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Abstract

Analyzed in detail are unified models of fundamental interactions based on super-

gravity (SUGRA) using effective Lagrangians valid near the grand unification scale,

and U(1) extensions of the Standard Model and of its supersymmetric (SUSY) exten-

sions where the mass generation of new particle states arises through a Stueckelberg

mechanism. Signals of new physics that can be measured at the Large Hadron Col-

lider and at the Fermilab Tevatron in various final state channels are discussed in

depth. Correlated signals of new physics relevant to both collider experiments and

dark matter detection experiments are a focal point of the analysis and the prospects

for the discovery of new physics is emphasized.
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Chapter 1

Introduction and Overview

With the coming on-line of the Large Hadron Collider (LHC), we are entering a

new and challenging phase in the quest to discover what lies beyond the Standard

Model (SM) of particle physics. The LHC may very well provide us with a paradigm

shift, opening a new window towards our collective understanding of the nature of

fundamental physics. The exploration of the nature of new physics will be further

facilitated by astrophysical data. The analysis presented in this Thesis is precisely

related to the above.

We begin with a brief overview of supergravity unified models (SUGRA) and their

low energy realizations. Following this, an analysis is given of the dual probes of su-

persymmetry through a simultaneous study of signals relevant to the direct detection

of dark matter and from collider signatures of supersymmetry. It is first discussed

how the LHC can allow one to decode the mechanism for the origin of dark matter

production in the early universe in the framework of SUGRA models. Several cor-

related signatures of new physics emerge which allow for a discovery supersymmetry

(SUSY) in this framework. The analysis exhibits for the first time in the literature

a direct correlation between the signature space of dark matter direct detection and
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the signature space of LHC signals. Indeed such a mapping between dark matter

signatures and LHC signatures leads us to a more general method of pinning down

the underlying model and such an approach to studying SUSY may point us to the

mechanism for the production of dark matter in the early universe.

Next, an analysis is given in SUGRA/Brane models from the perspective of the

Sparticle Landscape of Mass Hierarchies. Thus, in models built on the premise of

supersymmetry, there is a large landscape of possible sparticle mass hierarchies, but

these possibilities reduce drastically in well motivated models where supersymmetry

breaking triggers electroweak symmetry breaking and the set of possible mass hier-

archies becomes predictive. It is then found more generally that the nature of LHC

signatures is correlated very strongly with such mass hierarchies and this is also the

case for the predictions of cross sections from the scattering of neutralinos off nuclei

which are relevant for dark matter direct detection experiments. Therefore, collider

and dark matter experiments get closely tied together more generally. The possibility

of relatively light Higgs bosons are also discussed and the convergence of constraints

on light Higgses from experimental data is noted.

The second part of this Thesis focuses on collider signatures and the implications

for dark matter that arise in the Stueckelberg extensions of the Standard Model

and its minimal supersymmetric extension. Predictions are made for the discovery

potential of narrow resonances at the Tevatron and the LHC and new candidates for

dark matter and some of their experimental consequences are analyzed. We elaborate

on this a bit further below.

In a broad class of models based on grand unification, on strings, and on D-Branes

one expects extra Abelian gauge group factors beyond the Standard Model gauge

group. It is often the case that one or more of these gauge groups remain unbroken

at the grand unified scale or string scale and survive down to the electroweak scale.
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The breaking of such factors at or near the electroweak scale can generate unexpected

new phenomena. An interesting possibility arises when the Abelian gauge group is

’hidden’ i.e. the matter fields in this sector are neutral with respect to the Standard

Model (SM). The exploration of these issues can be tackled within certain low energy

realizations of strings, in terms of their field theoretic manifestations. An example

of this is the inclusion of Stueckelberg mass mixings in the low energy Lagrangian of

the SM, as indeed such mass mixings are generic to many classes of string theories.

In these extensions of the SM, the mass growth for the extra gauge bosons occurs via

the so called Stueckelberg mechanism. In the simplest case, the mixing between the

visible sector and the hidden sectors arises via an axionic field which is absorbed by the

extra U(1) vector boson rendering it massive. Upon coupling this mechanism of mass

generation to the SM, which is distinctly different from the Higgs mechanism, several

signatures of new physics arise that can be detected at the LHC. A very interesting

consequence of the Stueckelberg mechanism that arises here is the appearance of a

very narrow spin 1 resonance with a set of hypercharged enhanced decays into visible

matter. Additionally, these models lead to two candidates for dark matter, one being

a milli-weak Majorana fermion and the other a milli-charged Dirac fermion. These

represent some of the unexpected (and testable) consequences of the hidden sector

models. Further, it is also found that a class of these models can fit the anomalies

seen in the PAMELA and ATIC data due to a Breit-Wigner enhancement of the dark

matter annihilation cross sections in the halo of the galaxy, while the annihilations

that gave rise to the relic density of dark matter also yield its correct relic abundance.

This Thesis is organized as follows: In Chapter(2) we give a very brief introduc-

tion to global and local supersymmetry and its implications. In Ch.(3) an analysis is

given of the decoding of the origin of dark matter with LHC signals. In Ch.(4) the

concept of Sparticle Landscapes and of Sparticle Mass Hierarchies is introduced and
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correlated signatures of new physics are analyzed. In Chapters(5,6,7) we move on to

the study of mass generation through the Stueckelberg mechanism. Specifically, in

Ch.(5) we briefly introduce the Stueckelberg mechanism, and in Ch.(6) we study the

mechanism for mass growth in supersymmetric models and explore its implications

for dark matter. In Ch.(7), focus is given to the discovery potential of a light Z

prime Boson at the Tevatron that manifests through the Stueckelberg mechanism. In

Ch.(8), LHC signals in the context of narrow spin 1 resonances are analyzed and it

is shown how they may be distinguished from models of warped geometry which also

lead to narrow resonances. In Chapter (9) we generalize the Stueckelberg extensions

in the framework of the SM and discuss dark matter and collider implications as well

as the recent PAMELA/ATIC positron/electron excesses. In Chapter (10) we sum-

marize and conclude.
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Chapter 2

Supersymmetry and Supergravity

Unification

2.1 A Brief History

Supersymmetry is an attractive symmetry for the construction of fundamental inter-

actions in four dimensions[1] linking bosons and fermions through their field trans-

formations. Local supersymmetry[2, 3] leads to what is referred to as supergrav-

ity. Supergravity models with chiral matter solve several phenomenological diffi-

culties encountered in the soft breaking of global supersymmetry[4]. The minimal

supergravity grand unified model[5] (mSUGRA) and its extensions including non-

universalities (generally classified as SUGRA) resolves such difficulties.

To build models based on supergravity, N = 1 supergravity is coupled to N = 1

chiral multiplets and N = 1 gauge multiplets, the latter belonging to the adjoint

representation of the gauge group [5, 6, 7]. Unlike the case of global supersymmetry,

the scalar potential in the bosonic sector of the theory is not positive semi-definite,

thus such a potential can lead to the breaking of supersymmetry consistent with the
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vanishing of the vacuum energy. Phenomenologically viable SUGRA models rely on

the concept of a so called hidden sector[8] (HS) which carry fields that may develop

vacuum expectation values. The terminology ‘hidden’ implies simply that the fields

in this sector do not carry quantum numbers of the Standard Model gauge group.

Therefore, fields in the SM sector do not directly interact interact with these fields

without the presence of some other underlying mechanism for mediation. In SUGRA

models this underlying mediation mechanism is gravity. Thus, an intrinsic assump-

tion in SUGRA models is that supersymmetry is broken in the hidden sector and

the breaking of supersymmmetry is then communicated gravitationally to the sector

where quarks, leptons and the Higgs fields reside[5]. In the context of gaugino con-

densation, this was discussed in Ref.[9]. SUGRA models are inherently high scale

models which rely on Planck scale physics as well as the scale of grand unification.

However quite remarkably, the resultant low energy theory is independent of both the

Planck scale[5, 10] and the grand unification scale[5, 11, 12]. The minimal SUGRA

model employs of a flavor independent Kähler metric and a gauge kinetic function

that carries linear field dependence. The minimal model leads to four soft breaking

parameters: the universal scalar and gaugino masses (m0, m1/2) and the universal

(tri,bi)-linear couplings (A0, B0) [5]. In addition the model has a bi-linear Higgs

mixing parameter µ [5, 6, 13, 14]. String models allow for Kähler potentials to have

such a bi-linear Higgs term [15], [see also [16], and [17] in [18]], and through a Kähler

transformation the µ term can be transported from the Kähler potential to the su-

perpotential. A truly remarkable aspect of SUGRA models is that they dynamically

lead to the breaking of electroweak symmetry[5]. Such a mechanism is natural in

the context of radiative electroweak symmetry breaking (REWSB)[19, 20] through

renormalization group evolution.

In the analysis presented in this Thesis, one of our focal points will be on soft
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breaking from gravity mediation with GUT scale unification[5] (for an early founda-

tional review see [21]) which give rise to experimentally testable signatures of low en-

ergy supersymmetry (for a detailed review and analysis see [22]). In general, SUGRA

models give rise to a host of new signatures directly testable at the colliders and such

models remain as leading candidates for the discovery of new physics at the LHC.

Further, shortly after the discovery of viable SUGRA models[5, 11, 12] , around the

same time when importance progress on SQCD was made [23] , it was proposed that

supersymmetric models could in fact give rise to gaugino dark matter [24], and in

particular neutralino dark matter[25], leading to large signatures of missing energy

(originally referred to as UFOs[6]1). Shortly after this great period of discovery, it

was realized that SUGRA models can arise as the field point limit of string theory

(see ex: [26]).

We note in passing some broader issues. As discussed above, in this Thesis we will

address the low energy implications of unified models as they relate to the analysis

of experimental data at colliders and in dark matter experiments. Other aspects of

unified models such as neutrino masses and proton decay (for a review see [27]) which

depend on high scales such as GUT masses are not explored. However, it may be noted

that as shown in [5] the soft parameters which control low energy phenomenology are

independent of the GUT scale. However, a true unified model will need to address

all issues including the ones mentioned above.

In order to make contact with testable predictions of SUGRA models, a determina-

tion is needed of the sparticle spectrum arising from boundary conditions at the scale

of grand unification (where the strong, electric and weak forces unify with greater

precision than in the Standard Model 2). The earliest detailed analyses focused on

1Historically: Unidentified Fermionic Objects[6] - the twilight Zino, or what we now all call large
amounts of missing PT .

2 For early analyses on gauge coupling unification see [28].
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such spectroscopy were given in the 1990’s[29],[30],[31]. Such a determination de-

pends critically on the renormalization group evolution (RGE) of the soft breaking

parameters. A detailed analysis of RGEs has been given in Refs. [32]. One is then in

the position to make concrete predictions in supersymmetric models including predic-

tions on the relic abundance of dark matter, and implications for the direct detection

of such matter, and supersymmetric signals of new physics at colliders. This will be

taken up in Chapters(3,4). A brief review of the above developments will be given

below.

2.2 Global SUSY

Supersymmetry (SUSY) is simply a generalization of the Poincaré group to include

a graded Lie algebra with fermionic generators. Such fermionic generators Q satisfy

anti-commutating relations {Qα, Q̄α̇} = 2σµ
αα̇Pµ, where P is the generator of trans-

lations and the generators of the supersymmetry transformations, Q, commute with

P . Massless representations of the extended algebra necessary for building particle

physics models consist of chiral superfields where quarks, leptons, and Higgs fields

and their superpartners reside, and of vector superfields which contain the vector

gauge bosons and their supersymmetric partners the gauginos.

One can construct a globally supersymmetric Lagrangian (for reviews see [33],

[34], [35]) by forming products of chiral superfields (with bosonic components φi and

fermionic components ψi) and products of chiral and a vector superfields (the vector

superfields in the Wess-Zumino gauge having bosonic components va
µ and Majorana

fermionic components λa, where the index a belongs to the adjoint representation of

the gauge group). This Lagrangian for a single non-Abelian gauge group connecting
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gauge and matter fields (GM) in 2-component notation reads

LGM = −1

4
vaµνva

µν − iλ̄aσ̄µDµλ
a +

1

2
DaDa (2.1)

−(Dµφi)
†(Dµφi)− iψ̄iσ̄µDµψi − F i†Fi

−(−i
√

2gφi†(T a)ijψ
jλa + h.c.) + gDaφi†T a

ijφ
j − 1

2
[ψiW,ijψ

j + h.c.].

Here W is the superpotential which is a holomorphic function of chiral superfields (and

at most cubic in chiral superfields) and W,ij = ∂2W/∂φi∂φj (formally the derivatives

are with respect to chiral superfields). F, D are auxiliary fields satisfying Fi = −(W,i)†

and Da = −gφi†T a
ijφ

j, where the gauge group generators obey [T a, T b] = ifabcT c, as

usual, with antisymmetric structure constants fabc . For an Abelian gauge group a

Fayet-Iliopoulos D-term (see Ref 2 of [1]) is allowed and the D-term can contain an

extra additive constant. The gauge covariant derivative acting on scalar and fermionic

matter fields mi = φi or ψi is Dµmi = (∂µm)i + igva
µ(T am)i, while for the fermions

transforming in the adjoint representation of the gauge group Dµλa = (∂µ−gfabcvb
µ)λ

c.

The potential of the system is defined in terms of the auxiliary fields

VGlobal = F i†Fi +
1

2
DaDa. (2.2)

The above is trivially generalized to a product gauge group. Although the above

structure is aesthetically pleasing, it suffers from the major phenomenological issue

that global supersymmetry as constructed above, cannot be an exact symmetry of

nature as in its unbroken form it predicts the presence of scalars that are mass degen-

erate with fermions. Therefore, if SUSY it is to be realized at all, it must be a broken

symmetry as scalar masses the size of electron masses are not observed. The breaking

of SUSY is complicated by the following fact: If one traces the anticommutators of
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the SUSY generators this leads to a vacuum energy 〈0|H|0〉 ≥ 0, and therefore the

potential of the system is positive semi-definite. If SUSY is preserved, the fermionic

generators Q preserve the vacuum state, i.e. Qα|0〉 = 0 = Q̄α̇|0〉 and the energy of the

ground state is 0 (Evac
Unbroken = 0). Conversely if SUSY is broken Qα|0〉 (= 0, Q̄α̇|0〉 (= 0,

and the ground state energy is necessarily positive, Evac
Broken > 0. Thus the supersym-

metric vacuum lies lower than the broken vacuum suggesting that it may be difficult

to break supersymmetry. One could in principle add soft parameters by hand to

break supersymmetry at low energy of the form3 [4]

LSoft ∼ − (Mλaλa + h.c.)−
(
m2
)i

j
φ†jφi − (µijφiφj + yijkφiφjφk + h.c.) . (2.3)

However this approach is plagued by the fact the simplest possible extension known

with the field content of the SM (the minimal supersymmetric extension ≡ MSSM)

has an enormous number of free parameters, i.e., upward of a hundred4. These

problems are avoided in the framework of local supersymmetry/supergravity [2, 3]

and in particular within supergravity grand unification [5] and models based on its

structure.

2.3 SUGRA Unification

As indicated previously, in order to build models based on N = 1 supergravity one

needs to use the techniques of applied supergravity which involves the coupling of

supergravity with chiral multiplets and gauge multiplets belonging to the adjoint

representation of the gauge group [5, 6, 7]. The effective N = 1 supergravity La-

grangian depends on three arbitrary functions: the superpotential W(φi), the Kähler

3A linear term in φ is also soft.
4See Ch. 8.1.1 of [36] for various counts.

16



potential K(φi,φi†), and the gauge kinetic function fαβ(φi,φi†), where here α, β are

gauge indices for the adjoint representation. W and K enter in the effective theory

only in a fixed combination through the function G defined by

− G = κ2K + )n[κ6WW†] , (2.4)

invariant under : K→ K − F (φi)− F †(φi†) with W → eκ
2fW , (2.5)

where F is an arbitrary function of chiral fields. The Kähler metric is given by

Ki
j = K,i

,j ≡ ∂2
φiφj†K = −κ−2G,i

,j . Here κ = 1/MPl is the inverse reduced Planck mass

so that MPl = (8πGN)−1/2 = 2.4×1018 GeV. Now, from a practical point of view, one

of the most important results that comes out of applied supergravity is the emergence

of an effective potential which is not positive semi definite [5, 7]

VSUGRA = −κ−4e−G [G,i(G−1)i
jG,j + 3

]
+ VD , (2.6)

which upon expansion reads

VSUGRA = eκ
2K [Di(K−1)i

jD†j − 3κ2|W|2
]

+ VD , (2.7)

Di = W,i + κ2K,iW , (2.8)

VD =
g2

2
,(f−1

αβ )DαDβ =
g2

2κ4
,(f−1

αβ )G,i(T α)j
iφjG,k(T β)l

kφl . (2.9)

As the potential is no longer positive definite a remarkable aspect of the supergrav-

ity formulation emerges: supersymmetry may be broken spontaneously while allowing

the vacuum energy to vanish. The relevant pieces of the Lagrangian that enter into

this discussion are those involving the mass terms for the spin 3/2 fermionic partner

of the spin 2 graviton; the gravitino (Ψµ), and the mass terms for the Majorana (λα)

17



fields5, and are exhibited below (ignoring the determinant of the vierbein)

L3/2 - κ−1e−G/2Ψ̄µΣ
µνΨν , (2.10)

L1/2 - 1

4
κ−1e−G/2Gi(G−1)j

i (∂f
∗
αβ/∂φ

∗j)λ̄αLλ
β
R + h.c. ,

where Σµν = (1/4)[γµ, γν ]. It is worth pointing out, that the Bosonic Lagrangian also

contains gauge (non-diagonal) kinetic terms [5, 6, 7], LKin - −,(fαβ)V µναV β
µν/4 (and

the imaginary part of the dual field strength). Non diagonal field strength tensors

[5, 6, 7] can have important implications and this subject will be addressed in various

contexts in Ch.(9).

To achieve the breaking of supersymmetry one invokes the existence of a sector

of fields which do not carry the quantum numbers of the visible sector (where the

Standard Model fields reside). This hidden sector is where supersymmetry is broken

via a super Higgs effect. In the SUGRA framework the only communication between

the hidden sector and visible sector occurs via gravity.

Returning to the potential, with a vanishing D-term at the minimum, a flat Kähler

metric K = φiφi†, on a real manifold of VEVs, one readily derives upon minimization

[5, 6]:

TijŴ,j = Tij [∂φj + κ2φj]W = 0 , (2.11)

Tij = W,ij + κ2 (φjW,i + φiW,j) + κ4KW − 2κ2Wδij ,

where all fields in the above are evaluated at the minimum of the potential. One

then has Ŵ,j = 0 alone breaks the gauge symmetry but not supersymmetry as the

VEV of chiral matter satisfies 〈δχL〉 ∝ 〈Ŵ,j〉 = 0. Thus supersymmetry breaking is

5We have switched to four component notation here for the moment.
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accomplished if at least one of the Ŵ,j (= 0 implying at least one eigenvalue of Tij = 0.

This illustrates rather explicitly the breaking of both SUSY and gauge symmetry in

a locally supersymmetric model[5, 6].

The simplest way to achieve a phenomenologically viable breaking of supersymme-

try is through a singlet scalar field Z with a superpotential split between the visible

and hidden sectors of the form W = WV S + WHS with WHS = m2(Z + B) and

assuming a flat Kähler potential in the HS with 〈Z〉 = O(MPl). Direct interactions

between the VS and HS will lead to sparticle masses O(MPl) in the visible sector

however such a problem is avoided if the two sectors communicate via gravitational

interactions[5, 10]. Further, in the above example the tuning of the vacuum energy

to zero arises with a particular value of B. The above phenomenon is a consequence

of the super Higgs effect. Thus after spontaneous breaking the spin 3/2 gravitino

absorbs the fermionic partner of the chiral field Z with mass given by

m3/2 = κ−1 exp(−〈G〉/2) = κ2 exp(κ2〈Z〉2/2) · |〈W(Z)〉| , (2.12)

i.e., the gravitino, receives a mass of m3/2 ∼ κm2 implying that m ∼ 1010−11 GeV

will lead to m3/2 in the electroweak to TeV region.

More generally, the conditions under which the soft breaking in the minimal su-

pergravity model are derived are summarized as follows: (i) There exists a hidden

sector, i.e. minimally the presence of a gauge singlet which breaks supersymmetry

through a super Higgs effect giving mass to the gravitino; (ii) The two sectors, the

hidden and the visible, interact only gravitationally; (iii) The Kähler potential is gen-

eration independent; (iv) The gauge kinetic fαβ is diagonal with higher order terms

in its expansion assumed negligible, suppressed by powers of the Planck mass. This
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then gives rise to soft terms of the form [5, 12, 37]

VSB = VGlobal + m2
0φ

i†φi +
1

2
m1/2λ̄

αλα + (A0W(3) + B0W(2) + h.c.), (2.13)

where W(2) = µ0H1 · H2 and, Hi=1,2 are Higgs doublets, and W(3) is tri-linear in

superfields and A0 has mass dimension in this notation, while m3/2 ∝ m0, and

m1/2, A0, B0µ0 are all of the same relative size ≈ κm2 ! TeV.

Now, the result of Eq.(2.13) arises from the simplest Kähler metric and gauge

kinetic function. It is however possible (and perhaps likely) that small deviations

from flatness will manifest at the string scale and influence low energy physics. More

generally, if the gauge kinetic energy function carries field dependence then after the

spontaneous breaking of supersymmetry the above leads to gaugino masses. If fαβ

transforms as a singlet of the underlying gauge groups the gaugino masses remain

universal. Conversely, if fαβ transform as non-singlet irreducible representations then

the gaugino masses will be non-universal at the high scale. Additionally a more

general form of the Kähler potential which is not flavor blind will give rise to non-

universalities in the soft breaking parameters in other sectors [13, 16, 17, 38]. Non-

universalities typically arise in strings and in D-Brane models and Ibanez et. al [17]

have devised a very convenient parametrization of generic soft breaking. This will be

utilized in Chs.(4.4,4.5).

It should be noted that non-universalities are highly constrained by experimental

data especially from constraints on flavor changing processes. Still, it is possible to

find classes of viable models with non-universalities consistent with all the relevant

experimental constraints. Indeed, recently there has been progress on building semi-

realistic models with N = 1 supersymmetry based on D-Branes [39]. In certain

classes of these models moduli are assumed to give rise to spontaneous breaking of
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supersymmetry in the hidden sector with such moduli playing the role of Polonyi

fields[16] in the breaking of supersymmetry. Particular classes of models include

those based on orientifold compactifications of type II string theories with D-Branes

that support semi-realistic chiral gauge theories for which the Kähler metric has been

explicitly constructed [40]. Computations of disk scattering amplitudes have been

given in [41] (see also [42],[43]). The Kählers arising from these calculations are

often complicated in their structure containing functions of products of moduli fields

M = {s, tm, um} and angular variables describing the orientation of the Branes in

the compactified space, the stretching of strings between Brane stacks, and also set

the conditions for the model to be supersymmetric. These models also include gauge

kinetic functions that depend on the moduli and wrapping numbers. We will discuss

some phenomenology of these scenarios in Chapter(4). The point to be made here

is that indeed we can begin to make important progress on testing such scenarios

[44],[45], [46].

2.3.1 Low energy realizations

The simplest scenario is that the field content of low energy supersymmetry is de-

scribed by the minimal particle content. For the case of the MSSM, which is the

minimal supersymmetric generalization of the SM with product gauge group GSM =

SU(3)C × SU(2)L × U(1)Y , the R-Parity preserving superpotential 6 is taken to be

quadratic and cubic with7

W(2) = µΦHuΦHd
; W(3) = ΦūY

uΦQΦHu − Φd̄Y
dΦQΦHd

− ΦēY
lΦLΦHd

, (2.14)

6R-Parity is Z2 symmetry which will be assumed intact throughout this analysis.
7Later we will use the notation H1 = Hd, and H2 = Hu.
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where Y are in general 3 × 3 matrices in flavor space containing Yukawa couplings.

In the gauge sector, the vector superfields are V A=1−8, V α=1,3, V transforming as

(8, 1, 0), (1, 3, 0), (1, 1, 0) respectively under GSM introducing new spin 1/2 particles,

namely the gaugino colored octet and the weak and hypercharge gauginos. In the

chiral sector two Higgs superfields are introduced whose scalar doublet fields carry

hypercharge of opposite sign to avoid anomalies from the presence of their fermionic

partners. Finally, new scalar fields are introduced for each fermionic matter state

of the SM (sfermions = squarks + sleptons). In terms of the MSSM the soft terms

Chiral superfield (SU(3)rep, SU(2)rep, Y/2) spin 1/2 spin 0

ΦQ (3, 2, +1/6) (uL, dL) (ũL, d̃L)
Φū (3̄, 1,−2/3) u†

R ũ†
R

Φd̄ (3̄, 1, +1/3) d†
R d̃†

R

ΦL (1, 2,−1/2) (νe, eL) (ν̃e, ẽL)
Φē (1, 1, +1) e†R ẽ†R
ΦHu (1, 2, +1/2) (H̃+

u , H̃0
u) (H+

u , H0
u)

ΦHd
(1, 2,−1/2) (H̃0

d , H̃
−
d ) (H0

d , H
−
d )

Vector superfield (SU(3)rep, SU(2)rep, Y/2) spin 1/2 spin 1
V A (8, 1, 0) λ̃g g
V α (1, 3, 0) λ̃W - λ̃3, λ̃± A3

µ, A±
µ

V (1, 1, 0) λ̃Y Bµ

Table 2.1: Chiral and Vector Superfields of the MSSM: In the chiral/matter sector, in
addition to quarks and leptons, there are squarks, sleptons (×3 families), there is an an
extra Higgs doublet, and the fermionic partners, the Higgsinos. In the gauge sector in
addition to the SU(3)C × SU(2)L × U(1)Y gauge bosons there is a set of corresponding
gauginos.

generated by supergravity in Eq.(2.13) read (following a similar notation to [47] and

suppressing gauge/family indices)

− Lsoft - m2
Hu

H†
uHu + m2

Hd
H†

dHd + (BµHuHd + h.c.) (2.15)

+Q̃†M2
Q̃
Q̃ + L̃†M2

L̃
L̃ + ˜̄um2

ũ
˜̄u
†
+ ˜̄dm2

d̃
˜̄d
†
+ ˜̄em2

ẽ
˜̄e
†
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+(˜̄uhuQ̃Hu − ˜̄dhdQ̃Hd − ˜̄eheL̃Hd + h.c.) ,

+
1

2
(M3λ̃gλ̃g + M2λ̃W λ̃W + M1λ̃Y λ̃Y + h.c.) ,

where hu,d,e are 3× 3 matrices (in general complex) in the flavor space and the M2
Q̃
,

M2
L̃
, m2

ũ, m2
d̃
, and m2

ẽ are 3× 3 and Hermitian.

As previously noted, another remarkable aspect of soft breaking is that it leads to

spontaneous breaking of the electroweak symmetry [5], and such a breaking may be

accomplished radiatively (for a useful review see [48]). To exhibit this, consider the

effective scalar potential constructed out of the Higgs F terms (i.e the derivative of

the superpotential) and D terms of the Higgs sector, and the first line of Eq.(2.15).

Defining H(1,2) = H0
(d,u) the renormalization group improved scalar potential is

V = m2
1|H1|2 + m2

2|H2|2 −m2
3(H1H2 + h.c.)

+
(g2

2 + g2
Y )

8
(|H1|2 − |H2|2)2 + ∆V1,

∆V1 = (64π2)−1
∑

a

(−1)2sa(2sa + 1)M4
a

[
ln

M2
a

Q2
− 3

2

]
. (2.16)

The term ∆V1 is the one loop correction [49, 50] to the effective potential. Here

sa is the spin of the particle a, and all parameters, run with scale and are subject

to boundary conditions α2(0) = αG = 5
3αY (0); m2

i (0) = m2
0 + µ2

0, i = 1, 2; and

m2
3(0) = −B0µ0. Electroweak symmetry breaks down when the determinant of the

Higgs mass2 matrix turns negative (i) m2
1m

2
2−2m4

3 < 0, and (ii) m2
1+m2

2−2|m2
3| > 0,

where the second condition is the requirement that the potential be bounded from

below. Minimization of the potential, leads to (a) M2
Z = 2(µ2

1 − µ2
2 tan2 β)(tan2 β −

1)−1, and (b) sin 2β = 2m2
3(µ

2
1 + µ2

2)
−1, where µ2

i = m2
1 + Σi where Σi is the loop

correction [51] and tanβ = v2/v1 is the ratio of the Higgs VEVs. The electroweak

symmetry breaking constraint (a) can be used to fix µ using the experimental value
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of the Z boson mass MZ , and the constraint (b) can be utilized to eliminate B0 in

favor of tanβ. Therefore, the supergravity model at low energy can be parametrized

by (m0, m1/2, A0, tan β, sign(µ)).

The philosophy should now be evident. Four parameters and a sign induced by

the gravitational mechanism for breaking of SUSY can be used to generate the low

energy spectrum through renormalization group evolution and the radiative break-

ing of electroweak symmetry. Thus, a theoretically well motivated and applicable

approach to testing supersymmetry is summarized as follows [29, 31, 30] :

• Start from a High Scale model where supersymmetry is spontaneously broken.

• Specify the the low energy field content (in the discussion here, the MSSM).

• Implement the Renormalization group improved effective Higgs Potential.

• Run the RGEs from the high scale (MG) to the electroweak scale (MZ), or

the scale at which REWSB occurs, and calculate all the sparticle masses from

knowledge of 4 parameters and a sign. In the case of non-universalities imple-

ment an extended parameter set.

• Impose experimental constraints and determine the viable model.

• Test such model predictions by examining their collider and astrophysical sig-

natures.

A sample of recent works based on this general philosophy with emphasis on LHC

predictions from the high scale include [52, 53, 54, 55, 56, 57, 58, 59, 45, 60, 61, 62, 63].

2.3.2 The Spectra

In the MSSM there are 32 massive supersymmetric particles including the Higgs

Bosons. There are the neutral Higgs mass eigenstates Φ ≡ (h, H, A) , the first two be-
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ing CP even and the third CP odd, and one charged Higgs mass from the states H±. In

the gaugino-Higgsino sector there are two charged mass eigenstates (charginos) χ̃±
i=1,2,

four charge neutral states (neutralinos) χ̃0
i=1,4, and finally there is the Majorana gluino

mass. In the sfermion sector, before diagonalization, there are 9 scalar leptons (slep-

tons) which are superpartners of the leptons denoted with left and right chirality to

identify them as superpartners of the leptons: {ẽL,R, µ̃L,R, τ̃L,R, ν̃eL, ν̃µL , ν̃τL}. Finally

there are 12 squarks which are the superpartners of the quarks and are represented

by: {ũL,R, c̃L,R, t̃L,R, d̃L,R, s̃L,R, b̃L,R}. Mass diagonal slepton and squark states will in

general be mixtures of L, R states.

After the neutral components of the Higgs doublets obtain VEVs, the analogues

of the first and third terms on the third line of Eq.(2.1) and the the last term involv-

ing the electroweak gauginos in Eq.(2.15) give rise to neutralino and chargino mass

matrices. For the neutral sector one has, in the basis (λ̃Y λ̃3
W H̃0

d H̃0
u)

Mχ̃0 =





M1 0 −MZsW cβ MZsW sβ

0 M2 MZcW cβ −MZcW sβ

−MZsW cβ MZcW cβ 0 −µ

MZsW sβ −MZcW sβ −µ 0




,

where θW is the weak angle, sW = sin θW , sβ = sin β, etc. For the charged sector

Mχ̃± =

(
0 MT

±

M± 0

)
, M± =

(
M2

√
2MW sβ

√
2MW cβ µ

)
,

with λT
+ = (λ̃+ H̃+

u )T and λT
− = (λ̃− H̃−

d )T such that in the diagonal basis, χT
± =

(χ±
1 χ

±
2 )T with χ+ = V λ+ and χ− = Uλ− leading to MDiag

χ± = U∗M±V −1, where U, V

are unitary matrices.

The squark and slepton physical masses arise from the second and third line

Eq.(2.15) and and the F and D terms of the potential. Thus for example, assuming
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hf = YfAf then in the s-chiral basis one has

Lf̃ = − ( f †
L f †

R )

(
M2

f̃
+ m2

f + ∆L
f mf(A∗

f − µβ̂)

mf(Af − µ∗β̂) m2
f̃

+ m2
f + ∆R

f

)(
fL

fR

)
,

where

∆L
f = (T3f −Qfs

2
W )M2

Z cos(2β) ∆R
f = (Qfs

2
W )M2

Z cos(2β) , (2.17)

and where Qf is fermionic charge and for up scalars β̂ = cot β while for down scalars

β̂ = tan β. Note that the mass and couplings in the mass2 matrices are running

parameters (for an introduction to calculating sparticle masses through the RGEs see

[64, 65, 47],[66],[67])

At tree level the CP odd Higgs mass is simply MA =
√

2|µB|/| sin 2β| and the

charged Higgses satisfy MH± =
√

M2
A + M2

W . The CP even Higgs mass receives a

relatively large radiative correction[68] with the largest effect coming from the top

(s,q)uark Yukawa couplings. The mass of the light CP even Higgs is bounded above

in SUGRA models roughly by mh ! 130 GeV, and is predicted within a ∼ 30 GeV

mass spread, while in a complete generic MSSM one can push the limit up by about

20 GeV. In singlet Higgs extensions there is the ability to push the light CP even

Higgs mass up further. The gluino mass receives radiative corrections at around the

25% level from quark squark loops (see [69]) and corrections to the squark, slepton

and gaugino masses can be modest [70].

2.3.3 Branches of REWSB

It is known that there are two branches of the parameter space that follow from

the radiative breaking of the electroweak symmetry. These branches are labeled by
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their geometrical structure, namely an Ellipsoidal Branch and a Hyperbolic Branch

(as discovered in Ref. 1 of [71]). These branches are intimately connected to the

µ parameter and the radiative breaking equations which determine it. In Ref. 1 of

[71] it was shown that C1m2
0 + C3m′2

1/2 + C ′
2A

2
0 + ∆µ2

loop= µ2+1
2M

2
Z , where m′

1/2 =

m1/2 + 1
2A0C4/C3, and where Ci are functions of gauge and Yukawa couplings and

∆µ2 are loop corrections. For small to moderate values of tanβ the loop corrections

are relatively small. In this case one finds that the soft parameters for fixed µ lie on

the surface of an ellipsoid and the constraint becomes

(i) Ellipsoidal Branch:

m
′2
1/2

a2
+

m2
0

b2
+

A2
0

c2
0 1; m

′2
1/2 = m1/2 + cA0. (2.18)

(ii) Hyperbolic Branch: A very interesting phenomenon exhibited in the analysis of

Ref. 1 of [71] is that multi-TeV squarks and sleptons can emerge in certain regions

of the parameter space with a small amount of fine tuning. We reproduce below the

argument of the work of Ref. 1 of [71] as to how this comes about. The important

factor here are the loop corrections to the µ parameter which for certain regions of

the supergravity parameter space can be rather significant. However, the size of the

loop corrections to µ depends critically on the scale Q0 where the minimization of

the effective potential is carried out. In fact, for the case at hand, there is generally

a strong dependence on Q0 for both the tree and the loop contributions to µ, which

however, largely cancel in the sum, leaving the total µ with a sharply reduced but still

non-negligible residual Q0 dependence. Now the choice of the value of Q0 is rather

arbitrary and one can choose any value of Q0 for convenience. An interesting choice

for the value of Q0 is the point where the loop corrections to µ are rather small. It

turns out that typically the Q0 value where the loop correction to µ is minimized is
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roughly the average of the smallest and the largest sparticle masses, a value not too

far from
√

mt̃Lmt̃R , which is also the Q0 value where typically the 2-loop correction

to the Higgs mass are minimized. The choice of such a Q0 leads often to the case

sign(C1(Q0)) = −1. In this circumstance Eq.(2.18) turns from an equation of an

ellipsoid to that of a hyperboloid and hence such a branch is appropriately called the

Hyperbolic Branch (HB) of REWSB so that [71]

m
′2
1/2

α2(Q0)
− m2

0

β2(Q0)
0 ±1 , (2.19)

where α, β are functions of the µ, the Z mass, A0, and the coefficients Ci (see Ref. 1

of [71]). If indeed nature has chosen the hyperbolic branch, the lightest particles will

be the light Higgs and χ0
1,χ

0
2,χ

±
1 , with a reasonably light gluino mass in many cases,

while the scalars would be rather heavy. We will discuss this scenario in further detail

shortly.

2.3.4 Dark Matter

Relic Density

The principle behind the analysis of relic (leftover) density of dark matter (DM) is

as follows: The early universe was a hot dense soup of rapidly annihilating particles.

At some epoch, these particles were all in thermal equilibrium. As the universe

expanded and cooled down, the reaction rates of these particles became smaller than

the expansion rate (H) (the Hubble function), and the particles were no longer able to

annihilate rapidly enough to maintain thermal equilibrium. As a consequence, these

particles no longer maintained the ability to interact with the cosmic soup and they

decoupled. Their total number became locked in at a freeze-out temperature, however

their number density became depleted, or diluted, with the expanding volume of the
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universe.

The analysis of relic density involves the total number density n =
∑

i ni, where

ni are the number of particle species of species i that survived annihilation and

eventually decay into χ1, the lightest surviving particle. The analysis is governed by

the Boltzmann evolution equation [72]

dn

dt
= −3Hn−

∑

ij

〈σijvij〉(ninj − neq
i neq

j ) . (2.20)

Here σij are the cross sections for annihilation of fermionic particle species i, j, and neq
i

is the number density of χi in thermal equilibrium. The approximation ni/n = neq
i /neq

gives the well known

dn

dt
= −3nH − 〈σeffv〉(n2 − (neq)2), (2.21)

where the bracket denotes thermal average with a normalized Boltzmann distribution

and the effective cross section and velocity of annihilating matter enter via

σeffv =
∑

i,j

σijvijγiγj. (2.22)

Here the γi are the Boltzmann suppression factors [73] and are given by

γi =
neq

i

neq
=

gi(1 + ∆i)3/2e−∆ix

∑
j gj(1 + ∆j)3/2e−∆jx

, x ≡ m1/T, X ≡ 1/x. (2.23)

In the above vij =
√

(pi · pj)2 −m2
i m

2
j/(EiEj) and the units are taken with the Boltz-

mann constant KB = 1, and gi are the spin degrees of freedom of the particles and

∆i = (mi −m1)/m1.
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The freeze-out temperature is then determined iteratively through

xf = ln

[
x−1/2

f 〈σeffv〉m1

√
45

8π6NfGN

]
, (2.24)

where Nf is number of degrees of freedom at freeze-out, whose value is roughly 100.

Numerically one finds x−1
f = Xf = Tf/m1 ∼ 1/20 for DM in the mass range 50-1000

GeV. The relic density of cold dark dark matter (CDM) is determined through the

ratio Ωχ1 = ρχ1/ρc where ρc = 3H2
0/(8πGN) = h2

0 × 8.1 × 10−47GeV4 is the critical

closure energy density of the universe and h0 is the rescaled Hubble constant related

to H0 via H0 = h0100Km/sec/Mpc. The density ρχ1 is

ρχ1 = m1n
χ1
NR(Tχ) = (4π3/45)1/2M−1

Pl (Tχ/Tγ)
3T 3

γN1/2
f

[∫ Xf

0

〈σeffv〉dX

]−1

. (2.25)

This may be put in a more useful form taking into account both neutrino and the

LSP decoupling, by eliminating (Tχ/Tγ)3, the standard result is

Ωχ1h
2
0 =

1.07× 109GeV−1

N1/2
f MPl

[∫ Xf

0

〈σeffv〉dX

]−1

. (2.26)

From here on we will drop the subscript ”0” on h0. Eq.(2.26) provides a starting

point for calculating the relic density under standard assumptions. However, the spin

degrees of freedom are gspin = 2 for Majorana DM and for a Dirac DM, gspin + ḡspin =

2 + 2 = 4. For Dirac DM a factor of 2 enters in the number density relative to the

Majorana case as can easily be seen by noting nχNR = nχ̄NR (see ex: [74]). For the case

of SUSY, the thermally averaged cross sections depend on a large number of possible

annihilation channels. We will discuss this in a bit more detail later. A listing of such

channels may be found in Table 3 of [75] and the the current DarkSusy (DS) manual

(available on the DS webpage).
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Direct Detection

As will be discussed in detail shortly, experiments are actively attempting to detect the

presence of WIMPS (weakly interacting massive particles) 8 via their spin dependant

and spin independent scattering with nuclei. For SUSY models the WIMP dark

matter will be the LSP (lightest R-parity odd sparticle). The WIMPs have a velocity

distribution near the earth and in the local galactic halo, and they are travelling

with non relativistic speed order 0.001c. This then translates into the fact that

their momentum transfer is very small (order 100 MeV for LSP masses of order 100

GeV), and therefore the relevant interactions for the direct detection of DM may be

calculated in the limit of zero momentum transfer in collisions with nuclei. For the

case of the MSSM, the interaction Lagrangian relevant to this discussion is given by

[77][78]

L = χ̄γµγ5χq̄iγµ(α1i+α2iγ
5)qi+α3iχ̄χq̄iqi+α4iχ̄γ

5χq̄iγ
5qi+α5iχ̄χq̄iγ

5qi+α6iχ̄γ
5χq̄iqi .

(2.27)

Experimental sensitivity currently best allows for the probes of the spin independent

cross section for neutralinos scattering elastically off target nuclei. In terms of the

reduced mass of the neutralino and the target system (µχT ) one has

σχ(T ) =
4µ2

χT

π
(Zfp + (A− Z)fn)2 , (2.28)

where (Z, A) are the atomic (number,mass) of the nucleus, and interactions with the

quarks in the target nuclei through t-channel CP-even Higgs exchange, and s-channel

8For a historical account of this terminology see [76].
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squark exchange are contained in

fp/n =
∑

q=u,d,s

f (p/n)
Tq

aq
mp/n

mq
+

2

27
f (p/n)

TG

∑

q=c,b,t

aq
mp/n

mq
. (2.29)

Here f (p/n)
TG is given by 1− f (p/n)

Tu
− f (p/n)

Td
− f (p/n)

Ts
and arises via gluon exchange with

the nucleon and the f (p/n)
Tq

are determined from light quark masses obtained from

baryon masses via matrix elements and from the value of the pion-nucleon sigma-

term. Numerical values and further details are given in, for example, the second

Ref. of [38] and [78]. Entering importantly to the discussion is the LSP neutralino

decomposition in terms of its Bino, Wino and Higgsino eigen components (In terms

of the previous notation (B̃, W̃ 3) ≡ (λ̃Y , λ̃3))

χ ≡ χ0
1 = n11B̃ + n12W̃

3 + n13H̃1 + n14H̃2 . (2.30)

The relevant couplings that enter in the spin independent cross section are [77][78]

aq ≡ a3i = − 1

2(m2
1i −m2

χ)
, [(Xi) (Yi)

∗]− 1

2(m2
2i −m2

χ)
, [(Wi) (Vi)

∗]

− g2mq

4mW B

[
, (δ1[g2n12 − gY n11])DC

(
− 1

m2
H

+
1

m2
h

)

+, (δ2[g2n12 − gY n11])

(
D2

m2
h

+
C2

m2
H

)]
. (2.31)

The first term arises from squark exchange and is typically much suppressed over

most of the signature space consistent with WMAP constraints, (it is given in full

in [77][78]) however the largest contribution from squark exchange is typically seen

for the case of a pure Bino LSP which can arise when the stop is the NLSP in

SUGRA models [45]. The parameters δ1,2 depend on eigen components of the LSP

wave function and B, C, D depend on VEVs of the Higgs fields and the Higgs mixing
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parameter α and are given by

for u quarks : δ1 = n13 δ2 = n14 B = sin β C = sinα D = cosα (2.32)

for d quarks : δ1 = n14 δ2 = −n13 B = cosβ C = cosα D = − sinα . (2.33)

2.3.5 Sparticle Production at Hadron Colliders

Figure 2.1: Sparticle Production at Hadron Colliders, figure by H. Baer and X. Tata, SUSY
07, Karlsruhe.

Simulating sparticle production at hadron colliders is a multi-step process. It

involves (a) the hard scattering of initial state quarks and gluons of the partonic

sub-processes, followed by (b) parton showering for colored particles, (c) the im-

plementation of Monte Carlo techniques to describe the probability of a produced

particle to decay into a daughter particle over sometimes very long decay chains, (d)

the hadronization of the produced elementary colored particles from the decay chains
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leading to a large collections of mesons and baryons, which can also decay further.

(e) Finally, one needs to take care of remnants that were not involved in the hard

scattering process. After all of these steps are accomplished one needs to sort out the

number and type of events produced by the production of (s)particles and do so over

a large class of final state state channels by collecting angular and four momentum

information per particle per event. Specific programs have been created to accomplish

these steps, and some details regarding these steps can be found in [79] and in [80]

and [36].

Sparticle production involves a plethora of production modes. Many of the most

relevant modes are reviewed in [36]. At the LHC the dominant production modes

arise from the creation of gluino pair production (g̃, g̃), mixed gluino (g̃) squark (q̃)

production, squark pair production, and chargino χ̃±
1,2 neutralino χ̃0

1−4 production.

Perhaps the most interesting class of final states from the production of sparticles

at hadron colliders involve mutli-lepton final states, tagged b-jets and missing en-

ergy/momentum. Here I will briefly discuss some of these relevant production modes.

Missing Energy/Momentum: Technically, the missing transverse energy is the

negative vector sum of the transverse energy deposited in the EM and hadronic

calorimeters. The modulus of this quantity is often referred to as missing Emiss
T , Pmiss

T

or MET. In general, this should include transverse momenta of any muons. Since in

practice, each calorimeter cell is labeled by a four vector with zero mass, and we are

speaking of directed energy, the appropriate terminology becomes P miss
T . Early on, as

mentioned already, it was realized that the stability of the LSP could lead to large

amounts of Pmiss
T [6]. Due to the stability of a neutral LSP, every SUSY event leads to

a large amount of Pmiss
T , though this largeness can vary based on the sparticle mass

hierarchy responsible for the production of the missing PT [58] as we soon will discuss

in detail.

34



Tri-leptons: It was noted shortly after the discovery of SUGRA models that W±

decay into a chargino and the second lightest neutralino can lead to a clean tri-

leptonic signal [81] and further work was carried out in Ref.[82]. In Ref.[83] it was

observed that the decays from an off-shell W can extend very significantly the poten-

tial for the discovery of the 3l mode. Many important works followed (for a sample

of early papers see [84]). Thus the classic examples of tri-lepton production proceeds

through the following sub-process: qq̄′ → W ∗ → χ̃±
1 χ̃

0
2 (production of χ̃±

1 χ̃
0
2 can also

arise from intermediate squark exchange) followed by chargino decay through an off

shell W via χ̃±
1 → W ∗χ̃0

1 → lνlχ̃0
1 , and neutralino decay χ̃0

2 → Z∗χ̃0
1 → l±l∓χ̃0

1

or chargino/neutralino decays via off shell sleptons χ±
1 → l̃∗νl → lχ̃0

1νl, with χ0
2 →

l̃∗l∓ → l∓l±χ̃0
1. However, a copious number of tri-leptons may also be produced due

to production of staus. It was pointed in the 3rd Ref. of [84] that if the following

sparticle mass hierarchy is achieved χ̃0
1 < τ̃1 < l̃R < χ̃±

1 ∼ χ̃0
2 then the branchings

χ̃0
2 → l̃Rl, χ̃0

2 → τ̃1τ , and χ̃±
2 → τ̃1ντ , can all be enhanced. In the latter cases one

may then have τ̃1 → χ̃0
1τ followed by leptonic decaying of the taus τ → ντνll, where

l = (e, µ). In fact if the stau is much lighter than the chargino, the latter 2 branching

fractions χ̃0
2 → τ̃1τ , and χ̃±

2 → τ̃1ντ can proceed with essentially 100 % probability

and enhance the 3l signal. Additional sources of tri-leptons are from light sleptons

and sneutrinos, contributions from the production of 2 of the heavier neutralinos and

charginos, and from SQCD sparticles (squark or gluino) being produced with EW-

inos, however these modes are often sub-dominant.

Third Generation: The importance of b-tagging has been discussed in [85][87]. In

certain regions of the parameter space it is found that there is an enhancement of the

gluino decays to third generation quarks . This is most importantly the case when

the LSP has a large Higgsino component, which occurs on the HB as we will show

explicitly in the next chapter. Thus it is found that here the gluino decays to a quark
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and an off shell squark the latter leading to an ino (χ̃±
1,2, χ̃

0
i=1,4) and quark producing

g̃ → (χ̃−
1,2 + tb̄)+h.c. and g̃ → χ̃0

i=1,4 + tt̄/bb̄. The opening up of the three body decays

leads to a large number of heavy flavor final states which are detectable above the

SM background.

It has also been pointed out that hadronically decaying tau jets, can lead to a

substantial number of events above the backgrounds at the Tevatron and the LHC

[86, 52, 57, 56, 45, 58, 60, 87]. For example through left handed squark decay, it

becomes possible to get a large branching into χ̃0
2 which as discussed already leads to

a τ jet + LSP. As will be discussed shortly, the right handed squark may lead to a

sizeable branching fraction into the LSP + quark yielding large amounts of P miss
T .

Detailed Reviews: Here we have a given a very brief summary of some of the

features of SUGRA. More detailed reviews can be found in a number of works some of

which we list below: Thus for a pedagogical discussion of SUSY see[47]; for a clear step

by step constructions of the MSSM see the appendices of [22], and [67] and [36]. For

reviews of the technical construction of applied N = 1 supergravity see [34],[6], and

for the nice summaries of the end point of these constructions see [21],[67],[36]. For

a review of radiative corrections to the Higgs masses see [67]; for reviews of SUGRA

phenomenology see [88] and [66], [67],[36], and for an exceptionally clear overview see

[89].
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Chapter 3

Towards Decoding the Mechanism

for the Origin of Dark Matter

It is shown that LHC signals of supersymmetric models carry sufficient information

to allow one to decode the mechanism by which dark matter is generated in the early

universe within a class of supersymmetric theories based on supergravity grand uni-

fication. The ability to decipher the mechanism for the production of dark matter in

the early universe is further facilitated by correlating supersymmetric signals in ex-

perimentally relevant channels at the LHC with the cross sections from the scattering

of neutralinos off nuclei.

3.1 Prelude

In the very near future, data from the LHC will be available allowing one to test

models of physics beyond the Standard Model. As emphasized already, supersym-

metry, and more specifically supergravity grand unified models, are of great interest

due to their predictive nature and their ability to resolve several issues encountered
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in low scale globally supersymmetric theories. Further, the nature of dark matter[90]

and dark energy continues to be one of the primary open questions in both particle

theory and cosmology. It is now widely believed that dark matter must be consti-

tuted of particles outside the standard list of known particles. Chief among these are

the so called weakly interacting massive particles (WIMPS). Supersymmetry with

R-parity conservation leads naturally to such a particle in the form of the lightest su-

persymmetric particle (LSP). In the framework of SUGRA unified models the lightest

neutralino is a particularly attractive possibility.

Quite generally, an analysis of the relic density of the LSP reveals three broad re-

gions where the the Wilkinson Microwave Anisotropy Probe (WMAP) [91] constraint

on the density of dark matter 0.0855 < Ωeχ0
1
h2 < 0.1189 (2σ) is satisfied. These in-

clude (a) the Hyperbolic Branch (HB)[71, 92] where multi TeV scalars can appear

consistent with small fine tuning (sometimes referred to as the Focus Point region

(FP) or as HB/FP), (b) the co-annihilation regions[73], (c) the Higgs pole region[93].

Of these, the stau co-annihilation region and the HB region are more generic while

the pole region (light Higgs and the CP odd Higgs A) is more fine tuned. (d) In

addition there is also the parameter space in the bulk region where the constraint

from WMAP on the relic abundance of dark matter is satisfied, and this is due to a

combination of effects.

Now, an interesting issue relates to the following: to what extent can the LHC

data allow one to decode the mechanism by which dark matter is generated in the

early universe? Specifically we will focus on dark matter originating in the Stau co-

annihilation (Stau-Co) region or in the HB region to begin to answer this question.

Details regarding experimental constraints imposed in the analysis and a descrip-

tion of the analysis routine may be found in the Appendix(4.8). Here we briefly

summarize as we wish to get to the main point. For concreteness in this chapter we
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we work within the framework of the mSUGRA model. In the analysis, the sparti-

cle masses and mixings are derived from the GUT scale with the SuSpect code [94]

coupled to micrOMEGAs [95]. We merge the models via the SUSY Les Houches Ac-

cord format [96] into PYTHIA [79] for the computation of SUSY production at the

LHC, in concert with PGS4 [97], to simulate LHC detector effects, and obtain the

final event record. The models are constrained by their ability to properly break elec-

troweak symmetry, by sparticle mass limits from LEP and Tevatron analyses, flavor

constraints including b → sγ and Bs → µ+µ−, by the supersymmetric contribution

to the muon anomalous magnetic moment, and the double sided bound on the relic

density. Our post trigger level cuts are as given in [60] and designed to emphasize the

SUSY signatures of new physics over the SM background for a broad class of models.

Here it is necessary to briefly describe the Stau co-annihilation and the HB further.

The Stau-Co arises on the branch of REWSB where the mass splitting between the

LSP neutralino and the NLSP stau is relatively small. It is found that 77% percent of

the model points in the Stau-Co from our Monte Carlo scan over the parameter space

obey ∆M = MNLSP −MLSP = Mτ̃1 −Mχ̃0
1
≤ 10 GeVwith 18 % of the model points

having this mass splitting of 10 < ∆M/GeV < 40 with the remaining 5% satisfying

∆M/GeV ! 100. The possibility of rather light τ̃ masses arise with more than 80 % of

the model points in our scan having Mτ̃1 < 400 GeV, with a rather even distribution of

model points with Mτ̃1 in the mass ranges of (100−200), (200−300), (300−400) GeV.

However, here the discovery of light Higgses becomes challenging as the heavy SUSY

Higgses are typically larger than MA/H/H± > 300 GeV. On the Stau-Co, the Bino

Branch of radiative electroweak symmetry breaking, prominent processes entering in

the relic density annihilation cross sections include: τ̃1χ̃0
1 → (τZ), (τh), (τγ), τ̃1˜̄τ 1 →

(fif̄i), (WW ), (ZZ), (γZ), (γγ), and τ̃1)̃i(i (= τ) → τ)i.

On the the dense part of the HB there is a controlled set of annihilations giv-
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ing rise to the satisfaction of the relic density and this is dominated by χ̃0
1χ̃

0
1 →

(WW ), (ZZ), (tt̄), (bb̄), over most of the parameter space, with a strongly Higgsino

like LSP. Additionally there are a significant number of cases where the annihilation is

dominated by the processes χ̃0
1χ̃

0
1 → bb̄ [∼ (85−90)%] and χ̃0

1χ̃
0
1 → τ+τ− [∼ (5−10)%],

and these cases typically occur for larger neutralino masses which are more Bino like,

but can also occur for low values of the neutralino masses as well on the HB. In

terms of dominant final states for the Higgsino like LSP, it is found that the ther-

mal annihilation cross sections would have arisen mostly from χ̃0
1χ̃

0
1 annihilations into

WW (84%)Max and ZZ(24%)Max as well as tt̄(77%)Max. Most often these channels con-

spired to produce the correct relic abundance, with sub-leading contributions from

other channels.

Now, we discuss our findings from a study of SUSY signatures that reveals several

correlated signals allowing a clear discrimination between the Bino and the Higgsino

branches which may be responsible for dark matter annihilations in the early universe.

3.2 Decoding the Mechanism For Dark Matter Pro-

duction with the LHC

3.2.1 The Chargino Wall and Chargino Ball

NSUSY(leptons/jets) and 〈P miss
T 〉 vs σSI

eχ0
1p;

The LSP gaugino-Higgsino content enters importantly in the thermal annihilation

cross sections that determine the proper relic density of decoupled neutralinos from

the epoch of freeze-out. It also enters prominently in the strength of the scalar

neutralino-proton cross section which we now discuss.

Significant information regarding the co-annihilation region and the HB region can

40



10−10 10−9 10−8 10−7 10−6
200

300

400

500

600

700

800

900

1000

! P
m

is
s

T
 " 

  (
G

eV
)

#SI($ p)    (pb)
10−10 10−9 10−8 10−7 10−6

100

101

102

103

Tr
i L

ep
to

n 
Ev

en
ts

  (
je

ts
 % 

2)
 

#SI($ p)    (pb)

HB
Stau−Co
SuperCDMS
CDMS/Xenon10X 

Chargino
 Wall   

Chargino
 Ball   

L = 10 fb−1

Stau−Co 

HB

Stau−Co 

HB

Pmiss
T  cut : 

 % 200 GeV 

Figure 3.1: Right panel: An exhibition of the tri-leptonic signal vs σSI
eχ0
1p

. Points in the
vertical region to the right constitute the Chargino Wall. Left panel: an exhibition of
〈Pmiss

T 〉 vs σSI
eχ0
1p

. The cluster of points at the end to the right constitute the Chargino Ball.
The CDMS/Xe10 constraints[98] and constraints expected from SuperCDMS[99] are also
shown. A clear discrimination of Stau-Co and HB can be seen in these plots. (From [87]).

be obtained by an analysis of the number of SUSY events at the LHC vs the spin-

independent neutralino-proton cross section σSI
eχ0
1p along with the current limits on the

direct detection of dark matter. We give an illustration of the above in Fig.(3.1). The

analysis of Fig.(3.1) (right panel) shows that the co-annihilation and the HB regions

are well separated in the space spanned by the tri-leptonic signature 3L (L=e,µ) and

σSI
eχ0
1p. One also finds the presence of a Chargino Wall (CW)[45, 87]. It refers to the

region of HB where the NLSP is the lightest chargino, the LSP is mostly Higgsino like,

and the spin independent cross section is essentially constant O(10−8) pb as function

of the neutralino mass for neutralino mass in the range ∼(80-650) GeV. In fact a

flat region in the spin independent neutralino nucleon cross section was first seen in

Ref. [92] and then following this in Ref. [100]. That the sparticle mass content or
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hierarchies throughout the flat region remain uniform was first seen in [45], where it

was further found that the flatness, or the Wall, is generic to SUGRA models studies

with non-universalities which enters importantly in the analysis of LHC signatures.

Flatness has been in observed in other recent works as well (see ex: [101]).

Further one observes that in Fig.(3.1) (left panel) the parameter points in the HB

region in the 〈P miss
T 〉 − σSI

eχ0
1p plot are clustered together in a ball shaped region (the

Chargino Ball (CB)[87]) and are well separated from points in the Stau-Co region

which lie on a slope providing a strong discrimination between the Stau-Co and the

HB regions. Therefore the HB lies in exceptionally predictive region, with a tight

corridor on the amount of missing P miss
T that it can produce (under the cuts imposed,

but this remains generic under other cuts that reduce the SM background). However

the Stau-Co can generally produce much larger amounts of P miss
T , making it somewhat

easier to discover in some cases. We will come back to this issue shortly.

It is however useful to see why the CW exists in the first place. Thus to explain

the CW we observe that: (a) On the CW one typically has m2
H 2 m2

h, and the heavier

of the CP Higgs mass has a lower limit near 300 GeV and more typically it extends

into the range of a TeV to several TeV, (b) sinα ≈ α where α is the Higgs mixing

parameter which enters in the diagonalization of the CP even Higgs mass2 matrix,

and α× tan β 0 −1, (c) further, the sfermion poles can be neglected as they make a

small contribution in this region. In the absence of CP phases we obtain

σSI
eχ0
1p(WALL) ∼ CSM(gY n11 − g2n12)

2(n14 + αn13)
2(9f p + 2f p

TG)2 (3.1)

where the SM content is

CSM =
m2

pµ
2
χpg

2
2

324πm4
hM

2
W

(3.2)

and f p =
∑

q=u,d,s f (p)
Tq

and f p
TG = 1− f p (see Ch.(2.3.4)). The typical ranges for n1i
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on the wall are: n11 ∈ (.85, .99), n12 4 n11, and n13 ∈ (.1, .6) ∼ −O(n14). Using

numerical values one gets σSI
eχ0
1p(WALL) ∼ 2 × 10−8 [pb]. In our analysis however,

we have implemented the full cross section calculation without any of the above

approximations. This analysis leads to σSI
eχ0
1p (WALL) lying in the range ∼ (1.5 −

5) × 10−8 pb while the most recent limits give σSI
eχ0
1p ∼ 5 × 10−8 pb [98] for mχ ≈ 60

GeV. Thus this region of the parameter space is within reach of the current and the

next generation of dark matter experiments. As noted already, the CW is also a very

interesting region for LHC signatures.

The analysis of Fig.(3.1) is really quite unique, and very important. For the

first time, one sees the mapping of the LHC signature space of prominent channels

connected to the signature space of direct detection [87]. It shows us that the HB

should either be discovered or ruled out by dark matter experiments, while the LHC

should be able to probe a good chunk of the Wall in the tri-lepton channel. Further

the sensitivity from direct detection experiments may be greater than that of the LHC

for the case of the HB. For the case of the Stau-Co, however, direct detection becomes

less sensitive than that of the LHC over a large region of the signature spaces. In the

context of the spin independent cross sections, this result is closely tied to the Bino

vs. Higgsino content of the LSP wave-function.

3.2.2 Geometry of Pmiss
T Distributions:

A powerful signature for the discrimination of Stau-Co and HB is the total number of

SUSY events NSUSY as a function of the missing transverse momentum. An analysis of

this signature is given in Fig.(3.2) (left panel) where one finds different geometries in

these distributions. Here we emphasize that the significantly fatter P miss
T distributions

for points in the Stau-Co region contrast sharply with the P miss
T distributions from

points in the HB region which are much thinner[60] as exhibited for the case given in
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with the SM background under the standard post-trigger level cuts. The Stau-Co and HB
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T 〉 for each parameter point in the Stau-Co and HB.
〈Pmiss

T 〉 acts as an indicator of Stau-Co and HB regions. (From [87]).

Fig.(3.2)(left panel). Such a signature has the interesting feature in that the discovery

potential is increased over a larger region in the SUGRA parameter space than for

the case of counting fractional number of such events in separate channels. The above

is due in part because every SUSY event that passes the trigger has P miss
T , and so one

maximizes the signal events as opposed to obtaining a fraction of them. Further, the

SM Pmiss
T falls off rapidly beyond the peak value coupled with the fact the P miss

T from

SUSY events can be significantly larger, and can extend out to momenta where the

SM cannot produce a large number of events.

3.2.3 〈Pmiss
T 〉 as a Discriminator

A remarkable signature emerges distinguishing the stau co-annihilation region and

the HB region if one analyzes NSUSY for each parameter point as a function of 〈P miss
T 〉
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which is the mean Pmiss
T calculated by averaging the Pmiss

T over the entire model event

record. The above phenomenon is shown in Fig.(3.2) (right panel). Here one finds

that 〈Pmiss
T 〉 has a very wide range from 300 GeV to a TeV or more for the stau

co-annihilation region, while 〈P miss
T 〉 for the HB region lies in a much narrower band

centered around 350 GeV - a phenomenon which originates for parameter points on

the Chargino Wall. Thus the 〈P miss
T 〉 ranges in Fig.(3.2) can be viewed as one of the

smoking gun signatures which can discriminate between the two mechanisms using

LHC data. This is in fact related to the presence of the Chargino Ball in Fig.(3.1).

Although a quantitative analysis of 〈Pmiss
T 〉 is rather complicated since it involves

many particles and depends in part on post trigger level cuts, one can give a qualita-

tive picture of the disparity between the P miss
T on the Stau-Co and the HB regions by

analyzing the decay chains of sparticles into their final products culminating into an

odd number of LSPs (per sparticle decay chain) and the SM particles. Here one finds

that often the sparticle decays on the Stau-Co involve two body decays. For the HB

case, however, one finds that the sparticles produced in pp collisions have typically a

longer decay chain which depletes the P miss
T in this case.

We illustrate these features by analyzing the two specific benchmarks given in the

caption of Fig.(3.2)(left panel). For the HB model point of Fig.(3.2)(left panel) the

following production cross sections are dominant: pp→ (g̃g̃/χ̃0
2χ̃

±
1 /χ̃±

1 χ̃
∓
1 ) at the level

of (45, 25, 15)%. While squark production is highly suppressed (meg ∼ 622 GeV 4

meqL,eqR,eb1,et1 ∈ (1.2, 1.7) TeV). One finds that the dominantly produced g̃ decays via

BR[g̃ → χ̃0
i +q+ q̄] ∼ 50% and BR[g̃ → χ̃±

j +q+ q̄′] ∼ 50% with the LSP contributing

only 10%. The reason for this largeness is because the on-shell decay of the gluino

into qq̃ is suppressed due to largeness of the squark masses (a phenomenon which

typically holds for the gluino decays on the HB). Further, the χ̃0
2 and χ̃±

1 produced

on HB have BR[χ̃0
2 → χ̃0

1 + f + f̄ ] ∼ 100% and BR[χ̃±
1 → χ̃0

1 + f + f̄ ′] ∼ 100%.
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Thus the decay chain for sparticles produced on the HB tend to be longer resulting in

reduced P miss
T . Now, for the Stau-Co model point of Fig.(3.2)(left panel) the leading

SUSY production level cross sections are from (g̃q̃, q̃q̃, g̃g̃) at the level of (41, 33, 7)%,

with the corresponding 2 body decay modes BR[q̃R → χ̃0
1 + q] ∼ 100% (1st and 2nd

generation), and BR[q̃L → (χ̃0
2, χ̃

±
1 ) + (q, q′)] ∼ (60, 30)%. Since the decay chain

for sparticles on the Stau-Co tend to be shorter the resulting P miss
T is larger. In

summary the main reason why the HB tends to give lower values of missing PT

relative the Stau-Co is simply due to the fact that on the HB, in order to get to the

LSP from the dominant gluino production mechanism one usually needs at least 2

successive 3 body decays, while on the Stau-Co the right-squarks (q̃R) from the first

and second generations, which are dominantly produced, each of which here, decays

right into the LSP + quark. The above also holds more generally in that one finds

that sparticles arising from the Stau-Co have much shorter decay chains resulting in

fewer final particles and thus the missing energy can get large. Our more general

results given here on a large spread in P miss
T agree with the analysis given in[52] and

with the analyses of the CMS and ATLAS collaborations [102, 103, 104]. Conversely

the models on the HB have longer decay chains with more final state particles and

thus the missing energy carried by the neutrals is depleted leading to missing P miss
T

which is more SM like. This feature has also been discussed in the CMS analysis of

[105].

3.2.4 Cutting on Jets, n∗jet:

Another powerful signature for discriminating the Stau-Co and the HB regions is

NSUSY taken as a function of P ∗miss
T and n∗

jet, i.e.,

NSUSY = NSUSY(njet " n∗
jet, P

miss
T " P ∗miss

T ), (3.3)

46



2 3 4 5 6 7 8
0

20

40

60

80

100

Stau Co−annihilation

2 3 4 5 6 7 8
0

20

40

60

80

100

n*jet

N SU
SY

 / 
sq

rt(
SM

)
Hyperbolic Branch

Figure 3.3: A discrimination of the two mechanisms for the satisfaction of the relic density,
where the mechanism for the origin of dark matter is governed by stau co-annihilation
and annihilation on HB with assumed LHC luminosity of 10 fb−1. Curves (connecting
NSUSY/

√
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√

SM is computed
under the standard post-trigger level cuts (see also Fig.(3.2)) but with n∗

jet taken as a
variable. (From [87]).

where the ∗ indicates a fixed cut value. Here features specific to the co-annihilation branch

and to the HB emerge when P ∗miss
T is fixed, and n∗

jet is varied. This is shown in

Fig.(3.3). In particular one finds that for the co-annihilation branch there is an op-

timal n∗
jet near 4 because the discovery limit criteria NStau−Co

SUSY /
√

SM decreases as a

function of increasing n∗
jet and has a max near njet ∼ 4, while for the HB, specifically

on the Wall, the situation is quite different, in that the larger the n∗
jet the larger is

the value of NHB
SUSY/

√
SM (where of course the SM is subject to the same * cuts).

Thus, as the jet number n∗
jet becomes large NHB

SUSY sustains a much stronger signal

than NStau−Co
SUSY , and thus NSUSY/

√
SM is a strong discriminator between the Stau-Co

and the HB regions.

The above becomes very significant if the SUSY scale is high with the LSP mass

lying in the several hundred GeV range. Also, this type of large n-jet cut can deplete
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Figure 3.4: N(nb)/
√

SM(nb) vs nb for the Stau-Co and HB regions where N(nb) (SM(nb))
is the number of SUSY (SM) events that contain n b-tagged jets. A sharp discrimination
between the Stau-Co and the HB by b-tagging is observed. The number n∗

jet is fixed at 2.
Here meg ≤ 1.1 TeV. (From [87]).

the leptonic signal, so a delicate balance of jet cuts is very important. In fact, if

the SUSY signal is not highly leptonic, the analysis of the above type would be an

efficient way to decipher new physics. Further, even if one has signatures with many

leptons, the jet analysis will provide additional corroborating signatures for discovery

and discrimination.

3.2.5 Importance of b-Tagging

The utility of b-tagging for the HB region has previously been emphasized in [85, 55,

60]. In Fig. (3.4) we give an analysis exhibiting how b-tagging provides a striking

discrimination between the Stau-Co and HB regions where we plot N(nb)/
√

SM(nb)

as a function of the number of tagged b-jets (nb) and find this dependence to be

drastically different for Stau-Co vs HB regions. Here one observes that the discovery
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limit becomes enhanced on the HB with increasing the number of tagged b-jets. Con-

versely, on the Stau-Co the discover limit fades with increasing the number of tagged

b-jets. This is easily seen by following the lowest curve on each plot in Fig. (3.4). This

is a rather significant result. It means quite simply, that while one class of models,

originating from annihilations on the HB, will not be discoverable with a small num-

ber of b-tags, it will becomes discoverable by increasing the number of b-tags, while

a Stau-Co model point which appears discoverable with a smaller number of tagged

b-jets will fade out in its ability to be discovered as the number of tagged b-jets is

increased. However, one may observe that the tagging of b-jets is really more crucial

for the discovery of a model on the HB than for the Stau-Co, as the discovery limit

never fall below ∼ 5 sigma for the model points shown in the Stau-Co.

One can again see why this occurs. As already discussed, on the HB gluino

production is dominant in pp collisions at the LHC. Continuing with the previous

example, one further finds that the gluino decays dominantly into bb̄, i.e., BR[g̃ →

χ̃0
i + b + b̄] ∼ 40% and BR[g̃ → χ̃±

j + b(b̄) + t̄(t)] ∼ 40%. Thus, the gluino 3 body

decays are very rich in b quarks. Conversely for the Stau-Co model point of Fig.(1)

(left panel) the pp production cross sections are as follows: (g̃q̃) ∼ 41%, (q̃q̃) ∼ 33%,

(g̃g̃) ∼ 7% (as already noted). Further, the gluino has only a small branching ratio

into bb̄ in this case via g̃ → b̃b. Including the production cross sections for g̃g̃ and the

branching ratios, we find that overall the bb̄ production on Stau-Co is smaller relative

to that on the HB.

This is supported more generally in in Fig. (3.5) where the fractional number of

events with 2b-jets vs the number of events with 2b-jets is given, and again one sees a

strong discrimination between the parameter points in the Stau-Co region vs those in

the HB region where a larger percentage of events that pass the cuts contain tagged

b-jets for the case of the HB relative to those on the Stau-Co.
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In Fig.(3.6) we extend the analysis to the 4b-jet mode and correlate this signature

to events with two hadronically decaying tau jets and to events that do not contain

tagged b-jets. Here we find sharp discrimination. The boxed region forms the 1 sigma

discovery limit boundary. Clearly any point falling in the box is not discoverable in

these channels at the LHC with 10/fb of integrated luminosity under the cuts taken.

We note however, that in these heavy flavor channels a very large set of model points

become discoverable and indeed the classes of models are well separated in the LHC

signature space. Fig.(3.6) shows quite clearly that the LHC event rates can distinguish

between the HB and the Stau-Co, and that it is possible to pin down the model and

the mechanism for the origin of dark matter in this framework, even at very low

luminosities, i.e with only 10/fb of data. Of course, with higher luminosities we

should be able to pull up some of the models that are suppressed in the event rates,

and further one expects sharper discrimination with larger luminosities for models

that are already discoverable and separated in these plots.
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More generally the analysis of Figs.[(3.2)-(3.6)] shows that the LHC signatures

arising from the Stau-Co are easily distinguishable from those arising from the HB,

while the analysis of Fig.(3.1) leads us to a more general method of pinning down

the underlying model by correlating signals for the direct detection of neutralino dark

matter with final state channels of missing PT and leptonic signatures from sparticle

production at the LHC. Indeed, such an analysis may point us to the mechanism for

the production of dark matter in the early universe in this class of models.

In the above we have analyzed in detail how the LHC data can allow one to discover

if the mechanism for the origin of dark matter in the early universe arises in the HB

region or in the Stau-Co region. This opens up the issue if the above type analysis

can be done more generally to identify the dominant mechanism for the generation of

dark matter in the early universe using LHC data. Below we discuss briefly how one

may extend the analysis to the stop co-annihilation region and the A-pole region. As
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already discussed, in addition to the Stau-Co region there is also a stop co-annihilation

(Stop-Co) region where the relic density constraint is satisfied. However, regions of

the parameter space which give rise to Stop-Co have signatures which are highly non-

leptonic relative to those of the Stau-Co and of the HB [58, 60]. Thus correlations

such as 0L + jets vs 1L+ jets allow one to distinguish Stop-Co regions from others

as discussed in the analysis of [58, 60]. Such correlations if observed, would be a

good indication of stop co-annihilation as the origin of dark matter. We note in

passing that the LSP is mostly all Bino in this case which suppresses the scalar cross

sections in the direct detection of dark matter[45]. Next we discuss the A-funnel

region. Here the relic density is satisfied because the LSP mass is nearly half the

CP odd Higgs mass. The analysis of parameter points which cluster near the pole

region do not have the same NLSP for all parameter points unlike the case of HB

where χ̃±
1 is the NLSP, or the Stau-Co region where τ̃1 is the NLSP. However, in the

pole region the NLSP could be χ̃±
1 or τ̃1 or even H± (t̃1 is seldom seen in the pole

region). Thus the A-pole region can give mixed signatures, sometimes characteristic

of HB and sometimes characteristic of the Stau-Co. To firmly establish the pole

region one would need a global analysis with many signatures which would give a

determination of the Higgs A0 mass and the mass of the LSP. A similar situation

holds for other isolated regions of the parameter space which cannot be classified in

the above categories which satisfy the relic density constraints. Here also one would

need a global analysis on the signatures to identify the mechanism that gives rise to

the origin of dark matter. Some of this issues are taken up in the next chapter.
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3.3 Summary

The analysis presented here shows that with sufficient LHC data one can discriminate

between the Stau-Co and the HB regions regarding the origin of dark matter in the

early universe in the mSUGRA model using lepton, jet and missing energy signatures.

We discussed several smoking gun signatures for such a discrimination. It was also

shown that further discrimination is possible by combining LHC data with the limits

on σSI
eχ0
1p from the direct detection of dark matter. Within this framework, it is clear

that a study of LHC signatures and dark matter signatures allow us to distinguish

between the Higgisino vs. Bino dominated scenarios over a broad class models. While

the analysis presented in our work illustrates our main points in the mSUGRA model,

similar analyses along these lines should be pursued for other models of soft breaking

including string and D-Brane models. Specifically, it would be interesting to analyze

what the LHC can tell us about the origin of dark matter in cases where one has

departures from the case of neutralino dark matter.
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Chapter 4

Sparticle Landscape and Light

Higgses in SUGRA/D-Brane

Models

In the previous chapter it was emphasized that one can begin to decode the origin of

dark matter in the early universe by examining correlated signatures of LHC signals

with signals relevant to the direct detection of dark matter. It begs the question,

is this possible more generally? One can indeed make progress in this direction by

sorting out the landscape of sparticle mass hierarchies [58, 45, 60] and examining

correlated signatures of new physics in multiple ways. A brief review of some of the

details discussed here can be found in [106, 107].

4.1 Resolving the Sparticle Landscape

We begin with the concept of the Sparticle Landscape[58]. There are a total of 32

massive particles predicted in the MSSM. The number of ways in which the sparticle
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masses can stack up in their mass hierarchy is a priori undetermined without the

assumption of a model choice and imposition of phenomenological constraints. Thus,

if 32 masses are treated as essentially all independent, then aside from sum rules on

the Higgs, sfermions, chargino and neutralino masses, and without imposition of any

constraints, the number of hierarchical patterns for the sparticles could be as many

as O(1025−28) or larger. One may compare this with the landscape of string vacua in

type II-B strings which lead to O(101000) possibilities.

Now, the number of possibilities can be reduced by very significant amounts in

supergravity models with the imposition of the constraints of radiative electroweak

symmetry breaking (REWSB), and other phenomenological constraints. In fact, the

number of possibilities is drastically reduced in the minimal supergravity grand uni-

fied model although no classification had ever been made and the precise number of

possibilities of the full landscape is still not known. A cartography of the landscape

was first undertaken in [58]. Such a cartography is important for devising strategies

for analyzing data from the LHC. In the analysis of [45] a larger set of sparticles mass

patterns were uncovered by extending the minimal framework to include a larger

landscapes in mSUGRA, in SUGRA models with non-universalities (NUSUGRA),

and in D-Brane models.

The focus here is on the sparticle mass patterns for the four lightest particles (dis-

counting the lightest Higgs) as they would to a great degree influence the discovery

of SUSY while keeping the size of the landscape in check. We have carried out a

mapping of the mSUGRA parameter space and for the first four particles we find 22

mass patterns with all constraints as discussed in the Appendix(4.8). We label these

as mSUGRA pattern 1 (mSP1) through mSUGRA pattern 22 (mSP22), the first 16

arising for µ > 0 [58].
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In Table(4.1) we exhibit these mass orderings. The groupings may be consid-

ered more simply in terms of the NLSP, thus there are Chargino Patterns (CPs),

Stau Patterns (SUPs), Stop Patterns (SOPs), Higgs Patterns (HPs), and an isolated

Neutralino (2) pattern.

mSP Mass Pattern µ

mSP1 χ̃0
1 < χ̃±

1 < χ̃0
2 < χ̃0

3 µ±
mSP2 χ̃0

1 < χ̃±
1 < χ̃0

2 < A/H µ±
mSP3 χ̃0

1 < χ̃±
1 < χ̃0

2 < τ̃1 µ±
mSP4 χ̃0

1 < χ̃±
1 < χ̃0

2 < g̃ µ±

mSP5 χ̃0
1 < τ̃1 < l̃R < ν̃τ µ±

mSP6 χ̃0
1 < τ̃1 < χ̃±

1 < χ̃0
2 µ±

mSP7 χ̃0
1 < τ̃1 < l̃R < χ̃±

1 µ±
mSP8 χ̃0

1 < τ̃1 < A ∼ H µ±

mSP9 χ̃0
1 < τ̃1 < l̃R < A/H µ±

mSP10 χ̃0
1 < τ̃1 < t̃1 < l̃R µ+

mSP11 χ̃0
1 < t̃1 < χ̃±

1 < χ̃0
2 µ±

mSP12 χ̃0
1 < t̃1 < τ̃1 < χ̃±

1 µ±

mSP13 χ̃0
1 < t̃1 < τ̃1 < l̃R µ±

mSP14 χ̃0
1 < A ∼ H < H± µ+

mSP15 χ̃0
1 < A ∼ H < χ̃±

1 µ+

mSP16 χ̃0
1 < A ∼ H < τ̃1 µ+

mSP17 χ̃0
1 < τ̃1 < χ̃0

2 < χ̃±
1 µ−

mSP18 χ̃0
1 < τ̃1 < l̃R < t̃1 µ−

mSP19 χ̃0
1 < τ̃1 < t̃1 < χ̃±

1 µ−

mSP20 χ̃0
1 < t̃1 < χ̃0

2 < χ̃±
1 µ−

mSP21 χ̃0
1 < t̃1 < τ̃1 < χ̃0

2 µ−
mSP22 χ̃0

1 < χ̃0
2 < χ̃±

1 < g̃ µ−

Table 4.1: The Sparticle Landscape of Mass Hierarchies in mSUGRA. In patterns
mSP14,15,16 the χ̃0

1 and the Higgs bosons (A,H) are sometimes seen to switch in their
order.(From [58, 60].)

Since the nature of physics at the Planck scale is largely unknown it is useful

to consider other soft breaking scenarios beyond mSUGRA. One such possibility is

to consider non-universalities in the Kähler potential, (or non-diagonal gauge kinetic

functions) which can give rise to non-universal soft breaking consistent with flavor
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constraints. We consider three possibilities which are non-universalities in (i) the

Higgs sector (NUH), (ii) the third generation squark sector (NUq3), and (iii) the

gaugino sector (NUG) (for a sample of previous work on dark matter analyses with

non-universalities see [38]). We parametrize these at the GUT scale as follows:

(i) NUH : MHu = m0(1 + δHu), MHd
= m0(1 + δHd

), (4.1)

(ii) NUq3 : Mq3 = m0(1 + δq3), Mu3,d3 = m0(1 + δtbR), (4.2)

(iii) NUG : M1 = m1/2, M2 = m1/2(1 + δM2), M3 = m1/2(1 + δM3). (4.3)

NUSP Mass Pattern Model

NUSP1 χ̃0
1 < χ̃±

1 < χ̃0
2 < t̃1 NU3,NUG

NUSP2 χ̃0
1 < χ̃±

1 < A ∼ H NU3
NUSP3 χ̃0

1 < χ̃±
1 < τ̃1 < χ̃0

2 NUG

NUSP4 χ̃0
1 < χ̃±

1 < τ̃1 < l̃R NUG
NUSP5 χ̃0

1 < τ̃1 < ν̃τ < τ̃2 NU3
NUSP6 χ̃0

1 < τ̃1 < ν̃τ < χ̃±
1 NU3

NUSP7 χ̃0
1 < τ̃1 < t̃1 < A/H NUG

NUSP8 χ̃0
1 < τ̃1 < l̃R < ν̃µ NUG

NUSP9 χ̃0
1 < τ̃1 < χ̃±

1 < l̃R NUG
NUSP10 χ̃0

1 < t̃1 < g̃ < χ̃±
1 NUG

NUSP11 χ̃0
1 < t̃1 < A ∼ H NUG

NUSP12 χ̃0
1 < A ∼ H < g̃ NUG

NUSP13 χ̃0
1 < g̃ < χ̃±

1 < χ̃0
2 NUG

NUSP14 χ̃0
1 < g̃ < t̃1 < χ̃±

1 NUG
NUSP15 χ̃0

1 < g̃ < A ∼ H NUG
DBSP1 χ̃0

1 < τ̃1 < ν̃τ < A/H DB

DBSP2 χ̃0
1 < τ̃1 < ν̃τ < l̃R DB

DBSP3 χ̃0
1 < τ̃1 < ν̃τ < ν̃µ DB

DBSP4 χ̃0
1 < t̃1 < τ̃1 < ν̃τ DB

DBSP5 χ̃0
1 < ν̃τ < τ̃1 < ν̃µ DB

DBSP6 χ̃0
1 < ν̃τ < τ̃1 < χ̃±

1 DB

Table 4.2: The Sparticle Landscape in NUSUGRA and the D-Brane model considered.
(From [58, 45, 60].)
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For the case of non-universalities , we find 15 new mass patterns labeled NUSP(1-

15). We also find in a phenomenological class of models based on D-Branes, 6 more

new patterns labeled as DBSP(1-6). A complete sets of benchmarks for each pattern

can be found in [58, 45, 60]. In Fig.(4.1) we show the sparticle landscape for the

mSUGRA case for µ > 0. We have carried out similar analyses for the NU and DB

cases (see [45, 60]). Our analysis uncovers a much larger set of mass hierarchies than

has previously been thought to exist; even in the minimal model. This is so because

one usually is searching the parameter space with vanishing tri-linear coupling. Such

an assumption is ad hoc, and needs to be dispensed with. Here we specifically observe

several classes of sparticle mass patterns not discussed in the literature prior to this

analysis. There are in fact Higgs Patterns which occur for large tanβ in mSUGRA

where the CP odd/heavier CP even Higgses are in fact the lightest particles beyond

the LSP neutralino and in some cases they can be even lighter (we remind the reader

that the Higgses are R-Parity even). These Higgs Patterns (HPs)[58] are labeled

mSP(14-16). Along the large m0 region with lower values of m1/2 the mass hierarchy is
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Figure 4.1: Parameter space in terms of the sparticle mass hierarchies for µ > 0 under the
2 sided WMAP constraints, and REWSB constraints, and all other constraints discussed in
the Appendix(4.8). (From [58].)
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dominantly composed of mSP1 with annihilations on the HB, while there is also a Bino

branch of mSP1 in which the the lightest chargino and next heavier neutralino are very

close in mass, really effectively degenerate. One also observes several more chargino

patterns (CPs) where the NLSP is a chargino (mSP1-mSP4), where mSP4 is rather

special with a very light neutralino mass less than ∼ 55 GeV. Further there are stau

patterns (SUPS) mSP(5-10), and they are stop patterns (SOP) mSP(11-13). There

are also patterns where the gluino is light and is the NLSP and where the sneutrino

of the third generation is light and is the NLSP occurring in the NU and DB cases

respectively as illustrated in Table(4.1). Earlier works which advocated benchmark

points and slopes do not cover the more broad set of possible mass hierarchies we

discuss here. That is, a large number of the mSP patterns do not appear in previous

works. All of the Snowmass mSUGRA points (labeled SPS) [108] are only of types

mSP(1,3,5,7) as follows:

(SPS1a, SPS1b, SPS5) → mSP7 SPS2 → mSP1 (4.4)

SPS3 → mSP5 (SPS4, SPS6) → mSP3 .

Regarding the Post-WMAP points [109] one has the following mapping

(A′, B′, C′, D′, G′, H′, J′, M′) → mSP5, (4.5)

(I′, L′) → mSP7, E′ → mSP1, K′ → mSP6 .

The CMS benchmarks classified as (Low/High) Mass (LM)/(HM) [110] do a better

job of representing mSP1 which is the dominant pattern we find, and the mapping is

LM1, LM6, HM1 → mSP5 , (4.6)
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LM2, LM5, HM2 → mSP7 ,

LM3, LM7, LM8, LM9, LM10, HM4 → mSP1 ,

LM4, HM3 → mSP3 .

Note there are no Higgs patterns or stop patterns discussed in the CMS benchmarks

as well as in SPS or in Post-WMAP benchmarks. Thus a very large class of models

consistent with all known experimental constraints have not been studied in the cur-

rent literature. However in the pursuit of SUSY at the LHC, inclusion of the missing

patterns is essential as the sparticle mass hierarchies are intimately connected to to

LHC signatures of new physics. The most transparent example of why this is so

follows from the fact that the mass hierarchies dictate which sparticle decay chains

are kinematically accessible.

4.2 The Direct Detection of Dark Matter as a Probe

of the Landscape

We discuss now the direct detection of dark matter from the context of the sparticle

landscape. In Fig.(4.2)(left panel) we give an analysis of the scalar neutralino-proton

cross section σSI
eχ0
1p as a function of the LSP mass in mSUGRA for µ > 0. It is clear

that the Higgs patterns give the largest dark matter cross sections over most of the

signature space and are therefore the first ones to be constrained by experiment. The

second largest cross sections arise from the Chargino Patterns which shows the Wall,

with a copious number of points with cross sections in the range O(10−8) pb followed

by Stau Patterns , with the Stop Patterns producing the smallest cross sections as

they are nearly % 100 Bino like. The analysis of Fig.(4.2) shows more generally, as

pointed out in the previous chapter, that the scalar cross sections lie in an interesting
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Figure 4.2: Analysis of the scalar cross section σSI
eχ0
1p

for MSUGRA and NUH. The sparticle
mass hierarchies act as prism separating out the signatures space relevant for dark matter
direct detection experiments. A Wall of nearly constant σSI

eχ0
1p

exists in both mSUGRA and
in NUH. (From [45]).

region and are accessible to dark matter experiments currently underway and will

be accessible to improved experiments in the future [111, 112, 113, 114, 115, 116].

Indeed the analysis of Fig.(4.2) shows that some of the parameter space of the Higgs

Patterns is beginning to be constrained by the CDMS and the Xenon10 data [115].

We also can see that the signature space for direct detection of dark matter in

NUSUGRA exhibits similarities to the mSUGRA case. The results of the analysis

are presented in Fig.(4.2)(right panel) and Fig.(4.3). As in the mSUGRA case one

finds that the largest dark matter cross sections still arise from the Higgs Patterns

followed by the Chargino Patterns within the three types of non-universality models

considered: NUH, NUq3 , and NUG. Again the analysis within NUSUGRA shows

the phenomenon of the Chargino Wall, i.e., the existence of a copious number of

Chargino Patterns (specifically mSP1) in all cases with cross sections in the range

O(10−8) pb. Indeed as in the mSUGRA case, most of these parameter points along
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Figure 4.3: Analysis of the scalar cross section σSI
eχ0
1p

for NUSUGRA for the cases NUq3
and NUG . The Wall consisting of a clustering of points in the Chargino Pattern mSP1
and persists up to an LSP mass of about 900 GeV with a σSI

eχ0
1p

in the range 10−44±.5 cm2

enhancing the prospects for the observation of dark matter by SuperCDMS and ZEPLIN-
MAX in this region.(From [45]).

the Chargino Wall lie on the Hyperbolic Branch/Focus Point (HB/FP) region where

the Higgsino components of the LSP are substantial. Thus this Chargino Wall again

presents an encouraging region of the parameter space where the dark matter may

become observable in improved experiments. Note that in the NU case, the Wall

extends out further (as high as 900 GeV under our naturalness assumptions in the

space explored).

4.3 Higgs Production and B physics

The lightness of A (and also of H and H±) in the Higgs Patterns implies that the

Higgs production cross sections at colliders can be enhanced, and especially this is

so at large tanβ. The prospects for light SUSY Higgses have been discussed in

[117, 118, 119, 120, 58, 121]. Our interest here is the 2τ mode which is a promising

avenue for the discovery of the Higgs(es) at the Tevatron. Some benchmarks for the
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HPs are given in Table(4.3). As mentioned already a complete set of benchmarks for

all patterns arising in our analysis can be found in [60].

m0 m1/2 A0 tanβ NUH NUq3 NUG
HPs (GeV) (GeV) (GeV) (δHu , δHd

) (δq3, δtbR) (δM2 , δM3)

mSP14 1036 562 500 53.5 (0,0) (0,0) (0,0)
mSP14 759 511 2315 31.0 (0.256,-0.499) (0,0) (0,0)
mSP14 1223 1200 -111 27.4 (0.557,-0.736) (0,0) (0,0)
mSP14 740 620 840 53.1 (0,0) (-0.553,-0.249) (0,0)
mSP14 1201 332 -731 55.0 (0,0) (0,0) (0.383,0.275)

mSP15 1113 758 1097 51.6 (0,0) (0,0) (0,0)
mSP15 900 519 1481 54.8 (0,0) (0,0) (-0.352,-0.262)
mSP15 1389 551 -167 59.2 (0,0) (-0.041,0.916) (0,0)

mSP16 525 450 641 56.0 (0,0) (0,0) (0,0)
mSP16 282 464 67 43.2 (0.912,-0.529) (0,0) (0,0)

NUSP12 2413 454 -2490 48.0 (0,0) (0,0) (-0.285,-0.848)

Table 4.3: Benchmarks for HPs for µ > 0 in mSUGRA and in NUSUGRA. The 2nd and
the 3rd mSP14 pattern show that the HPs can emerge for moderate values of tanβ. The
Benchmarks are computed with SuSpect 2.34 . (From [45]).

The dominant modes entering our analysis arise from gluon fusion and bottom

quark annihilation. (for detailed discussions on gluon fusion and bottom quark an-

nihilation see [122, 123]). It is worth pointing out that the works of Ref. [118] have

given rather robust formulas for SUSY Higgs production in the large tanβ limit. At

large tanβ the partial decay width of the MSSM Higgses are dominantly governed by

the square of the Yukawa couplings (the square being ∝ tan2 β + a loop correction

discussed below), and therefore neutral Higgs production into the heavy flavors are

enhanced at large tanβ. Quite simply they find [118]

σ(gg, bb̄→ A)× [BR(A → 2τ)] 0 σ(gg, bb̄→ h)SM
tan2 β

(1 + (ε0 + εY y2
t ) tanβ)2 + 9

,(4.7)

where the SM term denotes the values of the corresponding SM Higgs production cross

sections at mass equal to MA and where the ε corrections are loop corrections (see ex:

[118]). This approximate formula hold up quite well when compared to some select

cases using PYTHIA[79]. The above formula applies to the CP even Higgs H as well
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Tevatron Constraints : Neutral Higgs Production
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Figure 4.4: Left: Predictions for Higgs Production in the 2τ final state in mSUGRA as a
function of the CP odd Higgs mass mA for the HPs at the Tevatron. The limits from DØ
are indicated [124]. Right: Predictions for in mSUGRA as a function of mA at the LHC
with CM energy of

√
s = 14 TeV for the HPs, the chargino pattern mSP1 and the stau

pattern mSP5. The HPs are seen to give the largest cross sections. (From [45]).

leading to an enhancement of a factor of 2 of the production rates for MA ∼ MH > mh

in the large tanβ regime. Quite interestingly the recent Tevatron data is beginning

to constrain the HPs. This is exhibited in the left panel of Fig.(4.4) where the

leading order cross section for the sum of neutral Higgs processes σΦττ (pp̄) = [σ(pp̄→

Φ)BR(Φ → 2τ)] vs the CP odd Higgs mass is plotted for CM energy of
√

s = 1.96

TeV at the Tevatron (the resolution criteria for addition of the cross sections we have

taken is similar to the first Ref. of [119]). One finds that the predictions of σΦττ (pp̄)

from the HPs are the largest and lie in a narrow band followed by those from the

Chargino Pattern mSP2. The recent data from the Tevatron is also shown[124] in

Fig.(4.4). A comparison of the theory prediction with data shows that the HPs

are being constrained by experiment. Exhibited in the right panel of Fig.(4.4) are

predictions for the LHC. Here we find a termination of the HPs in mSUGRA at

around 600 GeV in the CP odd Higgs mass under the naturalness assumptions in
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our analysis (see Appendix(4.8)). Further, the Chargino pattern mSP1 also produces

a large cross section, however the stau pattern mSP5 is found to have a suppressed

branching fraction relative to the Higgisino like patterns over a significant region of

the signature space.

Bs → µ+µ− and the Higgs Patterns: The process Bs → µ+µ− is dominated by

the neutral Higgs exchange [125] and is enhanced by a leading factor of tan6 β. It is

thus reasonable to expect that the HPs will be constrained more severely than other

patterns by the Bs → µ+µ− experiment, since most of the HP points usually arise

from the high tanβ region (we note, however, that the non-universalities in the Higgs

sector (NUH) can also give rise to HPs for moderate values of tanβ ). The analyses

of [126] have given semi-analytical formulas for Br(Bs → µ+µ−)

Br(Bs → µ+µ−) 0 3.5× 10−5

[
tanβ

50

]6 [ τBs

1.5ps

] [
FBs

230MeV

]2 [ |Vts|
0.040

]2

×m4
t

m4
A

(16π2)2ε2Y
(1 + (ε0 + εY y2

t ) tanβ)2(1 + ε0 tanβ)2
. (4.8)

In the above, enters the CKM mixing matrix element, τBs , the mean lifetime, and

FBs is the decay constant of the Bs meson. Here one can see explicitly the large tanβ

enhancements. Note, however in our analysis we use the code of [95] which actually

follows the analysis of [127], however the results are generally in accord with Eq.(4.8).

That the HPs are being constrained at large tanβ is supported by a detailed

analysis which is given in Fig.(4.5) where the branching ratio Br(Bs → µ+µ−) is

plotted against the CP odd Higgs mass mA. The upper left hand panel gives the

analysis for the case of mSUGRA for µ > 0 for the Higgs Patterns. One finds that

the constraints are very effective for µ > 0 (but not for µ < 0) constraining a part

of the parameter space of the HPs [45]. In Fig.(4.5). Again one finds that the

Br(Bs → µ+µ−) data constrains the parameter space of the HPs in the NUSUGRA
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Constraints : - h2 . WMAP, Br(b) s /), and mass limits
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Figure 4.5: Constraints on the HPs at in mSUGRA and NUSUGRA. Limits are drawn in
bands extending beyond the Tevatron mass reach (shaded green). (From [45]).

case.

What is very interesting is the fact that for the case µ > 0 the Bs → µ+µ−

limits, the Tevatron limits on the CP odd Higgs boson production, and the CDMS

and Xenon10 limits converge on constraining the Higgs Patterns and specifically the

pattern mSP14 and as well as some other patterns.

Thus the CDMS and Xenon10 constraints on the mSPs are strikingly similar to

the constraints of Bs → µ+µ− from the Tevatron. We also observe that although the

case µ < 0 is not currently accessible to the Bs → µ+µ− constraint (and may also

be beyond the ATLAS/CMS sensitivity for Bs → µ+µ−), it would, however, still be

accessible at least partially to dark matter experiment [45]. The sign of µ is very

relevant in the analysis. This is not only because the HPs for mSUGRA case arise

only for µ > 0[58],[45], but also due to the fact that the recent results from the gµ−2

experiment, where it is well known that the supersymmetric electroweak corrections

to gµ − 2 can be as large or even larger than the Standard Model correction [128].

For large tanβ the sign of the supersymmetric correction to gµ− 2 is correlated with
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the sign of µ and the current data [129, 130] on gµ − 2 favors µ > 0. Therefore it is

of great relevance to discuss the possible physics that emerges if indeed one of these

patterns is the one that may be realized in nature[45]. Finally we reiterate that the

proton-neutralino cross sections act as a discriminator of the SUGRA patterns as it

creates a significant dispersion among some of the patterns[45].

4.4 Light Higgs and D-Branes

The advent of D-Branes has led to a new wave of model building [39, 40, 42, 41, 43].

Several Standard Model like extensions have been constructed using intersecting D-

Branes [39]. Effective actions and soft breaking in such models have been discussed

[40, 41, 44] and there is some progress also on pursuing the phenomenology of inter-

secting D-Brane models [44, 45, 46]. Here we discuss briefly Higgses and dark matter

in the context of D-Branes. We first consider the class of models studied in [40] with

a toroidal orbifold compactification based on T 6/Z2 × Z2 where T 6 is taken to be a

product of 3 T 2 tori. This model has a moduli sector consisting of volume moduli tm,

shape moduli um (m = 1, 2, 3) and the axion-dilaton field s. The soft breaking terms

quoted in this work are [40]

M2
QL

= c2

(
1

3
− sin2(θ)− 2α cos2(θ) + α cos2(θ)[1 + F2]

)
, (4.9)

M2
Ū ,D̄ = c2

(
1

3
− 1

2
cos2(θ) + cos2(θ)[F1(α−

1

2
) + (1− α)F2]

)
, (4.10)

M2
U,D = c2

(
−1

6
+

1

2
cos2(θ) + cos2(θ)[−αF1 + (α− 1

2
)F2]

)
, (4.11)

M2
HU ,HD

= c2

(
−1

6
+ (

1

2
− α) cos2(θ) + cos2(θ)[αF1 + (−1

2
+ 2α)F2]

)
, (4.12)

M2
SU ,SD

= c2

(
−1

6
+

(
1

2
− α′
)

cos2(θ) + cos2(θ)[(−1

2
+ 2α′)F1 + α′F2]

)
,(4.13)
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where c =
√

3m3/2[1 + V0/(3m2
3/2)]

1/2 and α,α′ parametrize stack angles, and where

3∑

i=1

Fi = 1, Fi = |Θti|2 + |Θui|2 , i = 1, 2, 3. (4.14)

The soft scalars terms are related via

M2
QL

= M2
L , M2

U,D = M2
ν,E , M2

Ū ,D̄ = M2
ν̄,Ē , (4.15)

with the tri-linear coupling

A0 = −c
e−ρ+

D
2

√
f

cos(θ)(Θt2e
−iγt2 + Θu2e

−iγu2 ) . (4.16)

Here, the parametrization e−iρ = 〈Ŵ〉/|〈Ŵ〉| where Ŵ is related to the gravitino

mass through the standard relations in the notation of [17] and the γt2,u2 are phases

that may contribute to CP violation[40]. The moduli enter through

D = −ln(s + s̄) , (4.17)

f =
3∏

m=1

(tm + t̄m)
3∏

m=1

(um + ūm) . (4.18)

A purely dilaton dominated scenario with θ = π/2 would not have any soft tri-linear

couplings in this model. In the analysis we ignore the exotics, set F3 = 0, 0 # F1 #

1, and use the naturalness assumptions similar to the mSUGRA case with µ > 0.

Specifically the parameter space consists of the gravitino mass m3/2, the gaugino

mass m1/2, the tri-linear coupling A0, tan β, the stack angle α (0 # α # 1
2), the

Goldstino angle [17] θ, and the the moduli VEVs Θti , Θui (i = 1, 2, 3). The analysis

shows that the allowed parameter space is dominated by the mSPs with only six

new patterns (at isolated points ) emerging. Specifically all the HPs (mSP14-mSP16)
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D−Brane Model : LHC Neutral Higgs Cross Sections 
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Figure 4.6: Predictions in D-Brane models for µ > 0: The Higgs production cross section
σΦττ (pp) at the LHC as a function of the CP odd Higgs mass mA and the dark matter
direct detection signature space. (From [45]).

are seen to emerge in good abundance. Regarding the new patterns we label these

patterns D-Brane SUGRA Patterns (DBSPs) since the patterns arise in the SUGRA

field point limit of the D-Branes.

Specifically we find six new patterns DBSP(1− 6) which repeat here as follows

DBSP1 : χ̃0
1 < τ̃1 < ν̃τ < A/H ; DBSP2 : χ̃0

1 < τ̃1 < ν̃τ < l̃R ;

DBSP3 : χ̃0
1 < τ̃1 < ν̃τ < ν̃µ ; DBSP4 : χ̃0

1 < t̃1 < τ̃1 < ν̃τ ;

DBSP5 : χ̃0
1 < ν̃τ < τ̃1 < ν̃µ ; DBSP6 : χ̃0

1 < ν̃τ < τ̃1 < χ̃±
1 .

(4.19)

m3/2 m1/2 A0 tanβ α cos2 θ F1

DBSPs (GeV) (GeV) (GeV)

DBSP1 3654 1018 -331 51.5 0.444 0.705 0.086
DBSP4 1962 777 5863 9.4 0.430 0.790 0.260
DBSP5 2114 718 3512 21.3 0.448 0.688 0.051

Table 4.4: Some Benchmarks for D-Brane models DBSPs. (From [45]).
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The analysis of the Higgs production cross section σΦττ (pp) in the D-Brane models

at the LHC is given in the left panel of left panel of Fig.(4.6). The analysis shows

that the HPs again dominate the Higgs production cross sections. One also finds that

the Bs → µ+µ− experiment constraints the HPs in this model [45]. The scalar dark

matter cross sections are given in the right panel of Fig.(4.6). Here also one finds

that the Higgs Patterns typically give the largest scalar cross sections followed by the

Chargino Patterns (mSP1-mSP3) and then by the Stau Patterns. Further, one finds

that the Wall of Chargino Patterns persists in this case as well.

4.5 Compressed Spectra in Intersecting D-Brane

Models

We consider next another class of intersecting D-Brane models motivated by the

analyses of [41, 42]. The specific class of models we consider is with u moduli breaking.

The model consists of a chiral particle spectrum arsing from intersecting branes with

supporting gauge groups SU(3)C × SU(2)L and U(1)a,U(1)c, U(1)d and U(1)Y , with

charge assignments given in [44]. The anomalous U(1) = U(1)a + U(1)d is assumed

canceled by a Green-Schwarz mechanism giving a Stueckelberg mass to the U(1) gauge

boson. We will have much to say about Stueckelberg masses in the coming chapters.

The Kähler metric for the twisted moduli arising from strings stretching between

stacks P and Q for the BPS 1/4 sector is taken in the form similar to [42], and more

specifically of the form given in [44]

K̃CθPQ
C̄θPQ

≡ K̃PQ = eφ4

[
eγE

P3
j=1 θ

j
PQ

3∏

j=1

[√
Γ(1− θj

PQ)/Γ(θj
PQ) (tj + t̄j)−θ

j
PQ

]]
,

(4.20)

where θj
PQ = θj

P − θ
j
Q is the angle between branes in the jth torus and φ4 is the four
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dimensional dilaton

φ4 = −log(2π)− 1

4
log
[
,(s)

3∏

i=1

,(ui)
]

. (4.21)

The gauge kinetic function is

fP = k−1
P

(
n1

Pn2
P n3

P s− n1
P m2

P m3
P u1 − n2

P m1
P m3

P u2 − n3
P m1

P m2
P u3
)

, (4.22)

where the Brane integers are given in [44] and the hypercharge normalization is [131,

132, 44] QY = (1/6)Qa − (1/2)Qc − (1/2)Qd. Note k−1
P falls out in the ratio when

computing the gaugino masses. The F term is parametrized by[17]

F uj
= 2

√
3m3/2Θje

−iγj,(uj) . (4.23)

Using the parametrization for the gaugino masses in [17] we generalize the gaugino

masses relations to [133]

Mg̃ = Ma =
9ρ4
√

3m3/2Θ1e−iγ1,(u1)

,(s) + 9ρ4,(u1)
(4.24)

MW̃ = Mb =
√

3m3/2Θ2e
−iγ2

MB̃ = MfY =
3
√

3m3/2ρ2 (12ρ2Θ1e−iγ1,(u1) + Θ3e−iγ3,(u3))

4,(s) + 36ρ4,(u1) + 3ρ2,(u3)
,

which reduces down to the expression in [44] for the unification constraints imposed

and choice of ρ taken. We do, however, find a more general case of unification

constraints[133], although this plays no role in the ensuing discussion.

The BPS 1/4 scalar sector masses are determined through

−M2
P,Q =

3∑

{M,N}

F̄ M̄F N ∂

∂M̄

∂

∂N
log(K̃P,Q)−

(
m2

3/2 + V0

)
, (4.25)
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which yields after some calculation under the tuning V0 → 0 (note we keep the

complex conjugation of Θ)

M2
P,Q

m2
3/2

=

(
1− 3

3∑

m=1

3∑

n=1

ΘmΘ
∗
ne−i(γm−γn)

(
3∑

j=1

(
Ψ

′
(θj

P,Q)θj,m
P,Qθ

j,n̄
P,Q + Ψ

(
θj

P,Q

)
θj,mn̄

P,Q

)
+
δm,n

4

))
,

(4.26)

where in the above Ψ(θj
P,Q) = ∂θj

P,Q
(log(K̃PQ/eφ4)) and the first term Ψ

′
(θj

P,Q) is the

derivative of Ψ(θj
P,Q). The terms θj,m

P,Q and θj,mn̄
P,Q are derivatives with respect to the

angles θP,Q (multiplied by the u moduli) and are given as in [44]. The tri-linears are

assumed as

AP,Q,R = −
∑

M

F M ∂

∂M
log
(
K̃P,QK̃Q,RK̃R,P

)
, (4.27)

which on expansion becomes

AP,Q,R =

√
3

2
m3/2Θ1e

−iγ1 + (4.28)

−
√

3m3/2

3∑

i=1

Θie
−iγi

(
1 +

3∑

k=1

(
Ψ
(
θk

P,Q

)
θk,i

P,Q −
1

4

)
+ [(P, Q) → (R, P )]

)
.

The Kähler metric for 1/2 BPS brane configurations is given by

K̃Higgs
PQ =

(
(s + s̄)(u1 + ū1)(t2 + t̄2)(t3 + t̄3)

)−1/2
, (4.29)

which very simply gives M2
HU ,HD

= m2
3/2

(
1− 3

2 |Θ1|2
)

again under the tuning V0 → 0.

We compute the soft parameters and find agreement with those given in the appendix

of [44]. Here we give the soft parameters in a useful analytic form in terms of the

input which is the angle α (the free angle between the P th brane and the orientifold

plane of and the jth torus which is assumed factorized as in the previous section)

and the real parts of the u1, t2, t3 moduli, and Θ2,Θ3 for the choice ρ = 1. Here we
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compute the tri-linears in terms of the said parameters, and it is found that

Aa,b,c =

√
3m3/2

4π

[
− 2π(Θ2 + Θ3) + Sα(Θ3 −Θ2)(Ψ(−1/2− α)−Ψ(1/2− α))

+Θ1(Ψ(−1/2− α) + Ψ(1/2− α)− 2Ψ(α))
]

,

Aa,b,c̄ = −
√

3m3/2

4π

[
2π(Θ2 + Θ3) + 2SαΘ1(−Ψ(1/2− α) + Ψ(α))

]
,(4.30)

with Aa,b,c = AQL,Hu,UR = AL,Hu,NR and Aa,b,c̄ = AQL,Hd,DR = AL,Hd,ER. The soft

scalar masses are found to be

M2
a,b =

m2
3/2

4
−DΨ(1/2− α)

3m2
3/2S

2
α

16π2
(1− 2Θ3Θ1 + 2Θ2 (−Θ3 + Θ1)) (4.31)

+ DΨ(α)
3m2

3/2S
2
α

16π2
(−1− 2Θ3Θ1 + 2Θ2 (Θ3 + Θ1))

+ Ψ(1/2− α)
3m2

3/2Sα

8π

(
−2 + Cα + 4Θ2

3 − 2CαΘ3Θ1 + 2CαΘ2 (−Θ3 + Θ1)
)

+ Ψ(α)
3m2

3/2Sα

8π

(
2− Cα − 4Θ2

2 − 2CαΘ3Θ1 + 2CαΘ2 (Θ3 + Θ1)
)

.

For M2
a,c simply make the replacements in Eq.(4.31) so that DΨ(1/2−α)→ DΨ(−α),

DΨ(α) → DΨ(1/2 + α), Ψ(1/2− α) → Ψ(−α), and Ψ(α) → Ψ(1/2 + α). For M2
a,c̄

make the replacements in Eq.(4.31) so that DΨ(1/2 − α) → DΨ(−α), DΨ(α) →

DΨ(−1/2 + α), Ψ(1/2 − α) → Ψ(−α), and Ψ(α) → Ψ(−1/2 + α). Here M2
a,b =

m2
QL

= m2
L, and M2

a,c = m2
UR

= m2
NR

and M2
a,c̄ = m2

DR
= m2

ER
. In the above we

have explicitly written out the relevant factors. They enter in terms of trigonometric

(the trig functions enter as a consequence of an identity between two poly-gamma

functions after differentiating Ψ) and separate poly-gamma functions of the angle α

and the moduli which gives:

DΨ(x) =
π2

2
csc2 πx− PG(1, x) (4.32)
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Ψ(α) = γE −
1

2
π cotπ(α)− log[2,(t2) · PG(0,α)] (4.33)

Ψ(−α) = γE −
1

2
π cotπ(−α)− log[2,(t3) · PG(0,−α)] (4.34)

Ψ(1/2− α) = γE −
1

2
π cotπ(1/2− α)− log[2,(t3) · PG(0, 1/2− α)] (4.35)

Ψ(1/2 + α) = γE −
1

2
π cotπ(1/2 + α)− log[2,(t2) · PG(0, 1/2 + α)] (4.36)

Ψ(−1/2 + α) = γE −
1

2
π cotπ(−1/2 + α)− log[2,(t2) · PG(0,−1/2 + α)] ,(4.37)

where

PG(n, z) =
dn

dzn

[
1

Γ(z)

dΓ(z)

dz

]
, (4.38)

|Θ1| =
√

1− |Θ2|2 − |Θ3|2 and Sα ≡ sin 2πα Cα ≡ cos 2πα . (4.39)

Sparticle D6 mSUGRA
type Mass/GeV Mass/GeV

mh 113.9 113.6
χ̃0

1 209.0 208.8
χ̃±

1 229.1 388.6
χ̃0

2 229.5 388.8
τ̃1 404.2 433.3

ẽR, µ̃R 464.4 637.8
τ̃1 547.6 929.2
g̃ 760.4 1181.4

mmax=s̃,d̃L
882.2 mmax=s̃,d̃L

1210.4

Table 4.5: Comparison of two models, an Intersecting D-Brane model (D6) and mSUGRA.
Here the LSP mass and light Higgs masses are almost identical, however their is (a) a gross
violation of scaling seen in the D6 model, and (b) a compressed spectra in the D6 model
case. Both models sit in the same hierarchical mass pattern for the first 4 sparticles. The
SUSY Higgses (not shown) for the mSUGRA model are however 100 GeV lighter (∼ 500
GeV) than the D6 case. ([133].)
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D6 mSUGRA
(B̃, W̃ , H̃1, H̃2) (B̃, W̃ , H̃1, H̃2)

(0.985,-.133,.104,-.0399) (0.994,-.017,.101,-.041)
σSI

eχ0
1p = 7.4× 10−9 pb σSI

eχ0
1p = 1.4× 10−8 pb

Ωh2 = 0.099 co-annh. Ωh2 = 0.095 bb̄, τ̄ τ

Table 4.6: Comparison of the same two models, Intersecting D-Brane model (D6) and
mSUGRA. The two models produce the correct relic density, but through very different
means, the D6 model co-annihilated through both gaugino co-annhilations and slepton co-
annhilations while the mSUGRA model annihilated into heavy flavors. The Wino content
is much larger in the D6 model than the mSUGRA model case, and the mSUGRA model
case produces a stronger spin independent cross section. ([133].)

In Table(4.5) we give a comparison of 2 model points1. One from the D-Brane model

(which we shall call D6) and the other from mSUGRA. The features discussed below

are found to be rather generic over the parameter space investigated in the D6 model.

In the D6 model we find some very interesting features. First, we are comparing the

two model points which sit in the same 4 particle mass hierarchy with effectively the

same LSP mass and light CP even Higgs mass. We see from Table(4.5) that there is

a major violation of mass scaling in D6 relative to that of the mSUGRA model (for

a discussion of scaling see Chapter(6.3)). Further, the scale in the D6 model is much

compressed relative to that of the mSUGRA model. Thus while the LSP masses are

effectively identical, the NLSP mass in the D6 model is about 160 GeV lighter than

in the mSUGRA case considered. Further, the gluino is several hundred GeV lighter

in the D6 case relative to the mSUGRA case and the heaviest sparticle in the D6

cases lies lower than the mSUGRA case by approximately 300 GeV.

In Table.(4.5) we see that the D6 LSP has a relatively larger wino component,

while the mSUGRA model point is more a mixed bino-Higgsino but with a stronger

1We note in passing that unlike in sugra models, in string models the bi-linear soft term B is
determined. Since on using radiative breaking of the electroweak symmetry, B is traded with tanβ,
one finds that tanβ is no longer a free parameter as in sugra models but is determined in terms of
the moduli[134]. This constraint is ignored in the analysis here.
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bino component. Both models satisfy the relic density constraint but do so in very

different ways, as discussed in the caption however the spin independent cross section

for the mSUGRA case is about a factor of 2 larger.

The above observations leads us to some rather important conclusions: (a) Al-

though the sparticle mass hierarchy concept is extremely useful for sorting out SUSY,

there are cases where it does not provide the full picture. (b) The scaling of gaugino

masses is a crucial ingredient to sorting out the underlying class of models here. (c)

It is possible that with non-universalities, the spectrum of sparticles may be com-

pressed (while still satisfying all mass limit constraints and flavor constraints). The

above calls for a more vigorous study of these classes of models which give rise to

non-universalities as their implications for colliders have yet to be explored in great

detail[133].

4.6 The Big Picture

We now turn to the central idea. That is, the correlation of LHC signals with dark

matter direct detection signals. The correlation is exhibited in Fig.(4.7). The top

panel gives an analysis at L = 10 fb−1 admitting only those model points in the pa-

rameter space that generate at least 500 total SUSY events for statistical significance

in the normalized channels [2bjets + jets ≥ 2]/NSUSY vs. [1bjet + jets ≥ 2]/NSUSY

and average Pmiss
T vs. [0bjets+jets ≥ 2]/NSUSY. The middle panels are 4 mSPs in the

pulled out of the left panel of Fig.(4.2) in the σSI
eχ0
1p vs. LSP signature space. Finally

the bottom two panels show effective mass distributions for sample benchmarks for

different mSPs. One observes a large separation among many of the hierarchical pat-

terns in the plots, as can be seen, in Fig.(4.7). The top left panel exhibits separation

of CPs and HPs from SOPs and SUPs, with CPs and HPs occupying one region,
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and SOPs and SUPs occupy another in this signature space except for a very small

overlap. The average missing PT for each parameter point vs. the fraction of events

with 0b also shows a separation of the CPs and HPs from SOPs and SUPs. Further,

mSP4 appears isolated in this plot. Meanwhile the central panel shows the direct

detection limits and a remarkable separation of the mass patterns is achieved. The

bottom panel also shows a very interesting effect. The left bottom panel shows kine-

matical distributions in effective mass where only trigger level cuts imposed, while the

right panel has post trigger level cuts imposed and they have been imposed globally

for all the models considered (see the Appendix(4.8) for these cuts). For the case

when only trigger level cuts are imposed, the SOPs and CPs are highly peaked at

lower values of effective mass, while the HPs and SUPs are much broader at higher

effective mass. However the trigger level cuts can have an enormous effect on the

observability of these signals. We see here an important point. Imposing the post

trigger level cuts globally on all classes of hierarchical mass patterns may disguise the

signal. Applying our post trigger level cuts kills the SOP and CP signals, while the

SUPs and HPs signals remain relatively strong. This is a consequence of what was

discussed in Ch.(3), namely that the missing PT is very important in the analysis

of deciphering the model (the effective mass is the missing PT + the sum of the jet

PT ). We observe these effects more generally. Namely that the effective mass and the

missing PT distributions for the SOPs and CPs are generally much narrower, while

the HPs and SUPs are generally much broader. Therefore it becomes crucial for ex-

perimental groups to design their triggers around different scenarios, in particular, as

we illustrated here, the triggers need to be specialized for different mass hierarchies.
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Figure 4.7: The Big Picture as discussed in the text- Bringing together direct detection,
LHC event rates and kinematic signatures of new physics . The top panel is full simulation
of ∼ 900 model points for minimal SUGRA at the LHC with 10/fb keeping only statistically
significant model points as discussed in the text. The middle panel has a larger set of data,
but correspond otherwise to same set of models in the top panel where the low mass points
make the cut in the top panel. The bottom panels are eff. mass dist. for 4 benchmarks
with and without (the same) post trigger level cuts. From [45] and [60].

78



The analysis given in Fig.(4.7), is really a central result of our work [58, 45, 87]. It

provides correlations amongst various sparticle mass hierarchies, not only in the space

of LHC signatures but also in the signature space of direct detection. These types

of correlations become very important in our quest to pin down the the underlying

model in any framework. We note also, that a glance back at, for example, the

left panel of Fig.(4.2), shows that while stops patterns may be discoverable at the

LHC, quite remarkably they will almost certainly not be detectable in DM detection

experiments.

4.7 Summary
Higgs Patterns (HPs)[58] arise in a wide range of models: in mSUGRA, in NUSUGRA

and in D-Brane models [45]. The HPs are typically seen to lead to large Higgs

production cross sections at the Tevatron and at the LHC, and to the largest Bs →

µ+µ− branching ratios, and thus are the first to be constrained by collider experiments

[45]. Further the HPs lead typically to the largest neutralino-proton cross sections

and would either be the first to be observed or the first to be constrained by dark

matter experiments[45]. There exists of a Chargino Wall which give a σSI
eχ0
1p at the level

of ∼ O(10−44) cm2 in all models considered for the LSP mass extending up to 900

GeV[45, 87]. These results heighten the possibility for the observation of dark matter

in improved dark matter experiments such as SuperCDMS[99], ZEPLIN-MAX[135],

and LUX[116] which are expected to reach a sensitivity of 10−45 cm2 or more. We

note that many of the hierarchical patterns are well separated in the σSI
eχ0
1p- LSP mass

plots, providing important signatures along with the signatures from colliders for

mapping out the sparticle parameter/signature space[58, 60, 87]. An analysis of soft

breaking in D-Brane models was given and several important observations were noted

regarding light Higgses, the presence of the Chargino Wall, and compresses spectra in

certain classes of models based on Branes which lead to non universal soft breaking.
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More generally, the notion of sparticle mass hierarchies plays a crucial role for the

discovery of new physics at both the LHC and in DM experiments acting like a prism

in the separating out of the sparticle landscape.

4.8 Appendix: Experimental Constraints

This appendix summarizes various aspects of the analysis [58, 45, 60, 87].

Experimental limits on the FCNC process b → sγ give rise to tight constraints on

SUSY models. Here we have imposed the constraint from the Heavy Flavor Averaging

Group (HFAG) [136] along with the BABAR, Belle and CLEO experimental results:

Br(b → sγ) = (355 ± 24+9
−10 ± 3)× 10−6. A new estimate of Br(B̄ → Xsγ) at O(α2

s)

gives [137] Br(b → sγ) = (3.15±0.23)×10−4 and moves the previous SM mean value

of 3.6×10−4 a bit lower. In the analysis we use a 3.5σ error corridor around the HFAG

value. The total Br(B̄ → Xsγ) including the sum of SM and SUSY contributions

(for the update on SUSY contributions see [138]) are constrained by this corridor.

The process Bs → µ+µ− can become significant for large tanβ since the decay has

a leading tan6 β dependence and thus large tanβ may be constrained by the current

limit which is Br(Bs → µ+µ−) < 1.5 × 10−7 (90% CL), 2.0 × 10−7 (95% CL) [139].

More recently the CDF and DØ have given limits which are about a factor of 10

more sensitive. We have included these preliminary [140] results in this analysis.

Additionally, we also impose the current lower limits on the lightest CP even Higgs

boson. For the Standard Model like Higgs boson this limit is ≈ 114.4 GeV [141],

while a limit of 108.2 GeV at 95% CL is set on the production of an invisibly decaying

Standard Model like Higgs by OPAL [141]. For the MSSM we take the constraint

to be mh > 100 GeV. This relaxed constraint poses little restriction on the models

discussed here. We take the other sparticle mass constraints to be (1) for the lighter
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chargino meχ±
1

> 104.5 GeV [142] (2) for the lighter stop met1 > 101.5 GeV, and (3)

for the lighter stau meτ1 > 98.8 GeV [143]. The mSUGRA analysis is based on a

large Monte Carlo scan of the parameter space with the soft parameters in the range

0 < m0 < 4000 GeV, 0 < m1/2 < 2000 GeV, |A0/m0| < 10, 1 < tanβ < 60 and

both signs of µ are analyzed. For the case of non-universalities we let each δ vary

between [−0.9, 1]. In our analysis we use MicrOMEGAs version 2.0.7 [95] and for some

calculations v2.2 have been used as a cross check. Our RGE calculator is the SuSpect

2.34 package [94] used for the analysis of sparticle masses and mixings, and we taken

mMS
b (mb) = 4.23 GeV, mt(pole) = 170.9 GeV, requiring REWSB at the SUSY scale.

We have cross checked our analysis with other codes [80, 144, 145, 146, 147, 148, 149]

and find no significant disagreement for the models discussed here. In addition to the

above one may also consider the constraints from the anomalous magnetic moment

of the muon. It is known that the supersymmetric electroweak corrections to gµ − 2

can be as large or larger than the Standard Model electroweak corrections[128]. The

implications of recent experimental data has been discussed in several works (see,

e.g.[153]). As in [143], here we use a rather conservative bound −11.4 × 10−10 <

δ(gµ − 2) < 9.4× 10−9.

We remark that a very unique and interesting analysis has subsequently studied

mSP4 [61] in the context of helicity amplitudes. Also, recently the mSP concept has

been implemented in the analyses of [150], but in the P-MSSM which finds all but one

of our mSP patterns (likely that saturation not yet to be achieved in the larger pool

of parameters in the P-MSSM). Also several other the patterns for the non universal

cases are seen in this work. The hierarchical mass pattern approach has also been

adopted in [152]. We have also uncovered the hierarchical mass pattern from a large

data set from [151] and find a similar frequency of the mSPs in this data set as found

in our original data set [58].
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Collider Simulations for SUSY Processes[58, 45, 60, 87]

Candidate model points for the signature analysis are found after the imposition of

all the constraints mentioned above. For each of these model points, a SUSY Les

Houches Accord (SLHA) file [96] is interfaced to PYTHIA 6.4.11 [79] through PGS4

[97] for the computation of SUSY production cross sections and branching fractions.

In this analysis, for signals, we have generated all of PYTHIA’s 2 → 2 SUSY pro-

duction modes using MSEL = 39. This choice generates 91 SUSY production modes

including gaugino, squark, slepton, and SUSY Higgs pair production, while an analy-

sis of singly produced Higgs production was also given. For further details regarding

these modes, see [79]. Leading order cross sections from PYTHIA and leading order

cross sections from PROSPINO 2.0 [154] were cross checked against one another for

consistency over several regions of the soft parameter space. TAUOLA [155] is called

by PGS4 for the calculation of tau branching fractions as controlled in the PYTHIA

parameter card (.pyt) file. With PGS4 we use the Level 1 (L1) triggers designed to

mimic the Compact Muon Solenoid detector (CMS) specifications [156, 110] and the

LHC detector card. Muon isolation is controlled by employing the cleaning script in

PGS4. We take the experimental nomenclature of lepton being defined only as electron

or muon and thus distinguish electrons and muons from tau leptons. SM backgrounds

have been generated with QCD multi-jet production due to light quark flavors, heavy

flavor jets (bb̄, tt̄), Drell-Yan, single Z/W production in association with quarks and

gluons (Z+ jets / W+ jets), and ZZ, WZ, WW pair production resulting in multi-

leptonic backgrounds. Extraction of final state particles from the PGS4 event record

is accomplished with a code SMART ( = SUSY Matrix Routine) written by us [58]

which provides an optimized processing of PGS4 event data files. The standard crite-

ria for the discovery limit of new signals is that the SUSY signals should exceed either
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5
√

NSM or 10 whichever is larger, i.e., NSUSY > Max
{
5
√

NSM, 10
}

and such a criteria

is imposed where relevant. We have cross checked our SM backgrounds and several

other elements of our analysis with simulations done by CMS [157, 158] and the re-

sults of these checks are in good agreement as well as the total background analysis of

[55] under similar cuts used there. In PGS4 jets are defined through a cluster-based

algorithm which has a heavy flavor tagging efficiency based on the parametrizations

of the CDF Run 2 tight/loose SECVTX tagger [159] and is a displaced (secondary)

vertex b-tagging algorithm which allows detection of b quarks. The b-tagging effi-

ciency enters as a product of two polynomials each a separate function of |η(jet)|

and PT (jet). The efficiency is maximized in the region |η(jet)| < 1 with maximal

efficiency εb = (0.4, 0.5) for tight and loose tags respectively, and falls off sharply for

|η(jet)| > 1 with virtually zero efficiency out near |η(jet)| = 2 and PT (jet) ∼ 160

GeV. It remains to be seen if the CMS and ATLAS detectors will have greater effi-

ciency at larger PT , and preliminary reports appear to indicate this maybe possible.

Post Trigger Level Cuts for SUSY [58, 45, 60, 87]

Our post trigger level cuts are designed to highlight the SUSY signatures with respect

to the SM background over a broad set of models. We list them below: (1) In an

event, we only select photons, electrons, and muons that have transverse momentum

PT (p) > 10 GeV and |η(p)| < 2.4, p = (γ, e, µ); (2) For hadronically decaying tau

(jets): PT (τ) > 10 GeV and |η(τ)| < 2.0 are selected; (3) For other hadronic jets only

those satisfying PT (jet) > 60 GeV and |η(jet)| < 3.0 are selected; (4) We require a

large amount of missing transverse momentum, P miss
T > 200 GeV; (5) There are at

least two jets that satisfy the PT and η cuts. Variations on these cuts are discussed

in the text.
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Chapter 5

The Stueckelberg Mechanism for

Mass Generation

We have already discussed that realistic models of particle physics have been con-

structed implementing the properties of D-Branes which support chiral matter. Progress

along these lines include the possibility of the replication of the chiral structure of the

Standard Model (SM) in classes of intersecting D-Brane models and models for which

the D-Branes sit at singularities (for a review see [43]). In these top-down approaches

to building realistic models based on D-Branes the SM gauge group can be produced

but one also encounters residual Abelian group factors. The extra U(1)s usually cor-

respond to massive vector fields. In particular frameworks they lead to terms in the

action of the form B ∧ F , i.e. terms of the form 1
2ε

µναβBµνFαβ which are needed for

anomaly cancellation via a [four dimensional] Green-Schwarz (GS) mechanism [160].

In other frameworks the B ∧ F couplings can arise for the non-anomalous cases as

well[132],[167, 169, 184],[43]. These types of couplings can give rise to Stueckelberg

mass terms. For example, under the duality transformation ∂µσ ∼ εµνρσ∂νBρσ, as il-

lustrated in [43], vector fields gain mass via the GS mechanism leading to Stueckelberg
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mass terms in the Lagrangian of the form

LSt = −1

2

∑

I

(∂µσI − kIaCµ
a )2, (5.1)

where the index I runs over all the 4D tensors and thus runs over each of psuedoscalars

σI (Ramond axions) and over the killing vector coefficients kIa. Here a indexes a

Brane stack with a supporting gauge group (for example: U(Na) = SU(Na)×U(1)a)

with each Abelian vector field denoted as Cµ
a . It is then clear that the quadratic

term for Cµ
a in Eq.(5.1) gives rise to mass terms for the Abelian vector fields. The

orthogonality of the killing vectors dictates which Bosonic states will become massive

or if they are massless. Adding a gauge fixing terms, the cross terms in Eq.(5.1)

cancel i.e. the psuedoscalars and vector fields decouple. The mechanism outlined

here is distinct from a Higgs mechanism for mass generation of a U(1) gauge field.

There is no such residual scalar present in this mechanism for mass growth.

One can see this is in a simpler way. Consider a Kalb-Ramond 3 form [161] (see

also [162])

Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν , (5.2)

and consider the Lagrangian

L0 = −1

4
FµνF

µν − 1

12
HµνρHµνρ +

M

4
εµνρσFµνBρσ. (5.3)

The last term can be written in terms of a psuedoscalar 1

− M

6
εµνρσ(HµνρAσ + σ̂∂µHνρσ). (5.4)

1 σ ≡M σ̂ (where σ̂ carries no mass dimension)

85



An integration over σ̂ gives back L0 [132, 163]. Instead solving for Hµνρ yields

Hµνρ = −Mεµνρσ(Aσ + ∂σσ̂). (5.5)

An integration on Hµνρ gives L0 in the form

L1 = −1

4
FµνF

µν − M2

2
(Aσ + ∂σσ̂)

2. (5.6)

That is, we are lead to mass growth for the U(1) boson Aσ through a Stueckelberg

mechanism.

Thus, through a Stueckelberg mechanism [164] an Abelian gauge boson develops

mass without the benefit of a Higgs mechanism [165] (for an interesting historical

document regarding the Stueckelberg mechanism see [166]). The basic Lagrangian

for a single Abelian group can be written similarly to the above

L0 = −1

4
FµνFµν − 1

2
(mAµ + ∂µσ)(mAµ + ∂µσ) , (5.7)

where the psuedoscalar σ undergoes an axionic shift symmetry, i.e. the Lagrangian

is gauge invariant under the transformations δAµ = ∂µλ , δσ = −mλ. With the

gauge fixing term Lgf = − (∂µAµ + ξmσ)2 /2ξ, the total Lagrangian reads

L = −1

4
FµνFµν − m2

2
AµAµ − 1

2ξ
(∂µAµ)2 − 1

2
∂µσ∂

µσ − ξm
2

2
σ2 + gAµJ

µ, (5.8)

where we have added also an interaction term which contains the coupling of Aµ with

fermions via a conserved vector current, ∂µJµ = 0. Here the fields σ and Aµ are

decoupled and renormalizability and unitary are manifest.
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5.1 The Stueckelberg Extensions of the SM and

the MSSM

As mentioned in the previous section, the Stueckelberg mechanism allows for mass

generation for a U(1) vector field without the benefit of a Higgs mechanism. Specifi-

cally the models of Ref. [167, 168, 169], [170, 171], [172, 173, 174, 175] are based on the

U(1)X Stueckelberg extensions of the Standard Model (SM), i.e., on the gauge group,

SU(3)C × SU(2)L × U(1)Y × U(1)X . This extension of the SM involves a non-trivial

mixing of the U(1)Y hypercharge gauge field Bµ and the U(1)X Stueckelberg field

Cµ. The Stueckelberg field Cµ has no couplings with the visible sector fields, while it

may couple with a hidden sector, and thus the physical Z ′ gauge boson connects with

the visible sector only via mixing with the gauge bosons of the physical sector. These

mixings, however, must be small because of the LEP electroweak constraints[170] and

consequently the couplings of the Z ′ boson to the visible matter fields are extra weak,

leading to a very narrow Z ′ resonance when the decays are dominantly into visible

matter. The width of such a boson could be as low as a few MeV or even lower and

lie in the sub-MeV range [171]. Indeed such Stueckelberg mass mixings are generic

to string and brane constructions [176, 132, 40, 177, 178], (see also [179] for a recent

analysis in the context of electric/magnetic duality and generalized Chern-Simons

terms). It is noted here that in the particular string scenario of [180] one finds kinetic

mixing and Stueckelberg mass mixings terms of the form constructed in [174]. This

leads to rather different phenomenology from earlier work which considered kinetic

mixing [181, 182]. In what follows we discuss several aspects of the Stueckelberg

Extensions of the Standard Model and the MSSM [167, 168]. Recent reviews on the

above subject may be found in [183, 184].
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Chapter 6

StMSSM : and the XWIMP Stino

Here we investigate a new type of dark matter with couplings to ordinary matter

naturally suppressed by at least 1 order of magnitude compared to weak interactions.

The eXtra-weakly interacting massive particles of this type, XWIMPs, can satisfy

the WMAP relic density constraints due to co-annihilation if their masses are close

to that of the lightest state of the MSSM. Considered is an extended minimal super-

gravity model consistent with the WMAP3 constraints on XWIMPs. As an example,

for an explicit model we show that such a form of dark matter can arise in certain

Z ′ extensions of the MSSM. Specifically we consider an Abelian extension with spon-

taneous gauge symmetry breaking via Fayet-Iliopoulos D-terms in the hidden sector.

In a certain limit the model reduces to the Stueckelberg extension of the MSSM.

6.1 The Connector Sector

An interesting possibility arises in that dark matter can originate from a hidden sector.

As already discussed, in SUGRA unified models and in string and in brane models,

a hidden sector exists which contains fields which are singlets of the Standard Model
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U(1)X  SU(3)C X SU(2)L X U(1)Y  

Connector 
   Sector 

   Visible
   Sector 

B=(B
µ
,0B, DB) C=(C

µ
,0C, DC)

FI D Terms

   Hidden   
  X−Sector 

  XWIMP

*±(QY,QX)

Figure 6.1: The generation of the extra-weakly interacting massive particles. An XWIMP
is a linear combination of fields in the hidden sector and in the connector sector, and its
interactions with the MSSM particles are suppressed. We note this figure appears in [172].

gauge group. As such, it is then interesting to investigate if the hidden sector can

provide us with the relevant candidate for dark matter which produces relic density

within the WMAP bounds.

Suppose there is dark matter whose interactions with quarks and leptons are

weaker than weak, or extra-weak. How can such dark matter arise? Such extra-weak

dark matter can arise when one has two sectors: a physical sector where MSSM fields

reside and a hidden sector. The hidden sector fields do not carry MSSM quantum

numbers and the physical sector fields do not carry the quantum numbers of fields in

the hidden sector. Thus the sectors do not have a direct communication. If, however,

one introduces a connector sector which carries dual quantum numbers and interacts

with the physical sector fields as well as with the hidden sector fields then the sectors

can communicate [172]. The basic elements of the models we discuss are exhibited in

Fig.(6.1) and involve three sectors: (i) a visible sector where the fields of the SM or

the MSSM reside, (ii) a hidden sector which is neutral under the SM gauge group,

and (iii) a third sector [185] which transforms non-trivially under the SM and the
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hidden sector gauge symmetry. Aside from gravity, the fields of the visible sector

and the hidden sector communicate only via this third sector which we therefore

call the “connector sector”. Interactions with hidden particles can of course modify

predictions of the SM and are thus highly constrained by the precision data from the

LEP and the Tevatron experiments (see [170]).

In the following, we construct explicit simple models where the gauge group in the

hidden sector is just an Abelian U(1)X with spontaneous breaking and a massive Z ′

gauge boson. Such Abelian extensions of the MSSM occur in a wide class of models

including grand unified models, string and brane models. The explicit elements of

our first example are as follows:

1. The visible sector contains gauge, matter and Higgs superfields of the MSSM

charged under the gauge group SU(3)C × SU(2)L × U(1)Y , but neutral under

U(1)X .

2. The hidden sector contains the gauge superfield for U(1)X , the components of

which are neutral under the Standard Model gauge group.

3. The connector sector contains chiral fields φ± with charges ±QX under U(1)X

and ±Yφ under U(1)Y . They thus carry dual quantum numbers. The fields in

the visible and in the hidden sectors can communicate only via couplings with

these connector fields.

Spontaneous breaking of the U(1)X generates a mixing between the hidden and

the visible fields. We will implement this breaking via Fayet-Iliopoulos D-terms (see

the second Ref of [1]). The parameters that measure the mixing are highly suppressed

because of the precision constraints on the electroweak predictions. Their smallness

is responsible for the extra-weak interactions of the hidden and the connector fields

with the fields in the MSSM.
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6.2 Extra-weak Dark Matter in Z ′ Models

To start with, we introduce a class of extensions of the MSSM where a natural mixing

of the neutral MSSM fields with fields from the hidden sector appears via an off-

diagonal mass matrices. We also discuss other possibilities to facilitate a mixing of a

very similar type.

6.2.1 Broken U(1)X with Fayet-Iliopoulos Terms

A U(1)X extension of the MSSM with a Fayet-Iliopoulos (FI) D-term can lead in

a natural manner to extra-weakly interacting dark matter constrained by LEP and

Tevatron data. The features of our model were already explained in the previous

section. The full gauge symmetry of the model is SU(3)C×SU(2)L×U(1)Y ×U(1)X .

It differs from previous formulations in that a FI D-term breaks the extra U(1) gauge

symmetry instead of an F-term. The Abelian vector fields consist of the U(1)Y

vector multiplet (Bµ,λB, DB) and the U(1)X vector multiplet (Cµ,λC , DC) with gauge

kinetic Lagrangian given by

Lgkin = −1

4
BµνB

µν − iλBσ
µ∂µλ̄B +

1

2
D2

B −
1

4
CµνC

µν − iλCσ
µ∂µλ̄C +

1

2
D2

C . (6.1)

The superfields Φ± with components (φ±, f±, F±) are described by

LΦ = −|Dµφ
+|2 − if+σµDµf̄+ −

√
2
(
igXQXφ

+f̄+λ̄C + igY Yφφ
+f̄+λ̄B + h.c.

)

+gXDC(φ̄+QXφ
+) + gY DB(φ̄+Yφφ

+) + {Φ+ → Φ−} , (6.2)
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where we do not add any chiral matter in the superpotential and thus F± vanishes

(this is unlike [186],[187]). The covariant derivatives of the scalars are

Dµφ
± = (∂µ ± igXQXCµ ± igY YφBµ)φ± . (6.3)

Next we add to the mix the FI terms LFI = ξXDC + ξY DB. Elimination of the D

terms gives us the scalar potential1

VFID =
g2

X

2

(
QX |φ+|2 −QX |φ−|2 + ξX

)2
+

g2
Y

2

(
Yφ|φ+|2 − Yφ|φ−|2 + ξY

)2
. (6.4)

Minimization of the potential leads to a solution

〈φ+〉 = 0 , 〈φ−〉 =

√
g2

XξXQX + g2
Y ξY Yφ

g2
XQ2

X + g2
Y Y 2

φ

. (6.5)

We consider the bosonic sector first. We couple the mixed U(1)Y × U(1)X system to

the MSSM. We will assume this breaking takes place at a higher scale before the on

set of the electroweak symmetry breaking where the MSSM Higgses acquire a VEV.

Thus spontaneous breaking of the electroweak symmetry gives rise to the mixing of

the neutral gauge fields (Cµ, Bµ, A3µ), with Aµa (a = 1, 2, 3) for the SU(2)L gauge

fields. In this basis the mass matrix in the neutral sector is of the form





M2
1 M1M2 0

M1M2 M2
2 + 1

4v
2g2

Y −1
4v

2g2gY

0 −1
4v

2g2gY
1
4v

2g2
2




. (6.6)

1 Factors of g−2
i have been absorbed into the FID terms.
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The parameters M1, M2 are defined so that

M1 =
√

2gXQX〈φ−〉 , M2 =
√

2gY Yφ〈φ−〉. (6.7)

There is a single massless mode, the photon, and two massive modes the Z and Z ′.

Since 〈φ+〉 = 0, the superfield components of Φ+ does not enter in the mixings in

the mass matrix for the fields in the hidden sector and the fields in the visible sector,

and we do not consider it further. We note in passing that were the spontaneous

breaking of the U(1)X symmetry and of the SU(2)× U(1)Y symmetry to take place

at the same scale, one would carry out the minimization of the potential involving φ±

and the Higgs fields simultaneously. However, such an analysis does not substantially

alter the conclusions of the analysis of this section since the additional corrections

from such a minimization are typically small.

We discuss now the effects of mixing of the hidden sector fields and of the con-

nector fields with the fields of the visible sector. In the scalar sector the CP-even

component of the complex scalar φ− mixes with the two CP-even Higgs fields of

MSSM producing a 3×3 mass matrix similar to the analysis given in Ref. [168, 169].

In the neutral fermionic sector there are two additional mass eigenstates beyond

the four neutral fermionic states in the MSSM, λY ,λ3, H̃1, H̃2. One can reorganize

the Weyl spinors in terms of four-component Majorana spinors χS (out of f−) and

λX (out of λC) in a standard way. The 6 × 6 neutralino mass matrix in the basis
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((χS,λX); (λY ,λ3, H̃1, H̃2)) reads





0 M1 M2 0 0 0

M1 m̃X 0 0 0 0

M2 0 m̃1 0 −cβsW M0 sβsW M0

0 0 0 m̃2 cβcWM0 −sβcWM0

0 0 −cβsW M0 cβcW M0 0 −µ

0 0 sβsWM0 −sβcWM0 −µ 0





. (6.8)

Here m̃X arises from the soft mass term −1
2m̃X λ̄XλX , M0 is the Z boson mass at the

tree level, cW = cos θW , sW = sin θW with θW the weak angle, similarly cβ = cosβ,

sβ = sin β, with tanβ = 〈H2〉/〈H1〉, and finally µ is the Higgs mixing parameter

of the MSSM. The mass eigenstates of the system are defined as the following six

Majorana states: ((ξ01 , ξ
0
2); (χ

0
1,χ

0
2,χ

0
3,χ

0
4)) where χ0

a (a = 1, 2, 3, 4) are essentially the

four neutralino states of the MSSM and ξ0α, (α = 1, 2) are the two additional states

composed mostly of the new neutral fermions.

We will discuss in a moment that the current electroweak data puts a stringent

bound on ε = M2/M1 such that |ε|4 1 [170]. In this limit the masses of ξ01 , ξ
0
2 are

mξ01
0
√

M2
1 +

1

4
m̃2

X −
1

2
m̃X , mξ02

0
√

M2
1 +

1

4
m̃2

X +
1

2
m̃X . (6.9)

For the case when the lightest of the MSSM neutralinos χ0 ≡ χ0
1 is also lighter

than ξ0 ≡ ξ01 nothing much changes compared to the pure MSSM. The LSP of the

MSSM will still be the LSP of the full system, and the dark matter candidate will

be essentially the same as in the MSSM with minor modifications. However, a very

different scenario emerges if ξ0 is lighter than χ0 and becomes the LSP. The upper

bound on ε translates to a suppression of the couplings of ξ0 to MSSM fields relative
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to the couplings of χ0 by a factor of ε. Roughly speaking one can treat ξ0 as a

standard LSP χ0 but with couplings appropriately suppressed by at least an order of

magnitude. This is why we call ξ0 extra-weakly interacting, an XWIMP (it has also

been referred to as a Stino).

6.2.2 Stueckelberg Reduction of the U(1)X Extension

In a certain limit the model of the previous subsection reduces to the Stueckelberg

extension of MSSM proposed in [168, 169]. To achieve the reduction we assume as

is conventional in the analysis of MSSM that ξY is negligible. We consider now the

limit 〈φ−〉 → ∞, gXQX → 0, and gY Yφ → 0, with M1 and M2 fixed. This leads to

1

2
|Dµφ

−|2 =
1

2
(M1Cµ + M2Bµ + ∂µa)2 +

1

2
(∂µρ)

2 , (6.10)

where φ− = ρ + ia. The Lagrangian can be written LΦ = LSt + LΦ+ , where Φ+ is

now completely decoupled from the vector multiplet and LSt can be written

LSt = −1

2
(M1Cµ + M2Bµ + ∂µa)2 − 1

2
(∂µρ)

2 − iχσµ∂µχ̄ (6.11)

+ρ(M1DC + M2DB) + [χ(M1λC + M2λB) + h.c.] .

This arises from the following density in superfield notation up to arbitrary phases

LSt =

∫
d2θd2θ̄ (M1C + M2B + S + S̄)2 , (6.12)

where C and B are gauge supermultiplets and S a chiral supermultiplet. With the

above one then has exactly the Stueckelberg extension of the MSSM [168]. To obtain

the supersymmetric Stueckelberg extension we consider the Stueckelberg chiral mul-

tiplet S = (ρ + iσ,χ, FS) along with the vector superfield multiplets for the U(1)Y
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denoted by B = (Bµ,λB, DB) and for the U(1)X denoted by C = (Cµ,λC , DC). Un-

der U(1)Y and U(1)X the supersymmetrized gauge transformations are then given

by: δY (C, B, S) = (0,ΛY + Λ̄Y ,−M2ΛY ) and δX(C, B, S) = (ΛX + Λ̄X , 0,−M1ΛX).

Expanding the fields in the component form, in the Wess-Zumino gauge, we have for

the vector superfield(s), denoted here each by V = (C, B),

V = − θσµθ̄Vµ + iθθθ̄λ̄V − iθ̄θ̄θλV +
1

2
θθθ̄θ̄DV . (6.13)

The superfield S in component notation is given by

S =
1

2
(ρ+ iσ) + θχ+ iθσµθ̄

1

2
(∂µρ+ i∂µσ)

+θθFS +
i

2
θθθ̄σ̄µ∂µχ+

1

8
θθθ̄θ̄($ρ+ i$σ) , (6.14)

and in the above, the superfield S contains a scalar ρ and an axionic pseudo-scalar

σ. With the addition of the soft mass term −1
2m̃X λ̄XλX , this system when coupled

to the MSSM leads us to the same mass matrix as in Eq.(6.8) as in [169].

6.2.3 Electroweak Constraints on Mixing Parameters

To determine the allowed corridors in ε and M1, we follow a similar approach as in

the analysis of Refs. [188, 189] used in constraining the size of extra dimensions.

We begin by recalling that in the on-shell scheme the W boson mass including loop

corrections is given by [190]

M2
W =

πα√
2GF sin2 θW (1−∆r)

, (6.15)

where the Fermi constant GF and the fine structure constant α (at Q2 = 0) are

known to a high degree of accuracy. The quantity ∆r is the radiative correction and
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is determined so that ∆r = 0.0363± 0.0019 [191], where the uncertainty comes from

error in the top mass and from the error in α(M2
Z). Now since in the on-shell scheme

sin2 θW = (1 − M2
W /M2

Z) one may use Eq. (6.15) and the current experimental

value of MW = 80.425 ± 0.034 GeV [191] to make a prediction of MZ . Such a

prediction within SM is in excellent agreement with the current experimental value

of MZ = 91.1876 ± 0.0021 GeV. Thus the above analysis requires that the effects

of the Stueckelberg extension on the Z mass must be such that they lie in the error

corridor of the SM prediction. We now calculate the error δMZ in the SM prediction

of MZ in order to limit ε. From Eq. (6.15) we find that δ ≡ δMZ/MZ |SM is given by

δ =

√(
1− 2 sin2 θW

cos3 θW

δMW

MZ

)2

+
tan4 θW (δ∆r)2

4(1−∆r)2
. (6.16)

The Stueckelberg correction to the Z mass in the region M2
1 2 M2

Z is given by

|∆MZ/MZ| ∼ 1
2 sin2 θW (1−M2

Z/M2
1 )−1ε2. Equating this shift to the result of Eq.(6.16)

one finds an upper bound on ε relevant for TeV scale physics

|ε| ! 0.061
√

1− (MZ/M1)2. (6.17)

We note this constraint was first derived in [170] and a very similar constraint appears

in the analysis of Ref. [192]. A more detailed analysis of electroweak constraints due

to the presence of the heavy vector boson will be presented in Ch.(9).

6.2.4 Abelian Extension with Off-Diagonal Kinetic Terms

There is a well known example of an Abelian extension of the SM with a mixing

between the visible and the hidden sector arising from an off-diagonal kinetic mixings

with two U(1)s [181]. The hidden sector in this model has been dubbed the shadow
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sector, the extra gauge factor denoted U(1)S. Specifically we couple this type of

kinetic mixing to the SM and obtain for the action L = LSM + ∆L, where

∆L = −1

4
CµνCµν −

δ

2
BµνCµν − |Dµφ|2 − V (φ,φSM) . (6.18)

Here Cµ is gauge field for the U(1)S, φ is the Higgs charged under U(1)S giving mass

to Cµ, and φSM is the Standard Model Higgs. The kinetic terms of Eq.(6.18) can be

diagonalized by the transformation




Bµ

Cµ



 =




1 − sδ

0 cδ








Bµ′

Cµ′



 , (6.19)

where cδ = 1/(1−δ2)1/2, sδ = δ/(1−δ2)1/2. As in the analysis of Refs. [167, 169, 170,

171] the mixing parameter δ is small [181, 193, 192]. After spontaneous breaking this

type of model also leads to a massless photon, and two massive vector boson modes.

To supersymmetrize the model we write the Lagrangian for the extended theory

L = LMSSM + ∆L. In the pure gauge sector of the theory one has

∆Lgkin = −1

4
CµνCµν − iλCσ

µ∂µλ̄C +
1

2
D2

C

−δ
2
CµνBµν − iδ(λCσ

µ∂µλ̄B + λBσ
µ∂µλ̄C) + δDBDC . (6.20)

One can give a mass to the Cµ by a Stueckelberg mechanism without mixing with

the hypercharge as in the analysis of Ref.[168]. Thus we add a term

∆LSt =

∫
dθ2dθ̄2(MC + S + S̄)2 , (6.21)
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where C is the gauge multiplet for the extra U(1)S and S a chiral superfield. Every-

thing works very much the same way as in the standard Stueckelberg extension. After

spontaneous breaking of the electroweak symmetry the neutralino mass matrix in the

basis ((ψS,λ′X); (λ′Y ,λ3, H̃1, H̃2)), obtained after rotating the Majorana fermions by

the use of (6.19), is





0 Mcδ 0 0 0 0

Mcδ m̃Xc2
δ + m̃1s2

δ −m̃1sδ 0 sδcβsWM0 −sδsβsW M0

0 −m̃1sδ m̃1 0 −cβsWM0 sβsWM0

0 0 0 m̃2 cβcW M0 −sβcW M0

0 sδcβsWM0 −cβsWM0 cβcW M0 0 −µ

0 −sδsβsW M0 sβsWM0 −sβcW M0 −µ 0





.(6.22)

The structure of the neutralino mass matrix in Eq.(6.22) is significantly different from

that of Eq.(6.8). Similar to the analysis of already given, in the limit sδ → 0 the states

ψS and λ′X decouple from the rest of the neutralinos. As before we label these two

ξ01 , ξ
0
2 with masses given by

mξ01
0
√

M2 +
1

4
m̃2

X −
1

2
m̃X , mξ02

0
√

M2 +
1

4
m̃2

X +
1

2
m̃X . (6.23)

Diagonalizing Eq.(6.22) one obtains six mass eigenstates ((ξ01 , ξ
0
2); (χ

0
1,χ

0
2,χ

0
4,χ

0
4)).

The situation is very similar to the models discussed in previous subsections with

off-diagonal mass matrix. Thus we can summarize that the supersymmetrized model

with kinetic energy mixing can also lead to an XWIMP that becomes the XLSP with

extra-weak coupling to the Standard Model.

One can use a unified notation labeling the eXtra-weakly interacting particle as

an arbitrary XWIMP denoting any class of model with these characteristics. The
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small mixing parameter will be called ε in any case and the analysis of relic density

given below applies to all such models with XWIMPs.

6.3 Dark Matter from XWIMPs: Relic Density

and WMAP Data

Since the interactions of XWIMPs with matter are extra-weak the annihilation of

XWIMPs in general is much less efficient in the early universe. Thus it requires

some care to ascertain if a reduction of the primordial density is possible in sufficient

amounts to satisfy the current relic density constraints. However, the condition of

thermal equilibrium are still satisfied for XWIMPs as long as their interactions are

only suppressed by few orders of magnitude, say one or two. This requires that

interaction rate Γ is greater than the expansion rate of the universe, Γ ≥ H with H =

T 2/MPl. For the system at hand, consisting of weakly and extra-weakly interacting

massive particles (WIMPS and XWIMPs) the condition of thermal equilibrium is

indeed satisfied. The XWIMPs will only slightly earlier fall out of equilibrium but

both types of species will be produced thermally. This is in contrast to models

where the couplings of dark matter candidates are only of gravitational strength or

suppressed in similar ways.

While the annihilation of XWIMPs alone cannot be sufficient to deplete their den-

sity efficiently such reductions may be possible with co-annihilation [194]. In general,

co-annihilation could involve all the neutralinos as well as squarks and sleptons in

processes of the type

χ0
i + χ0

j → f f̄ , WW, ZZ, Wh, · · · , (6.24)
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where χ0
i = (ξ0α,χ

0
a). Here we explain how this can potentially lead to sufficient anni-

hilation of XWIMPs.

Relic Density Analysis for XWIMPs

The naive expectation is that XWIMPs would not be able to annihilate in sufficient

numbers to satisfy the current relic density constraints. An exception to this expec-

tation is the situation of co-annihilation [194] that can drastically change the picture.

It can contribute in a very significant way to the annihilation process. Let us consider

the co-annihilation of a XWIMP ξ0 and a WIMP χ0 via the following set of processes

ξ0 + ξ0 → X , ξ0 + χ0 → X ′ , χ0 + χ0 → X ′′ (6.25)

where {X} etc denote the Standard Model final states. The effective cross section in

this case is [172]

σeff = σχ0χ0
1

(1 + Q)2
(Q +

σξ0χ0

σχ0χ0
)2 , (6.26)

where

Q =
gχ0

gξ0
(1 + ∆)

3
2 e−xf∆ . (6.27)

Here g is the degeneracy for the corresponding particle and ∆ = (mχ0−mξ0)/mξ0. For

the case at hand, the ratio σξ0χ0/σχ0χ0 ∼ O(ε2) 4 1. Thus if the mass gap between

ξ0 and χ0 is large so that xf∆2 1, then σeff is much smaller than the typical WIMP

cross-section and the XWIMPs cannot annihilate in an efficient manner to satisfy the

relic density constraints.

If the mass gap between the XWIMP and WIMP is small and the XWIMP is

still lighter than the WIMP we have the case of co-annihilation. Let us look at a
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parameter choice with Q ∼ O(1) and Q 2 σξ0χ0/σχ0χ0 . We can write σeff in the form

[172] σeff 0 σχ0χ0(Q/(1 + Q))2 which is easily extended under the same approxima-

tions including co-annihilations involving additional MSSM channels. The relation

becomes modified so that σχ0χ0 is replaced by σeff(MSSM) and Q is defined so that

Q =
∑N

i=2 Qi where Qi = (gi/g1)(1 + ∆i)3/2e−xf∆i. When Q ∼ O(1) the XWIMP

relic density is just a modification of the WIMP relic density modified only by the

multiplicative factor (Q/(1 + Q))2. It is then possible to satisfy the relic density

constraints much in the same way as one does for the LSP of MSSM2. Nevertheless,

the couplings of ξ0 with quarks and leptons are suppressed by a factor of ε. Thus

cross-sections for the direct detection of dark matter will be suppressed by powers

of the mixing parameter, making the direct detection of the extra-weak dark matter

more difficult. However, ξ0 will do as well as χ0 for the seeding of the galaxies.

WMAP Constraints on XWIMPs

The specific framework we consider is a Abelian extension of mSUGRA with a U(1)X .

This means, in the MSSM we use the mSUGRA framework with the minimal set of

characteristic parameters for the soft breaking and the co-annihilation parameters ∆

as determined by Qeff . This is our extended mSUGRA model. We now discuss the

details of the analysis. In Fig.(6.3) we display the relic density constraints on the

XWIMPs in the m0 −m1/2 plane for the case tanβ = 50 consistent with all experi-

mental constraints. The black region satisfies the relic density constraints which lie

within 1σ corridor of the central value , while the shaded (colored) regions are elim-

inated due to other constraints. The other constraints arise mainly from the lower

limit on the chargino mass and the b → sγ branching ratio. The bound on the Higgs

mass is also shown but only a small additional region of the parameter space is elim-

inated. The analysis shows that the relic density is satisfied in both a low m0 region,

2We note in passing that Ref. [195] subsequently found quite a similar result.
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Figure 6.2: The allowed parameter space (black) in the m0 − m1/2 plane, under the 1σ
WMAP3 constraint in extended mSUGRA for the case A0 = 0, tan β = 50, sign(µ > 0),
mt = 171.4 GeV, m1/2 ∈ (0, 1.5)TeV and m0 ∈ (0, 3.5)TeV, and ∆ in the range (0.0, 0.1).
The figure to the right exhibits the breakdown of scaling and its breakdown as discussed in
the text. (From [172].)

where one has typically co-annihilation between the lightest neutralino of the MSSM

and the stau, and a high m0 region, which is characteristically the hyperbolic branch

(HB) of radiative breaking of the electroweak symmetry as discussed earlier, where

the LSP and the next to lowest supersymmetric particle (NLSP) become degenerate

and are mostly Higgsino like. We also show the parameter space in the mχ+ −mχ0

plane. These plots display the regions where scaling holds or breaks down which are

also good indicators of the gaugino vs. Higgsino composition of χ0 (the LSP of the

MSSM). Thus in the mχ+ −mχ0 plot, the model points on the straight line boundary

satisfy the scaling phenomenon, where mχ0 0 0.5m1/2. Here mχ0 is mostly a Bino.

More generally, scaling [196] gives mg̃ : mχ+
1

: mχ0 0 (6 − 7) : 2 : 1. On the other

hand, when scaling is violated one has a large Higgsino component, and this indeed

typically arises from the HB. In Fig.(6.3) we exhibit the allowed parameter space in

the mg̃−mχ+ plane. On the lower straight line along the diagonal χ0 is bino-like and

the scaling relation mg̃ : mχ0 = (6 − 7) : 1 is satisfied. Above this region χ0 has a
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Figure 6.3: Left Panel:Violation of scaling in the gluino chargino plane, Right Panel: the
Higgs Boson Branches. (From [172].)

significant Higgsino component, and scaling is violated. The analysis shows that the

permissible mass range for the gluino g̃ is rather wide, while for the Higgs there is

a narrow window. Typically, its mass has to lie within the corridor from the lower

limit of 114 GeV (when this limit is imposed) up to about 125 GeV and there are 2

distinct branches for the light CP even Higgs. A similar situation has been seen in

mSUGRA in [143].

In the calculation of the relic density, we find in general good agreement between

DarkSUSY and micrOMEGAS (up to about 15%) for values of tanβ in the range

(10− 40). The main result is that the WMAP3 constraints are satisfied by XWIMPs

for a wide range of tan β, even though the allowed parameter space consistent with

all constraints does depend on the value of tanβ and more so, sensitively on the value

of the top mass. We add a comment regarding the impact of experimental error bars

on the top mass under the constraints of the electroweak symmetry breaking. The

region in the parameter space of mSUGRA consistent with electroweak symmetry

breaking depends very sensitively on the mass of the top quark, a phenomena which

has been known for some time and which affects the relic density [197]. We emphasize
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that the sensitivity of the relic density arises as the sparticle spectrum in SUGRA

unified models, where the sparticle spectrum arises as a consequence of REWSB, is

very sensitive to the top mass. This can be seen, for example, in the first paper of

Ref.[197] where it is shown that the stop mass can turn tachyonic with variations in

the top mass under constraints of REWSB. However, in MSSM scenarios where one

can fix the sparticle spectrum and vary the top mass, the relic density is not sensitive

to variations in the top mass. In contrast, in the current analysis the sensitivities to

the top mass arise since we are using the framework of SUGRA unification where the

spectrum is computed via REWSB. The recent more accurate determinations of the

top mass have now very much reduced the error. Interestingly, one finds that even

a 1σ variation with reduced error bars generates very significant changes in the relic

density. Specifically, a lower top mass implies a larger portion in parameter space

consistent with the constraints. For further details see [172].

6.4 Summary

We have introduced a new dark matter candidate whose interactions with Standard

Model matter are extra-weak, weaker than weak interactions by at least one order of

magnitude. Extra-weakly interacting particles can arise in a wide range of models, Z ′

extensions of the MSSM with extended Higgs sectors, in the Stueckelberg extension,

in extensions of the MSSM with off-diagonal gauge boson kinetic terms, and possibly

many other realization of small mixing between visible and hidden sector fields. The

new XWIMPs are good candidates for dark matter if they become the LSP of the full

system, in spite of the extra-weak interactions with the MSSM, as they can satisfy

the relic density constraints consistent with the WMAP data via co-annihilation.

A direct observation of XWIMPs in dark matter detectors will be more difficult.

However, indirect tests of the model are possible and should be investigated.
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Chapter 7

Fermilab Probes of a Narrow Z ′

We begin by discussing the Stueckelberg extension of the Standard Model [167] based

on the gauge group SU(3)C × SU(2)L × U(1)Y × U(1)X . The effective Lagrangian

arises from coupling the Stueckelberg sector to the SM, i.e., LStSM = LSt+LSM, where

LSt = −1

4
CµνC

µν + gXCµJ
µ
X −

1

2
(∂µσ + M1Cµ + M2Bµ)2 . (7.1)

In the above, Jµ
X is a conserved vector current, Cµ is a Stueckelberg field and Bµ is

the hypercharge vector boson. It is easily checked that the above Lagrangian is in-

variant under the following transformations : δY (Cµ, Bµ, σ) = (0, ∂µλY ,−M2λY ) and

δX(Cµ, Bµ, σ) = (∂µλX , 0,−M1λX). The two Abelian gauge bosons can be decoupled

from σ by the addition of gauge fixing terms as before. Additionally, of course, one

has to add the standard gauge fixing terms for the SM gauge bosons to decouple

from the Higgs. After electroweak symmetry breaking the mass terms for the neutral
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vector bosons take the form

LMass = −1

2
VT

µ M2
StVµ, M2

St =





M2
1 M1M2 0

M1M2 M2
2 + 1

4v
2g2

Y −1
4v

2g2gY

0 −1
4v

2g2gY
1
4v

2g2
2




, (7.2)

where VT
µ = (Cµ, Bµ, A3

µ), v is the VEV of the Higgs field, g2 is the bare SU(2)

gauge coupling and gY is the bare U(1)Y gauge coupling. Note this mass matrix is

precisely that of Eq.(6.6). The mass squared matrix, being real and symmetric, can

be diagonalized by an orthogonal transformation Vµ = REµ. with ET
µ = (Z ′

µ, Zµ, Aγ
µ)

so that RT M2
StR = M2

St−diag. The zero eigen-mode is manifest and is to be associated

with the massless photon state. In the above model, the photon field is a linear

combination of the set of three fields (Cµ, Bµ, A3µ). In the limit ε ≡ M2 4 M1 →

0, the Stueckelberg sector decouples from the Standard Model and the tree level

expressions for the Standard Model Z boson mass is recovered, while the Z ′ mass

limits to M1 which is the overall scale of new physics in the StSM. The orthogonal

matrix R is easily formed from the eigen-vectors associated with the diagonalization.

A convenient parametrization is

R =





cψcφ − sθsφsψ sψcφ + sθsφcψ −cθsφ

cψsφ + sθcφsψ sψsφ − sθcφcψ cθcφ

−cθsψ cθcψ sθ




, (7.3)

where the angles are defined so that

tan θ =
γ

g2
, tanφ = ε, tan 2ψ =

2 sin θM2
0 ε

M2
1 −M2

0 + (M2
1 + M2

0 −M2
W )ε2

,(7.4)
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and M0 = MZ(ε = 0) = v
√

g2
2 + γ2/2, MW = g2v/2, and gY = γ

√
1 + ε2, γ ≡ gSM

Y .

The diagonalization leads to the following relation for the electronic charge

e =
g2gY cosφ√
g2

2 + g2
Y cos2 φ

=
g2γ√
g2

2 + γ2
. (7.5)

The neutral current interaction with the visible sector fermions is given by

LNC = −1

i

∑

f

[f̄Lγ
µDµfL + (L → R)], (7.6)

where Dµ is the covariant derivative with respect to SU(2)L×U(1)Y ×U(1)X however

we assume that the visible sector matter, i.e., quarks, leptons and the Higgs, are not

charged under U(1)X . Thus the charges of U(1)X sector satisfy QX |SM >= 0. The

The neutral current interaction leads to

LNC =

√
g2

2 + γ2

2
f̄γµ
[
(v′

f − γ5a
′
f )Z

′
µ + (vf − γ5af )Zµ

]
f + ef̄γµQfAµf, (7.7)

where as usual Q = T 3
L,R + YL,R/2, T 3

R = 0. Expressing the tree level interaction in

terms of the reduced vector and axial vector couplings we obtain

vf = cosψ
[
(1− ε sin θ tanψ) T 3

f − 2 sin2 θ (1− ε csc θ tanψ)Qf

]
, (7.8)

af = cosψ [1− ε sin θ tanψ]T 3
f , (7.9)

v′
f = − cosψ

[
(tanψ + ε sin θ) T 3

f − 2 sin2 θ (ε csc θ + tanψ) Qf

]
, (7.10)

a′
f = − cosψ [tanψ + ε sin θ]T 3

f . (7.11)

Note that the decoupling limit is ε→ 0 and thus cosψ → 1, sinψ → 0 and one obtains

the SM expressions for the vector and axial vector couplings.
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The partial decay widths of the StSM Z ′ into SM fermion matter are given by

Γ(Z ′ → f f̄) =
Nfβf

24π
MZ′

[(
[CZ′

fL
]
2
+ [CZ′

fR
]
2
) (

1−
m2

f

M2
Z′

)
+6 [CZ′

fL
] [CZ′

fR
]
m2

f

M2
Z′

]
(7.12)

where βf = (1 − 4m2
f/M

2
Z′)1/2 and where v′

f(a
′
f ) = [CZ′

fL
+ (−)CZ′

fR
]/
√

g2
2 + γ2 and

analogously for the Z couplings. The Z ′ can also decay into hidden matter couplings

through JX . We will first explore the implications of heavy matter in the hidden

sector, where the Z prime does not decay to the exotics. We will revisit this issue

and explore its implications in Chapter(9.1). Additionally for MZ′ > 2MW , the Z ′

can decay into W+W− which is determined by the triple gauge boson vertex,

LZ′WW = ig2R31

[
W+

µνW
−µZ ′ν + W−

µνW
+νZ ′µ + W+µW−νZ ′

µν

]
. (7.13)

The W+W− decay width is then given by

Γ(Z ′ → W+W−) = θ(MZ′ − 2MW )
g2

2R
2
31

192π
MZ′

M4
Z′

M4
W

[
1− 4

M2
W

M2
Z′

] 3
2

×
[
1 + 20

M2
W

M2
Z′

+ 12
M4

W

M4
Z′

]
. (7.14)

The W+W− decay mode is suppressed by the small factor R31, the element of the

rotation matrix which indicates the mixing between Z ′ and A3 gauge bosons. There-

fore, the partial width Γ(Z ′ → W+W−) is typically small relative to Γ(Z ′ →
∑

i fif̄i).

To get a feel for the size of the total decay width of Z′ into the visible sector quarks

and leptons one may see

Γ(Z ′ →
∑

i

fif̄i) 0 MZ′g2
Y ε

2 ×
{ 103

288π for MZ′ < 2mt

5
12π for MZ′ > 2mt

. (7.15)
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Figure 7.1: The StSM Z ′ branching ratios into f f̄ and W+W− final states as a function of
the Z ′ mass with f = u, t, e, d, ν with ε = 0.06. Besides the exceptionally narrow total decay
width, the large branching ratio of the StSM Z ′ into charged leptons further distinguishes
this model from other Z ′ models. [167, 169, 170, 171].

It has already been discussed in the previous chapter that ε is severely limited by

electroweak constraints which leads to a Stueckelberg Z ′ resonance with a very narrow

decay width. We will carry out a more precise fit to Electroweak data shortly. Thus

the Z ′ decay width lies in the ≤ 100 MeV range with MZ′ lying in the several hundred

GeV to 1 TeV range. In Fig. (7.1) it is shown that the Z ′ decays into quarks and

leptons will dominate the total Z ′ decay width, as the W+W− decay mode is roughly

the same size as one species of νν̄ mode. One may note that the branching ratio of Z ′

into the charged leptons is relatively large compared to what one has in conventional

models. This is due to the StSM Z ′ couplings being dominated by the hypercharge

of the particle in the final state. Thus, the isospin singlet lR which has a hypercharge

Y = −2 contributes a significant amount which makes the charged lepton contribution

comparable to the up quark contribution overcoming the color factor. The above also

indicates that this Z ′ model can be efficiently tested in an e+e− collider with polarized
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beams where one could check on the lR vs lL couplings. Other examples are provided

by the extension SU(2)L × SU(2)R × U(1)B−L Left-Right (LR) model [198] to give

the gauge group SU(2)L × SU(2)R × U(1)B−L × U(1)X (StLR)[170],[171].

7.1 Prospects for the Discovery of a Stueckelberg

Z ′ At Fermilab

7.1.1 Drell-Yan Cross Section for pp̄ → Z ′ → l+l−

Next we discuss the production of the narrow Z ′ by the Drell-Yan process. For the

hadronic process A + B → V + X, and the partonic sub-process qq̄ → V → l+l−, the

di-lepton doubly differential cross section to next to leading order (NLO) is given by

d2σAB

dM2dz
= K

1

s

∑

q

[
dσSM

qq̄

dz
+

dσSt−SM
qq̄

dz
+

dσSt
qq̄

dz

]
W{AB(qq̄)}(s, M

2). (7.16)

W{AB(qq̄)}(τ) =

∫ 1

0

∫ 1

0

dxdyδ(τ − xy)P{AB(qq̄)}(x, y),

P{AB(qq̄)}(x, y) = fq,A(x)fq̄,B(y) + fq̄,A(x)fq,B(y). (7.17)

Here the dimensionless variable τ = M2/s relates the invariant mass M of the fi-

nal state lepton pair to the center of mass energy
√

s of the colliding hadrons and

z = cos θ∗, where θ∗ is the angle between an initial state parton and the final state

lepton in the C-M frame of the lepton anti-lepton pair. The term dσSM/dz is the

Standard Model contribution, dσSt/dz is the contribution from the Stueckelberg sec-

tor, and dσSt−SM/dz is the interference term between the Standard Model and the

Stueckelberg sectors. The parton distribution functions (PDFs) which we denote by
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fq,A(x) give the probability that a parton of type q has a fraction x of the total hadron

four momentum. The dependence of fq,A(x) on the mass factorization scale Q = M

is implicit. For the case of the LHC (discussed in the next chapter) A = B = p, and

one must note that quite generally that fq,A = fq̄,Ā and fq̄,A = fq,Ā. The Drell-Yan

K factor is as discussed in detail in Refs. [199, 200, 201]. The invariant di-lepton

differential cross section is at NLO

dσAB

dM
= K

2M

s

∑

q

σqq̄

(
M2
)
W{AB(qq̄)}(τ), (7.18)

where the partonic cross section, σqq̄, is defined by integrating the term in square

brackets of Eq. (7.16) over the variable z and is computed in Ref. [169]. While

dσ/dM is sensitive to the interference term, the integral over dM is not. The full

partonic cross section through the σ(Z, Z ′, γ) in the massless quark limit is

3Ncσqq̄ =
4πα2Q2

q

M2
− 2
√

2αQq
GFM2

Z(M2 −M2
Z)vevq

((M2 −M2
Z)2 + Γ2

ZM2
Z)

+
G2

FM4
ZM2(v2

e + a2
e)(v

2
q + a2

q)

2π((M2 −M2
Z)2 + Γ2

ZM2
Z)

−2
√

2αQq

GF M2
Z(M2 −M2

Z′)v′
ev

′
q

((M2 −M2
Z′)2 + Γ2

Z′M2
Z′)

+
G2

F M4
ZM2(v

′2
e + a

′2
e )(v

′2
q + a

′2
q )

2π((M2 −M2
Z′)2 + Γ2

Z′M2
Z′)

+
G2

FM4
ZM2(M2 −M2

Z)(M2 −M2
Z′)(vqv′

q + aqa′
q)(vev′

e + aea′
e)

π((M2 −M2
Z)2 + Γ2

ZM2
Z)((M2 −M2

Z′)2 + Γ2
Z′M2

Z′)
. (7.19)

In Fig.(7.2) we give an analysis of the Drell-Yan cross section for the process

pp̄ → Z ′ → l+l− as a function of MZ′ . The analysis is done at
√

s = 1.96 TeV, using

the CTEQ5L [202] PDFs with a flat K factor of 1.3 for the appropriate comparisons

with other models and with the CDF [203] and DØ [204] combined data in the di-

lepton channel. Remarkably one finds that the Stueckelberg Z ′ for the case ε ≈ 0.06

is constrained up to about 375 GeV with the current data (at 95% C.L.) using the

e+e− +γγ channel. This lower limit decreases as ε decreases but the current data still

constrain the model up to ε ≈ 0.035. This result is in contrast to the LR, E6, and
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Figure 7.2: (Left): Constraint on the Z ′ signal in the StSM using the CDF [203] and DØ
[204] data (see Fig.(9.3) for an updated comparison of the 2 modes). The data puts a lower
limit of about 250 GeV on MZ′ for ε ≈ 0.035 and 375 GeV for ε ≈ 0.06. (Right): Z ′ signal in
StSM with 8 fb−1 of data using an extrapolation of the sensitivity of the DØ [204] detector
for the µ+µ− and e+e− + γγ modes. The data will put a lower limit of about 600 (300)
GeV on MZ′ mass for ε = 0.06(0.02). Also plotted for comparison is σ · Br(G → l+l−) for
the RS case. (From [170].)

to the little Higgs models and other models of wider resonances [205] where the Z ′

boson has already been eliminated up to (610−815) GeV with the CDF [203] and DØ

[204] data. Applying this constraint in this channel is a stronger constraint to place

on the model then just using the e+e− channel, however probing narrow resonances

using both channels are indeed complimentary [206]. We will see shortly that the the

stronger constraint imposed is consistent with the more recent e+e− limits.

We also give an analysis of the discovery limit for the Stueckelberg Z ′ with an

integrated luminosity of 8 fb−1. Here we have extrapolated the experimental sensi-

tivity curves for the µ+µ− and for the more sensitive e+e− + γγ channel downwards

by a factor of 1/
√

N where N is the ratio of the expected integrated luminosity to

the current integrated luminosity. The analysis shows that a Stueckelberg Z ′ can be
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Figure 7.3: (Left) Constraint plots in the ε − MZ′ plane utilizing the data from [204]
e+e− + γγ mode with (a) the 246-275 pb−1 of data, and (b) 8 fb−1 of data where an
extrapolation of the sensitivity curve is used. The upper dashed curve is the maximum
value of ε allowed by Eq. (6) and the lower dashed curve corresponds to |∆Pull| < 1. Cases
with (without) a hidden sector are shown. Regions II, III, IV, and V are constrained by
the conditions given at their respective boundaries. (From [170].)

discovered up to a mass of about 600 GeV and if no effect is seen one can put a lower

limit on the Z ′ mass at about 600 GeV. In Fig.(7.3) we give the constraint plot in the

ε−MZ′ plane. An analysis including hidden sector with ΓHS = ΓVS is also exhibited.

The constraint plots show that even the hidden sector is beginning to be constrained

and these constraints will become even more severe with future data. It is interesting

to note that there is a region of the parameter space where a Stueckelberg Z ′ boson

may be mistaken for a narrow resonance of a Randall-Sundrum (RS)[207] warped

geometry 1 (the RS model will be discussed in more detail in the next chapter). The

overlap of σ · Br(Z ′ → l+l−) and σ · Br(G → l+l−) for the RS graviton is shown in

Fig.(7.2) for the case k/MPl = 0.01 where MPl = MPl/
√

8π is the reduced Planck

mass. However, the constraints from precision electroweak data actually eliminate the

1This is now known as RS-1 in the literature.
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RS graviton in this case [208, 204]. Thus if a resonance effect is seen in the di-lepton

mass range of up to about 600 GeV in the CDF and D0 data at the predicted level,

the Stueckelberg Z ′ would be a prime candidate since the RS graviton possibility is

absent in this case.

7.1.2 Further Constraints from CDF and DØ Data

The Cu − Cd parametrization was defined in Ref. [201] and it allows one to use

experimental limits set on the di-lepton final state production cross section without

making reference to the PDFs; the couplings of a particular model are needed only,

if the experimental limits are known. The relation between Cu and Cd is

Cu

Cd
=

(v′2
u + a′2

u )

(v′2
d + a′2

d )
∼ Br(Z ′ → uū)

Br(Z ′ → dd̄)
. (7.20)

where

Cq = 2g2
MBr(Z ′ → l+l−)(a′2

q + v′2
q ), q = u, d (7.21)

and where g2
M =

√
2GFM2

Z . Although C(u,d) are functions of ε for the StSM, the ratio

(in the massless quark limit) is in fact independent of ε. In Fig.(7.4) the Cu,d plane is

shown. For the StSM, in the Cu−Cd plane the values of Cu and Cd lie inside a band.

The band structure for StSM arises since the ratio Cu/Cd as given by Eq. (7.20)

lies in the range 2.49 ∼ 3.37 for MZ′ lying in the range 200 ∼ 900 GeV. Similarly,

the Cu and Cd predicted in the q + xu model [201] also lie in a band, while the Cu

and Cd for the B − xL model [201] live on a line. In Fig. (7.4) we give a numerical

evaluation of the Cu and Cd using the recent CDF data of 819 pb−1 in the di-lepton

channel [209]. The light straight line corresponds to Cu and Cd in the B − xL model

where Cu = Cd (see [201]). The area between the two black straight lines is the

region where the q +xu model lies and where (3−2
√

2)Cd < Cu < (3+2
√

2)Cd. The
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Figure 7.4: Constrained regions in the Cu − Cd plane from the current 95% C.L. limit
for σ · Br(Z ′ → l+l−) given in [209] at 819 pb−1 for different Z ′ masses, labeled as M in
the figure. The shaded green band is the region where the StSM model lies and where
2.49Cd < Cu < 3.37Cd. Note, no constraint on ε has been applied here, the LEP comstraint
is a stronger constraint than the Tevatron Data at larger Z prime mass (see Fig.(7.3)).
(From [171].)

10 + x5̄ model is constrained below the dashed red line which corresponds Cu = 2Cd.

These constraints given in the Cu,d plane are consistent with the constraints derived

using a smaller data sample of approximately 275 pb−1 which, however, uses the more

sensitive DØ mode [204] already discussed. In addition to the above, one also has

constraints on the parameter space from the non-observation of the Z ′ from the CDF

and DØ data [209, 204, 203, 210]. These constraints were shown to limit values of

(ε, MZ′) in [170], and discussed here, while still allowing for the possibility of a narrow

StSM Z ′ which could even lie relatively close to the Z-pole. The constraints provided

at large mass in Fig.(7.4), for the StSM, correspond to ε values already eliminated by

LEP constraints (see Fig.(7.3)).

The type of Z ′ boson that arises from the mixing of the Standard Model with the

Stueckelberg sector is very different from the Z ′ bosons that normally arise in grand
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unified models and in previous stringy models such or in the early analyses of Kaluza-

Klein excitations of the Z with compactifications of large extra dimensions. The

distinguishing features are that the decay width in the present case is exceptionally

narrow with width ≤ 100 MeV for MZ′ ≤ 1 TeV as well as its hypercharged enhanced

couplings leading to a rather distinct set of branching fractions when compared to

the classic Z prime models. The branchings are indeed highly leptonic due to the

hypercharge enhanced couplings.

Recently the CDF and DØ collaborations have published new data sets with as

much as 2.5 fb−1 [211] of data, which is about a factor of 6 larger than when the anal-

ysis on narrow resonances at the Tevatron was given [170] showing that a Z prime

from the Stueckelberg extensions [167, 170] produces a viable candidate for Z prime

resonance at the 200 GeV range (240 GeV?). Now, given that the experiments at

Fermilab will most likely not see a Z prime signal for any model with a Z prime mass

beyond around 800 GeV, it becomes imperative to study models which accommodate

narrow resonances at mass scales where the Tevatron is more sensitive. Similar phe-

nomena regarding narrow resonances, such as that which has been discussed here,

are seen in other classes of models such as those based on universal extra dimensions

[212], models with a shadow sector [193, 192], and in the models considered in Ref.

[213]. Other recent interesting classes of Z prime models include [214],[215],[216].

While E6 or a LR model may be realized in nature, the Z primes produced in these

models which are currently discussed in the experimental works will likely not be seen

at Fermilab.
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Chapter 8

Narrow Resonances at the LHC

Analyzed here is the capability of the LHC to detect narrow resonances using high

luminosities and techniques for discriminating among models are given. The analysis

is carried out with focus on Stueckelberg extension of the Standard Model (StSM)

which naturally leads to a very narrow Z ′ resonance. Comparison is made to another

class of models based on the warped geometry which also lead to a narrow resonance

via a massive graviton (G). Methods of distinguishing the StSM Z ′ from the massive

graviton at the LHC are analyzed using the di-lepton final state in the Drell-Yan

process pp → Z ′ → l+l− and pp → G → l+l−. It is shown that the signature

spaces in the σpp ·Br(l+l−)-resonance mass plane for the Z prime and for the massive

graviton are distinct. Angular distributions in the di-lepton C-M system are also

analyzed. It is shown that these distributions lie high above the background and are

distinguishable from each other. A remarkable result that emerges from the analysis

is the observation that the StSM model with Z ′ widths even in the MeV and sub-

MeV range for Z ′ masses extending in the TeV region can produce detectable cross

section signals in the di-lepton channel in the Drell-Yan process with luminosities

accessible at the LHC. Here the result is derived within the specific StSM class of
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models, however, the capability of the LHC to probe models with narrow resonances

in this range may hold more generally.

8.1 LHC Observables and Constraints on the StSM

Parameter Space

A relevant quantity that may be measured at the LHC is σpp · Br(X → l+l−) ≡

σ · Br(X → l+l−) in the process pp → X → l+l− where X is a neutral resonant

state produced in pp collisions which can decay into a lepton pair. Here we give a

theoretical analysis of this quantity for the case when X = Z ′, and in the next section

we will consider the case when X = G, the spin 2 graviton of a warped geometry.

In the analysis of σ · Br(Z ′ → l+l−) we will discuss two regions: a low mass region

with the di-lepton invariant mass Mll̄ up to 800 GeV and a high mass region with

Mll̄ extending from 800 GeV up to the maximum relevant mass reach of the LHC.

The reason for this ordering is as follows: the region with Mll̄ up to 800 GeV has

already begun to be explored at the Tevatron using up to about 2 fb−1 of data, and

the CDF and DØ data puts constraints on ε as a function of the di-lepton invariant

mass. Thus in the analysis of the low mass Mll̄ region at the LHC we can incorporate

these constraints. However, one has no direct constraints in the di-lepton invariant

mass region above 800 GeV, which explains the separate analyses of σ ·Br(Z ′ → l+l−)

for the low and high mass regions.

We begin with an analysis of σ · Br(Z ′ → l+l−) in the low mass region where we

use the constraints on (ε, MZ′) as obtained in Ref. [170] using the cross section limits

from [204]. The results are displayed in Fig. (8.1). As expected one finds that the

current data on σ · Br(Z ′ → l+l−) constrains only the mass region of Z ′ for values

MZ′ ! 350 GeV. We note that for ε as high as ≈ .04 one may have an StSM Z ′ as
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Figure 8.1: (a) The production cross section σ · Br(Z ′ → l+l−) [pb] in the StSM at the
LHC in the low mass region with the inclusion of the LEP and Tevatron constraints. The
curves in descending order correspond to values of ε from .06 to .01 in steps of .01. (b)
The production cross section σ · Br(Z ′ → l+l−) [fb] for the StSM at the LHC in the Z ′

high mass region up to Z ′ mass of ≈ 3.5 TeV. The curves correspond to values of ε ranging
from .06 to .01 in descending order in steps of .01. The StSM production cross sections sit
several orders of magnitude below those of other Z ′ models. (From [171].)

low as 175 GeV, while with a Z ′ mass of 250 GeV, ε may be as high as ≈ .035 within

the current experimental limits. Next we discuss the high mass region for the StSM

Z ′. As discussed above the high mass region of StSM Z ′ remains unconstrained by

the CDF and DØ data, and thus in this region only the LEP electroweak constraints

apply. The analysis of Fig. (8.1) gives a plot of σ · Br(Z ′ → l+l−) as a function

of MZ′ in the high mass region for values of ε ranging from .01 to .06 in ascending

order in steps of .01. From Fig. (8.1) and from the analysis of Refs. [217, 218] for

other Z ′ models one infers that the production cross section for StSM Z ′ lies orders

of magnitude below those for the Z ′ production in E6 models and other Z ′ models.

The size of σ ·Br(Z ′ → l+l−) thus provides a clear signature which differentiates the

StSM Z ′ model from other Z ′ models.
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8.1.1 Signal to Background Ratio
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Figure 8.2: (a)The mass window or bin size as a function of the mass scale for the ATLAS
and CMS detectors. (b) The ratio σ ·Br(Z ′ → l+l−)StSM/σSM (Z, γ → l+l−) including the
γ − Z interference term in the SM as a function of the Z ′ mass for the ATLAS and CMS
detectors assuming for values of ε in the range .03-.06. The signal to background ratio is
larger for the CMS detector at low mass scales while it is larger for the ATLAS detector at
large mass scales with a cross over occurring at around 1 TeV. (From [171].)

The di-lepton channel will be analyzed at the LHC in the ATLAS [219] and CMS

[220] detectors, and as is discussed below, both detectors have the ability to probe the

narrow StSM Z ′ boson. Experimentally, the discovery of a narrow resonance depends

to a significant degree on the bin size for data collection with the chance of detection

increasing with a decreasing bin size. This is so because the integral over the bin is

effectively independent of the bin size for the signal (assuming the narrow resonance

falls within the bin). However, this integral is essentially linearly dependent on the bin

size for the SM background. In this particular analysis of the SM background we have

included the Z, γ, and γ − Z interference terms in the Drell-Yan analysis, but have

not included the backgrounds from other sources such as from tt̄, bb̄, WW, WZ, ZZ

etc. However, these backgrounds are known to be at best a few percent of the Drell-
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Yan background [221] in the channel of interest under standard cuts for this mode.

Regarding the bin size, it depends on the energy resolution σE/E of the calorimeter.

For an electromagnetic calorimeter the energy resolution is typically parametrized by

σE/E = a/
√

E ⊕ b ⊕ c/E where addition in quadrature is implied[222]. The term

proportional to 1/
√

E is the so called stochastic term and arises from statistic related

fluctuations. The term b is due to detector non-uniformity and calibration errors,

and the term c is due mostly to noise. For the ATLAS detector (liquid Ar/Pb) the

energy resolution is parametrized by [222] σE = 10%/
√

E ⊕ .4% ⊕ .3/E and for the

CMS detector (PbWO4) it is parametrized by σE = 3%/
√

E ⊕ .5%⊕ .2/E where E

is in units of GeV. From the above we find the following relations for the bin size B

(taken to be 6σE) at the mass scale M (M is measured in units of TeV) [171] 1

BATLAS = 24(.625M + M2 + .0056)1/2GeV

BCMS = 30(.036M + M2 + .0016)1/2GeV. (8.1)

For M > 3 TeV, the M2 term dominates in Eq.(8.1) and the bin size goes linearly in

M , so BATLAS ∼ 24M GeV and BCMS ∼ 30M GeV for large M . A plot of bin sizes

as a function of the mass scale is given in Fig.(8.2) for the two LHC detectors. One

finds that at low mass scales the CMS has a somewhat better energy resolution and

thus a somewhat smaller bin sizes and at large mass scales ATLAS has a somewhat

better energy resolution and thus a somewhat smaller bin size with a cross over at

M ∼ 1 TeV. However, on the whole the energy resolution and the bin size of the two

detectors are comparable within about 10%. For the StSM Z ′ the analysis of Fig.

(8.2) shows that the signal to background is greater than unity in significant parts

of the parameter space, and in some cases greater than 4, thus illustrating that the

1We note in passing that this formula appeared later in Ref. [223]
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LHC has the ability to detect a strong signal for a StSM Z ′.

8.1.2 How Narrow a Width Can LHC Probe?

In Fig. (8.3) we give the discovery reach for finding the StSM Z ′ for different decay

widths as a function of the Z ′ mass, with various values of ε for integrated luminosities

in the range 10 fb−1 to 1000 fb−1. The criterion used for the discovery limit in the

analysis given here is an assumption that 5
√

NSM events or 10 events, whichever is

larger, constitutes a signal where NSM is the SM background, and we have scaled

the bin size with MZ′ appropriate for the ATLAS detector with a conservative lower

limit of 20 GeV below 0.5 TeV. In this part of the analysis we have assumed that

detector effects can lead to signal and background losses of 50 percent (see Section

(8.2.2)). If better efficiency and acceptance cuts are available, the discovery reach of

the LHC for finding a Z ′ will be even higher than what we have displayed. With an

assumption of efficiencies as stated above, here one finds that the LHC can probe a

100 MeV Z ′ up to about 2.75 TeV and a 10 MeV width up to a Z ′ mass of about 1.5

TeV. A more detailed exhibition of the capability of the LHC to probe the StSM Z ′

model is given in the right panel of Fig. (8.3). Here one finds that the StSM model

with a Z ′ width even in the MeV and sub-MeV range will produce a detectable signal

in the di-lepton channel in the Drell-Yan process with luminosities accessible at the

LHC. While the analysis above is for the specific StSM model, the general features of

this analysis may hold for a wider class of models which support narrow resonances.

In terms of ε, with 100 fb−1 of integrated luminosity, one can explore a Z ′ up to

about 2 TeV with ε = 0.06, and this limit can be pushed to ≈ 3 TeV with 1000 fb−1 of

integrated luminosity. Further, one finds that for 1000 fb−1 of integrated luminosity,

one can explore a Z ′ up to about 2 TeV for ε as low as ! 0.02 [171].

In Fig. (8.4) we give a comparison of the LHC’s ability to probe the narrow StSM
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Figure 8.3: (Left) Discovery limits of Z ′ translated into the decay width of the Z ′ in
StSM with the discovery limit defined by 5

√
NSM or by 10 events, whichever is larger. The

inflections, or kinks, in the plots are precisely the points of transitions between the two
criteria. Regions to the left and above each curve can be probed by the LHC at a given
luminosity. The top point on each curve corresponds to ε = .061. The analysis is done for
the ATLAS detector but similar results hold for the CMS detector. (Right) A plot of the
discovery reach of the LHC for small StSM Z ′ widths. The allowed regions are to the right
and below each curve for a given luminosity. (From [171].)

Z ′ relative to other Z ′ models [224, 225] to address the question of how the StSM

Z ′ “stacks up” to these models. In order to make the appropriate comparisons of

the discovery limits for the StSM with the other Z prime models we do not impose

detector cuts on the StSM Z ′ limits displayed in Fig. (8.4), since such cuts were not

imposed for the discovery limits of other Z ′ models shown in Fig. (8.4). The analysis

of Fig. (8.4) shows that the StSM Z ′, even with its exceptionally narrow width, may

be probed on scales comparable with models that have resonance widths of the order

of several GeV or higher.
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Z ′ models at the LHC. The length of the bars indicate integrated luminosities of 10 fb−1
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[224, 225]. The analysis indicates that the Z ′ of StSM can be probed up to ≈ 3.5 TeV at the
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8.2 StSM and Massive Graviton at the LHC

As discussed above one finds that the Stueckelberg Z ′ boson is a very narrow resonance

which sets it apart from other Z ′ models. However, there is another class of models,

i.e., models based on warped geometry [207, 226] (labeled RS models), which can

mimic the Stueckelberg Z ′ in a certain part of the parameter space as far as the

narrowness of the resonance is concerned. It was shown in the analysis of Ref. [170]

that the signature spaces for these two models lie close to each other in certain regions

of their respective parameter spaces, but the models are still distinguishable in the

di-lepton mass region accessible at the Tevatron. Here we extend the analysis of their

relative signatures to the LHC energies. The geometry of RS models is a slice of

AdS5 described by the metric ds2 =exp(−2krc|φ|)ηµνdxµdxν − r2
cdφ

2, 0 ≤ φ ≤ π,
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where rc is the radius of the extra dimension and k is the curvature of AdS5, which

is taken to be the order of the Planck scale. We work in the regime where the

SM particles are confined to the TeV scale Brane, while gravity is propagating in

the bulk [207, 208]. The effective scale that enters in the electroweak region is the

scale Λπ = MPlexp(−krcπ), and for reasons of naturalness it is typically constrained

by the condition Λπ < 10 TeV. Values of k/MPl over a wide range 10−5 − .1 have

been considered in the literature [227]. However, the range below .01 appears to be

eliminated from the electroweak constraints. In this analysis we consider the lightest

massive graviton mode .

8.2.1 Massive Graviton of Warped Geometry

We consider the process pp→ G→ f f̄ for the first massive graviton mode in the RS

model. The partonic production cross section for this mode receives contributions

both from quarks and gluons, and is given by [228, 229, 230, 231, 232]

dσG
qq̄

dz
+

dσG
gg

dz
=

1

2

κ4M6

320π2
[∆qq̄(z) + ∆gg(z)]

1

(M2 −M2
G)2 + M2Γ2

G

. (8.2)

The total decay width that enters above is given by the sum of the partial widths

which are [228, 233, 230]

Γ(G → V V̄ ) = δ
κ2M3

G

80π
(1− 4δV )1/2

(
13

12
+

14

3
δV + 4δ2V

)
θ(MG − 2MV ) (8.3)

Γ(G → f f̄) = N c
f

κ2M3
G

320π
(1− 4δf )

3/2(1 +
8

3
δf )θ(MG − 2mf ) (8.4)

Γ(G → gg) =
κ2M3

G

20π
(8.5)

Γ(G → γγ) =
κ2M3

G

160π
. (8.6)
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Here δf = m2
f/M

2
G, δV = M2

V /M2
G, and δ = (1/2, 1) for (V = W, Z). For the first

massive mode, κ is given by [233, 230, 231]

κ =
√

2
x1

mG

k

MP l

(8.7)

where x1 = 3.8317 is the first root of the Bessel function of order 1, and MP l is

the reduced Planck mass in four dimensions (MPl = MPl/
√

8π). The leading order

angular dependence is given in terms of [230, 231, 232]

∆qq̄(z) =
π

8Nc

5

8
(1− 3z2 + 4z4), ∆gg(z) =

π

2(N2
c − 1)

5

8
(1− z4). (8.8)

In the narrow width approximation we have to NLO

dσG
pp

dz
= KG(M2

G)
1

2s

κ4M6
G

320π2

π

MGΓG
× (8.9)

[
∑

q

∆qq̄(z)W{pp(qq̄)}(s, M
2
G) + ∆gg(z)W{pp(gg)}(s, M

2
G)

]

where Wpp(qq̄) is defined in Section 6 and Wpp(gg) is defined by

W{pp(gg)}(τ) =

∫ 1

0

∫ 1

0

dxdyδ(τ − xy)fg,p(x)fg,p(y), (8.10)

and the more strongly mass dependant RS K factor (KG = KG(M2
G)) is discussed

in detail in Refs. [232]. The production cross section including the quark and gluon

contributions is in the narrow width approximation given by

σ · Br(G → l+l−) = KG(M2
G)

1

s

κ4M6
G

15360

1

MGΓG

∑

q

W{pp(qq̄)}(s, M
2
G) (8.11)

+KG(M2
G)

1

s

κ4M6
G

10240

1

MGΓG
W{pp(gg)}(s, M

2
G).
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8.2.2 Signature Spaces of StSM Z ′ and of the Graviton

A relative comparison of the StSM and of the RS model is given in Table (8.1)

where the decay width of the Stueckelberg Z ′ boson for the case ε = 0.06 is given

as a function of the Z ′ mass in the range (1000-3000) GeV, and the corresponding

σ · Br(G → l+l−) is exhibited. Also shown are the decay widths for an RS graviton

in the same mass range for k/MPl = 0.01.

(MZ′ , MG) ΓZ′ (GeV) ΓG (GeV) σZ′ · Br (fb) σG · Br (fb)
1000 0.058 0.141 4.29 9.98
1250 0.073 0.176 1.72 3.11
1500 0.087 0.212 0.779 1.15
1750 0.102 0.247 0.384 0.475
2000 0.117 0.283 0.200 0.215
2250 0.131 0.318 0.109 0.104
2500 0.146 0.354 0.061 0.053
2750 0.160 0.389 0.035 0.028
3000 0.175 0.425 0.021 0.015

Table 8.1: A comparison of the narrow resonance widths and σ · Br(l+l−) in StSM for
ε = .06 and in the RS warped geometry with k/MPl = .01 as a function of the resonance
mass in GeV. (From [171].)

Quite remarkably, the spin 1 Z ′ of the StSM and the spin 2 massive graviton of

the RS model have nearly identical signatures in terms of the decay widths and the

production cross sections around a resonance mass of 2 TeV (with or without out

detector cuts). In Table (8.2) we give an analysis of the number of events that can

be observed in the ATLAS detector with 100 fb−1 of integrated luminosity. One finds

that for high masses the number of events that one expects to see at the LHC for the

StSM Z ′, with ε = 0.06, are similar to the number of events one expects for the RS

model for k/MPl = 0.01. For the case of the RS model, simulations conducted by Ref.

[233] show that overall detector losses range from (27-38) percent between (500-2200)

GeV, and we have extrapolated these cuts to the 3 TeV mass region. For the case of
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(MZ′ , MG) Bin (GeV) NSM NS = (NSt, NRS) Nmin
S

1000 30.65 54.45 (214.33,716.96) 36.90
1250 36.79 20.95 (85.90,216.96) 22.89
1500 42.89 9.22 (38.94,77.73) 15.18
1750 48.96 4.44 (19.18,31.30) 10.53
2000 55.02 2.27 (10.01,13.72) 10
2250 61.07 1.22 (5.46,6.41) 10
2500 67.11 0.68 (3.07,3.15) 10
2750 73.14 0.39 (1.77,1.60) 10
3000 79.17 0.22 (1.04,0.84) 10

Table 8.2: A comparison of the signal events with integrated luminosity of L = 100 fb−1 in
the StSM for the case ε = .06 with the signal in the RS warped geometry for k/MP l = .01
including ATLAS detector effects as a function of the resonance mass in GeV. Acceptance(A)
and efficiency(ε) for the RS case is as in Ref. [233], while for the StSM we use the spin 1
detector losses given in Ref. [234]≈ 50 % as discussed in the text. For X = (Z ′, G) of Table(
8.1), NS = (σ · Br)εAL, NB = NSM (background integrated over the bin), Nmin

S = 5
√

NB

or 10, whichever is larger. The minimum signal cross section is (σ ·Br)min = (εAL)−1Nmin
S

for each model.(From [171].)

Z ′, which has a different angular dependency than the graviton due to spin, we have

assumed a uniform 50 percent loss of events at in the range of Z ′ mass investigated.

This reduction factor is consistent with the reduction factor used by Ref. [234], and

is similar to the reduction factor used by other groups [235]. For the SM background,

denoted as NB = NSM , the same detector loss is assumed, and it can be seen in Table

(8.2) that this simulation is in good agreement with the analysis of Ref. [233]. Of

course a slightly more realistic analysis of the number of events that may be observed

requires simulating detector efficiencies more accurately [236, 237, 238, 221, 234].

In Fig. (8.5) (left panel) we give a comparison of the signature spaces for the

decay of the StSM Z ′ and of the RS graviton in the warped geometry model using

the decay width-resonance mass plane. The allowed regions (shaded) for the two

models are exhibited, where the unshaded regions correspond to constrained regions

of the parameter spaces of the two models. One finds that although there is a region
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of the parameter space of the RS model where the decay widths can be narrow, the

region of potential overlap with the StSM is avoided if one includes the constrains of

the oblique parameters [239, 240]. Fig. (8.5) (right panel) gives a more direct method

for differentiating the two classes of models. Here one has plots of σ ·Br(Z ′ → l+l−)

and σ ·Br(G → l+l−) as a function of the resonance mass. One finds that the allowed

regions of the signature space of the two models consistent with the parameter space

constraints provides a clear differentiation between these two classes of models. Thus

Fig. (8.5) provides an important tool for establishing the nature of the resonance

once a narrow resonance is discovered. For example, the σ · Br(Z ′ → l+l−) is an

order of magnitude or more smaller than σ ·Br(G→ l+l−) over most of the di-lepton

invariant mass that will be probed by the Drell-Yan process at the LHC.
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Figure 8.5: A comparison of the allowed region in resonance decay width - resonance
mass plane and in the σ · Br(l+l−) plane for the (Z ′) in the StSM and the first graviton
mode (G) in the RS model. The dashed line is for the RS case with k/MP l = .01. The
allowed (shaded) regions are constructed by utilizing the constrained parameter spaces of
StSM [170] and the RS model [208, 241, 204].(From [171].)
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8.2.3 Angular Distributions from pp → (Z ′, G)→ l+l−

Angular distributions in the C-M frame of the final di-lepton state give clear signa-

tures of the spin of the produced particle in the Drell-Yan process (for recent works

see, for example, Refs.[242, 243]). Thus angular distributions are a powerful tool in

distinguishing the StSM Z ′, a spin 1 particle, from the massive graviton of warped

geometry, a spin 2 particle. The CDF group has already carried out angular distri-

bution analyses [210] using the cumulative data at the Tevatron and more detailed

analyses are likely to follow. Similar analyses at the LHC would allow one to investi-

gate the spin of an observed resonance with much more data. In the following we give

a relative comparison of the angular distributions arising from the StSM Z ′ and from

the massive graviton of warped geometry. The comparison of the angular distribution

in the di-lepton channel arising from the StSM Z ′ and the massive graviton of warped

geometry is given in Fig.(8.6) for a resonance mass of 2 TeV, the mass region where

an overlap between the two models can occur if the constraints on the RS model are

relaxed. The left graph in Fig. (8.6) gives the angular distributions arising for the

Z ′ exchange but without the Standard Model background, i.e., what is plotted is the

pure signal. Also plotted is the pure signal from the graviton exchange which consists

of contributions from the quarks and the gluons which are separately exhibited. In

the right panel of Fig. (8.6) the angular distributions arising for the StSM Z ′ and

for the massive graviton exchanges including the Standard Model background are

exhibited. The analysis shows that the signal plus the background lies significantly

higher than the SM background, and further the sum of the Z ′ signal and the SM

background is easily distinguishable from the sum of the massive graviton signal and

the SM background. The angular distributions for the graviton exchange are sensi-

tively dependent on the graviton mass, mainly due to the sensitivity of the PDF [202]

for the gluon on the mass scale. Thus the angular distributions for the graviton will
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change with the mass scale and change significantly. However, the angular distribu-

tions for the Z ′ and for the graviton will continue to be identifiably distinct and allow

one to distinguish between these two classes of narrow resonance models.
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Figure 8.6: An exhibition of the angular distribution dσ(pp → Z ′ → l+l−)/dz for the
StSM model and dσ(pp → G → l+l−)/dz for the RS model in the di-lepton center of mass
system. For the StSM, ε is taken at .06 and G is the first resonant mode of the RS model,
with (k/MPl) = .01 and the resonance mass is 2 TeV in each case. For the RS model the
parameter choice requires relaxing the oblique constraints and the constraint on Λπ.(From
[171].)

8.3 Summary

Here we have carried out an investigation of narrow resonances with specific focus

on two classes of models which have recently emerged where narrow resonances arise

quite naturally. The first of these are the U(1)X extensions of the Standard Model

gauge group where the extra gauge boson becomes massive via the Stueckelberg

mechanism. A narrow Z ′ naturally arises in these models. The second class of

models are those based on warped geometry which give rise to a narrow graviton

resonance for k/MPl ∼ .01. Here we investigated the capability of the LHC to
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discover narrow resonances specifically belonging to these classes of models and to

discriminate between them by examining their signature spaces. The analysis using

the di-lepton production in the Drell-Yan process via the Z ′ boson shows that one

will be able to explore a narrow Z ′ resonance of Stueckelberg origin up to about 2

TeV with 100 fb−1 of integrated luminosity and further up to 2.5 TeV with 300 fb−1

of integrated luminosity. With 1000 fb−1 of integrated luminosity one could even

explore a Stueckelberg Z ′ beyond 3 TeV.

We carried out a similar analysis for the di-lepton production in the warped ge-

ometry RS model which also has the potential of supporting a narrow resonance. It

is then interesting to ask how a Stueckelberg type narrow resonance could be dis-

tinguished from a narrow massive graviton of warped geometry. Indeed there is a

range of the parameter space where an overlap exists between the two models with

the width of the massive graviton of the warped geometry being similar to the width

of the Z ′ arising from the Stueckelberg model. We have shown that one of the clear

distinguishing features between them is σ · Br(l+l−) for di-lepton production in the

Drell-Yan process which proceeds through the interaction pp → Z ′ → l+l− for the

Stueckelberg model and via pp → G → l+l− for the case of the RS model. The anal-

ysis of Fig. (8.5) shows that for any resonance mass the signature spaces of the StSM

and of the RS model are distinct and one can discriminate between them using the

σ ·Br(l+l−) criterion. In addition, the angular distributions in the di-lepton center of

mass system provide a clear discrimination between the two models. Here one finds

that the angular distributions from the StSM Z ′ and from the massive graviton lie

well above the Standard Model background and further are distinctly dissimilar.

Some general features of the searches for narrow resonances were also discussed.

The bin size used in data collection has a direct bearing on the signal to background

ratio. The analysis presented here reveals the remarkable phenomenon that the mod-
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els considered here can be tested even when the resonance widths are small and the

resonance masses are large. Specifically one finds that the StSM model can produce

observable cross section signals with a Z ′ width lying in the MeV or even in the sub-

MeV range while the Z ′ mass may be in hundreds of GeV to TeV range. While the

result is presented for the specific case of StSM Z ′ model, similar considerations may

apply to a wider class of models which support a narrow resonance. The evidence for

a narrow resonance will be an important hint for an altogether new type of physics

beyond the Standard Model and possibly a hint of a string origin [171].
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Chapter 9

Dark Matter from the Hidden

Sector

The main focus of this Chapter is an extension of the class of models considered in

Refs. [167, 168, 169, 170, 171] by including kinetic mixing between the two Abelian

U(1) gauge fields [174]. Specifically we consider the extended electroweak sector with

the gauge groups SU(2)L×U(1)Y ×U(1)X where the Stueckelberg mechanism along

with the spontaneous breaking in the Higgs sector generates the vector boson mass,

and a mixing in the gauge kinetic energy of the U(1)X × U(1)Y sector is included.

Inclusion of the kinetic mixing in the Stueckelberg extension enhances significantly

the parameter space where new physics can exist consistent with the stringent LEP,

Tevatron, and WMAP constraints. This parameter space includes the possibility of

a narrow Z ′ resonance very distinct from the Z ′ of the conventional models. We also

show that in precisely the same region of the parameter space where the relic density

constraints are satisfied [174], the recent PAMELA and ATIC anomalies can be fit

due to an enhancement in the halo cross section from the Breit-Wigner pole [175].

135



9.1 Kinetic and Stueckelberg Mass Mixings

In this section we discuss the U(1)X Stueckelberg extension of the Standard Model

(SM) with gauge kinetic mixing (StkSM)[174]. In the gauge vector boson sector, the

effective Lagrangian is given by [174]

LStkSM = LSM + ∆L,

∆L - −1

4
CµνC

µν − δ
2
CµνB

µν − 1

2
(∂µσ + M1Cµ + M2Bµ)2 + gXJµ

XCµ.

Thus there is more generally both mass mixing (M1, M2) of the U(1) vector fields and

and kinetic mixing δ of the field strength tensors. The Lagrangian is invariant under

the U(1)X × U(1)Y gauge transformations

δBµ = ∂µλX , δCµ = 0, δσ = −M2λX

δBµ = 0, δCµ = ∂µλY , δσ = −M1λY . (9.1)

Consider first the kinetic part of the Lagrangian coupled to the SM. One has in the

neutral sector

Lδ = −1

4
CµνC

µν − 1

4
BµνB

µν − δ
2
BµνCµν − 1

4
A3

µνA
3µν = −1

4
VT

µνK̃Vµν (9.2)

where VT
µν = (C, B, A3)µν and where the matrix K̃ is given by

K̃ =





1 δ 0

δ 1 0

0 0 1



 , (9.3)
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Now to diagonalize the kinetic term one can introduce the matrix (which I will call

KO)

KO =





1 −Sδ 0

0 Cδ 0

0 0 1



 , Sδ = δ/
√

1− δ2 = δCδ . (9.4)

Under the transformation Vµν = KOE ′
µν one observes that (KO)T K̃(KO) = 13×3.

Adding the Stueckelberg mass mixing term, and after a rotation RTR = 1, with

E ′
µ = REµ (and for the field strength tensor which remains diagonal on the orthogonal

transformation R) we obtain

LMass = −1

2
ET (KOR)T M2

St(KOR)E , with ET = (Z ′, Z, Aγ) . (9.5)

The mass squared matrix is

M2 = (KO)T M2
StKO =





M2
1 M2

1 ε̄ 0

M2
1 ε̄ M2

1 ε̄
2 + v2

4 γ
2(1 + ε̄2) −v2

4 g2γ
√

1 + ε̄2

0 −v2

4 g2γ
√

1 + ε̄2 v2

4 g2
2




. (9.6)

This is precisely the St mass matrix previously studied, with the mass and kinetic

mixings entering through the single parameter

ε̄ =
ε− δ√
1− δ2

. (9.7)

That is, the above is the same matrix as M2
St with ε replaced by ε̄. However the cou-

pling gY which appears in the covariant derivative is now given by gY = γ
√

(1− δ2)(1 + ε̄2),

where as before gY is subject to the constraint 1/e2 = 1/g2
2 + 1/γ2. The interactions

in the diagonal basis are transformed through the same product B = KOR. Remark-

ably, the interactions of the Z and Z ′ with the visible sector matter fields depend
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on ε̄ and not another combination depending on δ. However the HS interactions do

depend sensitively on δ through the transformation of Cµ as we will discuss shortly.

It is useful before proceeding further to discuss the origin of milli charges in the

Stueckelberg models vs models which just kinetic mixing and 2 massless modes.

9.2 On the Origin of Milli-Charged Matter

In this subsection we illustrate the mechanism which generates the milli-charge in the

context of this work. We start with the kinetic mixing model [181] with two gauge

fields A1µ, A2µ corresponding to the gauge groups U(1) and U(1)′. We consider the

following simple Lagrangian L = L0 + L1 where

L0 = −1

4
F1µνF

µν
1 − 1

4
F2µνF

µν
2 − δ

2
F1µνF

µν
2 , L1 = J ′

µAµ
1 + JµA

µ
2 . (9.8)

To put the kinetic energy term in its canonical form, one may use the transformation

[
Aµ

1

Aµ
2

]

→ K0

[
A′µ

Aµ

]

, K0 =

[ 1√
1−δ2 0

−δ√
1−δ2 1

]

. (9.9)

However, the transformation that canonically diagonalizes the kinetic energy is not

unique. Thus, for example, K = K0R2 instead of K0 would do as well where R2 is

an orthogonal matrix

R2 =

[
cos θ − sin θ

sin θ cos θ

]
. (9.10)

Here L1 is given by

L1 = A′µ [cθCδJ
′
µ + (sθ − cθSδ)Jµ

]
+ Aµ
[
−sθCδJ

′
µ + (cθ + sθSδ) Jµ

]
. (9.11)
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In this case we see that each of the massless states interacts with the sources J and

J ′. However, one may choose θ to get asymmetric solutions. For instance for the case

θ = arctan
[
δ/
√

1− δ2
]

one has

L1 = Aµ

[
1√

1− δ2
Jµ −

δ√
1− δ2

J ′
µ

]
+ A′µJ ′

µ. (9.12)

In this case while A′ interacts only with the source J ′, A interacts with both J and

J ′, with the coupling to the source J ′ proportional to the kinetic mixing parameter

δ. We identify A with the physical photon field, J with the physical source arising

from quarks and leptons, while A′ is the orthogonal massless state, and J ′ is the

source in the hidden sector. Here the coupling of the photon with the hidden sector

is proportional to δ and thus the hidden sector is milli-charged if δ is small.

Next we consider a model with kinetic mixing where a Stueckelberg mechanism

generates a mass term of the type considered in Eq. (9.1)

LMass = −1

2
M2

1 A1µA
µ
1 −

1

2
M2

2 A2µA
µ
2 −M1M2A1µA

µ
2 . (9.13)

In this case diagonalizaton of the mass matrix fixes θ so that

θ = arctan

[
ε
√

1− δ2
1− δε

]
, (9.14)

and the interaction Lagrangian is given by

L1 =
1√

1− 2δε+ ε2

(
ε− δ√
1− δ2

Jµ +
1− δε√
1− δ2

J ′
µ

)
Aµ

M

+
1√

1− 2δε+ ε2
(
Jµ − εJ ′

µ

)
Aµ
γ . (9.15)

Here for the case ε = 0 one finds that the massless state, the photon Aµ
γ , no longer
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couples with the hidden sector, while the massive mode Aµ
M couples with both the

visible sector via J and with the hidden sector via J ′. We conclude, therefore, that

in the absence of the Stueckelberg mass mixing, for the case when only one mode is

massless, there are no milli-charged particles coupled to the photon field. Thus the

milli-charged couplings to the photon appear in this case only when the Stueckelberg

mixing parameter ε is introduced. Therefore for the case when only one mode is

massless the kinetic mixing by itself does not allow milli-charged couplings to the

photon but the Stueckelberg mass mixing model does.

9.3 Constraints from Electroweak Data

We discuss now the constraints on the StkSM model of Sec.(9.1) with both mass

mixing and kinetic mixing from the precision electroweak data. We start by assuming

that the hidden sector does not contain matter, and the case when matter is included

in the hidden sector is discussed in Sec.(9.4). To obtain the allowed range of ε and

δ, we follow the same approach as in Ref. [188, 170, 171], that is, the first constraint

comes from the comparison of the one sigma error in the prediction of the Z boson

mass in the Standard Model and a comparison of this result with experiment leads

to an error corridor, δMZ ∼ 37 MeV, where one can accommodate new physics.

However, the more stringent constraint comes from fits to the high precision LEP

data on the branching ratios of the Z decay and from the various asymmetries at the

Z pole, when one demands that the χ2 fits of StkSM are within 1% of that of the

Standard Model. We will refer to this as the LEPI 1% constraint in the rest of the

analysis. To investigate these implications on the precisely determined observables in

the electroweak sector, we follow closely the analysis of the LEP Working Group [191]

(see also Refs. [200, 244]), except that we will use the vector (vf ) and the axial vector
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(af ) couplings for the fermions in the StSM. The couplings of the Z to the fermions in

the StkSM are elevated from the tree level expressions of Eqs.(7.8, 7.9) (with ε→ ε̄) to

af →
√
ρfaf , and vf →

√
ρfvf , which contains Qf which is modified to Qf → κfQf .

Here ρf and κf (in general complex valued quantities) contain radiative corrections

from propagator self energies and flavor specific vertex corrections and are as defined

in Refs. [245, 191]. The decay of the Z boson into lepton anti-lepton and quark

anti-quark pairs (excluding the top) in the on-shell renormalization scheme is given

by [200, 245]

Γ(Z → f f̄) = N c
fRfΓo

√
1− 4µ2

f

[
|vf |2(1 + 2µ2

f) + |af |2(1− 4µ2
f)

]
, (9.16)

Rf =
(
1 + δQED

f

)(
1 +

N c
f − 1

2
δQCD
f

)
, (9.17)

δQED
f =

3α

4π
Q2

f , (9.18)

δQCD
f =

αs

π
+ 1.409

(αs

π

)2
− 12.77

(αs

π

)3
−Q2

f

ααs

4π2
. (9.19)

Here α and αs are taken at the MZ scale, while N c
f = (1, 3) for leptons and quarks.

In the above, Γo = GFM3
Z/6

√
2π, and µf = mf/MZ . The total decay width (ΓZ) of

the Z into quarks and leptons, in the visible sector, is just the sum over all the final

states. We also investigate the effects of mixing with the Stueckelberg sector on the

following Z pole observables

Rl =
Γ(had)

Γ(l+l−)
, Rq =

Γ(qq̄)

Γ(had)
(9.20)

σhad =
12πΓ(e+e−)Γ(had)

M2
ZΓ

2
Z

, (9.21)

Af =
2vfaf

v2
f + a2

f

, A(0,f)
FB =

3

4
AeAf . (9.22)
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Table 9.1: Fits to 19 Z pole observables. Column 2 is given by the PDG [222], while the
data in column 3 is from the SM Fit of the LEP EWWG [191]. The column labeled St Fit is
an analysis for the input ε = 0.06, δ = 0.03, and M1 = 200 GeV. In the last column PULL
is defined by (Experiment−FIT)/∆, and χ2 =

∑
PULL2. (From [174], see also [170, 171].)

Quantity Experiment ±∆ LEP FIT St FIT LEP PULL St PULL
ΓZ [GeV] 2.4952 ± 0.0023 2.4956 2.4956 -0.17 -0.17
σhad [nb] 41.541 ± 0.037 41.476 41.469 1.76 1.95

Re 20.804 ± 0.050 20.744 20.750 1.20 1.08
Rµ 20.785 ± 0.033 20.745 20.750 1.21 1.06
Rτ 20.764 ± 0.045 20.792 20.796 -0.62 -0.71
Rb 0.21643 ± 0.00072 0.21583 0.21576 0.83 0.93
Rc 0.1686 ± 0.0047 0.17225 0.17111 -0.78 -0.53

A(0,e)
FB 0.0145 ± 0.0025 0.01627 0.01633 -0.71 -0.73

A(0,µ)
FB 0.0169 ± 0.0013 0.01627 0.01633 0.48 0.44

A(0,τ)
FB 0.0188 ± 0.0017 0.01627 0.01633 1.49 1.45

A(0,b)
FB 0.0991 ± 0.0016 0.10324 0.10344 -2.59 -2.71

A(0,c)
FB 0.0708 ± 0.0035 0.07378 0.07394 -0.85 -0.90

A(0,s)
FB 0.098 ± 0.011 0.10335 0.10355 -0.49 -0.50
Ae 0.1515 ± 0.0019 0.1473 0.1476 2.21 2.05
Aµ 0.142 ± 0.015 0.1473 0.1476 -0.35 -0.37
Aτ 0.143 ± 0.004 0.1473 0.1476 -1.08 -1.15
Ab 0.923 ± 0.020 0.93462 0.93464 -0.58 -0.58
Ac 0.671 ± 0.027 0.66798 0.66812 0.11 0.11
As 0.895 ± 0.091 0.93569 0.93571 -0.45 -0.45

χ2 =25.0 χ2 =25.2

Using the above we have carried out a fit in the electroweak sector on the quanti-

ties sensitive to mixing with the Stueckelberg sector. A summary of the analysis is

presented in Table(9.1) for a specific point in the Stueckelberg parameter space with

ε = .06, δ = .03, and MZ′ ≈ M1 = 200 GeV. In the analysis we have taken into

account the constraint between gY and gSM
Y and the inclusion of this constraint im-

proves the electroweak fits over that of previous analyses for the case δ = 0 [170, 171].

Thus the analysis of Table(9.1) shows that in the StkSM one finds χ2 fits which are at

the same level as in the SM. An analysis of χ2 in the LEPI fits in the ε− δ parameter

space is given in Fig.(9.1). Specifically Fig.(9.1) shows that a large region of the pa-
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Figure 9.1: Left: An analysis of χ2 in StkSM model in the ε − δ plane. The center white
region is where χ2 of the StkSM model is within 1% of the SM fits. Along the line ε = δ the
Z ′ decouples and the model gives the same χ2 fit to data as in the SM Right: The plots give
an analysis of the LEPII constraint. The upper plot, which has a Z ′ mass range of .2 − 1
TeV, shows the relevant LEPII contact interaction parameter Λ±l

V V as a function of χ2 for
the 19 observable of Table(9.1), where a χ2 ∼ 25 is the SM fit as given in Table(9.1), and
where the (yellow,red) shaded regions correspond to Λ±l

V V = (21.7, 17.1) TeV [246]. The
lower plot for χ2 in the range (25-50) gives Λ±l

V V as a function of the Z prime mass. (From
[174].)

rameter space can satisfy the LEPI 1% constraint. A striking aspect of the analysis

of Fig.(9.1) is that this constraint is satisfied even though ε and δ can get significantly

large, as long as (ε − δ) is small. The physics of this apparent from the form of ε̄,

which governs the fit, as in the absence of matter in the hidden sector, there is only

one effective parameter, ε̄, that enters the analysis of electroweak physics. We discuss

next the LEPII constraints. These constraints are typically characterized by the pa-

rameter of contact interaction Λ, and the LEPII group finds that ΛV V > (21.7, 17.1)

TeV [246] to be the most constraining. The StkSM model predicts the theoretical

value of ΛV V through the following formula

ΛV V =
MZ′

MZ

√
4π√

2GF v′2
e

. (9.23)
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A numerical analysis of the LEPII constraints is given in Fig.(9.1). The analysis

of Fig.(9.1) exhibits that the LEPI 1% constraint is more stringent than the LEPII

constraint, and thus the LEPII constraint is automatically satisfied once the LEPI

1% constraint is satisfied. This result is supported by the analysis of Fig.(9.1) which

shows that the value of ΛV V predicted by the model in the parameter space consistent

with the LEPI 1% constraint is significantly larger than the lower limit of the LEPII

constraint. The blue points that enter the shaded regions are eliminated by the LEPII

constraint. However, these points also correspond to large χ2 fits to the LEPI analysis

and are eliminated by LEPI 1% constraint as well. Thus, for a narrow Z ′, the LEPI

1% constraint is stronger than the LEPII constraint.

9.4 Milli-charged DM from the Hidden Sector

In the previous section we did not include matter in the hidden sector which is

defined as matter which is neutral under the SM gauge group but carries U(1)X

quantum numbers and thus couples only to Cµ. The kinetic and mass mixings in the

U(1)X×U(1)Y sectors typically generate milli-charges for such matter. The conditions

for the origin of milli-charges arising from such mixings were discussed in Sec.(9.2),

where simple examples were worked out to explain how such charges appear 1. Here

we consider the milli-charged matter in the hidden sector within the context of the

Stueckelberg extension of the SM with both mass and kinetic mixing. If milli-charged

matter exists then both the Z and the Z ′ can decay into it if kinematically allowed to

do so. For the mass scales we investigate the milli-charge particle has a mass larger

than MZ/2. In this case all of the electroweak constraints discussed in the previous

1For a recent sample of experimental constraints on milli-charged dark matter see [247],[173] and
figure 1 of [248]; it suffices to point out, that consistent with the above works, our dark matter
candidate avoids constraints on milli-charged dark matter as its couplings are extra weak and its
mass is rather large in the several hundred GeV range.
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sections are unaffected. Further, the Z prime can decay into the milli-charged matter

if the mass of the hidden matter is less than MZ′/2. Such decays increase the Z ′ width

and thus decrease the branching ratios of the Z ′ decay into the visible sector which

depletes the di-lepton signal in the Drell-Yan process. A relatively strong di-lepton

signal manifests in the analysis of Refs. [169, 170, 171] where the Z ′ decays into the

hidden sector were taken to be comparable to the Z ′ decays into the visible sector,

i.e., Γhid
Z′ ∼ Γvis

Z′ . This constraint then leads to a sharp Z ′ resonance as discussed in

detail already.

The recent work of Ref. [173] has carried out an explicit analysis of putting a pair

of Dirac fermions in the hidden sector, and made the interesting observation that for

values gXQX ≤ O(1) the decay width of Z ′ into the hidden sector Dirac fermions (χ)

can be of GeV size, and consequently the hidden matter can annihilate in sufficient

amounts to satisfy relic density constraints. We have carried out a similar analysis

using the thermal averaging procedure in the computation of the relic density. Our

conclusions are in agreement with the analysis of Ref. [173] in the region of the

parameter space investigated in Ref. [173] when no kinetic mixing is assumed in the

absence of thermal averaging. In our work we take the kinetic mixing into account

in the analysis of the relic density. We also make a further observation that there

exists a significant region of the parameter space where it is possible to satisfy the

relic density constraints and still have a narrow Z ′ resonance which can be detected

at the Tevatron and at the LHC using the di-lepton signal via a Drell-Yan process.

We give now further details of our relic density analysis. The interaction between

the fermions of the SM and 3 Bosons are

LVS
int = f̄γµ

[
(CZ′

fL
PL + CZ′

fR
PR)Z ′

µ +
(
CZ

fL
PL + CZ

fR
PR

)
Zµ + eQfAµ

]
f, (9.24)
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where as before Q = T 3
L,R + YL,R/2, T 3

R = 0, with PL,R = 1
2(1 ∓ γ

5). For the Visible

Sector (VS) we have (Z1 = Z ′ and Z2 = Z and R diagonalizes M2)

CZi
fL

= T3L

[
g2R3i − γ

√
1 + ε̄2R2i

]
, CZ

fR
= Qγ

√
1 + ε̄2R2i. (9.25)

For the Hidden Sector (HS) we have

LHS
int = χ̄γµ

[
CZ′

χ Z ′
µ + CZ

χZµ + Cγ
χA

γ
µ

]
χ. (9.26)

The rotation matrix which diagonalizes M2 depends on one combination of ε and δ

through ε̄. One can use the parametrization of Eq.(7.3),that is, the rotation matrix

Rij(ε, M1)→ Ri,j(ε̄), where we remind that ε̄ = (ε− δ)(1− δ2)−1/2 with ε = M2/M1.

For the HS we have

Cγ
χ = gXQX

[
− cθsφ − Sδcθcφ

]

CZ
χ = gXQX

[
sψcφ + sθsφcψ − Sδ(sψsφ − sθcφcψ)

]

CZ′

χ = gXQX

[
cψcφ − sθsφsψ − Sδ(cψsφ + sθcφsψ)

]
, (9.27)

with Sδ = δ/
√

1− δ2 and the angles are a function of ε̄. The action given in [167,

168, 169] leads to an integrated cross section[173],

σff̄ 0
Nfs

32π

βf

βχ
[(|ξL|2 + |ξR|2) · F1 + Re(ξ∗LξR) · F2], (9.28)

where F1 = 1 + β2
χβ

2
f/3 + 4M2

χs
−1
(
1− 2m2

f/s
)
, and F2 = 8m2

fs
−1
(
1 + 2M2

χ/s
)
. Here

βf,χ = (1− 4m2
f,χ/s)

1/2, s = 4m2
χ/(1− v2/4) and ξL,R include the poles

ξL,R =
Cγ
χeQ

s
+

CZ
χCZ

fL,R

s−M2
Z + iΓZMZ

+
CZ′
χ CZ′

fL,R

s−M2
Z′ + iΓZ′MZ′

.
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Figure 9.2: An analysis of the relic density of milli-charged particles arising in the StSM
and StkSM for Mχ = 150 GeV. (From [174].)

The relic density may now be computed following the techniques outlined in [174].

The analysis of the relic density as a function of MZ′ for the case Mχ = 150 GeV, and

ε in the range (0.01−0.06), gX = gSM
Y and QX = 1 can be seen in Fig.(9.2)(left panel).

Here one finds that the relic density is satisfied on two branches, one for MZ′ > 2Mχ,

and the other for MZ′ < 2Mχ. The (yellow, grey) regions (MZ′ < 2Mχ, MZ′ >

2Mχ) correspond to a (narrow, broad) Z ′ resonance, and the WMAP-3 relic density

constraints are satisfied for both a broad Z ′ resonance and a narrow Z ′ resonance as

exhibited by the 2σWMAP-3 red and black bands. The region of narrow Z ′ resonance

is constrained by the LEP and Tevatron data. The region in the 2σ WMAP-3 band

can be probed via a di-lepton signal. The red band to the left is excluded by the CDF

95% C.L. [249] data while the black band is consistent or on the edge thereof, with

all constraints which can produce an observable di-lepton signal. In Fig.(9.2)(right

panel) an analysis is given of the relic density of milli-charged particles for the case

when kinetic mixing is included in the Stueckelberg Z ′ model. The analysis is done

for Mχ = 150 GeV, ε̄ = .04, and δ = (.05, .075, .10, .15, .20, .25), where the values are

in descending order for MZ′ > 300 GeV. The red and black bands are the WMAP-3
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Figure 9.3: σ · Br(Z ′ → l+l−) at the Tevatron consistent with the WMAP-3 relic density
constraint (shaded regions) as a function of MZ′ for Mχ = 150 GeV. (From [174].)

constraints where the black band also produces an observable di-lepton signal. The

analysis shows that for ε̄ fixed, increasing δ increases the parameter space where the

WMAP-3 relic density constraint is satisfied, while allowing for a detectable Z prime

signal. Thus An analysis of the di-lepton signal for this case is also given in shows that

the Drell-Yan signal pp̄ → Z ′ → e+e− is enormously enhanced for MZ′ < 2Mχ. Thus

we have a region here of the parameter space where one will have a sharp resonance

giving a visible di-lepton signal while at the same time producing milli-charge dark

matter consistent with WMAP-3. Specifically, Fig.(9.3)(left panel) exhibits the di-

lepton signal σ · Br(Z ′ → l+l−) at the Tevatron consistent with the WMAP-3 relic

density constraint as a function of MZ′ when 2Mχ = 300 GeV. The curves in ascending

order are for values of ε̄ in the range (0.01 − 0.06) in steps of 0.01. The di-lepton

signal has a dramatic fall as MZ′ crosses the point 2Mχ = 300 GeV where the Z ′

decay into the hidden sector fermions is kinematically allowed, widening enormously

the Z ′ decay width. The green shaded regions are where the WMAP-3 relic density

constraints are satisfied for the case when there is no kinetic mixing. Red and blue

regions are for the case when kinetic mixing is included. The DØ data set [204] and
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CDF [249] data sets are shown. Note that the two constraints are roughly equivalent

in terms of limiting the parameter space and are therefore indeed complimentary as

discussed previously. Fig.(9.3)(right panel) shows the region with a detectable di-

lepton signal at the Tevatron is exhibited but additional δ values are included in the

analysis. The plots show that the region allowed by WMAP-3 constraints moves to

the right for positive δ and to the left for negative δ. The inclusion of kinetic mixing

is seen to enlarge the parameter space where the relic density constraints are satisfied

and where an observable di-lepton signal at the Tevatron can occur.

An interesting issue concerns the question regarding how small ε̄ can be for

WMAP-3 relic density constraints to be satisfied. In the analysis of [174] satisfac-

tion of the relic density in for the case ε̄ = 10−4 was found and even smaller ε̄ were

found admissible, however this requires extreme fine tuning to satisfy the relic density

constraint. Further, while the di-lepton signal at the Tevatron in this case will be

suppressed, it could still be visible at the LHC with sufficient luminosity.

Finally, we note that within the context of the Stueckelberg model it is possible

to place indirect limits on the milli-charge coupling of hidden sector fermion with the

photon from the Tevatron data. An analysis of the limits on the Stueckelberg mixing

parameter ε was presented in [170] for the case δ = 0. For this case, the milli-charge

Qmilli, where Qmillie is the coupling of the photon with the hidden sector fermions is

determined to be: Qmilli ≈ ε. Thus one may directly translate the limits obtained in

[170] to limits on the milli-charged coupling of the hidden fermion with the photon.

In the context of the present analysis, the cross-section predictions given here, (as for

example, in Fig.(9.3)) with their overlapping WMAP-3 bands, shows this explicitly.
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9.5 PAMELA/ATIC & Breit-Wigner Enhancement

In the previous section we discussed how the Stueckelberg model satisfies the WMAP

data in the vicinity of the Z prime pole [174]. Here we show that in the same region

of parameter space where the relic density is satisifed, the presence of the pole i.e.

the Breit-Wigner, leads to the so-called Breit-Wigner Enhancement[251] of the Halo

cross section that can fit both the recent PAMELA[250]2 and ATIC[252]3 data.

It is well known that cosmic ray nuclei interact with interstellar gaseous matter

to produce positrons, however very recently PAMELA has reported a large excess of

positrons between the mass range 1.5 to 100 GeV, identifying nearly 10,000 postirons

in this mass range, which leads to a positron fraction well above the expectations

from secondary sources[250]. Such an excess has been previously observed in other

experiments (for example the HEAT and AMS experiments [253]) with very large

error bars, however the results reported by PAMELA have strengthed the previous

reports with a much more precise determination of the the positron fraction.

An analysis of this positron excess is given here in the framework of the Stueckel-

berg extension of the Standard Model which includes an extra U(1)X gauge field and

matter in the hidden sector. As we have already discussed, such matter can produce

the right amount of dark matter consistent with the WMAP constraints. Assuming

the hidden sector matter to be composed of Dirac fermions it is shown that their an-

nihilation can produce the positron excess with the right positron energy dependence

seen in the HEAT, AMS and the PAMELA experiments. It is also found that the

predictions of the p̄/p flux ratio can fit the data, and that the excess in cosmic ray

leptons seen in the ATIC data, with the largest excess reported at a mass ∼ 700 GeV,

can also be accommodated in this model.
2PAMELA ≡ Payload Anti-matter Matter Exploration and Light-Nuclei Astrophysics (satellite)
3ATIC ≡ Advanced Thin Ionization Calorimeter (balloon)
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A remarkable feature of the PAMELA positron spectrum is the turn around and

increase in the positron flux with positron energy in the range of 10-80 GeV. The

analysis of the positron spectrum depends both on the particle physics as well as

on the astrophysical models and these features have been discussed recently in some

detail in [254], [255, 256]. Recent works on fits to the data have been presented [257],

[251], [258] [ indeed the recent results from the PAMELA experiment have lead to

a surge of papers, a nearly complete list of papers (at the present moment) can be

found in [259]].

Here we focus on the fit to the recently released data by the PAMELA and ATIC

experiments from annihilation of dark matter in the hidden sector in the framework

of Stueckelberg extension of the Standard Model [251]. We give now the details of

the analysis. In general the positron flux arising from the annihilation of dark matter

(DM) particles is given by [255, 256]

Φe+ =
ηBve+

4πb(E)

ρ2

M2
DM

∫ MD

E

∑

k

〈σv〉kH

(
dNe+

dE ′

)

k

I(E,E′)dE ′ (9.29)

where MDM is the mass of the dark matter particle ( here χ ), η = 1/2(1/4) for the

DM particle being Majorana or Dirac[255], B is the boost factor which is expected

to lie in the range (2-10) although significantly larger values have been used in the

literature. In the above ve+ is the positron velocity where ve+ ∼ c, and ρ is the

local dark matter density in the halo so that ρ lies in the range (0.2− 0.7)[GeV/cm3]

[260]. Further, b(E) in Eq.(9.29) is given by [261, 262] b(E) = E0(E/E0)2/τE , where

τE ∼ 1016[s], with E in [GeV] and E0 ≡ 1GeV. Here 〈σv〉H is the velocity averaged

cross section in the Halo (H) of the galaxy as emphasized by the subscript H.

In some works 〈σv〉H is replaced by the 〈σv〉Xf
at the freeze-out temperature.

However, such an approximation can lead to significant errors since the ratio 〈σv〉H/〈σv〉Xf
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can deviate significantly from unity depending on the part of the parameter space one

is in. This point was emphasized in [251]. The halo function I(E,E′) is parametrized

as in [256], and we consider both the NFW and Moore [263] profiles coupled with

various diffusion models.

Generally, the positron flux can arise from multiple final state channels from the

annhilations of DM. Here we consider Dirac Dark matter [169, 173, 174, 175] which

annihilates via χχ̄ → f f̄ , W+W−, . . . where f is any quark or lepton final state of

the standard model. In the parameter space investigated here, the dominant source

of positrons arises from the direct channel via the Z ′ pole. As has been discussed

in the Ch.(7), the W+W− final state contribution is much suppressed relative to the

f f̄ final state contribution[170]. Therefore, the dominant term in our analysis is the

line source arising from the annihilation χχ̄ → Z ′ → e+e− and in this case one has
∑

F=Final states〈σv〉F (dNe+/dE′)F ∼ 〈σv〉e+e−δ(E
′ −Mχ) + . . ., where the dots stand

for the background terms that contribute to the continuum flux. The continuum flux

arises mostly from muons and to a much lesser degree from taus[264]. Defining Rf as

the positron ratio from source f one finds Rµ/Re ∼ [0.90− 1.01Ee+/MDM]θ(MDM −

E+
e ), provides a good approximation to the muon fraction over the dark matter (DM)

mass range of interest and a similar relation holds for the taus[264]. The inclusion of

the flux from the continuum reduces the needed boost factor slightly, however the line

source still dominates at high energies. The use of the above in Eq.(9.29) yields the

primary positron flux Φe+ ≡ Φ(prim)
e+ . The background fluxes have been approximated

in Refs. [265, 266], and they are given by

Φprim
e− (E) =

0.16E−1.1

1 + 11E0.9 + 3.2E2.15
GeV−1cm−2sec−1sr−1,

Φsec
e− (E) =

0.7E0.7

1 + 110E1.5 + 600E2.9 + 580E4.2
GeV−1cm−2sec−1sr−1,
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Φsec
e+ (E) =

4.5E0.7

1 + 650E2.3 + 1500E4.2
GeV−1cm−2sec−1sr−1 . (9.30)

The fraction of e+ flux is then

Φprim
e+ + Φsec

e+

Φprim
e+ + Φsec

e+ + Φprim
e− + Φsec

e−

. (9.31)

An analysis is given of this observable as a function of the positron energy in Fig.(9.4)

for the Stueckelberg Z ′ model. One finds that the annihilation of Dirac fermions via

the Z ′ pole into e+e− + µ+µ− gives a sufficient kick to generate the necessary turn

around in the positron fraction at just about the desired value of the positron energy

consistent with the relic density constraints. The analysis of Fig.(9.4) (left panel)

exhibits the theoretical evaluation for several model points. Here we consider NFW

min (M2), med and max (M1) as well as the Moore max (M1) parametrizations

for the Halo models[255, 256]. One finds that there is a significant variation in the

prediction depending on the profile/diffusion model one chooses. However, one finds

that the PAMELA data does lie in the range of the theoretical predictions. We note in

passing that the gamma ray spectrum in this model[167] has been discussed in[173].

The theoretical predictions cover a range which includes the PAMELA data[250].

Further, such a fit determines the dark matter fermion mass to be roughly half the

Z ′ mass.

In Fig.(9.4) (right panel) we exhibit the dependence of 〈σv〉 on temperature. The

analysis shows that 〈σv〉 can have a significant temperature dependence. Thus the

simplifying assumption often made in assuming that 〈σv〉 is a constant as one moves

from the freeze-out temperature to the temperature of the galactic halo is erroneous.

Specifically the analysis shows that the temperature dependence is model dependent

and one can generate an enhancement of 〈σv〉H in the halo relative to freeze-out
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Figure 9.4: (Left Panel): Positron spectrum including the monochromatic source and
continuum flux for various halo/diffusion models with (ε = 0.006, δ = 0.00) and ρ =
0.35 GeV/cm3 with MZ′ = 298 GeV, Mχ = 150 GeV, τE = 3 × 1016s[261], and B=10;
and Ωh2 = 0.13 (calculated by integration over the Breit-Wigner pole). Also plotted is the
recently released PAMELA data [250], along with the AMS-01 and HEAT data [253]. The
background flux ratio is the decaying curve (solid blue). (Right Panel): An exhibition of
the dependence of 〈σv〉 on temperature for Stueckelberg models as given in the figure with
Mχ/GeV ∈ [150, 153] in steps of 1.5 and MZ′ fixed as in the left panel. The annihilation
near a pole generates a significant enhancement of 〈σv〉H in the halo relative to 〈σv〉Xf at
freeze-out. The Breit-Wigner enhancement of 〈σv〉H obviates the necessity of using very
large boost factors. (From [251]).

〈σv〉Xf
by as much as a factor of 10 or more depending on the part of the parameter

space one is in. Typically the temperature dependence is enhanced when the dark

matter particles annihilate near a pole from the Breit-Wigner which is the case in

the analysis here. We note that the Breit-Wigner enhancement was first used in the

analysis of [251]. Several papers followed suit.

The p̄/p flux ratio as recently reported by the PAMELA[267] collaboration indi-

cates a smooth increase with energy up to about 10 GeV and then a flattening out

in agreement with the background and with previous experiments. We note that a

suppression of p̄/p flux ratio is possible in the model presented here. This is due in

part because the Z ′ → W+W− is suppressed as already discussed. We have carried

out a detailed analysis of the p̄/p flux ratio. Our analysis follows closely the work
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Figure 9.5: The p̄/p flux ratio including the TOA correction to the IS spectrum [268], and
with Bp̄ ∈ (1 − 10). The green (darker) curves (NFW min) are insensitive to the boost in
the ratio, while the yellow (lighter) curves (NFW med) allow a boost as large as 5 or even
larger. In the Figure, MD = Mχ. (From [251]).

of [256] with fragmentation functions as modeled in Bottino et al and by Bergstrom

etal and (p, p̄) backgrounds as in Donato et al and Bringmann et al [268]. The In-

terstellar (IS) flux has been modified for predictions at the Top of the Atmosphere

(TOA) which suffers from large uncertainties. The results are given in Fig.(9.5) and

compared with the recently reported results by the PAMELA collaboration. It is

found that the p̄/p analysis of Fig.(9.5) is fully compatible with the recent PAMELA

data. It is further observed that the NFW min profile, for the p̄/p predictions, are

rather insensitive to a boost factor, while boost factors as large as 5 or larger are

acceptable in the NFW med model. We note in passing that the p̄/p flux ratio does

suffer from larger theoretical uncertainties than the e+/e flux ratio due to a larger

diffusion length. Further, it is known that local inhomogeneities in the dark matter

density may lead to very different boost factors for positrons and anti-protons (see,

for example, Lavalle etal in [268]).

In this work we have shown that the annihilation of the Dirac fermions in the

hidden sector close to the Z ′ pole can generate a positron fraction compatible with the
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Figure 9.6: Fit to the PAMELA and ATIC[252] data for a heavy Dirac dark matter mass
of 688.8 GeV with the Breit-Wigner enhancement. The curves in descending order are for
the cases for the halo profiles listed on the top right hand corner. (From [251]).

current PAMELA data. Specifically the model produces the right amount of positron

spectrum enhancement with increasing positron energy indicated by the AMS-01 and

the HEAT data and confirmed by the PAMELA data, and additionally the model can

accommodate the anti-proton constraints. In Fig.(9.5) we also give a simultaneous fit

to both the ATIC and PAMELA data. Such a fit requires a larger dark matter mass,

and the model can accommodate both excesses seen in these experiments. Further,

the PAMELA data seems to favor the astrophysical scenario closer to the MED model,

while the ATIC data seems to favor an scenario somewhat in between the MED and

MIN models for the cases shown. A further support of the model can come from a

direct observation of the Z ′ boson at the Large Hadron Collider.

9.6 Summary

In the above we have given an analysis of the Stueckelberg extension of the Standard

Model with inclusion of the kinetic energy mixing in the U(1)X×U(1)Y sectors. Such

kinetic mixings are quite generic in models with more than one U(1) gauge group. It
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is shown that in the model with both the mass and kinetic mixing and in the absence

of matter in the hidden sector, the sensitive parameter which measures the deviation

from the Standard Model is given by ε̄ which is a specific combination of ε and δ,

where ε measures the mass mixing and δ measures the kinetic mixing. However,

when matter in the hidden sector is taken into account, electroweak physics depends

on both ε and δ. An analysis of the relic density of milli-charged dark matter which is

generic in Stueckelberg extensions is given. Here our analysis is in agreement with the

work of Ref. [173] for the case when no kinetic mixing is taken into account. Inclusion

of the kinetic mixing is seen to increase the parameter space where the relic density

constraints consistent with WMAP can be satisfied. We also analyze the Z ′ signal.

As noted in Ref. [173] on the branch MZ′ > 2Mχ the di-lepton signal from the Z ′

decay is too small to be observed at colliders, and our results are in agreement with

this analysis. However, we note that on the branch MZ′ < 2Mχ, there is a significant

parameter space where the relic density constraints can be satisfied and the di-lepton

signal from the Z ′ decay via the Drell-Yan process is strong and observable at the

Tevatron and at the LHC. The analysis also shows that relic density constraints can

be satisfied for values of ε̄ as low as 10−4 and even smaller values are possible. Finally,

we gave a detailed analysis of the positron excess seen in the PAMELA experiment, as

well as the electron excess seen in the ATIC experiment. We found remarkably that

the StKSM can fit both experiments in precisely the same region of the parameter

space where the relic density is satisfied and where the di-lepton signal will be strong

at the Tevatron and the LHC. It was found that the Halo cross section is enhanced

significantly due to the presence of the Breit-Wigner resonance; our analysis was the

first to show this phenomenon [175], and other analyses followed showing a similar

effect. The model evades constraints on the p̄/p ratio due to enhanced leptonic

branching fractions allowing MED/MIN models for DM a mass as low ∼150 GeV.
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Chapter 10

Conclusions

The main focus of this Thesis was to make progress on the determination of the na-

ture of fundamental physics beyond the the Standard Model of particle interactions.

The analysis presented here was carried out within the framework of SUGRA uni-

fied models and models based on the U(1)X extensions of the Standard Model where

mass generation arise through a mixed Higgs and Stueckelberg mechanism including

the extended sector. The theoretical implications of these models were subject to

currently known experimental constraints from both collider and dark matter exper-

iments and predictions were made for new phenomena which arise in these models

relevant to both current and future experiments. Summarized below are the main

results and conclusions of this Thesis.

1. In Chapter (3) it was shown that collider data can be used to decode the mech-

anism for the production of dark matter in the early universe. For specificity

the analysis was focused on a discrimination of the two prominent branches in

the relic density analyses: the stau co-annihilation branch and the hyperbolic

branch. It was shown that with a judicious choice of signals, namely P miss
T

distributions, a study of 〈P miss
T 〉 on these branches, cutting on the number of
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jets in the events, by variable b-tagging, and correlating the signature events

in heavy flavor channels, that the collider data can allow one to distinguish in

a very clear way between the two branches where the dark matter may have

originated in the early universe. The analysis also revealed a rather unexpected

result, namely that essentially all of the hyperbolic branch is constituted of the

model points in SUGRA models where the chargino is the NLSP beyond the

neutralino LSP. Thus the dominant part of the hyperbolic branch sets up what

may be interpreted as a Chargino Wall in the plane spanned by the possible

mass of the LSP and its spin independent neutralino nuclei scattering cross

section. The above implies that a very close connection exists between the

composition of the LSP and what one may observe at the LHC. Indeed, corre-

lations were given of LHC signatures with the spin independent cross section

and it was found that such correlations lead to a remarkable separation of the

two prominent branches where the relic density constraints on the abundance

of dark matter are generally satisfied.

2. In Chapter (4), an investigation was made of a completely new way to study

supersymmetric signals of new physics through the classification of the sparticle

landscape of masses. A priori the hierarchies among the 32 sparticle masses can

add up to as many as 1025−28 possibilities. However, it turns out that this

number is drastically reduced if one subjects the landscape to the WMAP and

other experimental constraints. Specifically, a study of the first four sparticle

mass hierarchies reveals that this number reduces to a rather small set. Such

analyses were carried out in the framework of mSUGRA, NUSUGRA, and in

D-Brane models and less than than 50 hierarchical 4 -particle patterns were

seen. The neutralino-nuclei scattering cross sections for the direct detection of

dark matter were analyzed and it is found that a spectral decomposition of the
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patterns occurs in the σSI
χp vs mχ plane. Here the Higgs patterns (HPs) give

the largest cross sections and are already being constrained by the recent data

from the Xe-10 and CDMS dark matter experiments. These are followed by the

chargino patterns (CPs), and then by the stau patterns (SUPs), and then by the

stop patterns (SOPs) the latter having σSI
χp which are most suppressed and thus

the hardest to observe experimentally. A remarkable observation of the sparticle

landscape analysis is that essentially all the Higgses can be light, and sometimes

even lighter than the LSP. Such patterns (HPs) give rise to rather significant

Higgs → τ τ̄ signal at the hadron colliders and also give rise to a constrained

signal in the Branching ratio of Bs → µ+µ−. An analysis of these signals was

carried out and it was found that the current data from the Tevatron is already

beginning to constrain the HPs. In this regard, one observed a confluence of

the constraints arising from the direct detection experiments and from the τ τ̄

and flavor data from the Tevatron. Several interesting theoretical results also

surfaced from this analysis.

A study of 2 classes of D-Brane models was given. Here it was found that both

models can support relatively light Higgs Bosons, and specifically in one class

of these models it was seen that the gaps between the various sparticle masses

can be very different from one model to another. In the case of the D-Brane

models it is possible to get compressed spectra, where the sparticle spectra can

be significantly lighter than in the universal cases which has very important

consequences for their LHC signals, as generally, the lighter the spectra, the

stronger will be the LHC event rates. Finally here, we studied again correlated

signatures of event rates at the LHC and dark matter direct detection cross

section in the context of the landscape of sparticle mass hierarchies. It was

found that the sparticle mass hierarchies act as a prism separating out both the
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dark matter and the LHC signatures spaces and allow for a more general way

of pin pointing the underlying model.

3. Chapter (5) began with a brief review of the Stueckelberg mechanism of mass

generation for an Abelian U(1)X gauge boson . The Stueckelberg mechanism

has been utilized recently to achieve a U(1)X extension of the SM and of MSSM

which is characterized by the unique feature that it leads to mass generation

in the electroweak sector which depends on both the Higgs mechanism and the

Stueckelberg mechanism. The Stueckelberg extension of MSSM contains the

possibility of a new dark matter particle (the Stino) which is R parity odd but

which is a linear combination of fields mainly composed of the fields in the

hidden and connector sectors. As such, its couplings with the visible sector are

rather suppressed. An interesting question relates to if a Stino could satisfy

the relic density constraints. This issue was investigated in Chapter (6) where

it was shown that the relic density constraints consistent with the WMAP can

indeed be satisfied in the parameter space of the model consistent with the

current electroweak constraints.

In Chapter (7) an investigation was carried out of the discovery potential for the

Stueckelberg Z ′ at the Fermilab Tevatron collider using the Drell-Yan process

pp̄ → Z ′ → l+l−. It was shown that the current data from CDF and DØ is

beginning to constrain the parameter space of the Stueckelberg model. A similar

analysis for the discovery potential of the Stueckelberg Z ′ at the LHC was

carried out in Chapter (8) again using the Drell-Yan process which in this case

is pp → Z ′ → l+l−. One of the many interesting issues surfacing here pertains to

whether the narrow Z ′ from the Stueckelberg model can be distinguished from

a narrow resonance arising from a massive graviton in the Randall-Sundrum
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model of warped geometry. The analysis presented in Chapter (8) shows that

indeed the two models of narrow resonances can be disentangled. Specifically, it

was shown that the signature space of the Stueckelberg Z ′ model is significantly

different from that of the narrow graviton of the warped geometry. This was

made evident by studying both models’ experimentally constrained signature

spaces in the cross section - resonance mass planes and by examining the angular

distributions of these models at the LHC.

4. Chapter (9) focused on an analysis of the milli charged matter that arises from

the hidden sector. Here we first discussed how milli charged dark matter arises,

and following this, an analysis was given of the electroweak constraints on the

Stueckelberg model with both mass and kinetic mixings. It is known that the

matter in the hidden sector could be a possible candidate for dark matter.

We analyzed this possibility in significant detail and showed consistency of the

model with the WMAP data. Correlated predictions were given on the number

of di-lepton events via the Drell-Yan process and regions where WMAP con-

straints are satisfied. Finally, a detailed study was undertaken of the positron

excess seen in cosmic rays observed by the PAMELA matter-antimatter satellite

experiment. It was shown that the Stueckelberg model provides the necessary

turn around to fit the excess seen in the positron spectrum, and this is precisely

in the same region of the parameter space where the relic density constraints are

satisfied. The model also fits the excess seen in the ATIC balloon experiment.

We end this Thesis on an optimistic note in that we stand on the edge of a new era in

particle physics. The ongoing experiments at Fermilab, the onset of the LHC era, and

experiments searching for dark matter, all coupled together, will shed new light on

what lies beyond the SM. It is precisely this topic to which this Thesis was devoted.
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[39] R. Blumenhagen, B. Körs, D. Lüst and T. Ott, Nucl. Phys. B 616 (2001) 3;
M. Cvetic, G. Shiu and A. M. Uranga, Phys. Rev. Lett. 87 (2001) 201801 Nucl.
Phys. B 615 (2001) 3; D. Cremades, L. E. Ibanez and F. Marchesano, Nucl.
Phys. B 643 (2002) 93; C. Kokorelis, JHEP 0209 (2002) 029; G. Honecker
and T. Ott, Phys. Rev. D 70 (2004) 126010; R. Blumenhagen, M. Cvetic,
P. Langacker and G. Shiu, Ann. Rev. Nucl. Part. Sci. 55 (2005) 71.

[40] B. Kors and P. Nath, Nucl. Phys. B 681 (2004) 77.

[41] D. Lust, P. Mayr, R. Richter and S. Stieberger, Nucl. Phys. B 696, 205 (2004);
D. Lust, S. Reffert and S. Stieberger, Nucl. Phys. B 706 (2005) 3.

[42] A. Font and L. E. Ibanez, JHEP 0503, 040 (2005).

165



[43] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, “Four-dimensional String
Compactifications with D-Branes, Orientifolds and Fluxes,” Phys. Rept. 445,
1 (2007) [arXiv:hep-th/0610327].

[44] G. L. Kane, P. Kumar, J. D. Lykken and T. T. Wang, Phys. Rev. D 71 (2005)
115017.

[45] D. Feldman, Z. Liu and P. Nath, Phys. Lett. B 662, 190 (2008).
[arXiv:0711.4591 [hep-ph]].

[46] C. M. Chen, T. Li, V. E. Mayes and D. V. Nanopoulos, Phys. Rev. D 77, 125023
(2008).

[47] S. P. Martin, “A Supersymmetry Primer,” arXiv:hep-ph/9709356 in [18].

[48] L. E. Ibanez and G. G. Ross, Comptes Rendus Physique 8, 1013 (2007).

[49] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).

[50] S. Weinberg, Phys. Rev. D 7, 2887 (1973).

[51] G. Gamberini, G. Ridolfi and F. Zwirner, Nucl. Phys. B 331, 331 (1990).

[52] R. L. Arnowitt, B. Dutta, T. Kamon, N. Kolev and D. A. Toback, Phys. Lett.
B 639, 46 (2006).

[53] G. L. Kane, P. Kumar and J. Shao, J. Phys. G 34, 1993 (2007).

[54] J. P. Conlon, C. H. Kom, K. Suruliz, B. C. Allanach and F. Quevedo, JHEP
0708, 061 (2007).

[55] H. Baer, V. Barger, G. Shaughnessy, H. Summy and L. t. Wang, Phys. Rev. D
75, 095010 (2007).

[56] U. Chattopadhyay, D. Das, A. Datta and S. Poddar, Phys. Rev. D 76, 055008
(2007).

[57] R. L. Arnowitt et al., Phys. Lett. B 649 (2007) 73.

[58] D. Feldman, Z. Liu and P. Nath, Phys. Rev. Lett. 99, 251802 (2007).
[arXiv:0707.1873 [hep-ph]].

[59] R. L. Arnowitt, B. Dutta, A. Gurrola, T. Kamon, A. Krislock and D. Toback,
Phys. Rev. Lett. 100, 231802 (2008).

[60] D. Feldman, Z. Liu and P. Nath, JHEP 0804, 054 (2008). [arXiv:0802.4085
[hep-ph]]

166



[61] G. J. Gounaris, J. Layssac and F. M. Renard, Phys. Rev. D 77, 013003 (2008)
[arXiv:0709.1789 [hep-ph]]; Phys. Rev. D 77, 093007 (2008) [arXiv:0803.0813
[hep-ph]].

[62] S. Bhattacharya, A. Datta and B. Mukhopadhyaya, Phys. Rev. D 78, 115018
(2008) [arXiv:0809.2012 [hep-ph]].

[63] S. P. Martin, Phys. Rev. D 78, 055019 (2008) [arXiv:0807.2820 [hep-ph]].

[64] S. P. Martin and P. Ramond, Phys. Rev. D 48, 5365 (1993).

[65] P. Ramond, “Journeys Beyond The Standard Model”, Westview Press (Novem-
ber 18, 1999), 372 p.

[66] R. L. Arnowitt and P. Nath, arXiv:hep-ph/9309277 (select OSTI Informa-
tion Bridge Server on spires).

[67] “Theory and Phenomenology of Sparticles”, M. Drees, R. Godbole and P. Roy,
Hackensack, USA: World Scientific (2004) 555 p.

[68] H. E. Haber and R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991); H. E. Haber,
R. Hempfling and A. H. Hoang, Z. Phys. C 75, 539 (1997).

[69] S. P. Martin and M. T. Vaughn, Phys. Lett. B 318, 331 (1993).

[70] D. M. Pierce, J. A. Bagger, K. T. Matchev and R. j. Zhang, Nucl. Phys. B 491,
3 (1997).

[71] K. L. Chan, U. Chattopadhyay and P. Nath, Phys. Rev. D 58, 096004 (1998);
J. L. Feng, K. T. Matchev and T. Moroi, Phys. Rev. Lett. 84, 2322 (2000);
H. Baer, C. Balazs, A. Belyaev, T. Krupovnickas and X. Tata, JHEP 0306, 054
(2003). For a review see, A. B. Lahanas, N. E. Mavromatos and D. V. Nanopou-
los, Int. J. Mod. Phys. D 12, 1529 (2003).

[72] B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977).

[73] K. Griest and D. Seckel, Phys. Rev. D 43, 3191 (1991); M. Drees and M. M. No-
jiri, Phys. Rev. D 47, 376 (1993); S. Mizuta and M. Yamaguchi, Phys. Lett.
B 298, 120 (1993). J. Edsjo and P. Gondolo, Phys. Rev. D 56, 1879 (1997);
J. R. Ellis, T. Falk, K. A. Olive and M. Srednicki, Astropart. Phys. 13, 181
(2000).

[74] K. Griest and D. Seckel, Nucl. Phys. B 283, 681 (1987); M. Srednicki,
R. Watkins and K. A. Olive, Nucl. Phys. B 310, 693 (1988); P. Fayet, Phys.
Rev. D 70, 023514 (2004).

[75] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke and E. A. Baltz, JCAP
0407, 008 (2004) [arXiv:astro-ph/0406204].

167



[76] E. W. Kolb and M. S. Turner, “The Early universe,” Front. Phys. 69, 1 (1990);
Westview Press (February 20, 1994, 592 pg.

[77] U. Chattopadhyay, T. Ibrahim and P. Nath, Phys. Rev. D 60, 063505 (1999).

[78] J. R. Ellis, A. Ferstl and K. A. Olive, Phys. Lett. B 481, 304 (2000); J. R. Ellis,
K. A. Olive and C. Savage, Phys. Rev. D 77, 065026 (2008).

[79] T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605, 026 (2006).

[80] F. E. Paige, S. D. Protopopescu, H. Baer and X. Tata, arXiv:hep-ph/0312045.

[81] P. Nath, R. Arnowitt and A. H. Chamseddine, HUTP-83/A077; D. A. Dicus,
S. Nandi, W. W. Repko and X. Tata, Phys. Rev. Lett. 51, 1030 (1983).

[82] H. Baer and X. Tata, Phys. Lett. B 155, 278 (1985); H. Baer, K. Hagiwara and
X. Tata, Phys. Rev. Lett. 57, 294 (1986).

[83] P. Nath and R. Arnowitt, Mod. Phys. Lett. A 2 (1987) 331.

[84] R. Arnowitt, R. M. Barnett, P. Nath and F. Paige, Int. J. Mod. Phys. A 2,
1113 (1987); H. Baer, C. h. Chen, F. Paige and X. Tata, Phys. Rev. D 50,
4508 (1994); V. D. Barger, C. Kao and T. j. Li, Phys. Lett. B 433, 328 (1998);
H. Baer, M. Drees, F. Paige, P. Quintana and X. Tata, Phys. Rev. D 61 (2000)
095007.

[85] H. Baer, C. h. Chen, F. Paige and X. Tata, Phys. Rev. D 52, 2746 (1995);
U. Chattopadhyay, A. Datta, A. Datta, A. Datta and D. P. Roy, Phys. Lett. B
493, 127 (2000); P. G. Mercadante, J. K. Mizukoshi and X. Tata, Phys. Rev.
D 72, 035009 (2005); R. H. K. Kadala, P. G. Mercadante, J. K. Mizukoshi and
X. Tata, Eur. Phys. J. C 56, 511 (2008).

[86] J. D. Lykken and K. T. Matchev, Phys. Rev. D 61, 015001 (2000); A. Dedes,
H. K. Dreiner, U. Nierste and P. Richardson, arXiv:hep-ph/0207026.

[87] D. Feldman, Z. Liu and P. Nath, Phys. Rev. D 78, 083523 (2008)
[arXiv:0808.1595 [hep-ph]].

[88] R. N. Mohapatra, “Unification and Supersymmetry”, Springer; 3rd edition
(2002) 405 p.

[89] P. Nath, arXiv:hep-ph/0307123.

[90] D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones
and D. Zaritsky, “A direct empirical proof of the existence of dark matter,”
Astrophys. J. 648, L109 (2006) [arXiv:astro-ph/0608407].

[91] D. N. Spergel et al. Astrophys. J. Suppl. 170, 377 (2007).

168



[92] U. Chattopadhyay, A. Corsetti and P. Nath, Phys. Rev. D 68, 035005 (2003).

[93] P. Nath and R. L. Arnowitt, Phys. Rev. Lett. 70, 3696 (1993); Phys. Lett. B
299, 58 (1993); J. L. Lopez, D. V. Nanopoulos and K. j. Yuan, Phys. Rev. D 48,
2766 (1993); H. Baer and M. Brhlik, Phys. Rev. D 53, 597 (1996); V. D. Barger
and C. Kao, Phys. Rev. D 57, 3131 (1998).

[94] A. Djouadi, J. L. Kneur and G. Moultaka, Comput. Phys. Commun. 176, 426
(2007).

[95] G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, Comput. Phys. Com-
mun. 177, 894 (2007);arXiv:0803.2360 ; Comput. Phys. Commun. 176, 367
(2007); Comput. Phys. Commun. 174, 577 (2006); Comput. Phys. Commun.
149, 103 (2002);

[96] P. Skands et al., JHEP 0407, 036 (2004).

[97] PGS4, J. Conway, et. al.

[98] Z. Ahmed et al. [CDMS Collaboration], arXiv:0802.3530 [astro-ph]; J. Angle et
al. [XENON Collaboration], Phys. Rev. Lett. 100, 021303 (2008).

[99] R. W. Schnee et al. [The SuperCDMS Collaboration], arXiv:astro-ph/0502435.

[100] H. Baer, C. Balazs, A. Belyaev and J. O’Farrill, JCAP 0309, 007 (2003)
[arXiv:hep-ph/0305191].

[101] H. Baer, A. Mustafayev, E. K. Park and X. Tata, JCAP 0701 (2007) 017.

[102] T. Yetkin and M. Spiropulu [CMS Collaboration], Acta Phys. Polon. B 38
(2007) 661.

[103] M. Biglietti et al., CERN-ATL-PHYS-PUB-2007-004; ATL-COM-PHYS-2006-
095;ATL-PHYS-CONF-2007-020; ATL-COM-PHYS-2007-078.

[104] A. Migliaccio [ATLAS Collaboration], Diploma Thesis.

[105] B. Mura [CMS Collaboration], Diploma Thesis.

[106] D. Feldman, Z. Liu and P. Nath, “Recent Developments in Supersymmet-
ric and Hidden Sector Dark Matter,” AIP Conf. Proc. 1078, 116 (2009)
[arXiv:0806.4683 [hep-ph]].

[107] P. Nath, “High Scale Physics Connection to LHC Data,” arXiv:0812.0954 .

[108] B. C. Allanach et al., [arXiv:hep-ph/0202233].

[109] M. Battaglia, A. De Roeck, J. R. Ellis, F. Gianotti, K. A. Olive and L. Pape,
Eur. Phys. J. C 33, 273 (2004).

169



[110] G. L. Bayatian et al. [CMS Collaboration], J. Phys. G 34, 995 (2007).

[111] R. Bernabei et al., Phys. Lett. B 389 (1996) 757.

[112] V. Sanglard et al. [The EDELWEISS Collaboration], Phys. Rev. D 71 (2005)
122002.

[113] D. S. Akerib et al. [CDMS Collaboration], Phys. Rev. Lett. 96 (2006) 011302.

[114] G. J. Alner et al., Astropart. Phys. 28 (2007) 287; Astropart. Phys. 23 (2005)
444.

[115] J. Angle et al. [XENON Collaboration], Phys. Rev. Lett. 100, 021303 (2008).

[116] T. Stiegler et.al., Fall Meeting of the Texas Sections of the APS and AAPT,
2007.

[117] G. L. Kane, B. D. Nelson, T. T. Wang and L. T. Wang, arXiv:hep-ph/0304134.

[118] M. S. Carena, S. Heinemeyer, C. E. M. Wagner and G. Weiglein, Eur. Phys. J.
C 45, 797 (2006); Phys. Rev. Lett. 97, 051801 (2006); M. S. Carena, A. Menon
and C. E. M. Wagner, Phys. Rev. D 76, 035004 (2007).

[119] A. Belyaev, A. Blum, R. S. Chivukula and E. H. Simmons, Phys. Rev. D 72,
055022 (2005); T. Hahn, S. Heinemeyer, F. Maltoni, G. Weiglein and S. Wil-
lenbrock, arXiv:hep-ph/0607308; U. Aglietti et al., “Tevatron-for-LHC Report:
Higgs,” arXiv:hep-ph/0612172.

[120] J. R. Ellis, S. Heinemeyer, K. A. Olive and G. Weiglein, Phys. Lett. B 653, 292
(2007).

[121] G. Barenboim, P. Paradisi, O. Vives, E. Lunghi and W. Porod, JHEP 0804,
079 (2008) [arXiv:0712.3559 [hep-ph]].

[122] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B 453, 17
(1995); A. Djouadi, Phys. Rept. 459, 1 (2008).

[123] J. Campbell, R. K. Ellis, F. Maltoni and S. Willenbrock, Phys. Rev. D 67 (2003)
095002; R. V. Harlander and W. B. Kilgore, Phys. Rev. D 68, 013001 (2003);
F. Maltoni, Z. Sullivan and S. Willenbrock, Phys. Rev. D 67 (2003) 093005;
S. Dawson, C. B. Jackson, L. Reina and D. Wackeroth, Mod. Phys. Lett. A 21
(2006) 89.

[124] V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 97, 121802 (2006).

170



[125] S. R. Choudhury and N. Gaur, Phys. Lett. B 451, 86 (1999); K. S. Babu and
C. Kolda, Phys. Rev. Lett. 84, 228 (2000); A. Dedes, H. K. Dreiner, U. Nierste,
and P. Richardson, Phys. Rev. Lett. 87, 251804 (2001); R. Arnowitt, B. Dutta,
T. Kamon and M. Tanaka, Phys. Lett. B 538 (2002) 121; S. Baek, P. Ko, and
W. Y. Song, JHEP 0303, 054 (2003); J. K. Mizukoshi, X. Tata and Y. Wang,
Phys. Rev. D 66, 115003 (2002); T. Ibrahim and P. Nath, Phys. Rev. D 67,
016005 (2003).

[126] A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska, Nucl. Phys. B
619, 434 (2001); [arXiv:hep-ph/0107048]. G. Isidori and A. Retico, JHEP 0111
(2001) 001; A. J. Buras, P. H. Chankowski, J. Rosiek and L. Slawianowska,
Phys. Lett. B 546, 96 (2002); A. J. Buras, P. H. Chankowski, J. Rosiek and
L. Slawianowska, Nucl. Phys. B 659, 3 (2003).

[127] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, Phys. Rev. D 64, 074014 (2001).

[128] T. C. Yuan, R. Arnowitt, A. H. Chamseddine and P. Nath, Z. Phys. C 26, 407
(1984); D. A. Kosower, L. M. Krauss and N. Sakai, Phys. Lett. B 133, 305
(1983); J.L. Lopez, D.V. Nanopoulos, X. Wang, Phys. Rev. D49, 366(1994);
U. Chattopadhyay and P. Nath, Phys. Rev. D 53, 1648 (1996); T. Ibrahim and
P. Nath, Phys. Rev. D 61, 095008 (2000).

[129] G. W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. Lett. 92 (2004)
161802.

[130] K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner, Phys. Lett. B 649
(2007) 173.

[131] L. E. Ibanez, F. Marchesano and R. Rabadan, JHEP 0111, 002 (2001).

[132] D. M. Ghilencea, L. E. Ibanez, N. Irges and F. Quevedo, JHEP 0208 (2002)
016; D. M. Ghilencea, Nucl. Phys. B 648 (2003) 215.

[133] D. Feldman, P. Nath et. al, [in preparation].

[134] P. Nath and T. R. Taylor, Phys. Lett. B 548, 77 (2002) [arXiv:hep-ph/0209282].

[135] M. Atac et al., New Astron. Rev. 49 (2005) 283.

[136] E. Barberio et al., HFAG Collaboration], arXiv:0704.3575 [hep-ex].

[137] M. Misiak et al., Phys. Rev. Lett. 98 (2007) 022002.

[138] G. Degrassi, P. Gambino and G. F. Giudice, JHEP 0012 (2000) 009; A. J. Buras
et.al., Nucl. Phys. B 659 (2003) 3; M. E. Gomez, T. Ibrahim, P. Nath and
S. Skadhauge, Phys. Rev. D 74 (2006) 015015; G. Degrassi, P. Gambino and
P. Slavich, Phys. Lett. B 635 (2006) 335.

171



[139] A. Abulencia et al. [CDF Collaboration], Phys. Rev. Lett. 95 (2005) 221805.

[140] CDF Public Note 8956; DØ Conference Note 5344-CONF.

[141] R. Barate et al., Phys. Lett. B 565, 61 (2003); LHWG-Note 2005-01; G. Abbi-
endi et al. [OPAL Collaboration], arXiv:0707.0373 [hep-ex].

[142] G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 35, 1 (2004).

[143] A. Djouadi, M. Drees and J. L. Kneur, JHEP 0603, 033 (2006).

[144] W. Porod, Comput. Phys. Commun. 153, 275 (2003).

[145] B. C. Allanach, Comput. Phys. Commun. 143, 305 (2002).

[146] H. Baer, J. Ferrandis, S. Kraml and W. Porod, Phys. Rev. D 73, 015010 (2006).

[147] G. Belanger, S. Kraml and A. Pukhov, Phys. Rev. D 72, 015003 (2005).

[148] B. C. Allanach, A. Djouadi, J. L. Kneur, W. Porod and P. Slavich, JHEP 0409,
044 (2004).

[149] B. C. Allanach, S. Kraml and W. Porod, JHEP 0303, 016 (2003).

[150] C. F. Berger, J. S. Gainer, J. L. Hewett and T. G. Rizzo, JHEP 0902, 023
(2009) [arXiv:0812.0980 [hep-ph]].

[151] B. C. Allanach, K. Cranmer, C. G. Lester and A. M. Weber, JHEP 0708, 023
(2007) [arXiv:0705.0487 [hep-ph]].

[152] J. A. Maxin, V. E. Mayes and D. V. Nanopoulos, arXiv:0809.3200 [hep-ph].

[153] K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner, Phys. Lett. B 649,
173 (2007).

[154] W. Beenakker, M. Klasen, M. Kramer, T. Plehn, M. Spira and P. M. Zerwas,
Phys. Rev. Lett. 83, 3780 (1999).

[155] S. Jadach, Z. Was, R. Decker and J. H. Kuhn, Comput. Phys. Commun. 76,
361 (1993).

[156] CMS Collaboration, CERN/LHCC 2006-001 (2006).

[157] M. Chiorboli, M. Galanti, A. Tricomi, CERN-CMS-NOTE-2006-133; D. J. Man-
geol, U. Goerlach, CERN-CMS-NOTE-2006-096.

[158] W. de Boer et. al, CERN-CMS-NOTE-2006-113.

[159] D. E. Acosta et al. [CDF Collaboration], Phys. Rev. D 71, 052003 (2005).

172



[160] M. B. Green and J. H. Schwarz, Phys. Lett. B 149, 117 (1984).

[161] M. Kalb and P. Ramond, Phys. Rev. D 9, 2273 (1974).

[162] E. Cremmer and J. Scherk, Nucl. Phys. B 72 (1974) 117.

[163] T. J. Allen, M. J. Bowick and A. Lahiri, Mod. Phys. Lett. A 6, 559 (1991).

[164] E.C.G. Stueckelberg, Helv. Phys. Acta. 11 (1938) 225; V. I. Ogievetskii and
I.V. Polubarinov, JETP 14 (1962) 179.

[165] P. W. Higgs, Phys. Lett. 12 (1964) 132; Phys. Rev. Lett. 13 (1964) 508; Phys.
Rev. 145 (1966) 1156. See also: G. S. Guralnik, C. R. Hagen and T. W. B. Kib-
ble, Phys. Rev. Lett. 13 (1964) 585; F. Englert and R. Brout, Phys. Rev. Lett.
13 (1964) 321.

[166] F. Cianfrani and O. M. Lecian, ‘E.C.G. Stueckelberg: a forerunner of modern
physics II,” Int. J. Mod. Phys. A 23, 1105 (2008).
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