feedback. and error recovery in

a content management svstem for a logistics company.

Factor Epi-Aspects Architecture

Ease of change | No improvement. Same as i plain QO application.
Extensibility No improvement. Same as in plain QO application.
Maintainability Better than in plain QO application. as epi-aspects

can be used to facilitate upgrades and downgrades.

Quality feedback | Better than in plain QO application. as'quality feed-
back is provided through epi-aspects.

Error recovery Better than in plain QO application. as error recov-
; ery is provided through the autopoietic system and
epi-aspects.

Table 6.4: Epi-Aspects and Software Evolution Factors

The experiment conducted du}ing the second part of the study provides
strong evidence, that epi-aspects are sufficient to keep real software
syvstems running smoothly and to ease the burden of software evolution
in relation to maintenance. quality feedback, and error recovery. In
particular, the experiment shows that in comparison with a plain Java
application. an aspect-oriented conscientious application adapts better
to changes and problems. Table 6.4 summarizes how factors affecting

software evolution are fulfilled .by the epi-aspects architecture.

+

-

— %
-

-
r

CHAPTER 6. STUDIES.AND VALIDATION 112

-6.4 Software Evolution Study

Sect;ions 6.2 and 6.3 show that harmony-orientation and epi-aspects
have different strérrgths in relation to the hypothesis. These are ease
of changing the program’s design. extensibility. and maintainability for
ha’.rmony-orientatio'n, and maintainability. quality feedback. and error

recovery for epi-aspects.

This study uses a combination of harmony-oriéntation and epi-aspects
called harmony-oriented epi-aspects to evaluate resonance-oriented soft-
ware development in the context of the evolutionary stages of an actual

software de\‘reloﬁment project that was conducted by a German com-

pany.

-

Section 6.4.1 briefly introduces the combined "hdarmony-oriented epi-
aspects architecture and its implementation in HOS. and section 6.4.2

presents the details of the study. -

* 6.4.1 Harmony-Oriented Epi-Aspects -

<»
2

Tl;e combineél harmony-oriented er;i-ia.'sr;ects architecture is illustrated
in fgure 6.17, It consists of harmony-oriented spaces (as described in
section 4.2), an autopoié‘tic evaluator Yased on declarative rules (similar
to the autopoietic system introduced in section 5.1.2). and a modified
version of epi-aspects denoted as spatial epi-aspects. Harmony-oriented
spaces and spatial constructs are used for implementing allopoietic pro-
grams. i

-

To support spatial ‘epi-aspects. the harmony-oriented space is supple-
mented with a mechanism that allows aspects to advise on events re-
la’t_:e_{i to snippets. data. and diffusion. These events include:

CHAPTER 6. STUDIES AND VALIDATION - 113

Autopoietic Evaluator]

Spatial
Epi-Aspect

Harmony-Oriented Space

Area Advice

Area Advice

' Spatial

Epi-Aspect

- - -
- ———— ==

Figure 6.17: Harmony-Oriented Epi-Aspects

e Creation of snippets and other spatial constructs.

Destruction / termination of spatial constructs.

Change of a spatial construct’s location.

Occurrence of errors within spatial constructs.

A spatial construct putting data into the space.
~

CHAPTER 6. STUDIES A.:\'D VALIDATION 4 114 -

e A spatial construct consuming data into the space.
e Arrival of data in a location via diffusion.

o
The following paragraphs provide detailed descriptions of spatial epi-

aspects. the autopoietic evaluator. and their implementation in HOS.

”

Autopoietic Evaluator

The autopdietic evaluator implements rules for keeping the system run-

_ ning smoothly. Spatial epi-aspects forward events that occur in the

space to the autopoietic evaluator for processing. While processing. the
autopoietic evaluator issues autopoietic recommendations and queries
to either instruct the spatial epi-aspects what to do or to request more

information. i

i

While the autopoietic evaluator supports the same recommendations

as the autopoietic system of the epi-aspects architecture (see table 5.1).

_it defines new. harmony-oriented versions of autopoietic queries. These

are:

o,

e Reveal Location Data

This query indicates that the autopoietic svstem wishes te obtain

the data currently available in a specific location in a specific

space.

o Ezamine Construct Activily

This query indicates that the-sutopoietic svstem wishes to receive

information on construct activity. For example. information on

when the spatial construct consumed data from the space for the
_ _ Y
last time. and how much ang what _ki ot data the construct,

v e
. produces. £

—r=

=]

CHAPTER 6. STUDIES AND VALIDATION 115

Spatial Epi-Aspects

Like the aspects proposed in the epi-aspects architecture. spatial epi-

aspects implement advice on autopoiectic recommendations and queries.

However. spatial epi-aspects do not advise on join points in a appli-

_cation’s code (application advice). but on events within one or more

specified virtual areas in one or more harmony-oriented spaces. For ex-
ample. the spatial epi-aspect in the bottom right corner of figure 6.17
advises on two areas (marked by rectangles) in a harmony-oriented
space. The spatial epi—'aspe(:t, in the upper left corner only advises on
one area. This kind of advice. which is defined on areas of a harmony-

oriented space. is called area advice.

Additionally. spatial epi-aspects do not use epi-messages to communi-
cate with the autopoietic evaluator. but simply return an object or a
hierarchy of objects from advice on autopoietic queries.

HOS Implementatic;n

The HOS implementation of harmony-oriented epi-aspects extends spaces

to generate space events. when spatial constructs and data changes.
and to provide a mechanism for spatial epi-aspects to advise on such
events. Space events are realized as instances of the class SpaceEvént
and its various subclasses (figure 6. 1?;). The SpaceEvent class provides

instance variables to store information on: .

e The space in which the event occurred.

e The exact locationfin the space where the event occurred.

~

e If applicable. the construct involved in the event.

CHAPTER 6. STUDIES AND VALIDATION 116

SpaceEvent ¥

. l [. |
d |DataArrived “ DataPut “ DataConsumed i

PO Y

Figure 6.18: Space Events

Additional information can be stored in the various subclasses of the

SpaceEvent.

The autopoietic evaluator is implemented by a singleton called Autopoi-
eticEvaluator, which_allows defining autopoietic rules via Smallralk
code blocks and assoctations. The autopoietic rules have the following

format:
[Condition Block] -> [Action Block]
or

[Condition Block] -> {Recommendations}

-

Both blocks take an instance of a SpaceEvent class (or subclass) as
 parameter. For example, a rule for recommending to restart a snippet

that failed because of an error looks like:

[:event |event isKindOf:Failed] -> {‘Stop’.°‘Start’}

After the autopoietic evaluator has come to a decision regarding a space

event, it issues an autopoietic recommendation or query accompanied

CHAPTER 6. STUDIES AND VALIDATION 117

by a RQ7Target object containing attributes like space. location. and
construct. The information in this object helps advice in spatial epi-
aspects to determine at which location or spatial construct the query

or recommendation is directed.

Spatial epi-aspects are defined by creating instances of the class Spa-
tialEpiAspect. As shown in table 6.5. this class provides methods for
defining area advice on spaces and advice on autopoietic recommenda-

tions and querics.

name:aNeme Specifies the name of the
spatial epi-aspect.

defineAdvice:block on:evts in:space at:areas | Specifies an area advice
On one or more areas in a
specific space.

defineAdvice:block onRecomimendation:rec | Specifies an advice on an
autopoietic recommenda-
tion.

defineAdvice:block onQuery:query Specifies an advice on an
‘ autopoietic query. 5

Table 6.5: Methods of SpatialEpiAspect

Tl{(—: block argument of the advice definition methods shown in table
6.5 contains the code implementing the advice. The code bl(;cks passed
to these methods takes one parameter. When the advice is invoked.
this parameter is an instance of one of the SpaceFvent (:la.'sses. if the
advice is an area advice, or a RQTarget object. if the advice is on an

autopoietic recommendation or query.

Listing 6.10 provides a sample definition of a spatial epi-aspect.

CHAPTER 6. STUDIES AND VALIDATION 1138

SpatialEpiAspect new name: 'Exampe’

2 defineAdvice: [:evt]

3 AutopoleticEvaluator evaluate: evr.

4 } on: Failed in: space at: (20020 extent:50050):
S defineAdvice : {: target |

6 target. construct . stop.

7 | onRecommendation: ‘stop’: J
3 defineAdvice: |[: target |

9 target. construct start.
10] onRecommendation: ’start’
11 defineAdvice: |: target |

12 target.space.dataAt: (target location).
13 | onQuery: ‘reveal--location’.

Listing 6.10: A Spatial Epi-Aspect.
6.4.2 Study Description

The software evolution study is based on a real-world software de-
velopment project within a German company called “Grolhandel fir
Modernes Antiquariat - Dunker & Nellissen GmbH” (GMA) specializ-
ing in wholesale of antique books and books with minor defects!. The
project, which was conducted in the years 1998 to 2001, was the devel-
opment of an inventory and order management system optimized for
the special nature of the company’s business. It serves as a good ex-
ample for a constantly changing and evolving software that eventually

became brittle and was discarded.

The software evolution study repeats the development process of the
GMA inventory and order management system using the harmony-

oriented epi-aspects architecture. This repeated development process

!Permission to disclosedetails of the project in this thesis has been obtained.

g

‘

(HHAPTER 6. STUDIES AND VALIDATION 119

is not a complete harmony-oriented re-implementation of the entire svs-
tem, but rather a simulation of the changes and failures that oceurred

during the evolution of the svstem.

The following paragraphs lirst provide more background on the nature
of the company’s business and 1he history of the inventory and order
management system's evolution, and then present o detatled descrip-
tion of the study siimulating a repetition of the evolution using the

harmony-oriented epi-aspects architecture.
Company Background

iMA is specialized in selling antigne hooks and books with slight de-
“fects to book shops throughont Germany. Antigne books are acquired
in small volinnes from various sonrces and defective hooks are hought
from publishing houses in large voltnnes. GAA sells books 1o other
businesses, such as bookshops and resellers. and does have any retail
outlets. The compauy has a small IT departinent that is responsi-
ble for developing customized soltware in-house and maintaining the
;
company’s web site. §taff of the company is encouraged by the nian-
agement 1o request Il(“;\; software features, if thev feel the software is

lacking in some aspect.
GMA Software Evolution

The GMA inventory and order management svstenn started in 1998 as
a database-centric application with an application server developed in
Java and client programs in C4++4+ that accessed the server through a
custonn remote procedure call (RPCY protocol. The original database
design of the GNA software is shown in appendix C. The im])lvmv;l-
tation of the application server provides model classes corresponding

to the entities defined in the database design. Figure 6.19 provides a

CHAPTER 6. STUDIES AND VALIDATION 120

simplified overview of the application server’s most important model

classes and their relationships.

Person

41~ Reservation l-s

Figure 6.19: GMA Application Model (Simplified)

The following list highlights the major stages, including changes, chal-
lenges, and failures, the GMA inventory and order management system

went through,during its evolution:

CHAPTER 6. STUDIES AND VALIDATION 121

1.

Unaque identificrs for books

The original design of the GNA application proposed using ISBNs
as 2 book’s nnignue identity. After the first version of the software
was implemented. it was nsed without problems for a while, The
majority of books passing through the warchouses of the company
are modern books with minor defects that all have ISBN numbers,
When antigue books., which usually don’t have 1SBN munbers,
were entered into the system, the staff assigned anigue nunbers

by themselves.

However, at some point it turned out that ISBN numbers are not
truly unique, as some publishing houses re-use ISBN numbers
Irom books that went out of print. As a result. the management
decided that all books should be tagged with an additional unigue
identilier, and the software was changed so that Book classes sup-
port an additional property. Apart from changing the application

model and database design and gueries, the user interlace had 10

be adjusted. The changes were applied by the developers with-

out any major problems, but the system had to be shutdown for
extended periods of time, and thus there was a negative impact

on the business of the company.

Inttially unpredicted data gueries

During the initial design of the inventory and order management
application, the staff of GMA was asked to help designing fre-
(uent Iy used queries, such as searching for books by author, tithe,
ISBN number. The application server and C++ client applica-
tions were implemented to support a set of pre-defined queries
based on the suggestions of the stalf. However, after the initial
version of the GMA software was deployed, it became apparent

that the pre-defined set of queries was not sufficient to cover all

CHAPTER 6. STUDIES AND VALIDATION 122

situations stafl encountered during work., As a result. staff fre-
querd by requested support for new queries, In the beginning. the
requests were entertained by the developers chanping the appli-
cation server and user interface of the C+ 1 client applications.
However, as the requests for adding new or adjusting existing
queries beeame more frequent . the management decided vo change
the GMA software to allow stafl 1o define aml run custom queries.
Adding support for creating custom queries involved changes to
the user interface of the C++ client applications, and nmplemen-
tation of set of new classes in the application server for managing,

interpreting and nning customn queries.

3. Plug-in suppori

Apart from gueries on the application model. the statt of GNLA
frequently requested new import and export features. For exain-
ple. VLB, a association of German book publishers maintains o
list of all published and currently available German books, This
list updated and distributed via CD-ROM quarterly. The stafl of
CGMA wished to be able to import this VLB tist and also hook
lists from other, foreign. associations. Sinee the varions lists were
distributed in different file formats, and it was not clear at that
time what other export and import funetions might be reguired
in the future, it was decided to upgrade the GMA svstem with o
plug-in mechanism.

The requirements for the plug-in mechanisin were that it allows
loading and unloading plug-ins while the application server is run-
ning, and that it exposes the entive application model to plug-ins.
Since the application sever was written in Java, the plag-in mech-
anism was designed 10 load and initialize JAVA archives during

runtime. Each plug-in was designed to contain import or export

CHAPTER 6. STUDIES AND VALIDATION 123

logic and a HTML-based user interface description that conld be
rendered by the C++ client applications. The development and
deployment of the plug-in mechanism required significaut changes

and took two developers a total of 7 months to complete.

The first two plug-ins developed for the GMA application were
an import plug-in for the MLIB list and an exporr plug-in thar

generates barcodes for the ISBN numbers of books.

Authentication support

The initial design of the GMA inventory and order management
application did not consider user authentication and access poli-
¢les, since the company’s computers were initially located in a
restricted area only accessible by authorized staff. However, the
management decided to set up computers in other locations, such
as the warchouse 1o facilitate more convenient inventory manage-
ment. The computers in the warehouse were eqaipped with bar
code readers that could be used by staff to update in invenrory

faster.

Since fine-grained authentication and access policy support would
have required significant changes to the design of the application’s
model, it was decided that once a user was authenticated. he or
she could use any function provided by the GMA application.
Authentication was done against a list of staff user names and

passwords stored in the application server.

Support for articles other than bvoks

At some point the management of GMA deécided to trade articles
other than books, such as calendars, paintings, and small mer-
chandise based on characters in popular books and comic books.

To support such articles, the model of the inventory and order

CHAPTER 6. STUDIES AND VALIDATION 124

6.

, management system had to be changed again. A model class
called Article was introduced and classes inplementing the prop-
erties of the various items, such as books and paintings, were
derived from this class. Apart from the application model, the
database model was updated to reflect the changes. The updated
database nll(fu])})li(‘;it ion server were il('])l(;\'(‘(l during night time,
but on the next .wurking_;; day, data entry did not work properly.
and some data was lost. The original database and application
server were restored and the new versions were redeployed again

after a few days of finding and fixing bugs.

Upgrade of plug-in mechanism

The changes to the model classes of the GMA inventory and order
management system resulted in required changes to the plug-in
mechanism, which was developed to expose the original applica-
tion model, where books were the only type of article. Apart
from upgrading the plug-in mechanism, parts of the two plug-ins
in use, the VLB list importer and barcode generator, had to be

rewritten.

Upgrade of custom query mechanism and eristing queries

The changes of the model classes also affected the custom query
mechanism. It was upgraded to support searching for articles
other than books. The format for defining custom queries was
changed and so were the classes in the application server for man-
aging, interpreting, and running the custom queries. Slight ad-
justments were also made to the user interface of the C++ client

applications.

Since the format for defining custom queries was altered, all ex-

isting custom queries defined by staff of the company had to be

CHAPTER 6. STUDIES AND VALIDATION 125

rewritten using the new format.

Data corrupiion discovery and system douwngrade

Several weeks after stages 5 to 7 were completed. staff of the com-
pany noticed that some custom queries did not work as expected.
For example. when searching for books. other articles. such as
calenders were included in the search results. An investigation
discovered that slight mistakes had been made when changing
the database to the new application model and as a result. var-
ious entrics had been corrupted. For example. some books were
classified as other articles and vice versa. To control damage. the
management of the company decided to restore the database and
application server to versions that were backed up before stages
5 to 7 were implemented and deploved. The outdated data was
updated by hiring people to help conducting a company-wide in-

ventory.

Decision to develop a new application from scratch

Shortly after the downgrade. the management of the company
do(:'ided not to add any more features to the existing version of
the GMA inventory and order management syvstem. and to begin
development on a new application from scratch. It was decided
that this new application should be a web-based application that

can be accessed by staff via browsers instead of C++ clients.

Evolution With Harmony-Oriented Epi-Aspects

e .

The following paragraphs describe a re;ictition of the evolution pro-

cess of the GMA inventory and order management syvstem with the

harmony-oriented epi-aspects architecture. This study is not meant

to be considered as a direct éompar-ison to the implementation of the

L3

CHAPTER 6. STUDIES AND VALIDATION 126

GMA application. which used Java and C++. two Ianguagcs; whose pro-
‘grams are more inflexible and less maintainable than programs written
in Smalltalk, the language HOS is based on. Rat‘.her.-this study ex-
plores what the development and evolution prtl}(:ess would be like. if a
harmony-oriented epi-aspects architecture was used to implement the
GMA épplication. The focus is on harm(m_v-or.ientation and epi-a:-:pbcts
featur_(-:s. but not on the programming languages themselves. The study
describes a harmony-oriented design of the GMA application and ex-
. plores necegsary changes and results for the stages the GMA svstem
went through during its evolution. It focuses on the application server

only and does not consider client programs and their user interfaces.

To avoid creating an unfair advantage for the simulated harmony-
oriented epi-aspects version of the GMA appliéation. the model classes
from the initial design previously introduced in figure 6.19 are re-used.
When designing a new harmony-oriented application from scratch. a
diﬂ'ererit application model with more looscly coupled abstract data

tvpes would likely be chosen.

Figure 6.20 shows the initial design of the GMA application server using
harmony-oriented epi-aspects. Apart fro.m a group of snippets imple-
nienting communication with (;lienr.s (“RPC” snippets). the harmony-
oriented space contains snippets managing the data (model) of the
GMA application (“data management” snippot.;;). and snippets imple-
menting pre-defined queries (“query™ snippets). The “RPC™ snippets
group consists of :‘;nippets almost identical to the snippets used bv

-k

the extensible application server used in the study described in sec-

" tiom6.2.3: - o)

—

el o “Socket Reader®

A snippet that listens on a specified TCP port. creates sockets for

CHAPTER 6. STUDIES AND VALIDATION 127

-

[Autopoietic Evaluator]

Error
Recovery
Aspect

Snippet
Backup
Aspect

Data Query Snippets
Management

Snippets

RPC
Snippets

-

Figure 6.20: GMA S(‘_I.'V(‘I' Using Harmony-Oriented Epi-Aspects

incoming connections, and puts any data chunks received from
these sockets into the space.

e “Custom RPC — Command”
A snippet that consumes data chunks containing custom RPC
instructions. These are converted into a protocol independent

Command object. which is put into the space.

/

CHAPTER 6. STUDIES AND VALIDATION 5 128

e “Result — Custom RPC” .
A snippet that consumes Result objects. convegts them into a
binary custom RPC response strings. and puts into the space as

data chunks.

o “Socket Writer”

| e

A snippet that consumes data chunks and passes them to the

client.

The “data management™ snippets group consists of a set of snippets
that manage and change the data (model) of the GNA application
based on commands received from clients. Each of the snippets in this
group is responsible for one type of model objects. For example. one
snippet is responsible for managing Book objects angpanother snippet
is responsible for llmllagil\ig Publisher objects. Each of these suippets
maintains a state that contains a list of all model objects of the type it
is responsible for. As these states are owned and diffused throughout
the space, it is accessible by other snippets. The snippets belonging
to the “data management” are named after the model objects they are

. responsible for:
e “Books” snippet.
e “Categories” snippet. (
e “Authors” snippet.
e “Buyers” snippet.
e “Wishlists” snippet.
e “Reservations” snippet.

e “Publishers” snippet.

CHAPTER 6. STUDIES AND VALIDATION - 129

Apart from maintaining lists of the model ohjc(-.ts. these snippets im-
plement persistence. Figure 6.21 shows the area of the space containing
the “data manggement” snippets group and an open location inspector

that lists the contents (data) available to other snippets.

"Categories"

‘ o

I 0.8989971876144
B 0.6347631216049 _

B 0.6027617454528 d/ !
" 0.5078637599945

SnippetState->an OrderedCéllection(a Book a Boo "

A

Figure 6.21: "Data Management™ Snippets

Apart from the snippets groups, the initial design shown in figure 6.20

contains three spatial epi-aspects that advise on the areas occupied by
the snippet groups: the “error recovery” aspect, the “snippet backup”
aspect, and the “data backup” aspect. The “error recovery” aspect
is responsible for informing the autopoietic evaluator about any errors
that occur within snippets. In addition, it contains code to acdom-
modate autopoietic tecommendations, such as cloning and restarting
snippets. The two backup spatial epi-aspects are responsible for back-

- .

CHAPTER 6. STUDIES AND VALIDATION 1:30

ing up data and code and reverting to older versions, if reconnmended
by the autopoictic evaluator. For example, whenever a snippet is mod-
ificd by a programmer. the “snippet backup™ aspect makes a backup.

and keeps all previous versions.
Evolution staye 1: Unique identifiers for books

Adding an additional attribute to the Book class and assigning unique
identifiers to all existing Book objects can be achieved by following

these steps while the server is running:

e Stop the "hooks™ snippet. No data is lost. because 11 s loceated

in the space and not in the snippet.

e Add an additional attribnte called UID and corresponding getter

and setter methods to the Book class.?

e Change the code in the "books™ snippet to iterate through 1he list
of books stored i its location and npdate each object by assigning

, & value to the new UID attribute.

e Restore the previous code in the “books™ snippet and change it
to assign unique identifiers (o each newly ereated instance of the

Book class.

Evolution stage 2: Initially wnpredicted data queries

New data queries can be added by programumers by creating new “guery”
snippets and placing thein next to the existing ones. Sincee this process
is trivial. that development of a custom query feature for staff of the
COMIPANY APPEATS UNNCCESSary.,

2Chmlging classes during runtime is only possible in dynamic languages like Small{alk
{59], Ruby [90). and Python {65].

CHAPTER 6. STUDIES AND VALIDATION 131

Evolution stage 3: Plugin support

Since all data is diffused in the harmonv-oriented space, it is not nee-
essary to explicitly hmplement support for plug-ins, It is sullicient {or

programiers to add new snippets,

For example, to add the VLB import feature to the server. it is sufii-
cient to ereate a new snippet in the vicinity of the “data management™
snippet group. This snippet can read the information tfrom the VLB
CD-ROM, generate corresponding commands for ereating the relevam
data, and place it into the space. Oncee the commands reach the various
snippets of the “data managemeut™ group via diffusion. the snippets

process the commands and add the imported data to their hists.
Evolution stage 4: Authentication Support

Authentication support can be added to the server by adding au at-
tribute to Comnand objects that indicates whether the command was
sent by an anthenticated user. The autheutication can cither be per-
formied by a modified version of the ~Custom RPC - (‘nn:nmml"
snippet or an additional snippet placed into its vicinity, Additionally.

b

otie or more “authentication filter” snippets have to be placed between
the “RPC” snippets and other groups to automatically consune (and
discard) any Commnand objects whose attributes indicates that they

have not been authenticated.

Evolution stage 5: Support for arvticles other than books

During this stage, the object-oriented version of the GATA introduced
an Article superclass and derived concrete articles, such as books and
paintings, from it. In the harmony-oriented epi-aspects version of the

server, new classes for articles are created without defining an inheri-

CHAPTER 6. STUDIES AND VALIDATION 132

tance relationship between them. For each newly created class a cor-

responding “data management” snippet is created. These are:

e “Calendars™ snippet.
e “Merchandise”™ snippet.

e “Artworks” snippet.

Evolution stage 6: Upgrade of plug-in mechanism

Since the harmony-oriented epi-aspects version of the server does not
have an explicit plug-in mechanism only the plug-ins themselves have
to be slightly modified to process instances the new article classes in

addition to books.

Wvolution stage 7:
Upgrade of custom query mechanism and exristing queries

The harmony-oriented epi-aspects version of the server does not have
a custom query mechanism and existing queries do not have to be
changed, because the existing model classes have not been changed.
However, new queries have to be defined to support searching for arti-

cles other than books.

Evolution stage 8: Data corruption discovery and system doumgrade

The harmony-oriented epi-aspects architecture does not prevent pro-
grammers from making mistakes and introducing bugs. As a result,
even though some of the evolution stages require less effort, data cor-
ruption or other kinds of faitpies of the GMA server at some point are
likely. The three spatial epi-aspects introduced as part of the initial

design implement quality feedback and error recovery features that can

+

CHAPTER 6. STUDIES AND VALIDATION 133

Lielp 1o keep a buggy system running and might give developers enongh
room to fx critical bugs without having to shut dowu the systemn for

extended periods of thme,

6.4.3 Analysis and Suimmary

The software evolntion study shows how the evolution of the GMA
inventory and order management system might have progressed, if a
harmony-oriented epi-aspeets architeeture had been nsed. This study
illustrates that, during certain stages ol the evolution, the harmony-
oricnted epi-aspects version of the GMA server is casier 1o change,
extend, and maintain, and that it is possible to use the architecture to
prepare for and adapt to failures by nnplementing quakity feedback and
error recovery mechanisms. However, the architecture cannot prevent
programmers from introducing critical bugs into the system, so {ailure
is still possible. Table 6.6 summarizes how factors affecting software

cvolution are fulfilled by the harmony-oriented epi-aspects architecture,

6.5 Hypothesis Validation

The results of the studies conducted in this chapter and their relation to
factors affecting software evolution summarized i tables 6.1, 6.1, and
6.6 support the hypothesis formulated in section 1.5 : That, in colu-
parison to object-oriented programiming., resonance-oriented software
development improves the case of dealing with the above mentioned
issues, and thus the ease of dealting with software evolution effectively.
The hypothesis posits that the proposed resonance-oriented software
design and development approaches provide the following advantages

over traditional object-oriented progranmuning:

4 !
F CHAPTER 6. STUDIES AND VAL}DATION . 134
~ | Paetor Combined Approach:

Harmony-Oriented Epi-Aspects

. Ease of change Easier than in OOP, because the structure of pro-

. grams can be changed easily by moving snippets
around. "

Extensibility Better than in OOP, because new snippets can be

x
added at runtime, and existing snippets do not have
to be changed. .

Maintainability Better than in QOOP, because snippets do not have i
any direct dependencies on each other. Also, spatial |

epi-aspects can be used to facilitate upgrades and

downgrades.

Ay) - 4

Quality feedback | Better than in OOP, as quality feedback is provided |

. throuoh spatial epi-aspects.

) A3 Wil
Error recovery "Better than in OOP, as error recovery is provided
' through the autopoietic evainator and spatial epi-
aspects.
I . - ' & |

"%—\J
Table 6.6: Combined Approach and Software Evolution Factors

-

"l

1. Fewer changes are required in order to reflect adjustments of a
program’s desjgn in the code. Changes include source code mod-
ifications and other adjustments to a program.

2. Extending a program requires less effort (steps/changes)..

—

.. " 3. Implementation of reliable feedback and error recovery mecha- -

nisms requires fewer steps.

Ak

CHAPTER 6. STUDIES AND VALIDATION 135

The following sections summarize how the studies in this chapter sup-

port these claims.

6.5.1 Evidence Supporting Claim 1

“Compared to traditional object-oriented programming. fewer changes
are required in resonance-oriented programs to reflect adjustments of a

program. s design in the code.”

The first changeability study regarding subject-observer relationships
in section 6.2.1 shows that. in traditional object-oriented programming.
establishing and breaking off subject-observer relat.i()lnships between
objects requires the explicit implementation of a registration and no-
tification mechanism. In the concrete Smalltalk-based example given
in section 6.2.1 implementation of this mechanism requires definition
of eight methods containing a total of 18 message sends. In harmony-
oriented programming however. it is not necessary to implement such
a mechanism, since the information diffusion principle allows establish-
ing and breaking off subject-observer relationships by moving snippets

around.

The second changeability study (section 6.2.2) examining processing
chains of producers. consumers, and filters is another example sup-
porting the cla}im that fewer changes are required in resonance-oriented
programming when changing a program’s design. In the éxample used
in the study. members ;)f a processing chain are sct up by deriving
classes from a superclass defining methods and attributes to specify the
next objects in a processing chain. Changes in the super class results
in changes to all classes used for establishing processing chains. Also.
each class participating in a processing chain has to manually forward

data to the next object. As a result, there is a tight coupling between

-

S

CHAPTER 6. STUDIES AND VALIDATION 136

classes. which makes changes more complex. In the harmony-oriented
version, it is not necessary to explicitly implement a mechanism for

creating and opcrating a processing chain.

Further evidence supporting claim 1 is provided by the software evo-
lution study using the harmony-oriented epi-aspects archito%:turo de-
scribed in section 6.4.2. Especially the software evolution stages where
plug-in and authentication support are added underline how small.
in coinparison to traditional object-oriented programming. the im-
pact of fundamental changes to a program’s design is in a resonance-
oriented software development approach. Both stages require signifi-
cant changes in the object-oriented version . For example. in the object-
oriented version only a limited form of authentication was implemented
to avoid changes throughout the application. In the harmony-oriented
version, however, authentication can be implemented by adding au-
thentication filter snippets at various locations to enforce access poli-
cics. and the majority of existing snippets does not have to be changed.

-

6.5.2 Evidence Supporting Claim 2

“Compared to traditional object-oriented programming. cxtending a pro-
m. requires less effort (steps/changes) when using resonance-oriented
; g

software development approaches.”

Scction 6.2.3 presents a study comparing extensibility and maintain-
ability in harmony-orientation and object-orientation. This study uses
the example of EAS. an extensible application server. that can be ex-
tended with new applications and network protocols. To support such
cxtensibility. the 6bjmt-0rientcd version has to implement a mechanism
for registering and unregistering new protocols. This mechanism de-

& S -
fines strict interfaces applications and protocols have to adhere to.. The

‘e

CHAPTER 6. STUDIES AND VALIDATION 137

study shows that extensions that do not fit these fixed interfaces require
Sigl;.iﬁ(:allt changes in the extension mechanism of the object-oriented
EAS version. It further shows that the harmony-oriented version of the
EAS does not require explicit implementation of an extension mecha-
nism. and that it can be easily adjusted to support initially unexpected
tvpes of applications and protocols. As a result. significantly less effort

is required for extending the harmony-oriented version of the EAS.

+

Claim 2 is also supported by the software evolution study using the
harmony-oriented epi-aspects architecture (6.4.2). The following cvo-
lution stages in particular show that extensions to (and maintenance

of) the harmony-oriented epi-aspects version require fewer changes:

e Stage 2: Initially unpredicted data queries

~This stage shows that the harmony-oriented epi-aspects version
can be extended with new queries by adding new snippets dur-
ing runtime. However. adding new queries during runtime is not
-possible in the object-oriented version. As a result. a complex
mechanism for defining and managing custom queries is added to

the object-oriented version.

o Stage 3: Plug-in support _
To support plug-ins a complex plug-in mechanism that allows
s adding: and changing plug-ins during runtime has to be imple-
‘mented in the object-oriented version. In the harmony-oriented
version. no plug-in mechanism is necessary. Plug-ins can be real-

ized as conventional snippets.

e Stage 6 and 7: Upgrade of custorn query and plug-in mechanisms
Changes to the application’smodel result in required upgrades of

the custom query and plug-in mechanisms in the object-oriented

e

CHAPTER 6. STUDIES AND VALIDATION 138

version. However, since no such mechanisms had to be imple-
mented in the harmony-oriented epi-aspects version, no upgrades

(apart from slight changes to existing plug-ins) are necessary.
6.5.3 Evidence Supporting Claim 3

“Compared to traditional object-oriented programmang, unplementation
of reliable feedback and error recovery mechanisms requires fewer steps

when using resonance-orented software development approaches.”™

The epi-aspects studies in section 6.3 show that resonance-oriented
software development approaches can be used to add quality feedback
and error recovery mechanisms to applications in a non-invasive man-
ner: the code within applications does not have to be changed. as all
quality feedback and error recovery concerns are handled by the au-
topoietic system and epi-aspects. Significant effort is required to add
quality feedback and error recovery to a traditional object-oriented
application without using epi-aspects or other frameworks for creat-
ing self-sustaining software. Additionally, the software evolution study
using the harmony-oriented epi-aspects architecture (6.4.2) suggests
that development of only three spatial epi-aspects implementing qual-
ity feedback and error recovery features can be sufficient to help keep a
buggy implementation running, and to provide developers with enough

room to fix critical bugs.

O End of chapter.

~ Chapter 7

Discussion "~ ~

This chapter discusses various aspects of resonance-oriented software
development. such as practical issues and limitations. and compares

=

them to approaches proposed by other researchers.

7.1 Resonance-Oriented Development Style

As explained in section 1.4, resonance-oriented software development
is characterized by a well-defined environment that interacts with code
entities. Executing code results in changes to the environment. and

changes in the environment can affect the behavior of code.

The environment of resonance-oriented programs is always active. Asa
result. developers interact with the running environment when adding
new code entities and applying changes. This development styvle is

comparable to the living objects concept found in image-based pro-

gramming languages, such as Smalltalk and Self. and the hot code

swapping feature of Erlang. However. the mutual and continuous ef-
fect of environment and code entities in resonance-oriented programs

on each other results in an even more dynamic development style. In

139

o

s

CHAPTER 7. DISCUSSION ’ 140

particular. the resonance-oriented development style can be character-

ized as follows:

-

e Software is not developed in terms of clearly defined. distinct

phases (i.c. design. implementation. test).

e Thorough design before coding is discouraged. because of the com-
plexity of interdependencies between environment and code enti-

tles. .

o Developers can simulate and analvze changes to environment and

code entities. before they actually apply them.

7.2 Harmony-Orientation
The following sections provide a discussion of conceptual and practical
issues of harmony-orientation and harmony-oriented programming.

- L

7.2.1 Encapsulation and Information Hiding

-]
- 4

2 ‘ : : 7

-Harmon}'-orient.ed programming is based on the principles of informa-
tion sharing a.nq information diffusion. As a result. spatial constructs
in -harmony—'orier'lt:ed programs do not encapsulate and hide their data
like objects. Snippets can have a state. but the state is owned and
diﬁ:used b\ the sf:tace. . oy

Ve
Hovuewr Qpaha.l Construct'-‘- only receive copies of diffused data. Thus

= the stafe of qnlppotq should they decide to maintain one. is protoc ted

and cannot accidentally be changed by other spatial construc ts.

L

Also. the data diffusion process itself can be considered as a kind of

flexible or temporary Kind of encapsulation and information hiding.

CHAPTER 7. DISCUSSION 141

For example, after a spatial construct puts data into the space and
before the diffusion starts, this data cannot be accessed by any other
spatial construct. At this particular moment, perfect encapsulation
and information hiding is achieved. Then, once the diffusion begins
and the further it proceeds, the more spatial constructs can access the
data, decreasing the degree of encapsulation and information hiding.

Eventually, the diffusion reaches all spatial constructs.

In Harmony-Oriented Smalltalk, programmers can use the diffusion
inspector to adjust or even disable diffusion. Hence, programmers can
dvnamically change the degree of encapsulation and information hiding

within spaces.
7.2.2 Software Reusability

Object-oriented design and progranuning supports software reusability.
becaunse objects are defined and implemented as more or less indepen-
dent entities. The more independent and generic an object is. the
higher is the probability that it can be reused in other programs. For
example, vbject-oriented libraries provide reusable objects like contain-

ers, such as linked lists, maps, and trees.

As explained in [61], code reusability can be classified as “reusability in
the large” and “reusability in the small”. Code reusability in the small
refers to taking a piece of code (or object) from one program and reusing
it in a closely related program. Code reusability in the large refers to
implementing a general algorithm, such as a sorting algorithin, and
making it reusable widely through libraries or application frameworks.

Even though harmony-oriented programming relaxes the principles of

encapsulation and information hiding and is based on the spaciality

CHAPTER 7. DISCUSSION 142

principle, it does support reusability, For example, single snippets that
perform generic or specific algorithms. such as a data filter. can be

reused in the large or in the small

Howoever. becanse of the spaciality principle. reusing groups of snippets
that cooperate to provide functionality is challenging. Especially if the
number of snippets is large. it becomes difficult to insert them into
another virtual space without having to rearrange the snippets already
existing in that space. The challenge of reusing a group of entities is not
limited 1o harmony-oriented programming and alsoe applies to object -
" oriented programming. However. the spaciality principle inereases the

complexity of reusability in hannony-oriented programs,
7.2.3 Applications and Limitations

- Harmony-oriented programming is most suitable for developing appli-
cations whose parts process data Hows or messages, As explained in the
preliminary ;'t'u(ly on harmony-orientation in section 3.3, possible con-
crete applications are load balancing systems and syvstewnr monitoring
and management software. Additionally. the studies in section 6.2 indi-
cate that harmony-oriented programming is suitable for immplementing,

servers and various Kinds of data processing flters.

The most important limitations ol harmony-oriented programimning are

performance and memory requirements. Compared to traditional objeet

oriented programs. harmony-oriented programs require additional re-
sources for performing diffusion and exchanging data between spatial
~constructs and spaces. Assuming that diffusion intensities are stored
in 32-bit floating point munbers and a two-dimensional space with a
dimension of 500 by 500 is used. then the reguired memory for the dif-

fusiow data of spatial constructs ¢an be as high as almost one megabyte

CHAPTER 7. DISCUSSION 143

{976 KB). In practice. the memory issiue can be tackled by limiting dif-
fusion of cach spatial coustruct to a waximum extent. such as 50 by H()

or 100 by 100.

Another limitation of harmonv-oriented programming is related to se-
curity and safety. In harmony-oriented programs. all data is openly
available inside the space {or spaces) and can be casiiy accessed and
modified during rmu-time, As a result. in comparison with other pro-
gramming approaches. it is casier for attackers to obtain potentially
confidential data. change prograws, and plant viruses. However, i ac-
tual implementations of harmonv-oriented runtime environtuents, this
problem can be partially witigated through technigues like code signing,

and developer authentication.

A further limitation is that. beeause of the Hexible nature of harmony-
oriented programs. the complexity of testing increases and that. com-
pared to other programming approaches. it is easior for programmers
to write code that behaves in an unpredicted wav, The complexity of
testing is increased, because the output of a snippet or other spatial
construct is not only defined by its implementation. but also by its
location in the space. However. because all data is held by the space,
it is possible to implement development environments that can simu-
late changes to code and location before they are actually applied by
a programimer. As a result, the complexity of testing and probability
of writing code that behaves in unpredicted wavs can be reduced by

concrete implementations of visual development envirommnents,

CHAPTER 7. DISCUSSION 144
7.2.4 Harmony-Orientation on Manycore CPUs

As suggested by David Ungar, harmonyv-orientation might be a possi-
ble model for programming future “manyeore” processors' [4] that have
hundreds or even thousands of cores. One issue with future “manveore”
processor architectures is how synchronization and communication be-
tween processors is realized. and how to write prograims that effectively
utilize the provided computing power. Global svnchronization of thou-
sands of processor cores would have a serious performance impact and
is this not a viable option. Local svnehronization is more promising,

hecause of the reduced overhead.

If the cores of a future “manycore”™ processor were logically arranged
into one or more a two-dimensional prids. these grids could be consid-
ered as harmony-oriented spaces with cach core being one “location”™
of the space. Using the harmony-oriented approach. cach core would
only interact with its direct neighbors 1o exchange data, Each picce of
data would have an associated intensity, which is decreased whenever
it is passed from one core to another. Once the intensity reaches zero.
the data is not passed o, Such an approach would he equivalent to

the diffusion of harmony-oriented programming,

7.2.5 GPU-Acceleration

Graphics processing units (GIPUs) operate in a parallel. pipelined [ash-
ion, and arve optimized for operations with low aritlhimetic density,
Fourth and later generation GPUs provide progrannnability of vertex
and pixel transformations. General purpose GPU computing (GPGPU)

[26] refers to the concept of exploiting the processing power of GPUs for

1 N .
Also called massively multi-core processors.

CHAPTER 7. DISCUSSION 115

performing general purpose calenlations. To set up a GPY for o general
purpose computation, a so-called fragment program implementing 1 he
desired computation in a high level shadiug language. such as Cg [27]
amd the OpenGL Shading Language {GLSLang) [55]. is loaded onto the
GPU. and two or more two-dimensional textures are created nside the
graphics memory. The textures are used for exchanging data with the
COMPIECrS Main processor or processors with one texture holding the
inpnt for and one texture receiving the output of the general purpose

computation.

Harmony-oriented spaces perform diffusion to facilitate data exchange.
The larger a space. the more serious is the impact the diffusion pro-
cess has on the overall performance ol the program. Various diffusion
equations, such as [45] . have been opltimized {or implenentation on
GPUs. As a result, the performance of harmony-oriented runtime cn-
vironments can be improved significantly by offloading all diffusion

compntations to the GPU.

The implementation of the HOS runtite environment nses two-dimen-
sional arravs for holding the varions int®nsity values for each substance.
During cach dilfusion step, these arrays are processed sequentially and
the intensity values are updated. The HOS runtime could be aceeler-
ated significantly by storing the intensity values for cach substiaice i

textures and letting the GPU perform the calenlations.

7.3 Conscientious Resonance-Orientation

The discussion in the following sections applies 1o both epi-aspects
and the combined approach described in section 6.4 (harmony-orient ed

opi-aspects).

-

CHAPTER 7. DISCUSSION 116
7.3.1 Limitations of Epi-Aspects

The epi-aspects architecture enconrages a clear separation between ap-
plication functionality and an autopoietic system for monitoring, reg-
nlation, and crror recovery, This architectural separation is a shift in
software engineering practice. which focuses ou application fanetional-
ity and often negleets well-known error recovery and adaptation 1ech-
niques. Since the autopoietic systenn is not an artificial iutvlligvm:(-.
but implemented by developers who :]m\'(' designed rules tor keeping
an application running as stnoothly as possible, certain nnpredictable
conditions can still cause the application to perform unwanted actions.
Critical failures that crash the svstem can be handled by the autopoi-
etic system. However, it is not possible to prevent an application {from
doing something it is not supposed to do. As such, the epi-aspects

architecture is prone to haman failare,

A practical issue of epi-aspects not addressed in the previous chapters
is the problem of potential buggy epi-nspects. Since epi-aspects can
comtain a significant amount of code, the imroduction of latent bups
is possible. As a result, epi-aspects have to provide a mechanisin that
reliably perforins self-updates. One possible approach is the usage of a

“meta” epi-aspect that monitors the epi-aspects for internal problems.

Another issue is the update of epi-aspects. The study presented in
section 6.3 ouly implements a dedicated epi-aspect that provides a
mechanism for updating the classes of the CAIS system, but not the
epi-aspects. The most straight forward approach for dealing with the
issue is to implement a dedicated epi-aspect that provides functionality

for reliably updating other epr-aspects and itself.

Human failure, in general. is an inportant factor when developing self-

CHAPTER 7. DISCUSSION 117

sustaining systems. It s impossible 1o preveut developers from creat-
ing problemal ic epi-aspects that directly or indirectly harne the svstem,
Eoven if near-perfeet antopoietic programming languapes and o stable
antopoictic system are available, there is still room for failne. For
example, a developer is still able 1o develop epi-aspects that are not
optimal and cause minor irregularities. I such irvegularities accunmn-
late, then the system mav [ail 1o deliver expected results despitethe

atutopoictic part keeping it alive,
7.3.2 Realizing an Autopoictic system

The autopoictic simulator of the Epi-AJd framework is meant for de-
velopment and test purposes. To use epi-aspects in real world applica-
tions, the developient of a full antopoictic systern is necessary, A;i:_irt
[romn the lack of antopoictic progranmning languages as envisioned by

Gabriel and Goldian in [36], the following, issues have to be addressed.

The lirst question is how to implement and deploy an autopoictic sys-
tenn, One option is to implement is as a program that rans direet]y
on the computer’s hardware and provides a virtual machine for rn-
ning an operating system, similar to VAIWare (98], Virtual Box [94].
and Colinnx [1). The advantage of this approach is that the autopoi-
etic system does not depend on other software, which might he huggay.
Furthermore, components, drivers, and applications of the operating
system can be realized as aspect oriented conscientions software that

is woven into the antopoielic system on startup.

Another similar option is running the antopoictic system on top of
an existing, stable operating system kernel. which provides hardware

abstraction, basic services, and includes drivers.

CHAPTER 7. DISCUSSION § 4%

A third option is to implement the antopoietic svstem as an application
running on an U])(‘I'Ellill}.‘,'\ system or inside a virtual machine. Advan-
Lages ave that this approach has lower implementation complexity. The
major disadvantage is that the antopoietic svstem depends on an op-
erating svstem or virhital machine and therefore is only as stable as the

underlying software.

Another technieal issue that has 1o be resolved are the exact mecha-
nisms for invoking recommendation and query advice woven into the
autopoictic systen and for transporting messages from epi-aspects to
the autopoictic systemr via an epi-guene. If autopoictic system and
application rn in the samne process, which is the approach used by
the autopoietic simulator. this issuce is trivial. However, running the
autopoietic system and application i the same process defeats the
purpose of conscientious software, because a eritieal failure in the ap-

plication might terminate the process and thas the autopoietic system,

O End of chapter.

i R 0

Chapter 8

Related Research and
Comparison

This chapter covers various approaches related to resonance-oriented
software development, such as diffusion-based agent systeins, software
evolution rescarch, related programming approaches, self-sustaining
systems, and error recovery. The more closely related work is com-
pared with the proposed resonance-oriented software development ap-

proaches.

8.1 Agent-Oriented Software Development

8.1.1 Agent-Oriented Programming

Agent-oriented programming, first proposed by Shoham in [84] and
[85], changes the notion of programs from hierarchies of entities with
static relations into societies of actively interacting autonomous agents
with goals and intentions. Agent-oriented programming languages al-
low developers to tackle a problem by abstracting in terms of individ-

uals with roles and intentions. Unlike objects in object-oriented pro-

149

CHAPTER 8. RELATED RESEARCH AND COAMPARISON - 150

gramming, agents are constriets that possess an independent thread

of control. are adaptable, and actively pursue goals,
8.1.2 Diffusion-Based Agent Systems

Diffusion has heen adapted as a means for interaction in various con-
crete multi-agent systems, such as [49] and [H6]. For example, Tsui
et al. propose a dilfusion-based nmltiagent framework for solving op-
tinization tasks in [91]. In particular. diffusion is nsed for allowing
agents to cooperate towards finding a global optimal solution in their

framework.

Repenning proposes collaborative diffusion as an agent-hased artilicial
intelligence system for computer games in (80} and [81]. B this systews.
agents can cmit a Uscent” that is diffused by the tiles of a game and

can be used by other agents {or tracking,
8.1.3 Comparison With Harmony-Orientation

Like agent-oriented proprannming, harmony-oricut ed programming does
not use static hierarchies of program entities: spatial construets can
be re-arranged by developers during run-time to change the progran.
On the surface, harmonv-oriented programming appears 1o be simi-
lar to diffusion-based multi-agent syvstems, such as [80]. in particnlay.
However, spatial constructs in harmony-oriented programing,. such as
snippets, are fundamentally different from agents. Consider the {ollow-

ing iypical agent features:

e Autonomy: Agenis operate withoat the direct intervention of

humans or others, and have some kind of control over thelr ac-

CHAPTER 8. RELATED RESEARCH AND COMPARISON 151

tions and internal state (an agent usually has its own thread of

execution).

e Social ability: Agents interact with other agents (and possibly

humans) via some kind of agent-communication language.

e Reactivity: Agents perceive their enviromment and respond to

changes that occur in it.

L

e Goal-orientation: Agents do not simply act in response to their
environment, they are able to exhibit goal-directed behavior by

taking the initiative and conducting negotiations.
e

e Adaptiveness: Agents learn and change their behavior based on

its previous experience.

A spatial construct, on the other hand, is just a piece of logic that runs
‘

in an environment that facilitates reactivity. It is possible to write

snippets and other spatial constructs that implement some or all of the

agent feature above, but as a conceptual construet, spatial constructs

are not comparable to agents.

8.2 Software Evolution

Researchers are investigating various approaches and strategies for deal-
ing with software evolution more effectively. One arca is the evalua-
tion of benefits of aspect-oriented software development, reflection, and
meta-data to software evolution. For example, in [60] Liu et al. de-
scribe an approach combining aspects, XML, and management tools
for enabling system-wide :~;nft ware evolution, and Rank makes the case
for reflective software architectures to facilitate software evolution in

[78].

\

CHAPTER 8. RELATED RESEARCH AND COMPARISON 152

Like the various architectures proposed within this rescarch area, the
resonance-oriented approaches based on epi-aspects make use of aspect-
orientation. However aspect-orientation is only one of many pbssible
choices for realizing a concrete resonance-oriented software architec-
tures, and cannot be considered as a design principle of resonance-

oriented programming.

- Another research field is software evolvability in general. Publications
in this field cover topics like models for and simulation of software
evolution [99], software change prediction [53], and tools for software

evolution management {51].

8.3 Programming Approaches

8.3.1 Spreadsheets, Subtext and Coherence

Spreadsheets can be considered as visible, functional programs that
are being executed continnously. Subtext {19, 20, 21] is a non-textual
pl‘()gl.'illlllllillj_’,' language inspired by spreadsheets whose programs con-
sists of trees of nodes. Programs are constructed by copying nodes and
run by evaluating the tree. Subtext has evolved into the Coherence
[22] language, which is based on a model of change-driven computation

that relives programmers from the burden of managing side effects.

Spreadsheet programming languages and languages inspired by spread-
-

sheets, such as Subtext, share the following similarities with harmony-

oriented programming: firstly, spreadsheets and harmony-oriented pro-

grams are continuously executing, even when code and data are being

edited. Hence, any change is immediately applied and visualized. Sec-

ondly, like harmony-oriented programs spreadsheets arrange code and

data in a two dimensional space and are data driven. The difference

CHAPTER 8. RELATED RESEARCH AND COMPARISON 153

is that spreadsheet languages are functional programming languages
while harmony-oriented programming is based on principles like infor-

mation diffusion, balance, and code exposure.

-~

8.3.2 Erlang

Erlang [3, 12] is a general purpose, functional programming language
and runtime environment designed for concurrency and robustness.
The Erlang runtime environment is designed to reduce the complexity
of software maintenance and error recovery through hot code swap-
ping and incremental code loading. The hot code swapping feature
allows developers to change running programs, and provides facilities
for phasing out or recovering o.ld code. Incremental code loading allows
developers to specify how much code is loaded (or unloaded) at what
time, and hence facilitates isolation and correction of buggy code in

running programs.

In harmony-oriented programs, it is also possible to change or replace
code and make other changes during runtime. However, harmony-
orientation itself does not provide mechanisms for improved mainte-
nance and error recovery. Such functionality is realized by epi-aspects,
the second resonance-oriented approach, and the combined harmony-
oriented epi-aspects approach introduced in section 6.4.1.

.

8.3.3 Dataflow Programming

Dataflow programming languages like Luicd [97] and LabView’s ~G”
language [50] allow programmers to model };mgrmus as graphs that de-
fine how data is passed from one operation to another. Many dataflow
programming languages are visual languages that provide a user in-

terface for programmers to define operations that can be connected to

CHAPTER 8. REL:A'I"ED RESEARCH AND COMPARISON 154

create a directed graph. They are typically used for applications imple-
menting data transformation or acquisition. such as image and video

flters.

The first resonance-oriented approach, harmony-oriented programming,
shares some characteristics with datafiow programming, because spa-
tial constructs and the spaces exclusively interact via exchanging data.
Also, like many dataflow languages. the harmony-oriented runtime and
development environment, Harmony-Oriented Smalltalk, is visual. The
main difference between lmrm()u_\'-()ri('lit('(l programming and dataflow
languages is that the latter encourage the programmer to specifv a
complete dataflow description in the form of a directed graph before
the program is run. However, harmony-oriented programming does not
require the programmer to think about a complete description of the
program’s dataflow. Rather, the programmer focuses on small parts
(areas) of the program and incrementally develops it while it is run-

ning.
8.3.4 Blackboard Architectures

Blackboard architectures [47, 25] facilitate information exchange be-
tween program entities through a global database. This database,
which is called a blackboard, can be freely accessed by all entities to
pllblisl; and obtain data. An important characteristic is that all data in
the blackboard is available to all entities at all times. Concrete black-
board implementations allow entities to subscribe to desired kinds of
data, and to receive notifications whenever matching data is published
or modified. As explained in [47], a common application of blackboard
architectures is problem solving: a set of problem sul\"ing entities uses

the blackboard to publish, process. and respond to hierarchically struc-

CHAPTER 8. RELATED RESEARCH AND COMPARISON 1

Pally |

tured hypotheses.

In harmony-oriented programming, the data put into spaces by suip-
pets can be freely consumed by other snippets. However, becanse of
the diffusion process. the data is not avaifable globally at all times like
in blackboard architectures. Rather. the virtual location of a spatial
construet inside s space and the extend of diflusion determine which
data a spatial construet can access. Also, a spatial construct can not
directly query or search the space for particular data, and the space

controls which data snippets reecive.
8.3.5 Phenotropic Computing

Lanier proposes phenotropics as an alternative to argiment-based in-
terfaces in (58], The main idea of phenotropics is that components have
surfaces that display information about their functionality rather than
rigid interface definitions. Iuteracting components observe and inter-
pret and the meaning, of cach other’s sirfaces. and react accordingly.
Unlike interfaces, phenotropics uses approximation rather than clearly

defined protocols,

8.4 Self-Sustainment and Reliability

8.4.1 Autopoietic Software Systems

Autopoictic software svstenms were fivst proposed in the 1970s [95)
They have been widely considered a computational model and applied
in the field of artificial intelligence [105, 66]. During the 1980s the con-
cept received less attention and was rediscovered in the late 19905 [67).

Since autopoiesis is widely considered a computational concept. most

CHAPTER 8. RELATED RESEARCH AND COMPARISON 1506

research focuses on algorithims and sinndations of simple autopoictic
systems. Varions versions of sueh siimulations impletnented in Pascal

and Fortran programuming languages are available [52, 6¥).
8.4.2 Autonomic Computing

IBX devised the notion of antonomic computing [54 71, It refers to
concepts and technologies that enable software to become more self-
managing. To achieve this goal, autonomic computing proposes four
principles: sell-configuration. self-healing. self-optimization, and self-
protection. Accordiug to [54], self-configuration refers to software com-
ponents and systems that atomatically follow a set of high-level con-
hguration policies. In case of policy changes, the entive system adjusts
itself antomatically. Self-optimization is a process in which compo-
nents continually seek opportunities to improve their own perforninance.
The self-healing process allows the svstem 1o antomatically detect andd
repair software and hardware problems and the self-protection mech-
anisi defends the system against inalicious attacks and faahires. The
self-protection mechauism uses an carly warning svstem that allows
anticipation and prevention of system failures. Researchers are explor-
ing aspect-oriented approaches for realizing autonomic cotputing. For
example, Engel et al: propose the usage of dyvnamic operating svstem
aspects for realizing autonomic software in [24]. and Greenwood et al.
deseribe how to use dynamic aspects for implementing an autononic
systein in [40].

8.4.3 Cominensalistic Software -

Commensalistic software [29] is a hyvpothetical conscicutions software

architecture based on commensalistic symbiosis proposed by Fleissner

CHAPTER 8. RELATED RESEARCH AND CUMPARISON 157

and Baniassad. Commensalistic software and epi-aspects are the first
architectures inspired by the theoretical notion of conscientious soft-

Wware.

8.4.4 Reflective and Adaptive Middleware

Research in the field of reflect ive and adaptive middleware (8. 83, 63, 23]
shares some goals with autonomnic compnting and conscientious soft -
ware. As deseribed in [39). openness and dyvnaniie self-adaptatiou are
fundamental properties of reflective middleware, and therefore. reflee-
tive middleware is sutted 1o support autonomic computing and self-

sustaining syvstenis,

For instance. the approach by Raschie et al. [79] proposes the usage of
dyuamic aspect weaving for reconfiguration. The Rainbow framework
proposed by Garlan et al. in [38] is a conerete adaptive middleware
architecture that wses monitoring and constraint evaluation for adap-

tation.

8.4.5 Monitoring-Oriented Programining

AMonitoring-oriented programmuing, as deseribed by Chen et all in
[14. 15, 13]. is a practical programiming paradigin that uses wonitoring
as the fundamental principle for implementing reliable software. The
formal specification of an application is used as the basis for generating,
a set of monitors that are integrated into the software. During rin-
tine, these monitors observe the runtime behavior of the application
and trigger nser-delined routines, when a specification is validated or

violated.

CHAPTER 8. RELATED RESEARCH AND COMPARISON 15%
N

8.4.6 Recovery-Oriented Computing

Rt'(-.uv‘(‘.ry oriented compating (ROC). explored by Patterson. Brown
et al. in [79] and [11]. suggests planning to incorporate or recover
from a certain class of errors, rather than trving 1o prevent them from
arising The major aim of recovery oriented computing is to minimize
the mean time to repair in case a system faihure oceurs. In order 1o
enable fast recovery after a failure. ROC emplovs the following six
techniques: recovery experiments. diagnosis, partitioning. reversible

systems, defense in depth, and redundancy.

8.4.7 Acceptability Envelope

Rinard et al. explore imperfeet but aceeptable software systems in (82
Their researcl proposes an aeceptabilidy envelope. a concept relerring
to software that is flawed, but delivers aceeptable service to users. Ae-
cording to Rinard. many deploved systems do an aceeptable job despite
errors and attempting to develop a flawless system can be considered

as counter-productive. becanse of the burden placed on the developer.
8.4.8 Software Reliability Engineering

Compared to the varions software architectures and philosoplies re-
garding sel-sustaining svstemns and error recovery introdneed in the
previous sections, software reliability engineering refers to clearly de-
fined software engineering processes and practices. As indicated in
chapter 1 of [62]. software reliability started “evolving from an art into

a practical engineering discipline” ([62]. p 9) in the mid 1990s.

CHAPTER 8. RELATED RESEARCH AND COMPARISON 159

8.4.9 Comparison With Epi-Aspcects

As illustrated in the previous sections, error recovery, self-sustaining

software, and software veliability are well-understood concepts.

Conscientions software, the paradigm that iuspired epi-aspects, is in-
spired by the realization that. even though various error recovery ap-
proaches exist. they are not frequently applicd in practice by 1the soft-
ware engineering and prograimming communities. Conscientious soft-
ware reguires 1wo distinet system parts written in different program-
ming languages whereby one part ix solely respousible for error recovary
and keeping the systemn alive, and the other part implements appli-
cation functionality, This approach is wmeand to encourage soltware

developers 1o allocate suflicient resources for implementing eachti part,

The epi-aspects architecture goes one step further, It allows developers
to write an application withont considering stability and error recovery
at all, and then later upgrade the application into self-sustaining soft -
ware in a non-invasive manner. Unlike many existing approaches. the
epi-aspoects architecture does not require design before coding, in regard
to error recovery and self-sustainment. Component tests, mechanistns
for error monitoring and recovery, and soltware maintenance mecha-
nisms can be added at a later stage via epi-aspects withom modifving

the existing application.

.
Additionally. even though the epi-aspects architecture is designed for
realizing features related 1o self-sustainment. epi-aspects cap be used
to implement various other features, such as plug-in mechanisins and

v

application extensions.

O End of chapter.

Chapter 9

Conclusions

This chapter summarizes the research presented in this thesis, deseribes

its contributions, and discisses fature work.,

9.1 Summary

The aim of this research was to mtroduce the notion of resonance-
orient ed software design and developrent and 1o show that . in compar-
ison with traditional object-oriented programming,. conerete resonance-
oricnted approaches allow programmers 1o deal with software evolution

more effectively.

After describing a prefiminary study aimed af exploring how differ-
ent reasoning stvles of individuals from dilferent enltural backgronnds
apply to the realin of software development, two conerete resonance-
orienied approaches called harmonyv-oriented progranmuing and opi-

aspects were introduced.

The main idea behind harmony-oriented programming is that pieces

of a program always interact with their enviromuent as a whole and

160

CHAPTER 9. CONCLUSIONS 161

usually not with other program parts dircetly. Harmwony-oriented pro-
grauming challenges established and widely accepted olrject-orient od
principles, such as strong encapsulation, inforation hiding, and inhier-
itance, and favors more flexible and ah-hoe approaches for strncturing

and implementing progranns

Epi-aspects are a conerete resonance-orictnted arehitecture based on
aspect-oricnted programming, and conscientions software that intro-
duces epi-aspects as a construct for combining an autopoictic systen
and applications into self-sustaining software by facilitating, feedback

ad resonance,

Development environments for both proposcd approaches were imple-
mented and used 10 evaluate resonance-oriented programming, through
varions studies, As part of the studies, a third resonance-oriented
approach, ealled harmony-oriented epi-aspects. combining harmony-

oricnted programming and epi-aspects was introduced and evaluated.

The studies showed that resonance-orviented software developiment en-
hances factors affecting software evolntion, such as case of change, ex-
tensibility, maintainability, and error recovery, in comparison 1o tradi-

tional object-oriented programming,.
9.2 Contributions

In addition to proposing and validating resonance-oriented software

design and development . this research makes vartous contribut ions.
9.2.1 Rescarch Contributions

This research makes the following contribittions to software engineering

and programning languages vesearch:

CHAPTER 9. *CONGLUSIONS 162

1. It illustrates a new way of programming that relaxes encapsula-
tion and information hiding without increasing the dependencies
of program parts on ecach other. In fact, direct dependencies be-
tween program parts are decreased.

(Harmony-oricnted programming).

-

(S}

It proposes the first concrete architecture based on the theoreti-
cal notion of conscientious software as envisioned by Gabriel and

Goldman. (Epi-aspects).

3. It illustrates a concrete aspect-oriented architecture where aspects
advise on program parts written in two fundamentally different

programming languages. (Epi-aspects).

4. It introduces a new kind of aspect that is able to advise on arcas

in virtual spaces. (Spatial cpi-aspects).

5. It shows that cultural differences in reasoning can be applied to
the areas of programming languages and software engineering.

(Preliminary study and harmony-oriented programming).

9.2.2 Software Contributions

-

The major software contribution of this research is HOS, the harmony-

oriented runtime and development environment described in chapter 4.3.

e HOS is an open source project hosted on SqueakSource:

http://www. séueaksourcé .com/hos.html.

e Its current version provides visual support for harmony-oriented

spaces and snippets, and non-visual support for spatial epi-aspects.

CHAPTER 9. CONCLUSHINS 163

9.3 Future Work

The work presented in this thesis can only be considered as the st
steps towards defining and validating resonance-orientation as a soft-
ware developiment paradigin. Even though the studies presented in
this thesis provide strong evidence in favor of resonance-oriented soft-
ware development, they cannot be considered as o definitive proof
that resonance-oriented soltware development is indeed more suitable
for actual large-scale software development projects than traditional
objeet-oriented progranuning. Hence, lurther experimental stndies are
required to evaluate resonance-oriented sofltware development in the

context of long-rumning industrial software development projects,

Another future topic is the design of resonance-oriented langiages and
corresponding virtual machines, such as a pure harmony-oriented pro-
gramming lauguage that could be used instead of Smadltalk in the HOS
rinime and development environment. Additionally, epi-aspects and
other software architectures using an antopoictic part. wonld benedis
from conerete antopoictic programming languages, languages that are
designed inoa way 1o make it dillicult {or progranmers 1o introdnce

bugs.

Additionally, the implementations of the development environments
for the proposed resonance-oriented approaches are still inoan carly
stage. Especially the HOS development environment and its support
for harmony-oriented opi-aspects requires more work i both the virtual
machine and graphical user interlace to become suitable for large-scale

projects and studies,

O End of chapter.

Appendix A

A Semantics for HOS

This appendix is an initial semanties for the experimental version of
Harmony-Oriemted Smadltalk (HOS) introduced in section 1.3 focus-
ing on spaces, snippets, and diflusion ol substances. In particnlar the
following paragraphs describe the semanties for the methods provided
by the space and state objects deseribed section 132, which facili-
tafe waintenance ol suippet state and interaction bhetween snippets

and spaces.
The notation used in this appendix is inspired by axiomatic seman-
tics, as desceribed in [87]. and uses the following format for defining
semantics:

o A precondition block.

e larmony-Oricnted Sialltalk statement ().

e A result block.

The precondition block deseribes the state of space, snippets and sub-
stances before the HOS statements are executed, and the result block
deseribes the effect the HOS statements have. The following notations

are used to define the state of spaces, snippets and substances:

161

APPENDIX A. A SEMANTICS FOR 110OS 165

space (width, height)

snippet (posX, posY, limit, log)

state (posX, posY, type, value)
substance (originX, originY, area, data)

substance-particle (posX, posY, intensity, data)

Spaces are detined by their width and height. Suippets are defined
by their position inside the space (posX and posY). a limit value tha
controls the maximum extend to which a substance carrving data pro-
duced by the snippet is diffused, and the coutents of their associated
log. States are defined by their position in the space (which the same
as the snippet they are associated with), their tvpe, and their value.
There are two notions lor defining substances. The first notation de-
fines a substance by its ovigin, the surface area it covers, and the data it
carries. The second notation, denoted as “substance-particle” . defines
the intensity o substance has al a given position i the space and its

data. The data of substances is defined as follows:

data := [taggedValues]

taggedValues := taggedValue | taggedValues, taggedValue

1

taggedValue := typeOrValue | typeOrValue "_{" tags "}"
fa-2z, A-2Z,0-9,")
tags := tags | tag

typelrValue
tag := [a -z, A - Z, 0 -~ 9]

For example, a possible definition of a substance’s data might look like

this:

data = ["Hello", 22, S0_{tagl, tag2})

APPENDIX A. A SEMANTICS FOR HOS ’ 166

In addition to the notations for spaces. snippets and substances, the
semantic descriptions in the paragraphs below use the following special
tags:

e TIME. This tag denotes the current time in milliseconds.

e DF. This tag denotes a factor that controls how much a substance

extends during each diffusion step.

A.1 Semantics for Producing Data

Snippet putting an object into the space for the first time:

Precondition: [
snippet (posX = x, posY = y, limit = 1, log = [])
substance (

originX = x,

originY = vy,

area = 0,

data = []

)
t = TIME

space put: object.

Result: [
substance(
originX = x, originY =y,
area = max(l, (TIME - t) DF)) n"2,
: data = [object]
) N

APPENDIX A. A SEMANTICS FOR HOS 167

Suippet putting a tagged objeet into the space when substance has

already reached maxinmmm diffusion:

Precondition: [
snippet (posX = x, posY = y, limit = 1, log = [])
substance (
originX = x, origin¥ = vy,
area = [n'2, ’
data = [10, 20, 30]

space put: ‘Sebastian’ tag: ‘Name’.

Result: [
substance(
originX = x, origin¥ =y,
area = [n 2,

data = [10, 20, 30, "Sebastian"_{Name}]

A.2 Scmantics for Consuming Data

Snippet consuming one objeet of type Strvng with the tae Name;
Pi 23) Al i} 18

Precondition: [
snippet (posX = 5, posY = 5, limit =1, log = [])
substance-particle(
posX = 5,
posY = b,
intensity = 0.5,
data = [‘Sebastian’, ‘Tilman’_{Name}, ‘Stefan’]

APPENDIX A, A SEMANTICS FOR HOS 168

description := DataDescription new
type: String;
addTag: 'Name’ ;
name := space consume: description.
Result: [

substance-particle(
posX = &, posY = b, intensity = 0.5,
data = [‘Sebastian’, ‘Stefan’]

Snippet consnming one object of type Strvng when substance carrving

matching data does not reach snippet:

Precondition: [

snippet (
pesX = 5, posY = 5,
limit = 1,
- log = []
)

substance-particle(
posX = b, posY = 5,
intensity = 0.5,
data = [‘Sebastian’, ‘Tilman’_{Name}, ‘Stefan’]

name := space consume: String.

Result: {
substance-particle(
posX = 5, posY = 5, intensity = 0.5,
data = {‘Sebastian’, ‘Tilman’_{Name}, ‘Stefan’]

2

APPENDIX A. A SEMANTICS FOR HOS 164

Suippet cousmning one object of type String when two substances car-

rving matching data are available:

Precondition: [

snippet (
posX = 5,
posY = 5,
limit = 1,
log = (1
)
substance-particle(
posX = 5,
posY = 5,

intensity = 0.5,
data = [‘Sebastian’, ‘Tilman’_{Name}, ‘Stefan’]

)
substance-particle(
posX = 5,
pesY = 5,
intensity = 0.83,
data = [‘Gabi’, ‘Wolfgang’]
)
]
name := space consume: 3tring.
Result: [
substance-particle(
posX = b,
posY = 5,
intensity = 0.5,
data = [‘Sebastian?, ‘Tilman’_{Name}, ‘Stefan’]
)
substance-particle(
posX = 5,
posY = 5,
intensity = 0.83,
data = [‘Wolfgang’]
)

APPENDIX A. A SEMANTICS FOR HOS 170

Snippet consuming all objects of tvpe Nwmnber when two substances
g8 . V]

carrying matching data are available:

Precondition: [
snippet (

pesX = 5, posY =

limit = 1, log

nu
—/ n
-

)

substance-particle(
posX = 5, posY = 5,
intensity = 0.5,
data = {10, 30, 50]

)

substance-particle(
posX = 5, posY = 5,
intensity = 0.83,
data = {20, 40, 60]

]

space consume: Number do:[:num]|
log show: num asString.

].

Result: [
snippet (
log = [20, 40, 60]
)
substance-particle(
pesX = 5, posY = §,
‘ intensity = 0.5,
(data = [10, 30, 50]
)
substance-particle(
posX = 5, posY = 5,
intensity = 0.83,
data = []

APPENDIX A. A SEMANTICS FOR HOS 17l

Snippet consuming all objects of type Number whose value is less than

six:

Precondition: [

snippet (
posX = 5,
posY = 5,
limit = 1,
log = []
)
substance-particle(
posX = 5,
posY = 5,

intensity = 0.5,
data = [1, 2, 3, 4, 5, 6, 7, 8]

] >
description := DataDescription new
type: Number;

constraint:[:val| val < 6].

space consume: description do:[:num|
log show: num asString.

*
Result: {
snippet (
log = [1, 2, 3, 4, 5]
)
substance-particle(
posX = 5,
posY = 5,
intensity = 0.5,
data = [6, 7, 8]
)
]

APPENDIX A. A SEMANTICS FOR HOS 172

A.3 Semantics for Observing Data

Snippet observing all objects of type Number whose valine is less than

six:

Precondition: [

snippet (
posX = 5,
posY = 5,
limit = 1
)
substance-particle(
posX = 5,
posY = 5,

intensity = 0.5,
data = [1, 2, 3, 4, 5, 6, 7, 8]

]

description := DataDescription new
type: Number;
constraint: [:vall val < 6].

space observe: description do:[:num|
log show: num asString.

1.
Result: [
snippet (
log = [1, 2, 3, 4, 5]
)
substance-particle(
posX = 5,
posY = 5,
intensity = 0.5,
data = [1, 2, 3, 4, 5, 6, 7, 8]
)

APPENDIX A. A SEMANTICS FOR HOS

L

73

Precondition: [

snippet (
posX =5, posY = 5, limit = 1,
log = [J
P bang o e B
subscance—particle(
ResY &
posY = 5
intensity = 0.5, AR W
data = [° SGOaStlan’ ‘Tilman’_{Name},
éﬁéézéﬁéé-ﬁéézih13t
ResY =
posY = 5
1nten31ty 0,83, Funin
data = [‘Gabi’, ‘Wox:gang]
)

AR R tYiMm u'l'

space ooser%e [:stri
log show: str.
B
Result: [
snlppet (PARMA - W
log = {Gabi,

U L LN T

R e LR I R EE N AL R R T

subszance—particle(
posX = 5, posY = 5,
inzenszty 0.5,)
. data = [‘Sebastian’, ‘Tilman’_{Name},
2
substance-particle(|,
posX = 5, posY = 5
intensity = 0,83, ., .
data = [¢ Gaol" ‘Wol:gang
y

‘Sterqn

Woligang, SeoaSt¢an, T;lman éteIan.

‘Stefan’]

APPENDIX A. A SEMANTICS FOR HOS E71

A.4 Scmantics for Snippet State

Snippel changing the type of its state to Number and setfing its value

to seveln

Precondition: [

snippet (

posX = 10,

posY = 10,

limit = 1, log = []
)

substance (
originX = 10, originY = 10,
area = 0, data = []

)

state(
pesX = 10, posY = 10,
type = 7, value = 7

)
t = TIME

state type: Number
state value: 7.

Result: [
state(

posX = 10,
posY = 10,
type = Number,
value = 7

)

substance(

originX = 10, originY = 10,
area = max(l, (TIME - t) DF)) = 2,
data (73

APPENDIX A. A SEMANTICS FOR HOS !

-1
ot

Suippet changing the tvpe of its state to Ovdered Collection and adding,

valnes:

Precondition: {

snippet (
posX = 10, posY = 10,
limit = 1, log = []

)

substance
originX = 10, originY = 10,
area = 0, data = []

)

state(
posX = 10, posY = 10,
type = 7, value = 7

)

t = TIME

state type: OrderedCollection.
state add: ‘Hello’;
add: ‘Harmony-Oriented’;

add: ‘World’.
Result: [
state(
posX = 10, posY = 10,
type = OrderedCollection,
value = [‘Hello’, ‘Harmony-Oriented’, ‘World’]
)
substance(
. originX = 10, originY = 10,
area = max{(1l, (TIME - t) DF)) n 2,
data = [‘Hello’, ‘Harmony-Oriented’, ‘World’]
)

G End of chapter.

o

Appendix B

Common Observations

Table B.1 provides the results of the analysis of the observations recorded
during the preliminary study on how Nisbett’s findings regarding differ-
ent reasoning styles of individuals from different cultural backgrounds
apply to the realm of software development (section 3). It shows which
category the responses fit under, and some observations fit into mul-
tiple categories. The total number of responses counts the individual
responses from all categories; the same respondent may have uttered
more than one response for a particular observation. The number of
individual respondents who reported an observation is shown in paren-

theses under Total Number:

176

APPENDIX B. COMMON OBSERVATIONS

Clontext:

Remark Total | Comtext: | Context: Context: | Rel: Rel: | Puzzleme
v Int Obs * Hole Short | Long
Empty sceats, G {5 | 21 1:5,) 26
bui peaple are 2.1, 2:0G,
waiting 6:h, H:R,
11:1]
Bad mother 6 (D) | 28, 3:3 28,
R,
6,
T2
tl:1
Man unable to § 6 (1) 3: 10, 1) KN
pity 1:3, 7:3 110
Misplaced G (1 611 1:5, 306, 70
couk G 16,
715
. = = o =, ==
Looking at the | 1 (4) A5,
pinno player 112,
T,
7
Talles unae- | 3 (3) 2 22, G:6 2.2
coumled for "\ 812 o |
Strange Lable 3 ™ 12, 401,
o
Man “lvom 3 () Gi:12 11
the north pole” T:11
People are 3 (1 2:4, 8:1
drinking, not ’ 03
ecating
Busy workers | 3 (2) G N 115
Plates will falt | 2 (2) | G4, 11:1 Pl
1i:1
Crrying chef 2(2) 2:7. k13
Strange picture] 2 (2) | 1:3 B 10
Dark restau- 2(2) | 23 6:7
rant
Sad pianisl 2(2) | 68 68,
11:2
People outside § 2 (2) | 6:138 Hi2
Man under ta- § 2 (2) 1:14, TR
ble 7:0
Clake coming 2(2) (RN

Table B.1: Common Observations

O End of chapter.

Appendix C

Original GMA Database
Design

[Figures CoL and CU1 show the original database design of the GMEA
order and inventory management svstem. The figures show an entity-
relationship model with Gerinan Iabels. Even though object-oriented
programing was used for implementing the applications, the initial
designs were databasc-centrice. In the initial versions apphication. there
was 10 direct mapping between objects and the tables of the ditabase,
However, in later versions objects representing the entire application

model were introduced and mapped to the tables in the database,

Figure (.1 shows the left part of the entity relationship model. The
main entities defined in this part are Bueh (hook), KNunde (customer),
Auftrag (ovder). Warengruppe (category), Resereicrungen (reservations),

and Vormerkungen (holds).

Figure C.2 shows the right part of the entity relationship model. The
main centities delined in this part are Lagerort (storage location). Au-
toren (authors). Verlag (publisher), Ansprechpariner (contact persou).
AdrTerfar (contact information), and V_History (delivery history of

publishers).

APPENDIX C.

ORIGINAL GMA DATABASE DESIGN

Resorvierung Lager

Aes 1D (FK)
Reservigiungen LG 1D (FK)
F_!os iP) ISBN (FK)
e s g s S s Kunde 1D (FK) Anzan l
Dalum |
resorviert bis l
+ mil parlie ‘
SRR TR |
Vormerkung Lager |
Vormerk 1D (FK) ‘
LO ID (FK) |
- ISBN (FK) 1 '
Anzahl - -
Vormerunaen T Pickiislo
oomada o LO ID (FK) |
' 'ormerk 1D ISBN (FK}
Kunde 1D (FK) | Aul NA (FK) .
Datum Vormerkung Buch ‘ Anzahl
vorgomerkl bis Vormerk ID (FK} i i
mi patie ISBN (FK)
Anzahl \ Buch
1 | i 1SBN
{ ‘ Tual
‘ Unieringl r
| Aultrag Buch | Varlag 1D (FK)
son e |||
_ﬂuf NR (FK) | i Erjahi
Prois : | Format
Anzahl ‘ Gewichl
Lieformenge —mn Seilen
Rechnungsmenge MWST
Werbekennzeichon Vergnfon
Rabait . MetvBand
Toxi ExVK
Prifision Warengruppe Buch Orgvik
— e 1SBN (FK) s
Gru Nr [FK) Nollo
Warongiuppe l Hoachst Prov
Aulirag Gru Nr i — Gosp s
‘ Aul NAR Kundentaban
| Razaichnung VLB Gruppe
Dalum —
Kundo 1D (FK)
Adr D (FK} —_———— _— —_— — —_—— — -
Liofe
V.;ullnwd‘::?um Lieleradvresson
Lietordatum LAdr 1D
Porte Verp Ade 1D (FK) —_— -
Rabatt ; Kundo ID (FK}
Veriroler 10 (FK) Vors ID (FK)
Prowvision bl
Phirtio Kunde l Veisandarten
ZZ 1D (FK) L <] Kunde 1D = Vars 1D
P) Bozoichnung { Bezeichnung
Vears 1D (FK) e ——
. Adr 10 (FK)
BLZ {FK)
z Konto Nr !\Fmtl_elef
| ahlungs2iel | Vertreler 1D (FK) = Verireter 10
an ﬂZZ 1D (FK) Bezeichnung
Bezoichnung V5B KdN¢ Adr 1D (FK)
l i . Verkohrs Nt BLZ (FK)
usTY i
s e Ku_Raban I.K_“"'_“ e
| S o Werbespoire
Liolersperre el Bt
bag
bag hmit
bag skonlo
Aufkleber Txt Siasei o=y pe o = — =
= EU
Ausland
. Figure C.1: Original GMA D;\li,hn:-w Design (Left Part)

APPENDIX C. ORIGINAL GMA DATABASE DESIGN

Lageror VLB Prolokoll
oI VProl ID
Bmmchnung Datum
b Zeil
|
Lsgoznﬁ:m . VLB Prot Dal_
VProt 1D (FK)
lsqN el Lin Ne
Anzam_ Messago
Autoren
Autor 1D
Namo
Autoren Buch
ISBN (FK)
: Aulor 1D {FK) v Hsory
CoAutor e
‘ Vedag . i
Verlag 1D Verag 1D (FK)
Bozehnung ‘ VISBN Varlag av_Mange
Adr 1D {FK) gol Menge
s Liet Kosten
BLZ (FK) Vorlag D (FK) Boch Suirend
Konto NR e
usT 1 ahlung
GMA KD NR i
S N V Ansprechpartner
VAP 1D
TelF
I AdrTelFax I A D
] Y Acr 10 Verlag 1D {FK) l
Firma l R
Namno
StrasseNr
On
PlzOn
Posttach
PizPostiach | || Ansprechpartnor
LKZ |I Lgae 0
g g | ‘ Name
opsaer - Vomame
g ” Geschiocht
2 | Telofon
S Fax
Mol
' i Email
Geburtslag
1 - Wanhnachiskane
iy St 1 .
J 4
L
Bank
i
Name
’ ' K_Ansprechpartner
KAP ID
- Kunde 1D (FK) J
N AP 1D {FK)

»

Figure C.2: Original GMA Database Design (Left Right)

T 180

O End of chapter.

-

o

‘Bibliography

[

2l
3]

4]

" [6)

9] G. Booch: ()bject—h(_)fr:icn:ted Anelysis and Design with Applica-

D. Aloni. Cooperative linux. In Proceedings of the Linuz Sympo-
stum., volume 1, pages 23 31, 2004.

Aristetle. Physics. 350 BCE:

J. Armstrong. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf. 2007.

K. Asanovic. R. Bodik. B. C. Catat’irn. J. J. Gebis. P. Hus
bands. K. Keutzer. D. A. Patterson. W. L. Plishker. J. Shalf.
S. W. Williams., and K. A. Yelick. The landscape of parallel
computing research: A view from berkeley. Technical report.
University of California at Berkeley. 2006.

P. -Avgustinov, A. S. Christensen. L. Hendren. S. Kuzins.
J. Lhotak, O. Lhotak, O. de Moor, D. Sereni. G. Sittampalam.
and J. Tibble. ab¢ : An extensible aspectj compiler. In Proceed-
ings of the Eleventh International Conference on Tools and Algo-

rithms for the construction and analysis of systems (TACAS05).-

volume 3440 of LNCS. pages 293-334. Springer-Verlag. 2006.

E. Baniassad and S. Fleissner. The geography of programming. In
QOPSLA 2006: Companion to the 21st annual ACM SIGPLAN
conference on. Qbject-oriented programming. systems. languages.
and applications. pages 560-573. ACM Press, 2006.

A. P. Black. S. Ducasse. O. Nierstrasz. D. Pollet. D. Cassou, and
M. Denkex. Squeak by Example. Square Bracket Publishing. 2008.

G. S. Blair., G. Coulson. and P. Grace. Rescarch directions in
reflective middleware:~ the lancaster experience. In ARM 04:
Proceedings of the 3rd workshop on Adaptive and reflective mid-
dleware, pages 262-267. New York, NY. USA. 2004. ACM Press._

* ttons. Addison-Wesley Professional. 2 edition, 1993.

-

181

‘....-3"

-
f

BIBLIOGRAPHY 5 ¥ .

“x e 132

‘a [10] . Bldtko Pmiog* P.rogr(mmnnq fm Artificial -IutrH{qmrr;

—

[111

[12] F. Cesarini and S: Thompson. Erlang Programming. O Reilly

Addison-W ‘esley. 1990

A. Brown. "A Recm.rery-()ri.ented A ppm;u-h. to Dependable Ser-
vices: Repairing Past Errors with System-Wide Undo. PhD the-
sis, University of California, Berkeley, 2003.

-

w L

- Media, Inc., 20009.

[13]

[20]

F. Chen and G. Rosu. Mop: Reliable software development using ‘
abstract aspects. Technical Report UIUCDCS-R-2006-2776. De-

partment of Computer Science. Lm\erslt\ of Ilhnoh at Urbana-
Chdmpalfm 2006.)

F. Chen aud G. Rosu. Towards monitoring-oriented program-
ming: A paradigm combining specification and implementation.

In Workshop en Runtime Verification (RV Do’} volume 89(2) of
EMTC'S pages 108 - 127, 2003.

F. Chen and G. Rosu. Java-mop: A monitoring oriented pre
gramming environment for java. In Proceedings of the Eleventh
International Conference on Tools and Algorithms for the con-
struction and analysis of systems (TACAS05), volume 3440 of
LNCS. pages 546-550. Springer-Verlag, 2005.

O. Ciupke. Automaric detection of design problems in object-

.oriented reengineering. In TOOLS °99: Proceedings of the

Technology of Object-Oriented Languages and Systemns, page 13.
Washington. DC, USA, 1999. IEEE Computer.Society.

A. Cromer. Uncommon Sense: The Heretical Nature of Science.
Oxford University Press, New York. 1993.

S. Ducasse. Squeak: Learn Programming with Robots. Apress.
2005. ¥

J. Edwards. Example centric programming. In OOFSLA 04:
Companion to the 19th annual ACM SIGPLAN conference on
Object-oriented programming systems, languages, and applica-
tions, pages 124-124, New York, NY, USA.-2004. ACM.

J. Edwards. Subtext: uncovering the simplicity of ﬁrogramming.
In OOPSLA '05: Procecdings of the 20th annual ACM SIGPLAN

conference on Object oriented programming, systems, languages,
“and applications, pages 505-518, New York, NY, USA. 2005.

ACM Press.

BIBLIOGRAPHY - ' 183 .

[21] J. Edwards. No ifs, ands. or buts: uncovering the simplicity of
conditionals. SIGPLAN Not.. 42(10):639-653. 2007. -

[22] J. Edwards. Coherent reaction. 2009.

[23] F. Eliassen, E. Gjorvelr. V. S. W. Eide. and J. A. Michaelsen.
Evolving self-adaptive services using planning-based reflective
middleware. In ARM °06: Proceedings of the 3th workshop on
Adaptive and reflective middleware (ARM "06). page 1. New
York, NY, USA. 2006. ACM Press.

[24] M. Engel and B. Freisleben. Supporting autonomic computing
functionality via dynamic operating system kernel aspects. In
AOSD °05; Proceedings of the 4th international conference on

Aspect-oriented software development, paﬂes 51-62. New York.
NY, USA, 2005. ACM Press.

[25] R. En*elmow Blackboard Systems. *\ddlaon-“ule\ 1983.

[26] R. chdndo GPU Gems: Programming chhmqu(a Tips. and
' Tricks for Real-Time Graphics. Addison-Weslex,;2004.

7] R. Fernando and M. J. Kilgard. _Th.:;: Cg‘.Tut(;ria}. Addison-
Wesley. New York, 2003.

[128]_.%. Fjuk. Comprehensive ()Bject-()n}ented Learning: The
' Learner’s Perspective. Informing Science, 2006.

[29].S. Fleissner and E. Baniassad. A commensalistic software sys-
tem.” In OOPSLA 2006: Companion to the 21st annual ACM
SIGPLAN conference on Object-oriented programming. systems.
languages, and applications, pages 510-520. ACM Press. 2006.

[30] S. Fleissner and E. Baniassad: Epi-aspects: aspect-oriented con-
scientious software. In OOPSLA '07: Proceedings of the 22nd
annual ACM SIGPLAN conference on Object oriented program-
ming systems and applications, pages 659—674. ACM Press. 2007.

[31] S. Fleissner and E. Baniassad. Towards harmony-oriented pro-
gramming. In OOPSLA '08: Companion to the 23rd ACM SIG-
~ PLAN Conference on Object-Oriented Programming. Systems.
Languages, and Applications, pages 819-822. ACM Press, 2003.

[32] S. Fleissner and E. Baniassad. Harmony-oriented programming
and software evolution. In OOPSLA '09: Companion to the 24th
ACM SIGPLAN Conference on Object-Oriented Programming.
Systems, Languages, and Applications. ACM Press, 2009.

BIBLIOGRAPHY ' 134

[33]

[34]
[35]

[36]

7]

33

[39]

[40]

[41]
[42]

[43]

[44

S. Fleissner and E. Baniassad. Harmonyv-oriented smalltalk. In
OOPSLA '09: Companion to the 24th ACM SIGPLAN Confer-

“ence on QObject-Oriented Programming. Systems. Languages. and

Applications. ACM Press, 2009.

M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley Professional, 2002.

Y. L. Fung. A Short History Of Chinese Philosophg-;. Simon and
Schuster Inc., 1997.

R. P. Gabriel and R. Goldman. Conscientious software. In OOP-
SLA 06: Proceedings of the 21st annual ACM SIGPLAN con-
ference on Object-oriented programming systems. languages. and

applications, pages 435 -450, New York. NY. USA. 2006. AC)I
Press.

E. Gamma. R. Helm, R. Johnson, and J. Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison
Wesley Professional Compurting Series. Addison Wesley, 1995.
htep: //www.aw.com.

D. Carlan, S.-W. Cheng, A.-C. Huang.' B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation with
reusable infrastructure. Computer, 37(10):46-54. 2004.

P. Grace, G. Coulson, G. S. Blair. and B. Porter. A distributed
architecture meta-model for self-managed middleware. In ARM
'06: Proceedings of the 5th workshop on Adaptive and reflective
middleware (ARM '06). page 3, New York, NY, USA. 2006. ACM
Press.

P. Greenwood and L. Blair. Using.d__\'namic-‘ aop to implement an
autonomic system. In Proceedings of the 2004 Dynamic Aspects
Workehop (DAWO04), Lancaster, pages 76-88. RICAS. March
2006.

P. H. Gries and K. Peng. Culture clash? apologies east and west.
Journal of Contemporary China, 11(30):173-173, 2002.

M. J. Guzdial. Squeak: Object-Oriented Design with Uuhzm(d:a
Applications. Prentice Hall, 2000. e

E. Hamilton. The Greek Way. Avon, 1973.

| C. Hansen. Language and Logic in Ancient China. University of

Michigan Press, 1933.

BIBLIOGRAPHY 135

[45] M. J. Harris, G. Coombe. T. Scheuermann, and A. Las-
tra. Physically-based visyal simulation on graphics hardware.
In HWWS °02: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware. pages 109-113.
Aire-la-Ville. Switzerland..Switzerland, 2002. Eurographics As-
sociation.

[46] T. Hogg. Coordinating microscopic robots in viscous fluids. Au-
tonomous Agents and Multi-Agent Systems. 14(3):271-305. 2007.

[47] J. Hunt. Blackboard Architectures. JayDee Technology Lud.. 2002.

(48] M. Imai and D. Gentner. A cross-linguistic study of early word
meaning: Universal ontology and linguistic influence. Cognition.
62(2):169-200, 1997.

[49] Y. Jiang, J. Jiang, and T. Ishida. Agent coordination by trade-off
between locally diffusion effects and socially structural influences.
In AAMAS °07: Proceedings of the 6th international joint confer-
ence on Autonomous agents and multiagent systems. pages 1 3.

New York, NY, USA, 2007. ACM.

[50] G. Johnson and R. Jennings. LabVIEW Graphical Programming.
McGraw-Hill Professional, 4 edition, 2006.

[51] P. Jonsson. The anatomy - an instrument for managing soft-
ware evolution and evolvability. In Second International IEEE
Workshop on Software Fvolvability, pages 3¥ 37. IEEE, 2006.

[52] F. Jullien and B. McMullin. FRJ’s Simple Autopoiesis Program.,
1995. Program source in Pascal, for MS-DOS platform.

[53] H. Kagdi and J. Maletic. Software-change prediction: Esti-
mated+actual In Second International IEEE Workshop on Soﬂ
ware Evolvability, pages 38-43. IEEE, 2006.

(54] J. O. Kephart and D. M. Chess. The vision of autonomic com-
puting. Computer, 36(1):41-50, January 2003.

[55] J. Kessenich. The OpenGL Shading Language. The Khronos
Group, 2003.

[56] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm. and
W. Griswold. Getting started with aspectj. Communcations of
the ACM, 44(10):59-65, 2001.

[57] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes.
J.-M. Loingtier, and J. Irwin. Aspect-oriented programming. In

' BIBLIOGRAPHY , 136

M. Aksit and S. Matsuoka, editors, Proceedings European Confer-
ence on Object-Oriented Programming, volume 1241, pages 220
242, Berhn Heidelberg, and New York 1997 Springer-Verlag.

(58] J. Lamer Why gordian software haa convinced me to believe in
the reality of cats and apples. Edge, 128, November 2003.

< [59] C. Liu. Smalltalk, Objects, and Design. 1Unjverse, 2000.

[60] C.R. Liu, C. Gibbs, and Y. Coady. Safe and sound evolution with
sonar. Transactions on Aspect-Oriented Software Development.
4:163-190, 2007.

[61] M. D. Lubars. Code reusability in the large versus code reusabil-
ity in the small: SIGSOFT Softw. Eng. Notes, 11(1):21 -28, 1936.

[62] M. R. Lyu, editor. Handbook of Software Reliability Engineering.
IEEE Computer Society Press, 1996.

[63] R. Maia, R. Cerqueira, and F. Kon. A middleware for experi-
mentation on dynamic adaptation. In ARM ‘05: Proceedings of
the 4th workshop on Reflective and adaptive middleware systems.
New York, NY, USA, 2005. ACM Press.

[64] J. Maloney. An Introduction to Morphic: The Squeak User In-
« terface Framework. Walt Disney Imagineering, 2000.

[65] A. Martelli, A. Ravenscroft, and D. Ascher. Python Cookbook.
O’Reilly Media, 2 edition, 2005. .

[66] B. McMullin. Computational autopoiesis: The original algo-
rithm. Working Paper 97-01-001, Santa Fe Institute, Santa Fe,
NM 87501, USA Jan. 1997. .

[67) B. McMullin and F. J. Varela. Rediscovering computational
autopoiesis. In Fourth European Conference on Artificial sze
(ECAL’97), pages 38-47, 1997.

[68] J. Mingers and B. McMullin. JM’s Simple Autopoiesis Program,
1997. Program source in Pascal, for MS-DOS platform.

[69] R. Mordani, editor. Common Annotations for the Java Platform.
Sun Microsystems, Inc, 2006.

[70] M. W. Morris and. K. Peng. Culture and cause: American and
chinese attributions for social and physical events. Journal of
Personality and Social Psychology, 67(6):949-971, 1994.

{71] R. Murch. Autonomic Computing. IBM Press, March 2004.

L4

BIBLIOGRAPHY 187

[72]

(73)

C. L. Nchaniv. J. Hewitt. B. Christianson. and P._Wernick. What
software evolution and biological evolution don’t have in common.

In Second International IEEE Workshop on Software Evolvabil-
ity. IEEE Computer Society, 2006.

R. E. Nisbett. The Geography of Thought. Free Press. 2003.

74] J. Noble and R. Biddle. Notes-on notes on postmodern pro-

(80]

(81]

(82]

gramming: radio edit. In OOPSLA '04: Companion to the 19th
annual ACM SIGPLAN conference on QObject-oriented program-
ming systems. languages. and applications. pages 112 115, New

York. NY. USA. 2004. ACM Press.

D. Patterson. A. Brown. P. Broadwell. G. Candea. M. Chen.
J. Cutler. P. Enriquez. A. Fox. .E. Kiciman. M. Merzbacher.
D. Oppenheimer. N. Sastry. W. Tetzlaff. J. Traupman. and
N. Treubhaft. Recovery oriented computing (roc): Motivation.
definition. techniques.. Technical report. Berkelev. CA. USA.
2002. =

- &
T, T

D. J. Pearce and J. Noble. Relationship aspects. In the ACM
conference on Aspect-Oriented Software Development (AOSD 06)
(to appear). 2006. -—

- = e
K. Peng. D. R. Ames. and E. D. Knowles. Culture and Human
Inference: Perspectives from Three Traditions. Oxford University
Press. 2000.

S. Rank. Architectural reflection for software evolution. In 2nd
ECQOOP Workshop on Reflection. AOP and Meta-Data for Soft-
ware Evolution. 2005.

A. Rasche. W. Schult. and A. Polze. Self-adaptive multithreaded
applications: a case for dynamic aspect weaving. In ARM 05:
Proceedings of the 4th workshop on Reflective and adaptive maid-
dleware systems. New York. NY. USA. 2005. ACM Press.

A. Repenning. Collaborative diffusion: programming antiobjects.
In QOPSLA 06: Companion to the 21st ACM SIGPLAN con-
ference on Object-oriented programming systems. languages. and
applications, pages 574-585. New York. NY. USA. 2006. ACM.

A. Repenning. Excuse me. i need better ai! emploving collabora-
tive diffusion to make game ai child’s play. In Proceedings of the

ACM SIGGRAPH Video Game Symposium. ACM Press. 2006.

M. Rinard. C. Cadar. and H. H. Nguyven. Exploring the ac-
ceptability envelope. In QOPSLA 05: Companion to the 20th

BIBLIOGRAPHY 188

wnua[ACM SIGPLAN conference on Object-oriented program-

(83

[84]

85)

&ing. systems. languages. and applications. pages 21 30, New .

York. NY. USA. 2005. ACM Press.

M. A. S. Sallem and F. J. da Silva e Silva. Adapta: a framework
for dynamic reconfiguration of distributed applications. In ARM
06: Proceedings of the 5th workshop on Adaptive and reflective
middleware (ARM "06). page 10. New York. NY. USA. 2006.
ACM Press. .

Y. Shoham. Agent-oriented programming. Technical report.
Computer Science Department. Stanford University. Stanford.
1990.

Y. Shoham. Agent-oriented programuning. Artificial Intelligence,
60(1):51 92. 1993. - ,

B. Simpson. editor. Hsqldh User Guide. The HSQLDB Develop-

ment Group. 2007.

(89]

[90]

[91]

-[92]

K. Slonneger. Formal Syntar and Semantics of Pmyrmn.miﬁg
Languages: A Laboratory Based Approach. Addison-Wesley.
1995.

R. B. Smith. J. Malonev. and D. Ungar. .The self-4.0 user in-
terface: manifesting a svstem-wide vision of concreteness. uni-
formity. and flexibility. In QOPSLA '95: Proceedings of the
tenth annual conference on Object-oriented programming systems.
languages. and applications, pdv(s 47-60. New York. NY. USA.
1995. ACM.

L. Sterling and E. Shapiro. The Art of Prolog. Second Edition.:
Advanced Programming Techniques. MIT Press. 1994.

D. Thomas, C. Fowler. and A. Hunt. Programming Ruby: The
Pragmatic Programmers’ Guide. Pragmatic Bookshelf. 2 edition.
2004. ' aake

K. C. Tsui and J. Liu. Multiagent diffusion and distributed opti-
mization. In AAMAS °03: Proceedings of the second international
joint conference on Autonomous agents and multiagent «z;cfr»m,
pages 169-176. New York. NY. USA 2003. ACM.

Unknown. Tutorial 3: A 5-step guideline for object-oriented
design. http://www.universia.com.br/mit/1/100/PDF /slides-

3.pdf.

L

'S 2
- .

:_. [931 Unknown Apache XML Rl{' API The Apax he Software Foun-

dat;on. 2()01

,': [94] Unkhnown. Sun Vzr‘tua[Bo:z User' Manual. Sun Microsysteins.

2009,

[95] F. J. Varela, H. R. Maturana, and R. Uribe. Autopoiesis: The

. organization of living systems, its characterization and a model.
BzoSy.stems 5:187-196. 1974.

‘ [96] S. Vinoski. Chain of responsibility. IEEE Internet Computing.

6(6):80- 83, 2002.

[97] W. W. Wadge and E. A Ashcroft. Lucid. the Dataflow Proqmm- :
ming Languag A(,ademlc Press, 1986.

[98]. B. Ward. The Book of VMware: The Complete Guide to VMware
Workstation. No Starch Press, 2002. ‘ v

: {99] P. Wernick, T. Hall, and C. Nehaniv. Softwarc evolutionary dy-

namics modelled as the activity of an actor-network. In Second -
International IEEE Worles'hop on Software Evolvability. pages
74-81. IEEE, 2006.

[100] J. Wielemaker.: S WI-Prolog 5.6 Reference Manual. University of -

Amsterdam. 2008.

* [101] Wikipedia. Autopoiesis. Wikipedia - The Free Encyclopedia.

2003,
[102) Wikipedia. Allopoiesis. Wikipedia - The Free Encyclopedia. 2005.

-[103) D. Winer. XML-RPC: Specification. UserLand Software. 1999.
- [104] S. M. Yacoub. Compo®te filter pattern. Technical report, HP

Laboratones Palo Alto, 2001.

[105] M. Zeleny. Self-organization of living systems: A formal model of
autopoiesis. International Journal of Geneml Systems. 4:13-28.
1977. ' .

