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Abstract 

For the success of Estimation of Distribution Algorithm (EDA) for optimization, it 

is important to define an appropriate model to approximate the fitness landscape, 

and at the same time the model should simplify the problem so as to make the 

problem easy to solve. To tradeoff the complexity and the learning of distribution 

models in EDA, this thesis proposes a new framework of Estimation ot Dependency 

and Distribution Algorithm (EDDA) to choose an appropriate learning model auto-

matically. Basically, EDDA partitions an individual representation into separate 

parts such that they are independent with respect to the fitness function. The in-

dependent parts of the individual representation are evolved separately with a dif-

ferent distribution model each. The combination of the optima of the independent 

parts forms the optimum of the complete individual representation. For the prob-

lems which cannot be partitioned into completely independent parts, EDDA also 

maintains the information of the interdependencies between the separate parts and 

evolves the interdependencies. The complexity of a model is determined adaptively 

by the amount of the dependency information maintained in the model. 

There are several advantages of EDDA over the standard Evolutionary Compu-

tation. First, partitioning the individual representation and evolving the independent 

parts separately reduces the size of the search space significantly. Consequently, the 

global optimum becomes easier to be found than in the original space. Second, im-

portant dependency information between the separate parts are maintained while 

the trivial ones are ignored, and so the complexity of the model is selected at an 

appropriate level. Third, it is easy to control the diversity and convergence of the 



sub-populations of the separate parts of the individual representation, because the 

sub-populations are of only a few dimensions. Fourth, compared to other EDAs, 

EDDA learns the distribution model with all the individuals in the population and 

with their fitness. EDDA thus estimates a better approximation of a more complete 

fitness landscape. 

Based on the framework of EDDA, four algorithms have been developed for 

different problems. 

A new Genetic Algorithm with Independent Component Analysis (GA ICA) is 

proposed for unconstraint function optimization. GA/ICA uses ICA to project the 

original space into a new space such that the new dimensions are independent from 

each other with respect to the fitness function. Dividing a solution into indepen-

dent parts and evolving the parts separately dearly makes the problem easier than 

evolving in the original space. The experiments show that GA ICA requires much 

less function evaluations to produce optimal or close-to-optimal solutions which are 

better than or comparable to those produced by Orthogonal Genctic Algorithm on 

the benchmark problems. 

A parallel development with GA/ICA is a novel Instruction Matrix based Ge-

netic Programming (IMGP) is designed to evolve programs for problem solving. 

IMGP evolves instructions separately and at the same time maintains the interde-

pendencies between the instructions in the form of subtrees. It can be shown that 

IMGP actually evolve some schemata directly, and thus it is efficient and effective 

in searching the global optimum. The experimental results verify that IMGP out-

perfomis the canonical Genetic Programming and other related algorithms on both 

the benchmark Genetic Programming problems and classification problems. 

EDDA is then applied to an important bioinformatics problem, i.e., computa-

tional motif discovery in DNA sequences. Estimation of Distribution Algorithm for 

Motif Discovery (EDAMD) employs a Gaussian distribution to model the distribu-

tion of the motif consensuses in the population. The Gaussian distribution is able to 

capture the bi-variate linear dependencies between the motif positions. A fast local 



search method is used to find a set of motif instances from a motif consensus sam-

pled from the Gaussian distribution. EDAMD has achieved a better performance 

than other Genetic Algorithms on the testing real problems. 

A new deterministic algorithm. Cluster Refinement algorithm for Motif Discov-

ery (CRMD), is also designed for this problem. Rather than evolv ing a population of 

motif consensuses, CRMD clusters all the subsequcnccs where cach duster has al-

ready maximized part of the objective function of motif. With the clusters, CRMD 

identifies the corresponding sets of motif instances by maximizing the objcctivc 

function. On a variety of benchmark problems with different levels of difficulties 

and properties, CRMD has a better performance than the testing state-of-the-art 

algorithms. 
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摘要 

要更好的將分佈估計算法（EDA)用於優化問題，需要'定義•個合適的模型 

來擬含目標函數地圖，同時該模型也必需儘量簡單，令問題更容易得到解 

決。要平衡EDA中摸型的複雜度和模型的學習難度，本論文提出了一倘新 

的算法框衆，相關分佈估計算法（EDDA)，來自動選擇一個 f t適的學習模 

型� E D D A將一個個體分割成幾個部分，并且這些部分在H標函數的定義下 

互相獨�L�EDDA用不同的分佈模型來分別演化這些(固體的獨立部分。這些 

獨立部分的最優解合起來就成了原問題的最優解。對於那 #不成完全 

獨立部分的問題，E D D A也會維持和演化不同部分之間關信息，所以模 
f 

型的複雜度由模型中保存的相關信息所決定。 

相對於標準的演化計算，EDDA有幾個優點。第一，分割演化獨個體能大 

大的減小搜索空間，使找到全局最優解也就更容易了。第二，分開的部分之 

間的相關信息得以保存，但不重要的相關信息卻被移除了，所以模型的複雜 

度比較合適。第三，控制分開部分種群的多樣性和收敵性比較容易，因為分 

開的部分的維數和空間較小。第四，比起其他的EDA，EDDA使用種群中的 

所有個體和他們的目標函數值來學習分佈模型，所以EDDA能更準確的擬 八 U 

更完•勺目標函數地圖。 

基於EDDA的框架，本論文開發了四個算法用來解決不同的問題。 

本文提出了一個新的基於獨立成分分析的遺傳算法（GA/ICA)來解決無約 
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束的函數優化問題�GA/ICA用獨立成分分析把原始空間映射到一個新的空 

間，使得這個新空間的維度相對於目標函數來説彼此獨立。把倘體分割成獨 

立的部分，同時分別演化這些獨立部分，使得問題比在原始空問中更容易得 

到解決。實驗結果表明，與正交遺傳算法相比，GA/ICA能夠用更少的計錄 

量而找到更好的接近全局最優解的解。 

針對遺傳規劃，本文也設計了一個獨特的指令矩陣遺傳規劃（ IMGP)用來 

演化程序以解決問題�IMGP分別演化個體指令，同時也以了•樹的形勢保// 

指令之間的相關性 ° IMGP實際上是在直接演化個體模板，所以IMGP能•效 

及迅速的搜索到全局最優解。實驗結果表明，在基準遺傳規劃問題3fn分類問 

題上，IMGP的表現要比標準遺傳規劃和類似的遺傳規劃算法好。 

EDDA也被應用于•一個重要的生物信息問題：計算識別DNA序列巾的轉寫因 

子粘貼點。粘貼點識別的分佈估計算法（EDAMD)用高斯分佈模型來擬f�槠 

群中的粘貼片段模式的分佈。高斯分佈考慮到了粘貼片段中兩點之問的線性 

相關性。高斯分佈隨機産生一個粘貼片段，一個快速的局部搜索方法從這個 

粘貼片段中找到一組粘貼點。與其他的遺傳算法相比，EDDAft八個實際問 

題h的結果更好。 

一個新的確定性算法，轉寫因子粘貼點識點的聚類精細化算法 (CRMD)， 

也可以解決轉寫因子粘貼點的識別問題�CRMD沒有演化一個粘貼片段的種 

群，它對所有的DNA子序列進行聚類，每個聚類都已經最大化了粘貼點H標 

函數的一部分。有了這些聚類，CRMD就能通過最大化目標函數來識別對應 

‘的’粘貼點。對於不同難度和不同特點的實際問題來説，CRMD要比那些技術 

前沿的算法好。 
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Chapter 1 

Introduction 

Evolutionary Computation (EC) [51 ][42][61 ][8][99][ 108][37][36] is a general pow-

erful optimization framework to solve a large amount of optimization problems 

which are not amenable to other deterministic aci hoc algorithms. By exploiting 

existing solutions and exploring the solution space in parallel, EC is able to find 

an optimal or close-to-optimal solution within a reasonable amount of time. In-

corporating the statistics of the existing solutions and the properties of the solution 

space in the searching, EC becomes more effective and efficient to find the optimal 

solution. 

1.1 Optimization 

Optimization is indispensable in solving many practical problems. The objective of 

a problem can be formulated as an explicit or implicit function, and the minimum 

of the objective function is the best solution of the problem. In Machine Learning, 

learning a classifier or a regressor is formulated as minimizing the error between the 

predicted response and the true response. In Artificial Intelligence, training a robot 

is formulated as minimizing the number of the pellets missed and the times it hits a 

wall. In bioinformatics, motif discovery is to identify the DNA subsequences with 

minimal value of a property function. 
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Ideally, if the objective function of the problem is an explicit mathematical func-

tion, it is possible to find its optimum using standard mathematical procedures, such 

as linear programming [27] and more genera丨 convex optimization [19]. For other 

problems, acl hoc algorithms are developed. For example, the objective function 

in Support Vector Machine [107] is a constrained convex function, whose global 

minimum is guaranteed, and many algorithms arc developed to solve it. 

However, it may be difficult to find the global optimum of the objective func-

tion in various other cases. In Neural Network [13], the objective function is non-

convex, and so only a local optimum can be found. In some high dimensional prob-

lems, the search space of the solution is extremely large, and so finding its global 

optimum is very time consuming. For the notorious NP-hard problems [57], it is 

impossible to find the global optima with less than exponential time. 

To make things worse, the objectives of some problems cannot be formulated 

as explicit mathematical functions. Therefore, it is very difficult, if not impossible, 

to find their solutions using only mathematical methods. Other non-mathematical 

procedures are needed to optimize these type of problems. For example, in robot 

training [61], a series of controlled actions are to be implemented to collect all the 

pellets while avoiding hitting the walls in a room. In motif discovery [25], the mini-

mum of the property function can only be attained by trying different combinations 

of subsequences. 

1.2 Evolutionary Computation 
I 

Evolutionary Computation (EC) [51 ][42][61 ][8][99][108][37][36] is a powcrfiil op-

timization framework for general purpose. For the aforementioned problems which 

pose difficulty for deterministic approaches, EC is frequently the last resort to find 

its optimal or close-to-optimal solution. • 

EC searches for the solution by evolving a population of individuals which rep-

I resent candidate solutions to the problem. Evolving, as its analogy in the nature. 
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means fitter solutions survive and produce new solutions. An individual consists 

of the genes corresponding to the components of the problem solution. A fitness 

function, i.e., the objective measure, is applied on an individual to evaluate the ex-

tent to which the individual solves the problem. The population is initialized with 

the individuals randomly sampled in the search space. During the evolution, the 

existing individuals crossover and mutate to exchange the information and generate 

new offsprings. The individuals with better fitness have more chances to crossover 

and mutate, and their offsprings arc likely to be better than the offsprings generated 

by the individuals with worse fitness. By generating better and better solutions, EC 

may find the global optimum eventually. 

Employing a population of individuals to search the solution space in parallel, 

EC covers a large portion of the solution space and therefore EC has a relatively 

better chance to locate the global optimum. Exploiting the existing good solutions 

to generate new solutions, EC is actually guided with a heuristic to find better and 

better solutions during the evolution, and hence it is much more efficient than pure 

random search. Schema theory also explains that EC evolves numerous schemata, 

i.e., solution patterns, simultaneously with a limited population, and therefore it 

is more effective than deterministic approach to uncover the pattern of the global 

optimum. 

EC can be used to solve those problems mentioned in Section 1.1. For the high 

dimensional problems, finding their global optima using mathematical approaches 

may induce an inhibitive time and/or space complexity, but EC is a good alterna-

tive to find a close-to-optimal solution with a reasonable time. For the non-convex 

problems with many local optima, such as the learning objective function in Neural 

Network, EC is able to lo (^e multiple local optima which may include the global 

optima. For the NP-hard problems with the exponentially growing search space, EC 

can be applied to find a satisfactory solution given a sufficient amount of time. Even 

for the problems whose objectives are not mathematical functions, EC can still be 

used to find an optimal solution as long as there is a fitness function to evaluate the 
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solution. 

1.3 Estimation of Dependency and Distribution Al-

gorithm 

Estimation of Distribution Algorithm (EDA) [67] calculatcs the statistics of the pop-

ulation of the individuals, and uses the statistics to guide the application of the gc-

netic operators in the evolution. The original crossover and mutation in the standard 

EC arc totally random，and thus they may not always generate good offsprings in the 

evolution. Since the population of the individuals covers a part of the fitness land-

scape, EDA indirectly learns the properties of the fitness landscape by building a 

distribution model of the population. With the information of the fitness landscape, 

the genetic operators arc less random and more likely to generate good offsprings. 

The distribution model used is a key part to the succcss of EDA. According to 

the no free lunch theorem [121], there is no universal distribution model that fits all 

kinds of fitness landscapes. Therefore, a variety of distribution models have been 

proposed, which involves different properties of the fitness landscape. Complicated 

models may capture many and subtle properties of the fitness landscape, and thus 

the genetic operators are better directed in generating good individuals. However, 

given a limited size of the population, it is difficult to learn a complicated model 

accurately and thus its advantage is difficult to be realized. On the other hand, a 

simple distribution model is easy to estimate with a limited number of individuals. 

Nevertheless, a simple model may be insufficient to approximate a complicated 

fitness landscape, and thus its benefit to the gcnetic operators may be trivial. 
< 

To tradeoff the complexity and th^ learning of distribution models in EDA, this 
/ 

thesis proposes a framework of Es t^a t ion of Dependency and Distribution Algo-

rithm (EDDA) to choose an appropriate modi^I automatically. Basically, EDDA par-

titions an individual representation into a such that they are independent 
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with respect to (w.r.t.) the fitness function. The independent parts of the individual 

representation are evolved separately with a different distribution model each. The 

combination of the optima of the independent parts forms the optimum of the com-

plete individual representation. For the problems which cannot be partitioned into 

the completely independent parts, EDDA also maintains the information of the in-

terdependencics between the separate parts and evolves the intcrdcpendencics along 

with the independent parts. The complexity of a model is controlled adaptivcly by 

the amount of the independent and interdependent information kept in the model. 

There arc four major advantages of EDDA over the standard EC, 

First, partitioning the individual representation and evolving the independent 

parts separately may reduce the size of the search space. In the worse ease, the 

search space of all the dimensions in EC is the cartcsian product of the individual 

dimensions, and the size of the complete search spacc is the product of the sizes of 

the dimensions. In the best ease, the size of the search spacc in EDDA is the sum 

of the sizes of the search spaces of the independent parts. 

Sccond，important interdependencics between the separate parts are maintained 

while the trivial ones are ignored. In EDA, a complicated model may maintain a 

large amount of information of the intcrdcpcndcncics between the genes. However, 

some of such interdependency information may be unnecessary, and there are too 

many parameters to estimate accurately. In EDDA, it is possible to find a proper 

balance between the estimation accuracy and the model complexity. 

Third, it is relatively easy to control the diversity and the convergence of the 
V 

populations of the separate parts，f the individual representation. Diversity and 

convergence affects how much the' solution spacc is searched directly. In high di-

mensional space, the population in the standard EC sometimes covers only a small 

and sparse area in the search space, and it is relatively difficult to manipulate the size 

and the density of the covered search area. In EDDA, because an independent part 

of the individual representation consists of only a few dimensions, it may be easier 

to control the diversity and convergence in such a relatively small search spacc. 
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Fourth, compared to some EDAs, EDDA learns the distribution model with all 

the individuals and their fitness in the population. Therefore, it possible for EDDA 

to estimate a better approximation of a more complete fitness landscape. On the 

contrary, some EDAs discard the individuals of bad fitness, and use only the good 

individuals for model estimation. Consequently, the resulted distribution may be 

misleading in the area of bad individuals, and thus distorted on the complete fitness 

landscape. 

This thesis proposes and implements four algorithms developed under the frame-

work of EDDA. The thesis structure is as follows, 

Chapter 2 introduces the background research related to EDDA in the literature. 

EDDA is first employed in Genetic Algorithm (GA) [51 ][42] to optimize objec-

tive functions by converting the problem solution into some independent parts and 

evolving the independent parts separately. Chapter 3 describes a new Genetic Al-

gorithm based on Independent Component Analysis (GA/ICA) for unconstrained 

global optimization of continuous functions. GA/ICA uses Independent Compo-» 

ncnt Analysis [55] to linearly transform the original dimensions of the problem into 

new components which are independent from each other w.r.t. the fitness function. 

It projects the population on the independent components and divide the popula-

tion into sub-populations along the independent components. Genetic operators 

are applied on the sub-populations to generate new sub-populations, which are then 
• 

combined into a new population of all the dimensions. In other words, GA/ICA uses 

GA to find the optima on the independent components, and combines the optima as 

the global optimum for the problem. The experiment results verify that GA/ICA 

produces optimal or close-to-optimal solutions better than or comparable to those 

• produced by some of other GAs and it requires much less fitness evaluations of 

individuals. 

EDDA can also be used in Genetic Programming (GP) [61][8] to speed up 

the GP evolution by evolving the GP instructions and their interactions simultane-

ously. Chapter 4 presents a novel Instruction Matrix based Genetic Programming 
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(IMGP). IMGP maintains an Instruction Matrix (IM) to store the information of 

tree nodes and sub-trees. The tree nodes are evolved independently and their inter-

dcpcndcncies arc maintained in the form of subtrees. IMGP extracts program trees 

from IM, and updates IM with the information of the extracted program trees. As 

IM actually keeps part of the information of the schemata of GP and evolves the 

schemata directly, IMGP is effective and efficient to find the optimal schcma. The 

experiments on the benchmark problems have verified that the results of IMGP arc 
< 

not only better than those of Canonical Genetic Programming in terms of the quali-

ties of the solutions and the number of program evaluations, but they arc also better 

than some of the related EDA-based GP algorithms. IMGP is also used to evolve 

programs for practical classification problems. It has obtained higher classification 

accuracies than 4 other GP classification algorithms on 4 benchmark classification 

problems. 

Chapter 5 proposes an Estimation of Distribution Algorithm for Motif Discov-

ery (EDAMD) as an application of EDDA to solve a real bioinformatics problem. 

Motif discovery [25] is to find the binding subsequences of transcriptional factors, 

i.e., motif instances，on DNA sequences using computational methods. The con-

sensus, i.e., the common pattern of the motif instances, and the instances of a mo-

tif are represented in 1 -out-of-4 encoding to convert the problem in a continuous 

domain. A Gaussian distribution models the distribution of the population of the 

candidate motif consensus. The advantage of using a Gaussian distribution is that 

it captures the bivariate dependencies between the positions in a motif, and the in-

terdependencies between the independent positions may vanish as estimated from 

the population. After a new motif consensus is sampled from the Gaussian distri-

bution, EDAMD uses a greedy Gibbs sampling to find the nearest local optimum 

around it. The experiments show that EDAMD is better than or comparable to other 

algorithms on the benchmark problems. 

Upon the success of EDAMD, it is redesigned as a deterministic algorithm, i.e.. 
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Cluster Refinement Algorithm for Motif Discovery (C'RMD), which is more effi-

cient and effective. Instead of evolving a population of possible candidate consen-

suses, all the DNA subsequences arc clustered according to their information con-

tents. The consensuses of the clusters arc then served as the initial motif candidates 

for further refinement to locatc the corresponding motif instances. The number of 

the motif instances is adjusted automatically by the controlling thresholds adapted 

to the motif consensus. CRMD has been tested on a variety of benchmark problems 

of a wide range of properties. The empirical results show that the clustering pro-

vides good initial consensus seeds, and the refinement procedure leads to the local 

optimal consensus efficiently. The qualities of the discovered solutions arc com-
I 

pared favorably with the solutions produced by other state-of-the-art algorithms. 

Chapter 6 is the conclusion of the thesis. 



Chapter 2 

Background 

Evolutionary Computation (EC) has four major branches. Genetic Algorithm (GA) 

[51][42], Genetic Programming (GP) [61][8], Evolutionary Strategy [99][1()8] and 

Evolutionary Programming [37][36]. All these four branches follow the basic frame-

work of EC: maintaining a population of individuals, selecting good individuals to 

crossover and mutation, and putting the offsprings in the population of the next 

generation. An individual consists of genes to represent a solution to the problem. 

The usefulness of an individual is evaluated with a fitness function. The genetic 

operators, i.e., selection, crossover and mutation, are used to generate new individ-

uals in the evolution. The major differences between the four branches of EC are 

the individual representations, the specific mechanisms of selection, crossover and 

mutation. 
» 

Estimation of Distribution Algorithm (EDA) [67] is an extension of EC with 

statistical analysis. Generally，in each generation, EDA selects some good individ-

uals from the population, Icams the distribution of these good individuals, and then 

it generates a new population from the distribution. EDA has been applied to both 

GA and GP. ^ 

In this thesis. Estimation of Dependency and Distribution Algorithm (EDDA) is 

a variant of EDA for GA and GP, which are the most two important kinds of EC. 

9 
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2.1 Genetic Algorithm and Genetic Programming 
.. i 

2.1.1 Genetic Algorithm 

GA [42] [51 ] is a kind of EC for search and optimization problems. The individual is 

a vector of numbers corresponding to the solution of the problem. In the view point 

of individual representations, GA can be categorized into two classes: the Binary 

Coded Genetic Algorithm and the Real Coded Genetic Algorithm. 

Binary Coded Genetic Algorithm (BCGA) [51][42] is the traditional GA using 

binary coding. In BCGA, an individual is encoded as a vector of binary digits, i.e. 

0 and 1. Simple crossover is selecting a crossover point randomly in the parents, 

swapping the segments before and after the crossover point of the parents, and thus 

producing two offsprings. Uniform crossover [113] determines the values of each 

gene by randomly selecting the values of the same gene from either of the parents. 

Other types of crossover of binary coding are reported in [34]. Mutation is selecting 

a mutation point randomly in the parent, and flipping the binary number of the gene 

on the mutation point. 

Real Coded Genetic Algorithm (RCGA) [50] is suitable for problems in con-

tinuous domain. In RCGA, an individual is a vector of real numbers. Simple 

crossover [123][82] is the same as the one in BCGA. As RCGA uses real num-

bers for individual representation, complex crossovers have been developed. A typ-

ical one is the flat crossover. Suppose the parents are C\ : (c| • • • cj • • • cj,) and 

C2 = Cy), the offspring is H = [/”.../” …//„), where h, is a real num-

ber randomly generated out of the interval of [cj,cj]. The simplest mutation in 

RCGA is the random mutation [82]. Suppose the parent is C = {c\ • • •(-, •• •<:„), and 

Ci G [ui, hi] is selected as the gene to be mutated, the offspring is / / = (c�i … c \ . . . r„), 

where c\ is a random real number from the domain ./?,•]. More types of crossover 

and mutation can be found in [50]. 
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Figure 2.1: Canonical Genetic Programming: (AND OR A B NOT C) & (AND 
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2.1.2 Genetic Programming 

GP [61] automatically constructs computer programs as problem solutions. The in-

dividual in GP is a computer program, which receives the inputs from the problem, 

and gives the output as the answer. GP has successfully produced results com-

petitive with human solutions [10]. There are severai types of GP with different 

individual representations. 

Canonical Genetic Programming (CGP) [61] is the original standard GP. It rep-

resents a program as a tree, encoded in a LISP-like s-expression. Fig. 2.1 shows two 

examples. The tree is composed of the nodes of functions and terminals. Executing 

the program is traversing the tree in the post-order recursively. CGP crossover is 

selecting two crossover points in the two parents respectively, and exchanging their 

subtrees at the two crossover points. CGP mutation is selecting a mutation point in 

the parent, and replacing its subtree with a new subtree randomly generated. 

‘ Strongly Typed Genetic Programming [84] enforces data type constraints in 

CGA to manipulate multiple data types. Therefore, it avoids searching in the solu-

tion space which involves inappropriate data. It also employs generic functions and 

generic data types to make it more powerful and practical. 

Linear Genetic Programming [8] represents the program as a sequence of ma-

chine codes based on a register machine. The program receives the inputs from the 

registers and puts the output in a specified register. The crossover is swapping the 

segments of the codes between two crossover points in the two parents. Mutation 

is replacing a machine code with a new one randomly generated. Evaluating the 
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program is executing the codes sequentially on the register 丨nacliine. 

Stack-based Genetic Programmirrg [89] represents the program as a sequence 

of functions and terminals. It is executed on a stack-based virtual machine and its 

instruction set includes the stack operations, e.g., POP & PUSH. It uses simple two 

points crossover and one point mutation. 

Graph Genetic Programming [91] encodes the program in a grid of functions 

and terminals. Some of the nodes in the grid are connected with the directed links 

which indicate the order of execution. A sequence of continual links forms an 

execution path. There can be multiple execution pathes in a grid. Executing the 

program is evaluating the functions and terminals following the execution pathes in 

parallel. Crossover and mutation are processed on the level of subgraphs. 

Cartesian Genetic Programming [83] is also based on a grid of function nodes. 

Unlike Graph GP, the program is represented as a sequence of gipups of indices.) 
^ 一 

Each group of indices corresponds to a function node, and it consists of three indices 

for inputs and one index for the function. Crossover and mutation are used to modify 

the index sequence. 

Genetic Parallel Programming [70] evolves a general parallel program on a 

Multi-Arithmetic-Logic-Unit Processor. A parallel program is composed of a series 

of parallel instructions, each of which consists of several parallel sub-instructions. 

Genetic Parallel Programming is observed to evolve parallel programs with less 

computational effort than their sequential counterparts. 

Grammatically-based Genetic Programming [120][122] represents programs in-

directly. It uses a set of grammar rules to generate a population of grammar deriva-

tion trees. Interpreting the leaves of a tree sequentially translating it into a program. 

It also employs some advanced mechanisms for grammar evolution, such as type 

control, grammar modification，merit selection，and encapsulation. 
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2.2 Estimation of Distribution Algorithm 

2.2.1 Estimation of Distribution Algorithm for Genetic Algorithm 

Population-Based Incremental Learning (PBIL) [7] maintains a vector of probabil-

ities, each of which is the distribution of the corresponding gene of the solutions in 

the population. PBIL samples a population of individuals according to the distri-

bution in the vector of probabilities, and updates the vector with the best individual 

in the population. PBIL is extended to incorporate the crossover operator in [106]. 

The extended PBIL maintains a set of probability vectors. It not only crossovers 

between the selected individuals, but also between the probability vectors. 

Compact Genetic Algorithm [47] is similar to PBIL. However, it samples only 

two individuals from the probability vector, and updates the vector with the better 

one. Compact GA is extended to incorporate the linkage information between the 

genes in [46]. 

Univariate Marginal Distribution Algorithm (UMDA) [66] assumes that the genes 

of the individual are independent w.r.t. the fitness. Therefore, the joint probability 

density function is a product of Gaussian distributions of the independent genes as 

Eq. 2.1, where m is the number of the genes, /i, is the mean of the /th gene of 

the good individuals, and cj/ is the standard deviation of the /th gene of the good 

individuals. 

1 1 >, Hi， 

iJi ‘ \/2710, . 

Estimation of Multivariate Normal density Algorithm (EMNA) [65] takes the 

pairwise dependencies between the variables into account. The joint probability 

density function is a multivariate normal distribution as Eq. 2.2, where fj. is the 

mean of the good individuals, and Z is the covariance matrix of the genes of the good 

individuals. This approach thus considers all the second-order moment statistics of 

the genes of the good individuals. 
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Estimation of Mixture of Distribution Algorithm (EMDA) [67] employs multi-

ple Gaussian distributions to model the population. A mixture of Gaussian distribu-

tions is defined as Eq. 2.3, where c is the number of distributions, P(i) is the prior 

probability of the /th Gaussian distribution, p(x\i) is the conditional distribution of .v 

w.r.t. the /th Gaussian distribution. The model is updated with the good individuals 

in the population using the Expectation-Maximization procedure [85]. 

pCV) = i p ( / > ( A - | / ) = YP{i )p . i (.v;Ai,.I,) (2.3) 
i— 1 i 1 

In the aforementioned EDA variants using Gaussian distribution, only the pair-

wise linear correlations are considered. It may be insufficient to model the fitness 

landscape correctly since other kinds of higher moment dependencies are ignored. 

Bayesian Optimization Algorithm [87][88] uses (hierarchical) Bayesian net-

work to model the joint distribution of the variables in the good individuals in order 

to generate new individuals. It is also able to identify, reproduce and mix the build-

ing blocks in the individual representation. 

Univariate Marginal Distribution Algorithm with Independent Component Anal-

ysis (UMDA/ICA) [126] incorporates ICA [55] into UMDA to resolve the interde-

pendence between the dimensions of the problem. First it uses ICA on the popula-

tion in each generation to find the independent linear combinations of the original 

dimensions. Then it transforms the population from the original space into the new 

space defined by the independent linear combinations. Afterwards, UMDA is used 

on the transformed population. However, it does not explicitly estimate the dis-

tribution functions of the individuals on the independent dimensions. Instead, it 

crossovers the individuals ii> the new space and converts the offspring back into the 

original space as the new population. UMDA/ICA uses only some of the ifidivid-
. » 

uals for ICA in the evolution, so it may not find the true independent components 
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of the complete landscape,as it loses the information contained in the rest of the 

population. In addition, the selected individuals are treated equally in both ICA and 

the evolution disregarding their different fitness. Finally, it uses only crossover in 

the evolution of each independent componem, which may be ineffective for difficult 

problems. 

2.2.2 Estimation of Distribution Algorithm for Genetic Program-

ming 

Probabilistic Incremental Program Evolution (PIPE) [103] maintains a probability 

tree to evolve programs. A tree node is a vector keeping the probabilities of the 

functions and terminals of the node. In cach generation, PIPE creates a population 

by constructing trees based on the probability tree, and updates the probability tree 

with the information of the best individual in the population. However, updating 

the probability tree only with the best individual without the information of the rest 

of the population may be insufficient to estimate the model accurately. Besides, it 

ignores the interdependencies between the nodes. 

Competent Genctic Programming [105] combines Compact Genctic Algorithm 

[46] and PIPE as a multivariate probabilistic model of programs. Its significance 

is that it partitions a tree into subtrees, and builds a probabilistic model of each 

subtree. Therefore，it is not only able to calculate the probabilities of the nodes, but 

the probabilities of the subtrees as well. Nevertheless, it involves high computation 

overhead as it uses a heuristic greedy search, which calculates the complexity of 

each possible subtree, to identify good subtrees. 

Grammar Model-based Program Evolution (GMPE) [110] evolves programs 

with the probabilistic context-free grammar. The grammars rules have associated 

production probabilities. GMPE updates the grammar rules with the good individ-

uals in the population, and uses the grammar rules to produce new individuals. A 

grammar rule generates a single node or a whole subtree, and it thus is able to keep 
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the information of both tree nodes and subtrees. A grammar rule has no position 

information though, and so the position of its derivative is not fixed. 

The Estimation of Distribution Algorithms for Genetic Programming in [18] is 

similar to Grammar Model-based Program Evolution. It employs a probability dis-

tribution over grammar rules to generate new programs. Complex production rules 

or subfunctions can be introduced by using transformation to expand one produc-

tion rule into another production rule so as to express high order of dependencies. 

However, learning advanced production rules with the proposed greedy algorithm 

may take a lot of time. 

Program Evolution with Explicit Learning [109] uses Search Spacc Description 

Table (SSDT) to describe the solution space. Ant Colony Optimization [17] is the 

learning method to update the stochastic components of SSDT. Grammar refinement 

is employed to focus on the promising solution area by splitting certain rules in 

SSDT. 

Grid Ant Colony Programming [100] applies Ant Colony Metahcuristic [31] to 

GP. It uses a population of ants to navigate across a grid of functions and terminals. 

The path traversed by an ant is translated into a program. The ant is guided by 

the pheromone on the connections between its current location and other nodes. 

The pheromone is updated as the ant passes along a connection. Furthermore, the 

pheromone on the tour of the best program is reinforced. In the evolution, the 

pheromone on a connection becomes stronger as more ants and better ants pass 

along it. Therefore, the ant may gradually find a series of good connections and 

complete a good program. 



Chapter 3 

Genetic Algorithm with Independent 

Component Analysis 

3.1 Overview 

EDDA is first employed in Genetic Algorithm (GA) to optimize objective functions 

efficiently. Genetic Algorithm (GA) [51][42] can solve the unconstrained continu-

ous optimization problem as formulated in Definition 3.1. GA cncodcs the problem 

solution in a vector of variables as an individual, i.e. the unknown v in Definition 

3.1. The objective function in Definition 3.1 evaluates the fitness of the individual. 

GA randomly generates a population of individuals to search in the solution spacc 

initially，focuses on the promising solution areas via genetic operators gradually, 

and finally converges to the global optimum. 

Definition 3.1 An unconstrained continuous optimization problem is solving the 

following continuous objective function:^ 

maximize / (a), sub ject to I < x < u 

where I <x < u defines the function domain, i.e. the solution space. 

GA may fail to find the optima in some high-dimensional problems sometimes, 

because the size of the solution space grows exponentially with the dimension of the 

17 
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problem. To reduce the size of the solution space, a possible approach is dividing 

the original problem into several sub-problems by its dimensions. Afterwards GA 

is applied to the sub-problems to find their sub-optima separately. Finally the sub-

optima arc combined as the optimum of the original problem. Sincc a sub-problem 

has fewer dimensions than the original problem, its solution space is smaller than 

that of the original problem, so it is easier for GA to solve. 

The difficulty of this approach is that the dimensions of the problem arc usually 

interdependent on each other with respect to (w.r.t.) the fitness. In other words, 

the fitness of a sub-solution for a sub-problem depends on the sub-solutions for the 

other sub-problems. Suppose we have found the optimum for a sub-problem, if the 

other sub-solutions ehangc, the original optimum might not be optimal any more. 

Therefore, even if we find the optima for all the sub-problems, combining them 

directly may not give us the optimum for the original problem. 

A new Genetic Algorithm based on Independent Component Analysis (GA/ICA) 

is proposed to resolve this difficulty. It uses Independent Component Analysis 

(ICA) [55] to find a set of components which arc linear transformations of the 

original dimensions. The components are independent from each other w.r.t. the 

fitness, and so the sub-solutions on the independent components do not affect each 

other. Afterwards, the original problem is converted into a new problem defined 

on the independent components. Consequently, GA/ICA can decompose the new 

problem into sub-problems by the independent components, and use GA to solve 

the sub-problems separately. There are primarily three issues to be solved to make 

the algorithm work, 

1. ICA is a statistical method while GA is an optimization algorithm. Therefore, 

we need to transform the original problem into an equivalent new problem so 

that we can apply ICA on it. 

2. When we use GA to solve the sub-problems, we need to know their fitness 

functions. However, we only have the fitness function for the original problem 
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with all the dimensions together. Therefore, wc need to infer the fitness in the 

sub-problems from the original fitness. 

3. A solution could become a local optimum on a certain dimension when it 

cannot increase its fitness in cither direction along the dimension. Therefore, 

the sub-problems of a single model problem may be multi-modal, and wc 

need to take extra care when we apply GA on the sub-problems. 

The rest of this chaptcr is organized as follows. Section 3.2 described GA/ICA 

in detail and how the above three issues arc solved in GA/ICA. Scction 3.3 presents 

the experiment results on some benchmark problems. GA/ICA produces optimal or 

closc-to-optirnal solutions better than or comparable to those produced by the other 

OAs tested in this chapter, while GA/ICA requires much less fitness evaluations of 

individuals. Section 3.4 is the discussion. 

3.2 Architecture 

GA/ICA consists of two major stages. In the first stage, GA/ICA samples a large 

population of individuals uniformly in the solution space. Then it uses ICA on the 

population to transform the original variables into a new set of variables which are 

independent from each other w.r.t. the fitness. In the second stage, GA/ICA actually 

evolves the population to find the solution by running GA on the new independent 

variables separately. Since the new variables are independent, their optima do not 

affect each other, and the combination of the their optima is the optimum of the 

complete problem. 

3.2.1 Independent Component Analysis 

Independent Component Analysis (ICA) [55] is originally used as a data trans-

formation method, especially for Blind Source Separation (BSS). Suppose wc ob-

serve N /"-dimensional data V，/ 二 1 I C A tries to find a linear transformation 
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y = Wx, where W is the demixing matrix, so as to make the variables v/, / = 1 • • •/// 

as statistically independent from each other as possible. In BSS, ICA tries to find 

the mixing model .v = As, where s is the recovered independent source signals and A 

is the mixing matrix. It is proved that 少 equals s up to a multiplicative constant and 

permutation. The difficulty of ICA is that neither A nor .v is known beforehand. In 

statistics, the variables 少 |,少2，• •.，少/» arc mutually independent, if their joint density 

function can be factor!zed as the product of their marginal density functions as Eq. 

3.1，where /),(>々 ）is the marginal density ofy , . � 

m 
r(y) 二 "Cn’少2，• • •, v,„) = ]"["'(>，'） ) 

i 1 

To use ICA in an optimization problem, the optimization problem must be con-

verted into an equivalent problem whose fitness can be regarded as the probability 

density. Suppose the optimization problem is as defined in Definition 3.1. Intu-

itively, there should be more individuals of higher fitness than the individuals of 

lower fitness. If the objective function /(.v) has a lower bound L — in f { j\x)\l < 

X < //}，the new fitness function is defined as / 本(.x) = f\x) - L> (). Further suppose 

11' r ( x ) d x is the integral of /^Gv) over the domain [/.//], then as defined in Eq. 

3.2 can be treated as a probability density function as it satisfies the two conditions 

following its definition. Clearly, the fitness landscapes of the original and the new 
• \ 

fitness functions are equivalent up to a translation and scaling. 

/^(x) /'(x) -1 I•“ 
g � = i / A k x = J丨 " i f i J ) - AW,,、、，丨讚"•、•) ”叫丨洲(‘飞.2) 

It is difficult to calculate ^(.v) because the analytical form of the integration 

of f ( x ) may not exist in practice. However, given an initial population, it is still 

possible to generate a new population of individuals whose distribution roughly 

follows the probability density function Note that f" {/(x) - L)dx is the same 

for the g(x) of all the individuals, and so f{x) — L oc ^/(.v). Therefore, GA/ICA 
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replicates each individual x' for [C • { f(x' - />))� t imes, where C is an appropriate 

constant to make C • {f(x' - L)) > 1. This way, the copics of an individual .v is 
» 

approximately proportionate to its density as ^{x). Then ICA is applied on this new 

population to find the independent components satisfying Eq. 3.3, where g'(.v) is 

the joint density function defined on the independent components and ^(.v,) is the 

univariate marginal density function. During the evolution,欢、.,）can be treated as 

the implicit fitness function defined on the /th independent component. 
} 

m 
说�-)=̂ r(A.S')=只'(‘、,）二 n̂ ‘、''） (3.3) 

/ I 

GA/ICA uses ICA in a different way than UMDA/ICA docs. First, it uses all 

the individuals in the population for ICA. Second, it uses the fitness of the indi-

viduals for the probability densities in ICA, Third, it actually runs GA on the sub-
> 

populations of the independent components. 

3.2.2 Independent Evolution 

After finding the independent components, GA/ICA evolves the population in the 

new space to find the solution, it projects the original population on the indcpcn-

dent components and gets one 1-dimensional sub-population on each independent 

component, which is evolved separately. The basic steps of the evolution are shown 

in Algorithm 3.1 with the independent components as the inf)uts. At first GA/ICA 

randomly initializes a new population, evaluates the fitness of its individuals, and 

remembers the best individual in the population. Then GA/ICA evolves till 1000 

generations at most or the population converges early. In each generations, it runs 

the following steps, « 

1. First GA/ICA needs to decide which genetic operator to use mostly in the 

current generation. Usually, crossover shrinks the solution area covered by 
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the population, while mutation makes the population explore a larger solu-

tion area. Becausc a single modal problem could induce a multimodal sub-

problcm on an independent component, GA/ICA uses mutation as the primary 
r . 

genetic operator. When the best-so-far individual has not been improved for 

a relatively long time, we switches to crossover to focus on the neighborhood 

of the best-so-far individual. 

2. Then GA/lCA projects the population in the original space into the new space 

defined by the independent components according to the ICA demixing for-

mula ^̂  = W x . It divides the population by the independent components into 

m 1-dimensional sub-populations. 

3. In the function estimatePop, GA/ICA estimates the new fitness of the 1-

dimensional individuals in the sub-populations. The new fitness instead of the 

original fitness is used in the evolution of the corresponding sub-population. 

The details are explained in Section 3.2.2. 

4. On each of the independent components, GA/ICA samples a new 1 -dimensional 

sub-population out of its corresponding 1-dimensional sub-population via the 

gcnetic operator it has chosen in step 1. The details of the function icaSample 

arc described in Section 3.2.2. . 

5. After completing the evolution on all the independent components, GA/ICA 

combines all the new 1-dimensional sub-populations into a new m-dimensional 

population. Then it projects the new population back into the original space 

using the ICA mixing formula .v = As, and evaluates the fitness of the indi-

viduals. 

Fig. 3.1 illustrates how the 1-dimensional sub-populations are combined into a 

m-dimensional population. On the left, each row of the table is a sub-population. 

The individuals in the /th 1-dimensional sub-population are denoted as {•、•!”、，?,…,ŝ} 
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Figure 3.1: Combine the 1-dimensional sub-populations into a true m-dimension 
population. Row vectors on the left tabic are the 1-dimensional sub-populations. 
Column vectors on the right table are the individuals in the population 
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Algorithm 3.1: Evolution with the Independent Components 
Input: W’ A 
Output: bestind 
pop <r- i n i t P o p ()； 

f i tness — e v a l u a t e (pop)； 

bestind b e s t F u n c (pop, fitness)； 

for gi / to 1000 do 
[pop, genOp ] c h e c k o ^ (best ind. pop. fitness, stagnancy) 
icaOldPop W X pop； 

for (ii 广 1 to dim do 
[icaPop(y,’ icaFit,//]卜 e s t ima tePop (icaOldPop(“, fitness, 
icaPopji, icaFitji)； 

icaNewPopj, — i c a S a m p l e UcaPop山,icaFit山,genOp)； 

pop — A X icaNewPop； 

f i tness 卜 e v a l u a t e (pop)； 

[stagnancy bestind c h e c k s t a t e (pop, fitness, bestind)； 
if stagnancy > SO then 

L break; 

On the right, each column of the table is a m-dimensional individual. The /th indi-

vidual in the population is denoted as .. .�’ /„) ' . 

Fitness Estimation 
、 

When GA/ICA performs GA on the 1-dimensional sub-population on the indepen-

dent component s“ it needs jto know the fitness of its 1 -dimensional individuals. 

UMDA/ICA uses the fitness of the original individuals for evolution, i.e. f(As). 
A 

However, f{As) depends on all the independent components, so it is not the true • » 
measure of the fitness of the I-dimensional individuals on .v,. The ideal measure 

‘、2 
s s 
s .� ' 2 
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should be gj(.v,) in Eq. 3.3. The difficulty of this measure is that all that we have 

is while g (̂‘v/) is only an implicit term. However, in ICA, it is theoretically 

possible to calculate the marginal density function p,(v/) as in Eq. 3.4, where — / 

represents the dimensions other that i. 

P i M = [ p(y-iyi)dy-, (3.4) 
力-/ 

Similarly, the theoretical and empirical formulas for calculating ^(.v,) are Eq. 

3.5 and Eq. 3.6, respectively, where Si is the set of individuals whose /th variables 

equal .v,. The problem is that the population may have insufficient individuals which 

have the same ‘�,, value, especially in high-dimensional space. Therefore, GA/ICA 

has to take the nearby individuals into account as well by calculating the average 

of their fitness with bigger weight given to the nearer individuals. This method re-

sults in a Parzen window like regression in Eq. 3.7’ where o is the average distance 

between the individuals and their nearest neighbors, and (p(.s^.sf) is a distance mea-

sure l^tween sf and In this way, the estimate Pop function in Algorithm 3.1 is 

able to estimate the fitness of a one-dimensional individual in a sub-population. 

gi(si) = / g'(s.isi)ds. 

(‘�•/) = X 作。 
sJeSi 

(3.5) 

(3.6) 

( 力 = 义 丨 舶 , v v / / . / - . ( / > ( ‘ � = ( 3 . 7 ) 

Independent Component Sampling 

\/2na 

The central part of GA/ICA is generating new 1-dimensional sub-populations on 

the independent components. EDA samples new individuals from the distribution 

model of the previous individuals. Since a sub-population has only one dimension. 
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the fitness landscape is relatively easy, and so there is no need for GA/ICA to build 
« 

such a distribution model. GA/ICA generates new individuals by applying genetic 

operators to the existing individuals directly. The function independent Sam pie in 

Algorithm 3.1 follows the basic framework of GA except the part of individual 

evaluation, as it cannot evaluate individuals of only one dimension. Due to the 

property of a single dimension, it has some advantages over GA, including adaptive 

genetic operators, fitness prediction and high population diversity. ‘ 

At the beginning of a generation, icaSample calculates the average distance of 

the individuals to their nearest neighbors, i.e. a , which is used as the parameter to 

control the scale of crossover and mutation. In the initial population, the individuals 

are randomly generated in the whole solution space, so a is relatively large. As the 

population converges, u decreases gradually. With this method, crossover and mu-

tation of GA/ICA adapt to the current sub-populations. Then it runs the following 

steps iteratively: 

1. icaSample uses the tertiary-tournament. It randomly selects three individuals, 

uses the best two individuals for crossover and mutation, and replaces the 

worst individual with the offspring. 

2. icaSample then generates two random numbers. One number follows the 
4 

Laplace distribution in Eq. 3.8, while the other number follows the Gaus-

sian distribution. icaSample uses the Gaussian random number for crossover. 

Laplace distribution has bigger tails than Gaussian distribution. icaSample 

uses the Cauchy random number for mutation to make it more likely for the 

offspring to jump out of the local optimum [124]. 

/;(.v) = ^ e x p - ^ J (3.8) 
2cJ C 

» 

3. In each generation, GA/ICA chooses crossover or mutation as the primary 

genetic operator in the current evolution. When GA/ICA chooses crossover, 



Chapter 3 Genetic Algorithm with Independent Component Analysis 26 

icaSample does two crossovers of opposite directions and one mutation, so 

it makes the population converge. When GA/ICA chooses mutation instead, 

icaSample does two mutations of opposite directions and one crossover, so it 

keeps the individuals search in different solution areas. Here the offspring on 

the opposite directions of a certain genetic operator are the two offspring gen-

erated on both the left and right sides of the original offspring which would 

be generated by the genetic operator. 

4. icaSample cannot evaluate the fitness of the offspring candidates directly 

because they are of only 1 dimension. Instead, it uses the Parzen window 

like regression, as described in the function estimatePop, on the current sub-

population to predict the fitness of the candidates. Then it chooses one of 

them as the offspring probabilistically, with bigger probabilities given to bet-

ter candidates. This technique enables icaSample to search in more promising 

directions and avoid wasting evaluation time on bad candidates. 

5. As (discussed in Section 3.1, the number of local optima could increase on an 

independent component, so GA/ICA needs to make the population diverse to 

search in a large solution space. Before the offspring is actually put in the 

new sub-population, it is adjusted to maintain the sub-population diversity. 

icaSample keeps sorted the offspring already generated according to their 

positions on the one dimension, and finds the location where to insert the new 

offspring. If the new offspr ing�dis tance to either its pre-neighbor or next-

neighbor in the list is smaller than the current a , it is adjusted to make the 

distance at least a if possible, otherwise as large as possible. In this way，the 

offspring are pushed away from each other to maintain the sub-population 

， diversity. 
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3.3 Experiments 

For its optimization performance, GA/ICA is tested to find the global optima of the 

six testing functions, and the results are compared to the following state-of-the-art 

algorithms, ‘ 
J 

1. Orthogonal Genetic Algorithm with Quantization (OGA/Q) [71]: OGA/Q 

uses orthogonal array to generate the initial population and the offspring in 

crossover. 

2. Canonical Genetic Algorithm (CGA) [71]: This is the conventional Gcnetic 

Algorithm, with standard random initialization, crossover and mutation. 

3 .�Fas t Evolution Strategy (FES) [124]: FES is ES but with Cauchy mutation. 

. 、 

Eq. 3.9 are the six testing functions. All the testing functions are multimodal 

with many local optima besides the global optima. The functions' feasible solu-

tion spaces, global optimal function values and the population sizes and the max-

imal generations that the.algorithms use are shown in Table 3.1. In GA/ICA, the 
» 

crossover and mutation rates are 0.66 and 0.33, respectively. In OGA/Q and CGA, 

the crossover and mutation rates are 0.10 and 0.02, respectively. FES adopts a 
4 ‘ 

(20,300) strategy that generates 300 offspring from Cauchy mutation only in a gen-

eration. 
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Function l-unclion Space Optimum Population Si/c (iencraiion Function l-unclion Space Optimum (JA/ICA OGA/Q ( O A ri-s (JA/ICA (KiA/Q (•(JA 1 r.s 
/ l 1-500.500]'" 12569.5 200 200 200 20 200 >1000 >1000 4500 
h 卜 5.12,5.121!" 0 400 200 200 •21) 200 >1000 >1000 2500 
h 1-32.32P". 0 400 200 200 20 200 >1000 >1000 750 
,4 1-600.600|'" 0 400 200 200 20 200 ,>1000 >1000 1000 
h 1-50.501-'" 0 200 200 200 20 200 >1000 > 1 (){)() 750 
h I 0 , 7 r r »)9.2784 60(J 200 200 NA 200 >1000 >1000 NA 

Table 3.1: The Experiment Settings of The'Algorithms 
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(3.9) 

The ICA algorithm used by GA/ICA is FastICA [54], which is very fast to 

find the linear transformation for ICA. Note that ICA does not know the original 
l O 

dimensions of some functions are actually independent,*so the functions suffice to 

verify the capability of ICA to discover the independent components. 
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Tesi 
lunciion 

Mean number of function evaluations Mean optimal lunciion value 
p-valuc 

Tesi 
lunciion OGA/Q (XiA M-S ( ;A/ I ( ,A (X iA /Q (•( iA ii:s ( iA / l ( ’A p-valuc 

,1 302166 458653 9()f)03() 34420 12569.45 K444.8 12556.4 12569.47 0.0033 
J2 224710 335993 500030 56760 0 -23.0 -0.2 -4.2x10 0.05KK 
fi 112421 3K>481 150030 44404) - 4 . 4 X 10 -2.7 -1.2x10 - -5.0 X 10 '' 0.0012 
/A 134000 346971 200030 45160 0 -1.3 -3.7 X 10 - - l . 4x 10 0.0162 
h 134556 346800 150030 26840 -6.()x 10 '’ -3.7 X 10 ‘ -2.KXLO '' - 1 4 X 10 ‘ 2.2 X 10、7 
h 302773 33K417 N A " 5 0 2 0 92.8 83.3 NA 97.6 ().2 X 10 L’ 

Table 3.2: Experiment Results of GA/ICA and other population based GA on seven 
benchmark functions. The last column shows the p-value of the t-test of the mean 
values of OGA/Q and GA/ICA, where the hypothesis that the two mean values are 
the same is rejected at the significant level 0.05 

Table 3.2 shows the experiment results. GA/ICA is executed 10 times on each 

testing functions. For each testing function, the experiment records the mean num-

ber of the function evaluations, the mean function value of the best individuals and 

the p-value of the t-test of the mean values of OGA/Q and GA/ICA, where the hy-

pothesis that the two mean values are the same is rejected at the significant level 

0.05. t-test is not performed between GA/ICA and other algorithms, since the re-

sults of other algorithms are obviously worse than those of GA/ICA and OGA/Q. 

The 20,000 individuals used by ICA are not countcd in the mean number of the 

function evaluations, and the good ones among them are not used in the evolution 

either. 

OGA/Q and GA/ICA outperform CGA and FES in terms of the function values 

of the solutions and the numbers of the function evaluations. Generally, OGA/Q 

and GA/ICA have comparable performance. For the function there is no sig-

nificant difference between the mean values of the solutions returned by OGA/Q 

and GA/ICA, since the p value is larger than 0.05. For the functions f\, fs and f(” 

the solutions of GA/IGA are statistically better that that of OGA/Q since the corre-

sponding p values are smaller than 0.05. For the function 义！ and 几 the solutions 

of OGA/Q are statistically better that those of GA/ICA. While for all the test func-

tions, the numbers of the function evaluations that GA/ICA uses are significantly 

less than those used by OGA/Q. Therefore, the results verify that GA/ICA is able 

to produce optimal or close-to-optimal solutions better than or comparable to those 
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Tcsl 
function 

Mean number of lunclion evaluations Mean function value (slunJurd deviation) Tcsl 
function UMDA/ICA BLX-a ( lA/ICA IJMI)A/K"A BLX-a ( iA/ICA 

A 54,500 57,020 34,420 3,6X6.7 5.(W7.4 12,569.47 

h 3«7,I6() 377.960 56,760 -4,1713 -18.733 - 4 . 2 4 X 10 * 

h 47,480 81.MO 44,4(M) -4.215H - 5 OX 10 ‘ 

U 44,920 47,210 45.160 2.K734 - 1 4 X 10 " 

h 47,100 5().%() 26,840 - -1.0138 -2.3257 - 1 40 X 10 “ 

h 529.740 115.020 54.804 2X.177 97.61 

Table 3.3: Experiment Results of GA/ICA and other ICA based GA on seven bench-
mark functions. The best values are bolded 

of OGA/Q while requiring much less function evaluations. 

GA/ICA is then compared to UMDA/ICA [126] and BLX-a [114], which also 

use ICA to transform the problem, under the same experimental settings in Tabic 

3.1. Table 3.3 shows the experimental results. For each testing function, we executc 

GA/ICA, UMDA/ICA and BLX-a for 10 runs, respectively, and we recorded the 

mean number of the function evaluations and the mean function value of the best 

individuals for each algorithm. It is obvious that GA/ICA find better solutions than 

UMDA/ICA and BLX-a. For the functions J\ and f(��the results of UMDA/ICA 

and BLX-a are far from the global optima. For the functions /2, f � � / 4 and /s, the 

results of UMDA/ICA and BLX-a arc close to the global optima, but the results of 

GA/ICA are several orders better. By checking the solutions of UMDA/ICA and 

BLX-a, it is found that UMDA/ICA and BLX-a actually get stuck in the local op-

tima. GA/ICA also showsits advantage over UMDA/ICA and BLX-a in terms of 

the mean number of function evaluations. For the functions U and j(” the mean 

numbers of function evaluations of GA/ICA are not the least, but they are still com-

parable to the least numbers. While for the other functions, the mean numbers of 

function evaluations of GA/ICA are significantly less than those of UMDA/ICA and 

BLX-a. 

3.4 Discussion 

GA/ICA is a new GA employing ICA to solve unconstrained continuous global op-

timization problems. It first uses ICA to identify the independent components of 
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the solution space w.r.t. the fitness. Then it divides the population into the sub-

populations and evolves the sub-populations on the independent components sepa-

rately. Finally it combines the optima on the independent components as the global 

optimum for the original problem. As the high-dimensional problem is divided into 

many 1-dimensional sub-problems, the solution space is exponentially reduced, and 

so the problem becomes easier for GA to solve. The experiment results show that 

GA/ICA requires much less function evaluations to produce optimal or close-to-
1 

optimal solutions which are better than or comparable to those produced by other 

testing GAs on the benchmark problems. 

There exist other kinds of decompositions in the field of data analysis, such 

as factor analysis, non-negative matrix decomposition, principle component anal-

ysis, etc. However, none of these is able to discover the latent components which 

arc independent from each other w.r.t. the fitness. Nonlinear ICA which finds the 

nonlinear transformation to producc the independent components is expected to be 

more general than ICA. In the case of the function optimization, nonlinear ICA 

may be genera丨 enough to solve the problems that linear ICA cannot find the in-

dependent components. Nevertheless, nonlinear ICA has its own challenges for 

its success, such as the choice of the nonlinear transformation, the indcterminancy 

of the number of independent components and the demand of a large number of 

training samples. 



Chapter 4 

Instruction Matrix Genetic 

Programming 

4.1 Overview 
/ 

EDDA can also be used in Genetic Programming (GP) to speed up the GP evolution 

by evolving the GP instructions and their interactions simultaneously. Genetic Pro-

gramming (GP) [61][8] automatically constructs computer programs by evolution-

ary process. In GP, an individual represents an executable program. The program 

receives the inputs from the problem, and gives the output as the answer to the prol> 

lem. The objective of GP is to evolve an optimal solution for the problem. GP has 

successfully produced results competitive with human solutions [10]. In Canonical 

Genetic Programming (CGP) proposed by Koza [61], an individual is a LISP-like 

program tree. The tree is composed of tree nodes of cither functions or terminals. 

If tree nodes are viewed as nominal variables, CGP can be treated as a combi-

natorial optimization problem. CGP has a huge solution space and it is NP-hard. 

To make things worse, the number of the tree nodes in CGP is not fixed, so the size 

of the solution space may increase exponentially during the evolution. It is thus 

quite common that CGP has to evaluate a large number of individuals before it can 

find the optimal program. In addition, evaluating an individual in CGP is usually 

time-consuming, because it needs to run the program tree for each training ease. 

32 
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� 

Therefore, the time complexity of CGP is extremely high. 

Divide-and-Conquer is a long-standing methodology to solve separable prob-

lems. To apply it to GP evolution, a complete program tree is divided into tree 

nodes，which are evolved separately to reducc the complexity. The difficulty of this 

approach is that tree nodes are interdependent on each other with respect to (w.r.t.) 

the fitness. The combination of the good tree nodes is necessarily the optimum of 

the complete program tree. 

The proposed algorithm also takes in account the interdependencies between 

tree nodes in the form of subtrees. Subtrees arc.the building blocks in CGP, and they 

are combined into individuals via crossover [61]. Koza have successfully divided a 

program tree into subtrees and evolved the subtrees separately [62]. Combining the 

optima of the subtrees will have a good chance of obtaining the optimal or closc-to-

optimal complete program tree, in this way, the algorithm has both the advantages 

of the smaller solution space by dividing the complete program tree into separate 

tree nodes and maintaining the interdependencies between tree nodes in the form of 

subtrees. 

A new GP framework. Instruction Matrix based Genetic Programming (IMGP)[73], 
r 

evolves tree nodes and subtrees separately. There is no explicit population to store 

individual program trees in IMGP. Instead, it uses Instruction Matrix (IM) to main-

tain the fitness of the tree nodes and the subtrees. A row in IM consists of the cells 

of all the possible instructions, their fitness and subtrees on a certain tree node. In 

theory, IMGP can extract all the possible program trees from IM. It extracts a tree 

node from the corresponding row in IM according to the fitness of the instructions. 

The tree nodes extracted are combined into a complete program tree. IMGP eval-

uates the fitness of the program tree and then updates the fitness of the extracted 

* 

tree nodes in IM accordingly. When the fitness of an instruction is worse than that 

of its subtree, IMGP extracts the whole subtree instead of extracting the tree nodes 

separately, and the fitness of the extracted subtree may be updated. Between gener-

ations, IMGP replaces bad fitness instructions with good fitness instructions in the 
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same row in IM, and gradually IM is populated with instructions of good fitness. 

IMGP is similar to Cooperative Coevolution [92]. It evolves tree nodes and 

subtrees separately in the sense that tree nodes and subtrees have their own fitness 

stored in IM. The tree nodes and the subtrees are extracted separately from the 

corresponding rows in IM. The extracted components cooperate in the form of a 

complete program tree. The fitness of the complete program tree is also used to 

update the fitness of its tree, nodes and subtrees. A tree node evolves on its own by 

reproducing instructions of good fitness, and removing instructions of bad fitness. 

This chapter is organized as follows. Section 4.2 describes the representation 

and algorithm of IMGP in detail. Section 4.3 presents the experiments on the 

benchmark GP problems. Section 4.4 gives an application example of IMGP for 

classification problems and the experimental results. Section 4.5 is the discussion. 

4.2 Architecture 

If tree nodes are treated as variables, Canonical Genetic Programming (CGP) is a 

high dimensional combinatorial optimization problem. To apply the Divide-and-

Conquer methodology, a new framework called Instruction Matrix based Genetic 

Programming (IMGP) is proposed. IMGP evolves tree nodes separately while tak-

ing into account of their interdependencies in the form of subtrees. It maintains an 

Instruction Matrix (IM) to keep the fitness of functions and terminals in tree nodes. 

It uses a new kind of fixed length expression to represent a program tree. It extracts 

a program tree from IM by selecting a function or terminal of good fitness for each 

possible tree node. After the program tree is evaluated, IMGP updates the fitness of 

corresponding functions or terminals in IM. 
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4.2.1 Representation 

Rather than using s-expression as CGP [61], IMGP uses hs-expressi(川,which is 

mapped to program tree. An hs-expression is a 2,) i ' — 1 long array to store a binary 

tree of depth D at most. Every possible tree node has a corresponding element in 

the array, even if the tree node does not exist. The relation between the elements in 

an hs-expression is similar to that used in the array of Heap Sort, but the "larger-

than" relation is changed to the ‘‘parent-of’ relation. The tree root is element 0 

in the hs-expression. For the /:th clement in the hs-expression, its left and right 

children are the 2k + 1th and 2k + 2th elements, respectively.nf it has no child, the 

corresponding elements are set to -1 instead. Therefore, the elements in the first 

half of the array can be either functions, terminals or empty, while the elements 

in the second half of the array must be either terminals or empty. Fig. 4.1 shows 

two examples. Urtlike the trees represented by s-expression, the trees represented 

by hs-expression of the same length have exactly the same shape i f -1 is viewed 

as a virtual node. Another difference is that the elements at the same locus in //‘�’-

expressions always correspond to the nodes at the same position in the program 

trees. In comparison to this, Genetic Expression Programming [2] also uses a fixed 

length string to represent a tree, and some of its elements may not appear in the tree. 

However, when the degree of a tree node changes，the positions of its subtree and 

its sibling change drastically. 

In addition, hs-expression can be easily extended to represent trees of more than 

2 branches. To p r e s e n t a "卜branch tree, hs-expression is a ' ' — 1 long array. 
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Figure 4.2: Instruction Matrix (IM) and an hs-expression extracted from it. IM 
keeps multiple instructions for each element of the hs-expression. An element of 
the hs-expression is extracted from the corresponding row in IM. The cells in bold 
typeface are the extracted elements 

For the k\\\ element in the hs-expression, its children are the m • A' + 1 th, m • k + 2th, 

m • k "/th elements. 

In IMGP, there is no explicit population. Instead, it maintains an Instruction 

Matrix (IM) to store all the possible instructions used in a program tree. While 

CGP generates new program trees from existing program trees, IMGP extracts new 

hs-expressions from IM, which are translated to program trees. The cells in IM 

are data structures consisting of instructions and related information. A row of IM 

corresponds to an element in hs-expression, and hence a tree node in a program 

tree. The cells in a row stores all the possible instructions which can be used in the 

corresponding tree node. The mapping between IM and program trees is the same as 

the mapping between a hs-expression and a program tree. Row 0 corresponds to the 

root of the program tree. Recursively, for the kxh row corresponding to a tree node, 

the 1th and the 2k + 2th rows correspond to the left and right child of the tree 

node, respectively. The height of IM is the same as the length of hs-expression, i.e., 

/ / 二 2,) 11，一 1. A row contains multiple instances of any type of instructions, and 

so the width of IM W is the number of instructions in a row. The lower part of IM, 

i.e., the part from row y to row / / , contains only terminals since they correspond 

to the tree leaves. Fig. 4.2 shows an example of IM and an hs-expression extracted 

from it. Basically, the element at locus k in the hs-expression is extracted from row 

k in IM. The details are described in Section 4.2.2. 

Besides an instruction of function or terminal, a cell in IM also keeps somê "̂ ： 

auxiliary data. The pseudocode of its internal data structure and the initial values . 
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opcode instruction = 
double best_fitness = : M A X _ F I T N E S S 
double avg_fitness : = 0 

int left-branch = = -1 
int right-branch = : -1 
int eval.num = = 0 

Figure 4.3: The pseudocode of the internal data structure of tlie cell in IM which 
shows the initial values of the fields. The field instruction can be either function 
or terminal. MAX J^ITNESS and 0 are the maximal and minimal possible fitness, 
respectively. -1 means there are no links for the left and right child of the tree node 
at the beginning 

•如. •4 

vrt 

are shown in Fig. 4.3. The data structure also stores the information of its best 

subtree, instruction is the operation code of the instruction, evaljium is the number 
、 

of times that the instruction has been evaluated, best .fitness and avg.fitness are 

the best and the average fitness of the instruction, best.fitness is also'the fitness of 

the best subtree of the instruction, lef t^branch and right Jiranch are the left and 

right branches of the best subtree. These fields keep some information of the fitness 

landscape of the tree node, and they are used in the evolution of the tree node. Their 

specific usage is explained in detail in Section 4.2.2. Note that in IMGP, the smaller 

the fitness, the better it is. 

.4.2.2 Algorithm 

Algorithm 4.1 is the main program of IMGP, where G is the maximal number of 

generations, and P is the number of yidividuals in each generation. It divides a 

complete tree into separate tree nodes, calculates the fitness of the tree nodes so as 
i 

to evolve them separately, and combines the optima of the tree nodes into a com-

plete program tree. In each generation, IMGP runs the following steps repeatedly. 

Firstly IMGP extracts two individuals from IM and calculates their fitness. Then 

IMGP performs crossover and mutation on them and calculates the fitness of their 

offspring. After evaluating an individual, IMGP updates the corresponding cells in 

IM with the fitness of individual. At this point，IMGP deletes all the individuals 
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Algorithm'4.1: The Main Program of IMGP 
Output: Jhe best individual 
initialize IM; 
for gen from 0 to G do 
� num 0; 

while num < F do 
extract two individuals i and j from IM; 
calculate their fitness respectively; 
lipdate their cells in IM with the fitness; 
if crossover i with j successfully then 
I evaluate the offspring and update its cells; 

else if mutate i successfully then 
_ evaluate the offspring arid update its cells; 

if crossover j with i successfully then 
I evaluate the offspring and update its cells; 

else if mutate j successfully then 
_ evaluate the offspring and update its cells; 

num — num + the number of individuals evaluated', 
shuffle IM; 

because their information has already been stored in IM. A generation finishes after 

IMGP evaluates P individuals. Then IMGP uses matrix shuffle to replace cells of 

bad fitness with those of good fitness in IM. J 'he best individual is reported as the 

optimal program after G generations. 

Individual Extraction 
\ • 

IMGP extracts the tree nodes from IM and combines them into a complete tree. 

Algorithm 4.2 is the function to extract an individual. Firstly IMGP constructs 

an empty hs-expression filled with -1，and aligns it vertically with IM. It starts to 

extract the instruction of the tree root from row 0，and puts it at locus 0 in the hs-

expression. Then IMGP continues to extract the rest of the program tree recursively. 

The instruction of a tree node is extracted from the corresponding row using binary 

tournament selection, and then the extracted instpaction is placed at the correspond-

ing position in the hs-expression. Binary tournament selection is comparing the 



Chapter 4 Instruction Matrix Genetic Program mi trg , 39 

Algorithm 4.2: Extract Individual 
Input: individual, IM, locus, subtree 
Output: individual 
best f ulse\ 
if subtree / — 1 then 

individual[locus] subtree', 
CELL IM [/ocus, ind ividual [locus 
best <r- true; 

else 
individiial[locus] Tournament [IM, locus). 
CELL lM\locus, individual [locus 
{{Random(\) < \ ⑶丄叫丨哪 

L best <r- true; 
C 7； L L. a v^.fit ness then 

if best = true and CELL.instruction is f unction and 
CELLJeft-hnwdr寺—\ and CELL.right Jbranch + - 1 then 

Extract(individual, IM, locus*2+l, CELLJeft.branch)', 
Extract(individual, IM, locus*2+2, CELL.right .branch); 

else 
Extract(individual, IM，locus*2+l, -1); 
Extract(individual, IM, locus*2+2, -1); 

fitness of two randomly selected instructions and selecting either of them proba-

bilistically. If the extracted instruction at locus is a function, IMGP proceeds to 

extract its left child from the 2/:+ 1th row, and its right child from the 2k + 2th row. 

It does so recursively until all the branches are completed. In Fig. 4.2, the words in 

bold italic typeface are the extracted instructions, and the completed hs-expression 

is on the right. The corresponding tree is depicted on the left in Fig. 4.1. The details 

of extracting (AND OR NOT A B C - 1 ) from IM is shown in Fig. 4.4 

The best subtree of an instruction is its subtree in the best individual that it has 

ever been extracted into. After a tree node is extracted, IMGP occasionally checks 

whether the best subtree of the selected instruction should be extracted as a whole 

so that the tree nodes in the best-subtree are extracted directly without further binary 

tournament selections. How often it does so depends on the best and the average 

fitness of the instruction. Eq. 4.1 is the probability of extracting the best subtree. 

The bigger the difference between them is，the more likely its subtree is selected. 
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1. extract AND from row 0 as the root 
2. extract OR from row 1 as the left child of the root 

3. extract A from row 3 as the left child of OR 
4. extract B from row 4 as the right child or OR 

5. extract NOT from row 2 as the right child of the root 
6. extract C from row 5 as the left child of NOT 

7. stop as NOT has no right child 

Figure 4.4: The steps of extracting (AND OR NOT A B C -1) from the IM in Fig. 
4.2. For each tree node, IMGP selects two instructions in the corresponding row 
of IM randomly, compares their average and best fitness, and extracts one of them 
probabilistically. After extracting a tree node, IMGP recursively extracts its left and 
right child ) ' ‘ 

The reason is thai if the best fitness is much hwftter than the average fitness, the tree 

constructed with the best subtree is likely to be much better than the tree constructed 

without it. Since tree nodes are highly interdependent w.r.t. the fitness in GP, best 
«« 

subtrees keep part of the interdependence information between the tree nodes in IM. 

‘ best .fitness 
prohHcsi = 1 7：- <4.U 

avg. fitness 

In the binary tournament selection, IMGP randomly selects two candidate in-

structions, compares their fitness, and selects the better one probabilistically. An 

instruction is extracted either separately or together with its best subtree. There-
• 、 

fore, when IMGP compares the fitness of two candidate instructions, it compares • * 

not only their average fitness, but also considers their best fitness as well. Eq. 4.2 

calculates the expected fitness of an instruction. It considers the probability of se-

lecting the best subtree of the instruction, and IMGP should use the best fitness in 

that case. The traditional binary tournament selection always selects the better one, 

so the worst instruction in IM is never selected. To be less greedy, we use Roulette 

Wheel Selection [42] to select one of the two instructions based on their expected 

fitness. 
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E{fitness) — pmhhcst * hest.fitness + (1 — pt'ot>hcst) * uvg.fifness (4.2) 

Extracting individuals makes IMGP avoid being trapped in a small solution area. 

In CGP, when an individual is changed by crossover or mutation, it replaces only 

a subtree with a new one, and so the offspring is still in the neighborhood of the 

parent(s). Therefore, the solution space that CGP searches is largely determined 

by the initial population. However, IMGP does not generate an individual from an 

existing parent. It extracts a completely new individual from IM, and thus the new 

individual bears little similarity with the previous individuals. Therefore, IMGP 

searches a relatively large solution space, and the extracted individuals have high 

diversity. In addition，there are multiple copies of any type of instructions in a row 

of IM, and each copy has different fitness and subtrees. Even if an instruction has 

a copy of bad fitness, it might still be selected due to another copy of gpod fitness. 

Therefore, IMGP is relatively resistant to local optima. 

Instruction Evaluation 

In IMGP, an individual is evaluated using the post-order recursive routine. To evalu-

ate a function node, it takes the evaluation of its left and right children as the inputs. 

To evaluate a terminal node, it evaluates the corresponding program input. Since 

the individual is discarded right after evaluation and reproduction, it cannot carry 

along its fitness as in CGP. Instead, the new fitness is fed back to its corresponding 

cells in IM so that it can be used in extraction later. The feedback comes in two 

ways: 

1. In Eq. 4.3, the new fitness, fitness', is averaged with the old fitness, fitness. 

The evaluation number, evaljium, is incremented by one. With this method, we 

know how good the instruction is on average. • 
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, fitness * evaljium + fitness' ^ _ 
/ it ness = • (4.3) 

eval jxiim + 1 

2. If the new fitness is better than the best fitness of the instruction, its best 

fitness is updated, and its left and right branches are changed to those in the current 

individual accordingly. This actually keeps good subtrees in IM together with their 

fitness. 

The second point is very important. As pointed out in [115], a new building 

block is unlikely to survive in the next two generations even if the individual con-

structed with it has an average fitness. In IMGP, whenever a good subtree is identi-

fied, it is remembered immediately. 

All the individuals, no matter how much their fitness are, contain useful in-

formation of the problem. Therefore, IMGP updates IM with not only the good 

individuals, but all the extracted individuals. For most of the related algorithms 

discussed in Section 2.2.2, they update their models only with the good individuals 

and ignore the bad individuals. This would make some of the bad tree nodes spuri-

ously good in the models because they happen to be in the good individuals. On the 

contrary, updating IM with the bad individuals decreases the fitness of the bad tree 

nodes, and so they are unlikely to be extracted later. 

Genetic Operators 

In IMGP, crossover and mutation are similar to those in CGP. However, as IMGP 

keeps the fitness of the tree nodes in IM, it is able to perform heuristic crossover 

and mutation on the tree nodes directly. According to the hiiilcling block hypothesis 

[42], small good building blocks are spread among the individuals and rccombincd 

into large good building blocks. Therefore, combining good subtrees is likely to 

produce good individuals. When IMGP performs crossover on individuals, it re-

places a subtree in one parent only with a better counterpart in the other parent 

so that the offspring is likely to be better. In mutation, IMGP selects a mutation 
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Figure 4.5: Crossover in IMGP. The left subtree in the first individual is rcplaccd 
with its better counterpart in the second individual 

point in the current individual, and replaces the original subtree with a new subtree 

extracted from IM. • 

The crossover is similar to context preserving crossover [30] because the two 

subtrees of the parents must be in the same position to rcducc the macro-mutation 

effect of the standard crossover [8]. However, unlike the crossover used in other 

GP algorithms, the crossover in IMGP is asymmetric. When IMGP tries crossover 

between individual i and individual /, it picks either of the two branches on the roots 

in both individuals at random. It replaces the subtree of / with that of / if the latter 

has a better fitness than the former. Otherwise IMGP recursively tries crossover 

on the branches of the picked branches. Fig. 4.5 shows an example. Note that 

crossover would fail if it could not find a better subtree to replace the original one. 

Matrix Shuffle 

CGP converges by spreading good instructions over the population to reproduce 

good individuals. IMGP starts with extracting program trees from IM at random, 

so it samples different solutions in the huge solution space. In the evolution, it is 

important for IMGP to sample the program trees which are similar to the previously 

extracted good program trees. 

However, there is no explicit population in IMGP since it extracts an individual 

and discards it later. To ensure that the individuals extracted in the subsequent 

generations have good instructions, IM should be populated with good instructions. 

IMGP uses matrix shuffle to propagate good instructions in IM, and consequently 
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Algorithm 4.3: Matrix Shuffle 
Input: IM, the current row to be shuffled 
Data: / ^n r is the function and terminal set 
for instruction £ FDT do 

Count [//?.S7/7/C7ion] the number o f instruction in IM 
一 I J 

while si < SUCCESS and t i < TRIAL do 
W / + 1； 

i j <r- Rand()m(W)\ 

row 

a — IM 
CJ <r- IM 

row. 
row, J 

if CiMvg^fitness < CJ.avg J it ness and 
Ci.hest -fitness < Cj.hest - fitness and 
C()imt\Ci.instntcti()n\ < CONVERGENCY and 
Cown\Cj.instruct ion] > DIVERSITY then 

IM row, J row IM 
si 卜 si + 1 ； 

if Cj.avg.fit ness < Ci.avg.fit ness and 
CJ. best .fit n ess < Ci.hest .fitness and 
Count[Cj.instruct ion] < CONVERGENCY and 
C(nint[Ci.iiistructi()n\ > DIVERSITY then 

IM\r()w\i\ ^ IM\r()w. 
si si + 1; 

to increase the probability of extracting them together in the same program tree. 

Matrix shuffle processes IM row by row. Algorithm 4.3 shows how it shuffles a row. 

It selects a certain number of pairs of cells in a row, and for each pair it rcplaccs 

the worse one with the better one in terms of both the best and the average fitness. 

While IM evolves with matrix shuffle, good instructions emerge to dominate the 

rows in IM, and the copies of bad instructions decrease. 

In CGP, as the population converges, the majority of the individuals have more 

or less the same instructions，while the other instructions die out. It is hard for 

CGP to maintain the diversity of the population because measuring the distance be-

tween individuals is difficult. However, IMGP evolves on the level of instructions, 

and so it is possible to maintain the diversity of the instructions. In matrix shuf-

fle, when a good instruction IM\r()wJ\ replaces a bad instruction /], where 
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i and j arc the indices for the two instructions, IMGP needs to check two constraints: 

C()imt[IM[r()w,i\] < CONVERGENCY and C()unt\IM\row. j]\ > DIVERSITY, where 

the operator Count [•] is the number of copies of the instruction. The replacement 

is prohibited if it violates either of the constraints. Clearly, CONVERGENCY 

and Diversity controls the convcrgcncc and diversity of the instructions dircctly. 

CONVERGENCY should not be too high to discourage convergence, and DIVERSITY 

should not be too low to enhance diversity. In the current implementation, IMGP 

uses CONVERGENCY = W/I and DIVERSITY 二 2. 

As pointed out in [21], the edit distance, i.e., the difference between a program 

tree and the best program tree, generally decreases after the early generations in 

CGP. It is thus good to keep the edit distance not too small so as to enhance the 

diversity of the population. Basically, matrix shuffle prohibits good instructions 

from reproducing themselves too many times, and reserves a minimum number of 

bad instructions. This thus maintains the diversity of the instructions in IM easily 

and effectively. 

As a summary. Fig. 4.6 is the diagram of the overall program of IMGP. IMGP 

extracts the program trees from IM by selecting their instructions recursively ac-

cording to the fitness of the instructions in IM. The fitness of the extracted program 

trees are used to update the fitness of the instructions in IM. The sub-trees arc stored 

in IM in the form of best children links. Afterwards, IMGP crossover and mutate 

the extracted program trees based on the fitness of their instructions, and the ofT-

springs are also evaluated and used to update IM. At the end of a generation, IMGP 

shuffles IM to duplicate better instructions and remove worse instructions. 

4.3 Experiment 

This section describes the experiments and the results of IMGP. First, IMGP and 

CGP are tested on the benchmark GP problems and their results are compared. 

Second, IMGP is compared to the related algorithms in Section 2.2.2 on a few 
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Instruction Matrix 

Figure 4.6: The flow chart of IMGP 

selcctcd problems. 

4.3.1 Comparison with Canonical Genetic Programming 

This section compares the performance of IMGP and CGP on 4 benchmark prob-

lems [61]. 

The first problem is the symbol regression problem which searches for a math-

ematical expression y = x^ -f-A"̂  where .v is an integer uniformly and ran-
4 

domly generated from the range of (0,20). The fitness used is the hit count which 

is incremented by one if the difference between the program output and the correct 

result is larger than a predefined threshold. The second problem is to discover the 

even-five-parity expression, -^(w(])/>([.)c'(l)d <|)e). The training eases arc all the 

combinations of the five binary variables. The fitness is calculated as the sum of 

the wrong results produced by the individual program^ The third problem is the 

artificial ant on Santa Fe Trail. Executing the optimal program repeatedly enables 

the ant to cat all the 89 food pellets on the trail within 400 steps. The number of 
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Parameters Symbol Rcgrcssii>n l-"vcn-5-Parily Artilicial Am 1 l-imilnplcxcr 
Terminals {X} {u.b.c.d.c} {nu)vc,lct\.righl} {a,b，...,k) 
iHinclions {aiid.or.nand.nor} {if.prognZ.progn.^} {if.and.or.nol} 
Population 500 2000 2000 4()()() 

Matrix Widlh 40 405 90 l-S() 
Matrix l l dgh l 63 1023 109.̂  道） 
Cicncralions 100 100 101) 100 

Tabic 4.1: The Experiment Settings of IMGP and lilgp on the Benchmark Problems 

the food not eaten by the ant is used as the fitness. The fourth problem is boolean 

11-multiplexer. Among the 11 variables, three arc used as the address to sclcct 

the output from one of the other 8 variables. However, GP has no idea of which 

variables arc the address. The training eases arc all the 2 " combinations of the 11 
4 

binary variables, and the fitness is the number of incorrect output. 

Table 4.1 lists the parameter settings used in the experiments. IMGP has no 

population, but for convenient comparison with CGP, wc refer to the number of the 

individuals evaluated between the matrix shuffles (generations) as the population 

size, i.e., P in Algorithm 4.1. IMGP and CGP adopt the same population size and 

generation number. In Artificial Ant and 11-Multiplexer, some functions require 3 

arguments, which means the maximum branches of a node is three instead of two. 

Therefore, the IM"height and the hs-expression length is increased to 3"丨 where 

D is the maximal level of a program tree. To determine an acccptabic size of IM, 

IMGP with different sizes is tested on a small number of the training eases for a few 

generations. By observing the fitness of the best program trees,.a suitable tree size 

can be determined. 

lilgp [130] is used as CGP-For fair comparison, the ephemeral random constant 

is removed from lilgp. The tournament size was two. The population size and the 

number of generations are set as in Table 4.1. The other parameters arc the same 

as in [61]. Both lilgp and IMGP use the same random seeds, which themselves arc 

randomly generated. For each problem, IMGP and lilgp arc executed 20 times with 

20 different random seeds. 

Fig. 4.7 shows the plots of the average fitness of the best individuals from 

generation I to generation 100 on the four problems. Table 4.2 shows the numerical 
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Figure 4.7: The average fitness of the best individuals of IMGP and lilgp through 
generations on the four testing problems . 

experimental results of IMGP, including the success rate, the fitness of the best 

program tree, the size of the best program tree and the running time. The fitness 

and the size of the best program tree are reported in their minimal, median and 

maximal values in all the runs. 

In symbol regression, IMGP finds the solution in all the 20 runs compared with 

17 successful runs in lilgp. In terms of the average fitness of the best individuals, 

IMGP also converges faster than lilgp. In even-five-parity, IMGP finds the solution 

in three runs, however, lilgp fails to find the solution in any of the 20 runs. Regard-

ing the convergence speed, IMGP also outperforms lilgp significantly as its average 

best fitness was 2.4 while lilgp's is nearly double of that. In 20 artificial ants, IMGP 

find 12 ants eating up all the food pellets, lilgp can not find any successful ant，and 

the average fitness of its best individuals was 31.8, far from 0. In 11-multiplexer. 
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Testing Succcss l-Kncss Tree Node .rime (see) Testing IM(iP CGP IM(JP tXJP IMGP (•(iP IMCJP (XiP 
Kcgrcssion 100% 85% 0:0:0 0:6:18 “ i7:41:5«J I'). 141:301 0.30 0.40 

lwcn-5-Parily 15% () 0:3:5 3:5:6 817:975:1007 23l:4»)5:8()l 2M.()5 XI.15 
Artilicial Am 60% 0 0:0:20 11:34:52 1 11:225:326 23:5W:IK4K 25.00 30.40 
1 l-Mulliplcxcr 65% 0 0:0:128 I76S:I«32:I<)52 .V):45:62 236.00 2K 13.40 

Table 4.2: The Numerical Experiment Results of IMGP and CGP on the Benchmark 
Problems. It shows the success rate, the fitness of the best individuals, the number 
of tree nodes and the running time. The fitness and the size of the best program tree 
are reported in their minimal:median:maximal values in all the runs 

IMGP finds the perfect multiplexer for 13 times out of 20 runs, while lilgp fails all 

the time. The average best fitness of IMGP is also much better than that of lilgp, 

although their fitness in the first generation are almost the same. 

IMGP and CGP arc executed on a Linux workstation of Pentium 2.2GHz. Ex-

cept for the even-five-parity problem, the running time of IMGP is shorter than that 

of CGP. This is expected, since IMGP has much larger success rates than CGP. 

IMGP stops early before the final generation 100 when it finds a perfect solution. 

For the difficult evcn-fivc-parity problem, IM has many rows and so the tree pro-

grams have many levels. Therefore, IMGP is slower than lilgp on cvcn-5-parity. 

However, lilgp^cannot find any solution out of the 20 runs. 

4.3.2 Comparison.with Related Algorithms 

IMGP is also tested on those problems whilJh have been tested by the related al-

gorithm to compare their results. However, it is difficult to compare the results 

.precisely，as some of the papers give the results only in the figures without the exact 

numerical values. Therefore, only the problems whose results are reported in num-

bers in other papers are used. The experiment settings are the same as in the related 

algorithms described in Section 2.2.2. 

Six-bit parity problem is similar to even-five-parity. It has six boolean argu-

ments, and it returns true if the number of true arguments (1，s) is odd and false 

otherwise. However, other than using the boolean function set, it uses a real-valued 

function set {+ , —，x, %,sin,cos,exp, rlog}, where rlog is the protected log which 
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Testing 
Algorithm 

Success 
Rate 

Program Evaluation Tree Node Testing 
Algorithm 

Success 
Rate min median max min median max 

IMGP 100% 2000 2000 18000 10 29 113 
PIPE 70% 9432 52476 482545 22 61 100 
CGP 60% 64000 120000 396000 24 90 161 

Table 4.3: The Experiment Results of IMGP，PIPE and CGP on Six-Bit Parity Prob-
lem. It shows the success rate, the number of program evaluations, and the number 
of tree nodes 

Algorithm Success Rate Evaluations 
IMGP 40% 14050 
GMPE 60% 13590 
CGP <60% 100000 

Table 4.4: The Experiment Results IMGP, GMPE and CGP on Max Problem. It 
shows the success rate and the number of program evaluations 

returns the log of the absolute value of the argument. The output of the program is 

mapped to true i f it is larger than 0 and false otherwise. 20 independent runs were 

carried out using IMGP. The result is compared to that of PIPE [103] and CGP in 

Table 4.3. IMGP is the best and it achieves 100% success rate and it requires much 

smaller number of program evaluations. 

Max problem has a single input with value 0.5 and two functions, + and x. 

The purpose is to find a tree with maximum fitness under the tree size constraint. 

Obviously the optimal tree is a full tree, whose nodes on the two levels right above 

the terminals are + to produce the value of two, and the other nodes on the top 

are x to multiply all of the 2，s. In this experiment, the maximum tree depth is 

seven, so the maximum fitness is 65536. The result compared to GMPE [110] 

and CGP is reported in Table 4.4. Both IMGP and GMPE outperform CGP. With 

approximately the same number of evaluations, GMPE has a higher success rate 

than IMGP. However, i f IMGP keeps running til l 100 generations, its success rate 

increases to 95%. 

Function regression is to search for the function shown in Eq. 4.4. The fitness 

cases are sampled at 101 equidistant points in the interval [0,10]. The fitness is 
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Algorithm mean std. 1dev. min median max 
IMGP 5.25 2.79 2.34 5.09 13.56 
PEEL 6.79 4.91 0.68 5.21 18.90 
GGP 7.87 3.54 0.95 7.56 14.00 

Table 4.5: The Experiment Results of IMGP, PEEL and GGP on Function Regres-
sion. It shows the fitness of the best individual 

not the hit count, but the sum of the differences between the outputs and the correct 

answers. The fitness of the best individuals of IMGP arc compared to those of PEEL 

[109] and GGP [120] in Table 4.5. IMGP gets a smaller error and a smaller standard 

deviation. Although the minimum errors of PEEL and GGP are smaller than that 

of IMGP, their median and maximum errors are much larger than those of IMGP. 

Obviously, IMGP is more stable with a less variance than PEEL and GGP on this 

problem. 

J\x) = A-̂  X X cos.v X sin.v x (sin^.v x cosx — 1) (4.4) 

4.4 Instruction Matrix based Genetic Programming 

for Classification 

IMGP is a very flexible paradigm, and this section describes an implementation 

of IMGP for binary class classification problems. The problem of classification 

has been a major task of machine learning and data mining. Basically, given a set 

of training data of known classes, a classifier is learned to predict the classes of 

new data. There are many existing classifiers，such as Decision Tree [95], Neural 

Network [13], Support Vector Machine [26] and Sparse Kernel Feature Machine in 

Section 4.4.1, etc. GP can also be used to evolve classifiers in the form of progfems. 

GP has a few favorable features for classification，such as the variable length 

representation and the population of different solutions, and the interpretability of 

the classifier [33][80][118]. First, the structures of many traditional classification 
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models are fixed, and the major task of learning is finding the proper parameters 

of the models. Because a variable representation of classifier is adopted in GP, it 

has more freedom to find appropriate model structures than fixed representations. 

Second, the results of some traditional learning algorithms depend on the initial 

parameters of the models. In GP, the population contains many individuals, so GP 

has a better chance to find the optimal structures and the parameters of the models. 
< 

Third，GP usually uses only simple algebra operators and possibly a subset of all 

the attributes in a program, and so the resulted classifier is easy to interpret. 

In a learning problem, a training dataset {X,{) consists of N samples 丨/•: 

1 ...A^} and their targets {/'|/ = 1 ...A^}. A sample x' has M attributes {x'jlJ = \ . . .M). 

Given a sample x', a classifier-predicts its class as y . The task of the classifier 

learning algorithm is to find a classifier of minimal error. In this section, the sum of 

squared error function is only applied on the misclassified data as in Eq, 4.5, where 

N' is the number of misclassified data. 

1 ' 
n 厂二 少/)2 (4.5) 

i- 1 

Suppose the instruction set in CGP is {.V|,... +，-： x . / } , the program tree 

is actually a mathematical formula and so the class boundary can be represented by 

a mathematical equation. For a binary class problem, the program tree receives the 

attributes of a sample as the inputs. I f the output of the program tree is positive, the 

sample is assigned class one’ otherwise class two. The classification error on the 

training data is used as the fitness. 

As a variant of CGP，IMGP can also be used for classification problems and is 

expected to be more efficient and more effective than CGP. The instruction set of 

IMGP for classification introduces Constant Instruction (CI) in the instruction set. 

CI is used as the terminal of constant as the parameter of the classifier model defined 
by the program tree. CGP uses Ephemeral Random Constant (ERC) as a constant. » 
ERC is instantiated to a random number in the initialization of CGP, and the number 
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s fixed in later generations. In IMGP, because a CI will be extracted into different 

ndividuals, it should change the constant during evolution. CI has two constants, 

.e.，the Random Constant (RC) and the Best Constant (BC), corresponding to its 

average and best fitness, respectively. BC is used when the CI is used in the best 

program tree for testing on unknown data. RC is assigned a new random number 

whenever it is extracted in a new individual. The new value of RC replaces the value 

of BC if the new individual has a better fitness than the best fitness of the CI. 

Contrast to CI in IMGP, ERC does not change during evolution even if the 

change would lead to a better constant given the structure of the program tree. As 

mentioned in [29], various approaches have been proposed to change constants in 

the evolution. However, they are only mutation on the constant disregarding the 

current individual. In Neural Network [13] and Support Vector Machine [26], the 

structure of the model is given beforehand, and the learning process is adjusting the 

model parameters to minimize the error function. GP can be viewed as searching for 

the structure of the model and the parameters of the model simultaneously. It is thus 

possible to change the parameters without changing the structure to achieve better 

fitness. If the error in Eq. 4.5 is used as the fitness and the structure of the program 

tree is fixed, the fitness is actually a continuous function of constants. Therefore, 

IMGP can modify the constants of a program tree to decrease classification error. 

As in Neural Network, IMGP uses gradient descent [13] to find the optimal con-

stants. Gradient descent changes a constant is according to the partial derivative of 

MSE as shown in Eq. 4.6. 

^ , n dE 工， �d\，, 
• ( == - 二 (.+ ” 1 ) 言 （4•… 

7] is t he l e a r n i n g ra te , c is t he v e c t o r o f t he c o n s t a n t s , v, is t he o u t p u t o f t he 

program tree given the sample A/. Given a mathematical formula represented by a 

program,.tree, IMGP calculates its partial derivative w.r.t. the constant. Suppose 

the formula is a composite function = ( / 。 { g j i ) ) { c ) , where function / takes two 
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arguments of functions g and /;. The derivative of / with respect to c is 努 = 

Forexample’,(g)' = ^ ( > ' + f ^ ) " = y - ( ^ ) " . Therefore, 

IMGP can calculate 祐 by traversing the program tree in post-order. However, it 

needs to calculate both the outputs and the partial derivatives of the tree nodes, so 

the computation cost is multiplied by the number of constants. To save computation, 

gradient descent is not used on every program tree. Instead, it is used only when 

IMGP finds a new best program tree. Gradient dcscent for GP is also used in [125], 

which it uses gradient descent for all the individuals. 

One of the major concerns of classification problems is generalization or over-

fitting [49]. Due to the noise in the training and the testing data, a classificr works 
i 

well on the training data may not be so accurate on the testing data. A reason for the 

performance degradation is that the classifier is so complex that it classifies noisy 

data unnecessarily. As described in Appendix A, a common approach to enhance 

generalization is to trade the classification accuracy for the model complexity, and 

so the penalty of the model complexity is extensively incorporated in the objective 

function of supervised learning. IMGP adds a penalty of the tree size to the original 

classification error as the new fitness shown in Eq. 4.7. 

tree size 
fitncss 二 error + v r … ( 4 . 7 ) 

M JiOH 

u，is a small positive constant to control the weighting of the tree size. Because 

the classification error is always less than 1, the tree size is normalized with the 

maximum tree size, i.e., M-ROW. In calculating the tree size, IMGP does not count 

the terminal nodes, since only the functions contribute to the complexity of the 

program. The linear functions of + and — represent linear models which are simple 

enough, so they are not counted either. Therefore，in the current instruction set 

{.Yi.... + , —, X , / } of IMGP for classification, only the nonlinear functions 

X and / are counted in the tree size. 

‘ ^ tf, • “ 
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IMGP is tested on four benchmark binary classification problems in UCI repos-

itory [14], i.e., Breast Cancer Wisconsin (Cancer), Hacrt Disease (Heart), Pima In-

dians Diabetes (Pima) and Horse Colic (Horse). The experiment adopts a five-fold 

method. For each fold, IMGP is run for 20 times of different random seeds, and 

so there are all together 100 independent runs. Besides the input attributes and the 

constants, IMGP uses only the basic algebra operators, i.e., {+ , —. x, / } . Grammar 

Guided Genetic Programming (G^P) [118] uses context-frcc grammars and cellular 

encoding to evolve four kinds of classifiers, i.e., Decision Tree {G^P — DT), Fuzzy 

Rule-based System {G^P-FRBS), Artificial Neural Networks {G^P-ANN) and 

Fuzzy Petri-Net {G^P-Petri). Both G�P and IMGP use the populations of 2000 

individuals’ and the maximum generations are 100. 

Table 4.6 shows the results of the training and testing errors, reported in their 

best and average values. Table 4.7 shows the p-Values of the t-tcst of the average 

testing errors of IMGP with G V . The hypothesis that the two average testing errors 

are the same is rejected at the significant level 0.05. For each problem, the result of 

is the average of the results from three different settings in [1 18]. For the aver-

age training errors, the results of IMGP are comparable to the four other algorithms. 

This verifies the effectiveness of IMGP on the training data. The testing error is a 

more irpportant measure of performance than the training error. IMGP generalizes 

very well compared to the four other algorithms. IMGP is significantly better than 

another algorithm if the corresponding p value is smaller than the cutoff value 0.05. 

For the cancer dataset, IMGP is statistically better than FRBS, NN and Petri net. 

For the pima dataset, IMGP is statistically better than DT, NN and Petri net. For 

the heart dataset, IMGP is statistically better than FRBS, NN and Petri net. For ihc 

horse dataset, IMGP is statistically better than all the other algorithms. For the best 

testing error, IMGP has the 2nd lowest best testing error on the cancer problem, and 

the lowest best testing errors on the three other problems. 

IMGP is also compared to some traditional classifiers other than GP, includ-

ing, Decision Tree, Neural Networks and Support Vector Machine (SVM). In this 
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Problem 1 raining I-.rror (%) .lesting l-Tror (%) Problem \y\ IRHS ANN Petri IMCiP 1)1 1 R»S ANN Pclri IMCiP 

('anccr best 0.28 0.28 1.43 1.14 1.02 1.72 1.72 1.14 2.2') 1.4.̂  
('anccr avg 2.08 1.56 6.21 3.07 1.99 4.29 4.58 6.41 4.52 •1.81 

Pima best 15.7 15.7 22.51 20.41 21.30 21.98 22.51 23.03 15.58 
Pima avg 2I.K5 18.98 24.27 23.73 23 14 3().()() 25.17 26.24 21M 24.90 

Heart best 11.79 14.62 31.X3 10.43 15.87 17.9 IK.34 2I .K3 17.39 
Heart avg 15.29 1 6 . M 23.K« 20.77 19.03 23.10 23.85 24.03 25.62 22.14 

Horse best 16.1 1 15.55 16. W, 16.67 1 0 J 8 2K.KK 27.77 2K.8K 25.55 16.18 
Horse avg 26.30 21.27 31.(W 22.46 12.03 M.25> 39.01 40.12 20.74 

Table 4.6: Comparison of IMGP and G^P on the 4 UCl benchmark classification 
problems. DT, FRBS, ANN and Petri are the 4 GP approaches. Wc compare the 
training and testing errors in their best and average results. The errors arc reported 
in unit of percentage 。 

1)1 1 RUS ANN Petri 

Canccr 0.1875 0.0103 6.4')27a 10 ().()I'>1 
Pima 2.8083 X 10 '' 0.67K() 0.0 K,5 ().()()1 1 
Heart 0.0556 2.2265 X 10 •‘ ').206Ka 10 1.457V l() 
1 lorsc I.I474X 10 « l .l W2x 10 '' 2.451 Ox 10 A 10 

Table 4.7: The p-values of the t-test of the average testing errors of IMGP with G V 
on the four benchmark problems. The hypothesis that the two average testing errors 
are the same is rejected at the significant level 0.05 

experiment, the decision tree used is C5.0 [94], which is the state-of-the-art of de-

cision tree for classification. The SVM used is LIBSVM [24], which uses cross 

validation on the training data to determine the parameters of the kernel function. 

A neural network is implemented based on the library provided by MATLAB. The 

neural network also uses cross validation on the training data to choose the number 

of hidden neurons, and then uses an automated weight decay 丨earning on the whole 

training data. Neural network is sensitive to the initial weights, so the program 

is executed 10 times with different random seeds. SVM is a deterministic algo-

rithm, so it is executed only once. Decision tree is also a deterministic algorithm, 

but C5.0 uses random 5-fold for training and testing, so C5.0 is executed 10 times 

as well. Table 4.8 shows the best and average testing errors of all the algorithms. 

Table 4.9 shows the respective p-values of the t-test of the average testing errors 
B 

of IMGP and other algorithms on the four benchmark problems. The hypothesis 



Chapter 4 Instruction Matrix Genetic Program mi trg , 57 

Pniblcni bcsl icsling cm)r(%) 、average icslinjj crror(%) Pniblcni IM( iP m NN SVM IM( iP 1)1 NN SVM 
(anccr 1.43 4.30 4.14 4.14 3.81 5.57 4.14 
1 lean 17.39 20.40 17.41 17.41 22.14 22.62 :(um 17.41 
Pima 15.58 24.60 2 2.on 23.44 24.')() 26.41 22.8H J.?.-/-/ 
Horse IH 14.70 23.53 2.V44 20.74 14.70 2XJX I7.f,5 

Table 4.8: Comparison of IMGP, Decision tree (DT), Neural Networks (NN) and 
Support Vector Machine (SVM) on the 4 UCI benchmark problems. The best and 
average testing errors in unit of percentage are reported. For the deterministic algo-
rithms, i.e., DT and SVM, the best and average results arc the same. DT was not 
run for Horse since the program C5.0 was unable to handle the training and testing 
datasets separately 

""•""、、、_^^^^ Algorill ims 
IM( i l ) 、、、、^ 

1)1 NN SVM 

Canccr 5.50I3X 10 “ 1 K44I A 0 . 2 7 2 5 1 0 •‘ 
I'ima 1.7374X 10 ‘‘ 3.7240^ 10 ‘ ().()()1(. 
llcurt 2.52') 1 - 10 4 .0063 X 10 •‘ 
1 lorse ().()03K 0.0013 0 l()K3 

Table 4.9: The respective p-values of the t-lcst of the average testing errors of IMGP 
and other algorithms on the four benchmark problems. The hypothesis that the two 
average testing errors arc the same is rejected at the significant level 0.05 

that the two average testing errors are the same is rcjcctcd at the significant level 

0.05. For the convenience of comparison, the result of SViV is treated as both the 

best and the average results. IMGP has the smallest best testing errors on all the 

problems except Horse, where C5.0 is the best. The average testing errors of IMGP 

are still acceptable and comparable to those of the other algorithms. On the canccr 

dataset in particular, IMGP is significantly better than the other algorithms, sincc 

the corresponding p values arc smaller than 0.05. 

4.4.1 Sparse Kernel Feature Machine 

For the problem whose objcctivc is complicated and costly to evaluate, it is better to 

use a deterministic algorithm to search for a satisfactory solution. A Sparse Kernel 

Feature Machine (SKFM ) is designed to carry out kernel learning and feature selec-

tion simultaneously. First, kernel mutual information is used to filter out irrelevant 
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features in high-dimcnsional problems. Then, an augmented kernel matrix is com-

posed of the kernel matrices of individual dimensions. Afterwards, a Least Angle 

Regression without collincarity is performed on the augment kernel matrix to build 

the solution path w.r.t. the rcgularization parameter efficiently. The best rcgulariza-

tion parameter giving the smallest validation error is sclcctcd for further training. 

In contrast to the standard kernel learning, the selected supporting points contain a 

single dimension each, and thus SKFM selects important features as well as the de-

ciding values on those features. Empirical results on the real testing datascts show 

that SKFM not only trains better classifiers than SVM, but it also identifies the rel-

evant features and the corresponding values in the resulted classifiers. For more 

details on SKFM, please refer to Appendix A. 

4.5 Discussion 

Instruction Matrix based Genctic Programming (IMGP) maintains Instruction Ma-

trix (IM) to store the fitness of the instructions and their best subtrees. It extracts 

program trees from IM, updates IM with the fitness of the extracted program trees, 
V 
I 

performs crossover and mutation on the extracted program trees, and shuffles IM to 

propagate good instructions. The experimental results have verified its effectiveness 

and efficicncy on the benchmark problems. It is not only superior to CGP in terms 

of the qualities of the solutions and the number of program evaluations, but it also 

outperforms the related GP algorithms on the tested problems. 

IMGP can also be used for classification problems. To cnhancc its performance, 

IMGP uses gradient desccnt to find the optimal constants in program trees, and 

incorporates the penalty of program tree complexity in the litncss. In most of the 

tested problems, IMGP is able to find classifiers of higher classification accuracies 

than four other GP classifiers. The results of IMGP arc also comparable to or better 

than those of Decision Tree, Neural Networks and Support Vcctor Machinc. 
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‘ IMGP is an implementation of the EDDA framework for GP. By evolving in-

structions separately, IMGP actually decomposes a high dimensional problem into 

small problems of only one dimension. Therefore, both the size of the solution 

space and the search time is reduccd significantly. At the same time, it also main-

tains the interdcpcnclencics between instructions in the form of the links of best 

subtrees, and thus it is likely that the combination of the optimal instructions is the 

optimal program tree to the original problem. 

Furthermore, IMGP can be viewed as evolving schemata dircctly [73]. The 

schema theory originally explained why GA works. It was extended to explain 

the mechanism of GP later. By maintaining the average and the best fitness of the 

instructions and the subtrees, IMGP is able to maintain most of the information of 

the schemata, and make use of the information to evolve schemata dircctly. The 

details of the schema theory is explained in Section 4.5.1. 
.-

4.5.1 Schema Evolution 

Schcma theory [51] was original used to explain how and why Gcnclic Algorithm 

(GA) works. Schemata arc the abstractions of the common patterns in the popula-

tion. In binary GA, a schcma is a vector of、characters of {(), The wildcard 

charactcr # is a "don't carc，，symbol, which maps to either 0 or I. The number of 

non-# symbols is callcd the onler (> of the schcma. The distance between the fur-

thest two non-# symbols is callcd the defining length of the schcma. An inclivid-
» 

ual contains many schemata, and a schcma matches many individuals. The number 

of individuals matching a good schcma increases exponentially through generations 

as shown in Inequality 4.8. It is postulated that while GA is evolving the population, 

it is actually looking for the common schemata of the optimal solutions. 

/ ( / ) N - 1 yW/(/) 
‘ (4.8) 
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Poli & Langdon Schema Rosea Schema 
Figure 4.8: The schemata in Canonical Gcnctic Programming 

‘ . I 
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Rosea [101] and Poli & Langdon [64] introduce two schema,theories for GP 

independently. Their schema is a contiguous tree fragment starting from the tree 

root. The fragment consists of the nodes of fixed values or the "don't care" symbols. 

A tree has only one instance of a certain schema and the position of the schema is 

fixed. However, the "don't care’’ symbol 林 in Rosca's sclicma theory represents a 

set of subtrees, while the "don't care，，symbol-= is cxactly one tree node in Poli & 
« 

Langdonschema theory. Fig. 4.8 illustrates these two position schcma theories. 
f 

IMGP actually maintains the information of some kinds of schemata. In IM, 、 
I 

an instruction's fitness is averaged over the fitness of ajl the trees containing it at 

the fixed position. Considering Poli & LangdorTs schema theory, wc think the fit-
/ 

ness of AND at the third row of IM in Fig. 4.2 the fitness of the schema 

(==AND 二二二；)，which has AND as the root of the right subtree, whose left and 

right subtrees can be anything except — I. Generally, the fitness of an instruction 

in IM is the fitness of the order 1 schcma with the instruction at the correspond-

ing position in the tree. This way’ IMGP maintains the fitness of all the order 1 

schemata. Additionally, an instruction has its best fitness together with its best sub-

tree. Suppose the function AND at the third row of the matrix in Fig. 4.2 has its best 
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A Node Schema 
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N 
# 

X 
z 

a b 

A Subtree Schema 
Figure 4.9: The schemata in Instruction Matrix based Genetic Programming 

left child pointing to A, and the best right child pointing to then the best fitness 

of AND is actually the best fitness of the schema { = = AND 二 = AB). Its root can 

be any function, its left subtree can be anything cxccpt — 1, and its right subtree is 

(ANDAB). This way, IMGP is able to remember the best Htncss of some schemata 

of order larger than 1. Fig. 4.9 shows these two schemata of the example in Fig. 

4.2. 

Therefore, IMGP can be regarded as evolving schemata dircctly. According to 

the extraction criterion in section 4.2.2, if an instruction's fitness is better than the 

others', which means its 1 -order schcma is better than the other 1 -order schemata 

with different instructions at the same position, it will be sclcctcd more often than 

the other instructions, i.e. more programs will sample its schcma. Similarly, if an 

instruction's best fitness is much better than its average fitness, this will not only 

increase the chancc of selecting this instruction, but if it is indeed sclcctcd, more 

trees will sample the schcma containing its best subtree. On the other hand, the 

fitness of'a schcma is implicitly evaluated by updating the average and the best 

fitness of the corresponding instructions. 
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4.5.2 Algorithm Complexity 

The complexity of IMGP is no larger than that of CGP. Besides the normal genet ic 

operators and fitness evaluation in CGP, IMGP incurs additional overhead of ex-

tracting individuals, updating IM and shuffling IM. First of all, the time complexity 

of genetic operators is 0 ( / / ) , where II is the height of the IM, i.e., the size of the 

pt-ogram tree. Secondly, extracting individuals and updating IM need to go through 

all the instructions in the program trees, so the complexity is also 0[U). Thirdly, the 

complexity of shuffling IM is of the size of IM, i.e., 0(WU), where W is the width 

of the IM. Forth, the time complexity of evaluating the filncss is O(NII), where N is 
、 

the number of times to traverse tree programs. For^some problems, N is number of 

training cases. Suppose IMGP runs for G generations, and extracts P program trees 

in each generation, then the overall time complexity is ()[CJPII 十 GWH f GPNH). 

The time complexity of CGP is ()[GPll + GPNH). In the practicc, for belli IMGP 

and CGP, most of computation cost is in evaluating the fitness, whose complexity 
is 0{GPNil). For program tress with similar sizes, the time complexity of IMGP 

k 

is only slightly larger than that of CGP. However, the spacc complexity of IMGP 

is smaller than that of CGP. The major part of the spacc complexity of CGP comes 

from the population of individuals, i.e., ()(P11), while the major part of the spacc 

complexity of IMGP comcs from IM, i.e.， 0(WIi). Usually W is o f ^ d c r of hun-

dreds, while P is of order of thousands. 



Chapter 5 

Computational Motif Discovery 

5.1 Introduction 
/ 

In this chaptcr, EDDA is applied to solve a real bioinformatics problem, i.e., motif 

discovery. Transcription factor binding sites (TFBS) arc small nucleofidc fragments 

(usually < 30 bp) in the cis-rcgulatory regions of genes in DNA sequences. TFBS 

arc crucial in gene regulation, the understanding of which is a ccntral problem in 

contemporary biology. Finding the pattern of TFBSs, i.e. motif cliscovcry in DNA 

sequences, is thus important for uncovering the underlying regulatory relationship 

and the evolutionary mechanism of living organisms. Computational methods pro-

vide promising results for further biological validations which alone arc expensive 

and laborious. However, computational motif discovery is a well-known challeng-

ing problem because of the low signal-to-noise ratio due to both weak conservation 

and short motif widths. Although additional evidence, such as expression data and 

phylogenetic information, can be incorporated to help recognizing some noisy se-

quences without motifs, the fundamental problem of finding TFBSs on the sequence 

level is still very difficult for computational methods. One major challenge is the 

difficulty of searching for the global optimum in a high dimensional spacc. Nu-

merous algorithms, typically consensus-based search algorithms and statistical op-

timization methods, have been proposed. Consensus search algorithms suffer from 

the insufficient dcscriptivc power of string patterns and arc limited by the motif 

63 
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width and the maximal error they can handle. Statistical methods arc significantly 

affected by their starting points and often trapped in local optima. Population-based 

evolutionary algorithms perform a rather time consuming scarch and evaluate a 

large number of useless candidate solutions. 

In this chapter, two new algorithms for motif discovery is proposed. The first is 

a new Estimation of Distribution Algorithm for Motif Discovery (EDAMD) which 

handles more general assumptions for TFBS idcntification/motifdiscovery. EDAMD 

relaxes the simplified assumption of one instance per sequence in the collcctcd sc-

quenccii. The objective of EDAMD is to search for the optimal Position Frequency 

Matrix (PFM) and the corresponding motif instances in DNA sequences. EDAMD 
i 

models tfie PFMs of the sampled motif instances as a weighted Gaussian distribu-

tion, which is able to capturc the possible pairwise dcpcndcncics between the prob-

abilities of the positions in the corresponding PFMs. New PFMs arc sampled from 

the Gaussian distribution. Moreover, a local searching technique inspired by Gibbs 

sampling [76][68] and local filtering techniques [23] refines the sampled PFMs ef-

ficiently. With the EDA output, a post processing procedure improves the results to 

be even more accurate and complete. Experimental results show that the results of 

EDAMD arc comparable to or better than two other GA-bascd algorithms, namely 

GAME and GALF. 

It is observed that EDAMD always gets the same results even with dilTercnt 

random seeds. Therefore, a new deterministic approach called Cluster Refinement 

Algorithm for Motif Discovcry (CRMD) is designed. CRMD manages to locate the 

local optimal solutions efficiently and effectively and identify the global optimum 

from a small number of local optima. CRMD employs a flexible statistical model of 

motif which allows a variable number of motifs and motif instances. First CRMD 

uses a novel entropy-based clustering method to find a set of complete and good 

starting candidate motifs from the input sequences. Then it employs a fast refine-

ment method search for optimal motifs from the candidate motifs. The clustering 
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chooses informative motif candidates of various types, where the probable initial so-

lutions arc maintained and those non-informative ones are discarded to reduce the 

search space significantly. The refinement method incorporates a greedy sampler to 

obtain the optimal motif instances from the initial candidate motifs, and it returns 

a variable number of motif instances by removing or adding motif instances adap-

tively according to the auto-adjusted thresholds. CRMD can be easily extended 

if prior knowledge, such as One Occurrcnce Per Sequence (OOPS), is available. 

Endowed with an appropriate similarity test of motifs, CRMD is also capable of 

discovering multiple distinct motifs. 

In the experiments, CRMD has the best results on most of the 800 synthetic 

datasets of a comprehensive range of difficulties. The results on the extensive real 

datascts, including a set of eight selected real datasets, ABS database [15], SCPD 

database [ 128], Escherichia coli datasets [53] and Tompa's datasets [117], also show 

that CRMD seldom falls into local optima as MEME [6] and Motif Sampler [77] do, 

and its performance is even better than or competitive with those of GAME [119] 

and GALF-P [22]. GAME and GALF-P arc time consuming Gcnctic Algorithm 

based motif discovery approaches and are supposed to locatc the close-to-optimal 

binding sites. If the OOPS assumption is assumed, the qualities of the results of 

CRMD can be further improved. For a real multiple motif problem, CRMD locates 

a significantly larger number of binding sites than MEME and Motif Sampler. In 

addition, CRMD has shorter running time than most of the other algorithms tested 

in this chapter even if it is implemented in MATLAB and executed on Windows. 

Tlic rest of this chapter is organized as follows. In Section 5.2, the background 

of the motif discovery problem and the existing methods arc briefly introduced. In 

Section 5.3, the problem details arc given and formulated mathematically. Section 

5.4 and Section 5.5 describe the algorithms and the experimental results of EDAMA 

and CRMD in detail, respectively. The last section is the discussion. 
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5.2 Existing Algorithms 

TFBSs interact with transcription factors (TFs) and affect the transcriptional ac-

tivity (or gene expression). The cis-regulatory regions are usually upstream to the 

transcription start sites (TSS) of the genes. TFBSs typically have a'width of 5-10 

bp, but there are also real cases such as the CRP binding sites with widths up^to 

around 20 bp. In general, the range of widths can be restricted to around 5 bp to 

25 bp. Some well-known characterized TFBSs such as the TATA box are proximal 
t 

to the TSS, but generally there is no prior spatial knowledge of where the TFBSs 

occur in the regulatory regions. 

Computational methods for identifying TFBSs, namely de novo motif discovery, 

have been proposed as an attractive pre-scrcening procedure and alternative to the 

expensive and laborious biological experiments such as DNA footprinting [41 ] and 

ChlP-chip [52]. The basis is that certain conserved pattern, called the "mo t i f , exists 

among the TFBSs in the cis-regulatory regions for a set of similarly expressed genes 

(co-expressed genes), because those genes are probably regulated by the same or 

、similar TFs. Benefitting from the availability of the large amount of sequencing and 

microarray data, now we can identify co-expressed genes by clustering and then 

extract their cis-regulatory regions, de novo motif discovery methods try to identify 

the motif, or equivalently the set of TFBS instances of co-expressed genes without 

prior knowledge about their consensus appearance. 

There have been a few excellent surveys of motif discovery algorithms [ 117][53][ 104]. 

Current motif discovery methods can be categorized into enumerative (consensus 

based) approaches and statistical (matrix based) ones. They either discover the 

^string pattern (the consensus) using combinatorial approaches or identify the profile 

of the TFBSs, typically the Position Frequency Matrix (PFM), or Position Weight 

Matrix (PWM), using statistical modelling. 

In enumerative approaches for motif discoveVy、exact string matching methods 

A 
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fail and exhaustive enumeration is also infeasible due to the NP-hardness [74]. Ex-

isting consensus based approaches [90], set the constrajnt that the maximal ham-

ming distance between the consensus and the motif instances, " ’ is assumed to be 

known. They try to enumerate all the strings satisfying the constraints in polyno-

mial time. Typical works include optimizing the data structure using suffix trees 

[102][12] and projections [2()][97]. However, such approaches cannot meet the re-

quirements of real world problems well because they can only handle short motif 

widths (in general up to 14) and small d within reasonable computational time. In 

the real cases, however, the width can be up to 22 (in the CRP datasct tested in this 

chapter), d is also difficult to determine beforehand and it varies ease by ease. With 

too small a cl, most of the true TFBSs are missed due to the stringent criteria. With 

too large a c/, the computation time becomes intolerable and a large number of false 

positives will be output. Another major drawback of consensus based approa.chcs is 

that the discrete consensus of the motif is not accurate enough to represent the weak 

conservation between different nucleotides. 

A more accurate choice is to use the PFM and PWM to represent a motif 

with continuous frequency or likelihood of each nucleotide appearing at each posi-

tion within the motif. Some statistical methods such as Expectation Maximization 

[6][16] and Motif Sampler [76][68] have been proposed and shown some siicccsscs 

in TFBS identification. However, since statistical methods sample TFBSs prob-

abilistically, they may take a long time for their solutions to converge and stabi-

lize. Another disadvantage is that they are sensitive to initial settings, and arc often 

trapped in local optima since many of these methods perform local search only, and , » 
their results might not even be local optimal i f the searching is ineffective. In TFBS 

identification, the problems of being trapped in local optima become more critical 
I 

because the weakly conserved TFBSs are typically weak signals surrounded by a 
t 

large amount of noise. 

Genetic Algorithms (GA) [119][22][35][79][72] have been applied to TFBS 

identification as well. The advantage of such GA based methods is that they are 
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likely to locate the global optimum in a typically difficult search space. Other ad-

vantages of GA compared with the conventional motif discovery methods include 

the flexibility of representations and scoring functions in which advanced models 

can be easily incorporated, and good scaling property which is promising for the 

large amount of data in DNA sequences. On the other hand, they arc stochastic and 

so they may fail to report consistent results in different runs. They require a large 

population of solutions and the computation time is typically long. Nevertheless, 

the results of the state-of-the-art GA-based method provide a closc-to-cxhaustivc-

search-based benchmark to evaluate the performance of motif discovery algorithms. 

Recently, approaches incorporating multiple evidence besides the DNA sequences 

have been proposed to improve the prediction accuracy for real motif discovery 

problems. Reccnt reviews usually include these integrated approaches [28][45]. 

The cvidencc generally comprises of microarray data for the input sequences, phy-

logenctic footprinting, ChlP-chip and negative sequences previously known to con-

tain no motifs, just to name a few. Multiple cvidcncc also means additional data 

sources are needed specifically. While these methods gain succcss in specific eases, 

the general motif discovery problem remains challenging because it is usually diffi-

cult to have these additional information and the scarch on sequences known to have 

certain motifs is still difficult. This work focuses on the motif discovery involving 

only DNA sequences, and the improvement on DNA sequences alone will ccrtainly 

further cnhance the methods integrated with additional cvidcncc. 

5.3 Objective 

Biologically, the TFBS identification problem is to locate the subscqucnces in the 

cis-regulatory regions which are bound by a common protein. Up to now, the pro-

cess of factor binding is still obscure to biologists, let alone the properties of the 

binding sites. To cope with this problem with computational methods, the problem 

is formulated as an optimization problem of a certain mathematic objective function 
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in the following subsections. The algorithms to maximize the objective function are 

presented in Sections 5.4 and 5.5. 

5.3.1 Problem Formulation 

Given a set of DNA sequences, it is required to find the binding sites corresponding 

to the motif instances and the common string pattern of the motif. To be consistent 

with the biological observation, there is no assumption of the maximal distance 

between the motif instances and the number of motif instances in the sequences. 

Data 里nput: a set of sequences S = {S)|i —1.2 D) of nucleotides defined on 

the alphabet B = [A. T, G.C}. .V, = (.V/|/ = 1.2 /,) is a sequence of nucleotides, 

where /, is the length of the sequence. 

The motif width is u, nucleotides long, which is assumed known throughout 

the chaptcr. The set of all the \v long subscqucnccs contained in S is {.、.,'|/ = 

1.2,...,[), /) = 1,2....,/, — u，+ 1 } , where /, is the binding site of a possible motif 

instance、々 on sequence S,. 

Position Output: the Position Indicator Matrix (PIM) A 二 小.：1.2 D} 

of the motif, where Ai = {A'-\i = 1.2 /,} is the indicator row vector with rcspcct 

to (w.r.t.) a sequence S,. A; is 1 if position /• in S, is a binding site, and 0 otherwise. 

The number of motif instances is referred to as \A \ 二 , | 

Induced by yi is a set of | motif instances denoted as S(/1) : {‘S'(/"卜 ‘S,(/1 、⑷丨 i| 

where S(/1), = S(/1)IS(/l)f...S(/1)"' is the /th motif instance in |//|. S(/l) can also be 

expanded as (‘S(/i)i’‘S，(/I尸,—,‘S’(/!)".)’ where S(/iy 二 ‘S,(/l)[S’(/”《—‘VM)(,i is the 

list of the nucleotides on the /th position in the motif instances. 

Consensus Output: the string abstraction of the motif instances or, in the ab-

sence of a string consensus, the Position Count Matrix (PCM) /V(/l) of the num-

bers of different nucleotide bases on the individual positions of the motif instances 

o f / I . /V(/i) 二（yv(/l)i,yv(々2‘“.."(4、r), and JV(yiy =�N�A�'丨、\h € /?}}, where 

N{A)i = \{S{A)i\S(A)>=h) 
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Figure 5.1: An artificial problem of motif discovery. It shows (a) the scqucnccs S� 

(b) the Position Indicator Matrix A, (c) the motif instances (d) the Position 
Count Matrix N(A) and the count of the background nucleotides {M{S)f,\h e 
(e) the Position Frequency Matrix N(A) and the background relative frcqucncics 
{0()/,|/) G In the sequences S, the letters in lower case are the background bases, 
and the letters in upper case arc the motif instances 

N(A) can be further normalized by \A \ as the Position Frequency Matrix (PFM) 

N(A) = which can be regarded as a virtual consensus, i.e., the relative fre-

quencies of the nucleotide types on the individual positions in the motif instances. 

Given an A, it is trivial to calculate N{A). On the contrary, it is not straightforward 

to find the corresponding A from N(A). 

Fig. 5.1 illustrates an artificial motif discovery problem. M(C') = {M{C)h\h € 

3} denotes the numbers of different nucleotides in the datasct C\ where M{C) ap-

plies to all the positions in C. Similarly to PFM, M{S) can be normalized as the 

relative frequencies of the nucleotides in the scqucnccs S, which is denoted as 

00 二 = 州‘s.),, - - - ' ' ^ ^ {heB}. 

5.3.2 Maximum A Posteriori 

In a motif discovery problem, it is required to find the optimal PIM A or PCM N{A) 

in terms of a certain optimization measure. There arc various methods to evaluate 

a set of candidate motif instances. The Baycsian analysis is adopted to derive the 

posterior probability of the motif instances, and thus the motif discovery is to find 

the motif instances of the maximal probability. To make it easy to understand the 

proposed algoritfirns, the major steps of the derivation in [56] are repeated herein. 
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For the likelihood of the motif instances, it is usually assumed that the nu-

cleotides ill a motif instance arc generated independently across positions. There-

fore, the motif instances/i follow the multinomial distribution f l " ! i八 N(A�丨）、where 

p{N(A)') is the independent probability of generating the nucleotides on the /th po-

sition of the motif instances. It is further assumed that the probabilities of generating 

the nucleotides on a position of the difTcrcnt motif instances arc independent. The 

joint probability f)(N{A)') is thus the product of the probabilities of the nucleotides 

on position / in the sequences rcspcctivcly, i.e., i)(N[A)') — fl/,, /y《( ' \whe re 6") 

is the latent probability of generating base h in position /, N{A is the number of 
,V( I)' 

nucleotide h on position /. In a more succinct form, fl/). n ‘‘ can be written as 

⑷ ,where Oj is the vcctor of the latent probabilities {Off,\h G B] on position j 

in the motif instances. In summary, the motif instances A follow the multinomial 

distribution f i ; i 0广” 

For the likelihood of the background sequences, it is assumed that the nu-

cleotides on the sequences excluding the motif instances follow a multinomial dis-

tribution (^丨)"‘、(」” 二 11/，( " ^ ^ 二 ( 、 " ” ' ' ， w h e r e Oo is the vcctor of the probabilities 

generating the background nucleotides and is the complement of /l w.r.t. S. 

In this chaptcr, it is assumed Oo is fixed as the relative frequencies of the bases 

in which is indifferent to the positions of the bases. Similarly, it is also as-

sumed an independent binomial distribution of the number of motif instances 

i.e, p(Ajpo) 二 利 X (1 - where A = X f i — “’十 1) is the total number 

of the subsequences and /)() is an abundance ratio to indicate the probability of a 

position being a binding site. 

The PIM A can be viewed as the missing label of the data S\ 0 is the latent 

parameters of the distribution model of A, and /；() is also unknown beforehand. The 

likelihood of .V is the product of the probabilities of the background scqucnccs and 

the motif instances as follows. 
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厂(取 0u，/l./,n) 二 " [ 广 I X 肌 
,V(.I 

For Baycsian analysis, a multinomial Dirichlct distribution is employed as the 

conjugate prior for G’ i.e., / ;(0|a) oc []，, fj/K ” ‘,where a is a small common 

prior for all the 0/S. A Dirichlct distribution is also proscribed as the conjugate prior 

for i.e. p(p()\p(,.p/,} a pI;‘' 1(1— /)(>)"'' ‘. Therefore, the posterior distribution 

of 0 and /)” is as follows, where wc have used A/(, A/(.V) 

Mi Ml 

="GS'I , 6^�, /I，/；())/; (A\p())i){e\a)p{pi)\Pa, f)h 

a \f(S(A)) n份 
0 

0 and Pi) can be integrated out using the conversion between the beta function 

and the gamma function'. The resulted posterior conditional dislribution of A alone 

is shown in Eq. 5.1，which has used |«| 二 X/’‘ "《/’ and Yjh «"('”/’ -

r(MI+/)")r(广一 

a 
A/(.S-(/1)) 
0 

r cx 
(5.1) 

The objective of motif discovery can thus be formulated as to maximize the 

posterior probability of / f 知 Eq. 5.1. Prior knowledge, such as the abundance of 

motif instances in the datasct, the background frcqucncics of the nucleotide types 

and the probabilities of nucleotides in the motif instances, can be easily incorporated 

in the model. 

c aiul The beta function /i(.v, r) = 
n.v (V) 

1(1 .-/)、. Jt, I he gamma function「 
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In the implementation of Cluster Refinement Algorithm for Motif Discovery in 

Section 5.5, the gamma function 厂 frequently caiiscs overflow with a large argu-

ment, so i){A) in Eq. 5.1 is not used as the measure o\ A dircctly. Instead, the log of 

the posterior probability o\ A in Eq. 5.2 is used, where the log gamma function /A 

avoids overflow in typical eases and K is invariant with A. 

/T(|/f| + " " ) + lAU — |/1| + "/,) - M{S{A))/oi^Oo ) 
\X 

X X"、(〜M);’ + ct/，)-、、,AnMi + l«i) (-^.2) 
/ I h If 

If the log gamma function is not used, Eq. 5.1 can still be simplified using the 

Burnsidc approximation-. After some tedious derivation, the log of、the approxi-

mated posterior conditional probability of A is shown as Kq. 5.3. Instead ofl iq. 5.1, 

Eq. 5.3 is used as the objective function in Estimation of Distribution Algorithm for 

Motif Discovery in Scction 5.4. 

\y 
+ ^ {N(A)' + a — {).5)1(>^{N{A)^ 4 a 0.5) 

i I 
— ",(|/1| + |a|-().5)八々1^(卜引—|tt|-().5) (5.3) 

where K is invariant w.r.t all the variables. For vectors and W"只(r') is used 

as a shorthand for Zv,7"‘i^(v:). After further simplification, Eq. 5.3 contains a term 

of Information Content (IC), namely ["]、/ i 台/ log染，as used in other algorithms, 

such as GAME [119] and GALF [23]. IC models the discriminatory motif since it 

"Burnsidc approximation r(.v I I) - .v! % (.v I 0.5)' ‘ " *、、.、 
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is an approximation of the diffcrcncc between the log probability of motif w.r.t. the 

latent probabilities 6 and the one w.r.t. the background probabilities However, 

IC ncglccts the variable number of motif instances, and the simplification from Liq. 

5.3 might be too coarse. 

5.4 Estimation of Distribution Algorithm for Motif 

Discovery 

Estimation of Distribution Algorithm for Motif Discovery (EDAMD) idcntilics the 

motif instances which maximize the objcctivc function Eq. 5.3. hi a nutshell, 

EDAMD consists of two levels. On the outer level, EDAMD employs a Claus-

sian distribution to model the Position Frcqucncy Matriics (PFM) of the individuals 

in the population. The Gaussian distribution not only maintains the probabilities of 

the nucleotides on the positions of the motif consensus, but also caplurc the pos-

sible pair-wise dcpcndcncy between the positions of the motif consensus. In the 

evolution, EDAMD updates the Gaussian distribution with the motif instances in 

the population, and it generates new PKM based on the Gaussian distribution to find 

the corresponding potential motif instances. On the inner level, cach PFM gen-

erated from the Gaussian distribution is further refined by a local scarch heuristic 

to find the local optimum around the initial PFM. While the outer level ensures 

EDAMD to scarch the solution spacc thoroughly w.r.t. the PFM distribution, the 

sccond level makes EDAMD considers the local optimal PFMs only which may 

contain the global optima丨 solution. 

Algorithm 5.1 is the overall program of EDAMD. For a generation, half of the 

PFMs are sampled from a Gaussian distribution '//. To cnhancc the diversity of 

PFMs, the other half arc sampled from a uniform distribution "//. After finding a 
A 〜 

set of motif instances based on a sampled PFM /V(//)⑴ via the Greedy Refine-

ment function Greedy, the best set of motif instances BA is updated if is 
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better than the best fitness FIT. At the end of the generation, ihc function Update 

updates the Gaussian distribution model with the sets of motif instances {、’(/”(,)}， 

their fitness {y/(/”(,]} and the conditional probabilities ot the instances {p(//)(,)}. 

Finally, the Post Processing function Posf is applied on HA to adjust the discovered 

motif instances. 

Algorithm 5.1: The Main Program of EDAMD 
Input: The Sequcnccs S 
Output: The Best Motif Instance BA 
FIT — 0; 
randomly ini t ia l ize； 

for gfmm 0 to (; do 
for i from 0 to T do 

if / < ^ then 
々(:^)(,>〜(《(.v|Ai,Z); 

else 
—々(/】)(,>〜//(A-); 

yv(/i)“) — / ) x _ ( , ) : 、 

i f X / ! ) ( , ) > FIT then 
/ " r — y/⑷(,)； 
BA — 

BA — Posl(S,BA)\ 

5.4.1 Searching Method 

The inner level is a heuristic local scarch procedure to rtnd the nearby local opti-

mum around an initial PFM. In ordinary GA, crossover and mutation arc the pri-

many searching operator. However, to take advantage of the properties of the motif 

discovery problem, EDAMD employs more cflicicnt searching operators than the 
、 

gcneric GA operators. The first operator Greedy Refinement is a local scarch mu-

tation. It finds a new set of binding sites based on the initial set of binding sites. 

The new set of motif instances has a higher posterior probability than the old one. 
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The second operator Post Processing is applied on the best set of motif instances 

after the evolution. It retains most of the motif instances, and adds some new motif 

instances to increase the posterior probability. 

Creedy Refinement 

Given a ！iiotif PIM A, it is easy to calculatc its fitness according to Vl- 'H in Eq. 

5.3. In the other way around, finding the optimal A is maximizing i//(/1). However, 

solving for the optimum of [f/{A) analytically is intractatlc. Instead, EDAMD itcr-

ativcly sea rc lies for the optimal A, / (() or 1), while fixing the rest o f / / . Moreover, is 

indicated by the Eq. 5.3, searching for the optimal ‘1 is equivalent to scorching for 

the optimal /V(/” as long as there actually exists a set of motif instances .1 whose 

PCM is /V⑷. 

For the time being, it is assumed that cacli scqucncc S, contains a single motif 

instance, meaning only a single element in /I, is I. in that ease ‘1 collapses to a 

vcctor P where P, is the index of the binding site on S,. ‘ 

Given a set of motif instances, which may not be the optimaiicccssarily, HDAMD 

tries to find better instances. It takes an iterative procedure to refine the motif in-

stances one by one，and the maximal itcral.ioa is f ) . Suppose it has located the 

binding sites on all Ihc scqucnccs cxccpt a single scqucncc S, it is working on, it 

looks for the subscqucncc on ‘V, which malchcs the orher instances bcsl. A measure 

of similarity of a site A^ to the other binding sites is the probability o f / l / being a 

binding site conditional on the other binding sites. The dissimilarity o f / / - can be 

measured as the conditional probability of /I - not being a binding site. Therefore, 

the Baycs factor cp(/l/) in Eq. 5.12, which is derived using Baycs intercncc, can be 

used to determine whether A'- is a binding site. The derivation is very similar to the 

one used in Eq. 5.1, where the equation I \ x + 1) = .、-「(.Y) is used. /V(尸‘)么 is the 

number of nucleotide h — sj ‘ ‘ in meaning thcsamc nucleotide at posi-

tion k in S{P*) as the one h in |尸” is the number of motif instances already 

identified. 
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( / ) ( / ! / ) = 
p{Ai = 1 P\S) 

二 0 P\S) 

J 二 丨 e，r .s)p{e p '\S)(/0 

siMi 
1 

二（） ,S)p(Q P 

)/, + «/, 
'\S)(I0 

1 I p. 
k 1 ‘ 

+ a 
(5.4) 

After calculating the Baycs factors of all the A[ on ‘V,, EDAMD needs to deter-

mine which one is the binding site. Gibbs sampling [77] selects a site randomly in 

proportion to the (piAj) in Eq. 5.12 in S). It itcratively samples the binding sites in 

all the sequences one after another (possibly rewinds to ‘V| after sampling on、:〜')， 

and updates P* accordingly after cach sampling. Gibbs sampling is a Markov Chain 

Monte Carlo method, and so it may takes a long time before generating samples fol-

lowing the target distribution. 

EDAMD adopts a different method to sclccl the binding sites. Instead of sam-

pling the binding sites probabilistically, it sclccts the site of the maximal (/)(. ,/) 

directly, i.e., F) — argmax^ , /. cp(/l/). Similar to Gibbs sampling, EDAMD sc-

lccts the binding sites on all the scqucnccs itcratively. After selecting the binding 

site on Si, it continues to sclcct the binding site on Sj、\. It processes all the sc-

qucnccs ill a round, and then it returns to S\ and begins a new round. It stops when 

P remains the same in two consccutivc rounds. 

Post Processing 

Post Processing addresses the issue of variable number of motif instances in a se-

quence. Greedy Refinement finds a binding site on cach scqucncc Sj. However, a 

sequcncc may have zero, one, or more than one binding sitc(s). It is therefore im-

portant to allow the program to remove some spurious binding sites, and add more 

potential binding sites. The position indicator vcctor R can be easily converted to 
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position indicator matrix A. The conversion is A'- = S" ' ” where returns 1 if 

the two arguments arc equal, and 0 otherwise. Adding or removing a binding site 

depends on whether it contributes to the scorc of the whole of the binding sites. To 
； • ‘ 

chcck if a binding site A: contributes to the scorc or not, EDAMD calculates the 

ratio (AI) between the posterior probabilities Eq. 5.1 of the motif instances with 

it and without it as in Eq. 5.5. 

"(‘•) 1 -po “叩；、f 1 Ml + \oc 
") ‘ 

where /I' is /I added with the motif instance A j. If ^ (A' ) > 1, the binding site A-

contributes to the overall scoring fitness, otherwise it affects the litncss negatively. 

Note Eq. 5.5 and Eq. 5.4 are actually the same except for the additional term -j-^-. 

This is expected, since the Bayes factor also compares llic posterior conditional 

probabilities with or j(vithout a certain binding site. 

EDAMD adopts a two-phase procedure to post-proccss the binding sites idcnti-• /) 
ficd with Greedy Refinement. In the first phase, EDAMDcalculatcs all the ^ ( ' ' 】 , ' ） . ' 二 

1，2, ...，"，and removes the binding sites of ^ values less than a threshold t\. Al-

though the assumption of every sequence contains at least a motif instance may not 

be true. Greedy Refinement tries to find a motif instance on each scqucnce. There-

fore, the first phase is important to eliminate the spurious binding sites introduced 

by Greedy Refinement. In the second phase, for cach sequence ‘V,，EDAMD cal-

culates ^ [ a ] ) for all the possible positions on S“ and adds the binding sites of ^ 

values bigger than another threshold ti. This thus locates more binding sites on 
I 

the sequences. The order of the two phases is not reversible. Due to the possible 

spurious binding sites, some noise may be embedded in the latent probabilities 0. 

Therefore, the noise must be removed before searching for more motif instances. 

It is difficult to choosc appropriate thresholds t\ and t:. If t\ is fixed, a large 

t.\ may cause true motif instances to be removed, while a small t\ may not filtd* 

out the possible noise. EDAMD calculatcs t\ automatically based on the current 
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motif instances. A multinomial distribution parameterized by 0 can be induced 

by N{A) via the Maximum Likelihood approach, i.e., B — N[A). Suppose a set of 

artificial motif instances were generated according to the induced distribution, their 

contribution to the currcnt motif instances can be calculated as Eq. 5.5, and thus 
I 

the expected contribution ) of the motif instances under the distribution is 

obtained. For a motif instance identified by Greedy Refinement, i f its ^ is less than 

), it is rejected. The threshold /| = 厂 i s calculatcd as Eq, 5.6, where is 

one of 4、, possible motif instances ("’ is the length of the motif, and cach position 

of the motif has four possible nucleotides: A’C,G and T), and h[ is the nucleotide 

on position j in the motif instance a,. Note Eq. 5.14 is'used to calculatc the sum of 

all the ^(ai)p{( i i ) j ' = 1,2，…，4". so that Eq. 5.6 can be solved analytically. 

Pi) 
1 — "u (丨/l| + |a 

Pi) 
/々“j/1 丨+ |a 

— J 台 A/M 〜 一 ^ n ， / 

nx 
i I hfzii 

(5.6) 

4 4 4 »v 4 4 

X � x r H - n i : 
/ I h /,,. i I " / 11 I 

(5.7) 

From the preliminary experiments, it is found that the value of/： should not be 

fixed beforehand either, since the appropriate f: varies ease by ease. EDAMD uses 

a heuristic rule to adjust t: adaptivcly. After removing some motif instances in the 

first phase, it uses the minimum of all the ^ of the remaining instances as the initial 

t2 in the sccond phase. The second phase is then carried out in rounds itcrativcly. 

In a round', a set of candidate motif instances {a'i\^{a'j) > /：} arc selcctcd, and 

then EDAMD calculates the new ti as min([^{a'j)\^{a'-) > 1}), which is used in 
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the next round. It use a small initial t i at the beginning of the second phase to 

select a sufficient number of candidate motif instances, and afterwards it increases 

t2 adaptively so as to select the motif instances of positive contributions only. 

5.4.2 Estimation of Distribution Algorithm 

The outer level of EDAMD is basically an iterative algorithm. It samples new PFMs 

from a Gaussian distribution, searches for the corresponding motif instances based 

on the PFMs (in the inner level), and updates the distribution model with the motif 

instances discovered. As pointed out in Section 5.3, the ultimate goal of EDAM A is 

finding the binding site of the motif, and the solution can also be represented as the 

motif consensus, i.e., N(A). There may be interdependencies among the positions 

in the motif instances, which means the nucleotides on one position affect the nu-

cleotides on another position [86][127][9]. In other words, the relative frequencies 

of the nucleotides on different positions have some correlation with each other. The 

fitness 5.3 does not incorporate the complicated inter-relation of positions, liow-

ever, EDAMD uses a Gaussian distribution, i.e., oc '(、-")，！〇 

model the motif instances and captures the possible pairwise correlations across 

the positions. Since the argument .v in the Gaussian model is a column 

vector, EDAMD concatenates all the columns of PFM together, and refers to the 

resulted vector as Position Frequency Vector (PFV). PFV actually represents the 

same nucleotide frequencies of a set of motif instances as PFM. 

After sampling a PFM Q, Greedy Refinement is used to find a set of the corre-

sponding motif instances. However, Greedy Refinement starts with a set of motif 

instances S ⑷ ’ while Q may not correspond to a real set of motif instances, so it 
% 

cannot be used in Greedy Refinement directly. To provide ‘S⑷ for Greedy Re-

finement, EDAMD makes up a set of artificial motif instances A, each of which is 

exactly the same as Q. Consequently, D x ^ is equal to the N{A) of the artificial mo-

t i f instances, and Q is equal to N{A). D x g is then provided as the initial N{A) for 
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Greedy Refinement to find the matching motif instances. Note the artificial motif 

instance A may not exist in S, and they usually do not contain the valid nucleotides 

since the numbers in N(A) are fractional. 

Afterwards, EDAMD uses the sets of motif instances found by Greedy Refine-

ment to update the Gaussian distribution. Traditionally, the mean and the covariance 

are updated as jU 二 + i -v, and I = y X/ i ( v, - ^ ) (.v/ - jU )' respectively, where T 

is the number of data samples. However, not all the motif instances are genuine mo-

tif instances, and they have different similarities to the common consensus. In addi-

tion, the fitness of the individuals (the sets of the motif instances) are not the same. 

Therefore, the motif instances should not be treated equally. Instead, EDAMD uses 

the weighted updating formula in Eq. 5.8, where {r/|/ 二 1.2 r } are the weights 

to measure the importance of the motif instances. The term o x I{A\v) in Z is an 

identity matrix multiplied with a small positive constant. In the evolution, the motif 

instances may converge to the common motif consensus. To enhance the diversity 

of the sampled PFMs, EDAMD keeps the diagonal elements of Z larger than 0. 

^ 二 5；/… 
y / 

Z 二 丨『.…•、A.; +c jx / (4U. ) (5.8) 
- I :i 

V 

Calculating the weight of a motif instance is straightforward. Since the motif 

instances are usually weakly conserved, they are usually different from the com-

mon consensus and each other. Therefore, even for the motif instances in the same 

set A found from a common PFM Q^ the instances may have different conditional 

probability on A. Intuitively, the weights associated with the instances should be 

the product of the posterior probability of the motif and the conditional probability 

of the moitf instances, i.e.，二/ = y/(A) x p(a,jA),/ = 1,2..... \A\, where Uj is a motif 

instance. The conditional probability of motif instance Uj w.r.t. A is calculated in 
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Eq. 5.9, where is the sequence containing ‘/,’ Sy»Snj is the sequences S plus the 

sequence S A (Buj is the set of motif instances A plus cij. The term「( j/l | + |a| + 1) 

is ignored since in the evolution, the number of motif instances is fixed to the 

number of sequences D. 

p(«,) = 丨 丄 I p{ai\A.s,e)p(A.s\e)p{e)( ie 

" 0厂'’/-1 ' 00 J 、 

日(；“‘他V . + + 
A/(,10«,.) 11 「（,引 + | « | + 1 ) 

- J ~ 1 

"TTtWt f l n N ⑷卜 + N ( a i h + a/, — 0.5‘〜'('">"•、‘(“;)'’ • «'’-(>. 0()。‘ 5 (5.9) 

Alternatively, EDAMD can also use (p{ai) in Eq. 5.4 to calculate the weight. 

After all, given a set of potential binding sites, the order of their Bayesian factors 

and that of their posterior conditional probabilities are the same. If p(a\) > p(“:i), 

then (p{a\) > (p((!2). 

5.4.3 Experiments 

EDAMD has been tested on eight real DNA datasets. A testing dataset consists of 

DNA sequences with motif instances already tagged. It is assumed the widths of 

the motifs are known beforehand. A motif instance is correctly recovered if the 

predicted binding site is within three bp away from the true binding site. The three 

bp tolerance is reasonable since in a real dataset, the widths of the tagged motif 

instances vary around the known width, and they are'sometimes larger than the 

indicated width. It is contemplated that the true motif instance should lie somewhere 

around the two ends of the tagged instances. This criterion of successful prediction 

is also used in the OAs for motif discovery, i.e.’ GAME [119] and GALF [23]. To 
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measure the performance of EDAMD and other algorithms, the experiments adopt 

the standard metrics of Precision, Recall and F — score as defined in Eq. 5.10, 

where the operator | • | is the cardinality of the set. After EDAMD finds the candidate 

instances computationally, the results need to be verified in biological experiments. 

A higher Preci.yon avoids wasting more effort on the false motif instances, while 

a higher Recall misses few true motif instances. F — score mixes Precision and 

Recall since there is a tradeoff between Precision and Recall. Sometimes a high 

Recall means a large number of candidate instances, which may consist of many 

false positives. On the contrary, some true weakly conserved motif instances arc 

deleted by mistake in order to achieve a high Precision, 

Precision = 

Recall 二 

F — score = 

correct motif] 
motif Jouncl 
correct niofi f 

2 X 

true motif 
Precision * Recall 
Precision + Recall 

(5.10) 

The eight real datasets are CREB, CRP, ERE, E2F, MEF2, MYOD, SRF and 

TBP [15][119][23]. The cyclic Amp receptor protein (CRP) binds in Escherichia 

colL The estrogen receptor binds in the sequences of estrogen response elements 

(ERE). The E2F family also contains known binding sites. The datasets of CREB, 

MEF2, MYOD, SRF and TBP are published in ABS database of annotated reg-

ulatory binding sites. The benchmark datasets have a variety of the numbers of 

sequences，the lengths of sequences, the widths of motifs and the numbers of motif 

instances as shown in Table 5.1. EDAMD is tested on each dataset for 20 times with 

different random seeds. The population size T is 100，and the maximal generation 
f 

G is 10. Moreover, the motif widths are the same as used in GAME and GALF. The 

best and the average results in the 20 runs are recorded. 

The performance of EDAMD is compared to those of GAME and GALF in 
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dataset #sequence length width #instance 
CREB 17 350 8 19 
CRP 18 105 22 23 
ERE 25 200 13 25 
E2F 25 200 11 27 

MEF2 17 199 7 17 
MYOD 17 200 6 21 

SRF 20 345 10 36 
TBP 95 200 6 95 

Table 5.1: The setting of the benchmark datasets: the number of sequences, the 
length of sequences, the width of motifs and the number of motif instances 

l^aiasct (JAMI： i ; f )AMI) (lALI-
Precision Recall /••-score Precision Recall /-•-score Precision Recall /•'-store 

CRIIU 0.78 0,74 0.76 (».84 0.78 ().7(> ().(、X 0.72 
CRP 0.X6 0.78 ().K2 0.94 0.74 0.83 U.94 0.74 
KRh 0.53 (KKO 0.63 0.76 0.7(1 0.76 0.76 0.76 (».76 
1:21 ().8() 0.89 U.K4 0.71 O.KO 0.75 O.HO 0.74 0.77 

Ml： 12 ().8<) l.(K) ().')4 i.(H) l.(M) 1.«M) 1.00 1.00 1.00 
MYOn 04S 0.48 0.4X ().H6 0.88 0.88 0.71 ().7') 

SRI 0.73 0.92 OKI 0.77 0.92 ().K4 0.95 0.53 ().(>S 
TBP 0.80 0.85 ().K3 0.X5 0.94 ().8') 0.93 0.93 

Table 5.2: Comparisons of EDAMD, GALF and GAME on the eight datascts: Best 
results (precisions, recalls and 厂-scores) 

Tables 5.2 and 5.3. Table 5.2 shows the best results of the three algorithms in 20 

runs. As regard to the F-score, EDAMD is the best in 6 problems. In the remaining 

two problems, it is worse than GAME on E2F, and worse than GALF on TBP. Table 

5.3 shows the average results of the three algorithms in 20 runs. As regard to the 

F-score，EDAMD is the best on 7 problems, and it is worse than GAME on E2F. 

A remarkable observation is that the average results are the same as the best results 

in EDAMD. Actually, given a sufficiently large population, EDAMD always get 

the same results no matter what the random seed is. An explanation is that Greedy 

Refinement always finds the same best motif instances even from the set of different 

initial PFMs. Due to the lack of the results of the individual runs or the standard 

deviations in the original papers of GAME and GALF [119][23], there is no way to 

have the significant test of the performance comparison between the algorithms. 

In addition, both GALF and GAME employ a population of 500 individuals. 
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Datasct 
Precision 

( iAMK 
Kccall -score Precision 

I .DAMI) 
Recall -score Precision 

( iAL I 
Recall -score 

CRHB 
CRP 
URF-
1:21: 

Mi: i 2 
MYOI) 

SRI-
lUP 

0.43 
0.79 
0.52 
0.79 
0.52 
0.14 
0.71. 
0.«l 

0.42 
0.78 
0.78 
(1.87 
0.55 
0.14 
0.86 
0.74 

0.42 
().7K 
0.62 
0.83 
0.53 
0.14 
0.78 
0.77 

0.73 
0.94 
(>.76 
0.71 
1.00 

O.X(i 
0.77 
().K5 

0.84 
0.74 
0.7() 
0.KO 
1.(H) 
0.92 
«.94 

(K78 
•».83 
0.76 
0.75 
1.00 
O.KK 
0.84 
(».89 

0.76 

(K76 
(>.76 
0.07 
(I.H8 
0.88 
U.8K 

( ) . r > K 

0.7.̂  
".76 
0.70 
(”)7 
0.71 
0,4') 
O.KS 

0.72 
()K2 

(•.76 
0.73 
0.97 
0.7') 
().(、、 

O.KX 

Table 5.3: Comparisons of EDAMD, GALF and GAME on the eight datasets: Av-
erage results (precisions, recalls and 尸-scores) 

GALF runs up to 300 generations, and GAME runs up to 3000 generations. In ad-

dition, GALF and GAME use multi-start GA. In each run of GAME and GALF， 

GA is executed 20 times. Consequently, the total numbers of fitness evaluations are 

3,000,000, and 30,000,000 in GALF and GAME, respectively. On the contrary, the 

number of fitness evaluations of EDAMD is only 1000，which is significantly small 

compared to GALF and GAME. On the other hand, the Greedy Refinement on an 

individual is computationally intensive, However, it is difficult to compare the run-

ning time fairly, because GALF was implemented in C, GAME was injplementcd 

in Java, and EDAMD was implemented in MATLAB. . : 

5.5 Cluster Refinement Algorithm for Motif Discov-

ery 

As mentioned in Section 5.4.3, EDAMD always finds the same set of motif in-

stances given a sufficiently large population, even though the GA evolution is af-

fected by the initial random seed. In other words, a sufficient number of local 

optima might include the global optimum in motif discovery. Therefore, Cluster 

Refinement Algorithm for Motif Discovery (CRMD) is proposed as a deterministic 

algorithm, which is more efficient and effective than EDAMD. 
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5.5.1 Algorithm 

Given a set of sequences S and the motif width vv, solving for the optimal PIM 

A in terms of p{A)- in Eq. 5.1 directly is computationally intractable. Under the 

assumption of exactly one occurrence (of motif instance) per sequence (OOPS ), the 

(w\cl) motif discovery problem is already NP-hard [74]. If the OOPS assumption is 

relinquished, the search space becomes much bigger, and thus the problem is even 

more difficult. However, as shown in EDAMD in Section 5.4 and Motif Sampler 

[77] and MEME [6], given an initial PCM, it is possible to search for the PIM A 

whose N{A) is the local optimum of the original PCM yia an iterative procedure. 

Therefore, it is likely to obtain the global optimal A among the local optimal /Ts 

from a sufficient number of different initial PCMs. 

Algorithm 5.2 is the main program of CRMD. Firstly, alTthc "’ long subse-

quences are extracted from the sequences {suh{S) in Step I). In each sequence, the 

subsequences starting positions range from the first possible binding site I until the 

last possible binding site 一 u’+ 1. Secondly, the Cluster procedure partitions 

the set of all the candidate subsequences sith(S) so as to group the similar subsc-

quences in the same clusterj, whose PIM is Aiclusier,). Each cluster, is then used 
� A � 

to construct a set of D artificial motif instances whose PFM is equal to 
A 

the PFM hl(A{cliisteri)) of clusteri. Thirdly, the Refine procedure uses the PCM 

of the artificial motif instances /i(/) to search for、the local optimal PIM 

The best set of motif instances d⑺ in terms of is returned as the result. If 

we know the motif is consistent with OOPS, a post Adapt procedure can be applied 

to further enhance the best set of motif instances. 

Fig. 5.2 illustrates the execution path of CRMD with the example in Fig. 5.1. 

First, the set of all the subsequences A. are extracted from the sequences S. The sub-

sequences are then grouped into separate clusters using Cluster. In this example, 

there are altogether 17 clusters. The PFMs of the clusters are multiplied by / ) 二 10 
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Algorithm 5.2: Main: the main program of CRMD 
Input: The sequences S 
Output: The best set of motif instances BA 
P<——oo； 

• ， 4 
clusters Cluster(siih(S))\ 
foreach dusteri G clusters do 

D X N(A(clusteri))\ 

^p{A(i)) > P then 

BA 
if OO AS, then * 

BA,P]<：- Ac/apt{BA)\ 

as the PCMs of the artificial sets of motif instances. The artificial PCMs arc subse-

quently used as the initial PCMs to find the local optimal sets of motif candidates in 

Refine. Finally, the best set of the motif instances is returned, in which the correct 

motif instances arc highlighted in upper eases. 

The following Sections A, B and C describe the Cluster, Refine and Ada pi 

procedures in the main program of CRMD in Algorithm 5.2, respectively. Section 

D shows how CRMD is extended to handle multiple motif discovery problems. 

Entropy-based Clustering 

The Cluster procedure in Algorithm 5.2 chooses the initial PCMs for the Ref ine 

procedure. A good initial PCM is important for Ref ine as the resulted local opti-

mum is more likely to be the global optimum than a bad initial PCM. A random 

PCM usually contains too much noise, and its PFM bears little similarity with the 

existing subsequences, and so searching from a random PCM rarely leads to true 

motif instances. Using an existing subsequence in S as the initial PFM is better 

than a random one since it is better conserved and it has at least one similar sub-

sequence. However, for a typical motif discovery problem, there are thousands of 

subsequences, and so using all of them would be expensive. MEME selects some 
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Figure 5.2: The execution path of CRMD with the example in Fig. 5.1. (a) all the 
subsequences of seven bps are extracted from the sequences S, (b) the subsequences 
are then grouped into separate clusters, (c) the initial PCMs arc calculated as the 
PFMs of the clusters multiplied with D (10 in this example), (d) the initial PCMs 
are subsequently refined to find the local optimal set of motif candidates, (e) the 
best set is returned as the discovered motif instances where the correct instances are 
in upper cases 

subsequences randomly and perturbs their PFMs somehow as the starting points in 

its EM algorithm. Nonetheless, there is still no guarantee that the randomly selected 

subsequences definitely occur in the motif instances. 
• -

• CRMD creates and selects the initial PCMs by clustering all the subsequences 

into modest-sized groups. There are four advantages of clustering. First, duster-

ing all the subsequences guarantees that every subsequence has a large chance to 
t • 
occur in a certain cluster and thus is likely to be considered in the subsequent pro-

» 

cess. Second, grouping the similar subsequences together exempts CRMD from 

the costly computation of processing every subsequence later, and in the extreme * « 
/ 

case the huge number (4" ) of all the potential consensus. Third，clustering similar 
I 

subsequences into the same group has already accomplished part of the job of max-

imizing the posterior probability in Eq. 5.1. Forth, clustering has an explicit control 

of the number of the subsequences in a cluster, as it discards small insignificant 
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Algorithm 5.3: Cluster: partition the subsequences into separate dusters 
Input: The subscquenccs s 
Output: the dusters 
clusters 卜 0; 

if l̂ i < D then 
if |.v| > then 
L clusters f- .�• 

else 
pos, base] Pav(.v); 
clusters f - clusters U CIust hose ’ 
clusters clusters U 

clusters and partitions large dusters to remove the noise. Compared to other clus-

tering algorithms for motif discovery [16][93], the third and the fourth advantages 

arc very important in finding the motif efficiently and cfFcctivcly. 

Algorithm 5.3 is the pseudocode of the procedure Cluster in Algorithm 5.2. 

Provided with a set of subsequences .v, Cluster checks the size of.v, i.e., |.v|, at first. 

If |.v| is smaller than s is discarded. If |.v| is larger than ^ and smaller than 

/), it is returned as a duster. If |.v| is larger than /)，Cluster continues to partition 

s. Step P()s(s) selects the optimal position pos and the optimal nucleotide base to 

partition s into two sets of the subscqucnces. The subsequences in the first set ‘、';;：, 

have the nucleotide h 二 base on position pos, while the subscqucnces in the other 

set '、《〉、"“、.(,have nucleotides other than base on position pos. Both sets arc then 

recursively clustered in 【'二,) and〔7".、7"/.///乂(.、’广)、〜八())，respectively. In 

this way, the set of subscqucnces s arc separated into smaller and smaller dusters 

by applying Cluster recursively. 

Cluster keeps a set of subscqucnces s intact and returns it as a duster if and only 

i f its size is in the range If the cluster size is too large, the subsequences in 

the cluster may have too much diversity which introduces unnecessary noise into 

the resulted PCM. If the duster size is too small, the subsequences may constitute 

no significant motif and thus the cluster is discarded, because motif discovcry is 

looking for the binding sites of a common transcription factor bound to sufficient 
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sequences. Even if a motif instance happens to be included in a discarded cluster, it 

is still possible to recover it from another cluster consisting of other motif instances. 

In the extreme ease, a set of exact j subscqucnccs is split and returned as a duster 

in each recursion of Algorithm 5.3. Therefore, all the dusters consist of cxact 

^ subsequences, and the maximal number of dusters is 労，where L is the total 

number of all the subsequences. The actual number of dusters is much smaller than 

the maximal number bccausc the number of the subscqucnccs in a duster is usually 

larger than On the other hand, if the number of the subscqucnccs in a duster is 

smaller than the duster is discarded dircctly. It is empirically observed that for 

a typical datasct of thousands of subscqucnccs, the number of dusters is up to only 

several hundreds. 

To choose the optimal position and nucleotide base in step Posis) to partition the 

currcnt set of subscqucnccs ‘v, CRMD adopts the clustering criterion in Eq. 5.11. For 

cach potential partitioning position pos and nucleotide type hasc\ 尸"•、•(.、•) calculatcs 

the relative entropy of the subset resulted from partitioning the subscqucnccs s on 

position pos according to nucleotide type base, i.e., /：,//(.、义'二(,)，and then scales the 

entropy with the size of the subset, i.e., |、《:;二丨.The position and nucleotide type 

giving the largest sealed entropy arc chosen for partitioning. |、《：,| is considered in 

finding P()s(s) so that a large duster is preferred, h:’八s'二二 the sum of the relative 

entropies of the subscqucnccs s丨二二 on all the positions. The relative information 

entropy is used because CRMD aims to find the set of subscqucnccs which arc 

similar to each other and yet different from the background sequences. 

厂".、•(‘、’）= argmax ""(•、)：. )j‘、C(. 
pos { I ,2,...’".},/"/‘V('^：" 

�v N(广 V Nis''"' ) ' 1 
(5.11) 

The choice of the clustering criterion in Eq. 5.11 is deliberate, as it enables 
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Cluster to find the dusters of approximately large posterior probability as defined 

in Eq. 5.1. Actually, if wc simplify Eq. 5.1 using the Burnsidc formula、to approx-

imate the gamma function, wc may get the log of j){A) as follows. 

UA) = lodf)(A\S,Gi、，f)‘"f),”a、、&f< -f f i \A\,pa.ph^a) 
f … ， / A^⑷〈+ «/，—0.5 

0.5 0(),y 

where K is an invariant constant w.r.t all the variables, and /(|//|•/>>"./々 ，.a) is a 

function of \A\ only. If A is substituted with .《:;:,’ the last term is approximate to 

厂 " ( ‘ C , ) I ‘ C , I in Eq. 5.11, where ^ - and |.、.二,| - + |a| -

0.5. Therefore, the set of the subscqucnccs ‘、’[(, of large 厂"(.、《：) 
丨.、'Lm•丨 is likely to 

have a large "(.、《：). ‘ 

Cireedy Refinement 

In Algorithm 5.2 and Fig. 5.2, the Re fine procedure finds a local optimal set of mo-

tif instances from an initial duster. Rather than using the actual subsequences in the 

cluster. Refine uses the PCM N(A) = Dx N(A(cliister)) of the initial subscqucnccs 

A as the seed for further refinement. A is simply a symbol consisting of no actual 

subscqucnccs sincc only its PCM is needed in the refinement, and its PFM is equal 
A 

to N(A(cl lister)). Greedy Refinement subsequently finds a new set of subscqucnccs 

A’ whose N(A) is similar to and yet better conserved than 

There arc two advantages of the Ref ine procedure. In Scction 5.5.1 (Selecting 

Motif Instances), it uses a fast greedy local search method to find the local optimal 

motif instances. A greedy hcuristic makes the search deterministic, while the Gibbs 
sampling in Motif Sampler is a random process, and thus Re fine converges much • 
faster. In Section 5.5.1 (Changing Instance Number), it uses auto-adjustcd thresh-

olds to change the number of motif instances adaptivcly. The search is flexible as it 
'Burnsidc formula「(.r f 1) = « (.r } 0.5)"" V 、 
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allows a variable number of instances. At the same lime, the number is changed by 

at most one instance each iteration, and thus Re fine still converges very fast. 

Algorithm 5.4 shows the overall pseudocode of the Refine procedure. Itera-

tivcly, it replaces the old motif candidate instances /f(卜‘丨，which is A initially, with 

the new candidate motif instances /!('). The new candidate motif instances arc se-

lected among all the subsequences to maximize the posterior probability /)(/!⑴) 

based on the old candidate motif instances. There are at most D iterations. At the 

beginning, NUM, the number of motif instances, is set to the number of sequences, 

i.e., /). In cach iteration, after finding NUM candidate motif instances. Refine tries 

to remove the least likely candidate motif instance .s.i to increase If it is 

removed successfully, NUM is decreased. Otherwise Refine tries to add the next 

most likely subscqucncc ‘、’2 to increase /,(/<(')). If it is added successfully, NUM 

is increased. Refine stops iterating when A remains the same in two consccutivc 

iterations, and finally it returns the last A. 

The two main steps in Refine, the selection of motif instances and the adaptive 

changing the number of motif instances are given below: 

Selecting Motif Instances 

Iteratively, Re f ine finds a new set of more conserved motif instances which 

arc similar to the old set of candidate motif instances A '̂ The similarity of a 

subsequence A'- to the existing motif instances A* is measured by how much the 

posterior probability p(A*) increases if is added in A*. Instead of calculating 

the two probabilities with or without A^ and then comparing them, CRMD calcu-

lates the Baycs ratio between them directly, which is derived using the Baycsian 

inference. Rati()(N(A*),A]) in Eq. 5.12 is the strength of a position A] being a 

binding site based on the current N(A*). The derivation is similar to Eq. 5.1, where 

the equation「(// + I) = "「("）is used to cancel out the Gamma functions in both 

numerator and denominator. is the number of nucleotide h、= ‘v/“—' in 

、， i . e . , the same nucleotide type on position k in S(A*) as the one / / in the 
• j 

subsequence 
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Algorithm 5.4: Refine: identify the motif instances based on a cluster 
Input: the initial h}(A) and S 
Output: The Local Optimal A and p(A) 
NUM — / ) ; 

/!((” f - 0 ; 
yV(/l(o)) N(A)\ 
for F 卜 1 FO D do 

rat ios 
A^'^ <— argmax^/ (n / / i o s j , NUM)； 

if/7"/ OOPS then 

T\ —九义7( /VM( ' ) —{‘s’i})，0o); 
-s\),s\) < 7] then 

NUM ^ N U M - 1; 

else 
‘s,2 — argma 乂”《 ⑷ / , / Y " ";‘、•(‘、.》； 

if/?"//"(yV(/l(')),.s.，）> T-y then 
NUM ^ NUM^ 1; 

=/!('-丨）then 
A ^ 
p(^)卜"M|‘V’ 6^0，/々 ”"/>,a): 
return; 

Rati()(N(A*)M 
MA! = \ \A\S) 

P{A; = O\A\S) 

I/Mi = 11,/I*,.V, A ) ) p ( e \ A \ S ) p ( p u \ p , , p f , ) JO 

I - 010,/I*,.V,/；()}piO\A\S)p{po\pa,Ph)ilO 

A*\+Pa (5.12) 

After calculating the ratios of all the Aj based on the old instances /i (卜 ‘ \ Refine 

selects NUM subsequences of the maximal ratios directly and replaces //(卜[)with 
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A('、in Steo 1 

.Refine is greedy because it always select the subsequences of the best 

matches, and so it may get stuck in local optima. This is exactly why CRMD adopts 

a multi-start approach with Cluster to locate the global optimum out of many local 

optima. However, being greedy. Refine converges fast as ⑴ usually stabilizes 

in less than ^ iterations. On the contrary. Motif Sampler uses Gibbs sampling 

to iteratively select subsequences with probabilities in proportion to their Bayes 

factors. As a Markov Chain Monte Carlo method, Gibbs sampling may take an 

undetermined time before generating samples following the target distribution. 

Changing Instance Number 

An important issue in discovering motif instances is choosing an appropriate 

number of predicted motif instances. Predicting too many motif instances may lead 

to many false instances, while predicting too few motif instances may miss many 

true instances. 

To address the issue of the unknown number of motif instances. Refine changes 

the number of motif instances NUM adaptively to increase the posterior probability 

as defined in Eq. 5.1. More specifically, Algorithm 5.4 adds or removes a marginal 

motif instance by comparing its ratio to the thresholds T\ and T:, which are calcu-

lated adaptively based on the existing motif instances. The number of the predicted 
f 

motif instances is changed by at most one in an iteration, and so it is fast and easy 

for the motif instances to converge in the Greedy Refinement. —, 

In detail，after sampling NUM candidate instances. Re f ine selects the one with 

the smallest ratio, i.e., A'I 卜 argmin”.&f(/丨 ratios{sj), and checks if removing it would 

increase the posterior probability of the rest of the candidate instances /i⑴一 {.vi}. 

Refine calculates the ratio Rci"()[IV(A�'�— {.vi ). A small ratio means、i af-

fects d(') — {.vi} negatively and thus should be removed. Otherwise, Refine checks 

i f the subsequence of the largest ratio in the remaining subsequences, i.e., s : — 

argmax^^.^^{/) ratios{sj), would benefit the probability of the current set of motif 

instances J('). Similarly, Refine calculates the ratio and adds 

S2 i f the ratio indicates that it wil l increase the probability. NUM is decreased 
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or increased depending on whether a subsequence is removed or added. The or-

der of removing and adding motif instances is irreversible. Due to the possible 

spurious binding sites, some noise may be included in the current set of motif in-

stances.. Therefore, the noise must be removed first before searching for more motif 

instances. 

In Algorithm 5.4, Re fine compares the ratios with the thresholds T\ and T: in 

the two " i f conditions, and it removes or adds the subsequence if the condition 

is satisfied. It is important to choose appropriate values for the two thresholds 7] 

and 丁2 since they control the value of NUM directly. Intuitively, both thresholds 

should be 1 since the ratio is 1 when the posterior probabilities of a set of motif 

instances with or without the subsequence are equal. However, since the motif is 

usually weakly conserved, it is possible that a true binding site is mutated somehow 

and looks quite different from the others, and so removing it (or not adding it) 

may actually increase the posterior probability of the set of the motif instances. 

Refine also has to be prudent to add new motif candidates since a false subsequence 

may readily increase the posterior probability of a very weakly conserved motif. 

Therefore, 1 may be inappropriate for the thresholds. 

Refine adjusts 7] and Tj automatically to account for two concerns. First, be-
I 

cause each iteration in Algorithm 5.4 may have a different set of motif instances 

the thresholds are always calculated in accordance with the current Sec-

ond, since there is no prior knowledge of the subsequence to be included or ex-

cluded, the thresholds should take into account all the possible subsequences of a 

certain distribution. Therefore； the threshold that Refine uses is the expected ratio 

of a random subsequence generated from a certain distribution 0 vv.r.t. the current 

set of the motif instances A, i.e. E{Ratio{N{A),s)\(d). A naive yet computationally 

intensive method to calculate the expectation is to collect the ratios of all the pos-

sible subsequences over the current motif instances A and taking their average in 

proportion to their probabilities of the specified distribution. Fortunately, Eq. 5.13 

shows an analytical formula to calculate the expected ratio efficiently. In Eq. 5.13, 
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Si is one of the 4", possible subsequences generated from the distribution parame-

terized by 0 with the probability p(si\Q). h'- is the nucleotide base on position j in 

the subsequence ‘v 

E(Ratio{N{A).s)\e)-工)..、,,)/)(、、|0) 

L-\A\+p,,- I in 
(Ml + l«l)0„ 

A / 

^ Pa 
L- A +/印一 1 

n i ： " ⑷ h a / ， , e 
h^h- (5.13) 

The computation of the part Xf" i FT/，: i in Eq. 5.13 is greatly simplified by using 

Eq. 5.14, which reduces 4" x vr variable references (of only 4u, distinct > on the 

left to 4\v variable references (without repetition) on the right. The reason is that 

X f - i YVj_. 1 in Eq. 5.13 actually involves only the complete enumeration over the 

cartesian product of the sets {('「：丨？的"^ where 

y4" n , 2-/= 111 can be rewritten as the left of Eq. 5.14, where 么 

simplified as the right of Eq. 5.14. 

=卜•.、r. Therefore, 

_ 八‘ a� 

(卜 ini«ii0(5 
，&[丨、and 

I I 
k�eBkl&B in j: 1 

.V ki =nzd 
J 

(5.14) 

Consequently, Refine uses Eq. 5.13 to calculate T\ and T: under different dis-

tributions. For removing a motif instance. Re fine uses the possible subsequences 

generated from the background distribution ( 0 = 0o) to calculate the threshold 

T\ = E[Ratio{N{A),s)\Q{)). I f the ratio of the instance in question is smaller than T\, 

it is no better than a background subsequcHce, and so it is definitely discarded. For 

adding a subsequence, T: = E(Raf/o(N(A),s)lN(Aj) is used, which is the average 
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ratio of the subsequences generated from the current PFM. Derived from the Max-

imum Likelihood principle, N{A) is actually the latent probabilities generating the 

current motif instances. Therefore, a new subsequence should be definitely added 

if its ratio is bigger than the average ratio of the motif instances, namely T:. 

Post Adaptation 

Greedy Refinement allows a variable number of motif instances, and it adjusts the 

number of motif instances automatically in the searching. If the problem has One 

Occurrence of motif instance Per Sequence (OOPS), the performance of CRMD 

can be further enhanced since the search space is greatly reduced. 

There are two modifications to Algorithm 5.4 of Ref ine to take the advantage 

of the OOPS assumption. First, in Step 1，the binding sites are selected on the 

sequences separately. For each sequence. Refine compares the ratios of its subse-

quences, and then selects the one and the only one of the maximal ratio. Second, 

the number of motif instances NUM is constantly D, and so the part of changing 

NUM in the if — then loop is not executed (Step 2). Since NUM is not changed 

anymore，it becomes easier and faster for/i⑴ to stabilize. 

However, in the case that OOPS is only an approximation, we still need to fine 

tune the number of motif instances. Considering that the motif is close to OOPS, it 

s better not to change the number of motif instances NUM inside Refine since the 

terative searching may amplify the noise introduced by any additional candidate 

nstance due to the changing NUM. 

In Algorithm 5.2 of the main program, the procedure Adapt further processes 

the best set of motif instances BA. The original BA is consistent with OOPS, but the 

true motif may be slightly different from OOPS. Adapt first removes the existing 

instances in BA whose ratios are smaller than 7] even though it might remove all the 

candidate instances on a certain sequence. Adapt then adds new instances not in BA 

i f their ratios are larger than T: even though it might find more than one candidate 

instance on a certain sequence. Here T\ and T: are calculated in the same way as 
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in the procedure Refine. It is unnecessary to apply Adapt to every returned 

by Refine in Algorithm 5.2, because Adapt usually does not change the ranking of 

the posterior probabilities of the sets of motif instances if the problem is inherently 

OOPS. 

Multiple Motifs Discovery 

CRMD can be extended to solve the multiple motif discovery problem. It is possi-

ble for a set of real DNA sequences to contain multiple motifs. The multiple motifs 

may have various kinds of consensuses，numbers of instances and degrees of con-

servations. Due to the diversity of the multiple motifs, the signal-to-noise ratios are 

even lower than that in the single motif discovery problem. Therefore, it is usually 

more difficult to find multiple motifs than a single motif. 

Some traditional motif discovery algorithms run their single motif searching 

procedures multiple times to locate different motifs. After finding a motif, the cor-

responding subsequences and their neighbors are masked off the sequences so that 

the overlapping subsequences will not be identified as new motif instances later on. 

The shortcoming of this masking scheme is that the discovery of subsequent motifs 

depends on the previously predicted motifs. If some spurious instances are included 

in a motif，the neighboring subsequences which might be true motif instances arc 

masked off. Even i f a true binding site is predicted but included in a wrong motif, 

masking it off too early may corrupt the consensus of the corresponding motif and 

thus affect the discovery of the motif later. 

To avoid the aforementioned drawbacks，CRMD finds multiple motifs without 

masking simultaneously. As Refine samples the sets of the motif instances based 

on the cluster, a straightforward approach for CRMD is to select a few candidate 

motifs among all the sets of the motif instances returned by Refine, i.e., {/i(,。}. The 

selection is performed according to two criteria, namely the posterior probabilities 

of the possible motifs and the similarities between the selected motifs. Since the 
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motifs are weakly conserved and the clusters from Cluster may have similar con-

sensuses, it is possible that the resulted motifs after Re fine are similar and predict 

many common binding sites. Therefore, among a group of similar motifs, only the 

motif of the highest posterior probability is selected. 

In the current implementation, CRMD specifies the number of motifs M before-

hand. When a new motif is returned by Re fine, it is firstly checked if it is similar 

to any of the motifs already selected. If so, the new motif replaces the similar motif 

if the former has a higher probability. If there is no similar motifs already selected, 

the new motif replaces the selected motif of the lowest probability if the former has 

a higher probability. The approach ensures that the M output motifs are difTercnl 

from each other, and at the same time they are of as high probability as possible. 

To measure the similarity between the PCMs of two motifs, CRMD adopts the 

homogeneity test using the distance in [59]. Basically, it shifts and aligns the 

two motifs. If their PCMs on all the overlapping positions arc statistically generated 

from the same distribution，the two motifs are deemed similar. 

5.5.2 Experiments 

CRMD has been tested on both synthetic and real DNA datasets. A testing datasct 

consists of DNA sequences with motif instances already tagged, and hence it can 

be used for the algorithm performance evaluation. For some datasets, the widths of 

the motifs are assumed known beforehand and are tested directly with CRMD. For 

the other datasets with unknown widths, CRMD either uses a common fixed width 

or tries a range of different widths and selectes the width giving the best result. 

Some researchers use two levels of performance indices to evaluate the algo-

rithm [117][53]. On the nucleotide level, it is calculated that how many nucleotides 

that the predicted instances and the true instances overlap for. On the site level, 

a predicted instance is correct i f it overlaps with the true instance for at least one 

nucleotide. To combine the performance indices on both levels, CRMD adopts the 
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criterion that a motif instance A[ is correctly recovered if cither of its ends is within 

three bp away from the corresponding end of the true motif instance [119][22]. 

More formally, 

correct if |./一/、| < 3 or | / + u,—人,| < 3 
A- = 1 IS < (5.15) 

incorrect otherwise 

where /、and /(, are the indices of the starting and ending positions of the closest 

true motif instance. The three bp tolerance is reasonable sincc the widths of the 

tagged motif instances vary around the known width in a real dataset. It is conjcc-

tured that the true motif instance should lie somewhere between the two ends of the 

tagged instances [117]. This criterion of successful prediction is strict and practical 

since it does tell a biologist where to look for the true binding sites. In contrast to 

comparing binding sites, comparing the PFM or PWM of the discovered motif and 

the true motif may be insufficient, because a small difference in PFM or PWM may 

lead to very different binding sites. 

To measure the performance of CRMD and other algorithms, the metrics of 

Precision, Recall and F -score [ 119][22] arc defined as follows, where the operator 

is the cardinality of the set. 

P/Vcisiofl — k.orm'/ molif \ 
‘ \m<)lif fowut\ 

Recall =丨(；广Tr/“' 
\true moli f\ 

F — score 二 2 x /'n'ci.sion*Rc'catl 
Precision 1 Recall ‘ 

‘ After an algorithm finds the candidate instances computationally, the results 

need to be verified in biological experiments. The algorithm hopes for a high 

Precision to avoid wasting too much effort on the false motif instances. In the 

meanwhile, it should miss as few true motif instances as possible, so a high Recall 

is preferred. However, there is often a tradeoff between Precision and Recall in real 

problems. Sometimes a high Recall means a large number of candidate instances, 

which may consist of many false positives. On the contrary, a high Precision can be 
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achieved by retaining only the highly conserved motif instances at the risk of delet-

ing some true weakly conserved motif instances by mistake. Therefore, F — score 

is introduced to mix Precision and Recall. 

CRMD are compared to Motif Sampler [77], MEME [6]，GAME [119] and 

GALF-P [22]. Since Motif Sampler and MEME arc sensitive to the initial settings, 

they are executed in the manner of multi-start with different starting points, GAME 

and GALF-P are GA-based, and their results may be inconsistent and affcctcd by 

the random seeds, so only the average results of GAME and GALF-P in 20 runs arc 

reported. In each run, the total numbers of the sets of motif instances searched by 

GALF-P and GAME are 3,000,000 and 30,000,000, respectively. With such a large 

number of sampling, the searching of GALF-P and GAME arc relatively exhaustive, 

and their results are expected to be close-to-optimal. 

The following subsections A, B and C give the details of the results for the 

synthetic single motif, real single motif and real multiple motif discovery prob-

lems tested in our experimental evaluations, in the real single motif discovery ex-

periment,- the following datasets arc tested: the eight selected datascts in GAME 

[119] and GALF-P [22], the ABS database [15], the SCPD database (128], the Es-

cherichia coli dataset [53] and the Tom pa datasct [1 17]. 

Synthetic Datasets 

A total of 800 synthetic datasets with length 300 bp for each sequence arc gcncr-

ated with the following eight combinations of scenarios: (1) motif width: short (8 

bp) or long (16 bp); (2) number of sequences: small (20) or large (60); (3) motif 
V 

conservation: high or low. For each combination, 100 datasets are generated ran-

domly an/cmbedded with the instances of a random motif. In the high conservation 

scenario, on every position of the motif instances, the dominant nucleotide is gener-

ated with 0,91 probability (while all other three nucleotides with 0.03 each). In the 

low conservation scenario, only 60% of the positions in the motif instances are as 

highly conserved as in the previous high conservation scenario, while the rest 40% 
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of the positions are lowly conserved, where the dominant nucleotide is generated 

only with probability 0.55 (while all other three nucleotides with 0.15 cach) in ev-

ery instance. To simulate the noisy situation in real data, in cach synthetic dataset, 

the probability of containing no motif instances is 0.1 for cach scqucncc. In the rest 

of the sequences which contain motif instances, the probability for a scqucncc to 

have more than one instance is 0.1. The number of additional instancc(s) in such a 

sequence follows the geometric distribution with p = 0.5, i.e., p{k) 二（ 1 — p)^ i/), 

and so there are cxpcctcdly = 2 additional motif instances embedded in the se-

quence. 

Table 5.4 shows the results of the five algorithms. For cach scenario, the results 

are averaged over the 100 datasets. CRMD has the highest average F - sro/vs on 

six out of eight scenarios. In the remaining two scenarios CRMD has the sccond 

highest average F 一 .vcwt's. CRMD also has the highest average F — score over all 

the 800 problems of eight different scenarios, which proves that CRMD is relatively 

robust in a variety of problems. For the easy datasets in the last two scenarios (with 

long motif width and high conservation), all the algorithms have very good results 

{F — scores around 0.98), and so there is no big room for the improvement for 

CRMD. For the other more difficult problems, the results of the algorithms vary in 

a wider range and the advantage of CRMD is more apparent. It is also interesting to 

notice that MEME has the highest average Precision in most of the scenarios, while 

GALF-P has the highest average Recall in most of the scenarios. However, CRMD 

has both good Precisions and Recalls on most of the datasets, and thus it yields the 

highest average F — scores due to the good balance between Precision and Recall. 

Real Datasets 

To investigate the performance of CRMD on real datasets, and how it is compared 

to other algorithms, CRMD and other algorithms arc also tested on a wide range of 

real datasets. Section 5.5.2 (Ei|;ht Selected Datasets) describes a detailed analysis of 

the results.on the eight datasets tested by GAME [119] and GALF-P [22]. Section 
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Width 
Scenario 

Num Con 
(JALI -P 

K 1 
(iAMI-. 

1， K 1 
MI-.MI-. 

[‘ l< 1 
Sampler 

1) K 1. 
CRMI) 

1' R 1 
Short Small Li)w 0.3K 0.56 0.44 0.2') 0..飞 2 0.30 0 4'> 044 0.37 0.40 ()4f) 0.45 0.46 
Short Large Low 0.52 0.59 0.55 0.42 0.32 A.V、 0.63 f m 0.42 0.55 0.41 ().4f) 0,53 0.53 0.53 
Long Small l.ow 0.S7 o.yi 0,K'> 0,7K -0.K7 0K2 ()<；! ().S6 O.XK ().K7 ().X<) O.XK (),'>1 O.SX 0.91 
Long Large Low 0.<>1 ().<；() 0.«>l ().'；2 ().')() f).W ( m 0.X5 (>.W O.K'J f).<>2 <)'>! 0.02 0.1)2 (>.92 
Short Small High 0.73 0.90 O.KO 0.71 O.KO 0.75 ().H7 ().K4 O.K.S ox.s 0S5 0.85 ().K6 0,K3 0.K6 
Short Large High OKI 0X6 ().K3 0.K3 0.K3 0.K3 0.91 0.7() 0X3 0X7 0X3 (».85 0.X4 0.K3 0X4 
Long Small High 0.'；7 ().9'； O.yK O.'M a w ().<；7 O.'JX (),')«> ()'>K (,.<", 1 .()() 0 W 0 W -O.W (1.99 
Long Large High 0.97 {)})! 0.97 O.̂ K ().w O.W O.W () .% 1,00 0.'>K 0.99 (J.W 0.99 

Average 0.77 0.K4 O.KO 0.73 0.75 0.74 0.X4 0.74 0.7S O.KO (),7S 0 7'； OKI O.XO O.KI 

Table 5.4: Average results for the synthetic datasets experiment: Width is for the 
motif width, Num is for the number of sequences. Con is for conservation degree, 
P is for Precision, R is for Recall and F is for /''-score. Sampler refers to Motif 
Sampler 

5.5.2 (ABS and SCPD databases) reports the results on the ABS database [15] and 

the SCPD database [128]. Section 5.5.2 (E. coli and Tom pa datasets) reports the 

results on the Escherichia coli datasct [53] and the Tom pa datasct [117]. 

Eight Selected Datasets 

Following GAME [119] and GALF-P [22], the experiment has tested eight real 

datasets, i.e., CREB, CRP’ ERE, E2F, 1V1EF2, MYOD, SRF and TBP, and compared 

the performance with the other four algorithms. These eight datasets consist of the 

sequences from many different species. The CRP datasct contains TFBSs bound by 

the cyclic amp receptor protein in Escherichia Coli [112][69][78]. The ERE datasct 

contains the estrogen receptor elements that ER binds, from the sequences of vari-

ous species [60]. The E2F dataset contains TFBSs of the E2F family from different 

mammalian species [58][11][38]. The datasets of CREB, MEF2, MYOD, SRF and 
V 

TBP arc chosen ̂  GAME from the ABS database of annotated regulatory binding 

sites [15]. As shown in Tabic 5.5, the real datasets have a variety of the numbers of 

sequences, the lengths of sequences, the widths of motifs and the numbers of motif 

instances. The same motif widths are adopted as used in [119] and [22]. For a fair 

comparison, all the algorithms are run with as few prior knowledge as possible, and 

most of their running options are set to their default values. 

Table 5.6 compares the results of the four algorithms (GAME, MEME, Motif 



Chapter 5 Computational Motif Discovery 1 1 \ 

datasct #scquence length width "instance 
CREB 17 350 8 19 
CRP 18 105 22 23 
ERE 25 200 13 * 25 
E2F 25 200 11 27 

MEF2 17 199 7 17 
MYOD 17 200 6 21 

SRF 20 345 10 36 
TBP 95 200 6 95 

Tabic 5.5: the real datascts: the numbers and the lengths of scqucnccs, the width 
and the numbers of motif instances 

Problem (iAMI-
P K 1 

Ml.Ml-. 
1' R 1 

Sampler 
1) l< 1 

( m i l ) 

1' K 1 
CRI-.U 0.43 0.42 0.42 0,71 0.67 0.71 0.63 0.67 (U,7 0 65 
CKP 0.79 ().7K 0.7X (),X<> ().(>7 ().7(, 0.94 0.70 o.xo 1 ()() 0.74 0.85 
I.RI-； 0.52 0.7K 0.(.2 1 .()() 0.6K U.8I 0.75 0.72 0.7} 0.71 0 KO 0.75 
1:21: 0.79 0.K7 0.H3 0.K2 ().K5 0.K4 O.KK 0X5 0X7 O X ] 、().8« 

M 1:1:2 0.52 0.55 ().5."< 
f”” 

0.K2 O.XX 0.72 0.76 0 74 ().K5 1.1)0 ".92 

M Y O D 0.14 0.14 0 14 ().2'> 0 l'> 0,23 ().4() 0 0 35 0 Kf) ().')() O.KH 

SKI" 0.71 ().H6 0.7K 0.74 ().K9 O.Xl 0.76 0 X(. OKI ().7«) O.Sf) (I.H3 

1 UP O.KI 0.74 0.77 0.83 O . M 0.76 0.74 0.67 ().7() O.S.̂  ().S') (KK6 
Average 0.59 O . M 0.61 0.78 O . M 0.72 0.74 0.71 0.S2 ().K4 0.83 

Table 5.6: The results for the real datasets assuming no OOPS: P is for Precision, 
R is for Recall and F is for 厂-score. Sampler refers to Motif Sampler 

Sampler and CRMD) on the eight real datasets. Due to the adaptive thresholds 

adopted in the Greedy Refinement, CRMD is able to choose an appropriate number 

of motif instances, and thus finds a good balance between Precision and Recall, 

which consequently leads to the highest F — scores on six problems. Compared 

to Motif Sampler’ CRMD is better on seven out of eight datasets in terms of the 

F — scores. Compared to MEME, CRMD wins on all but two datasets. For the 

MYOD problem in particular, because its motif width is short and the number of 

the scquenccs is small, the signal-to-noise ratio is low. Other algorithms arc unable 

to identify the true motif in MYOD probably because of the marginal win of the 

fitness of the true motif. On average, CRMD has the highest Precision, Recall and 

F — score, which proves that the performance of CRMD is quite stable on the eight 

problems. 

The algorithms have also been tested with the prior knowledge of OOPS. A close 
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Problem 
CRIB 
CRP ‘ 
IvRK 
1,21 

Mi:i 2 
MYOI) 

SKI: 
lUP 

Average 

I) 
( iA i J 

K 
0.70 
O.W 
().H2 
0.77 
0.')1 
0.57 
0.75 
().K7 

0.K4 

(Mb 
0X5 
0.<)X 
I 00 
().X<> 
().H7 

0.76 

<•.79 
O.KI 
().<)5 
0.72 
().K2 

0.K7 
O.KO 0.K7 0.X2 

Ml .Ml . 
K 

0 71 

or. 

).95 

("、.、 

0,52 
0.76 
0.70 
f).')4 
0.05 
0,53 
O/M 

().(>7 
(),5'； 

[).lb 
0.73 
().«)4 
005 
().()« 
0.94 

72 0.63 ().()7 

I' 
0 7飞 

(),')4 
().()7 
O.fiX 
I.OO 
0 Kf. 
0.77 

O.K.S 
OKI 

Tabic 5.7: The results for the real datascts assuming OOPS: 
for Recall and F is for 厂-scorc 

•l<MI) 

0X4 
0.74 
0 KO 
O.KS 
I.OO 
().<)() 
0.'>2 
(>.')4 
().S7 

0.78 
0 X̂  
0.73 
0.75 
1.00 
O.KK 
0.K4 
u.w 
0.«4 

is for Precision, R is 

investigation of the eight problems reveals that they arc more or less consistent with 

the OOPS assumption. As shown in Tabic 5.5, exccpt for the problem SRF, the 

numbers of motif instances are close to the numbers of sequences. CRMD activates 

the Adapt procedure and searches for OOPS solution only in the Re fine procedure. 

The experiment has also tested GALF-P and MEME on the eight problems, which 

are capable of searching for OOPS consistent motifs. GALF-P searches for OOPS 

solutions only in its GA procedure, and then it shrinks or expands the solutions with 

a heuristic post processing procedure. MEME has an OOPS running option which 

enables MEME to search for exactly one instance in each sequence. Tabic 5.7 shows 

the results of CRMD，GALF-P and MEME. Mostly, CRMD obtains better results 

than those obtained without OOPS in Table 5.6. Compared to GALF-P and MEME, 

CRMD has the highest F — scores on four problems, and the second highest F -

scores on the other four problems. CRMD also has the highest average F — score. In 

particular, on the problem of MYOD, CRMD has a remarkable advantage over the 

other two algorithms. Even though GALF-P is the best on three problems, its results 

have some variance since it is GA-based and sensitive to the initial population. 

ABS and SCPD databases 

Besides the eight selected datasets, the experiment has tested CRMD, MEME 

and Motif Sampler on the ABS [15] and the SCPD [128] databases as well. The 

ABS database has 650 experimental binding sites from 69 transcription factors in 
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database MEME 
P R F 

Sampler 
P R F 

CRMD 
P R F 

ABS 0.10 0.21 0.13 0.15 0.10 0.1 1 0.18 0.15 0.16 
SCPD 0.10 0.05 0.05 0.29 0.19 0.23 0.31 0.26 0.28 

Table 5.8: The average results of MEME, Motif Sampler and CRMD on the ABS 
and the SCPD databases. P is for Precision, R is for Recall, F is for /'，— score 

human，mouse, rat and chickcn genome sequences. The scqucnccs and the bind-

ing sites are downloaded from the website of ABS database, and re-grouped the 

sequences of the same transcription factors together, and thus a total of 69 datasets 

is obtained, each of which consists of the sequences bound by a common transcrip-

tion factor. SCPD is a promoter database of the yeast Saccharomyces cercvisiac. 

It contains 580 experimentally mapped transcription factor binding sites. Because 

the website provides no FASTA files, the sequences and the binding sites have to 

be collected and organized manually, and the transcription factors of less than four 

binding sites are deleted, and thus a total of 28 datasets is obtained. 

No prior knowledge of the exact widths for the motifs is assumed in the ABS 

and the SCPD datasets. CRMD and Motif Sampler use the commonly adopted 

fixed widths of 10 bps and 13 bps in ABS and SCPD, respectively, which are the 

medians of the widths of the true motif instances in ABS and SCPD, respectively. 

For MEME, the widths vary between [6,26] and |7,26] in ABS and SCPD, respec-

tfvely, which are actually the ranges of the widths of the true motif instances in 

ABS and SCPD, respectively. Because the actual motif widths are not used, the 

tolerance in Eq. 5.15 is relaxed to six bps. Table 5.8 shows the average results of 

CRMD, MEME and Motif Sampler on the ABS and the SCPD database. For the 

ABS dataset, CRMD has higher Precision while lower Recall rate than MEME, 

and still it has the highest F — score. For the SCPD dataset, CRMD has the highest 

Precision, Recall and F — score. 

E. coli and Tompa datasets 

The experiment has also tested CRMD on the Escherichia coli (E. coli) [53] and 
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the Tom pa [117] datasets, which are collcctcd and setup as the benchmark problems 

for testing motif discovery algorithms. The E. coli datasct is of prokaryotic data. It 
/ 

consists of 62 motifs of a variety characteristics, such as the motif width, the number 

of sites per sequence and the sequence length, etc. The Tompa datasct consists of 

56 eukaryotic datasets, covering fly, human, mouse and yeast. The motifs are very 

weakly conserved in the Tompa datasct, which is by far the most difficult dataset 

tested withCRMD. 

The E. coli and the Tompa datasets are already tested with other algorithms, in-

cluding MEME and Motif Sampler, in [53] and [117], respectively. They use differ-

ent performance evaluation indices other than the Precision, Recall and F — score. 

Their performance indices can be categorized on two levels. On the nucleotide level, 

the performance indices (with the prefix //) are calculated w.r.t. to the number of the 

nucleotides that the true and the predicted instances overlap. On the site level, the 

performance indices (with the prefix .、•) are calculated w.r.t. the number of the motif 
i 

instances that the predicted instances overlaps with the true instances for at least 

one nucleotide. Suppose on the nucleotide level, "TP (true positive) is the number 

*of true motif nucleotides correctly predicted, nTN (true negative) is the number of 

true background nucleotides not predicted, nFP (false positive) is the number of 

falsely predicted motif nucleotides and nFN (false negative) is the number of true 

motif nucleotides not predicted. Eq 5.16 defines the nucleotide level performance 

indiccs. The site level ones are similarly defined by replacing all the "n" with "s" 

in Eq. 5.16. The original papers [117][53] have more details on the definitions of 

their performance indices. 
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algorithm nPC 
nucleotide level 

nSn nSP nl: sPC 
site level 

sSn sSp si 
bcsl 
nPC 

MKMU.. 0.158 0.259 0.1 (W 0.225 0.295 0.461 0.43() 0.448 0.1 U) 
Sampler 0.153 0.179 0.237 0.204 0.302 0.331 0.476 (UY(> O . _ 
CRMD 0.286 0.321 0.412 0.346 0.459 0.531 0.625 0.558 0.221 

Table 5.9: The average performance of MEME, Motif Sampler and CRMD on the 
E. coli datasets. Each algorithm outputs five motifs, and the one of the best nPC 
among the five outputs is recorded as the result. The last column reports the "PC of 
the top-scored motif in terms of the score function used in the individual algorithm 

nSn = nTP/(nTP + nFN) 

nSp = nTP/[nTP^-nFP) 

"PC = nTP/{nTP + nFP + nFN) 

nF = (2 X nSn x nSp) j{nSn + nSp) (5.16) 

For the E.coli dataset, each algorithm is required to output five motifs, and the 

one with the best nPC, is recorded as the result. The widths of the motifs vary 

from problem to problem, and thus CRMD use 15 as the fixed common width for 

all the problems，as used by other algorithms in the original paper [53]. Table 5.9 

shows the average results of CRMD, MEME and Motif Sampler on all the datasets, 

where the results of MEME and Motif Sampler are quoted from the paper [53]. On 

all the nucleotide level and site level performance indices, CRMD has around 10 

percentage better results. More sufprisingly as indicated in the last column (best 

nPC), i f CRMD outputs a single motif, its performance is already better than the 

best of the five outputs of MEME and Motif Sampler. 

For the Tompa dataset, the algorithms are permitted to fine tune the parameters 

and report the best result. Since the exact widths of the motifs in the datasets are 

unknown beforehand, CRMD is executed with a series of widths from 10 to 15. 

For each width, 10 motifs (without the similarity test) are output, and so a total 

of 60 motifs, is obtained. Among the 60 motifs, CRMD calculates the similarity 

between each pair of motifs in terms of the x " distance [59], and it selects the motif 
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algorithm nSn nPPV nPC sSn sPPV sASP 
MEME 0.067 0.107 0.043 O. l l l 0.139 0.125 
Sampler 0.060 0.107 0.040 0.098 0.101 0.100 
CRMD 0.091 0.088 0.047 0.141 0.108 0.125 

Table 5.10: The average results of MEME, Motif Sampler and CRMD on the Tompa 
dataset. xPPV is xTP/(xTP-\-xFP) for both nucleotide and the site levels，and sASP 
is {sSn+sPPV)/! ‘ 

which has the largest number of similar motifs as the result. Table 5.10 shows the 

average results of MEME, Motif Sampler and CRMD on the 56 Tompa datasets, 

where the results of MEME and Motif Sampler are quoted from the paper [117]. 

Generally, the sensitivity of CRMD is slightly better, and the specificity of CRMD 

is slightly worse, which result in marginally better performance coefficient. As 

the motifs in most of the Tompa datasets are very weakly conserved, the algorithms 

usually predict no correct results on both nucleotide and site levels on those datasets. 

Therefore, the average performance indices of the three algorithms are pretty low, 
* 

which shows that the de novo motif discovery on real datasets of complex organisms 

is still difficult for the current algorithms with often more than questionable results. 

Multiple Motif Dataset 

The liver-specific dataset [63] contains multiple motifs. Biological experiments ver-

ified that the liver-specific gene expression is controlled by the combined action of a 

small set ofTFs, primarily HNF-1, HNF-3, HNF-4 and C/EBR The dataset contains 

19 sequences and annotates 60 binding sites belonging to ten motifs. However，three 

motifs have only one instance each, and three other motifs have only two instances 

each. These six motifs are supposed to be very difficult to find due to the extreme 

low signal-to-noise ratio. The rest four motifs have 19, 13, 13 and 11 instances, 

respectively, among which three motifs have less instances than the sequences. The 

widths of the motifs vary from 6 to 31，and even the motif instances of the same 
. 、 

motif may have different lengths. 

GAME, MEME, Motif Sampler and CRMD are tested on the liver-specific 



Chapter 5 Computational Motif Disco very ‘ .v 110 

ttouipiU P 
CJAMI-

R F 
MUMI-： 

P R 1 
Sampler 

P R 1 
("RMD 

P l< J 
5 0.27 0.33 . 0 . 3 0.31 0.18 0.23 0.34 0.17 0.23 0.46 0.5 0.48 
10 0.32 0.6 0.42 0.30 0.23 0.36 0.40 0.18 0.25 0.44 0.7S «.56 

Table 5.11: The results of MEME, Motif Sampler and CRMD on the liver-specific 
dataset of multiple motifs. Each program is executed twice with five and ten outputs, 
respectively. P is for Precision, R is for Recall, F is for F — score 

dataset to evaluate their performance of multiple motif discovery, while GALF-P 

is incapable of handling multiple motif discovery problem. The average width 15 

is used in all the experiments. There are two sets of experiments. One is with five 

outputs to account for the four motifs with most TFBSs, and the other is with ten 

outputs to account for the motifs with fewer TFBSs as well. The prediction toler-

ance is relaxed to six bps because the motifs are very weakly conserved. 

Table 5.11 shows the results of the four algorithms in the two sets of experiments 

of five outputs and ten outputs, respectively. in all j^e experiments 

are lower than 0.50, and CRMD is the only one whose Precisions are higher than 

or equal to 0.44. The low Precisions indicate that there are many false positives 

in the results. This is expected since the algorithms have to output more predicted 

motifs than the true ones due to the low signal-to-noise ratio. MEME and Motif 

Sampler have very low Recalls in both 5-output and 10-output experiments. When 

the number of the outputs is increased from 5 to 10, the Recalls of GAME and 

CRMD are increased significantly as more binding sites are correctly predicted. 

CRMD has the highest Precisions and Recalls in both experiments, and so its F — 

scores are also the highest. The advantage of the F — scores of CRMD over the 

F — scores of GAME, which are the second highest, is more than 10 percentages. 

5.6 Discussion 

Estimation of Distribution Algorithm for Motif Discovery (EDAMD) uses the fit-

ness function derived by Bayesian analysis to measure the posterior conditional 
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probability of a set of motif instances. Therefore, it is able to handle variable num-

ber of motif instances in the DNA sequences. It adopts a Gaussian distribution to 

model the distribution of the sets of motif instances. The Gaussian distribution is ca-

pable of capturing the bivariate correlation among the positions of motif instances. 

When a new Position Frequency Matrix (PFM) is sampled from the Gaussian distri-

bution, the local optimal set of the motif instances nearby is identified from the PFM 

via the Greedy Refinement operation. At the end of a generation, the Gaussian dis-

tribution is updated with the sets of th j motif instances considering the fitness and 

the probabilities of the motif instances. Since Greedy Refinement finds a single mo-

t i f instance on a sequence, a Post Processing procedure is used to find more motif 

instances after the evolution. The experiments have verified that EDAMD outper-

forms GAME and GALF on most of the eight selected testing real problems, and 

its results stay constant with different initial populations. 

A deterministic algorithm is also proposed for motif discovery, i.e., Cluster Re-

finement Algorithm for Motif Discovery (CRMD), CRMD uses the Entropy-based 

Clustering to find good initial motif candidates first, and then it uses Greedy Re-

finement to find the local optima of the initial candidates. CRMD searches for mo-

tifs by maximizing the posterior probabilities of the motif instances. The posterior 

probability allows a variable number of motif instances and it requires little prior 

knowledge of motifs. Entropy-based Clustering partitions all the subsequences of 

DNA sequences into clusters of maximal relatively information entropies, and thus 

clustering alone has. already maximized part of the posterior probability. The num-
- I 

ber of the clusters is much smaller than the number of all the subsequences, and 
J 

so the computation cost is significantly reduced. Greedy Refinement finds the lo-

cal optimal binding sites given the initial clusters. It selects the motif instances of 

maximal probabilities deterministically without taking extra time in sampling sub-

sequences probabilistically. It also automatically removes or adds motif instances 

according to the thresholds which change adaptively following the distribution of 

the current motif instances. I f the prior knowledge of OOPS is available，CRMD 
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can further enhance its prediction performance by searching for OOPS consistent 

solutions only and adjusting the number of motif instances later on. For multiple 

motif problem, CRMD measures the similarities among the candidate motifs using 

the x^ homogeneity test, and thus it is able to keep only distinct motifs of high 

probabilities. 

Compared with other state-of-the-art algorithms, CRMD has been tested ex-

tensively on both synthetic and comprehensive real datasets of single and multi-

ple motifs. As observed from the empirical results，CRMD is very competitive, 

and often the best among the testing algorithms. The synthetic data are generated 

with a variety of properties and difficulties. CRMD has achieved a good balance 

between Precision and Recall, and thus obtained the highest F — scores on most 

of the synthetic problems. The real datasets tested are comprehensive. On the 

eight real datasets selected by GAME [119] and GALF-P [22], CRMD still has the 

highest F — scores on most of the problems, and its average Precision, Recall and 

F - score are the highest as well. With the OOPS assumption, the performance of 

CRMD is further enhanced, and its results are better than or comparable to those of 

the other two OOPS algorithms.. On other four databases, i.e., the ABS database 

[15], the SCPD database [128], the Escherichia coli dataset [53] and the Tompa 

dataset [117], CRMD has also achieved the best performance in terms of either 

of the default metrics or of the nucleotide and site level metrics used in [117] and 

[53]. For the liver-specific dataset of multiple motifs, CRMD identifies significantly 

more binding sites than the other multiple motif discovery approaches. Compared to 

EDAMD，CRMD has a similar performance on the eight selected real datasets. Due 

to the relaxed assumption, CRMD is more general to solve more difficult problems. 

5.6.1 Time Complexity 
• • 

Table 5.12 shows the time complexities of the motif discovery algorithms. Sup-

,pose the sequence length is L and the number of the sequences is D. For EDAMD, 
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EDAMD CRMD GALF(P) GAME MEME Sampler 
complexity 0{PGD^) 0(LD) 0{PGD) 0{PG) 0{C1) 0[CI) 

Table 5.12: The complexities of the motif discovery algorithms. L is the sequence 
length. D is the number of the sequences. P is the population size. G is the number 
of generations. C is the number of initial consensuses. I is the number of iterations 

the population size is the maximal generation is G, the maximal iteration in the 

Greedy Refinement is D, each iteration samples D instances, and so the complexity 

of EDAMD is 0{PGD-). For CRMD, the number of the clusters is the maxi-

mum iteration in the Greedy Refinement is D, each iteration samples D instances, 

and so the time complexity of CRMD is 0(LD). For GALF(P), the population size 

is P, the maximal generation is G’ the instances uncovered in the local filtering is 

D, and so the complexity of GALF(P) is 0{PGD). For GAME, the population size 

is P, the maximal generation is G, and so the complexity of GAME is 0{PG). For 

MEME, the number of the initial consensuses is C, the number of the iterations in 

expectation maximization is /, and so the complexity of MEME is 0(CI). For Motif 

Sampler, the number of the initial consensuses is C, the number of the iterations in 

sampling is /, and so the complexity of Motif Sampler is 0(CI). 

• The time complexities of the algorithms should not be compared directly. Dif-

ferent GAs may require different population sizes and generation numbers. GALF{P) 

and GAME evaluate 3,000,000 and 30,000,000 individuals, respectively, while EDAMD 

evaluates only 1,000 individuals. For MEME and Gibbs Sampler, the number of it-

erations I cannot determined beforehand and thus is quite indefinite, while the max-

imal iteration in EDAMD and CRMD is fixed to D and the actual number is usually 

smaller than D. 

To evaluate the effectiveness of Cluster in CRMD, Table 5.13 compares the total 

numbers of all the subsequences, the theoretical maximal numbers of the clusters 

and the actual numbers of the clusters. The theoretical maximal number of clusters 

is 勞 which is already significantly smaller than the total number of all the subse-

quences L. In the eight testing real datasets, the actual numbers of clusters are even 
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Problem ^subsequence max(^) #cluster reduction 
CREB 3544 834 292' 92% 
CRP 1512 336 118 92% 
ERE 4700 752 276 94% 
E2F 4750 760 268 94% 

MEF2 3293 775 267 92% 
MYOD 3315 780 280 92% 

SRF 4127 825 292 93% 
TBP 18525 780 296 98% 

Table 5.13: The numbers of the subsequences, the theoretical maximal numbers 
of the c 
Refine 
of the clusters 勞，the numbers of the dusters and the reductions of the seeds for 

much smaller than the theoretical maximal numbers of the dusters. The reductions 

over the total numbers of the subsequences are over 90%. This shows that Cluster 

not only provides good initial PCMs for Refine’ but also saves a lot of computation 

time. 

It is also interesting to inspect the performance of CRMD without cither of 

Cluster and Refine. As regard to Cluster, it is empirically observed that with the 

same number of initial candidates, the performance of using random initialization 

instead for Refine is worse than that of using Cluster. The results of random initial-

ization also vary with the different pseudo-random number seeds. Especially for the 

problem MYOD, which has short width and small number of sequences, the preci-

sion and the recall of the random initialization are zero in the worst case. As regard 

to Refine (with Cluster still in CRMD), i f the thresholds 7] and TJ in Algorithm 5.4 
I 

are fixed at 1, the performance of CRMD deteriorates a lot. On the problems MEF2 

and MYOD in particular, CRMD cannot find any correct motif instance at all. 
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Duuiset 
Precision 

i : i )AMI) 
Recall /••-score Precision 

('MI<I)(()()PS» 
Rccall /•'-score Precision 

CKMI) 
Kccall /••-score 

(RUB 0.73 0.84 «.7« 0.73 0.«4 «.7H 0.67 ().f)3 0.65 
CRP 0.94 0.74 0.94 0.74 1 .()() 0.74 ().85 
l-RI- 0.76 0.76 0.76 0.67 O.KO 0.73 0.71 O.KO 0.75 
1:21: 0.71 O.KO 0.75 0.68 0.X5 0.75 0.K3 O.KK 

MKI:2 1.00 1.00 I .M I 1.00 1.00 1.00 O.KS 1.()() 0.92 
MYOI) 0.8(1 0.90 ().KK O.KR. o .w O.KK ().K6 0.90 O.KK 

SRI 0.77 0.92 0.84 0.77 0.92 0.84 0.7<) O.K() OKI 
lUP 0.K5 0.')4 (K89 0.85 O.'M 0.89 0.K3 ().K9 ().K6 

Table 5.14: The comparison between EDAMD, CRMD with OOPS and CRMD 
without OOPS on the eight selected datasets 

I 
> 

5.6.2 Comparison between Estimation of Distribution Algorithm 

and Cluster Refinement Algorithm 

There are a few differences between EDAMD and CRMD. First, EDAMD is a 

GA-based algorithm, while CRMD is deterministic. Clearly, it is difficult to deter-

mine the suitable population size and max generations for EDAMD for a problem 

of big motif width and large number of sequences. CRMD dusters all the sub-

sequences, and thus the number of potential motifs is automatically determined. 

Second, EDAMD assumes One Occurrence Per Sequence (OOPS) and thus it is 

able to solve OOPS problems only. CRMD can disable the OOPS assumption, and 

has the freedom to change the number of motif instances in the local search. Third, 

EDAMD adopts the Gaussian distribution to model the population. There is only 
» 
< 

one peak in the Gaussian distribution, and so EDAMD searches for only one motif. 

CRMD adopts a similarity measure to differentiate motifs, and thus CRMD is able 

to discover multiple motifs in a single run., 

As shown in Table 5.14，the performances of EDAMD and CRMD on the eight 

selected real datasets arcquite comparable. Surprisingly, the performance of EDAMD 

and CRMD with OOPS are very close except on the datasct ERE. CRMD without 

OOPS is not as good as EDAMD and CRMD with OOPS on five datasets, but it 

wins on the other two datasets. This is expected since most of the datasets are more 

or less OOPS, and the prior knowledge of OOPS really helps the local search. 
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Conclusion 

To tradeoff the complexity and the learning of the distribution model in Estimation 

of Distribution Algorithm (EDA), this thesis proposes a new framework of Estima-

tion of Dependency and Distribution Algorithm (EDDA) to choosc an appropriate 

learning model automatically. Basically, EDDA partitions an individual represen-

tation into separate parts such that they are independent with rcspcct to (w.r.t.) the 

fitness function. The independent parts of the individual representation arc evolved 

separately with a different distribution model each. The combination of the optima 

of the independent parts forms the optimum of the complete individual represen-

tation. For the problems which cannot be partitioned into completely independent 

parts, EDDA also maintains the information of the interdependencics between the 

separate parts and evolves the interdependencics as well. The complexity of a model 

is controlled adaptively by the amount of the dependency information maintained 

in the model. • 

There are a few major advantages of EDDA over the standard Evolutionary 

Computation (EC), 

First, partitioning the individual representation and evolving the independent 

parts separately reduces the size of the search space significantly. In EC, the search 

space of all the dimensions is the cartesian product of the domains of the individual 

dimensions, and the size of the complete search space is the product of the sizes of 

the dimensions. In EDDA, the size of the search space is the sum of the sizes of the 

116 
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search spaces of the independent parts, and the size of the search space in the stan-

dard EC is exponentially larger than the size of the scarch spacc of an independent 

part. '' 

Second, important dependency information between the separate parts arc main-

tained while the trivial ones are ignored. According to schcma theory, a population 

of individuals evolves numerous schemata, and a schcma is actually a pattern of 

the genes involved. In EDA, a complicated model, which contains a lot of model 

parameters to estimate, maintains a large amount of information of the dependency 

between the genes. However, much of such interdependency information is un-

necessary, and the parameters are difficult to estimate accurately and may actually 

mislead the evolution. 

Third, it is easy to control the diversity and the convergence of the sub-populations 

of the separate parts of the individual representation. Diversity and convergence af-

fect how much the solution space is searched directly. In high dimensional space, 

the population in the standard EC covcrs only a small and sparse area in the search 

space, and it is difficult to manipulate the size and the individual density of the 

covered search area. In EDDA, because an independent part of the individual repre-

sentation consists of only a few dimensions, it is much easier to control the diversity 

and convergence in such a relatively small search space. 

Fourth, compared to other EDAs, EDDA Icams the distribution model with all 

the individuals in the population and with their fitness. EDDA thus estimates a 

better approximation of a more complete fitness landscape. On the contrary, other 

EDAs usually discard the individuals of bad fitness，and use only the good individu-

als for model estimation. Nevertheless, the resulted distribution may be misleading 

in the area of bad individuals, and may distort the complete fitness landscape. 

This thesis includes four implementation of EDDA for different applications. 

EDDA is first employed in Genetic Algorithm (GA) to optimize objective func-

tions by converting the problem solution into some independent parts and evolving 

the independent parts separately. Chapter 3 has described a Genetic Algorithm 
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with Independent Component Analysis (GA/ICA) to solve unconstrained continu-

ous function optimization problems. It first uses ICA to identify the independent 

components of the solution space w.r.t. the fitness, and then it divides the popula-

tion into sub-populations and evolves the sub-populations on the independent com-

ponents separately. Finally, it combines the optima on the independent components 

into the global optimum for the original problem. As the high-dimensional problem 

is divided into many 1 -dimensional sub-problems, the solution space is significantly 

rcduced, and so the problem becomes easier for GA to solve. The experiment re-

sults show that GA/ICA requires much less function evaluations to produce optimal 

or close-to-optimal solutions which are better than or comparable to those produced 

by OGA/Q on the benchmark problems. 

EDDA can also be used in Genetic Programming (GP) to speed up the GP evo 

lution by evolving the GP instructions and their interactions simultaneously. Chap-

ter 4 has described a novel Genetic Programming algorithm. Instruction Matrix 

based Genetic Programming (IMGP). IMGP maintains an Instruction Matrix (IM) 

to store the information of the instructions and their best subtrees. It extracts pro-

gram trees from IM, updates IM with the fitness of the extracted program trees, 

performs crossover and mutation on the extracted program trees, and shuffles IM to 

propagate good instructions. It is contemplated that IMGP actually evolves sopie 

schemata directly. The experimental results have verified the effectiveness and the 

efficiency of IMGP on the benchmark problems. IMGP is not only superior to CGP 

In terms of the qualities of the solutions and the number of program evaluations, 

but it also outperforms other related GP algorithms on the testing problems. To en-

hance its performance for classification problems, IMGP uses gradient descent to 

find the optimal parameters in a program tree, and incorporates the complexity of 

the program tree in the fitness. In most o f the testing.problems, IMGP is able to 

find classifiers of higher classification accuracies than 4 other GP classifiers. The 

results of IMGP are also comparable to or better than those of Decision Tree, Neural • 
Networks and Support Vector Machine. 
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Chapter 5 has proposed an Estimation of Distribution Algorithm for Motif Dis-

covery (EDAMD) as an application of EDDA to solve a real bioinformatics prob-

lem. EDAMD uses the fitness function derived by Baycsian analysis to measure 

the posterior conditional probability of a set of motif instances, and the number of 

motif instances is allowed to vary. EDAMD adopts a Gaussian distribution to model 

the distribution of the sets of motif instances. The Gaussian distribution is capable 

of capturing the bivariate correlation among the positions of motif instances. When 

a new Position Frequency Matrix (PFM) is sampled randomly from the Gaussian 

distribution, the local optimal set of the motif instances nearby is identified from the 

PFM via the Greedy Refinement operation. At the end of a generation, the Gaus-

sian distribution is updated with the sets of the motif instances, their fitness and 

the conditional probabilities of the motif instances. Since Greedy Refinement finds 

only a single motif instance on a sequence, a Post Processing procedure is used to 

find more motif instances after the evolution. The experiments have verified that 

EDAMD outperforms GAME and GALF on most of the eight selected testing real 

problems, and its results stay constant with different initial populations. 

A deterministic algorithm has also been proposed for motif discovery. Cluster 

Refinement Algorithm for Motif Discovery (CRMD). CRMD uses the Entropy-

based Clustering to find good initial motif candidates first, and then it uses Greedy 

Refinement to find the local optima from the initial candidates. Entropy-based Clus-

tering partitions all the subsequences of DNA sequences into clusters of maximal 

relatively information entropies, and thus clustering alone has already maximized 

part of the posterior probability. The number of the clusters is much smaller than 

the number of all the subsequences, and so the computation cost is significantly 

reduced. Greedy Refinement finds the local optimal binding sites given the ini-
,一 

tial clusters. It selects the motif instances of maximal probabilities deterministi-

cally without taking extra time in sampling subsequences probabilistically. It also 

automatically' removes or adds motif instances according to the thresholds which 

‘change adaptively following the distribution of the current motif instances. I f the 
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prior knowledge of One Occurrence Per Sequence (OOPS) is available, CRMD can 

further enhance its prediction performance by searching for OOPS consistent solu-

tions only and adjusting the number of motif instances later on. For multiple motif 

problems, CRMD measures the similarities among the candidate motifs using the 

X^ homogeneity test, and thus it is able to keep only distinct motifs of high probabil-

ities. The empirical results show that the clustering provides good initial consensus 

seeds, and the refinement procedure leads to the local optimal consensus efficiently. 

The qualities of the discovered solutions are compared favorably with the solutions 

produced by other state-of-the-art algorithms. The performances of EDAMD and 

CRMD on some problems are similar, however, CRMD is more general and is able 

to solve more difficult problems than EDAMD. 
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Appendix A 

Sparse Kernel Feature Machine 

A.l Overview 
八 • 

In Machine Learning and Pattern Recognition, one of the fundamental problems 

is, regression. Given N pairs of training samples {(-v,. V/)}；'̂  ,, where .v, consists 

of /；/ attributes (xj yj�:�and y, is the corresponding target, regression is to estimate 

the function from {.v, },^ , to {_>,/}/〜「The samples {.v,},^ , ^are independently and 

identically distributed (i.i.d.) and the targets are usually corrupted with noise, i.e., 

{yi —yi + whereyi is the true response and is a noisy variable following 

an unknown distribution. In regression, the target is a real number to be predicted 

by the regression function. I f the target is nominal, and binary in particular, the 

regression function is also a classifier to predict the class of a sample. 

Kernel methods have shown some successes in solving the regression and classi-

fication problems [107]. Instead of performing linear methods in the original space, 

kernel methods implicitly map the data into a higher dimensional feature space and 

apply linear methods in the feature space. The kernel methods are s ign i f ied for two 

reasons. First，by utilizing linear methods in the feature space, kernel methods ac-

tually perform nonlinear learning (regression or classification) in the original space. 

Second, the implicit mapping from the original space into the high-dimensional 

feature space is accomplished through the so-called kernel tricks, and thus kernel 

methods avoid the time-consuming space conversion and high-dimensional linear 
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learning. 

Formally, kernel methods models the regression or the classification function 

using the expansion in Eq. A. l , where (> are the function coefficients to be 

learned. /:(•,•) in Eq. A.2 is a kernel function which is equivalent to the dot product 

of the images of the arguments in the feature space. <p(-) is the mapping from the 
* ‘ 

original space to the high-dimensional feature space. If the mapping is simply the 

identity function, the kernel function 人'(、.）is the dot product in the original space 

and the function'in Eq. A.l is actually linear. With complex kernel functions and 

thus non-linear mappings, Eq. A.l becomes a non-linear function. 
N 

./'(-v) - X 人 + «() 

A-(.v,,.V2) = < (p{x\)-(l){x2) > 

(A. l ) 

(A.2) 

With the form of the learning function in Eq. A. l , the objective of kernel meth-

ods is usually formulated as Eq. A.3, where L{-) is a loss function as a measure of 

the difference between the true target y and the predicted target f(x). In regression, 

the loss function is often the sum of squared errors, since the noise is assumed to 

be Gaussian distributed. In classification, the loss function can be the hinge loss 

ftjnction, which returns zero as long as the predicted target and the true target are 

on the same side of a threshold. ^VX.) measures the complexity of the function 

/ ( . ) , which are related to the structure and the parameters of the function. A is 

the regularization parameter which tradeoffs the learning objective between the loss 

function and the function complexity. 

‘ N 
• + 又【V(.|oO (A.3) 

卜1 

Regularizing the function complexity is related to the model selection, which is 

one of the central problems in regression and classification. Due to the noise in the 
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training samples, a complicated learning function may overfit the training dataset 

unnecessarily and thus generalizes poorly with respect to (w.r.t.) the testing dataset. 

To counteract the effect of overfitting, the regularization on the model complexity 

is imposed so that a simple model is preferred since it happens to be unable to fit 

the noise in the training dataset. In Eq. A.3, the two terms of the training error and 

the model complexity are combined to form a single objective function, where the 

relative importance of the two terms are controlled with the regularization parameter 

A. ‘ 
• 

However, it is difficult to choose an appropriate A without prior knowledge of 

the problem. A too large A may over-penalize the function complexity and make the 

function underfit the data. A too small A may be unable to prevent the overfitting 

and the resulted learning function is too complex to fit the testing data well. In 

practice, people may try out a series of different As and use cross-validation to 

select the most appropriate A. This approach is quite time consuming since the 

learning process has to be repeated for each different 又. 

Another problem with the usual kernels in Eq. A.2 is that it neglects feature 

selection, i.e., using only a subset of the features from }"' , in the learning func-

tion. Feature selection poses two advantages for regression and classification. First, 

by selecting only the relevant features, the learning method discards the irrelevant 

features and thus controls the model complexity effectively. Second, with the useful 

features highlighted,,it is easy for human to interpret the relevant features in the re-

sulted regression function. The kernel in Eq. A.2 involves all the features and thus 

it is unable to discriminate between relevant and irrelevant features. 

This appendix proposes a new kernel learning method, i.e., Sparse Kernel Fea-

ture Machine (SKFM), to address the two aforementioned problems with the stan-

dard kernel learning. Instead of using the kernel functions of all the attributes, 

SKFM equips a kernel function and forms a kernel feature for each original at-

tribute. An augmented kernel matrix is'constructed by concatenating ali the kernel 

matrices of the attributes. Least Angle Regression is then applied on the augmented 
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kernel matrix to perform step-wise linear regression in the feature space. Collinear 

kernel features are detected and removed from the set of the kernel features au-

tomatically. SKFM forms the solution path of the function coefficients which is 

piece-wise linear in the regularization parameter, and then SKFM interpolates the 

solutions of a series of different regularization parameters and chooses the best pa-

rameter in cross-validation. Compared to using all the kernel features, SKFM se-

lects the kernel features one by one in the solution path, and uses only the most 

important kernel features in the final solution. In the experiments, SKFM has been 

tested on four real medical classification problems, i.e., Diabetes, Hepatitis B Virus, 

Colon Cancer and C elegans. The results verify that SKFM not only outperforms 

Support Vector Machine (SVM), but it also points out the most important features 

in the classification. 

The rest of the appendix is organized as follows. Section A.2 briefly introduces 

the existing methods related to SKFM. Section A.3 describes the architecture and 

the algorithms of SKFM in detail. Section A.4 gives the experimental results of 

SKFM on some real problems. Section A.5 is the discussion about SKFM. 

A.2 Related Work 

A.2.1 Least Angle Regression 

Least Angle Regression (LARS) [32] is a special algorithm for linear regression 

in Eq. A.4，where .v is a row vector of a data sample and a dataset is denoted 

as a matrix X = (x-^)"' \ consisting of the columns of attributes. Starting from an 

empty set, LARS adds attributes in the linear model one by one and solves the 

corresponding coefficients (p巧')[_、along the way. LARS thus find a series of so-

lutions which consist of overlapping attribute sets { fic/jj^ | of increasing sizes. For 

high-dimensional problems, solving for the solution of all the dimensions is compu-

tationally inhibitive. In addition, the resulted ordinary linear square (OLS) estimate 
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is easily oyerfitting since there may be insufficient data given the large number of 

dimensions, let alone that many of the dimensions may be irrelevant. Therefore, as 

a feature selection algorithm, LARS is fast and robust. 

f (x )=A-p+P() (A.4) 

There are three particular advantages of LARS compared to other linear model 

selection algorithms. First, LARS is less greedy than forward selection algorithm 

in adding features. In forward selection algorithm, a new feature is added if it has 

the maximum correlation with the current residual (the part of the response not ex-

plained), when the rest of the response has been fully explained by the features 

already selected. However, LARS selects a new feature when it has the same cor-

relation with the current residual as the features already selected, and so a useful 

feature is unlikely to be overlooked as in the aggressive forward sclcction algo-

rithm. Second, although LARS finds a series of different solutions, each solution is 

not computed from scratch on its own. Instead, a solution is computed on the basis 

of the one before, and so LARS is computationally efficient. 

A significant advantage of LARS is that it is capable of generating the solution 

path w.r.t. the regularization parameter t in "least absolute shrinkage and selec-

tion operator" (Lasso) [116] in Eq. A.5. Lasso is a linear implementation of the 

general objective function in Eq. A.3 with L1 -norm regularization on the learning 

coefficients. The solution path of Lasso is piece-wise linear in the regularization pa-

rameter /，meaning that the solution p follows a linear function of t given a fixed set 

of selected features. When / changes to the point where the selected features change 

(adding or removing a feature), the solution P follows a different linear function. 

The reason for the linearity is that given a fixed set of features, the optimal solution 

of Eq. A.5 can be obtained by equating its partial derivative of its Lagrangian form 

to zero. Clearly, the resulted root (the coefficient solution) of the zero derivative is 

a linear function of t. 



Figure A. l : The solution path of the linear coefficients and the evolution of the 
testing error by LARS 

N m 

P = argmififi ^ ivi 一 -V,/3 f s.t. H/3" | $ / (A.5) 

/ I / I 

An example of a solution path and the evolution of the testing error is illustrated 

in Fig. A.l (generated from the LARS coded by Karl Skoglund). The horizontal 

axes are the normalized numbers of the iterations, which can also be viewed as 

Y!"_ 1 1)3)1 in Eq. A.5, i.e., the regularization parameter t. On the right, the figure 

shows the testing errors of the models under different regularization parameter, and 

the minimal testing error is obtained with a modest t. On the left, the vertical axis is 
* V 

the value of a coefficient, and each curve is the path of a cocflicicnt changing along 

with the iteration. Whenever a new curve appears or an existing curve reaches zero 

(the set of selected features changes), an existing straight Fine turns its direction into 

another straight line. Clearly, the coefficient between any two adjacent joining knots 

can be linearly interpolated from the values of the coefficients on the surrounding 

knots. 

This property of piece-wise linearity is very useful in practicc. In each fold of 

cross-validation, people can run LARS on the training dataset oncc and obtain a 

series of solutions. The computation cost of the calculating solution path is signif-

icantly less than that of the OLS estimate in a high-dimensional problem. With the 

solution path, the solutions under various regularizing parameter t can be computed 
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directly using simple linear interpolation. The most appropriate t with the least 

validation error is selected to be used in training on the whole dataset. 

A.2.2 Support Vector Machine 

Support Vector Machine (SVM) [107] is a popular and powerful kernel learning, 

method for regression and classification. In regression, it learns a function f ( x ) 

which fits the targets within a certain bound and whose curvc is pushed as flat as 

possible. The learning function in SVM is the same as the usual kernel learning 

function in Eq. A . l . The objective function for SVM optimization is adapted from 

Eqs. A.3 to A.6, which is a weighted combination of the hinge loss function [•, •] | 

and the functional norm in the Hilbert space induced from the kernel function, i.e., 

a , Ka . The hinge loss function used here returns zero as long as the f {x i \k) and v, 

are of the same sign and | /"(A"/|A')| is larger than one. According to the Karush-Kuhn-

Tucker (KKT) conditions, many function coefficients of a in the minimal solution 

of Eq. A.6 are zero, and so a sparse solution is obtained in SVM. 

N 

X |1 I ^-Ca' Ka (A.6) 
i I 

A typical kernel function used in SVM and other kernel learning methods is the 

Gaussian kernel in Eq. A.7, where a is a kernel parameter spccificd beforehand. 

The kernel trick is used to implicitly map the data into a high-dimensional feature 

space without actually computing the costly mapping. Another advantage is that 

while a problem is linearly inseparable in the original spacc, it may becomc linearly 

separable in the feature space and easy to be solved. 

^ ( .V l ,.V2) 二 c x p — ~2a2 - ( A . 7 ) 

The solution path in SVM has been investigated in [48] and [129]. [48] solves 

SVM in its original form of /S-norm as in Eq. A.6. The optimal solution of the 
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objective function in Eq. A.6 is dearly a linear function of the regularization pa-

rameter C, as long as the supporting vectors with non-zero a remain the same. In 

[48]’ the algorithm starts with a zero C, and gradually increase it to infinity. Dur-

ing this process，the algorithm keeps track of all the events when ccrtain vcctors 

reverse their roles as supporting vcctors or non-supporting vcctors. In this way, the 

algorithm is able to build the entire solution path w.r.t. C. 

[129] solves for the solution path in L1 -norm SVM, whose regression and objec-

tive functions are Eqs. A. 1 and A.3, respectively. Instead of using the regularization 

on the functional complexity, a constraint on the /1 -norm of the function cocfficicnts 

is imposed to cncouragc the coefficients to be sparse. It is proved that the deriva-

tives of I w.r.t. s is piccc-wisc constant, and thus {a丨、^ , is piccc-wisc 
J * •‘ 

linear w.r.t..、,. 

N N 
min 

/ I / 1 
N 

t . | | a | j i = Z | a , 丨 < ‘V ( A . 8 ) 

A.2.3 Multiple Kernel Learning 

Multiple Kernel Learning (MKL) [4][111][%] uses multiple kernel functions in the 

kernel regression or classification. There exists various kernel functions of various 

properties. Even for the same kernel function, different kernel parameters, such as 

the a in a Gaussian kernel, may induce different feature spaces, and thus differ-

ent learning functions are obtained. Without the prior knowledge of the nature of 

the problem, it is desirable to infer the appropriate kernel automatically during the 

learning process. In MKL, the kernel is usually a weighted sum of a set of candidate 

kernel functions as in Eq. A.9, where the constraint 人 i A = 1 is imposed to forcc 

some weights to zero. 
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K 

K 
ft > 0 and E f t = 1 (A.9) 

There arc various formulations of MKL, depending on how the functional com-

plexity and the constraints are defined. One of the formulations for gcncric loss 

function is as Eq. A.10. w, is the multivariate coefficient vector associated with ker-

nel function 众/(.)• The kernel weight in Eq. A.9 is omitted since it is absorbed into 

the corresponding w,-. In the objective function, the block /'|-norm (X； | 人 ||2)2 is 

used to encouragc the {w,} f , to be zero vectors, which is also used in group Lasso 

[81]. 

C K N 

_ z IIWAII：)" + X/足/.(.、-,),乂) 

人’ 
‘�’./. Jlxi) = X < <W-、V).WA > +/>，•/= I N (A. 10) 

[5] considers the solution path w.r.t. the rcgularization parameter C in MKL. 

However, the solution path is no longer piecc-wisc linear, and instead it is estimated 

by the logarithmic barrier and numerical continuation techniques. MKL can also 

be used for feature selection if a kernel function is associated with cach original 

dimension [98]. As a result, the dimensions of non-zero kernel weights , in 

Eq. A.9 arc the selected features. 
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A.2.4 Mutual Information 

Mutual Information (MI) is a measure of the dependency between two (multivari-

ate) variables. Its theoretical formula is given by Eq. A.l 1, where /)(.) is the cor-

responding probability density function of the argument variable. Ml can be used 

to measure the dependency between the features and the target, and thus to select 

features in classification and regression. Unfortunately, it is difficult, if not impos-

sible, to estimate the probability densities, especially in high-dimensional space. 

Therefore, many algorithms use only pair-wise MI to filter out irrelevant features 

before learning [43], which can be estimate using discretization and non-parametric 
• 

methods. However’ the relevant features clearly have a joint effect on the target, and 

thus an estimate of the joint multivariate MI is more meaningful. 

/(A-I;.V2) = r 广 ; ？ ) . ( A . l 1) 
./-oo p(Xl)p{X2) 

Some kernel methods have been proposed to measure Ml approximately [3][39]. 

[39] uses the Hilbert-Schmidt norm of the normalized cross-covariancc operator as % 
the measure of dependency. For the centered kernel matrices Cx and Gy of the 

features and the target, let Ry = Gx(Gx + "£"/")—' and Ry 二（7v (G、> + /i£,,/,,)_、 

where e„ is a re^ularization parameter, and the empirically dependence measure 

jN(Xc () (normalized cross-covariance operator) is defined in Eq. A.12, where Tr[-

is the matrix trace. This measure is originally proposed to find the transformation 

which results in independent variables in Independent Component Analysis，but 

it can be potentially used to select the features which have high vvith the 

target. 

‘ 广 a,(丫 = Tr{RyRx] (A.12) 
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A.3 Architecture 

Sparse Kernel Feature Machine (SKFM) is a kernel learning framework for classi-

fication and regression. It performs kernel learning and feature selection simultane-

ously, generates the solution path w.r.t. the regularization parameter, and selects the 

most appropriate regularization parameter automatically. This section consists of 

three parts. Section A.3.1 proposes the objective function in SKFM and depicts the 

overall picture of SKFM. Section A.3.2 presents the data structure used in SKFM 

and how it is obtained. Section A.3.3 describes the algorithm to find the solution 

path of the objective function in SKFM. 

A.3.1 Overall Program 

Eq. A.13 is the learning function in SKFM. /(.丨人'）is a nonlinear function realized 

with dimension-wise kernels {人“}'/' ,, where j: 二 is the matrix of the learning 

coefficients associating with the kernels. SKFM aims to minimize the objective 
，， 

function in Eq. A. 14. The traditional sum of squared errors is used as the loss 

function to simplify the optimization, and f i-norrn on the learning coefficients is 

used to force the learning coefficients to be sparse. 

N m 

/(.Y,•卜 Z X / ^ " 々 V ( , - 《 ) + 广 （A. 13) 
/ 1/ I 

N N m N ni 

argminZCv/- /^" - I > " A ' V ! ” 《 ) ) 2 ‘、’•/. (A. 14) 
p i I ./•-1 / I ./•-1 / 1 

Basically, SKFM applies a Kernelized Least Angle Regression (KLARS) on the 

augmented kernel matrix of the data samples to learn the coefficients in Eq. ？?. It 

addresses the issue of curse-of-dimensionality in two perspectives. If the dimen-

sion of the problem is larger than the number of samples, the irrelevant features 

are detected and removed from the dataset using Kernelized Mutual Information 
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(KMI). KLARS selects the relevant features one by one in the order of their useful-

ness to predicting the targets. SKFM accomplishes nonlinear learning by running 

LARS in the feature space. LARS is traditionally used for linear regression in the 

original space. Since the data are nonlinearly mapped into the feature space, lin-

ear regression in the feature space is actually nonlinear regression in the original 

space. SKFM selects the best regularization parameter without learning using dif-

ferent regularization parameters repeatedly. Instead, the solutions of a series of 

regularization parameters are easily interpolated from the solution path returned by 

KLARS, and then the most appropriate regularization parameter is selected with the 

least validation error. 

Algorithm A. l is the pseudo-code of the overall program of SKFM. If the prob-

lem is high-dimensional, SKFM first uses KMI to select only the relevant features 

to reduce the dimensions. Then SKFM employs cross-validation to select the most 

appropriate regularization parameter which results in the solution of the least aver-

age validation error. Afterwards, the best regularization parameter is used to train 

the whole dataset. To make use of LARS in SKFM, the learning function must 

be a regression function predicting a real-valued response. Therefore, to use the 

real-valued response for classification, a threshold on the response is estimated to 

maximize the training accuracy. 

In learning on each fold of cross-validation, SKFM carries out the foHowling 

steps in sequence. In the first step, SKFM constructs the augmented kernel matrix 

of the training part by concatenating all the kernel matrices of the features. Instead 

of using a kernel function of all the dimensions, SKFM equips a kernel function 

and forms a kernel matrix for each original feature. Each column in the augmented 

kernel matrix is treated as a kernel feature. In the second step, SKFM performs 

KLARS on the augmented kernel matrix to perform step-wise linear regression in 

the feature space. Col linear kernel features are detected and removed from the set of 

thckemel features automatically. KLARS returns the solution path of the function 

coefficients which is piece-wise linear in the regularization parameter. In the third 
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Algorithm A.l: Sparse Kernel Feature Machine 
Input: the training datasct {X, y) 
Output : the solution of cocfficicnts fi 
i f high dimensional problem then 

|_ use Kernelizcd M l for feature filtering 

partition {X, Y) into 5 fold of training parts and validation parts {(.Y,, K/)}j* ,； 

foreach /o/t/ {Xi, y,) do 
.construct the augmented kernel matrix A'f of,the training part Xj'' alone; 
perform Kernel izcd LARS on A'/ and Y厂; 

interpolate the solutions 5", = {.v-}'/ ' , on the rcgularization parameters 7' = {/'}、.丨‘,； 

construct the augmented kernel matrix of the training and validation parts {X'/\Xp')： 
measure the validation errors e , = of.v, with A'；' 

sclcct the rcgularization parameter f — argmin, (mean({c,} ^ ,)) of the least average 
validation error; 
construct the augmented kernel matrix A oFA'; 
perform Kcmclized LARS on A and Y\ 
interpolate the solution (5 of the best rcgularization parameter /; 
find the threshold for ft to classify the training data 

Step, SKFM linearly interpolate the solutions under a set of different rcgularization 

parameters, which are tested on the validation part to measure their validation errors. 

The details of the procedures in Algorithm A. 1 will be described in the following 

sections. KMI and the augmented kernel matrix are described in Section A.3.2. 

KLARS and interpolating solutions are described in Section A.3.3. 

A.3.2 Augmented Kernel Matrix 

In the standard kernel learning, the learning function in Eq. A. 1 can be written in 

the matrix form in Eq. A. 15, where the function values of all the kernel functions on 

all the data samples constitute a kernel matrix K = (/:(.v/,.V/))fy「Kernel learning 

minimizes the objective function in Eq. A. 16 by calculating the optimal weights a 

for all the kernel vectors in the kernel matrix. 

. /•(.V/) - K,a + « ( , ( A . 1 5 ) 
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'{.t|..RI) A' (.T| ..T.V)….A'(.V|..R, ) A'(.V,..XA) A"'(.v,..r, ) 

'(.t̂ .Jc,) A'(.vv..rv) ••• A'(.r,..t,) A'(.ri..vv) *"'((、.丨 A"'(,vv..vv) 

Figure A.2: An example of augmented kernel matrix 

N 

. S^CV" /(-、-'!«)) + •!«) (A.16) 
i - I 

An augmented kernel matrix is proposed to incorporate feature selection in ker-

nel learning. Since the kernel function in Eq. A.15 involves all the dimensions of 

、 , 
the data, it is not easy to perform feature selection during learning. SKFM resolves 

.this disadvantage by using one-dimensional kernel functions for all the dimensions 

separately, and thus the kernel matrix in SKFM is the concatenation of all the kernel 

matrices of the individual dimensions. Suppose th? kernel matrix of a single dimen-

sion i is the augmented kernel matrix of all the dimensions is then (M' • • • M"'). 

An example kernel matrix is shown in Fig. A.2, which has N rows and mN columns. 

In analogy to the data matrix X ’ whose columns are the data features, the columns 

of the augmented kernel matrix are called the kernel features in SKFM. 

In the form of the augmented kernel matrix M, the learning function of SKFM 

in Eq. A. 13 can be rewritten as Eq. A.17 and the objective function in Eq. A. 14 

can be rewritten as Eq. A.18. A// is a row vector in /I representing all the kernel 

features of data sample x/, and a is the vector of the concatenation of all the column 

vectors in /3. j3() and a() actually denote the same variable in both forms of the 

objective function. Interestingly, the optimal solution to Eq. A, 18 not only tells 

which original features are important, but also tells which values on the selected 

features are important since a kernel feature A/) is parameterized with a specific 

value on a specific feature. 
/•(.XV) = H a + «() (A. 17) 
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N niN 
argmin ^Cv/ - a " — Mia)- .、,./. ̂  \a'\ < t (A.18) 

« /—丨 i 1 

However, in high-dimensional problems, especially when the number of the 

dimensions is larger than the number of the data samples, there is a huge number 

niN of kernel features. Under such circumstances, the optimal solution is not unique 

and very likely to be overfitted. Therefore, it is necessary to dctcct and remove 

irrelevant features from the original data first. 

SKFM uses Sparse Kernelized Mutual Information (SKMI) similar to (() in 

Eq. A. 12 to measure the joint dependency between the features X and the response 

Y. Optimizing the overall SKMI w.r.t. the data features tells the degrees of the 

dependencies of the response on the individual features. There arc some existing 

methods estimating the pair-wise MI between the individual dimensions and the 

response. However, such methods usually ignores the joint dependency between 

the response and multiple features, which may have redundancy among themselves. 

While there are also some methods measuring the joint Ml between a subset of 

features and the response, they have to select the useful features one by one using 

local search methods. The resulted feature set may be overly greedy and order-

dependent, and thus it may miss some relevant features. 

The original j附凡“)measures the dependency between two variables only. To 

apply it on multivariate cases, the centered kernel matrix of a set of features is 

constructed as a weighted conic combination of the kernel matrices on the individual 

dimensions as Gy = \ M'^G^. The square of a weight is used to make sure it is 

positive and the resulted kernel matrix is still positive-definite. With this new kernel 

matrix，the objective function to maximize the NOCCO between the predictors and 

the response is Eq. A.19. The constraint on the sum of the squares of the weights 

makes all the vî  less than 1, otherwise、i二 would grow to infinity to maximize 

the NOCCO. With such a constraint, more relevant features will have rjslatively 

large weights, while less relevant features will have relatively small weights. To 
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further push the small weights to zero, a 广]-norm rcgularization on the squares of 

the weights are included in the objective function of SKMI as Eq. A.20, where X, 

is the adaptive individual rcgularization parameter of weight Wj. 

jNCK'CO, 

sj. (A.19) 

SKMI{X\ Y 

sA. ’卜 1 (A.2()) 

The negatives of the objective functions in Eqs. A. 19 and A.20 are non-convex 

with multiple local optimal solutions. In the current implementation, SKFM uses 

natural gradient descent [1] to find the local optimum from the initial weights. Sincc 

the objective functions are multi-modal and the gradient dcsccnt is a local greedy 

search method, good initial weights are vital to finding the global maximum. SKFM 

uses the pair-wise 

广rx c 丫）between the individual dimensions and the target as the 

initial weights. 

Subsequently, SKFM maximizes the objective functions Eqs. A. 19 and A.20 in 

two phases. In the first phase, SKFM maximizes the objective function /'、“（ ^^(X; Y 

in Eq. A.19 to find an optimal set of weights, i . e ， … 〃 . I n the second phase, 

�yN(KC() used as the initial weights to maximize the objective function SKMI(X; Y 

in Eq. A.20. Eq. A.20 is inspired by Adaptive Lasso [ 131 ] to further push (() 

towards zeros. The pushing degrees are controlled by the rcgularization parame-

ters {Xj = I. Intuitively, a small weight has a large rcgularization 
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parameter, which pushes it further to zero. 

A new set of weights updated with gradient descent may violate the constraint 

I M j = 1. To constantly satisfy the constraint, the natural gradient dcsccnt in Eq. 

A.21 is used to update the weights iteratively, where rj is a small learning rate and 

紘,is the derivative of the objective function f w.r.t. w. The derivatives of Eq. A. 19 

and Eq. A.20 w.r.t. the weight vv, are shown in Eq. A.22. 

\y = vt.. + rjw (A.21) 

dwj 

dSKMI(X\Y) 
dwi 

= 2 7 V 

x ( / 

: 2 7 V 

x ( / - I v Ox > (X /+"£"/)—丨)V、’/ Ov,: + 2A 

(A.22) 

After SKFM maximizes Eqs. A. 19 and A.20, the dimensions of non-zero weights 

are identified as relevant features and retained in constructing the augmented ker-

nel matrix for further processing, while the dimensions of zero weights arc deemed 

irrelevant and removed from the datasct. 

A.3.3 Kernelized Least Angle Regression 

The objective function Eq. A.18 can be written in a simple form as Eq. A.23. It is 

assumed that both A and Y have been standardized, and so the implicit zero intercept 

Oi) is omitted. I f Eq. A.23 is compared with the objective function in Lasso Eq. 

A.24, an analogy can be immediately drawn between M and X. Therefore, LARS, 

which solves Lasso in Eq. A.24，is also able to solve Eq. A.23 efficiently. 
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argmin(K - Ma)' [Y - Ma) .v./.||a||i < / (A.23) 
a 

•drgxwm(Y-Xa)' (Y-Xa) .v./.||a||i < / (A.24) 

a 

The original LARS assumes that the features arc linearly independent. However, 

the kernel features are easily collinear, especially in discrete problems, because 

the values on an individual dimension are very likely to be identical and thus the 

corresponding kernel features arc equivalent. Therefore, special carc must be taken 

to remove collinear kernel features from the augmented kernel matrix. 

Algorithm A.2 outlines the major steps in the implementation of Kernelizcd 

LARS (KLARS) for SKFM. KLARS selects the kernel features itcrativcly and 

builds up the kernel regression and the coefficients of the kernel features stepwise. 

Initially, the regression is jUo = 0, the cocfficicnts are Oo = 0 and the residual be-

tween the regression and the response is r(> jUo. In each iteration, firstly the 

unselected feature of the maximal correlation with the currcnt residua丨 is identified 

and selected into the active feature set. Then the equiangular vector of the active 

feature set is determined to be used to regress the residual in the cuncnt iteration. 

The scale of the equiangular vector is calculated to determine the currcnt regression, 

and the coefficients arc updated accordingly. Meanwhile, the kernel features which 

are collinear with the active features are removed. When the norm of the residual 

converges below a predefined bound, the iteration terminates and returns a series of 

solutions of the coefficients. The details of the steps in Algorithm A.2 arc described 

as follows. 

With the initial regression fUo = 0 and the coefficients Oo 二 0, KLARS builds 

up {/i/} and {a,} iteratively by adding active kernel features. In an iteration, the 

residual is — jU, and the correlation of the kernel features with the residual is c 二 

M'iy — jii). For the set of indices x / which correspond to the active features, define a 

matrix of the active kernel features only as M,^ = (• • • s^M' •. • )/e(/，where .v) is the 
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Algorithm A.2: Kemelized Least Angle Regression 
Input: K,Y 
Output: a . 
the initial coefficients Oi) = 0, 
the initial regression Ho = 
the initial residual /'() = v — Ho； 

the initial activc feature set .0/ = 0； 

the initial candidate feature set — { / : 3 \ / / } ; 
/—I ; 
while ||.vH < £ do 

calcuiatc the correlations with the current residual c = M'{y — jU/); 
sclcct the feature with maximal corrckuion .c/ = ,c/Uargma\y •“； 

calcuiatc. the equiangular 11 (“'t l ic currcnt iictivc tea lures; 
remove the col linear kernel IcaUircs / aiul (he iictivc I'caturcs ' / lioin ihc catuliiliiie 
feature set (孜=- yjf. - .c/；". ‘ 

1； • 

calcuiatc the currcnt regression aiul uptlatc tlic cociriciciits 

sign of the correlation of the kernel feature \V with the residual. 1 he correlations 

of the active features with the residual arc the same as the maximmii of. c, i.e., 

= {7 : |c乂I = C}, where (’ = ///ajc(|c|). 

Since the active features have the same maximal corrclalion with the current 

residual, the new regression is perfbrnicd on the equiangular vector of the activc 

features. Let (《(/ =人二/人.(/ and A,^ 二 二/《t̂ ! where l.(/ is a long 

vector of 1，s. Therefore, the equiangular vector of the currcnt activc features is u^/ 

in Eq. A.25, where w.t/ 二 I is the cocffidcnts of the activc features in 

the equiangular vector. The vector is actually equiangular as can be verified that all 

the inner products of the active features with the equiangular vector arc equal, i.e., 

= 々 / 1 � / . In addition, the inner products of all the kernel features with the 

equiangular vector is a 二 (/• ‘ 

U c / = A / t / > v . c / = A / . C / 丨 丨 ！ ^ ( A . 2 5 ) 

With the current regression f j and the equiangular vector u，the next regression 

从 i s built up as jU,‘/i =从 ( / + )Vu.(/，where 7 is I he scalc of the equiangular 

vector used in the regression. The scale should be computed such that the maximal 
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correlation of the candidate kernel features with the residual in the next iteration 

is equal to the correlation between the residual and the active kernel features, i.e., 

— \ )) = "mxiJU'Y (y — jU", )). Since a correlation is considered with 

its absolute value, the maximal correlation occurs in cillicr of its positive or negative 

direction. Hqualing the correlations oTthc activc features and the correlations ol'the 

candidate Ibalures, KLAKS obtains the y on the ciirrciit equiangular vcctor u as 

Ikj. A.26, v\iicrc /"/•//{•••} | means the miiiimuni is lakcn oxer only the positive 

elements. 

r ( ’—（，+〔/ 1 ^ 

To ensure the active kernel features arc linearly independent, the rctlundaiil ker-

nel feat LI res must be removed IVoni the candidate kernel lea tu res AÂ  in atlvancc. Eq. 

A.26 not only determines the scale of the equiangular vector, but the kernel feature 

to be selected in the next iteration, i.e.，the feat lire of tlic minimum of l-q. A.26. In 

the augmented kernel matrix, it is possible that a certain candidate kernel feature is 

idcnlical to an existing active lea lure or the currcni equiangular vector. Such iden-

tical features would be scleclecl in the next iteration if they also inducc ihc y in Eq. 

A.26 or iliey have the same maximal correlation as the activc kernel tea lures. Ilq. 

A.27 determines the set of the indices / of ihc kernel features which may be sclcctcd 

in the active kernel features in ihc next iteration, where { / : = ( '} corresponds 

to the candidate kernel features which arc identical to ihc existing activc kernel fea-

tures or the equiangular vector. To check if the kernel features in I to be added arc 

linearly dependent with the existing active kernel features, they arc regressed with 

the existing activc kernel features. I f the norm of the residual of such a kernel fea-

ture in I is smaller than a predefined threshold, it is marked as a redundant kernel 

feature in X:劣.All the linearly dependent kernel features A'^ arc then removed fro in 

the candidate kernel feature set, namely AV = “ -
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’ r c — L'j (，+ (" 1 
/ = argmin<^ ——―} U { / : ==C] (A.27) 

jeY, - ^x/ + J >0 

The solution obtained at iteration / is the accunuilaicd sum ot all the coefficients 

in the previous iterations up to j as shown in Eq. A.2<S, where (Kj 二（“));"，is the 

/ih solution consisting of the cocnicicnts of all the kernel IcatLircs. Through the 

itcralioiis in Algorithm A.2, S K I M builds up a series of the so lu t ions o i l he learning 

CDellicicnls and thus forms a solution piiili. ‘ 

/ 

CCj 二 X r y-'A、、-c/a，./=[••" (A.28) 
k 1 

As inemionctl in Section A.2, there are two significant advantages ol'thc solution 

path. l-irsi, the solution path can be computed by KLARS very efficiently. I( is noted 

in [32J that w hen the dimensions are far more than the sample size, such as the ease 

of the N X mN augmented kernel matrix, the computation cost is only (){N'which 

is significantly smaller than the cost of the OLS solution w.r.t. the augmented kernel 

matrix, i.e.. 

Therefore, with much less computation than thai required for 

a single complete solution, KLARS obtains a series of solutions. 

Sccond，the solution path is picccwise linear w.r.t. ihc rcgiilarization piirameter 

t in Bq.A.23 and the solulion corresponding to other values of t can be linearly 

interpolated fVom the existing solution path directly. I:q. A.29 shows the Lagrangiaii 

form of the objective function in Eq. A.23, where X is the Lagrangian multiplier. 

Clearly, the optimal solution of Eq. A.29 (the root of its derivative) is a linear 

function of / as long as the activc kernel feature set remains intact, rhcrcfore, after 

the joints connecting the pieces of the solution path where the activc kernel feature 

set changes arc determined, the complete solulion path can be calculated from the 

solutions on the joints. 

a r g m i n ( K - M a ) ' ( K - M a ) + A(||a|| i - / ) (A.29) 
« 
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SKFM takes the advantage of the solution paili to scarch for an appropriate reg-

ularization parameter /,. In Algorithm A. l , SKFM uses cross-validation to evaluate 

tlic validation a m r of the soliilions oi a series ofclinercnt rcgularization parameters. 
/ 

After KLARS returns a solution path on the training part in a lokl, SKTM interpo-

lates the solutions .V/ = of a common set of rcgiilarizalioii paraniclcrs 
.17,1 • ‘ 

T = I he interpolated solulioiis are tested on the corresponding valielaiioii 
I Y* 1 • 

part and their validation errors arc rccorclcci us Ej = “ ' / ( " ) } , � . A I Icr all the live 
folds, the rcgularizafion paramcfcr w h i c h leads to the least total valitkiiion error, 

% 
c j " 

i.e., / = argniin^vX/ i (:]")，is selected as (he best rcgulari/alion parameter，which 

is used ill learning on ihc whole training clatasct.. ‘ 
* r ‘ * 

• 、 

. » 
A.4 Experiment 

'I he experiment tests SKI M on a few real classification problems, l.hc cx|icrinicn-

tal results verify thai SKFM not only produces comparable results to SVM on tlic 

testing clatascts, but it also identifies the important features relevant to the target 

class label. The better and more easily interpretabic results of SKI M may help to 

enhance the understanding the mcchanisins of biological organisms. 
參 

A.4.1 Diabetes Classification 
•， 

The classification problem on diabetes is to p red id whether the patient luivc Dia-

betic Nephropathy (DN), a kidney disease developed IVom diabetes. The diabetes 

dataset consists of 1386 rccorcis of the diabetes patients. A patient record is com-

posed of the clinical measurcmcnls, the Single-Nuclcotide Polymorphism (SNP) 

information and the labels of whether the patient has DN. There arc 99 attributes, 

among which 23 attributes are the clinical measurciiiciits and 76 aliributcs are the 

SNPs. There are two class labels: the first label is an earlier DN diagnosis which 
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can be either positive or negative, and the second label is a combination of an ear-

lier diagnosis and a later diagnosis. The sccond label has four possible values as 

Ibllows: 

1. The {\\o diagnosis are iu)ii-I)N. 感 

\ 

2. The earlier diagnosis is I)N (and so is the later diagnosis). 

The enrlicr diagnosis is non-DN, but the later diagnosis is DN. 

4. The laid" diagnosis is iinavLiilable. 

I'hc ex peri men I rcinovcs ihc second class label and uses the first class label as 

the target, since almost all I he patient rccords have the available value in the first. 

"Class label. However，the first class In be I is an inaccurate neasure of the medical 

condition of the patient, since n non-DN patient in the first diagnosis may become 

I)N ill the second diagnosis even though the SN P information of the patient remain 

the same. Therefore, the first class label in the original datasct is cicansed and three 

new data sets are obtaiiiOcl for the expcriiiiciit as follows: 

1. The patient records whose first class.labels arc unavailable arc removed from 
I 

the original dalaset, and the rcsl of tlie patient rccords then bccomc the first 

datasel. 

2. The patient rccords which are non-DN in the first diagnosis and DN in the 

‘ second diagnosis arc removed from the first dalaset, and the rest of the patient 

records then become the second datasct. 

3. Ill the first dalaset, the'first class labels of the patient rccords who arc non-

DN ill the first diagnosis' but change to DN in the second diagnosis arc also 

considered to be DN, and all the patient records then become the third dataset. 

SKl'M and LibSVM are tested on the three datasets. LibSVM [24] is a popular 

implementation o fSVM, which uses cross-validation to choose the learning param-

eters. liacli dalaset is separated into training and testing sets using 5-fold partition, 
• ‘ ‘ . 
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• Diabclcs 1 Diabetes 2 Diabclcs 3 
Accuracy % I'-scorc % Accuracy % F-score % Accuracy % 1-score % 

Told SKI-M SVM S K I M SVM SKI-M SVM SKI-M SVM SKI-M SVM S K I M SVM 
1 86.6 4()J 40.3 K6.«) X4.0 ()l.() 55.2 7»).() 7(>.S M J 57.3 
2 77.0 KO.K 7 ‘ "、 43.0 77.4 78.7 51.3 43.5 71.7 (»H.5 55.7 45.3 
3 KO.O 7().7 44.4 My4 ?').<) 81.6 52.4 56 J , 72.K 72.x .SX.6 52.2 
4 S').') 89.1 46.2 40.0 KK.I K7.7 4').l 51 .(> K.V3 KO.S 55.K 50.5 
5 92.4 02.4 4.V2 My.4 04.4 «)2.7 5.V3 43.« X7.K K(..3 50.0 44.1 

AVCi 85.4 H5.7 45.0 41.0 K5.3 K4.0 5.V4 50.1 78.') 77.0 5().3 4').«) 
S.I). (、.2 5.4 2.') 5.4 (、.K 5.3 4.5 6.1 6.8 6.') 4.2 5.4 

Tabic A.l ： The comparison of the results of SKFM and SVM on the three diabetes 
datasets. Each dataset is partitioned using'5-fold cross-validation. The individual 
performance on each partition and the average performance on all the partitions arc 
included 

and thus the algorithms are cxecutcd five times on each dataset. Both SKFM and 

SVM use the gagssian kernel in Eq. A.7, whose parameter a is fixed in SKFM 

but needs to be tuned in.LibSVM using cross-validation. Tabic A.l compares the 

results of SKFM and LibSVM on the three datasets, where the total accuracies and 
’ « 令 

the positive class F - score arc included. In medical classification problems, the 

accuracy on the positive class is obviously more important than the accuracy on the 

control class. In addition, the diabetes datasets are unbalanced with only less than 

20% of the patient records being DM, and thus the accuracy on the positive eases is 

likely to be traded off with the accuracy on the negative eases, Eq. A.30 defines the 

positive class F — score, where the operator | • | is the cardinality of the set. 

••s 

Precision 

Recall 

F — score 

true positives 
true poshives U false positives 

true positives 
true posit ives iJ false negatives 

Precision * Recall 2 x 
Precision + Recall 

(A.30) 

' ' T h e average accuracies 
1 

Except for the first dataset. 

of SKFM arc quite competitive with those of SVM. 

the average accuracies of SKFM arc better than those 
« 

of SVM. The advantages of the F — scores of SKFM oyer those of SVM arc even 

more obvious, where the average F 一 scores of SKFM are a few per^ntagcs better. 
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Figure A.3: The weights of the attributes and the counts of the attributes selected in 
the classification of the first diabetes datasct 

t 
This can be explained by the reason that SKFM removes the irrelevant feature w.r.t. 

the target, and thus the resulted model may be more consistent with the unknown 

pattern of diabetes. For both algorithms, the average accuracies and 厂—scorcs on 

the first and second datasets are more or less the same. However, the F - scores of 
» 

SKFM and SVM are enhanced after the ambiguous cases, i.e., those of non-DN in 

the first label while DN in the second label, are removed from the first dataset. This 

means that the ambiguous patient cases arc indeed misleading in the classification. 

However, if their first class label are manually set to DN as in the third dataset, the 

average accuracies of both algorithms drop significantly. This is possibly because 

that their clinical attributes might change a lot in the second diagnosis, and thus 

those in the first diagnosis are outdated. 

The resulted models of SKFM is also able to show which attributes arc used 

and how important they are. Fig. A.3 shows the selected features of SKFM on 

the first dataset of diabetes, and the results on the other two datasets are similar. 
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Note according to the structure of the augmented kernel, a resulted model may 

contain multiple kernel features corresponding to the same original attributes. On 

the other hand, it may also contain multiple kernel features parameterized by the 

same data point. Two plots are shown in Fig. A.3. The first plot shows the sums of 

the kernel feature coefficients corresponding to the original attributes. The second 

plot show the counts of the selected kernel features corresponding to the original 

attributes. Most of the 23 clinical attributes are included in the model. This is 

expected, since the DN patient should show some clinical pattern. Most of the 

SNPs are unimportant in the DN classification except for a few ones, such as VGBi, 

VDR2i, SELPli, LTAfand ICAMl i , which may be genetically related to DN. 

A.4.2 Hepatitis B Virus Classification 

Hepatitis Virus B (HBV) classification is to predict whether a patient has HBV 

based on a segment of his/her DNA sequence. The DNA sequence is a string of 

four possible nucleotide bases, i.e., {/I,C, G, T}. Due to the measurement noise, the 

nucleotides on some positions arc ambiguous, as they can be one of two or even 

three nucleotide bases. The datasct collccted contains 88 DNA sequences, and each 

sequence is 3214 bp long. The problem is difficult as it is very high-dimensional 

compared to the number of the samples. 

SKFM uses the string kernel for this problem. It puts a 100 bp window on a 

DNA sequence, and slides the window from position 1 till position 3115 = 3214 -

100+ 1. The subsequence inside a window is treated as a dimension of the data 

sample, and so a sequence has 3115 dimensions. The kernel between two subse-

quences is the product of the Gaussian kernels on the 100 nucleotides. A Gaussian 

kernel on a nucleotide is calculated with the 1 -out-of-4 encoding of the nucleotide 

as the kernel argument. 

As the diabetes classification, SKFM and SVM are tested on the HBV dataset 

using 5-fold partition. The accuracy and the positive class F - score on the testing 
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Accuracy % F-score 
SKFM SVM SKFM SVM 

1 70.6 76.5 61.5 66.7 
2 58.8 52.9 53.3 50.0 
3 52.9 41.2 42.9 16.7 
4 70.6 70.6 61.5 61.5 
5 65.0 60.0 53.3 50.0 

AVG 63.6, 60.2 54.5 49.0 
S.D. 7.7 14.0 7.7 19.5 

Table A.2: The comparison of the results of SKFM and SVM on the HBV dataset. 
The dataset is separated into training and testing set using 5-fold partition. The 
individual performance on each partition and the average performance on all the 
partitions arc included 

set are reported in Table A.2. Both the average accuracy and the F - score of SKFM 

are better than those of SVM, and their standard deviations are smaller. SKFM , 

is also able to identify the genetic information relevant to HBV. Fig. A.4 shows 

the weights and counts of the subsequences selected in SKFM. Among the 3205 

subsequences, only a small portion of the subsequences are selected, and most of 

the selected subsequences have small weights and counts in the regression function. 

Therefore, it can be conjecturcd that the subsequences of large weights and counts 

may contain the HBV-related genetic information. 

A.4.3 Colon Cancer Classification 

Colon cancer classification is to distinguish cancer from normal tissue using mi-

croarray data. The data contains 22 normal and 40 cancer tissues, and cach tissue 

contains 2000 features. The dataset is preprocc^sed with the following steps: tak-* 
ing the log of all the values，standardizing the sample vectors and then the feature 

vectors, passing the values through tanh function to diminish the effect of outliers. 

The datasets are prepared with 100 random partitions, and each partition contains 

50 training samples and 12 testing samples. Since it is a high-dimensional problem 

with real-valued features, it is better to use linear regression to mitigate the curse of 
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Figure A.4: The weights of the subsequences and the counts of the subsequences 
selected in the classification of the HBV dataset 

ARD RFE Fisher SKFM 
#eiTor 2.90 2.84 2.68 2.25 

#feature 8.55 4.25 14.41 10.02 

Table A.3: The results o fARD, RFE with SVM, Fisher score with SVM and SKFM 
on the Colon cancer classification. The number of wrong predictions and the num-
ber of selected features are included 

dimensionality, and so the linear dot product is used as the kernel function. 

The results of three comparing algorithms are quoted from [75]: Automatic Rel-

evance Determination (ARD) [75] uses the Bayesian analysis to estimate the coef-

ficients of a linear regression function, and the coefficient of an irrelevance featu 
•領 

vanishes when its prior variance approaches zero. Recursive Feature Elimination 

(RFE) [44] trains a series of SVMs while features are successively eliminated dur-

ing training. In addition, [40] uses Fisher score to rank and select features prior to 

training with SVMs. ‘ ^ 

Table A.3 shows the average results of ARD，RFE with SVM, Fisher score with 

SVM and SICFM on the colon dataset. The number of wrong predictions among the 

12 testing samples and the number of selected features are included. Clearjy, SKFM 

compares favorably to other algorithms on the number of wrong predictions, and it 
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Figure A.5: The weights of the subsequences and the counts of the subsequences 
selected in the classification of the colon dataset 

uses a modest number of features in the learning. Fig. A.5 shows the coefficients 

and the counts of the 2000 features in the learning function among the 100 random 

wi partitions. Surprisingly, there is a single feature which has a significantly larger 

coefficient than the others in the first plot. There is also a single feature which is 

used in almost all the partitions. It seems that these two features may have some 
• * 

medical meaning to the colon cancer., 

A.4.4 Splice Site Classification 
« 

The splice site classification problem is to classify the DNA sequences containing 

acceptor splice sites from those of no splice sites. After a DNA sequence is tran-

scribed, splicing removes the introns from the RNA and joins the remaining exons 

into the messenger RNA. Splicing takes place on the sites which separate the introns 

and the exons. The task of SKFM for this problem is not only to classify the DNA 

‘sequences successfully, but also tells the sites involved in the splicing process. 
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The C. elegans dataset [98] consists of 262421 sequences, and only 15507 of 

them contain a true splice site each. Following the website of the multiple kernel 

learning (MKL) [98], the bootstrapping test is adopted in the experiment. 100 boot-

strap datasets are sampled randomly from the original complete dataset. A bootstrap 

dataset contains 1500 sequences for training and 10000 sequences for testing. 

The average Area Under Curve (AUC) of MKL is 97.5%. If SKFM uses a 

single nucleotide as a feature, the average AUC of the resulted classifier is 97.3%. 

I f SKFM uses the sub-sequence in a 10 bp sliding window as a feature, the average 

AUC of the resulted classifier increases to 97.9%. The difference between the two 

kinds of features and the resulted performances of SKFM shows that there may be 

a joint effect of the nucleotides in the splicing process. 

Fig. A.6 shows the weights and the counts of the positions sclcctcd by SKFM. 

SKFM clearly identifies a few positions which seem to be vital to identify the splic-、 

ing sequences. Compared to Fig. A.7，such positions also have high relative en-

tropies in the splicing sequences over the non-splicing sequences. This is consistent 

with the biological knowledge of the splicing process. The nucleotides around the 

splicing site are relatively conserved so that the splicing site can be rccognized by 

the spliceosome. 

A.5 Discussion 
、 

This appendix proposes and implements a new kernel learning method, i.e.. Sparse 

Kernel Feature Machine (SKFM). SKFM performs (kernel) feature selection and 

kernel learning simultaneously. SKFM generates a solution path w.r.t. the rcgu-

larization parameter, which enables the automatic selection of the appropriate reg-

ularization parameter. Instead of using the kernel functions of all the dimensions, 

SKFM equips a kernel function and forms a kernel feature for each original feature. 

An augmented kernel matrix is constructed by concatenating all the kernel matrices 
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Figure A.6: The weights of the position! and the counts of the positions selected in 
the classification of the C. elegans dataset 

of the individual features. From the selected kernel features in the augmented ker-

nel matrix, SKFM can infer the relevant features and the relevant values on those 

features to the class target. 

Kemelized Least Angle Regression (KLARS) is applied on the augmented ker-
r 

nel matrix to perform step-wise linear regression in the feature space by adding 

features iteratively. Collinear kernel features are detected and removed from the 

set of the kernel features in the iterations. KLARS forms the solution path of the 

regression coefficients of the kernel features which is piece-wise linear in the regu-

larization parameter. From the solution path, SKFM is able to interpolate the solu-

tions under different regularization parameters and chooses the best regularization 

parameter in cross-validation. Since the kernel features are added in the solution 

path in the order of their importance, a good regularization parameter may keep the 

important kernel features and remove the irrelevant kernel features. 

In the experiments, SKFM has been tested on four real medical classification 
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Figure A.7: The relative entropies on the positions of the splicing sequences over 
the non-splicing sequences in the classification of the C elegans datasct 

problems，i.e., Diabetes, Hepatitis B Virus, Colon Capcer and C. elegans. The re-

sults verify that SKFM not only outperform Support Vector Machine (SVM), but it 

also point out the most important features, including the clinical and genetic infor-

mation, leading to the diseases. 
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