Estimation of Distribution Algorithms with
Dependency Learning

LI, Gang

A Thesis Submitted in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2009

UMI Number: 3514540

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI
e I
Dissertation Publishung

UMI{ 3514540
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

Pro(Quest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M| 48106 - 1346

O

Abstract

For the success of Estimation of Distribution Algorithm (EDA) for optimization, it
1s important to define an appropriatc model to approximate the fitness landscape.
and at the same time the modecl should simplify the problem so as to make the
problem easy to solve. To tradeofT the complexity and the learning of distribution
models in EDA, this thesis proposes a new framework of Esumation of Dependency
and Distribution Algorithm (EDDA) to choose an appropriate learning model auto-
matically. Basically. EDDA partitions an individual representation into separate
parts such that they are independent with respect to the fitness function. The in-
dependent parts of the individual representation are cvolved separately with a dif-
ferent distribution model each. The combination of the optima of the independent
parts forms the optimum of the complete individual representation. For the prob-
lems which cannot be partitioned into completely independent parts, EDDA also
maintains the information of the interdependencics between the separate parts and
evolves the interdependencies. The complexity of a model is determined adaptively
by the amount of the dependency information maintained in the model.

There are several advantages of EDDA over the standard Evolutionary Compu-
tation. First, partitioning the individual representation and evolving the independent
parts separately reduces the size of the search space significantly. Conseguently, the
global optimum becomes easier to be found than in the original space. Second. im-
portant dependency information between the separate parts are maintained while
the trivial ones are ignored, and so the complexity of the model is selected at an

appropriate level. Third, it is easy to control the diversity and convergence of the

sub-populations of the scparate parts of the individual representation, because the
sub-populations arc of only a few dimensions. Fourth, compared to other EDAs.
EDDA learns the distribution model with all the individuals in the population and
with their fitness. EDDA thus estimates a better approximation of a more complete
fitness landscape.

Bascd on the framework of EDDA, four algorithms have been developed for
different problems.

A new Genetic Algorithm with Independent Component Analysis (GA'TCA) is
proposed for unconstraint function optimization. GA/ICA uses 1CA to project the
original space into a new spacc such that the new dimensions are independent from
each other with respect to the fitness function. Dividing a solution into indepen-
dent parts and evolving the parts separately clearty makes the problem easier than
evolving in the original space. The experiments show that GA 1CA requires much
less function evaluations to produce optimal or close-to-optimal solutions which are
better than or comparable to those produced by Orthogonal Genetic Algorithm on
the benchmark problems.

A parallel development with GA/ICA 15 a novel Instruction Matrix based Ge-
netic Programming (IMGP) is designed to evolve programs for problem solving.
IMGP evolves instructions separately and at the same time maintains the interde-
pendencics between the instructions in the form of subtrees. [t can be shown that
IMGP actually cvolve some schemata directly, and thus 1t 15 efficient and effective
in searching the global optimum. The experimental results verify that IMGP out-
performs the canonical Genetic Programming and other related algorithms on both
the benchmark Genetic Programming problems and classification problems.

EDDA is then applied to an important bioinformatics problem, i.c.. computa-
tional motif discovery in DNA sequences. Estimation of Distribution Algorithm for
Motif Discovery (EDAMD) employs a Gaussian distribution to model the distribu-
tion of the motif consensuses in the population. The Gaussian distribution is able to

capture the bi-variate lincar dependencies between the motif positions. A fast local

l

search method is used to find a set ofm(.nif instances from a motif consensus sam-
pled from the Gaussian distribution. EDAMD has achieved a better performance
than other Genetic Algorithms on the testing real problems.

A new deterministic algorithm, Cluster Refinement algorithm for Motif Discov-
ery (CRMD), is also designed for this problem. Rather than evolving a population of
motif consensuses, CRMD clusters all the subsequences where cach cluster has al-
ready maximized part of the objective function of motif. With the clusters, CRMD
identifies the corresponding sets of motif instances by maximizing the objective
function. On a variety of benchmark problems with different levels of difficultics
and properties, CRMD has a better performance than the testing state-of-the-art

algorithms.

1

RS

B AF (4 5 M (4 3BT (EDA) FIRNE (LI » T8 -8 IR
AR H PR B [- [RFIZ Rt LT (R R ST Y 1 5
R oo BV BTEDA BRI BUME S BRI BRI HERE 0 AR OCIRE T W E
AURERES » MR S a3k (EDDA) o ACE ShiR4% (8 5 fin 20
Y o EDDANE I8 (& i 55 H Bl 88 (850 7 » I HaE 2l o /8 H EReR 8 sE &
H A58 37 - EDDARI AN 45 (F 24 4K 43 1l v {1 o6 (R RO 1 L & 4y« G v
803 30 (4R MR 3 RS AR, 15 S A 1A o SRR RSB SRt e &
L ER 5> IR » EDDAW & 45 I (L AR & 40 2 M FH B 8. » P DLBE
R EE S R AR b R AR R B 35 2T IROE ©

MHPEERER LG5 » EDDAf MR EES o 5 7RI (9 #HE X
KRYRUMERZER > () R Ja i R sk A 5 1 - 5 2 T B S Z
el AH I (5 B 13 LAGRAF » (HAS B A B (5 240 E!H%r: [Bl DAREARY () o
JELLREGOE o = » FEH1 0 B o> FEEEAY & M R LLE A S - I 2 5y
[110 350 53) A BOFD 25 i dic /s © S 00 » S L fth i EDA » EDDA(E R FEEE 1 1Y
FIT 6 (I8 88 AN A A% E R Bk A A 0 o (7Y - BT LAEDDARE H #ERE N 3E 5
BT SN B AR s o A

REFREDDARYREAR » AR SCBA S 1 DU B 5075 AR AR A 1

AR T — BFA 5B L B L (Ga/1ca) KRR EL)

v

HA) R AL S © ea/ Tea R R g o A ﬂ! Gy s TR S 8- {18 gy
) (o 45 2 {1805 s T 0 A S R 3 17 | H‘"U%b{/i*[&tf&llkiﬁg oo UL o0 H A
YA:SF: 9 R Gl S T SEAT L VA 90 IR S i N A et Rl CIR A K R E .
FIFETR o BBRAS RN » BLEZGRMTIEMIL » A/ TCAREY H 4L AYET T
LT R 21 R0 300 2 ey A A AR O 9 o

FEELE R ACHRGE T EETEOS TR 2 A LR BN (1mep) H A
HACREIY DA IR I o Tvepor BB IARE R 2 - [algt DL 1B JE 4 Ok 1
B2 Z BIFAHBE M o IMGPBERR bt/ FLIZRRIL (ARG HAR - P DL IMGPHE i 2
TG R 25 4 o) dr AR o CEBRAS B ACI] (S T4 R 1S 0 PO T 5l
B b o TMGPAY AR B R HE E (R MR 2 (R 2 o

—

EDDAH #ME A} T {8 d LAY 9 5 BRI - 51 S0 DNAT T 41 o () S 1
FRAHGES o RERGBRFRINY o> (5 {451 307% (EDAMD) HI @t 7 (kR A<t O bl
BE ARG BOR RS 0 6 o @089 6 50 RS B P R Z I AR T
BRI T o S0 o B P P (APRG IS B > - (A DRE) oy S A T 1 {1
FaRG R BOh AR AURG ARG o B fib A48 (A ALY - EDDAY /\ I TEFR
B ERVAS R TS o

{18 B A MR BT > SRS DR ORGSR G A0 ROBTR (L 575 (crMD) o
T LR 50 PR TR 5 P o CRMDIY 181, ARSI L1
> EX T AYDNA TS T RS » (R ROBTAD L ARl K 1L 1RGNS BG R
BB 804> o B T A Se R » crMDSR HE 6 A AL R o BB A 531 B e
CHRGHGEE o BHRY A [8 FE R AS 6] RE Y BUPR P MACESE + CRMD %E LB REH i
AV R R -

Acknowledgements

It would never be possible for me to complcte this thesis without the support and
the help from a lot of people.

I am very honored to have Professors LEUNG Kwong Sak and LEE Kin Hong
as my supervisors in my graduate study. They taught me how to do a quality re-
scarch as a scholar and led me into the research ficlds of evolutionary computation,
machine learning and bioinformatics. They offered me numerous invaluable inspi-
rations, insights and suggestions for my work in the regular mectings in the last five
years. Their supcrvision and guidance have become an indispensable part of this
thesis.

I am sincerely obliged to my markers Professors KING Kuo Chin, WONG Tien
Tsin and WONG Man Leung. They have attended all my past term presentations
and gave me many useful opinions and encouragements. A lot of improvement over
my original papers were based on their comments.

1 am also grateful to my colleagues for their helps and encouragements in my
graduate rescarch. LAU Wai Shing, CHAN Tak Ming and WANG Jin Feng co-
authored some of my papers with me, respectively. ZHANG Kun. LI Wen Ye,
LIANG Yong, Ni Bing and CHEANG Sin Man had a lot of great discussion with
me about my research and my papers. Thank all my friends in CUHK for their help
to my research. Our precious friendships make me realize a part of the rescarch is
exchanging ideas and learning from each other.

I am deeply indebted to my father, mother and brother. They cared for me when

I was a kid, and they sent me away to let me become an adult. Whenever it 1s and

Vi

wherever | am, they have always been supporting me with all they have and loving
me with their hearts. In particular, I am dedicating this thests to my father, who

passed away two ycars ago. | wish he could have read this thesis.

vil

Contents

3

- 3.2 Architecture

Introduction
[.1 Optimization oo e e
1.2 Evolutionary Computation

1.3 Estimation of Dependency and Distribution Algorithm

Background
2.1 Genetic Algorithm and Genetic Programming
2.1.1 Genetic Algorithm

......................

2.1.2 Genetic Programming

2.2 - Estimation of Distribution Algorithm
2.2.1 Estimation of Distribution Algorithm for Genetic Algorithm
2.2.2 Estimation of Distribution Algorithm for Genetic Program-

BB v o5 0 5 5% 55 V5 W uw B BCH B K S Bw o= E W

Genetic Algorithm with Independent Component Analysis

3.1 Overview

...............................
..............................

3.2.1 Independent Component Analysis
3.2.2 Independent Evolution

33 ERDEOBIE : . ; is sas i s sinas s i e e s

3.4 Discussion

...............................

viil

27

4 Instruction Matrix Genetic Programming 32

4.1 Overview 32
42 ATCRItECIUIC .« « o o e 4
4.2.1 Representation Lo Lo 35

422 Algorithm oL 37

4.3 Experiment Lo 45
431 Comparison with Canonical Genetic Programming 46

4.3.2 Comparison with Related Algorithms 49
,j 4.4 Instruction Matrix based Genetic Programming for Classification . . 51
441 Sparse Kernel Feature Machine . . . 0 0 0 00 0 0 57

4.5 Discussiono o s 58
4.5.1 Schema Evolution 0oL 59

452 Algonthm Complexity 62

S Computational Motif Discovery 63
5.1 Introduction 63
5.2 Existing Algorithms o000 66O
53 Objective 6k
53.1 Problem Formulation 6Y

5.3.2 Maximum A Posteriort L 70)

5.4 Estimation of Distribution Algorithm for Motif Discovery 74
5.4.1 Searching Mcthod 75

5.4.2 Estimation of Distribution Algorithm 80

543 Experimentso Lo 82

5.5 Cluster Refinement Algorithm for Motif Discovery 8S
551 Algorithmo RO

552 Experimentso 99

5.6 Discussion. Lo e 110
56,1 TimecComplexity 112

5.6.2 Comparison between Estimation of Distribution Algorithm

and Cluster Refinement Algorithm

6 Conclusion

Bibliography

Al
A2

Al

Ad

A Sparsce Kernel Feature Machine
Overview o o e
Related Worko
A.2.1 Least Angle Regression
A.2.2 Support Vector Machine 00000
A23 Muluple Kemnel Learningo
A.2.4 Mutual Informationo
Architecture oL
A3l Overall Program
A.3.2 Augmented KernelMatrix 00000000000
A3.3 Kemelized Least Angle Regression 00 . 0. . . .
Experiment
A.4.1 Diabetes Classification
A.4.2 Hepatitis B Virus Classification
A.4.3 Colon Cancer Classificahon
A4.4 Splice Site Classification
Discussion

A5

16

121

List of Figures

2.1

3.1

4.1

4.2

4.3

Canonical Genetic Programming: (AND OR A B NOT ') & (AND
NOTAORBCQC)

Combine the | -dimensional sub-populations into a true m-dimenstion
population. Row vectors on the left table are the | -dimensional sub-
populations. Column vectors-on the right table are the indrviduals

inthe population L

The trees represented in hs-expression (AND OR NOT A B ¢ -1)
&(ANDNOTORA-IBC)y
[nstruction Matrix (IM) and an hs-cxpression extracted from it IM
keeps multiple instructions for cach clement of the As-cxpression.
An clement of the his-expression is extracted from the corresponding
row in IM. The cells in bold typefacc arc the cxtracted clements

The pseudocode of the internal data structure of the cell in IM which
shows the initial values of the fields. The tield iustruction can be
cither function or terminal. MAX FITNESS and 0 are the maximal
and minimal possible fitness, respectively. -1 means there are no

links for the left and right child of the tree node at the beginning

X1

is

i6

37

4.4

4.6
4.7

48
4.9

52

The steps of extracting (AND OR NOT A B C -1) from the IM in
Fig. 4.2. For each trec node, IMGP sclects two instructions in the
corresponding row of IM randomly, compares their average and best
fitness, and extracts onc of them probabilistically. After extracting
a tree node, IMGP recursively extracts its left and right child 40
Crossover in IMGP. The left subtree in the first individual is re-
placed with its better counterpart in the second individual .~ . . . 43
The flow chart of IMGP 46
The average fitness of the best individuals of IMGP and lilgp through

generations on the four testing problems 0 . 000 4%
The schemata in Canonical Genetic Programming 60
The schemata in Instruction Matrix based Genetic Programming . . 61

An artificial problem of motif discovery. It shows (a) the sequences
S, {b) the Posttion Indicator Matnx 4, (c) the motif instances S{.4),
(d) the Position Count Matrix (.4} and the count of the background
nucleotides {M(5),|h ¢ B}, (¢) the Position Frequency Matrix N(A)
and the background relative frequencics {6yl ¢ B}. In the sc-
quences S, the letters in lower case arc the background bases, and
the letiers in upper casc are the motifinstances 70
The exccution path of CRMD with the example tn Fig. 5.1. (a) all
the subsequences of seven bps are extracted from the sequences S.
(b) the subsequences arc then grouped into separate clusters. (c) the
initial PCMs arc calculated as the PFMs of the clusters multiplied
with £ (10 in this example). (d) the nitial PCMs are subscquently
refined to find the local optimal set of motif candidates. (¢) the best
set is returned as the discovered motif instances where the correct

Instances arc in uppercases AT 88

X1

Al

A2
A3

A4

AS

A.6

A7

The solution path of the linear coefficients and the evolution of the

testing error by LARS

.........................

An example of augmented kernel matrix

...............

The weights of the attributes and the counts of the attributes selected

in the classification of the first diabetes dataset

............

The weights of the subsequences and the counts of the subsequences

selected in the classification of the HBV dataset

...........

The weights of the subsequences and the counts of the subsequences

selected in the classification of the colon dataset

The weights of the positions and the counts of the positions scléctt_:d

in the classification of the C. elegans dataset

.............

The relative entropies on the positions of the splicing sequences

over the non-splicing sequences in the classification of the C. ele-

gans dataset

..............................

List of Tables

3.1
3.2

33

4.1

4.2

4.3

4.4

The Experiment Settings of The Algorithms
Experiment Results of GA/ICA and other population based GA on
seven benchmark functions. The last column shows the p-value of
the t-test of the mean values of OGA/Q and GA/ICA, where the

hypothesis that the two mean values are the same 1s rejected at the

significant level 0.05

Experiment Results of GA/ICA and other ICA based GA on seven

benchmark functions. The best values are bolded

The Experiment Settings of IMGP and lilgp on the Benchmark Prob-

lems

The Numerical Experiment Results of IMGP and CGP on the Bench-
mark Problems. It shows the success rate, the fitness of the best
individuals, .the nun}bcr of tree nodes and the running time. The
fitness and the size of the best program tree are reported in their
minimal:median:maximal values inall theruns
The Experiment Results of IMGP, PIPE and CGP on Six-Bit Parity

Problem. It shows the success rate, the number of program evalua-

tions, and the numberoftreenodes

The Experiment Results IMGP, GMPE and CGP on Max Problem.

It shows the success rate and the number of program evaluations . .

Xiv

28

29

30

50 -

4.5

4.6

4.7

4.8

4.9

5.1

5.2

5.3

The Experiment Results of IMGP, PEEL and GGP on Function Re-
gression. It shows the fitness of the best individual
Comparison of IMGP and G*P on the 4 UCI behchmark classifica-
tion problems. DT, FRBS, ANN and Petri are the 4 GP approaches.
We compare the training and testing errors in their best and average
results. The errors are reported in unit of percentage
The p-values of the t-test of the average testing errors of IMGP with

G*P on the four benchmark problems. The hypothesis that the two

average testing errors arc the same 1s rejected at the significant level

Comparison of IMGP, Decision tree (DT}, Neural Networks (NN)
and Support Vector Machine (SVM) on the 4 UC[benchmark prob-
lems. The best and average testing errors in unit of percentage arc
reported. For the determmistic algorithms, i.e., DT and SVM, the
best and average results are the same. DT was not run for Horse
since the program C5.0 was unable to handle the training and test-

ing datasets separately

The respective p-values of the t-test of the average testing errors
of IMGP and other algorithms on the four benchmark problems.
The hypothesis that the two average testing errors are the same 1s

rejected at the significant level 0.05

The setting of the benchmark datasets: the number of sequences,

the length of sequences, the width of motifs and the number of motif

instances

Comparisons of EDAMD, GALF and GAME en the eight datasets:
Best results (precisions, recalls and F-scores)

Comparisons of EDAMD, GALF and GAME on the eight datasets:

Average results (precisions, recalls and F-scores)

XV

5.5

5.6

5.7

59

Average results for the synthetic datasets experiment: Width is for
the motif width, Num 1s for the number of sequences, Con 1s for

conservation degree. P is for Precision, R is for Recall and F is for

F-score. Sampler refers to Motif Sampler 103
the real datasets: the numbers and the lengths of sequences. the
width and the numbers of motif instances 104

The results for the real datasets assuming no QOPS: P is for Precision.,

R is for Recall and F is for F-score. Sampler refers to Motif Sampler 104
The results for the real datasets assuming OOPS: P is for Precision,

R is for Recall and F is for F-score e e e e e 105
The average results of MEME, Motif Sampler and CRMD on the

ABS and the SCPD databases. P is for Precision, R is for Recall, F

is for F' — score
The average performance of MEME, Motif Sampler and CRMD on
the E. coli datasets. Each algorithm outputs five motifs, and the one

of the best nPC among the five outputs is recorded as the result. The

- last column reports the nPC of the top-scored motif in terms of the

5.10

5.11

5.12

score function used in the individual algonthm 108
The average results of MEME, Motif Sampler and CRMD on the
Tompa dataset. xPPV is xTP/(xTP + xF P) for both nucleotide and
the site levels, and sASP is (sSn+sPPV)/2 109
The results of MEME, Motif Sampler and CRMD on the liver-
specific dataset of multiple motifs. Each program is executed twice
with five and ten outputs, respectively. P is for Precision, R 1s for
Recall,Fiasfor F —score 110
The complexities of the motif discovery algorithms. L is the se-
quence length. D 1s the number of the sequences. P 1s the popula-
tion size. G is the number of generations. C is the number of initial

consensuses. { is the number of iterations

Xvi

5.13

5.14

Al

A2

A3

predictions and the number of selected features arc included

The numbers of the subsequences, the theoretical maximal numbers
of the clusters ‘%. the numbers of the clusters and the reductions of
the seeds for Refine

The comparison between EDAMD, CRMD with OOPS and CRMD

without OOPS on the eight selected datasets

The comparison of the results of SKFM and SVM on the three
diabetes datascts. Each dataset is partitioned using 5-fold cross-
validation. The individual performance on each partition and the
average performance on all the partitions are included
The comparison of the resuits of SKFM and SVM on the HBV
dataset. The dataset is separated into training and testing sct us-
ing 5-fold partition. The individual performance on cach partition
and the average performance on all the partitions are included

The results of ARD, RFE with SVM, Fisher score with SVM and

SKFM on the Colon cancer classification. The number of wrong

XVIii

. 163

. 164

Chapter 1

Introduction

Evolutionary Computation (EC) [S1][42][61][8][99][108][37][36] is a general pow-
erful optimization framework to solve a large amount of optimization problems
which are not amenable to other deterministic ad. hoc algorithms. By exploiting
existing solutions and exploring the solution space in parallel, EC is able to find
an optimal or close-to-optimal solution within a reasonable amount of time. In-
corporating the statistics of the existing solutions and the properties of the solution
space in the searching, EC becomes more effective and efficient to find the optimal

solution.

1.1 Optimization

Optimization is indispensable in solving many practical problems. The objective of
a problem can be formulated as an explicit or implicit function, and the minimum
of the objective function is the best solution of the problem. In Machine Leamning,
learning a classifier or a regressor is formulated as minimizing the error between the
predicted response and the true response. In Artificial Intelligence, training a robot
is formulated as minimizing the number of the pellets missed and the times it hits a
wall. In bioinformatics, motif discovery is to identify the DNA subsequences with

minimal value of a property function.

Chapter | Introduction - 2

Ideally, if the objective function of the problem is an explicit mathematical func-
tion, it is possible to find its optimum using standard mathematical procedures, such
as linear programming [27] and more general convex optimization [19]. For other
problems, ad hoc algorithms are developed. For example, the objective function
in Support Vector Machine [107] is a constrained convex function, whose global
minimum is guaranteed, and many algorithms are developed to solve it.

However, it may be difficult to find the global optimum of the objective func-
tion in various other cases. In Neural Network [13], the objective function is non-
convex, and so only a local optimum can be found. In some high dimensional prob-
lems, the search space of the solution is extremely large, and so finding its global
optimum is very time consuming. For the notorious NP-hard problems [57], it is
impossible to find the global optima with less than exponential time.

To make things worse, the objectives of some problems cannot be formulated
as explicit mathematical functions. Therefore, it is very difficult, if not impossible,
to find their Stz;lulions using only mathematical methods. Other non-mathematical
procedures are needed to optimize these type of problems. For example, in robot
training [61], a series of controlled actions are to be implemented to collect all the
pellets while avoiding hitting the walls in a room. In motif discovery [25], the mini-
mum of the property function can only be attained by trying different combinations

of subsequences.

1.2 Evolutionary Computation

Evolutionary Computation (EC) [51][42][61][8][99][108][37][36] is a powerful op-
timization framework for general purpose. For the af_orcmemioncd problems which
pose difficulty for deterministic approaches, EC is frequently the last resort to find
its optimal or close-to-optimal solution.) A
EC searches for t‘he solution by evolving a population of individuals which rep-

Lresent candidate solutions to the problem. Evolving, as its analogy in the nature,

Chapter | Introduction 3

means fitter solutions survive and produce new solutions. An individual consists
of the genes corresponding to the components of the problem solution. A fitness
function, 1.c., the objective measure, is applicd on an individual to evaluate the ex-
tent to which the individual solves the problem. The population is initialized with
the individuals randomly sampled in the scarch space. During the cvolution, the
existing individuals crossover and mutate to exchaﬁgc the information and gencrate
new offsprings. The individuals with better fitness have more chances to crossover
and mutate, and ‘thcir offsprings arc likely to be better than the offsprings generated
by the individuals with worse fitness. By generating better and better solutions, EC
may find the global optimum cventually.

Employing a population of individuals to search the solution space in parallel,
EC covers a large portion of the solution space and therefore EC has a relatively
better chance to locate the global optimum. Exploiting the existing good solutions
to generate new solutions, EC is actually guided with a heunistic to find better and
better solutions during the cvolution, and hence it is much morce cfficient than pure
random search. Schema theory also explains that EC cvolves numerous schemata,
i.€., solution patterns, simultancously with a limited population, and therefore it
is more effective than deterministic approach to uncover the pattern of the global
optimum.

EC can be used to solve those problems mentioned in Section 1.1. For the high
dimensional problems, finding their global optima using mathematical approaches
may induce an inhibitive time and/or space complexity, but EC is a good alterna-
tive to find a close-to-optimal solution with a reasonablc time. For the non-convex
problems with many local optima, such as the learning objective function in Neural
Network, EC is able to locﬁ-te multiple local optima which may include the global
optima. For the NP-hard problems with the exponentially growing search space, EC
can be applied to find a satisfactory solution given a sufficient amount of time. Even
for the problems whose objectives are not mathematical functions, EC can still be

used to find an optimal solution as long as there is a fitness function to evaluate the

Chapter I Introduction : 4

solution.

1.3 [Estimation of Dependency and Distribution Al-

gorithm

Estimation of Distribution Algorithm (EDA) [67] calculates the statistics of the pop-
ulation of the individuals, and uses the statistics to guide the application of the ge-
netic operators in the evolution. The original crossover and mutation in the standard
EC are totally random, and thus they may not always generate good ()ITSpfiﬂgs in the
evolution. Since the population of the individuals covers a part of the fitness land-
scape, EDA indirectly learns the properties of the fitness landscape by building a
distribution model of the population. With the irllformation of the fitness landscape,
the genetic operators are less random and more likely to generate good offsprings.

The distribution model used is a key part to the success of EDA. According to
the no free lunch theorem [121], there is no universal distribution model that fits all
kinds of fitness landscapes. Therefore, a varicty of distribution models have been
proposed, which involves different properties of the fitness landscape. Complicated
models may capture many and subtle properties of the fitness landscape, and thus
the genetic operators are better directed in generating good individuals. However,
given a limited size of the population, it is difficult to learn a complicated model
accurately and thus its advantage is difficult to be realized. On the other hand, a
simple distribution model is easy to estimate with a limited number of individuals.
Nevertheless, a simple model may be insufficient to approximate a complicated
fitness landscape, and thus its benefit to the genetic operators may be trivial.

To tradeoff the complexity and tl\#; learning of distribution models in EDA, this
thesis proposes a framework of Estlﬁnation of Dependency and Distribution Algo-
rithm (EDDA) to choose an approprfii?é fl:IO(jQ] automatically. Basically, EDDA par-

titions an individual representation into a fevt‘hgarts such that they are independent

Chapter 1 Introduction 5

with respect to (w.r.t.) the fitness function. The independent parts of the individual
representation are evolved separately with a different distribution model cach. The
combination of the optima of the independent parts forms the optimum of the com-
plete individual representation. For the problems which cannot be partitioned into
the completely independent parts, EDDA also maintains the information of the in-
terdependencies between the separate parts and cvolves the interdependencics along
with the independent parts. The complexity of a model is controlled adaptively by
the amount of the independent and interdependent information kept in the model.

There are four major advantages of EDDA over the standard EC,

First, partitioning the individual representation and evolving the independent
parts separately may reduce the size of the search space. In the worse casc, the
search spacc of all the dimensions in EC is the cartesian product of the individual
dimensions, and the sizc of the complete scarch space is the product of the sizes of
the dimensions. In the best case, the size of the search space in EDDA is the sum
of the sizes of the search spaces of the independent parts.

Second, important interdependencies between the separate parts are maintained
while the trivial ones are ignored. [n EDA, a complicated model may maintain a
large amount of information of the interdependencies between the genes. However,
some of such interdependency information may be unnecessary, and there are too
many parameters to estimate accurately. In EDDA, it is possible to find a proper
balance between the estimation accuracy and the model complexity.

Third, it is relatively casy to control the diversity and the convergence of the
populations of the separate parts; i’f the individual representation. Diversity and
convergence affects how much the' solution space 1s searched directly. In high di-
mensional space, the population in the standard EC sometimcs covers only a small
and sparsc arca in the scarch space, and it is relatively difficult to manipulate the size
and the density of the covered search area. In EDDA, because an independent part
of the individual representation consists of only a few dimensions, it may be easier

to control the diversity and convergence in such a relatively small search space.

Chapter 1 Introduction 6

Fourth, compared to some £EDAs, EDDA lcarns the distribution model with all
the individuals and their fitness in the population. Thercfore, it possibic for EDDA
to estimate a better approximation of a morc complete fitness landscape. On the
contrary, somc EDAs discard the individuals of bad fitncss, and usc only the good
individuals for model estimation. Consequently, the resuited distribution may be
misleading tn the arca of bad individuals, and thus distorted on the complete fitness
landscape.

This thesis proposes and implements four algorithms developed under the frame-
work of EDDA. The thesis structure 1s as follows,

Chapter 2 introduces the background research related to EDDA in the literature.

EDDA is first employed in Genetic Algorithm (GA) {51][42] to optimize objcc-
tive functions by converting the problem solution into some independent parts and
evolving the independent parts separately. Chapter 3 describes a new Genetic Al-
gorithm based on Independent Component Analysis (GA/IHCA) for unconstrained
global optimization of continuous functions. GA/ICA uses Independent Compo-
nent Analysis [55] to lincarly transform the original dimensions of the problem into
new components which are independent from cach other w.r.t. the fitness function.
It projects the population on the independent components and divide the popula-
tion into sub-populations along the independent components. Genetic operators
are applied on the sub-populations to generate new sub-populations, which are then
combined into a new population of all the dimensions. In other words, GA/ICA uses
GA to find the Optima on the independent components, and combines the optima as
the global optimum for the problem. The experiment results verify that GA/ICA
produces optimal or close-to-optimal solutions better than or comparable to those
-produced by some of other GAs and it requires much less fitness cvaluations of
individuais.

EDDA can also be used in Genetic Programming (GP) [61][8] to specd up
the GP evolution by evolving the GP instructions and their interactions simultane-

ously. Chapter 4 presents a novel Instruction Matrix based Genetic Programming

Chapter | Introduction 7

{IMGP). IMGP maintains an instruction Matrix (1M) to store the information of
tree nodes and sub-trees. The trec nodes are evolved independently and their inter-
dependencics are maintained in the form of subtrees. IMGP extracts program trees
from IM, and updates IM with the information of the extracted program trees. As
IM actually keeps part of the information of the schemata of GP and evolves the
schemata directly, IMGP is effective and cfficient to find the optimal schema. The
experiments on the benchmark problems have verified that the results of IMGP arc
not only better than those of Canonical Genetic Programming in terms of the quali-
ties of the solutions and the number of program cvaluations, but they are also better
than some of the related EDA-based GP algorithms. IMGP is also used to evolve
programs for practical classification problems. 1t has obtained higher classification
accuracies than 4 other GP classification algorithms on 4 benchmark classification
problems.

Chapter 5 proposes an Estimation of Distribution Algorithm for Motit Dhscov-
ery (EDAMD) as an application of EDDA to solve a rcal bioinformatics problem.
Motif discovery [25] is to find the binding subscquences of transcriptional factors,
Le., mbtif mstances, on DNA sequences using computational methods. The con-
sensus, i.¢., the common pattern of the motif instances, and the instances of a mo-
tif are represented in 1-out-of-4 encoding to convert the problem in a continuous
domain. A Gaussian distribution models the distribution of the population of the
candidate motif consensus. The advantage of using a Gaussian distribution is that
it captures the bivariate dependencies between the positions in a motif, and the in-
terdependencies between the independent positions may vanish as estimated from
the population. After a new motif consensus is sampled from the Gaussian distri-
bution, EDAMD uscs a greedy Gibbs sampling to find the nearest local optimum
around it. The experiments show that EDAMD is better than or comparable to other
algorithms on the benchmark problems.

Upon the success of EDAMD, it is redesigned as a deterministic algorithm, i.c.,

“+y

e

Chapter I Introduction ‘ h

Cluster Refinement Algorithm for Motif Discovery (CRMD), which is more cth-
cient and effective. Instead of evolving a population of possible candidate consen-
suses, all the DNA subsequences are clustercd according to their information con-
tents. The consensuscs of the clusters are then served as the initial motif candidates
for further refinement to locate the corresponding motif instances. The number of
the motif instances is adjusted automatically by the controlling thresholds adapted
to the motif consensus. CRMD has been tested on a varicty of benchmark problems
of a wide range of properties. The empirical results show that the clustering pro-
vides good initial consensus sceds, and the refinement procedure leads to the local
optimal consensus efficiently. The qualities of the discovered solutions are com-
pared favorably with the solutions produced by other state-of-thc-art algorithms.

Chapter 6 is the conclusion of the thesis.

Chapter 2

Background

Evolutionary Computation (EC) has four major branches, Genetic Algorithm(GA)
[51][42], Genctic Programming (GP) [61][8], Evolutionary Strategy [99][108] and
Evolutionary Programming [37][36]. All these four branches follow the basic frame-
work of EC: maintaining a population of individuals, selecting good individuals to
crossover and mutation, and putting the offsprings in the population of the next
generation. An individual consists of genes to represent a solution to the problem.
The usefulness of an individual is cvaluated with a fitness function. The genctic
operators, i.c., selection, crossover and nlu;ation, are used to generate new individ-
uals in the evolution. The major diffcrences bct-wccn the four branches of EC are
the individual representations, the specific mechanisms of selection, crossover and
mutation.

Estimation of Distribution Algorithm (EDA) [67] is an extension of EC with
statistical analysis. Generally, in each generation, EDA selects some good individ-
uals from the population, lcarns the distribution of these good individuals, and then
it generates a new population from the distribution. EDA has been applied to both
GA and GP.

In this thesis, Estimation of Dependency and Distribution Algorithm (EDDA) 1s

a variant of EDA for GA and GP, which are the most two important kinds of EC.

Chapter 2 Background 10

2.1 Genetic Algorithm and Genetic Programming

2.1.1 Genetic Algorithm

GA [42][51] is a kind of EC for search and optimization problems. The individual is
a vector of numbers corresponding to the solution of the problem. In the view point
of individual representations, GA can be categorized into two classes: the Binary
Coded Genetic Algorithm and the Real Coded Genetic Algorithm.

Binary Coded Genetic Algorithm (BCGA) [51][42] is the traditional GA using
binary coding. In BCGA, an individual is encoded as a vector of binary digits. i.e.
0 and 1. Simple crossover is selecting a crossover point randomly in the parents,
swapping the segments before and after the crossover point of the parents. and thus
producing two offsprings. Uniform crossover {113] determines the values of each
gene by randomly selecting the values of the same gene from either of the parents.
Other types of crossover of binary coding are reported in [34]. Mutation is selecting
a mutation point randomly in the parent, and flipping the binary number of the gene
on the mutation point.

Real Coded Genetic Algorithm (RCGA) [50] is suitable for problems in con-
tinuous domain. In RCGA, an individual is a vector of real numbers. Simple
crossover [123][{82] 1s the same as the one in BCGA. As RCGA uses real num-
bers for individual representation, complex crossovers have been developed. A typ-
ical one is the flat crossover. Suppose the parents are (| = (r_'} o) ¢}y and
Cz = (¢---¢}---¢c2), the offspring is H = (- h;---h,), where h, is a real num-
ber randomly generated out of the interval of [¢}.¢?). The simplest mutation in
RCGA is the random mutation {82]. Suppose the paremt is C = (¢ -+ ¢, - ¢y). and
ci € la;. b} is selected as the gene to be mutated, the offspring is H = {¢)---¢]---¢y).
where ¢! is a random real number from the domain [g,.b;]. More types of crossover

and mutation can be found in [50].

Chapter 2 Background B

AND AND

OR NOT NOT OR

A B 1 C A B c

Figure 2.1: Canonical Genetic Programming: (AND OR A B NOT C) & {AND
NOT AOR B ()

2.1.2 Genetic Programming

GP [61] automatically constructs computer programs as problem solutions. The in-
dividual in GP 1s a computer program, which receives the inputs from the problem,
and gives the output as the answer. GP has successfully produced results com-
petitive with human solutions {10]. There are severa: types of GP with different
individual representations.

Canonical Genetic Programming (CGP) [61] is the original standard GP. It rep-
resents a program as a tree, encoded in a LISP-like s-expression. Fig. 2.1 shows two
examples. The tree is composed of the nodes of functions and terminals. Executing
the program is traversing the tree in the post-order recursively. CGP crossover is
selecting two crossover points in the two parents respectively, and exchanging their
subtrees at the two crossover points. CGP mutation is selecting a mutation point in
the parent, and replacing its subtree with a new subtree randomly generated.
¢ Strongly Typed Genetic Programming [84] enforces data type constraints in
CGA to manipulate multiple data types. Therefore, it avoids searching in the solu-
tion space which involves inappropriate data. It also employs generic functions and
generic data types to make it more powerful and practical.

Linear Genetic Programming [8] represents the program as a sequence of ma-
chine codes based on a register machine. The program receives the inputs from the
registers and puts the output in a specified register. The crossover 1s swapping the
segments of the codes between two crossover points in the two parents. Mutation

is replacing a machine code with a new one randomly generated. Evaluating the

Chapter 2 Buackground 12

program is executing the codes sequentially on the register machine.

Stack-based Genetic Programming [89] represents the program as a sequence
of functions and terminals. It is executed on a stack-based virtual machine and its
instruction set includes the stack operations, e.g., POP & PUSH. It uscs simple two
points crossover and one point mutation.

Graph Genetic Programming [91] cncodes the program in a grid of functions
and terminals. Some of the nodes in the grid are connected with the directed links
which indicate the order of execution. A sequence of continual links forms an
execution path. There can be multiple exccution pathes in a grid. Executing the
program is evaluating the functions and terminals following the execution pathes in
parallel. Crossover and mutation are processed on the level of subgraphs.

Cartesian Genetic Programming [83] 1s also based on a grid of function nodes.

Unlike Graph GP, the program is represented as a sequence of groups of indices.>

-~ -

Each group of indices corresponds to a function node, and it consists of three indices
for inputs and one index for the function. Crossover and mutation are used to modify
the index sequence.

Genetic Parallel Programming [70] evolves a general paralicl program on a
Multi-Arithmetic-Logic-Unit Processor. A parallel program 1s compgsed of a serics
of paralle! instructions, each of which consists of several parallel sub-instructions.
Genetic Parallel Programming is observed to evolve paralle! programs with less
computational effort than their sequential counterparts.

Grammatically-based Genetic Programming [120}[[22] represents programs in-
directly. It uses a set of grammar rules to generate a population of grammar deriva-
tion trees. Interpreting the leaves of a tree sequentially translating it into a program.
It also employs some advanced mechanisms for grammar evolution, such as type

control, grammar modification, merit selection, and encapsulation.

Chapter 2 Buckground 3

2.2 Estimation of Distribution Algorithm

2.2.1 Estimation of Distribution Algorithm for Genetic Algorithm

Population-Based Incremental Learning (PBIL) [7] maintains a vector of probabil-
ities, each of which is the distribution of thc corresponding gene of the solutions in
the population. PBIL samples a population of individuals according to the distri-
bution in the vector of probabilities, and updates the vector with the best individual
in the population. PBIL is extended to incorporate t?;c crossover operator in [106].
The extended PBIL maintains a set of probability vectors. It not only crossovers
between the selected individuals, but also between the probability vectors.

Compact Genetic Algorithm {47] is similar to PBIL. However, it samples only
two individuals from the probability vector, and updates the vector with the better
one. Compact GA is extended to incorporate the linkage information between the
genes in [46].

Univariate Marginal Distribution Algorithm (UMDA) [66] assumes that the genes
of the individual are independent w.r.t. the fitness. Thercfore, the joint probability
density function is a product of Gaussian distributions of the independent genes as
Eq. 2.1, where m is the number of the genes, y, is the mean of the ith gene of
the good individuals, and o; is the standard deviation of the ith gene of the good

individuals.

M " l

pyvipo)=]]p . (snpi o) =
’ ,l—! ‘ ,n,fz_rro,

Estimation of Multivariate Normal density Algorithm (EMNA) [65] takes the

1 i 2
I f{,’ir
e - 1

{2.1)

pairwise dependencies between the variables into account. The joint probability
density function is a multivariate normal distribution as Eq. 2.2, where u 1s the
mean of the good individuals, and X is the covariance matrix of the genes of the good
individuals. This approach thus considers all the second-order moment statistics of

the genes of the good individuals.

Chapter 2 Background 14

1

— Yiv 'Y Y g (2.2)
(2m)1Zf2

p{vu)=

Estimation of Mixture of Distribution Algorithm (EMDA) [67] cmploys multi-
ple Gaussian distributions to model the population. A mixture of Gaussian distribu-
tions is defined as Eq. 2.3, where ¢ is the number of distributions, P(i} is the prior
probability of the ith Gaussian distribution, p(x{/) is the conditional distribution of x
w.r.t. the /th Gaussian distribution. The model is updated with the good individuals

in the population using the Expectation-Maximization procedure [85].

plx) = ZP(:');)(.\'[;') = ZP({)p i (X)) (2.3)

il il

In the aforementioned EDA variants using Gaussian distribution, only the pair-
wise linear correlations are considered. It may be insufficient to model the fitness
landscape correctly since other kinds of higher moment dependencies are ignored.

Bayesian Optimization Algorithm [87][88] uses (hicrarchical} Baycsian nct-
work to model the joint distribution of the variables in the good individuals in order
to generate new individuals. [t is also able to identify, reproduce and mix the build-
ing blocks in the individual representation.

Univariate Marginal Distribution Algorithm with Independent Component Anal-
ysis (UMDA/ICA) {126] incorporates ICA [55] into UMDA to resolve the interde-
pendence between the dimenstons of the problem. First it uses 1CA on the popula-
tion in each generation to find the independent linear combinations of the original
dimensions. Then it transforms the population from the original space into the new
space defined by the independent linear combinations. Afterwards, UMDA is used
on the transformed population. However, it does not explicitly estimate the dis-
tribution functions of the individuals on the independent dimensions. Instead, it
crossovers the individuals in the new space and converts the offspring back into the
original space as the new population. UMDA/ICA uses only some of the ihdivid-

uals for ICA in the evolution, so it may not find the true independent components

Chapter 2 Buckground 5

of the complete landscape as it loses the information contained in the rest of the
population. In addition, the selected individuals are treated equally in both ICA and
the evolution disregarding their different fitness. Finally, it uses only crossover in
the evolution of each independent componeni, which may be ineffective for difficuit

problems.

2.2.2 Estimation of Distribution Algorithm for Genetic Program-

ming

Probabilistic Incremental Program Evolution (PIPE) [103] maintains a probability
tree to evolve programs. A tree node is a vector keeping the probabilities of the
functions and terminals of the node. In cach generation, PIPE creates a population
by constructing trees based on the probability tree, and updates the probability trec
with the information of the best individual in the population. However, updating
the probability tree only with the best individual without the information of the rest
of the population may be insufficient to estimate the model accurately. Besides, it
ignores the interdependencies between the nodes.

Competent Genctic Programming [105] combines Compact Genetic Algorithm
[46] and PIPE as a multivariate probabilistic model of programs. Its significance
1s that 1t partitions a tree into subtrees, and builds a probabilistic model of each
subtree. Therefore, it is not only able to calculate the probabilities of the nodes, but
the probabilities of the subtrees as well. Nevertheless, it involves high computation
overhead as it uses a heuristic greedy search, which calculates the complexity of
each possible subtree, to identify good subtrees.

Grammar Model-based Program Evolution (GMPE) [110] evolves programs
with the probabilistic context-free grammar. The grammars rules have associated
pr::)duction probabilities. GMPE updates the grammar rules with the good individ-
uals in the population, and uses the grammar rules to produce new individuals. A

grammar rule generates a single node or a whole subtree, and it thus is able to keep

Chapter 2 Background 16

the information of both tree nodes and subtrces. A grammar rule has no position
information though, and so the position of its derivative is not fixed.

The Estimation of Distnibution Algorithms for Genctic Programming in [I18] is
similar to Grammar Model-based Program Evolution. [t employs a probability dis-
tribution over grammar rules to generate new programs. Complex production rules
or subfunctions can be introduced by using transformation to expand one produc-
tion rule into another production rule so as to express high order of dependencics.
However, learning advanced production rules with the proposed greedy algorithm
may take a lot of time.

Program Evolution with Explicit Learning [109] uses Scarch Space Description
Table (SSDT) to describe the solution space. Ant Colony Optimization {17] 1s the
learning method to update the stochastic components of SSDT. Grammar refinement
is employed to focus on the promising solution area by splitting certain rules in
SSDT.

Grid Ant Colony Programming [100] applics Ant Colony Metaheuristic {31] to
GP. It uses a population of ants to navigate across a grid of functions and terminals.
The path traversed by an ant is translated into a program. The ant is guided by
the pheromone on the connections between its current location and other nodes.
The pheromone is updated as the ant passes along a connection. Furthermore, the
pheromone on the tour of the best program is reinforced. In the cvolution, the
pheromone on a connection becomes stronger as more ants and better ants pass
along it. Therefore, the ant may gradually find a serics of good connections and

complete a good program.

Chapter 3

Genetic Algorithm with Independent

Component Analysis

3.1 Overview

EDDA is first employed in Genetic Algorithm (GA) to optimize objective functions
efficiently. Genetic Algorithm (GA) [51][42] can solve the unconstrained continu-
ous optimization problem as formulated in Definition 3.1. GA encodes the problem
solution in a vector of variables as an individual, i.e. the unknown x in Definition
3.1. The objective function in Definition 3.1 cvalualc;; the fitness of the individual.
GA randomly generates a population of individuals to search in the solution space
initially, focuses on the promising solution areas via genetic operators gradually,

and finally converges to the global optimum.

Definition 3.1 An unconstrained continuous optimization problem is solving the

following continuous objective function:
maximize f(x), subject tol <x<u

where / < x < u defines the function domain, i.c. the solution space.

GA may fail to find the optima in some high-dimensional problems sometimes,

because the size of the solution space grows exponentially with the dimension of the

17

)
Chapter 3 Genetic Algorithm with Independent Component Analysis 18

problem. To reduce the size of the solution space, a possible approach is dividing
the original prol;lcm into several sub-problems by its dimensions. Afterwards GA
15 applicd to the sub-problems to find their sub-optima separately. Finally the sub-
optima arc combined as the optimum of the original problem. Since a sub-problem
has fewer dimensions than the original problem, its solution spacé is smallcr than
that of the original problem, so it 1s casier for GA to solve.

The difficulty of this approach is that the dimensions of the problem are usually
interdependent on each other with respect to (w.r.t.) the fitness. In other words,
the fitness of a sub-solution for a sub-problem depends on the sub-solutions for the
other sub-problems. Supposc we have found the optimum for a sub-problem, 1f the
other sub-solutions change, the original optimum might not be optimal any more.
Therefore, even if we find the optima for all the sub-problems, combining them
directly may not give us thc optimum for the original problem.

A new Genetic Algorithm based on Independent Component Analysis (GA/ICA)
is proposed to resolve this difficulty. It uses Independent Component Analysis
(ICA) [55] to find a sct of components which are linear transformations of the
original dimensions. The components are independent from cach other w.r.t. the
fitness, and so the sub-solutions on the independent components do not affect cach
other. Afterwards, the original problem is converted into a new problem defined
on the independent components. Consequently, GA/ICA can decompose the new
problem into sub-problems by the independent components, and use GA to solve
the sub-problems scparately. There are primarily three i1ssues to be solved to make

the algorithm work,

1. ICA is a statistical method while GA is an optimization algorithm. Therefore,
we need to transform the original problem into an cquivalent new problem so

that we can apply ICA on it.

2. When we use GA to solve the sub-problems, we need to know their fitness

functions. However, we only have the fitness function for the original problem

Chapter 3 Genetic Algorithm with Independent Component Analysis 19

with all the dimensions together. Therefore, we need to infer the fitness in the

sub-problems from the original fitness.

3. A solution could becomce a local optimum on a ccrtain dimension when 1t
cannot increase its fitness in cither direction along the dimension. Therefore,
the sub-problems of a single mode!l problem may be multi-modal, and we

need to take extra care when we apply GA on the sub-problems.

The rest of this chapter is orgamzed as follows. Section 3.2 described GA/ICA
in detail and how the above three issues are solved in GA/ICA. Section 3.3 presents
the experiment results on some benchmark problems. GA/ICA produces optimal or
close-to-optimal solutions better than or comparable to thosc produced by the other
GAs tested in this chapter, while GA/ICA requires much less fitness evaluations of

individuals. Section 3.4 is the discussion.

3.2 Architecture

GA/ICA consists of two major stages. In the first stage, GA/ICA samples a large
population of individuals uniformly in the solution space. Then it uses ICA on the
population to transform the original variables into a new sct of variables which arc
independent from each other w.r.t. the fitness. In the second stage, GA/ICA actually
evolves the population to find the solution by running GA on the new independent
variables separately. Since the new variables arc independent, their optima do not
affect each other, and the combination of the their optima is the optimum of the

complete problem.

3.2.1 Independent Component Analysis

Independent Component Analysis (ICA) [55] is originally used as a data trans-
formation method, especially for Blind Source Separation (BSS). Suppose we ob-

serve N m-dimensional data J=1,2...N, ICA tries to find a lincar transformation

Chapter 3 Genetic Algorithm with Independent Component Analysis 20

y = Wx, where W is the demixing matrix, so as to make the variables v,.i — 1--.m
as statistically independent from cach other as possible. In BSS, 1CA tnies to find
the mixing model x = As where s is the recovered independent source signals and 4
15 the mixing matrix. 1t is proved that y equals v up to a multiplicative constant and
permutation. The difficulty of ICA is that neither A4 nor s is known beforchand. In
statistics, the variables y|.y2.- -+ .y, are mutually independent, if their joint density
function can be factorized as the product of their marginal density functions as Eq.
3.1, where p;{y,) is the marginal density of y,.

I

p()’) = P(_V| V2 m) = l_[Pa‘(,‘r';) (3.1
il

To use ICA in an optimization problem, the optimization problem must be con-
verted into an equivalent problem whose fitness can be regarded as the probability
density. Suppose the optimization problem is as defined in Definition 3.1. Intu-
itively, there should be more individuals of higher fitness than the individuals of
lower fitness. If the objective function f(x) has a lower bound 7. — inf{ f{x)|] <
x < u}, the new fitness function is defined as f*(x) = f{x) L > 0. Further supposc
mwr (,f)d,r is the integral of f™(x} over the domain [/.], then g(x) as defined in Eq.
3.2 can be treated as a probability density function as it satisfies the two conditions
following its definition. Clearly, the fitness landscapes of the original and the new

fitness functions are cquivalent up to a translation and scaling.

Sy S -L
[xyde [P () — L)dx

glx) = where g(x}) > 0 & / glxydy=1 (3.2)
Ji

It is difficult to calculate g(x) because the analytical form of the intcgration
of f(x} may not exist in practice. However, given an initial population, it is still
possible to generate a new populatioﬁ of individuals whose distribution roughly
follows the probability density function g(x). Note that ;' (f{x) — L)dx is the same
for the g{x) of all the individuals, and so f{x) — L e g(x). Therefore, GA/ICA

Chapter 3 Genetic Algorithm with Independent Component Analvsis 21

replicates cach individual X for [C- (f(x' - L)) times, where (is an appropriatc
constant to make C- (f(x — L)) > 1. This way, the copics of an individual x is
approximatcly proportionate to its density as g(x). Then l(‘.A is applied on this new
population to find the independent components satisfying Eq. 3.3, where ¢/(5) is
the joint density function defined on the independent components and g(s,) is the
univariate marginal density function. During the evolution, g/(x;) can be treated as
the implicit fitness function defined on the /th independent component.
' Hi
glx) = glas) = ¢'(s) = [] &its) (3.3)
i)
GA/ICA uses ICA in a different way than UMDA/ICA does. First, it uses all
the individuals in the population for ICA. Sccond, it uscs the fitness of the indi-
viduals for the probability densities in [CA. Third, it actually runs GA on the sub-

populations of the independent components.

3.2.2 Independent Evolution

After finding the independent components, GA/ICA evolves the population in the
new space to find the solution. It projects the original population on the indepen-
dent components and gets one 1-dimensional sub-population on cach independent
component, which is evolved separatcly. The basic steps of the evolution are shown
in Algorithm 3.1 with the independent components as the inputs. At first GA/ICA
randomly initializes a new population, evaluates the fitness of its individuals, and
remembers the best individual in the population. Then GA/ICA evolves ull 1000
generations at most or the population converges early. In each generations, it runs

the following steps,

1. First GA/ICA needs to decide which genetic operator to use mostly in the

current generation. Usually, crossover shrinks the solution area covered by

Chapter 3 Genetic Algorithm with Independent Component Analysis 22

the population, while mutation makes the population explore a larger solu-
tion arca. Becausc a single modal problem could induce a multimodal sub-
problem on an independent component, GA/IC A uscs mutation as the primary
g:énelic operator. When the best-so-far individual has not been improved for
a relatively long time, we switches to crossover to focus on the neighborhood

of the best-so-far individual.

2. Then GA/ICA projects the population in the original space into the new space
defined by the independent components according to the ICA demixing for-
mula p = Wx. It divides the population by the independent componcents into

m 1-dimensional sub-populations.

3. In the function estimatePop, GA/ICA estimates the new fitness of the 1-
dimensional individuals in the sub-populations. The new fitness instead of the
original fitness is used in the evolution of the corresponding sub-population.

The details are explained in Section 3.2.2.

4. On cach of the independent components, GA/ICA samples a new 1-dimensional
sub-population out of its corresponding !-dimensional sub-population via the
genetic operator it has chosen in step 1. The details of the function icuSample

arc described in Section 3.2.2.

5. After completing the evolution on all the independent components, GA/ICA
combines all the new 1-dimensional sub-populations into a new m-dimensional
population. Then it projects the new population back into the original space
using the ICA mixing formula ¥ = As, and evaluates the fitness of the indi-

viduals.

Fig. 3.1 illustrates how the 1-dimensional sub-populations are combined into a
m-dimensional population. On the left, each row of the table is a sub-population.

The individuals in the ith 1-dimensional sub-population are denoted as {s'.s2.--- ¥},

Chapter 3 Genetic Algorithm with Independent Component Analvsis 23

b
-

* katd—id
-

=t
-

' —— g
-

' ordta—1td
-

-
T b ———
o
-
'I.
e

-
Toiea—

T - A 2 n
S Sy S {7 | Y

=

N

-

Figure 3.1: Combine the 1-dimensional sub-populations into a true m-dimension
population. Row vectors on the left table are the !-dimensional sub-populations.
Column vectors on the right table are the individuals in the population

Algorithm 3.1: Evolution with the Independent Components
Input: W, A
Output: bestind
pop «+ initPop(};
fitness « evaluate (pop);
bestind + bestFunc (pop, fitness)
for gi < ! to 1000 do
[pop., genOp | « checkO[ﬁ (bestind, pop. fitness, stagnancy) ;
icaOldPop «+ W x pop;
for di « 1 to dim do
[icaPop,,, icaFit,] «+ estimatePop {icaOldPop,,. fithess.
icaPop,;, icaFity,) ;
icaNewPop,, « icaSample (icaPop,, icaFit;, genOp):
pop <« A x icaNewPop;
fitness «— evaluate (pop);
[stagnancy bestind |« checkState (pop. fitness, bestind) ,

if stagnancy >-50 then
| break;

L

On the right, each column of the tabie is a m-dimensional individual. The jth indi-

vidual in the population is denoted as (.s“;'.\" st

A

Fitness Estimation

When GA/ICA performs GA on the |-dimensional sub-population on the indepen-
dent component s;, it needs to know the fitness of its 1-dimensional individuals.
UMDAV/ICA uses the fitness of the ortginal individuals for evolution, 1.e. f{As).
However, f{As) depends on all the independent components, so it is not the true

measure of the fitness of the 1-dimensional individuals on s;. The 1deal measurc

Chapter 3 Genetic Algorithm with Independent Component Analysis 24

should be gi(s;) in Eq. 3.3. The difficulty of this mcasure is that all that we have
is g'(s), while gi(s;) is only an implicit term. However, in [CA, it is theoretically
possible to calculate the marginal density function p;(v,) as in Eq. 3.4, wherc - §

represents the dimensions other that ;.

o
pi(y) =/; ply avdv (3.4)

Similarly, the theoretical and empirical formulas for calculating g/(s,) are Eq.
3.5 and Eq. 3.6, respectively, where S; is the set of individuals whose ith variables
equal s;. The problem is that the population may have insufficient individuals which
have the same s; value, especially in high-dimensional space. Therefore, GA/ICA
has to take the nearby individuals into account as well by calculating the average
of their fitness with bigger weight given to the nearer individuals. This method re-
sults in a Parzen window like regression in Eq. 3.7, where o is the average distance
between the individuals and their nearest neighbors, and @(s;.s%) is a distance mea-
sure between sf and sf . In this way, the estimatePop function in Algorithm 3.1 1s

able to estimate the fitness of a one-dimensional individual in a sub-population.

L3

i
gis) = [g wds (3.5)
]
gis) = 2, &) (3.6)
|‘Sf| ¥ 7 ‘—_.\.,:
. N J .k ,’ .k \} \‘ 3
; N8 5 1 1
gi(s)) = 2 1 @38). where (p(.\':-'..\'f) = e 10 (3.7)

=N els].sh)
Independent Component Sampling

The central part of GA/ICA is generating new |-dimensional sub-populations on
the independent components. EDA samples new individuals from the distribution

model of the previous individuals. Since a sub-population has only one dimension,

Chapter 3 Genetic Algorithm with Independent Component Analvsis 25

the fitness landscape is relatively easy, and so there is no need for GA/ICA to build
such a distribution model. GA/ICA generates new individuals by applying genetic
operators to the existing individuals directly. The function independentSumple in
Algorithm 3.1 follows the basic framework of GA except the part of individual
evaluafion, as it cannot evaluate individuals of only one dimension. Due to the
property of a single dimension, it has some advantages over GA, including adaptive
genetic operators, fitness prediction and high pdpulation diversity. ’

At the beginning of a generation, icaSample calculates the average distance of
the individuals to their nearest neighbors. i.e. o, which is used as the parameter to
control the scale of crossover and mutation. In the initial population, the individuals
are randomly generated in the whele solution space, so o is relatively large. As the
population converges, o decreases gradually. With this method, crossover and mu-
tation of GA/ICA adapt to the current sub-populations. Then it runs the following

steps iteratively:

1. icaSumple uses the tertiary-tournament. It randomly selects three individuals.
uses the best two individuals for crossover and mutation, and replaces the

“worst individual with the offspring.

2. icaSumple then generates two random numbers. One number follows the
Laplace distribution in Eq. 3.8, while the other number foliows the Gaus-
sian distribution. icaSam ple uses the Gaussian random number for crossover.
Laplace distribution has bigger tails than Gaussian distribution. icaSample
uses the Cauchy random number for mutation to make it more likely for the

offspring to jump out of the local optimum [124].

| -
plx) = Pars o B (3.8)

3. In each generation, GA/ICA chooses crossover or mutation as the primary

genetic operator in the current evolution. When GA/ICA chooses crossover,

Chapter 3 Genetic Algorithm with Independent Component Analysis 26

icaSample does two crossovers of opposite directions and one mutation, so
it makes the population converge. When GA/ICA chooses mutation instead,
icaSample does two mutations of opposite directions and one crossover, so it
keeps the individuals search in different solution areas. Here the offspring on
the opposite directions of a certain genetic operator are the two offspring gen-
erated on both the left and right sides of the original offspring which would

be generated by the genetic operator.

4. icaSample cannot evaluate the fitness of the offspring candidates directly
because they are of only 1 dimension. Instead, it uses the Parzen window
like regression, as described in the function estimatePop, on the current sub-
population to predict-the fitness of the candidates. Then it chooses one of
them as the offspring probabilistically, with bigger probabilities given to bet-
ter candidates. This technique enables icaSample to search in more promising

L]

directions and avoid wasting evaluation time on bad candidates.

5. As discussed in Section 3.1, the number of local optima could increase on an
independent component, so GA/ICA needs to make the population diverse to
search in a large solution space. Before the offspring is actually put in the
new sub-population, it is adjusted to maintain the sub-population diversity.
icaSample keeps sorted the offspring already generated according to their
positions on the one dimension, and finds the location where to insert the new i
offspring. If the new offspring’s distance to either its pre-neighbor or next-
neighbor in the list is smaller than the current o, it is adjusted to make the
distance at least ¢ if possible, otherwise as large as possible. In this way, the

offspring are pushed away from each other to maintain the sub-population

diversity.

Chapter 3 Genetic Algorithm with Independent Component A‘nu{v.\'i.s' 27

3.3 Experiments

For its optimization performance, GA/ICA is tested to find the global optima of the
six testing functions, and the results are compared to the following state-of-the-art

algorithms, '

1. Orthogonal Genetic Algorithm with Quantization (OGA/Q) [71]: OGA/Q}
uses orthogonal array to generate the initial population and the offspring in

CrOsSSOVCEr,

2. Canonical Genetic Algorithm (CGA) [71]: This is the conventional Genetic

Algorithm, with standard random initialization, crossover and mutation.

3.«~Fast Evolution Strategy (FES) [124}: FES is ES but with Cauchy mutation.

Eq. 3.9 are the six testing functions. All the testing functions are multimodal
with many local optima besides the global optima. The functions’ feasible solu-
tion spaces, global optimal function values and the population sizes and the max-
imal generations that the-algorithms use are shown in Table 3.1. In GA/ICA, the
crossover and mutation rates are 0.66 and 0.33, respectively. In OGA/Q and CGA,
the crossover and mutation rates are 0.10 and 0.02, respectively. FES adopts a
(20, 306) strategy that generates 300 offspring from Cauchy mutation only in a gen-

eration.

Chapter 3 Genetic Algorithm with Independent Component Analysis

Function | Funclion Space | Optimum Population izx enetation
') GAICA OOGAQ | CGA [FES [GANTCA | OGAQ T COGA | IES
hi [—5(.'!0.5(}01'1'1:i 12569.5 MK 200 oo] 20 200 A L0 | - 10D | 4500
fr [—-5.]2.5]2]3“] 40M) 200 W02 HH) 1000 | - 1000 | 2500
f3 |—3|2.3:’.r‘ﬂj L] 400 2HY 2 | 20 200 1006 | - 100§ 750
/1]——600.{1[}[)]‘“j o 40 200 HHy | 20 00 TAI00 | 10| 00N
fs [=50.50]0 0 2 0 | 200 | 20| 2K 10 o oo | 750
fo Ok 992784 GO0 200) 200 | NA 2(H) SJOME | 1000] NA
Table 3.1: The Experiment Settings of The' Algorithms
30
v = Z(-‘GSID([xi1))
il
U
o= =D {x; — 10cos(2mx;) + 10)
il
fi = 20exp
. 1
fo = —
4000
. 29
. . 3 el .
fs = ———=<10sin“(my)+ Y (vi—1)"- {1 + 10sin~ (73,)]
30 ,
il
) 30
+(v30 — 1)~}—Zu(x,-.10,100.4)
il
k{vi—a)". x, >a
1
wherey; = 14 E(x,- + 1) and ul- akm)y=1< 0. —a<yi<a
k(—x, —a)". x; < —a
100 :
- v ein20 x x;
Jo = sin{x;)sin
il r

The ICA algorithm used by GA/ICA is FastICA [54], which is very fast to
find the linear transformation for ICA. Note that ICA does not know the original

dimensions of some functions are actually independent,-so the functions suffice to

verify the capability of ICA to discover the independent components.

Chapter 3 Genetic Algorithm with Independent Component Analysis 29

Test Mucan number of function evaluations Muean optimal Tunction value

tunction [OGAIQ] CGA | FES | GAIICA | OGAR) CGA Fis GACA prvitlue
7 32166 | 458653 | VOGN | 34420 | 1256945 R341 8 12356.4 12569.47 O{HI3]
f~ 224710 | 335993 | S00030 | 56760 | @ 2230 0.2 420 7 (.05KK
I 112421 | 336481 | 150030 | 44400 | —4.4 .10 T8 .27 TENTRAEGHIEE R
11 134000 | 346971 | 200030 [45160 |0 13 3710 F[-14-10F 00162
fs 134556 | 340800 | 150030 | 26840 [-6.0-10 " BN TN B IR PR
A 302773 | 3384171 NA 165020 928 H3.3 NA 97.6 g2. 10 T-

Table 3.2: Experiment Results of GA/ICA and other population based GA on seven
benchmark functions. The last column shows the p-value of the t-test of the mean
values of OGA/Q and GA/ICA, where the hypothesis that the two mean values are
the same is rejected at the significant level 0.05

Table 3.2 shows the experiment results. GA/ICA is exccuted 10 times on cach
testing functions. For each testihg function, the experiment records the mean num-
ber of the function evaluations, the mean function value of the best individuals and
the p-value of the t-test of the mean values of OGA/Q and GA/ICA, where the hy-
pothesis that the two mean values are the same is rejected at the significant level
0.05. t-test is not performed between GA/ICA and other algorithms, since the re-
sults of other algorithms are obviously worse than those of GA/ICA and OGA/Q.
The 20,000 individuals used by ICA are not counted in the mcan number of the
function evaluations, and the good ones among them are not used in the evolution
cither.

OGA/Q and GA/ICA outperform CGA and FES in terms of the function values
of the solutions and the numbers of the function evaluations. Generally, OGA/Q
and GA/ICA have comparable performance. For the function f3, there is no sig-
nificant difference between the mean values of the solutions returned by OGA/Q
and GA/ICA, since the p value is larger than 0.05. For the functions f;, fs and f,
the solutions of GA/IGA are staiistically better that that of OGA/Q since the corre-
sponding p values are smaller than 0.05. For the function f3 and {4, the solutions
of OGA/Q are statistically better that those of GA/ICA. While for all the test func-
tions, the numbers of the function evaluations that GA/ICA uses are significantly
less than those used by OGA/Q. Therefore, the results verify that GA/ICA 1s able

to produce optimat or close-to-optimal solutions better than or comparable to those

Chapter 3 Genetic Algorithm with Independent Component Analysis 30

Test Mean number ol lunction evalualions Muean function value (standurd deviation)
function | UMDAACA BLX-x CGAICA UMDAACA | 31X - GAICA
1 54 500 47,020 M 420 3.686.7 S.07.4 12,569.47
> AR7,160 377,060 56,760 4.1M3 -18.733 424101
f3 47 480 81,640 44,400 -3u328 -4.2158 S0-10 %
14 44,920 47,210 45,160 20210 28734 14.10F
fs 47,100 50,960 26,840 BETEN 213257 140 - 10 ¥
KA 529740 659,300 115020 54 K04 K177 97.61

Table 3.3: Experiment Results of GA/ICA and other I[CA based GA on scven bench-
mark functions. The best values are bolded

of OGA/Q while requiring much less function evaluations.

GA/ICA is then compared to UMDA/ICA [126] and BLX-ox [114], which also
use [CA to transform the problem, under the same experimental settings in Table
3.1. Table 3.3 shows the experimental results. For each testing function, we execute
GA/ICA, UMDA/ICA and BLX-ox for 10 runs, respectively, and we recorded the
mean number of the function evaluations and the mean function valuc of the best
individuals for cach algorithm. It is obvious that GA/ICA find better solutions than
UMDA/ICA and BLX-a. For the functions f; and f, the results of UMDA/ICA
and BLX-q arc far from the global optima. For the functions f>, f3, f3 and fs, the
results of UMDA/ICA and BLX-¢ are close to the global optima, but the results of
GA/ICA are several orders better. By checking the solutions of UMDA/ICA and
BLX-a, it is found that UMDA/ICA and BLX-« actually get stuck in the local op-
tima. GA/ICA also showsits advantage over UMDA/ICA and BLX-a in terms of
the mean number of function evaluations. For the functions f4 and f,, the mean
numbers of function evaluations of GA/ICA are not the least, but they are still com-
parable to the least numbers. While for the other functions, the mean numbers of
function evaluations of GA/ICA are significantly less than those of UMDA/ICA and
BLX-c.

3.4 Discussion

GA/ICA is a new GA employing ICA to solve unconstrained continuous global op-

timization problems. It first uses ICA to identify the independent components of

Chapter 3 Genetic Algorithm with Independent Component Analysis + 31

the solution space w.r.t. the fitness. Then it divides the population into the sub-
populations and evolves the sub-populations on the independent con'nponcnts sepa-
rately. Finally it combines the optima on the independent components as the global
optimum for the original problem. As the high-dimensional problem is divided into
many |1-dimensional sub-problems, the solution space is exponentially reduced, and
so the problem becomes easier for GA to solve. The experiment results show that
GA/ICA requires much less function evaluations to produce optimal or close-to-
optimal solutions which are better than or comparable to those produced by other
testing GAs on the benchmark problems.

There exist other kinds of decompositions in the ficld of data analysis, such
as factor analysis, non-negative matrix decomposition, principle component anal-
ysis, etc. However, none of these is able to discover the latent components which
are independent from each other w.r.t. the fitness. Nonlinear ICA which finds the
nonlinear transformation to produce the independent components is expected to be
more general than ICA. In the case of the function optimization, nonlincar ICA
may be general enough to solve the problems that linear ICA cannot find the in-
dependent components. Nevertheless, nonlinear ICA has its own challenges for
its success, such as the choice of the nonlinear transformation, the indeterminancy
of the number of independent components and the demand of a large number of

training samples.

'Chapter 4

Instruction Matrix Genetic

Programming

4.1 Overview

EDDA can also be used in Genetic Programming (GP) to speed up the GP evolution
by evolving the GP instructions and their interactions simultancously. Genetic Pro-
gramming (GP) [61][8] automatically constructs computer programs by evolution-
ary .proccss. In GP, an individual represents an executable program. The program
receives the inputs from the problem, and gives the output as the answer to the probs
lem. The objective of GP is to evolve an optimal solution for the problem. GP has
successfully produced results competitive with human solutions [10]. In Canonical
Genetic Programming (CGP) propesed by Koza [61], an individual is a LISP-like
program tree. The tree is composed of tree nodes of either functions or terminals.
lf!rcc.nodcs are viewed as nominal variublc;, CGP can be -trcatcd as a combi-
natorial optimization problem. CGP has a huge solution space and it is NP-hard.
To make things worse, the number of the tree nodes in CGP is not fixed, so the size
of the solution space may increase exponentially during the evolution. It is thus
quite-common that CGP has to evaluate a large number of individuals before it can
find the optimal program. In addition, evaluating an individual in CGP is usually

time-consuming, because it needs to run the program tree for each training case. -

32

Chapter 4 Instruction Matrix Genetic Programming

‘el
-l

Therefore, the time complexity of CGP is extremely high.

Divide-and-Conquer is a long-standing methodology to solve separable prob-
lems. To apply it to GP evolution, a complete program tree is divided into tree
nodes, which are evolved separately to reduce the complexity. The difficulty of this
approach is that tree nodes arc interdependent on cach other with respect to (w.r.t.)
the fitness. The combination of the good tree nodes is necessarily the optimum of
the complete program trec.

The proposed algorithm also takes in account the interdependencics between
tree nodes in the form of subtrecs. Subtrees arc the building blocks in CGP, and they
are combined into individuals via crossover [61]. Koza have successfully divided a
program trec into subtrees and evolved the subtrees separately [62]. Combining the
optima of the subtrees will have a good chance of obtaining the optimal or closc-to-
optimal complete program tree. In this way, the algorithm has both the advantages
of the smaller solution space by dividing the complete program tree into scparate
tree nodes and maintaining the interdependencies between tree nodes in the form of
subtrees.

A new GP framework, Instruction Matrix based Genetic Programming (IMGP){73],
evolves tree nodes and subtrees separately. There is no explicit population to store
individual program trees in IMGP. Instead, it uses Instruction Matrix (IM) to main-
tain the fitness of the tree nodes and the subtrecs. A row in IM consists of the cells
of all the possible instructions, their fitness and subtrees on a certain trec node. In
theory, IMGP can extract all the possible program trees from IM. It extracts a trec
node from the corresponding row in IM according to the fitness of the instructions.
The tree nodes extracted are combined into a complete program tree. IMGP cval-
uvates the fitness of the program trec and then updates the fitness of the extracted
tree nodes in IM accordingly. When the fitness of an instruction is worse than that
of its subtree, IMGP extracts the whole subtree instead of extracting the tree nodes
separately, and the fitness of the extracted subtree may be updated. Between gener-

ations, IMGP replaces bad fitness instructions with good fitness instructions in the

Chapter 4 Instruction Matrix Genetic Programming 34

same row in {M, and gradually IM is populated with instructions of good fitness.
IMGP is similar to Cooperative Coevolution [92]. It evolves tree nodes and
subtrees separately in the sense that tree nodes and subtrees have their own fitness
stored in IM. The trec nodes and the subtrecs arc extracted separaiely from the
corresponding rows in IM. The extracted components cooperate in the form of a
complete program trcc. The fitness of the complete program tree is also used to
update the fitness of its tree nodes and subtrees. A tree node evolves on its own by
reproducing instructions of good fitness, and removing instructions of bad fitness.
This chapter is organized as foilow's. Section 4.2 describes the representation
and algorithm of IMGP in detail. Section 4.3 presents the experiments on the
benchmark GP problems. Section 4.4 gives an application example of IMGP for

classification problems and the experimental results. Section 4.5 is the discussion.

4.2 Architecture

If tree nodes are treated as variables, Canonical Genetic Programming (CGP) is a
high dimensional combinatorial optimization problem. To apply the Divide-and-
Conquer methodology, a new framework called Instruction Matrix based Genetic
Programming (IMGP}) is proposed. IMGP cvolves tree nodes separately while tak-
ing into account of their interdependencies in the form of subtrees. 1t maintains an
Instruction Matrix (IM) to keep the fitness of functions and terminals in tree nodes.
[t uses a new kind of fixed length expression to represent a program tree. It extracts
a program tree from IM by selecting a function or terminal of good fitness for cach
possible tree node. After the program tree is evaluated, IMGP updates the fitness of

corresponding functions or terminals in M.

Chapter 4 Instruction Matrix Genetic Programming 35

(AND) { AND)

(OR) (NOT) (NOT) { OR)
— ,:4—-‘ a—c p—— e b L~
(AH(B Xe)H(a) Cal(a118)(cC)
gt h - M o e i S, i

Figure 4.1; The trees represented in hs-expression (AND OR NOT A B C -1) &
(AND NOTOR A -1 BC)

4.2.1 . Representation

Rather than using s-expression as CGP [61], IMGP uses hs-expression, which is
mappeq to program tree. An hs-expression is a 21 — | long array to store a binary
tree of depth D at most. Every possible tree node has a corresponding element in
the array, eveﬁ if the tree node does not exist. The relation between the elements in
an hs-expression is similar to that used in the array .of Heap Sort, but the “larger-
than” relation is changed to the “parent-of” relation. The tree root is element 0
in the As-expression. For the kth element in the hs-expression, its left and nght
children are the 2k + 1th and 2k + 2th elements, respectively., If it has no child, the
corresponding elements are set to -1 instead. Therefore, the elements in the first
half of the array can be either functions, terminals or empty, while the elements
in the second half of the array must be either terminals or empty. Fig. 4.1 shows
two examples. Unlike the trees represented by s-expression, the trees represented
by hs-expression of the same length have exactly the same shape if -1 is viewed
as a virtual node. Another difference is that the elements at the same locus in /s-
expressions always correspond to the nodes at the same position in the program
trees. In comparison to this, Genetic Expression Programming [2] also uses a fixed
length string to represent a tree, and some 6f its elements may not appear in the tree.
Hoqucr, when the degrec; of a tree node changes, the positions of its subtree and
its siiﬁing change drastically.

In addition, ss-expression can be easily extended to represent trees of more than

2 branches. To tepresent a m-branch tree, hs-expression is a m?'! — | long array.

-

Chapter 4 Instruction Matrix Genetic Programming 36

A i C D £ ABD | OR_ | HOT AND OR ROT. =

S | i c D £ AD | o g AND] OR | ROT =

A B4 -G E AND OR Hot AND ok ror *

A B C D E AND OR ROT AKD ok HOT an

S PR 28 C D E A B (D | E A i

saload s G & | D E RIY THS(CE E. T CERN: TN S (N N (N 8 =
A Bl G B E A B e ..o I B I &

Figure 4.2: Instruction Matrix (IM) and an hs-expression extracted from it. IM
keeps multiple instructions for each element of the /s-expression. An element of
the hs-expression is extracted from the corresponding row in IM. The cells in bold
typeface are the extracted elements '

For the kth element in the hs-expression, its children are the m - k + 1th, m - k + 2th,
...y - k + mth elements.
In IMGP, there is no explicit population. Instead, it maintains an Instruction
- Matrix (IM) to stofe all the possible instructions used in a program treec. While
CGP generates new program trees from existing program trees, IMGP extracts new
hs-expressions from IM, which are translated to program trees. The cells in IM
are data structures consisting of instructions and related information. A row of IM
corresponds to an element in /As-expression, and hence a tree node in a program
_tree. The cells in a row stores all the possible instructions which can be used in the
correspondi'ng tree no;ic. The mapping between IM and program trees is the same as
the mapping between a hs-expression and a program tree. Row 0 corresponds to the
root ?f the program tree. Recursively, for the kth row corresponding to a tree node,
the 2k + 1th and the 2k + 2th rows correspond to the left and right child of the tree
node, respectively. The height of IM is the same as the length of hs-expression, i.e.,
H =.ZD ' — 1. A row contains multiple instances of any type of instructions, and
so the width of IM W is the number of instructions in a row. The lower part of IM,
i.e., the part from row % to row H, contains only terminals since they correspond
to the tree leaves. Fig. 4.2 shows an example of IM and an hs-expression extracted
from it. Basically, the element at locus & in the hs-expression is extracted from row
k in IM. The details are described in Section 4.2.2.
Besides an instruction of function or terminal, a cell in IM also keeps some

auxiliary data. The pseudocode of its internal data structure and the initial values

Chapter 4 Instruction Matrix Genetic Programming E

opcode instruction

double best_fitness

double avg_fitness
int left_branch
int right_branch
int eval_num

MAX_FITNESS
0
-1
-1
0

Figure 4.3: The pseudocode of the internal data structure of the cell in IM which
shows the initial values of the fields. The field instruction can be either function
or terminal. MAX_FITNESS and 0 are the maximal and minimal possible fitness,
respectively. -1 means there are no links for the left and right child of the tree node

at the beginning

»

are shown in Fig. 4.3. The data structure also stores the information of its best

- subtree. instruction is the operation code of the instruction. eval_num is the number
= 3 . of times that the instruction has been evaluated. best_fitness and avg._fitness are

». -, .the best and the average fitness of the instruction. best_fitness is alsothe fitness of

"“”' - - the best subtree of the instruction. feft_branch and right _branch are the left and

right branches of the best subtree. These fields keep some information of the fitness

landscape of the tree node, and they are used in the evolution of the tree node. Their

specific usage is explained in detail in Section 4.2.2. Note that in IMGP, the smaller

the ﬁiness, the better it is.
. 4.2.2 Algorithm

Algorithm 4.1 is the main program of IMGP, where G is the maximal number of

=

generations, and P is the number of jndividuals in each genération. It divides a

complete tree into separate tree nodes, calculates the fitness of the tree nodes so as

) to evolve them separately, and combines the optima of the tree nodes into a com-

plete program tree.]n'cac_h ‘generation, IMGP runs the following steps repeatedly.

Firstly IMGP extracts two individuals from IM and calculates their fitness. Then

IMGP performs crossover and mutation on them and calculates the fitness of their

A

offspring. After evaluating an individual, IMGP updates the corresponding cells in

. IM with the fitness of individual. At this poiﬁt, IMGP deletes all the individuals

LS

Chapter 4 Instruction Matrix Genetic Programming 38

Algorithm’4.1: The Main Program of IMGP
OQOutput: the best individual
initialize [M;
for gen from 0 1o G do
-num < 0,
. .while num < P do
extract two individuals i and j from IM;
calculate their fitness respectively;
“update their cells in IM with the fitness;
. if crossover § with j successfully then
| evaluate the offspring and update its cells;

else if mutate | successfully then

| evaluate the offspring and update its cells;
if crossover j with i successfully then

| evaluate the offspring and update its cells;

else if mutate j successfully then
| evaluate the offspring and update its cells;

| num < num + the number o f individuals evaluated:

| shuffle IM;

because their information has already been stored in IM. A generation finishes after
IMGP evaluates P individuals. Then IMGP uses matrix shuffle to replace cells of
bad fitness with those of good fitness in IM. {'he best individual 1s reported as the

optimal program after G generations.

Individual Extraction

IMGP extracts the tree nodes from IM and combines them into a complcte tree.
Algorithm 4.2 is the function to extract an individual. Firstly IMGP constructs
an empty hs-expression filled with -1, and aligns it vertically with IM. It starts to
extract the instruction of the tree root from row 0, and puts it at locus O in the js-
expression. Then IMGP continues to extract the rest of the program tree recursively.
The instruction of a tree node is extracted from the corresponding row using binary
tournament selection, and then the extracted instjuction is placed at the correspond-
ing position in the hs-expression. Binary tournament selection is comparing the

\?’_'_

Chapter 4 Instruction Mairix Genetic Programming 39

Algorithm 4.2: Extract Individual
Input: individual, IM, locus, subtree
Output: individual
best + false;
if subtree 7 — 1 then
individual|locusj « subtree;
CELL « IMllocus.individual{locus))|,

bhest — {rue
else

individual{locus} « Tournament (IM locus);
CELL « IM|locus.individual|locus));
. ELL.best_fitness
if Rundom(1) < 1 — ((‘!-,‘!. f““:}{::::::: then
L hest +— true;

if best = true and CE LL.instruction is function and
CELL.Ieft branch # —| and CELL.right_branch # —1 then
Extract(individual, IM, locus*2+1, CELL.left _branch);
Extract(individual, IM, locus*2+2, CE LL.right _branchy;
else

Extract(individual, [M, locus*2+1, -1);

| Extract(individual, IM, locus*2+2, -1});

fitness of two randomly selected instructions and selecting either of them proba-
bilistically. If the extracted instruction at locus 4 is a function, IMGP proceeds to
extract its left child from the 24 + 1th row, and its right child from the 24 + 2th row.
It does so recursively until all the branches are completed. In Fig. 4.2, the words in
bold italic typeface are the extracted instructions, and the completed /is-expression
is on the right. The corresponding tree is depicted on the left in Fig. 4.1. The details
of extracting (AND OR NOT A B C -1} from IM is shown in Fig. 4.4

The best subtree of an instruction is its subtree in the best individual that it has
ever been extracted into. After a tree node is extracted, IMGP occasionally checks
whether the best subtree of the selected instruction should be extracted as a whole
so that the tree nodes in the best subtree are extracted directly without further binary
tournament selections. How often it does so depends on the best and the average
fitness of the instruction. Eq. 4.1 is the probability of extracting the best subtree.

The bigger the difference between them is, the more likely its subtree is selected.

Chapter 4 Instruction Matrix Genetic Programming 40

I. extract AND from row 0 as the root
2. extract OR from row 1 as the left child of the root
3. extract A from row 3 as the left child of OR
4. extract B from row 4 as the right child or OR
5. extract NOT from row 2 as the right child of the root
6. extract C from row 5 as the left child of NOT
7. stop as NOT has no right child

Figure 4.4: The steps of extracting (AND OR NOT A B C -1) from the IM in Fig.
4.2. For each tree node, IMGP selects two instructions in the corresponding row
of IM randomly, compares their average and best fitness, and extracts one of them
probabilistically. After extracting a tree node, IMGP recursively extracts its left and
right child -~ -

The reason is that if tl;l_q_ best fitness is much bgtter than the average fitness, the tree
constructed with the best subtree is likely to be much better than the trec constructed
without it. Since tree nodes are highly interdependent w.r.t. the fitness in GP, best
subtrecs keep part of the interdependence information between the tree nodes in (M.

best _fitness

probpey =1 — (4.1)

avg_fitness

In the binary tournament selection, IMGP randomly selects two candidate in-
structioﬁs, compares their fitness, and selects the better one probabilistically. An
instruction is extracted either s.eparately or together \\:‘ith its best subtree. There-
fore, when IMGP compares the fitness of two candidate instructions, it compares
not only their hverage fitness, but also considers their best fitness as well. Eq. 4.2
calculates the expected fitness of an instruction. It considers the probability of sc-
lecting the best subtree of the instruction, and IMGP should use the best fitness in
that case. The traditional binary tournament selection always selects the better one,
so the worst instruction in IM is never selected. To be less greedy, we use Roulette
Wheel Selection {42] to select one of the two instructions based on their expected

fitness.

Chapter 4 Instruction Muatrix Genetic Programming 4]

E(fitness) = probpgy * best_fitness + (1 — probp.,) xavg_fitness {4.2)

Extracting individuals makes IMGP avoid being trapped in a small solution area.
In CGP, when an individual 1s changed by crossover or mutation, it replaces only
a subtree with a new onc, and so the offspring is still in the neighborhood of the
parent(s). Therefore, the solution space that CGP searches is largely determined
by the initial population. However, IMGP does not generate an individual from an
existing parent. It extracts a completely new individual from IM, and thus the new
individual bears little similarity with the previous individuals. Therefore, IMGP
searches a relatively large solution space, and the extracted individuals have high
diversity. In addition, there are multiple copies of any type of instructions in a row
of IM, and each copy has differcnt fitness and subtrees. Even if an instruction has
a copy of bad fitness, it might still be selected due to another copy of good fitness.

Therefore, IMGP is relatively resistant to local optima.

Instruction Evaluation

In IMGP, an individual is evaluated using the post-order recursive routine. To evalu-
ate a function node, it takes the evaluation of its left and right children as the inputs.
To evaluate a terminal node, it evaluates the corresponding program input. Since
the individual is discarded right after evaluation and reproduction, it cannot carry
along its fitness as in CGP. Instead, the new fitness is fed back to its corresponding
cells in IM so that it can be used in extraction later. The feedback comes in two
ways:

1. In Eq. 4.3, the new fitness, fitness’, is averaged with the old fitness, firness.
The evaluation number, eval num, is incremented by one. With this method, we

know how good the instruction is on average.

Chapter 4 Instruction Matrix Genetic Programming 42

. fitness x eval num + fitness’'
Jitness =

(4.3)
eval num + |

2. If the new fithess is better than the best fitness of the instruction, its best
fitness is updated, and its left and right branches are changed to those in the current
individual accordingly. This actually keeps good subtrees in IM together with their
fitness.

The second point is very important. As pointed out in [115], a new building
block is unlikely to survive in the next two generations cven if the individual con-
structed with it has an average fitness. In IMGP, whenever a good subtree is identi-
fied, it is remembered immediately.

All the individuals, no matter how much their fitness are, contain usecful in-
formation of the problem. Therefore, IMGP updates IM with not only the good
individuals, but all the extracted individuals. For most of the related algorithms
discussed in Section 2.2.2, they update their models only with the good individuals
and ignore the bad individuals. This would make some of the bad tree nodes spuri-
ously good in the models because they happen to be in the good individuals. On the
contrafy, updating IM with the bad individuals decreases the fitness of the bad trce

nodes, and so they arc unlikely to be extracted later.

Genetic Operators

In IMGP, crossover and mutation are similar to those in CGP. However, as IMGP
keeps the fitness of the tree nodes in [M, it is able to perform heuristic crossover
and mutation on the tree nodes directly. According to the building block hvpothesis
[42], small good building blocks are spread among the individuals and recombined
into large good building blocks. Therefore, combining good subtrees is likely to
produce good individuals. When IMGP performs crossover on individuals, it re-
places a subtree in one parent only with a better counterpart in the other parent

so that the offspring is likely to be better. In mutation, IMGP sclects a mutation

.

Chapter 4 Instruction Matrix Genetic Programming 43

(n?‘) (r-_phl) (’:-n?’)

< =
N ey 5 o 27 e
O OE@® OH=6E G
P '_‘\‘ o ‘._- "/ \“ ’_, \\‘
‘/_4‘-\ B f/-“-- e (—\
(2 e e () (AL X ()

Figure 4.5: Crossover in IMGP. The left subtree in the first individual is replaced
with its better counterpart in the second individual

point in the current individual, and replaces the original subtree with a new subtrec
extracted from M. '

The crossover is similar to context preserving crossover [30] because the two
subtrees of the parents must be in the same position to reduce the macro-mutation
effect of the standard crossover [8]. However, unlike the crossover used in other
GP algorithms, the crossover in IMGP 1s asymmetric. When IMGP tries crossover
between individual / and individual j, it picks either of the two branches on the roots
in both individuals at random. It replaces the subtree of i/ with that of j if the latter
has a better fitness than the former. Otherwise IMGP recursively tries crossover
on the branches of the picked branches. Fig. 4.5 shows an example. Note that

crossover would fail if it could not find a better subtree to replace the original one.

Matrix Shuffle

CGP converges by spreading good instructions over the population to reproduce
good individuals. IMGP starts with extracting program trees from IM at random,
so it samples different solutions in the huge solution space. In the evolution, it is
important for IMGP to sample the program trees which are similar to the previously
extracted good program trees.

However, there is no explicit population in IMGP since it extracts an individual
and discards it later. To ensure that the individuals extracted in the subsequent
generations have good instructions, IM should be populated with good instructions.

IMGP uses matrix shuffle to propagate good instructions in IM, and consequently

Chapter 4 Instruction Matrix Genetic Programming 44

Algorithm 4.3: Matrix Shuffie

Input: IM, the current row to be shuffled

Datu: 7'M T is the function and terminal set

for instruction€ FNT do

. Count (instruction) < the number of instruction in IM[row];

while si < SUCCESS and ti < TRIAL do
tHe—ti+1;
i, j < Random(W);
Ci « IM[row.],
Cj— IM[row. f];
if Ci.avg_fitness < Cj.avg_fitness and
Ci.best_fitness < Cj.best _fitness and
Count [Ci.instruction) < CONVERGENCY and
Count|C j.instruction) > DIVERSITY then

L IM[row. j] « IM[row.i];

Sl si+1;
if Cj.avg_fitness < Ci.avg_fitness and
Cj.best_fitness < Ci.best_fitness and
Count|C j.instruction) < CONVERGENCY and
Coumt[Ci.instruction) > DIVERSITY then
[M[mw. i] — IM{rrm'. j];
L si—si+ 1

to increase the probability of extracting them together in the same program tree.
Matrix shuffle processes IM row by row. Algorithm 4.3 shows how it shuffles a row.
It selects a certain number of pairs of cells in a row, and for cach pair it replaces
the worse one with the better one in terms of both the best and the average fitness.
While IM evolves with matrix shuffle, good instructions emerge to dominate the
rows in IM, and the copies of bad instructions decrease.

In CGP, as the population converges, the majornity of the individuals have more
or less the same instructions, while the other instructions dic out. It is hard for
CGP to maintain the diversity of the population because measuring the distance be-
tween individuals is difficult. However, IMGP cvolves on the level of instructions,
and so it is possible to maintain the diversity of the instructions. In matrix shuf-

fle, when a good instruction /M |row. i} replaces a bad instruction /M |row. j], where

Chapter 4 Instruction Matrix Genetic Programning 45

i and j arc the indices for the two instructions, IMGP needs to check two constraints:
Count{IM|row, i} < CONVERGENCY and Count [IM|row. j|| > DIVERSITY , where
the operator Count|+| is the number of copies of the instruction. The replacement
is prohibited if it violates either of the constraints. Clearly, CONVERGENCY
and Diversity controls the convergence and diversity of the instructions directly.
CONV ERGENCY should not be too high to discourage convergence, and DIV ERSITY
should not be too low to enhance diversity. In the current implementation, IMGP
uses CONVERGENCY =W /2 and DIVERSITY = 2.

As pointed out in [21], the cdit distance, i.¢., the difference between a program
trce and the best program tree, gencrally decreases after the carly gencrations in
CGP. It 1s thus good to keep the edit distaﬁcc not too small so as to cnhance the
diversity of the population. Basically, matrix shuffle prohibits good instructions
from reproducing themselves too many times, and reserves a minimum number of
bad instructions. This thus maintains the diversity of the instructions in 1M casily
and effectively.

As a summary, Fig. 4.6 is the diagram of the overall program of IMGP. IMGP
extracts the program trees from [IM by sciecting their instructions recursively ac-
cording to the fitness of the instructions in IM. The fitness of the extracted program
trees are used to update the fitness of the instructions in [M. The sub-trees are stored
in IM in the form of best children links. Afterwards, IMGP crossover and mutate
the extracted program trees based on the fitness of their instructions, and the off-
springs are also evaluated and used to update IM. At the end of a generation, IMGP

shuffles IM to duplicate better instructions and remove worse instructions.

4.3 Experiment

This section describes the experiments and the results of IMGP. First, IMGP and
CGP are tested on the benchmark GP problems and their results are compared.

Second, IMGP is compared to the rclated algorithms in Section 2.2.2 on a few

Chapter 4 Instruction Matrix Genetic Programming 46

T 1
evaluate | - - | evaluate I
B S S
mutate % \mutaﬂ:‘
: _|_ - Q2 { -
evaluate | - . . [evaluatel
sy i)
I R
l crossover l =
j K t
evaluate | - o evaluate| shuffle
Q
extract § extracﬂ

Instruction Matrix

Figure 4.6: The flow chart of IMGP

selected problems.

4.3.1° Comparison with Canonical Genetic Programming

This section compares the performance of IMGP and CGP on 4 benchmark prob-
lems [61].

The first probicm is the symbol regression problem which searches for a math-
ematical expression y = x* 4+ x* 4+ x* 4+ x, where x is an integer uniformly and ran-
domly generated from the range of {0,20). The fitness used is the hit count which
is incremented by one if the difference between the program output and the correct
result is larger than a'predefined thrcshol;i. The second problem is to discover the
even-five-parity expression, (¢ Wb (hehd (re). The training cases are all the 2°
combinations of the five binary variables. The fitness is calculal;:d as the sum of
the wrong results produced by the individual program?® The third problem is the
artificial ant on Santa Fe Trail. Executing the optimal program repeatedly enables

the ant to cat all the 89 food pellets on the trail within 400 steps. The number of

Chapter 4 Instruction Matrix Genetic Programming

47

Parameters Symbol Regression Loven-5-Parity Anrtificial Ant 1 t-multiplexer
‘Terminals {x} {a.bcd,e} {move,left,right } {ab. K}
Functions {1 =0} {and.or,nand,nor} {if progn2 progn} {ifand.or.not}
Population 500 2000 2000 A4H)
Matrix Width 40 405 EL |
Matrix Height 03 1023 I T E 1280
Cicnerations 100 60 o T T

Table 4.1: The Experiment Settings of IMGP and lilgp on the Benchmark Problems

the food not eaten by the ant is used as the fitness. The fourth problem is boolean
I l-multiplexer. Among the 11 variables, three are used as the address to select
the output from one of the other 8 variables. However, GP has no idea of which
var‘iablcs arc the address. The training cases are all the 2!' combinations of the 11
binary variables, and the fitness is the number of incorrect output.

Table 4.1 lists the parameter settings used in the experiments. IMGP has no
population, but for convenient comparison with CGP, we refer to the number of the
individuals evaluated between the matrix shuffles (generations) as the population
size, i.c., P in Algorithm 4.1. IMGP and CGP adopt the same population size and
generation number. In Artificial Ant and 11-Multiplexer, some functions require 3
arguments, which means the maximum branches of a node is three instead of two.

il
3 - b where

Therefore, the IM height and the hs-expression length is increased to
D is the maximal level of a program tree. To determine an acceptable size of IM,
IMGP with different sizes is tested on a small number of the training cases for a few
generations. By observing the fitness of the best program trees, a suitable tree size
can be determined.

lilgp [130] is used as CGP. For fair comparison, the ephemeral random constant
is removed from lilgp. The tournament size was two. The population size and the
number of. generations are sct as in Table 4.1. The other parameters are the same
as in [61]. Both lilgp and IMGP use the same random seeds, which themselves are
randomly gencrated. For each problem, IMGP and lilgp arc executed 20 times with
20 different random seeds.

Fig. 4.7 shows thc'plots of the average fitness of the best individuals from

generation 1 to generation 100 on the four problems. Table 4.2 shows the numerical

Chapter 4 Instruction Matrix Genetic Programming 48

| EMGP] l jMGP]
- ligp 12", ngp
m\ g
; g |\
£ £ \
_. T T 6 \
> J .)
40 60 80 100 % 20 a0 60 80 100
generabion generabion
Sxd a2 shieid
XX hxT cogivheherhd e
70 800 ;
IMGP \ l mcpl
60 Hagp 7001 ligp
Y goo|
50 . \
500
40 = w
g £ 400 .
€ \ - £ .
= an A" - \
\ 300 e N
- b 200
AY
10 100
a i 0 . . S . .
0 20 40 60 80 100 [} 20 40 60 80 100
generabon generabon
Artificial Ant 11 Multiplexer

Figure 4.7: The average fitness of the best individuals of IMGP and lilgp through
generations on the four testing problems

experimental results of IMGP, including the success rate, the fitness of the best
program tree, the size of the best program trcc: and the running time. The fitness
and the size of the best program tree are reported in their minimal, median and
maximal values in all the runs. ‘

In symbol regression, IMGP finds the solution in all the 20 runs compared with
17 successful runs in lilgp. In terms of the average fitness of the best individuals,
IMGP also converges faster than lilgp. In even-five-parity, IMGP finds the solution
in three runs, however, lilgp fails to find the solution in any of the 20 runs. Regard-
ing the convergence speed, IMGP also outperforms lilgp significantly as its average
best fitness was 2.4 while lilgp’s is nearly double of that. In 20 artificial ants, IMGP
find 12 ants eating up all the food pellets. lilgp can not find any successful ant, and

the average fitness of its best individuals was 31.8, far from 0. In | |-multiplexer,

P v

Chapter 4 Instruction Matrix Genefic Programming 49
L}
Testing * Success IFitness Tree Node Time (sec)
IMGP | CGP | IMGP CGP IMGP cGr IMGP | CGP
Regression | 100% | 85% | 0:0:0 0:6:18 17:41:59 19:141:301 | 030 0.40
Liven-5-Parity 15% 0 (:3:5 3:5:0 BI7:975:1007 | 231:495:861 | 264.05 | 81.15
Artificial Ant | 60% | 0 | 0:0:20 11:34:52 111:225:326 | 23:590:1848 | 25.00 | 30.40
I1-Multiplexer [65% | 0 | 0:0:128 | 1768:1832:1952 30:45:62 84:368:909 | 236.00 [2813.40 |

Table 4.2: The Numerical Experiment Results of IMGP and CGP on the Benchmark
Problems. It shows the success rate, the fitness of the best individuals, the number
of tree nodes and the running time. The fitness and the size of the best program tree
are reported in their minimal:median:maximal values in all the runs

IMGP finds the perfect multiplexer for 13 times out of 20 runs, while lilgp fails all
the time. The average best fitness of IMGP is also much better than that of lilgp,
although their fitness in the first generation are almost the same.

IMGP and CGP are executed on a Linux workstation of Pentium 2.2GHz. Ex-
cept for the even-five-parity problem, the running time of IMGP is shorter than that
of CGP. This is expected, since IMGP has much larger success rates than CGP.
IMGP stops early before the final generation 100 when it finds a perfect solution.
For thc’diﬁicult even-five-parity problem, IM has many rows and so the tree pro-
grams have many levels. Therefore, IMGP is slower than lilgp un even-5-parity.

However, lilgp ‘cannot find any solution out of the 20 runs.

4.3.2 Comparison with Related Algorithms

IMGP is also tested on those problems whith have been tested by the related al-
gorithm to compare their results. However, it is difﬁcult to compare the results
.precisely, as some of the papers give the results only in the figures without the exact
numerical values. Therefore, only the problems whose results are reported in num-
bers in other papers are used. The experiment settings are the same as in the related
algorithms described in Section 2.2.2.

Six-bit parity problem is ;imilar to even-five-parity. It has six boolean argu-
ments, and it returns true if the number of true arguments (1°s) is odd and false

otherwise. However, other than using the boolean function set, it uses a real-valued

function set {4, —, x,%,sin, cos,exp,rlog}, where riog is the protected log which

Chapter 4 Instruction Matrix Genetic Programming

Testing | Success Program Evaluation Tree Node
Algorithm | Rate min | median | max | min | median | max
IMGP 100% | 2000 | 2000 18000 | 10 29 113
PIPE 70% 9432 | 52476 | 482545 | 22 61 100
CGP 60% | 64000 | 120000 | 396000 | 24 | 90 | 16l

Table 4.3: The Experiment Results of IMGP, PIPE and CGP on Six-Bit Parity Prob-

lem. It shows the success rate, the number of program evaluations, and the number
of tree nodes

Algorithm | Success Rate | Evaluations
IMGP 40% 14050
GMPE ~ 60% 13590
CGP <60% 100000

Table 4.4: The Experiment Results IMGP, GMPE and CGP on Max Probk;m. It
shows the success rate and the number of program evaluations

returns the log of the absolute value of the argument. The output of the program is
mapped to true if it is larger than 0 and false otherwise. 20 independent runs were
carried out using IMGP. The result is compared to that of PIPE [103] and CGP in
Table 4.3. IMGP is the best and it achieves 100% success rate and it requires much
smaller number of program evaluations.

Max problem has a single input with value 0.5 and two functions, + and x.
The purpose is to find a tree with maximum fitness under the tree size constraint.
Obviously the optimal tree is a full tree, whose nodes on the two levels right above
the terminals are + to produce the value of two, and the other nodes on the top
are x to multiply all of the 2’s. In this experiment, the maximum tree depth is
seven, so the maximum fitness is 65536. The result com.parcd to GMPE [110]
and CGP is reported in Table 4.4. Both IMGP and GMPE outperform CGP. With
approximately the same number of evaluations, GMPE has a higher success rate
than IMGP. H(.)wever, if IMGP keeps running till 100 generations, its success rate
increases to 95%.

Function regression is to search for the function shown in Eq. 4.4. The fitness

cases are sampled at 101 equidistant points in the interval [0,10]. The fitness is

Chapter 4 Instruction Matrix Genetic Programming - 51

Algorithm | mean [std. dev. [min | median | max |
IMGP 5.25 2.79 234 | 5.09 | 13.56
PEEL 6.79 4.91 0.68 | 5.21 18.90
GGP 7.87 3.54 095 | 7.56 | 14.00

Table 4.5: The Experiment Results of IMGP, PEEL and GGP on Function Regres-
sion. It shows the fitness of the best individual

not the hit count, but the sum of the differences between the outputs and the correct
"answers. The fitness of the best individuals of IMGP are compared to those of PEEL
[109] and GGP [120] in Table 4.5. IMGP gets a smaller error and a smaller standard
deviation. Although the minimum errors of PEEL and GGP are smaller than that
of IMGP, their median and maximum errors are much larger than those of IMGP.
Obviously, IMGP is more stable with a less variance than PEEL and GGP on this

problem.

)= X x e x cosx X sinx x (sin®x x cosx — 1) (4.4)

4.4 Instruction Matrix based Genetic Programming

for Classification |
IMGP is a very flexible paradigm, and this section describes an implementation
of IMGP for binary class classification problems. The problem of classification
Paslbcen a major task of machine learning and data mining. Basically, given a set
of training data of known classes, a classifier is learned to predict the classes of
new data. There are rimmy existing classifiers, such as Decision Tree [95], Neural
Network [13], Support Vector Machine [26] and Sparse Kernel Feature Machine in
Section 4.4.1, etc. GP can also be used to evolve classifiers in the form of progfams.
GP has a few favorable features for classification, such as the variable let{gih
representation and the population of different solutions, and the iﬁtcrpretability of

the classifier [33][80]}{118]. First, the structures of many traditional classification

A

Chapter 4 Instruction Matrix Genetic Programming 52

models are fixed, and the major task of learning is finding the proper parameters
of the models. Because a variable representation of classifier is adopted in GP, it
has more freedom to find appropriate model structures than fixed representations.
Second, the results of some traditional learning algorithms depend on the initial
parameters of the models. In GP, the population contains many individuals, so GP
has a better chance to find the optimal structures and the parameters of the models.
Third, GP usually uses only simple algebra operators a‘nd possibly a subset of all
the attributes in a program, and so the resulted classifier is easy to interpret.

In a learing problem, a training dataset (X.f) consists of N samples {¥'|i =
1...N} and their targets {¢‘}i = 1...N}. A sample ¥ has M attributes {.\“t,|_f — ..M}
Given a sample x', a classifier predicts its class as)*. The task of the classifier
learning algorithm is to find a classifier of minimal error. In this section, the sum of
squared error function is only applied on the misclassified data as in Eq. 4.5, where

N’ is the number of misclassified data.

N
E=-3@-w) (4.5)
25
Suppose the instruction set in CGP is {x|...... Y,y +.—.x ./}, the program tree

is actually a mathematical formula and so the class boundary can be represented by
a mathematical equation. For a binary class problem, the program tree reccives the
attributes of a sample as the inputs. 1f the output of the program tree is positive, the
sample is assigned class one, otherwise class two. The classification error on the
training data is used as the fitness.

As a variant of CGP, IMGP can also be used for classification problems and is
expected to be more efficient and more effective than CGP. The instruction set of
IMGP for classification introduces Constant Instruction (C1) in the instruction set.
ClI is used as the terminal of constant as the paramecter of the classifier model defined
by the program tree. CGP uses Ephemeral Random Constant (ERC) as a constant.

ERC is instantiated to a random number in the initialization of CGP, and the number

Chapter 4 Instruction Matrix Genetic Programming

is fixed in later generations. In IMGP, because a C1 will be extracted into different
individuals, it should change the constant during cvolution. C1 has two constants,
i.e., the Random Constant (RC) and the Best Constant (BC), corresponding to its
average and best fitness, respectively. BC is used when the CI is used in the best
program tree for testing on unknown data. RC is assigned a new random number
whenever it is extracted in a new individual. The new value of RC replaces the value
of BC if the new individual has a better fitness than the best fitness of the CI.
Contrast to CI in IMGP, ERC does not change during evolution even if the
change would lead to a better constant given the structure of the program tree. As
mentioned in [29], various approaches have been proposed to change constants 1n
the evolution. However, they are only mutation on the constant disregarding the
current individual. In Neural Network [13] and Support Vector Machine [26], the
structure of the model is given beforchand, and the learning process is adjusting the
model parameters to minimize the error function. GP can be viewed as searching for
the structure of the model and the parameters of the model simultancously. It is thus
possible to change the parameters without changing the structure to achicve better
fitness. If the error in Eq. 4.5 15 used as the fitness and the structure of the program
tree is fixed, the fitness is actually a continuous function of constants. Therefore,
IMGP can modify the constants of a program tree to decrease classification error.
As in Neural Network, IMGP uses gradient descent [13] to find the optimal con-
stants. Gradient descent changes a constant is according to the partial denvative of

MSE as shown in Eq. 4.6.

)
oK v,
(":('—g"-é-‘_{-knz l’)—""’ {4.())
n is the learning rate. ¢ is the vector of the constants. 1; is the output of the

program tree given the sample x;. Given a mathematical formula represented by a
program tree, IMGP calculates its partial derivative w.r.t. the constant. Suppose

the formula is a composite function v = (f o{g. #})(c), where function / takes two

Chapter 4 Instruction Matrix Genetic Programming 54

arguments of functions g and 4. The derivative of f with respect to ¢ is 5‘:‘ =
%f%f + %j.'—:%% For example, (¢) = %(%)a’ + %(;—:)b" = },u’ -- (&), Therefore,
IMGP can calculate S% by traversing the program trec in post-order. However, it
needs to calculate both the outputs and the partial derivatives of the tree nodes, so
the computation cost is multiplied by the number of constants. To save computation,
gradient descent 1s not used on every program trec. Instcad, it is used only when
IMGP finds a new best program trcc. Gradient descent for GP is also used in [125],
which it uses gradient descent for all the individuals.

One of the major concerns of classification problems is generalization or over-
fitting [49]. Due to the noise in the training and the testing data. a classifier works
well on the training data may not be so accurate on the testing data. A rcason for the
performance degradation is that the classifier is so complex that it classifies noisy
data unnecessarily. As described in Appendix A, a common approach to enhance
generalization is to trade the classification accuracy for the model complexity, and
so the penalty of the model complexity is extensively incorporated in the objective
function of supervised learning. IMGP adds a penalty of the tree size to the original

classification crror as the new fitness shown in Eq. 4.7,

tree sice

M_ROW

fitness = error + w

(4.7)

w is a small positive constant to control the weighting of the tree size. Because
the classification error is always less than 1, the tree size is normalized with the
maximum tree size, 1.c., M_ROW . In calculating the tree size, IMGP does not count
the terminal nodes, since only the functions contribute to the complexity of the
program. The lincar functions of + and — represent linear models which are simple
enough, so they are not counted either. Therefore, in the current instruction sct
{xy..... Y. +.—. %/} of IMGP for classification, only the nonlinear functions

x and / are counted in the tree size.

R, M

-y
[

Chapter 4 Instruction Matrix Genetic Programming 55

IMGP is tested on four benchmark binary classification problems in UCI repos-
itory [14], 1.¢., Breast Cancer Wisconsin (Cancer), Hacrt Discasc (Heart), Pima In-
dians Diabé’tes (Pima) and Horse Colic (Horse). The experiment adopts a five-fold
method. For each fold, IMGP is run for 20 times of different random sceds, and
so there are all together 100 independent runs. Besides the input attributes and the
constants, IMGP uses only the basic algebra operators, i.c., {+.—. »./}. Grammar
Guided Genetic Programming (G*P) [118] uses context-frec grammars and celiular
encoding to evolve four kinds of classifiers, i.c., Decision Tree (P DT), Fuzzy
Rule-based System (G*P — FFRBS), Artificial Neural Networks (G*P ANN) and
Fuzzy Petri-Net (G*P — Petri). Both G*P and IMGP usc the populations of 2000
individuals, and the maximum generations are 100.

Table 4.6 shows the results of the training and testing crrors, reported in their
best and average valucs. Table 4.7 shows the p-valucs of the t-test of the average
testing errors of IMGP with (' P. The hypothesis that the two average testing crrors
are the same i1s rejected at the significant level 0.05. For cach problem, the result of
G*P is the average of the results from three different scttings in [118}. For the aver-
age training errors, the results of IMGP are comparable to the four other algorithms.
This verifies the effectiveness of IMGP on the training data. The testing crror is a
more important measure of performance than the training crror. IMGP gencralizes
very well compared to the four other algorithms. IMGP 1s significantly better than
another algorithm if the corresponding p value is smaller than the cutoff value 0.05.
For the cancer dataset, IMGP is statistically better than FRBS, NN and Petri net.
For the pima dataset, IMGP is statistically better than DT, NN and Petri net. For
the heart dataset, IMGP is statistically better than FRBS, NN and Petri net. For .hc
horse dataset, IMGP is statistically better than all the other algorithms. For the best
testing error, IMGP has the 2nd lowest best testing crror on the cancer problem, and
the lowest best testing errors on the three other problems.

IMGP is also compared to some traditional classifiers other than GP. includ-

ing, Decision Tree, Neural Networks and Support Vector Machine (SVM). In this

Chapter 4

Instruction Matrix Genetic Programming

Problem Training Frmor (v} . lesting brrar () -
37 FRBS | ANN [Petnn | IMGP 1l FRBS [ANN | Puri | MG
Cancer hest | 0.28 0.28 1.43 HE] 1.402 1.72 1.72 104 pn 1.41
av 2.08 1.56 0.21 307 1.99 4.24 4.58 [(E] 1.52 KR 11
Pima hest 15.7 15.7 2280 | 2041 | 2130 | 19X¥9 ;21 YR | 22810 2303 | 1558
aveg | 2TRS 1898 1 2437 [2373 | 2304 | 2060 | 2507 | 2024 | 2747 | 2490
leart best | 11,79 [1462 | 3183 | 1943 | 15887 17.9 TR3M | 068 | 208 [1709
avp | 1529 [1634 | 2388 [2077 7 (903 | 2310 {1 23KS | 2403 1 2502 | 2214
Horse best | 1611 1555 | 1606 7 1667 | IDJ8 | 2RRK | 2777 | 28KK | 2555 | 16.18
) avg [2630] 2137 V3L | 2246) 1203 F 3725 [M0l 1 3679 | 01l 1 2094

Table 4.6: Comparison of IMGP and G*P on the 4 UCI benchmark classification
problems. DT, FRBS, ANN and Petri are thc 4 GP approaches. We compare the

training and testing crrors in their best and average results. The errors are reported
in unit of percentage

Table 4.7: The p-values of the t-test of the average testing errors of IMGP with G*/P

L DI FRIZS ANN | pan
IMGP T~ }
Cancer 0 187S 00103 ha927. 100 F | 0Nl
Pima T RORY 10 0 6780 n.0165 oo
Fhean (0.0556 TIN50 T [ud0eR. 10 0 | 14575100 F
Harse 13474- 10 F Uz [24510- 10 F [vig7r-10 ™

on the four benchmark probiems. The hypothesis that the two average testing crrors
are the same is rejected at the significant level 0.05

experiment, the decision tree used is C5.0 [94], which is the state-of-the-art of de-

cision tree for classification. The SVM used is LIBSVM [24], which uses cross

validation on the training data to detcrmine the parameters of the kernel function.

A neural network is implemented based on the library provided by MATLAB. The

neural network also uses cross validation on the training data to choose the number

of hidden neurons, and then uses an automated weight decay learning on the whole

training data. Neural network is sensitive to the imtial weights, so the program

is executed 10 times with different random secds. SVM is a deterministic algo-

rithm, so it is executed only once. Decision tree is also a deterministic algorithm,

but C5.0 uses random 5-fold for training and testing, so C'5.0 1s exccuted 10 times

as well. Table 4.8 shows the best and average testing errors of all the algorithms.

Table 4.9 shows the respective p-values of the t-test of the average testing errors

of IMGP and other algorithms on the four benchmark problems. The hypothesis

t

Chapter 4 Instruction Matrix Genetic Programming 57

best testing error(%) T AVCTage testing error(%)
IMGP DT NN | SVM | IMGP D1 NN | SVM
Cancer .43 430 | 414 | 414 | 381 | 557 6y | 414]
Heart 17.39 | 2040 | 1741 | 1741 | 2234 | 2262 | 2000 | 17.41
Pima 1558 | 2460 | 2200 | 2344 | 2490 | 2641 | 2288 | 2344

Horse 1615 [1470 | 2353 | 2344 | 2074 | 14.70 [2838 | 77.065

Problem

Table 4.8: Comparison of IMGP, Decision tree (DT), Neural Networks (NN) and
Support Vector Machine (SVM) on the 4 UCI benchmark problems. The best and
average testing errors in unit of percentage are reported. For the deterministic algo-
rithms, i.e., DT and SVM, the best and average results are the same. DT was not
run for Horse since the program C5.0 was unable to handle the training and testing
datasets scparately

“mj;{nl’llh"l\ = B R IR i]
M] Il NN SVM
'_" Cancer SS5013-10 7 | 1844110 T | 9272510 ¥
i Fima 1.7374-10 ° | 3.7280- 10 ° 00006
{lcan 25290 -10 F | 4.0063-10 ¥ | 1454410 1
Fore 0.0038 0.0013 01083

Table 4.9: The respective p-values of the t-test of the average testing errors of IMGP
and other algorithms on the four benchmark problems. The hypothesis that the two
average testing errors are the same is rejected at the significant level 0.05

that the two average testing errors are the same is rejected at the significant level
0.05. For the convenience of comparison, the result of SV M is treated as both the
best and the average results. IMGP has the smallest best testing errors on all the
problems except Horse, where C5.0 1s the best. The average testing errors of IMGP
are still acceptable and comparable to those of the other algorithms. On the cancer
dataset in particular, IMGP is significantly better than the other algorithms, since

the corresponding p values are smaller than 0.05.

4.4.1 Sparse Kernel Feature Machine

For the problem whose objective 1s complicated and costly to evaluate, 1t is better to
use a deterministic algorithm to search for a satisfactory solution. A Sparse Kernel
Feature Machine (SKFM) is designed to carry out kernel learning and feature selec-

tion simultaneously. First, kernel mutual information is used to filter out irrelevant

Chapter 4 Instruction Matrix Genetic Programming 58

features in high-dimensional problems. Then, an augmented kernel matrix 1s com-
posed of the kernel matrices of individual dimensions. Afterwards, a Least Angle
Regression without collincanty is performed on the augment kernel matrix to build
the solution path w.r.t. the regularization parameter cfficiently. The best regulariza-
tion parameter giving the smallest validation crror is sclected for further training.
In contrast to the standard kernel lcaming, the sclected supporting points contain a
single dimension each, and thus SKFM selects important features as well as the de-
ciding- values on those features. Empirical results on the real testing datasets show
that SKFM not only trains better classifiers than SVM, but it also identifies the rel-
cvant features and the corresponding values in the resulted classifiers. For more

details on SKFM, plcase refer to Appendix A.

4.5 Discussion

[nstruction Matrix based Genetic Programming (IMGP) maintains Instruction Ma-
trix (IM) to store the fitness of the instructions and their best subtrees. It extracts
program trees from IM, updates IM with the fitness of the extracted program trees,
performs crossover and m utation" on the extracted progrant trees, and shuffies IM to
propagate good instructions. The experimental results have verified its effectiveness
and cfficiency on the benchmark problems. [t is not only superior to CGP in terms
of the qualities of the solutions and the number of program cvaluations, but it also
outperforms the related GP algorithms on the tested problems.

IMGP can also be used for classification problems. To enhance its performance,
IMGP uses gradient descent to find the optimal constants in program trees, and
incorporates the penalty of program trec complexity in the fitness. In most of the
tested problems, IMGP is able to find classifiers of higher classification accuracics
than four other GP classifiers. The results of IMGP arc also comparable to or better

than those of Dccision Tree, Neural Networks and Support Vector Machine.

Chapter 4 Instruction Matrix Genetic Progranuming 59

*IMGP is an implementation of the EDDA framework for GP. By cvolving in-
structions separately, IMGP actually dccompéscs a high dimensional problem into
small problems of only one dimension. Therefore, both the size of the solution
space and the search time is reduced significantly. At the same time, it also main-
tains the interdependencics between instructions in the form of the links of best
subtrees, and thus it is likely that the combination of the optimal instructions is the
optimal program tree to the original problem.

Furthermore, IMGP can be viewed as evolving schemata directly [73]. The
schema theory originally explained why GA works. It was extended to explain
the mechanism of GP later. By maintaining the average and the best fitness of the
instructions and the subtrees, IMGP is able to maintain most of the information of
the schemata, and make use of the information to evolve schemata directly. The
details of the schema theory is explained in Section 4.5.1.

.

4.5.1 Schema Evolution

Schema theory [S1] was original used to explain how and why Genetic Algorithm
(GA) works. Schemata are the abstractions of the common patterns in the popula-
tion. In binary GA, a schema is a vector of characters of {0, 1,#}. The wildcard
character # 1s a “don’t care” symbol, which maps to cither 0 or 1. The number of
non-# symbols is called the order ¢ of the schema. The distance between the fur-
thest two non-# symbols is called the defining length . of the schema. An individ-
ual contains many schemata, and a schema matches many individuals. The number
of individuals matching a good schema increcases exponentially through gencrations
as shown in Inequality 4.8. It is postulated that while GA is evolving the population,

it is actually looking for the common schemata of the optimal solutions.

SEHD oy gy, L) mU [
m(H.t+1)>m(H,t) 70 (1~ pwm) x |1 Pey (1 i))|

) (4.8)

Chapter 4 Instruction Matrix Genetic Programming ‘ 60

{
() (+)
By (Y IR
ol () (%)
(2) (#) u o s
: - (2) (x)
(+) () _ T
S e, L (+) (+)
(x) ()0 (x) (") o Py 2
" : {x) (") (x) (-)
(2) (x) (2) (+) P ER
('_5_’) (';‘_) (2) (x) (2/) (x)

Poli & Langdon Schema
Rosca Schema)

Figure 4.8: The schemata in Canonical Genetic Programming

"

Rosca [101] and Poli & Langdon [64] introduce two schema_theories for GP
independently. Their schema is a cbntiguous'lrcc fragment starting from the tree
root. The fragment consists of the nodes of fixed values or the “don’t care” symbols.
A tree has only one instance of a certain schema and the position of the schema is
fixed. However, the “don’t care” symbol # in Rosca’s schema theory represents a
set of subtrees, while the “don’t care” symbol-= is exactly onc tree node in Poli &
Lang&on‘s schema theory. Fig. 4.8 illustrates these two position schema theories.

IMGP actually maintains the information of some kinds of schemata. In IM,
an instructi;)n’s fitness is averaged over the fitness of a}l the trees containing it at
the fixed position. Considéring Poli & Lan]gdorl’s schcinq theory, we think the fit-
ness of AND at the third row of IM in Fig. 4.2 i}ﬂeluﬂlﬂ;thc fitness of the schema
(== AND ====), which has AND as the root of the right subtree, whose left and
right subtrees can be anything except —1. Generally, the fitness of an instruction
in IM is the fitness of the order | schema with the instruction at the correspond-
ing position in the trece. This way, IMGP maintains the fitness of all the order |
schemata. Additionally, an instruction has its best fitness together with its best sub-

tree. Suppose the function AND at the third row of the matrix in Fig. 4.2 has its best

Chapter 4 Instruction Matrix Genetic Programming 61

"

N < T
(and) (#) (and") |

e

. - T b
,‘ “\-. I" b S
.-/ ™~ - e
- G - e
-~ ¥ . i
———— T T
7 ks o
i S \“—h_._..J' s \-"'u__.. -~
A Node Schema A Subtree Schema

Figure 4.9: The schemata in Instruction Matrix based Genetic Programming

left child pointing to 4, and the best right child pointing to B, then the best fitness
of AND is actually the best fitness of the schema (== AN == AB). Its root can
be any function, its left subtree can be anything except —1, and its right subtree is
(ANDAB). This way, IMGP is able to remember the best fitness of some schemata
of order larger than 1. Fig. 4.9 shows these two schemata of the example in Fig.
4.2.

Therefore, IMGP can be regarded as evolving schemata .dircclly. According to
the extraction criterion in section 4.2.2, if an instruction’s fitness is better than the
others’, which means its 1-order schema is better than the other 1-order schemata
with different instructions at the same position, it will be sclected more often than
the other instructions, i.c. more programs will sample its schema. Similarly, if an
instruction’s best fitness is much better than its average fitness, this will not only
increase the chance of sclecting this instruction, but if it is indeed sclected, more
trees will sample tlhc schema containing its best subtree. On the other hand, the
fitness of a schema is implicitly evaluated by updating the average and the best

fitness of the corresponding instructions.

Chapter 4 Instruction Matrix Genetic Programming 62

4.5.2 Algorithm Complexity

The complexity of IMGP is no larger than that of CGP. Besides the normal genetic
opc;'zltors and fitness evaluation in CGP, IMGP incurs additional overhead of ex-
tracting individuals, updating IM and shuffling IM. First of all, the time complexity
of genetic operators is O(/), where / is the height of the IM, i.e., the size of the
program tree. Secondly, extracting individuals and updating IM need to go through
all the instructions in the program trees, so the complexity is also O(/7). Thirdly, the
complexity of shuffling IM is of the size of IM, i.c., O(WH), where W is the width
of the IM. Forth, the time complexity of evaluating the fitness is O(N/{), where N is
the numbc;r of times to traverse tree programs. For some problems, N is nu‘mbcr of
training cases. Supposc IMGP runs for G generations, and extracts P program trees
in each generation, then the overall time complexity is O(GPH + GW H + GPNIT).
The time complexity of CGP is Q(GPH + GPNIH). In the practice, for both IMGP
and CGP, most of computation cost is in evaluating the fitness, whose con'mlcxily
is O(GPNH). For program lrcs:s with similar sizes, the time complexity of IMGP
is only slightly larger than that of CGP. H(;wcvcr, the space complexity of IMGR
is smaller than that of CGP. The major part of the space complexity of CGP comes
from the population of individuals, i.e., O(PH), while thc major part 01‘1}10. space
complexity of IMGP comes from IM, i.e., O(W). Usually W is of grder of hun-

dreds, while P is of order of thousands.

1

Chapter 5

Coinputational Motif Discovery

5.1 Introduction

In this chapter, EDDA is applied to solve a real bioinformatics problem, i.c., motif
discovery. Transcription factor binding sites (TFBS) are small nucleotMde fragments
(usually < 30 bp) in the cis-regulatory regions of genes in DNA sequences. TFBS
are crucial in gene regulation, the understanding of which s a central problem in
contemporary biology. Finding the pattern of TFBSs, i.c. motif discovery in DNA
sequences, is thus important for uncovering the underlying regulatory relationship
and the evolutionary mechanism of living organisms. Computational methods pro-
vide promising results for further biological validations which alone are expensive
and laborious. However, computational motif discovery is a well-known challeng-
ing problem because of the low signal-to-noise ratio due to both weak conservation
and short m(;lif widths. Although additional evidence, such as expression data and
_ phylogenetic information, can be incorporated to help recognizing some noisy se-
quences without motifs, the fundamental problem of finding TFBSs on the sequence
level is still very difficult for computational methods. One major challenge is the
difficulty of searching for the global optimum in a high dimensional space. Nu-
merous algorithms, typically consensus-based search algorithms and statistical op-
timization methods, have been proposed. Consensus search algorithms suffer from

the insufficient descriptive power of string patterns and are limited by the motif

63

Chapter 5§ Computational Motif Discovery 64

width and the maximal error they can handle. Statistical methods are significantly
affected by their starting points and often trapped in local optima. Population-based
evolutionary algorithms perform a rather time consuming scarch and cvaluate a
large number of uscless candidate solutions.

In this chapter, two new algorithms for motif discovery is proposed. The first is
a new Estimation of Distribution Algorithm for Motif Discovery (EDAMD) which
handles more general assumptions for TFBS identification/motif discovery. EDAMD
rclaxes the simplified assumption of one instance per sequence in the collected se-
quences.\T he objective of EDAMD s to scarch for the optimal Position Frequency
Matrix (PﬁM) and the corresponding motif instances in DNA sequences. EDAMD
models !h{c PFMs of the sampled motif instances as a weighted Gaussian distribu-
tion, which 1s able to capture the possible pairwise dependencies between the prob-
abilities of the positions in the corresponding PFMs. New PFMs are sampled from
the Gaussian distribution. Moreover, a local scarching technique inspired by Gibbs
sampling [76][68] and local filtering techniques [23] refines the sampled PFMs ef-
ficiently. With the EDA output, a post processing procedurc improves the results to
be even more accurate and complete. Experimental results show that the results of
EDAMD are comparable 1o or better than two other GA-based algorithms, namcly
GAME and GALF.

1t is observed that EDAMD always gets the same results even with different
random sceds. Therefore, a new deterministic approach called Cluster Refinement
Algorithm for Motif Discovery (CRMD) is designed. CRMD manages to locate the
local optimal solutions cfficiently and cffectively and identify the global optimum
from a small number of local optima. CRMD employs a flexible statistical model of
motif which allows a variable numbcr of motifs and motif instances. First CRMD
uses a novel entropy-based clustering method to find a set of complete and good
starting candidatc motifs from the input sequences. Then it employs a fast refine-

ment method tq scarch for optimal motifs from the candidate motifs. The clustering

Chapter 5 Computational Motif Discovery 65

chqoses informative motif candidates of various types, where the probable initial so-
lutions arc maintained and those non-informative ones are discarded to reduce the
search space significantly. The refinement method incorporates a greedy sampler to
obtain the optimal motif instances from the initial candidate motifs, and it returns
a variable number of motif instances by rcn16ving or adding motif instances adap-
tively according to the auto-adjusted thresholds. CRMD can be easily extended
if prior knowledge, such as One Occurrence Per Sequence (OOPS), i1s available.
Endowed with an appropriate similarity test of motifs, CRMD is also capable of
discovering multiple distinct motifs.

In the experiments, CRMD has the best results on most of the 800 synthetic
datasets of a comprehensive range of difficulties.” The results on the extensive real
datasets, including a set of eight selected real datasets, ABS database [15], SCPD
database [128], Escherichia coli datasets iSB] and Tompa’s datasets [117], also show
that CRMD seldom falls into local optima as MEME [6] and Motif Sampler [77] do,
and its performance is even better than or competitive with those of GAME [119]
and GALF-P [22]. GAME and GALF-P are time consuming Genetic Algorithm
based motif discovery approaches and are supposed to locate the close-to-optimal
binding sites. If the OOPS assumption is assumed, the qualities of the results of
CRMD can be further improved. For a recal multiple motif problem, CRMD locates
a significantly larger number of binding sites than MEME and Motif Sampler. In
addition, CRMD has shorter running time than most of the other algorithms tested
in this chapter even if it is implemented in MATLAB and executed on Windows.

The rest of this chapter is organized as follows. In Section 5.2, the background
of the motif discovery probiem and the existing methods are bricfly introduced. In
Section 5.3, the problem details are given and formulated mathematically. Section
5.4 and Section 5.5 describe the algorithms and the experimental results of EDAMA

* and CRMD in detail, respectively. The last section is the discussion.

Chapter 5 Computational Motif Discovery 66

5.2 Existing Algorithms

TFBSs interact with transcription factors (TFs) and affect the transcriptional ac-
tivity (or gene expression). The cis-regulatory regions are usually upstream to the
transcription start sites (TSS) of the genes. TFBSs typically have a"width of 5-10
bp, but there are also real cases such as the CRP binding sites with widths up*to
around 20 bp. In general, the range of widths can be restricted to around S bp to
25 bp. Some well-known characterized TFBSs such as the TATA box are proximal
to the TSS, but generally there is no prior‘spatial knowledge of where the TFBSs
occur in the regulatory regions.

Computational methods for identifying TFBSs, namely de novo motif discovery,
have been proposed as an attractive pre-screening procedure and alternative to the
expensive and laborious biological experiments such as DNA footprinting [41] and
ChIP-chip [52]. The basis is that certain conserved pattern, called the “motif”, exists
among the TFBSs in the cis-regulatory regions for a set of similarly expressed genes
(co-expressed genes), because those genes are probably regulated by the same or

. sin.1ilar TFs. Benefitting from the availability of the large amount of sequencing and
microarr’éy data, now we can identify co-expressed genes by clustering and then
extract their cis-regulatory regions. de novo motif discovery methods try to identify
the motif, or equivalently the set of TFBS instances of co-expressed genes without
prior knowledge about their consensus appearance.

There have been a few excellent surveys of motif discovery algorithms [117]{53][104].
Current motif discovery methods can be categorized into enumerative (consensus
based) approaches and statistical (matrix based) ones. They either discover the

wstring pattern (the consensus) using combinatorial approaches or identify the profile
of the TFBSs, typically the Position Frequency Matrix (PFM), or Position Weight
Matrix (PWM), using statistical modelling.

N L
In enumerative approaches for motif discovery, exact string matching methods

Chapter 5 Computational Motif Discovery 67

fail and exhaustive enumeration is also infeasible due to the NP-hardness [74]. Ex-

- 1sting consensus based approaches [90], set the constraint that the maximal ham-

-

il

ming distance between the consensus and the motif instances, d, is assumed to be
known. They try to cn-umcratc all the strings satisfying the constraints in polyno-
mial time. Typical works include optimizing the data structure using suffix trees
[102][12] and projections [20]{97]. However, such approaches cannot meet the re-
quirements of real world problems well because they can only handle short motif
widths (in general up to 14) and small ¢ within reasonable computational time. In
the real cases, however, the width can be up to 22 (in the CRP dataset tested in this
chapter). d is also difficult to determine beforehand and it varies case by case. With
too small a ¢, most of the true TFBSs are missed due to the stringent criteria. With
too la.rge a d, the computation time becomes intolerable and a large number of false
positi\-xcs will be output. Another major drawback of consensus based approaches is

that the discrete consensus of the motif is not accurate enough to represent the weak

conservation between different nucleotides.

A more accurate choice is to use the PFM and PWM 1.0 represent a motif
with continuous frcqucncy or llkcllhood of each nucleotide appearing at cach posi-
tion within the motif. Some b[dllbl]Cdl methods such as Expectation Maximization
[6][16] and Motif Sampler [76][68] have been proposed and shown some successes
in TFBS identification. However, since statistical methods sample TFBSs prob-
abilistically, they may take 4 long t.ime for their solutions to converge and stabi-

lize. Another disadvantage is that they are sensitive to initial settings, and are often

trapped in local optima since many of these methods perform local search only, and

their results might not even be local optimal if the searching is ineffective. In TFBS
identification, the problems of being trapped in local optima become more critical
because the weakly conserved 'I.'FBSs are typically weak signals surrounded by a
large amGunt of noise. ' _

Genetic Algorithms (GA) [119][22][35][79][72] have been applied to TFBS

identification as well. The advantage of such GA based methods is that they are

Chapter 5 Computational Motif Discovery 68

likely to locate the global optimum in a typically difficuit search space. Other ad-
vantages of GA compared with the conventional motif discovery mcthods include
the flexibility of representations and scoring functions in which advanced models
can be casily incorporated, and good scaling property which is promising for the
large amount of data in DNA sequences. On the other hand, they are stochastic and
so they may fail to report conststent results in different runs. They require a large
population of solutions and the computation time is typically long. Nevertheless.
the results of the state-of-the-art GA-based method provide a close-to-exhaustive-
scarch-based benchmark to evaluate the performance of motif discovery algorithms.
Recently, approaches incorporating multiple evidence besides the DNA sequences
have been proposed to improve the prediction accuracy for rcal motif discovery
problems. Recent reviews usually include these integrated approaches [28]{45].
The cvidence generally comprises of microarray data for the input sequences., phy-
logenctic footprinting. ChlP-chip and ncgative sequences previously known to con-
tain no motifs, just to namc a few. Multiple evidence also means additional data
sources are needed specifically. While these methods gatn success in specific cases.
the general motif discovery problem remains challenging because it 1s usually diffi-
cult to have these additional information and the scarch on sequences known to have
certain motifs s still difficult. This work focuses on the motif discovery involving
only DNA sequences, and the improvement on DNA scquences alone will certainly

further enhance the methods integrated with additional evidence.

5.3 Objective

Biologically, the TFBS identification problem is to locate the subsequences in the
cis-regulatory regions which are bound by a common protein. Up to now, the pro-
cess of factor binding is still obscure to biologists, let alone the properties of the
binding sites. To cope with this problem with computational methods, the problem

is formulated as an optimization problem of a certain mathematic objective function

Chapter 5 Computational Motif Discovery 69

in the following subsections. The algorithms to maximize the objective function are

presented in Sections 5.4 and 5.5.

5.3.1 Problem Formulation

Given a set of DNA sequences, it is required to find the binding sites corresponding
to the motif instances and the common string pattern of the motif. To be consistent
with the biological observation, there is no assumption of the maximal distance
between the motif instances and the number of motif instances in the sequences.

Data Input: a set of sequences S = {S,|/ = 1.2.....D} of nucleotides defined on
the alphabet B = {A4.T.G.C}. S; = (8/[j = 1.2.....4;) is a sequence of nucleotides,
where /; is the length of the sequence.

The motif width is w nucleotides long, which is assumed known throughout
the chapter. The set of all the w long subsequences contained in S i§ {s”|i =
1.2....D.ji = 1,2,....5; = w+ 1}, where j; is the binding site of a possible motif
instance s ,--' on sequence S;.

Position Qutput: the Position Indicator Matrix (PIM) A = {4,|i = 1.2.....D}
of the motif, where Ai = {4|j = 1.2.....;} is the indicator row vector with respect
to (w.r.t.) a sequence S;. Af is | if position j in S; is a binding site, and 0 otherwisc.

:Zf) |Z{f |Af-

The number of motif instances is referred to as |4

Induced by A is a set of | 4| motif instances denoted as S(A) = {S(A).S(A)a...... S(A) '},
where S(A4); = S(A),!.S'(A)f....S'(A):" is the ith motif instance in |A4]. S(A4) can also be
expanded as (S(4)',8(4)%,....8(4)"), where S(4)! = S(A4)]S(4)}...5(4)’, is the

list of the nucleotides on the jth position in the motif instances.

Consensus Qutput: the string abstraction of the motif instances or, in the ab-
sence of a string consensus, the Position Count Matrix (PCM) N(A4) of the num-
bers of different nucleotide bases on the individual positions of the motif instances
of A. N(A) = (N(A)'.N(4)*.....N(4)"), and N(A4)) = {N(A4)]|b € B}}, where
N(A4), = {S()]1S(1)] = b}.

‘;‘e

258
Chapter 5 Computational Motif Discovery 70
(a) sequences § (b) I"IM A (¢) instances Si. Nl {le oM -\-f”|.j (e) PIM V(1)
acptCGAT TGCetaag [0000T00000000000] CGATTGC |)) -
1w T GATCGAgacgea |00 1 0KKKO000000 TGATCGA A0261107 ADOD2Z0601010007
cpal’ AAT T GAgenac |0001 000000000000 CAATTGA (:RO2332Y ("0R000D203030203
eCGOTCGA caspetgt| 01000000000000001 CGOTCOGA G OR0O0DRO GOOORODOOH000K00
cpttTGTCACAgicta [00001000000000001 TGTCACA 1:20206010) 2000206060000

teageCACACCCaget [0000010000000000) CACACCC
ceagagCGTCTGAUE [0000001000000000] CGTCTGA
gactcaCGACTGAge [0000000100000000] CGAUTGA |AMIS) 38 M(S)47 [By 023756y 02938
getgeecatlCGATTGA [0000000001000000] CGATTGA [M(S) 38 MIS); 37| Bu, 02375 0y, 0233
ceagpracCGATTGCa [0000000010000000] CGATTGC

Figure 5.1: An artificial problem of motif discovery. It shows (a) the sequences S,
(b) the Position Indicator Matrix A4, (c) the motif instances S(A4), (d) the Position
Count Matrix N(A4) and the count of the background nucleotides {M(S),|h € B},
(e) the Position Frequency Matrix N(4) and the background relative frequencies
{Bus|b € B}. In the sequences S, the letters in lower case are the background bases,
and the letters in upper case arc the motif instances

N(A) can be further normalized by | 4| as the Position Frequency Matrix (PFM)
N(A) = %?, which can be regarded as a virtual consensus, i.c., the rclulivc fre-
quencies of the nucleotide types on the individual positions in the motif instances.
Given an A4, it s trivial to calculate N(A4). On the contrary, it is not straightforward
to find the corresponding 4 from N(A4).

Fig. 5.1 illustrates an artificial motif discovery problgm. M(C) = {M(C)ulb €
B} denotes the numbers of different nucleotides in the dataset €', where M(C') ap-
plies to all the positions in C. Similarly to PFM, M(S) can be normalized as the
relative frequencies of the nucleotides in the scquences S, which is denoted as
60 = {6n = 5it—|h € B}.

}-:.r'l- B‘l”-q}b

5.3.2 Maximum A Posteriori

In a motif discovery problem, it is required to find the optimal PIM A or PCM N(A)
in terms of a certain optimization measure. There are various methods to evaluate
a set of candidate motif instances. The Bayesian analysis is adopted to derive the
posterior probability of the motif instances, and thus the motif discovery is to find
the motif instances of the maximal probability. To make it easy to understand the

proposed algorithms, the major steps of the derivation in [56] are repeated herein.

Chapter 5 Computational Motif Discovery 71

For the hikelihood of the motif instancues, it is usually assumed that the nu-
cicotides in a motif instance are generated independently across positions. There-
fore, the motif instances A4 follow the multinomial distribution I'I‘; y PIN(A)), where
p(N{A)) is the independent probability of gencrating the nuclcotides on the jth po-
sition of the motif instances. It is further assumed that the probabilitics of generating
the nucleotides on a position of the different motif instances arc independent. The
Joint probability p{N{.4}/) is thus the product of the probabilitics of the nucleotides
on position j in the sequences respectively, 1.e, pIN(A)) Tl 5 8,;,: “:\ where 8,
is the latent probability of gencrating basc b in position j, N{.4); is the number of

. Nt .
nuclecotide b on position /. In a more succinet form, [],. 5 ,9!!} » can be written as

M/
g

; »where 8; is the vector of the latent probabilitics {8,,|h < B} on position j

in the motif instances. In summary, the motif instances A follow the multinomial
distribution [T+ 67"

For the likclihood of the background scquences, it 1s assumed that the nu-
cleotides on the sequences excluding the motif instances follow a multinomial dis-
tribution 9{:“"""!{.” =l 5 Gt':;"g""r“", where 6, is the vector of the probabilitics
generating the background nucleotides and A¢ is the complement of 4 w.rt. S
In this chapter, it is assumed 8, is fixed as the relative frequencies of the basces
in S, which is indifferent to the positions of the bases. Similarly, it is also as-
sumed an independent binomial distribution of the number of motif instances |41,
i.e, p{A|po) = ph” x (1 — ;)n)"' 1l where 1. — 2"\' (e - w i 1) s the total number
of the subsequences and py is an abundance ratio to indicate the probability of a
position being a binding site.

The PIM A4 can be viewed as the missing label of the data S, 8 is the latent
parameters of the distribution model of A4, and py 15 also unknown beforchand. The

likclihood of S is the product of the probabilitics of the background sequences and

the motif instances as follows,

Chapter 5 Computational Motif Discovery 72

. A MUSUAC)y T @MUY
p(816.6y.4.py) = p!, |(I - ;)t,)f' |"|9” il n 9; il
i1

For Bayesian analysis, a multinomial Dirichlet distribution is employed as the
. y " 5 . o, | .
conjugate prior for 8, i.c., p(0]a) < 1} Tl 4 BH: . where o 15 a small common

prior for all the 8;s. A Dirichlet distribution is also prescribed as the conjugate prior

; -1 ’ . g R i

for py, i.e. p(polpa.ps) = p{,’ (1 — py) 1. Therefore, the posterior distribution
. . My e 1

of A, 8 and py is as follows, where we have used 8, = L e —,

6, 1§ H(J

[)(8 A.]){}ls. 9{]. (X.f)”.]}!,)

= p(S)0.60.A4. po)p(A|py) p(8|0) p{pol Pu- pp)

!)|.-l| (I 1{ | — p“);, [A)ips 1 w

0 BNI e)

MIStA)N !
8” ;|

8 and p, can be integrated out using the conversion between the beta function
and the gamma function'. The resulted posterior conditional distribution of A4 alone

is shown in Eq. 5.1, which has used || = ¥, g0y, and ¥y, gy N(A), — |A4].

PIA[S, By, &, pu, pp) o< /p(ﬂ./i.p(,|3. 6y. 0)dOBd pyy

M(S(A})
9“ /

COAL+ UL = [+) 1y T a TV)

- L T)

The objective of motif discovery can thus be formulated as to maximize the
posterior probability of,/l(ih Eq. 5.1. Prior knowledge, such as the abundance of
motif instances in the dataset, the background frequencies of the nucleotide types
and the probabilitics of nucleotides in the motif instances, can be casily incorporated

in the model.

'"The beta function B(x,y) [[,l (0 - 1) dr, the gamma function I'(z) 77 e 'di, and

A Tl
B(.’(._l) = Tixiv)

Chapter 5 Computational Motif Discovery 73

In the implementation of Cluster Refinement Algorithm for Motif Discovery in
Section 5.5, the gamma function T frequently causes overflow with a large argu-
ment, so p{A) in Eq. 5.1 is not used as the measure of . dircetly. Instead., the log of
the posterior probability of .1 in Eq. 5.2 is used, where the log gamma function L1°

avoids overflow in typical cases and A 1s invariant with 1.

log(p(A]S.6h. 0. py.pr)y R

LUUA t pa) VEVUL Al pa) MIS(D) ogBy
S Y LUNGA), v an) wlV (4] ex]) (5.2)
;oI B

If the log pamma function 1s not used. Eq. 5.1 can still be semplitied using the
Burnside approximation”. After some tedious derivation, the log of the approxi-
mated posterior conditional probability of A is shown as Eq. 5.3, Instcad of Eg. 5.1,
Eq. 5.3 is used as the objective function in Estimation of Distribution Algorithm for

Motif Discovery in Section 5.4.

wiA) = log(p{AlS.6h.poy.a))
= KA [A|({oglpn) log(l pyd) M{Dlog(6y)

FOING b 0.5)MogN) o 0.5)

i1
—w{|A] + e 0.5 og(|4] + |a] 0.5) (5.3)

where K is invariant w.r.t all the variables. For vectors v and v/, viog(V') is used

as a shorthand for ¥ vifog(v}). After further simplification, Eq. 5.3 contains a term
, . . . U . ‘

of Information Content (1), namcly ﬂ'; | 8, log ?J(JI’ as used in other algorithms,

such as GAME [119] and GALF [23]. IC modcls the discniminatory motif since 1t

*Burnside approximation I'(x + 1) x! (v 1 0.5 "% © 03/ ~

Chapter 5 Computational Motif Discovery - 74

is an approximation of the difference between the log probability of motif w.r.t. the
latent probabilities 8 and the one w.r.t. the background probabilitics 6,. Howcever,
IC neglects the variable number of motif instances, and the simplification from Eq.

5.3 might be too coarse.

S.4 [Estimation of Distribution Algorithm for Motif

Discovery

Estimation of Distribution Algorithm for Motif Discovery (EDAMD) identifics the
motif instances which maximize the objective function Eq. 5.3. In a nutshell,
EDAMD consists of two levels. On the outer level, EDAMD employs a Gaus-
sian distribution to model the Position Frequency Matriics (PFM) of the individuals
in the population. The Gaussian distribution not only maintains the probabilitics of
the nucleotides on the positions of the motif consensus, but also capture the pos-
sible pair-wisc dependency between the positions of the motif consensus. In the
’

evolution, EDAMD updates the Gaussian distribution with the motif instances in
the popul.ation. and it generates new PFM based on the Gaussian distribution to find
the corresponding potential motif instances. On the inner level, cach PFM gen-
erated from the Gaussian distribution is further refined by a local scarch heuristic
to find the local optimum around the initial PFM. While the outer level ensures
EDAMD to scarch the solution space thoroughly w.r.t. the PFM distribution, the
second level makes EDAMD considers the local optimal PFMs only which may
contain the global optimal solution.

Algorithm 5.1 is the overall program of EDAMD. For a gencration, half of the
PFMs are sampled from a Gaussiz;ln distribution /4. To enhance the diversity of
PFMs, the other half arc sampled from a uniform distribution %. After finding a
set of motif instances A4, based on a sampled PFM ﬁ"(/i)m via the Greedy Refine-

ment function Greedy, the best set of motif instances BA is updated if w(A4,)) is

Chapter 5 Computational Motif Discovery . 75

better than the best fitness #/7. At the end of the generation, the function U pdate
updates the Gaussian distribution model with the sets of motif instances {S(A4),,}.
their fitness { y(4);} and the conditional probabilities of the instances {p(4);,}.
Finally, the Post Processing function Posr is applied on BA to adjust the discovered

motif instances.

Algorithm 5.1: The Main Program of EDAMD

Input: The Sequences S

Output: The Best Motif Instance BA

FIT « 0,

randomly initialize 4

for g from 010 GG do
forifrom0to T do
if / < & then

| N(A))~ (x| 2);
clseh .

| N(A)y ~ # (x);
N(A) iy ¢ D x N(A) ;))
[y S(A) iy W A) iy, p(A))] = Greedy(N(A),.8):
if y(A),, > FIT then

L FIT < y(A);

BA « A,

| “J):l = Upd”“’({S("!)[:l}' { W("”m}' {p("”l” })i
BA « Post (S, BA);

5.4.1 Searching Method

The inner level is a heuristic local search procedure to find the nearby local opti-
mum around an initial PFM. In ordinary GA, crossover and mutation are the pri-
mar;: searching operator. However, to take advantage of the propertics of the motif
discovery problem, EDAMD employs more cfficient secarching opcral(-)rs than the
generic GA operators. The first operator Greedy Refinement is a local search mu-

tation. It finds a new set of binding sites based on the initial set of binding sites.

The new set of motif instances has a higher posterior probability than the old one.

Chapter 5 Computational Motif Discovery 76

The second operator Post Processing is applicd on the best sct of mouf instances
after the evolution. 1t retains most of the motif instances., and adds some new motif

instances to increase the posterior probability.

Greedy Refinement

Given a motif PIM 4, it is casy to calculate its fitness according to ‘w(4) in Eq.
5.3. In the other way around, finding the optimal .4 is maximizing y(.1). However,
solving for the optimum of y{.4) analytically is intractable. Instcad, EDAMD iter-
atively searches for the optimal A4,, (0 or 1), while fixing the rest of 4. Morcover, as
indicated by the Eq. 5.3, searching for the optimal A is equivalent to scarching for
thc optimal N (1) as long as there actually exists a set of mouf instances .1 whose
PCM is N(.1).

For the time being, it is assumed that cach sequence S, contains a single motif
instance, meaning only a single element in A, 1s 1. In that case I collapses (o a
vector 2 where £ is the index of the binding site on S,. i

Given a set of motifinstances, which may not be the optimanccessarily, EDAMD
trics to find better instances. [t takes an iterative procedure to refine the motif in-
stances onc by one, and the maximal iterskion is /3. Supposc it has located the
binding sites on all the scquences except a single sequence S, it is working on, it
looks for the subsequence on S; which matches the other instances best. A measure
of similarity of a site 1;‘ to the other binding sites is the probability of 4/ being a
binding site conditional on the other binding sitcs. The dissimilarity of .'!f can be
measured as the conditional probability of .4/ not being a binding site. Therefore,
the Bayes factor ¢(4 ;') in Eq. 5.12, which s derived using Bayes inference, can be
used to determine whether 4:' 1s a binding site. The derivation is very similar to the
onc used in Eq. 5.1, where the equation T'(x + 1) = xT{x) 15 used. N(/]f, 15 the
number of nucleotide b = S;' " in S{P*)*, meaning thesame nucleotide at posi-
tion & in S(P*) as the onc b in S(4)). |P*} is the number of motif instances alrcady

identificd.

Chapier 5 Computational Motif Discovery 77

plal - 1e.s)

pl! = 0|P.5)

- S plAl =109 .S)p(6]P.5)do

[(A" = 018. P .S)p(O1P.5)dO
L2 NP oy

o o I B $.4)
e,m.r,uﬂ P+l ‘
4]

@A)

After caleulating the Bayes factors of all the 4/ on S, EDAMD needs to deter-
minc which one is the binding site. Gibbs sampling [77] selects a site randomly in
proportion to the @{A/) in Eq. 5.12 in §;. It iteratively samples the binding sites
all the sequences one after another (possibly rewinds to S after sampling on Sy).
and updates * accordingly after cach sampling. Gibbs sampling is a Markov Chain
Monte Carlo method. and so it may takes a long time before generating samples fol-
lowing the target distribution. ‘

EDAMD adopts a different method to select the binding sites. Instead of sam-
pling the binding sites probabilistically. it sclects the site of the maximal @(.4))
lects the binding sites on all the sequences iteratively, After selecting the binding
sitc on ;, 1t continues to select the binding site on ;1. It processes all the se-
quences in a round, and then it returns to $ and begins a new round. It stops when

P remains the samie in two consecutive rounds.

Post Processing

Post Processing addresses the issuc of variable number of motit instances in a sc-
quence. Greedy Refinement finds a binding site on cach sequence S, However, a
sequence may have zero, one, or morc than one binding site(s). It is therefore im-
portant to allow the program to remove some spurious binding sites, and add more

potential binding sites. The position indicator vector 2 can be casily converted to

Chapter 5 Computational Motif Discovery 78

~.

-

position indicator matrix 4. The conversion is 4] = &; 5, where &, 5, returns 1 if
the two arguments arc equal, and 0 otherwise. Adding or removing a binding site
depends on whether it c'ontribulcs to the score of the whole of the binding sites. To
check if a binding site 4,’ contributes to the score or not, EDAMD calc;ﬂalcs the
ratio C(Af) between the posterior probabilities Eq. 5.1 of the motif instances with

it and without it as in Eq. 5.5.

L1}

gy =2 po 1 pp N, oy

T pA)S) 'I_'—_;}(,é.{ﬁ.:ﬂ | A] + |
{)

(5.5)
j |

where A’ is A added with the motif instance 1: If@(ﬁl!) > |, the binding site A;'
contributes to the overall scoring fitness, otherwise it affects the fitness negatively.
Note Eq. 5.5 and Eq. 5.4 are actually the same except for the additional term T&}:E

This 1s expected, since the Bayes factor also compares the posterior conditional
probabilities with or vithout a certain binding site.

EDAMD adopts L two-phase procedure to post-process the binding sites i1denti-
fied with Greedy Refinement. In the first phase, EDAMD calculates all the £ (Af"'). f=
1,2.....N, and removes the binding sites of & values less than a threshold ;. Al-
though the assumption of every sequence contains at least a motif instance may not
be true, Greedy Refinement tries to find a motif instance on each sequence. There-
fore, the first phase is important to climinate the spurious binding sites introduced
by Grccdy Refinement. In the second phase, for cach sequence S;, EDAMD cal-
culates ﬁ(Af) for all the possible positions on S;, and adds the binding sites of &
values bigger than mzothcr threshold 2. This thus locates more binding sites on
the sequences. The order of the two phases is not reversible. Due to the possible
spurié)us binding sites, some noise may be embedded in the latent probabilitics 6.
Therefore, the noise must be removed before searching for more motif instances.

It is difficult to choose appropriate thresholds 7 and 7. 1f 1) is fixed, a large
71 may cause true motif instances to be removed, while a small #; may not filter

“out the possible noise. EDAMD calculates 7 automatically based on the current

Chapter 5 Computational Motif Discovery 79

motif instances. A multinomial distribution parameterized by € can be induced
by N(4) via the Maximum Likelihood approach, i.c., 8 = N(A). Supposc a sct of
artificial motif instances wcre generated according to the induced distribution, their
contribution to the current motif instances can be calculated as Eq. 5.5, and thus
the expected contribution £(&) of the motif instances under the distribution 8 is
obtained. For a motif instance identificd by Greedy Refinement, if its & is less than
F(&), itis rejected. The threshold 1y = £{(&) is calculated as Eq. 5.6, where «; is
onc of 4" possible motif instances (w is the length of the motif, and cach position
of the motif has four possible nucleotides: A,C,G and T). and b/ is the nucleotide

on position j in the motif instance «;. Note Eq. 5.14 is used to calculate the sum of

all the & (a)pla;).i = 1.2,--- 4" so that Eq. 5.6 can be solved analytically.

n = EE @) = Ela)plqil8)

to |
,)“ 4w N(u‘!)f; ‘* ah; N(I)’j

1—;)”(14|+|a| v !zn, Y

B[l

o [)” - n z N(/l h‘* ah N(;!f)h
1 — o |/1| i !(3(1 »w G Lt 9“’]’ ‘“

(5.60)

LID

4 4 4 4 4
22 Xle =1 X, (5.7)

[fw f) foled

———
W

From the preliminary experiments, it is found that the value of > should not be
fixed beforchand either, since the appropriate 7> varics case by case. EDAMD uses
a heuristic rule to adjust 72 adaptively. After removing some motif instances n the
first phase, it uses the minimum of all the £ of the remaining instances as the initial
f> in the second phase. The seccond phase is then carried out in rounds iteratively.

In a round, a sct of candidatc motif instances {<}{E(a}) > 2} are selected, and

then EDAMD calculates the new 12 as min({&(¢))|E(«]) > 1}), which is used in

Chapter 5 Computational Motif Discovery 80

the next round. It use a small initial ¢» at the beginning of the second phase to
select a sufficient number of candidate motif instances, and afterwards it increases

t> adaptively so as to select the motif instances of positive contributions only.

5.4.2 Estimation of Distribution Algorithm

The outer level of EDAMD is basically an iterative algorithm. [t samples new PFMs
from a Gaussian distribution, searches for the corresponding motif instances based
on the PFMs (in the inner level), and updates the distribution model with the motif
instances discovered. As pointed out in Section 5.3, the ultimate goal of EDAMA 1s
finding the binding site of the motif, and the solution can also be represented as the
motif consensus, 1.e.. N(.1). There may be interdependencies among the positions
in the motif instances, which means the nucleotides on one position affect the nu-
cleotides on another position [86][127]{9]. In other words, the relative frequencies
of the nucleotides on different positions have some correlation with each other. The
fitness 5.3 does not incorporate the complicated inter-relation of positions. how-
ever, EDAMD uses a Gaussian distribution, i.e., 9 {(x|y.X) o< ¢ Fv e T e g
model the motif instances and captures the possible pairwise correlations across
the positions. Since the argument x in the Gaussian model 4 (x|¢.%) is a column
vector, EDAMD concatenates all the columns of PFM together, and refers to the
resulted vector as Position Frequency Vector (PFV). PFV actually represents the
same nucleotide frequencies of a set of motif instances as PFM.

After sampling a PFM (J, Greedy Refinement is used to find a set of the corre-
sponding motif instances. However, Greedy Refinement starts with a set of motif
instances S{A4), while 2 may not correspond to a real set of motif instances, so it
cannot be used in Greedy Refinement directly. Tc; provide S(A) for Greedy Re-
finement, EDAMD makes up a set of artificial motif instances 4, each of which is
exactly the same as Q. Consequently, D x 0 is equal to the N(4) of the artificial mo-

tif instances, and Q is equal to N (A). D x Q is then provided as the initial N{4) for

Chapter 5 Computational Motif Discovery 81

Greedy Refinement to find the matching motif instances. Note the artificial motif

instance 4 may not exist in S, and they usually do not contain the valid nucleotides

since the numbers in N(A4) are fractional.

Afterwards, EDAMD uses the sets of motif instances found by Greedy Refine-
ment to update the Gaussian distribution. Traditionally, the mean and the covariance
are updated as i = }):;' ' (Xjand £ = }Zf' y (X —)} (v — () respectively, where T
is the number of data samples. However. not ail the motif instances are genuine mo-
tif instances, and they have different similarities to the common consensus. In addi-
tion, the fitness of the individuals (the sets of the motif instances) are not the same.
Therefore, the motif instances should not be treated equally. Instead, EDAMD uses
the weighted updating formula in Eq. 5.8. where {z,|i = {.2..... T} are the weights
to measure the importance of the motif instances. The term o % /{4w) in Z is an
identity matrix multiphied with a small positive constant. In the evolution, the motif
instances may converge to the common motif consensus. To enhance the diversity

of the sampled PFMs, EDAMD keeps the diagonal elements of £ larger than 0.

‘J — Z;f 1-4 X \!
Z! =i
PRI R
X = *—?.——‘+ox1(4\‘-) (5.8)
z." =i

Calculating the weight of a motif instance is straightforward. Since the motif
instances are usually weakly conserved, they are usually different from the com-
mon consensus and each other. Therefore, even for the motif instances in the same
set 4 found from a common PFM (, the instances may have different conditional
probability on 4. Intuitively, the weights associated with the instances should be

the product of the posterior probability of the motif and the conditional probability

of the moitf instances, i.e., =; = W(4) x p(a;]4).i=1.2..... |4

. where u, 1s a motif

instance. The conditional probability of motif instance a; w.r.t. 4 is calculated in

Chapter 5 Computational Motif Discovery 82

Eq. 5.9, where §,,, 1s the sequence containing a;. S S,,, is the sequences S plus the
sequence S,,. A -a; is the set of motif instances A plus ¢;. The term T'(|4] + [a] + 1)

is ignored since in the evolution, the number of motif instances |.4] is fixed to the

number of sequences D.

plas) = plajld.S) o [plail4.S.0)p(4.5]6)p(6)d6

MSe) \LS)
By

B Nialt 6y NeAtpa
- / Ma 1—[9; I1e, d6

i 1LY
Gy il 6, il

MONNLY
9(l , nhéfjr(N{A)h“i'N(“f]h‘{‘ 0!;,)
= I1

{4+ o)+ 1)

"

A gt]

| . f N Nahy, 5
iy LTI NG+ Na s + o — 0.5 e @ 63 (5.9
Alternatively, EDAMD can also use ¢(«;) in Eq. 5.4 to calculate the weight.
After all, given a set of potential binding sites, the order of their Bayesian factors

and that of their posterior conditional probabilities are the same. If p{a) > pla>).

then @(a)) > @(a>).

5.4.3 Experiments

EDAMD has been tested on eight real DNA datasets. A testing datasct consists of
DNA sequences with motif instances already tagged. It is assumed the widths of
the motifs are known beforehand. A motif instance is correctly recovered if the
predicted binding site is within three bp away from the true binding site. The three
bp tolerance is reasonable since in a real dataset, the widths of the tagged motif
instances vary around the known width, and they are”sometimes larger than the
indicated width. It is contemplated that the true motif instance should lie somewhere
around the two ends of the tagged instances. This criterion of successful prediction

is also used n the GAs for motif discovery, i.e., GAME {119] and GALF [23]. To

Chapter 5 Computational Motif Discovery 83

measure the performance of EDAMD and other algorithms, the experiments adopt
the standard metrics of Precision, Recall and F — score as defined in Eq. 5.10,
where the operator |-| is the cardinality of the set. After EDAMD finds the candidate
instances computationally, the results need to be verified in biological experiments.
A higher Precision avoids wasting more effort on the false motif instances. while
a higher Recall misses few true motif instances. F — score mixes Precision and
Recall since there is a tradeoff between Precision and Recall. Sometimes a high
Recall means a large number of candidate instances, which may consist of many
false positives. On the contrary, some true weakly conserved motif instances arc

deleted by mistake in order to achieve a high Precision.

|correct motif|
|motif found|
lcorrect molif]

Precision =

Recall = —
[truee motif|

Precision = Recall

F—score = 2x
Precision + Recall

(.10

The eight real datasets are CREB, CRP, ERE, E2F, MEF2, MYOD, SRF and
TBP [15][119][23]. The cyclic Amp receptor protein (CRP) binds in Escherichia
coli. The estrogen receptor binds in the sequences of estrogen response clements
(ERE). The E2F family also contains known binding sites. The datascts of CREB,
MEF2, MYOD, SRF and TBP are published in ABS database of annotated reg-
ulatory binding sites. The benchmark datasets have a variety of the numbers of
sequences, the lengths of sequences, the widths of motifs and the numbers of motf
instances as shown in Table 5.1. EDAMD is tested on each dataset for 20 times with
different random seeds. The population size T 1s 100, and the maximal gencration
G is 10. Moreover, the motif widths are the same as used in GAME and GALF. The
best-and the average results in the 20 runs are recorded.

“The performance of EDAMD is compared to those of GAME and GALF in

Chapter 5§ Computational Motif Discovery 84

dataset | #sequence | length | width | #instance
CREB 17 350 8 19
CRP 18 105 22 23
ERE 25 200 13 25
E2F 25 200 1 27
MEF2 17 199 7 17
MYOD 17 200 6 21
SRF 20 345 10 36
TBP 95 200 6 95

Table 5.1: The setting of the benchmark datasets: the number of sequences, the
length of sequences, the width of motifs and the number of motif instances

[atasel GiAML 1DAMD OALD
Precision Rucall Fascore Precision Revall Fasgore | Precisian Regall Foscome
CREB 0.78 074 (.76 0.73 0.84 0.78 076 D68 TRE
CRP (1318 0.78 (182 0.94 0.74 .83 094 0.7 L83
ERE- 0,33 0.80 0Oni .76 .76 0.76 0.76 0.7 76
k21 .50 .89 .84 [ALK (k75 {1.KD 074 1177
M2 (1.8 [0 I X LiW) 1.0 [R1]) 1M} 1.1H 1.4}
MY 4K 048 48 [} K6 0,90 (1%}] 1831 71 (7
SRE 073 0.92 0%l niy 092 D84 Y5 051 0.6%
I'i3p {1.%0 [R5 083 [LKS [| R (.84 0,93 [TIYES hyd

Table 5.2: Comparisons of EDAMD, GALF and GAME on the eight datasets: Best
results (precisions, recalls and F-scores)

Tables 5.2 and 5.3. Table 5.2 shows the best results of the three algorithms in 20
runs. As regard to the F-score, EDAMD is the best in 6 problems. In the remaining
two problems, it 1s worse than GAME on E2F, and worsc than GALF on TBP. Tablie
5.3 shows the average results of the three algorithms in 20 runs. As regard to the
F-score, EDAMD 15 the best on 7 problems, and it is worse than GAME on E2F.
A remarkable observation is that the average results are the same as the best results
in EDAMD. Actually, given a sufficiently large population, EDAMD always get
the same results no matter what the random seed is. An explanation is that Greedy
Refinement always finds the same best motif instances even from the set of different
initial PFMs. Due to the lack of the resulis of the individual runs or the standard
deviations in the original papers of GAME and GALF {1 19]{23], there is no way to
have the significant test of the performance cémparison between the algorithms,

In addition, both GALF and GAME employ a population of 500 individuals.

Chapter 5 Computational Motif Discovery 85

Datasel GAME EDAMD GALY |
Precision Recall Fescore | Precision Recall Fescore | Precision Recall F-score
CREB 0.43 0.42 0.42 .73 .84 0.78 0.76 (.08 0.72
CRP 0.79 0.78 0.78 0.94 0.74 0.83 1493 073 0.R2
LRI 0.52 0.78 0.62 0.76 0.76 76 0.76 0.76 .76
12K 0.79 0.87 0.83 0.7 0.80 0.75 0.76 (.70 073
MLEF2 0.52 0.55 1.5} 1.00 .00 1.00 007 097 097
MYOD 0.14 014 0.14 0.86 0.90 0.88 0.88 0.71 0.79
SRF 0.71 0.86 0.78 0.77 192 .84 0.88 0.49 0.63
TBr .81 0.74 0.77 (.85 0.94 0.89 (.88 .88 (.88

Table 5.3: Comparisons of EDAMD, GALF and GAME on the cight datascts: Av-
erage results (precisions, recalls and F-scores)

GALF runs up to 300 generations, and GAME runs up to 3000 generations. In ad-
dition, GALF and GAME use multi-start GA. In each run of GAME and GALF,
GA is executed 20 times. Consequently, the total numbers of fitness evaluations are
3,000,000, and 30,000,000 in GALF and GAME, respectively. On the contrary, the
number of fitness evaluations of EDAMD is only 1000, which is significantly small
compared to GALF and GAME. On the other hand, the Greedy Refinement on an
individual is computationally intensive, However, it is difficult to compare the run-
ning time fairly, because GALF was implemented in C, GAME was in'jp.lemcnlcd

in Java, and EDAMD was implemented in MATLAB.

5.5 Cluster Refinement Algorithm for Motif Discov-

ery

As mentioned in Section 5.4.3, EDAMD always finds the same set of motif in-
stances given a sufficiently large population, even though the GA evolution is af-
fected by the initial random seed. In other words, a sufficient number of local
optima might include the global optimum in motif discovery. Therefore, Cluster
Refinement Algorithm for Motif Discovery (CRMD) is proposed as a deterministic

algorithm, which is more efficient and effective than EDAMD.

D

Chapter 5 Computational Motif Discovery 86

5.5.1 Algorithm

Given a set of sequences S and the motif width w, solving for the optimal PIM
A in terms of p(4) in Eq. 5.1 dircctly is computationally intractable. Under the
assumption of exactly oene occurrence (of motif instance) per sequence (OOPS), the
(w.d) motif discovery problem is already NP-hard [74]. If the OOPS ﬁssumption s
relinquished, the search space becomes much bigger, and thus the problem is cven
more difficuit. However, as shown in EDAMD in Section 5.4 and Motif Sampler
[77) and MEME [6], given an initial PCM, it is possible to search for the PIM 4
whose N(A4) is the local optimum of the original PCM via an iterative procedure.
Therefore, it 1s likely to obtain the global optimal 4 among the local optimal A’s
from a sufficient number of different imtial PCMs.

AIgbrithm 5.2 is the main program of CRMD. Firstly, allthe w long subse-
quences arc cxtracted from the sequences (suh(S) in Sleb 1. In each scquence, the
subsequences starting positions range from the first possible binding site | until the
last possible binding site |S;| — w + 1. Sccondly, the Cluster procedure partitions
the set of all the candidate subsequcnccs..s‘ub(ﬁS') 50 as to group the similar subsc-
qtiences in the same cluster;, whose PIM 1s A(cluster;). Each cluster; 1s then used
to construct a set of D artificial motif instances J,” whose PFM N(ﬁ[”) 1s equal to

‘the PFM N{A(cluster))) of cluster;. Thirdly, the Re fine procedure uses the PCM
N(/?(,-,) of the artificial motif instances /]“-} to scarch for the local optimal PIM 4,,,.
The best sct of motif instances A, in terms of p(A,;,) is returned as the result. If
we know the motif is consistent with OOPS, a post Adupt procedure can be applied
to further enhance the best set of motif instances.

Fig. 5.2 illustrates the execution path of CRMD with the example in Fig. 5.1.
First, the set of all t]1e subsequences s arc. extracted from the sequences .S. The sub-
sequeﬁces are then grouped into separate clusters using Cluster. In this example,

there are altogether 17 clusters. The PFMs of the clusters are multiplied by 2 = 10

Chapter 5 Computational Motif Discovery 87

Algorithm 5.2: Main: the main program of CRMD
Input: The sequences .S
QOutput: The best sct of motif instances BA
P ¢ —oo;
clusters «— Cluster(sub(8));
foreach cluster; € clusters do
L | Ny« D x N(A(cluster;))
[p(A)] = Refine(N(A,,,).S);
if p(A;;) > P then
L P plAg);
BA « Ay

if QOPS then
| [BA.P) « Adapt(BA),

as the PCMs of the artificial sets of motif instances. The artificial PCMs are subse-
quently uscd as the initial PCMs to find the local optimal sets of motif candidates in
Re fine. Finally, the best set of the motif instances is returned, in which the correct
motif instances arc highlighted in upper cases.

The following Scctions 4, B and (' describe the Cluster, Refine and Adapt
procedures in the main program of CRMD in Algorithm 5.2, respectively. Scction

D shows how CRMD is extended to handle multiple motif discovery problems.

Entropy-based Clustering

The Cluster procedure in Algorithm 5.2 chooses the initial PCMs for the Re fine
procedure. A good initial PCM is important for Re fine as the resulted local opti-
mum is more likely to be the global optimum than a bad initial PCM. A random
PCM usually contains too much noise, and its PFM bears little similarity with the
existing subsequences, and so searching from a random PCM rarcly leads to truc
motif instances. Using an existing subsequence in $ as the initial PFM is better
than a random one since it is better conserved and it has at least one similar sub-
sequence. However, for a typical motif discovery problem, there are thousands of

subsequences, and so using alt of them would be expensive. MEME selccts some

Chapter 5 Computational Motif Discovery 88

—ar—
- Hue bty
g !
MUl bodn (LR LLCRE TS
CRUCKsL ’ ADDGO IO DORT (413 Kicacag
Klogatt rl { - -
tegallg Leacugt etk 019 died ,' 3.3 e
| |(Linooponodaian Rloigal
| - i (R T31313300 U 0G4 001Y RArt RAE i
3 - | - glmull b Brovola M.
negtCGATTI e tang ! 5 1 e gt (GATTOS
pp- it i T I"' . | skl T6AICGA
Rl AATTGAK tan N i P T CARETGE
WO CGACsge Lt ; { . ool AGOOD S 000,053 10 ifaitisd | CAATTUA
CRULTGTCACART Ot [extrietd | [elusier 50000 I'W'IJ MA70.03710 0.0600.0frcfine of | best (ULGA
teageCACAC Cagr t Vo el hsiinen ! oo 1o 0000006700 | egarige U entaege
conpnd GTCTUAL LY P lr’m."m- 14700350000 0.0 0.1 1t e (LFCTOA
it el GACTGAR | % i i i I LN Lrsecbiam
pelgeecal GATIGA 1 " . | : et o
cemgtar(GATIG] =71 i > : bl e
| ! el i M7 Ty eSS
| LA AD.0 L3000 GH0 00013 el tga
| vilela CLAL%0.00046 70000 Cyue B
2 | HeRlety LAETOOURTHOL YOOI Crt gy
10013
CRAt Ly

1310 0,010 0O R LR

gnitgea

a) M 4]) e}

Figure 5.2: The execution path of CRMD with the example in Fig. 5.1. (a) all the
subsequences of seven bps are extracted from the sequences S. (b) the subsequences
are then grouped into separate clusters. (c) the initial PCMs are calculated as the
. PFMs of the clusters multiplied with D (10 in this example). (d) the initial PCMs
are subsequently refined to find the local optimal set of motif candidates. (e) the
best set is returned as the discovered motif instances where the correct instances are
- in upper cases

subsequences randomly and perturbs their PFMs somehow as the starting points in
its EM al gorithm. Nonetheless, there is still no guarantee that the randomly selected
subsequences definitely occur in the motif i instances. i

+ CRMD creates and selects the initial PCMs by clustermf, all the subscqucnccs
_ into modest-sized groups. There are four advantages of clustering. First, cluster-
ing all the subsequences guarantees that every subsequence has a large chance to
occur in a certain cluster and thus is likely to be coqsidercd in the subséqucm pro-
cess. Second, grouping the similar subseqaences together exempts CRMD from
the costly computétion of processing every subsequence later, and in the extreme
"“case the huge number (4") of all the potential consensus. Third, clustering similar
subsequences into the same g;'oup has already accomplished part of the job of max-

imizing the posterior probability in Eq. 5.1. Forth, clustering has an explicit control

of the number of the subsequences in a cluster, as it discards small insignificant

Chapter 5 Computational Motif Discovery 89

Algorithm 5.3: Cluster: partition the subscquences into separate clusters
Input: The subscquences s
Output: the clusters
clusters « O;
if [s| < D then
if s| > £ then
L clusters « s

else
[pos. base] « Pos(s);

clusters « - clusters UCluster{ ‘\'F:::(,):
' o ‘ o . - B i
3 clusters « clusters U Cluster(s],),)

clusters and partitions large clusters to remove the noise. Compared to other clus-
tering algorithms for motif discovery {16]{93], the third and the fourth advantages
are very important in finding the motif cfficiently and effectively.

Algorithm 5.3 is the pscudocode of the procedure Cluster in Algorithm 5.2.

Provided with a sct of subsequences s, Cluster checks the size of s, i.c., |+

, at first.

If |s| is smaller than {1—’ s is discarded. 1f |s| is larger than ’3’ and smaller than

D, it is returned as a cluster. If |s| is larger than D, Cluster continucs to partition
y. Step Pos(s) selects the optimal position pos and the optimal nucleotide hase to

partition s into two sets of the subscquences. The subscquences in the first set s,

e

have the nucleotide h = base on position pos, while the subsequences in the other

frax

SCU S e have nucleotides other than hase on position pos. Both sets arc then

pres
hetse

pen
h s base

recursively clustered in Clustering(si) and Clustering(s), respectively. In
this way, the set of subsequences v are scparated into smaller and smaller clusters
by applying Cluster recursively.

C'luster keeps a st of subsequences s intact and returns it as a cluster if and only
if its size is in the range l%)'!)]' If the cluster size 1s too large, the subsequences in
the cluster may have too much diversity which introduces unnecessary noise into
the resulted PCM. if the cluster size is too small, the subsequences may constitute
no significant motif and thus the cluster is discarded, because motif discovery 1s

looking for the binding sites of a common transcription factor bound to sufficient

Chapter 5 Computational Motif Discovery 90

sequences. Even if a motif instance happens to be included in a discarded cluster, it
is still possible to recover it from another cluster consisting of other motif instances.
In the extreme casc, a sct of exact Z subscquences 1s split and returned as a cluster
in each recursion of Algorithm 5.3. Therefore, all the clusters consist of exact
subsequences, and the maximal number of clusters is ¥ where 1. is the total
number of all the subsequences. The actual number of clusters 1s much smaller than
the maximal number because the number of the subsequences in a cluster is usually
larger than . On the other hand, if the number of the subsequences in a cluster is
smaller than 3’ the cluster is discarded directly. It 1s empinically observed that for
a typical datasct of thousands of subsequences, the number of clusters s up 1o only
several hundreds. |

To choosce the optimal position and nucleotide base in step Pos{s) to partition the
current sct of subscquences v, CRMD adopts the clustering criteriont in Eq. 5.11. For
cach potential partitioning position pos and nuclcotide type have, Pos(s) calculates
the relative entropy of the subset resulted from partitioning the subscquences v on
position pos according to nucleotide type husc, i.c., En(s) "), and then scales the
entropy with the size of the subset, i.c.. }sh) |. The position and nucleotide type
giving the largest scaled entropy arc choscen for partitioning, |s£:::(| 1s considered in

[{\

finding Pos(s) so that a large cluster is preferred. £n(s) |) is the sum of the relative

R

entropics of the subsequences wy .

on all the positions. The relative information
entropy is used because CRMD aims to find the sct of subscquences which are

similar to each other and yet different from the background sequences.

g B .) PNy s
PU-‘(-\] - drbmdx 8 ”(\hm() hene |
pes {12 whbuse B
;m\) } \.pr»‘\),‘ I
g POS _ .-‘msc h Chase!h
I "(\bm() - Z z pm {”&'(s 6“) (5.11)
i Lbed Phae | ' hﬂ-\(‘| Uh

The choice of the clustering criterion in Eq. 5.11 1s deliberate, as it cnables

Chapter 5 Computational Motif Discovery 91

Cluster to find the clusters of approximately large posterior probability as defined
in Eq. 5.1. Actually, if we simplify Eq. 5.1 using the Burnside formula® to approx-

imate the gamma function, we may get the log of p(A4) as follows,

i(A) = h’g(f)(/!ls- all-pmf)lha)} 2 Ko+ _/‘(|A|'pa-f)h-a)

N(A), +a, 0.5]

+ (N(A)",WL(X;, -0.5) oy __
fz’, ,,Z}, 4 || + | - 0.5 By

where K 15 an invariant constant w.r.t all the variables, : (A} pa-pr-)is a

'H()\

function of |A| only. If 4 is substituted with s} | the last term is approximate to

and |s7" |2 4] 1 lad

fm Y

K \{ I}_,_ beg, (LS

sy P NIy L b e
(\ha\c hm<| in Eq. 5.11, where is _,f":' ™A e 08

[?U\ J I\;}”\

0.5. Therefore, the sct of the subsequences v, of large £n{s | 1s likely to
heine beve 71 beise

1A
have a large p(. ‘hm().

Greedy Refinement

In Algorithm 5.2 and Fig. 5.2, the Re fine procedure finds a local optimal sct of mo-
lifinslaﬁccs from an imitial cluster. Rather than using the actual subsequences in the
cluster, Re fine uses the PCM NA) =D~ N(A(r!u.wer)) of the initial subsequences
A as the sced for further refinement. A is simply a symbol consisting of no actual
subsequences since only 1ts PCM is needed n the refinement, and its PFM 1s equal
to N(A(cluster)). Greedy Refinement subsequently finds a new set of subsequences
A, whose N(A4) is similar to and yet better conserved than N (A4).

There are two advantages of the Re fine procedure. In Section 5.5.1 (Selecting
Motif Instances), it uses a fast greedy local search method to find the local optimal
motif instances. A greedy heuristic makes the scarch deterministic, while the Gibbs
sampling in Motif Sampler is a random process, and thus Re fine converges much
faster. In Section 5.5.1 {Changing Instance Number), it uses auto-adjusted thresh-

olds to change the number of motif instances adaptively. The search is flexible as it

Burnside formula T(x + 1) x!a (v + 0.5 W5 + 053, /90

Chapter 5 Computational Motif Discovery 92

allows a variable number of instances. At the same time, the number is changc‘d by
at most onc instance cach itcration, and thus Re fine still converges very fast.

Algorithm 5.4 shows the overall pscudocode of the Re fine procedure. ltera-
tively, it replaces the old motif candidate instances 4" 11 which is 4 initially, with
the new candidate motif instances .1'"). The new candidate motif instances are sc-
lected among all the subscquences to maximize the posterior probability p(A'")
based on the old candidate motif instances. There arc at most D iterations. At the
beginning, NUM, the number of motif instances, is sct to the number of scquences,
i.c., 1. In cach iteration, after finding NUM candidate motif instances, Re fine trics
to remove the least likely candidate motif instance s) to incrcase p(A'"'). If it is
removed successfully, NUM is decreased. Otherwise Re fine tries to add the next
most likely subscquence s» to increasc p(A'"). 1f it is added successfully, NU/M
is increased. Refine stops iterating when 4 remains the same in two consceutive
iterations, and finally it returns the last 4.

The two main steps in Re fine, the selection of motif instances and the adaptive
changing the number of motif instances are given below:

Selecting Motif Instances

[teratively, Re fine finds a new set of more conserved motif instances A'"" which

are similar to the old set of candidate motif instances 4'* '

. The similarity of a
subsequence Af to the cxisting motif instances A' is measured by how much the
posterior probability p(A4°) increases if Af 1s added in A'. Instead of calculating
the two probabilitics with or without A;’I and then comparing them, CRMD calcu-
lates the Bayces ratio between them directly, which is derived using the Bayesian
inference. Rurio(N(A’).Af) in Eq. 5.12 is the strength of a position 4/ being a
binding site based on the current N{A4"). The derivation is stmilar to Eq. 5.1, where

the equation I'{n + 1) = nl'(n) is used to cancel out the Gamma functions in both

.S’-f” A in

numerator and denominator. N(A4*);"r(is the number of nucleotide A* =
S(A*)*, i.e., the same nucleotide type on position & in S{A4") as the onc A in the

subsequenc-e S(Af).

Chapter 5 Computational Motif Discovery

93

Algorithm 5.4: Refine: identify the motif instances based on a cluster

Input: the initial N(4) and S

Output: The Local Optimal 4 and p(A4)
NUM « D;

AV @,

N(A"Y) « N(A);

fori< 1toDdo

ratios + Ratio(N(A'1),5);

LAY argmax (ratios] . NUM); h
2 if not OOPS then
51 argmin_‘_l‘ A1) ratios(s;);
Ty < Expect(N(A') = {s1}),60);
if Ratio(N(AY —s1),51) < T; then
NUM «— NUM -1,
AN — A g}
else
8§ argmax’n ¢ anrat ios(s;);
T « Expect(N(AW),N(ADY));
if Ratio(N(A").s1) > T» then
NUM « NUM 41,
A — 4l) + 82
if AV = 4 1) then
A Al
p(A) « p(A|S. 6y, pu. ps,),
| return;
- Al =14*.8
Ratio(N(4*),A’) = piA; = li¥'s5)
p(A! = 0]4%,5)
I pla] =116.4".8, po)p(814° . S)p(polpa: ps) d6
[p(4] =0[6.4*,S, po)p(814*,S)p(polpa. ps) dO
| A+ p, w NA +a

e,u{.s’(.-x,.’n[,—|A’1+ph~— e 1A+l
0

After calculating the ratios of all the Af based on the old instances A)| Re fine

selects NUM subsequences of the maximal ratios directly and replaces A4 ') with

Chapter 5 Computational Motif Discovery 94

A" in Step 1. Refine is greedy because it always select the subsequences of the best
matches, and so it may get stuck in local optima. This is exactly why CRMD adopts
a multi-start approach with Cluster to locate the global optimum out of many local
optima. However, being greedy, Refine converges fast as 4'") usually stabilizes
in less than {_T) iterations. On the contrary, Motif Sampler uses Gibbs sampling
to iteratively select subsequences with probabilities in proportion to their Bayes
factors. As a Markov Chain Monte Carlo method, Gibbs sampling may take an
undetermined time before generating samples following the target distribution.

Changing Instance Number

An important issue in discovering motif instances is choosing an appropriate
number of predicted motif instances. Predicting too many motif instances may lead
to many false instances, while predicting too few motif instances may miss many
true instances.

To address the issue of the unknown number of motif instances, Re fine changes
the number of motif instances NUM adaptively to increase the posterior probability
as defined in Eq. 5.1. More specifically, Algorithm 5.4 adds or removes a marginal
motif instance by comparing its ratio to the thresholds 7; and 7>, which are calcu-
lated adaptively based on the existing motif instances. The number of the predicted
motif instances is changed by at most one in an iteration, and so it is fast and casy
for the motif instances to converge in the Greedy Refinement. =

In detail, after sampling NUM candidate instances, Re fine selects the one with
the smallest ratio, i.e., s + argming i) ratios(s;), and checks if removing it would
increase the posterior probéabilily of the rest of the candidate instances 4'") — {s,}.
Refine calculates the ratio Ratio(N(A") — {s1}).s1). A small ratio means s, af-
fects A') — {5} negatively and thus should be removed. Otherwise, Re fine checks
if the subsequence of the Iarg'e.st ratio in the remaining subsequences, i.e., §3
argmax, 4 4ii ratios(s;), would benefit the probability of the current set of motif
instances A, Similarly, Refine calculates the ratio Ratio(N(A4'").s>) and adds

s if the ratio indicates that it will increase the probability. NUM is decreased

Chapter 5 Computational Motif Discovery 95

or increased depending on whether a subsequence is removed or added. The or-
der of removing and adding motif instances is irreversible. Due to the possible
spurious binding sites, some noise may be included in the current set of motif in-
stances.. Therefore, the noise must be removed first before searching for more motif
instances.

In Algorithm 5.4, Re fine compares the ratios with the thresholds 7| and 7> in
the two “if”” conditions, and it removes or adds the subsequence if the condition
1s satisfied. It is important to choose appropriate values for the two thresholds 7,
and 7> since they control the value of NUM directly. Intuitively, both thresholds
should be 1 since the ratio is 1 when the posterior probabilities of a set of motif
instances with or without the subsequence are equal. However, since the motif is
usually weakly conserved, it is possible that a true binding site is mutated somehow
and looks quite different from the others, and so removing it (or not adding it)
may actually increase the posterior probability of the set of the motif instances.
Re fine also has to be prudent to add new motif candidates since a false subsequence
may readily increase the posterior probability of a very weakly conserved motif.
Therefore, 1 may be inappropriate for the thresholds.

Refine adjusts Ty and 7> automatically to account for two concerns. First, be-
cause each iteration in Algorithm 5.4 may have a different set of motif instances
A'Y, the thresholds are always calculated in accordance with the current 4. Sec-
ond, since there is no prior knowledge of the subsequence to be included or ex-
cluded, the thresholds should take into account all the possible subsequences of a
certain distribution. Therefore, the threshold that Re fine uses is the expected ratio
of a random subsequence generated from a certain distribution @ w.r.t. the current
set of the motif instances 4, i.e. E(Ratio(N(A4).s)|©). A naive yet computationally
intensive method to calculate the expectation is to collect the ratios of all the pos-
sible subsequences over the current motif instances 4 and taking their average in
proportion to their probabilities of the specified distribution. Fortunately, Eq. 5.13

shows an analytical formula to calculate the expected ratio efficiently. In Eq. 5.13,

Chapter 5 Computational Motif Discovery 96

s; 1s one of the 4" possible subsequences generated from the distribution parame-

terized by © with the probability p(s;{®). bf is the nuclcotide basc on position § in

the subsequence s;.

4
E(Rutio(N(4).5)|©) = Y Ratio{N(4).5,)p{s,|0)
[

v NA)Y, 4+
l‘tll + Pu : ()h hi @Jr
- Al +pn—1; - h: b
| / i1l |-4|+|a| 6,
Al + + o,
A+ b HZ NAY, + o e,’,. (5.13)
L= A+ pp - N ‘1|+|a|
The computation of the part Zf ([17 4 in Eq. 5.13 is greatly simplified by using

Eq. 5.14, which reduces 4" x w variable references (of only 4w distinct riJ} on the
left to 4w variable references (without repetition) on the right. The reason is that

Z?w| }‘ (in Eq. 5.13 actually involves only the complete enumeration over the

VA : :
cartesian product of the sets H; Jl” [fg ©j|b € B}, where j = 1---w. Thercfore,
13 ; Ny l'
>t 1 [1j | can be rewritten as the teft of Eq. 5.14, where X = ______*L@f and

k! WL

simplified as the right of Eq. 5.14.

EZ ZH\ HZ\ (5.14)

HeBklcg kveBj o1k

Consequently, Refine uses Eq. 5.13 to calculate 7y and 7> under different dis-
tributions. For removing a motif instance, Refine uses the possible subsequences
generated from the background distribution (© = 6;) to calculate the threshold
T\ = E(Ratio(N(A4).5)|8y). If the ratio of the instance in question is smaller than T},
it is no better than a background subsequence, and so it is definitely discarded. For

adding a subsequence, T> = E(Ratio(N(A).s)|N(A]7) is used, which is the average

Chapter 5 Computational Motif Discovery 97

ratio of the subsequences generated from the current PFM. Derived from the Max-
imum Likelihood principle, N{(4) is actually the latent probabilities generating the
current motif instances. Therefore, a new subsequence should be definitely added

if 1ts ratio 1s bigger than the average ratio of the motif instances, namely 7>.

Post Adaptation

Greedy Refinement allows a variable number of motif instances, and it adjusts the
number of motif instances automatically in the scarching. If the problem has One
Occurrence of motif instance Per Sequence (OOPS). the performance of CRMD
can be further enhanced since the search space is greatly reduced.

There are two modifications to Algorithm 5.4 of Re fine to take the advantage
of the OOPS assumption. First, in Step 1, the binding sites are selected on the
sequences separately. For each sequence, Re fine compares the ratios of its subse-
quences, and then selects the one and the only one of the maximal ratio. Second,
the number of motif instances NUM is constantly D. and so the part of changing
NUM in the i f — then loop 1s not executed {Step 2). Since NU/M 1s not changed
anymore, it becomes easier and faster for 4'' to stabilize.

However, in the case that OOPS is only an approximation. we still need to fine
tune the number of motif instances. Considering that the motif is close to QOPS, it
is better not to change the number of motif instances NUM inside Re fine since the
iterative searching may amplify the noise introduced by any additional candidate
instance due to the changing NUM.

In Algorithm 5.2 of the main program, the procedure Adupr further processes
the best set of motif instances B4. The original BA is consistent with OOPS, but the
true motif may be slightly different from OOPS. Adapt first removes the existing
instances in B4 whose ratios are smaller than 77 even though it might remove all the
candidate instances on a certain sequence. Adapr then adds new instances not in 84
if their ratios are larger than 7> even though it might find more than one candidate

instance on a certain sequence. Here 77 and T~ are calculated in the same way as

Chapter 5 Computational Motif Discovery 08

in the procedure Refine. 1t is unnecessary to apply ddupt 1o every A ,, returned
by Re fine in Algorithm 5.2, because Adapt usually does not change the ranking of

the posterior probabilities of the sets of motif instances if the problem 15 inherently
QOPS.

Multiple Motifs Discovery

CRMD can be extended to solve the multiple motif discovery problem. [t is possi-
ble for a set of real DNA sequences to contain multiple motifs. The multiplc motifs
may have various kinds of consensuses, numbers of instances and degrees of con-
servations. Due to the diversity of the multiple motifs, the signal-to-noise ratios are
even lower than that in the single motif discovery problem. Therefore, it is usually
more difficult to find multiple motifs than a single motif.

Some traditional motif discovery algorithms run their single motif searching
procedures multiple times to locate different motifs. After finding a motif, the cor-
responding subsequences and their neighbors are masked off the sequences so that
the overlapping subsequences will not be identified as new motif instances later on.
The shortcoming of this masking scheme is that the discovery of subscquent motifs
depends on the previously predicted motifs. 1f some spurious instances are included
in a motif, the neighboring subsequences which might be true motif instances are
masked off. Even if a true binding site is predicted but included in a wrong motif,
masking it off too early may corrupt the consensus of the corresponding motif and
thus affect the discovery of the motif later.

To avoid the aforementioned drawbacks, CRMD finds multiple motifs without
masking simultaneously. As Re fine samples the sets of the motif instances based
on the cluster, a straightforward approach for CRMD is to select a few candidate
motifs among all the sets of the motif instances returned by Re fine, i.e., {4,;,}. The
selection is performed according to two criteria, namely the posterior probabilities

of the possible motifs and the similarities between the selected motifs. Since the

Chapter 5 Computational Motif Discovery 99

motifs are weakly conserved and the clusters from Cluster may have similar con-
sensuscs, 1t 15 possible that the resulted motifs after Re fine are similar and predict
many common binding sites. Therefore, among a group of similar motifs, only the
motif of the highest posterior probability is selected.

In the current implementation, CRMD specifies the number of motifs M before-
hand. When a new motif is returned by Re fine, it is firstly checked if it is similar
to any of the motifs already sclected. If so, the new motf replaces the similar motif
if the former has a higher probability. If therc 1s no similar motifs already sclected,
the new motif replaces the selected motif of the lowest probability if the former has
a higher probability. The approach ensures that the M output motifs arc different
from cach other, and at the same time they are of as high probability as possible.

To measure the similarity between the PCMs of two motifs, CRMD adopts the
homogeneity test using the y* distance in [59]. Basically. it shifts and aligns the
two motifs. If their PCMs on all the overlapping positions are statistically gencrated

from the same distribution, the two motifs are deemed similar.

5.5.2° Experiments

CRMD has been tested on both synthetic and real DNA datascts. A testing dataset
consists of DNA sequences with motif instances already tagged, and hence it can
be used for the algorithm performance evaluation. For some datasets, the widths of
the motifs are assumed known beforechand and are tested directly with CRMD. For
the other datasets with unknown widths, CRMD either uses a common fixed width
or tries a range of different widths and selectes the width giving the best result.
Some researchers use two levels of performance indices to evaluate the algo-
rithm [117][53]. On the nucleotide level, it is calculated that how many nucleotides
that the predicted instances and the true instances overlap for. On the site level,
a predicted instance is correct if it overlaps with the true instance for at least one

nucleotide. To combine the performance indices on both levels, CRMD adopts the

Chapter 5 Computational Motif Discovery 100

criterion that a motif instance 4/ is correctly recovered if cither of its ends is within
threec bp away from thc corresponding end of the true motif instance | 119][22].

More formally,

A:I i correct Wf|j—jl<3or|j4w i3 (5.15)
incorrect otherwise
where j,; and j,. are the indices of the starting and ending positions of the closest
true motif instance. The three bp tolerance is reasonable since the widths of the
tagged motif instances vary around the known width in a real datasct. It 15 conjec-
tured that the truc motif instance should lic somewherce between the two ends of the
tagged instances [117]. This criterion of successful prediction is strict and practical
since it does tcll a biologist where to look for the true binding sites. In contrast to
comparing binding sites, comparing the PFM or PWM of the discovered motif and
the true motif may be insufficient, becausc a small difference in PFM or PWM may
lead to very different binding sites.
To measure the performance of CRMD and other algorithms, the metrics of
Precision, Recall and F — score [119][22] are defined as follows, where the operator
| - | is the cardinality of the set.

Precision = correct mart f|

[raati f fesend|

rorreet motif
Recall = |——————-—l
|freee maotif]

Precisionr Recall
Precision | Recall”

F—score = 2x

- After an algorithm finds the candidate instances computationally, the results
need to be verified in biological experiments. The algorithm hopes for a high
Precision to avoid wasting too much effort on the false motif instances. In the
meanwhile, it should miss as few true motif instances as possible, so a high Recafl
is preferred. However, there is often a tradeoft between Precision and Recall in real

problems. Sometimes a high Recal/!/ means a large number of candidate instanccs,

which may coasist of many false positives. On the contrary, a high Precision can be

" Chapter 5 Computational Motif Discovery 101

achieved by retaining only the highly conserved motif instances at the risk of delet-
ing some true weakly conserved motif instances by mistake. Thercfore, /7 score
is introduced to mix Precision and Recall.

CRMD are compared to Motif Sampler {77], MEME [6], GAME [119] and
GALF-P [22]. Since Motif Sampler and MEME are scnsitive to the itial settings,
they are executed in the manner of.multi-stan with different starting points. GAME
and GALF-P are GA-based, and their results may be inconsistent and affected by
‘thc random seeds, so only the average results of GAME and GALF-P in 20 runs arc
reported. In ecach run, the total numbers of the sets of motif instances searched by
GALF-P and GAME are 3,000,000 and 30,000,000, respectively. With such a large
number of sampling, the searching of GALF-P and GAME are relatively exhaustive,
and their results arc expected to be closc-to-optimal.

The following subsections 4, B8 and C give the details of the results for the
synthetic single motif, real single motif and real multiple motif discovery prob-
lems tested in our experimental evaluations. In the real single motif discovery ex-
periment, the following datasets arc tested: the eight selected datasets in GAME
[119] and GALF-P [22], the ABS databasc [15], the SCPD databasc [128], the £s-

cherichia coli dataset [53] and the Tompa datasct [117].

Synthetic Datasets

A total of 800 synthetic datasets with length 300 bp for cach scquence arc gencer-
ated with the following cight combinations of scenarios: (1) motif width: short (8
bp) or long (16 bp); (2) number of sequences: small (20) or large (60); (3) motif
conservation: high or low. For each combination, 100 datasets are generated ran-
domly and/c-:mbcddcd with the instances of a random motif. In the high conservation
scenario, on every position of the motif instances, the dominant nucleotide is gener-
ated with 0.91 probability (while all other three nucleotides with (.03 each). In the
low consecrvation scenario, only 60% of the positions in the motif instances are as

highly conserved as in the previous high conservation scenario, while the rest 40%

Chapter 5 Computational Motif Discovery 102

of the positions arc lowly conserved, where the dominant nucleotide is generated
only with probability 0.55 (while all other three nucicotides with 0.15 each) in ev-
ery instance. To simulate the noisy situation in real data, in cach synthetic dataset,
the probability of containing no motif instances is 0.1 for cach sequence. In the rest
of the sequences which contain motif instances, the probability for a .scqucncc to
have more than one instance is (0.1. The number of additional instance(s) in such a
sequence follows the geometric distribution with p = 0.5, i.c., p(k) = (1 - p)* 'p,
and so there are expectedly ‘% = 2 additional motif instances embedded in the sc-
quence.

Table 5.4 shows the results of the five algorithms. For each scenario, the results
arc averaged over the 100 datasets. CRMD has the highest average /' — scores on
six out of cight scenarios. [n the remaming two scenarios CRMD has the second
highest average /- scores. CRMD also has the highest average /- score over all
the 800 problems of cight different scenarios, which proves that CRMD is relatively
robust in a variety of problems. For the casy datasets in the last two scenarios (with
long motif width and high conservation), all the algorithms have very good results
(f" — scores around 0.98), and so there is no big room for the improvement for
CRMD. For the other more difficult problems, the results of the algorithms vary in
a wider range and the advantage of CRMD is more apparent. It s also interesting to
notice that MEME has the highest average Precision in most of the scenarios, while
GALF-P ha.s the highest average Recall in most of the scenarios. However, CRMD
has both good Precisions and Recalls on most of the datasets, and thus it yields the

highest average /7 — scores due to the good balance between Precision and Recall.

Real Datasets

To investigate the performance of CRMD on real datasets, and how it 1s compared
to other algorithms, CRMD and other algorithms are also tested on a wide range of
rcal datasets. Section 5.5.2 (Eight Selected Datasets) describes a detailed analysis of

the results on the eight datasets tested by GAME [119] and GALF-P [22]. Scction

Chapter 5 Computational Motif Discovery 103
Scenano GALF-P GAMI: TTTMIMILL T Sampler CRMD
Width Num Conl P R’ FlPr R 1| I s pe It I{r R I
Shom Small Low (3% 086 0441020 032 03049 1134 oiy[nad 037 vdnfirde 033 .46
Shun I.nrgc Eow |[D0A2 D54 SSHE4Y L2 036]063 0 032|085 0.4) G SY 1R () 53
I_nng small Low [OR7 09l NEGNTH - DET GRI0Y]L DEA OEE|DKT OX% DEX|OY] DEE (L9]
Lnng Larpe Low |04 Q0 090092 09 W00 ORS OHOEY w2 o992 nulr B92
Short Small Highln7d 0o 080[071 0RO 075[0KT 08 ORS|[OUKS 0KS OKS|ORN 0KV D86
Shor Large FlighjOX1I 086 0830K3 0X3 083|001 076 GHI0KT 0XY OBS0K4 OK3 0Kl
l,nllg Small lligh a7 oy QuRiDuYd g9 ORT70OE DYy GUR|BUs D) OuURiduy guy gy
l,\ll!g Largl: lligh 097 097 Q497098 0% DURIOWE YK DYK|O.90 .o Duglowy uyy ()L99
Average 077 084 0RO[DTY 075 074084 .74 07R0OKE 078 079|081 080 O8]

Table 5.4; Average results for the synthetic datasets experiment: Width is for the
motif width, Num is for the number of sequences, Con is for conservation degree,
P is for Precision, R is for Recall and F is for /-score. Sampler refers to Motif
Sampler

5.5.2 (ABS and SCPD databases) reports the results on the ABS database [15] and
the SCPD database [128]. Scction 5.5.2 (E. coli and Tompa datasets) rcports the

results on the fycherichia coli datasct {53] and the Tompa dataset [117].

Eight Selected Datasets

Following GAME [119] and GALF-P [22], the experiment has tested cight real
datasets, i.c., CREB, CRP, ERE, E2F, MEF2, MYOD, SRF and TBP, and compared
the performance with the other four algorithms. These eight datasets consist of the
sequences from many different species. The CRP datasct contains TFBSs bound by
the cyclic amp receptor protein in Escherichia Coli [112][69][78]. The ERE datasct
contains the estrogen receptor clements that ER binds, from the sequences of vari-
ous species [60]. The E2F dataset contains TFBSs of the E2F family from different
mammalian specics [58][11][38]. The datasets of CREB, MEF2, MYOD, SRF and
TBP are chosen‘b GAME from the ABS database of annétated regulatory binding
sites [15]. As shovn in Table 5.5, the real datasets have a varicty of the numbers of
sequences, the lengths of sequences, the widths of motifs and the numbers of motif
instances. The same motif widths arc adopted as used in [119] and [22]. For a fair
comparison, all the algorithms are run with as few prior knowledge as possible, and
most of their running options are sct to their default values.

Table 5.6 compares the results of the four algorithms (GAME, MEME, Motif

Chapter 5 Computational Motif Discovery

dataset | #sequence | length | width | #instance
CREB 17 350 8 19
CRP 18 10s | 22 | 23 |
T ERE | 25 | 200 13 [25
E2F 25 200 i 27
MEF2 | 17 199 | 7 | 17
MYOD 17 200 6 | 21
SRF 20 345 | 10 36
0 TBP | 95 | 200 | o 95

104

Table 5.5: the real datasets: the numbers and the lengths of sequences, the width
and the numbers of motif instances

. GAMIE- MEME- Sampler CRMD
Problen | p R g P R 5) P R | P R |
CREB [041 042 042 | 071 063 067 | 071 063 067 | 067 063 065 |
CRP 079 078 078 | 08 067 076 | 094 0.70 080 | LOO 074 085
LERE 052 078 0620 100 068 081 | 0.75 072 0.7% | 071 DK 075
121 079 087 08 | 082 085 084 | 088 0.85 0OK7 | 083 0893 " 088
MEF2 | 052 055 053 | 093 0x2 D88 | 072 076 074 | 0.85 o0 092
MYOD 014 14 014 0.29 IR (.23 0.46 .29 0318 1 KO 0.54) LKR
SRF 0.7 X6 0.7% 0.74 0.89 .81 0.76 18,14} 0Kl nm (.50 .83
I'Br 081 074 077 [083 0069 076 | 074 0.67 070 | 083 089 086
Average | 059 064 061 | 078 0.68 072 [074 0.69 071 | 082 08 083

Table 5.6: The results for the real datasets assuming no OOPS: P is for Precision,
R is for Recall and F is for FF-score. Sampler refers to Motif Sampler

Sampler and CRMD) on the cight real datasets. Due to the adaptive thresholds
adopted in the Greedy Refinement, CRMD is able to choose an appropriate number
of motif instances, and thus finds a good balance between Precision and Re(:uH,
which consequently leads to the highest 7 — scores on six problems. Compared
to Motif Sampler, CRMD is better on seven out of cight datasets in terms of the
- F — scores. Compared to MEME, CRMD wins on all but two datasets. For the
MYOD problem in particular, because its motif width is short and the number of
the sequences is small, the signal-to-noise ratio is low. Other algorithms are unable
to identify the true motif in MYOD probably because of the marginal win of the
fitness of the true motif. On average, CRMD has the highest Precision, Recall and
F — score, which proves that the performance of CRMD is quite stable on the eight
problems.

The algorithms have also been tested with the prior knowledge of OOPS. A close

Chapter 5 Comptational Motif Discovery

105

Problem GALI-P NMEMI. CRMD
P R | P R | P K |
CRER .70 084 076 | 471 63 067 |07V 0% 0.78
CRP 0.9 173 084 | 0.07 .52 nsy | v 073 R}
[052 {076 079 76 0.7 076 1y H7 .10 n7i
120 0,77 0355 08l | 070 .71 U7y | 00K 13.K5 (.75
MEE2 | um R 0058 | und ur aed | oo 1600 1.00
MYOD | 057 1.0 .72 | Lo 008 o5 | oxn 0HI .88
“RI° .75 R 1.K2 s (1.5} [EX1H 077 142 .54
1 131 K7 (K7 0.87 nwa {194 94 1} RS (VUL i} By
Average | ORD 0.87 OR2 | 072 063 067 | OK1 OK7 084 |

Tablc 5.7: The results for the real datasets assuming OOPS: P is for Precision, R is
for Recall and F is for -score

investigation of the cight problems reveals that they are more or less consistent with
the OOPS assumption. As shown in Tablc 5.5, except for the problem SRF, the
numbers of motif instances are close to the numbers of sequences. CRMD activates
the Adapt procedure and searches for OOPS solution only in the Re fine procedure.
The experiment has also tested GALF-P and MEME on the cight problems, which
are capable of searching for OOPS consistent motifs. GALF-P secarches for OOPS
solutions only in its GA procedure, and then it shrinks or expands the solutions with
a heuristic post processing procedure. MEME has an OOPS running option which
cnablies MEME to search for exactly onc instance in each sequence. Table 5.7 shows
the results of CRMD, GALF-P and MEME. Mostly, CRMD obtains better results
than thosc obtained without OOPS in Table 5.6. Compared to GALF-P and MEME,
CRMD has the highest /° — scores on four problems, and the second highest /- -
scores on the other four problems. CRMD also has the highest average [— score. In
particular, on the problem of MYQOD, CRMD has a remarkable advantage over the
other two algorithms. Even though GALF-P is the best on three problems, its results
have some variance since it is GA-based and sensitive to the initial population.

ABS and SCPD databases

Besides the eight selected datasets, the experiment has tested CRMD, MEME
and Motif Sampler on the ABS [15] and the SCPD [128] databases as well. The

ABS database has 650 experimental binding sites from 69 transcription factors in

L
4

Chapter 5 Computational Motif Discovery 106

MEME Sampler CRMD
P R F P R F p R F
ABS 10.10 021 0131015 010 011|018 015 0.16
SCPD [0.10 0.05 005[029 019 023031 026 028

database

Table 5.8: The average results of MEME, Motif Sampler and CRMD on the ABS
and the SCPD databases. P is for Precision, R is for Recall, F is for ¥ — score

human, mouse, rat and chicken genome scquences. The scquences and the bind-
ing sites arc downloaded from the wcbsite of ABS databasc, and re-grouped the
sequences of the same transcription factors together, and thus a total of 69 datasets
is abtained, cach of which consists of the scquences bound by a common transcrip-
tion factor. SCPD is a promoter database of the yeast Succharomyces cerevisiue.
It contains 580 cxperimentally mapped transcription factor binding sites. Becausc
the website provides no FASTA files, the sequences and the binding sites have to
be collected and organized manually, and the transcription factors of less than four
binding sites are deleted, and thus a total of 28 datasets is obtained.

No prior knowledge of the exact widths for the motifs is assumed in the ABS
and the SCPD datascts. CRMD and Motif Sampler use the commonly adopted
fixed widths of 10 bps and 13 bps in ABS and SCPD, respectively, which are the
medians of the widths of the true motif instances in ABS and SCPD, respectively.
For MEME, the widths vary between [6,26] and [7.26] in ABS and SCPD, respec-
tively, which are actually the ranges of the widths of the truc motif instances in
ABS and SCPD, respectively. Because the actual motif widths arc not used, the
tolerance in Eq. 5.15 is relaxed to six bps. Table 5.8 shows the average results of
CRMD, MEME and Motif Sampler on the ABS and the SCPD database. For the
ABS dataset, CRMD has higher Precision while lower Recall rate than MEME,
and still it has the highest F' — score. For the SCPD dataset, CRMD has the highest
Precision, Recall and F — score.

E. coli and Tompa datasets

The experiment has also tested CRMD on the Escherichia coli (E. coli) [53] and

Chapter 5 Computational Motif Discovery 107

the Tompa [117] datasets, which arc collected and setup as the benchmark problems
for testing motif discovery algorithms. The £. colfi dataset is of prokaryotic data. [t
consists of 62 moti'fs of a variety characteristics, such as the motif width, the number
~of sites per sequence and the scquence length, etc. The Tompa dataset consists of
56 eukaryotic datasets, covering fly, human, mouse and yeast. The motifs are very
weakly conserved in the Tompa dataset, which 1s by far the most difficult dataset
tested with CRMD.

The £. coli and the Tompa datasets arc alrecady tested with other aigonithms, in-
cluding MEME and Motif Sampler, in [53] and [117], respectively. They use differ-
ent performance evaluation indices other than the Precision, R_ecuH and I - score.
Their performance indices can be categorized on two levels. On the nucleotide level,
the performance indices (with the prefix #) are calculated w.r.t. to the number of the
nucleotides that the truc and the predicted instances overlap. On the site level, the
performance indices (with the prefix s) are calculated w.r.t. the number of the motif
instances that the predicted instances overlaps with the truc instances for all least
one nucleotide. Suppose on the nucleotide level, #T P (true positive) 1s the number

“*of truc motif nucleotides C(-)rrcctly predicted, nTN (true negative) is the number of
true background nucleotides not predicted, #/°P (false positive) is the number of
falsely predicted motif nucleotides and nF N (false negative) is the number of truc
motif nucleotides not predicted. Eq 5.16 defines the nuclcotide level performance
indices. The site level ones are similarly defined by replacing all the “n™ with “s”
in Eq. 5.16. The original papers [117]{53) have morc details on the definitions of

their performance indices.

Chapter 5 Computational Motif Discovery 108

. nucleotide level site level sl
algorithm | - b nin 1 nl sPC sSn sSp sl nPC
MEME | 0158 0259 0199 0225 | 0295 0.0 (L4d6 DAy | 0116
Sampler 0.153 0.179 0237 0.204 .32 0.331 4476 0,340 1Ll
CRMD 0.286 0.321 G412 0.346 | 0459 053] 0635 0,558 1 0.221

Table 5.9: The average performance of MEME, Motif Sampler and CRMD on the
E. coli datasets. Each algorithm outputs five motifs, and the one of the best nPC
among the five outputs is recorded as the result. The last column reports the nPC of
the top-scored motif in terms of the score function used in the individual algorithm

nSn = nTP/(nTP+nFN)
nSp = nTP/(nTP+nFP)
nPC = nTP/(nTP+nFP+nFN)

nF = (2xaSnxnSp)/(nSn+nSp) {5.16)

For the E.coli dataset, each algorithm is required to output five motifs, and the
one with the best nPC, is recorded as the result. The widths of the motifs vary
from problem to problem, and thus CRMD use 15 as the fixed common width for
all the pi‘oblems, as used by other algorithms in the orniginal paper [53]. Tablec 5.9
shows the average results of CRMD, MEME and Motif Sampler on all the datasets,
where the results of MEME and Motif Sampler are quoted from the paper {53]. On
all the nucleotide levei and site level performance indices, CRMD has around 10
percentage better results. More sufprisingly as indicated in the last column {best
nPC), if CRMD outputs a single motif, its performance is already better than the
. best of the five outputs of MEME and Motif Sampler.

For the Tompa dataset, the algorithms are permitted to fine tune the parameters
and report the best result. Since the exact widths of the motifs in the datasets are
unknown beforehand, CRMD is executed with a series of widths from 10 to 15.
For each width, 10 motifs (without the similarity test) are output, and so a total
of 60 motifs is obtained. Among the 60 motifs, CRMD calculates the similarity

between each pair of motifs in terms of the x° distance [59], and it selects the motif

Chapter 5 Computational Motif Discovery 109

algorithm | nSn nPPV nPC | sSn sPPV sASP
MEME | 0.067 0.107 0.043 | 0.111 0.139 0.125
Sampler | 0.060 0.107 0.040 | 0.098 0.101 0.100
CRMD | 0.091 0.088 0.047 | 0.141 0.108 0.125

Table 5.10: The average results of MEME, Motif Sampler and CRMD on the Tompa
dataset. xPPV isxT P/(xT P +xF P) for both nucleotide and the site levels, and sASP
1s (sSn +sPPV) /2

which has the largest number of similar motifs as the result. Table 5.10 shows the
average results of MEME, Motif Sampler and CRMD on the 56 Tompa datasets,
where the results of MEME and Motif Sampler are quoted from the paper {117].
Generally, the sensitivity of CRMD is slightly better, and the specificity of CRMD
1s shghtly worse, which result in marginally better performance coefficient. As
the motifs in most of the Tompa datasets are very weakly conserved, the algorithms
usually predict no correct results on both nucleotide and site levels on those datasets.
Therefore, the average performance indices of the three algorithms are pretty low,
which shows that the de novo motif discbvery on real datasets of complex organisms

is still difficult for the current algorithms with often more than questionable results.

Multiple Motif Dataset

The liver-specific dataset [63] contains multiple motifs. Biological experiments ver-
ified that the liver-specific gene expression is controlled by the combined action of a
small set of TFs, primarily HNF-1, HNF-3, HNF-4 and C/EBP. The dataset contains
19 sequences and annotates 60 binding sites belonging to ten motifs. However, three
motifs have only one instance each, and three other motifs have only two instances
each. These six motifs are supposed to be very difficult to find due to the extreme
low signal-to-noise ratio. The rest four motifs have 19, 13, 13 and 11 instances,
respectively, among which three motifs have less instances than the sequences. The
widths of the motifs vary from 6 to 31, and even the motif instances of the same
motif ma); have different lengths.

GAME, MEME, Motif Sampler and CRMD are tested on the liver-specific

Chapter 5 Computational Motif Discovery P10
. GAME MEME Sanpler CRMD
P P R ¥ P R ¥ P R 5 P R 3
5 .27 03y, 03 031 018 0.2 | 034 017 023 | 1.36 5 0.48
10 0.32 0.0 042 | 0.30 0.23 036 | 040 I3 25 | o (.74 .56

Table 5.11: The results of MEME, Motif Sampler and CRMD on the liver-specific
dataset of multiple motifs. Each program is executed twice with five and ten outputs,
respectively. P is for Precision, R is for Recall, F is for F — score

dataset to evaluate their performance of multiple motif discovery, while GALF-P
is incapable of handling multiple motif discovery problem. The average width 15
is used in all the experiments. There are two sets of experiments. One is with five
outputs to account for the four motifs with most TFBSs, and the other is with ten
outputs to account for the motifs with fewer TFBSs as well. The prediction toler-
ance is relaxed to six bps because the motifs are very weakly conserved.

Table 5.11 shows the results of tht;. four algorithms in the two sets of experiments
of five outputs and ten outputs, respectively. The&Wl the experiments
are lower than 0.50, and CRMD is the only one whose Precisions are higher than
or equal to 0.44. The low Precisions indicate that there are many false positives
in the results. This is expected since the algorithms have to output more predicted
motifs than the true ones due to the low signal-to-noise ratio. MEME and Motif
Sampler have very low Recalls in both 5-output and 10-output experiments. When
the number of the outputs is increased from 5 to 10, the Reculls of GAME and
CRMD are increased significantly as more binding sites are correctly predicted.
CRMD has the highest Precisions and Recalls in both experiments, and so its F —
scores are also the highest. The advantage of the F — scores of CRMD over the

F — scores of GAME, which are the second highest, is more than 10 percentages.

5.6 Discussion

Estimation of Distribution Algorithm for Motif Discovery (EDAMD) uses the fit-

ness function derived by Bayesian analysis to measure the posterior conditional

Chapter 5 Computational Motif Discovery [BE

probability of a set of motif instances. Therefore. it is able to handle variable num-
ber of motif instances in the DNA sequences. It adopts a Gaussian distribution to
model the distribution of the sets of motif instances. The Gaussian distribution is ca-
pable of capturing the bivariate correlation among the positions of motif instances.
When a new Position Frequency Matrix (PFM) is sampled from the Gaussian distri-
bution, the local optimal set of the motif instances nearby is identified from the PFM
via the Greedy Refinement operation. At the end of a generation, the Gaussian dis-
tribution is updated with the sets of thg motif instances considering the fitness and
the probabilities of the motif instances. Since Greedy Refinement finds a single mo-
tif instance on a sequence, a Post Processing procedure is used to find more motif
instances after the evolution. The experiments have verified that EDAMD outper-
forms GAME and GALF on most of the eight selected testing real problems. and
its results stay constant with different initial populations.

A deterministic algorithm is also proposed for motif discovery, i.e., Cluster Re-
finement Algorithm for Motif Discovery (CRMD). CRMD uscs the Entropy-based
Clustering to find good initial motif candidates first, and then 1t uses Greedy Re-
ﬁnemém to find the local optima of the initial candidates. CRMD searches for mo-
tifs by maximizing the posterior probabilities of the motif instances. The posterior
probability allows a variable number of motif instances and it requires little prior
knowledge of motifs. Entropy-based Clustering partitions all the subsequences of
DNA sequences into clusters of maximal relatively information entropies, and thus
clustering aione has,already maximized part of the posterior probability. The num-
ber of the clusters is much smaller than the number of all the subsequences, and
so the computaﬁon cost is significantly reduced. Greedy Refinement finds the lo-
cal optimal binding sites given the initial clusters. It selects the motif instances of
maximal probabilities deterministically without taking extra time in sampling sub-
sequences probabilistically. It also automatically removes or adds motif instances
according to the thresholds which change adaptively following the distribution of

the current motif instances. If the prior knowledge of OOPS is available, CRMD

Chapter 5 Computational Motif Discovery 112

can further enhance its prediction performance by searching for OOPS consistent
solutions only and adjusting the number of motif instances later on. For multiple
motif problem, CRMD measures the similarities among the candidate motifs using
the y? homogeneity test, and thus it is able to keep only distinct motifs of high
probabilities.

Compared with other state-of-thc-art algorithms, CRMD has been tested ex-
tensively on both synthetic and comprehensive real datasets of single and multi-
ple motifs. As observed from the empirical results, CRMD is very competitive,
and often the best among the testing algorithms. The synthetic data are generated
with a variety of properties and difficulties. CRMD has achieved a good balance
between Precision and Recall, and thus obtained the highest / — scores on most
of the synthetic problems. The real datasets tested are comprehensive. On the
eight real datasets selected by GAME [119] and GALF-P [22], CRMD still has the
highest F — scores on most of the problems, and its average Precision, Recall and
F — score are the highest as well. With the OOPS assumption, the performance of
CRMD is further enhanced, ar;d its results are better than or comparable to those of
the other two OOPS algorithms.. On other four databases, 1.e., the ABS database
[15], the SCPD database [128], the Escherichia coli dataset [53] and the Tompa
dataset [117], CRMD has also achieved the best performance in terms of either
of the default metrics or of the nucleotide and site level metrics used in [117] and
[53]. For the liver-specific dataset of multiple motifs, CRMD identifies significantly
more binding sites than the other multiple motif discovery approaches. Compared to
EDAMD, CRMD has a similar performance on the eight selected real datasets. Due

to the relaxed assumption, CRMD is more general to solve more difficult problems.

5.6.1 Time Complexity

Table 5.12 shows the time complexities of the motif discovery algorithms. Sup-

. pose the sequence length is L and the number of the sequences is D. For EDAMD,

Chapter 5 Computational Motif Discovery 113

EDAMD | CRMD | GALF(P) | GAME | MEME | Sampler
complexity | O(PGD?} | O(LD) | O(PGD) | O(PG) | O(CI) | O(CT

Table 5.12: The complexities of the motif discovery algorithms. L is the sequence
length. D is the number of the sequences. P is the population size. G is the number
of generations. C is the number of initial consensuses. / is the number of iterations

the population size is P, the maximal generation is G, the maximal iteration in the
Greedy Refinement is D, each iteration samples D instances, and so the complexity
of EDAMD is O(PGDE). For CRMD, the number of the clusters is 4,—"; the maxi-
mum iteration in the Greedy Refinement is D, each iteration samples D instanccs,
and so the time complexity of CRMD is O{LD). For GALF(P}, the population size
is P, the maximal generation is G, the instances uncovered in the local filtering is
D, and so the complexity of GALF(P) is O(PGD). For GAME, the population size
is P, the maximal generation is G, and so the complexity of GAME is O(PG). For
MEME, the number of the initial consensuses is C, the number of thc iterations in
expectation maximization is /, and so the complexity of MEME is O(C7). For Motif
Sampler, the number of the initial consensuses i1s C, the number of the iterations in
sampling is /, and so the complexity of Motif Sampler is O{C/).

The time complexities of the algorithms should not be compared directly. Dif-
ferent GAs may require different population sizes and generation numbers. GALF(P)
and GAME evaluate 3,000,000 and 30,000,000 individuals, respectively, while EDAMD
evaluates only 1,000 individuals. For MEME and Gibbs Sampler, the number of it-
erations / cannot determined beforehand and thus is quite indefimite, while the max-
imal iteration in EDAMD and CRMD is fixed to D and the actual number is usually
smaller than D.

To evaluate the effectiveness of Cluster in CRMD, Table 5.13 compares the total
numbers of all the subsequences, the theoretical maximal numbers of the clusters
and the actual numbers of the clusters. The theoretical maximal number of clusters
is % which is already significantly smaller than the total number of all the subse-

quences L. In the eight testing real datasets, the actual numbers of clusters are even

Chapter 5 Computational Motif Discovery 114

Problem | #subsequence | max(‘%) | #cluster | reduction
CREB 3544 834 292 92%
CRP 1512 336 118 92%
ERE 4700 752 276 94%
E2F 4750 760 268 94%,
MEF2 3293 775 267 92%
MYOD 3315 780 280 92%
SRF 4127 825 292 93%
TBP 18525 780 296 98%

Table 5.13: The numbers of the subsequences, the theoretical maximal numbers

of the clusters ‘%, the numbers of the clusters and the reductions of the seeds for
Refine

much smaller than the theoretical maximal numbers of the clusters. The reductions
over the total numbers of the subsequences are over 90%. This shows that Cluster
not only provides good initial PCMs for Re fine, but also saves a lot of computation
time.

It is also interesting to inspect the performance of CRMD without cither of
Cluster and Refine. As regard to Cluster, it is empirically observed that with the
same number of initial candidates, the performance of using random initialization
instead for Re fine is worse than that of using Cluster. The results of random initial-
ization also vary with the differcnt pseudo-random number seeds. Especially for the
problem MYOD, which has short width and smal! number of sequences, the preci-
sion and the recall of the random initialization are zero in thc worst case. As regard
to Re fine (with Cluster still in CRMD), if the thresholds 7y and 7> in Algorithm 5.4
are fixed at 1, the performance of CRMD deteriorates a lot. On the problems MEF2

and MYOD in particular, CRMD cannot find any correct motif instance at all.

Chapter 5 Computational Motif Discovery 115

Datasel EDAMD CMRD (OOPS) CRMD]
Precision Recall Fscore | Precision Recall f-score | Precision Recall I -seore
CRER 0.73 0.84 0.78 0.73 084 0.78 0.67 0.63 0.65
CRP 0.94 0.74 0.83 0.94 T4 083 1.00 0.74 .85
ERE 0.76 0.76 0.76 0.67 0.80 0.73 0.71 (.80 0.75
21 0.71 0.80 0.75 0.68 T0RS 078 083 093 0.88
MEF2 1.00 1.00 1.00 1.00 1.00 1.00 (185 1.(H) 0.92
MYOD 0.80 090 0.88 086 0o0 0.88 086 0.90 0.88
SRF 0.77 0.92 0.84 0.77 0.92 .84 079 080 0.83
TBP 1.85 0.94 0.89 0.8S 0.94 0.89 083 0.%9 086

Table 5.14: The comparison between EDAMD, CRMD with OOPS and CRMD
without OOPS on the eight selected datasets

I
1

5.6.2 Comparison between Estimation of Distribution Algorithm

and Cluster Refinement Algérithm

There are a few differences between EDAMD and CRMD. First, EDAMD is a
GA-based algorithm, while CRMD is deterministic. Clearly, it is difficult to deter-
mine th(? suitable population size and max generations for EDAMD for a problem
of big motif width and large number of sequences. CRMD clusters all the sub-
" sequences, and thus the number of potential motifs is a-utomaticaily determined.
Second, EDAMD assumes One Occurrence Per Sequence (OOPS) and thus it is
able to solve OOPS problems only. CRMD can disable the OOPS assumption, and
has the freedom to change the number of motif instances in the local search. Third,
EDAMD adopts the Gaussian distribution to model the population. There is only
0n=e peak in the Gaussian distribution, and so EDAMD searches for only one motif.
CRMD adopts a similarity measure to differentiate motifs, and thus CRMD is able
to discover multiple motifs in a single run. .

As shown in Table 5.14, the performances of EDAMD and CRMD on the cight
sclected real dalasct’s ar¢ quite comparable. Surprisingly, the performance of EDAMD
and CRMD with OOPS are very close except on the dataset ERE. CRMD without
OOPS is not as good as EDAMD and CRMD with OOPS on five datasets, but it
wins on the other two datasets. This is expected since most of the datasets are more

or less OOPS, and the prior knowledge of OOPS really helps the local search.

*

~ Chapter 6 ' :

" Conclusion

To tradeoff the complexity and the learning of the distribution model in Estimation
of Distribution Algorithm (EDA), this thesis proposes a new framework of Estima-
tion of Dependency and Distribution Algorithm (EDDA) to choose an appropriate
learning model automatically. Basically, EDDA partitions an individual represen-
tation into separate parts such that they are independent with respect to (w.r.t.) the
fitness function. The independent parts of the individual representation are cvolved
separately with a different distribution model each. The combination of the optima
of the independent parts forms the optimum of the complete individual represen-
tation. For the problems which cannot be partitioned into completely independent
parts, EDDA also maintains the information of the interdependencies between the
separate parts and evolves the interdependencies as well. The complexity of a model
is controlled adaptively by the amount of the dependency information maintained
in the model.

There are a few major advantages of EDDA over the standard Evolutionary
Computation (EC),

First, partitioning the individual representation and evolving the independent
parts separately reduces the size of the search space significantly. In EC, the search
space of all the dimensions is the cartesian product of the domains of the individual
dimensions, and the size of the complete search space is the product of the sizes of

the dimensions. In EDDA, the size of the search space is the sum of the sizes of the

116

Chapter 6 Conclusion 117

search spaces of the independent parts, and the size of the scarch space in the stan-
dard EC is exponentially larger than the size of the scarch space of an independent
part.

Second, important dependency information between the separate parts arc main-
tained while the trivial onces are ignored. According to schema theory, a population
of individuals evolves numerous schemata, and a schema is actually a pattern of
the genes involved. In EDA, a complicated model, which contains a lot of model
parameters to estimate, maintains a large amount of information of the dependency
between the genes. However, much of such interdependency information is un-
necessary, and the parameters are difficult to estimate accurately and may actually
mislead the evolution.

Third, it is easy to control the diversity and the convergence of the sub-populations
of the separate parts of the individual representation. Diversity and convergence af-
fect how much the solution space is searched directly. In high dimensional space,
the population in the standard EC covers only a smal! and sparse arca in the scarch
space, and it is difficult to manipulate the size and the individual density of the
covered search areca. In EDDA, because an independent part of the individual repre-
sentation consists of only a few dimensions, it is much casier to control the diversity
and convergence in such a relatively small search spacc.

Fourth, compared to othcr EDAs, EDDA lecarns the distribution model with all
the individuals in the population and with their fitness. EDDA thus estimates a
better approximation of a more complete fitness landscape. On the contrary, other
EDAs usually discard the individuals of bad fitness, and use only the good individu-
als for model estimation. Nevertheless, the resulted distribution may be misicading
in the area of bad individuals, and may distort the complete fitness landscape.

This thesis includes four implementation of EDDA for different applications.

EDDA is first employed in Genetic Algorithm (GA) to optimize objective func-
tions by converting the problem solution into some independent parts and evolving

the independent parts separately. Chapter 3 has described a Genetic Algorithm

Chapter 6 Conclusion 118

with Independent Component Analysis (GA/ICA) to solve unconstrained continu-
ous function optimization problems. [t first uscs 1CA to identify the independent
comp;ments of the solution space w.r.t. the fitness, and then it divides the popula-
tion into sub-populations and evolves the sub-populations on the independent com-
ponents separately. Finally, it combines the optima on the independent components
into the global optimum for the original problem. As the high-dimensional problem
is divided into many 1-dimensional sub-problems, the solution space is significantly
reduced, and so the problem becomes casier for GA to solve. The experiment re-
sults show that GA/ICA requires much less function evaluations to produce optimal
or close-to-optimal solutions which are better than or comparable to those produced
by OGA/Q on the benchmark problems.

EDDA can also be used in Genetic Programming (GPj to speed up the GP evo-
lution by evolving the GP instructions and their interactions simultaneously. Chap-
ter 4 has described a novel Genetic Programming algorithm. Instruction Matrix
based Genetic Programming (IMGP). IMGP maintains an [nstruction Matrix (IM)
to store the information of the instructions and their best subtrees. It extracts pro-
gram trecs from IM, updates IM with the fitness of the extracted program trees,
performs crossover and mutation on the extracted program trees, and shuffles iM to
propagate good instructions. It 1s contemplated that IMGP actually evolves some
schemata directly. The experimental results have verified the effectiveness and the
efficiency of IMGP on the benchmark problems. IMGP is not only superior to CGP
in terms of the qualities of the solutions and the number of program evaluations,
but it also outperforms other related GP algorithms on the testing problems. To en-
hance its performance for classification problems, IMGP uses gradient descent to
find the optimal parameters in a program tree, and incorporates the complexity of
the program tree in the fitness. In most of the testing problems, IMGP is able to
find classifiers of higﬁcr classification accuracies than 4 other GP classifiers. The
results of IMGP are also comparable to or better than those of Deciston Tree, Neural

Networks and Support Vector Machine.

ot

Chapter 6 Conclusion 119

Chapter 5 has proposed an Estimation of Distribution Algorithm for Motif Dis-
covery (EDAMD) as an application of EDDA to solve a real bioinformatics prob-
lem. EDAMD uses the fitness function derived by Bayesian analysis to measure
the posterior conditional probability of a set of motif instances, and the number of
motif instances is allowed to vary. EDAMD adopts a Gaussian distribution to model
the distribution of the sets of motif instances. The Gaussian distribution is capable
of capturing the bivariate correlation among the positions of motif instances. When
a new Position Frequency Matrix (PFM) is sampled randomly from the Gaussian
distribution, the local optimal set of the motif instances nearby is identified from the
PFM via the Greedy Refinement operation. At the end of a generation, the Gaus-
sian distribution is updated with the scts of the motif instances, their fitness and
the conditional probabilitics of the motif instances. Since Greedy Refinement finds
only a single motif instance on a sequence, a Post Processing procedure is used to
find more motif instances after the evolution. The experiments have verified that
EDAMD outperforms GAME and GALF on most of the cight selected testing real
problems, and its results stay constant with different initial populations.

A deterministic algorithm has also been proposed for motif discovery, Cluster
Refinement Algorithm for Motif Discovery (CRMD). CRMD uses the Entropy-
based Clustering to find good initial motif candidates first, and then it uses Greedy
Refinement to find the local optima from the initial candidates. Entropy-based Clus-
tering partitions all the subsequences of DNA sequences into clusters of maximati
relatively information entropies, and thus clustering alone has already maximized
part of the posterior probability. The number of the clusters is much smaller than
the number of all the subsequences, and so the computation cost is significantly
reduced. Greedy Refinement finds the local optimal binding sites given the ini-
tial clusters. It selects the motif instances of maximal probabilities deterministi-
cally without taking extra time in sampling subsequences probabilistically. It also
aut(;matically removes or adds motif instances according to the thresholds which

.change adaptively following the distribution of the current motif instances. If the

Chapter 6 Conclusion 120

prior knowledge of One Occurrence Per Sequence (OOPS) is available, CRMD can
further enhance its prediction performance by searching for OOPS consistent solu-
tions only and adjusting the number of motif instances later on. For multiple motif
problems, CRMD measurcs the similarities among the candidate motifs using the
¥2 homogeneity test, and thus it is able to keep only distinct motifs of high probabil-
ities. The empirical results show that the clustering provides good initial consensus
seeds, and the refinement procedure leads to the local optimal consensus efficiently.
The qualities of the discovered solutions are compared favorably with the solutions
produced by other state-of-the-art algorithms. The performances of EDAMD and
CRMD on some problems are similar, however, CRMD is more general and 1s able

to solve more difficuit problems than EDAMD.

Sy

Bibliography

[1]

(2]

(3]

[4]

(3]

(6]

S.I. Amari. Natural gradient works efficiently in learning. Newral computa-

tion, 10(2):251-276, 1998.

C andida Ferreira. Gene expression programming: a new adaptive algorithm

for solving problems. Complex Systems, 13(2):87-129, 2001.

F.R. Bach and M.I. Jordan. Kernel independent component analysis. The

Journal of Machine Learning Research, 3:1—48, 2003.

F.R. Bach, G.R.G. Lanckriet, and M.I. Jordan. Multiple kernel learning,
conic duality, and the SMO algorithm. In Proceedings of the twenty-first
international conference on Machine learning. ACM New York, NY, USA,
2004.

A
~

F.R. léach, R. Thibaux, and M.l. Jordan. Computing regularization paths
for learning multiple kernels. In Advances in Neural Information Process-
ing Systems 17: Proceedings Of The 2004 Conference, page 73. MIT Press,
2005. ' . 5

LY

T. L. Bailey and C. Elkan. Fitting a mixture model by expectation maximiza-
tion to discover motifs in biopolymers. In Proceedings of the Second In-
ternational Conference on Intelligent Systems for Molecular Biology, pages

28-36, 1994.

121

171

(8]

[i1]

[12]

[13]

Shumeet Baluja. Population-bascd incremental learning: A method for inte-
grating genetic search based function optimization and competitive leaming,.
Technical Report CMU-CS-94-163, Camegic Mellon University, Pittsburgh,
PA, 1994.

Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Franconc.
Genetic Programming - An Introduction; On the Awtomatic Evolution of

Computer Programs and its Applications. Morgan Kaufmann, January 1998,

Yoseph Barash, Gal Elidan, Nir FFriedman, and Tommy Kaplan. Modeling de-
pendencies in protein-DNA binding sites. In RECOMB, pages 28-37, 2003.

Forrest H. Bennett {11, John R. Koza, James Shipman, and Oscar Stuffelman.
Building a parallel computer system for $18.000 that performs a half peta-
flop per day. In Wolfgang Banzhaf, Jason Daida, Agoston E. Eiben, Max H.
Garzon, Vasant Hondvar, Mark Jakiela, and Robert E. Smith, editors, Proc. of
the Genetic and Evolutionary Computation Conf. GECCO-99, pages 1484
1490, San Francisco, CA, 1999. Morgan Ka;fmann. ..

B.P. Berman, Y. Nibu, B.D. Pfeiffer. P. Tomancak, S.E. Celniker, M. Levine.
G.M. Rubin, and M.B. Eisen. Exploiting transcription factor binding site
clustering to identify cis-regulatory modules involved in paitern formation in
the Drosophila genome. Proceedings of the National Academy of Sciences,

99(2):757-762, 2002.

L}

P. Bieganski, J. Riedl, J. V. Carlis, and E.M. Retzel. Generalized suffix trees
for biological sequence data: applications and implementations. In Proc. of

the 27th Hawaii Int. Conf. on Systems Sci., pages 3544, 1994.

C. M. Bishop. Neural Networks jor Pattern Recognition. Clarendon Press,
Oxford, 1995.

122

[14]

[15]

[16]

(17]

[18])

[19]

[20]

(21]

[22]

E. Keogh C. Blake and C. J. Merz. UCI repository of machine learning

databases, http://www.ics.uci.edw/~mlearn/MLRepository.html, 1998,

Enrique Blanco, Domeénec Farre, M. Mar Alba, Xavier Messeguer, and
Roderic Guigd. ABS: a database of annotated regulatory binding sites from

orthologous promoters. Nucleic Acids Research, 34(Database-Issue):63-67,
2006.

K. Blekas, D.I. Fotiadis, and A. Likas. Greedy mixture lcaming for multi-

ple motif discovery in biological sequences. Bivinformatics, 19(5):607 617,
2003.

Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm Intelligence.

From Natural to Artificial Svstems. Oxford University Press, New York,

1999,

Peter A. N. Bosman and Edwin D. de Jong. Grammar transformations in
an EDA for genetic programming. In GECCO 2004 Workshop Proceedings,
Seattle, Washington, USA, June 2004,

S.P. Boyd and L. Vandenberghe. Comvex optimization. Cambridge untversity

press, 2004.

Jeremy Buhler and Martin Tompa. Finding motifs using random projections.

In RECOMB, pages 69-76, 2001,

E. Burke, S. Gustafson, and G. Kendall. Diversity in genctic programming;:

An analysis of measures and correlation with fitness, 2004.

Tak-Ming Chan, Kwong-Sak Leung, and Kin-Hong Lec. Tfbs identification

based on genetic algorithm with combined représentations and adaptive post-

processing. Journal of Bioinformatics, 24:341, 2007.

123

http://www.ics.uci.edu/~mleam/MLRepository.html

[23]

[24]

[25]

[26]

[27]

[28]

(29]

(30]

(31]

Tak-Ming Chan, Kwong-Sak Leung, and Kin-Hong Lee. TFBS identifica-
tion by position- and consensus-led genetic algorithm with local filtering. In
GECCO '07: Proceedings of the 2007 conference on Genetic and evolution-
ary coniputation, pages 377-384, 2007.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library

for support vector machines, 2001. Software available at

http://www.csic.ntu.cdu.tw/ cjlin/libsvm.

E.M. Conlon, X.S. Liu, 1.D. Lieb, and 1.S. Liu. Integrating regulatory motif
discovery and genome-wide cxpression analysis. Proceedings of the National

Academy of Sciences, 100(6):3339-3344, 2003,

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

Learning, 20:273, 1995.
G.B. Dantzig. Lincuar programming and extensions. Princeton Univ Pr, 1998,

Modan K Das and Ho-Kwok Dai. A survey of DNA motif finding algorithms,
BMC Bivinformatics, 8(S21), 2007.

Ian Dempsey, Michael O’Neill, and Anthony Brabazon. Constant creation

in grammatical evolution. Int. J. of Innovative Computing and Applications,

1:23-38, April 2007.

Patrik D’haeseleer. Context preserving crossover in genetic programming.
In Proceedings of the 1994 IEEE World Congress on Computational Intelli-
gence, volume 1, pages 256-261, Orlando, Florida, USA, 27-29 June 1994,
IEEE Press.

Marco Dorigo, Vittorio Maniezzo, and Alberto Colomi. Ant system: Opti-
mization by a colony of cooperating agents. [EEE Trans. on Systems, Man,

and Cybernetics -Part B, 26(1):29-41, 1996.

124

http://www.csie.ntu.edu.tw/

[32]

(33]

{34]

[35]

[36]

(37}

(38]

[39]

B. Efron, T. Hastie, 1. Johnstone, and R. Tibshirani. Least angle regression.

Annals of statistics, pages 407-451, 2004,

J. Eggermont, A. E. Eiben, and J. I. van Hemert. A comparison of ge-
netic programming variants for data classification. In Eric Postma and Marc
Gyssens, editors, Proceedings of the Eleventh Belgium/Nethertands Confer-
ence on Artificial hitelligence (BNAIC'99), pages 253-254, Kasteel Vace-

shartelt, Maastricht, Holland, November 1999,

Larry Eshelman, Richard A. Caruana, and J. David Schaffer. Biases in the
crossover landscape. In J. D. Schaffer, editor, Proceedings of the Thivd Inter-

national Conference on Genetic Algorithms, San Mateo, CA, 1989, Morgan

Kaufman.

G. B. Fogel, D. G. Weckes, G. Varga, E. R. Dow, H. B. Harlow, J. E. Onyia,
and C. Su. Discovery of sequence motifs related to coexpression of genes us-

ing evolutionary computation. Nucleic Acids Res., 32(13):3826-3835, 2004,

L. 1 Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through
Simulated Evolution. John Wiley & Sons, New York, 1966.

Lawrence J. Fogel, Alvin J. Owens, and Michacl J. Walsh. Artificial intelli-
gence through a simulation of cvolution. In M. Maxfield, A. Callahan, and
L. J. Fogel, editors, Biophvsics and Cvbernetic Systems: Proc. of the 2nd
Cybernetic Sciences Symposium, paggs 131-155, Washington, D.C., 1965,
Spartan Books.

M.C. Frith, U. Hansen, J.L.. Spouge, and Z. Weng. Finding functional
sequence elements by multiple local alignment. Nucleic Acids Research,

32(1):189, 2004.

K. Fukumizu, A. Gretton, X. Sun, and B. Scholkopf. Kernel measurcs of

conditional dependence. Adv. NIPS, 2008.

125

[40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

T.S. Furey, N. Cristianini, N. Duffy, D.W., Bednarski. M. Schummer, and
D. Haussler. Support vector machine classification and validation of cancer

tissue samples using microarray expression data, 2000.

D. J. Galas arid A. Schmitz. DNAse footprinting: a simple method for the
detection of protein-DNA binding specificity. Nucleic Acids Res.. S(9):3157-
3170, September 1987,

David E. Goldberg. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA, 1989.

I. Guyon and A. Elissceff. An introduction to variable and feature selection.

The Journal of Machine Learning Research, 3:1157-1182, 2003.

[. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer
classification using support vector machines. Machine learning, 46(1):389-

422, 2002.

Snidhar Hannenhalli. Eukaryotic transcription factor binding sites modeling

and integrative search methods. Bioinformatics, 24(11):1325-1331, 2008.

G. Harik. Linkage Icarning via probabilistic modeling in the ecga. Tech-
nical Report lIIGAL Report No. 99010, University of [llinois at Urbana-
Champaign, 1999.

G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genctic algornthm.
[EEE-EC, 3(4):287, November 1999,

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path
for the support vector machine. The Journal of Machine Learning Research,

5:1391-1415, 2004.

Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The Elements of Sta-

tistical Learning. Springer-Verlag, July 2001.

126

(50}

[51]

(52]

[53]
[54]
[55]

[56]

(57]

[58]

(59]

Francisco Herrera, Manuel Lozano, and José L. Verdegay. Tackling rcal-
coded genetic algorithms: Operators and tools for behavioural analysis, -

tificial Intelligence Review, 12(4):265-319, 1998,

J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press,

Cambnridge, Mass., 2nd edition, 1992,

C.E. HORAK and M. SNYDER. ChIP-chip: A genomic approach for iden-
tifying transcription factor binding sites. Methods in enzymaology, 350:469 -

483, 2002.

J. Hu, B. Li, and D. Kihara. Limitations and potentials of currcnt motif

discovery algorithms. Nucleic Acids Research, 33(15):4899-4913, 2005,

A. Hyvaerinen. Fast and robust fixed-point algorithms for independent com-

ponent analysis. /EEE-NN, 10(3):626, May 1999.

Aapo Hyvirinen and Erkki Oja. Independent component analysis: Algo-

rithms and applications. Newral Nerworks, 13(4-5):411-430, 2000,

S.T. Jensen, X.S. Liu, Q. Zhou, and J.S. Liu. Computational discovery of
gene regulatory binding motifs: a Bayesian perspective. Statistical Science.

19(1):188-204, 2004.

R.M. Karp. Reducibility among combinatorial problems. Complexiny of com-

puter computations, 43:85-103, 1972,

A.E.Kel, O.V. Kel-Margoulis, P.J. Farnham, S.M. Bartley, E. Wingender, and
M.Q. Zhang. Computer-assisted identification of cell cycle-related genes:

new targets for E2F transcription factors. Jowrnal of Molecular Biology,

309(1):99-120, 2001.

S.M. Kielbasa, D. Gonze, and H. Herzel. Measuring similarities between

transcription factor binding sites. BMC Bioinformatics, 6(1):237, 2005.

127

[60]

[61]

[62]

[63]

[64]

[65]

(66]

[67]

[68]

C.M. Klinge. Estrogen receptor interaction with estrogen responsc clements.

Nucleic Acids Research, 29(14):2905, 2001,

John R. Koza. Genetic programming: On the programming of computers by

natural selection. MIT Press, Cambridge, Mass., 1992,

John R. Koza. Genetic Programming {1 Automatic Discovery of Reusable

Programs. MIT Press, Cambridge Massachusctts, May 1994,

W. Krivan and W.W. Wasserman. A Predictive Model for Regula-
tory Scquences Directing Liver-Specific Transcription. Gename Rescarch,

11¢(9):1559, 2001.

W. B. Langdon and Riccardo Poli. foundations of Genetic Progranuning.

Springer-Verlag, 2002.

Lozano J. A. Larranaga, P. and E. Bengoctxca. Estimation of distribution
algorithms based on multivariate normal and gaussian networks. Technical
Report KZZA-IK-1-01, Department of Computer Scicnce and Artuicial In-

telligence, University of the Basque Country, 2001.

Pedro Larranaga, Ramon Etxeberria, Josc A. Lozano, and Jose M. Pena. Op-
timization in continuous domains by learning and simulation of gaussian net-
works. In Optimization By Building and Using Probabilistic, pages 201-204,
Las Vegas, Nevada, USA, 8 July 2000.

Pedro Larrafiaga and Josc A. Lozano. Estimation of Distribution Algorithms:
A New Tool for Evolutionary Computation. Kluwer Academic Publishers,

Norwell, MA, USA, 2001.

C. E. Lawrence, S. F. Altschul, M. §S. Boguski, J. S. Liu, A. F. Neuwald, and
J. C. Wooton. Detecting subtle sequence signals: a Gibbs sampling strategy

for multiple alignment. Science, 262(8):208-214, October 1993.

128

[69]

[70]

[71]

(72]

CE Lawrence and AA Reilly. An expectation maximization (EM) algo-
rithm for the identification and characterization of common sites in unaligned

biopolymer sequences. Proteins, 7(1):41 S, 1990,

Kwong Sak Leung. Kin Hong Lec, and Sin Man Cheang. Parallel programs
arc morc cvolvable than sequential programs. In E. Costa C. Ryan, T. Soule,

M. Keijzer, E. Tsang, R. Poli, editor, Proceedings of the Sixth Evropean Con-

Jerence on Genetic Programming (EuroGP-2003), volume 2610 of LNCS,

pages 107118, Essex, UK, 2003. Springer Verlag.

Yiu-Wing Leung and Yuping Wang. An orthogonal genctic algorithm with
quantization for global numerical optimization. /EEE-1:C, 5:41- 53, February

2001.

G. Li, TM. Chan, K.S. Leung, and K.H. Lec. An Estimation of Distribution
Algorithm for Motif Discovery. In [volutionary Computation, 2008. CEC

2008 (HEEE World Congress on Computational Intelligence). IREE Congress

-~ on, pages 2411-2418, 2008.

(73]

[74]

[75]

Gang Li, Kin-Hong Lee, and Kwong-Sak Leung. Evolve schema directly
using instruction matrix bascd genctic programming. In Maarten Keijzer,
Andrca Tettamanzi, Pierre Collet, Jano 1. van Hemert, and Marco Tomassini,
editors, Proceedings of the Sth European Conference on Genetic Program-
ming, volumc 3447 of Lecture Notes in Computer Science, pages 271-280,

Lausanne, Switzerland, March 2005. Springer-Verlag.

Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions tn many sc-

quences. Journal of Computer and System Scicnces, 65:73-96, 2002.

Y. Li, C. Campbell, and M. Tipping. Bayesian automatic relevance determi-

nation algorithms for classifying gene expression data, 2002.

129

{76)

[77]

(78]

[79]

[80]

[81]

(82]

(83}

J. S. Liu, A. F. Neuwald, and C. E. Lawrence. Bayesian models for multiple
local sequence alignment and Gibbs sampling strategics. J. Am. Stat. Assoc.,

90(432):1156-1170, November 1995.

J. 8. Liu, A. F. Neuwald, and C. E. Lawrence. Baycsian models for mul-
tiple local sequence alignment and Gibbs sampling strategies. J. American

Statistical Association, 90(432):1156-77?, 1995,

J.S. Liu. The Collapsed Gibbs Sampler in Bayesian Computations With Ap-
plications to a Gene Regulation Problem. Journal of the American Statistical

Association, 89(427):958--966, 1994.

M.A. Lones and A.M. Tyrreli. Regulatory Motif Discovery Using a Popula-
tion Clustering Evolutionary Algorithm. [IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics, pages 403-414, 2007.

Thomas Loveard and Victor Ciesielski. Representing classification problems
n genctic programming. In Proceedings of the Congress on Evolutionury
Computation, volume 2, pages 1070-1077, COEX, World Trade Center, 159
Samscong-dong, Gangnam-gu, Scoul, Korea, May 2001. IEEE Press.

L. Meier, S. van de Geer, and P. Buhlmann. The group lasso for logistic
regression. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70(1):53-71, 2008. I‘_;/

Zbigniew Michalewicz. Genetic Algorithms + Data Structures = Evolution

Programs. Springer-Verlag, third edition, 1996.

J. F. Miller and P. Thomson. Cartesian genetic programming. In R. Poli,
W. Banzhaf, W. B. Langdon, J. Miller, P. Nordin, and T. C. Fogarty, edi-
tors, Proceedings of the Third European Conference on Genetic Program-
ming (EuroGP-2000), volume 1802 of LNCS, pages 121-132, Edinburgh,
Scotland, 2000. Springer Verlag.

130

(84)

[85]

[86]

[87]

[88]

[89]

[90]

[91]

David J. Montana. Strongly typed genetic programming. Evolutionary Com-

puitation, 3(2):199-230, 1995.

TK Moon. The expectation-maximization algorithm. /EEE Signal processing

maguzine, 13(6):47-60, 1996.

Ruadhan A. O’Flanagan, Guillaume Paillard, Richard Lavery, and Anir-
van M. Sengupta. Non-additivity in protein-DNA binding. Bioinformuatics,
21(10):2254-2263, 2005.

M. Pelikan, D.E. Goldberg, and E. Cantu-Paz. BOA: The Bayesian optimiza-
tion algorithm. In Proceedings of the Genetic and Evolutionary Computation

Cmg')"erence GECCO-99, volume 1, pages 525-532. Citeseer, 1999.

M. Pelikan, K. Sastry, M.V. Butz, and D.E. Goldberg. Hierarchical BOA on
random decomposable problems. In Proceedings of the 8th annual confer-
ence on Genetic and evolutionary computation, pages 431-432. ACM New

York, NY, USA, 2006.

Tim Perkis. Stack-based genetic programming. [n Proceedings of the 1994
IEEE World Congress on Computational Intelligence, volume 1, pages 148-

153, Orlando, Florida, USA, 27-29 June 1994. IEEE Press.

P.A. Pevzner and S.H. Szc. Combinatorial approaches to finding subtle sig-
nals in dna scquences. In Eighth International Conference on Intelligent

Systems for Molecular Biology, pages 269-278, 2000.

Riccardo Poli. Evolution of graph-like programs with paraliel distnibuted
genetic programming. In Thomas Bick, editor, Proceedings of the Seventh
International Conference on Genetic Algorithms (ICGA97), San Francisco,

CA, 1997. Morgan Kaufmann.

131

(92}

[93]

[94]

[95]

[96]

[97]

(98]

{99]

[100]

M.A. Potter and K.A. De Jong. Cooperative Coevolution: An Architec-

ture for Evolving Coadapted Subcomponents. FEvolutionary Computation,

8(1):1-29, 2000.

Z.S. Qin, L.A. McCue, W. Thompson, L. Mayerhofer, C.E. Lawrence, and
J.S. Liu. Identification of co-regulated genes through Bayesian clustering of

predicted regulatory binding sites. Nature Biotechnology, 21:435-439, 2003.

JR Quinlan. Data Mining Tools Seel and 5.0,

http://www.rulequest.com/see5-info.html, 2007.
R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

A. Rakotomamonjy, F. Bach, 8. Canu, and Y. Grandvalet. More efficicnecy in
multiple kernel learning. In Proceedings of the 24th international conference

on Machine learning, pages 775-782. ACM New York, NY, USA, 2007,

B. Raphael, Liu Lung-Tien, and G. Varghese. A uniform projection method
for motif discovery in dna sequences. [EEE/ACM Transactions on Computa-

tional Biology and Bioinformatics, 1(2y:91-94, 2004.

G. Ritsch, S. Sonnenburg, and C. Schifer. Learning interpretable SVMs
for biological sequence classification. BMC hivinformatics, T(Suppl 1):59,

2006.

I. Rechenberg. FEvolutionssirategie: Optimierung technischer Systeme nach
Prinzipien der hiologischen Evolution. Frommann-Holzboog, Stuttgart,
1973.

Sergio A. Rojas and Peter J. Bentley. A grid-based ant colony system for
automatic program synthesis. In Maarten Keijzer, editor, Late Breaking Pu-
pers at the 2004 Genetic and Evolutionary Compitation Conference, Seattle,

Washington, USA, 26 July 2004.

132

http://www.rulequest.com/see5-info.html,'2007

[101]

Justinian P. Rosca. Analysis of complexity drift in genetic programming. In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,
Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Pr.o-
ceedings of the Second Annual Conference, pages 286-294, Stanford Uni-
versity, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[102] M.F. Sagot. Spelling approximate repeated or common motifs using a suffix

[103]
[104]

[105)

[106]

[107]

[108]

tree. In LATIN '98: Theoretical Informatics, Lecture Notes in Computer

Science, pages 111-127. Springer-Verlag, 1998.

Rafal Salustowicz and Jiirgen Schmidhuber. Probabilistic incremental pro-

gram evolution. Evolutionary Computation, 5(2):123-141, 1997.

G.K. Sandve and F. Drablos.. A survey of motif discovery methods in an

integrated framework. Biology Direct, 1(11), 2006.

Kumara Sastry and David E. Goldberg. Probabilistic model building and
competent genetic programming. In Rick L. Riolo and Bill Worzel, edi-

tors, Genetic Programming Theory and Practice, chapter 13, pages 205-220.

‘Kluwer, 2003.

Martin Schmidt, Kim Kristensen, and Thomas Randers Jensen. Adding
genetics to the standard PBIL algorithm. In Peter J. Angeline, Zbyszek
Michalewicz, Marc Schoenauer, Xin Yab, and Ali Zalzala, editors, Proceed-
ings rgf't)w Congress on Evolutionary Computation, volume 2, pages 1527-

1534, Mayflower Hotel, Washington D.C., USA, 6-9 July 1999. IEEE Press.

B. Scholkopf and A.J. Smola. Learning with kernels. MIT press Cambridge,
MA, 2002.

Hans Paul Schwefel. Evolution and Optimum Seeking. Sixth-Generation

Computer Technology Series. John Wiley & Sons, Inc., New York, 1995.

,

[109]

[110]

[111]

[112]

Y. Shan, R. I. McKay, H. A. Abbass, and D. Essam. Program evolution
with explicit leaming: a new framework for program automatic synthesis.
In Ruhul Sarker, Robert Reynolds, Hussein Abbass, Kay Chen Tan, Bob
McKay, Daryl Essam, and Tom Gedeon, editors, Proceedings of the 2003
Congress on Evolutionary Computation CEC2003, pages 1639-1646, Can-
berra, 8-12 December 2003. IEEE Press.

Yin Shan, Robert I. McKay, Rohan Baxter, Hussein Abbass, Daryl Essam,
and Hoai Nguyen. Grammar model-based program evolution. In Proceedings
of the 2004 IEELE Congress on Evolutionary Computation, pages 478-485,
Portland, Oregon, 20-23 June 2004. IEEE Press.

S. Sonnenburg, G. Rétsch, C. Schifer, and B. Schélkopf. Large scale multiple
kernel learning. The Jowrnal of Machine Learning Research, 7:1531 -1565,

2006.

G.D. Stormo, G.W. Hartzell, et al. ldentifying Protein-Binding Sitcs from

Unaligned DNA Fragments. Proceedings of the National Academy of Sci-

- ences of the United States of America, 86(4):1183~1187, 1989.

[113]

[114]

[115]

Gilbert Syswerda. Uniform crossover in genetic algorithms. In J. D. Schaf-
fer, editor, Proceedings of the Third International Conference on Genetic

Algorithms, pages 2-9. Morgan Kaufmann, June 1989.

Masato Takahashi and Hajime Kita. A crossover operator using indepen-
dent component analysis for real-coded genetic algorithms. In Proceedings
of the 2001 Congress on Evolutionary Computation CEC2001, pages 643
649, COEX, World Trade Center, 159 Samsecong-dong, Gangnam-gu, Seoul,
Korea, 27-30 May 2001. IEEE Press.

Dirk Thierens and David E. Goldberg. Mixing in genetic algorithms. In

Stephanie Forrest, editor, Proceedings of the Fifth International Conference .

134

[116]

[117]

[118]

[119]

[120]

[121)

[122]

[123]

on Genetic Algorithms, pages 3845, San Mateo, CA, 1993. Morgan Kauf- ,

man.

R. Tibshirani. Regression shrinkage and sclection via the lasso. Journal
of the Royal Statistical Society. Series B (Methodological), pages 267-288,
1996.

M. Tompa, N. Li, and T.L Bailey. Assessing computational tools for the dis-
covery of transcription factor binding sites. Nature Biotechnology, 23:137-

144, 2005.

Athanasios Tsakonas. A comparison of classification accuracy of four ge-
netic programming-evolved intelligent structures. Information Sciences,

176(6):691-724, March 2006.

Zhi Wei and Shane T. Jensen. GAME: detecting cis-regulatory clements

using a genetic algorithm. Bioinformatics, 22(13):1577-1584, 2006.

Peter A. Whigham. Grammatically-based genetic programming. In J. Rosca,

-editor, Proceedings of the Workshop on Genetic Programming: From The-

ory to Real-World Applications, pages 33-41, San Mateo, CA, July 1995.

Morgan Kaufmann.

DH Wolpert, WG Macready, 1.B.M.A.R. Center, and CA San Jose. No free
lunch theorems for optimization. IEEE transactions on evolutionary compu-

tation, 1(1):67-82, 1997.

Man Leung Wong and Kwong Sak Leung. Data Mining Using Grammar
Based Genetic Programming and Applications, volume 3 of Genetic Pro-

gramming. Kluwer Academic Publishers, January 2000.

A. Wright. Genetic algorithms for real parameter optimization. In G. Rawl-
ins, editor, Foundations of Genetic Algorithms. Morgan Kaufmann Publish-

ers, 199i.

135 @

[124]

[125]

Xin Yao and Yong Liu. Fast evolution strategies. In Peter J. Angeline,
Robeft G. Reynolds, John R. McDonnell, and Russ Eberhart, editors, Evo-
lutionary Programming VI, pages 151161, Berlin, 1997. Springer. Lecturc

Notes in Computer Science {213.

Mengjie Zhang and Will Smart. Genetic programming with gradient de-
scent search for multiclass object classification. In Maarten Keijzer, Una-
May O’Reilly, Simon M. Lucas, Ernesto Costa, and Terence Soule, editors,
Genetic Programming 7th European Conference, EwroGP 2004, Proeeed-

ings, volume 3003 of LNCS, pages 399-408, Coimbra, Portugal, April 2004,

. Springer-Verlag.

[126]

[127]

[128]

[129]

[130]

[131]

Qingfu Zhang, Nigel M. Allinson, and Hujun Yin. Population optimization
algorithm based on ICA. In IEEE Symposium on Combinations of Evolution-

ary Computation and Neural Networks, pages 33-36, May 02 2000.

Qing Zhou and Jun S. Liu. Modeling within-motif dependence for transcrip-

tion factor binding site predictions. Bioinformatics, 20(6):909-916, 2004.

J. Zhu. SCPD: a promoter database of the yeast Saccharomyces cerevisiac.

Bioinformatics, 15(7).607-611, 1999,

J. Zhu, T. Hastie, and R. Tibshirani. 1-norm support vector machines. In
Advances in Neural Information Processing Systems 16: Proceedings of the

2003 Conference, page 49. Bradford Book, 2004.

Douglas Zongker and Bill Punch. lilgp 1.01 user’s manual. Technical report,

Michigan State University, USA, 26 March 1996.

H. Zou. The Adaptive Lasso and its Oracle Properties. Journal of the Amer-
ican Statistical Association, 101(476):1418-1429, 2006.

136

Appendix A
Sparse Kernel Feature Machine

A.1 Overview

In Machine Learning and Pattern Recognition, one of the fundamental problems
is regression. (}iven N pairs of training samples {(.wr,-._v,-)}f.V 1» Where x; consists
of n] attributes (r,’)"j’.' ; and y; is the corresponding target, regression is to estimate
the function from {x;}" | to {y;}" ,. The samples {x;}" , are independently and
identically distributed (i.i.d.) and the targets are usually corrupted with noise, i.e.,
{vi=ypi+ éx}f 1» Where y; is the true response and &; is a noisy variable following
an unknown distribution. In regression, the target is a real number to be predicted
by the regression function. If the target is nominal, and binary in particular, the
regression function is also a classifier to predict the class of a sample.

Kernel methods have shown some successes in solving the regression and classi-
fication problems [107]. Instead of performing linear methods in the original space,
kernél methods in{plicit! y map the data into a higher dimensional feature space and
apply linear methods in the feature space. The kernel methods.are signiﬁca\lm for two
_ reasons. First, by utilizing linear methods in the feature space, kernel methods ac-
tually perform nonlinear learning (regression or classification) in the original space.
Second, the implicit mapping from the original space into the high-dimensional

feature space is accomplished through the so-called kernel tricks, and thus kernel .

methods avoid the time-consuming space conversion and high-dimensional linear

137

learning. y

Formally, kernel methods models the regression or the classification function
using the expansion in Eq. A.1, where {a}Y , are the function coefficients to be
learned. £(-.-) in Eq. A.2 is a kernel function which is equivalent to the dot product
of the images of the arguments in the feature space. ¢(-) is the mapping from the
original space to the high-dimensional feature space. If the mapping is simply the
identity function, the kerne!l function &(-,-) 1s the dot product in the original space
and the function’in Eq. A.l is actually linear. With complex kernel functions and
thus non-linear mappings,]'Eq. A.]l becomes a non-linear function.

hy

S3) =Y ak(x.x) + o (A.1)
i |

k(xp.x) =< @x)-¢(x2) > (A.2)

With the form of the learning function in Eq. A.1, the objective of kernel meth-
ods is usually formulated as Eq. A.3, where L(-) is a loss function as a measurc of
the difference between the true target y and the predicted target f(x). In regression,
the loss function is often the sum of squared errors, since the noise is assumed to
be Gaussian distribuséd. In classification, the loss function can be the hinge loss
function, which returns zero as long as the predicted target and the true target are
on the same side of a threshold. Q/f(-) measurcs the complexity of the function
7(+), which are related to the structure and the parameters of the function. A is
the regularization parameter which tradeoffs the learning objective between the loss

function and the function complexity.

N
wgminaz L{f{xila). i) + AQ[(-|a) (A3)
i

1
Regularizing the function complexity is related to the model selection, which is

one of the central pgoblems in regression and classification. Due to the noise in the

138

tratning samples, a complicated learning function may overfit the training datasct
unnecessarily and thus generalizes poorly with respect to (w.r.t.) the testing datasct.
To counteract the effect of overfitting, the regularization on the model complexity
is imposed so that a simple mode! is preferred since it happens to be unable to fit
the noise in the training dataset. In Eq. A.3, the two terms of the training error and
the model compleXxity are combined to form a single objective function, where the
relative importance of the two terms are controlled with the regularization parameter
A |

However, it is difficult to choose an appropriate A without prior knowledge of
the problem. A too large A may over-penalize the function complexity and make the
function underfit the data. A too small A may be unable to prevent the overfitting
and the resulted learning function is too complex to fit the testing data well. In
practice, people may try out a serics of different As and use cross-validation to
select the most appropriate A. This approach is quite time consuming since the
learning process has to be repeated for each different 4.

Another problem with the usual kernels in Eq. A.2 is that it neglects featurc
selection, i.e., using only a subset of the features from {x/}’" | in the learning func-
tion. Feature selection poses two advantages for regression and classification. First,
by selecting only the relevant features, the learning method discards the irrelevant
features and thus controls the model complexity effectively. Second, with the useful
features highlighted, it is easy for human to interpret the relevant features in the re-
sulted regression function. The kemel in Eq. A.2 involves all the features and thus
it is unable to discriminate between relevant and irrelevant features.

This appendix proposes a new kernel learning method, 1.¢., Sparse Kerncl Fea-
ture Machine (SKFM), to address the two aforementioned problems with the stan-
dard kemnel leamning. Instead of using the kernel functions of all the attributes,
SKFM equips a kernel function and forms a kernel feature for each original at-
tribute. An augmented kemel matrix is constructed by concatenating all the kernel

matrices of the attributes. Least Angle Regression is then applied on the augmented

139

kernel matrix to perform step-wise linear regression in the feature space. Collinear
kernel features are detected and removed from the set of the kernel features au-
tomatically. SKFM forms the solution path of the function coefficients which is
piece-wise linear in the regularization parameter, and then SKFM interpolates the
solutions of a series of different regularization parameters and chooses the best pa-
rameter in cross-validation. Compared to using all the kemnel features, SKFM se-
lects the kernel features onc by one in the solution path, and uses only the most
important kerncl features in the final solution. In the experiments, SKFM has been
tested on four real medical classification problems, i.c., Diabetes, Hepatitis B Virus,
Colon Cancer and C. efeguns. The results verify that SKFM not only outperforms
Support Vector Machine (SVM), but it also points out the most important features
in the classification.

The rest of the appendix is organized as follows. Section A.2 briefly introduces
the existing methods related to SKFM. Section A.3 describes the architecture and
the algorithms of SKFM in detail. Section A.4 gives the experimental results of

SKFM on some real problems. Section A.5 1s the discussion about SKFM.

A.2 Related Work

A.2.1 Least Angle Regression

Least Angle Regression (LARS) [32] is a special algonthm for lincar regression
in Eq. A.4, where v is a row vector of a data sample and a dataset is denoted
as a matrix X = (;‘:f');’-' ; consisting of the columns of attributes. Starting from an
empty set, LARS adds attributes in the linear model one by one and solves the
corresponding coefficients (3/);" ; along the way. LARS thus find a scries of so-
lutions which consist of overlapping attribute sets { ﬁq}f;) , of increasing sizes. For
high-dimensional problems, solving for the solution of all the dimensions is compu-

tationally inhibitive. In addition, the resulted ordinary lincar square (OLS) estimate

140

is easily overfitting since therc may be insufficient data given the large number of
dimensions, let alone that many of the dimensions may be irrelevant. Therefore, as

a feature selection algorithm, LARS is fast and robust.

fix)=xB+p° (A.4)

There are three particular advantages of LARS compared to other lincar model
selection algorithms. First, LARS is less greedy than forward sclection algorithm
in adding, features. In forward selection algorithm, a new feature is added if it has
the maximum correlation with the current residual (the part of the response not ¢x-
plained), when the rest of the response has been fully explained by the features
already selected. However, LARS selects a new feature when it has the same cor-
relation with the current residual as the features already selected, and so a useful
feature is unlikely to be overlooked as in the aggressive forward sclection algo-
rithm. Second, although LARS finds a serics of different solutions, each solution is
not computed from scratch on its own. Instead, a solution is computed on the basis
of the one before, and so LARS is computationally efficient.

A significant advantage of LARS is that it is capable of gencrating the solution
path w.r.t. the regularization parameter ¢ in *least absolute shrinkage and sclec-
tion operator” (Lasso) [116] in Eq. A.5. Lasso is a lincar impiementation of the
general objective function in Eq. A.3 with L1-norm regularization on the learning
coefficients. The solution path of Lasso is piece-wise linear in the regularization pa-
rameter 7, meaning that the solution B follows a linear function of 1 given a fixed sct
of selected features. When ¢ changes to the point where the selected features change
(adding or removing a feature), the solution S follows a different linear function.
The reason for the linearity is that given a fixed set of features, the optimal solution
of Eq. A.5 can be obtained by equating its partial derivative of its Lagrangian form
to zero. Clearly, the resulted root (the coefficient solution) of the zero derivative i1s

a linear function of 1.

141

Figure A.1: The solution path of the linear cocfficients and the cvolution of the
testing error by LARS

ni

AJ’
B = argming 2(\.},- - B st 2 1B/ <« (A.5)
il j

o
An example of a solution path and the cvolution of the testing error is illustrated
in Fig. A.l (gencrated from the LARS coded by Karl Skoglund). The horizontal

axes are the normalized numbers of the iterations, which can also be viewed as

"
7

1 187] in Eq. A.5, i.c., the regularization parameter 1. On the right, the figure
shows the testing errors of the models under differcnt regularization parameter, and
the minimal testing error is obtained with a modest /. On the left, the vcr_:tical axis is
the value of a coefficient, and cach curve is the path of a cocfticient changing along
with the iteration. Whenever a new curve appears or an existing curve rcaches zero
{the set of selected features changes), an existing straight linc turns its direction into
another straight line. Clearly, the coefficient between any two adjacent joining knots
can be linearly interpolated from the values of the coefhcients on the surrounding
knots.

This property of picce-wise linearity is very useful in practice. In cach fold of
cross-validation, people can run LARS on the training dataset oncc and obtain a
series of solutions. The computation cost of the calculating solution path is signif-

icantly less than that of the OLS estimate in a high-dimensional problem. With the

solution path, the solutions under varicus regularizing parameter ¢ can be computed

142

directly using simple linear interpolation. The most appropriate ¢ with the lcast

validation error is selected to be used in training on the whole dataset.

A.2.2 Support Vector Machine

Support Vector Machine (SVM) [107] is a popular and powerful kernel learning
method for regression and classification. In regression, it learns a. function f(x)
which fits the targets within a certain bound and whose curve is pushed as flat as
possible. The learning function in SVM 1s the same as the usual k(':rnci learning
function in Eq. A.l. The objective function for SVM optimization is adapted from
Egs. A.3 to A.6, which is a weighted combination of the hinge loss function [-.-]
and the functional norm in the Hilbert space induced from the kernel function, i.c.,
o' Ka. The hinge loss function used here returns zero as long as the f(x;|k) and y,
are of the same sign and | f(x;k)| is larger than one. According to the Karush-Kuhn-
Tucker (KKT) conditions, many function coefficients of & in the minimal solution
of Eq. A.6 are zero, and so a sparse solution is obtained in SVM.
N
3 (1 —yif(xilk)]) +Ca’ Kot (A.0)
il
A typical kernel function used in SVM and other kernel learning methods is the
Gaussian kernel in Eq. A.7, where o is a kernel parameter specified beforchand.
The kernel trick is used to implicitly map the déta into a high-dimensional feature
space without actually computing the costly mapping. Another advantage is that
while a problem is linearly inseparable in the original spacc, it may become lincarly
separable in the feature space and easy to be solved.
(v _v)? .
k(xy,x2) = exp T2t (A.7)
The solution path in SVM has been investigated in [48] and [129]. [48] solves

SVM in its original form of f>-norm as in Eq. A.6. The optimal solution of the

objective function in Eq. A.6 is clearly a lincar function of the regularization pa-
rameter C, as long as the supporting vectors with non-zero o remain the same. In
[48], the algorithm start.s with a zero C, and gradually increase it to infinity. Dur-
ing this process, the algorithm keeps track of all the events when certain vectors
reverse their roles as supporting vectors or non-supporting vectors. In this way, the
algorithm is able to build the entire solution path w.r.t. C.

[129] solves for the solution path in L1-norm SVM, whose regression and objec-
tive functions are Eqgs. A.1 and A.3, respectively. Instcad of using the regularization
on the functional complexity, a constraint on the {-norm of the function cocfficients
is imposed to encourage the coefficients to be sparse. It is proved that the deriva-
tives of {a/}} | w.rt. s is piece-wise constant, and thus {a/}7 | is picce-wisc

lincar w.r.t. s.

N N
min Z [1 —yi(o” + z a’k(x;.x;))]
il il
N
st. lalh =Y lod| < (A.8)
Jl

A.2.3 Multiple Kernel Learning

Multiple Kernel Learning (MKL) [4]{111][96] uses multiple kernel functions in the
kernel regression or classification. There exists various kernel functions of various
properti;es. Even for the same kernel function, different kernel parameters, such as
the o in a Gaussian kernel, may induce different feature spaces, and thus differ-
ent !ear;ling functions are obtained. Without the prior knowledge of the nature of
- the problem, it is desirable to iﬁfcr the appropriate kernel automatically during the
learning process. In MKL, the kernel is usually a weighted sum of a set of candidate
kernel functions as in Eq. A.9, where the constraint 3% | B; = 1 is imposed to force

some weights to zero.

144

&
kxp.xn) = Z Biki(x).x2)

1

N
s Biz0and Y B — | (A.9)
i

There arc various formulations of MKL, depending on how the functional com-
plexity and the constraints are defined. Onc of the formulations for generic loss
function is as Eq. A.10. w; is the multivariate cocfficient vector associated with ker-
nel function &;(-}. The kernel weight B; in Eq. A.9 is omitted since it is absorbed into
the corresponding w;. [n the objective function, the block -norm (38 | [lwl2) is

used to encourage the {w;}* | 1o be zero vectors, which is also used in group Lasso

(81].

¢ K N
min 5(Z [will2)~ + Z L(f(x)ov)
Ao il

st flx) = i < Pplv) Wy > +bVi- 1N (A.10)

Al
[5] considers the solution path w.r.t. the regularization paramcter ¢ in MKL,
However, the solution path is no longer piece-wise lincar, and instead it is estimated
by the logarithmic barrier and numerical continuation techniques. MKL can also
be used for feature selection if a kernel function 1s associated with cach original
dimension [98]. As a result, the dimensions of non-zero kernel weights {8;}% | in

Eq. A.9 arc the sclected features.

145

A.2.4 Mutual Information

Mutual Information .(Ml) is a measure of the dependency between two (multivari-
ate) variables: Its theoretical formula is given by Eq. A.l1, where p(-) is the cor-
responding probability density function of the argument variable. MI can be used
to measure the dependency between the features and the target, and thus to select
features in classification and regression. Unfortunately, it is difficult, if not impos-
sible, to estimate the probability densities, especially in high-dimensional space.
Therefore, many algorithms use only pair-wise MI to filter out irrelevant features
before learning [43], which can be estimate using discretization and non-parametric
methods. However, the relevant features clearly have a joint effect on the target, and

thus an estimate of the joint multivariate M1 is more meaningful.

- plxi,x2)
f{x;;x) = / x1,x0)og———— . (A
i) = PO e)

Some kernel methods have been proposed to measure M1 approximately [3][39].
[39] uses the Hilbert-Schmidt norm of the normalized cross-covariance operator as
the measure of: dependency. For the centered kernel matrices Gy and Gy of the
features and tI'IC target, let Ry = Gy (Gy + ng,ly) Vand Ry = Gy(Gy +neydy) !,
where g, 1s a- rc‘gularization parameter, and the empirically dependence measure
INOCCO (normalized cm.s'.s'-(‘uvurirmce’(;pw'umr) is defined in Eq. A.12, where Tr|:|
is thp matrix trace. This measure is originally proposed to find the transformation
which results in independent variables in Independent Component Analysis, but
it can be potentially used to select the features which have high /N9 with the

target.

INU('(‘(J(X;Y) i Tf'[R}’R,\'] (A.12)

146

1% *
1 L

A.3 Architecture

Sparse Kernel Feature Machine (SKFM) is a kernel learning framework for classi-
fication and regression. It performs kernel learning and feature selection simultane-
ously, generates the solution path w.r.t. the regularization parameter, and selects the
most appropriate regularization parameter automatically. This section consists of
three parts. Section A.3.1 proposes the objective function in SKFM and depicts the
overall picture of SKFM. Section A.3.2 presents the data structure used in SKFM
and how it is obtained. Section A.3.3 describes the algorithm to find the solution

path of the objective function in SKFM.

A.3.1 Overall Program

Eq. A.13 is the learning function in SKFM. f{(:|k) is a nonlinear function realized
with dimension-wise kernels {k"'}’:," |» Where (ﬁ,-.;)ﬁ Iljfj:{} is the matrix of the learning
coefficients associating with the kernels. SKFM aims to minimize the objective
function in Eq. A.l14. The traditional sum of squared errors is used as the loss

function to simplify the optimization, and {|-norm on the learning coefficients is

used to force the learning coefficients to be sparse.

N m

-) =3, ﬁ'i.'fk':(-"f:"";) +p" (A1)
11

i

" m

argmin i(y,- = i Zﬂf"k"(.‘{-,xf,-))z s.d. z\’: Z 1B < 1 (A.14)
B il jor jour

Basically, SKFM applies a Kernelized Least Angle Regression (KLARS) on the
augmented kernel matrix of the data samples to learn the coefficients in Eq. ??. It
addresses the issue of curse-of-dimensionality in two perspectives. If the dimen-
sion of the problem is larger than the number of samples, the irrelevant features

are detected and removed from the dataset using Kernelized Mutual Information -

147

(KMI). KLARS selects the relevant features one by one in the order of their uscful-
ness to predicting the targets. SKFM accomplishes nonlinear learning by running
LARS in the feature space. LARS is traditionally used for linear regression in the
original space. Since the data are nonlinearly mapped into the feature space, lin-
ear regression in the feature space is actually nonlinear regression in the original
space. SKFM selects the best regularization parameter without learning using dif-
ferent regularization parameters repeatedly. Instead, the solutions of a series of
regularization parameters are easily interpolated from the solution path returned by
KLARS, and then the most appropriate regularization parameter is selected with the
least validation error.

Algorithm A.1 is the pseudo-code of the overall program of SKFM. If the prob-
lem is high-dimensional, SKFM first uses KMI to select only the relevant features
to reduce the dimensions. Then SKFM employs cross-validation to select the most
appropriate regularization parameter which results in the solution of the least aver-
age validation error. Afterwards, the best regularization parameter is used to train
the whole dataset. To make use of LARS in SKFM, the learning function must
be a regression function predicting a real-valued response. Therefore, to use the
real-valued response for classification, a threshold on the respohsc is estimated to
maximize the training accuracy.

In learning on each fold of cross-validation, SKFM carries out the following
steps in sequence. In the first step, SKFM constructs the augmented kernel matrix
of the training part by concatenating all the kernel matrices of the features. Instead
of using a kernel function of all the dimensions, SKFM equips a kernel function
and forms a kernel matrix for each original feature. Each column in the augmented
kernel matrix is treated as a kernel feature. In the second step, SKFM performs
KLARS on the augmented kernel matrix to perform sicp;wisc linear regression in
the feature space. Collinear kernel features are detected and removed from the set of
the-kernel features automatically. KLARS returns the solution path of the function

coefficients which is piece-wise linear in the regularization parameter. In the third

148

Algorithm A.1: Sparse Kernel Feature Machine
Input: the training dataset (X,Y)
Output: the solution of coefficients 3

if high dimensional problem then
L use Kernelized Ml for feature filtering

partition (X,Y) into 5 fold of training parts and validation parts {(X.,Y})}]
foreach fold (X;,Y;) do
construct the augmented kernel matrix 4Y of the training part X/ alonc:
perform Kernclized LARS on A4{" and ¥{";

interpolate the solutions §; = {.s-l.’_}l;':| on the regularization paramcters 7 = {r"},.”,;
construct the augmented kernel matrix G of the training and validation parts (X!", X));

S i T : ;
measure the validation crrors ¢; = {¢f}; ', of 5; with A}’

sclect the regularization parameter ¢ = argmin,(mean({e;}} |)) of the lcast average
validation crror;

construct the augmented kernel matrix 4 of X;

perform Kernelized LARS on 4 and ¥

interpolate the solution B of the best regularization parameter ¢:

find the threshold for § to classify the training data

step, SKFM linearly interpolate the solutions under a set of different regularization
parameters, which are tested on the validation part to measure their validation errors.

The details of the procedures in Algorithm A.1 will be described in the following
sections. KMI and the augmented kernel matrix are described in Section A.3.2.

KLARS and interpolating solutions are described in Section A.3.3.

- A3.2 Augmented Kernel Matrix

In the standard kernel learning, the learning function in Eq. A.l can be written in
the matrix form in Eq.. A.15, where the function values of all the kernel functions on
all the data samples constitute a kernel matrix K = (k(x,-,x;))f ; 1- Kernel learning
minimizes the objeciivc function in Eq. A.16 by calculating the optimal wcight:; o

for all the kernel vectors in the kernel matrix.

+

f(x;) = Kia+ o (A.15)

149

Aiga) . K xy.x) L AMaL) : Af{vypvy) A"y e Ay oy}
K an.xp) . [N R TOR T8 RETPRNY TAT 200 T8 Aiepay) Ay ™)

Figure A.2: An example of augmented kerncl matrix

N
S Ly flxile)) + CQf () (A.16)
i

An augmented kernel matrix is proposed to incorporate feature selection n ker-
nel learning. Since the kernel function in Eq. A.15 involves all the dimensions of
the data, it is not easy to perform feature selection during learning. SKFM resolves

-this disadvantage by using one-dimensional kernel functions for all the dimensions
separately, and thus the kernel matrix in SKFM is the concatenation of all the kernel
matrices of the individual dimensions. Suppose the kermnel matrix of a single dimen-
sion / is M’, the augmented kernel matrix of all the dimensions is then (M’ .- M™).
Anexample kemel‘matrix is shown in Fig. A.2, which has N rows and mN columns.
In analogy to the data matrix X, whose columns are the data features, the columns
of the augmented kernel matrix are called the kernel features in SKFM.

In the form of the augmented kernel matrix A, the Icaming function of SKFM
in Eq. A.13 can be rewritten as Eq. A.17 and the objective function in Eq. A.14
can be rewritten as Eq. A.18. M, is a row vector in 4 representing all the kernel
features of data sample x;, and & is the vector of the concatenation of all the column
vectors in B. B¢ and o' actually denote the same variable in both forms of the
objective function‘.. Interestingly, the optimal solution to Eq. A.18 not only tells
which original features are important, but also tells which values on the sclected
features are important since a kemel feature M’ is parameterized with a specific

value on a specific feature.

Sy =Moo+ (A.17)

150

N A
argmin Y (y; — o' - Mya)? s.r‘mimfi <1 (A 18)
x4 ol

However, in high-dimensional problems, especially when the number of the
dimensions is larger than the number of the data samples, there is a huge number
mN of kernel features. Under such circumstances, the optimal solution is not uniquc
and very likely to be overfitted. Therefore, it is necessary to detect and remove

irrelevant features from the original data first.

i.\()('(‘() in

SKFM uses Sparse Kernelized Mutual Information (SKMI) similar to
Eq. A.12 to measure the joint dependency between the features X and the response
Y. Optimizing the overall SKMI w.r.t. the data features tells the degrees of the
dependcncies of the response on the individual features. Therc are some cxisting
methods estimating the pair-wise M1 between the individual dimensions and the
response. However, such methods usually ignores the joint dependency between
the response and multiple features, which may have redundancy among themsclves.
While there are also some methods measuring the joint Ml between a subset of
features and the response, they have to select the useful features one by onc using
local search methods. The resulted feature set may be overly greedy and order-
dependent, and thus it may miss some relevant features.

The original /N measures the dependency between two variables only. To
apply it on -multivariate cascs, the centered kernel matrix of a set of features 1s
constructed as a weighted conic combination of the kernel matrices on the individual
dimensions as Gy = 37" | w}(},\-;. The square of a weight is used to make surc it is
positive and the resulted kernel matrix is still positive-definite. With this new kernel
matrix, the objective function to maximize the NOCCO betwceen the prcdi;lorS and
the response is Eq. A.19. The constraint on the sum of the squares of the weights
makes all the w= less than 1, otherwise w~ would grow to infinity to maximize

the NOCCO. With such a constraint, more relevant featurcs will have relatively

large weights, whilc less relevant features will have relatively small weights. To

151

further push the small weights to zero, a {|-norm regularization on the squares of
the weights are included in the objective function of SKMI as Eq. A.20, where A,

is the adaptive individual regularization parameter of weight w,.

INXCO (X yiw) = Tr(Gy(Gy +ne,d) "I wiGy (Y wiGy, +ne,d))

= T wiGw, +ned) GGy +negd) Y wiGy
LU .

8.1, z u'i =1 (A.19)
i |

i

SKMI(X;Y|wy = Tr((YXwiGy +neyd) 'Gy(Gy +ng,d) "I wiGy] + 3 Aws
/ol

5.t Swi=1 (A.20)

The negatives of the objective functions in Egs. A.19 and A.20 are non-convex
with multiple local optimal solutions. In the current implementation, SKFM uscs
natural gradient descent [1] to find the local optimum from the initial weights. Since
the objective functions arc multi-modal and the gradient descent is a local greedy
search method, good initial weights are vital to finding the global maximum. SKFM
uses the pair-wise /Y€ between the individual dimensions and the target as the
initial weights.

Subsequently, SKFM maximizes the objective functions Eqs. A.1Y and A.20 in
two phases. [n the first phase, SKFM maximizes the objective function /X CY(X ¥ |w)
NOCCO

in Eq. A.19 to find an optimal sct of weights, i.c, . In the second phase,

WNOCCO gt ysed as the initial weights to maximize the objective function SKM/ (X Y {w)
in Eq. A.20. Eq. A.20 is inspired by Adaptive Lasso [131] to further push wVX ¢
towards zeros. The pushing degrees are controlled by the regularization parame-

ters {4, = 1/wYX O ntuitively, a small weight has a large regularization

152

pararp “ter, which pushes it further to zcro.

A new set of weights updated with gradient descent may violate the constraint

) w} = |. To constantly satisfy the constraint, the natural gradient descent in Eq.

A.21 1s used to update the weights iteratively, where n is a small learning rate and
g"; is the derivative of the objective function f/ w.r.t. w. The derivatives of Eq. A.19
and Eq. A.20 w.r.t. the weight w; are shown in Eq. A.22.
T
w o=+ LL)’ W (A2}

oW

a],'*'()('('()(/\/. Y)

— 2Tr[(Xwi Gy, +ned) "Gy (Gy + ngd) !

dw,
x(f — Z“‘EG-\}(Z“'-}GX’ + ne) ! Jw, Gy
SKMI(X:Y .
75 3“'(; 1) = 27’:‘[(2\1";({\', + ne,d) t(',-';. {Gy + ne,t) I

(1= 3 wiGy (D wiGyr+nend) N Gyl + 24w,

{A.22)

After SKFM maximizes Egs. A.19 and A.20, the dimensions of non-zero weights
are identified as relevant features and retained in constructing the augmented ker-
nel matrix for further processing, while the dimensions of zero weights are deemed

irrelevant and removed from the dataset.

A.3.3 Kernelized Least Angle Regression

The objective function Eq. A.18 can be written in a simple form as Eq. A.23. It s
assumed that both 4 and Y have been standardized, and so the implicit zero intercept
oy is omitted. 1f Eq. A.23 is compared with the objective function in Lasso Eq.
A.24, an analogy can be immediately drawn between M and X. Therefore, LARS,

which solves Lasso in Eq. A.24, is also able to solve Eq. A.23 efhciently.

153

argmin (Y - Mo) (Y — Ma) s.t.||afl) < ¢ (A.23)
x

argmin(Y —Xo) (¥ —Xot) st |jally < ¢ (A.24)

o

The original LARS assumes that the features are lincarly independent. However,
the kemnel features are casily collincar, cspecially in discrete problems, becausc
the values on an individual dimension arc very likely to be identical and thus the
corresponding kernel features are equivalent. Therefore, special carc must be taken
to remove collinear kernel features from the augmented kernel matrix.

Algorithm A.2 outlines the major steps in the implementation of Kermnelized
LARS (KLARS) for SKFM. KLARS selects the kernel features iteratively and
builds up the kernel regression and the coefticients of the kernel features sicpwise.
Initially, the regression is g = 0, the coefhicients are &y = 0 and the residual be-
tween the regression and the response is ry = v — ly. In cach iteration, firstly the
unselected featurc of the maximal correlation with the current residual 1s identified
and selected into the active feature sct. Then the equiangular vector of the active
feature set is determined to be used to regress the residual in the current iteration.
The scale of the equiangular vector is calculated to determine the current regression,
and the coefficients are updated accordingly. Mecanwhile, the kernel features which
are collinear with the active featurcs are removed. When the norm of the residual
converges below a predefined bound, the iteration terminates and returns a series of
solutions of the coefficients. The details of the steps in Algorithm A.2 are described
as follows.

With the initial regression gy = 0 and the coefficients o = 0, KLARS builds
up {i;} and {a;} iteratively by adding active kernel features, In an iteration, the
residual is y — it; and the correlation of the kernel features with the residual is ¢ =
M'(y— u;). For the set of indices .«¥' which correspond to the active features, define a

matrix of the active kernel features only as M, = (---s/M7 ... }, o where s/ 1s the

154

Algorithm A.2: Kernelized Least Angle Regression
" Input: K.Y

Output: o .

the initial coefficients ag = 0,

the initial regression py = 0;

the initial residual ry = ¥ — Hg;

the initial active feature set .« = &;

the initial candidate feature set ¢ = {i: 1V}

i+~ 1;

while {|s]] < &€ do
calculate the correlations with the current residual ¢ = M (v g,
scleet the feature with maximal correlation o = «f Uargmus; ¢ re
calculate the cquiangular u ol the current active leatures;
remove the collinear kernel features 4 ancd the active Teatures 2 Dom the candidale
featurc st 6’ =6 —# — /. ‘
fe—i+ 1
calculate the current regression pr, wid update the cocflicions o,

sign of the correlation ol the kernel feature 3/ with the residual. The correlations
of the active features with the residual are the same as the maximum of ¢, i.c.,
o = {j:|¢/| = C}, where (' = max(|c}).

Since the active featurcs have the xime maximal corrclation with the current
residual, the new regression is performed on the cquiangular vector of the active
features. Let 4., = N Kyand 4, = (Ii,;fé";,' l.t/)_%, where 1, is a || long
vector of 1’s. Therefore, the cquidngular vector of the current active [‘cutureg is U,
in Eq. A.25, where w,, = A‘t./ff;,l I v is the cocfficicnts of the active fealures in
the equiangular vector. The vector is actually equiangular as can be veritied that all
the inner products of the active features with the equiangular vector arc cqual, i.c.,
K.‘:,,.u_;,« = A,s1,. In addition, the inncr products of all the kernel features with the

equiangular vector is a = Y'u. /.

ey = MWy = Mydyd Ny (A.25)

With the current regression g and the cquiangular vector u, the next regression
i, is butlt up as y v = U + Yyu,y, where ¥ is the scale of the equiangular
vector used in the regression. The scale should be computed such that the maximal

155

correlation of the candidate kernel features with the residual in the next iteration
is equal to the correlation between the residual and the active kernel features, i.c.,
max(M. ,(y — tiy+)) = max{M, (v — i,)). Since a cosrclation is considered with
its absolute value, the maximal correlation occurs in cither of its positive or negative
direction. Lquating the correlations ol the active features ind the correlations of the
candidate features, KILARS obtains the ¥ on the current equiangular vector u as
Eq. A.20, where min{---}; mcans the minimum is tahen over only the positive

clements.

Y e

Yor = Mt iy, {‘.:”’ _‘m ‘ ,1(‘:::“;' } (A.20)
_ _ 1

‘To ensure the active kernel features are linearly independent, the redundant ker-

nel features must be removed from the candidate kernel features A, in advance. Eq.

A .26 not only determines the scale of the equiangular vector, but the kernel feature

to be selected in the next iteration, i.c., the feature of the minimum of 1:q. A.26. In

the augmented kernel matrix, i1 is possible that a certain candidate kernel feature ts

identical to an cxisting active {cature or the current equiangular vector. Such iden-

tical features would be sclected in the next iteration if they also induce the v in Eq.

A.26 or they have the same muximal correlation as the active kernel fecatures. Lq.
A.27 determines the set of the indices / of the kernel Jeaturcs which may be sclected
in the active kernel features in the next iteration, where {; : |¢/| = '} corresponds
to the candidate kernel features which arc identical to the existing active kernel fca-
tures or the cquiangular vector. To check if the kernel features in / 10 be added are
tincarly dependent with the existing active kernel features, they are regressed with
the existing active kernel features. 11 the norm of the residual of such a kernel fea-
ture in / is smaller than a predelined threshold, it i1s marked as a redundant kernel
fcature in X. All the linearly dependent kernel features .\ are then removed from

the candidate kernel feature set, namcly V', = Xy — X p.

F56

. C—-¢f CH+¢f _
l:al'gmln{ ¢ - ¢ } U{j:|{.f|::(»} (A27)
oo Ay —al Ay+al]

The solution obtained at itcration j 1s the accumuliated sum ot all the cocfhicients
in the previous iterations up to j as shown in Eg. A28, where ¢, = (u;-);’”\; is the
jth solution consisting of the cocflicients of all the kernel features. Through the

iterations in Algorithim A2, SKEM builds up a series of the solutions of the fearming

coethicients and thus forms a solution puth,

i
a}: 2%)’1“.{4-}: lf{ (A.28)
kol

As mentioned in Scection A2, there are two signihicant advantages ol the solution
path. First, the solution path can be computed by KLLARS very efficiently. [t is noted
in [32] that when the dimensions are far more than the sample size, such as the case
of the N x mN augmented kernel matrix, the computation cost is only O(N?), which
1s significantly smaller than the cost of the OLS solution w.r.t. the augmented kernel
matrix, i.c., O(m*N?). Therefore, with much less computation than that required for
a single complete solution, KLARS obtains a serics of solutions.

Sccond, the solution path is piccewise lincar w.r.t. the regularization parameter
1 in Eq.A.23 and the solution corresponding to other values of 1 cun be lincarly
interpolated from the existing solution path directly. .. A.29 shows the Lagrangian
form of the objective function in Eq. A.23, where A is the Lagrangian multiplicr.
Clearly, the optimal solution of Eq. A.29 (the root of its derivative) is u lincar
function of ¢t as long as the active kernel feature set remains intact. ‘Therefore, aller
the joints connecting the picces of the solution path where the active kernel feature
set changes are determined, the complete solution path can be calculated from the

solutions on the joints.

argmin(Y — Ma) (Y —Ma) + A(||a||; - 1) (A.29)
.

X

157

SKFM takes the advantage of the solution path to scarch for an appropriate reg-
wlarization parameter ¢, In Algorithm A1, SKFM uses cross-validation to cvaluate
the validation crror of the solutions of a serics of diflerent regularization parameters.,
After KILARS returns a solution path on the training part in a fold, SKFM interpo-
lates the solutions S; = {.v,-".(tf)}Lﬂl of a common set of regularization parameters
= {lf}L.”}. The interpolated solutions are tested on the corvespanding validation
part and their validation crrors arc recorded as £ = {t'f(f-f)]t.ﬂl. }\I'lcrl all the bve
lolds, the regularization par;fmcl'cr which leads 10 the least 1ol validation crrer,
Le., 1 = argmin,; 2_? lef(fj), is selected as the best regularization parameter, which

15 used in teurming on the whole training dataset.

A.4 Experiment

A3

The experiment tests SKEM on a few real classification problems. The experimen-
tal results verify that SKFM not only producces comparable results 10 SV'M on the
testing datasets, but it also identifies the important features relevant to the target
class label. The better and more easily ierpretable results of SKIFM may help o

enhance the understanding the mechanisms ol biological organisms.

A.4.1 Diabetes Classification

The classification problem on diabeles is to predict whether the patient have Dia-
betic Nephropathy (DN), a kidiiey discase developed lrom diabetes. The diabetes
dataset consists of 1386 rccords of the diabetes patients. A patient record is com-
posed ol the clinical measurements, the Single-Nucleotide Polymorphism (SNP)
information and the labels of whether the patient has DN. There arc 99 attributes,
among which 23 attributes are the clinical measurements and 76 attributes are the

SNPs. There are two class labels: the first label is an earlier DN diagnosis which

158

can be either positive or ncgative, and the second label 1s a combination of an car-

lier diagnosis and a later diagnosis. The second label has four possible values as

. follows:

I. The two diagnosis are non-DN.

'
2. The carlier diagnosis is DN (and so is the later diagnosis).

3. The carlicr diagnosis is non-DN, but the later diagnosis is DN.
4. The later diagnosis is unavailable.

The experiment removes the second class label and uses the first class label as
the target, since almost all the patient records have the available value in the first
tlass label. However, the first class label is an inaccurate neasure of the medical
condition of the paticnt, since a non-DN patient in the first diagnosis may become
DN in the second diagnosis even though the SNP information of the patient remain

the saume. Therefore, the first class label in the original dataset is cleansed and three

new datascts are obtained for the experiment as follows:

I. The patient records whose first class labels are unavailable are removed from

L3

the original dataset, and the rest of the patient records then become the first

dataset.

t2

The patient records which are non-DN in the first diagnosis and DN in the
second diagnosis are removed from the first dataset, and the rest of the patient

records then become the second dataset.

3. In the first dataset, the first class labels of the patient records who are non-
DN in the first diagnosis but change to DN in the second diagnosis are also

considered to be DN, and all the patient records then become the third dataset.

.

SKFM and LibSVM are tested on the three datasets. LibSVM [24] is a popular
implementation of SVM, which uses cross-validation to choose the learning param-

cters. Each dataset is separated into training and testing sets using S-fold partition,

.
5 .

. 159 :

Diabetes | Iyiabetes 2 Diabwies 3
Aceuracy % I-seore % Accuracy % Foseorme Ve Accuracy *a I -seore %

fall | SKEM | SVM | SKI'M | SVM | SKIFM | SYM | SKIFM | SVM | SKIM | SVM | SKEM | SVM

t LR H K] 443 4u.3 B6U ®4.0 6.0 852 FLRL To R 6.3 573

2 779 ROR T0 430 714 TR.7 513 435 T3 GRS 557 453

ki EITXG] 7.7 444 | 4 9.9 K16 514 50,3 728 728 5RO 512

4 839 %91 46,2 400 88,1 ®7.7 49,1 514 Hid 0.8 A58 AnDs

5 ul4 924 432 34 94 4 927 3.3 434 KT K K63 S0 441
AVG H5.4 RAY 45.0 4.0 K51 849 53.4 s0.1 7849 710 503 FURH
S0 6.2 54 29 54 6.8 5.8 4.5 6.1 %y O 42 EE]

Table A.1: The comparison of the results of SKFM and SVM on the three diabetes
datasets. Each dataset is partitioned using’5-fold cross-validation. The individual

performance on cach partition and the average performance on all the partitions arc
included

and thus the algorithms are executed hve times on cach datasct. Both SKFM and

SVM use the gayssian kernel in Eq. A.7, whose parameter ¢ is fixed in SKFM

but nceds to be tuned in LibSVM using cross-validation. Table A.1 comparces the

results of SKFM and LibSVM on the three datasets, where the total accuracies and

the positive class #~ — score are included. 'In medical classification problems, the

accuracy on the positive class is obviously more important than the accuracy on the

control class. In addition, the diabetes datasets are unbalanced with only less than

20% of the patient records being DN, and thus the accuracy on the positive cases iy

likely to be traded off with the accuracy on the negative cases, Eq. A.30 defines the

positive class /- score, where the operator | - | is the cardinality of the sct.

The average accuracics

Precision =

Recall =

I —score =

|true positives|

|true positives U false positives)

|t ruee positives

|true positives O false negatives

2 %

Precision Recall

Precision + Recall

(A.30)

of SKFM are quite competitive with thosc of SVM.

Except for the first dataset, the average accuracies of SKFM are better than thosc

of SVM. The advantages of the /7 — scores of SKFM oyer those of SVM are even

more obvious, where the average /I — scores of SKFM are a few perdgntages better.

’

160

-
.

Jﬁ al Haﬂl,m AP P

0 0 a m o
e

- 1 1 T e e S | B | I t e

I JJJ L.

st I\JI IT m]]fff L. L, ..,T Li..r.{:wlmIL

um—..

Figure A.3: The weights of the attriButes and the counts of the attributes selected in
the classification of the first diabetes dataset

This can be explained by the reason that SKFM removes the irrelevant feature w.r.t.
the target, and thus the resulted model may be more consistent with the unknown
pattern of diabetes. For both algorithms, the average accuracies and / — scores on
the first and second datasets are more or less the same. However, the £ — scores of
SKFM and SVM are enhanced after the ambiguous cases, ;.c., those of non-DN in
the first label while DN in the second label, are removed from the first dataset. This
means that the ambiguous patient cases are indeed misleading in the classification.
However, if their first class 'l.abcl are manually set to DN as in the third dataset, the
average accuracies of both algorithms drop significantly. This is possibly because
that their clinical attributes might change a lot in the second diagnosis, and thus
those in the first diagnosis are outdated.

The resulted models of SKFM is also able to show which attributes are used
and how important they are. Fig. A.3 shows the selected features of SKFM on

the first dataset of diabetes, and the results on the other two datasets are similar.

161

Note according to the structure of the augmented kernel, a resulted model may
contain multiple kernel features corresponding to the same original attributes. On
the other hand, it may also contain multiple kernel features parameterized by the
same data point. Two plots are shown in Fig. A.3. The first plot shows the sums of
the kernel feature coefficients corresponding to the original attributes. The second
plot show the counts of the selected kernel features corresponding to the original
attributes. Most of the 23 clinical attributes are included in the model. This is
expected, since the DN patient should show some clinical pattern. Most of the
SNPs are unimportant in the DN classification except for a few ones, such as VGBI,

VDR2i, SELPIi, LTAf and ICAMIi, which may be genetically related to DN.

A.4.2 Hepatitis B Virus Classification

Hepatitis Virus B (HBV) classification is to predict whether a patient has HBV
based on a segment of his/her DNA sequence. The DNA sequence is a string of
_four possible nucleotide bases, i.e., {4,C,G, T}. Due to the measurement noise, the
nucleotides on some positions are ambiguous, as they can be one of two or even
three nucleotide bases. The dataset collected contains 88 DNA sequences, and each
sequence is 3214 bp long. The problem is difficult as it is very high-dimensional
compared to the number of the samples.

SKFM uses the string kernel for this problem. It puts a 100 bp window on a
DNA sequence, and slides the window from position 1 till position 3115 = 3214 —
100+ 1. The s;ubscquencc inside a window is treated as a dimension of the data
sample, and so a sequence has 3115 dimensions. The kernel between two subse-
quences is the product of the Gaussian kernels on the 100 nucleotides. A Gaussian
kernel on a nucleotide is calculated with the 1-out-of-4 encoding of the nucleotide
as the iccrncl argument.

. As the diabetes classification, SKFM and SVM are tested on the HBV dataset

using S-fold partition. The accuracy and the positive class /' — score on the testing

162

Accuracy % F-score
SKFM | SVM | SKFM | SVM
706 | 76.5 | 61.5 | 66.7
58.8 529 | 533 50.0
529 | 41.2 | 429 16.7
706 | 70.6 | 61.5 | 61.5
650 | 600 [533 50.0
AVG | 636 | 602 | 545 | 490
S.D. 7.7 14.0 7.7 19.5

A R N —

Table A.2: The comparison of the results of SKFM and SVM on the HBV datasct.
The dataset is separated into training and testing sct using S-fold partition. The

individual performance on each partition and the average performance on all the
partitions are included

set are reported in Table A.2. Both the average accuracy and the /' — score of SKFM
are better than those of SVM, and their standard deviations arc smaller. SKFM .
is also able to identify the genctic information relevant to HBV. Fig. A4 shows
the weights and counts of the subsequences selected in SKFM. Among the 3205
subsequences, only a small portion of the subsequences are sclected, and most of
the selected subsequences have small weights and counts in the regression function.
Therefore, it can be conjectured that the subsequences of large weights and counts

may contain the HBV-related genetic information.

A.4.3 Colon Cancer Classification

Colon cancer classification is to distinguish cancer from normal tissue using mi-
croarray data. The data contains 22 normal and 40 cancer tissues, and cach tissuc
contains 2000 features. The dataset is prcproccgsed with the following steps: tak-
ing the log of all the values, étandardizing the sample vectors and then the feature
vectors, passing the values through ranh function to diminish the effect of outliers.
The datasets are prepared with 100 random partitions, and each partition contains
50 training samples and 12 testing samples. Since it is a high-dimensional problem

with real-valued features, it is better to use linear regression to mitigate the curse of

163

/.,...-
. =T i
o8 L4
. o1 -
o8 |
e | ov
¥os { S
b A +
N a3 % 9 | ke 0 1 5 .Y
o T o L } - | ® I 1 ‘It "
T 9 | |
s all 5 | | e Tl ol ; 1 1
AT 1 L ""Lm-a‘ j_kt’ { - }‘ 3 a&‘
7]) e
Sreras
1T SR T e e e e =k r L
-~ e
»
-
b o
Es
¢ yRY ¥ ¢] ® LI 3 e 9%

Ahi AR k1l 1 AR AR 1

e

Figure A.4: The weights of the subsequences and the counts of the subsequences
selected in the classification of the HBV dataset

: ARD | RFE | Fisher | SKFM
! #error 290 | 2.84 | 2.68 2.25
#feature | 8.55 | 4.25 | 14.41 10.02

Table A.3: The results of ARD, RFE wi_tlh SVM,.Fishcr score with SVM and SKFM
on the Colon cancer classification. The number of wrong predictions and the num-
ber of selected features are included

dimensionality, and so the linear dot product is used as the kernel function.
The results of three comparing algorithms are quoted from [75]. Automatic Rel-

evance Determination (ARD) [75] uses the Bayesian analysis to estimate the coef-
ficients of a linear regression function, and the coefficient of an irrelevance featl?l-,'r—/ '
vanishes when its prior variance approaches zero. R-eqcursive Feature Elimination
('RFE) [44] trains a series of_ SVMs while _features are successively eliminated dur-
ing training. In addition, [40] uses Fisher score to rank and select features prior to
train_.ing with SVMs. _ -
Table A.3 shows the average results of ARD, RFE with SVM, Fisher score with
SVM and SKFM on the colon dataset. The number of wrong predic;ions among the
12 testing samples and the numl::ef of selected features are included. Clear)y, SKFM

compares favorably to other algorithms on the number of wrong predictions, and it

4

7

o———— T - T ™ T T T T

4
o
4
H 3
i
L

Arturrs e

Figure A.5: The weights of the subsequerices and the counts of the subsequences
selected in the classification of the colon dataset

>

uses a modest number of features in the learning. Fig. A.5 sllo»;/s the coefficients
and the counts of the 2006 features in the learning function among the 100 random
partitions. Surprisingly, there is a single feature which has a significantly larger
coefficient than the others in the first plot. There is also a single feature which is

used in almost all the partitions. It seems that these two features may have some

medical meaning to the colon cancer.

A.4.4 Splice Site Classification

The splice site classification problem is to classify the DNA sequences containing

acceptor splice sites from those of no splice sites. After a DNA sequence is tran-

scribed, splicing removes the introns from the RNA and joins the remaining exons

il

-

into the messenger RNA. Splicing takes place on the sites which separate the introns
and the exons. The task of SKFM for this problem is not only to classify the DNA

sequences successfully, but also tells the sites involved in the splicing process.

165

The C. elegans dataset [98] consists of 262421 sequences, and only 15507 of
them contain a true splice site each. Following the website of the multiple kernel
learning (MKL) [98], the bootstrapping test is adopted in the experiment. 100 boot-
strap datasets are sampled randomly from the original complete dataset. A bootstrap
dataset contains 1500 sequences for training and 10000 sequences for testing.

The average Area Under Curve (AUC) of MKL is 97.5%. [If SKFM uses a
single nucleotide as a feature, the average AUC of the resulted classifier is 97.3%.
If SKFM uses the sub-sequence in a 10 bp sliding window as a feature, the average
AUC of the resulted classifier increases to 97.9%. The difference between the two
kinds of features and the resulted performances of SKFM shows that there may be
a joint effect of the nucleotides in the splicing process.

Fig. A.6 shows the weights and the counts of the positions selected by SKFM.
SKFM‘cleariy identifies a few positions which seem to be vital to identify the splic-
ing sequences. Compared to Fig. A.7, such positions also have high relative en-
tropies in the splicing sequences over the non-splicing sequences. This is consistent
with the biological knowledge of the splicing process. The nucleotides around the
splicing site are relatively conserved so that the splicing site can be recognized by

the spliceosome.

A.5 Discussion

This appendix proposes and implements a new kernel learning method, 1.e., Sparse
Kernel Feature Machine (SKFM). SKFM performs (kernel) feature selection and
kernel learming simultaneously. SKFM generates a solution path w.r.t. the regu-
larization parameter, which enables the automatic selection of the appropriate reg-
ularization parameter. Instead of using the kernel functions of all the dimensions,
SKFM equips a kernel function and forms a kernel feature for each original feature,

An augmented kernel matrix is constructed by concatenating all the kernel matrices
A

166

I

T o, ol i | " o
nmmmvwmﬁm:jmﬁﬁﬂ | n‘ﬁi‘ﬁrlﬂ”f*‘-ﬁ’fr‘n’fzfrﬂrﬁ"wﬁ,--“rr‘-'r«-n»s-‘ffm‘rﬁn*wx«-wz

Figure A.6: The weights of the positions and the counts of the positions selected in
the classification of the C. elegans dataset

of the individual features. From the selected kernel features in the augmented ker-
nel matrix, SKFM can infer the relevant features and the relevant values on those
features to the class target.

Kernelized Least Angle Regression (KLARS) is applied on the augmented ker-
nel matrix to perform step-wise linear regression in the feature space by adding
features iteratively. Collinear kernel features are detected and removed from the
set of the kernel features in the iterations. KLARS forms the solution path of the
regression coefficients of the kernel features which is piece-wise linear in the regu-
larization parameter. From the solution path, SKFM is able to interpolate the solu-
tions under different regularization parameters and chooses the best regularization
parameter in cross-validation. Since the kernel features are added in the solution
path in the order of their importance, a good regularization parameter may keep the
important kernél features and remove the irrelevant kernel features.

In the experiments, SKFM has been tested on four real medical classification

167

. |
' |

|
. I *
|
. '.
,._mmmawm i Hill m’n'n?mr@m.mm?fmmm@bw ‘

[N ¥
dutrtrr

Figure A.7: The relative entropies on the positions of the splicing sequences over
" the non-splicing sequences in the classification of the C. e¢legans dataset

problems, i.e., Diabgtes, Hepatitis B Virus, Colon Cancer and C. elegans. The re-
sults verify that SKFM not only outperform Support Vector Machine (SVM), but it
also point out the most important features, including the clinical and genetic infor-

mation, leading to the diseases.

: _ 168

