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ABSTRACT 

Although cardinality constraints naturally arise in many applications, e.g., in 

portfolio selection problems of choosing small number of assets from a large 

pool of stocks or dynamic portfolio selection problems with limited trading dates 

within a given time horizon and in subset selection of the regression analysis, the 

state-of-the-art in cardinality constrained optimization has been stagnant up to 

this stage, largely due to the inherent combinatorial nature of such hard prob-

lems. We focus in this research on developing efficient and implement able solu-

tion algorithms for cardinality constrained optimization by investigating promi-

nent structures and hidden properties of such problems. More specifically, we 

develop solution algorithms for four specific cardinality constrained optimiza-

tion problems, including (i) the cardinality constrained linear-quadratic control 

problem, (ii) the optimal control problem of linear switched system with lim-

ited number of switching, (iii) the time cardinality constrained dynamic mean-

variance portfolio selection problem, and (iv) cardinality constrained quadratic 

optimization problem. Taking advantages of a linear-quadratic structure of car-

dinality constrained optimization problems, we strive for analytical solutions 

when possible. More specifically, we derive an analytical solution for problem 

(iii) and obtain for both problems (i) and (ii) semi-analytical expressions of the 

solution governed by a family of Ricatti-like equations, which still suffer an ex-

ponentially growing complexity. To achieve high-performance of the solution 

algorithm, we devise algorithms of a branch and bound (BnB) type with various 

tight and computationally-cheap lower bounds achieved by identifying suitable 
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SDP formulations and by exploiting geometric properties of the problem. We 

demonstrate efficiency of our proposed solution schemes evidenced from numer-

ical experiments and present a firm step-forward in tackling this long-standing 

challenge of cardinality constrained optimization. 



岢 要 

尽管现实生活中决策变量自由度受限制的问题比比皆是，例如在投资组合问 

题中投资者只在所有股票中选择一部分投资，或者多阶段动态投资问题中只 

在所有投资周期中选择几个周期投资风险资产，又或者统计学家在回归分析 

中常常只考虑使用部分回归量。遗憾的是对于这类问题的研究在过去一些 

年中停滞不前，这很大程度上是因为决策变量自由度这个限制实际上是个组 

合数。通过对具体问题特殊性质的研究，我们在本研究中提出了一些有效 

的，可行的方法来处理决策变量自由度受限的问题。具体来说，我们对下列 

四类问题提出了有效的算法，⑴控制次数受限的线性二次型控制问题（ii)切 

换次数受限的最优切换控制问题（iii)投资次数受限制的动态均值方差投资问 

题(iv)决策变量受限的二次规划问题。我们尽力构造对于有线性二次型这一特 

殊结构问题的解析解。具体来讲，对于问题(iii)我们得到了解析表达式，对于 

问题⑴(ii)我们得到了半解析的表达式。这些半解析的表达式是通过计算一组 

黎卡提(Riccati)方程迭代得到。但是这个计算过程的复杂度仍是成指数增长 

的。为寻求更高效的方法，我们采用类似分支定界的思想，提出了不同的方 

法来构造计算费用低且相对较紧的下界，比如构造合适的半定规划问题，或 

者利用问题自身的几何性质等。我们的数值计算结果证明了这些方法的高效 

性与可靠性，为进一步的研究奠定了基础。 
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C H A P T E R 

INTRODUCTION 

The subject of optimization has grown by leaps and bounds, largely driven by the 

demand of its applications in almost all areas of engineering, science and man-

agement. The last century has witnessed numerous theoretical breakthroughs 

and innumerable successful applications in various fields. However, there are 

always many long standing and newly emerging challenges in front of the opti-

mization community. In this thesis, we are interested in investigating one such 

a challenge termed cardinality constrained optimization where the freedom of 

the decision variables is restricted. The cardinality constraint naturally arises in 

many applications, e.g., statisticians are often confined themselves in identifying 

a subset of regressors in their regression analysis, investors always choose a small 

number of assets to invest from a large pool of stocks; investors never exhaust 

all available trading dates to modify their portfolios, and engineers only imple-

ment their control actions a few times on manufacturing lines due to a concern 

of the corresponding cost. Due to the combinatorial nature of the possibility in 

satisfying a cardinality constraint, optimization problems involving a cardinality 

constraint are in general very hard to solve. Up to this stage, the state-of-the-

art in cardinality constrained optimization has been stagnant. The few articles 

addressing cardinality constraint have only proposed some seemingly naive lower 

bounding schemes together with a branch-and-bound framework, for example, a 

lower bounding scheme by dropping the cardinality constraint. We focus in this 
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research on developing efficient and implement able solution schemes for some 

particular cardinality constrained optimization problems by investigating special 

structures and prominent features of such problems. More specifically, we focus 

on the following four specific cardinality constrained optimization problems. 

• The cardinality constrained linear-quadratic regulator(CCLQR) The op-

timal control problem involving linear dynamics and quadratic penalty, 

named linear-quadratic optimal control problem, has been extensively stud-

ied in the literature since Kalman's seminar work on linear quadratic reg-

ulator (LQR). We study in this research discrete-time systems, due to a 

consideration of computation and applications. Implementing a control ac-

tion usually incurs two types of costs, fixed (set-up) cost and variable cost 

associated with the magnitude or energy of the control. While the second 

type of cost has been extensively investigated in the literature, the first type 

of cost has been not yet addressed. When assuming such a fixed cost to be 

a constant in each time period, the LQR problem with set-up costs turns 

out to be equivalent to identifying the solution of a linear-quadratic control 

problem with limited number of control implementation, which is termed 

cardinality constrained linear-quadratic regulator problem(CCLQR) in this 

research. 

• Optimal control of linear switched systems with switching cost Linear 

switched system is a particular class of hybrid systems, which consists 

of several sub linear-systems. Optimal control of such a system has been 

investigated in the literature, e.g., [75] [82] [67], and many real-world appli-

cations have been also reported in the literature, e.g., the chemical process, 

automotive systems and embedded systems, etc. (see [82] [75]). Although 

switching cost arises in many switched systems, this factor has been often 

neglected in most of the existing studies, except [67] in which the switched 

autonomous systems are studied. We focus in this research on the optimal 

control problem of linear switched systems with quadratic cost function and 
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constant switching cost, where both optimal switching signal and control 

input are decision variables. 

• Time cardinality constrained mean-variance dynamic portfolio selection 

The mean-variance formulation proposed by Markowitz [56] [55] provides 

the fundamental basis of portfolio selection and the results of the single-

period mean-variance portfolio selection has been extended to a multi-

period setting by Li and Ng [43] and to a continuous-time setting by Zhou 

and Li [84]. We extend further dynamic mean-variance portfolio selection 

by considering the management fee (cost) imposed on the non-zero posi-

tion on risky assets. Due to such a set-up type of management fees charged 

for investing in risky assets, investors do not always invest in risky assets 

in all time periods. This real-world investment situation leads to a math-

ematical formulation in this research termed time cardinality constrained 

mean-variance dynamic portfolio selection, where both the investment tim-

ing and the distribution of the wealth have to be determined at the same 

time. 

• The cardinality constrained quadratic optimization problem. On recognizing 

various applications of cardinality constrained optimization, we consider a 

general problem formulation of minimizing a convex quadratic function 

subject to a single cardinality constraint. In this research, we explore rich 

geometrical properties hidden behind the special structure of the cardinal-

ity constrained quadratic optimization problem. The revealed prominent 

features enable us to develop tight and cheap lower bounds, when adopting 

powerful numerical schemes of semi-definite programming (SDP). Integrat-

ing such lower bounds into a solution algorithm of a branch-and-bound 

type, we achieve promising numerical results for large-scale test problems. 

This thesis is organized as follows. After the brief introduction presented in 

this chapter, we focus in Chapter 2 on the CCLQR problem. In Chapter 3, we 
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investigate the optimal control problem of linear switched systems with an added 

feature of switching cost. We explore the time-cardinality constrained mean-

variance portfolio selection in Chapter 4. In Chapter 5, we concentrate on the 

general cardinality constrained quadratic optimization problem. We emphasize 

here that the notations and materials of all the four technical chapters are self-

contained. We finally conclude this thesis in Chapter 6 with some remarks and 

suggestions for future research directions. 



C H A P T E R 2 

CARDINAL ITY CONSTRAINED 

L INEAR-QUADRATIC CONTROL 

2.1. Introduction and Problem Formulation 

Linear-quadratic regulator (LQR) problem is, with a doubt, one of the most re-

markable achievements in control theory, largely due to its mathematical elegance 

in tractability and a wide range of its applications. The past three decades have 

witnessed many extensions of the traditional LQR in the literature, see, e.g. [2], 

38],[8], [5], [39], [41], [40] and [44]. We explore in this chapter another extension 

of the conventional discrete-time LQR problem with a finite time horizon. 

We consider in this chapter the following time-varying linear system, 

xt+i = AtXt + BtUt, t = , T - 1, (2.1) 

where Xt G M" is the state with given initial state Xq, Ut G M"̂  is the control, 

At G and Bf G The performance index to be minimized is of the 

following quadratic form, 

T-L 

J{x,u) := ^ [x't^^Qt+iXt+i + u'^RtUt], (2.2) 

t=o 

where Qt G 脱"xn and R^ e 脱"̂ xm are positive semi-definite and positive defi-

nite, respectively. Different from the traditional LQR problem, the cardinality 

5 



Chapter 2. Cardinality Constrained Linear-Quadratic Control 6 

constrained LQR problem imposes a limit on the number of the control imple-

mentation, 

T-L 

^ 6 { u t ) < s , (2.3) 

t=o 

where 5 is a given positive integer less than or equal to T, 6{ut) = 0 if Wt is a 

zero vector and 6{ut) = 1 otherwise. The discrete-time cardinality constrained 

linear-quadratic regulator problem (CCLQR) is stated now as follows. 

Problem 2.1. For dynamic system (2.1), find control sequence {ut}JSQ that 

minimizes the performance index (2.2) subject to the cardinality constraint (2.3). 

Denote by (î《，„̂，T) a given specific CCLQR problem with dimension of state 

being n, dimension of control being m, time horizon being T and number of 

cardinality being s. We use 'u(-) to denote the optimal value of problem (•) in 

this chapter. 

Studying such a CCLQR problem is motivated by the consideration of the 

set-up cost attached to nonzero control action. Set-up costs, in many situations, 

prevent control actions from being implemented at every time period. Consider 

the following revised quadratic performance index, 

T-l T-l 

J := ^ w 6 { u t ) + ^[x't^^Qt+iXt+i + u'̂ RtUt], (2.4) 

t=0 t=0 

where w > 0 is the set-up cost of implementing a control action. The discrete-

time LQR problem with a set-up cost is given as follows. 

Problem 2.2. For dynamic system (2.1), find control sequence {ut}JSQ that 

minimizes the performance index (2.4). 

When w is set at zero, Problem 2.2 reduces to the conventional LQR problem, 

whereas a very large w forces all Wt, ^ = 0, • • • , T — 1, to be zero vectors. In 

general, an incorporation of a set-up cost into the formulation of LQR problem 

is equivalent to placing an upper limit on the number of control implementation. 

Notice the following fact. 
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Lemma 2.1. Monotonicity. For any Si and S2 that satisfy 1 < Si < S2 < T, 

Proof. The lemma is obvious from the fact that the feasible region of {ut}JSQ 

in problem is a subset of the feasible region of {ut}JSQ in problem 

(F;，t). 口 

The optimal solution for Problem 2.2 can be found by first solving problem 

i^n,m,T) for 1 < 5 < T, and then identifying the optimal cardinality 5* such that 

= + v(F:,化 丁)}, 

It is evident that the solution to (î《：，T) is the optimal control to Problem 2.2. 

Thus, an efficient solution scheme of CCLQR problem plays a key role in solving 

Problem 2.2. 

In the remaining of this chapter, we first discuss in Section 2.2 how to use 

dynamic programming to solve CCLQR. For CCLQR problems with a scalar 

state space (sCCLQR), dynamic programming yields an analytical solution. The 

complexity of the exact algorithm using dynamic programming, however, grows 

exponentially with the dimension of the state space. Recognizing this fact, we 

adopt in Section 2.3 techniques from semi-definite programming to construct a 

corresponding sCCLQR problem, of which the solution provides an approximate 

solution to the primal CCLQR with a vector state space. Several illustrative 

examples are presented in Section 2.4. We give some conclusion remarks in 

Section 2.5. 

Throughout this chapter, we use notion Q ^ 0 {Q y 0) to denote a pos-

itive semidefinite (positive definite) matrix Q ， ) the set of all n x n 

positive semidefinite matrices (positive definite matrices), diag(S'o, S'l, • • • , ST-I) 

the block diagonal matrix with St G 脱"xm for ^ = 0, • • • , T — 1, the n x n 

identity matrix, and the nxn zero matrix. For an G H C , if there exists 

another H* e M such that H y H*, H is called dominated with respect to H. 

We denote by /C(IHI) the set derived from EI by eliminating all of its dominated 
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members. The following fact is true. 

Lemma 2.2. Given x eW^ and S C S"； then 

min x'Hx = min x'Hx. 
Hes Heic[S] 

2.2. Dynamic Programming Based Solution 

Scheme 

The CCLQR problem becomes separable when we expand the state 

space by adding an integer-valued variable ft that satisfies the following recursive 

equation for 力=0，...，T — 1， 

{ n - S{ut) if n > 0, 

0 otherwize, 

where Tq = s. Clearly, r̂  represents the remaining number of control implemen-

tation at stage t. We define the cost-to-go at stage t for a given pair {xt, n) 

as 

T-L 

= min {x'tQtXt + y^W^Qk^k + u[RkUk] | Xt^n}, (2.5) 

Ut,--- ,UT-1 ^‘ 
k=t 

where Qq is set as a zero matrix. The following is evident from Lemma 4.1, 

M 工 < M工t,r2), if n > r2. 

Thus, to attain the optimality of (F;,?)，the feasible range of ft, t = 

0, • • • , T — 1, can be confined to the following set\ 

Ft := {n e Z+ I max(0, s - t) < n < min(5, T — t)}. (2.6) 

We introduce the following notations for problem (F二讯，t), At stage t, the 

Riccati operator lZt{-) ： — S工 and the degenerated Riccati operator 1Zt{-): 

is the set of nonnegative integers 
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are defined, respectively, as, 

M P ) ••= A[(P — PBT[B'TPBT + RT、-IB'TP、A + QT, P e （2 . 7 ) 

nt{P) ：= A[PAt + Qt, Pes (2 .8 ) 

Abusing the above notaion, we further define the following for a set of semi-

definite matrices, P C 

^t(p) := \J{MP)}. ^t(P) := \J{MP)}-

PGP PGP 

For convenience, let = 0 and = 0. The solution to CCLQR problem 

(^n,m,T) can be characterized by the following theorem. 

Theorem 2.3. The following control law is optimal to CCLQR problem (F二 丁)， 

Hut)= 
1 Xt e Mp, 

0 Xt 

where region Mp is defined as, 

Mr* ：= 

0
 M
 

i f P^ = 0, 

if P^ = 0, (2.9) 

I J p . ^ p ^ t r\p.^fn{x e M " I x'{Pi — Pj)x < 0 } otherwise, 

with sets Pp C S 工 and PJ"* C S 工 being recursively calculated, for t = T,... 

and n e Ft, by 

P? ：= M n V i ' ) . (2.10) 

P? ：= (2.11) 

P【* := /C[Pp|JPp], (2.12) 

where = {QT} and Pp = ^ if ft ^ Ft. Furthermore, when 6{ut) = 1, the 

corresponding optimal control is 

U； = -{RT + B[P*BT)-'B[P*ATXT. (2.13) 

where 

P* := arg mill x[lZt{P)xt 
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Proof. The cost-to-go in (2.5) can be calculated by the following recursion, 

= mm{x[QtXt + u[RtUt + Jt+i{AtXt + BtUt.n 一 S{ut))}, (2.14) 
Ut 

where JT{XT, 0) = QT- We claim that the the cost-to-go is of the following form 

at stage t for any rt G Ft, 

Jt{xt,'rt) = mill x[Pxt, (2.15) 
PGPi* 

where P【* is defined in (2.12). We use the induction method in the following to 

prove such a claim and thus the theorem. 

At stage T - 1, Ft-i = {0,1}. Thus, 

JT-I{XT-U 1) = PT-1 = '^T-IIQR)-

Let := P k i := 0, P k i := {Pt-i}. Pt-1 := 0, := {^t- i I , 

:= Thus, = M" and = 0. More specifically, 

for tt-i = 1, the region of xt-i in which the control should be imple-

mented is M" and the correspondent optimal control is = —(RT-I + 

B^—iQtBt—iI—iB^—iQtAt—iXt—i, Thus, the theorem is proved to be true at 

stage T 一 1. 

We assume now that the theorem holds at stage k ^ 1 and the cost-to-go 

takes the following form, 

Jk+i{xk+iJ) = mill 
P^K+i 

for given state Xk+i and j G F^+i. For convenience, let Jk+i{xk+i,j) = +oo when 

j ^Fk+i. 

At stage k, the cost-to-go in (2.14) becomes, 

J{xk,j) = mm{x[QkXk J{xk+i,j), mm[x[QkXk + u[RkUk + J{xk+i,j — 1)]}, 

Uk 
(2.16) 
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where the first and second terms are corresponding to the cases of 6{uk) = 0 and 

6{uk) = 1, respectively. 

There are three different cases for different j. If j = 0, then j — 1 ̂  Fj. and 

relationship (2.16) yields 

M工 k，(y) = inm{x'f.QkXk + +00} 

=x[QkXk + min {AkXh)'P{AkXk) 
p^K+i 

= m i n x'i.Pxk, 

where = It is clear that, when j = 0, no control opportunity exists 

for implementation and the set contains one element for all k. 

If j = T — k, then j 0 Fk^i and control action must be implemented at every 

remaining stage, as the resulting control police will not be optimal otherwise. 

The cost-to-go in this situation is 

Jk{xk,T-k) = min{+oo,mm[x[QkXk + u[RkUk + Jk+i{xk+i,T - k - 1)]} 
Uk 

= mm < mm XkQkXk + Uf^RkUk 

+ {Axk + BkUkYP{AkXk + BkUk)] } 

= m i n 

where P 【 — 左 = a n d the optimal control at stage k is ul = -{Rk + 

B[P*Bk)~^B'P*AkXk, with P* = argmiUp^^T-k-i x[nt{P)xt. We should notice 
/c + 1 

that when j = T — k, the set only has a unique element. 

If 0 < j <T — k, both j G Fk+i and j — 1 E F^^i hold and the cost-to-go in 

(2.16) becomes 

Jki^kJ) = mm{Jk{xkJ),Jk{xkJ)}, (2.17) 
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where 

Jk{xkJ) •=x'f,QkXk + min [{AkXk)'P{AkXk)], (2.18) 
p^K+i 

Jki^kJ) :=inm[x'f.QkXk + u[RkUk + min [{AkXk + BkUkyP{AkXk + BkUk)' 

(2.19) 

Note that relations in (2.18) and (2.19) are corresponding to the cases of 6{uk)= 

0 and 6{uk) = 1, respectively. Note that (2.19) can be rewritten as following, 

Jki^kJ) = min mm[x[QkXk + u[RkUk + {AkXk + BkUkYPiAkXk + BuUk) 

= m i n x'f.lZk{P)xk. 

For each P G the optimal control is 

UL = -{RK + B[PBU)-^B[PAUXU. ( 2 . 2 0 ) 

It is clear that (2.18) and (2.19) can be rewritten as, 

Jki^kJ) = min x[Pxk, Jki^kJ) = min x[Pxk, (2.21) 
Pefl PgP̂  

where F^ = 兑 a n d ^ = nk{Fi~\). Thus, we should implement control 

when Jk{xkjj) < 'hi^k.j), which is Xk dependent. Furthermore, the following 

set M^ specifies the region of the state Xk in which relation Jk{xk,j) < Jk{xk,j) 

holds, 

• i = {xk e M" I JkixkJ) < MxkJ),} 

= { x k G M" I min x[Pxk < min x[Hxk} 
PePi Hefi 

= y Pi {a; e M" I x'{P — H)x < 0}. 

vpgp^ VBePi 

Thus, we have the following result from (2.17), (2.18), (2.19), (2.20), (2.21) and 

Lemma 3.2, 

Jk{xk,f) = min Pi ：= JC [K[ jK 
PGPi 
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The proof of the theorem is completed. • 

It is interesting to note that the action region MJ"* defined in (2.9) is always a 

union of some cones, as for any z e {x e W^\x'{Pi —Pj)x < 0}, where Pj, Pi G 

tze{x e W\x'{Pi - Pj)x < 0} holds for any t e M. 

The optimal control law developed in Theorem 2.3 is of a feedback nature. Af-

ter characterizing the action region MJ"* by a recursion of a Riccati type, whether 

the control should be implemented or not can be readily determined. Such a 

seemingly elegant approach is in general inefficient as the time complexity of the 

worst case is 0{2^s max{m^, n^}) (without considering the operation of /C(-)), as 

(9(max{m^,n^}) time is needed to compute Ricatti iteration in each step. Such 

an exponential growth with respect to T prevents a direct implementation of 

Theorem 2.3 in large-scale applications. Such an algorithm becomes, however, 

an efficient polynomial-time algorithm for a special class of CCLQR problems 

with n = 1. 

Corollary 2.4. If the state space is of dimension one, i.e., n = 1, then the algo-

rithm specified in Theorem 2.3 is a polynomial-time algorithm with a complexity 

ofOiTsm^). 

Proof. When XT G M, the action region defined in (2.9) is independent of 

state Xt- More specifically, the region M【* is either M or 0 in such a situation. • 

As mentioned before, the algorithm provided in Theorem 2.3 becomes ineffi-

cient when the size of the problem increases. We examine CCLQR in the next 

section from another angel. The analytical solvability of sCCLQR using dynamic 

programming motivates us to investigate a solution scheme that uses sCCLQR 

to approximate general CCLQR problems in order to identify exact solutions 

within a branch-and-bound framework. 
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2.3. Mathematical Programming Based 

Solution Scheme 

2.3. Reformulation 

Reformulating the LQR problem as a quadratic optimization problem has been 

a powerful solution technique, especially from the computational point of view 

60] [71]. We adopt such a scheme to suit our purpose. It is well known that the 

solution of the linear system (2.1) is, 

Xt = + 

t-i 

T=0 

where the state transition matrix . ) : ( N X N)+ 一『xn is given as follows^, 

< 

At-iAt- -2 • • • Ao if t > to, 
(2.22) 

In 
\ 

if t = to. 

We introduce the following notations for problem (î 《叫t)， 

Bt := diag ( Bo 
\ 

]3\ . . . BT—1 1 (2.23) 

( 
TZt •= diag Rq . . . RT-1 ) , (2.24) 

( 
QT ••= diag Q^ Q2 . . . QT ) , (2.25) 

^ T ： = 

^ ( 1 , 1 ) 0 

屯(2,1) ^(2,2) 

$(3,1) $(3,2) 

1) $(T,2) 

0 

0 

0 

0 

(2.26) 

2N X N+ denotes {(k, ko) : k,ko e N, k > ko} 
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1) 

1) 

Ct-.= 1) 

\ 吼 1), 

where Bt G Ut G 

is clear that the state vector x is 

Uo 

X2 Ul 

= , U ：= 

\ ^T I \ UT-1 

(2.27) 

QT E TT e and CT G It 

a linear function of the control vector, 

X = CTAQXQ + J^T^tu. ( 2 .28 ) 

Problem (1^二„^，丁) can be then reformulated as the following equivalent cardinality 

constrained quadratic optimization problem (CCQO) (with a constant difference 

in the objective function from (CCLQR)), 

(G'N,M,T) mill f{u) = ^u'Du + d'u, 

T-1 

Subject to : ^ S(ut) < 5, 

(2.29) 

(2.30) 

where 

D = 2 B 巧 Qt^^T^BT + 2 尺T， 

d = 2BtJ^tQtCtAqXq. 

(2.31) 

(2.32) 

Notice that D e S冗 due to the assumptions of 1Zt G S冗 and Qt e Sf『 

Note that the problem is readily solved by some optimization soft-

ware, e.g., CPLEX solver, after introducing some artificial binary variables. Our 

previous numerical tests showed, however, that the computational power of such 

a state-of-the-art numerical solver is still limited. In this research, we exploit the 

structure properties hidden behind problem “，T)，especially these properties 

demonstrated in (2.31) and (2.32) for matrix D and vector d. The main goal of 

this investigation is to derive a tight lower bound that plays a key role in exact 
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solution methods of a branch and bound type. More specifically, we focus in the 

following how to construct a lower bound of problem (GJ，饥，t) by identifying the 

best corresponding sCCLQR problem (Gl,讯，丁) under certain criterion. 

2.3.2. Lower Bounding via sCCLQ 

Assumption 2.1. Neither any of matrices 為，力=0，…,T — 1, nor matrix Qt 

is a zero matrix. 

The above assumption excludes degenerate cases of problem ( F ; ， t ) from 

our further consideration. If Aj- is a zero matrix for some 0 < r < T — 1, then 

minimizing the objective function forces Xt and Ut to be zero vectors for all t > T. 

Problem (F:，讯，t) reduces then to (F:，^，^) , Similarly, if Q t is a zero matrix, no 

penalty will be exercised on xt, which leads to zero ut-i, thus reducing problem 

(Km,T) to 1). 

As we have already revealed in Section 2.2, any sCCLQR problem can be 

solved analytically by using dynamic programming. We utilize this advantage to 

approximate the solution of CCLQR. 

Denote the sets of coefficients of problems (F二讯，t) and (CJ^^^t) as follows, 

respectively, 

•= {Atl̂ ĉ/，Btl̂ ĉ/，Qtl̂ l̂，况tl̂ ĉ/，To}, 

Define further by ¥n,m,T := {^{Fn,m,T)}^ the union of all sets of coefficients of 

the CCLQR problem with dimensions of the state space, the control space and 

the time horizon being n, m and T, respectively. The relationship given in (2.31) 

and (2.32) actually defines a mapping T(-), 

r(-) ： ¥n,m,T {De d e 监饥T}， (2.33) 

and in particular, T(Tj(F;，t)) = By adopting such a notation, the 

set includes all the sets of coefficients, {D, d}, resulted from sCCLQR 



TT = / 

+ {-d-Hl)'J]^dy 

y'{D-H)y + 2{-d-Hl)'y 

< 

\\yP<s 

3{\\D - H\\%\\y\\^ + 4| |d+ 历 ||2 . \\yf + \\d + Hl 

< 36' D-H I / dy + 3(45 + 

2 

2、d^HJf / dy 

=C\{6) D-H d+HI 

where notations | . and . are I2 norms for vectors and matrices, respectively, 

Ci{6) and /) depend only on 6 and /, and the arithmetic mean inequality is 

used to derive the first inequality above. Note that the norm \\d + HlW^ serves 
A -1 

as a penalty term if the center f{u) deviates from I = the center of the 

objective contour of f{u) of the primal problem. As it is difficult to minimize vr 

directly, we, instead, consider the following auxiliary problem (A) to minimize 
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problems. 

The way of constructing a computable lower bound is to approximate the 

problem (G;，t) by an sCCLQR problem (<5f，„̂，T)，i.e., to identify function 

f{u) =、u'Hu+d'u, where { H , d} G T(Fi^^^t), to best approximate the objective 

function f{u) = \u'Du + d'u of problem (yGti,m,T、in a bounded area. Condition 

D y H is required to ensure f(u) < f(u) for all feasible u. The best f{u) 

is identified such that the following norm measure between f{u) and f{u) is 

minimized, 

where I = is the center of the objective contour of f{u) and 5 is a given 

constant that controls the size of an /-centered ball as the region of comparison. 

Replacing u hy y ^ I and noticing that y'{D — H)y < ||D — and {d + 

Hl)'y < \ d+ HI . ^ I, we can get the following upper bound for vr, 

dy 

2.34) 



1 i i i = t, j = ••• , T - 1 , 

1 i i i = t, z = - , T - 1 , (2.37) 

0 Otherwise. 

0 0 

0 0 

and 

as 

0 0 

0 0 0 

0 0 1 , 

For example, when T = 3, Eq, E i and E2 are given as 

/ \ / 

0 0 0 

0 1 1 

0 1 0 
\ / \ / \ / 

respectively. We further denote as the m x m matrix with all its elements 

being 1. 

Theorem 2.5. For matrix H e Sff and vector h e R""^, {H, h} e T(Fi，饥，t) if 

and only if H can be expressed as 

T-

(2.38) 
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the upper bound of vr defined in (2.34), 

(A) mill fi\\Hl + df+ \\H-D\\l, 

Subject to: {H, 

D-H^O. 

(2.35) 

(2.36) 

Let the optimal solution of problem (A) be H*. Then, the optimal value of the 

following problem, 

. 1 
(^i,m,T) mill -u'H*u + d'u, 

T-1 

Subject to : ^ ^(ut) < 5, 

t=o 

provides an approximation of v(G^^^^t)- The approximated problem (Gf^^^x) 

can be efficiently solved by a two-step procedure: Finding an equivalent sCCLQR 

problem (Ff,叫丁) and solving it by dynamic programming. 

We focus now on how to solve problem (A) first. Let matrix Et G M^^^ be 

defined for ^ = 0, • • • , T — 1 with its elements {Eij}t being given as follows, 

T
h
J
 

.
J
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where Mt := [{Et 0 1^)。{hh')] with Et being defined in (2.37), St G and 

(3t being scalars satisfying 0 < < A < • • • < 

Proof. In the following proof, the vector h consists of T block vectors with 

each block in dimension M"^, i.e., h' = ( /if,, . . .， h'T—i) w i th ht G M"^ for 

^ = 0, ••• , T - 1. 

We prove the "if" part first. Given H e S f f and h e W^'^ and assume that H 

can be expressed as the form in (2.38). Our target is to prove {H, h} G T(Li^^^t)-

Consider a CCLQR problem (F f^ with parameters 

Let Bt = A/it, At = 1, Rt = St for t = 0, ••• ,T - 1 and xo = Since Po > 0 

and [5t > pt-i, for 力=1，... , T — 1, we can further construct Qt as follows, 

, . if t = T, 
Qt = { 1 

- i - if 力=1’...，T— 1. 
A-i I3t 

It is then straightforward to verify T(J^(P【^，t)) = {H, h} by using (2.31) and 

(2.32). 

We next prove the "only if" part. Given any (îf，饥，̂^ problem. From the 

definition of the mapping T, we have 7^(S(i^f，叫『)）={H，h}, where vector h is 

given as 

= / i ( aoBo a iB i . . . ar-iBr-i ) , (2.39) 

with («o, , «T-i) = C'rpQT^T e 脱 1 ) and ji = 2xqAq. Under Assump-

tion 2.1, it can be verified that all are nonzero scalars. From (2.39), we 

have 

h> 

Bt = 丄 ， f o r ^ = 0,-- - , T - 1 . (2.40) 
陣t 

^Notation “⑧” is the usual Kronecker product and "o" is the schur product. 

T
h
J
 

o
 

T
 t
 

Rt 
T 

Qt 
T 

Bt ^ f U t ) = {A\l 
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As C!t is the first row of matrix H can expressed as follows from (2.31) and 

(2.22), 

H = 

aoB'.Bo aiB'.B, . . .c^k-iB^BT. 

aiB[Bo ... 

0̂2 风 Bo 

(XT- B't—、BT-

+ diag Rq R^ R2 .•‘ RT—1 ) 

Denote 

A ) = A = 
1 

for t = T-1. 

Replacing all Bt in the expression of H by using (2.40) yields 

H = 

fhhoh'Q 

f^ohih'Q 

(^oh2hQ 

Pohoh\ 

fhhih\ 

Pih2h\ 

[hfiih'T-

(Sihih'T-

+ 

\ [^ohk—ih'Q [5ihT—ih'i . . . Pr-ihr-ihT. 

diag ( R^ … R t — 1 ) 

T-l 

隨Et (g) I J O hh'] + diag ( . Rt-

The following is evident from (2.39). 

t T i 

for 力 = 0 ， . . . ， T — 1 : 

(2.41) 

where 11}=1 = 1 i “ < j . From Assumption 2.1 and the definition of we 

have > 0 and 

Po< Pi <---<PT-
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This completes the proof. • 

Note that under the assumption that 0 < fio < fii < . . . < the first 

1 

term in H, J2t=o f^tMt is positive semidefinite. The above theorem actually 

characterizes set T(Ĵ (Ff，^，T)). More specifically, we can use the above theorem 

to simplify the formulation in problem (A). We introduce the following decision 

vectors, 

yi yi 

y = ,y = 

\ VT-l J \ VN 

Y = 

.\ 
y 

y / 

where N := . (m + l)mT. Matrix H in problem (A) can be now expressed as 

T- N 

H = + 饭风, 
t=0 i=0 

0 < i/o, yt < yt+u t = 0, T - 2 . 

where constant matrix Mt := [{Et 0 Im)。{dd')] and constant matrix M^ G W^^ 

can be understood from the expression of diag (S'o, S'l, • • • , St-i)- The objective 

function of problem (A) is actually a quadratic function with respect to Y, {LY — 

d)'{LY — d) ̂  c'Y. Then problem (A) can be written as the following semidefinite 

programming problem, 

⑷ 

Subject to: 

min A, 

N 

^ViMi h sImT, 

T- N 

\ 
t=o 

IN LY -d 

[LY - d)' -c'Y + A 

yo > yt < yt+u t = o T — 

where £ is a given small positive number. After solving problem (A), problem 
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(叙,M,T) is constructed and the equivalent sCCLQ problem (為召，饥，can be con-

structed by using the way specified in the if part of the proof for Theorem 2.5. 

Remark 2.1. Note that the resulted optimal control of problem (Ff,叫丁) provides 

a good feasible control of the original problem (F;，t). In particular, let {ut}{tJo 

and {ut}\JSQ be the optimal control of problem (朽’讯’t) and a heuristic feasible 

control of problem (î f，饥，T)，respectively, then the sparsity of Ut is set according 

to Ut, i.e., set 6{ut) = 1 if 6{ut) = 1 and 6{ut) = 0, otherwise, for ^ = 0, • • • , T— 1. 

After fixing the sparsity of {ut}\JSQ, the magnitude of {ut}J=Q, where Ut + 0, 

can be calculated as in the traditional LQR problem. 

Integrating the above lower bounding scheme into a branch and bound algo-

rithm gives rise to an efficient solution for cardinality-constrained LQR problems 

and thus LQR problems with set up cost (Problem Type 2). We now demonstrate 

our solution procedure by the following example problems. 

2.4. Illustrative Examples 

Example 2.1. Consider a CCLQR problem (F^̂ ^̂ )̂ with n = 2, m = 1, T = 4, 

s = 2, At being identity matrix for ^ = 0,1, 2, 3 and 

\ / 一 \ / 2.42 0.12 0.63 -0.19 
Bo = 

、-0.83 I 、0.18 J 
,B2 = 

、2.49 

,Bs = 

-1.37 

Rc 

Qi 

Q3 = 

=7.15, Ri = 4.13, R2 = 1.55, R^ = 0.87 

‘0 .39 0.84 

0.84 2.60 , 

1.76 -0.06 

Q2 = 

\ 

- 0 . 0 6 .97 

0.2564 0.1949 

0.1949 1.6979 
/ 

Q4 = 
/ v 

0.40 -0.20 

- 0 . 2 0 0.20 
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Sets f f and P【* can be calculated recursively by using (2.10), (2.11) and 

(2.12), 

P3 

2.11 

-0.23 

2.33 

-0.30 

2.37 

-0.31 

-0.23 

2.13 

-0.30 

2.04 

-0.31 

2.04 

\ 

P3 

2.15 -0.27 

-0.27 2.18 

2.40 -0.07 

-0.07 3.87 

2.37 -0.03 

-0.03 3.83 
} , p^ = p^ y p 

2.75 

0.51 
\ 

U”， 

丨 2.78 

、0.72 
Pj = P J | J P J , 

= P I 

Pr 

1.39 

1.17 

2.95 

0.53 

0.51 

4.62 

0.72 

6.37 

1.17 

4.65 

0.53 

4.91 

2.74 0.76 

0.76 6.32 

2.77 0.52 

0.52 4.64 

2.72 0.54 

0.54 4.64 

2.76 0.80 

0.81 6.43 

1.51 1.62 

1.62 6.23 

2.98 0.50 

0.50 4.89 

1.50 1.57 

1.57 6.14 

2.97 0.75 

0.75 6.59 

The action region M p in the state space can be then calculated. Using the polar 

coordinate system, we can express the action regions for stage 0 with r。= 2, 

stage 1 with ri = 1, stage 1 with ri = 2 and stage 2 with r2 = 1 as the shadow 
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areas in Figure 2.1. More specifically, we have 

M^ =[0.419l7r, 1.331l7r] U [-0.58097r, O.SSUtt 

Mf =[0.13307r, 0.58 477r] U [0.93757r, 0.97987r 

U h〔).86707r, -0.41537rl U ha06257r, -0.02027r 

M； =[0.94257r,0.98667rl U f-0.05757r, -0.01347r 

M^ =[0.00367r,0.89997r] U —0.996471", —aiOOlTr 

Mg =[0,27rl, M2 = 0, M i = f0,27rl, M? = 0. 

If the initial state is Xq = (2, 2)', the optimal control sequence and the state 

trajectory can be derived as Uq{xo) = (—0.256,0.105)a:o, Xi = (1.266,2.550)', 

ul =0, X2 = (1.266,2.550)', u认工2) = (-0.045, -0.349)a;2, X3 = (0.737,0.153)', 

ul = 0, and X4 = (0.737,0.153)'. 

Action region M^ 

Xl(l) 

Action region M j 

MMmmnTTTrrmTrrr^ 

2⑴ 

Figure 2.1: The action region of Example 2.1 
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Example 2.2. Consider the following LQR problem with n = 3, m = l, T = 6 

and set-up cost w = 500, which is imposed on non-zeros control (Problem Type 

2). We let all matrices A^'s be identity matrices in the systems dynamics. The 

other system parameters are given as follows, 

-0.145 -0.124 ‘ -0.148 ‘ 

Bo = 0.026 -0.235 ,B2 = -0.082 

,-0 .108 , 0 . 2 0 3 ； , 0 . 1 4 4 J 

0.297 0.082 0.483 

B3 = 0.080 ,B4 = 0.178 -0.809 

,0.265 ； , - 0 . 1 0 8 ； 、-0.185 ； 

5.262 0.763 -0.301 3.961 -0.675 0.678 

0.763 3.498 -0.565 ,Q2 = -0.675 1.022 -0.326 

、-0.301 -0.565 0.138 J 、0.678 -0.326 2.325 

丨 2.264 -0.527 -0.019、 ( 2 . 548 -0.032 0.207、 

Q3 = -0.527 2.063 0.876 , Q 4 = -0.032 2.472 0.005 

、-0.019 0.876 4.945 j 、0.207 0.005 3.089 j 

( 3 . 000 -0.363 -0.229、 ( 2 . 978 -1.237 0.005 

仏 = -0.363 3.777 -0.229 ， Q q = -1.237 5.420 -0.183 

,-0 .229 -0.229 4.745 J , 0 . 0 0 5 -0.183 4.293 

Ro = 0.208, Ri = 0.637, 

= 0.318, and 4 = ( — 

R2 = 0.258 

23.17 -

Rs = 0.224, = 0.392, 

,53 17.68 1 . 

By using (2.33), we reformulate this problem to its equivalent CCQO form with 
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coefficient matrices of 

D = 

1.7953 -0.6871 -0.1490 -1.3635 0.2447 -0.8253 

-0.6871 4.5336 1.6854 0.5347 -1.2191 1.4597 

-0.1490 1.6854 1.7575 0.1492 -0.6297 -0.0956 

-1.3635 0.5347 0.1492 3.6098 -0.1815 0.3154 

0.2447 -1.2191 -0.6297 -0.1815 1.6042 -1.2227 

-0.8253 1.4597 -0.0956 0.3154 -1.2227 11.2360 

and 

d' = 103 X (0.0595 0.1925 0.1540 0.0001 -0.0531 —0.1206) 

We identify next the sCCLQR problem which best approximates the given 

CCLQR problem. It is worth to mention that, to avoid numerical un-stability 

of the solver, we re-scale D and d by 10"^, which does not affect the optimal 

solution. We construct first the auxiliary problem {A) for the re-scaled problem 

and then solve such a semidefinite programming problem by using SeDuMi 1.1 

toolbox under Mat lab 7.0 [73], e.g. We consider subproblem with 5 = 2 which 

yields the following solution of (A), 

yo = 4.542 > < 10-2 ‘ 八 
,2/1 

=4.884 > < 10—-1 八 
,2/2 = 

4.884 ： X 10- y3 = 4.880 X 10-' 

ijA = 7.306 > < 10-2 , i h =7.306 > < 10-丨 2，如= 1.001 X ：10 一 S^i = 2.707 X 10-4， 

m = 1.001 > < 10—4 =1.002 > < 10 一 
i -
,2/4 = 2.823 X ：IQX -4, = 1.000 X 10 

Matrix H corresponding to the best sCCLQR is identified as 

H = 

0.2606 0.5197 0.4159 0.0004 -0.1434 -0.3258 ‘ 

0.5197 2.0801 1.4479 0.0014 -0.4993 -1.1342 

0.4159 1.4479 1.2587 0.0011 -0.3996 -0.9076 

0.0004 0.0014 0.0011 0.1000 -0.0004 -0.0009 

-0.1434 -0.4993 -0.3996 -0.0004 0.4884 0.4682 

-0.3258 -1.1342 -0.9076 -0.0009 0.4682 1.1635 ； 

By implementing the branching and bound algorithm in solving problem 

{F^^ g), for 5 = 1, • • • , 6, yields the results in Table 2.1, in which the optimal 
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Table 2.1: Solution of Fi 

s Optimal index set ws 明1,6) +舰 

1 {2} 9737.1 500 10237.1 

2 {0,2} 8262.2 1000 9262.2 

3 {0,1,2} 7448.9 1500 8948.9 

4* {0,1,2,5} 6858.5 2000 8858.5 

5 {0,1,2,3,5} 6557.0 2500 9057.0 

6 {0,1,2,3,4,5} 6555.7 3000 9555.7 

index set indicates the stages where a nonzero optimal control is implemented. 

Summing up and ws and performing a comparison identifies the opti-

mal cardinality for this example problem: 5* = 4 with the corresponding optimal 

control,Mo = —44.6, Ui = —29.4, U2 = —62.7, Us = 0, 114 = 0, u^ = 10.7. 

Example 2.3. We randomly generate 30 cases for each type of problems to 

check the quality of the lower bound generated by sCCLQ problems. The com-

putational results are shown in Table 2.2. We ignore the constant c in all the 

cases. The corresponding SDP problem (A) is solved by calling Sedumi under 

Mat lab. Since all problems are in small-scale, we are able to solve them by 

an enumeration method. In Table 2.2, the column "optV" denotes the opti-

mal value, "sCCLQbound" denotes the lower bound constructed by an sCCLQ 

problem, and "tbound" denotes the trivial bound generated by ignoring the car-

dinality constraint. From Table 2.2, we can see that sCCLQ problem is tighter 

than the trivial bound for all these problems. However, when the size of the 

problem becomes larger, e.g., T > 30 and m > 3, the computation of the sCCLQ 

bound becomes expensive and unstable. On recognizing this difficulty, more 

sophisticated and stable bounding scheme will be discussed in Chapter 5. 
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Table 2.2: Comparison of bound 

,m,7 1 Optimal value sCCLQBd tBound 

{n, m , T OptV value CPUtime vlaue 

{4, 1. ,8, 2} -11337 -13128 0.9 -13583 

{8, 1, 12, 4} -32828 -36428 2.5 -37674 

{8, 3, ,8, 2} -33636 -38806 12.0 -39424 

{10,2 ,12,3} -48264 -56785 13.3 -57173 

{6, 1, 15， .4} -41564 -44264 4.8 -44310 

{6, 1, 2a .4} -60055 -63792 10.5 -64921 

2.5. Conclusion 

Recognizing the need to incorporate set-up costs into the framework of optimal 

control, we present promising results of cardinality constrained linear-quadratic 

optimal regulator CCLQR problems. The feed-back control can be characterized 

via dynamic programming and the Riccati type of solution is computed in a re-

cursive manner. However, such a procedure with exponential complexity suffers 

a computational difficulty while the size of problem is large. We thus choose to 

tackle the problem by solving an equivalent cardinality constrained quadratic op-

timization CCQO problem. Due to NP-hardness of such a problem, we propose 

a new low bounding scheme using the solution from a corresponding polynomi-

ally solvable sCCLQR problem. Combining this lower bounding scheme with 

a branch-and-bound algorithm, our computational results have demonstrated 

promising performance of the proposed method. 

One interesting extension of the CCLQR problem is to considering the car-

dinality constraint on the change of the control, i.e., to consider the constraint 

1 

J2t=i ^i^t-i—Ut) < s. Furthermore, since the time-invariant feedback controller 

is preferred in most applications, we may also consider the cardinality constraint 

、/1 

on the change of the controller, i.e., J2t=i H^t- i — Kt) < s, where Kt is the 
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feedback gain u ; = KtXt-



C H A P T E R 3 

OPTIMAL CONTROL OF L INEAR 

SWITCHED SYSTEM 

3 Introduction 

Linear switched systems arise naturally in many applications [6], [82] [74], such 

as in automotive systems, electrical circuit systems, manufacturing systems, and 

chemical systems. Following the categorization in [82] [75], we focus in this chap-

ter mainly on the subject termed externally forced optimal control problem of 

linear switched systems, which has been investigated extensively in the litera-

ture. A two-stage optimization strategy via parameterizing the switching in-

stances is proposed in [82] for a continuous-time model of such a problem. The 

optimal control of a switched affine autonomous linear system is studied in [67 

and an iterative algorithm is developed to find optimal switching sequence and 

switching instances iteratively, and the switching region is characterized by us-

ing dynamic programming (DP). A general continuous-time switching problem is 

investigated in [7] based on the maximum principle and an embedding method. 

As for discrete-time models, the computational complexity is a major issue. To 

cope with such a difficulty, an approximation approach is suggested in [51] [65 

to obtain the value function in DP. Following the same line, a continuous-time 

switched homogeneous system is studied in [66]. In [50], the author considered 

30 



Denote by 

the set of coefficient matrices of all subsystems. Let y(t) G K be the active 

subsystem in interval ^ + 1], ^ = 0, 1, • • •, T — 1, with y{—l) being the 

initial active subsystem. Let Y(T) := (^(0), ̂ (1), • • • , y{T — 1)) be the switching 

sequence of length T by choosing specific Ay^t), Ry{t) from W for 
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LQG optimal control of such a linear switched system and proposed a pruning 

method to reduce searching efforts. It is also worth mentioning that numeri-

cal schemes of discretizing both the state and time spaces are proposed in the 

literature, such as in [32], to approximate the value function. 

In this chapter, different from all the previous works, we investigate the linear-

quadratic optimal control problem for the discrete-time switched system with a 

constant switching cost. Such an addition of switching cost introduces jumps 

in the cost function, resulting in significant difficulties in obtaining analytical 

results. Using some sophisticated dynamic programming techniques, we char-

acterize explicitly in our work the switching region, the value function and the 

feed-back gain of such a problem. Furthermore, some novel techniques using 

semidefinite programming are presented to reduce the computational burden for 

such a kind of problems. 

3.2. Problem Formulation 

Consider a switched system consisting of K linear subsystems, where the z-th 

subsystem, i = 1, . . K , is characterized by a quadruple [Ai, Bi,Qi, Ri] with 

A, e B, e Q, e M"^" and R, E 监饥xm，where Q, and R, are 

positive semidefinite and positive definite symmetric matrices, respectively. The 

dynamics of the zth subsystem is governed by 

x(t + 1) = Aix(t) + BiuifX i = (3.1) 

3.2 
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all control instances,力=0，1, ...，T — 1. Denote by ||a;||| the quadratic term 

x'Sx with S being symmetric and positive semidefinite. We consider now the 

following quadratic cost function in finite time horizon with a constant switching 

cost M > 0, 

T-

E II 工⑴ + 力 力 — 1 ) ， ? / ⑷ ） + MT) Q{T)-
(3.3) 

where Q{T) is positive semidefinite, and the indicating function cr : K x K ^ 

{0,1} is defined such that a(a,b) = 1 if a ^ b and cr(a, a) = 0. The optimal 

control problem of the switched system studied in this chapter is stated now as 

follows. 

Prob lem 3.1. (Pi(T)) For the linear switched system given in (3.1) and (3.2), 

find the optimal switching sequence {y{t)}JSQ and the optimal control {u{t)}JSQ 

that minimize the cost function (3.3). 

To deal with problem Pi(T), we consider the following auxiliary problem. 

Prob lem 3.2. (P2(s)) For the linear switched system (3.1)-(3.2) and some s G 

Z+ with s < T, where Z+ denotes the set of of nonnegative integers, find the 

optimal sequence Y{T) = {y{t)}JSQ and the optimal control {u{t)}JSQ such that 

T-

y{T) e Y{s) := Y{T) I E A{y{T - 1)於)）< s (3.4) 

holds and the cost function 

T-

观 I⑴+ w力) y(t) 
+ \\x{T) \

—
/
 

2
以
 

is minimized. 

(3.5) 

We use 'u(-) to denote the optimal value of problem (.). The following mono-

tonic property is evident. 

L e m m a 3.1. v{P2{si)) < v{P2{s2)), if Si > S2. 
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Problem Pi(T) can be solved by identifying the following optimal number of 

switching, 

5* = arg mill {M • s + v(P2(s))}. (3.6) 
se{o,i,...,T} 

It is clear that the optimal control and optimal switching sequence of problem 

Pi(T) are identical to the solution of problem P2(s*). Thus, an efficient solution 

method for problem P2(s) plays a key role in solving problem Pi(T). In addition 

to the problem with a finite horizon, we are also interested in the infinite horizon 

problem as T goes to infinity. 

Problem 3.3. (P3(oo)) For the linear switched system given in (3.1) and (3.2), 

find the optimal switching sequence {^/(OlJ^o and the optimal control {li(力 

that minimize the cost function 

oo 

E [ I I^WI IL) + I I^WI IL) + M . — 1),2/W) ] . (3.7) 
t=0 

This chapter is organized as follows. After presenting the problem formu-

lations in this section, we develop in Section 3.3 an exact solution procedure 

of solving problem P2 ⑷ by using DP. Both the switching region and feedback 

gain are characterized. To reduce the burden of the computation, we develop 

in Section 3.4 a branch and bound framework which integrates a modified DP 

algorithm with semidefinite programming. We extend the method developed for 

finite-horizon problem to the infinite-horizon problem in Section 3.5. We present 

some illustrative examples in Section 3.6 to demonstrate the solution procedure 

developed in this chapter. Finally, we give some conclusion remarks in Section 

3.7. 

Throughout of the chapter, we use notation Q ^ 0 to denote a positive 

semidefinite symmetric matrix and the set of all n x n positive semidefinite 

symmetric matrices. For given Ai and 為 C , the notation Ai h 為 means 

that, for any Hi e Ai, there exists H2 G 為 such that Hi ^ H2. Furthermore, 
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we introduction the following operation V(-) for A C , 

「1 \ A\ A* if c A, A* tA\A*, 
P[乂]:= < 

I A otherwise. 

Clearly, such an operation eliminates all the dominated elements in set A. The 

following fact is true. 

L e m m a 3.2. Given x E R"" and A C S^, 

mm 
HeA 

X mm 
Her [A] 

X 

3.3. DP-Based Solution Approach for P2⑷ 

In this section we focus on solving problem P2 ⑷ . A naive way to solve problem 

P2(s) is to enumerate all possible switching sequences in Y(s) defined in (3.4). 

We are more interested in the structure properties of the optimal control and 

the switching conditions in the feedback back manner. Such structure properties 

may benefit us in designing more efficient algorithms in solving problem P2(s). 

More specifically, we use DP to characterize the solution of problem P2(s). 

We expand the state space of problem P2⑷ by adding y{t — 1) and r{t) 

which denote, respectively, the activated subsystem and the remaining number 

of switching at stage t, where r(力）satisfies the following recursion, 

r ( 力 + 1 ) = 

rit)-a[y[t-l),y[t)) if r(t) > h 

0 otherwise, 

T, is confined to 

(3.8) 

with r(0) = s. The feasible set of r(t),力=0，. 

Ĵ t ：= {r⑴ e Z+ I max{0, s - t} < r⑴ < s}. 

The cost-to-go function can be then expressed as follows for t = T, 

K and r(t) e T^ 

0, yifl e 

T-

Jt{x{t),y{t - l),r{t)) := min 
u{r),y{T),T>t 

2 

QyO 
2 

Q{T) 

(3.9) 
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where {"( t)}?:^ satisfies [『=亡^(2/(力—1), < r(t). The cost-to-go in (3.9) 

implies the following recursion, 

Jt{x{t),y{t - l),r{t)) 

mm 
Qy(t) + ⑷ II!,⑴ + Jt+i{x{t+l),y{t),r(t+l))]. (3.10) 

We define the following Riccati operator 1Z{j, •) : ^ for given subsystem 

j e K and P e §+ 

7^(j, Py.=A'jPAj + Q] — + iy -1巧iM (3.11) 

We further abuse such an operation to a set operation for a set of positive 

semidefinite matrices 乂 C S工 and j G K, 

w^A) ：= U mj,p)}. 

\/PeA 

Without loss of generality, we assume that 1Z{j, 0) = 0. 

We define now a recursion for 力=T — 1，... , 0, j G K, and^ for all r G J^ti 

¥[t,t,j,r)={ (3.12) 
n (z, + 1, z, r)) Otherwise. 

C(t,i,r)=V[\jF(t,i,j,r)], (3.13) 

jeK 

with the boundary condition C(T, j , r) = {Q{T)} for all r e J^t and j G K. 

Furthermore, based on the above recursion, we define the following switching 

region in M" for all z, j G K and r E J^n 

0 if = 0, 

W if P(力， i ,k,r) = 0, V k G K，k - j , 

{ a; e I mmvent,i,j,r) \M\v < min t /eP(t , 

otherwise. 

y k e K } , 

(3.14) 

Ŝince t is given, we simplify the notation of r{t) to r, for all r(t) G J^t-
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Theorem 3.3. At stage t, for given x{t), y{t — 1) = T G K and r* G J^t, the 

optimal policy of problem P2(s) is such that subsystem j* eK is active at stage 

t + 1, if and only if x(t) belongs to the switching region , j * i . e . , 

y{t) = r if and only if x(t) e M乂f，f/r,. 

Furthermore, the optimal control at stage t is 

u 

where 

P* := 
a r g m i r i p e c (计 1 ) 1 1 冗 ( 力 ) 订 f * 

argminpec(t+i, 订f = 

Proof. We prove this theorem by claiming that the cost-to-go at stage t takes 

the following form for any j G K and r G J^t, 

Jt(x{tXj, r) = min \\x{t) 

The mathematical induction starts from stage T, 

JT{x(T),j,r) = \\x(T) 2 

Q{T)' 

for j e K and r e J^T- We simply let C(T,j ,r) := {Q{T)}. 

Suppose that the claim is true at stage 力 + 1，for all j G K and r G J^t+i- The 

following two situations are possible at stage t. 

If r e J^t and r = 0, we fix y{t) = T G K for the remaining time periods as 

the system cannot switch anymore, 

Jt{x{t),i*,0)=mm 
u{t) 

mm 
i/ec(计 i,i*,o) 

= mm x{t) (3.15) 

where the second equality is achieved by choosing optimal control 
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We let P(力， 0) := 7Z(t,e,C(t + l , r , 0 ) ) , F(t,e,j,0) := 0 for j + i* and 

C{t,i\0) = P[P(^,r,r,O)U0]- According to the definition of the switching 

region, we have 0) = W and 0) = 0 for all j + i*. 

If r e J^t and r > 0 with y{t) = i*, cost-to-go in (3.10) can be expressed as 

Jt{x{t),i*,r)=mm{Jt{x{t),i*,r), Jt{x{t),i*,r)}, (3.16) 

where 

M淋 

Ux{t), 

r):= 

r ) : = 

mm 
u{t),y{t)=i* 

mill 

+
 

*
 

i
 

2
丑
 

\
—
/
 

/

 \
 

+
 o
 

\
—
/
 

/
—
\
 

I
 

观 L . +W力）2 J/⑴ 
+ (力+1)，2/⑴ 

(3.17) 

r - 1) 

(3.18) 

From the induction assumption, (3.17) can be further simplified as follows, 

Jt{x{t),i* ,r{t)) = min 
u { t ) 

x(t)\\Q,^ + \\u(t)\\r,,^ + min x{t + l) 

mm (3.19) 

where the second equality is achieved by adopting optimal control 

and let := + 1, f , r)). 

On the other hand, letting y{t + 1) = j G K in (3.18) gives rise, 

Jt(x(t),i*,r)= min [ 力）||仏 + ⑷ 
j 一 i*，u(t) … 

o, + min xit +1) %r 

=min min {min丨 x(t) ^ + u(t) i + x(t + 1) 
j卢* HeC{t+l,j,r-l) u{t) L 、乂仏 ^^ 

=min min x(t) %r, 

} 

(3.20) 

where the third equality is achieved by adopting optimal control u*(t) = (Rj + 

B'-HBj)-^BjHAjx{t) and let 



= m i n { mill 

mill xit) 
HeC{t,i*,r{t)) 

(3.22) 

where 

jeK 

Thus, we know from (3.21) that system switches from subsystem i* to j if and 

only if 

mm mm 
jeKj^i* i/ePCM*,. 

x(t) %f < mill x{t) (3.23) 

We can then define the switching region for each j the same as in (3.14). Note 

that the above conclusion is true for any i* e K. • 

Theorem 3.3 actually provides an algorithm in solving problem P 2 ⑷ . W e 

first calculate off-line z, j , r) iteratively from ^ = T to ^ = 0, for G K 

and r G J^t, and determine then on-line the optimal switching and control policy. 

Once switching region is characterized, the switching policy can be achieved 

for any initial subsystem and initial state. Although the solution to problem 

P2(s) is fully characterized by Theorem 3.3, such an algorithm, however, suffers 

from a computational complexity of O + 1) • max{m^, n^}), where it takes 

(9(max{m^,n^}) to compute the Riccati iteration in each step. As mentioned 

in the literature, solving optimal control of general switching systems is NP-

hard with respect to its computational complexity. When T is not too large, 

our algorithm performs well, largely due to the pruning operation V[-] in the 

algorithm. Eliminating dominated elements in j , r) reduces significantly 

computational efforts. We will show in the following that our algorithm becomes 

a polynomial-time algorithm when all the subsystems are of a scalar state space. 
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Substituting both (3.20) and (3.19) into (3.16) yields 

Jt(x(t) A*, r) = min{ min x{t) H mm mm 
j—i 恥PCM*, x{t)\\jj} (3.21) 

u X 
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Corollary 3.4. If the state spaces of all the subsystems described in (3.2) are 

of dimension one, i.e., n = 1, then the algorithm provided in Theorem 3.3 is 

polynomial with complexity of O {TK^{s + 

X 
2 
Hi < \\x\\jĵ  is independent of x, Proof. Notice the fact that whether or not 

if Hi and H2 are scalars. Thus, the cardinality of set r) is one, for all 

^ = T, • • • , 0, j G K and r G Tt- Thus, we only need to calculate sK] times of 

matrix operation of (3.11), which possesses a complexity of O (m^) at most. • 

In addition to the cases with a scalar state space, the algorithm in Theorem 

3.3 is also efficient for the following case. 

Corollary 3.5. If subsystem i* is active at stage r and is such that 

\ 
Qt* A;* 

Aj* — 5L R-* 1 Bj 
/ 

Q3 4 

then the optimal switching strategy for problem 3.2 in the remaining stages is 

2/(T + l)=2/(T + 2) = 。 . = WT) = f . 

Corollary 3.5 actually gives a sufficient condition for an "absorbing" sub-

system. Once the system switches to such a subsystem, it will never switch to 

others. 

We invoke the following lemma from [78] for Riccati operator .) in (3.11) 

in order to prove the above corollary. 

Lemma 3.6. If Pi ^ Pj and 

\ 
Q “ 

A' 
\ 

then n{i,Pi) ^ n{j,Pj). 

Corollary 3.5 then follows Theorem 3.3. At stage T, C(T, j , r ) = {Q{T)} for 

all r e J^T and j G K. At stage T — 1, because of Lemma 3.6, 1Z{i*, C(T, j , r)) ^ 

尺(j，C(T，j，r))，for any j + i* and r G J^t-i- Thus, we have = M" 
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and = 0. That is to say, at stage T — 1, if subsystem i* is active, 

the optimal switching policy is not to switch. Carrying out the similar procedure 

backward at T — 2, T — 3, • • • , r yields the proof. 

3.4. Branch and Bound Algorithm 

As mentioned before, the algorithm developed in Theorem 3.3 becomes inefficient 

when T and K are large. To improve our algorithm, we develop a lower-bounding 

scheme which can be integrated into a branch and bound solution framework. 

Assume that we have a feasible control of problem P2(s) with an incumbent 

value V*. To search for the real optimal solution of P2(s)，we gradually fix y{t) 

from 力= 0 to 力= T—1. For example, fixing the first r elements of Y(T) gives 

rise a partially fixed switching sequence Y{T, T), 

Yir, T) - , V, y ( T + l ) r 、 y ( T — 1)}. (3.24) 

We then denote P2(l^(r, T), 5) as a sub-problem of primal problem P2⑷ 

with given partially fixed switching sequence Y(T,T). We then calculate 

the lower bound of problem P2(y(r, T), s) and denote the lower bound as 

v(P2{y{r, T),s)). If v(P2{y{r, T),s)) > v*, then this branch is fathomed, since 

no matter what yir + 1), • • • , y{T) are chosen, it will never generate a better 

objective value than v*. If T), 5)) < v*, this branch will be kept alive 

and we continue to fix y{T + !) , ••• , y{T — 1) one by one. Of course, we need to 

consider the cardinality constraint (3.4) when fixing y{t). Once s switches are 

specified, we get a feasible solution and we can use such a solution to modify 

V* if it offers a better solution. Such a procedure can be carefully implemented 

by a searching process of an enumeration tree. Thus, finding a tight and cheap 

bound of problem P2(V(T, T), S) plays a key role in such a branch and bound 

framework. 

When considering a partially fixed switching sequence, problem 

P2(V(T, T), S) is actually the same difficult as the original problem P2⑷. 



The following procedure modifies the algorithm described in Theorem 3.3 to 

generate a lower bound of problem {P{Y{T), S)). 

Procedure 1: 

Input: T, W, Xq, D{a) and yo. 

Output: Lower bound of problem P{Y{T), S): v{a). 

50. Let 力 一 T and C{t, i, r) 一 {g(T)}, for all r G J^t and z G K. 

51. lit < T, go [S'2]. Otherwise, let 力一力一1. For all i j e K and r G J^t, 

calculate^ 

7 ^ ( 脚 + l， J， r - l ) ) 

0 

jeK 

Ifte D{a), solve the following problem, 

if j ^ i and r > 0, 

if j = < 

otherwise, 

(SP) max trace(i7) 

Subject to: H ^P, y P e C{t, i, r), 

and C{t, i, r) 一 {H*}, where H* is the solution of problem (SP). Repeat 

this step. 

S2. If 力=0，compute 

via) := mill 
PeC{0,y{0),s) 

xo (3.25) 

2lf t = r, we only need to calculate i = 
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To construct a lower bound of problem P2(y(r, T), 5), we introduce a number 

a <T — T and denote D(a) as a set of stages, i.e., 

J C { r + l , r + 2 D(a) 
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Otherwise, t — t — 1 and compute ^ 

C{t, it, r⑴）=n{ i t+u C[t + 1, it+i,r[t + 1))): 

Repeat this step. 

(3.26) 

Remark 3.1. For a given switching sequence y(r ) , if ^ < r in Procedure 1, 

C{t, it, r{t)) is calculated directly using (3.26), as it is fixed. If ^ > r, we select 

these stages in D{a) to calculate in (SP) the best lower-bound matrix of set 

C(t, i, r). The purpose of (SP) is to force the cardinality of set C{t, i, r) to 1, when 

t G in order to reduce significantly the total computational complexity. 

Notice that problem (SP) is a semidefinite programming problem, which can be 

efficiently solved by the interior point method. 

Theorem 3.7. As v{a) defined in (3.25), the following facts are true: 

(a) v{a) = V{P{Y{T),S)), if a = 0 . 

(b) v{a) < V{P{Y{T),S)), if a > 0 . 

(c) v{ai) > v{a2), i/0 < « i < «2 < T — r and D{ai) C D(«2). 

Proof. If « = 0, then there is no modification of C(t，i, r{t)) and (a) is true. Let us 

prove (c) first, we assume that D (« i ) = {^i} and D{a2) = {力1，力2} and 力2 =力i + l. 

In the following, we consider z G K and r G J^f At stage 力 2 ， ^ i h ) ) is 

modified according to Procedure 1. Note that C(力2，、"K力2)) < i, '^{h)), 

where C(力2，、"K力2)) := {H*} and H* is the solution of problem (SP) in 

Step [SI]. At stage ti, due to Lemma 3.6, z, j ,r(^i)) ^ z, j , 

where z, j , r{ti)) and z, j , r{ti)) are calculated from h ^{^2)) and 

h respectively. After we solve problem {SP) again, z, r{ti)) < 

z, r{ti)), where z,r{ti)) and z,r{ti)) are corresponding to D(«2) 

and D(« i ) , respectively. This argument can be extended to general situations 

Ht is defined in (3.24). 
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with any < «2 and D(« i ) C D(«2) by induction method. The claim (b) is 

true, once we let « i = 0 in (c). • 

The bounding procedure 1 provides us certain flexibility in finding a lower 

bound. Note that the bounding error IV(P(V(T), S)) — v{A)\ is monotonically 

increasing with respect to a. A small however, may lead to an exponential 

increase of the computation complexity. The number a actually represents the 

trade-off between two critical measures, the tightness and efficiency. After fixing 

the number the stages, ^i, • • • , ta, can be fixed by using some heuristics. 

Example 3.3 in the Section 6 will illustrate effects of different a and D{a) in 

such a lower bounding scheme. 

3.5. Problem of Infinite Horizon 

We now focus on solving the problem P3(oo). Assume that the following as-

sumption is satisfied. 

Assumpt ion 3.1. The system matrices (八，B,i) are stabilizable and (八，Uj) are 

detectable for all z G K, where UlUi = Qi. 

Due to a nonzero switching cost M, the total number of switching evaluated 

in E 二 1 + 1)) has to be a finite number. That is to say, the following 

lemma is true. 

Lemma 3.8. There exists T* such that the optimal switching sequence y{t) re-

mains unchanged for all t >T*. 

It is well known that under the Assumption 3.1, there exits a unique positive 

semidefinite solution of the algebraic Riccati equation (ARE) of each subsystem 

17] [36], denoted as 双，i.e., 

H, = + - + i e K. (3.27) 



:=dJgmm{v{P^{T, 5)) + s 
iGK 

Then, the optimal switching sequence of problem ^3(00) is Y{oo) = 

(^(0), • • • , y{T — l),y(T — 1), • • •) and the optimal control is 

以*⑴= 
Ht) if t<T, 

{Rp + if t>T. 

Proof. At any stage T >T*, based on the principle of the optimality, the value 

function of Problem Vi is given as, 

00 
M工T ) ：= I I ^ W I I L ) + I I 咖 I I ‘ + M . a{y{t — 1)，州)} 

t^T 

(3.29) 
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We also assume the following to eliminate trivial cases where the optimal switch-

ing strategy is never to switch. 

Assumpt ion 3.2. The switching cost M is such that M < max鄉 

Under Assumptions 3.1 and 3.2, problem P3(oo) can be tackled by a problem 

of a finite horizon. 

Prob lem 3.4. 5)) For the linear switched system specified in (3.1) and 

(3.2), find the optimal switching sequence {y{t)}JSQ that satisfies (3.4) and the 

optimal control {u{t)}JSQ such that the cost function, 

T-

E II冲)临补) + i i以⑷ i i ‘ ) + min XT 
ieK 

2 
th ‘ (3.28) 

is minimized, where H^ is defined in (3.27). 

The relationship between Problem 3.3 and Problem 3.4 can be characterized 

as follows. 

Theorem 3.9. Suppose that Y{T):=(识0)，没(1): 

solve Problem PAT, s*) where T >T* and 

y{T - 1)) and 碑)}『=—0: 

I
J
 

M
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Because of Lemma 3.8, y(t) remains unchanged for all t >T. Thus, — 

l),y{t)) = 0. Furthermore, finding optimal control {ut}\^T for the value function 

in (3.29) is a standard LQ control problem for each subsystem. Together with 

Assumption 3.1 we know the Riccati difference equation converges to a unique 

solution, Hi, given in (3.27) for each subsystem. Then, we can conclude that 

JT{XT) min{ xt % 
iGK L 均 

2 } . 

Thus, solving problem P3(oo) is equivalent to minimizing the following value 

function, 

Jo(>o) = mill 
y{t),u{t),0<t<T' 

+ min Xt* 
jeK 

工⑷III⑴ + II以⑷Ilk⑴ + M. (j{y{t — 1),2/W) 

2 
(3.30) 

Note that if we parameterize the the total number of the switching by 5 G N, 

then we have 

Mxq) = min < min [ "、+ ||以(力)临，J + min + « . M ^ 
^ 乂 SGN [y{t),u{t),o<t<T^ y双⑴ 双⑴ 亿K ‘ I 

which completes the proof of the theorem. 

⑴」 jeK 

• 

Note that the only difference between Problem P2⑷ and Problem P4(T, s) 

is the terminal cost of x{T). Thus, the Algorithm developed based on Theorem 

3.3 for problem P2⑷ is readily for problem S). However, the bound-

ary condition defined in the recursion (3.12) and (3.13) should be changed to 

C(T, j , r ) = {Hj} for r e Ft and j e K. 

The above development is dependent on the assumption that T* is known, 

however, finding an exact T* is hard. As illustrated in Lemma 3.8 and Theorem 

3.9, we only need some T > T* which can be used to convert the infinite horizon 

problem P4(oo) to the finite horizon problem P2(s，T). A sufficient condition of 

finding such T > T* is as follows. 
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Theorem 3.10. At stage T, for given x{T) andy{T-l) = i*, if\\x{T)\\]j^^ < M, 

then the switching sequence y{t) = i* for all t > T will be optimal for Problem 

Psioo). 

Proof. The value function of Problem P3(oo) is 

oo 
mill > 

u{t),y{t)>T^ T⑷ ⑴ + II以⑴III⑴ + M . a{y{t — 1)遍) 

(3.31) 

If the conclusion in Theorem 3.10 is not true, then there will be at least one 

switching in time interval [T, oo], which leads to JT、X(T)，i*、> M from the 

x{T)\\jj,̂  < M if there is no switching, expression (3.31). As JT{x{T),i*) 

switching in time interval [T, oo] can not be optimal. • 

From Theorem 3.3, we know that, for all z G K, the corresponding closed loop 

system can be written as x{t + 1) = {Ai + BiF{t))x{t). We can then adopt some 

I.e. heuristics to estimate an upper bound of \\x{T) 

Since condition < M , where pi is the spectral norm of Hi, implies the 

condition ||a;(T)\\jj. < M, we can estimate T by 

log(M) 
mm (3.32) 
ieK log{pi\\x{0)\\^f3)' 

3.6. Illustrative Examples 

Example 3.1. We consider the following example with n = 2, m = 1, K = 2, 

T = 3, and 5 = 2 to illustrate the solution process of Theorem 3.3 for problem 

P2(s). The data of two subsystems are given as 

>v = { 
- 1 3 

, - 1 -2 ； 

0.5 

, 1 , 

[^2 = 

\ / 

( 1 — 4 、 

, 1 -3 

( 
B2 = 

\ / 

1 \ 

0.5 ‘ 

( 
Q2 = 

/ 1 0 

0 0.5 

\ 

0.5 0 

0 0.9 

Ba = 0.5 

R2 = 0.5 



2.59 -5.41 

-5.41 15.51 
},P(1,2, 

( 1 . 8 5 -2.09 

、-2.09 26.25 

1.85 -2.09 

-2.09 26.25 

1.55 -0.31 

-0.31 16.17 

P(2,z, l ,r) = { 
1.50 -0.67 

-0.67 6.94 

At stage 0, P(0,1,1, 2), P(0,1, 2, 2), P(0, 2,1, 2) and P(0, 2, 2, 2) can be cal-

culated in the same manner. Since x{t) G M^, the switching regions given in 

(3.14) are symmetric cones which can be easily expressed in the polar coordinate 

system, Xi{t) = cos{6t)pt and X2{t) = sin{Ot)pt with Ot G (0, 27r] and pt > 0. Let 

Q{xt) := Ot- The switching regions can be now characterized as follows, 

M\L, 

M\L, 

M\2, 

={0{x2) e [1.547r, 

= { e O i ) e [0.527r, 

= { e O i ) e [0.527r, 

= { e ( > i ) e [O.sitt, 

= { e O l ) e [0.497r, 

= { e O i ) e [0.597r, 

.927r] U [0.547r,0.927r]}, 

.OStt] U ha487r，a037r]} 

•OStt] U ha487r，a037r]} 

.OSTT] U hai97r，O.OSTT]} 

.OStt] U [-O.SItt, O.OStt]} 

Mil] U [-0.4l7r,0.047r]} 

which are pictured in Figure 3.1. Table 3.1 lists the optimal switching sequences 

for different initial subsystems and initial states. 

P( l ,2 ,2 , l ) =P(M，2，2) = { 

\ 

2.59 -5.41 

-5.41 15.51 

2.47 -5.24 

-5.24 15.63 

and for r = 0, P(2,1,1, 0) = P(2,1,1,1) and P(2, 

At stage 1, for z = 1, 2, we have 

2,2,0) =P(2,2,2,1) . 
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and the coefficient matrix for the final state is Qs = 
, 0 . 5 0 \ 

\ 0 0.5 y 
We follow 

the procedure in Theorem 3.3. At stage t = 3, C(3,z,r) = {Q(3)} for z = 1,2 

and r = 0,1, 2. At stage ^ = 2, for z = 1, 2 and r = 1, 2, 

1,2,1) = { P ( ： 

2 ) = P(l, 1,1,1) =P( 

1.00 -1.67 
P(2,z,2,r) = { 

-1.67 6.68 
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M2(1,1,2) 

2 -1 C 
Mi(l 

) 1 
,1,1) 

2 

nuihimihn 

上‘1⑴ 

M°(1,1,2) 

aM(2) 

？1⑴ 

梦 1(0) 

Figure 3.1: The switching regions of Example 3. 
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Table 3.1: Solutions of Example 1 for various initial conditions 

Initial sys. 

1 

1 

2 

2 

( l , i y {2,2,2} 9.71 

(-2 , iy {1,2,1} 81.11 

(1,2)' {2,1,2} 63.48 

(3,-1)' {1,2,2} 123.26 

Table 3.2: Solutions of Example 3.2 for various s 

s Opt switching sequence ” (P2 ⑷） s-M 

1 {2,4,4,4,4,4,4 4,4,4,4} 10502875.9 100 10502975.9 

2 {2,4,2,2,2,2,2, 2,2,2,2} 9208618.1 200 9208818.1 

3* {2,4,1,2,2,2,2. 2,2,2,2} 7933065.3 300 7933365.3 

4 {2,4,1,2,2,2,2. 2,2,2,2} 7933065.2 400 7933465.2 

5 {2,4,1,2,2,2,2. 2,2,2,2} 7933065.2 500 7933565.2 

Example 3.2. Consider a problem Pi(T) with the same data of the power-train 

system in [77]. There are 4 subsystems {K = 4) for 4 different gears with Ai = 
/ \ / \ 
/ … … J / —23.46 -24.38 (-65.72 -185.4 ^ 

.72 0.69 
Ao = 

-36.3 -56.58 

0.38 0.94 
A . = 

0.12 0.98 

‘-16.24 -13.31、 0 .2、 1 0 \ 
= ,B,= , = 

、0.06 1 - 0 J 
, = 

0 10 / 
Ri = 1, for i = 

2, 3,4. Let us assume the horizon to be T = 10, the coefficient matrix for the 

Z 2 0 \ 
final state to be QT = 

with initial state XQ = 

0 2 

‘ 、 
1 
50 

the initial subsystem to be the 3rd subsystem 

and the switching cost to be M = 100. Table 

3.2 presents the results of the auxiliary problem P{s) for different s. We can 

find that the optimal number of switching is 5* = 3 and the state trajectory and 

switching sequence are given in Figure 3.2. 
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The switching sequence 

Figure 3.2: The state trajectory and switching sequence of Example 3.2 

Example 3.3. We still use Example 3.2 to illustrate the lower bounding proce-

dure described in Section IV. Consider the auxiliary problem P(s) with 5 = 3. 

Consider a lower bound for a given partially fixed switching sequence, 

y(2) = {2,3,2/(3), 2/(4), 2/(5), 2/(6), 2/(7), y(8),y(9),y(10)}. 

We perform Procedure 1 by fixing « = 2, « = 3 or « = 4. The details of the 

lower bound and CPU time for different D(a} are listed in Table 3.3. All the 

computations are executed under Matlab 7 with Sedumi 1.1 on a PC (P4 2.6G 

with IG memory). Note that the optimal value associated with sequence Y{2) 

is 1.9814 X 108. 

Example 3.4. We consider a randomly generated infinite horizon problem 

P3(oo) with 2 subsystems specified by Ai = 

\ / … 。 \ 

丄 — IJ.blt) 

and R： = 0.1 for i = 1, 2. 

0.881 -0.464 

0.835 0.695 
\ 

A,= 

1.034 -0.615 
,B,= 

0.098 
,B2 = 

0.028 
7 Qi = 

0.2 0 

0.162 0.515 ； 、0.043 ； 、0.034 , , 0 0.3 J 
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Table 3.3: Lower bound and CPU time for various D(a} in Example 3.3 

D{a) LB (108) CPU(s) D{a) LB (108) CPU(s) 

{3,7} 1.8591 50.0 {4，( 3,9} 0.30256 12.0 

{4,7} 1.8695 28.1 {5，: 「,9} 0.30891 9.6 

{5,7} 1.8648 20.0 {5，: 「,8} 0.30891 25.1 

{6,8} 1.8648 8.1 {2,3, 5,8} 0.02952 12.2 

{4,6} 1.8611 90.0 {3,4, 6,8} 0.07216 8.9 

{4,8} 1.8690 30.3 {2,4, 5,8} 0.07030 13.2 

By solving the Algebraic Riccati equation (3.27), we get 

1.089 -0.959 

-0.959 1.791 
丑1 = 

( 2 . 8 7 9 -0.006 \ 
m = 

y -0.006 1.694 y 

We estimate T as 15 by using the heuristic scheme described in Section 4. We 

then solve problem P4(15, s) for different s. The detailed results are given in 

Table 3.4 and Figure 3.3. Note that in all the problems of P4(s，15) for different 

5, the condition 3.10 are satisfied, that is to say, T is large enough for converting 

such an infinite horizon problem to one with a finite horizon. 

Table 3.4: Solution of Example 3.4 

s sM v{P2{S))^SM 

1 {2,1,1,1, 1,1,] 1, 1,1,： L, 1,1,1} 458.5 10 468.5 

2* {2,1,1,2, 2,2,^ ̂ ,2,2, 2, 2,2,^ ̂ ,2,2,2} 204.8 20 224.8 

3 {2,1,1,2, 2,1,] 1, 1,1,： L, 1,1,1} 199.1 30 229.1 

4 {2,1,1,2, 2,1,] L,2,2, 2, 2,2,^ ̂ ,2,2,2} 185.1 40 225.1 

5 {2,1,1,2, ？ 1 1 1 1 ？ ？ ？ 1 -1 1 1 1 } 185.0 50 235.0 

6 {2,1,1,2, 2,1,] 2, 1,1,： L,2,2,2} 184.4 60 235.0 

Example 3.5. We study a discrete-version of the continuous-time model in 

Example 2 of [82]. Since the total switching time is 1, it is of problem type P3(s) 
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Figure 3.3: Optimal control, switching sequence and states of Example 3.4 

with 5 = 1. Let the sample time period be Tg and the total number of periods 

he T = 2/Ts. By expanding the state to dimension of n = 4, we can express the 

resulting problem by the following two sub-systems, 

MTs) 

02x2 

02x2 

12x2 

Bi{Ts) 

0 2 X 1 

Ts 

0 0 0 0 

0 1 0 - 1 

0 0 0 0 

0 - 1 0 1 

Ts 

and 

MTs) 

02x2 

02x2 

12x2 

MTs) 

02x1 

Ts 

0 0 0 0 

0 1 0 - 1 

0 0 0 0 

0 - 1 0 1 

Ts 
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Table 3.5: Results for different Tg of Example 3.4 

Sample Time Tg 0.1 0.05 0.02 0.01 0.005 

Total Num of Periods T 20 40 100 200 400 

Opt Switching Instant 0.2 0.20 0.20 0.19 0.190 

CPU Time 0.00s 0.01s 0.72s 3.1s 8.2s 

— ^ 

o 

/ 
optimal switching i 

Figure 3.4: The state trajectory and the optimal control in Example 3.5 

with Q(T)= 

1 0 - 1 0 

0 1 0 - 1 

- 1 0 1 0 

0 - 1 0 1 

and âo = [0,2,4,2]', where AJTg) and 

Bj(Ts), j = 1, 2, are obtained from discretizing the original system matrices 

in [82] with sample period Tg. The state trajectory and control are shown in 

the Figure 3.4 {ts = 0.05). The numerical results of implementing our method 

listed in Table 3.5 are consistent with the results in [82], and demonstrate the 

efficiency of our discrete-time based searching procedure when compared to the 

exact method in [82 . 
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3.7. Conclusion 

We have investigated in this chapter both finite-horizon and infinite-horizon 

discrete-time optimal control of linear switching systems with switching cost. 

We have constructed a corresponding auxiliary problem, which is a finite horizon 

linear-quadratic switching optimal control problem with upper limit on number 

of switching and have derived its switching regions. Our result on the switch-

ing regions is consistent with the result in [30] for continuous-time switched 

autonomous linear systems. Recognizing high computational complexity in the 

exact solution scheme, we have also proposed a lower-bounding method by us-

ing semidefinite programming, which can be easily integrated into a branch and 

bound framework. Although our preliminary computational results have already 

demonstrated promising results, many challenging issues remain for large-scale 

switching systems. 



CHAPTER 4 

T I M E CARDINALITY CONSTRAINED 

M E A N VARIANCE DYNAMIC 

PORTFOLIO SELECTION 

4.1. Introduction and Problem Formulation 

The ground-breaking mean-variance formulation proposed by Markowitz [55, 56 

initialized the study of modern portfolio selection by measuring the investment 

risk by the variance term of the terminal wealth. The analytical expression of 

the mean-variance efficient frontier in single period portfolio selection was de-

rived by Markowitz [55] and Merton [57]. The mean-variance portfolio selection 

theory has been extended in the literature to dynamic settings. More specifically, 

the analytical optimal portfolio policies and the corresponding efficient frontiers 

were derived for multi-period mean-variance portfolio selection problems and for 

continuous-time mean-variance portfolio selection in Li and Ng [43] and Zhou 

and Li [84], respectively. The past eight years have witnessed numerous exten-

sions of the mean-variance portfolio selection theory in continuous-time settings, 

see for examples, Li et al. [47], Lim and Zhou [49], Zhou and Yin [85], Hu and 

Zhou [33], Bielecki et al. [10], Li and Zhou [46], Chiu and Li [20], Xiong and 

Zhou [81]. Contrary to rich results in continuous-time problems, the progress 

of mean-varaince portfolio selection in discrete-time settings has been relatively 

55 
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thin, see for examples, Leippold et al. [37], Zhu et al. [86], Liang et al. [48], al-

though discrete-time settings model the real investment world more closely than 

continuous-time settings. Recently, Cerny and Kallsen [1] and Cerny and Kallsen 

16] studied the optimal mean-variance portfolio selection in a more general set-

ting with a semi-martingale price process, which includes both discrete-time and 

continuous-time settings as its special cases. In this chapter, we extend the re-

sults of multi-period mean-variance analysis by considering the management fees 

for investing in risky assets. 

Citing from the website of the US Securities and Exchange Commission [68], 

the management fees are defined as the fees that are paid out of fund assets to the 

fund's investment adviser for investment portfolio management. The importance 

of the management fees in portfolio selection has been investigated in Capon et al. 

59], Golec [31], Nanda et al. [61], Brown et al. [14]. One example of the manage-

ment fee can be found from the website of The American Investment Service [69]: 

For investors with assets under management (AUM) between US$100,000 and 

US$250,000, the annual fee is 0.80% of AUM or US$1,500, whichever is greater. 

We consider in this chapter portfolio selection problems with management fees 

of a nature of set-up cost. This type of situations has been often witnessed in 

real applications. For example, if an investor asks the American Investment Ser-

vice to manage his investment with an amount less than US$187,500, he will 

be charged annually a fixed amount management fee of US$1,500. Due to the 

set-up type of management fees charged for hiring an agent in managing their 

investment in risky assets, investors do not always invest in risky assets in all 

time periods. 

A related subject in the literature is the optimal investment and consump-

tion problem with transaction costs. Transaction fees are charged when there is 

a transaction between riskfree account and risky assets, and transaction costs, 

in general, involve two types of fees: a fixed charge and a variable charge pro-

portional to the transaction amount. Davis and Norman[25] first studied this 
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kind of problem with proportional transaction cost in a continuous-time setting 

with an infinite horizon. By using the viscosity solution, Shreve and Soner [70 

completely solved this infinite horizon problem. As for finite horizon problem, 

Liu and Loewenstein [53] carried out a study of such a problem with propor-

tional transaction cost in a continuous-time setting with a finite horizon and 

derived an approach to approximate the analytical solution. Dai and Zhong [23 

24] considered the same problem, with an exception that the buying and sell-

ing boundaries are characterized by variational inequalities, and proposed some 

numerical solution schemes. Merton and Pliska [58] analyzed the similar prob-

lem, in which the transaction cost is a fixed fraction of the investor's portfolio. 

Under the framework of the impulse control, Korn [35] and Oksendal and Sulem 

62] studied such a problem with both fixed and proportional transaction costs 

by solving the correspondent HJB equation numerically, while only one risky 

asset is involved in their model. Liu [52] extended the results of Korn [35] and 

Oksendal and Sulem [62] to a more general setting with multiple risky assets 

and characterized the boundaries of the transaction regions. To our knowledge, 

Lynch and Tan [54] represented the only work of portfolio selection problem with 

fixed and proportional transaction costs in a discrete-time setting, and developed 

some numerical solution methods. 

The nature of management fee is substantially different from the transaction 

costs, as the management fee (for a given initial amount) is an external fee paid 

to investor's agent based on the time length of service, while transaction costs is 

an internal fee when there is a transaction between riskfree and risky assets in 

investor's portfolio. 

We assume that the capital market consists of n risky assets and one risk-free 

asset, all of which evolve within a time horizon of T periods,力=0，1, . . T — 1. 

An investor with initial wealth XQ enters the market at stage 0 and allocates his 

wealth among these n + 1 assets at the beginning of each of the T periods. When 

a non-zero amount of his wealth is allocated to some or all the n risky assets at 
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period ^ = 0, • • • , T — 1, he will be charged a constant management fee M. 

Such a cost M can be understood as the cost of hiring an agent to manage his 

stocks. The total management fee is deducted from his terminal wealth XT at the 

last period t = T. Let the returns of the risk-free asset at different time periods 

be rt, ^ = 0, • • • , T — 1, which are assumed to be deterministic in this chapter, 

although there will be no technical difficulty to extend our results to situations 

with random rv We denote the random return vector of the n risky assets as 

e ? … e ? ) 

for 力=0，• • • , T— 1 and assume e ,̂ ^ = 0, • • • , T—1, are statistically independent. 

The mean and covariance of ê  are assumed to be known as 

E -{ 

Cov[et = 

E 

Cr 

cr： 

E E 

cr 

cr： 

respectively, where cr• • := E[{e\ — — E[e for J n. Let ul 

be the amount of dollars invested in the risky asset z, z = 1, • • • , n, and Xt be the 

wealth level at stage t. Thus, at the beginning of the 力-th period, the amount of 

wealth allocated in the risk-free asset is Xt — K- At the last period T, the 

investor's final wealth is given as follows after deducting the total management 

fees from his terminal wealth, 

T-

where Ut : = ( ut u 

XT 

K 

：=XT -^5(ut) -M, 

t=0 

) , f o r ^ = 0, • • • , T — 1, and is the indicate 

function, i.e., 6{a) = 0 if a is a zero vector and 6{a) = 1, otherwise. Let 

: = ( P / ， P i ...，P^ = (4.1) 

where is the n dimensional vector with all elements being 1. The multi-

period portfolio selection problem with management fees is to seek the optimal 
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investment strategy u^, for t = 0, • • • , T — 1, such that (i) the expected final 

wealth, E[XT] is maximized, subject to that the variance of the final wealth 

Var[i:T] is not greater than a given positive level cr, 

Vi{a) : max E[XT 

Subject to: Var[i>r] < cr, 

T-

XT =xt — ^ S{ut) . M, 

xt+i = nxt + P ju t ,力=0， . . . , T - L (4.2) 

or (ii) the variance of the final wealth, Var[XT] is minimized, subject to that the 

expected final wealth, E[XT], is not smaller than a given positive level e, 

P2(e) ： min Varf^T 

Subject to: E[XT] > e, 

T-

XT = XT - ^6{ut) . M, 

xt+i = nxt + P ju t ,力=0， . . . ,T - 1, (4.3) 

Clearly, when M is zero, problem Vi{a) or P2(e) reduces to the conventional 

multi-period mean-variance portfolio selection problem investigated in [43]. A 

large M , however, will prevent the investor from investing in risky assets in all 

time periods or even force the investor to deposit all his money into the risk-free 

asset for the entire time horizon. 

As E[ete[] = CovfeJ E[et]E[e[], it is reasonable to assume that E[ete[] y 0 

t = 0, T — 1, which further implies the following ([43 

^[PtP；] 0, t = 0，...，T — (4.4) 

and 

1 — E[P']E-^\Ft'Pf]E\Pt] > 0, t = 0 T - 1, 



Chapter 4. TCCMV Dynamic Portfolio Selection 75 

Let It be an information set available at time t and Xt-i C Tt for any t. A 

portfolio policy of problem Vi(a) or V2U) is a multi-period sequence, 

which, for ^ = 0, . . T — 

portfolio decision at period 

maps the information set at stage t, Jt, into a 

〜 1 

= 

細 

U? J I 雜 ） / 

(4.5) 

In the remaining of this chapter, we use 7r(.) to denote an optimal policy for 

problem (.). A multi-period portfolio policy, vr, is said to be efficient if there 

is no other multi-period portfolio policy, vr, such that E[XT]\-K > EIXTW-K and 

< Var(i:T)|7r with at least one strict inequality. The entire set of 

efficient multi-period portfolio policies can be generated by varying cr or e in 

problem Vi{a) or P2(e)，respectively. 

Problem formulations of Vi{a) and V2⑷ motivate us to study the follow-

ing time cardinality constrained multi-period mean-variance portfolio selection 

problems (TCCMV) for problem Pi(cr) and P2(e)，respectively, 

Ai{a, s) : max E[XT], 

Subject to:Var[a>r] < cr, 

T-L 

Xt+I = nxt + Pjut, t = 0,... ,T — (4.6) 

yjp. 

UT 

u 

= { u o ， u 

/
 、 
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and 

為(e，s): mill Var[a>r]， 

Subject to: E[XT] > e, 

T-L 

t=0 

XT+1 = r-TXT + P'tUt, t = , T - 1 , (4.7) 

where 5 G {0,1, • • • , T} is given. Different from the multi-period mean-variance 

formulation studied in [43], the time cardinality constrained problem imposes a 

limit on the number of time periods where investing in the risky assets is allowed. 

We use 'u(-) to denote the optimal value of problem (.). Note that the following 

fact is true. 

L e m m a 4.1. Given 5i, 52 G {0,1, • • • , T} and si < S2, it holds true that 

v{Ai{(t, Si)) < v{Aiia, S2)) and v(A2(e, Si)) > S2))-

Such results are evident from the fact that enlarging the feasible set never 

worsens the optimal value. Clearly, the optimal policies of problem Vi{a) 

and P2(e) can be obtained by identifying the best ŝ  G {0,1 • • • , T} and 

e {0, ! • • • ,T} as follows, 

:=arg max viAAa, s)) — s • M, 
se{o,-,T-I} 

:=arg mill v{A2{€ + 5 • M, 5)). 
se{0,…1} 

It is obvious that policy 7r(Ai(a, 5^)) solves problem Vi{a) and vr(為(e+s^.M, 52)) 

solves P2(e). Thus, deriving efficient solution procedures for time cardinality 

constrained portfolio selection problems Ai{a, s) and 為(e，s) plays a key role in 

solving multi-period portfolio selection problems with management fees, Vi{a) 

and P2(e). 

This chapter is organized as follows. We first present in Section 4.2 the ana-

lytical solutions of problems Vi{a) and P2(e)，respectively, and report then the 
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detailed derivation of these results in Section 4.3. We give some illustrative exam-

ples in Section 4.4 to demonstrate some prominent features of both the problem 

formulation and the analytical solution. Finally, we conclude this chapter in 

Section 4.5 with a suggestion of a future research topic. 

4.2. Analytical Solutions to Problems Vi{a) 

and V2{e) 

We state in this section the analytical optimal portfolio policies for both problems 

Vi{a) and P2(e). The detailed derivation of these results will be given in the next 

section. 

Define, for ^ = 0, . . T - 1, 

ct •=E[Pt] = E[et] — nln, 

Dt :=^[PtPj] = E[ete',] — + ^[ejl；) + rf i 

Ot :=1 - cjD-^c, 

-n-^n-

T-

It := 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

Let sequence {t i , t2, . . . , tr} be a permutation of {0, 

= 0 , . . T — 1, are arranged in an ascending order, 

For any s G {0, 

K<K<---< 0 IT , 

T}, define 

0
 2

 o
 

7
 7
 

\
—
/
 \—
/
 

1
 i
 

t
 t
 

T
x
 1

 T
x
 

/
—
\
 /

—
\
 

\
—
/
 \—
/
 

5
 5
 

/

 V

 /

 V
 

1
 2
 

p{s) :=i — T T 氏 

T - 1} such that Ot, t 

(4.12) 

(4.13) 

(4.14) 

(4.15) 
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Theorem 4.2. The optimal cardinality of problem VI{(T) is given by 

s* = arg max (Ui(s) — s . M). 

where 

Ui{s) - ^ Y ^ I ^ + ^oTo, forse{Or-- ,T}, (4.16) 

while the optimal portfolio policy ofVi{a) is given as follows: 

(i) Investment to risk assets is only carried out at time instants, t G 

,力2，• • • ，ts* }； 6.； 

1 if t = ti, i = 1,... ,s*, 
5(y；) = { 

0 otherwise. 

(ii) When 6{ut) = 1 

=—r丄 Tl~ ^ r^ nr.^ -I-Ut = f^tM = - n A ctxt + — ^ — — T ^ A Q： 

where 

M i - / ^ ⑷） 

Theorem 4.3. The optimal cardinality of problem P2(e) is given by 

_ f 0 ife < xojo, 

arg minse{i,-,T} Uiis) ife > â oTo, 
V 

where 

U2{s) := (e — xojo + s . - 1), /or s e 仏 . .、T }， 

(4.17) 

(4.18) 

while the optimal portfolio policy o/(P2(e)) is given as follows: 

(i) Investment to risk assets is only carried out at time instants, t G 

,力2，• • • ， tg* i -6 .， 

• 1 ift = ti, z = 1, • • • , 
： 

0 otherwise. 
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(ii) When 6{iLt) = 1, 

* 、 ^ f 1^2UJ2{S*MS*)XO \ 1 
(4.19) 

where 

^ 2 ( 5 ) ： = — ( 、 、 产 - l u v M s g {! , • • • 
2{l - p[s))[e - XQ-iQ ^ s • M) 

(4.20) 

The optimal multi-period portfolio policies for problems V\{(7) and P2(e) can 

be easily implemented by first computing the coefficients in (4.8)-(4.15) off-line 

and then executing the feedback investment policy on-line. Note that problem 

Pi(cr) or P2(e) may actually admit multiple optimal strategies and the results 

presented in this section specify a particular solution. 

Note that parameters, Ot, t = 0, . . T — 1, essentially measure the market 

conditions for different time periods. The optimal investment policies in both 

Theorems 4.2 and 4.3 indicate that these time periods with best market condi-

tions should be assigned priorities to seize (limited) investment opportunities. 

In this sense, the distribution of the cardinality is independent of the investor's 

wealth. On the other hand, at a time period where investment is allowed to carry 

out, the portfolio policy is an affine function of the investor's current wealth. 

4.3. Derivation of the Analytical Solutions 

As stated in Section 4.1, the solution to problem Vi(a) or P2(e) can be identified 

respectively from solving problem Ai{a, s) or 為(e，s) for different s. We thus 

focus first on the solutions of the time cardinality constrained portfolio selection 

problems. Obviously, when 5 = 0, investing in risky assets is not allowed for both 

problems, S) and 為(e，s). Thus, V{AI{(T^ 0)) = XQ^Q and ^;(為(6，0)) = 0 

when XQ^Q > e. Clearly, if â oTo < e, there is no solution to problem 為(e，0) 

and we simply let 0)) = +00 in this situation. In the following, we focus 

on the cases with s G {! , • • • , T}. To solve problem Ai{a, s) and 為(e，s)，we 



Chapter 4. TCCMV Dynamic Portfolio Selection 65 

consider the following problem H(UJ, S) with a; > 0, 

H ( U J , S) : m a x E[XT\ — UYDJ[XT 

Subject to: Xt+i = TtXt + P ju t ,力=0， . . . , T — 

T-L 

Due to the nonseparability of the variance term mentioned in [43], problem 

H{uj, s) is nonseparable in the sense of dynamic programming. To cope with 

such a difficulty, we adopt the same idea as in [43] by constructing the following 

auxiliary problem ^(A, u, s) corresponding to problem Tiiu, s) for a given s G 

^(A, 0；, s) : max E[—ujx^ + XXT], 

Subject to: Xt+i = rtXt + Pju^, ^ = 0, • • • , T — 

T-

t=o 

Note that problem ^(A, a;, s) is separable in the sense of dynamic programming. 

Using the same proofs for Theorems 1 and 2 in [43], we can have the following 

results which reveal the relationship between the solutions of problems H(UJ, S) 

and 乂(A, cj, s). 

Theorem 4.4. Let I\.[H{u, 5)] and n[^(A, u, 5)] be the solution sets of problems 

H(uj, s) and A{X, u, 5)； respectively. 

(a) For any TT* e U[H{UJ, 5)], vr* G n[^(A*,a;, s)] with A* = 1 + |兀*-

(h) Assume IT* G n[^(A*, o;, 5)]. A necessary condition for vr* G I\.[H{u, 5)] is 

A* = 1 + 2UE[XT\U-. 

Theorem 4.4 implies that the solution set of problem l~C{uj, s) is a subset of the 

solution set of problem ^(A, cj, s). Furthermore, it provides a necessary condition 

under which a solution of problem ^(A, UJ, S) constitutes an optimal solution of 
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problem H(uj, s). As mentioned in the proof of Theorem 2 in [43], we have an 

alternative way to identify A* with which 7T{A{X*,UJ, S)) solves 1-C{UJ, s). Substi-

tuting 7r(^(A, 0；, s)) into the objective function of l~C{u, s), v{Ti{u, s)) |兀(̂ 入̂,0；,8)) 

becomes a function of A only. If v{Ti{u, s)) \T:(A{X,LO,S)) is concave with respect to 

A, it is sufficient to show that 7T{A{X*,UJ, 5)) solves problem H(UJ, S) if 

A* = argmax^;(?i(a;,5)) |兀(̂ 入̂,0；,3)). 
A 

Thus, we will find out the solution to problem ^(A, u, s) first in the following 

and characterize then the solution of problem 1-C{uj, s). 

We introduce a nonnegative state variable 饥，力=0，…,T, which represents 

the remaining number of time periods in investing in risky assets and satisfies 

the following recursion, 

yt+i = 
yt — S(ut) yt > 1, 

0 otherwise. 

Note that the feasible set of 从，力=0，• • • , T, is given as 

Ft ：= {yt G {O,--- ,T}| max{0, s - t} < yt < s}. (4.21) 

One simple fact is that v{A{X, u, 5)) is a non-decreasing function of 5, which 

implies that the cardinality constraint will be binding at least one optimal solu-

tion of 乂(A, uj, s). In other words, at least one optimal solution of 乂(A, cj, s) will 

have its corresponding yT equal to zero. Define the following recursions, for any 

t = T - 1，• • • , 0 and ye Ft, 

:=OtTta^t+i, ) , i f 2/> 0, (4.22) 

: = r ) (4.23) 

f 
if and ^ > 0, 

: = < 邮，y) if and ^ > 0, (4.24) 

邮，y) if 2/ = 0, 

with a(T，y) = CJ for all y e Ft. 
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Lemma 4.5. Given Xt and y e Ft at stage t, the following policy is optimal for 

problem A(X,LO, S). (i) lfy = 0, 5{iLt) = 0. Otherwise, 

where ht := X/{2ujjt)-

(ii) When d(Ut)=: 

0 or 1 if Xt = ht or a^t,y) = 

1 if Xt + ht and a^t,y) < 

0 if Xt ^ ht and a^t,y) > &(t，y). 

W* = fil(xt) = -KtXt + bt 

(4.25) 

(4.26) 

where 

Kt :=nA—1Q， 

A 
-Dr'ct. 

Proof. We first define the value function of problem s) as 

(4.27) 

(4.28) 

Jt{xt, y) = max E \\xt — uxrj^\xt, y (4.29) 

for 力=0 , . . . , T — 1 and y G Ft. Due to the independence among Pjs, the value 

function satisfies the following recursive relation, 

Jt(xt,y) = max E [Jt+iinxt + Pju^, y - 6(ut)) \ Xt, y] (4.30) 

ut, y-S(ut)>0 

with the boundary condition JT{XT, y)=—⑴冉 + \XT for all y G FT. For 

convenience, let Jt{xt, y) = —oo for y 0 Ft. We use the mathematical induction 

method to prove the following claims. 

(i) The value function takes the following quadratic form for all ^ = T -

1, . . . , 0 and ^ e Ft, 

JtiXt, y) = + P{t,y)Xt + r](t,y)： (4.31) 

where the coefficient a 彻 ) i s defined in (4.24). 
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(ii) The maximizer (with respect to Xt) and the maximum value of the value 

function at time t, Jt{xt, y), are both independent of y. More specifically, we 

have 

A A2 
'4 •= a r g m a x = - ^ , Mx*t,y) = ^ r . (4-32) 

Xt za;7t 4uj 

Our mathematical induction starts at stage T with JT{XT, y) = —UJX'^ + \XT 

for all y G Ft- We simply define ：= a;, fi(T,y) '•= A and ？ : = 0. 

The maximum point of Jt{xt, u) is x^ = A/(2a;) with the corresponding value 

function given as Jr ix^, u) = A^/(4a;). 

Assume that both claims (i) and (ii) are true at stage t = k^l. We consider 

now stage t = k. If y e Fj. and y = 0, then 6{uk) = 0 and the value function 

becomes 

'M工k, 0) = - + P{k,0)Xk + 

where a(k,o) •= rla(k+i,o)J^{k,o) •= rkfiik+i,o),V{k,o) := V{k+i,o)- Together with the 

induction assumption, we can derive 

P{k,0) P{k+1,0) A 

碌,0) I f^{k+i,o) Â  
M4, 0) =V{k,o) + T — ^ = (̂̂ +1,0) + -

4«(A:,O) ^(^{k+1,0) 4a; 

If ^ > 0 and y e Fk, then the value function in (4.30) can be expressed as 

where 

Jk{^k,y) = max{Jk{xk, y), Jk{xk, y)}. 

Jkixk,y) •=Jk+i{rkXk,y), 

M工K，Y) •= sup V{xk,y,ut), 
Uk^O 

y, Ut) •=E[Jk+i{rkXk + P̂ ua；, y-l) 

(4.33) 

(4.34) 

Note that the value functions (4.33) and (4.34) are corresponding to 6{ut) = 0 

and 1, respectively. 
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From the induction assumption, the expression in (4.33) can be simplified to 

h{xk,y) = -a(^k,y)xl + f̂ {k,y)Xk + (4.35) 

where a^k,y) := a(k+i,y、rl, i^Ky) := := ”(k+i,y). We can verify that 

the maximizer and maximum value of Jk{xk,y) are 

； — — — A 
Jj u — — ， 

〒， - *、 - I 碌，y) I 

respectively. 

On the other hand, the expression in (4.34) can be written as, 

M工k，y) = sup V{xk,y,Uk), 

=sup E h a ( A ; + i ， y — + Pk^kY (4.36) 

+ P{k+l,y-l){rkXk + P'k^k) + "(“1,2/—1): 

= — + ,{k,y、Xk + , (4.37) 

where �y),台 (k ,y) and %，"）are given, respectively, by, 

=0^(k+l，y-iyr 抓, 

P{k,y) =P{k+l,y-l)'^ k^ki 

- ,^{k+hy-l) /i n \ 

There are two different cases in attaining the optimal value in (4.37). When 

丄k干^ 5 

y, Uk) achieves its maximum by taking 

ul = = + b̂；, (4.38) 
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where Kk and b̂ ^ are given in (4.27) and (4.28), respectively. Note that the ex-

pression of bjt is obtained by using the fact f i ( k + i , y - i ) / =入 / ( 2 0；7 ^：+1 ) 

from the induction assumption. When 

0、 
Xk = 

i.k+l,y-l) 

V{xk, y, Uk) does not have a maximum in its feasible region {uk | Uk 0}. The 

supremum of V{xk,y, Uk) is achieved at = 0 with 

sup V(Xk, y, Uk) = l i p V{Xk,y, U u ) = 明 1 ) + (左+1，权—1) 
Uk hfcll—0 \ .…'"“ '、."|”" ” 4a(k+l,y-l) 

Thus, no matter Xk = f i ^ k + i , y - i ) / h o l d s or not, the maximizer 

and maximum value of (4.37) have the following unified expressions, 

X] 
P{k,y) P{k+l,y-l) A 

Jk{xl,y) =r\k,y) + 
A 

4a ik,y) 
V{k+l,y-l) + 

{k+l,y-l) 

4« ik+l,y-l) Au 

respectively. One important fact is that both concave quadratic functions 

Jk{xk, y) and Jk{xk,y) share the same maximum point, as illustrated in Fig-

ure 4.1. Thus, for 力 = T — 1，... , 0 and y G Ft, whether Jk{xk,y) > Jki^kiV) or 

not, only depends on a comparison between â k.y) and d̂、k,y). We can conclude 

now that 

JkiXk,y) = ^ P{k,y)Xk ^ ri(^k,y), V ^ Fk, 

where 

P{k,y),V{k,y)) 

if xt = ht or = 

if Xt + ht and â k,y) < 

、 if Xt + ht and â k,y) > 

(4.39) 

Furthermore, the optimal policy is given in (4.26) when {oi{k,y)i = 

, f^{k,y), f}^k,y)). The proof is completed. • 
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h{xt,yt) 

Figure 4.1: The function of Jt{xt, yt) and Ut{xt) 

Clearly, at stage t and for any y G Ft, whether 6{ut) = 1 or 0 only depends on 

coefficient a 彻 w h i c h can be computed off-line using (4.39). Most interestingly, 

this result is almost a^t-independent, except that a freedom exists at Xt = ht 

to take either 6{ut) = 1 or 0. We emphasize here that Lemma 4.5 enables 

us to identify possibly multiple optimal portfolio policies for auxiliary problem 

^(A, 0；, 5), including solutions at which the time cardinality constraint is either 

binding or not. As we stated before, as v{A{X, CJ, S)) is a non-decreasing function 

of 5, the cardinality constraint will be binding for at least one optimal solution 

to ^(A, cj, s), i.e., the corresponding I/T is equal to zero. Based on Lemma 4.5, 

we will specify in the following the optimal investment policy of the auxiliary 

problem ^(A, a;, s) at which the time cardinality constraint is binding. 

Theorem 4.6. (Solution of problem A{X, U, s)) The following policy 
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'K{A{\, CJ, S)) is optimal for problem A{\, CJ, S)， 

e, 、 I 1 if t = ti, fori = 
S{ut)= 

0 if t ^ ti, fori = 
(4.40) 

where U is defined in (4-12), and the inmstment policy is given, when 6{iLt) = 1, 

as 

u； = fi;(xt) = -Ktxt + bu (4.41) 

where IQ and bt are defined in (4-27) and (4-28), respectively. 

Proof. From Lemma 4.5, we know that the optimal policy of problem 

^(A, 0；, s) is determined by calculation of oi{t,y)i V ^ 巧，from recursions (4.22), 

(4.23) and (4.24). Define G ) ⑴ : = { O T , ^T+I, • • • , OT-I}. A S we have already rec-

ognized that at least one optimal solution to ^(A, u, s) consumes all time cardi-

nality, we claim that one Oi{t,y) takes the following form, 

V aa y) = mill {Y\ 

where 6。、is the element of Q{t), for any y > 1, y e Ft and 力=0，... , T — 2. 

Note that «((，"）is computed in a backward fashion and the iteration stops at 

The above claim is now evident from a comparison between the recursions 

in (4.22) and (4.23): Ot G 6(0), is brought into the expression of a(o，s) only when 

cr(ut) = 1, which leads to a conclusion that whether Ot appears in the expression 

of «(o,s) or not indicates whether or not we should do the investment in risky 

assets at stage t. 

The above claim is proved by the induction method. When t = T — 2, from 

(4.22) and (4.23), «(t-2,i) and «(t-2,2) can be computed explicitly as, 

« (T-2 , I ) = ( M M { O T - I , 0T-2} )RT-IRT-2(^ , 
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We assume that the claim is true for t = k ^ 1. At stage t = k, for y e Fj. 

and y > l , (4.22), (4.23) and (4.24) imply that 

y y—1 1 

min< mill min { f f r^o;, 

y 

= min 
0(1)，…，0⑷ee⑷ 

Repeating this iterative process until k = 0 yields 

T-

«(o.) = min {TT 妒 ) } . ( ! ! ” ? ) (J. 

which completes the proof of Theorem 4.6. • 

Using Theorem 4.6 as a solution scheme does not generate solutions of 

^(A, 0；, 5) at which the cardinality constraint is not binding. Fortunately, the 

solution algorithms for VI{A) and P2(e) utilize the solution scheme specified in 

Theorem 4.6 for all 5 = 0, . . T . Thus, no solution will be missed in the solution 

process. 

Theorem 4.7. (Solution of problem H(UJ, S)) The optimal policy 

TT(A(\*(s), uj, s)) solves problem TI{u, s) with 

A * ⑷ = 
+ 2uj^i(s)xo 

1 - p{s) 
(4.42) 

the expected value and the variance of the terminal wealth under policy 7t{H{UJ, 5)) 

are given, respectively, by 

p{s) 
E[XT{UJ, S) 

Var[xT{uJ, s) 

'2uj{l-p{s)) 

p{s) 

+ â oTo, 

and the efficient frontier is expressed as 

(4.43) 

(4.44) 

Var[xT{uJ, s) 
-pjs) 

Pis) 
(E[XT{UJ, 5)] - a^o7o)2，for E[XT{UJ, 5)] > âoTo- (4.45) 



Chapter 4. TCCMV Dynamic Portfolio Selection 74 

Proof. Implied by Theorem 4.4, the optimal policy of problem H(UJ, S) takes 

the same form as vr(乂(A, a;, 5)), the policy for 乂(A, a;, s). Our target shifts now to 

identify an optimal A* such that 7r(^(A*, a;, s)) solves problem s). Substitut-

ing the optimal policy 7r*(^(A, a;, s)) specified in Theorem 4.6 into the dynamics 

of the wealth yields 

rtXt{\uj,s) iit = U,s<i<T, 

in — PtKt)xt{X, CO, s) + F'^ht ift = u,l<i<s, 

(4.46) 

where ti is defined in (4.12). Taking the expectation on both sides of (4.46) while 

noticing the independency between P^ and Xt, we have the following recursive 

expression for the expected wealth under the optimal policy 7T*{A{X, U, 5)), 

(4.47) 

E[xt+i{\u, s) 

rtE[xt{\, 5)] ii t = ti,s < i <T, 

rtetE[xt{\ u, 5)]A(1 - et)l{2u-it+i) iit = U,l<i<s. 

Similarly, squaring both sides of (4.46) yields, 

• 

u, s) ii t = ti, s < i < T, 

(rf - 2nP jK , + a;, 5) 

+ 2(n - P[KT)P[htXt{X, UJ, s) + H[PTP[HT ift = U,l<i<s. 

(4.48) 

Taking the expectation on both sides of (4.48) leads to the following recur-

sive expression for the second moment of wealth Xt under the optimal policy 

s) 

ift = ti,s<i<T, 

OtElx'tiX, uj, s)] + A2(l — ift = U,l<i<s. 
(4.49) 
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Solving both the recursive expressions in (4.47) and (4.49) gives rise to the first 

and second moments of the terminal wealth under the policy 7r(^(A, a;, 5)), 

到 a>r(A，a;，s)] = (4.50) 
ZUJ 

^[4(A,a;,5)] = + (4.51) 

where ^1(5), ^2(5) and p{s) are defined in (4.13), (4.14) and (4.15), respectively. 

Thus, the variance of the terminal wealth under the policy 7r(^(A, a;, s)) can be 

expressed as 

Var[a;T(A, a;, 5)] =E[x'^(X, uj, 5)] — (E[xt(X, uj, 5)])^ 

‘入 — ⑷）— ^ C l ⑷⑷工0 + ⑷—纹⑷ ) . 
2u uj 

(4.52) 

It is clear that the expected terminal wealth E[XT\ is an increasing linear function 

of A and the variance in (4.52) is a quadratic function of A. Thus, from (4.50) 

and (4.52), the objective function of Ti{u, s) under policy 7r(^(A, u, s)) can be 

written as, 

( ) 
[p (s) - p{s)] + A [ — + ^i{s)p{s)xo] 

+ — ujxl iUs) — (4.53) 

The expression of p{s) in (4.15) implies that 0 < p < 1 and {p^ — p) < 0, which in 

turn implies that v{A{\, CJ, S)) is quadratic concave function of A. Differentiating 

(4.53) with respect to A yields, 

勢 , 劝 I 尋 ， - ) ) = - . ( . ) ) + + 胁 W * 。 ) . ( 4 . 5 4 ) 
dX 2uj 2uj 

The optimal X*{s) given in (4.42) is obtained then by solving 啼—))，(入’"’•^))= 

0. Substituting A*(s) into the optimal policy 7r(^(A, u, s)) and the expressions 

in (4.50) and (4.52) gives rise to the optimal policy of problem l~C{u, s) and the 

efficient pair of the expected value and the variance of the terminal wealth given 

in (4.43) and (4.44), respectively. Note that the relationships 

副 2 
I

I
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and 

胁 ） 
= 7 0 

1 - p{s) 

are used in the above derivation. The efficient frontier is achieved by eliminating 

uj from (4.43) and (4.44). • 

Theorem 4.8. (Solution of problems Ai{a, s) and s)) For any 

5 G {1, • • • , T}, policies 7r{H{uJi, s)) and 7T{H{UJ2, S)) solve respectively problems 

Ai{a, s) and 乂2(e，s) with e > XQJQ, where uji and U2 are, respectively, the non-

negative roots of the following equations, 

Var[xT{uJi, s)] =cr, (4.55) 

E[xT{i02,s)] =e. (4.56) 

Furthermore, the optimal values of problem Ai{uj, s) and A2{uJ, s) are given, 

respectively, by 

v{Ai{UJ, s)) =E[XT{UJI,S)], 

v(A2i(jJ,劝=Var[xT{uJ2, s)'. 

When e < âoTo； the optimal policy of problem 乂2(e，s) is 6{iLt) = 0 for t = 

0，...，T — 1 with u(A2(e, s)) = 0. 

Proof. For any fixed s G {! , • • • , T}, we introduce Lagrangian multiplier 

0； > 0 for problem Ai{a, s), 

C{a, UJ, s) max E[XT] + (^{(J — VARFA^T]), 

T-L 

Subject to : ^ ^{ut) < 5, 

t=o 

Xt+i = nxt + P ju t ,力=0， . . . ,T - 1. 

By weak duality, it is clear that V{JC.{(7, UJ, S)) > V(AI((J, S)). On the other hand, 

note that solving problem C{a, u, s) is equivalent to solving problem Ti{u, s), 

since a and UJ are both constants. Thus, policy 7T{H{UJ, 5)) also solves problem 
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£(cr, uj, s). Under the optimal policy 7r(H(uJ, s)), the expected value and the vari-

ance, E[XT(UJ, 5)] and Var[a>r(̂ ^，s)]，are given in (4.43) and (4.44), respectively. 

The strong duality, v ( £ ( A , UJ, S)) = V(AI((J, S)) holds once the feasible condition 

Var[a>r(的 s)] = cr is satisfied. The existence of an optimal u is guaranteed for 

all cr > 0, as evidenced from the expression in (4.44). Once uji solves equation 

Var[a>r(a;，5)] = cr, v(Ai(a, sj) = (叫 s). 

When e > CCQJO, the similar argument also applies for problem 為(e，5). When 

e < OJOJO, the constraint E[XT\ > e will, however, not be binding. Clearly, 

solution TT* := {^(ut) = 0, ̂  = 0, • • • , T — 1} achieves optimality in this situation 

as EIXTWIT* = IQXQ > e and Var[a>r]|7r* = 0. • 

Proof of Theorems 4.2 and 4.3. Clearly, the optimality of problem Pi(cr) 

is attained by policy 7r*(^i(cr, sD) with 

si := arg max v(Ai(a, s}) — s • M, 
se{o,…乃 

where V(AI((J, S)) is expressed as in (4.16), and, from Theorems 4.7 and 4.8, 

problem Ai{a, s) is solved by policy 7r{H{uJi, s)) with uji being given in (4.17). 

Similarly, the optimal policy of problem P2(e) is supplied by vr(乂2(e + 52 -M, s幻） 

with 

I argmin^eii,- ,T} + 5 • M, s)) if e > XQJO, 

52 := < 
0 if e < Xojo, 

V 

where v{A2{€ + s • M, 5)) is expressed as in (4.18) and, from Theorem 4.7 and 

4.8, problem 乂2(e + 5 • M, 5) is solved by policy 7r(7-̂ (a;2, s)) with uj2 being given 

in (4.20). • 
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4.4. Illustrative Examples 

Example 4.1. An investor with initial wealth of XQ = 100 units enters a market 

consisting of 4 risky assets and one risk-free asset during a time horizon of 6 

consecutive time periods. The management fee for each time period is M = 0.5. 

The expected return and the covariance of the risky assets for these 6 time periods 

are predicted, respectively, as, 

^[eo]' = (1.049, 

到 e2]' = (1.064, 

= (1.058, 

and 

Cov[eol = 10—3 X 

1.038, 1.055, 1.032), ^[ei] ' = (1.046, 

1.039, 1.055, 1.052), Ele^]' = (1.056, 

1.043, 1.032, 1.036), Ele^]' = (1.056, 

038, 1.060, 1.050) 

039, 1.039, 1.043) 

048, 1.030, 1.034) 

Cov[e2l = 10—3 X 

Cov[e4l = 10—3 X 
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The returns of the risk-free asset at different time periods are r。= 1.015, ri = 

1.015, r2 = 1.020, rs = 1.030, n = 1.025, r^ = 1.025. The investor considers 

portfolio selection problem Pi(30), i.e., to maximize his expected terminal wealth 

with a constraint that the variance of his terminal wealth does not exceed 30. 



Chapter 4. TCCMV Dynamic Portfolio Selection 79 

s p Ui{s) s-M Ui{s)-s-M 

0 0 113.714 0 113.714 

1 0.077 115.297 0.5 114.797 

2 0.145 115.974 1.0 114.974 

3* 0.205 116.499 1.5 114.999 

4 0.257 116.938 2.0 114.938 

5 0.303 117.329 2.5 114.829 

6 0.324 117.510 3.0 114.510 

Table 4.1: Computational results of Example 4. 

It can be verified that OQ = 0.9378, Oi = 0.9259, O2 = 0.9230, O3 = 0.9699, 

= 0.9347 and O5 = 0.9299. The solution to this example problem generated 

from implementing Theorem 4.2 is presented in Table 4.1, while the optimal 

cardinality is 5* = 3. 

The optimal investment strategy is given as follows with the maximum ex-

pected return of XQ achieved at 116.499, uq = 0, 113 = 0, U4 = 0, 

-0.397 ‘ 45.089 -0.890 ‘ 102.600 

0.939 -106.666 1.219 -140.565 
Ul = âo + ,U2 = X2 + 

-1.319 149.836 -1.194 137.716 

乂 -0.717 ) 、 8 1 . 4 5 8 ) 乂 -0.653 ) 、75.339 

丨-1.353 ^ 丨 168.000、 

-2.203 273.489 
U5 = + 

2.230 -276.845 

, 0 . 9 5 2 ； ,-118.149 

Example 4.2. We still use the same data as in Example 4.1 and vary now 

the value of a to trace out the efficient frontier of the terminal wealth XQ. See 

Figure 4.2. Note that when M = 0 the efficient frontier is a straight line, which 

is identical to the efficient frontier presented in [43]. When M > 0, such a 

line is twisted because of the management fee M. Given the same risk level, 
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me] 

Figure 4.2: The efficient frontiers of XQ 

i.e., the same upper bound of the variance cr, the expected return decreases 

when the management fee increases. In Figure 4.3, we consider a pure TCCMV 

problem of Example 4.1 and different efficient frontiers are showed for different 

s G {! ,••• , 6}. The slopes of these lines are computed using (4.45) in Theorem 

4.7. 

Remark 4.1. In real implementation, we may adopt the following rolling horizon 

strategy. For a given T-period problem, if the optimal policy at time 0 advices 

you to invest in the first I periods, you follow. Otherwise, the market situation is 

not good enough for you to plunge into at time 0, you wait, perform the analysis 

of a (T — l)-period problem at time t = 1 with updated information, and decide 

accordingly. In summary, when you reevaluate your investment strategy at time 

t，you should invest at time t for a time horizon of I periods, only if the analytical 

solution of the remaining (T —力)-period problem suggests you to invest in the 

first I periods starting from time t and advices you not to invest in the (/ + l)th 
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me] Z 

Figure 4.3: The efficient frontier of XQ for different s 

period starting from time t. 

4.5. Conclusion 

Motivated by a common observation from financial markets: The set-up type of 

management fees in asset management often induces situations where investors 

do not invest in risky assets in all time periods, we have presented an analytical 

solution approach for the time cardinality constrained mean-variance dynamic 

portfolio selection problem (TCCMV) and the dynamic mean-variance portfolio 

selection problem with management fees. Interestingly, the analytical solution of 

(TCCMV) reveals that the best distribution of the cardinality of the investment 

time periods is entirely decided by the market parameter 氏.Varying the cardi-

nality 5, the solution of the dynamic mean-variance portfolio selection problem 

with management fees can be generated. 
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One interesting future research topic is to investigate a portfolio selection 

problem where investment policies are confined to be buy-and-hold policies and 

a management fee will be charged only when policy is recalculated. 



CHAPTER 5 

O N GEOMETR IC APPROACH OF 

SOLVING C C Q O 

5.1. Introduction 

5.1.1. Problem Formulation 

In this chapter, we consider exact solution approaches for the following cardinal-

ity constrained quadratic optimization problem (CCQO), 

Qs{D, d) : mill j\x) = \u'Du + d'u, 
u 2 

Subject to: u e A(5) := e M^ I < 5 < t | , (5.1) 

where u' := • • • , Mt), (i G M^ and D G The cardinality constraint 

(5.1) is also known as the Lq norm constraint, i.e., |sign(M )̂| < s. However, 

we still prefer the notation to make a consistency with the previous chapters. 

To ensure that v(Qs(D, d)) > —oo, we assume the following condition for 

problem Qs{D, d). 

Assumption 5.1. [4] There exists u G M^such that Du + d = 0. 

Clearly, problem Qs{D, d) is NP-hard in general. This can be seen from the 

83 
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basic reduction method [29] [21]. We construct the following problem, 

mm u - 1T\\1 + \\Au\\l I u e A(s) 

where A G MJ^^ and I < T. Any instance of problem Qg is polynomially reducible 

to an instance of problem Qs{D, d). That is to say, problem Qs is no more difficult 

than Qs{D, d). Since u G A(5), minimizing the first term of Qs enforces Ui taking 

either 0 or 1 for z = 1, • • • , T. More specifically, at least T—s of Ui are zero. Thus, 

the optimal value of problem Qs is lower bounded, i.e., v{Qs) > T — s. Answering 

the question "whether equality v{Qs) = T — s holds or not" turns out to find 

the integer (binary) solution of linear systems Au = 0 such that u G {0,1}^ and 

J2i=i Ui S s which is a well known NP-complete decision problem [29 . 

Although problem Qs{D, d) is generally hard to solve, it becomes an easy 

problem when the rank of matrix D is low. 

Lemma 5.1. If rank{D) = r with r < s, then v{Qs{D, d)) = —、d'D、d. 

Proof. Under the assumption (5.1), problem Qs{D, d) is lower bounded, i.e., 

v{Qs{D, d)) > —^d'D^d. The equality holds when u* solves the equation Du* + 

d = 0. Note that any u* G {u\Du + d = 0} can be expressed as u* = j^fji C-Jh — 

D、d, where hi, i = 1，... , T—r, span the null space of D. Note that u G A(s) if at 

least T — s elements of u are zeros. Thus, when r < 5, it holds that T — r > T — s 

and we can always find some C*, for z = 1, • • • , T — r such that T — r elements 

of u* are zero and hence u* e A(s). • 

In the following, we mainly consider the case where rank(D) = T. Without 

loss of generality, we also assume that the eigenvalues of D are arranged in an 

ascending order, 

0 < Af g A? : .. g A T (5.2) 

Furthermore, let 

:=D-^d and C := --I'd. 
2 

(5.3) 



T 

For any G ^(5), the notation A[z*\ G S “ denotes the principle sub matrix of 

A constructed according to z*, i.e., the z-th row and column are taken from A to 

construct A[z*] when z* = 1. Similarly, b[z*] G W denotes the truncated vector 

of b according to 

Lemma 5.2. Given A e and b e R^, {{ZAZyb)[z] = A[z]-^b[z] and 

b'{ZAZyb = b[z]'A[z]-^b[z], where Z := diag{z} and z e Z{s). 

Proof. This lemma is obvious based on the property of the pseudo-inverse: 

If Ai y 0, then 
0 1 乂 r 0 

, 0 0 J , 0 0 ； 

• 

The cardinality constraint (5.1) indicates the total possible number of the 

sparsity to be J2i=i ^t- Clearly, enumerating all the sparsities yields the solution 

of Qs{D, d), i.e., finding 

= argmin { d[z\'{D[z\)~^d[z\Y (5.4) 

where Z = U = i , . . . T h e n , u* = (Z*DZ*yb solves problem Qs{D,d), where 

Z* = diag{^*}. Under the Assumption D y the following fact is true. 

Lemma 5.3. The solution of problem Qs{D, d) can be found by identifying 

1 
z* = arg min { — -d[zy(D[z])~^d[z]}. 

zez(s) 2 

(5.5) 

and {Z*DZ*yb solves problem Qs{D, d), where Z* = diag{z*}. 

Proof . Let u* be the optimal solution of problem Qs{D, d). If KK) = s， 

then the lemma is true. We only need to consider the case where H O = 

5 < 5. From (5.4), we know u* = {Z*DZ*yd with 之* e Z{s) and 

-d[z*'\{D[z*])-^d[z\ < -d[z'\{D[z\)-^d[zl M z e Z(s) (5.6) 
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In this chapter, we use the following notions. Let A G 6 G M^ and 

z G Z(s)，where 

T
h
J
 

5
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_ _ D[z*] Di2 
On the other hand, there exists 乏 G Z{s), such that D[z] = _ _ 

y D'12 D22 

Note that the basic property of a partitioned matrix and the assumption of D y 0 

imply 

d2 I 

D 

D 

DI2 

D 22 

di 

\ d2 / 
<-d\D (5.7) 

Thus, 

mill {--d[zy(D[z])-^d[z]} < min {--d\z\'iD\z\)-H\z\} 

In conclusion, there exists 乏 G ^(5), such that d[z]'D[z] d[z 

d[z*]'D[z*]-^d[z*] and u* = {ZDZyd with 2 = diag(乏). • 

Lemma 5.3 suggests a C} enumeration method in solving problem Qs{D, d). 

Assumpt ion 5.2. We assume that I 0 A(s). 

The above assumption rules out the degenerate cases. Since if I G A(s) then 

I solves problem Qs{D, d) and optimal value is C. 

5.1.2. Literature Review 

The quadratic optimization problems involving a cardinality constraint have been 

studied in many literatures. In [11], the author considers such a problem with 

polyhedra constraints Au < b and upper-lower bound constraints of u, i.e., 0 < 

u < lb. To deal with the cardinality constraint (5.1), the author proposes to use 

surrogate constraint ^ 5. Furthermore, they consider an algorithm 

of a branch and bound type. Following this line, recently, Bertsimas and Shioda 

consider the exact solution approach of such a kind of problem in [9]. Unlike 

11], the author construct the lower bound in [9] by ignoring the cardinality 

constraint (5.1) and the resulting relaxation problem becomes a convex quadratic 

programming problem. Such a relaxation leads to a form ready for the Lemek's 
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pivoting method, which is the "simplex"-type of method to solve the quadratic 

programming and linear complementary problems. While integrating such a 

bounding method to branch and bound algorithm, the "warm-start" strategy 

is achieved at each step, which accelerates the whole algorithm. In [18], the 

author considers the mean-variance portfolio selection problem with a cardinality 

constraint and uses a heuristic method, i.e., genetic search, tabu search to solve 

such a problem. Blog [12] also proposes a dynamic programming heuristic to 

solve such a portfolio selection problem in his early work. Xie, He and Zhang 

adopt a randomized algorithm to solve such a mean-variance investment problem 

with cardinality constraint in [80]. In [22], Li, Sun and Wang proposed efficient 

numerical solution approach to find the optimal lot solution of such a portfolio 

selection problem with cardinality constraint. 

It is also worth mentioning the recent progress on the sparse signal recon-

struction via Li norm. The problem of sparse signal reconstruction can be stated 

as following. Given y eW and A G find uj* that solves one of the following 

types of questions, 

(maximum likehood) min {\\Auj — y\\l | ||a;||o < k}, 

(minium sparsity) min {||a;||o| y = Au}, 

where p « m and k < p. One of the heuristic methods of solving above 

problems is to replace the Lq norm by the Li norm, which generates a convex 

optimization problem. It has been proved in [26] and [15] that under some con-

ditions (e.g., the condition CS1-CS3 in [26]) the Li norm heuristic also solves the 

minimum sparsity problem with overwhelming probability. Note that problem 

Qs{D, d) is different from the maximum likehood reconstruction problem, since 

matrix D is of full rank. 
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5.1.3. Mean-Variance Portfolio Selection with 

Transaction Cost 

One direct application of problem Qs{D, d) is the mean-variance portfolio se-

lection model with a cardinality constraint on the total number of risk-assets 

selection. Different from [12] and [18], we assume that the short selling is al-

lowed. Suppose that there are one risk-free asset with return r； and T risky 

assets with random return X,i, with known expected values and covariance, 

Ti = E{Xi), and cr 幻.=Cov(Xi, Xj),、j = 1，... ,T. 

Let Ui be the liquid share of z-th security. The investor enters the market with 

initial wealth WQ and seeks the optimal portfolio u' := (Ui, • • • , ut) on the T 

risky assets and Uf G M on the risk-free asset. Let the current price of each 

liquid share of security be a .̂ Initially, the wealth balance is 

Wq = Uf ^ a'u, 

where A! := (ai, • • • , CLT). At the end of investment period, the return of the 

holding security is the random term Rp := 以<义厂 The mean and variance 

of Rp are, respectively, 

-T 

^UiXi 
J=i 

_ T 

^UiXi 

E{Rp) =E 

Var ( i y =Var 

r u’ 

=u'YjU, 

where r' := (ri, • • • , ry) and S := {(7ij}\Jj=i- Let the transaction cost be a 

positive constant M . Then, the total expected return of the portfolio is 

T 

r'u + rfUf — M ^ 
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Given a desire level of return f, investor is seeking the minimum variance solution 

of following problem, 

Vmv '• min m'Sm, 
U,Uf 

T 

Subject to: r'u + rfUf — M ^ S{ui) = f 

i=l 

a'u + Uf = WQ. 

To solve problem Vmv, we construct the auxiliary problem, 

Vmv{s) : min U'YJU, 
11,11 F 

Subject to: r'u + rfUf — Ms = f , 

a'u + Uf = WQ, 

u e A(s). 

The solution of problem Vmv can be identified by finding the optimal cardinality 

s* := arg miji 腳（s))). 

The optimal solution of problem Vmv{s*) also solves problem Vmv 

Theorem 5.4. If u* solves problem Vmv{s) and it* solves the following problem, 

Vmv{s) ： min { u'Tm + a'u | u G A(5) }, 

where a := r — rfCi, then u* and u* have the same sparsity and u* = pu* with 

peR. 

Proof. Clearly, problem Vmv{s) can be solved by enumerating ^ t spar-

sity patterns. In particular, we can solve problem P測(s) explicitly for any given 

z G Z(s) by considering the following truncated problem, 

Vmv{s, z) : min \ 之]‘；̂̂之]以j之丨 | T̂ Ẑ],以̂之丨 + ^^^^ = f + Ms, afz],以j之丨 + = V̂ /g ^ 
u\z] I J 
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As S[之]>-0, problem P誦(s, z) is a standard convex problem. Note that if 

r[z] — rfa[z] = 0, problem Vmv{s, z) is infeasible. We simply let v{Vmv{s, z))= 

+00 under this case. When a 0, the solution of problem P誦[s, z) is u 

is 

v{Vmy{s,z))= 

with p := {Ms + f — rfWo)/{a[z]'^[z]~ a[z]) and the optimal value 

‘{Ms + f - rfWo)y{a[z]'J:[z]-^a[z]) if a 0, 

+00 if a = 0. 
(5.8) 

The expression of v{Vmv{s, z)) in (5.8) reveals that finding the optimal z* G Z{s) 

of problem Vmv{s) is equivalent to maximizing a[z]'^[z]~'^a[z]. Thus, the optimal 

can be identified as 

z* = duTgminviVmvis, z)) = arg maxaf^l'Sf^l" a\z 
zeZ zeZ 

arg mm —a 
zeZ 

(5.9) 

Then, the optimal solution of problem Vmv{s) is u* = p*^[z*]~'^a[z*] with p* := 

{Ms*^f—rfWo)/{a[z*]'^[z*]~'^a[z*]). On the other hand, from (5.5), the optimal 

sparsity of problem P測(s) can also be specified by (5.9) with optimal solution 

being u* = {Z*YjZ*ya. Comparing the optimal solution of problem P誦(s) and 

Vmv{s), we have u* = p*u* which completes the proof of the theorem. • 

Although problem Vmv{s) involves both equality constraints and cardinality 

constraint, from Theorem 5.4, we can solve it by considering a CCQO problem 

Vrnv{s)̂  in which only cardinality constraint is included. 

5.2. Lower Bounding Schemes 

The branch-and-bound(BnB) type of algorithms is ready to be used in solving 

problem Qs{D^ d) exactly. The main framework of using a BnB algorithm to solve 

problem Qs{D, d) is similar to our previous work [42]. As a tight and cheap bound 

plays a key role in such an algorithm, we focus in the following on constructing 

efficient lower bounds of problem Qs{D, d). 
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For any P G and p G M^, we denote following ellipsoid in M^ as 

S{P,p,p、：= { y e R ^ \ {y + pyP{y + p ) < p } ^ (5.10) 

where p > 0. Clearly, the objective contour of Qs{D, d) is an ellipsoid in M^ 

space, for any T >C, 

S{D,1,P{T)) :={U e M^ I f{U) < T} 

={u e M^l (u + l)'D{u + /) < 2r - 2C}, 

where P(T) := 2r — 2C. Geometrically, minimizing F(U) under the constraint 

(5.1) is equivalent to find the minimum ellipsoid that touches the set A(s)，i.e., 

Qs{D, d) : mill r, 

Subject to: u e 8{D,/, P{T)), (5.11) 

u e A(s). 

For a vector y G M^, we define a corresponding vector 0{y) G M^ with 

[0i[y),02[y),...，(h、yyy being a permutation of y' = (2/1,2/2, • • • , VT) and 0i(y) 

< 02{y) ••• < Oriy). 

Ignoring the cardinality constraint (5.1) in problem Qs{D, d) generates the 

trivial lower bound, v{Vcont) = C. Regarding v{Vcont) as benchmark, we are 

interested in finding a lower bound J with J > v{Vcont) in the worst case. 

5.2.1. Lower Bound via Hyper-box 

In this Section, we use the hyper-box to construct the lower bound of problem 

Qs{D, d). Define the hyper-box by two vectors v eR^ and i) G M^, 

V’ 叫： = { i / e ^ T I S从 S以” < =1，...， 

where Vi are i!}i are the z-th component of v, and 以，respectively. The following 

Lemma is true [45 . 
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Lemma 5.5. The circumscribed hyper-box of ellipsoid /, P{T)) is given by 

'V{T)/&{T)] := e RT I ” (R) <Y< where 

v{r) = — I — \/p{r) i;ec{Y^}， 

and vec{\^i} : = ( a /S^ ... \/Dt ) with Di being the i-th compo-

nent of the diagonal of 

The above explicit expression of such a circumscribed hyper-rectangle moti-

vates us to relax the original problem, Qs{D, d) : min^ {r | m G /, P{T)), U G 

A(5)} to min^ {r | V{T) <U< {T), U G A(5)}, which can be expressed in the 

following form, 

T>BOX • mill T 

Subject t o : (叫 t It)么 p(^T、, t = l,... ,T, (5.12) 

A 

u e A{s). 

Clearly, since the feasible region is enlarged, we have v{Vbox) < v{Qs{D, d)). 

Furthermore, problem T>box can be solved explicitly. 

Theorem 5.6. The optimal value of problem V^ox is i^(T>box) = + C, 

where G :=(仇，• • • , QT) and Qt := {lt)^/Dt. 

Proof. When Uf = 0, the constraints indexed by t in (5.12) give rise (ky/Dt < 

p{t) = 2T — 2C. Thus, the minimum r corresponding to this set of inequalities is 

the maximum among ^{It)'^/Dt + C, for z = 1, • • • , T. The cardinality constraint 

(5.1) sets at least (T — s) UtS equal to 0. Thus, the minimum of r is the (5+ l)st 

largest of 全⑷ V A + C among alH = 1，...，T. • 

Remark 5.1. Clearly, v{Vbox) > v{Vcont) and the improvement is 0S+I{q)/2 

when compared with T>cont, Under Assumption 5.2, the (s+l)-th largest of is 

not zero. Thus, viVbox) > v{Vcont)- Computation of V ôx only involves inverse 
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calculation of du {k x k) matrix with k < T {in iterations of BnB algorithm, 

the dimension of the matrix is reduced), which can be completed in at most 

0{k^) time. The computational efforts can be further reduced by adopting a 

"warm-start" strategy, e.g., if an inverse matrix is stored at a parent node, the 

inverse matrices at its children nodes can be computed by directly modifying the 

correspondent columns and rows of such a matrix at the parent node. Such a 

strategy greatly speeds up the branch and bound procedure, as evidenced from 

our numerical experiments. 

Besides the way of constructing a lower bound V^ox directly from the min-

imum circumscribed box of /, p{r)), we could use such a box to estimate 

the upper and lower bound of each Ui. Furthermore, we could use the idea of 

surrogation to relax the cardinality constraint (5.1). Suppose that an incumbent 

f{u) is known, then the optimal solution of problem Qs{D, d) is in the ellipsoid 

u e S(D,/, 2f{u) - 2C). Denote the circumscribed box of S(D, /, 2f{u) - 2C) 

as , which imposes bounds on each Ui, v* < Ui < for % = 1, • • • , T. 

Define the following index set for w G {—1, 0,1}, 

: = { i \ sign{vt) . sign(^*) = tu，for < = 1，...，T} [ {1，...，T}， 

Let u* = - • • , u^y be the optimal solution of problem Qs{D, d). As u* G 

, there exist different cases. 

• If sign(t;*) . sign(以2*) = 1, then u* will not be zero. 

• If sign(t;*) . sign(以2*) = —1, then u* could be zero. 

• If sign(t;*) . s i g n (以= 0, then either v* = 0 or = 0 is zero. If v* = 0 

and m = 0, then u* = 0. 
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Thus, we can consider the following relaxed problem, 

V surgt min、u ,]Ju + cfu, 

Subject to: 

iGK(-l) ieK(O) 

V* <Ui< i}*, for z = 1. 

where gl(-) : M ^ M and gf(-) : M ^ M, in particular, 

oliy) + 监， 

T, 

(5.13) 

(5.14) 

oKv):= 

(5.15) 

(5.16) 

仗* v：-

v i n if < = 0, 

v N l if n = 0, 

and y+ := max{^, 0}, y— := min{^, 0}. Since g}{ui) < |sign(M )̂| and gf{ui) < 

sign(m^)I, (5.13) is a relaxation of the cardinality constraint (5.1). Indeed, the 

constraints (5.13) and (5.14) define a polyhedra and problem Vgurgt turns out 

to be a convex quadratic programming problem. However, explicitly writing out 

such polyhedron constraints is not cheap, e.g., if T = 3, |k(1)| = 0, |k(0)| = 0, 

1) = 3, constraint (5.13) is unfolded as 

Ui 
< S 

Ul W3 
< t 

Ul 

n 
< S 卜两- < t 

’，以！ i—r “ 卜两 

Ui 
< s 

Ul 
< S 

Ul i h ， h ， < s 
7；* ” 2 n 

< S 1 r 
” 3 

Ui 
L柳 < s L他 < 6 + "T -H — 

” 3 

< s ) ？k H — -L 
H — 

” 3 

< 6 

The number of constraints are in the order of i)l)，which is usually very 

large. Historically, quadratic minimization problem with Li norm constraint 

has been known as Least Absolute Selection and Shrinkage Operator problem 

(LASSO) [76] and several algorithms have been designed, e.g., based on active 

set methods, [63] [76] and based on interior point methods [19 . 

To lower the computational burden, we do further relaxation of problem 
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V .、、 ！/ 

V 、 y 
/ 

Figure 5.1: Box and surrogate constraints in case of T = 2 

Vsurgt by considering the following problem for given /c > 0, 

Vsurgt '• mill ^u'Du + d'u 

iGK(-l) iGK(O) 

Subject to: V* < U I < i}*, for i = T. 

Note that constraint (5.13) is actually Ci norm constraint, i.e., for a < 0 and 

6 > 0, we have 

a b 2 

,1 1、 A 1、 
+ - 2/ + T - -)y 

0 a 0 a 

leading to gl{ui) = Hi\ui\ + hiUi with 

Hi .= I � . = 
Vi 分i Vi 分i 

Thus, problem Vsurgt is readily reformulated as a second-order cone programming 

problem [13 . 

Remark 5.2. From Theorem 5.6, we can see that v{Vbox) > v{Vcont), Under 

Assumption 5.2, the inequality is always held. However, it is not guaranteed that 

V(Vsurgt) > v{Vcont)- When I is a feasible point of constraints (5.13) and (5.14), 

V(Vsurgt) = v{Vcont)- See ail illustrative example in M^ in Figure 5.1. 
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5.2.2. Lower Bound via Axis-aligned Ellipsoid 

To identify a computable lower bound, we approximate problem Qs{D, d) by 

considering a special class of problems Qs{H, 

: mill |/( i i ) ：= Hu + fiu + i\ue A (5 )| , (5.17) 

where H G h G M^, ^ G M and {H, h} is of a special structure such that 

problem Qs{H, h, can be efficiently solved in polynomial time. Define a class 

of (T X T) diagonal matrices by 

A ：= diag{Ai, A2，... , At}, 

where At > 0, for ^ = 1, • • • , T. We now consider a class of problem 么(A, A/, 

and develop a solution scheme to identify the optimal member within this class 

that best bounds Qs{D, d) from below in the sense of minimizing the duality gap. 

Once A is given, problem ^^(A, M,^ ) can be solved explicitly. 

L e m m a 5.7. The optimal value of problem ^^(A, Al,^) is ^ ^jiv) — + 

C； where r] := {r]i, • • • ,r]T) and r]t ：= /or 力=1，... . 

Proof. To minimize f{u) = \ + kY —全Z'AZ + the objective 

function of ̂ ^(A, A/, under the cardinality constraint in (5.1), the best strategy 

is to distribute the cardinality to s controls according to the s largest rjt, such 

that the s corresponding terms of Xtiui + kY are set to 0. The lemma then 

follows. • 

Given incumbent u, better feasible solutions must be within the bounded 

region (u + t)'D{u + /) < 2f{u) — I'd. Thus, theoretically, we only need to 

consider a bounded region, (u + t)'D{u + I) < u, with uj = 2f{u) — I'd, within 
八 八 1 

which the objective function of ^^(A, Al,^), f{u) = ^u'Au + (AT)'u + bounds 

the objective function of Qs{D, d), f{u) = ^u'Du + d'u, from below. However, 

when we minimize ^^(A, A/, using Lemma 5.7, we do not take into account 

constraint {u + l)'D{u + I) < u. From the properties of any optimal solution 
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(assumed to be u) of we have {u + iyD{u + /) < I'Dl < 

where A^ is the maximum eigenvalue of D. Thus, in our real implementation, 

we set uj equal to A^ ||/|p. 

L e m m a 5.8. The condition that f{u) < f{u) for all u G {m G M^ | + + 

I) < 0；} is satisfied if and only if there exists /i > 0 such that 

0 

0 

G - i - ujfi 
(5.18) 

where ^ ：= ̂  — \l'M and ^o := —\l'd. 

Proof. Note that f{u)-f{u) = ^(m + - A)(m + /) + ̂ o - C- Let z := u + l 

and define the following set of feasible (A, such that f(u) — f(u) > 0 in the 

region of {u + l)'D{u + 1) <u, 

Hi := |(A,C) I + \J z: z'Dz < a;| . (5.19) 

We claim that Hi is equivalent to the following set, 

n2 ：= I (A, 0 I \z\D - k)z + (Co - e V > 0, V r : z'Dz < . (5.20) 

For any (A,^) G 112, we also have (A,^) G Ui by letting r = 1. Thus, n? C Hi. 

A -__ o 

Next we consider any (A*, G Hi. Letting i := zr gives rise zDz < r co and 

lz\D — A*)z + — d = lr'z\D — A*)z + 丁、— 0 > 0. (5.21) 

Thus, (A* , f ) e U2 and Hi C U2. 

y' 

Let y' := {z', T) and apply tS-Lemma [64] to set 112, we conclude that 

^ ^ { D - A ) 0 \ 

/ \ 0 Co-e 

exists a /i > 0 such that y 

^ > 0 for all y 

‘ ( 去 + 去A 

, — 1 ^ 0 、 

\ 0 ^ J 

^ > 0 if and only if there 

0 

0 

Co - C -

^ > 0 for all y G 

• 
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To minimize the duality gap between Qs{D, d) and ^^(A, M,^) is equivalent 

to finding the best A and ^ of the following problem, 

Vdiaq : max mill f(u) = \u'Ku + {M)'u + 
A^O,.^ u 2 

Subject to: u G A(s)， 

{A,^} satisfies (5.18). 

Due to the explicit expression of the optimal value of problem ^^(A, A/, 

given in Lemma 5.7, problem V îag can be simplified to 

1 T-s 八 

一， i=i 

Subject to : {A, satisfies (5.18). 

As maximizing the summation of T — s smallest 0如)can be cast into a linear 

representation [79], problem V îag is equivalent to the following SDP problem 

with at and z being auxiliary variables, 

T 

T>diag ： max - {T - s)z + ^at + i 
A沙？ 力=1 

Subject to: {A, satisfies (5.18), 

at<]^{ltf\t + z, t = l，...，7] 

at<0, t = l，...，T. 

Geometrically, problem constructs the "best" axis-aligned ellipsoid that 

contains the objective contour of Qs{D, d) for any given r. 

5.2.3. Lower Bounding via Balls 

We denote a ball with center (—o) G M^ and radius r > 0 as 

B(o, r ” ：= {m e RT I \\u + o||2 < r^} . (5.22) 
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To construct a lower bound of the problem Qs{D, d), one simple idea is to relax 

the ellipsoid (5.11) to its circumscribed ball with minimum radius. Consider the 

following problem, 

巩all • mill r, 

Subject to : u e 6{1,P{T)/X^), 

u e A(s). 

Since Af + l\\l < (u + l)'D{u + I) for all u, then S{D,/, P(T)) C 8(1, P{T)/X^). 

Thus, V(J)kail) < v{Qs{D, d)). Solving problem V^aii is equivalent to 

mill {Xi\\u + /II2 I u e A{s) }. 
u 

Fiom the proof of Theorem 5.13 in Appendix, v(Vbaii) = C + Af Oi(P), 

where (P)' := ((/i)^, (h)^, • • • , {ITY)- Compared with the trivial bound Vconti 

the improvement is Af Under Assumption 5.2, we have v(VbaM) > 

v{T>cont), Furthermore, note that (Af I t , C) is a feasible solution of problem 

^diag- Then, we have viV—g) > v{Vbaii) > "(込—) . 

We now improve further this ball bound. Assume that there exists k G 

{! , • • • ,T}, such that Af < Af • • • < Af < Af+i... < A萝.Let the spectral 

decomposition of D he D = VA^T, where A^ ：= diag{Af and FT = I. We 

construct a matrix H := r'Aj^r where 

A?) ：= d i a g { A f , … X , A ^ P + i ， A ^ ? + i ， . . 、 ( 5 . 2 3 ) 

Then, we have D ^ H which implies {u + iyD{u + + iyH{u + I). Thus, 

/ , P{T)) C /, P{T)) for any r > 0. 

The following problem provides a lower bound of problem Qs{D, d), 

秒dip • mill r, 

Subject to: u G S(H, /, p{r)), 

u e A(s). 
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Figure 5.2: The ball bound and ellipsoid bound 

Compared with the ball bound V^aih the feasible region S(H, /, p{r)) is smaller 

than B{1,P{T)/X^), i.e., 

/ , P{T)) C /, P{T)) C P{T)/X 
D、 

An illustration in M^ is shown in Figure 5.2. In the left sub figure of Figure 

5.2, S(D,l, p(T)) is covered by a ball 13{l, /9(r)/Af). In the right sub figure of 

Figure 5.2, S(D, /, p{r)) is covered by both S(H, /, p{r)) and 13{l, /9(r)/Af). Since 

丑 is of a special structure, problem can be solved efficiently. 

Theorem 5.9. Consider an ellipsoid 0, p) with p > 0, where Aj.:= 

diag{Xi}\J^^ and 0 < Ai < • • • < Â： < Â +̂I = . . . = AT. Then ellipsoid 

S{Ak, 0, p) can be decomposed as 

f3^E{k) 
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where 

E{k) :={fi e M^ I E < P, = ,T}, (5.24) 
i^k+l — \ 

AP) (5.25) 
k̂+l 7~T k̂+1 — \ 

% — 丄 

Proof. For any y* G 0, p) 

T 

i=l j=k+l 

Let [T = (ft*,/?*,--- O,--- ,0), where = y*{Xk+i — Xi)/Xk+i for i = 

1, • • • , k and fij = 0 for j = k ^ 1, •• • , T. Then, we have 

k (fQ*\2 \ \2 k T 

ih+i - i=k+l 

Let 

M+i 二 M+i —入 i 
% — 丄 

Since Xk+i — Â  0, we show that — fi*\\l < by replacing (5* with 

Vii^k+i - Xi){Xk+i), 

f - m - = jziy： - + E 

⑷ 2 染 + 1 - A 

T 
P 

- E 
i=l � + 1 

. . A ^ l ^=k+l ‘ A 左+1 

which shows that for any y* G 0, p), there exists (3* such that y* G 

implying C (J卢浏& B{(5,r\(5*)). 

On the other hand, for any y G f^) with 

= iP/h^i) - E 麽入. 
^k+l — Xi 
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Figure 5.3: Decomposition of ellipsoid in M^ 

the following inequality is held, for i = 

k+l 

due to the fact that for z = 1, • • • , k 

^k+i — A 

^k+l — \ 

^k+1 ^k+l — Xi 

implies 

^k+l ^k+1 — \ 
> 0. 

From the inequality (5.26), we have 

T 

^k+1 

T 

(5.26) 

--k+l 
^k+1 — \ 

P 

--k+l 
^k+1 

(5.27) 

where the first inequality is due to the fact OFY E B{J3, F^). The inequality (5.27) 

implies y e 0, rf. That is to say, ⑷ 石 ( 从 ^ • 

The decomposition of the ellipsoid in M^ is shown in Figure 5.3. The center 

of the balls are along the longest radius of the ellipsoid. The union of the infinite 

balls is nothing but the ellipsoid itself. 

Applying the result in Theorem 5.9 to the ellipsoid 0, P{T)) yields the 

following decomposition, 

f3^E{k) 
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where 

i=l 

k 

i=l 

:=(Af - Af )2，for z = 1，…大 

=(AfAf+i)/(A“i —Af)， fo" = 
D \D、 k. 

n , (5.28) 

(5.29) 

(5.30) 

(5.31) 

Since the shape and size of ellipsoid 0, P{T)) are coordinate indepen-

dent, the afRne mapping u = T'y — l maps y G 0, p{r)) to u e S(H, /, p{r)). 

Then ellipsoid S{H, /, p{r)) is decomposed as, 

S{H,1,P{T))= U 

l3eE{k) 

where E(k) and are defined by (5.28) and (5.29), respectively. The problem 

^eiip becomes, 

"dip mill T = -P{T) + C, 

Subject to: ue \J B{T'f3 — ly 職, 

f3^E{k) 

u e A{s). 

Note that constraint (5.32) can be expressed more explicitly as, 

k 

(5.32) 

ue U {u I + + 

(3eE{k) i=l 

(5.33) 

Theorem 5.10. It holds that 念彻）=y(i'ejip) where problem V'^np is given by 

"dip mill T = -P{T) + C, 

Subject to: X^^^disifi) + ^ lifif < P{T] (5.34) 

^ Kif^f < p{r) and fij = 0, for j = k + 1，...，T， (5.35) 
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where 

dis{P) := mm { \\u-r'P + l\\l | u G AO)} . (5.36) 

Proof. We consider (m, P{T)) and (/?, P{T)) to be the decision variables for 

problem V^up and T>eiip, respectively. Let the feasible regions of V^up and T>eiip be 

N and N, respectively. Clearly, for any (/?, P{T)) G ft, it holds that (m, P{T)) G 

n, where u := argmin妨a(s) \\u — F'/? + Z||目.Then, v{V^iip) > On the 

other hand, (5.33) and (5.34) give rise 

k k 

“ i=i i=i 

for any u e A(s) and (3 e E(k), which implies that v(i>、) < ”耽up). We 

complete the proof of the theorem. • 

From Theorem 5.10, we know that solving problem V'̂ np gives rise the optimal 

value of problem and hence the lower bound of problem Qs{D, d). Note that 

the function dis(/?) defined in (5.36)of problem 力 & is a key issue of solving such 

a problem. Clearly, Function dis(/?) measures the distance between the affine 

space, {y e \ y = r'f3 — 1} and the set A(s). Various properties of such a 

function dis(/?) are discussed in Appendix 5.4.1. 

We prove in Theorem 5.13 (Appendix 5.4.1) that function dis(/?) is a piece-

wise convex quadratic function. Problem V^up is thus not convex in general. 

From Theorem 5.13, for any given k, such dis(/?) can be divided into at most N 

(N is bounded by 0{{T{T — 1))^)) pieces of convex quadratic functions and each 

function is defined by a polyhedra set, i.e., 

dis(/?)= 

f^'Qif^ + q[f3 + ci A^f3 < b, 

f^'QNf^ + q'Nf^ + cn An [5 < IDN-

Theoretically, problem V^up can be solved by comparing N sub-problems 力“力): 
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for t = N’ 

mill T = -/9(r) + C, 

Subject to: 如’Qtf5 + q[[5 + Q) + l武 < “⑷： (5.37) 

Y^ K说 < P{T) and Pj = 0, for j = /;: + 1, • • • , T, (5.38) 

A/? < h (5.39) 

A 7 
Clearly, problem V^jiJt) is a convex problem. However, from the computational 

point of view, we are more interested in the case k = 1. Suppose Af < Af < 

Af • • • < Ay. Then the lower bounding problem becomes 

V dip : mill -P{T) + C\ 

Subject to: Afdis(/?i) + LIFI < P{T] (5.40) 

(5.41) 

where h is the first column of F', G M, and 

dis(/?i) := mill { \\u — hPi + l\\l | u e A{s)}, 
nGM̂  

/̂ i : =A f (A? )V (A?-Af ) , 

:=Af Af / (Af — Af). 

Remark 5.3. From Corollary 5.14 in Appendix, when k = 1, the total number 

of the quadratic pieces of dis(/?i) is bounded by T{T — 1). In each piece, the 

corresponding sub problem i^iupit), for t = 1, • • • , N, is 

亡IUPIT) ： m i n r = -P(T) + C 
2' 

Subject to: + KFA + q ) + NFI^ < P{T] 

It < Pi < It+u 

(5.42) 

(5.43) 

(5.44) 
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Table 5.1: Optimal value and various bounds of Example 5. 

V 似 D,d)) Vi^cont) Vi^ball) v{^box) v{^diag) 

-168.9 -749.4 -526.2 -254.8 -328.1 

where scalars at, Q, It and i^+i are given in Corollary 5.14. Note that problem 

A -1 

T>liip{t) can be explicitly solved. In the following, we use an example to illustrate 

the solution procedure in details. 

Example 5.1. Let us consider an example of problem Qs{D, d) with T = 6 and 

5 = 2. The matrix D and vector d are given, respectively, as 

D = 

27.171 -5.738 2.479 -2.768 4.931 1.725 

-5.738 18.358 5.030 -5.615 10.004 3.500 

2.479 5.030 27.827 2.426 -4.322 -1.512 

-2.768 -5.615 2.426 27.292 4.825 1.688 

4.931 10.004 -4.322 4.825 21.404 -3.007 

1.725 3.500 -1.512 1.688 -3.007 28.948 

37.745 -26.329 -80.284 34.905 7.296 • -51.002 

Problem (仏(D,d)) can be solved by pure enumeration. Various bounds are 

shown in Table 5.1. We now compute the bound (力 “ ) . I t can be verified that 

AD = diag {1, 30, 30, 30, 30, 30} and 

I' = ( 11.369, 19.636, - 11.539, 11.057, - 17.384, - 7.867), 

"'=(0.312，0.634, - 0.274, 0.306, - 0.544, - 0.190 ). 

Furthermore, constant factors are computed as KI = 0.7134, and ii = 0.6897. 

Applying Algorithm 1 to identify the distance function dis(/?i) in the interval 

0,40], we can explicitly write out the constraints (5.40) and (5.41). To avoid 

large number, we scale both sides of constraints (5.40) and (5.41) by A2 = 30 as 
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Figure 5.4: The constraints (5.40) and (5.41) of Example 5. 

follows, 

(A2dis(A) + i(3l)/X2 = 

91 

92 

93 

QA 

95 

96 

97 

.52/?? 

.63/? 

.83/? 

.89/? 

.30虎 

23.17/?! 

35.78/?i 

41.73/?i 

53.56/?i 

57.67/?i 

35.79/?i 

23.17/?i 

+ 446. 

+ 615. 

+ 698. 

+ 871. 

+ 939. 

+ 615. 

+ 446. 

56 

61 

98 

92 

30 

61 

56 

A e [0,21.6 

"1 e 2 1 . 6 , 25.3 

fh e 25.3, 25.9 

fh e 25.9, 28.7； 

fh e 28.7, 33.4: 

Pi e 33.4, 35.3 

Pi e 35.3, 40.0 

The constraint (5.40) becomes 条 < p{t)/X2, for i = 1, • • • , 7. The scaled func-

tions Qi < p{t)/X2 and /X2 < p{t)/X2 are shown in Figure 5.4. Then, we can 

find the minimum P{T)*/X2 = 38.7. Note that lower bound v(力“）=—168.9 is 

the same as v(仏(D^d)). 
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5.2.4. Lower Bound in Block-wise CCQO Problem 

In Section 2.3, the resulting CCQO problem (G“，t) is a block-wise cardinality 

constrained optimization problem. The hyper-box bound and axis-aligned ellip-

soid bound can be easily extended to such a situation. Consider the block-wise 

CCQO problem, 

g^iD, d) : mill f 讯(u) := l-u'Du + d'u, 

T-1 

Subject to: ^ ^(ut) < 5, 

t=o 

where D e S'fl, d e u e W^^ and m > 1. Variable u consists of T blocks 

of vectors, u' = {u[,u2, • • • , m^) and u[ = (mJ, • • • , u^). Similarly, let I' := 

and I consists of T blocks, I' = • • • , 1'丁) with l[ := • • • , l^). 

The hyper-box bound of problem d) can be constructed as follows, 

^ Z . •• mill 丁 

(yi + li)^ 
Subject to : 、 、 “ < 2 r - I'd, for ^ = 1, • • • , T, z = I,--- ,m, 

Dl 一 

T 

< s. 
t=l 

Let D e be the diagonal of D'^ with D' := (i)；, ••• , with D[:= 
/ ^ A \ 

D力1，…,D^'J. Similar to Theorem 5.6, we have the following result. 

Theorem 5.11. The optimal value of problem V^^ is = ^OT-S{Q) — 

where g :=(仇，...,QT) and Qt ：= max 花{i，…，—{(Ẑ V 力 1}. 

The proof of Theorem 5.11 is similar to that of Theorem 5.6, except that Qt 

is replaced by the maximum element of {}'计11)\ for z = 1, • • • , m. 

The bound V^ag can be also extended for problem gf{D,d) . Let A G SfT 

be a block diagonal matrix, 

T
h
J
 

Ay XT 
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Similar to (5.17), we consider the following class of problems, 

A/, 0 ： mill := ^u'Au + {Aiyu + ̂  | ̂  S{ut) < 5, | . (5.45) 

Given A, problem Al,^) can be solved explicitly. 

Lemma 5.12. The optimal value of problem Al,^) is ^ ^jiv)— 

+ e； where r] := (r/i,..、"『）and r]t ：= J2T=i 聊？，fort = l,--- ,T. 

The condition (5.18) in Lemma 5.8 guarantees that the objective function of 

is smaller than i.e., /饥(m) < 广(u) in the region (u + 

l)'D{u + l)<u. Minimizing the duality gap between d) and A/, C) 

is equivalent to finding the optimal A and ^ of the following problem, 

: max mill f 讯(u) = \u'ku + {M)'u + C, 
^ A^O, ̂  u Z 

T 

Subject to : < s, 

i=i 

{A,C} satisfies (5.18). 

We then use Lemma 5.12 and the linear representation of the summation of 

T — s smallest 0i(rf) in [79] to simplify the problem to the following form, 

T 

^ Z g : max + + e 

Subject to : {A, satisfies (5.18), 
1 m 

at <0 , ^ = ! , ••• ,T, 

where ^ = ^ — ^I'Al, at, t = 1, • • • , T and z are auxiliary variables. 
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5.3. Numerical Test 

5.3.1. Random Tests for CCLQR Problem 

The lower-bounding schemes proposed in previous sections are implemented on 

PC with 2.2GHz processor and 1.0GB RAM. We combine such lower bounding 

methods with a BnB algorithm. Our BnB routine is coded by C++ with SDPA 

package [28 . 

The parameters n, m, T, At, Bt, Rt for t = • • • , T— 1 and Qtfoi t = 1 • • • , T 

are defined in Chapter 2. The parameter At, Bt, Rt and Qt are time variant. 

Without loss of generality, we generate the following class of time-variant linear 

systems by the following random generation procedure. 

• Fix Qt = 0.5I„ and Rt = 

• Generate Bt with its elements being uniformly distributed in [—1,1 

• Generate At = aW^ + (1 — + W, where the norms of the eigenvalues 

of W^ and W^ are uniformly distributed in [0, 0.8] and [1,1.6], respectively, 

and the elements of Wt are normally distributed (following Pa-

rameter a is set in [0,1] and ^ is set at different values for different test 

problems to avoid data explosion of matrix D. 

We compare the computational results of our BnB algorithm with the results 

by the standard mixed-integer solver in CPLEX [34]. Note that the block-wise 

CCQO problem d, c) can be reformulated as a mixed-integer programming 

problem. 

g^iD, d) : mill J{u) := \u'Du + d'u, 

Subject to: \\ut\\l < CtMt, for ^ = 0, ••• , T - L 

T-L 
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where Mf is the upper bound of \\ut\\l estimated by incumbent. 

For each type of problems listed in Table 5.2, Table 5.3, Table 5.4 and Ta-

ble 5.5, 50 randomly generated problems are examined, while the limit of CPU 

time is set at 60s, i.e., we stop the algorithm when the running time reaches 60s 

and record the incumbent. In the tables, Columns "Node", "Time", "Succ" and 

"optV" represent the average number of nodes explored, average CPU times, the 

number of problems solved successfully and the average optimal value, respec-

tively. Both CPLEX solver and our BnB solver successfully solve all problems 

of Types 1 - 5 in Table 5.2 and Table 5.4 and our BnB solver performs much 

better. For problems of Types 6-10 in Table 5.3 and Table 5.5 , neither CPLEX 

solver nor our BnB solver solves all randomly generated problems successfully 

within 60 seconds. Compared with CPLEX, however, our BnB solver solves more 

instances successfully and obtains a better average objective value. Evidenced 

from Table5.3 and Table 5.5 (Types 6 - 10), our BnB algorithm visits much 

more nodes than the CPLEX solver within the same time limit, demonstrating 

much higher efficiency. In Table 5.6, we compare at the root node 4 different 

lower bounding schemes for their relative gaps defined by {v* — v)/\v*\, where 

V* is the optimal value and V is the lower bound value. Generally speaking, the 

bound T>diag offers the tightest bound for CCLQR problems, followed by “T>surgt” 

or Vbox- Note that calculating T>box is much cheaper than calculating V îag or 

''Vsurgt' • Thus, ill our BnB algorithm, we calculate bound V îag at the root node 

to obtain a tight lower bound and calculate T>box at all children nodes to achieve 

a high speed. 

We then check time-invariant cases of CCLQR problem, i.e.,為，Bt, Qt and 

Rt are kept unchange in whole horizon T. All the parameter are generated in 

the following way. 

• Generate B with its elements being uniformly distributed in [—1,1], Let 

Bt = Bioit = {),--- Fixed Qt = 0.5I„ and Rt = I ^ . 

• Generate A = aW^ + W, where the norms of the eigenvalues of W^ is 
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Table 5.2: Computational results of CPLEX solver for time-variant cases, I 

Type CPLEX 

No {n,m,T,s} Node CPU Times Succ Optv 

1 {20,1,40,10} 11871 3.8 50 5188 

2 {40,1,40,10} 11359 4.2 50 30070 

3 {40,2,40,10} 20849 20.8 50 5747 

4 {50,3,30,8} 2374 4.1 50 12722 

5 {30,1,50,10} 16481 8.7 50 8367 

Table 5.3: Computational results of CPLEX solver for time-varian 

Type CPLEX 

No {n, m,T 4 Node CPU Times Succ Optv 

6 {50, i，5a ,10} 73902 35.0 36 36865 

7 {30, i，6a ,15} 47231 25.0 47 47090 

8 {50, i，6a ,15} 81609 44.9 21 24571 

9 {60, i，m ,15} 63908 59.3 8 51618 

10 {60, 1,80,20} 65474 60.0 0 47650 

cases, II 

uniformly distributed in [0,1.1], respectively, and the elements of W are 

normally distributed (following Set ^ at a reasonable value to 

avoid data explosion of matrix D. Then let At = A for t = • • • , T — 1. 

The results are shown in Table 5.7 and Table 5.8. Similarly, 50 trials are ex-

amined for each type of problem. The results shows that our BnB algorithm per-

forms better than the CPLEX solver. Compared with the time-variant cases (see 

Table 5.4, Table 5.5, Table 5.2, Table 5.3), both solver use less time to solve the 

time-invariant problem for the same type of problem. We can conclude that the 

time invariant problems are in general easier to solve. 
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Table 5.4: Computational results of BnB solver for time-variant cases, I 

Type BnB 

No {n,m,T,s} Node CPU Times Succ Optv 

1 {20,1,40,10} 8398 0.3 50 5118 

2 {40,1,40,10} 8985 0.4 50 30070 

3 {40,2,40,10} 14933 1.7 50 5747 

4 {50,3,30,8} 1654 0.7 50 12722 

5 {30,1,50,10} 11933 0.9 50 8367 

Table 5.5: Computational results of BnB solver for time-variant cases, II 

Type BnB 

No {n,m,T,s} Node CPU Times Succ Optv 

6 {50,1,50,10} 

7 {30,1,60,15} 

8 {50,1,60,15} 

9 {60,1,70,15} 

10 {60,1,80,20} 

103427 4.9 49 36809 

63893 5.7 50 47034 

154232 14.3 48 24509 

385344 40.8 25 50900 

374651 53.1 10 47150 

5.3.2. Random Test Problems for CCQO Problem 

We compare various lower bounding schemes developed in the previous section 

for CCQO problem Qs{D, d). All the tested problems are randomly generated 

under the Matlab platform. The bounding scheme are coded under the Matlab 

and corresponding SDP and SOC problems are solved by using Sedumi [73]. In 

order to control the conditional number of matrix D, we generate the problem 

by following procedure: 

Generate x := \ninI\nax uniformly in a pre-given interval [x, x]- Let 

\min = 1 and \max = l / x . Generate \ uniformly from [A^^ ,̂ X^ax], for 

T — 2. Let A := didug{Xmin, A] Xmax}- Generate the unitary 
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Table 5.6: 

cases 

Relative ratios of different lower bounding schemes for time variant 

{n,m,T,s} v{Vdiag) Vi^box) V{T> surgt) vi^cont) 

{20,1,40,10} 19.0% 24.2% 24.2% 27.9% 

{40,1,40,10} 20.7% 25.9% 25.2% 29.0% 

{40,2,40,10} 14.1% 18.5% 17.5% 22.4% 

{50,3,30,8} 24.2% 32.1% 31.1% 35.4% 

{30,1,50,10} 12.5% 16.2% 17.3% 19.1% 

{50,1,50,10} 27.5% 35.1% 34.3% 38.3% 

{30,1,60,15} 12.2% 15.2% 15.7% 18.2% 

{50,1,60,15} 13.2% 16.7% 15.6% 20.1% 

{60,1,70,15} 22.1% 27.1% 25.6% 31.0% 

{60,1,80,20} 14.5% 18.0% 17.2% 21.2% 

matrix r and let D = r 'Ar. 

• Generate d with each of its element being uniformly distributed in [—10,10 

In Tables 5.9, 5.10, and 5.11, the column is the relative ratio defined as 

C = {v* — v)/\v*\, where v is the lower bound and v* is the upper bound of 

problem Qs{D, d), respectively. The column "Time" records the cpu time of 

computation. We test 8 types of problems, i.e., problem with {T, s} being set 

as {50,10}, {50,20}, {60,10}, {60,20}, {70,10},{70, 30}, {80,10} and {80,30}. 

For each of these problems, the conditional number x of D is controlled in three 

intervals [0.01, 0.1], [0.2, 0.5] and [0.6, 0.9]. For all of the cases x ^ [0.6, 0.9], 

X G [0.2, 0.5] and x G [0.01, 0.1], the bound (Vdiaq) is the tightest. However, it 

is expensive to compute such a bound. Although the bounds V^au, T>eiip, V, 

are not as tight as V^iag, they can be computed more efficiently. 

surgt 
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Table 5.7: Computational results of CPLEX solver for time-invariant cases 

Type CPLEX 

No {n, m,T,s} Node CPU Times Succ 

1 {20, 1,40,10} 6871 1.8 50 

2 {40, 1,40,10} 9359 3.2 50 

3 {40, 2,40,10} 10849 5.8 50 

4 {50,3,30,8} 1074 0.5 50 

5 {30, 1,50,10} 12481 3.7 50 

6 {50, 1,50,10} 73402 8.0 50 

7 {30, 1,60,15} 43231 8.5 50 

8 {50, 1,60,15} 61609 9.9 50 

5.4. Appendix 

5.4.1. Distance Between Affine Apace and A(s) 

Given H G M^^^ and h eR^ with rank(i7) = k, define the following affine space, 

yk{H, h) ：= {yeR^ \ y = Hp^h,peR''}. 

We are interested in characterizing the following distance function dis(/?):= 

mill \\x — y\\l, where x G A(s) and y G 丑，/i), 

dis(/?) := mill {\\y-x\\l | y e yk{H, h),x e A(>)}. 

Let H'- G RixA be the z-th row of matrix H and hi be the z-th element of h. Let 

9{p) e RT with g{py = {gm,g2{p),... ^gAP)), where 

g 躺 ： = + for z = 

Then, the following is true. 

T. (5.46) 
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Table 5.8: Computational results of BnB solver for time-invariant cases 

Type BnB 

No {n,m,T,s} Node CPU Times Succ 

1 {20,] L,40,10} 4523 0.1 50 

2 {40,] L,40,10} 5110 0.2 50 

3 {40,2,40,10} 1181 1.1 50 

4 {50,3,30,8} 1532 0.6 50 

5 {30,] L,50,10} 11012 0.9 50 

6 {50,] L,50,10} 91980 3.2 50 

7 {30,] L 风 15} 41218 4.2 50 

8 {50,] L 风 15} 140309 9.9 50 

Theorem 5.13. The distance function dis{(3) is a piece-wise continuous 

quadratic function with respect to (3, i.e., 

‘[^'Qi[^请+ if A,(3<bu 

dis{p)= '： ; 

+ q'Nf^ + Cat, if An< bN, 
\ 

where the number N is upper hounded by O ((T(T — 1))^). 

Proof. For any fixed /?*, we have 

T 

dis(/?*) := mill \\HP* + h- = + 
xeA{s) 

OC <1 

we Since x G A(s)，at least T — s oi Xi are zeros. To minimize \\H(3* + h — x 

must choose x with its s nonzero components to cancel out s largest \Hlf3* + h 

and the summation of the [T — s) smallest {H'-f3* ^hi)^ determines the minimum 

distance dis(/?*). We define an index set T{f5) C {1, 2, • • • , T} which consists of 

the first smallest T — s indices of Qiifi). Then 

disiff) = 碰 = 咖 

ieim 

(5.47) 
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Table 5.9: Comparison results of various bounds with x G [0.6, 0.9 

Tested Problem with 0.( 3 < 7 < 0.9 

{ T . s } {50,10} {50,20} {60,10} {60,20} 

C Time(s) C Time(s) C Time(s) C Time(s) 

^cont 0.61 0.00 0.14 0.00 0.72 0.00 0.19 0.00 

巩all 0.07 0.00 0.02 0.00 0.08 0.00 0.02 0.00 

^box 0.45 0.00 0.12 0.00 0.65 0.00 0.16 0.00 

^surgt 0.21 0.79 0.04 0.72 0.35 0.72 0.03 0.71 

^diag 0.05 13.03 0.01 14.01 0.05 17.21 0.01 19.02 

^ellp 0.06 0.00 0.02 0.01 0.07 0.01 0.02 0.01 

{ T . s } {70,10} {70,30} {80,10} {80,30} 

C Time(s) C Time(s) c Time(s) C Time(s) 

"^cont 0.87 0.00 0.13 0.00 1.04 0.00 0.19 0.00 

巩all 0.11 0.00 0.02 0.00 0.16 0.01 0.03 0.01 

T^hox 0.78 0.00 0.10 0.00 0.86 0.00 0.16 0.00 

Dsurgt 0.56 0.82 0.01 0.83 0.80 1.13 0.08 0.90 

"^diag 0.07 23.01 0.08 25.12 0.10 49.12 0.02 52.23 

^ellp 0.10 0.00 0.01 0.01 0.15 0.01 0.03 0.01 

where 

Q* := E 輒 q* :=2 h,Hl c*= K\ 
ieT{l3*) ieT{l3*) ieT{l3*) 

(5.48) 

Clearly, the order of gi{(5) changes when fj changes. Furthermore, the order 

of gi{[3) changes only when gi{[3) — gjif^) switches sign for any pair i and j , 

z = 1 . . . T - 1 and 7 = i • • • ,T. Note that 

iS)躺f — {9jW)f = m + + {h, + h,MH, - H,)[5 + {h — h,)). (5.49) 
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Table 5.10: Comparison results of various bounds with x ^ [0.2, 0.5 

Tested Problem with 0.： 2 < X < 0. 5 

{ T . s } {50,10} {50,20} {60,10} {60,20} 

C Time(s) C Time(s) C Time(s) c Time(s) 

^cont 0.63 0 0.19 0.00 0.82 0.00 0.31 0.00 

巩all 0.28 0.00 0.08 0.00 0.33 0.00 0.12 0.00 

^box 0.56 0.00 0.15 0.00 0.70 0.00 0.28 0.00 

^surgt 0.51 0.57 0.11 0.60 0.56 0.63 0.24 0.90 

^diag 0.18 9.98 0.05 9.10 0.21 16.1 0.07 17.88 

^ellp 0.24 0.00 0.07 0.01 0.31 2.10 0.10 0.01 

{ T . s } {70,10} {70,30} {80,10} {80,30} 

c Time(s) C Time(s) c Time(s) c Time(s) 

"^cont 1.06 0.00 0.13 0.00 1.26 0.00 0.20 0.00 

巩all 0.47 0.00 0.06 0.00 0.60 0.01 0.10 0.01 

T^hox 0.90 0.00 0.11 0.00 1.13 0.00 0.18 0.00 

Dsurgt 0.79 0.79 0.89 0.78 0.80 1.13 0.12 0.90 

"^diag 0.33 26.01 0.03 27.12 0.40 49.12 0.06 52.23 

^ellp 0.42 0.01 0.05 0.00 0.52 0.01 0.09 0.01 

We borrow some concepts from the discrete geometry by considering the hyper-

plane arrangement generated by the following hyplanes in M^, 

PIj ={/? e M^ I {H, + 嚷 + {h, + h,) = 0}, 

ph ={p e M^ I {H, — H,)I3 + {h, — hj) = 0}， 

(5.50) 

(5.51) 

for z = 1, • • • , T — 1 and j = i,... , T. The total number of these hyperplanes 

is (T — 1)T. Note that a cell E of the hyperplane arrangement corresponding 

to p-j's, ^ = 1, 2, is a (/;:)-dimensional polyhedral set formed by the half spaces 

induced by p- -'s hyperplanes. Such a cell can be characterized by a (T — 1)T 
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Table 5.11: Comparison results of various bounds with x ^ [0.01, 0.1 

Tested Problem with 0.01 < x < 0.1 

{ T . s } {50,10} {50,20} {60,10} {60,20} 

c Time(s) c Time(s) C Time(s) c Time(s) 

^cont 1.63 0 0.67 0.00 1.52 0.00 0.77 0.00 

巩all 1.04 0.00 0.52 0.00 1.26 0.00 0.62 0.00 

^box 1.20 0.00 0.51 0.00 1.30 0.00 0.65 0.00 

^surgt 1.09 0.71 0.53 0.56 1.22 0.57 0.62 0.60 

^diag 0.59 9.55 0.41 7.23 0.71 6.23 0.42 6.11 

^ellp 0.92 0.01 0.47 0.01 1.10 0.01 0.57 0.01 

{ T . s } {70,10} {70,30} {80,10} {80,30} 

c Time(s) c Time(s) c Time(s) c Time(s) 

"^cont 1.83 0 0.36 0.00 2.84 0.00 0.76 0.00 

巩all 1.21 0.00 0.31 0.00 2.00 0.00 0.63 0.00 

T^hox 1.64 0.00 0.30 0.00 2.50 0.00 0.69 0.00 

Dsurgt 1.32 0.71 0.29 0.96 1.40 0.87 0.50 0.90 

"^diag 0.25 15.55 0.11 15.23 0.63 16.23 0.43 15.00 

^ellp 1.02 0.02 0.28 0.01 1.29 0.01 0.52 0.02 

dimensional sign vector w，sign(i?) := (wi , . . . , wt-i), where 

Wt •= (K.+l^M+l) , . . 、 K t ^ I T ) ) ' (5.52) 

The sign of the hyperplane wjj or tvfj, for j = z + 1, • • • , T, is specified by 

‘ + if VX0) > 0 

- i f VX0) < 0 

+ if Vl0) > 0 

- i f vUii) < 0 

The order of gi{(5) is determined by the sign vectors of all the cells of the hyper-

plane arrangement. It has been known that the number of cells of the hyperplane 

ui;,= 

w, 

for j = z + 1. 

for j = z + 1. 

T, 

T. 

(5.53) 

(5.54) 
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arrangement generated by (5.50) and (5.51) is upper bounded by O ((T(T — 1))^) 

(see [83] and [27]). Since each cell of a hyperplane arrangement is a polyhedra, 

we could unify the expression of such polyhedra as Aifi < hi. Taking the sum-

mation of T — 5 smallest gi{(5) yields the quadratic function in (5.47) and (5.48). 

Moreover, on some boundary pj；*，)* ( or ) of an individual cell, it may hold 

that gi*{[5) = for some i* and j*. On the two sides of this boundary, gi*{f5) 

and g]躺 change order. If i* e X{f3) and j* e X{f3) or i* 0 and j* 0 J(/?), 

dis(/?) keeps the same form on both sides of the boundary. If i* G X(/?) and 

f 0 X{[5) or i* 0 X{[5) and f e X{[5), due to = dis(/?) is still 

continuous on the boundary. • 

In the following, we further distinguish the discussion of the distance function 

dis(/?) for k = 1 and k > 1. 

dis(") w i th k = 1 

Corollary 5.14. When k = 1, the distance function dis{f3) is a piece-wise 

quadratic function, 

dis{(5) = + bj[5 + c^, Ij < f^ < /j+i, 

for j = I,-- - ,7V, where N < T(T — 1). 

Proof. The proof of the corollary follows Theorem 5.13. The cell of the 

hyperplane arrangement degenerates to an interval on a real line when k = 1. 

The upper bound of N can be exactly calculated. Clearly, the set T{f5) changes 

only when some function gi{(5) intersects with gjifi), with i G I{fi) and j 0 /(/?). 

That is to say, N < ST, where N is the number of total changes of I{(3) as fi 

varies from —oo to oo and ST is the total number of intersection points between 

the functions gi{f3) and gjif^) for i + j, and = 1, • • • , T. The number St 

can be computed in a recursive way, e.g., S2 = 2 and St = St-i + 2{t — 1) for 

t > 3. Solving such a recursion yields Ŝ t =(力一1)力一2 for 力=2，... ,T. Thus, 
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theoretically, we can divide the interval — into at most N < T(T - 1) 

consecutive intervals [/, , I for i = 1. N. • 

From Corollary 5.14, although the total number of intervals N is bounded by 

T{T — 1), it is expensive and unnecessary to compute N quadratic functions di-

rectly, while identifying distance function dis(/?) in a pre-given interval. Suppose 

that we identify the distance function dis(/?) with fj G [ui, Uu]. Without loss of 

generality, we assume 

hi /l2 flT 
—oo < --— < --— < • • • < ——— < oo. 

Hi H2 Ht 

In each of the intervals, [—00, — 
“ “ A l l 

00], the function, gi{f3), is monotone 

with respect to j3. Thus, the interval [uji, Uu] can be partitioned by some mono-

tone intervals. For any one of these monotone intervals, we could use Algorithm 

1 to identify the distance function dis(/?). In Algorithm 1, we sequentially check 

the intersection point between function gi{f3), i G X(/?) and gjif^), j《工(/?). We 

introduce the following Table T to store the data, 

T k 12 • • • is 

H T( l , l ) T(l,2) •• 

i2 m i ) T(2,2) •• 

ir-s T{T-s ,1) … .T(T-s,s) 

The column 0 and row 0 are filled with the index set Xp and its complementary 

set Xp := {! , • •• , T} \ X(/?). In Algorithm 1, since all g人[5、are monotone, we 

assume that each gi{fi) takes linear form gi{fi) = Hi[5 + h“ for i = 1, • • • , T. 

Since there is only one index getting out and one index getting into the index 

T{f5) in each consecutive interval, we only modify one column and one row in 

each step of operation, which leads to a linear time operation 0{T). 

Example 5.2. Consider an example with T = 6, k = 1 and 5 = 3. The initial 

searching interval of is [—1,1.3]. We want to find the distance function dis(/?) 
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Algor i thm 1 Monotone interval searching: 

Input : Interval [/i, I2], H，h. 

50 : Let lb — Ii, ub — Ii, J* — +00 and endflag — 0. Sort gi{lh) for 

i = 1，…,T in an ascending order. Choose the first T — s minimum of 

them to construct X(/?i). Place remaining indices in X(/?i). Initialize Table 

T by filling column 0 and row 0 by index set X{lb) and T{lb), respectively. 

Let 

f if ub < < lb, 
T{ij) = I Ht 广 htt — Ht 广 Hu — (5.55) 

I +00 otherwise, 

where ti = T(z, 0) and tj = T(0, j ) for z = 1, • • • , T - 5 and j = 1, • • • , 5. 

Go to [SI . 

51 : If T(z, j ) 00, for z = 1, • • • ,T — s,j = l,...，s，go to [S3]. Otherwise, 

go to [S2；. 

52 ： Find T{e,j*) = mini<,,i<j T(z, j)- Let lb — ub, ub — T ( r , j * ) and 

T{e,j*) — 00. If ub = l2, let endflag = 1. Go to [S4 . 

53 : UseT(z,0), z = 1, - •• ,T-s to construct J(/?i). Identify dis(/?i) as (5.47) 

and (5.48). Record lb and ub. If endflag = 1, stop. Otherwise, Go to [S4 . 

54 : Exchange T(0, j*) and T ( r ,0) . Update j*-th column and f-th row of 

Table T by 5.55. Go to [SI . 
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between yi{H, h) and A(s)，where 

= ( -0.5 0.5 1 -0.75 -2 -4 v 

h' = ( 1 2.5 4 3.4 3.5 5.2、 

V y 

Functions gi{f3) are specified as (see the Figure 5.5), 

5̂ 3(/?) = |/? + 4 | ， — 0 . 7 5 / ? + 3.41， 

In each of the following sub intervals, gi{(3), i = I, • • • , 6, are monotone, 

[ - 5 , 51 = U[—5’ -41 U [—4’ 1.31 U [1.3’ 1.751 U [1.75, 21 U [2’ 4.531 U [4.53’ 5 

Thus, in the interval [—1,1.3], we have 

+ =—0.75/?+ 3.4， 

We then use Algorithm 1 to identify the distance function in the interval 

—1,1.3]. At the first step, let lb = ub = —1 and we compute ^^(―1) for i = 

1, • • • , 6. Initialize the index set as J(—1) = {1, 2, 3} and J(—1) = {4, 5, 6} 

according to the order of 识(—1). We construct Table 5.12. The last column 

Table 5.12: Table of Step 1 in Example 5.2 

Table T col 0 col 1 col 2 col 3 col4 

row 0 J 6 4 5 min 

row 1 1 1.200 + 00 + 00 1.200 

row 2 2 0.600 0.720 0.400 0.400 

row 3 3 0.240 -0.343 -0.167 -0.342 

records the minimum in each row. We find the minimum in Table 5.12 to be 
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The functions in [—6,6] 

- 6 

Figure 5.5: Functions gi{f3) in Example 5.2 

-0.342. Then we identify the interval of dis(/?) as [lb, ub] = [-1,-0.342], The 

distance function is 

dis{P) = + 9.5/? + 23.25, P e [-1, -0.342 . 

Since —0.342 is in row 3 and column 2, we update these row and column of Table 

5.12, leading to Table 5.13. The minimum in Table 5.13 is 0.08, the interval is 

lb, ub] = [-0.342,0.08] and J([-0.342, 0.080]) = {1,2,4}. The distance function 

in this interval is 

dis{P) = 1.062/?^ - 36/? + 18.51, P e [-0.342, 0.080 (5.56) 

Then we update Table 5.13 to Table 5.14. The minimum of Table 5.14 is 0.60, 
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Table 5.13: Table of Step 2 in Example 5.2 

Table T col 0 col 1 col 2 col 3 col 4 

rowO I 6 3 5 mill in row 

rowl 1 1.200 + 00 + 00 1.200 

row2 2 0.600 + 00 0.400 0.400 

row3 4 0.554 + 00 0.008 0.08 

Table 5.14:‘ Table of Step c )in Example 5.2 

Table T colO coll col 2 col3 col4 

rowO I 6 3 4 mill in row 

rowl 1 1.200 + 00 + 00 1.200 

row2 2 0.600 + 00 0.720 0.600 

row3 5 0.850 + 00 + 00 0.85 

the interval is [lb, ub] = [0.08,0.60] and J([0.08, 0.60]) = {1,2,3}. The distance 

function in this interval is 

dis(/?)= 4.5/?^-12.5/?+19.5, P e [0.08,0.60], (5.57) 

Then we update table as Table 5.15. The minimum of Table 5.15 is 1.3, the 

Table 5.15: Table of Step 4 in Example 5.2 

Table T colO coll col 2 col3 col4 

rowO I 2 3 4 mill in row 

rowl 1 + 00 + 00 + 00 + 00 

row2 6 + 00 + 00 + 00 + 00 

row3 5 + 00 + 00 + 00 + 00 

interval is [lb, ub] = [0.60,1.3] and J([0.60,1.3]) = {1, 2, 3}. The distance function 

in this interval is 

dis((3) = 20.25/?2 - 56.6/? + 40.29, (3 e [0.60,1.3 (5.58) 
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m 

..5/3= + 9.5/3+23 

1.06/32 _ 3,6/3+ 18 

\ 
4.5/32 _ 12.5/3+ 19.5 

1 
0.08 

z 1 

20/3= 一 56.6/3+ 40.3 

Figure 5.6: Distance function dis(/?) in [—1.3,1 

All elements of Table 5.15 is oo. We complete characterization of the distance 

function dis(/?). (See Figure 5.6). 

dis(") with k > 1 

From Theorem 5.13, we know that the distance function dis(/?) can be identified 

by checking the cells of hyperplane arrangement. Finding the cells of the hy-

perplane arrangement has been investigated in the literature. For example, the 

authors proposed in [3] and [72] a cell enumeration method by reverse search-

ing method. Such a method consumes 0{{T{T — time to enumerate all 

the cells, where Cip is the time for a linear programming. Note that the cells 

are searched in the whole M^ space. Here we are interested in enumerating all 

the cells in a bounded region. Suppose that fi is bounded by Vi < (3i < î i for 

i = 1, • • • , k. The algorithm listed in [72] is ready to solve such a cell enumera-

tion problem with type of box boundary except for a modification of the routine 
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AllAjc in [72 . 

As we have illustrated in Theorem 5.13, the sign of each cell is a one-to-one 

mapping to the order of all Qiifi). Here we specify such a mapping. We follow 

the notation used in Theorem 5.13. The sign vector w = sign(i?) is settled in 

a (T — 1) X T sign matrix fl{E) with being its element in the z-th row 

and the j-th column. Let "o" be an operator, i.e., (+ o +) = +, (+ o —)=—, 

(—o +) = — and (— o —) = +. We make the following arrangement. 

• let = 0. 

• The upper-triangle of fl{E) is set as, fl{E)ij = wljow'^j, for z = 1, • • • , T—1 

and j = i + 1, • • • , T. 

• The lower-triangle of Q(F) takes the opposite sign of the upper -triangle. 

From (5.49), (5.52) and (5.53), we can conclude that gi{p) is the 力-th smallest in 

cell E, if there is t “+" in z-th row of i.e., the z-th row of fl{E) is given as 

follows, 

gi{fi) is 力-th smallest elemetnt. 

there are t "+" 

Example 5.3. Consider an example with T = 4, 5 = 2 and 

‘4 2 ， ‘ - 2 

H = 
5 1 

1 - 1 
,h = 

- 6 

- 1 

, 2 -0.5 ； 、2 • 

We consider in this example the box region — 1 < < 4 and —1.5 < < 1 and 
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introduce the hyperplanes as, 

p},2 = - A + + 4 = 0, p I , = 9A + 3/?2 - 8 = 0, 

= 3/?i + 3/?2 - 1 = 0, pI., = 5/?I + - 3 = 0, 

pU = 2A + 2.5/?2 - 4 = 0, = 6A + 1.5/?2 = 0, 

P2,3 = 4A + 2/?2 - 5 = 0, = 6A - 7 = 0, 

= m + 1.5/?2 - 8 = 0, PI^ = 7pi + 0.5/?2 - 4 = 0, 

P3,4 = - A — 0.5/?2 - 3 = 0, = 3A — 1.5/?2 + 1 = 0. 

It can be verified that the box region — 1 < < 4 and —1.5 < < 1 is on one 

side of the following hyperplane, 

PIs > 0，PIa > 0，pI^ > 0, P3,4 < 0，PI^ > 0. 

Thus, = 1, = 1, 0；璧，4 = 1, 0；3̂4 = —1, 0；彥，‘ = 1 . We can enumerate 

the cells of the arrangements generated by these hyperplanes in the box region 

G [1,4] and G [—1.5,1]. By using the algorithm of cell enumeration, 

the sign vector of the hyperplane arrangement are listed in Table 5.16. All the 

hyperplanes and the arrangement are illustrated in Figure 5.7. Then we can 

write out the order of the gi in each cell. For example, let us consider cell2 in 

Table 5.16 with 

sign(ce"2) = ((-+, ++, ++), (++, ++), (+-))• 

The corresponding sign matrix is 

/ \ 

/ 0 - + + 

n(ce"2) = + 0 + + 

, - - 0 -\ / 
leading to < < gi{(3) < g2{f̂ )- Once the order of Qiifi) is known, the 

distance function can be expressed by using (5.47) and (5.48), 

( 5 —2 

dis ⑷ = 
、-2 1.25 , 

The other pieces of the distance function can be expressed in the similar fashion. 

/?+ ( 6 0 )/? + 5. 
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Table 5.16: The cells of hyperplanes in Examp 

No 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

WL2, 3, 4), (W2，3，W2，4)，(切3,4) 

+ + ,+ + ,+ + 

+ + , 
+ + , 

+ + ,+ + 

+ + ,- + 

+ + ,- + 

+ + ,- + 

+ + ,- + 

+ + ,+• • + 

+ -,- + 

- - , + + 

一 一 , + + 

+ + ,+ + ), 

+ + ,+ + ): 
+ + ,+ + ). 

+ +，+-) ‘ 

+ -

-+ ,+ + ), 

+ -,+ + ), 

+ -,+ + ), 

+ + ,+ + ), 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

- + 

e 5.3 
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Figure 5.7: The cells of hyper plane arrangement in Example 5.3 



CHAPTER 6 

CONCLUSION 

Stimulated by the urgent need of developing efficient solution algorithms for solv-

ing challenging cardinality constrained optimization problems arisen in real-world 

applications, we focus in this research on four specific cardinality constrained 

optimization problems, i.e., (i) the cardinality constrained linear-quadratic con-

trol problem, (ii) the cardinality constrained optimal control of linear switched 

systems, (iii) time cardinality constrained dynamic mean-variance portfolio se-

lection and (iv) the cardinality constrained quadratic optimization problem. We 

give some conclusion remarks in this chapter and discuss some possible directions 

for further research. 

As decision makers always prefer solutions of a feedback type for dynamic 

optimization (control) problems, we strive for the analytical solutions for both 

Problems (i) and (ii) by using sophisticated dynamic programming (DP). Due 

to the combinatorial nature of the possibilities in satisfying the cardinality con-

straint, even the elegant linear-quadratic setting does not help much this time 

under the cardinality constrained settings. Although the solution procedures 

of a Ricciti-type are derived in Chapters 2 and 3 for Problems (i) and (ii), re-

spectively, the computation of the feedback gain is not a polynomial procedure 

in general, except for the case of n = 1. We thus switch our efforts to solu-

tion algorithms of a branch and bound type in order to alleviate and reduce the 

computational burden. For Problem (i), we reformulate it as a block-wise cardi-

131 
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nality constrained quadratic programming problem(CCQO) and develop a lower 

bound from a corresponding sCCLQR formulation. For Problem (ii), we revise 

the DP procedure directly and combine it with semidefinite programming to con-

struct a lower bound. Based on our results for Problems (i) and (ii), we may 

consider some possible extensions, including finding a polynomial approximation 

schemes (PTAS) of Problem (i) or (ii), enhancing the lower bound of problem 

(ii) by investigating its mathematical programming formulation, and generaliz-

ing the results of Problems (i) and (ii) to corresponding problem formulations 

with Gaussian-noise. 

For problem (iii), due to the non-separability of the variance term and the car-

dinality constraint, it seems, at first glance, hopeless to find the exact analytical 

solution of such a problem. Fortunately, due to the embedding scheme developed 

in [43], such a problem can be tackled by a two-step procedure: 1) constructing 

and solving an auxiliary problem, which is a sparable stochastic linear-quadratic 

control problem; and 2) finding the exact auxiliary problem which offers the so-

lution of the primary problem. Luckily, the analytical solution is achievable for 

the auxiliary problem of TCCMV (Problem (iii)) and hence the TCCMV prob-

lem can be solved explicitly. As we have mentioned, one interesting extension 

of Problem (iii) is to consider only investment policies which are confined to be 

buy-and-hold policies, where the management fee is charged when the policy is 

revised. 

We developed various lower-bounding schemes for CCQO (Problem (iv)) in 

Chapter 5 by exploring geometric features hidden behind the cardinality con-

strained quadratic optimization problems. Compared to the existing literature 

where a lower bound is obtained by simply relaxing the cardinality constraint, 

our main idea in constructing lower bounds is more innovative. More specifically, 

we modify the objective function while keeping the cardinality constraint such 

that an analytical solution can be achieved under such settings. Utilizing the 

prominent geometric features of Problem (iv), we purposely identify certain sub-
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classes of cardinality constrained optimization problems which can be solved in 

polynomial time and use them to lower bound the primary problem. Our newly 

proposed novel lower bounding schemes have been proven in our numerical tests 

to perform much better than the outcomes based on the previous thinking. 
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