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Abstract

Metamaterials are a type of artificially structured materials. They are usually con-

structed with arrays of subwavelength conducting structures and can achieve elec-

tromagnetic properties beyond those of existing materials. Although the field of

electromagnetic artificial media has been around since the 1940s, the new field of

metamaterials has been heavily researched in the recent decade because of its promise

of novel properties such as negative index of refraction and cloaking effect. In this

dissertation, I discuss the concept of metamaterials and review the recent progress

in microwave metamaterials research. The main achievement in this work has been

to develop analytical formulas based on discrete Maxwell’s equations to describe the

dispersion behavior of metamaterial structures. The formulas have been verified by

comparing with other physical models and numerical calculations. I make use of

these analytical formulas to fit the response of metamaterial structures and to create

rapid designs for metamaterial devices. Utilizing this technology, I design and fabri-

cate practical metamaterial samples, such as an invisibility cloak. The experimental

measurement of the metamaterial samples agrees well with design and thus demon-

strates the efficiency and accuracy of the proposed sophisticated design methodology.

This new design methodology will help transition fundamental metamaterial research

to practical applications.

As the field of metamaterials highly relies on numerical simulation technology

and physics modeling, I start my work from the design methodology, namely: build-
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ing a structure, making a standard retrieval process and analyzing the achieved

material parameters. In this study, I find that design efficiency is limited by the

complexity of the unknown dispersion of metamaterials. To address this difficulty, I

study the effective medium theory and spatial dispersion of metamaterials based on

Maxwell’s equations. Using the lattice model of periodic metamaterial structures,

discrete Maxwell’s equations are formulated by averaging the electric and magnetic

field within a unit cell. A set of analytical formulas are thus derived to predict the

spatial dispersion of a metamaterial structure with approximately ten fitting param-

eters. Subsequently, those fitting parameters can be used to represent the structure’s

response instead of complex dispersion curves. An abstract space is therefore cre-

ated in which the geometrical dimensions of metamaterials can be varied. I perform

full-wave simulations at a few points in this abstract space to estimate the values

of the fitting parameters in-between the sampling points. A rapid design approach

is thereupon initiated. This algorithm is further enhanced by Bayesian statistics by

introducing advanced regression and searching techniques that facilitate the rapid

design approach. To demonstrate the advantage of the rapid design approach, three

different cylindrical cloaking devices are built by automatic design. The three cloak-

ing devices work at 8.5 GHz, 9 GHz and 10 GHz, respectively, and measurements

demonstrate the expected invisibility phenomenon for all three cloaks. The rapid

design approach decreases the design time by at least a factor of a million in this

experiment.

The next effort in this work is to integrate printed circuit board fabrication

technology, rapid design approach and experimental design to implement various

metamaterial devices at microwave frequencies. I discuss the implementation of

waveguided metamaterials. This type of metamaterial is composed of complemen-

tary structures inside a planar waveguide and has an electric or magnetic response

equivalent to the insertion of a material inside the waveguide. Lensing and tunneling
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effects are demonstrated using integrated waveguided metamaterials. In addition,

I also discuss gradient index metamaterials – a media whose properties vary with

space. I demonstrate experimentally a beam-steering metamaterial lens and a fo-

cusing metamaterial lens using both narrowband resonant metamaterial structures

and broadband non-resonant elements. The broadband metamaterial designs operate

from 7 GHz to 12 GHz. In addition to these devices, I also construct and characterize

a broadband ground-plane cloak operating from 13 GHz to 16 GHz, verifying both

the design of broadband metamaterials and transformation optics.
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1

Literature Review and Introduction to
Metamaterials

Electromagnetic metamaterials have received attention from the scientific community

recently because of their novel properties, properties which are not easily found

in natural materials. Metamaterials are normally constructed from subwavelength

structures. The subwavelength structure, or unit cell, can respond to either electric

fields or magnetic fields, and thus resemble the dipole moments in natural materials.

Fig.1.1 illustrates a material’s electric response, in which a collection of dipoles react

to an external electric field. In natural materials, the dipole response is attributed to

the molecules in the material. To achieve different material parameters, one can find

different chemical species or artificially create a hybrid medium by mixing various

materials. Dielectric materials and optical materials have been widely used and even

engineered in sophisticated ways for many applications. However, these materials’

properties are still limited by the choice of chemical species. To address this challenge,

the methodology of metamaterials attempts to engineer a material’s property through

its sub-level particle, or unit cell. A sub-wavelength unit cell structure can be used

to generate a dipole response. Fig. 1.2 shows one of the candidates for such a
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unit cell structure, called a Split Ring Resonator(SRR), whose functionality will be

discussed in detail later. Because the metamaterial’s properties can be engineered

by modifying each individual unit cell, the advantage of a metamaterial derives from

its flexibility in achieving various functionalities.

Figure 1.1: An external electric field excites dipoles inside a material

Figure 1.2: An split ring resonator on the substrate.

To characterize an electromagnetic material, we can study the classical descrip-

tion of electromagnetic media, a constitutive relationship. As shown in Fig.1.1, we

can average the field intensity and strength to obtain the local response by the dipole

moment inside the media.

D = ε0 < E > +P

B = µ0(< H > +M) (1.1)
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in which,< E > and < H > are the statistical average of the local electric and mag-

netic field. D and B are the electric and magnetic net flux from the the interaction

of the external field and the material’s response. P and M are the polarization and

magnetization, respectively. For linear electromagnetic materials, we can assume

that P is proportional to < E > and M is proportional to < H >. Then the elec-

tric and magnetic susceptibility χe and χm can be defined as P = ε0χe < E >

and M = χm < H >. By grouping the susceptibility with the local field in

Eq.(1.1), we obtain the definition of the permittivity ε = ε0(1 + χe) and perme-

ability µ = µ0(1 + χm). Recall that the permittivity and permeability are the most

important macro parameters to describe an electromagnetic material’s properties.

The wave propagation can be solved by Maxwell’s Equations based on ε and µ. The

entire process of extracting the macro parameter ε and µ from the polarization and

magnetization is regarded as a homogenization approach on the effective medium.

The critical point is that a homogenous electromagnetic medium can be formed

by a collection of subwavelength scatters, whose optical properties can be character-

ized by the field averaging technique. The methodology for creating metamaterials

follows the same procedure but by replacing the molecule with an artificial subwave-

length structure, shown in Fig.1.3.[1] An array of subwavelength SRRs can form a

metamaterial with a certain magnetic response. As discussed previously, the ε and

µ of the metamaterial depends on the dipole moment generated by the unit cell

structure. Therefore, modifying the geometry of a particular unit cell structure can

render the local optical property of metamaterial designable.

To analyze the structure of metamaterials, we propose an approximate model

to describe the mechanism of forming such artificial media. Fig.1.3 shows a two-

dimensional split ring resonator structure from different perspectives. Assuming the

unit cell structure is arrayed within the entire space with the periodicity p, a uniform

magnetic field H0e
−iωt is applied along the −z axis. According to Lenz’s Law, an
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Figure 1.3: A collection of SRRs forming a homogeneous metamaterial

induced current will be excited I. We assume that the magnetic field intensity caused

by the induced current is H1. Notice that H1 is a function of the position (x, y, z)

and is the contribution from all the array. The depolarization field is H2 and has the

same character as H1. It is easy to show that∫ p/2

−p/2

∫ p/2

−p/2

(H1z + H2z)dxdy = 0 (1.2)

in which H1z and H2z indicate the z-axis component of H1 and H2. According to

the field average [field averaging technique?] technique[1], we define the average

permittivity as

µ =
B

H
=

1
p2

∫ p/2

−p/2

∫ p/2

−p/2
Bzdxdy

1
p

∫ p/2

−p/2
Hzdz

(1.3)

.

To calculate the average magnetic flux, we can write

B =
1

p2

∫ p/2

−p/2

∫ p/2

−p/2

Bzdxdy =
1

p2

∫ p/2

−p/2

∫ p/2

−p/2

µ0(H0 + H1 + H2)dxdy = µ0H0 (1.4)

. The average magnetic intensity can be calculated by

H =
1

p

∫ p/2

−p/2

Hzdz =
1

p

∫ p/2

−p/2

(H0 + H2)dz = H0 +
1

p

∫ p/2

−p/2

H2dz (1.5)
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. For practical structures, H2 is difficult to calculate because of the unit cell inter-

action and the integral of the contribution from the entire array. Therefore, a full

wave simulation is usually needed to solve such complex scatter systems. However,

to demonstrate the concept and the field averaging technique, we discuss a simplified

model to predict the SRR’s response.[1] Let’s assume that the unit cell is a two-

dimensional structure and is small in the x− y plane. The H1z is uniform within the

split ring area and H2z is uniform within the entire unit cell. We can then calculate

the local field within the split ring area:

Bloc = H0 + H1z + H2z (1.6)

. H1z is excited by the induced current. It can be approximated as H1 = I according

to Eq.1.2,H2z = −S0

S1
H1z, in which S0 is the area of a split ring resonator and S1 = p2

is the unit cell area.

According to Lenz’s Law, we establish a circuit calculation that

iωBlocS0 = I(R− 1/iωC) (1.7)

.

Solving Eq.1.2-1.7, we can see that

µ = µ0(1−
Fω2

ω2 − ω2
0 + iγω

) (1.8)

in which, F = S0

S
, ω0 = 1√

µ0S0C
and γ = R

µ0S0
.

It might be helpful to compare metamaterials with existing natural materials.

They are both constructed by subwavelength scatters, and their optical properties

are both described by ε and µ. The distinction is the unit cell component. A resonator

is needed to form a metamaterial unit cell. Thus, the fabrication technique in reality

limits the unit cell’s size. Normally the unit cell is much larger than the molecule in a

dielectric material. At microwave frequencies, the scale of a metamaterial’s unit cell is
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usually one-tenth of the wavelength. This difference underlies the distinction between

metamaterials and natural materials in physics.[2, 3, 4] Because the metamaterial

unit cell scale has been comparable to the wavelength, it also behaves like a photonic

crystal. Much effort has been devoted to explaining and describing the unusual

dispersion relationship.[4, 5, 6, 7, 8] It has been noted that a large unit cell size

will introduce a spatial dispersion (dispersion depending on the lattice factor) into a

metamaterial’s properties. Fig. 1.4 illustrates a comparison between a Drude-Lorentz

meida dispersion and a metamaterial dispersion. A dispersion in existed materials

can be usually calculated using a Drude-Lorentz model. While the metamaterial’s

dispersion can be calculated by a full wave simulation and a parameter retrieval

process.[2, 6] From Fig.1.4, we can observe the dramatic distortion in the permeability

dispersion of metamaterials. Such distortion results in a more complex response

compared to that of natural materials. To address the difficulty in describing this

spatial dispersion and to provide a set of general fitting formulas, we provide our

approach to this problem in Chapter 2.

Figure 1.4: A comparison of the permeability in a Drude-Lorentz magnetic medium and
a metamaterial composed by [composed of] SRRs

Although designing metamaterials is still complex, it has been demonstrated that

metamaterials can exhibit novel electromagnetic properties which are impossible or

difficult to find in existing materials. One of the compelling technologies based on

metamaterials is a negative index material that has a permittivity and permeability
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which are simultaneously negative.[9] The first experiment with a negative index

material was reported in 2000, in which a SRR with a wire structure was used to

form a negative index at microwave frequencies.[10] Since this demonstration, many

experiments have been done based on negative index material technology.[10, 11, 12,

13] One of the most controversial topics is the super lens composed by the negative

permittivity or permeability, or both, in metamaterials[14, 15]. The diffraction limit

of optical imaging theory is predicted to be overcome by enhancing the evanescent

waves using negative index materials. Disagreement ensued after more careful study

[15] and the theorem for a super lens was improved by the debate[16]. The first

experiment on an optical super lens was demonstrated by Professor Xiang Zhang’s

group at the University of California, Berkeley, in 2005 [17]. By using a 17nm silver

slab, they achieved a 1/6 wavelength imaging resolution.

Figure 1.5: From Ref.[19]. The effect of partial focusing by indefinite medium

Research on negative index media, or indefinite media [18, 19], produced another

type of metamaterial with negative permittivity or permeability in one direction and

positive in the other direction. Such anisotropic media can achieve partial focusing

due to their interesting dispersion diagram, as shown in Fig.1.8. Indefinite media

are only one example of the complex anisotropic materials that can be designed by

7



metamaterial technology.

Figure 1.6: From Ref.[20]. The design of gradient index metamaterials by placing
inhomogeneous SRRs transverse to the propagation direction

As discussed above, the unit cell design largely determines the local electromag-

netic properties of metamaterials. By varying the unit cell geometry, the refractive

index and impedance can be engineered throughout a metamaterial. A gradient in-

dex metamaterial was firstly demonstrated in 2004, shown in Fig. 1.9[20]. The slight

variation in the substrate cut forms an inhomogeneous electromagnetic medium.

More recent work on the gradient index lens design will be discussed in Chapter 5.

Thus, the ability to modify each resonant particle in a structure allows investi-

gators to explore unusual electromagnetic properties not found in natural materials.

There are other examples of negative index materials [10, 11] or even much more

complicated inhomogeneous anisotropic medium systems which can control the wave

propagation around a designated region, e.g. the invisible cloak[24, 25, 26] shown in

Fig.1.2.

Since the resonant frequency is related to the unit cell size, scaling down the

structure can lead to a higher frequency response, via terahertz metamaterials for

example [21, 22]. Although this scaling technique is affected by the effective mass of

the electron, which will limit the maximum resonant frequency[23], it is still a useful

technique to control operational frequency of metamaterials. Recently many optical
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Figure 1.7: From Ref.[25]. The design of a reduced parameter invisible cloak and the
simulations and measurements of a cloak and metal cylinder

metamaterials also have been demonstrated using this technology.[22, 23, 24, 25]

A technique, transformation optics, has been proposed most recently to control

electromagnetic waves via the design of complex media.[24, 25, 26, 27, 28, 29, 30,

31, 32, 33, 34] The idea is to utilize certain complex media to realize the coordinate

transform to electromagnetic waves. Such complex media are usually anisotropic

and inhomogeneous, and thus difficult to find in nature. Metamaterials become a

useful element candidate to form such complex media. One of the most fascinating

studies is the research on an invisibility cloak that can control the electromagnetic

wave propagation that avoid an object as if the object were absent.[25] Fig.1.7 shows

the first experiment on a reduced cloak.

In conclusion, the concept of metamaterials is establshed from effective media

theory and field averaging in a homogenization process. The flexibility afforded in

engineering their optical properties make metamaterials attractive for the develop-

ment of novel electromagnetic devices. Experimental demonstrations of metamate-

rials have presented the possibility of a negative index and an invisibility cloak at

microwave frequencies.
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2

Effective medium theory and general fitting
formulas for metamaterials

2.1 Effective medium theory for fundamental electric or magnetic res-
onant particles

As discussed in the Introduction, practical metamaterial structures behave differ-

ently from conventional dielectric materials due to the spatial dispersion. This fact

introduces difficulties when describing metamaterial behavior. In this section we will

develop an effective medium theory for fundamental electric or magnetic resonant

particles and explain the physics behind their dispersion behavior.

First I will review the history of artificially structured electromagnetic metama-

terials, which have received considerable attention in the past several years due to

their ability to exhibit a wide range of electromagnetic responses rarely found in

natural materials or composites. Since the demonstration of an artificial medium

with a negative refractive index in 2000 [11], metamaterial designs have increased

in complexity and sophistication, to the point that precisely controlled gradients in

both permittivity and permeability can be introduced to form advanced lenses and

optics [16], or even invisibility cloaks [24, 25, 26], according to Ref.[7].
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While not a necessary requirement, periodicity is a feature typically found in

metamaterials, which are usually based on repeated unit cells containing one or

more conducting subwavelength resonators. Unlike photonic crystals, the unit cell

size in metamaterials is much smaller than the free-space wavelength, so that an

inhomogeneous structure can be homogenized from an electromagnetic point of view,

and be represented by its macro-scale parameter permittivity and permeability[7].

Although the use of effective constitutive parameters has proved successful in

describing and predicting the properties of waves propagating in metamaterials, the

retrieved parameters nevertheless display anomalous and often non-intuitive behav-

ior. For example, it was found from scattering- (S-) parameter simulations that when

either the retrieved permittivity or permeability possesses a resonance form, there

is an accompanying anti-resonance in the non-resonant parameter over the same

frequency range, with the sign of the imaginary part of the anti-resonant param-

eter opposite to that of the resonant parameter [35]. Considerable discussion has

ensued over the applicability of retrieval methods and even the validity of effective

constitutive parameters in general, for metamaterial structures [36, 37].(Ref.[7])

The unusual form of the constitutive parameters obtained from retrieval methods

has recently been analyzed with increasing rigor by numerous researchers [5, 38, 39,

40, 41]. The consensus that has emerged is that the periodicity associated with

most reported metamaterials, usually a factor of ten smaller than the free-space

wavelength, plays a significant role in the metamaterial properties. As a result, the

closed form expressions obtained by researchers in the static and quasi-static limits

for the constitutive parameters [1, 42, 43], which typically obey Drude or Drude-

Lorentz models, must be modified to include the effects of spatial dispersion.[7, 38]

Before those work, there has not been an analytical approach that connects the

simple medium dispersion models to the actual retrieved parameters of the metama-

terial structures. As a result, the detailed design of metamaterials has relied entirely
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on numerical approaches that first solve Maxwell’s equations for a structure, and

then perform a numerical retrieval to obtain the effective constitutive parameters.

Well known effective medium approaches can be used to form an initial metamaterial

design and develop a working intuition, but do not predict the ultimate frequency-

dependent form that the actual parameters will take. Our aim here is to present an

analytical theory that provides a simplified yet accurate description of metamaterials,

and is also entirely consistent with previous numerical approaches.[7]

Figure 2.1: Metamaterial composed of periodic particles, where a plane wave is incident
along the z direction.

Recently, a rigorous approach to the numerical retrieval of the constitutive pa-

rameters was presented, in which field averages over the metamaterial unit cell were

used to determine the macroscopic fields [5]. (A similar approach has also been ap-

plied to the transmission line formulation of metamaterials [44]). This process results

in a discrete form of Maxwell’s equations, in which the metamaterial unit cell is re-

placed by an effective medium. The discrete set of equations, however, implies that

the fields are effectively sampled on a finite grid, so that spatial dispersion is inherent

in the formulation. Although ultimately a numerical implementation, the method

presented in [5, 47, 48] forms a useful starting point for the present discussion[7].

If we start with the integral form of Maxwell’s equations, and imagine averaging
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the fields over a unit cell, we arrive at a finite-difference form of Maxwell’s equations,

in which the averaged electric fields are defined on the edges of one cubic lattice, while

the averaged magnetic fields are defined on the edges of a second offset lattice [45].

To simplify the analysis, we assume a wave whose electric field is polarized in the

x direction and propagates along the z axis. The unit cell of the metamaterial is

assumed to have a periodicity p. Under these conditions, one of the Maxwell curl

equations reduces to

Ex[(n + 1/2)p]− Ex[(n− 1/2)p] = iωµpHy[np], (2.1)

in which n = 0,±1, · · · , and the averaged electric field Ex and magnetic field Hy are

defined by the line integrals

Ex(z) =
1

p

∫ +p/2

−p/2

E(x, 0, z)dx, (2.2)

Hy(z) =
1

p

∫ +p/2

−p/2

H(0, y, z)dy. (2.3)

. Under this form of averaging, the average permeability µ has the form [8]

µ =
1

p2Hy(0)

∫ +p/2

−p/2

∫ +p/2

−p/2

µaH(x, 0, z)dxdz. (2.4)

.

Similarly, the other Maxwell curl equation in integral form can be simplified to

Hy[(n + 1)p]−Hy[(np] = iωεpEx[(n + 1/2)p] (2.5)

after introducing the average permittivity

ε =
1

p2Ex(p/2)

∫ +p/2

−p/2

∫ +p/2

−p/2

εaE(0, y, z)dydz. (2.6)

13



. In Eqs. (2.4) and (2.6), εa and µa are the permittivity and permeability of the

background medium, respectively. Eqs. (2.1) and (2.5) together represent a discrete

set of Maxwell’s equations (DME)[7].

In order that the DME represents an infinite periodic structure, we apply the

Bloch boundary conditions: Ex[(n + 1/2)p] = Ex[p/2]ei(nθ+θ/2) and Hy[(np)] =

Hy[0]einθ, in which θ is the phase advance across one cell. Substituting the boundary

conditions into the DME, we obtain the dispersion equation

sin(θ/2) = Sdωp
√

µε/2, (2.7)

where Sd = 1 if the wave is propagating in a material where ε and µ are both positive,

and Sd = −1 if the wave is propagating in a material where ε and µ are both negative.

Eq.(2.7) shows that the phase advance is related not only to the average constitutive

parameters, but also to the periodicity p.[7]

N.b. I’m not going to put periods after the citation hereafter, since these may be

footnotes, not citations as in a journal article.

To obtain a complete description of wave propagation in a medium, it is also

necessary to determine the wave impedance of the medium, which is defined as

η(z) = Ex(z)/Hy(z). Part of the difficulty in obtaining an analytic expression for

the averaged impedance is that averaged electric and magnetic fields for the effective

finite-difference Maxwell’s equations are defined on the edges of lattices that are

offset from each other, whereas the definition of impedance requires the ratio of the

electric and magnetic fields at the same point. We state without justification here

that we can interpolate the field value on a point midway between two lattice edges

by taking the linear average of fields located at the nearest neighbors.[7]

Using the linear average, we arrive at two possible definitions of the impedance;

one is obtained by averaging the magnetic field defined on two adjacent edges of the

magnetic lattice, while the other is obtained by averaging the electric field defined
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on two adjacent edges of the electric lattice. The two averages lead to two different

expressions for the impedance that can be summarized as

η =
√

µ/ε(cos θ/2)Sb (2.8)

. Sb = 1 for unit cells that have a predominantly electric response, but Sb = −1

for unit cells that have a predominantly magnetic response. The ambiguity in the

impedance expression is resolved by a rigorous derivation leading to an exact formula,

which will be presented elsewhere. In the limit that the unit cell has a resonant

electric or magnetic response, the general expression reduces to Eqs.(2.8).[7]

With the phase advance Eqs.(2.7) and impedance Eqs.(2.8), we can now obtain

an analytic solution for the constitutive parameters of metamaterial. Denoting the

effective permittivity and permeability as εeff and µeff , then the phase shift θ and

wave impedance η can be expressed in terms of εeff and µeff as: θ = ωp
√

µeffεeff and

η =
√

µeff/εeff . Considering Eqs. (2.7) and (2.8), we obtain the general solution for

the effective permittivity and permeability as[7]

εeff = ε · (θ/2)

sin(θ/2)
[cos(θ/2)]−Sb , (2.9)

µeff = µ · (θ/2)

sin(θ/2)
[cos(θ/2)]Sb . (2.10)

.

When 0 < µε < 4/(ωp)2, θ is real and thus the corresponding modes are propa-

gating. The effective constitutive parameters are predicted by Eqs. (2.9) and (2.10)

provide useful insight. The wave impedance approaches zero for an electric resonator,

or infinity for a magnetic resonator when θ = π or −π. This behavior implies that

when either ε or µ takes large values, then µ or ε will take accordingly small values.

The medium as a whole in these cases can be viewed as a spatial resonator.[7]

When the averaged permittivity and permeability satisfy µε < 0, only evanescent

waves exist in the metamaterial based on Eq. (2.7). In such cases, Eqs. (2.9)
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and Eqs.(2.10) represent purely evanescent modes with either electric or magnetic

character, depending upon the signs of µ and ε.[7]

When µε > 4/(ωp)2, Eq. (2.7) shows that θ will be a complex number θ =

Sdπ + iθI , which corresponds to a resonant crystal bandgap mode. Here, Sd is the

dispersion sign defined earlier corresponding to left- or right-handed average param-

eters, and θI = 2 ln(u +
√

1 + u2). The resonant crystal bandgap results from the

periodicity inherent in the metamaterial combined with the large effective constitu-

tive parameters associated with the resonant metamaterial elements. In this case,

the effective permittivity and permeability are expressed as[7]

εeff = −Sb · ε ·
θI − iπ

cosh(θI/2)
[sinh(θI/2)]−Sb , (2.11)

µeff = Sb · µ ·
θI − iπ

cosh(θI/2)
[sinh(θI/2)]Sb . (2.12)

From Eqs. (2.11) and Eqs.(2.12) we observe three important features. First, only

evanescent waves are supported in the crystal bandgap regime. Second, the phase

shifts by ±180◦ from one cell to an adjacent cell, where the sign depends on whether

the averaged parameters are both positive or negative. Finally, the imaginary parts

in the effective permittivity and permeability appear in conjugate forms. Hence

one of the constitutive parameters will always acquire a negative imaginary part

(i.e., negative loss assuming an exp(−iωt) time dependence). The negative loss

compensates for the positive loss in the other parameter to generate an overall loss-

less behavior.[7]

To validate the analytic theory, we consider a metamaterial formed from split

ring resonators (SRRs), which possesses a strong magnetic resonance [1]. Since the

SRR is a magnetic-response structure, Sb = −1 must be chosen. Were we to analyze

a structure with an electric resonance, such as the ELC introduced in [46], we would

choose Sb = 1. From an analytic, quasistatic theory, the SRR structure shown in
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Figure 2.2: Comparison of theoretical-prediction results and retrieval results from S
parameters for the SRR structure. The parameters used in the theoretical calculation are
chosen as f0 = 9.975GHz, εa = 4.4ε0, µa = µ0, γ = 5×107, p = 2.5 mm, and F=0.23. The
SRR structure is inserted in (b). The substrate is FR4 (ε = 4.4 + 0.044i) with a thickness
of 0.25mm. The dimensions are: a = 2.5 mm, c = 2.2 mm, g = 1.1 mm, b = e = 0.2 mm
and d = f = 0.22 mm. Ref.[7]

Fig. 2.2(a) possesses an averaged permeability in the absence of spatial dispersion

of the form

µSRR = µa

[
1− Ff 2/(f 2 − f 2

0 + iγf)
]
, (2.13)

in which f0 is the magnetic resonant frequency, and γ is the loss factor. The SRR

usually does not exhibit a strongly dispersive permittivity, so we take for the averaged

permittivity εSRR = εasin(v)/v as a homogeneous model for the background medium,

in which v = ωp
√

εaµa/2.[7]

Based on the ideal form, we calculate the effective permittivity and permeabil-

ity using the analytic formulas above. Fig. 2.2 compares the predicted parameters

for the SRR structure with those from the numerical S-parameter retrieval. The S-

parameters are simulated using HFSS (Ansoft), a commercial, full-wave electromag-
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Figure 2.3: The ELC Structure. Comparison of the theoretical-prediction results and the
retrieval results from the S scattering parameters for the ELC structure. The parameters
used in the theoretical calculation are that f0 = 12.2GHz,εa = 4.2ε0,µa = µ0,γ = 4 · 107

p = 3.333mm and F=0.19 The substrate is FR4 (ε = 4.4 + 0.001i) whose thickness is
0.2026mm. The dimension is that a=3.333mm, b=3mm, c=d=g=f=0.2mm and e=1.4mm
Ref[7]

netic solver whose accuracy has been verified earlier [5, 47, 48]. In the simulations, a

single unit cell is simulated along the z direction, with periodic boundaries applied

along the x and y directions. From Fig. 2.2, excellent agreement is found between

the analytic theory and simulations.[7]

The frequency regimes of various modes can easily be identified from the phase

advance shown in Fig. 2.2(c). Below the frequency 9.6 GHz, the wave is propagating.

From 9.6 GHz to 10 GHz, the phase advance reaches 180 degrees and hence the wave

is in the resonant crystal bandgap region. From 10 GHz to 11.5 GHz, the modes are

evanescent. The resonant frequency of SRR occurs at 10 GHz; above 11.5 GHz, all

modes again become propagating.[7]

The above analysis provides insight into the behavior of the effective constitutive
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parameters for the SRR metamaterial. For example, the large discontinuity in the

permeability and corresponding damping of permittivity at 9.6 GHz occurs because

θ = 180 at this frequency, which is the transition frequency between propagating

modes and resonant crystal modes. The wave impedance becomes very large at

this frequency, as shown in Fig. 2.2(d). The critical frequency of the resonant

crystal bandgap has previously been misidentified as the resonant frequency of the

permeability, which actually occurs at 10 GHz.[7]

Similarly, the other type of particle, the ELC resonator (which can provide electric

resonance as shown in Fig. 2.3), can be calculated from the form

εELC = εa

[
1− Ff 2/(f 2 − f 2

0 + iγf)
]
, (2.14)

and µELC = µa sin(v)/v. Here, f0 is the electric resonant frequency.[7]

The relatively analytic formulas presented here provide an accurate description of

electromagnetic metamaterials. Because the equations are closed form and relatively

simple, the influence of spatial dispersion can be clearly identified and the anomalous

form of the constitutive parameters understood. This is a large step toward a full

characterization of metamaterials. However, as one can see, this model is only valid

for a fundamental electric or magnetic resonant particle. The request on fitting the

spatial dispersion curves for a complex unit cell structure (such as a dual resonance

with electric and magnetic resonators) requires a general fitting formula.

2.2 A general fitting formula for metamaterials

The last section has introduced the ground step for establishing a relatively ana-

lytical model for a fundamental electric or magnetic resonant particle. However, a

practical metamaterial design usually requests control of both the electric and mag-

netic response. In this section, we will propose generalized fitting formulas that can

be widely applicable to analyzing complex metamaterial structures.
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Going through the process of precise design of the structural response of metama-

terials, the standard retrieval procedure through the reflection and transmission is

the linchpin by which the effective electromagnetic parameters of a particular phys-

ical structure can be extracted .[3]. However, such a standard retrieval procedure is

an approach to measurement by which, people have to either conduct an experiment

or run full wave numerical simulations for the specific metamaterial unit cell. Both of

these approaches to obtain reflection and transmission data consume a large amount

of time. Thus, the need to develop an advanced rapid metamaterial design system

becomes essential to the field. However, the lack of an advanced design system for

metamaterials is mostly due to the complexity of a non-infinitesimal structural sys-

tem, in which enormous spatial dispersion and wave impedance are involved. The

sophisticated design of metamaterials requires accuracy on both permittivity and

permeability over the entire frequency range of interest. Unfortunately, no general

fitting formulas are currently available due to the gap between the practical structure

and the theoretical modelling. The most recent progress in effective medium theory

[7] proposed more precise descriptions of periodic-based structural metamaterials,

where the spatial dispersion has been appropriately considered. The descriptions

of metamaterials in Ref[7] has modeled the fundamental magnetic or electric res-

onators very well by separating the particle response and the system behavior, and

has illustrated accurate fitting to some simple practical structures.

However, as the complexity of the structure increases, the analysis in Ref[7] is

insufficient to fit the performance of a complex medium such as SRR-ELC combi-

nation structures [49] or a structure (like SRR) that contains different resonances

at different frequencies. Moreover, metamaterials have the potential to implement

transformation optics [25, 26], in which special anisotropic properties are required.

Therefore, the demand for accurate prediction of metamaterial structures requires

a general fitting model for complex resonant particles. In this section, we will pro-
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Figure 2.4: A full wave simulation on [simulation of an] an SRR structure and the
extracted permittivity and permeability from 5 GHz to 30GHz

pose a formula transformation that can turn a complex response curve into a simpler

Drude-Lorentz-like resonance, and then we propose an analytical formula that can

fit the response of a complex metamaterial structure.

To illustrate the practical metamaterial structure’s response, we selected an SRR

structure and conducted the standard retrieval shown in Fig.2.4, in which a fun-

damental magnetic resonance is observed at 9GHz and a higher electric resonance

occurs at about 20GHz. We can see that both the magnetic and electric resonance

affects the structure’s response in the frequency range of interest. However, according

to the field averaging theorem, we cannot fit and model both resonances by the same

simple analytical formula. Thus there is an increase in the difficulty of the struc-

ture’s design. To resolve this difficulty, we re-derived the field averaging formulas

(Appendix A) and achieved the new set of fitting formulas given below,

sin(θ/2) = Sdωp
√

µ1ε1

√
AF/2

η =
E

H
=

√
A

F
·
√

µ1

ε1

(2.15)
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in which Sd = 1 or −1, depending on the restriction of the positive imaginary part

of θ. A and F , are spatial dispersion factors according to Appendix A,

F =
µH

µ1H1

=
B

B1

, A =
εE

ε1E1

=
D

D1

(2.16)

A and F are usually unknown because of the lack of sufficient field distribution

information in the field averaging approach. However, we can group A and F with

ε1 and µ1 to generate an arbitrary average parameters overlineεm and µm such that,

sin(θ/2) = Sdωp
√

µ1ε1

√
AF/2

= Sdωp
√

µmεmcos(θ/2)/2

η =
E

H
=

√
A

F
·
√

µ1

ε1

=

√
µm

εm

(2.17)

Although the εm and µm no longer represent any sensitive physical parameters,

they can remain in Drude-Lorentz form from ε1 and µ1 mathematically, and can be

used as generalized fitting parameters. The intuition to make such a transformation

is discussed in Appendix A. Therefore, we can achieve the general fitting formulas

that

εeff =
θ/2

tan(θ/2)
εm

µeff =
θ/2

tan(θ/2)
µm (2.18)

in which

εm = εa(1−
∑

i

Feif
2

f 2 − f 2
ei + iγeif

)

µm = µa(1−
∑

i

Fuif
2

f 2 − f 2
ui + iγuif

) (2.19)
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or we can remove the spatial dispersion by taking the inverse formulas

εm =
tan(θ/2)

θ/2
εeff

µm =
tan(θ/2)

θ/2
µeff (2.20)

Figure 2.5: A numerical particle retrieval on an SRR structure. The spatial dispersion
effect can be removed by using the generalized formula

To illustrate the use of the generalized fitting formula, we can apply Eq.2.20 to

remove the spatial dispersion effect on the simulated structure in Fig. 2.4, in which

the blue curve is the extracted εm and µm. Both the magnetic and the electric reso-

nance can be reduced to a simple Drude-Lorentz resonance-like curve. The reduced

curve can then can be easily fitted by Eq.2.19. Therefore, we can fit the structure’s

response over the entire frequency range from 5GHz to 30GHz. To further validate

and demonstrate the general fitting formulas derived here, we examined the recent

[omit ”recent”] structure of a SRR-ELC NIM particle [49] and also generated a more

complicated combination structure based on the SRR-ELC NIM particle.

In the fitting process, we only took the fundamental electric and magnetic res-

onance, that is, only one electric resonant frequency and one magnetic resonant
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frequency exist in Eq.2.19. Fig. 2.6 indicates the excellent matching of the theo-

retical curves and the HFSS simulated results achieved by setting fe = 10.205GHz,

fu = 10.703GHz,Fe = 0.2445, Fu = 0.2688,γe = 0.02GHz,γu = 0.0245GHz. Notice

that the physics behind the SRR-ELC structure is rather complex and might include

magnetoelectric coupling.[8] Here we have only focused on the confined polarization

situation. This structure will be discussed further in the next section.

To verify the generality of Eq.(2.19)-(2.20), we consider an example of another

complex structure composed of four different resonant particles in one cell, as shown

in Figure 2.7(a). The coupling between each unit cell and the spatial dispersion for

different frequency ranges make the effective permittivity and permeability ”disor-

dered”, as depicted in Figure 2.7(c) and (d). Nevertheless, applying particle retrieval

to the complex medium proposed by Eq.(2.20), the multiple electric and magnetic

responses are clearly separated into εm and µm, yielding the Drude-Lorentz form.

Estimating the parameters in Eq.(2.19), the overall frequency responses can be sur-

prisingly backed up; the fitting will not be repeated redundantly here.

Therefore, we propose a general fitting formula inspired by the effective medium

theory described in Ref.[7] (Appendix A). We tested the algorithm on different types

of structures, and the simulated results revealed the generality of the proposed pro-

cedure. The algorithm will greatly benefit the design and understanding of meta-

materials and other types of dispersive materials, and can be extended to optical

metamaterials or plasmonic structures.

2.3 A thin slab model and numerical analysis

In this chapter, we have introduced the effective medium theory based on the field

average approach. The entire theory is based on Maxwell’s Equations in a periodic

lattice environment. We defined the average parameters by taking the surface and

line integration of the field in the Bloch wave propagation. However, the Bloch
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Figure 2.6: Fitting the response of the SRR-ELC NIM particle structure. Ref.[4]

wave propagation only gives us the Bloch wave mode information (a constant phase

advance per unit cell) but no detailed field distribution. The lack of sufficient in-

formation in the model results in the introduction of parameters such as A and F

in the fitting formulas, or the assumption of the field interpolation in Section 2.1

to solve the Bloch impedance and wave vector. The advantage of the field aver-

aging approach is that we can know the minimum information that can determine

the spatial dispersion behavior of any given metamaterial unit cell. However, the

framework of the field averaging approach we introduced cannot provide more field

sampling information within one unit cell[5, 7]. To address this difficulty, a series of

assumptions [assumptions about the]on the field distribution in the Bloch wave were

made to calculate the field properties every half-periodicity. The sensitive spatial

dispersion curves have been demonstrated, compared to the numerical retrieval[7].

This demonstrates the practical utility of the theory, to analyze and fit the metama-

terial’s complex response. However, a rigorous justification cannot be simply made
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Figure 2.7: Particle retrieval to a 4-cell combination structure. (a) 4-cell-combination
structure, and (b) 4 cells in the combination structure. The combination structure is gen-
erated from a SRR-ELC NIM particle (Ref[4]) by shortening the ELC’s arm and shrinking
the SRR’s gap in half and attaching it to the other side of the substrate, (c)-(d) the effec-
tive permittivity and permeability by numerical simulation (e)-(f) particle retrieval for εm

and µm

for all these field assumptions. In addition, the metamaterial structure is of such

complexity that no analytical solution can be provided. It is difficult to justify the

assumptions by solving the full unit cell structure in a closed form.

To address this difficulty, we introduced a thin slab model with a specific physical

structure and the numerical analysis of the practical metamaterial structure. The

idea of the thin slab model is to confine the dipole moment in an extremely thin slab

to represent the practical metamaterial’s structure; thus an analytical solution can

be achieved. The numerical analysis is to extract field distribution in the full wave
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simulations to demonstrate the coherence between the effective medium model and

a practical situation. We expect that the thin slab model and numerical analysis

can support the field averaging approach by providing detailed field distribution

information.

To establish the thin slab model, Fig. 2.8 illustrates the configuration of the

thin slab model, in which the slab is periodically aligned along the propagation

direction. The thickness of each slab is l and the distance of the air space between

two adjacent slabs is d. The permittivity and permeability are εs and µs. The thin

sheet represents the dipole moment of a metamaterial structure and confines them

periodically. Applying a quasi-static analysis to the thin slab model, the average

permittivity and permeability can be expressed as

ε = (dε0 + lεs)/p

µ = (dµ0 + lµs)/p (2.21)

Figure 2.8: The configuration of the thin slab model

For the magnetic resonance, we can further apply the Drude-Lorentz model to

the µ and a constant ε. In the model calculation, the εs and µs can therefore be
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determined by setting l and p.

To solve the model, we introduced the transformation matrix in the propagation

direction in Eq.(2.22), in which E ′ and H ′
red are one periodicity forward to the E

and Hred, and Hred = iωµ0H[50].

(
E ′

H ′
red

)
= T

(
E

Hred

)
(2.22)

We start from the center of the air space, the first T matrix is the wave propagation

in the d/2 air, and thus

T air =

(
cos(k0d/2) − sin(k0d/2)/k0

k0 sin(k0d/2) cos(k0d/2)

)
(2.23)

, in which k0 = ω
√

ε0µ0. Then the wave will propagate in the thin slab and the T

matrix can be written as

T slab =

(
cos(ksl) −(zsr/ks) sin(ksl)

(ks/zsr) sin(ksl) cos(ksl)

)
(2.24)

, in which ks = ω
√

εsµs and zsr =
√

µs/εs/
√

µ0/ε0. The third part of the propagation

will be another d/2 air and has the same T matrix as T air. The total T total can be

calculated through

T total = T airT slabT air (2.25)

Now we assume that we locate the thin slab in the center of the unit cell as in

Fig. 2.4. The thin slab location is from z = p/2− l/2 + Np to z = p/2 + l/2 + Np,

in which N = 1, 2, 3 · · · . Through the T matrix calculation, we can obtain the Bloch

wave vector (or phase advance θ), the Bloch wave impedance, and the detailed Ex(z)

and Hy(z) field distribution in the thin slab model. The phase advance and Bloch
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wave impedance can be calculated by

cos(θ) = (T total11 + T total22)/2

η = iωµ0

√
T total12/T total21 (2.26)

. Therefore, we can make use of the thin slab model to calculate the same metamate-

rial properties that we have calculated using the field averaging technique. Moreover,

the advantage is that a detailed field distribution also can be provided by the specific

physical model.

For example, we can calculate a magnetic resonant structure by setting the Drude-

Lorentz model to the µ and l = p/100. Fig. 2.9 provides a comparison of the field

averaging model proposed in the PRE paper[7] and the thin slab model. From Fig.

Figure 2.9: Calculation of metamaterial parameters by using both the thin slab model
and the field averaging approach

2.9 we can see that the trend and basic features of the two models agree well with

each other. Whereas there is a slight discrepancy between them, especially at higher
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frequencies, this is because in the field average approach, we only consider the funda-

mental resonance. Yet in the thin slab model, the photonic crystal setup automati-

cally introduces the [introduces a]higher order mode resonance and will contribute to

the dispersion and the impedance in the frequency range of interest to us. Once we

reduce sin(ksl) = ksl , sin(k0d/2) = k0d/2 and cos(k0d/2) = 1−(k0d/2)2, we can find

mathematically that the thin slab model is reduced to the field averaging approach

Eq.2.7 and Eq.2.8. However, to be precise, we would not mathematically reduce

the solution but compare the two models and their assumptions to the numerical

analysis.

To make further use of the thin slab physical model, we calculated the field

distribution at 10.5 GHz in this particular example. Fig. 2.10 shows the electric

and magnetic field distribution in the thin slab model. To make the comparison,

we also illustrate the field distribution based on the assumption in the field average

approach in Fig. 2.11. However, we can see the discrepancy between the thin slab

model and the field assumption in the field averaging approach, although the spatial

dispersion and the wave impedance appear to be very similar. The assumption of

a uniform phase of the magnetic field within a strong resonant unit cell does not

appear in the calculation of the thin slab model. Such a discrepancy will definitely

lead to a different value for the impedance calculation. We calculated the impedance

at this particular frequency and found that the relative impedance by the thin slab

model is 1.8221+0.0051i, and that by the PRE method is 1.9808+0.0057i. They are

different, but close to each other. We understand that the higher order mode affects

the calculation in the thin slab model. The basic features of the field distribution

in magnitude, however, match well between the two models. To further evaluate

the assumption and the thin slab model, we first created an SRR structure as shown

in Fig. 2.12, and performed a numerical analysis based on the particular magnetic

structure under the standard retrieval environment, because the numerical extracted
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Figure 2.10: Field distribution in the thin slab model

Figure 2.11: Field distribution by the field averaging assumption

permittivity and permeability are calculated from this model. We observed the field

distribution at the maximum transmission frequency to avoid the standing wave issue

in Fig. 2.13. We notice that in the practical 3D structure, the field is highly complex

and localized. The point of our observation is to select the place where the field’s

intensity is strong and can dominate the main feature (or the largest contribution

to the integration). In this model, we select the x-z plane at the bottom to observe

Ey because the resonance at the gap of the ring causes an extremely strong local

electric field, and the y-z plane near the structure causes the magnetic resonance of

the current loop to generate a strong local magnetic field. From the field distribution
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Figure 2.12: A practical SRR structure model created with the full wave simulation
software. The numerical solution on the S-parameter is shown. The maximum transmission
frequency is 8.5GHz

appearing in Fig.2.14, we can see the step function is in phase with the magnetic

field and electric field that partially represents the assumption in the field averaging

approach. We also extracted the field distribution, shown in Fig. 2.15. We can see

that the local field in the practical structure is highly inhomogeneous. The phase is

similar to the assumption in field averaging approach but the magnitude differs from

both of the models. Therefore, we should say that any simplified physical or lattice

model of the metamaterial structure is the ideal case of the dipole moment. The

reality is much more complicated than any of those models, and can only be solved

numerically. However, it is still worth having a theoretical model to describe the

underlying physics and to approximate the unit cell’s response. We should also note

that to make a complete comparison with the theoretical model, we should calculate

an Eigen-mode numerical solution and average the field everywhere inside the unit

cell, so that the calculated structure is in an infinite array environment, which will

32



Figure 2.13: Numerical observation of the field distribution on an SRR structure

Figure 2.14: Electric and magnetic field distribution extracted from the full wave sim-
ulation

be discussed below.

Now we are going to examine another assumption which is made in the field

averaging approach. We assumed before that the electric field and magnetic field, if

plotted in the plotted on a polar graph, would be multiple line segments rather than

a circular curve because of the spatial dispersion. The field in the center of the line

segment will then be the linear average of the field at the end points of the segment,

as interpreted in Section 2.1. As we can extract the field distribution from the thin

slab model and the numerical analysis, we can create the polar plots and compare

them to the assumption. Fig. 2.15 shows the polar plots of the fields calculated by
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the thin slab model and the assumption in the field averaging approach. To make

Figure 2.15: Comparison of the polar field plot between the thin slab model and the
assumption

an equivalent study, we conducted an Eigen-mode numerical solution on an infinite

SRR array, as shown in Fig. 2.16. This figure also shows the polar plots of the fields

in the full wave simulations. Surprisingly, we found that the three solutions are very

well matched. They have the identical feature on wave propagation, demonstrated

in those polar plots. Therefore, although the detailed field distribution along the

propagation direction differs greatly in the three solutions, the polar fields are very

similar to each other and can further explain the assumption of linear interpolation in

the field averaging approach. Correspondingly, the impedance will vary periodically

along the propagation direction. Fig. 2.16 demonstrates the spatial wave impedance

by calculating the impedance in the thin slab model.

To compare Fig. 2.10, Fig. 2.11 and Fig. 2.16, we plotted the field distribution in

a unit cell in Fig. 2.18. We find that the Eigen-mode numerical solution occupies a

middle status between the thin slab model and the field assumption. To discover this

phenomenon, we found a physical model that reflects the field distribution feature

in the field averaging assumption in Fig. 2.19. The 2D SRR structure demonstrates

well the extreme case of the field assumption if the structures are very close to
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Figure 2.16: Numerical Eigen-mode solution of the SRR and the electric and magnetic
field distribution

each other. Therefore, we can conclude that the thin slab model serves to restrict

the dipole moment in a sheet; the field assumption distributes the dipole moment

uniformly within the entire unit cell, while the 3D SRR structure is in-between these

two extreme cases.

Now we will further justify the derivation and approximation in Section 2.2 by the

thin slab model and numerical analysis. Referring to Eq.2.17, the spatial dispersion

and impedance is dominated by the average parameters and the A and F factors.

For the magnetic metamaterial, we made an assumption about A and F based on

the uniform phase distribution assumption and thus showed that A = 1/ cos(θ/2)

and F = cos(θ/2). Using this assumption, we found that ε1 = ε and µ1 = µ because

AF = 1, and η =
√

µ1/ε1/ cos(θ/2) because
√

A/F = 1/ cos(θ/2). Such an assump-

tion is verified by the full wave simulation in Fig.2.13, in which the uniform phase

distribution indicates the possible A and F values to be close to the assumption.
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Figure 2.17: The wave impedance along the propagation direction calculated by the
thin slab model

We then again used the thin slab model to illustrate the A and F values by taking

the field integration. To justify the A and F values by the thin slab model and the

assumption, we made a numerical comparison for the particular model in Fig.2.20, in

which we can see that A and F values are close, with only a slight difference between

the thin slab model and the cos(θ/2) assumption. This difference explains the slight

quantity discrepancy between the two approaches. .

Figure 2.18: The field distribution within a unit cell by the thin slab model, the Eigen-
mode solution on 3D SRR, and the field assumption
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Figure 2.19: Eigen-mode solution on a nearly 2D SRR structure. Notice that the wave
is propagating along the z-axis. To get a continuous field, we leave a tiny gap on the x-axis
and observe the field distribution in that gap.

To further demonstrate the coherence and distinction of the field averaging ap-

proach and the thin slab model, we can calculate the impedance again by using the

T matrix, the method in Eq.2.17, by applying the A and F values extracted in the

field distribution calculation, and the method in the PRE paper, or by applying

A = 1/ cos(θ/2) and F = cos(θ/2). We can see from Fig. 2.20 that the three calcu-

lations are close to each other. The first two methods are more coherent because of

Figure 2.20: We compared the A and F values by using the thin slab model and the
assumption in Section 2.2
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Figure 2.21: We compare the impedance calculated by three different methods

the use of extracted A and F values from the field distributions. This agreement also

supports the derivation of Eq.2.17. The overall agreement among the three methods

indicates that the thin slab model vindicates the assumption from the field averaging

approach.

We further studied the reason for the difference between the first two methods

of calculation. The discrepancy can be attributed to the different definitions of the

average parameters ε and µ, which is not justified as well in the field averaging ap-

proach. The average parameters in the thin slab model are demonstrated in Eq.

2.21. However, in the propagating waves, the average parameters are defined from

Maxwell’s Equations in Eq. 2.4 and Eq. 2.6. The field averaging approach does not

justify the equivalence of these two definitions but explains that the average permit-

tivity and permeability should be dominated by the local medium properties at very

subwavelength scale intuitively. To justify this aspect, we recall the average param-

eters from Eq. 2.21 are εthinslab and µthinslab and use the notation in Section 2.2 on

the average parameters defined by field integration. We then compared numerically

those average parameters by the different definitions, as shown in Fig. 2.22. From

Figure 2.22: We compared the average parameters

this calculation, the thin slab model justified the coherence of different definitions

on the average parameters. The agreement between ε1 and ε, µ1 and µ is due to the
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result of AF = 1. The slight difference between ε1,µ1 and εthinslab, µthinslab results in

the tiny difference of the impedance calculation in Fig. 2.20 (the first two methods).

Therefore, the thin slab model tells us that one can separate the metamaterial re-

sponse into systematic behavior that is described by discrete Maxwell’s Equations,

and the local particle response that is calculated by the quasi-static field analysis.

However, we should recall again that both of the models have simplified the practical

metamaterial structure, and thus can only approximate the unit cell behavior to a

certain extent.

Finally we made more full wave simulations to demonstrate the features of the

wave propagation in the practical metamaterial structures. In Fig. 2.23, we simulated

the same SRR structure with 6 unit cells along the propagation direction to form

a finite SRR slab. The electric and magnetic field distribution is illustrated in Fig.

2.24. From this calculation, we can observe that the wave propagation is largely

Figure 2.23: A full wave simulation on the six SRR slab

affected by the local resonant fields that jump per periodicity. We further extracted

the field distribution and plotted the field in Fig. 2.25. The practical case is more
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Figure 2.24: The electric and magnetic field distribution solved by full wave simulation
software

complicated than the field average model and the thin slab model. Nevertheless, the

basic feature of the jumping field is illustrated. We further simulated the electric

metamaterial (ELC structure) in Fig. 2.26. The field distribution is demonstrated

in Fig. 2.27. We can justify the assumption in the field averaging approach for the

other case. The different observation point of the impedance resulted in the different

Figure 2.25: Field plot along the propagation direction
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calculation of the field interpolation, compared to the the magnetic resonance case.

Figure 2.26: A full wave simulation on the six ELC slab

Figure 2.27: The electric and magnetic field distribution solved by full wave simulation
software

To summarize the analysis in this section, we introduced the thin slab model in

order to obtain more detailed field distribution information. With the physical model

solution, we justified the assumption made in the field averaging approach and the

derivation of the discrete Maxwell’s Equations. To evaluate both of the models, we

conducted a full wave simulation on the practical metamaterial structures and found

that both models can approximate the basic feature of the wave propagation inside

metamaterials in general. However, the field distribution in a practical structure is

much more complicated than any of the models we created. The thin slab model
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and the field averaging approach (with the assumptions) can only approximate and

explain some of the physics of the real structures. Thus, the study shows that the

implementation of the metamaterial is only an approximation of the ideal dipole

moment response from intuition, and is only a crude approximation in the charac-

terization. All these approximations are made to permit people to simply design

complex scattering systems. Therefore, the analysis of the metamaterials is more

methodological than for facilitating the discovery of new natural materials.

2.4 Negative-index material composed of electric and magnetic res-
onators

In Section 2.2, we proposed a general fitting formula that can treat complex metama-

terial unit cell design, including dual resonators combining SRR and ELC. Although

the complex curve can be arbitrarily fitted, we notice that the physical origin can be

even more complicated due to the magnetoelectric coupling.[8] However, if we can

arrange these two types of resonators away from each other (for example, alterna-

tively arranged), magnetoelectric coupling might be reduced, and such media can

form negative index materials, at least in one dimension. Fig. 2.5 illustrates the

unit cell response and the fitted curves by the proposed formulas. In this section we

will provide an independent experimental measurement and study, to show that the

complex SRR-ELC structure can be designed and might be useful to implement ma-

terials with a broadband negative index.(NIMs) We recall this experiment to further

indicate the important use of our proposed fitting formulas.

In 2000, the first NIM was demonstrated at microwave frequencies [10, 11], as

discussed earlier. Rather than being synthesized from natural materials, the im-

plementation of NIMs were formed through an artificially structured metamaterial,

constituted by an array of subwavelength resonant structures. Consistent with Vese-

lago’s recipe, two types of components were used to form the NIM metamaterial: split
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ring resonators (SRRs), which provide a magnetic resonance predominantly and hav-

ing a frequency band over which the permeability is negative [1]; and wire media,

which provide a predominantly electric resonance that results in a negative permit-

tivity at all frequencies below plasma frequency [42]. A surge of interest in both the

properties of negative refraction and of artificial materials in general followed this

demonstration.

Figure 2.28: SRR and ELC composite structures [10]

The SRR-and-wire design or its variants has been typically adopted for the design

of NIM metamaterials. The convenience of such a design comes from the relative

ease of overlapping the narrow negative permeability band of the SRRs with the

much broader negative permittivity band of the wires. In addition, the wires and

SRRs typically do not couple with each other significantly, so that their respective

responses mostly remain when combined together.

Even though the design of SRR-wire composite structures has already been typ-

ically used for the implementation of NIMs, achieving negative permittivity through

a continuous wire medium also has unavoidable disadvantages. At first it is diffi-

cult to achieve very small unit cell size because of the limitation in spacing the wire

medium. The plasma frequency of wire increases on the lattice spacing, making the
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smaller unit cell size problematic [42]. In spite of the unit cell scale, the greater

consequence is the strong spatial dispersion due to the unavoidable and significant

coupling among wires [42]. Without careful design, SRR and wire NIMs can only be

regarded as a medium along the principal axes.

A wire medium also can be used to generate negative permittivity even when the

wires are not electrically continuous, that is, not infinite long. The introduced cut

arranged periodically along the wire will provide capacitance, working together with

the existing inductance in the wires to form circuit resonance. Rather than exhibiting

negative permittivity at all frequencies below plasma frequency, such cut wire yields

the Drude-Lorentz model, only providing negative permittivity between the resonant

frequency and plasma frequency. The resonant frequency is, however, extremely

sensitive to the characteristics of the gap between the wires, dramatically increasing

the difficulty of design. To resolve such sensitivity, several varieties of cut wires

have been introduced [13, 50, 51]. However, those different classes of wires remain,

though a little bit better, very sensitive to the termination at the cut. Moreover, the

plasma frequency is almost independent of the gaps, which consequently unchange

the lattice constant with respect to the wavelength from continuous to cut wires.

Finally, in terms of the concepts, continuous wire or cut wire cannot be regarded as

a 3D particle, but at most a 2D array.

To resolve the difficulties inherent in using continuous wires, an alternative struc-

ture, an electric LC resonator (ELC), was developed in which the resonance was set

by the internal inductance and capacitance within the unit cell, rather than the

strong coupling cell-to-cell.[46, 52] The details of ELC’s mechanism have been an-

alyzed in the previous section, who has an electric resonance. As discussed earlier,

these ELC structures can be thought of as two SRRs placed back-to-back to generate

two de-coupled magnetic dipoles, eventually forming the electric response. Thus, the

electric resonance can be easily controlled by varying the geometry parameters (e.g.
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Figure 2.29: Retrieval of (a) SRR’s permeability; (b) ELC’s permittivity (c) SRR-ELC’s
index (d) SRR-ELC’s impedance [10]

the gap and the length of the arms), while it remains insensitive to the cell-to-cell

coupling. Such structures, compared to a wire medium, can be regarded as electric

resonant particles in 3D.

In this work[49], the intuition is to present a NIM metamaterial, rather than

placing the composite medium through wires and SRRs, constructed by a new com-

posite particle composed of electric and magnetic resonators, i.e. SRRs and ELCs, as

shown in Fig. 2.28a and Fig.2.28(b), respectively. Instead of using the ELC design

in [46], we introduced two capacitive gaps to lower the electric resonant frequency
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Figure 2.30: Phase variation in a (a) positive index regime; (b) negative index region
(c) zero-index region [10]

[53], making it closer to the magnetic resonant frequency of the SRRs. The NIM is

built by alternating the ELC and SRR planes transverse to the wave propagation

direction, as shown in Fig. 2.28 (c).

To achieve the final NIM design in Fig. 2.28, transmission and reflection simu-

lations were performed by using HFSS(Ansoft), a full-wave electromagnetic solver.

The effective permittivity and permeability could be found through the standard

retrieval process as discussed before. [3]. The responses of the SRR and ELC ar-

rays were first investigated separately by adjusting the geometry parameters until

the resonant frequencies of the two structures were nearly identical. Fig. 2.29 (a)

and Fig. 2.29 (b) show the optimized permeability of SRR and the permittivity of

ELC, respectively. The negative magnetic response occurs, through careful design,

from 11.4 GHz to 12.5 GHz, while the negative electric response happens from 10.8

GHz to 13 GHz. According to the plot of the electric and magnetic responses by
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SRR and ELC arrays, a regime of negative index can be expected in the SRR-ELC

combination structure when the negative permeability range in Fig. 2.29 (a) over-

laps with the negative permittivity band in Fig. 2.29 (b). Fig. 2.29 (d) indicates

the achieved negative index regime extending from 10.5 GHz to 11.6 GHz, which is

somewhat lower than the expectation from SRR and ELC design. Such difference

can be explained by the cross-coupling of SRR and ELC resonators, which enhance

the capacitance each other. Besides the negative index, the NIMs can also be de-

signed with impedance match to free space through carefully keeping the dispersion

of electric and magnetic resonance close to each other. The relatively broad range of

impedance match is shown in Fig. 2.29 (c), which is more difficult for the SRR-wire

design.[10]

To confirm the NIM design experimentally, we fabricated the SRR-ELC composite

structure on a Duroid 5880 circuit board laminate (Hughes Circuits, San Diego;

thickness 0.381mm, ε = 2.33 + i0.003 and µ = 1) in the lab. The dimensions of

each SRR and ELC design are marked in Fig. 2.28(a) and Fig. 2.28(b). The sample

has 6 unit cells depth along propagation direction with height of three unit cells (i.e.

1cm), as shown in Fig. 2.28(c). The phase dependent electric field distribution was

measured in a planar waveguide apparatus (2D mapper) described elsewhere [51].

The phase variation along the propagation direction (after and inside the sample) is

presented in Fig. 2.30 for three different frequencies, corresponding to three types of

index-conditions.

Using plots of the phase variation over the NIM, we can evaluate whether the

field plots are consistent with our simulated index. At 11.24 GHz the index of the

NIM is negative, as shown in Fig. 2.29(d). Likewise, the phase variation within the

NIM is opposite to the phase variation outside the NIM, as shown in Fig. 2.30(b).

For comparison, the variation of the phase at 10.4 GHz, where the NIM has positive

index, is shown in Fig. 2.30(a). The standing waves are the result of impedance
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mismatch between the slab and free space regions. Finally, Fig. 2.30(c) reveals that

the phase variation at 11.96 GHz is nearly constant, consistent with the index being

near zero, as indicated in Fig. 2.29(d).

The propagation constant (real part of the index) can be directly measured

through the phase variation over the NIM. The index of NIM at 11.24 GHz is neg-

ative shown in Fig. 2.29(d). The corresponding phase variation inside the NIM

slab is opposite to that outside due to the backward wave propagation, as shown in

Fig. 2.29(b). The positive index regime at 10.4 GHz is shown in Fig. 2.29(a) for

comparison, in which the standing waves come [or wave comes] from the impedance-

mismatch from NIM slab to free space. Fig. 2.30 (c) reveals that the phase variation

at 11.96 GHz is nearly constant, consistent with the index near zero as indicated

in Fig. 2.30(d). The phase cannot correlate to index exactly for a finite thickness

sample, where the multiple reflection generally leads to a standing wave pattern.

However, a fairly good direct measurement can be obtained by taking the standing

wave pattern into account. The measurement of the propagation constant is shown

in Fig. 2.29(d), which is quantitatively in excellent agreement with the expecta-

tion from simulation and design. The phase curves are of three different types, as

indicated in Fig. 2.30: travelling waves, standing waves and index near zero, respec-

tively, corresponding to Fig. 2.30 (a)-(c). For standing waves, Fig. 2.30 (a) gives

an example of a periodic ”square” phase pattern if unwrapping the phase plot. To

obtain the effective propagation constant, we measure the ratio of the standing wave

phase change periodicity along the propagation direction inside and outside the slab.

For travelling waves such as that shown in Fig.2.30 (b), we can measure the slope

of the phase variation inside and outside the NIM slab. The near zero index regime

can be straightforwardly indicated in Fig. 2.30 (c).

Therefore, the SRR-ELC NIM can be designed and verified through experiment.

Since the fundamental component excludes the wire medium, such structures also
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can be regarded as NIM particles-the basic structure to implement a negative index,

having the advantage of being extendable to 3D NIM design. Despite the NIM

design, on the other hand, the SRR-ELC composite medium also has the function

of electric and magnetic responses, which can be controlled by tuning each structure

relatively independently. Thus, such composite media can give more flexibility in

terms of implementing different sorts of metamaterials.

In conclusion, we demonstrate an experiment to show a designed complex meta-

material structure that contains both electric and magnetic resonances. The mea-

sured material parameters agreed with the full wave simulation and our proposed

fitting formulas in the last section. However, in this experiment we restricted the

polarization to TE mode and thus no polarization rotation can be motivated by the

potential magnetoelectric coupling[8]. Such a complex structure will behave differ-

ently in a free space experiment.

Some of the work in this chapter has been published in Physical Review E [7],

Physical Review B [44] and Applied Physics Letters [49].
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3

Rapid design approach for metamaterials

3.1 Advanced rapid design of metamaterials

In the last chapter, we discussed the effective medium theory and a general fitting

formula. In this chapter, we will take advantage of the spatial dispersion theorem

and the general fitting formula to initiate a rapid design approach.

To make clear the thread of metamaterial design, we include a short review of

the various metamaterial designs of the past. The negative index metamaterial (an

electromagnetic media with simultaneous negative permittivity and permeability)

that sparked the surge of the interest in designing novel metamaterials was con-

structed by a subwavelength resonant structure–split ring resonator and conducting

wire.[1, 10, 11, 42, 43] Utilizing the same technology, the negative refraction phe-

nomenon in a negative index metamaterial was also verified later by experiment.[10]

Because the electromagnetic properties of metamaterials is largely dependent on the

resonance of the unit cell structure, the operational frequency of a metamaterial can

be engineered by careful design of the resonator, and thus a higher frequency such as

terahertz and optical range metamaterial can be designed and fabricated by shrink-
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ing the unit cell size. [22, 23, 24, 25] Recently, a broadband non-resonant element

was also used to design low loss and broadband metamaterials.[26, 54] Although this

type of metamaterial works below the resonant frequency, it is still constructed by

different types of conducting scatter and the unit cell structure design also greatly

affects its anisotropy and dispersion on both the refractive index and impedance.

More recently, parallel work developing metamaterials was conducted from the

optical control point of view. A technology named transformation optics was pro-

posed to control the wave propagation by using complex media.[24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34] The idea is to artificially create a coordinate transform and then im-

plement such transformation to electromagnetic waves by mapping the transformed

space with a new set of materials. Usually the required material from transformation

optics is highly anisotropic and inhomogeneous. Because such complex media are

difficult to find in the extant natural materials, the metamaterial element became

a suitable and promising candidate to physically implement transformation optics

design. One of the most compelling illustrations of this technology is to make an

invisible cloak that can render invisible the waves around a target.[24, 25, 26] A series

of experiments has been conducted to verify the transformation optics design and to

illustrate sophisticated fabrication technology for metamaterials.[25, 26, 55, 56]

Therefore, the demand for designs of highly complex subwavelength unit cell

structures is increasing dramatically as the field advances. To characterize and design

the metamaterial unit cell structure, a standard electromagnetic retrieval process is

widely used, in which a full wave simulation is required to obtain the S-parameter.[3]

Utilizing this standard retrieval process, the equivalent permittivity and permeabil-

ity of metamaterials can be numerically extracted and characterized. According to

this algorithm, it is found that the simulated metamaterial unit cell is usually highly

dispersive and contains complex resonances. Some earlier studies proposed that the

metamaterials can be analyzed by a Drude-Lorentz resonance model under the as-
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sumption of infinitesimal unit cell size.[1, 42, 43] However, in reality the unit cell size

is usually a tenth of wavelength due to fabrication limitations. The dispersion behav-

ior thus is quite different from the ideal Drude-Lorentz resonance. It is known that

the finite size on unit cell results in a strong spatial dispersion effect (a dispersion

relates to the lattice property of the metamaterial unit cell array) in metamaterials.

This spatial dispersion effect makes the Drude-Lorentz model invalid for describing

and making the regression on the metamaterial’s response.[3, 5, 7, 8, 10, 46] A series

of revised formulas was proposed to describe and predict the practical metamaterial

response.[23] Because of the complexity in analyzing metamaterials, the entire meta-

material unit cell structure design relies solely on the standard retrieval process and

the full wave simulation. For instance, to achieve a reduced cloak design in [25], ten

different unit cell designs were required to achieve the inhomogeneous media prop-

erty. For each individual unit cell design, a number of iterations were conducted to

optimize the unit cell geometry for certain permittivity and permeability values at

operational frequency. For each iteration, a numerical full wave simulation must be

done to achieve the equivalent permittivity and permeability. A large amount of time

was required in design such complex media. In addition, more complex structures

such as electric and magnetic dual resonant structures were proposed to achieve var-

ious permittivity and permeability values, which contain more complicated spatial

dispersion effects and requires extra time in full wave simulation[3] Therefore, the

lack of a rapid metamaterial design system increasingly becomes a bottleneck for

complex media design.

To make progress with a design method, a general fitting formula is proposed to

calculate the regression on the unit cell’s response. Although the parameter does

not indicate the same physics origin as the description in effective medium theory

and the field average, such variables can still appear in a clear resonance form.

By using this mathematical formula, one can perform an accurate regression on
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an arbitrary metamaterial unit cell. By doing so, we can use a series of fitting

parameters to represent the complex dispersion behavior from a standard retrieval

process. Meanwhile, the metamaterial property can be engineered by designing the

physical unit cell structure. We can then establish a function from the structural

geometry geometry to the corresponding fitting parameters. Once we obtain such

a function analytically, we no longer need to make massive full wave simulations of

different unit cells in the design iteration. We call this function the design library.

The next challenge is the approach to extract such a design library through some

preliminary simulations by varying certain geometric dimensions. To solve this prob-

lem, a Taylor expansion is adopted to establish a link between the particle response

and the geometric dimensions. We use a matrix inverse technique to extract the

coefficient in our design formulas, whose computational complexity is proportional

to the order of the dimensions and their coupling terms. This approach is flexible

because: (1) any complicated particle can be copied with a standard extraction pro-

cedure; (2) the system can be self-improved as long as increasing any data point in

the design space and (3) it can be applied to extract the modulation formulas for

active and tunable metamaterials.

To begin, we first back-up the complex medium theory proposed in [4].

tan(θ/2) = Sdωp
√

µmεm/2

η =

√
µm

εm

(3.1)

in which

εm = ε1F/cos(θ/2)

µm = µ1A/cos(θ/2) (3.2)

.
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The εm and µm are the average parameters for the metamaterial’s transformation,

while ε1 and µ1 are the particle’s response defined by the field average. Generally,ε1

and µ1 experience the Lorentz resonance forms as a particle response. According

to the transformation, εm and µm can exactly keep the same Lorentz form without

determining A and F through specific particle classification, but with a quantity

shift.

According to Eq.(3.1), we again set up the relationship between the particle

response (m-parameters) and the system behavior (effective parameters). To calcu-

late the particle response, we can back up εm and µm from S-parameter through a

standard retrieval and complex medium theory, which can be used to analyze any

resonant particles or combination particles.

The Lorentz multiple resonances form for εm and µm yields

εm = εa(1−
∑

n

Fenf
2

f 2 − f 2
en + iγenf

) (3.3)

µm = µa(1−
∑

n

Funf
2

f 2 − f 2
un + iγunf

) (3.4)

.

All the parameters in Eq.(3.3)-(3.4) are the function of the particle’s geometric

dimensions. Although a full theoretical analysis on the specific structure is possible,

using the Taylor expansion technique to fit all variables takes advantage of design

generality and can avoid complicated but redundant analysis, given our goal of con-

trolling and rapidly designing the complex particles. For example, if there are two

geometric dimensions s and r, the F , f and γ can be expanded by s and r. Rig-

orously speaking, it has to take sufficient terms for convergency. However, when
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restricting the range of the parameters s and r, and the frequency regime of inter-

est, the extracted design formulas with a Taylor expansion with a small number of

terms is enough for most of the cases. All the coefficients incorporated in the Taylor

expansion can be extracted through randomly simulated data in s and r space and

the inverse of the matrix. A flow chart of this rapid design approach can be seen in

Fig. 3.1.

Figure 3.1: Flow chart of rapid design approach for metamaterials

Figure 3.2: SRR unit cell structure

As an example of the proposed approach, we consider the SRRs particle, shown

in Fig.3.2. We consider the response separately from s and r, and also their coupling

term. SRRs has, in addition to the fundamental magnetic resonance, a higher order
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electric resonance. To give the full design formulas for SRRs, we should take into

account both the magnetic and electric resonances, shown in Fig.3.3. The effective

parameter retrieval and particle response (m-parameters) retrieval clearly show these

two resonances.

εm = εa(1−
Fef

2

f 2 − f 2
e + iγef

) (3.5)

µm = µa(1−
Fuf

2

f 2 − f 2
u + iγuf

) (3.6)

Figure 3.3: Particle retrieval of SRR unit cell structure

.

To establish the design library via a Taylor expansion, we can write down the

expansion formulas as follows:
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

fe

fu

Fe

Fu

γe

γu

εaR

εaI

µaR

µaI


=



xfe1 xfe2 · · · xfe10

xfu1 xfu2 · · · xfu10

xFe1 xFe2 · · · xFe10

xFu1 · · · · · · xFu10

xγe1 · · · · · · xγe10

xγu1 · · · · · · xγu10

xεaR1 · · · · · · xεaR10

xεaI1 · · · · · · xεaI10

xµaR1 · · · · · · xµaR10

xµaI1 xµaI2 · · · xµaI10





1
s
r
sr
s2

r2

s2r
sr2

s3

r3


(3.7)

Eq.(3.7) expands all the parameters with respect to the dimensions s and r by a

third order approximation. The coefficients in the main matrix (x-parameters) need

to be extracted from massive simulations. For one simulation we can obtain the

frequency dependence extracted parameters, from which we can at first extract all the

parameters such as fe,fu, Fe, Fu for the specific dimension s and r, shown in Fig.3.4.

The expansion works very well in a broad band regime below the electric resonance.

(We prioritize the accuracy below the electric resonant frequency due to our interest

in SRRs.) At higher frequencies above the electric resonance, the discrepancy might

be due to higher order modes. If the reader is still interested in those regimes,

one can definitely separate the frequency domain and interpret different extracted

coefficients. Many details of extracting the appropriate Lorentz formula coefficients

actually play a critical role in the systematic performance, although the technique is

trivial.

The next issue is the appropriate method for rapidly extracting the 10 expanding

coefficients for each parameter. Assuming N data points in s-r space have been

taken, we can approximate the matrix form as

b = xA (3.8)
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Figure 3.4: Reconstruction curve from particle retrieval

in which,

b =



fe1 fe2 · · · feN

fu1 fu2 · · · fuN

Fe1 Fe2 · · · FeN

Fu1 Fu2 · · · FuN

γe1 γe2 · · · γeN

γu1 γu2 · · · γuN

εaR1 εaR2 · · · εaRN

εaI1 εaI2 · · · εaIN

µaR1 µaR2 · · · µaRN

µaI1 µaI2 · · · µaIN


(3.9)

x =



xfe1 xfe2 · · · xfe10

xfu1 xfu2 · · · xfu10

xFe1 xFe2 · · · xFe10

xFu1 · · · · · · xFu10

xγe1 · · · · · · xγe10

xγu1 · · · · · · xγu10

xεaR1 · · · · · · xεaR10

xεaI1 · · · · · · xεaI10

xµaR1 · · · · · · xµaR10

xµaI1 xµaI2 · · · xµaI10


(3.10)
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and

A =



1 1 · · · 1
s1 s2 · · · sN

r1 r2 · · · rN

s1r1 s2r2 · · · sNrN

s2
1 s2

2 · · · s2
N

r2
1 r2

2 · · · r2
N

s2
1r1 s2

2r2 · · · s2
NrN

s1r
2
1 s2r

2
2 · · · sNr2

N

s3
1 s3

2 · · · s3
N

r3
1 r3

2 · · · r3
N


(3.11)

Figure 3.5: Calculation on SRR unit cell structure

.

To solve the coefficient matrix x, we can deduce Eq.(3.8) that

bA† = xAA† (3.12)

in which, A† represents the Hermite matrix of A. Hence, we easily obtain the least-

square solution of the retrieved parameters:

x = bA†(AA†)−1 (3.13)
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.

As an example of Roger 5880 Duroid substrate SRRs, we obtain the coefficient

matrix and make a comparison in Fig. 3.5. It is obvious that this approach can

extract much more accurate and general design formulas by a standard procedure.

Such a method can be expanded to tunable and active metamaterials by adding the

terms of modulations. The coefficient matrix can also be self-improved as long as

new data points can be added in. Thus, we can improve the coefficients whenever

we use the design formulas and make confirmation simulations for specific designs.

This approach opens the window to a sophisticated metamaterials design system.

Recall that the entire sophisticated design system is based on the most fundamental

effective medium theory and spatial dispersion analysis.

3.2 Advanced Bayesian statistics approach to metamaterial design

Figure 3.6: Nonlinear regression on the parameters’ response in SRR design

In the last section, we proposed an advanced rapid metamaterial design system

by integrating the spatial dispersion model and least square method to overcome the

low design efficiency for metamaterials. However, the regression process and search-

ing algorithm is still limited by the paucity of full wave simulation data that can

be achieved in advance. Therefore, in this section we will use advanced statistical
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Figure 3.7: Prediction of the SRR’s response is indicated by the colored line, compared
to the full wave simulation, indicated by the solid line.

approaches that can better make use of the restricted availability of preliminary full

wave simulation data. The frame is still to make use of a revised spatial disper-

sion model to remove the complexity from the spatial dispersion and make a full

regression on the unit cell’s response. Once the regression model is built, we can

design complex media [or: design a complex medium (media is plural, medium is

the singular form)]without running the full wave simulation. After this we will in-

troduce an approach to remove the spatial dispersion effect and make [perform a] a

regression to metamaterial unit cell structures, and then introduce a nonlinear re-

gression approach–Gaussian processes to interpolate the response space with varying

geometry. In the last section, we will introduce a sequential Monte Carlo computa-

tional approach to search for the required unit cell’s geometric structure for designing

61



Figure 3.8: The impedance design at a particular point in the search process.

Figure 3.9: The index design at a particular point in the searching process. The lowest
valley indicates the optimized location in the space

complex gradient index metamaterials. A design example is also provided.

In the introduction we have noted that the metamaterial’s response is highly

distorted by the spatial dispersion effect and cannot be described by the Drude-

Lorentz model. This complexity makes it difficult to fit the dispersion curve by a

simple analytical model, and requires full wave simulations in the current iterative

design process. To address this challenge, we will use a simple analytical model that

can describe the spatial dispersion effect and be used to fit the complex dispersion

curve of metamaterials. In Ref.[7], a theoretical model of the practical metamaterial
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Figure 3.10: Demonstration of SMC approach to design a gradient index media

unit cell structure was proposed, in which a set of formulas that can be used to fit

Figure 3.11: Refractive index value changing [changes with] with the dimension s and
r.
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Figure 3.12: The optimization of the gradient index design from n=2.3 to n=3.6 by ten
layers

the magnetic or electric resonator was expressed as

εeff = ε · (θ/2)

sin(θ/2)
[cos(θ/2)]−Sb

µeff = µ · (θ/2)

sin(θ/2)
[cos(θ/2)]Sb (3.14)

in which θ is the phase advance across one unit cell and yields sin(θ/2) = Sdωp
√

εµ/2

(p is the lattice periodicity of the metamaterial unit cell array and Sd is equal to 1 or

−1 to guarantee the positive imaginary part on θ for the passive media condition).

A difference Sb value is applied for different type of resonators. For a magnetic

resonator, such as a split ring resonator (SRR), Sb = −1. For an electric resonator,

such as an electric LC resonator (ELC), Sb = 1.

Although it has been shown that this analytical model can adequately describe

the unit cell response containing a single resonance at a certain frequency range, this

formula can only provide the fitting to a single electric or magnetic resonance. To

overcome this limitation, we provide a modified formula that can be flexibly used to
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fit more complex structures.

εeff =
θ/2

tan(θ/2)
εm

µeff =
θ/2

tan(θ/2)
µm (3.15)

in which

εm = εa(1−
∑

i

Feif
2

f 2 − f 2
ei + iγeif

)

µm = µa(1−
∑

i

Fuif
2

f 2 − f 2
ui + iγuif

) (3.16)

We notice that this fitting formula is of no interest to physics and will be explained

somewhere else. But the benefit of introducing such a formula is that we can use

it as a general fitting model for some complex structures such as a combination of

a split ring resonator(SRR) and an electric-LC resonator (ELC).[10, 11] Although

such dual resonant structures might cause the magnetoelectric coupling effect[8],

the coupling can be controlled and reduced by careful arrangement on the unit cell

array. The emphasis here is on making use of this fitting formula to mathematically

fit the complex electromagnetic parameter curve using a standard retrieval process.

Recall that Fig.2.6 indicates an excellent match between the fitting model and the

HFSS simulated results by setting fe = 10.205GHz, fu = 10.703GHz,Fe = 0.2445,

and Fu = 0.2688,γe = 0.02GHz,γu = 0.0245GHz. The advantage of using the fitting

model is that complex frequency-dispersive curves can be represented by a few fitting

parameters. Therefore, we can use those fitting parameters to represent the response

from a specific metamaterial structure. Once the structure is modified, the fitting

parameters will also be changed. To initiate the rapid design approach, we will

establish the function between the structure and these fitting parameters.
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In this section, we will establish the relationship between the unit cells’ geometry

and their response presented by the fitting formulas. Because the fitting process

is almost identical for different types of metamaterial structures, we will take the

SRR structure here as our example. The SRR is usually regarded as a magnetic

resonator. However, according to the standard retrieval, we can see that an electric

resonance occurs after the fundamental magnetic resonance. Therefore, we will take

into account both the electric and the magnetic resonance together in the fitting

process and make use of Eq.3.15-3.16.

It is known that if we modify the geometry such as the length of the arm s

or the radius at the corner r, the corresponding response will vary, resulting in

different value for the fitting parameters[25]. To obtain the response of a specific

structure, a full wave simulation is necessary to extract the effective permittivity and

permeability based on the standard retrieval process. This full wave simulation is

also the most time consuming step in the metamaterial design process. We therefore

need to develop an approach that can avoid the full wave simulation and accurately

predict the response of the metamaterial unit cell. The approach is to make some

preliminary simulations for different unit cell structures (structures with different s

and r). Then we make an interpolation on the structure geometry dimension and

the response(those fitting parameters from the general fitting formula). The intuitive

idea is to use the Taylor expansion to the fitting parameters with respect to s and

r in the last section. However, we have no principle to justify how many terms we

should retain. Therefore, we propose a method called a non-parameter regression to

overcome this difficulty. Specifically, we will make a use of a Gaussian process, one

kind of such non-parameter regression methods, to predict the unit cell response.

A Gaussian process can be regarded as defining a distribution over functions, and

inference taking place directly in the space of functions [21]. Consider a stochastic

process which defines a distribution P(·) over functions f , where f maps some input
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space X to R. f is infinite dimensional but the x values index the function f(x) at

a countable number of points; we use the data at these points to determine P(f)

in the function space. If P(f) is a multivariate Gaussian for every finite subset of

X, the process is a Gaussian process (GP) and it is determined by a mean function

µ(x) and a covariance function K(x). In the present context, µ(x) could be some

physically attractive function, although we chose a commonly used setting µ(x) = 0

for simplicity of computation. A typical choice of covariance function is K(xi, xj) =

σ2
f exp(− (xi−xj)

2

2l2
) + σ2

nδij, where the smoothing parameter l, the signal variance σf ,

and the noise variance σn can be learned from the training data, by a certain model

selection approach. [21] Then we can use the trained GP to predict new values

f∗ = f(x∗) for new inputs x∗ using the fact that the combined distribution of all

values is jointly Gaussian with

[
y
f∗

]
∼ N

(
0,

[
K(X, X) + σ2

n K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(3.17)

, which leads to the predictive equations

f∗|X, y, X∗ ∼ N(f̄∗, cov(f∗)) (3.18)

where f̄∗ = E(f∗|X, y,X∗) = K(X∗, X) [K(X, X) + σ2
nI]

−1
y and cov(f∗) = K(X∗, X∗)−

K(X∗, X) [K(X, X) + σ2
nI]

−1
K(X, X∗). Regarding our context, we first selected a

small number of points X in the unit cell geometry space by some conventional ex-

perimental design methods, such as orthogonal experimental design [23]. Then we

perform the full wave simulation for the selected unit cells’ structure and retrieve

their responses y. For any new data points X∗ in the unit cell geometry space, the

mean prediction f∗ and covariance cov(f∗) can be evaluated by a Gaussian process

regression. The mean prediction f∗ can be regarded as a nonlinear MMSE (mini-

mum mean squared error) estimation for the nonlinear mapping from the geometric
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structure to its response. One concern with the GP regression is the prediction un-

certainty reflected by the covariance. However, if the variance can be kept within

a certain range, the mean prediction can indicate if the design is close enough to

the true value, and will result in successful experiments. To control the prediction

variance of the GP regression, some adaptive experimental design techniques are

employed which proceed as follows: (1) select the x∗ which has the greatest standard

deviation in predicted output, (2)run a full wave simulation for the point and add

it to the training data set (X, y). By repeating the process a certain number of

times, we can force the prediction variance to shrink to a small range, and then the

regression will be accurate enough to guarantee success in the experiments.

In the design of a gradient index media system, we need to search for those unit

cell geometry structures which have the required responses. More specifically, we

define a function u(x) to measure the required response of a unit cell, i.e. the refrac-

tive index and impedance, and their tolerated uncertainty. To design a metamaterial

media system, we first derive the require responses for all unit cells U = {un}, where

n is the index for each unit cell. Then the design process involves a large amount of

searching (or optimization) for all unit cells structures that meet the requirements of

U . In a gradient index media system, the required response changes gradually. There-

fore, by generally assuming that similar unit cell structures have similar responses,

we propose an effective searching algorithm based on sequential Monte Carlo meth-

ods. We start from an initial index design and sample a number of points which meet

the requirement of u1 (Generally it will be like a curve in space.) When moving to

the next gradient index design, we assume that the feasible solutions of un+1 should

be near the feasible solutions of un for the previous index design point. So we can use

a dynamic model to propose a new set of points which are near the feasible solution

for un and thus have a high probability of being a feasible solution for un+1. By

evaluating the fitness of these new points and resampling according to the fitness, we
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can obtain a set of feasible solutions for un+1. Such a process will enable us to track

the motion of the optimized solutions for u1:N sequentially. This process falls into the

framework of a sequential Monte Carlo method. Here we give a brief introduction to

the SMC sampler and present the algorithm for our searching/optimization problem.

Sequential Monte Carlo (SMC) methods represent a class of important sampling

and resampling techniques designed to simulate from a sequence of probability distri-

butions; these have become very popular during the last decade for solving sequential

Bayesian inference problems in various disciplines. To apply SMC methods in our

searching/optimization problem, we need to transform the function un(·) into a prob-

ability function πn(·) which has the property that the optimum solutions for un(·)

have significant probability. Given some sequence of target distributions πn(·), SMC

propagates samples forward from one distribution to the next according to a se-

quence of Markov kernels, Kn, which could be one step propagation in a Random

Walk Metropolis-Hastings algorithm with respect to the target distribution πn(·),

and then corrects for the discrepancy between the proposal and the target distri-

bution by importance sampling. Moreover, to ensure that a significant fraction of

the particle set have non-negligible weights, the particle representation is resampled

using some resampling scheme, whenever the effective sample size (ESS ) is below a

prespecified threshold. A sequential Monte Carlo sampler is presented as follows,

Algorithm 1: Sequential Monte Carlo Sampler

• At n=1. Sample X
(i)
1 ∼ µ1(·) and set w

(i)
1 ∝ π1

(
X

(i)
1

)
/µ1

(
X

(i)
1

)
. If needed,

resample
{

w
(i)
1 , X

(i)
1

}
to obtain N new particles

{
N−1, X

(i)
1

}
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• At time n > 1. For i = 1, ...,M , sample X
(i)
n ∼ Kn(X

(i)
n−1, ·)

w(i)
n ∝ w

(i)
n−1

πn

(
X

(i)
n−1

)
πn−1

(
X

(i)
n−1

)

If needed, resample
{

w
(i)
1 , X

(i)
1

}
to obtain N new particles

{
N−1, X

(i)
n

}
.

At each iteration n, we obtain a batch of particles {X(i)
n }M

i=1, most of which could

be feasible solutions to satisfy un or to achieve the require responses. Then we can

select one point in each iteration to format the final design.

To illustrate this advanced Bayesian statistics metamaterial design methodology,

we took the split ring resonator (SRR) as our example, shown in Fig.3.2. By setting

the dimension variables s and r, we took a few sampling points to make a regression

on the parameter’s response to the SRR structure, shown in Fig.3.6. The fitting

parameter space can be determined by a Gauss Process approach. The corresponding

prediction on SRR’s response is illustrated in Fig.3.7, in which the permittivity and

permeability are calculated through Eq.3.15-3.16.

Now we can further make use of the SMC algorithm to implement our gradient in-

dex metamaterial design. Recall that although a full search can guarantee the global

optimization, the time required for setting the searching step makes the approach

unsuitable for generalization to different occasions. Fig.3.8 shows the impedance

at 10GHz for the SRR structure with respect to its physical dimensions, s and r.

We can see that the material response space of the structure dimension is extremely

complicated-a very rough surface, resulting in many local optimization points. There-

fore, we applied the SMC algorithm and tracking algorithm to resolve this complexity.

To achieve a robust gradient index design, we also need to avoid any jump in the

structural dimension for the sake of stability in the experiment.
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Based on the SMC scheme, we started from an initial index design and sampled

as many as possible within a certain time gate to find all the acceptable local opti-

mization points in space. (Generally it will be like a curve in space.) When moving

to the next gradient index design, we assume that the local optimization should be

near the optimized curve in the previous index design point. So we can use a track-

ing algorithm to track the motion of the optimized solutions and find the optimized

curve for next solution.

Fig. 3.9 demonstrates the cost function for a particular design point. The low-

est cost value indicates the optimized location for SRR structures in their geometry

space. We can see that it is an irregular valley, within which the structures will all

be suitable for the particular index design. Fig.3.10 illustrates the corresponding

impedance value. We can see that at the corresponding valley, the impedance is

approximately identical to unity by the design. Fig.3.11 demonstrates the dynamic

SMC design approach and indicates the motion of the solution valley with the gradi-

ent index change. Fig.3.12 shows the final design optimization of a gradient index at

7.0 Ghz. The index is changing linearly from n=2.3 to n=3.5 with unity impedance.

In conclusion, the above advanced rapid metamaterial design is generally applica-

ble to all kinds of current metamaterial design. A few preliminary sample points are

needed to interpolate the metamaterial response space. The use of non-parameter

regression techniques can successfully avoid the selection of variables and thus can

learn the features of the data to generate the interpolation. We also developed a

SMC scheme for the search process, in which multiple solutions have been consid-

ered. The sampling and tracking algorithm made it suitable for rapidly designing

large scale gradient index metamaterials. To enhance the robustness of the design, we

selected further in the multiple solutions to keep the gradient dimension as smooth

as possible. The framework also can be used in other complex metamaterial design

problems, such as that of designing an invisible cloak. We anticipate it will have
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wide-spread application to future metamaterial design problems.

In this chapter, some of the work was done in collaboration with Dr. Chunlin

Ji from the Department of Statistics, Duke University. In this collaboration, I was

in charge of incorporating the spatial dispersion theorem into the rapid design sys-

tem and chose the potential algorithm. Dr. Chunlin Ji provided many Bayesian

algorithms and implemented the SMC scheme in Matlab.
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4

Waveguided metamaterials and electromagnetic
tunnelling experiment

4.1 Concept of waveguided metamaterials

In the last two chapters, we have discussed the effective medium theory for metama-

terials and the approach to model and design metamaterials. Whereas another aspect

of metamaterials is the structure configuration as one has to use artificial structure

to implement the unit cell. Considering the practical RF application, many devices

are in the form of waveguide system. Thus we need to develops the effective way

to integrate metamaterials into a waveguide. Although one option is to insert the

bulk metamaterial structure, the complexity of building and constructing three di-

mensional structures in the waveguide limit the convenience and cost. In addition,

the limited space in the waveguide also increase the difficulty in designing a small

metamaterial structure. To address this issue, we propose a configuration of waveg-

uided metamaterials by 2D complementary structure array, for example, using the

complementary split-ring resonators (CSRRs) [56, 57] or the complementary electric-

LC resonators (CLECs)[58]. According to the Babinet principle, the complementary
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structures will have reciprocal responses to its bulk structure. For instance, a split

ring resonator (SRR) structure has a fundamental magnetic resonance. The cor-

responding complementary case, CSRR, has a fundamental electric resonance and

can be regarded as an electric unit cell in the waveguide.[56] The configuration of

waveguided metamaterials is shown in Fig.4.1, in which, an array of complementary

structure is milled out at top or bottom plate in the parallel waveguide.

Figure 4.1: Configuration of waveguided metamaterials[58]

To characterize the waveguided metamaterials, the scattering (S-) parameters are

simulated using Ansoft HFSS, a commercial full-wave electromagnetic solver whose

accuracy has been previously verified [3, 47, 48]. The simulation configuration for

the complimentary planar structure, however, differs from typical metamaterial unit

cells. Fig.4.2(b) shows the simulation setup used to retrieve the effective constitutive

parameters of a particular complementary waveguided metamaterial structure, for

example, a CSRR here. The polarization of the incident TEM wave is constrained

by the use of perfect magnetic conducting (PMC) boundaries on the sides of the

computational domain. As example, the waveguide separation h = 1mm, while the

vacuum region has a height of d = 11mm with a perfect electric conducting (PEC)
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boundary on the lower surface. Radiation boundaries are assigned below the ports,

as shown in the Fig.4.2. The two ports are positioned far away from CSRR structure

to avoid near field effect coupling between the ports and the CSRR. The phase shift

accumulation along the regions just outside the CSRR unit cell is subtracted from

the scattering parameters in the usual manner (i.e., de-embedding is performed).

The retrieval result for the CSRR unit cell inside the planar waveguide is presented

in Fig. 4.2(a).

Figure 4.2: Retrieval results, dimensions of CSRRs and simulation setup. (a) Extracted
permittivity and CSRRs’ dimensions, in which, a=3.333 mm, b=3 mm, c=d=0.3 mm and
f=1.667 mm. (b) Simulation configuration for CSRR unit cell. d=11 mm, h=1 mm and
L=23.333 mm [63]

Once we achieve the effective constitutive parameters of the waveguided metama-

terial structure, one can model the complementary structure as a volumetric media

filled in the parallel waveguide, and thus can easily integrate metamaterials into the

waveguide system. The design of each complementary structure provides the oppor-
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tunity of controlling the local material’s parameters. We will give several examples

later to show the advantage of waveguided metamaterials.

4.2 Integrating metamaterials into waveguide

In the last section, we have discussed the concept, configuration and characterization

method of waveguided metamaterials. We will further discuss the integration of

metamaterials to waveguide environment and demonstrate several experiments that

use different complementary structures and design in this section. As discussed,

CSRR is an electrical resonator, while a CELC forms a magnetic resonator. We

will make use of both structures in gradient index waveguided metamaterial and

indefinite waveguided metamaterial design and experiment.

To discuss the CSRR structure, the approach to characterize the complemen-

tary structure has been described in details in the last section, where the retrieval

process can be applied in the planar waveguide to extract the electromagnetic param-

eters. Typically CSRR behaves as an electric resonator, responding to the electric

field penetrating across the milling-out complementary structure. Fig.4.3 shows the

CSRR structure and retrieval permittivity and permeability in the planar waveguide

using the commercial software Ansoft HFSS 10.0. The permittivity and permeabil-

ity response in Fig.4.3 indicate that such type of waveguided metamaterials provide

identical behavior as volumetric metamaterials including the frequency dispersion

and spatial dispersion.[57]

The wave propagation yields only TE modes in the planar waveguide if the height

of waveguide is less than half wavelength, resulting in the penetration of electric field

through the complementary structures. Therefore, in the planar system, the effective

permittivity can be flexibly achieved through the careful design of CSRRs. As an

example, the effective wave impedance and refraction index of CSRR in terms of the

radius of CSRR’s corner, rr, are illustrated in Fig.4.4. Although one can manipulate
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Figure 4.3: The CSRR structure and retrieval results, in which rr=0.6 mm,w=0.25 mm,
g=0.25 mm, l=3.2 mm, ax=3.45 mm, and az=3.5 mm.[58]

Figure 4.4: Relationship between the dimension rr in CSRR and its effective index and
impedance.[58]

other geometrical dimension of the unit cell structure, we found it in simulation that

the change of rr and usage of the frequency region right before the resonance can

simultaneously achieve large index variation and good impedance matching condition

(Z = 1).

To align all CSRRs together in the waveguide, we propose the configuration in

Fig.4.1, in which the waveguide height is h = 1 mm. CSRRs are patterned on the

lower metal plate, which is attached to a FR4 substrate with the thickness of 0.2026

mm.(Note that the substrate was cut by 0.1mm due to the milling-machine fabri-

cation.) The relative permittivity and dielectric loss tangent of FR4 are 4.4 and

0.02, respectively. Similar to bulk metamaterials, the milling out CSRR structure
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can form equivalent electromagnetic medium by providing the response inside the

planar waveguide. Therefore, by use of 2D planar waveguided metamaterials, var-

ious designs based on the electromagnetic theory or gradient index optics can be

implemented conveniently in planar circuits or waveguide systems.

Figure 4.5: Experimental configuration[58]

Figure 4.6: 2D field mapping for beam steering gradient index lens and focusing gradient
index lens[58]

Hereby, we propose two distinct designs of gradient index media [20] – beam-

steering and focusing slabs, respectively. To design the beam-steering slab, we use

the procedure in Ref. [20] directly, giving the formula

sin(θ) = Nzaz∆n/ax (4.1)
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in which θ represents the beam steering angle, Nz gives the number of unit cells

along the propagation direction, az and ax are unit-cell separations along z and x

axes, and ∆n is the linear difference of relative refraction index between each two

neighboring unit cells along the x axis. In our design, Nz = 6 and other parameters

keep the same as the earlier description.

Given the wave deflection angle (10 degrees here) and the refraction index of

the first CSRR, all refraction indexes along the x direction can be determined us-

ing Eq.4.1. Note that all CSRRs are the same along the z direction but linearly

distributed in the x direction at the designed frequency of 9.5 GHz. We remark

that the dependence of refraction index on the corner radius rr is extracted through

parameter retrieval (with some discrete values of rr) and the subsequent data-fitting

process. In the beam-steering design, the index range is from 1.3537 to 2.1929 with

∆n = 0.029. That is to say, totally 30 CSRRs are used in the x direction.

To design the focusing slab, we apply gradient index optics to the distribution of

refractive index along the x axis, which is expressed as

∆ni =

√
(i · ax)2 + f 2 − f

Nz · az

(4.2)

in which i is the sequence number of unit cell starting from the middle of the slab

along the x axis, f gives the focal distance, and ∆ni represents the index difference

between the ith unit cell and the middle unit cell. Once all unit-cell indexes are

determined according to Eq.4.2, the implementation (unit-cell dimensions) can be

then extracted from Fig.4.4. In our design, a six-layer (Nz = 6) focusing slab with

29 unit cells along the x direction is constructed. The refraction index varied from

1.7589 in the middle to 1.3537 on two ends, resulting in a 42 mm focal distance in

simulation at 9.5 GHz.(Note that the direct calculation gives the focal distant of

90mm. However, due to the abberation and boundary effect of gradient index lens,
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the simulated focal distant is 42mm. We did not show the simulated result to avoid

redundance.)

We demonstrate our designs by fabricating the samples and scanning the near-

field distributions experimentally. To measure the waveguided metamaterials, we

use a 2D near-field microwave scanning apparatus (2D mapper), which has been

described in details in Ref. [12]. Fig.4.5 depicts the configuration of waveguided

metamaterials measurement, in which, the upper metal plate of 2D mapper was not

closed. To achieve a strong signal from source while not be reflected by the sample,

we additionally place two metal ramps before and after the sample. The height

between the sample and upper metal plate of 2D mapper was controlled to be 1 mm.

Fig.4.6(a) shows the mapping result of beam-steering sample at 9.5 GHz, in which

the beam steering is clearly observed around 12 degrees, matching the theoretical

design very well. Due to the careful control on impedance, the return loss is relatively

lower than that of the traditional lenses. The difference in frequencies and deflection

angles are due to the inaccuracy of fabrication, the height-control error, and the

PCB substrate variation. Fig.4.6(b) illustrates the near-field mapping result of the

focusing lens. The focal distance is 40 mm, which is very close to our design.

To produce another opportunity, one can employ the waveguided metamateri-

als to implement anisotropic media with magnetic resonances. For example, the

dispersion relation for the TE wave in the indefinite medium can be written as [3]

k2
x

µy

+
k2

y

µx

= (
ω

c
)2εz. (4.3)

When µy < 0, µz > 0, and εx > 0, it is obvious that the dispersion curve for Eq.4.3

is a hyperbola. In such a case, it can be easily shown that the phase velocity of the

incident waves will undergo a positive refraction, while the group (or energy) velocity

will undergo a negative refraction at the boundary of air and the indefinite medium,
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Figure 4.7: The CELC structure is chosen as the unit cell to realize the indefinite
metamaterial.[59]

which will help to refocus the incident waves inside or outside the slab [18,19]. In Ref.

[18,19], the authors have given the ray-tracing diagram for the waves emitted from a

source in front of the indefinite slab, showing the occurrence of negative refraction at

the interface between air and the indefinite medium, and also the existence of partial

focusing for incident waves.

To integrate such anisotropic media into the waveguide, the CELC structure can

be an option of the basic unit of the artificial indefinite medium, as illustrated in
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Fig.4.7. The CELC structure refers to the planar-waveguide unit with the ELC

patten etched on the bottom metallic plate. When the working frequency is selected

to be lower than the cutoff frequency for the second-order mode (TE mode), only the

dominant TEM mode could be supported in the waveguide. Then the corresponding

electric field is just parallel to the axis of the CELC unit. From the Babinet’s

principle, the magnetic response may be produced under the excitation of the external

electric field along the y direction.

We remark that the components of the permeability tensor in the x and y di-

rections are different since the shape of the CELC unit is not identical in these two

directions. Hence the effective medium composed of CELC particles are indefinite,

which is suitable for realization of the partial focusing as mentioned earlier. As

discussed, the CELC can form the equivalent indefinite slab. In order to get the ef-

fective permittivity and permeability of the CELC unit, we take the characterization

approach and advanced retrieval algorithm described in Ref. [60].

To measure the indefinite waveguided metamaterial, we used the 2D near-field

microwave scanning apparatus (2D mapper) for observation of the field distributions

in the planar waveguide and within the CELC region. In Fig.4.8, we have shown

the partial focusing sample, where the CELC patterns are formed from copper-clad

FR4 circuit board with the thickness of 0.2 mm. The dimensions for the CELC unit

shown in Fig.4.8 are selected as pr = 3.333 mm, p = 3 mm, and w = g = 0.3 mm,

and the thickness of the copper layer is 0.018 mm.

In our design, the gap between the patterned circuit board and the top PEC

plate of the waveguide is kept as 1 mm, and the sample is placed upon a cubic sty-

rofoam. The CELC units are fabricated using the standard photolithography, and

there are altogether 12 units in the longitudinal direction and 60 units in the trans-

verse direction. There is a hole below the CELC patterns, as shown in Fig.4.8(b),

where the excitation antenna could protrude into the waveguide after penetrating
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the styrofoam.

Since the height of the 2D mapper is much larger than the gap in the CELC region,

two metallic ramps are placed on each side of the sample in order to avoid the severe

impedance mismatch due to the change of geometry. There are two copper regions

beside the CELC patterns on the circuit board, which forms a planar waveguide

together with the top PEC plate. A ring of microwave absorber with saw-toothed

patten has been placed near the boundary of the 2D mapper so as to reduce the

reflection of electromagnetic waves at the edge of plates.

We have to emphasize that we cannot obtain the right effective medium pa-

rameters when we directly make simulations for a single CELC unit, following the

standard retrieval procedure. Actually the CELC structure shown in Fig.4.8 has

very strong coupling among the adjacent units. Therefore, if we do not consider the

coupling effect in our simulations, the final effective permittivity and permeability

will significantly deviate from the correct values.

In our design, we have adapted the advanced parameter retrieval method, which is

quite efficient for the resonant structures with strong coupling among the neighbors[52].

We need to make two different simulations to get the components of the permittivity

and permeability tensors when the magnetic field of the TEM mode is along x and y

directions, respectively, as shown in Fig.4.9. After the standard retrieval procedure,

we obtain the effective permittivity and permeability curves for the two kinds of

simulation setups shown in Figs.4.9(a) and (b). The effective εz and µx from Fig.

4.9(a) are plotted in Fig.4.10, while the effective εz and µy from Fig. 4.9(b) are

demonstrated in Fig.4.11.

By comparing Fig.4.12 with Fig.4.13, we observe that the effective εz varies a lot

in most of the frequency band in the two cases due to the particle response and the

coupling between adjacent units. However, at our desired frequency, f = 10.5 GHz,

both εz are quite close. In Fig.4.12(a), we have εz = 1.085 − i0.1123; and in Fig.
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4.13(a), we have εz = 1.047 − i0.1338. Hence we can assume that at 11.5 GHz the

effective permittivity in the z direction does not change for waves incident from x

and y directions. Also we obtain from Figs.4.10 and 4.11 that µx = 2.489 + i0.193

and µy = −0.970 + i0.122 at 11.5 GHz.

We have made numerical simulations for the indefinite medium by using the

software package HFSS at f = 11.5 GHz based on the extracted permittivity and

permeability mentioned above. The distribution of electric field at a section of the

planar waveguide is illustrated in Fig. 4.12. It is obvious that there exist several

foci inside and outside the indefinite slab. The waves continue to propagate radially

behind the focus on the right of the slab, just like the cylindrical waves radiated from

a 2D point source. The corresponding experimental result for the electric field dis-

tribution at 11.5 GHz is shown in Fig.4.13, where the sign ‘X’ stands for the location

of the excitation antenna, and the region between the two dashed lines are covered

with the CELC structures. We can see that the experimental result has excellent

agreement with the numerical simulation, and the partial focusing phenomenon is

quite obvious.

In conclusion, we demonstrate both electrical and magnetic waveguided metama-

terial structures, and both inhomogeneous and anisotropic medium designs in this

section. The development on waveguided metamaterials prove the convenience of

integrating gradient index metamaterial or novel anisotropic metamaterial into the

waveguide system. We expect a potential application of such type of metamaterials

in the RF waveguide environment in the future.

4.3 Electromagnetic tunneling experiment by waveguided metamate-
rials

In the last section, we have discussed the approach to integrate different type of

waveguided metamaterials into the actual parallel waveguide system. Continuing on
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the topic, we will further take the advantage of easy integration benefit of waveguided

metamaterials and apply it to a novel electromagnetic tunnelling experiment, in

which, a zero index metamaterial needs to be filled into an extremely narrow channel.

As the channel is extremely subwavelength scale (1/100 wavelength), it is almost

impossible to design a bulk metamaterial structure with zero refractive index at

such dimension in reality. Therefore, the waveguided metamaterial configuration is

of the advantage in this application. In this section, we will discuss the concept of

electromagnetic tunnelling effect by zero index metamaterials, and then demonstrate

the effect in experiment.

Recently another attention has focused on structures for which the real part of

one or both of the constitutive parameters approaches zero. These structures have

been developed to form interesting devices such as highly directive antennas [61] and

compact resonators [62]. Most recently, Silveirinha and Engheta [63] have proposed

that a material whose electric permittivity is near zero–or an epsilon near zero(ENZ)

medium–can form the basis for a perfect coupler, coupling guided electromagnetic

waves through a channel with arbitrary cross section.

Fig.4.14 indicates the configuration of electromagnetic tunneling through narrow

channel by ENZ. Calculating the reflection coefficient through Maxwell’s Equations,

it can be expressed as [63]

R =
a1 − a2 + ik0µr,pAp

a1 + a2 − ik0µr,pAp

(4.4)

Therefore, the one of tunnelling conditions is the identical cross-section a1 = a2.

However, it is insufficient because the term of Ap can also cause significant reflection.

To resolve this term, one solution is letting µ also tends to zero, reaching nihility

medium, or making the channel Ap negligible small, that is, an extremely narrow

channel. The later one is of much more interesting because only ENZ medium is
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needed to tunnel the electromagnetic power through the extremely narrow channel.

Fig.4.15 gives an example of EM waves tunneling through a U-turn narrow channel

in simulation. Wire medium is used to perform an ENZ inside the channel at plasma

frequency. Such tunneling effect in theory predicts the unfamiliar propagation prop-

erties. In the next section, the experimental demonstration will be described in the

following section.

As discussed, instead of using bulk medium as usual, we made use of planar com-

plementary split ring resonators (CSRRs) patterned in one of the ground planes of

a planar waveguide to form the electromagnetic equivalent of an ENZ. The CSRR

structure was proposed by Falcone et al. [57], who showed by use of the Babinet

principle that the CSRR has an electric resonance that couples to an external elec-

tric field directed along the normal of the CSRR surface, as discussed before in last

section. While, different from the 1D metamaterials by CSRR depicted by Falcone,

we integrated CSRR into planar waveguide as a 2D problem, forming equivalent in-

serted medium environment inside waveguide. It was further shown explicitly that

a volume bounded by a CSRR surface behaves identically to a volume containing

a resonantly dispersive dielectric. The advantages of developing the new configura-

tion are due to the ease of accurate design and fabrication in experiment and form

narrow channel while avoiding the unnecessary height restriction by unit cell in bulk

medium structure design. Although variants of the wire medium could also poten-

tially be used to form the ENZ medium [42], the spatial dispersion and effects due

to the finite wire length can cause significant complication [64]. To create the condi-

tion of electromagnetic tunneling, the geometry considered here to demonstrate the

tunneling effect is chosen to be compatible with our planar waveguide experimental

apparatus (Fig.4.16) previously described [63]. Three distinct waveguide sections

are formed, distinguished by the differing gap heights between the upper and lower

metal planes. There is a gap of 11 mm between the upper and lower conducting
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plates that serve as the input and output waveguides. (For comparison, standard

X-band waveguide, which covers the frequency region from 8-12 GHz, has a stan-

dard height of 10.16 mm.) The narrowed tunneling channel with patterned CSRRs

in the lower surface has a gap of 1 mm between the plates. The planar waveguide is

bounded on either side by layers of absorbing material, which approximate magnetic

boundary conditions and also reduce reflection at the periphery. The waveguide and

channel thus support waves that are nearly transverse electromagnetic (TEM) in

character. Assuming the CSRR region can be treated as a homogenized medium,

the entire configuration is well approximated as two-dimensional, with the average

field distribution having little variation along the width.[60]

The characteristic wave impedances corresponding to TEM waves in the three

waveguide regions are equivalent, equal to Z1. There is generally, however, a severe

impedance mismatch at the two interfaces between the planar waveguides and the

narrow channel, resulting in a large input impedance mismatch that inhibits the

transmission of waves from the left waveguide region to the right. An effective

impedance model for the specific geometry considered here has been described in

detail in [65], where a transmission line model is derived showing that the narrow

waveguide region can be replaced by a region having an impedance Z2 = (d/b)Z1.

d/b is the ratio of the planar waveguide and channel heights. In addition, there is

a shunt admittance Y = jB at the interface between the mismatched waveguides,

which becomes quite large (and therefore unimportant) when the waveguides differ

significantly in height. Because Z2 � Z1, there is no coupling between the input and

output waveguides, except possibly when a resonance condition is met and a Fabry-

Perot oscillation occurs. If the channel is now loaded with an ENZ material, the

effective wave impedance of the channel region is raised to the point where the three

waveguide regions are matched and perfect transmission once again should occur.

[60]
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The experimental configuration studied here corresponds to one of the two cases

considered by Silveirinha and Engheta [63]. In the first case ε and µ tend to zero

simultaneously, while in the second ε is near zero and the area of channel is as-

sumed electrically small. Our experimental setup belongs to the latter case, whose

mechanism is illustrated by calculating the reflectance based on the simplified model

described in [66]. We find

R =
R12(1− ei2k2zd)

1−R2
12e

i2k2zd
(4.5)

in which R12 = (Z2//(−iB)−Z1)/(Z2//(−iB)+Z1) and Z2//(−iB) = (−iBZ2)/(−iB+

Z2). R12 is the reflection coefficient between the planar waveguide and the channel,

d is the effective length of the channel, and k2z is the wave vector inside the channel.

Z1 and Z2 are the effective input wave impedances outside and inside the narrow

channel, respectively, whose ratio Z1/Z2 corresponds to the height ratio 11/1 in the

absence of the patterned CSRRs. When ε and µ are simultaneously near zero, the

characteristic impedance of the zero index material may take on the finite value

lim
ε,µ→0

√
µ/ε, which may differ from the impedance of adjacent regions. However,

since k → 0, the reflection coefficient vanishes, indicating the tunneling of the wave

across the channel [63]. In the present configuration, since Z2/Z1 approaches zero,

the reflection coefficient no longer vanishes in a simple manner. Instead, when the

ENZ medium possesses a small but finite value of permittivity, Z2/Z1 may approach

unity, and the tunneling effect is restored. [60]

The equivalence between an ENZ metamaterial and the CSRR structure shown

in Fig.4.2 can be established by performing a numerical retrieval of the effective

constitutive parameters for the channel. The simulated reflection and transmission

coefficients as a function of frequency for the channel with and without the ENZ

metamaterial are shown in Fig.4.17. These results are compared with the simplified

88



model presented in Eq.4.5, where Z2 = Z1/(11
√

εeff,r) with the effective length

d chosen as 13mm. An approximate analytical expression for B obtained by a

conformal mapping procedure is presented in [66]. The influence of the junction

susceptance B is minimal for the geometry considered here, though we have retained

it for completeness. The transmission and reflection coefficients predicted by the

analytical model are plotted in Fig.4, where they can be seen to be in very good

agreement with those simulated, supporting the interpretation of the transmission

peak as an indication of tunneling. In addition, Fig.4.18(a) shows the Poynting

vector distribution at 8.8 GHz, revealing the squeezing of the waves through the

narrow channel.[60]

To validate experimentally the ENZ properties of the CSRR region, a channel

patterned with CSRRs was fabricated and its scattering compared to an unpatterned

control channel. Both the CSRR and control channels were formed from copper-

clad FR4 circuit board (0.2 mm thick), fabricated with dimensions 18.6× 200(mm2)

(shown in Fig. 4.16). The array of CSRR elements (shown in Fig. 4.2) was patterned

on the circuit board using standard photolithography. A total of 200 CSRRs (5 in the

propagation direction, 40 in the transverse direction) were used to form the effective

ENZ metamaterial. The CSRR/control substrates were then placed on a styrofoam

support, with dimensions 18.6× 10× 200(mm3). Copper tape was used to cover the

sides of the Styrofoam and carefully placed to ensure that the copper-clad substrates

would make good electrical contact with the bottom plate of the waveguide. X-

band waveguide-to-coaxial adapters were used to connect the waveguide to a vector

network analyzer (VNA, Agilent) using standard SMA cables.[60]

To obtain a base level of transmission, the control sample was positioned inside

the planar waveguide halfway between the two ports and a transmission measure-

ment taken. The results are shown in Fig.4.19 and compared with both the analytical

model and the HFSS simulation. The pass band of the control slab, due to the res-
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onance condition, was found to occur at 7 GHz–shifted from the pass band found

in simulation. The consistent shift between measurement and simulation likely re-

flects the differences between the experimental environment and the simulation model

(e.g., finite slab width and fluctuation of channel height). The measurement and sim-

ulation, however, are in excellent qualitative agreement. By uniformly shifting the

frequency scale, the measured and simulated curves are almost identical ( note the

two scales indicated on the top and bottom axes ).[60]

With the control slab replaced by the CSRR channel, the measured transmitted

power (shown in Fig.4.19) reveals a pass band near 7.9 GHz (8.8 GHz from the

simulation), which is identical with retrieval prediction. This pass band is absent

when the control slab is present, demonstrating that electromagnetic tunneling takes

place at approximately the frequency where the effective permittivity of the ENZ

region approaches zero.[60]

To add further support that the observed pass band is due to the predicted tun-

neling phenomenon where ε ≈ 0, phase sensitive maps of the spatial electric field

distribution throughout the channel region were constructed[51]. The electric field

magnitude was mapped inside a 180× 180 (mm2) square region for both the copper

control and CSRR channels. Fig.4.20. shows the mapped fields for both configu-

rations taken at 8.04 GHz (where the effective permittivity of the CSRR structure

is approximately zero). The field is normalized by the average field strength, which

makes the color scale different. Yet it is clear that the CSRR channel allows trans-

mission of energy to the second port, measured to be −5dB, whereas only −14dB

of field energy propagates to port 2 when the control slab is presented. Note the

uniform phase variation across the channel at the tunneling frequency, f = 8.04

GHz.[60]

A linear plot of phase versus position (shown in Fig.4.21) further illustrates the

tunneling of energy through the ENZ channel versus the Fabry-Perot like resonant
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scattering. The latter mechanism of transmission has been studied in detail by

Hibbins et al.[66]. As can be seen in Fig.4.21, a strong phase variation exists across

the control channel at f = 7 GHz, corresponding to the pass band that is seen

in Fig.4.19. The clearly distinguished phase advance within the channel implies

that the propagation constant is non-zero. The large transmittance results from a

resonance condition related to the length of the channel. By contrast, the spatial

phase variation for the CSRR channel is shown in Fig.4.21 for f = 8.04 GHz (the pass

band of the CSRR loaded channel), where we see that the phase advance across the

channel at this frequency is negligible. The nearly zero phase variation is consistent

with the conclusion that εeff for the CSRR slab is very close to zero.[60]

While the CSRR waveguide used in these experiments does not form a volumet-

ric metamaterial, we have nevertheless shown that the planar waveguide channel

can be treated equivalently as having a well-defined resonant permittivity, with zero

value at a frequency of 8.04 GHz. Furthermore, the set of transmission and mapping

measurements we have presented demonstrates that the tunneling observed through

the channel is consistent with the behavior of an ε-near-zero medium. The mea-

surements confirm that “squeezed waves” will tunnel without phase shift through

extremely narrow ENZ channels. ENZ materials may thus be used as highly efficient

couplers with broad application in microwave and THz devices.[60]

As we have successfully demonstrated the electromagnetic tunnelling effect via

waveguided metamaterials in the parallel waveguide system, we can move forward

to integrate the tunnelling technology and waveguided metamaterials into a RF

circuit.[67] The construction of this tunnelling circuit has shown in Fig.4.22. A

multi-layer PCB fabrication is used and an array of via hole performs the junction of

the tunnelling experiment. An array of designed CSRR was milled out at the ground

layer. Thus, we can integrate all the components of the tunnelling experiment into

a complete RF circuit. The similar analysis and measurement can be done, shown
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in Fig.4.23, in which, a clear tunnelling transmission peak can be observed. To take

the advantage of this effect in a sharp bending environment, we designed and fabri-

cated another circuit shown in Fig.4.24, in which, a 180 degree sharp bend connects

two transmission line. At the sharp bending region, we employ the tunnelling con-

struction with via hole and CSRR structure. By measuring the circuit, we showed

the reflection and transmission on both control and tunnelling circuit in Fig.4.25.

The measurement indicates that the transmission is about −20dB without CSRR

structures, but can be improved to −4dB by placing CSRR on the ground. The

improvement on the coupling efficiency and the application of waveguided metama-

terials in the RF circuit have been developed and verified, although there is still a

certain loss in the transmission. The imperfection might be caused by the fabrication

error in multi-layer PCB and the loss in the substrate. Whereas the configuration

of the related technology has been demonstrated and we expect to see the wide

potential applications on such 2D waveguided metamaterials in the near future.

Some of the work here have been published in Physical Review Letters[60],Applied

Physics Letters[58, 67] and Physical Review B[59].
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( a )
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Figure 4.8: (a) The experimental setup for the partial focusing. (b) Details of the
fabricated CELC[59]
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Figure 4.9: Simulation setups for the the anisotropic CELC unit when the plane
waves are incident from two directions.[59]
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Figure 4.10: The effective permittivity and permeability curves for the simulation
setup in Fig. 4(a). (a) εz. (b) µx.[59]
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Figure 4.11: The effective permittivity and permeability curves for the simulation
setup in Fig. 4(b). (a) εz. (b) µy.[59]
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Figure 4.12: The distribution of simulated electric fields in a section of the planar
waveguide at 11.5 GHz.[59]
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Figure 4.13: The experimental result for the electric-field distributions inside the
2D mapper at 11.5 GHz.[59]
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Figure 4.14: Figure from Ref.[63], the configuration of electromagnetic waves’ tunnelling
through narrow channel

Figure 4.15: Figure from Ref.[63], electromagnetic wave tunnel through a narrow chan-
nel as U-turn

Figure 4.16: Experimental setup, in which h=11 mm, hw=10 mm, d=18.6 mm (16.6
mm for CSRR Regime),w=200mm. Lower figure is the sample inside chamber. [60]
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Figure 4.17: Configuration of tunneling effect simulation[60]

Figure 4.18: Poynting vector and medium model (a) Poynting vector (b) Simplified
Model[60]

Figure 4.19: Experimental, theoretical and simulated transmissions for the tunneling
and control samples. [60]
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Figure 4.20: 2-D Mapper results at 8.04 GHz. (a) Field distribution of tunneling sample
(b) Field distribution of control[60]

Figure 4.21: Phase Shift for 5 unit-cell tunneling sample at 8.04 GHz and control at 7
GHz.[60]
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Figure 4.22: The circuit tunneling structure. (a) Top layer. (b) Middle layer. (c)
Bottom layer. (d) Side view. (e) Top and bottom views of the fabricated circuit.[67]
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Figure 4.23: (a) The effective permittivity for CSRR (inset: the CSRR structure). (b)
The measured and simulated S parameters for the tunneling structure shown in Fig.4.22
without any patterns on the bottom metallic layer. (c) The measured and simulated reflec-
tion coefficients S11 for the tunneling structure shown in Fig.4.22. (d) The measured and
simulated transmission coefficients S21 for the tunneling structure shown in Fig.4.22.[67]

Figure 4.24: A circuit bend using the tunneling structure. Left: top view. Right:
bottom view[67]
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Figure 4.25: The measured and simulated S parameters for the circuit bend shown in
Fig.4.24 with/without CSRR patterns on the bottom. (a) S11 without CSRR patterns. (b)
S21 without CSRR patterns. (c) S11 with CSRR patterns. (d) S21 with CSRR patterns.[67]
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5

Experiment on gradient index metamaterials

5.1 Concept of gradient index metamaterials

We have discussed the waveguided metamaterials in the last chapter and demon-

strated several experiments using such type of metamaterials including the exper-

iment on gradient index metamaterials. In this chapter, we will in details discuss

the general gradient index metamaterials and show more demonstrations on different

type of bulk gradient index metamaterials that contain different functionalities.

As discussed, the properties of a metamaterial can be manipulated by altering

the characteristics of the circuit, such as its physical shape, dimension or local dielec-

tric environment. Thus, the design of particular metamaterial structure can define

the local material properties and the medium formed is unnecessary to be homo-

geneous. By relaxing the periodicity restriction on the complex media construction

from metamaterials, a gradient index metamaterial can be constructed in a general

sense. Such media is formed from non-identical unit cells rather than identical unit

cells, enabling exotic microwave or optical behaviors.

A consequent problem is how a local material’s parameter can be determined
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by the standard retrieval process, where the periodic boundary condition has been

used and only a single layer of unit cells along the propagation direction has been

considered. According to the effective medium properties of metamaterials described

in chapter two, we have the knowledge that finite metamaterial structure has strong

spatial dispersion effect and can be coupled by its neighbor scatter. The spatial

dispersion effect has been considered in the standard retrieval process and the same

property can be remained in the gradient index metamaterials. However, the cou-

pling between neighbor unit cells are unavoidably varied from standard retrieval

process to the gradient index environment. This approximation might lead to the

discrepancy between the design and actual performance on this type of complex

scatter system. Whereas in most gradient index metamaterial design, the refractive

index varies smoothly and slowly with spatial coordinate. This suggests that the

neighbor unit cell structures are resembled to each other and are of a slight change

in geometry dimension. The coupling between the unit cells in such gradient index

environment can thus be closed enough to the standard retrieval process. In addition

the function of metamaterial unit cell is to provide the local dipole moment response

to the applied field and can be insensitive to the macroscopic environment in general.

This justification of the design on gradient index metamaterials indicates both the

challenge and opportunity of metamaterials. The approximation might lead to inac-

curate design and is difficult to control because the errors varies with the practical

design environment, resulting in the tricky design process. To the other hand, this

approximation can decouple the designs between system level and particle level. The

computation burden of such complex scatter system is effectively reduced by predict-

ing material’s local parameters by simulating the individual unit cell structure. The

possibility of designing a large scale scatter system enables the novel approach to

manipulate electromagnetic waves.

The early gradient index (GRIN) metamaterial was proposed and demonstrated
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Figure 5.1: From Ref.[18]. The design of gradient index metamaterials by placing
inhomogeneous SRRs transverse to propagation direction

in [20, 58], in which split ring resonators (SRRs) were chosen as the resonant circuits,

forming a bulk inhomogeneous medium. Though this structure was demonstrated in

a planar waveguide apparatus, metamaterials formed from SRRs are the conceptual

equivalent of analog of naturally occurring materials, shown in Fig.5.1. The system

level design of gradient index metamaterials, thus, differs from case by case. We have

already discussed the examples of the beam steering gradient index design and beam

focusing gradient index design in waveguided metamaterial experiment in chapter

four. We will continue to discuss different gradient index design with different type

of metamaterial structure in the later sections.

5.2 Gradient index lens by ELC structures

In the last section, we discussed the basic concept of gradient index metamaterials

and justified the design process and approximation on such type of metamaterials.

Several related experiments have also discussed in chapter four within the waveguide

environment. In this chapter, we will discuss a bulk gradient index metamaterial

because different potential applications might be targeted by manipulating the waves
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in free space. As we also understand the design process in general on a gradient

index metamaterial, we will start from the metamaterial structure level to discuss

the opportunities of building bulk gradient index metamaterial lens.

Figure 5.2: An ELC structure that has electric resonance. The change of geometry
parameter s and r can lead to varies on the quantity of the response.

According to the gradient index metamaterial design, an inhomogeneous media

can be formed by various metamaterial structures. We can thus control the local

material’s permittivity and permeability across the spatial coordinate. To achieve

a gradient refractive index, one can either manipulate the magnetic response or

electric response within the media. However, the impedance of the media might

vary differently by magnetic medium and electric medium. Meanwhile the spatial

dispersion will in general distort the Drude-Lorentz resonance and cause the anti-

resonance to the other parameters regardless the type of metamaterial structure. It

complicates the accurate design of gradient index metamaterial lens as one has to

investigate permittivity and permeability at the same time. To the other hand, if we

think more about the gradient index metamaterial lens design in material’s level, a

control of impedance is actually request to match that in the free space. Therefore,

to appropriately design a gradient index metamaterial device, we need to control

the refractive index to manipulate the waves propagating through the media and
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control the impedance to minimize the reflection at the surface of the gradient index

materials.

Figure 5.3: The effective electromagnetic parameters of an ELC structure with the
periodicity 3.333mm and s=0.835mm and r=0.28mm

To address the multi-restrictions on the gradient index metamaterial design, we

investigated an electric-LC (ELC) structure [46] and modified it into a present form

shown in Fig.5.2. The reason of introducing to arms is to increase the capacitance

and lower down the resonant frequency. According to Fig.5.2, the equivalent ca-

pacitances can be largely affected by the geometry parameter s and the equivalent

inductance and coupling between neighbor unit cell structure can be affected by

the geometry parameter r. Fig.5.3 displays the effective electromagnetic parameters

extracted from the standard retrieval process to such ELC structure. We observe

both electric resonance and anti-resonance on magnetic response. If the geometry

parameters s and r is changed, the response of the structure dramatically varies, as

shown in Fig.5.4, though it is still an electric resonance with magnetic anti-resonance.
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Figure 5.4: The effective electromagnetic parameters of an ELC structure with the
periodicity 3.333mm and s=0.32mm and r=0.43mm

Therefore, the design of s and r can both affect refractive index and impedance and

be crucial in the gradient index metamaterial design.

The complexity of choosing appropriate s and r dimensions for different struc-

tures in the gradient index media and the spatial dispersion effect on all the designing

structures make the gradient index design obscure and difficult. Therefore, to max-

imize the advantage of such flexibility on the particle response, we employ the rapid

design technology discussed in chapter three and establish the optimization on the

particular ELC gradient index metamaterial design. To design a beam steering mod-

ulation device, we need a linear gradient refractive index and an impedance matching

to the air as much as possible. By setting these two criterions to the optimization

scheme, we can achieve the Table 5.1, indicating the best solutions found in the given

structure topology.

According to the Table 5.1, we can take use of 31 unique ELC structures to
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Table 5.1: An optimized solution on the beam steering gradient index design from rapid
design system

generate a linear gradient index from 0.45 to 1.45. Assuming the illumination is a

gaussian collimated beam, the beam will penetrate through the central part of the

lens, where impedance is well controlled to be closed to 1. By applying the optimized

solution in Table 5.1, we fabricated an ELC gradient index metamaterial lens with

6 layers and measured the sample in the 2D near field scanning apparatus. Fig.5.5

displays the field mapping at 10Ghz in the experiment on the ELC gradient index

lens. An expected beam steering effect was observed from the field mapping and

verified the design of a gradient index metamaterial.
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Figure 5.5: A field mapping in experiment on the ELC gradient index lens

5.3 Broadband gradient index metamaterials and complex lens design

In the last section, we discussed in detail the design of a bulk gradient index meta-

materials by ELC structures. However, the loss and bandwidth of such design still

remain the challenges. In this section, we will continue working on the gradient index

metamaterials but focusing on the bandwidth and loss of metamaterial design. To

address this challenges, we recall the development of artificial dielectric materials that

can be constructed by conducting scatter systems and have been existed for a long

time[68, 69, 70, 71, 72, 73, 74, 75, 76]. However, the design methodology of artificial

dielectric materials was limited by the computational ability at early time, and thus

prohibiting the further development of such complex scattering systems. Recently

the electromagnetic response of metamaterial elements can be precisely controlled

so that they can be viewed as the fundamental building blocks for a wide range of

complex, electromagnetic media[24, 77, 78]. To date, metamaterials have commonly

111



been formed from resonant conducting circuits, whose dimensions and spacing are

much less than the wavelength of operation. As discussed, an inhomogeneous media,

in which the material properties vary in a controlled manner throughout space, also

can be used to develop optical components, and are an extremely good match for

implementation by metamaterials. The waveguided metamaterials and bulk gradi-

ent index metamaterials have already demonstrated the unprecedented freedom to

control the constitutive tensor elements independently, point-by-point throughout a

region of space. Whereas although metamaterials have proven successful in the real-

ization of unusual electromagnetic response, the structures demonstrated are often of

only marginal utility in practical applications due to the large losses that are inherent

to the resonant elements most typically used. The situation can be illustrated using

the curves presented in Fig.5.6, in which the effective constitutive parameters are

shown in Fig.5.6 (a) and (b) for the metamaterial unit cell in the inset. According

to the effective medium theory described in Ref.[19], the retrieved curves are signifi-

cantly affected by spatial dispersion effect. To remove the spatial dispersion factor,

we can apply the formulas in the theorem [7] and achieve that

ε = εsin(θ)/θ (5.1)

µ = µsin(θ)/θ (5.2)

in which, θ = ωp
√

εµ and p is the periodicity of the unit cell.

Note that the unit cell possesses a resonance in the permittivity at a frequency

near 42 GHz. In addition to the resonance in the permittivity, there is also struc-

ture in the magnetic permeability. These artifacts are phenomena related to spa-

tial dispersion-an effect due to the finite size of the unit cell with respect to the

wavelengths. As previously pointed out, the effects of spatial dispersion are simply

described analytically, and can thus be removed to reveal a relatively uncomplicated
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Drude-Lorentz type oscillator characterized by only a few parameters. The observed

resonance takes the form

ε(ω) = 1−
ω2

p

ω2 − ω2
0 + iΓω

=
ω2 − ω2

0 − ω2
p − iΓω

ω2 − ω2
0 + iΓω

(5.3)

where ωp is the plasma frequency, ω0 is the resonance frequency and Γ is a damping

factor. The frequency where ε(ω) = 0 occurs at ω2
L = ω2

0 + ω2
p.

Figure 5.6: (a) Retrieved permittivity for a metamaterial composed of the repeated
unit cell shown in the inset; (b) retrieved permeability for a metamaterial composed of the
repeated unit cell shown in the inset. (c) The distortions and artifacts in the retrieved
parameters are due to spatial dispersion, which can be removed to find the Drude-Lorentz
like resonance shown in the lower figure.[54]

Table 5.2: The predicted and actual zero-frequency permittivity values as a function of
the unit cell dimension, a.
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Figure 5.7: Retrieval results for the closed ring medium. In all cases the radius of
curvature of the corners is 0.6 mm, and w=0.2 mm. (a) The extracted permittivity with
a=1.4 mm. (b) The extracted index and impedance for several values of a. The low
frequency region is shown. (c) The relationship between the dimension a and the extracted
refractive index and wave impedance. [54]

As can be seen from either Eq.5.3 or Fig.5.6, the effective permittivity can achieve

very large values, either positive or negative, near the resonance. Yet, these values

are inherently accompanied by both dispersion and relatively large losses, especially

for frequencies very close to the resonance frequency. Thus, although a very wide

and interesting range of constitutive parameters can be accessed by working with

metamaterial elements near the resonance, the advantage of these values is somewhat

tempered by the inherent loss and dispersion. The strategy in utilizing metamaterials

in this regime is to reduce the losses of the unit cell as much as possible. If we examine

the response of the electric metamaterial shown in Fig.5.6 at very low frequencies,

we find, in the zero frequency limit,

ε(ω −→ 0) = 1 +
ω2

p

ω2
0

=
ω2

L

ω2
0

(5.4)

The equation is reminiscent of the Lyddane-Sachs-Teller relation that describes the

contribution of the polariton resonance to the dielectric constant at zero frequency

[20]. At frequencies far away from the resonance, we see that the permittivity ap-

proaches a constant that differs from unity by the square of the ratio of the plasma

to the resonance frequencies. Although the values of the permittivity are necessarily
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Figure 5.8: Refractive index distributions for the designed gradient index structures.
(a) A beam-steering element based on a linear index gradient. (b) A beam focusing lens,
based on a higher order polynomial index gradient. Note the presence in both designs of an
impedance matching layer (IML), provided to improve the insertion loss of the structures.

positive and greater than unity, the permittivity is both dispersionless and lossless-a

considerable advantage. Note that this property does not extend to magnetic meta-

material media, such as split ring resonators, which are generally characterized by

effective permeability of the form

µ(ω) = 1− Fω2

ω2 − ω2
0 + iΓω

(5.5)

which approaches unity in the low frequency limit. Because artificial magnetic effects

are based on induction rather than polarization, artificial magnetic response must

vanish at zero frequency. The effective constitutive parameters of metamateirals are

not only complicated by spatial dispersion but also possess an infinite number of

higher order resonances that should properly be represented as a sum over oscilla-

tors. It is thus expected that the simple analytical formulas presented above are

only approximate. Still, we can investigate the general trend of the low frequency

permittivity as a function of the high-frequency resonance properties of the unit
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Figure 5.9: Refractive index distributions for the designed gradient index structures.
(a) A beam-steering element based on a linear index gradient. (b) A beam focusing lens,
based on a higher order polynomial index gradient. Note the presence in both designs
of an impedance matching layer (IML), provided to improve the insertion loss of the
structures.[54]

cell. By adjusting the dimension of the square closed ring in the unit cell, we can

compare the retrieved zero-frequency permittivity with that predicted by Eq. 5.3.

The simulations are carried out using HFSS (Ansoft), a commercial electromagnetic,

finite-element, solver that can determine the exact field distributions and scattering

(S-) parameters for an arbitrary metamaterial structure. The permittivity and per-

meability can be retrieved from the S-parameters by a well-established algorithm.

Table 1 demonstrates the comparison between such simulated extraction and theo-

retical prediction. We should notice that as the unit cell is combined with a dielectric

substrate, Eq.5.2 has been modified into ε(ω −→ 0) = εa(1 +
ω2

p

ω2
0
) = εa

ω2
L

ω2
0
, in which
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Fabricated sample of gradient index metamaterials

Figure 5.10: Fabricated sample, in which, the metamaterial structures vary with space
coordinate.[54]

εa = 1.9.The additional fitting parameter can represent the practical situation of

the affect from substrate dielectric constant and the contribution to DC permittivity

from high order resonances. Though there is significant disagreement between the

predicted and retrieved values of permittivity, the values are of similar order and

show clearly a similar trend: the high frequency resonance properties are strongly

correlated to the zero frequency polarizability. By modifying the high-frequency res-

onance properties of the element, the zero- and low-frequency permittivity can be

adjusted to arbitrary values.

Because the closed ring design shown in Fig.5.7 can easily be tuned to provide a

range of dielectric values, we utilize it as the base element to illustrate more complex

gradient-index structures. Though its primary response is electric, the closed ring

also possesses a weak, diamagnetic response that is induced when the incident mag-

netic field lies along the ring axis. The closed ring medium therefore is characterized

by a magnetic permeability that differs from unity, and which must be taken into

account for a full description of the material properties. The presence of both elec-

tric and magnetic dipolar responses is generally useful in designing complex media,

having been demonstrated in the metamaterial cloak. By changing the dimensions
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Figure 5.11: Field mapping measurements of the beam steering lens. The lens has a
linear gradient that causes the incoming beam to be deflected by an angle of 16.2 degrees.
The effect is broadband, as can be seen from the identical maps taken at four different
frequencies that span the X-band range of the experimental apparatus.[54]

of the ring, it is possible to control the contribution of the magnetic response.

The permittivity can be accurately controlled by changing the geometry of the

closed ring. The electric response of the closed ring structure is identical to the ”cut-

wire” structure previously studied, where it has been shown that the plasma and

resonance frequencies are simply related to circuit parameters according to ω2
p ≈ 1/L

and ω2
0 ≈ 1/(LC) . Here, L is the inductance associated with the arms of the

closed ring and C is the capacitance associated with the gap between adjacent closed

rings. For a fixed unit cell size, the inductance can be tuned either by changing

the thickness, w, of the conducting rings or their length, a. The capacitance can be

controlled primarily by changing the overall size of the ring.

Changing the resonance properties in turn changes the low frequency permittivity
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Figure 5.12: Field mapping measurements of the beam focusing lens. The lens has a
symmetric profile about the center (given in the text) that causes the incoming beam to be
focused to a point. Once again, the function is broadband, as can be seen from the identical
maps taken at four different frequencies that span the X-band range of the experimental
apparatus.[54]

value, as illustrated by the simulation results presented in Fig.5.7. The closed ring

structure shown in Fig.5.7(a) is assumed to be deposited on FR4 substrate, whose

permittivity is 3.85+i0.02 and thickness is 0.2026 mm. The unit cell dimension is

2mm, and the thickness of the deposited metal layer (assumed to be copper) is 0.018

mm. For this structure, a resonance occurs near 25 GHz with the permittivity nearly

constant over a large frequency region (roughly zero to 15 GHz). Simulations of three

different unit cell with ring dimensions of a = 0.7 mm, 1.4 mm and1.625 mm were

also simulated to illustrate the effect on the material parameters. In Fig.5.7b, it

is observed that the index value becomes larger as the ring dimension is increased,

reflecting the larger polarizability of the larger rings.
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The refractive index remains, for the most part, relatively flat as a function

of frequency for frequencies well below the resonance. The index does exhibit a

slight monotonic increase as a function of frequency, however, which is due to the

higher frequency resonance. The impedance changes also exhibits some amount of

frequency dispersion, due to the effects of spatial dispersion on the permittivity and

permeability. The losses in this structure are found to be negligible, as a result

of being far away from the resonance frequency. This result is especially striking,

because the substrate is not one optimized for RF circuits-in fact, the FR4 circuit

board substrate assumed here is generally considered quite lossy.

As can be seen from the simulation results in Fig.5.7, metamaterial structures

based on the closed ring element should be nearly non-dispersive and low-loss, pro-

vided the resonances of the elements are sufficiently above the desired range of oper-

ating frequencies. To illustrate the point, we make use of the closed ring element to

realize two gradient index devices: a gradient index lens and a beam steering lens.

The use of resonant metamaterials to implement positive and negative gradient in-

dex structures was introduced in [20] and subsequently applied in various contexts.

The design approach is first to determine the desired continuous index profile to

accomplish the desired function (e.g., focusing or steering) and then to stepwise ap-

proximate the index profile using a discrete number of metamaterial elements. The

elements can be designed by performing numerical simulations for a large number

of variations of the geometrical parameters of the unit cell; once enough simulations

have been run so that a reasonable interpolation can be formed of the permittivity as

a function of the geometrical parameters, the metamaterial gradient index structure

can be laid out and fabricated. This basic approach has been followed in [20].

Two gradient index samples were designed to test the bandwidth of the non-

resonant metamaterials. The color maps in Fig.5.8 show the index distribution

corresponding to the beam steering layer (Fig. 5.8a) and the beam focusing lens
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(Fig.5.8b). Although the gradient index distributions provide the desired function of

either focusing or steering a beam, there remains a substantial mismatch between the

predominantly high index structure and free-space. This mismatch was managed in

prior demonstrations by adjusting the properties of each metamaterial element such

that the permittivity and permeability were essentially equal. This flexibility in

design is an inherent advantage of resonant metamaterials, where the permeability

response can be engineered on a nearly equal footing with the electric response. By

contrast, that flexibility is not available for designs involving non-resonant elements,

so we have instead made use of a gradient index impedance matching layer (IML) to

provide a match from free-space to the lens, as well as a match from the exit of the

lens back to free space.

The beam steering layer is a slab with a linear index gradient in the direction

transverse to the direction of wave propagation. The index values range from n =

1.16 to n = 1.66, consistent with the range available from our designed set of closed

ring metamaterial elements. To improve the insertion loss and to minimize reflection,

the IML is placed on both sides of the sample (input and output). The index values

of the IML gradually change from unity (air) to n = 1.41, the index value at the

center of the beam steering slab. This index value was chosen because most of the

energy of the collimated beam passes through the center of the sample. To implement

the actual beam steering sample, we made use of the closed ring unit cell shown in

Fig.5.7 and designed an array of unit cells having the distribution shown in Fig. 5.8a.

The beam focusing lens is a planar slab with the index distribution as represented

in Fig. 5.8b. The index distribution has the functional form of

Re(n) ≈ 4× 10−6|x|3 − 5× 10−4|x|2 − 6× 10−4|x|+ 1.75 (5.6)

in which x is the distance away from the center of the lens. Once again, an IML was

used to match the sample to free space. In this case, the index profile in the IML
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was ramped linearly from n = 1.15 to n = 1.75, the latter value selected to match

the index at the center of the lens. The same unit cell design was utilized for the

beam focusing lens as for the beam steering lens.

To analyze the reflection minimization by metamaterial IML, we create a simple

analysis model to illustrate the function of IML, shown in Fig.5.9. We study the

reflection coefficient between the air and a dielectric with refractive index n=1.68.

Fig.5.9 (a) shows a scenario that an IML metamaterial, composed of five linear

gradient index step layer, is presented at the interface between the air and dielectric.

Each step layer’s thickness is 2mm. Fig.5.9 (b) shows the usage of IML on a dielectric

slab. The impedance mismatch is expected to be minimized by IML at the interface.

Fig.5.9 (c) and (d) demonstrate the reflection coefficient with and without IML

for the case in Fig.5.9 (a) and (b) respectively. As can be seen in Fig.5.9 (c), the

reflection coefficient at DC frequency is identical between the IML case and its control

because the wavelength is so long that the IML is invisible to the wave. However,

the reflection coefficient drops down quickly as frequency raising. At 5GHz, the

reflection coefficient has been reduced from 0.13 to below 0.04. Fig.5.9 (d) illustrates

the improvement in reflection coefficient by adding the IML at both interfaces of

a dielectric slab. The reflection coefficient can be minimized to half of the one by

control above 7GHz. Therefore, we can take the advantage of the flexibility on non-

resonant metamaterials to implement the IML in various designs to minimize the

reflection.

To confirm the properties of the gradient index structures, we fabricated the two

designed samples using copper clad FR4 printed circuit board substrate, shown in

Fig.5.10. Following a procedure previously described, sheets of the samples were

fabricated by standard optical lithography, then cut into 1 cm tall strips that could

be assembled together to form the gradient index slabs. To measure the sample, we

placed them into a 2D mapping apparatus, which has been described in details5 and
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mapped the near field distribution[51].

Fig.5.11 shows the beam steering of the ultra-broadband metamaterial design, in

which, a large broadband is covered. The actual bandwidth starts from DC and goes

up to approximately 14GHz. From Fig.5.11, it is obvious that beam steering occurs

at all the four different frequencies from 7.38GHz to 11.72GHz with an identical

steering angle of 16.2 degree. The energy loss through propagation is extremely low

and can barely be observed. Fig.5.12 shows the mapping result of the beam focusing

sample. Broadband property is demonstrated again at four different frequencies

with an exact same focal distance of 35mm and low loss. In summary, we proposed

ultra-broadband metamaterials, based on which complex inhomogeneous material

can be realized and accurately controlled. The configuration of ultra-broadband

metamaterials and the design approach are validated by experiments. Due to its low

loss, designable properties and easy access to inhomogeneous material parameters,

the ultra-broadband metamaterials will find wide applications in the future.

5.4 Random gradient index metamaterials

Figure 5.13: Index distribution of gradient random medium

As we have the technology of building a complex inhomogeneous media by non-
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Figure 5.14: The fabricated sample on the designed random gradient index metamate-
rials

resonant metamaterials and the approach of rapid design, we will demonstrate the

opportunity to manipulate waves in a further step. In this section, we introduce a

complex random material whose randomness is precisely controlled and generated.

The function of such random media is to maximally diffuse the electromagnetic

waves by covering it on a top of flat conducting surface. Shown in Fig.5.13, the

distribution of refractive index indicates a random and complex media presented

here. To describe the basic feature of this type of metamaterials, it matches the

impedance of air, makes no reflection at its smooth surface, and gradually changing

its refraction index randomly. The complex local material parameter creates a puzzle

for wave propagation in front of a metal conductor. Thus, such type of coating is

expected to diffuse the reflection waves by covering on top of a conductor metal. As

the material’s local properties are precisely designed arbitrarily, the randomness of

gradient index material can be extremely well controlled.

The random behavior of trajectories of electromagnetic waves can be obtained via

the random behavior of the electric permittivity and magnetic permeability values in

the metamaterial. Since the magnetic permeability values do not vary significantly,
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Figure 5.15: 2D mapping result for gradient random medium

the vary of permittivity and permeability can be also characterized by the refractive

index. Therefore, the random algorithms which enable the random change of the tra-

jectories of electromagnetic waves can be achieved by the corresponding spatial index

distribution. The design of index distribution is achieved by using certain nonlin-

ear regression approach under the boundary condition for impedance matching. We

take the advantage of the random behavior of Gaussian processes, a recent emerged

nonlinear regression technique. By setting several achievable index values at several

random selected spatial points and giving the boundary condition for impedance

matching, n = 1 on the boundary, we obtain a smooth spatial distribution of index

by Gaussian processes regression. The index distribution is shown in Fig.5.12. Note
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Figure 5.16: Angular resolution detection of gradient random medium

that such design prescription can be used to a much larger layered random gradient

index design and can be useful in practical case.[79]

The implementation of the particular design here requests more than 30000 dif-

ferent unit cells. Such large scale design and mask generation have been out of the

scope of manual production. Therefore, we employ the rapid design system for the

present case and enable the implementation on such complex media, shown in Fig.

5.14. To measure the diffusing effect, we coated the random gradient index metama-

terial in front of a long conductor reflector in the 2D near field scanning apparatus.

Fig.5.15 demonstrates the wave propagation in such set-up. The incoming beam

incidents from top to bottom and encounters the random gradient index metamate-

rials. At the boundary of the media, as the impedance is designed to match that of

the air, no significant reflected waves is observed. Whereas, the scattering waves has

highly diffused by penetrating across the media. To further characterize the diffusing
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function, an angular measurement with and without the coating has been taken. A

strong directional scatter can be observed in this experiment if the conductor is not

coated by the random media. Whereas, with the coated random media,the wave

energy was ”flattened out” in all angles to the far field.

In conclusion, we can design a media with the arbitrary local properties. By

employing the nonlinear regression approach, we can generate a complex media that

the well controlled random local properties can diffuse the wave propagation while

matching the impedance from the air. By utilizing the rapid design system, such

complex media can be implemented by gradient index metamaterials. The exper-

iment demonstrates the advantage and opportunity of controlling electromagnetic

waves by large scale scatters.

Some of the work here has been published in Optical Express[54] and conference

paper[79].
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6

Cloaking Devices Design and Experiment

6.1 Introduction to transformation optics

Transformation optics is a novel approach for the design of complex electromagnetic

media that offers new opportunities for the manipulation of electromagnetic waves

[24]. By taking use of the transformation optical approach, a wide variety of de-

vices can be conceptually designed in theory with unique properties, including beam

shifters; beam bends; beam splitters; focusing and collimating lenses; and structures

that concentrate electromagnetic waves. One of the most compelling examples of

the transformation optical technique has been the prescription for an invisibility

cloak-a material by rendering which other objects can be hidden from detection.

The prospect of cloaking has proven a tantalizing prospect to the community, with

numerous cloaking concepts currently being investigated.

The transformation optical approach is conceptually simple. One imagines warp-

ing space so as to control the trajectories of light in a desired manner. Light that

flows in a straight line in the unwarped space instead follows a route in the warped

space dictated by the details of the coordinate transformation that connects the two
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spaces. As what is now an iconic example of the transformation optical approach, an

invisibility cloak can be conceptually constructed by poking a hole in space and com-

pressing the space within the original region to within a shell excluding the object

volume.

Figure 6.1: An example of a coordinate transform

We start the discussion on transformation optics from a coordinate transform, for

example, shown in Fig.6.1. Such coordinate transformation can be arbitrarily made

and applied to Maxwells’ equations. The coordinate transform can be represented

by r′ = R(r) and calculated by Jacobian matrix Λ. We can, thus, achieve the
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electric field and magnetic field in the transformed space that [1] E
′
(r′) = (Λ

T
)−1E(r)

and H
′
(r′) = (Λ

T
)−1H(r). We know that the electromagnetic wave propagation is

governed by Maxwell’s equations regardless of the coordinate selection. We can

write down the Maxwell’s equations in both original space and transformed space

and achieve that

∇× E + iωµH = 0

∇×H − iωεE = 0 (6.1)

in the original space and that

∇× E
′
+ iωµ

′
H

′
= 0

∇×H
′ − iωε

′
E
′
= 0 (6.2)

in the transformed space. Because Maxwell’s equations contain terms that define the

properties of a material, the transformation can alternatively yield a specification

for a medium in the form of spatially varying electric permittivity and magnetic

permeability values. To remain the Maxwell’s equation from original space and

transformed space. we can solve the materials’ properties in the transformed space

and achieve that

µ
′
(r′) = Λµ(r)Λ

T
/detΛ

ε
′
(r′) = Λε(r)Λ

T
/detΛ (6.3)

According to Eq.6.3, we can make a use of new materials’ property to map the

space to electromagnetic wave propagation and distort the original coordinate to the

transformed space. To intuitively understand the physics behind, based on Eq.6.3,

we need a higher index material if the space is compressed; a lower index mate-

rial if the space is expanded; an anisotropic material if the space is twisted. Thus
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the resulting medium is in general highly complex, being anisotropic with spatial

gradients in the tensor elements of the constitutive parameters. The prospect of

realizing transformation optical structures, then, comes down to being able to find

or construct the specified materials.

Though the specifications for transformation optical structures would generally

be difficult to achieve using conventional materials, the prospects are much better

for achieving them using artificially structured metamaterials. Over the past several

years, metamaterials have been shown to possess a wide range of electromagnetic

properties that would be difficult or even impossible to achieve with conventional

materials. Moreover, the properties of metamaterials can be engineered with great

precision over a broad range of frequencies and are well suited to implement the com-

plex gradients required by transformation optical structures. In 2006, a cloak design

was realized in a metamaterial sample, which demonstrated the cloaking mechanism

over a narrow band of microwave frequencies shown in Fig.6.2.[25]

Figure 6.2: From Ref.[25]. The design of reduced parameter invisible cloak and the
simulations and measurements of cloak and metal cylinder, in which, A. ideal simulation
B. simulation on reduced cloak, C. control experiment D. experiment on the reduced cloak
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6.2 Invisibility cloak design in free space

In the last section, we discuss the transformation optics approach that enables a

conceptually design on the invisibility cloak and also give an example of a cloaking

experiment in 2006[25]. In this section, we will further discuss the details of such

cloaking design and experiment and also illustrate a new set of cloaking design and

experiment by applying the rapid design approach that has been discussed in chapter

three.

The design on this particular cylindrical cloaking device employs the coordinate

transform from a cylindrical volume to a shell excluding the object in the center

as shown in Fig.6.2. Assuming the inner radius is a and outer radius is b, one can

achieve the materials’ parameters by Eq.6.3 and achieve that [25]

µr =
r − a

r

µθ =
r

r − a

εz = (
b

b− a
)2 r

r − a
(6.4)

for a TE polarization. However, such parameters are highly anisotropic and inho-

mogeneous and of singularity at the inner boundary r = a. Although the conceptual

design provides the opportunity of a perfect invisibility, the practical implementa-

tion is limited by the finite response of metamaterials and complexity of 3D structure

fabrication. To address this practical difficulty, Schurig et. al. proposed a reduced

design to the cylindrical cloaking device by relaxing the impedance requirement but

remaining the refractive index to the materials. One can imagine a ray-tracing pro-

cess to such reduced cloak. The remaining refractive index can allow the trajectory

of wave propagation still rendering the object. Whereas the imperfect reflection and

field distortion on transmission will unavoidably occur in reality, shown in Fig.6.2.
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The reduced parameters design can be then achieved from Eq.6.4 and be expressed

by

µr = (
r − a

r
)2

µθ = 1

εz = (
b

b− a
)2 (6.5)

Figure 6.3: Rapid design for a reduced cloak, working at 10GHz

Figure 6.4: Fabricated invisible cloak by rapid design system

Although the first demonstration of cloaking experiment was far from perfect, the

breakthrough on the concept and methodology has led this work to one of the most

impact development on metamaterials. To further study this experiment, we can find

that such anisotropic and inhomogeneous media is implemented by a set of split ring

resonators (SRRs). The change of geometry of SRR will allow the implementation of
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Figure 6.5: Invisible cloak measurement

different local material property. In the experiment in Fig.6.2, ten unique SRRs have

been designed from inner layer to outer layer and to achieve µr = 0 to µr = 0.278.

The traditional design process follows a loop that many full wave simulations have

to be taken on various SRR until the effective permittivity and permeability meet

the requirement from transformation optics calculation at certain spatial point and

certain frequency. Therefore, in this cylindrical cloaking design, there are ten unique

structures. Approximate ten iterations is needed to design a particular structure.

One iteration will consume five minutes on the step of full wave simulations. Ideally

a thousand minutes is requested to design a particular cloak at a particular frequency.

This efficiency also challenges the metamaterial technology. To address this difficulty,

we incorporate the rapid design approach described in chapter three. By employing

the rapid design algorithm on metamaterial structure calculation, metamaterial re-
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sponse can be easily predicted and expressed in terms of analytical form based on

the library built by pre-simulated data. Once the library of certain type of unit cell

structure is built, it can be integrated together with the system level design, experi-

mental configuration and fabrication requirement. The system level design indicates

the electromagnetic parameters requirement calculation. For example, transforma-

tion optics is a type of system level design, from which, required permittivity and

permeability distributions for certain function can be calculated. The experimental

configuration means the type of metamaterials, such as 1D transmission line meta-

materials, 2D waveguided metamaterials, or 3D structural metamaterials. Different

types of metamaterials have their special features for various applications, and thus

appear different in the design system.

Applying the rapid design system, we can design the reduced cloak automati-

cally and, achieve the material’s parameters and metamaterial structure geometry,

for example, shown in Fig.6.4. Based on the same design library, we designed and

fabricated various different cloaks with different dimensions and operational frequen-

cies. Figure 6.4 shows the fabricated cloaks by our sophisticated design system. The

yellow cloaks are made on FR4 substrate while the black ones are on Duroid5880

substrate with lower loss. Excluding the design library extraction (as we only did

that once), all these different cloaking devices were designed in ten seconds, compar-

ing with a thousand minutes for a particular one in the past. Figure 6.5 shows the

series of invisible cloak measurements. All the experiments are designed by the same

structure library(Rogers Duroid5880 SRR unit cell) and measured within 0.1GHz

error around designed frequency from rapid design system, showing the accuracy of

this rapid metamaterial design approach.
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6.3 Broadband ground-plane cloak

We discussed the invisibility cloak design and experimental demonstration on the

reduced cloaks in the last section. From the cloak prototype experiment, we see

both the opportunity and challenge for metamaterials. The rapid design system has

dramatically improved the efficiency of the previous cloaking experiment. In this

section, we will continue on the trajectory of the development on cloaking devices

and demonstrate a much more complex media and structures that lead to a function

of broadband ground-plane cloak. As discussed, the metamaterial cloak represented

an approximation to the ideal cloak specification, arrived at by the transformation

optical approach. In fact, the required constitutive parameters for the ideal cloaking

structures are highly demanding even for metamaterials, generally requiring separate

control over at least three of the constitutive parameters for TE or TM polarization.

In the reduced cloak design, the material’s property request the elements of the

relative permittivity and permeability tensors must be between zero and unity, most

cloak designs will need to be based on resonant elements. The use of these elements

sets an inherent limit on the bandwidth over which the cloaking effect exists and

leads to a greater dissipation of the waves as they propagate through the structure.

There are an endless number of coordinate transforms that will arrive at a struc-

tures that will provide varying degrees of cloaking. In a recent theoretical study,

Li and Pendry describe the design of a structure that can cloak objects placed on

a conducting sheet. Though a more limited form of cloaking, the required consti-

tutive parameters for this ground-plane cloak are much easier to achieve with the

metamaterial techniques currently available.

To design the ground plane cloak, Li and Pendry first restrict the problem to a

two-dimensional plane of uniform dielectric value εb with the electric field assumed

polarized out of the plane (transverse electric polarization). In general, the trans-
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Figure 6.6: The transformation optics design for carpet cloak embedded with back-
ground materials and impedance matching layers. The white part is the object supposed
to be hid and meshing line indicates the quasi-conformal mapping. The color map shows
the designed refractive index distribution.[26]

formation would lead to an anisotropic medium with values of εz, µx and µy that

vary as a function of the spatial coordinate. Because there are an infinite number of

coordinate maps that will lead to the same cloaking behavior, Li and Pendry search

for a map that minimizes the anisotropy in the permeability components. Defining

an anisotropy factor as α = max(nx/ny, ny/nx), it is possible to find transformations

for which α is near unity. For such transformations, the permeability can be simply

set to unity, and the permittivity varied. If the background dielectric in the original

space is sufficiently greater than unity, then the values for the permittivity of the

cloaking structure are always greater than unity; this feature allows the possibility of

utilizing non-resonant metamaterial elements and thus making the cloak broadband.

Following the procedure outlined by Li and Pendry, we design a ground plane

cloak that minimizes the anisotropy factor. Li and Pendry stated that the quasi-

conformal map [80], generated by minimizing the Modified-Liao functional [81] upon
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Figure 6.7: The unit cell design of the non-resonant element and fabricated sample
according to the relationship between the geometry dimension and effective index.[26]

slipping boundary condition, minimizes the anisotropy in the permeability compo-

nents. Numerical mapping technique are then applied to achieve the Jacobian matrix

Λ of quasiconformal mapping from the physical system and virtual system, and then

the required index distribution n2 = 1√
|ΛT Λ|

. . In our final design, α = 1.04, which

we treat as negligible (that is, we assume nx = ny = 1). A color map indicating

the transformed space and the associated refractive index distribution is shown in

Fig.6.6. (The final map is generated numerically by the optimization procedure, so

there are no closed form analytic expressions that define the transformation.) To

simplify the design so that non-resonant metamaterial elements can be used, we as-

sume the entire cloak is embedded in a background material with refractive index

n = 1.331. Under these assumptions, the transformation leads to refractive index

values for the ground plane cloak that range from n = 1.08 to n = 1.67. Note on the

right and left side of the cloak, the refractive index distribution is uniform, taking

the value of the background material.

Because it is convenient to launch waves in free space, the homogeneous back-

ground material in which the cloak is embedded presents a complication, since in-

cident waves from free space will encounter an impedance mismatch and scatter.

To avoid this complication, we add an impedance matching layer (IML) around the

structure, for which the index changes gradually and linearly from the index of air
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to the background dielectric. The procedure for designing the IML layer is described

in Ref.[5]. Although the entire configuration is not hidden from detection by the in-

cident waves from free space, the embedded IML and cloak structure can render an

object invisible inside the background medium and above the ground plane. Because

of the index gradient coupled with the cloak, we expect no amplitude scatting and

only a slight redirection of the wave reflected from the ground plane structure. The

effect should be similar to observing a mirror through an extremely thin, glass plate;

objects on top of the mirror remain hidden from detection.

Because the required index distribution both for the IML and the cloak always

take values greater than unity, it is possible to utilize metamaterial elements far

from resonance to implement the cloak, which has been described in chapter five. To

implement the transformation optical design for the ground plane cloak, we make

use of the I-shaped particle shown in Fig.6.7. Following a well-established retrieval

process, the effective permittivity for a given element can be found. By varying the

geometry, a range of refractive index values can be obtained as illustrated in the inset

to Fig.6.7, according to which, a rough relationship between the refractive index value

and geometry dimension a is depicted. The transformation optical design in Fig.6.5

can thus be implemented by utilizing the metamaterial unit cell variations shown

in Fig.6.7. The assembled cloak, shown also in Fig. 6.7, contains more than sixty

thousand unit cells–roughly half of which are distinct–and is fabricated on copper-

clad printed circuit board with FR4 substrate (the substrate thickness is 0.2026

mm with a dielectric constant of 3.85+i*0.02). The completed sample is 500mm by

106mm with a height of 10mm, in which the center 250mm by 96mm corresponds

to the transformed region. The shape of the object hidden within the ground plane

cloak follows the curve y = 12 ∗ cos2((x − 125)π/125) (units in mm), analogous to

the perturbation considered by Li and Pendry.

To address the numerical burden associated with the design of such a large-scale
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Figure 6.8: Effective permittivity, permeability, impedance and refractive index of I-
Shape unit-cell with the dimension a=1.4mm.[26]

metamaterial structure, we have automated several aspects of the design process,

enabling us to produce thousands of unique metamaterial elements rapidly that are

consistent with the optimized transformation optical map. We define as system

level the overall spatially varying constitutive parameters defined by the transfor-

mation optical procedure, and define as particle level the design of the constituent

elements that form the metamaterial implementation. The first step of the auto-

mated design process-the system level design-employs numerical computation of the

transformation optical mapping. The arbitrary shape of the cloaked perturbation

can be modeled by a free curve regression. We then numerically computed the re-

lationship at every spatial point between the original space and the transformed

space by using a quasi-conformal mapping algorithm [81]. Once the mapping has

been determined numerically, the transformation optics formula can then be used to

calculate the permittivity and permeability tensors, in which a numerical derivative

is taken. The conclusion of the first step, or the system level design, results in the

spatial distribution of the constitutive parameters.

The second step in the process is to design and calculate the physical dimensions

and structure for each unit cell that forms the cloaking. This step is the particle level
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design step. We note that Li and Pendry [80] suggested a transformation optical

(system level) design in which the permeability should remain unity everywhere and

only the permittivity vary. Such a transformation would imply the particle level

design should be relatively straightforward, since only electric response would be

necessary to control. However, metamaterial structures, even those based on non-

resonant elements, always exhibit spatial dispersion (i.e., constitutive parameters

that depend on the direction of wave propagation) due to the finite size of the unit

cell relative to the wavelength, shown in Fig.6.8. The impact of spatial dispersion

is to introduce frequency dispersion into the constitutive parameters, which leads

to a frequency dependent magnetic response in addition to that of the frequency

dependent electric response, as shown in Fig.6.8. Thus, it is necessary to consider

the spatial dispersion associated with each unit cell as part of the particle level

design process. We incorporate all of the details associated with the finite unit

cell into the design procedure using a quasi-analytical method previously described

(Ref.[54]). The complete response of the metamaterial element, including the effects

of spatial dispersion, can then be mathematically modeled by linear or nonlinear

regression. Once we choose one or several physical dimensions of the unit-cell as

variables for a given unit cell topology, we can then build a mathematical model

to express the dispersive constitutive parameters via sampling a small set of unit-

cell structures whose properties are computed by full wave simulations. Once the

library of a certain type of structure is built, a rapid searching algorithm, such as

the sequential Monte Carlo, can be applied to determine the appropriate physical

dimension of the structure that achieves the required refractive index and impedance.

In our design, the refractive index remains approximately constant with frequency

but the impedance may vary as a function of frequency for different unit cell designs.

In the final cloak, the unit cells on the periphery of the structure are designed to have

an impedance that is nondispersive, while the impedances of the unit cells within
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the cloaking region change continuously as a function of the spatial coordinate at

all operational frequencies. The waves thus neither reflect at the outside edge of the

cloak nor inside the cloak due to the careful design of the outside edge unit cells

and the gradually varying impedance. Integrating all of these constraints into the

optimization algorithm, we arrive at a metamaterial element (as shown in Fig.6.7) for

which the refractive index value of the element can be directly related to its physical

dimensions.

Figure 6.9: Ground-plane cloak mask (transformation region) generated by automatic
design system. Not shown here are the cutting outlines, with slots for assembly, around
which each strip (5 unit cells, 10mm, in height) is cut out by circuit board prototype milling
machine (LPRF)[26]

The final step of the process is to take each unit cell geometry determined in

the particle level design step and generate a large-scale mask of the entire layout for

fabrication by printed circuit board (PCB) lithographic methods. The final mask,

shown in Fig.6.9, has more than thirty thousand unit cells with more than six thou-

sand unique unit cells. The mask is generated by the same Matlab program that

also performs the first two steps, so that the entire process-system and particle level
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designs, followed by layout and mask generation-are combined together. The Mat-

lab program has calls to AutoCAD functions that draw all of the unit cells into the

layout, producing the final mask.

Figure 6.10: Ground-plane cloak mask (Experimental apparatus for the ground-plane
cloak measurement. The apparatus consists of two metal plates separated by 1cm, which
form a 2 dimensional planar waveguide region.[26]

To measure the fabricated sample in our lab, Fig.6.10 shows a top view of the

closed mapping apparatus with six coaxial cables running from a switch to six an-

tenna positions. Microwave measurements are made by a Vector Network Ana-

lyzer and the planar waveguide fields are launched by an X-band waveguide coupler

towards a polycarbonate collimating lens, as shown in the open chamber view of

Fig.6.10B, which creates the narrow beam seen in the measurements. This beam is

reflected off of the ground plane at an angle of about 40 degrees from the surface nor-

mal. By scanning the top plate (with detector antenna) relative to the bottom plate

(and sample) with 181 x 181 1mm steps, we can create a field map of the microwave

beam incident on the ground-plane cloak. Due to the large area required for charac-

terizing the full incident and reflected beams, at each plate step we simultaneously

measure the electric field from 4 distinct antenna positions using the switch. These 4

scan areas can then be patched together into one large field map using Matlab code

to match up the phase and amplitude at the boundaries of each probe region. Com-

paring the reflection from the ground plane, the ground plane with the perturbation

and the ground plane with the cloaked perturbation (shown in Fig.S1B), we can
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demonstrate the cloaking effect. Broadband performance is confirmed from mapping

the field incident upon the cloak for 13 - 16 GHz for this certain experiment. While

we expect that the cloak would work for much lower and higher frequencies, we do

not obtain clean measurements due to constraints of the experimental apparatus.

The beam, formed by the finite width polycarbonate lens and used to illuminate

the ground plane is distorted by diffraction for frequencies < 13 GHz and, at the

other end of the spectrum, propagating fields become multimode within the planar

waveguide for frequencies > 16GHz.

To verify the predicted behavior of the ground-plane cloak design, we make use

of a phase-sensitive, near-field microwave scanning system to map the electric field

distribution inside a planar waveguide. The planar waveguide restricts the wave po-

larization to transverse electric. The details of the apparatus have been described pre-

viously [51]. A large area field map of the scattering region – including the collimated

incident and scattered beams is shown in Fig.6.11. The waves are launched into the

chamber from a standard X-band coax-to-waveguide coupler, and pass through a

dielectric lens that produces a nearly collimated microwave beam. The beam is ar-

bitrarily chosen to be incident on the ground plane at an angle of 40 degrees with

respect to the normal. A flat ground plane produces a near perfect reflection of the

incident beam in Fig.6.11A, while the presence of the perturbation produces consid-

erable scattering in Fig.6.11B (note the presence of the strongly scattered secondary

beam). By covering the space surrounding the perturbation with the metamaterial

cloaking structure, however, the reflected beam is restored, as if the ground plane

were flat in Fig.6.11C. The beam is slightly bent as it enters the cloaking region due

to the refractive index change of the embedding material, but is bent back upon

exiting. The gradient index IML introduced into the design minimizes reflections at

the boundaries of the cloaking region.

As the ground-plane cloak makes use of non-resonant elements, it is expected to
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Figure 6.11: Measured field mapping (E-field) of the ground, perturbation and ground-
plane cloaked perturbation.The rays display the wave propagation direction and the dash
line indicates the normal of the ground in the case of free space and that of the ground-plane
cloak in the case of the transformed space. (A) a collimated beam incident on the ground
plane at 14GHz, (B) a collimated beam incident on the perturbation at 14GHz (control),
(C) a collimated beam incident on the ground-plane cloaked perturbation at 14GHz, (D) a
collimated beam incident on the ground-plane cloaked perturbation at 13GHz, (E) a colli-
mated beam incident on the ground-plane cloaked perturbation at 15GHz, (F) a collimated
beam incident on the ground-plane cloaked perturbation at 16GHz.[26]

exhibit a large frequency range of operation. The cloaking behavior was confirmed

in our measurements from the range 13-16 GHz, though we expect the bandwidth to

actually stretch to very low frequencies (less than 1 GHz) which cannot be verified

experimentally due to limitations of the measurement apparatus and the beam form-

ing lens. We illustrate the broad bandwidth of the cloak with the field maps taken at

13GHz in Fig.6.11D, 15GHz in Fig.6.11E and 16GHz in Fig.3F, which shows similar

cloaking behavior to the map taken at 14 GHz in Fig.6.11C. The collimated beam at

16GHz has begun to deteriorate due to multi-mode propagation in our 2D measure-

ment chamber, which is also observed in the flat ground plane control experiment at

that frequency (not shown here). However, based on the predicted response of the

broadband unit cells we expect this cloak to function up to approximately 18GHz.

With the same measurement in Fig.6.11, Fig.6.12 shows the measured field mag-

nitude with and without ground-plane cloak. The data sets indicate the power flow

in the sample (field magnitude squared is proportional to the power), providing the
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Figure 6.12: Measured field magnitude (E-field) of the ground, perturbation and
ground-plane cloaked perturbation. The rays display the wave propagation direction and
the dash line indicates the normal of the ground in the case of free space and that of the
ground-plane cloak in the case of the transformed space. (A) a collimated beam incident
on the ground plane at 14GHz, (B) a collimated beam incident on the perturbation at
14GHz (control), (C) a collimated beam incident on the ground-plane cloaked perturba-
tion at 14GHz, (D) a collimated beam incident on the ground-plane cloaked perturba-
tion at 13GHz, (E) a collimated beam incident on the ground-plane cloaked perturbation
at 15GHz, (F) a collimated beam incident on the ground-plane cloaked perturbation at
16GHz.[26]

evidence of the cloaking functionality. The reflected beam for the ground plane is

reduced somewhat from the incident beam for all of the scans, due to the non-ideal

experimental condition at the conductive boundary and diffraction of the collimated

beam. Note that the field magnitude measurement at 15GHz in Fig.6.12E and at

16GHz Fig.6.12F has a standing wave pattern for incoming and outgoing waves due

to excitation of higher order modes that occurs at high frequencies in our near-field

scanning apparatus; that is, the propagating wave is no longer confined to be Trans-

verse Electric but also has a Transverse Magnetic component.

To visualize the performance of the ground-plane cloak, we illuminated the sample

from the side (90 degrees from the surface normal) with a narrow collimated beam.

As the ground-plane cloaked perturbation should also be cloaked with the respect

to an observer located on the ground, the wave, which should follow the metric as

defined by the quasi-transformation map in Fig.6.6, can be expected to detour around

the perturbation and then return back to its original propagation direction. The
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Figure 6.13: 2D field mapping (E-field) of the perturbation and ground-plane cloaked
perturbation, illuminated by the waves from the left side (A) perturbation, (B) ground-
plane cloaked perturbation. The grid pattern indicates the quasi-conformal mapping of
the transformation optics material parameters.[26]

field map for this case is shown in Fig.6.13B, which corresponds with the predicted

transformation extremely well (a low resolution representation of the transformation

grid is overlaid on the experimental data). For comparison, Fig.6.13A shows a map

of the field strongly scattered from the perturbation in the absence of the cloak.

To study the cloaking effect in more details, we conducted standing wave measure-

ment and observe the intensity pattern within the transformed area on both control

and the sample. In either of cases, the incident and the reflected waves produce a

standing wave pattern that we use as a measure of the scattering produced by the

perturbation on the ground plane. In the absence of the cloak, the ground plane is no

longer flat, and the perturbation introduces a significant distortion into the standing

wave pattern; in particular, the interference pattern is no longer parallel to the plane,

as can be seen in Fig. 6.14a. However, when the ground plane cloak is present, the
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perturbation is effective removed from detection and the standing waves pattern is

once again parallel with the ground, as shown in Fig. 6.14b. Moreover, since the

cloak makes use of elements far away from resonance, the metamaterial cloak can

be seen to have a large bandwidth, at least over the range 8-14.8 GHz confirmed

in our experiment. The bandwidth of cloak is anticipated to stretch from very low

frequencies (less than 1 GHz) to around 17 GHz, where the first resonance of the

metamaterial elements occurs. The broad bandwidth of the cloak is illustrated by

the power maps taken at 8 GHz in Figs. 6.14c,d, which show the identical behavior

to the maps taken at 14 GHz.

In conclusion, the excellent agreement between the experiment and theoretical

design verifies the novelty of transformation optics and the accuracy of rapid de-

sign system. According to the various experiment analysis, the coordinate space for

electromagnetic waves can be effectively distorted at will by designing complex meta-

materials. This compelling technology will be a crucial step towards to the optical

cloaking devices design in the future and provide the opportunity of designing the

large scale scatter system to manipulate electromagnetic waves in a novel manner.

Some of the work here has been published in Science[26].
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Figure 6.14: Power plot of the standing waves of the carpet cloak and control by sim-
ulation and experiment. (a) simulated power plot of only ground at 14GHz (b) simulated
power plot of carpet cloak at 14GHz (c) simulated control scatter at 14GHz (d) experi-
mental power plot of only ground at 14GHz (e) experimental power plot of carpet cloak
at 14GHz (g) experimental power plot of control scatter at 8GHz (h) experimental power
plot of carpet cloak at 8GHz[26]
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Appendix A

Appendix A

Continuing the previous work[7], we start with the integral form of Maxwell’s equa-

tions, and imagine averaging the fields over a unit cell. Then a finite-difference form

of Maxwell’s equations are derived, in which the averaged electric fields are defined

on the edges of one cubic lattice, while the averaged magnetic fields are defined on

the edges of a second offset lattice [7]. To simplify the analysis, we assume a wave

whose electric field is polarized in the x direction and propagates along the z axis.

The unit cell of the metamaterial is assumed to have a periodicity p. Under these

conditions, one of the Maxwell curl equations reduces to

Ex[(n + 1/2)p]− Ex[(n− 1/2)p] = iωµpHy[np]

Ex[(n + 1)p]− Ex[np] = iωµ1pHy[(n + 1/2)p] (A.1)
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in which n = 0,±1, · · · , and the averaged electric field Ex and magnetic field Hy are

defined by the line integrals

Ex(z) =
1

p

∫ +p/2

−p/2

E(x, 0, z)dx,

Hy(z) =
1

p

∫ +p/2

−p/2

H(0, y, z)dy. (A.2)

Under this form of averaging, the average permeability µ has the form [8]

µ =
1

p2Hy(0)

∫ +p/2

−p/2

∫ +p/2

−p/2

µaH(x, 0, z)dxdz.

µ1 =
1

p2Hy(p/2)

∫ +p/2

−p/2

∫ p

0

µaH(x, 0, z)dxdz. (A.3)

Figure A.1: Metamaterial composed of periodic particles, where a plane wave is incident
along the z direction.

Similarly, the other Maxwell curl equation in integral form can be simplified to

Hy[(n + 1)p]−Hy[np] = iωεpEx[(n + 1/2)p]

Hy[(n + 1/2)p]−Hy[(n− 1/2)p] = iωε1pEx[np] (A.4)
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after introducing the average permittivity

ε =
1

p2Ex(0)

∫ +p/2

−p/2

∫ +p/2

−p/2

εaE(0, y, z)dydz.

ε1 =
1

p2Ex(p/2)

∫ +p/2

−p/2

∫ p

0

εaE(0, y, z)dydz. (A.5)

In Eqs.(A.1) and Eq.(A.4), εa and µa are the permittivity and permeability of the

background medium. Eqs. (A.3) and Eqs.(A.5) together represent a discrete set of

Maxwell’s equations (DME).

In order that the DME represent an infinite periodic structure, we apply the Bloch

boundary conditions shown in Fig.A.1, in which θ is the phase advance across one

cell and E, E1, H,H1 represent the field average defined by Eq.(A.3). Substituting

the boundary conditions into the DME, we obtain

2Esin(θ/2) = ωpµ1H1 = ωpµH/F

2Hsin(θ/2) = ωpε1E1 = ωpεE/A

2E1sin(θ/2) = ωpµH = ωpµ1H1F

2H1sin(θ/2) = ωpεE = ωpε1E1A (A.6)

in which, A and F are spatial dispersion factor of average parameters defined as

F =
µH

µ1H1

=
B

B1

, A =
εE

ε1E1

=
D

D1

(A.7)

Eq.(A.6) represent the ratio of electric and magnetic flux for different field average

area. To model the periodic structure appropriately, we assume the unit cell sitting

in the center of z = p/2+np. According to the derivation in [7], the impedance varies

periodically along propagation. Thus, the observation point is critical to impedance
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calculation. To current configuration, the observation point should be at z = np,

where the structure is not cut at the boundary if forming a slab. At the same time,

only ε1 and µ1 in concept represent the particle response, yielding generally the

Lorentz resonance form.

According to Eq.(A.7)-Eq.(A.8), we derived the spatial dispersion and wave

impedance as

sin(θ/2) = Sdωp
√

µ1ε1

√
AF/2

= Sdωp
√

µmεmcos(θ/2)/2

η =
E

H
=

√
A

F
·
√

µ1

ε1

=

√
µm

εm

(A.8)

in which Sd = 1 or −1 depending on the restriction of positive imaginary part of θ.

A and F are spatial dispersion factors, grouping together with ε1 and µ1 and taking

into account the spatial dispersion to particle response average parameters. εm and

µm are the transformation and grouped form of effective average parameters due to

the spatial factor A and F .

According to Eq.(A.9), we achieve that

εm = ε1F/cos(θ/2)

µm = µ1A/cos(θ/2)

ε = AFε1

µ = AFµ1 (A.9)

and a new set of general solutions after the equivalent transformation for the average

parameters,
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tan(θ/2) = Sdωp
√

µmεm/2

η =

√
µm

εm

(A.10)

To characterize the spatial dispersion factors A and F , we consider the following

fundamental propagation modes based on the definitions from Eq.(A.5)(A.6) and

(A.9):

For homogeneous cases, both E and H fields propagate sinuously and, A and

F can be easily extracted that A = 1 and F = 1 according to this plane wave

propagation.

For magnetic resonators,we can refer the assumption in Ref.[7] that the magnetic

and electric field are off-set due to the strong magnetic resonance by the structure.

The magnetic field yields the uniform phase within the region from z = np to z =

(n+1)p and has the phase shift θ every next unit cell region. Thus, the derived A and

F are A = 1/cos(θ/2) and F = cos(θ/2). Substitute this A and F , we can reconstruct

the identical formulas in Ref.[7]. We notice that this assumption is made because of

the intuition that the strong resonant unit cell dominates the phase distribution and

should yield an approximated step function in the periodic system. However, the

rigorous proof cannot be made under the field averaging scheme because of the lack

of the physical model. Here, we will use an imperial observation from a full wave

simulation on an array of SRRs to approximate the A and F value.

For electric resonators, the similar analysis, compared with the magnetic res-

onators, can be made that A = cos(θ/2) and F = 1/cos(θ/2). The identical formulas

can still be generated corresponding to the electrical particle case in Ref.[7].

However, for magnetic and electric combination resonators, we do not have de-

tailed information on the electric and magnetic field distribution because of the model
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itself constrains us to the level of lattice but no connection to the unit cell. The in-

tuition here is to make a similar assumption inspired by Ref.[7] to find a formula

that can possibly fit the response to the complex metamaterial unit cell, though the

assumption itself cannot be proved or is even unphysical. Thus, we can temporally

assume that the electric and magnetic field are no longer off-set but yielding uniform

phase within one unit cell region from z = np to z = (n + 1)p and the phase shift θ

every next unit cell region. Thus, the A and F are

A = cos(θ/2)

F = cos(θ/2) (A.11)

Substitute Eq.(A.12) to Eq.(A.9), we hope that Eq.(A.11) can provides a linkage

between the particle response and system behavior for more complicated structure.

We also know an important fact from mathematics that no matter which cases for

A and F in Eq.(A.10), as long as the average parameters ε1 and µ1 have the Lorentz

resonance form, the effective average parameters εm and µm will also yield the Lorentz

resonance like form but different in value (the resonant frequency will shift to critical

frequency defined in Ref.[7]). Therefore, Eq.(A.10) indicates that εm and µm can

be possibly an artificial Drude-Lorentz resonance like response to a wide types of

metamaterial structures and can be used to analyze complex metamaterial unit cell.

The advantage of using Eq.(A.10) to fit the unit cell’s response is because the pre-

requirement of restricting particle to be an electric or magnetic resonator is no longer

needed.

Based on Eq.(A.11), one of the most direct applications is to do a particle response

retrieval for complicated structure. The effective parameters–θ and η can be achieved

through standard retrieval process[6]. Then we can back up the particle response

εm and µm through Eq.(A.13), which are supposed to be multiple resonant Lorentz

form under our assumption.
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εm =
tan(θ/2)

θ/2
εeff

µm =
tan(θ/2)

θ/2
µeff (A.12)

The particle response retrieval can dramatically reduce the complexity in design-

ing a unit cell, especially for combination structures such as SRR-ELC, in which, two

different resonators interact strongly and experience severe spatial dispersion with

each other. Moreover, one can also easily use Drude-Lorentz model to fit the average

parameters and back up accurate fitting of effective permittivity and permeability

using the formulas that

εeff =
θ/2

tan(θ/2)
εm

µeff =
θ/2

tan(θ/2)
µm (A.13)

in which

εm = εa(1−
∑

i

Feif
2

f 2 − f 2
ei + iγeif

)

µm = µa(1−
∑

i

Fuif
2

f 2 − f 2
ui + iγuif

) (A.14)
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