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In this dissertation, the N-bar rotatability laws are extended to N-bar chains containing 

prismatic joints. The extension is based on the principle that a prismatic joint may be regarded as 
a revolute joint located at infinity in the direction normal to the sliding path. The extension 
provides a consistent method to understand all aspects of linkage rotatability disregarding the 
existence of prismatic joints.  

 
Mobility of linkages refers to the problems concerning branch, full rotatability, singularities, 

and order of motion. By using the stretch rotation to one of the four-bar loop, a Watt six-bar 
linkage is equivalent to a Stephenson six-bar linkage. The equivalency offers a simple and clear 
visual explanation on the formation of branches and sub-branches and how Watt and Stephenson 
linkages differ in mobility. 

 
The concept of virtual loops is presented to describe the essential geometry behind spatial 

linkages. Spatial group 1, 2, 3, or 4 linkages can be regarded as a virtual spherical linkage formed by 
one or more virtual loops. From the viewpoint of linkage mobility and displacement analysis, 
simple RCRCR and group 2 linkages with parallel joint axes are virtually equivalent to 
Stephenson six-bar linkages. The concept of virtual loops is subtle but significant. It establishes a 
unified view on planar, spherical, and spatial linkages and a useful model to view or even 
understand complex spatial linkages. 

 
The current use of branch points for branch identification is limited to linkages with simple 

topology and singularity conditions, such as Stephenson-type linkages, which are simplified 
versions of group 2 mechanisms. In this dissertation, branch points in Stephenson-type linkages 
are generalized to explain and define the interaction between two virtual five-bar loops. The 
discovery of tangent points and the concept of generalized branch points offer an explicit 
explanation and prediction about the branch formation of spatial group 2 linkage. 

 
The mobility of spatial group 2 linkages is governed by two fundamental equations and how 

they influence each other. Under the concepts of virtual loops and generalized branch points, it 
becomes possible to explore the mobility theory of general group 2 linkages and other complex 
linkages.
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 

 

Linkages and manipulators are usually synthesized or programmed to navigate through 

discrete positions over a region. When a linkage is synthesized, it is necessary to make sure that 

the linkage has adequate mobility for a continuous and smooth operation. The ability for a 

linkage to reach the desired discrete positions typically refers to the ability to overcome or avoid 

discontinuity and singularity and to navigate in a desired and coordinated manner.  

Fig. 1.1 shows a gear five-bar linkage, which is used to generate a tool path [1]. For a closed-

loop linkage or manipulator, the mobility is an intrinsic property of the linkage geometry and 

cannot be altered by changing the environment or shaping the links and joints. The problems 

with discontinuity and singularity exist in single degree-of-freedom (DOF) linkages. In a linkage 

synthesis process, the mobility of numerous design candidates must be rectified. Since linkage 

synthesis generally involves massive design candidates, the synthesis task may become 

prohibitive without an intelligent mobility rectification method. 

The typical application of linkages and manipulators is displayed on robots. Robots are 

widely used, especially in hazardous environments or in operations requiring accuracy and 

consistence that people easily find tedious, such as welding, painting, processing, assembly, and 

inspection. A robot manipulator consists of joints and should reach an object or any required 

point in workspace. The workspace of a manipulator refers to the accessible area of the end 
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effector (Figure 1.2). The joint movements (translation / rotation) are represented by joint 

variables, describing the robot configuration. 

 

 

Figure 1.1 A five-bar tooling mechanism 

 

 

(a)                                                              (b) 
Figure 1.2 (a) An ABB IRB6640-185/2.8 robot and (b) its workspace  
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Although mobility issues occur only in closed loop linkages, a serial or parallel manipulator 

will form a closed loop when the end-effector reaches a target position, travels along a 

designated path or surface, or cooperates with others. For example, when a computerized 

numerical control (CNC) machine is working on a workpiece (a CNC machine is regarded as a 

robot manipulator), a closed loop chain will be formed and the mobility issue may occur. A 

similar situation may be found during the coordination robot arms when two manipulators are 

capable of a synchronized operation, such as material handling and assembly, servicing, and 

maintenance in remote hazardous places.  

The problems with linkage mobility were recognized decades ago, but they remain one of the 

most difficult problems in linkage analysis, synthesis, and programming. For any linkage or 

manipulator, it is highly desirable that a single decisive step answers the questions of if and how 

the desired positions can be reached in a favorable manner rather than a decision made through 

trial and error and a possibly endless search process. The tremendous interest in the mobility of 

four-bar linkages and the workspace/singularity of manipulators in recent decades were efforts 

motivated by such desires. 

For many decades, the understanding of the mobility of conventional closed-loop linkages had 

been mostly restricted to planar and spherical four-bar linkages. The mobility study of four-bar 

linkages may be traced back to the discovery of the Grashof criterion [2], which was widely used, 

proved, and elaborated several decades later through approaches such as triangular inequality 

condition, transmission angle, and polynomial discriminant [3-8].  There were also attempts to re-

derive the Grashof criterion through the intersection of the workspaces of two open-loop chains 

taken apart from a closed-loop four-bar linkage [9]. Other works on the mobility of four-bar 
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linkages include the singularity analysis and the synthesis of four-bar linkages based on their 

overall mobility [7, 10-14]. 

Traditionally, mobility issues were treated by considering the point positions on a coupler 

curve (i.e., the path traced by a point fixed in the coupler link of a mechanism) [15-21] or by 

using the discriminant function [22-25] based on the input and output relationship. There appear 

in the kinematics literature numerous theorems concerning the properties of coupler curves, 

whose geometric and algebraic properties have important implications on mechanisms synthesis, 

such as path generation or rigid body guidance problems [26]. A numerical method was 

presented to evaluate the performance of a path-generating mechanism with the use of coupler 

curves theorem [27]. However, the complexity of coupler curves unavoidably adds an 

unnecessary complexity to the problem. On the other hand, the research on the format of the 

input and output relationship is limited by the use of the discriminant function only.  

A significant advancement in linkage mobility are the N-bar rotatability laws [28-30].  In the 

N-bar rotatability laws, the rotatability of a linkage is viewed as the variation of a polygon rather 

than a linkage. Therefore, the variety of mobility considerations due to different linkage inversions 

is eliminated. In fact, the N-bar rotatability laws were simplified as the full extension of the 

existence condition of triangles, i.e. the length sum of two sides is greater than the length of the 

third side in a triangle. The joint rotatability in a chaotic N-bar chain suddenly becomes easy to 

understand. The N-bar rotatability laws offer the first simple, complete, and systematical 

explanation for the rotatability of any N-bar chain (N ≥ 3) connected with revolute joints, in which 

the Grashof criterion becomes a very special case.  

Later on, the Grashof criterion was extended to spherical four-bar linkages [9, 14, 31-36]. 

Generally, for geometric properties found in planar linkages, similar properties can also be 



 5

expected in spherical linkages. The success in planar and spherical four-bar linkages was later 

extended to all bimodal linkages [12, 22, 24, 37-39].  

The equation relating the output and input of a bimodal linkage can always be expressed in 

quadratic form. Based on the discriminant function of the quadratic equation, an algorithm can be 

derived for the mobility identification of any bimodal linkages, including RSSR, RRSS, RSCR, 

RSCP, and RCCC linkages (R, S, C, and P refer to the revolute, spherical, cylindrical, and 

prismatic joints used in the linkages) [22, 24, 37, 40, 41]. Like planar four-bar linkages, RSSR 

can always be classified into three classes according to the possible number of branches [40]. 

The RRSS linkage is an inversion of the RSSR linkage, and the classification strategy for the two 

is essentially identical. The geometric and algebraic properties of the coupler curves of the RSSR 

and RCCC mechanisms were studied and presented [42, 43]. The coupler curve equations were 

derived for the spherical four-bar and the RCCC mechanism [44].  

The mobility problem, particularly in spatial mechanisms, becomes increasingly difficult 

with the addition links and an increased linkage complexity. Because of the complexity of spatial 

mechanisms, an undesirably lengthy mathematical treatment in considering the effects of all 

links and joints parameters is required while simultaneously avoiding extraneous roots. Each 

spatial linkage connected with revolute or cylindrical joints has a spherical indicatrix [45], which 

is equivalent to the case when each joint offset and the skew distance between each pair of joint 

axes diminishes. Realizing the large variety of spatial linkages and the similarity shared by single 

loop spatial mechanisms, Duffy classified them into four groups, namely as group 1, 2, 3, and 4 

linkages [45, 46]. Duffy’s classification is very essential for a systematic mobility study on 

spatial mechanisms.  
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Table 1.1 Classification of spatial kinematic chains 

Group Number of links Mechanism 

1 4-7 R-3C, 2R-P-2C, 3R-2P-C, 4R-3P 

2 5-7 3R- 2C, 4R-P-C, 5R-2P 

3 6-7 5R- C, 6R-P 

4 7 7R 

 

The aforementioned RSSR, RRSS, RSCR, RSCP, and RCCC all belong to the category of 

group 1. The mobility analysis of group 1 mechanisms is relatively simple, because the input-

output displacement equation leads to second degree polynomials in terms of the input joint 

variable, i.e., an input given to a joint will lead to two possible linkage configurations.  

The number of possible configurations corresponding to one input increases as the linkage 

topology gets complicated. On a general group 2 mechanism, the number of configurations per 

one input may be as high as eight, as its input / output displacement equation is an eighth degree 

polynomial. In other words, there appear many limit points on the travel of the mechanism, 

which in turn makes a mobility analysis difficult [39]. On the other hand, a linkage may have 

several configurations to reach a designated position. Each linkage configuration leads to 

different mobility properties. A linkage must reach each position with a proper configuration. So 

far, little progress has been achieved on group 2 mechanisms. 

Although linkage synthesis or analysis provides information at discrete positions, it offers 

little or no clue about how to relate the configurations at different positions or even if these 

configuration may be related to realize a desired continuous and smooth motion. Because 

discontinuities and singularities are common among linkage configurations, a black box type 

blind search or an optimization process is not only difficult and tedious but also unreliable. The 

problem is further complicated if the motion must be accomplished in a specific manner. 
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A few researchers tried to solve the branch problem on group 2 or even more complex single-

DOF spatial mechanisms. A search technique was applied to find the assembly configurations (or 

branch) of RRRCC, RRCRC, RRRRCR, and RRRRRRR spatial mechanisms [47, 48]. The 

process is similar to the plot of an input/output displacement equation, which can be directly 

obtained under Duffy’s closure equation [45, 46]. Based on the mathematical property of quartic 

expression, an automatic generation algorithm was used to identify branches of general RCRCR 

where one input corresponds up to four outputs [49].  

When the offset is zero at the revolute joint between the cylindrical joints, general RCRCR 

degenerates into a special case, simple RCRCR. The conditions were presented for determining 

the rotatability of input and output links of simple RCRCR [25], although the conditions are 

extremely complicated. The successful approach is displayed in [50], in which the simple 

RCRCR mechanism is regarded as a spherical 5R linkage with one cylindroid surface constraint 

formed by a virtual bimodal linkage. Another special case occurs when two adjacent axes are 

parallel in group 2 mechanisms. In such a situation, the inherent 5R indicatrix degenerats into a 

4R indicatrix. From the rotatability point of view, simple RCRCR and group 2 mechanisms with 

parallel axes are similar to Stephenson six-bar linkages and their mobility issues can be solved 

with the same approach. Details will be explained in Chapter 2. 

The algebraic input-output displacement equations of degree four was obtained on spatial 

five links RRSRR [51]. The eighth degree polynomial for RRSRR mechanism is derived from 

the input-output displacement equation, and a total of 12 limit positions of the input link are 

obtained by calculating the roots of the discriminant of the quadratic solution of the mechanism 

in [39]. However, the mobility analysis is only available for a special case when the eighth 

degree polynomial input-output displacement equation is reduced to a quadratic equation. The 
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RRRSR spatial five-bar mechanism was investigated [52]. The input-output displacement 

equation was derived in quartic form and the polynomial describing the coupler curve was at 

most of the 32nd order. This is another example that the complexity of mobility analysis will be 

increased with the use of coupler curve theorem. 

 

1.2 Organization 

 

Most mobility researches focused on a specific linkage type. In view of the large variety of 

linkages, one may lament how little has been resolved. Focusing on group 2 mechanisms, this 

dissertation seeks to describe the essential geometry hidden behind spatial linkages. A unified 

view on planar, spherical, and spatial linkages and a useful model to view or even understand 

complex spatial linkages will be established.  

This dissertation is composed of eight chapters. The introduction is presented in Chapter 1. In 

Chapter 2, the N-bar rotatability laws are extended to N-bar chains containing prismatic joints. In 

Chapter 3, the stretch rotation is applied on Watt six-bar linkages. By using the stretch rotation to 

one of the four-bar loop, a Watt six-bar linkage is equivalent to a Stephenson six-bar linkage.  

Chapter 4 addresses the simplified versions of spatial group 2 linkages: simple RCRCR and 

group 2 linkages with parallel joint axes. Under the concept of virtual loops, they can be modeled 

as Stephenson-type linkages where findings for planar Stephenson linkages can be used directly. 

The current use of branch points for branch identification is limited to Stephenson-type linkages. 

In Chapter 5, the concept of branch points is generalized to explain the branch formation of 

spatial group 2 linkages. In Chapter 6, the mobility analysis is carried out based on the similarity 

of the mobility features rather than the specific or individual linkage structure. A branch 
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rectification scheme is presented and demonstrated with examples. Chapter 7 addresses the JRS 

of multiloop linkages. The extension of JRS to multiloop linkages is helpful for the explanation 

and prediction of the branch formation of complex linkages, particularly spatial linkages. 

Chapter 8 contains the conclusions of the study.  

To make it easier to read, each of Chapters 2 through 6 is arranged as an independent 

research paper. 

1S
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(a) Planar                     (b) spherical                              (c) spatial 
Figure 1.3 Planar, spherical, and spatial linkages 
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CHAPTER 2 

MOBILITY CRITERIA OF PLANAR SINGLE-LOOP N-BAR CHAINS 

WITH PRISMATIC JOINTS1 

 

ABSTRACT 

 

The paper presents the extension of the N-bar rotatability laws to N-bar chains containing 

prismatic joints. The extension is based on the principle that a prismatic joint may be regarded as 

a revolute joint located at infinity in the direction normal to the sliding path. The effects of long 

and short links, full rotatability, linkage classification, and the formation of branches and sub-

branches are discussed. The extension provides a consistent method to understand all aspects of 

linkage rotatability disregarding the existence of prismatic joints. The results are demonstrated 

by several examples.  

                                                 
1 Published by the ASME 2008 International Design Engineering Technical Conferences & Computers and 
Information in Engineering Conference (IDETC/CIE), August 3 – 6, 2008, Brooklyn, New York, USA. 
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2.1 Introduction 

 

The Grashof Criterion [1] is well known for the ability to predict the full rotatability of four-

bar linkages. The N-bar rotatability laws proposed by Ting [2-5] offer a systematic treatment for 

almost all aspects of the mobility issues, such as branch, sub-branch, full rotatability, 

singularities, and order of motions, regarding single-loop N-bar chains connected with revolute 

(R) joints exclusively. Recently, Gao et al., introduced the concept of virtual link to investigate 

the mobility of five-bar 4R1P-type linkages [6] and that of N-bar linkages containing one 

prismatic (P) joint [7-8]. When the P-joint variable is given, the length of a virtual link can be 

determined and the N-bar rotatability laws govern the rotatability of the linkage. Basically, a 

prismatic joint may be regarded as a special revolute joint located at infinity in the direction 

normal to the path of the slider. Hence the applicability of the N-bar rotatability laws to N-bar 

chains containing any number of P-joints is expected. The question, which is the focus of the 

paper, is how to express it in the most general and simplest manner. Essential elements of the N-

bar rotatability laws are briefed below.  

In the following discussion, λ i (i = 1, 2, 3, ---, N) will be the link lengths of an N-bar chain 

and λ1 ≤  λ2 ≤  λ3 ≤  λ4 ≤  -----λN, where N ≥ 3. The link numbers represent the magnitude 

order of the links rather than the order of connection.  

Long and short links: A link in a single-loop chain may be conveniently distinguished as a long 

or short link. The concept of long and short links offers simple and better understanding to the N-

bar rotatability laws. A link, say link i, is called  

(a) a short link if (λN + λi) ≤ (the total length of all other links), or 

(b) a long link if (λN + λi) > (the total length of all other links).  
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Revolvability: The ability of full revolution at a joint is a main concern in a closed loop chain. 

Two links may have full revolution with respect to each other if and only if the angle between 

them can reach 0° and 180°.  

A short link may have a full revolution with respect to any link in the loop while a long link 

cannot have a complete revolution with respect to any other long link. Therefore, a joint on a 

short link is a revolvable joint while a joint between long links is a non-revolvable joint.  

Full Rotatability: An N-bar linkage has full rotatability if and only if  

(1) (λN + λ1 + λ2 + - - -+ λN-3) < (λN-1 +λN-2), and 

(2) there is one and only one non-input joint between any two long links.  

Classification: Single-loop N-bar chains are classified into three classes.  

1. Class I chains if  (λN +λ1 + λ2 + - - -+λN-3) < (λN-1 +λN-2),  

2. Class II chains if (λN + λ1 + λ2 + - - -+ λN-3) > (λN-1 +λN-2), 

3. Class III chains if (λN + λ1 + λ2 + - - -+ λN-3) = (λN-1 +λN-2). 

Branch: A branch (or circuits [9-11]) refers to a way of chain construction of a linkage or a 

configuration space, in which configurations may be transformed from one to another 

continuously.  

Because two long links may become collinear or parallel only in Class II chains, class I N-

bar chain has two branches while a class II chain has only one branch. A class I chain contains 

three long links exactly. In a class II chain, no short link exists in the case with N = 4 and the 

number of short links may range from 0 to N if N ≥ 5.  

Invariant link rotatability: The rotatability between any pair of links in single loop chains formed 

by the same set of links is independent of the order of link connection [12]. 
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2.2 Single-Loop N-Bar Chains with One Prismatic Joint 

 

The principle of invariant link rotatability is also true with an N-bar chain containing a 

prismatic joint.   

Link lengths: A general single-loop N-bar chain with a prismatic joint is shown in Fig. 2.1(a). Let 

λ i ( i = 1, 2, 3, ---, N-2) be the (finite) link lengths between revolute joints and λ1 ≤  λ2 ≤  λ3 ≤  

λ4 ≤  -----λN-2, where N ≥ 3. It is noted that the effect of a prismatic joint in a linkage is 

essentially determined by the direction of the sliding path. The location of the sliding path does 

not affect the kinematic property of the linkage. Examples are shown in Fig. 2.1, in which the 

sliding paths in (a) and (b) are oriented in the same direction and hence both of them represent 

the same kinematic chain. For two links connected by a prismatic joint, the link and joint 

parameters can be uniquely represented, respectively, by h and s as shown in Fig. 2.2, in which 

AB is the hypotenuse of the right triangle ABC with AC in the direction of the sliding path and 

AC = s, BC = h.  In Fig. 2.2, s is a joint variable and h is a link parameter. If the value of s is 

given, the link and joint rotatability of the remaining loop can be determined by the N-bar 

rotatability laws [2-5]. This paper presents the supplement to the N-bar rotatability laws when 

one or more revolute joints are replaced by prismatic joints. The rotatability of a joint in an N-bar 

chain is the intrinsic property of the chain.   

In the following discussion an N-bar chain refers to a chain containing revolute joints 

exclusively while a chain containing a P-joint will be referred as an N-bar (1P) chain.  
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(a) (b)    (c) 
Figure 2.1 Representation of an N-bar chain with a P-joint 

Assemblability condition: A single-loop N-bar (1P) chain may be regarded as a chain containing 

two links with very long (fictitious) link lengths (Fig. 2.1(c)) oriented in the direction 

perpendicular to the sliding path and connected by a revolute joint. The length difference 

between the two fictitious long links is h. Based on the N-bar rotatability laws, the following 

criterion can be derived. 

A set of links with link lengths λ1, λ2, λ3, ---, λN-2, and h can form a planar single-loop N-

bar (1P) chain, if and only if h ≤  λ1 + λ2 +---+ λN-2. 

For N = 3, the N-bar chain is reduced to a right triangle. One may note that the above 

assemblability condition reflects the right triangular inequality condition. To form a right 

triangle, for any s value, the hypotenuse λ1 cannot be less than h. For N > 3, the above inequality 

equation represents the condition of forming a right triangle ABC in the N-bar chain. 

Long and short links: A link between revolute joints in an N-bar (1P) chain can be distinguished 

as a long or short link. A link, say link i, is called  

(a) a short link if  ( h + λi) ≤  (λ1 + λ2 +---+ λi-1 +λi+1 +---+λN-2) ,  

i.e., (h + λi) ≤  (the total length of all other link parameters), or  
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(b) a long link if ( h + λi) > (λ1 + λ2 +---+ λi-1 +λi+1 +---+λN-2),  

i.e., (h + λi) > (the total length of all other link parameters). 

The two links connected by the P-joint may be regarded as infinite (long) links connected by 

an R-joint at infinity. In the following discussion, a long link will refer to a finite long link and 

an infinite long link will refer to a link connected by the P-joint. 

Link and joint revolvability: The property of long and short links is also valid to N-bar (1P) 

chains.  In an N-bar (1P) chain, a short link may have a full revolution with respect to any link in 

the loop while a long link cannot have a complete revolution with respect to any other long link. 

There is no rotatability between the two infinite long links. A revolute joint may allow a 

complete revolution only if it connects a short link. 

Classification: Single-loop N-bar chains with a prismatic joint can be classified into three 

classes.  

1. Class I chains if  (h + λ1 + λ2 +---+ λN-3) <λN-2, 

2. Class II chains if (h + λ1 + λ2 +---+ λN-3) >λN-2, 

3. Class III chains if (h + λ1 +λ2 +---+ λN-3) = λN-2.  

A Class III chain may form an indeterminate configuration with all links lie on a straight line 

normal to the sliding path. For N = 4, this is the “change-point” configuration.  

 Rotatability between long links: In a Class I chain, any pair of long links can never become 

collinear or parallel and therefore, the oscillation angle between any pair of long links is less than 

180°. On the other hand, in a Class II chain, two long links may become collinear or parallel. 

Therefore the oscillation angle between a pair of (finite or infinite) long links of a Class II chain 

is less than 360°.   
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Uncertainty singularity: Like a single-loop N-bar chain without any prismatic joint, any single-

loop N-bar (1P) chain has (N-3) degree-of-freedom and requires (N-3) inputs.  

There are always three passive (non-input) joints. If the P-joint is an input joint, when the 

three passive joints lie on a common straight line, the linkage is at an uncertainty singularity or a 

dead center position, where the linkage may lose control. If the P-joint is a passive joint, the 

linkage is at an uncertainty singularity when the other two passive joints are on a line normal to 

the sliding path.   

Full rotatability: An N-bar (1P) chain is said fully rotatable if for any set of values assigned to 

the (N-3) independent inputs, there is no danger of encountering an uncertainty singularity. 

If the P-joint is not an input joint, the linkage has full rotatability if and only if  

(1) it has a Class I chain, i.e. (h + λ1 + λ2 +---+ λN-3) <λN-2, and 

(2) there is one and only one passive joint between the (finite) long link and any of the link 

connected by the prismatic joint.  In other words, there is one and only one passive joint between 

any two (finite or infinite) long links.  

Obviously, if the P-joint is used as an input joint, the linkage has no full rotatability.  

Branch: A Class I chain always has one finite long link and (N-3) short links and the long link 

can never become normal to the sliding path. Therefore, a Class I chain has two branches. On 

the other hand, any link of a Class II chain may become normal to the sliding path and hence, a 

Class II chain has only one branch. Branch problem exists only in Class I chains and the branch 

identification criterion can be stated as below. 

In a Class I N-bar (1P) chain, where N≥3, let u and v be unit vectors along the long link and 

the normal to the sliding path and φ the angle measured from v to u, where φ is defined in the 

range of [0˚, 360˚). Then linkage configurations with φ Є (0˚, 180˚) are in one branch and those 
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with φ Є (180˚, 360˚) are in the other branch. One may note that a configuration with φ = 0˚ or 

180˚ may occur only in non-Class I chains.   

Sub-Branch: A sub-branch refers to a configuration space, in which each configuration may be 

transformed to another configuration continuously without encountering an uncertainty 

singularity or dead center position, where the linkage may lose control. In an N-bar chain 

connected exclusively by R-joints, an uncertainty singularity occurs when the three passive joints 

become collinear [2-5]. By treating the P-joint as an R-joint connecting two infinite links at 

infinity, a sub-branch can be identified with the following criterion. 

Let r and s be unit vectors from a passive R-joint to the other two passive joints and ψ the 

angle measured from r to s, where ψ Є (0˚, 360˚). For linkage configurations in one branch, 

configurations with ψ Є (0˚, 180˚) are in one sub-branch and those with ψ Є (180˚, 360˚) are in 

the other sub-branch. If the P-joint is a passive joint, one of the unit vectors r or s is in the 

direction normal to the sliding path. One may note that the above sub-branch identification 

criterion is to keep ψ from reaching 0° or 180°. 

 

2.3 Examples 

 

The above criteria are illustrated in the following examples. 

 N=3: 2R1P chains 

Although with N= 3 the linkage has no mobility, it does offer interesting insight on how the 

mobility laws are rooted in the property of right triangles. One may have the following 

observations from the right triangles in Fig. 2.2. 
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Figure 2.2 Two branches of a right triangular linkage    

a. Since h < λ1, a three-bar chain is always Class I; λ1  is a long link.  

b. φ is the angle between the long link λ1 and the line normal to the sliding path. cos φ = (h 

/λ1) yields two roots, i.e. φ = cos-1(h /λ1) and 2π- cos-1(h /λ1), corresponding to two 

possible right triangle configurations in the ranges (0˚, 180˚) and (180˚, 360˚), 

respectively. These two configurations can never be brought to overlap in a planar motion 

and they represent two branches of the three-bar chain. Hence, the linkage has two 

branches. 

c. If additional short links are connected to it to form an N-bar (1P) chain, such that the total 

length of all short links, i.e. (λ1 + λ2 +---+ λN-3) is not longer than the long linkλN-2, the 

resulting chain will remain a Class I chain and the two-branch feature as well as the 

branch identification criterion is preserved. 

d. In a three-bar chain, no input can be given and all three joints are passive. As shown in 

Fig. 2.2, singularity occurs when AB becomes normal to the sliding path where the right 

triangle diminishes. Such singularity feature is also preserved in N-bar (1P) chains. If the 

P-joint is a passive joint, an uncertainty singularity occurs when the two passive R-joints 

are on a line normal to the sliding path.   
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 (a)      (b) 

Figure 2.3 A 3R1P-type chain 

 N=4: 3R1P chains 

This is the case with slider-crank mechanisms or inverted slider crank mechanisms (Fig. 2.3). 

With λ1 < λ2, the mechanism has a Class I chain if (h + λ1) <λ2 or a Class II chain if (h + λ1) > 

λ2. A Class I chain always has only one short link which may revolve against any link. A Class 

II chain does not have any short link and no link may have a full revolution with respect to any 

link. One may note that if h = 0, the linkage is always a Class I chain, as the condition (h + λ1) 

<λ2 is always met. One may have the following observations from the following two cases. 

Case 1:  (h, λ1, λ2) = (9, 4, 12)   

a. Since (h+λ1) > λ2, it is a Class II chain, which has only one branch.  

b. All links are long links. Joints A, B and O, without connecting any short link, do not 

allow full revolution. The linkage has no full rotatability. 

c. If the input is given to the P-joint, then an uncertainty singularity configuration may 

occur, where all passive joints A, B, and O lie on a common straight line. Linkage 

configurations with θA Є (0˚, 180˚) are in one sub-branch and those with θA Є (180˚, 

360˚) are in the other sub-branch.   
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d. If the input is given to any R-joint (say O), then an uncertainty singularity configuration 

may occur, where the other two R- joints (say A and B) are on a line normal to the sliding 

path. For linkage configurations with θB Є (0˚, 180˚) are in one sub-branch and those 

with θB Є (180˚, 360˚) are in the other sub-branch. 

Case 2:  (h, λ1, λ2) = (5, 4, 12) 

a. Since (h+λ1) < λ2, it is a Class I chain. The short link is AB; the long link is OA. It has 

two branches. 

b. The angle between the long link OA and the normal to the sliding path is used to identify 

the branch. If the angle is in the range (0˚, 180˚), the corresponding linkage configuration 

is in one branch; if the angle is in the range (180˚, 360˚), the corresponding linkage 

configuration is in the other branch. 

c. The joints on short link AB, i.e. joints A and B may allow complete revolution. If the 

input is given through R-joint A or B, the linkage will have full rotatability. 

d. If the input is given to the P-joint, then an uncertainty singularity configuration may 

occur, where all passive joints A, B, and O lie on a common straight line. For linkage 

configurations in one branch, configurations with θA Є (0˚, 180˚) are in one sub-branch 

and those with θA Є (180˚, 360˚) are in the other sub-branch.   

e. If the input is given to the R-joint O, then an uncertainty singularity configuration may 

occur, where the other two R-joints A and B are on a line normal to the sliding path. For 

linkage configurations in one branch, configurations with θB Є (0˚, 180˚) are in one sub-

branch and those with θB Є (180˚, 360˚) are in the other sub-branch. 
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(a)      (b) 

Figure 2.4 A 4R1P-type chain 

 N=5: 4R1P chains 

Fig. 2.4 shows a five-bar chain 4R1P in which λ1 < λ2 < λ3, the mechanism has a Class I 

chain if (h + λ1 + λ2) <λ3 or a Class II chain if (h + λ1 + λ2) > λ3. One may have the following 

observations from the following two cases. 

Case 1:  (h, λ1, λ2, λ3) = (10, 4, 8, 20).   

a. Since (h+λ1+λ2) > λ3, it is a Class II chain, which has only one branch.  

b. Since (h + λ2) < (λ1 + λ3) and (h + λ3) > (λ1 + λ2), links AB and BC are short links and 

link OA is a long link. The joints on links AB and BC, i.e. joints A, B, and C may allow 

complete revolution. Joint O, which does not connect a short link, does not allow full 

revolution. 

c. If the two inputs are given through R-joints A and B (or C), although both input joints 

may allow complete revolution between the connected links, the linkage still has no full 

rotatability.   

d. If the two inputs are given to the P-joint and one R-joint (say O), then an uncertainty 

singularity configuration may occur, where all passive joints A, B, and C lie on a 
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common straight line. For linkage configurations with θB Є (0˚, 180˚) are in one sub-

branch and those with θB Є (180˚, 360˚) are in the other sub-branch. 

e. If the two inputs are given to two R-joints (say O and A), then an uncertainty singularity 

configuration may occur, where the other two R-joints (say B and C) are on a line normal 

to the sliding path. For linkage configurations with θC Є (0˚, 180˚) are in one sub-branch 

and those with θC Є (180˚, 360˚) are in the other sub-branch.   

Case 2:  (h, λ1, λ2, λ3) = (6, 4, 8, 20). 

a. Since (h+λ1+λ2) < λ3, it is a Class I chain and the only long link is OA. It has two 

branches. 

b. The angle between the long link OA and the normal to the sliding path is used to identify 

branch. If the angle is between (0˚, 180˚), the corresponding linkage configuration is in 

one branch; if the angle is between (180˚, 360˚), the corresponding linkage configuration 

is in the other branch.  

c. The joints on links AB and BC, i.e. joints A, B, and C may allow complete revolution. If 

the two inputs are given through R-joints A, B, or C, then the linkage will have full 

rotatability. 

d. If the two inputs are given to the P-joint and R-joint O, then an uncertainty singularity 

configuration may occur, where all passive joints A, B, and C lie on a common straight 

line. For linkage configurations in one branch, configurations with θB Є (0˚, 180˚) are in 

one sub-branch and those with θB Є (180˚, 360˚) are in the other sub-branch. 

e. If only one input is given to R-joint O or P-joint, the other input is given to R-joint A or 

B or C (say two inputs are given to O and A), then an uncertainty singularity 

configuration may occur, where the other two R-joints B and C are on a line normal to 
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the sliding path. For linkage configurations in one branch, configurations with θC Є (0˚, 

180˚) are in one sub-branch and those with θC Є (180˚, 360˚) are in the other sub-branch. 

 

2.4 Single-Loop N-Bar Chains with Two Prismatic Joints 

 

A single-loop N-bar chain with two prismatic joints may have two different cases: (1) two 

prismatic joints are neighboring; (2) two prismatic joints are non-neighboring. The first case may 

be regarded as a chain with three infinite links, while the second one may be regarded as a chain 

with four infinite links. Let λ i ( i = 1, 2, 3, ---, N-4) be the finite link lengths between revolute 

joints and λ1 ≤  λ2 ≤  λ3 ≤  λ4 ≤  ---λN-4, where N ≥ 4. The distances between each prismatic 

joint and its adjacently connecting revolute joint are h1 and h2, and the corresponding slide 

distances are s1 and s2, respectively (Fig. 2.5). 

  
(a) neighboring 2P    (b) non-neighboring 2P 

Figure 2.5  N-bar (2P) chains  
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An N-bar (2P) chain may be regarded as a chain containing three or four links with very long 

(fictitious) link lengths connected by two revolute joints. The length differences among these 

fictitious long links are h1 and h2, respectively. There is no assemblability condition when two 

prismatic joints are involved, since a chain can always be formed. An N-bar (2P) chain has (N-3) 

DOF and requires (N-3) inputs. Giving (N-3) inputs, two linkage postures symmetric about a 

reference link can always be found. There is no way to move from one position to its symmetric 

position about the reference link without breaking the connection. This property leads to the 

existence of two branches in an N-bar (2P) chain, i.e., all N-bar (2P) chains are Class I. A finite 

link is always a short link, which may have a full revolution with respect to any link in the loop. 

A revolute joint connecting a short link may allow a complete revolution. A revolute joint 

connecting two prismatic joint may also allow a complete revolution if the following condition is 

met: (h1 + h2) < (λ1 + λ2 +---+λN-4). A linkage has full rotatability if and only if there is one and 

only one passive joint between any two infinite links. The use of the above criteria is 

demonstrated in the following four-bar 2R2P-type and five-bar 3R2P-type chains. 

   

(a) neighboring 2P    (b) non-neighboring 2P 

Figure 2.6  2R2P chains 
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(a) neighboring 2P   (b) non-neighboring 2P 

Figure 2.7  3R2P chains 

 N=4: 2R2P chains 

Fig. 2.6 shows four-bar 2R2P chains. One may have the following observations from the 

following two cases. 

Case 1 (neighboring prismatic joints):   

a. It is a Class I chain, which has two branches. 

b. let u and v be unit vectors along the normal to the sliding path of both prismatic joints P 

and Q, and φ the angle measured from v to u, where φ is defined in the range [0˚, 360˚). 

Then linkage configurations with φ Є (0˚, 180˚) are in one branch and those with φ Є 

(180˚, 360˚) are in the other branch. 

c. The only finite link AB is a short link. The joints A and B on it may allow complete 

revolution. 

d. If the input is given through joints A or B, the linkage will have full rotatability. 

e. If the input is given through one prismatic joint (say P), then the linkage has no full 

rotatability. An uncertainty singularity configuration may occur, where the two revolute 

joints A and B are on a line normal to the sliding path of the other prismatic joint (say Q). 
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For linkage configurations in one branch, configurations with θA Є (0˚, 180˚) are in one 

sub-branch and those with θA Є (180˚, 360˚) are in the other sub-branch.   

Case 2 (non-neighboring prismatic joints):   

a. It is a Class I chain, which has two branches. 

b. let u and v be unit vectors along the normal to the sliding path of both prismatic joints P 

and Q, and φ the angle measured from v to u, where φ is defined in the range [0˚, 360˚). 

Then linkage configurations with φ Є (0˚, 180˚) are in one branch and those with φ Є 

(180˚, 360˚) are in the other branch.   

c. There is no finite link. The revolute joints A and B may not allow complete revolution.  

d. The linkage has no full rotatability. 

e. An uncertainty singularity configuration may not occur. 

 N=5: 3R2P chains 

Fig. 2.7 shows five-bar 3R2P chains. One may have the following observations from the 

following two cases. 

Case 1 (neighboring prismatic joints):   

a. It is a Class I chain, which has two branches. 

b. let u and v be unit vectors along the normal to the sliding path of both prismatic joints P 

and Q, and φ the angle measured from v to u, where φ is defined in the range [0˚, 360˚). 

Then linkage configurations with φ Є (0˚, 180˚) are in one branch and those with φ Є 

(180˚, 360˚) are in the other branch. 

c. Both finite links AB and BC are short links. The joints A, B, and C on them may allow 

complete revolution. 
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d. If the two inputs are given through joints A, B, or C, the linkage will have full 

rotatability. 

e. If the two inputs are given to prismatic joints P and Q, then an uncertainty singularity 

configuration may occur, where all passive joints A, B, and C lie on a common straight 

line. For linkage configurations in one branch, configurations with θB Є (0˚, 180˚) are in 

one sub-branch and those with θB Є (180˚, 360˚) are in the other sub-branch. 

f. If only one input is given to prismatic joint P or Q, the other input is given to revolute 

joint A or B or C (say two inputs are given to Q and A), then an uncertainty singularity 

configuration may occur, where the other two revolute joints B and C are on a line 

normal to the sliding path of the other prismatic joint P. For linkage configurations in one 

branch, configurations with θC Є (0˚, 180˚) are in one sub-branch and those with θC Є 

(180˚, 360˚) are in the other sub-branch. 

Case 2 (non-neighboring prismatic joints):   

a. It is a Class I chain, which has two branches. 

b. let u and v be unit vectors along the normal to the sliding path of both prismatic joints P 

and Q, and φ the angle measured from v to u, where φ is defined in the range [0˚, 360˚). 

Then linkage configurations with φ Є (0˚, 180˚) are in one branch and those with φ Є 

(180˚, 360˚) are in the other branch. 

c. The only finite link AB is a short link. The joints A and B on it may allow complete 

revolution. The revolute joint C connects two prismatic joints and may also allow 

complete revolution if (h1 + h2) < λ1. 

d. If the two inputs are given through joints which allow complete revolution, the linkage 

will have full rotatability. 
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e. If the two inputs are given to prismatic joints P and Q, then an uncertainty singularity 

configuration may occur, where all passive joints A, B, and C lie on a common straight 

line. Let r and s be unit vectors from A to B and C, respectively; ψ the angle measured 

from r to s, where ψ Є (0˚, 360˚), will be used to identify the sub-branches. For linkage 

configurations in one branch, configurations with ψ Є (0˚, 180˚) are in one sub-branch 

and those with ψ Є (180˚, 360˚) are in the other sub-branch. 

f. If only one input is given to prismatic joint P or Q, the other input is given to revolute 

joint A or B or C (say two inputs are given to Q and C), then an uncertainty singularity 

configuration may occur, where the other two revolute joints A and B are on a line 

normal to the sliding path of the other prismatic joint P. For linkage configurations in one 

branch, configurations with θB Є (0˚, 180˚) are in one sub-branch and those with θB Є 

(180˚, 360˚) are in the other sub-branch. 

 

2.5 Conclusions 

 

The paper presents the extension of the N-bar mobility laws to linkages containing prismatic 

joints. The extension is based on the principle that the links connected by a prismatic joint are 

two very long links connected by a revolute joint. The paper shows how the concept and 

mobility property of short and long links, the linkage classification, the full rotatability, as well 

as branch and sub-branch identification in N-bar chains are preserved in N-bar chains containing 

prismatic joints. 
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CHAPTER 3 

STRETCH ROTATION AND COMPLETE MOBILITY IDENTIFICATION 

OF WATT SIX-BAR CHAINS2 

 

ABSTRACT 

 

Mobility of linkages refers to the problems concerning branch, full rotatability, singularities, 

and order of motion. This paper uses the stretch and rotation of a four-bar loop to convert a Watt 

six-bar linkage to an equivalent simple Stephenson linkage. It shows the mobility of a Watt six-

bar linkage is affected by a hidden five-bar chain. The equivalency offers a simple and clear 

visual explanation on the formation of branches and sub-branches and how Watt and Stephenson 

linkages differ in mobility. The resulting mobility algorithm requires no stretch rotation. The 

dead center positions in the second four-bar loop are the branch points. It reveals that although a 

Watt six-bar linkage may have only up to four-branches, a branch may have up to six sub-

branches. The results offer a simple algorithm suitable for automated identification of branch, 

sub-branch, and full rotatability. The algorithm is valid for Watt linkages with or without 

prismatic joints and is independent of linkage inversions. Examples are presented for illustration.  

                                                 
2 Accepted on March 30, 2009 and to be published on Mechanism and Machine Theory. 
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3.1 Introduction 

 

Linkage mobility refers to the problems concerning branch (or circuit) defect, full 

rotatability, singularities, and order of motion [1]. When a linkage is synthesized, it is necessary 

to make sure that the linkage has the necessary mobility for a continuous and smooth operation. 

The Grashof criterion [2] has been used to predict the full rotation of four-bar mechanisms for 

over a century. The recent N-bar rotatability laws by Ting [3, 4] offer the first simple, complete, 

and systematical explanation to predict the formation of branch, sub-branch, and full rotatability 

of any N-bar chain (N ≥ 3). Although the methodology for the mobility analysis of single loop 

linkages has been well established, the mobility study of multiloop chains is far from adequate 

[1, 5-12] even for Watt six-bar linkages. 

A Watt six-bar chain contains two four-bar loops. The mobility of both loops affects each 

other. Primrose, Freudenstein, and Roth developed the branch analysis criteria of a Watt six-bar 

linkage by visually examining the motion limits imposed on the ternary link [13]. Mirth and 

Chase [14, 15] examined the motion limits imposed on the ternary link and summarized the 

circuit (i.e. branch) composition in a chart. They concluded that the limits of motion imposed on 

one four-bar loop by the other might change the branches in a Watt six-bar linkage. A complete 

mobility analysis that takes sub-branch and full rotatability formation under any input condition 

into consideration and an algorithm suitable for automated mobility identification are yet to be 

resolved.     

The mobility of a multiloop chain is affected by not only the mobility of each individual 

loop, which is governed by Ting’s mobility laws [3, 4], but also the interaction between loops. 

This paper offers a simple geometric model to explain and predict the formation of branches, 
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sub-branches, and full rotatability of any Watt linkage regardless the choices of the fixed, input, 

and output links or the existence of prismatic pairs.  

 

3.2 Basic Concepts and Terminologies 

 

Some developed concepts and terminologies are briefed below. They are simple yet vital to 

understand the proposed method. 

 

3.2.1 N-bar Rotatability Laws  

 

In the N-bar rotatability laws proposed by Ting, links in a single loop chain are classified as 

short links and long links [3, 4, 16]. A short link may revolve against any other link while a long 

link can never revolve against any long link. A joint on a short link is revolvable while a joint 

between long links is non-revolvable. Ting also classified single loop chains into three classes 

and discussed the rotatability between long links. A Class I chain has two branches while a Class 

II chain has only one branch. Therefore branch problem does not exist in Class II chains. Class 

III is a transitional type between Class I and II chains.  

 

3.2.2 Joint Rotation Space 

 

The joint rotation space (JRS) of a linkage represents the maximum possible input domain or 

the entire configuration space of the linkage [16]. For a five-bar chain, the JRS can be regarded 
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as the domain of the two input joints and each point in the JRS generally corresponds to two 

linkage configurations. Some terminologies and concepts are explained below.  

Branch: Also called circuit [14, 15]. A branch refers to a linkage assembly or configuration 

space, in which a configuration can be physically transformed to another configuration 

continuously.   

Dead center position: In a single degree-of-freedom (DOF) linkage, a dead center position 

occurs when the input link reaches its rotation limit. For a single loop linkage, a dead center 

position occurs when the three non-input joints become collinear [16]. 

Sub-branch: A sub-branch refers to a configuration space, in which a configuration can be 

transformed to any other configuration continuously without reaching a dead center position. A 

sub-branch represents a singularity-free configuration space. Each element in a sub-branch 

corresponds to one and only one linkage configuration. 

JRS Sheet: The JRS of a linkage branch is called a JRS sheet. It represents the configuration 

space of a linkage branch in the input domain. Thus, the JRS of a Class I linkage contains two 

sheets and that of a Class II linkage contains only one sheet. There is no motion continuity 

between sheets, i.e. a linkage cannot be transformed between configurations in different JRS 

sheets. 

Edge of a JRS sheet: The edge of a JRS sheet is the boundary curve of the JRS. Each point 

on the boundary curve of the JRS corresponds to a unique uncertainty singularity configuration 

of a linkage, in which the three non-input joints are collinear. 

Side of a JRS sheet:  The edge of a JRS sheet separates the sheet into sides (Fig. 3.1). Each 

side of a JRS sheet represents the configuration space of a linkage sub-branch in the input 

domain. A point on one side of a JRS sheet corresponds to one and only one linkage 
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configuration. Since a linkage can be programmed within one side of a JRS sheet without 

reaching the boundary, each side of a JRS sheet represents a sub-branch or a singularity-free 

configuration space. 

Types of JRS sheet: According to the classification of five-bar JRS [16], JRS sheets can be 

grouped into three types (Fig. 3.2).   

1. Two (one-side) sheets: This is found only in fully rotatable [3, 4] Class I chains and the 

JRS contains no edge (Fig. 3.2(a)). Each sheet has only one side. 

2. Two (two-side) sheets: This is found only in Class I chains (Fig. 3.2(b)). Each sheet has 

two sides. 

3. One (two-side) sheet: Any Class II chain has such a JRS sheet.  A sample is shown in 

Fig. 3.2(c). Each sheet has two sides. 

 
 

Figure 3.1 Two two-side sheets 

    

(a) two overlapping (one-side) sheets (b) two (two-side) sheets    (c) one (two-side) sheet 

Figure 3.2 Types of JRS sheet 
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3.3 Mobility Analysis of Watt Six-Bar Chains 

 

One may note that in this paper, any Watt six-bar linkage is treated as a chain and the choice 

of the fixed or input link does not affect the applicability of the method. The branch 

identification is irrelevant to the choice of the input or fixed link and the proposed sub-branch 

identification method is applicable regardless the choice of the input joint. The method is 

suitable for fully automated mobility analysis. It is applicable to the situation when a prismatic 

joint is involved. In the following discussion, the branch and sub-branch formation will be 

explained via the stretch and rotation of a four-bar loop that converts a Watt linkage into a 

Stephenson linkage. The results lead to the algorithm for automated mobility identification, in 

which no stretch rotation is necessary. 

 

3.3.1 Stretch and Rotation of Watt Six-Bar Chains 

 

The concept of the stretch and rotation [17] has been used commonly in geometry and 

linkage design. Any linkage can be stretched, i.e. re-oriented or re-positioned, without altering 

the joint rotatability or angular relationships among links. Any linkage can be rotated, i.e. re-

oriented or re-positioned, without affecting the geometric relationships, including joint 

rotatability, among links.   

A Watt six-bar linkage contains two four-bar loops. When a four-bar loop is connected 

serially to another four-bar loop to form a Watt six-bar linkage, one may realize that the 

rotatability of the second four-bar loop will be affected by the output range of the first four-bar 

loop.  However, the rotation of the second four-bar loop is not affected by its stretch and rotation. 

This subtle yet important principle, which has been used in Watt linkage design, can be applied 
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to convert a Watt six-bar linkage into an equivalent Stephenson linkage and thus form a unified 

mobility identification theory for all six-bar linkages. 

Fig. 3.3(a) shows a Watt six-bar chain and Fig. 3.3(c) the six-bar chain after the stretch and 

rotation of the four-bar loop DEFGD. In Fig. 3.3(b), the four-bar loop DEFGD is stretched 

proportionally in the scale of (a3/b1) to DE1F1G1D so that the length of link DE1 is equal to DC. 

Obviously, the rotatability of each joint, including the output angles DG1F1 and DGF, of the 

linkages before and after the stretch remains the same. In Fig. 3.3(c), the four-bar loop 

DE1F1G1D is further rotated as a solid structure through angle CDE, i.e. the angle between DC 

and DE of the ternary link, to DE2F2G2D so that DE2 becomes coincident with DC. Since the 

entire four-bar is rotated as a solid structure, the rotatability of each joint remains unchanged 

after the rotation. The output angle DG1F1 of the resulting linkage is equal to the output angle 

DGF of the original linkage. If AG is the reference axis, one may find θa7 = θ7 + γ (Fig. 3.3(a) 

and (c)), i.e. the measured output angles of the linkages before and after the stretch-rotation 

always differ by a constant γ. The characteristics of the input angle vs. the output or any other 

angle between neighboring links remain unchanged. In other words, the joint rotatability of the 

linkages before and after the stretch and rotation remains the same. 

The six-bar chain after the stretch-rotation is a degenerated Stephenson six-bar chain with the 

coupler point at C. The degenerated Stephenson six-bar chain has a five-bar loop ABCF2G2A 

and a four-bar loop ABCDA with two common joint variable at A and B as any Stephenson six-

bar chain. Therefore the mobility rectification of Watt and Stephenson six-bar linkages can be 

treated in a unified manner as discussed below.     
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(a) before stretch-rotation 

 

(b) stretch of the second four-bar loop  (c) rotation of the second four-bar loop 

Figure 3.3 A Watt six-bar chain 

 

3.3.2 Branch 

 

In a Watt six-bar linkage, the input is always given to a joint of a four-bar loop and the 

choice of the output joint or fixed link will not affect the branch, sub-branch, or input full 

rotatability of the linkage. According to the choice of input, Watt six-bar linkages can be 

grouped into two types: (1) Input is given to joint A or B. The Watt six-bar chain after stretch-

rotation has a four-bar loop ABCDA and the five-bar loop ABCF2G2A as shown in Fig. 3.3(c). 

The JRS formed by the five-bar loop ABCF2G2A may block some rotation range of the four-bar 
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loop ABCDA. (2) Input is given to joint C or D. It is the four-bar loop DCF2G2D that may block 

some rotation range of the four-bar loop ABCDA. The second type, its background JRS is not 

offered by a five-bar but a four-bar loop, may be regarded as a simplified case of the first one. 

The mobility analysis of these two types is same and the general one (the first type) is used to 

demonstrate the methodology. For convenience of discussion without losing generality, let A and 

B in Fig. 3.3(c) be regarded as the input and output joints, respectively.  

Branch points: In the four-bar loop, the relationship between the displacements of joints A 

and B is a curve, which will be called as I/O curve (Fig. 3.4). If link CD is removed, the six-bar 

chain is reduced to a five-bar loop ABCF2G2A, from which a singular curve can be deduced. The 

singular curve depicts the relationship between the displacements of joints A and B when the 

angle between CF2 and G2F2 is kept at 0 or π. The singular curve(s) is the edge of the JRS of the 

five-bar loop (Fig. 3.4(b) and (c)). The intersection points of the I/O curve and the singular curve 

are called branch points, which can be identified in the way similar to that for Stephenson six-bar 

linkages [1].  

The maximum possible number of branch points that a Stephenson chain may have is twelve 

[1], which are derived from the roots of two sixth degree polynomial equations as follows.   
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In a Watt chain, the coefficients Wi1 = Wi7 = 0. Since x ≠ 0, the above equation can be re-

written as two fourth degree polynomial functions, which implies that the maximum possible 

number of branch points that a Watt six-bar chain may have is eight [18]. 
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In a branch-point induced branch, there are two branch points [16]. Because a Stephenson 

linkage has at most twelve branch points while a Watt linkage has no more than eight, a 

Stephenson linkage may have up to six branches [1] while a Watt linkage may have no more 

than four branches [13, 15, 18]. 

Dead center positions: At a dead center position, the linkage may be out of control 

momentarily and have zero mechanical advantage [19]. The dead center positions of a Watt six-

bar linkage may correspond to the dead center positions of the first or second four-bar loops. In a 

Watt six-bar linkage, branch points are the dead center positions of the second four-bar loop. In 

order to avoid confusing, the dead center positions caused by the second four-bar loop shall be 

called as branch point hereafter and a dead center position will refer to a dead center position 

caused by the first four-bar loop exclusively. For example, in Fig. 3.4(c), Mi (i = 1,…, 6) are 

branch points and A1,2, B1,2 are dead center positions. 

Branch formation: Branch is a property of the kinematic chain of a linkage. The branch 

formation of a linkage is irrelevant to the choices of the input, fixed, or output link. A branch 

may have zero or two branch points. If no branch point exists, the number of branches is two 

(Fig. 3.4(b)) or four (Fig. 3.4(a)). If branch points exist, there are at most eight branch points, 

which will lead to four branches at most. With stretch-rotation a Watt linkage become equivalent 

to a Stephenson linkage and the mobility identification algorithm for Stephenson linkages 

becomes applicable to Watt linkages. However, in the resulting algorithm for Watt linkages, no 

stretch rotation is necessary. The effects of branch points are discussed and explained with 

examples below. 
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(a) Four branches without branch point 

 
(b) Two branches without branch point (c) Three branches due to branch points 

Figure 3.4   I/O curve and JRS 

(1) No existence of branch point: the coupling between the four-bar loops in a Watt six-bar 

linkage (or between the four-bar and five-bar loops in the linkage after the stretch and rotation) 

does not affect the rotatability of the first four-bar loop. This may occur if no singular curve 

exists in the five-bar JRS (Fig. 3.4(a)), or if a singular curve does exist, but it does not intersect 

the I/O curve and therefore has no effect to the mobility of the four-bar loop (Fig. 3.4(b)). 
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In Fig. 3.4(a), the four-bar loop is a Class I chain and has two branches [3, 4] as depicted by 

the two I/O curves. The JRS of the five-bar loop has two overlapping sheets (Fig. 3.2(a)) and 

each sheet has one side [16]. Each I/O curve on each side of a JRS sheet constitutes a branch, 

leading to a total of four six-bar branches.     

In Fig. 3.4(b), the five-bar loop is a Class II chain, which has only one branch. The JRS is a 

two-side sheet (Fig. 3.2(c)). The four-bar loop is a Class II chain, which has only one branch. 

The four-bar branch in both sides of the JRS sheet will form a total of two six-bar branches.   

For a set of given Watt linkage configurations, the branch identification can be carried out in 

two steps.   

a. Determine the branch of the first four-bar loop. A Class II chain has only one branch and 

has no branch problem. For a Class I four-bar loop, the branch can be identified with the 

branch (or sheet) identification criterion [3, 4, 16]. 

b. Determine the sub-branch of the second four-bar loop [3, 4, 16]. The common joint 

between the two four-bar loops may be considered as the input joint. Therefore, the sub-

branch of the second four-bar loop can be identified by examining if the angle from FE to 

FG (Fig. 3.3(a)) is in the range of (0, π) or (π, 2π). One may also note that the two one-

side JRS sheets may be regarded as an edgeless two-side JRS sheet.  

A set of six-bar configurations are in the same branch if the configurations of the first four-

bar loop are in the same branch and the configurations of the second four-bar loop are also in the 

same sub-branch. The number of branches may be two or four. 

(2) Existence of branch points: at a branch point, the mobility of the first four-bar loop is 

partially blocked by the second four-bar loop (or the five-bar loop after the stretch rotation) (Fig. 

3.4(c)). The coupling between the four-bar loops may affect the rotatability of each individual 
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four-bar loop. In the JRS, the segment of the I/O curve between neighboring branch points 

represents a branch of the linkage. For example, in Fig. 3.4(c), the three branches are represented 

by segments M2M3, M4M5, and M6M1. To determine if a set of six-bar configurations are in the 

same branch, the following procedure can be used. 

a. Identify the branch of these configurations in the first four-bar loop. All configurations 

must be in the same four-bar branch. 

b. Find the branch points in the four-bar branch identified in the previous step.  

c. If no branch point exists in the identified four-bar branch, proceed the branch identification 

as described in step (b) as the case with no branch point. All configurations are in the 

same branch, if they are in the same first four-bar branch and also in the same sub-branch 

of the second four-bar loop. 

d. If branch points exist in the identified four-bar branch, the desired configurations are in the 

same branch only if they are in the same four-bar branch and also correspond to points 

between neighboring branch points on the I/O curve.    

Remark:  The branch formation is explained via the stretch and rotation that converts a Watt 

six-bar to a Stephenson six-bar chain. However, the derived branch identification scheme 

requires no stretch and rotation, because of the inherent properties in Watt six-bar chains: (1) the 

branch points are the dead center positions of the second four-bar loop, which occur when joints 

E, F, and G (Fig. 3.3(a)) lie on a common straight line; (2) the sub-branch identification of the 

five-bar loop resulted from the stretch and rotation is the same as the sub-branch identification of 

the second-four-bar loop with the common joint between the two four-bar loops as the input. 
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Table 3.1 The geometric dimensions of Watt six-bar chains 

 a1 a2 a3 a4 β γ b1 b2 b3 b4 

Example 1 7 6 6 4 60o 60o 3 7 7 5 

Example 2 6 6 7 8 60o 60o 7 3 7 5 

 

Table 3.2 Linkage configurations of a Watt six-bar chain 

Position θ1 θ9 θ3 U1 θ7 U2 
P1 151o 81o 132o 80o 51o 60o 
P2 140o 87o 118o 71o 44o 55o 
P3 140o 87o 118o 71o 169o 305o 
P4 56o 272o 118o 330o 44o 55o 

 

The above algorithm is demonstrated in the following examples. The dimensions of Watt six-

bar chains are listed in Table 3.1. It is assumed that θ1 is the input angle (Fig. 3.3(a)). 

Example 1: 

The second four-bar is a Class I loop according to N-bar laws and b1 is the only short link.  

U2 is the angle measured from b2 to b3. Since b2 and b3 are long links, U2 can reach neither 0o nor 

180o. Thus dead center positions do not occur in the second four-bar loop. In other words, there 

is no branch point in this Watt six-bar linkage. Let P1, P2, P3, and P4 be four unique linkage 

configurations (Table 3.2). To determine which linkage configuration(s) is in the same branch 

with P1, the following steps are taken. 

a. The first four-bar is a Class I loop, which has two branches. a4 is the short link; a1, a2, and 

a3 are long links. The angle between any two long links, such as U1, can be used to 

distinguish the two branches [3, 4]. Since P1, P2, and P3 have U1 Є (0o, 180o) while P4 has 

U1 Є (180o, 360o), P1 and P4 are in different branches of the first four-bar loop. P4 is 

weeded out. 
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b. The angle measured from FE to FG (i.e. U2) is used to determine the sub-branch of the 

second four-bar loop. Since P1 and P2 have U2 Є (0o, 180o) while P3 has U2 Є (180o, 360o), 

P1 and P3 are in different sub-branches of the second four-bar loop. P3 is weeded out.  

Both P1 and P2 are in the same branch because their configurations of the first four-bar loop 

are in the same branch and their configurations of the second four-bar loop in the same sub-

branch. 

Example 2: 

The first four-bar loop is a Class II chain while the second four-bar is a Class I loop and b2 is 

the only short link. U2 is the angle measured from b2 to b3 and U2 may reach both 0o and 180o. 

Therefore, dead center positions may exist in the second four-bar loop. In other words, branch 

points do exist in this Watt six-bar linkage. Let P1, P2, P3, P4, P5, and P6 be six unique linkage 

configurations (Table 3.3). To determine which linkage configuration(s) is in the same branch 

with P1, the following steps are taken. 

a. Locate the dead center positions of the second four-bar loop, which occur when joints E, 

F, and G lie on a common straight line, i.e. U2 = 0o or 180o. Four dead center positions 

M1, M2, M3, and M4 are found and the corresponding linkage configurations are listed in 

Table 3.3. They are the branch points of this Watt six-bar linkage and they divide the 

four-bar I/O curve into four segments. 

b. Locate the dead center positions of the first four-bar loop, which occur when joints B, C, 

and D lie on a common straight line (Fig. 3.3(a)). Since neither a2 nor a3 is the longest 

link, the angle measured from CB to CD can reach 180o but not 0o. Let U1 = 180o. Two 

dead center positions A and B are found (Fig. 3.5). However, the position at A is blocked 
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by the second four-bar loop. The four-bar dead center position at B corresponds to two 

six-bar linkage configurations B1 and B2, which are listed in Table 3.3. 

c. The first four-bar is a Class II loop, which has only one branch. All linkage 

configurations including the branch points and dead center positions are in the same 

branch of the first four-bar loop. 

d. On the I/O curve of the first four-bar loop, a branch is formed between adjacent branch 

points [1].    

e. Linkage configurations P1, P2, P3, P4, P5, and dead the center positions B1, B2 are points 

between M1 and M4 on the I/O curve (Fig. 3.5). Hence, segment M1M4 forms one branch. 

Since there is no continuity between branches, M3M2 is the other branch. The segments 

of M1M4 and M3M2 are blocked by the second four-bar loop. 

f. Segments M1B and BM4 are joined at B to form the branch M1M4. Configurations in M1B 

can be identified by θ1 Є (-98o, -87o) and U1 Є (0o, 180o) while configurations in BM4 by 

θ1 Є (-98o, -36o) and U1 Є (180o, 360o) (Fig. 3.5, Table 3.3).   

g. Configuration P6 is in the branch of segment M3M2, which does not contain the dead 

center position A. The branch is identified by θ1 Є (27o, 79o) and U1 Є (180o, 360o) (Fig. 

3.5, Table 3.3).   
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Table 3.3 Linkage configurations of a Watt six-bar chain 

Position θ1 θ9 θ3 U1 θ7 U2 
P1 -92o 319o 250o 204o 134o 109o 
P2 -92o 319o 250o 204o 174o 251o 
P3 -92o 344o 228o 156o 134o 161o 
P4 -60o 274o 284o 250o 154o 54o 
P5 -60o 274o 284o 250o 204o 306o 
P6 40o 61o 246o 245o 141o 83o 
B1 -98o 335o 237o 180o 132o 135o 
B2 -98o 335o 237o 180o 158o 225o 
M1 -87o 346o 226o 147o 139o 180o 
M2 79o 14o 226o 313o 139o 180o 
M3 27o 117o 304o 340o 200o 0o 
M4 -36o 243o 304o 278o 200o 0o 

 

  

Figure 3.5 Branch points vs. tangent points in an RRCCR with parallel joint axes 
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3.3.3 Sub-branches  

 

A branch may contain one or several sub-branches, divided by branch points and dead center 

positions. The choice of the input joint will affect the formation of the dead center positions in 

the first four-bar loop but not the branch points.    

If all configurations are in the same branch, the linkage may reach all desired configurations 

continuously. If all configurations are also in the same sub-branch, the linkage will have the 

ability to reach all desired configurations without having to reach a dead center position or 

branch point, where the linkage may lose control. In a sub-branch, the input angle increases or 

decreases monotonously. Therefore the magnitude order of the input angle determines the order 

of reaching the desired configurations. 

In Fig. 3.4(a), neither branch point nor dead center position exists in the linkage, hence each 

branch has only one sub-branch. The four-branches are identified by  

U1 Є (0o, 180o) and U2 Є (0o, 180o);  

U1 Є (0o, 180o) and U2 Є (180o, 360o);  

U1 Є (180o, 360o) and U2 Є (0o, 180o);  

U1 Є (180o, 360o) and U2 Є (180o, 360o).  

In Fig. 3.4(b), there are two dead center positions, which divide each branch into two sub-

branches. The JRS sheet has two sides. The I/O curve on each side corresponds to a branch.  

Hence, the two branches are identified by U2 Є (0o, 180o) and U2 Є (180o, 360o). In each branch, 

the two sub-branches are identified by U1 Є (0o, 180o) and U1 Є (180o, 360o).      



 52 

In Fig. 3.4(c), each point on a branch (except the branch points) corresponds to two 

configurations [16]. Hence point A (as well as B) represents two dead center positions. Mi (i = 

1,…, 6) and A1,2 and B1,2 are the dead center positions of the Watt linkage. These dead center 

positions divide a branch into sub-branches. Branch M6M1 has four sub-branches M6A1, M1A1, 

M6A2, M1A2; Branch M4M5 also has four sub-branches M4B1, M5B1, M4B2, M5B2; Branch points 

M2M3 has two sub-branches. 

In example 2, the sub-branches in each of the two branches are identified as below.   

The four sub-branches in M1M4 are 

M1B1: {θ1 Є (-98o, -87o), U1 Є (0o, 180o), U2 Є (0o, 180o)};  

M1B2: {θ1 Є (-98o, -87o), U1 Є (0o, 180o), U2 Є (180o, 360o)};  

M4B1: {θ1 Є (-98o, -36o), U1 Є (180o, 360o), U2 Є (0o, 180o)};  

M4B2: {θ1 Є (-98o, -36o), U1 Є (180o, 360o), U2 Є (180o, 360o)}. 

The two sub-branches in M2M3 are 

{θ1 Є (27o, 79o), U1 Є (180o, 360o), U2 Є (0o, 180o)};  

{θ1 Є ( 27o, 79o), U1 Є (180o, 360o), U2 Є (180o, 360o)}. 

One may easily conclude that configurations P1 and P4 are in sub-branch M4B1 and all other 

configurations are in different branch or sub-branch. 

One may easily observe that in a branch formed between two branch points, if the number of 

dead center positions from the first four-bar loop is 0, 1, or 2, the number of sub-branches in the 

branch will be 2, 4, or 6, respectively. This is also true for Stephenson six-bar linkages. 
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  Remark: In the above discussion, a hidden five-bar loop is introduced via the stretch and 

rotation of the second four-bar loop and the JRS of the five-bar loop is used to explain the 

formation of branches and sub-branches caused by the interaction between the four-bar loops. In 

practice, branch points are the dead center positions of the second four-bar loops. Hence stretch 

rotation is a convenient visual aid to understand the formation of branches and sub-branches and 

how Watt linkages and Stephenson linkages differ in mobility.  In practice no stretch rotation has 

to be executed to conduct the mobility identification. Once the principle of mobility 

identification becomes known, the algorithm can be derived easily following the branch 

identification of Stephenson six-bar linkages [1].  

             

3.3.4 Full Rotatability 

 

The full rotatability of a linkage is input related. The full rotatability of a linkage should refer 

to a specific branch [20]. For a branch of a Watt six-bar linkage to have full rotatability, the 

following conditions must be satisfied. 

a. The four-bar loop is a Class I chain and the short link of the four-bar loop must be the 

input or fixed link. In other words, no dead center position exists in the branch. 

b. The I/O curve of the branch must stay within the JRS of the five-bar loop. In other words, 

no branch point exists in the branch.  

 In Fig. 3.4(a), no branch point or dead center position exists. Hence the linkage has full 

rotatability in all branches.  
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3.3.5 Watt Six-bar Chains with a Prismatic Joint  

 

A prismatic joint may be regarded as a revolute joint located at infinity in the direction 

normal to the path of the slider. Hence, the N-bar mobility laws can be extended to govern the 

mobility of planar single-loop N-bar chains when prismatic joints are involved [21]. Let φ = AP 

(Fig. 3.6) represents the prismatic joint variable. The I/O curve between φ and a revolute joint 

variable, say θ, at A or C can be obtained from the first four-bar loop APCD. These I/O curves 

can be classified into three types (Fig. 3.7) [16]. Stretch rotation can be applied to the second 

four-bar loop DGFE and a joint rotation space in the φ-θ domain of the resulting five-bar loop 

can be established. Sample types of JRS are shown in Fig. 3.2(b) and (c). An almost identical 

mobility identification method can be obtained for such a Watt-type linkage (Fig. 3.6).  

 

Figure 3.6 A Watt six-bar chain with one prismatic joint involved 
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(a) CR-I             (b) RR-I                (c) RR-II 

Figure 3.7 Three types of I/O curves with a prismatic joint variable 

 

3.4 Conclusions 

 

By using the stretch rotation to one of the four-bar loop, a Watt six-bar linkage is equivalent 

to a Stephenson six-bar linkage and the paper offers a simple explanation to the mobility 

formation of Watt six-bar linkages. The dead center positions of the second four-bar loop are the 

branch points. Although the formation of branch, sub-branch, and full rotatability of general Watt 

six-bar linkages is explained via the stretch and rotation of a four-bar loop, the resulting mobility 

criteria and algorithm requires no stretch and rotation and is easy to use. A Watt six-bar linkage 

may have up to four branches and each branch may have up to six sub-branches. The algorithm 

is suitable for automated mobility identification and is valid regardless whichever link is used as 

the input or fixed link. 
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CHAPTER 4 

ON THE VIRTUAL LOOPS AND VIRTUAL MULTILOOP LINKAGES 

 

ABSTRACT 

 

The concept of virtual loops is introduced to show that in view of joint rotatability, spatial 

mechanisms may be regarded as planar or spherical linkages containing one or more virtual 

loops. It is suggested that although the physical construction of a spatial linkage may bear little 

or no similarity to planar or spherical linkages, there is a striking similarity or compatibility in 

their intrinsic mobility characteristics and analysis. With the concept of virtual loops, all spatial 

linkages classified by Duffy [1] can be regarded as virtual planar or spherical linkages. Linkages 

in Duffy’s group 1, 2, 3, and 4 may be treated as spherical linkages with one, two, three, and four 

virtual loops respectively. The concept of virtual loops is subtle, but significant. It establishes a 

unified view on planar, spherical, and spatial linkages and a useful model to view or even 

understand complex spatial linkages. The fact that all of Duffy’s group 1 linkages and planar and 

spherical four-bar linkages are bimodal linkages is consistent with the proposed virtual loop 

concept. The dissertation presents a detailed account of how two types of spatial group 2 

mechanisms can be modeled as Stephenson-type linkages where findings for planar Stephenson 

linkages can be used directly. 

 



 59 

4.1 Introduction 

 

Mobility identification is a common problem encountered in linkage analysis and synthesis. 

Mobility of linkages refers to the problems related to branch (or circuit [2-7]) defect, full 

rotatability, sub-branch (or singularities), and order of motion [8]. For many decades, the 

understanding of the mobility of conventional closed-loop linkages had been mostly restricted to 

planar and spherical four-bar linkages. Generally, for geometric properties found in planar 

linkages, similar properties can also be expected in spherical linkages. The mobility study of 

four-bar linkages may be traced back to the discovery of the Grashof criterion [9], which is 

commonly used to predict the full rotatability of planar four-bar linkages. The most significant 

advancement in linkage mobility research are the N-bar rotatability laws [10-13]. The N-bar 

rotatability laws offer the first simple, complete, and systematical explanation for the rotatability 

of any N-bar chain (N ≥ 3) connected with revolute joints, in which the Grashof criterion 

becomes a very special case. The N-bar rotatability laws govern and predict the formation of 

branches, sub-branches, and full rotatability of any single loop planar and spherical N-bar chain. 

The success in planar and spherical four-bar linkages was later extended to all bimodal 

linkages [14-19]. The equation relating the output and input of a bimodal linkage can always be 

expressed in quadratic form. Based on the discriminant function of the quadratic equation, an 

algorithm can be derived for the mobility identification of any bimodal linkages.  

Mobility analysis becomes much more complex in multiple loop linkages, such as 

Stephenson and Watt six-bar linkages. In a single degree-of-freedom (DOF) multiloop linkage, 

the mobility is affected not only by each individual loop, but also by the interaction among loops. 

Based on the concept of Joint Rotation Space (JRS) [20, 21], Ting and his associates [8, 12, 22-
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27] offered a simple and straightforward method for the branch identification of Stephenson and 

Watt six-bar chains without invoking coupler curves. A unified mobility identification and 

rectification methodology has been developed on planar six-bar linkages [28]. JRS represents the 

domain of the input variables of a linkage or a loop. Ting [21] detailed the concepts of JRS 

sheets and sides as well as branch points to offer geometric insights on how mobility between 

loops interact each other and thus the mobility formation of linkages.  

JRS Sheet: The JRS of a linkage branch is called a JRS sheet. It represents the configuration 

space of a linkage branch in the input domain. Thus, the JRS of a Class I linkage contains two 

sheets and that of a Class II linkage contains only one sheet. There is no motion continuity 

between sheets, i.e. a linkage cannot be transformed between configurations in different JRS 

sheets. 

Edge of a JRS sheet: The edge of a JRS sheet is the boundary curve of the JRS. Each point 

on the boundary curve of the JRS corresponds to a unique uncertainty singularity configuration 

of a linkage.  

Side of a JRS sheet:  The edge of a JRS sheet separates the sheet into sides.  Each side of a 

JRS sheet represents the configuration space of a linkage sub-branch in the input domain. A 

point on one side of a JRS sheet corresponds to one and only one linkage configuration. Since a 

linkage can be programmed within one side of a JRS sheet without reaching the boundary where 

an uncertainty singularity occurs, each side of a JRS sheet represents a sub-branch or a 

singularity-free configuration space. 

The sheets and sides of a JRS provide an intuitive model to explain the relationship among 

branches, sub-branches, and singularities. So far, JRS is the most effective method and a vital 

tool or model to understand the formation of branch and sub-branches of multiloop linkages.  
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Figure 4.1 Two two-sided sheets 

Table 4.1 Classification of spatial kinematic chains 

Group Number of links Mechanism 

1 4-7 R-3C, 2R-P-2C, 3R-2P-C, 4R-3P 

2 5-7 3R- 2C, 4R-P-C, 5R-2P 

3 6-7 5R- C, 6R-P 

4 7 7R 

 

However, the mobility study of spatial mechanisms is far from adequate. Realizing the large 

variety and the similarity shared by single DOF spatial mechanisms, Duffy [1, 29] classified their 

displacement analysis into four groups (Table 4.1). This elegant classification scheme is useful 

for a systematic mobility study on spatial mechanisms. Mobility study used to focus on a 

particular linkage type. Under this classification, a consistent mobility identification method on 

single DOF spatial mechanisms may be established. 

 

4.2 Virtual Loop 

 

Each spatial linkage connected with revolute or cylindrical joints has a spherical indicatrix 

[1], which is formed by bringing all joint axes to intersect at a common point. Using the D-H 
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notations [30, 31], the link and joint parameters of any spatial linkage can be defined by dual 

angles as 

ijijij aεαα +=ˆ  and iiii Sεθθ +=ˆ   (4-1) 

where ε2 = 0, ijα̂  is the twist angle between joint axes i and j, and iθ̂  is the joint parameter at the 

joint axis i. If the dual part of all joint and link parameters are equal to zero, this spatial 

mechanism becomes a spherical linkage, which is the spherical indicatrix of the spatial 

mechanism. Fig. 4.2 shows an RCRCR mechanism and its corresponding spherical indicatrix. 

The spherical indicatrix may be regarded as a constraint imposed on the spatial mechanism by 

the angular displacements exclusively. Besides this constraint, on the orthogonal directions of the 

three dimensional space, three additional conditions are induced by the presence of joint offsets 

and skew distance between joint axes. All the equations, derived from the spherical indicatrix as 

well as the three additional constraint conditions, lead to a single-DOF spatial mechanism.  

The mathematical formula of each constraint condition can be written in the form of 

0=C+Bcos+Asin θθ oo     (4-2) 

where θo is the output variable and A, B, and C are functions of the input joint variable θi and 

three unknown angular and/or slider displacements. The first equation depicts the geometry of 

the spherical indicatrix and the other three the additional constraints. Like the loop-closure 

equations of a planar/spherical multiloop linkage, all equations, called fundamental equations of 

a spatial linkage, describe the essential geometry from which the mobility information of the 

linkage may be derived. 

 



 63 

 (a) 
1S

2S

3S

4S

5S

11S

55S

33S

4S

2S

45α

34α

23α

12α

51α

12a

23a

34a

45a

51a

2θ

3θ

1θ

4θ

5θ

 (b)   

45α

34α 23α

12α

51α

2θ

3θ

1θ

4θ

5θ 1S

2S

3S

4S

5S
 

Figure 4.2 (a) An RCRCR mechanism and (b) the spherical indicatrix 
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Figure 4.3 Types of I/O relationship of spatial group 1 linkages 

(a) CC-I (b) CR-I (c) RR-I (d) RR-II 
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One may note that Eq. 4-2 is also the form of the loop-closure equation of any single loop 

planar or spherical linkage. Thus each fundamental equation may be regarded as a virtual loop, 

although this loop does not physically exist and no corresponding physical link length can be 

derived from it. Its mathematical form is called a virtual “loop-closure” equation. The concept of 

virtual loops is introduced by its mathematical form rather than its physical appearance. 

 

4.2.1 Spatial Group 1 Linkages 

 

Spatial group 1 linkages include RSSR, RRSS, RCCC, RSCR, RSCP, and 4R3P, where R, S, 

C, and P refer to the revolute, spherical, cylindrical, and prismatic joints used in the linkages. 

The discriminant method was widely used on RSSR, RRSS, and RCCC [15, 16, 32-35]. Like 

planar four-bar linkages, RSSR can be classified into three classes according to the possible 

number of branches [16]. The RRSS linkage is an inversion of the RSSR linkage, and the 

classification strategy for the two is essentially identical. Similar to planar or spherical four-bar 

loops, there exist four different types of I/O relationship totally in spatial group 1 linkages, 

namely crank-rocker (CR-I), crank-crank (CC-I), class I rocker-rocker (RR-I), and class II 

rocker-rocker (RR-II) [36]. 

Of group 1 linkages, the spherical indicatrix contains the input and output joint variables 

only, which is equivalent to a spherical four-bar linkage. Its corresponding fundamental equation 

determines the relationship between the input and output joint variables. Once the input and 

output joint variables are determined, they can be plugged into the other three fundamental 

equations to determine the unknown slider displacements. Since the linkage mobility can be 

derived from the input and output relationship, which is exclusively governed by the first 
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fundamental equation (from the spherical indicatrix), the other three fundamental equations may 

be regarded as redundant. Thus a spatial group 1 linkage is equivalent to and regarded as a single 

loop linkage. 

Let 
2

=y oθtan  and 
y+1

y-1
=

2

2

oθcos ,  
y+1

2y
=

2oθsin  . Eq. 4-2 can be converted as 

0)(2)( 2 =+++− BCAyyBC     (4-3) 

The discriminant of the above quadratic equation is  

))((2' BCBCA +−−=∆     (4-4) 

Singularity appears when the above discriminant is equal to zero, i.e.,  

0))((2' =+−−=∆ BCBCA          (4-5) 

From the viewpoint of mobility, a singular condition, representing the boundary of input 

domain, divides one sheet of JRS into two sides. One may find that the concept of JRS works 

well on virtual loops. 

When an input joint variable is known, its corresponding output joint variable may be solved 

from Eq. 4-3. The derived two solutions show that one point in the JRS corresponds to two 

linkage configurations, and they are on different sides. Mathematically, Eqs. 4-6 and 4-7 

represent points on each side of the JRS sheet, respectively. For any two known linkage 

configurations (except on the edge), they are on the same side if both of them meet the same 

equation (either Eq. 4-6 or 4-7); otherwise they are on different sides. 

BC

CBAA
y

−

−+±−
=

)( 222

2,1   (4-6, 4-7) 

in which A, B, C are functions of the input joint variable.   

Let  
2

=x iθtan  and  
x+1
x-1

=
2

2

iθcos  ,  
x+1

2x
=

2iθsin . Eq. 4-4 can be further converted to 
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where the coefficients Q1, Q2, Q3, Q4, and Q5 are functions of the linkage structure parameters 

only.  The discriminant of the above quartic equation is  

23 27JI −=∆        (4-9) 

where  

12/4/ 2
345  Q + QQ QQI 21 −=  

432/]2)(27972[ 3
3

2
25

2
414353  Q QQ+QQ QQQQQQJ 21 −−+=  

Based on the sign of ∆ of Eq. 4-9, the classification criterion can be derived for all spatial 

group 1 linkages as well as planar, spherical, and virtual four-bar loops [15]. 

• ∆ >0, the formed virtual four-bar is Class I (Fig. 4-3(a), (b), and (c)); 

• ∆ <0, the formed virtual four-bar is Class II (Fig. 4-3(d)); 

• ∆ =0, the formed virtual four-bar is Class III. 

The classification criterion derived from the discriminant function may be regarded as the 

algebraic form of the Grashof criterion [9]. 

 

4.2.2 Spatial Group 2 Linkages 

 

A spatial group 2 linkage is referred to as a single DOF spatial linkage, which contains R, C, 

or P joints and has a total of five R and C joints [1]. Of a group 2 linkage, the spherical indicatrix 

contains the input, output, and one intermediate joint variables. The other three additional 

equations contain two unknown slider displacements besides the joint variables. Using the vector 

method introduced by Duffy [1], one of them can always be written as an equation without 

containing any unknown slider displacement, the second with one unknown slider displacement, 
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and the third with two unknown slider displacements. The input and output relationship can 

always be derived from the equation from the spherical indicatrix and the equation without 

containing any unknown slider displacement. Both of them are equivalent to virtual five-bar 

loops. The other two equations are redundant. Thus, a spatial group 2 linkage, consisting of two 

virtual five-bar loops, is equivalent to and regarded as a double loop linkage. 

By varying the value of the intermediate joint variable (say θm), any virtual five-bar loop can 

be treated as a family of virtual four-bar loops. If all virtual four-bar loops of the family are Class 

I, then this virtual five-bar loop is Class I; otherwise it is Class II or III.  

It is impossible to check all virtual four-bar loops of the family. The feasible process is to let 

Eq. 4-9 be equal to zero (∆=0) and see whether there exists any feasible solution of θm. If it does 

exist, so does the change point, and then this virtual five-bar loop is Class II or III. If no feasible 

solution of θm exists, then check one and only one virtual four-bar loop; if it is Class I, then the 

virtual five-bar loop is Class I, otherwise, it is Class II. 

Since all fundamental equations for planar, spherical, and spatial linkages can be expressed 

in quadratic form, the above mobility criteria of virtual four-bar and five-bar loops may be 

extended to any virtual loops and be regarded as the generalization of the N-bar rotatability laws 

[10-13]. 

Table 4.2 Duffy’s group 2 mechanisms 

Number of links Mechanism 
Five  RCRCR, RRCRC, RCRRC, RCCRR, RRRCC 

Six 
RRRPCR, RRCPRR, RRRRPC, RPCRRR, RCRPRR, RRCRPR, 

RRRPRC, RCRRPR, RRPRRC 

Seven RRPRPRR, RPRRPRR, RPRRRPR, RRRRPPR, RRRPPRR 
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4.2.3 Spatial Group 3 and 4 Linkages 

 

The concept of virtual loops is applicable to spatial groups 3 and 4 mechanisms as well. 

Every fundamental equation is equivalent to an individual virtual loop. 

Concerning group 3 linkages, the spherical indicatrix contains the input, output, and two 

intermediate joint variables, which is equivalent to a spherical six-bar loop. The other three 

fundamental equations contain one unknown slider displacement besides the joint variables. 

Using the vector method introduced by Duffy [1], two of them can always be written as 

equations without containing any unknown slider displacement and the third with one unknown 

slider displacement. The equations without containing any unknown slider displacement lead to 

two additional constraint conditions to the three-DOF spherical indicatrix and therefore create 

the effect of two additional loops to the spherical indicatrix to form a single-DOF linkage. The 

input and output relationship can always be derived from the equation from the spherical 

indicatrix and the two equations without containing any unknown slider displacement. All of 

them are equivalent to virtual six-bar loops. The equation containing one unknown slider 

displacement is redundant. Thus, a spatial group 3 linkage, consisting of three virtual six-bar 

loops, is equivalent to and regarded as a three loop linkage.  

Concerning group 4 linkages, the spherical indicatrix as well as the other three fundamental 

equations contain the input, output, and three intermediate joint variables, which are equivalent 

to four seven-bar loops. No equation is redundant. Thus a spatial group 4 linkage is equivalent to 

and regarded as a four loop linkage. 

Generally, if the fundamental equation containing any unknown slider displacement is 

regarded as redundant, there exists one virtual four-bar loop in spatial group 1 linkages, two 
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virtual five-bar loops in group 2 linkages, three virtual six-bar loops in group 3 linkages, and four 

virtual seven-bar loops in group 4 linkages. When the offset is zero at the revolute joint between 

the cylindrical joints, a general RCRCR is degenerated into a special case, namely a simple 

RCRCR. A virtual loop may degenerate to a less complicated loop. For example, in a simple 

RCRCR, one of the virtual loops is a four-bar loop.  

With the concept of virtual loops, a unified linkage classification scheme based on the 

number of (virtual) loops becomes apparent. All linkages can be classified into four groups 

according to the level and similarity of mobility or computation complexity rather than their 

physical appearance. Each spatial group 1, 2, 3, or 4 mechanism can be regarded as a virtual 

spherical linkage formed by one or more virtual loops. Such a unified classification scheme 

represents a very unique and desirable aspect of this paper. It suggests that mobility analysis of 

all linkages can be carried out in a unified and systematic manner based on the similarity of the 

mobility features rather than the specific or individual linkage structure. The fact that all of 

Duffy’s group 1 linkages and planar and spherical four-bar linkages are bimodal linkages is 

consistent with the proposed virtual loop concept. The concept of virtual loops is perfectly 

applied in the following section where two types of spatial group 2 linkages are modeled as 

virtual Stephenson linkages. 

 

4.3 Virtual Stephenson Linkage 

 

Simple RCRCR and group 2 linkages with parallel joint axes are simplified versions of group 

2 mechanisms. Each of them can be modeled as a virtual multiloop linkage consisting of a four-

bar loop and a five-bar loop. Therefore, their mobility and branch conditions are completely 
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compatible to that of Stephenson six-bar linkages and may be regarded as virtual Stephenson 

linkages where findings for planar Stephenson linkages can be used directly. The concept of 

virtual loops offers the background for a unified mobility analysis for both ordinary and virtual 

Stephenson linkages. 

 

4.3.1 Simple RCRCR 

 

A simple RCRCR mechanism is shown schematically in Fig. 4.4. The axes of the joints R, C, 

R, C, and R are labeled 1, 2, 3, 4, and 5 in order. The input angular displacement is θ1 and the 

output angular displacement θ5. The remaining five variables are the angular displacements θ2, 

θ3, θ4 and the slider displacements S2 and S4. By using the D-H notation [30, 31], ο6012 =α , 

ο4523 =α  ο3534 =α , 
ο3045 =α , and ο1051 =α  are the angles between the corresponding joint 

axes, 2512 =a , ,3023 =a  4034 =a , 1045 =a , and 3251 =a  are the distance between the 

corresponding joint axes, S11 = 30 and S55 = 25 are the offset along the corresponding R-joint 

axes, and S33 = 0, i.e., the offset is zero between the links connected by the revolute joint 

between the two C-joints.  

According to Duffy’s sine, sine-cosine, and cosine laws [1], the motion of a simple RCRCR 

mechanism is governed by two fundamental equations. One equation, which is induced by the 

presence of joint offsets and skew distance between joint axes (called cylindroid surface 

constraint in [36]), can be written as 

067.6sin11.1cos80.3sin31.0cos84.0

cossin69.6sinsin79.6sincos68.6coscos36.7

1155

15151515

 =++−+−

+−+

θθθθ

θθθθθθθθ
   (4-10) 
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The other equation, which can be derived from the spherical indicatrix, is written as 

3151515 cos77.3cos21.3cos07.1sinsin68.10coscos51.10 θθθθθθθ  =+++−  (4-11) 

One may observe that the above two equations can be written in the form of Eq. 2-2, so each 

of them may be treated as a loop-closure equation derived from a virtual loop and simple 

RCRCR may be modeled as a double loop linkage. Eq. 4-10 has two joint variables, θ1 and θ5, so 

it is equivalent to a four-bar loop. Eq. 4-11 has three joint variables, θ1, θ5, and θ3, so it is 

equivalent to a five-bar loop. Of the two virtual loops, there are two common joint variables, θ1 

and θ5. Similar characteristics can also be found in a Stephenson six-bar linkage. Therefore, a 

simple RCRCR can be regarded as a virtual Stephenson linkage consisting of a virtual four-bar 

loop induced by the presence of joint offsets and skew distance between joint axes and a virtual 

five-bar loop derived from the spherical indicatrix (Fig. 4.4). 

       
      

Figure 4.4 Analogy between a simple RCRCR and a virtual Stephenson linkage 
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Figure 4.5 Analogy between an RRCCR ( ο045 =α ) and a virtual Stephenson linkage 

 

4.3.2 Spatial Group 2 with Parallel Joint Axes 

 

An RRCCR with parallel joint axes (for convenience without losing generality, let ο045 =α ) 

is shown schematically in Figure 4.5. The axes of the joints R, R, C, C, and R are labeled 1, 2, 3, 

4, and 5 in order. The input angular displacement is θ1 and the output angular displacement θ5. 

The remaining five variables are the angular displacements θ2, θ3, θ4 and the slider displacements 

S3 and S4. By using the D-H notation [30, 31], ο5012 =α , ο7523 =α , ο4034 =α , and ο5551 =α  are 

the angles between the corresponding joint axes, 1412 =a , ,3523 =a  3834 =a , 1245 =a , and 

1051 =a  are the distance between the corresponding joint axes, and S11 = 15, S22 = 24, and S55 = 

6 are the offset along the corresponding R-joint axes. 

According to Duffy’s sine, sine-cosine, and cosine laws [1], the motion of a spatial group 2 

linkage with parallel joint axes is governed by two fundamental equations. One equation, which 

is induced by the presence of joint offsets and skew distance between joint axes, can be written 
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as  

0)01.9cos17.18sin44.2cos64.1coscos36.1sinsin38.2(

cos)90.2cos15.0sin62.26cos27.7coscos27.4sinsin45.7(

sin)19.10cos07.24sin96.12sincos65.6cossin59.11(

1151515

21151515

2111515

=+++−−+

−+++−+

++++

θθθθθθθ

θθθθθθθθ

θθθθθθθ

  

           (4-12) 

The other equation, which can be derived from the spherical indicatrix, is written as 

0)71.6cos62.1(cos)24.4cos09.5(sinsin91.7 12121 =−−+−−+ θθθθθ   (4-13) 

Likewise, one may observe that the above two equations can be written in the form of Eq. 4-

2, Eq. 4-12 has three joint variables, θ1, θ2, and θ5, so it is equivalent to a five-bar loop. Eq. 4-13 

has two joint variables, θ1 and θ2, so it is equivalent to a four-bar loop. Of the two virtual loops, 

there are two common joint variables, θ1 and θ2. Similar characteristics can also be found in a 

Stephenson six-bar linkage. Therefore, a spatial group 2 linkage with parallel joint axes can be 

regarded as a virtual Stephenson linkage consisting of a virtual five-bar loop induced by the 

presence of joint offsets and skew distance between joint axes and a virtual four-bar loop derived 

from the spherical indicatrix (Fig. 4.5).   

From the viewpoint of linkage mobility and displacement analysis, both simple RCRCR and 

spatial group 2 with parallel joint axes are completely compatible to Stephenson linkages. Their 

mobility can be obtained exactly in the same way for Stephenson six-bar linkages [8, 28]. 

 

4.4 Mobility Identification and Rectification of Virtual Stephenson Linkages 

 

The difficulties concerning the mobility of Stephenson-type linkages mainly lie on the 

branches induced by the interaction between loops. The problem is even more complicated with 

the sub-branches when the input is given through a joint not in the four-bar loop. 
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4.4.1 Branch 

 

The branch problem of a linkage is strictly affected by the kinematic chain and is irrelevant 

to the input or output condition [12, 22-28]. In a branch, an input value may correspond to more 

than one linkage configuration while in a sub-branch each input value corresponds to a unique 

linkage configuration. For a two-DOF five-bar linkage, Ting [21] refers the input domain of a 

branch as a sheet while that of a sub-branch as one side of the sheet and a sheet with a boundary 

has two sides. The concept of sheet and side of JRS offers an excellent model to explain and 

understand the interaction between loops in Stephenson six-bar linkages [8].  

Branch points: They are the intersection points between curves of a four-bar loop and 

boundary curves of the JRS sheet of a five-bar loop. Therefore, they are the common solutions of 

the I/O displacement equation of the four-bar loop and the singular condition equation of the 

five-bar loop.  

The concept of JRS offers clear geometric insight for mobility analysis. If no branch point 

exists, the branch condition can be easily identified by the branch of the four-bar loop and the 

side of the five-bar JRS sheet [21]. If branch points exist, the effects of branch points must also 

be taken into consideration in the branch formation [8]. The maximum number of branches that a 

Stephenson six-bar linkage may have is six [8].   

Dead center position: The dead center position of a single-DOF planar linkage occurs when 

the input link reaches its rotation limit. At such positions, a linkage may be out of control 

momentarily and have zero mechanical advantage [38]. Dead center positions in a Stephenson 

linkage may result from the four-bar loop or the combination of the four-bar and five-bar loops 

depending on the choice of the input joint. The analysis of dead center positions can be separated 
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into two categories depending on whether the input is given through a joint in the four-bar or the 

five-bar loop.  

On the I/O curve of the four-bar loop, the points with a vertical slope are called singular 

points. If the input is given through a joint in the four-bar loop, then the singular points and 

branch points [8] are the dead center positions of the Stephenson linkage. If the input is not given 

through a joint in the four-bar loop, then the singular or branch points discussed above will not 

be dead center positions. Ting and his associates [27] presented a simple method to find all dead 

center positions of any Stephenson six-bar linkage with the input joint not in the four-bar loop. 

The association of these dead center positions to each branch is also identified. 

Generally, the I/O relationship between any pair of joint parameters can be expressed by a 

polynomial equation [27]. In any sub-branch, the input reaches an extreme value when the 

linkage is at a dead center position. Therefore, all of the dead center positions, disregarding 

whichever joint is used as the input joint, can be found by solving polynomial equations [27]. It 

may be noted that the existence of the dead center positions is strictly input related and is 

irrelevant to the choice of the output joint. 

 

4.4.2 Sub-branch 

 

A branch may be divided into sub-branches by the dead center positions.  A branch may have 

one, two, or more sub-branches depending on the number of dead center positions in the branch.  

In a sub-branch, a one-to-one correspondence exists between the input angle and the linkage 

configuration; the input increases or decreases monotonously from one dead-center position to 

another. Such a one-to-one correspondence is the core issue in the sub-branch identification. 
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Since such a correspondence can be easily established with the input joint in the four-bar loop, 

the sub-branch identification with other input conditions can be accomplished via the above 

established correspondence. 

 

4.4.3 Unified Methodology 

 

A unified theory for the mobility analysis of planar six-bar linkages based on the concept of 

JRS has been completely established [28]. The principle is applicable to virtual Stephenson 

linkages as well. However, one point should be mentioned. In planar six-bar linkages (Fig. 4.6), 

the angles θ34 and θ78 are used for side identification of JRS. θ34 is the angle between links 3 and 

4 (θ34 = θ4 - θ3);  θ78 is the angle between links 7 and 8 (θ78 = θ8 – θ7). But in virtual Stephenson 

linkages, the mathematical equations 6 and 7 are used instead. In other words, the linkage 

configurations must meet the same mathematical equation if they are said to be on the same side.  

In a virtual four-bar loop, the coefficients A, B, and C of Eq. 4-2 contain one input joint 

variable θi. To distinguish them against the coefficients of other virtual loops, they are written as 

 p+p+pA=A 3i2i1 θθ cossin1 =    

 p+p+pB=B 6i5i4 θθ cossin1 =  

p+p+pC=C 9i8i7 θθ cossin1 =   (4-14) 

in which p1, p2, …, p9 are functions of all joint and link parameters.    
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In a virtual five-bar loop, the coefficients A, B, and C of Eq. 4-2 contain one input joint 

variable θi and one intermediate joint variable θm. To distinguish them against the coefficients of 

other virtual loops, they are written as 

 p+p+pA=A 3i2i1 θθ cossin2 =    

 p+p+pB=B 6i5i4 θθ cossin2=  

p+p+pC=C 9i8i7 θθ cossin2 =   (4-15) 

in which p1, p2, …, p9 are functions of the intermediate joint variable θm. 

Likewise, to distinguish the singular conditions between a four-bar loop and a five-bar loop, 

Eqs. 4-6 and 4-7 are further written as follows. 

Four-bar loop:
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Figure 4.6 A Stephenson six-bar linkage 
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Figure 4.7 Branches of a virtual Stephenson linkage 

(a) I/O curve (θ2 vs. θ1) in JRS (b) I/O curve of (θ5 vs. θ1) 

 

4.4.4 Example 

 

A group 2 mechanism (RRCCR) with parallel joint axes is used to illustrate the 

methodology. The same joint and link parameters in section 4.3.2 are used here. 

From Eq. (4-13), 11 sin91.7 θ=A , 24.4cos09.5 11 −−= θB , 71.6cos62.1 11 −−= θC . 

From Eq. (4-12),  

19.10cos07.24sin96.12sincos65.6cossin59.11 1115152 ++++= θθθθθθA ,  

90.2cos15.0sin62.26cos27.7coscos27.4sinsin45.7 11515152 −+++−= θθθθθθθB , 

01.9cos17.18sin44.2cos64.1coscos36.1sinsin38.2 11515152 +++−−= θθθθθθθC . 
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Table 4.3 shows the orientation angles of θ1, θ2, and θ5 at all branch points, singular points, 

dead center positions, and six configurations, Pi, i = 1, 2, 3, …, 6. Fig. 4.7(a) shows the I/O curve 

between θ1 and θ2 and Fig. 4.7(b) shows the relationship between θ5 and θ1. 

For the given set of linkage configurations, Pi, i = 1, 2, 3, …, 6,  

a. Determine the branch condition of these configurations. 

b. Determine the sub-branch condition of these configurations when θ5 is the input angle.    

c. Determine their order of motion. 

 Branch identification:  

a. Find and locate all branch points [8] (M1, M2, M3, and M4 in Table 4.3(a)). 

b. Find and locate all singular points [27] (N1 and N2 in Table 4.3(a)). 

c. Find and locate all dead center positions (B1, B2, B3, and B4 in Table 4.3(a)) if θ5 is to be 

the input angle. 

d. Divide all configurations into two groups by the side identification criterion of four bar 

loop (Eqs. 4-16 and 4-17) (Table 4.3(a)). 

e. In Table 4.3(a), sort the first group by the ascending (or descending) order of θ1 and then 

the second group by the reverse order. Points between two neighboring branch points are 

grouped as one branch. Table 4.1(b) shows the two branches between M1 and M2, M3 and 

M4 (Fig. 4.7). 

Sub-branch identification:  

       Now the branch is identified. If θ1 is the input angle, all singular points and branch points are 

dead center positions, which divide a branch into sub-branches. In each branch, the sub-branches 

between neighboring dead center positions can be recognized by the side identification criteria of 
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four-bar loops (Eqs. 4-16 and 4-17) and/or five-bar loops (Eqs. 4-18 and 4-19) and the 

magnitude order of θ1. For example, in Fig. 4.7(a), branch M1M2 has two sub-branches separated 

by the side identification criterion of a four-bar loop (Eqs. 4-16 and 4-17); branch M3M4 has four 

sub-branches separated by the side identification criteria of both a four-bar loop (Eqs. 4-16 and 

4-17) and a five-bar loop (Eqs. 4-18 and 4-19). The example is shown in Table 4.4, which is 

obtained by sorting Table 4.3(b) as below. 

a. In each branch, divide the configurations in Table 4.3(a) into two groups according to the 

side identification criterion of a four-bar loop (Eqs. 4-16 and 4-17), and then  

b. Divide each group into two sub-groups according to the side identification criterion of a 

five-bar loop (Eqs. 4-18 and 4-19). 

By now, each branch in Table 4.4 should have no more than four groups and any of these 

groups is a sub-branch. One may note that in Table 4.4, the sub-branches have been arranged in 

the order of occurrence in the motion cycle of the branch.  
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Table 4.3 Branch identification 
 (a) By checking the side identification criterion of a four-bar loop: equations 2-16 and 2-17, and 
sorting the order of θ1 values; (b) by forming branch for every two branch points 
 

          
                                    (a)                                                                    (b)    

 

Table 4.4 Sub-branches by θ1 
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Table 4.5 Order of motion 

 
 

Table 4.6 Sub-branches by θ5 

 

Order of motion in a branch: 

In each sub-branch the configurations appear in the descending or ascending order of the 

input values. In an identical branch, if the order of the input values reverses from a sub-branch to 
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the adjoining sub-branch, then the order of the appearance of the configurations throughout the 

entire branch cycle can be obtained.  

 Sort each sub-branch by the ascending or descending order of the θ1 values. The θ1 values in 

the adjoining sub-branch must ascend or descend in the opposite direction. For example, in 

branch M3M4, the sorting order reverses at the singular points N1 and N2 as well as the branch 

points M3 and M4. After sorting, all configurations in a branch will appear in the order listed in 

Table 4.5 throughout the entire branch cycle.   

Sub-branch identification with input not given through the four-bar loop: 

If the input is not given through a joint in the four-bar loop, the branch points and the 

singular points from the four-bar loop are generally not dead center positions. This situation 

occurs if the input is given through θ5 (Fig. 4.5). In such a situation, all dead center positions B1, 

B2, B3, and B4 can be found [27] and included in Tables 4.3 to 4.5. The configurations between 

adjacent dead center positions are in the same sub-branch. In Table 4.5, one may reorganize the 

order of the appearance of the configurations by placing a dead center position as the starting 

position in each branch as shown in Table 4.6. It becomes obvious that the M1M2 branch cycle is 

completed in the order of (M1, B2, P6, M2, and B1), in which B2 and B1 divide the branch into two 

sub-branches. Likewise, the M3M4 branch cycle proceeds in the order of (P2, M3, P1, P3, P4, B4, 

N1, M4, P5, N2, and B3), in which B4 and B3 divide the branch into two sub-branches.  

For any choice of the input joints, all dead center positions can be found [27]. By inserting 

the dead center positions in the list of the order of motion, such as the one in Table 4.6, the sub-

branches in each branch and the order of motion in each sub-branch are obtained automatically. 

The above method is general and applicable to any number of sub-branches in a branch. It 

applies to both ordinary and virtual Stephenson linkages. 
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4.5 Conclusions 

 

With the concept of virtual loops, spatial mechanisms can be regarded as multiloop planar or 

spherical linkages containing one or more virtual loops. It is suggested that although the physical 

construction of a spatial linkage may bear little or no similarity with planar or spherical linkages, 

there is striking similarity or compatibility in their intrinsic mobility characteristics and analysis. 

Under the concept of virtual loops, two types of spatial group 2 mechanisms can be modeled as 

Stephenson-type linkages where findings for planar Stephenson linkages can be used directly. 

The developed criteria on virtual loops may be regarded as the generalization of N-bar 

rotatability laws, which is suitable to treat all typical mobility issues of both ordinary and virtual 

Stephenson linkages. This dissertation establishes a unified view on planar, spherical, and spatial 

linkages and a useful model to view or even understand complex spatial linkages.  
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CHAPTER 5 

ON THE BRANCH FORMATION OF SPATIAL GROUP 2 LINKAGES3 

 

ABSTRACT 

 

A spatial linkage with the displacement governed by two fundamental equations can be 

regarded as a virtual double loop system. The mobility of the linkage is affected by the mobility 

of each individual “loop” as well as the interaction between the loops. The current use of branch 

points for branch identification is limited to linkages with simple topology, such as Stephenson-

type linkages, which are simplified versions of group 2 mechanisms. However, in a general 

spatial group 2 linkage, both the fundamental equations are equivalent to virtual five-bar loops. 

Branch points in Stephenson-type linkages should be generalized to explain and define the 

interaction between two virtual five-bar loops. The concept of generalized branch points offers 

the explanation of how branches are formed in spatial group 2 linkages. This dissertation 

presents the theoretical background for the mobility analysis of complex spatial linkages.  

                                                 
3 Accepted by the ASME 2009 International Design Engineering Technical Conferences & Computers and 
Information in Engineering Conference (IDETC/CIE), August 30 – September 2, 2009, San Diego, California, USA. 
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5.1 Introduction 

 

For many decades, the understanding of the mobility of conventional closed-loop linkages 

had been mostly restricted to planar and spherical four-bar linkages. Generally, for geometric 

properties found in planar linkages, similar properties can also be expected in spherical linkages. 

The mobility study of four-bar linkages may be traced back to the discovery of the Grashof 

criterion [1], which is commonly used to predict the full rotatability of four-bar linkages. The 

most significant advancement in linkage mobility research are the N-bar rotatability laws [2-5]. 

The N-bar rotatability laws offer the first simple, complete, and systematical explanation for the 

rotatability of any N-bar chain (N ≥ 3) connected with revolute joints, in which the Grashof 

criterion becomes a very special case. The N-bar rotatability laws govern and predict the formation 

of branches, sub-branches, and full rotatability of any single-loop planar and spherical N-bar chain. 

However, the mobility analysis becomes more complex for multiple loop linkages, where 

mobility is affected by not only each individual loop, but also the interaction among loops. 

The concepts of joint rotation space (JRS) [6] and branch points [7] were first used to resolve 

the mobility problems of Stephenson six-bar linkages. They are simple and straightforward for 

the branch identification of Stephenson [7] and Watt six-bar chains [8] without invoking coupler 

curves. JRS represents the domain of the input variables of a linkage or a loop. Ting [9] detailed 

the concepts of JRS sheets and sides as well as branch points to offer geometric insights on how 

mobility between loops interact each other and thus the mobility formation of linkages. The 

sheets and sides of a JRS provide an intuitive model to explain the relationship among branches, 

sub-branches, and singularities. Each side of a JRS sheet represents a one-to-one correspondence 

between the input and the output and also an input domain free from any discontinuity and 
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singularity. So far, JRS is the most effective and vital tool or model to understand the formation 

of branch and sub-branches of multiloop linkages.  

The concept of virtual loops [10] suggests that single loop spatial linkages may be regarded 

and treated as multiloop spherical linkages. Ting showed that a simple RCRCR mechanism and 

some spatial group 2 linkages with parallel joint axes are completely compatible to Stephenson 

six-bar linkages from the viewpoint of linkage mobility and displacement analysis [10]. Their 

mobility analysis can be conducted exactly in the same way for Stephenson six-bar linkages. 

However, simple RCRCR and spatial group 2 with parallel joint axes are linkages with simple 

topology; they are simplified versions of spatial group 2 linkages. A more general definition of 

branch points is sought to explain the branch formation of linkages.  

 

5.2 Spherical Indicatrix and Virtual Loop 

 

Each spatial linkage connected with revolute or cylindrical joints has a spherical indicatrix 

[11], which is formed by bringing all joint axes to intersect at a common point. Fig. 5.1 shows an 

RCRCR mechanism and its corresponding spherical indicatrix. The spherical indicatrix may be 

regarded as a constraint imposed on the spatial mechanism by the angular displacements. Besides 

this constraint, on the orthogonal directions of the three dimensional space, three additional 

conditions are induced by the presence of joint offsets and skew distance between joint axes. 

Mathematically all equations derived from the spherical indicatrix as well as the three additional 

constraint conditions lead to a single degree-of-freedom (DOF) spatial mechanism. 
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Figure 5.1 (a) An RCRCR mechanism and (b) the spherical indicatrix 

The concept of virtual loops is introduced by its mathematical form rather than its physical 

appearance. With the concept of virtual loops, a unified linkage classification scheme based on 

the number of (virtual) loops becomes apparent. Each spatial group 1, 2, 3, or 4 mechanism can 

be regarded as a virtual spherical linkage formed by one or more virtual loops. The fact that all 

of Duffy’s group 1 linkages and planar and spherical four-bar linkages are bimodal linkages and 

the fact that simple RCRCR and spatial group 2 with parallel joint axes are completely 

compatible with Stephenson six-bar linkages are consistent with the proposed virtual loop 

concept.  

The geometry or mobility of a virtual loop in a virtual multiloop linkage is expressed by the 

fundamental equation (the virtual “loop-closure” equation), which can be written in the form of 

0=C+Bcos+Asin θθ oo     (5-1) 

where θo is the output variable and A, B, and C are functions of the input joint variable θi.  
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5.2.1 N-bar Rotatability Laws and Mobility Criteria of Virtual Loops 

 

The N-bar rotatability laws [2-5] govern and predict the mobility of single loop planar and 

spherical linkages. In the N-bar rotatability laws, the rotatability of a linkage is viewed from the 

entire chain rather than from a linkage that has a narrow scope limited by the fixed link. 

Therefore, the variety of mobility considerations due to different linkage inversions is 

eliminated; the joint rotatability in a chaotic N-bar chain suddenly becomes easy to understand. 

Ting classified single loop chains into three classes. A Class I chain has two branches while a 

Class II chain has only one branch. Therefore the branch problem does not exist in Class II 

chains. Class III is a transitional type between Class I and II chains.  

The virtual “loop-closure” equation (Eq. 5-1) can be expressed in quadratic form. Any virtual 

four-bar loop can be classified into Class I, II, or III by using the discriminant function [10, 12]. 

By varying the value of the intermediate joint parameter, any virtual five-bar loop can be treated 

as a family of virtual four-bar loops. If all virtual four-bar loops of the family are Class I, then 

this virtual five-bar loop is Class I; otherwise it is Class II or III [10]. Since all fundamental 

equations for planar, spherical, and spatial linkages can be expressed in quadratic form, the 

mobility criteria of virtual loops may be regarded as the generalization of the N-bar rotatability 

laws.  

 

5.2.2 Dead Center Positions 

 

At a dead center position, the derivative of the output with respect to the input becomes 

infinite [13]; the input link reaches its rotation limit; and the linkage may be out of control 
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momentarily [14]. Generally, the input-output (I/O) relationship between any pair of joint 

parameters of a linkage can be expressed by a polynomial equation [15]. Therefore, all of the 

dead center positions of single-DOF linkages, disregarding whichever joint is used as the input 

joint, can be found by solving a polynomial equation [15].   

Let 
2

=y oθtan  and 
y+1

y-1
=

2

2

oθcos ,  
y+1

2y
=

2oθsin  . Eq. 5-1 can be converted as 

0)(2)( 2 =+++− BCAyyBC     (5-2) 

At a dead center position, the input and output relationship equation should have equal roots 

for a given input. Thus, the discriminant of the above equation should vanish, which leads to a 

polynomial equation in terms of the input parameter only [16].  

0))((2 =+−−=∆ BCBCA     (5-3) 

 

5.3 Spatial Group 2 Linkages 

 

A spatial group 2 linkage is referred to as a single DOF spatial linkage, which contains R, C, 

or P joints (R, C, and P refer to the revolute, cylindrical, and prismatic joints used in the 

linkages) and has a total of five R and C joints [11]. Of a group 2 linkage, the first fundamental 

equation (say Eq. 5-1(a)) derived from the spherical indicatrix contains the input, output, and one 

intermediate joint variables, which is equivalent to a five-bar loop. The second fundamental 

equation (say Eq. 5-1(b)) leads to an additional constraint on the two-DOF spherical indicatrix 

and therefore creates the effect of an additional loop to the spherical indicatrix to form a single-

DOF linkage. A spatial group 2 linkage, consisting of two virtual five-bar loops, is equivalent to 

and regarded as a double loop linkage. 
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The linkage mobility is governed by the two fundamental equations and how they influence 

each other. From the viewpoint of a virtual double loop linkage, since the mobility of each 

individual loop is governed by the N-bar rotatability laws [2-5] and/or the mobility criteria of 

virtual loops [10], the central issue in this dissertation is how the interaction between the loops 

affects the branch formation of the entire linkage. 

Table 5.1 Duffy’s group 2 mechanisms 

Number of links Mechanism 
Five  RCRCR, RRCRC, RCRRC, RCCRR, RRRCC 

Six 
RRRPCR, RRCPRR, RRRRPC, RPCRRR, RCRPRR, RRCRPR, 

RRRPRC, RCRRPR, RRPRRC 

Seven RRPRPRR, RPRRPRR, RPRRRPR, RRRRPPR, RRRPPRR 
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5.3.1 JRS of Spatial Group 2 Linkages 

 

The fundamental equation of any single loop planar/spherical linkage, virtual loop, or spatial 

group 1 linkage can be expressed in the form of Eq. 5-1 and later be converted as a quadratic 

equation (Eq. 5-2). The discriminant of this quadratic equation, ∆ ≥ 0, describes the JRS of a 

group 1 linkage. ∆ = 0 is the singular condition representing the boundary of the input domain, 

which divides one sheet of JRS into two sides. When an input joint variable is known, the 

corresponding output joint variable can be solved from Eq. 5-2. The derived solutions represent 

linkage configurations on two sides of a JRS sheet. In other words, Eq. 5-4(a) is the 

mathematical expression of one side of a JRS and Eq. 5-4(b) of the other side. 

                                  
BC

CBAA
y

−

−+±−
=

)( 222

2,1    (5-4ab) 

Fig. 5.2(a) shows the JRS of a single loop two-DOF linkage obtained through the 

discriminant function (θ2 and θ4 are the two input variables). A spatial group 2 linkage consists 

of two virtual five-bar loops and is equivalent to a double loop linkage. Each virtual loop has its 

own JRS. The JRS of any spatial group 2 linkage is the interaction between them (Fig. 5.2(b)). 

        
(a) single loop                                 (b) double loops  

Figure 5.2 JRS of a spatial group 2 linkage 
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5.3.2 Branch Points and Stephenson-Type Linkages 

 

If Eq. 5-1(b) does not contain the intermediate joint parameter (say θ5), it is a curve in the 

JRS of Eq. 5-1(a). This is the case with Stephenson six-bar linkages [7], Watt six-bar linkages 

[8], simple RCRCR [17], geared five-bar linkages [18], and some spatial group 2 linkages with 

parallel joint axes. They represent the simplified version of group 2 linkages, called Stephenson-

type linkages [10], in which one of the fundamental equations represents a virtual four-bar loop 

and the other a virtual five-bar loop. Both loops have two common joint variables and the 

relationship between both variables is named as the I/O curve of the virtual four-bar loop. For the 

virtual five-bar loop, although it has two DOF, the JRS of the common joints as the virtual four-

bar loop may be a bounded region [10]. The branch points are the intersections of the I/O curve 

of the virtual four-bar loop and the JRS boundary of the virtual five-bar loop. Since there is no 

difference in the mathematical treatment of a physical loop and a virtual loop, in the following 

discussion, the mobility conditions, such as branch, sub-branch, and joint rotatability can be 

explained and predicted unambiguously and automatically with the JRS properties and the 

branch points [9]. Branch points are the intersection points between the I/O curve and the JRS 

boundary curve. They represent how an I/O curve is blocked by the JRS of the five-bar loop to 

form branches [7]. Fig. 5.3 is a sample showing the mobility chart of a Stephenson-type linkage, 

where θ3 and θ4 are two common joint variables of the two real or virtual loops and branch 

points at 1 to 6 divide the I/O curve into three branches, 1-2, 3-4, and 5-6. The concept of branch 

points offers an explicit explanation and unambiguous prediction of the branch formation or 

continuity of all Stephenson-type linkages [7, 8, 10, 17, 18].  
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However, in a general spatial group 2 linkage, both the fundamental equations are 

equivalent to virtual five-bar loops. The I/O curve of a general spatial group 2 linkage is always 

contained in the JRS of each individual five-bar loop, so there is no intersection between the I/O 

curve and the JRS boundary curve. In other words, branch points in Stephenson-type linkages 

cannot explain and define the interaction between two virtual five-bar loops. The concept of 

branch points should be generalized to explain the branch formation of general group 2 linkages. 

Examining Fig. 5.3(b) with the concept of JRS sheets and sides [9], one may realize that each 

segment of the I/O curve actually represents two overlapping curves and each point, except the 

branch points, on the I/O curve represents two configurations. Since a branch point represents 

only one configuration, it is a double root between two curves. In other words, a branch point 

should be a tangent point between curves in a general group 2 linkage. 

         

Figure 5.3 JRS, branches, and branch points of a Stephenson-type linkage 
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5.3.3 Tangent Points and Spatial Group 2 Linkages 

 

Let θ1 and θ5 be the two common joint variables in Eq. 5-1 and θ3 the output variable. Eq. 5-

1 represents two surfaces in the input/output domain. The intersection of these two surfaces is the 

I/O curve, which describes the relationship between the input and output variables, say θ1 and θ3, 

respectively. Unlike group 1 linkages whose mobility can be derived from the input and output 

relationship, the I/O curves can be very complicated for group 2 linkages. Duffy used six curves 

depicting the variation of all joint variables with respect to the input parameter to express the true 

mobility or configuration variation of spatial linkages [11]. 

Any group 2 spatial linkage is governed by two fundamental equations. By varying the θ5 

value, Eq. 5-1(a) yields a family of curves representing the JRS of one virtual loop, so does Eq. 

5-1(b). On the other hand, both fundamental equations represent a pair of curves if the value of 

θ5 is given. For a given θ5 value, if both curves do not intersect, no linkage configuration can be 

formed (Fig. 5.4(a)); if they intersect, the intersection points must be on the θ1 vs. θ3 curves, 

(also called I/O curve) of the linkage (Fig. 5.4(b) and (c)). The I/O curve is the locus of the 

intersection points of the curves corresponding to possible θ5 values. As the value of θ5 varies, 

the pair of curves representing Eq. 5-1 may evolve from non-intersecting to tangent and then to 

intersecting (Fig. 5.4). In other words, the linkage configuration may evolve from non-existence 

to existence (at the tangent point) and then to the formation of an entire branch.  
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(a) no intersection point 

    
(b) one tangent point                                    (c) two intersection points 

    
(d) one tangent and two intersection points         (e) one tangent and two intersection points 

Figure 5.4 Formation of tangent points 
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The branch formation starts and ends at tangent points, therefore, tangent points contain the 

branch information of general group 2 linkages. They are the counterpart of branch points for 

Stephenson-type linkages. A tangent point may co-exist with other intersection points or even 

tangent point. 

The input-output displacement equation, i.e. the I/O curve, can be obtained via both 

fundamental equations (Eq. 5-1(a) and (b)) by eliminating the intermediate variable θm. 

0),( =oif θθ     (5-5) 

where θi and θo are the input and output variables, respectively. 

From the two fundamental equations, one may obtain 
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When the pair of curves become tangent to each other,  

3241 hhhh = .      (5-6)  

Because the tangent points are also on the I/O curve, the tangent points must satisfy Eqs. 5-5 

and 5-6 simultaneously. 

 

5.3.4 Property of Tangent Points 

 

The branch formation starts and ends at tangent points, but not all tangent points are the 

branch starting or ending points in general group 2 linkages. Reading and interpreting the tangent 

points will be the pivotal and fundamental issues in the mobility analysis of spatial group 2 
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linkages. To be consistent with the Stephenson linkages, the tangent points, which are branch 

starting or ending points in general group 2 linkages, are called branch points.  

For one tangent point, if one and only one pair of input and output joint variables (θi and θo), 

i.e., one solution, is derived  when its intermediate joint parameter θm is substituted back to the 

two fundamental equations of the group 2 linkage, then the tangent point is definitely a branch 

point (Fig 5.4(b)). In other words, if one tangent point does not co-exist with other intersection 

points, it is a branch point.  

For one tangent point, if more than one pair of input and output joint variables (θi and θo), 

i.e., more than one solution, are derived  when its intermediate joint parameter θm is substituted 

back to the two fundamental equations of the group 2 linkage, then the tangent point co-exists 

with other intersection points. If the tangent point can reach at least one intersection point 

continuously, then this tangent point is not a branch point (Fig 5.4(d)); otherwise it is a branch 

point (Fig 5.4(e)). 

As same as in Stephenson linkages, every two branch points will form a branch in spatial 

group 2 linkages. 

 

5.4 Examples 

 

In example 1, the branch points and tangent points of a Stephenson-type linkage (spatial 

group 2 linkage with parallel joint axes) are computed based on the concepts of branch points 

and tangent points to show the consistency of both concepts. Examples 2 and 3 show general 

group 2 mechanisms. Tangent points are computed and branch points are identified with the 

property of tangent points.   
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Example 1:  

An RRCCR with parallel joint axes ( ο045 =α ) is shown schematically in Figure 5.7(a). The 

axes of the joints R, R, C, C, and R are labeled 1, 2, 3, 4, and 5 in order. The input angular 

displacement is θ1. The remaining six variables are the angular displacements θ2, θ3, θ4, θ5, and 

the slider displacements S3 and S4. By using the D-H notation [19, 20], ο24212 =α , ο7323 =α  

ο26434 =α , ο045 =α , and ο28651 =α  are the angles between the corresponding joint axes, 

1212 =a , 5.2923 =a , 8.1534 =a , 3945 =a , and 2251 =a  are the distance between the 

corresponding joint axes, and S11 = 38, S22 = 24, and S55 = 53.5 are the offset along the 

corresponding R-joint axes.     

The two fundamental equations derived by following Duffy’s sine, sine-cosine, and cosine 

laws [11, 21] are 

0)67.6cos81.24(cos)27.23cos16.43(sinsin93.91 12121 =−+−+ θθθθθ     (5-7a) 

0)97.13cos66.23sin43.9cos15.5coscos78.2sinsin07.10(
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2111515

=−++−+−+

++−++−+

−−−+

θθθθθθθ

θθθθθθθθ

θθθθθθθ

   (5-7b) 

Because of the parallelism between axes 4 and 5, Eq. 5-7(a) derived from the spherical 

indicatrix is a virtual four-bar loop while Eq. 5-7(b) is a virtual five-bar loop.   

Branch points from the JRS method 

Let  
2

=x 5tan
θ

and
x+1
x-1

=
2

2

θ 5cos ,   
x+1

2x
=

2θ 5sin . Eq. 5-7(b) can be written in 

quadratic form as  
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0)12.19cos34.53sin59.5cos43.26sin43.9sincos66.5

cossin57.24sinsin78.7coscos02.15(

)sin14.20sincos02.35cossin60.74(

)82.8cos96.9sin59.5cos89.20sin43.9sincos66.5

cossin57.24sinsin77.12coscos36.5(

221112
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11212
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221112
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−−−++
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θθθθθθ

θθθθθθ

θθθθθ

θθθθθθ

θθθθθθ

x

x
  (5-8) 

The singularity appears when the discriminant of the above quadratic equation is equal to 

zero.  

0)12.19cos34.53sin59.5cos43.26sin43.9sincos66.5

cossin57.24sinsin78.7coscos02.15(*

)82.8cos96.9sin59.5cos89.20sin43.9sincos66.5

cossin57.24sinsin77.12coscos36.5(*4

)sin14.20sincos02.35cossin60.74(

221112

121212

221112

121212

2
11212

=−+−++

−−+

−−−++

−−−−

−−=∆

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθ

 (5-9) 

Eq. 5-9 represents the JRS boundary of the virtual five-bar loop. Let θ2 be the output joint 

variable and θ5 the intermediate joint variable. Then, Eq. 5-7(a) is the input-output displacement 

equation, representing the I/O curve of this linkage. Branch points (θ1, θ2), which are the 

intersections of the I/O curve and the JRS boundary of the five-bar loop, can be obtained by 

solving Eqs. 5-7(a) and 5-9 simultaneously. The corresponding θ5 values can be determined from 

Eq. 5-7(b). In this example, six branch points, A1, A2, A3, A4, A5, and A6 (Fig. 5.5(a)) are 

obtained and listed in Table 5.2. 

Tangent points from the tangent method 

According to the proposed tangent point concept, Eq. 5-7(a) represents a family of curves 

and so does Eq. 5-7(b), though Eq. 5-7(a) degenerates to a curve.  Let θ5 be the output joint 

variable and θ2 the intermediate joint variable. Eq. 5-7(a) and each curve in the family of curves 

of Eq. 5-7(b) form a pair of curves, which may intersect or tangent to each other if the θ2 value is 

in the proper range of rotation. 
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Table 5.2 Branch points from the JRS method 

 θ1 θ2 θ5 
A1 2.39 -2.72 2.73 
A2 0.18 -1.65 1.39 
A3 -2.36 -0.99 1.19 
A4 0.82 -0.25 2.41 
A5 -2.79 2.46 -2.50 
A6 -0.82 3.08 -3.04 

 

Table 5.3 Tangent points from the tangent method 

 θ1 θ5 θ2 
A1 2.39 2.73 -2.72 
A2 0.18 1.39 -1.65 
A3 -2.36 1.19 -0.99 
A4 0.82 2.41 -0.25 
A5 -2.79 -2.50 2.46 
A6 -0.82 -3.04 3.08 
A7 0.02 2.10 N/A 
A8 0.02 2.16 N/A 
A9 0.99 1.80 N/A 
A10 0.99 1.84 N/A 
A11 1.80 -2.45 N/A 
A12 1.80 -2.42 N/A 
A13 -0.74 2.88 N/A 
A14 -0.74 2.95 N/A 

 

  

      (a) branch points                                        (b) tangent points 

Figure 5.5 Branch points vs. tangent points in an RRCCR with parallel joint axes 
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Since Eq. 5-7(a) does not contain the output joint variable θ5, its partial derivative with 

respect to θ5, i.e. h2, is equal to zero. When a pair of curves become tangent to each other, the 

partial derivative of Eq. 5-7(b) with respect to θ5, i.e. h4, must be equal to zero, too. This tangent 

equation combined with the input-output displacement equation will determine the tangent points 

(θ1, θ5) (see section 5.3.3) and the corresponding θ2 values can be determined from Eq. 5-7. In 

this example, six tangent points, A1, A2, A3, A4, A5, and A6 (Fig. 5.5(b)) are found and listed in 

Table 5.3. Points A7 through A14 in Table 5.3 are spurious solutions because their corresponding 

θ2 values do not exist. 

For each tangent point in this example, only one pair of input and output joint variables (θ1 

and θ5), i.e., one solution, is derived when its intermediate joint parameter θ2 is substituted back 

to the two fundamental equations (Eqs. 5-7(a) and 5-7(b)) of the group 2 linkage, thus all derived 

tangent points are branch points. The consistent results between Tables 5-2 and 5-3 demonstrate 

that tangent points are counterpart of branch points for Stephenson-type linkages. Every two 

branch points will form a branch. A total of six branch points in this example will form three 

branches: A1 and A3 form one branch; A2 and A6 form one branch; A4 and A5 form one branch 

Example 2:  

A general RCRCR mechanism is shown schematically in Figure 5.6(a). The axes of the joints 

R, C, R, C, and R are labeled 1, 2, 3, 4, and 5 in order. The input and output angular 

displacements are θ1 and θ5 while the intermediate angular displacement is denoted by θ3. The 

remaining four variables are the angular displacements θ2, θ4 and the slider displacements S2, S4. 

By using the D-H notation [19, 20], ο6012 =α , ο4523 =α  ο3534 =α , 
ο3045 =α , and 

ο1051 =α  are the angles between the corresponding joint axes, 2512 =a , ,3023 =a  4034 =a , 
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1045 =a , and 3251 =a , are the distance between the corresponding joint axes, and S11 = 30, S33 

= 25, and S55 = 8 are the offset along the corresponding R-joint axes. 

Fundamental equations: The two fundamental equations derived by following Duffy’s sine, sine-

cosine, and cosine laws [11, 21] are 

0cos11.0coscos05.1cos32.0sinsin07.138.0cos 5511153  =θθθθθθθ −−−+−  (5-10a) 

0sin034.0cossin603.1sin385.0cossin618.1cos666.0

coscos098.1cos442.2sinsin356.1012.1cos485.3sin

5511155

5111533

=θθθθθθθ

θθθθθθθ

−−−−+

++−−−
  (5-10b) 

Tangent points: Following the procedures introduced in section 5.3.3, a total of ten tangent 

points A1, A2, …, A10 (θ1, θ5) are found (Fig. 5.6(b)) and listed in Table 5-4. The corresponding 

intermediate joint parameter θ3 values can be determined by solving Eq. 5-10(a) and (b) 

simultaneously.  

By substituting the value of θ3 at point A5, A6, A9, or A10 back to the two fundamental 

equations, one and only one solution (θ1, θ5) is derived. A5, A6, A9, and A10 are definitely branch 

points, because they do not co-exist with any other intersection points.  

For the tangent point A1, three pair of input and output joint variables (θ1 and θ5) are derived  

when its intermediate joint parameter θ3 is substituted back to the two fundamental equations 

(Eq. 5-10(a) and (b)) of the group 2 linkage, in other words, the tangent point A1 co-exists with 

other two intersection points. As the tangent point A1 cannot reach the two intersection points 

continuously, A1 is a branch point. Likewise, the tangent point A2 is a branch point; tangent 

points A3, A4, A7, and A8 are not branch points. 

Every two branch points will form a branch. A total of six branch points in this example will 

form three branches: A5 and A1 form one branch; A10 and A2 form one branch; A6 and A9 form 

one branch (Fig. 5-6(b)). 
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(a)                                                                  (b) 

Figure 5.6 (a) General RCRCR mechanism (b) tangent points on I/O curve (θθθθ1 vs θθθθ5) 

Table 5.4 Tangent points of a general RCRCR mechanism 

 θ1 θ5 θ3 
A1 -0.05 2.25 1.55 
A2 2.56 1.39 2.21 
A3 2.48 1.07 2.49 
A4 2.25 1.18 2.50 
A5 -2.87 6.13 2.63 
A6 -1.57 4.90 4.00 
A7 0.75 2.58 4.17 
A8 -0.07 3.00 4.26 
A9 -0.33 5.07 5.54 
A10 -0.32 5.27 6.16 

 

Example 3:  

The RRCCR mechanism is shown schematically in Figure 5.7(a). The axes of the joints R, R, 

C, C, and R are labeled 1, 2, 3, 4, and 5 in order. The input and output angular displacements are 

θ1 and θ5 while the intermediate angular displacement is denoted by θ2. The remaining four 

variables are the angular displacements θ3, θ4 and the slider displacements S3, S4. By using the 
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D-H notation [19, 20], ο6012 =α , ο4523 =α  
ο3534 =α , ο3045 =α , and 

ο1051 =α  are the 

angles between the corresponding joint axes, 2512 =a , ,3023 =a  4034 =a , 1045 =a , and 

3251 =a  are the distance between the corresponding joint axes, and S11 = 35, S22 = 15, and S55 = 

0 are the offset along the corresponding R-joint axes.  

Fundamental equations: The two fundamental equations derived by following Duffy’s sine, sine-

cosine, and cosine laws [11, 21] are  

0)8.51cos21.9cos07.3coscos2.30sinsin6.30(

cos)2.52cos32.5cos32.5coscos4.17sinsin7.17(

sin)sin6.10sincos8.34cossin3.35(

151515

2151515

211515

=−−−−+

−−+−+

++

θθθθθθ

θθθθθθθ

θθθθθθ

   (5-11a) 
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cos)4.172cos63.8sin6.34cos3.129coscos83.2

sincos2.113cossin9.114sinsin11.7(

sin)3.78cos2.45sin7.218cos98.7coscos0.148

sincos1.145cossin3.167sinsin2.150(

11515

151515

211515

1551515

211515

151515

=−−+−

++++

−−++

++++

+++−

++−−

θθθθθ

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθθ

θθθθθθ

 
  (5-11b) 

Tangent points: A total of eight tangent points A1, A2, …, A8 (θ1, θ5) are found (Fig. 3.5(b)) and 

listed in Table 5.5. The corresponding intermediate joint parameter θ2 values can be determined 

by solving Eq. 5-11(a) and (b) simultaneously.  

By substituting the value of θ2 at point A1, A3, A4, or A6 back to the two fundamental 

equations, one and only one solution (θ1, θ5) is derived. A1, A3, A4, and A6 are definitely branch 

points, because they do not co-exist with any other intersection points.  

For the tangent point A2, three pair of input and output joint variables (θ1 and θ5) are derived  

when its intermediate joint parameter θ2 is substituted back to the two fundamental equations 

(Eq. 5-11(a) and (b)) of the group 2 linkage, in other words, the tangent point A2 co-exists with 
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other two intersection points. As the tangent point A2 cannot reach the two intersection points 

continuously, A2 is a branch point. Likewise, the tangent point A5 is a branch point; tangent 

points A7 and A8 are not branch points. 

Every two branch points will form a branch. A total of six branch points in this example will 

form three branches: A1 and A2 form one branch; A3 and A4 form one branch; A5 and A6 form 

one branch (Fig. 5-7(b)). 

  
(a)                                                                       (b)  

Figure 5.7 (a) General RRCCR mechanism (b) tangent points on I/O curve (θθθθ1 vs θθθθ5) 

 

Table 5.5 Tangent points of a general RRCCR mechanism 

 θ1 θ5 θ2 
A1 -2.50 -1.20 1.81 
A2 -1.91 -0.28 3.11 
A3 -0.34 -1.86 -1.79 
A4 -0.09 -1.22 -2.57 
A5 1.69 0.28 3.09 
A6 2.14 0.69 -2.80 
A7 1.08 2.43 -2.15 
A8 1.89 2.29 -1.84 
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5.5 Conclusions 

 

The current use of branch points for branch identification is limited to Stephenson-type 

linkages, which are simplified versions of group 2 mechanisms. In this dissertation, tangent 

points, which can be directly derived from fundamental equations, are sought to explain the 

branch formation of linkages. As a matter of fact, tangent points are the counterpart of branch 

points for Stephenson-type linkages. The tangent method is general and can be applied on all 

group 2 linkages. The discovery of tangent points and the concept of generalized branch points 

will serve as the building blocks and foundation for the mobility analysis of spatial group 2 

linkages and other more complex linkages. 
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CHAPTER 6 

ON THE MOBILITY OF SPATIAL GROUP 2 LINKAGES4 

 

ABSTRACT 

 

Spatial linkages are classified into four groups according to the number of fundamental 

equations or virtual loops that govern linkage displacement. The number of virtual loops 

represents the complexity of a spatial linkage as that of planar or spherical multiloop linkages. 

The concept of generalized branch points offers the explanation of how branches are formed in 

spatial group 2 linkages. In this dissertation, the mobility analysis is carried out based on the 

similarity of the mobility features rather than the specific or individual linkage structure. A 

branch rectification scheme is presented and demonstrated with examples. 

 

                                                 
4 Accepted by the ASME 2009 International Design Engineering Technical Conferences & Computers and 
Information in Engineering Conference (IDETC/CIE), August 30–September 2, 2009, San Diego, California, USA. 
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6.1 Introduction 

 

Linkage mobility refers to the problems concerning branch (or circuit [1-6]) defects, full 

rotatability, sub-branch (or singularities), and order of motion [7]. Linkages are often synthesized 

to assume the configurations at the desired discrete positions. When a linkage is synthesized, it is 

necessary to make sure that the linkage has adequate mobility for a continuous and smooth 

operation. Both the continuity and the smoothness problems may be addressed during the branch 

rectification process, although it is often a tedious and troublesome process.   

For many decades, the understanding of the mobility of conventional closed-loop linkages 

had been mostly restricted to the Grashof criterion [8], which is used to determine the full 

rotatability of the input and output links of planar four-bar linkages. Generally, for geometric 

properties found in planar linkages, similar properties can also be expected in spherical linkages. 

The success in planar and spherical four-bar linkages was later extended to all bimodal linkages 

[9-13] and the determination of branch and sub-branches were taken into consideration. An 

important advancement in linkage mobility are the N-bar rotatability laws [14-17]. The N-bar 

rotatability laws offer the first simple, complete, and systematical explanation for the rotatability 

of any N-bar chain (N ≥ 3) connected with revolute joints, in which the Grashof criterion 

becomes a very special case. 

Table 6.1 Classification of spatial kinematic chains 

Group Number of links Mechanism 

1 4-7 R-3C, 2R-P-2C, 3R-2P-C, 4R-3P 

2 5-7 3R- 2C, 4R-P-C, 5R-2P 

3 6-7 5R- C, 6R-P 

4 7 7R 
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However, the mobility study of spatial mechanisms is far from adequate. Realizing the large 

variety and the similarity shared by single degree-of-freedom (DOF) spatial mechanisms, Duffy 

[18, 19] classified their displacement analysis into four groups (Table 6.1). This elegant 

classification scheme is useful for a systematic mobility study of spatial mechanisms. The 

mobility study used to focus on a particular linkage type. Instead, under this classification, a 

consistent mobility identification method on single DOF closed-loop spatial mechanisms may be 

established. 

Spatial group 1 linkages, including RSSR, RRSS, RCCC, RSCP, RSCR, and 4R3P, where R, 

S, C, and P refer to the revolute, spherical, cylindrical, and prismatic joints used in the linkages, 

draw much attention in the mobility research of spatial linkages. The RRSS linkage is an 

inversion of the RSSR linkage, and the classification strategy for the two is essentially identical. 

The geometric and algebraic properties of the coupler curves of the RSSR and RCCC 

mechanisms were presented in [20, 21]. The coupler curve equations were derived in [22] for the 

spherical four-bar and the RCCC mechanism. The discriminant method was widely used on 

RSSR, RRSS, and RCCC [10, 11, 23-25]. These linkages are known as bimodal linkages. Like 

planar four-bar linkages, RSSR can always be classified into three classes according to the 

possible number of branches [24]. 

Of group 1 mechanisms, the equations relating the output and input (the input-output 

displacement equations) can always be expressed in quadratic form, i.e. one input corresponds to 

two outputs only. However, the input-output displacement equations derived from group 2 

mechanisms are usually expressed in high-degree polynomials, leading to more branches and a 

more complex mobility situation. For example, the polynomials are fourth degree for general 

RCRCR [26, 27] and eighth-degree for other general group 2 mechanisms [18]. The high-degree 
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polynomial also represents the existence of many limit points, which in turn makes the mobility 

analysis difficult [12].  

When the offset is zero at the revolute joint between the cylindrical joints, a general RCRCR 

is degenerated into a special case, named as simple RCRCR. Pamidi and Freudenstein [28] 

presented conditions for determining the rotatability of input and output links of simple RCRCR 

mechanism, although the conditions are extremely complicated. The successful approach is 

displayed in [29], in which the simple RCRCR mechanism is regarded as a spherical 5R linkage 

with one cylindroid surface constraint formed by a virtual bimodal linkage. The mobility of 

spatial linkages with four branches was first attributed to Kohli et al [30]. By performing a full 

displacement analysis through the whole input cycle, they provided a general analytical 

treatment for determining the assemblability, the rotatability of input links, dead-center positions, 

and the number of branches. Based on the property of the solutions from the quartic equation, an 

algorithm was used to identify branches of general RCRCR [31]. A search technique was applied 

to find the assembly configurations (or branch) of RRRCC, RRCRC, RRRRCR, and RRRRRRR 

spatial mechanisms [32, 33]. The process is similar to the plot of an input-output displacement 

equation, which can be directly obtained under the closure equation derived by Duffy [18].  

The discussion in this dissertation will focus on group 2 mechanisms. The concept of virtual 

loops [34] is used to highlight the mobility similarity to planar or spherical multiloop linkages. 

The concepts of joint rotation space (JRS) [35, 36] as well as the generalized branch points [37] 

are used to explain the branch formation of linkages. This dissertation presents the mobility 

analysis scheme of group 2 linkages, which may be regarded as advancement to the mobility 

analysis of complex linkages. 
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6.2 Important Concepts 

 

Since some essential concepts described in this paper are either just or yet to be published, 

the following terminologies, concepts, and practices are explained and outlined below. 

 

6.2.1 Spherical Indicatrix and Virtual Loop 

 

Each spatial linkage connected with revolute or cylindrical joints has a spherical indicatrix 

[18], which is formed by bringing all joint axes to intersect at a common point. Fig. 6.1 shows an 

RCRCR mechanism and its corresponding spherical indicatrix. The concept of virtual loops [34] 

is introduced by its mathematical form rather than its physical appearance. With the concept of 

virtual loops, a unified linkage classification scheme based on the number of (virtual) loops 

becomes apparent. Each spatial group 1, 2, 3, or 4 mechanism can be regarded as a virtual 

spherical linkage formed by one or more virtual loops. The fact that all of Duffy’s group 1 

linkages and planar and spherical four-bar linkages are bimodal linkages and the fact that simple 

RCRCR mechanism and spatial group 2 with parallel joint axes are completely compatible with 

Stephenson six-bar linkages are consistent with the concept of virtual loops [34]. 
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(a)                                                                  (b) 
Figure 6.1 (a) An RCRCR mechanism and (b) the spherical indicatrix 

The geometry or mobility of a virtual loop in a virtual multiloop linkage is expressed by the 

fundamental equation (the virtual “loop-closure” equation), which can be written in the form of 

0=C+Bcos+Asin θθ oo     (6-1) 

where θo is the output variable and A, B, and C are functions of the input joint variable θi.  

 

6.2.2 N-bar Rotatability Laws and Mobility Criteria of Virtual Loops 

 

The N-bar rotatability laws [14-17, 35] govern and predict the mobility of single loop planar 

and spherical linkages. In the N-bar rotatability laws, the rotatability of a linkage is viewed from 

the entire chain rather than from a linkage that has a narrow scope limited by the fixed link. 

Therefore, the variety of mobility considerations due to different linkage inversions is 

eliminated; the joint rotatability in a chaotic N-bar chain suddenly becomes easy to understand. 

Ting classified single loop chains into three classes. A Class I chain has two branches while a 
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Class II chain has only one branch. Therefore the branch problem does not exist in Class II 

chains. Class III is a transitional type between Class I and II chains.  

The virtual “loop-closure” equation (Eq. 6-1) can be expressed in quadratic form. Any virtual 

four-bar loop can be classified into Class I, II, or III by using the discriminant function [10, 34]. 

By varying the value of the intermediate joint parameter, any virtual five-bar loop can be treated 

as a family of virtual four-bar loops. If all virtual four-bar loops of the family are Class I, then 

this virtual five-bar loop is Class I; otherwise it is Class II or III [34]. Since all fundamental 

equations for planar, spherical, and spatial linkages can be expressed in quadratic form, the 

mobility criteria of virtual loops may be regarded as the generalization of the N-bar rotatability 

laws.  

 

6.2.3 Dead Center Positions 

 

At a dead center position, the derivative of the output with respect to the input becomes 

infinite [38]; the input link reaches its rotation limit; and the linkage may be out of control 

momentarily [39]. Generally, the input-output (I/O) relationship between any pair of joint 

parameters of a linkage can be expressed by a polynomial equation [40]. Therefore, all of the 

dead center positions of single-DOF linkages, disregarding whichever joint is used as the input 

joint, can be found by solving a polynomial equation [40].   

Let 
2

=y oθtan  and 
y+1

y-1
=

2

2

oθcos ,  
y+1

2y
=

2oθsin  . Eq. 6-1 can be converted as 

0)(2)( 2 =+++− BCAyyBC     (6-2) 

At a dead center position, the input and output relationship equation should have equal roots 

for a given input. Thus, the discriminant of the input and output equation (Eq. 6-2) should 
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vanish, which leads to a polynomial equation in terms of the input parameter only [41]. At a dead 

center position, the following equation must be satisfied, 

0))((2 =+−−=∆ BCBCA      (6-3) 

 

6.2.4 Spatial Group 2 Mechanisms 

 

A spatial group 2 linkage is referred to as a single DOF spatial linkage, which contains R, C, 

or P joints and has a total of five R and C joints [18]. The structures are different depending on 

the connecting sequences of R, C, and P joints. With different fixed link, the mechanisms with 

the same structure may have more inversions (Table 6-2). 

Table 6.2 Duffy’s group 2 mechanisms 

Number of links Mechanism 

Five  RCRCR, RRCRC, RCRRC, RCCRR, RRRCC 

Six 
RRRPCR, RRCPRR, RRRRPC, RPCRRR, RCRPRR, RRCRPR, 

RRRPRC, RCRRPR, RRPRRC 

Seven RRPRPRR, RPRRPRR, RPRRRPR, RRRRPPR, RRRPPRR 
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Of a group 2 linkage, the first fundamental equation (say Eq. 6-1(a)) derived from the 

spherical indicatrix contains the input, output, and one intermediate joint variables, which is 

equivalent to a spherical five-bar loop. The second fundamental equation (say Eq. 6-1(b)) leads 

to an additional constraint on the two-DOF spherical indicatrix and therefore creates the effect of 

an additional loop to the spherical indicatrix to form a single-DOF linkage. A spatial group 2 

linkage, consisting of two virtual five-bar loops, is equivalent to and regarded as a double loop 

linkage. Its linkage mobility is governed by the two fundamental equations and how they 

influence each other. The mobility of each individual loop is governed by the N-bar rotatability 

laws [14-17] and/or the mobility criteria of virtual loops [34]; JRS and branch/tangent points are 

used to explain how the interaction between the loops affects the branch formation of the entire 

linkage [37]. 

 

6.2.5 JRS, Branch Points, and Tangent Points 

 

JRS [35, 36] represents the domain of the input variables of a linkage or a loop. The concepts 

of JRS and branch points were first used to resolve the mobility problems of Stephenson six-bar 

linkages [7]. Ting [35] further modeled JRS as sheets and sides and used branch points to offer a 

geometric explanation on how mobility between loops interact each other and thus the mobility 

formation of linkages. One may find that the concept of JRS works well with virtual loops.  

The fundamental equation (Eq. 6-1) can be converted as a quadratic equation (Eq. 6-2). The 

discriminant of this quadratic equation, ∆ ≥ 0, describes its JRS. ∆ = 0 is the singular condition 

representing the boundary of the input domain, which divides one sheet of JRS into two sides. 

When an input joint variable is known, the corresponding output joint variable can be solved 
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from Eq. 6-2. The derived solutions represent linkage configurations on two sides of a JRS sheet. 

In other words, Eq. 6-4(a) is the mathematical expression of one side of a JRS and Eq. 6-4(b) the 

other side. 

                                  
BC

CBAA
y

−

−+±−
=

)( 222

2,1    (6-4ab) 

If Eq. 6-1(b) contains only the input and output joint parameters, as in the case of simple 

RCRCR or spatial group 2 linkages with parallel joint axes, it is a curve in the JRS of Eq. 6-1(a). 

This is the case with Stephenson-type linkages and represents the simplified version of group 2 

linkages (Fig. 6.2). Branch points are the intersections of the I/O curve and the JRS boundary of 

the other loop. An input vs. output curve is cut into branches by branch points [7]. Since there is 

no difference in the mathematical treatment of a physical loop and a virtual loop, in the 

following discussion, the mobility conditions, such as branch, sub-branch, and joint rotatability 

can be explained and predicted unambiguously and automatically with the JRS properties and the 

branch points [35].   

  

(a)                                                                          (b) 

Figure 6.2 (a) Stephenson-type linkage and (b) JRS and branches 

 



 123 

The current use of branch points for branch identification is limited to linkages with simple 

topology and singularity conditions, such as Stephenson-type linkages [7]. However, in a general 

spatial group 2 linkage, both the fundamental equations are equivalent to virtual five-bar loops. 

Branch points in Stephenson-type linkages cannot explain and define the interaction between two 

virtual five-bar loops. Branch points must be generalized in order to explain and predict the 

branch formation of general group 2 linkages.  

As shown in Fig. 6.3, the linkage configuration may evolve from non-existence to existence 

(two curves are tangent to each other at one point named as tangent point) and then to the 

formation of an entire branch. Tangent points contain the branch information of general group 2 

linkages; they are the counterpart of branch points for Stephenson linkages [34]. One tangent 

point may co-exist with other intersection points or even with tangent point.  

The branch formation starts and ends at tangent points, but not all tangent points are the 

branch starting or ending points in general group 2 linkages. Reading and interpreting the tangent 

points will be the pivotal and fundamental issues in the mobility analysis of spatial group 2 

linkages. To be consistent with the Stephenson linkages, the tangent points, which are branch 

starting or ending points in general group 2 linkages, are called branch points.  

For one tangent point, if one and only one pair of input and output joint variables (θi and θo), 

i.e. one solution, is derived  when its intermediate joint parameter θm is substituted back to the 

two fundamental equations of the group 2 linkage, then the tangent point is definitely a branch 

point (Fig 6.3(b)). In other words, if one tangent point does not co-exist with other intersection 

points, it is a branch point.  
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(a) no intersection point 

    
(b) one tangent point                                    (c) two intersection points 

    
(d) one tangent and two intersection points         (e) one tangent and two intersection points 

Figure 6.3 Formation of tangent points 
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For one tangent point, if more than one pair of input and output joint variables (θi and θo), i.e. 

more than one solution, are derived  when its intermediate joint parameter θm is substituted back 

to the two fundamental equations of the group 2 linkage, then the tangent point co-exists with 

other intersection points. If the tangent point can reach at least one intersection point 

continuously, then this tangent point is not a branch point (Fig 6.3(d)); otherwise it is a branch 

point (Fig 6.3(e)). 

As same as in Stephenson linkages, every two branch points will form a branch in spatial 

group 2 linkages. 

 

6.3 Mobility analysis of Spatial Group 2 Mechanisms 

 

The mobility of a spatial group 2 linkage is governed by the fundamental equations 

representing two virtual five-bar loops, and how they influence each other.  Eq. 6-1 represents 

two surfaces in the input/output domain. The intersection of these two surfaces is the I/O curve, 

which describes the relationship between the input and output variables, say θ1 and θ3, 

respectively. Unlike group 1 linkages, whose mobility can be derived from the input and output 

relationship, the I/O curves can be very complicated for group 2 linkages. Duffy [18] used six 

curves depicting the variation of all joint variables with respect to the input parameter to express 

the true mobility or configuration variation of spatial linkages. Since a linkage is controlled by 

the input exclusively, a methodology based on the input domain is highly desired.   

The mobility of each individual loop can be identified with the N-bar rotatability laws [14-

17] and/or mobility criteria of virtual loops [34]; the generalized branch points are used to 

explain how the interaction between loops affects the branch formation of the entire linkage.     
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Assuming the generalized branch points of a group 2 linkage are derived, a mobility analysis 

scheme can be developed. In each step, if a branch defect is detected, the linkage will be weeded 

out immediately. The scheme is outlined below.  

• Identify the branch of each individual virtual five-bar loop, respectively. This can be 

done easily with the N-bar rotatability laws [14-17] and/or the mobility criteria of virtual 

loops [34]. If any virtual loop is Class I, then the generalized branch points will be 

separated into different groups. If dead center positions exist, they will be separated too. 

• Further separate the branch points and dead center positions with the use of JRS side 

identification criterion.  

• In each group, every two branch points will form a branch in spatial group 2 linkages. 

• Identify sub-branch, joint rotatability, and other mobility condition relevant to the choice 

of the input joint.  

It is important to recognize that branch formation and the continuity of motion between 

positions is irrelevant to the choice of the input joint. The detail mobility analysis process will be 

demonstrated with examples.  

Example 1:  

The RCRCR mechanism is shown schematically in Figure 6.4(a). The axes of the joints R, C, 

R, C, and R are labeled as 1, 2, 3, 4, and 5, respectively. The input and output angular 

displacements are θ1 and θ5 while the intermediate angular displacement is denoted by θ3. The 

remaining four variables are the angular displacements θ2, θ4 and the slider displacements S2 and 

S4. By using the D-H notation [42, 43], ο6012 =α , ο4523 =α  ο3534 =α , 
ο3045 =α , and 

ο1051 =α  are the angles between the corresponding joint axes, 2512 =a , ,3023 =a  4034 =a , 
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1045 =a , and 3251 =a , are the distance between the corresponding joint axes, and S11 = 30, S33 

= 25, and S55 = 8 are the offset along the corresponding R-joint axes. 

 
(a) A general RCRCR mechanism 

 
(b) Tangent points on I/O curve (θ1 vs θ5) (c) Location of tangent points on the circle of θ3 

Figure 6.4 Mobility analysis of an RCRCR mechanism 

Table 6.3 Tangent points of a general RCRCR mechanism 

 θ1 θ5 θ3 Property 
A1 -0.05 2.25 1.55 branch point 
A2 2.56 1.39 2.21 branch point 
A3 2.48 1.07 2.49  
A4 2.25 1.18 2.50  
A5 -2.87 6.13 2.63 branch point 
A6 -1.57 4.90 4.00 branch point 
A7 0.75 2.58 4.17  
A8 -0.07 3.00 4.26  
A9 -0.33 5.07 5.54 branch point 
A10 -0.32 5.27 6.16 branch point 
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Fundamental equations: The two fundamental equations derived by following Duffy’s sine, 

sine-cosine, and cosine laws [18, 19] are 

0cos11.0coscos05.1cos32.0sinsin07.138.0cos 5511153  =θθθθθθθ −−−+−  (6-5a) 

0sin034.0cossin603.1sin385.0cossin618.1cos666.0

coscos098.1cos442.2sinsin356.1012.1cos485.3sin

5511155

5111533

=θθθθθθθ

θθθθθθθ

−−−−+

++−−−
 (6-5b) 

Tangent points: A total of ten tangent points A1, A2, …, A10 (θ1, θ5) are found and listed in 

Table 6.3. The corresponding intermediate joint parameter θ3 values can be determined by 

solving Eq. 6-5(a) and (b) simultaneously. Among them, A1, A2, A5, A6, A9, and A10 are 

generalized branch points (Fig. 6.4(b)). 

 The branch rectification procedures are outlined as follows. 

Identify the branch of the first virtual five-bar loop (spherical indicatrix): it is a Class II loop, 

therefore no branch defect exists according to the N-bar rotatability laws [14-17] or the mobility 

criteria of virtual loops [34].  

Identify the branch of the second virtual five-bar loop: it is a Class II loop too and no branch 

defect exists according to the mobility criteria of virtual loops [34].   

By solving the polynomial equation converted from the input/output displacement, two dead 

center positions are identified [40].  

In the second virtual five-bar loop (Eq. 6-5(b)), 12 =A , 485.32 −=B , 

551115

5511152

sin034.0cossin603.1sin385.0cossin618.1

cos666.0coscos098.1cos442.2sinsin356.1012.1

θθθθθθ

θθθθθθ

−−−−

+++−−=C
. Its JRS sides 

can be expressed mathematically as follows.  
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Eq. 6-6(a) represents one JRS side and Eq. 6-6(b) the other JRS side. This side identification 

criterion will separate the branch points and the dead center positions into different groups: A6 

and A9 as well as the two dead center positions are on one JRS side; A1, A2, A5, and A10 are on 

the other JRS side.  

Branches will be formed between every two branch points. In short, this general RCRCR 

mechanism has a total of three branches: A6 and A9 form one branch; A1 and A5 form one 

branch; A2 and A10 form one branch (Fig. 6.4(c)).  

Branch rectification may be done via simply locating all branch points and the linkage 

configurations on the circle by the intermediate joint parameter θ3. For example, if the θ3 value 

of a linkage configuration is located between A6 and A9 on the circle, then this configuration is 

on the branch formed by A6 and A9.  

When the θ3 value of a linkage configuration is located on the overlap segment between 

branch points A1 and A2, the side identification criterion on the first virtual loop can be applied to 

solve the overlap problem. In the first virtual five-bar loop (Eq. 6-5(a)), 01 =A , 11 =B , 

5511151 cos11.0coscos05.1cos32.0sinsin07.138.0 θθθθθθ −−−+−=C . Its JRS sides can be 

expressed mathematically as follows.  
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Eq. 6-7(a) represents one JRS side where branch point A1 is located and Eq. 6-7(b) the other 

JRS side where branch point A2 is located. If the linkage configuration meets Eq. 6-7(a), then it 

is on the branch formed by A1 and A5; if the linkage configuration meets Eq. 6-7(b), then it is on 

the branch formed by A2 and A10.  

By checking the θ3 value of a linkage configuration, we have the following observations. 
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• θ3 Є (0, 1.55), on the branch A2-A10; 

• θ3 Є [1.55, 2.21] and side identification criterion of the virtual loop (Eq. 6-7(a) or 

(b)), on the branch A1-A5 or A2-A10; 

• θ3 Є (2.21, 2.63], on the branch A1-A5; 

• θ3 Є (2.63, 4.00), no linkage assembly; 

• θ3 Є [4.00, 5.54], on the branch A6-A9; 

• θ3 Є (5.54, 6.16), no linkage assembly; 

• θ3 Є [6.16, 6.28], on the branch A2-A10. 

Identify the singularity, sub-branch, joint rotatability, and other mobility condition relevant to 

the choice of the input joint:  

A branch may be divided into sub-branches by the dead center positions. By inserting the 

dead center positions in their corresponding branches, the sub-branch problem can be solved. A 

branch may have one, two, or more sub-branches depending on the number of dead center 

positions in the branch. In a sub-branch, a one-to-one correspondence exists between the input 

angle and the linkage configuration and the input increases or decreases monotonously from one 

dead-center position to another. Such a one-to-one correspondence is the core issue in the sub-

branch identification. Therefore, once a sub-branch is identified unambiguously, the order of the 

motion or the order of reaching all linkage configurations can be identified by the ascending or 

descending order of the input values. 

In this example, the two dead center positions divide the branch A6-A9 into two sub-

branches. Since there is no dead center position on the branches A1-A5 and A2-A10, they have full 

rotatability and each branch has only one sub-branch. 
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(a) A general RRCCR mechanism 

 
(b) Tangent points on I/O curve (θ1 vs θ5) (c) Location of tangent points on the circle of θ2 

Figure 6.5 Mobility analysis of an RRCCR mechanism 

Table 6.4Tangent points of a general RRCCR 

 θ1 θ5 θ2 Property 
A1 -2.50 -1.20 1.81 branch point 
A2 -1.91 -0.28 3.11 branch point 
A3 -0.34 -1.86 4.49 branch point 
A4 -0.09 -1.22 3.71 branch point 
A5 1.69 0.28 3.09 branch point 
A6 2.14 0.69 3.48 branch point 
A7 1.08 2.43 4.13  
A8 1.89 2.29 4.44  
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Example 2:  

The RRCCR mechanism is shown schematically in Figure 6.5(a). The axes of the joints R, R, 

C, C, and R are labeled as 1, 2, 3, 4, and 5, respectively. The input and output angular 

displacements are θ1 and θ5 while the intermediate angular displacement is denoted by θ2. The 

remaining four variables are the angular displacements θ3, θ4 and the slider displacements S3 and 

S4. By using the D-H notation [42, 43], ο6012 =α , ο4523 =α  
ο3534 =α , ο3045 =α , and 

ο1051 =α  are the angles between the corresponding joint axes, 2512 =a , ,3023 =a  4034 =a , 

1045 =a , and 3251 =a  are the distance between the corresponding joint axes, and S11 = 35, S22 = 

15, and S55 = 0 are the offset along the corresponding R-joint axes.  

Fundamental equations: The two fundamental equations derived by following Duffy’s sine, 

sine-cosine, and cosine laws [18, 19] are 

0)8.51cos21.9cos07.3coscos2.30sinsin6.30(

cos)2.52cos32.5cos32.5coscos4.17sinsin7.17(
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  (6-8b) 

Tangent points: A total of eight tangent points A1, A2, …, A8 (θ1, θ5) are found and listed in 

Table 6-4. The corresponding intermediate joint parameter θ2 values can be determined by 

solving Eq. 6-8(a) and (b) simultaneously. Among them, A1, A2, A3, A4, A5, and A6 are 

generalized branch points. 

The branch rectification procedures are outlined as follows. 
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Identify the branch of the first virtual five-bar loop (spherical indicatrix): it is a Class II loop, 

therefore no branch defect exists according to the N-bar rotatability laws [14-17] or the mobility 

criteria of virtual loops [34].  

Identify the branch of the second virtual five-bar loop: it is a Class II loop too and no branch 

defect exists according to the mobility criteria of virtual loops [34].   

In the second virtual five-bar loop (Eq. 6-8(b)), the side identification criterion is applied to 

separate the branch points into different groups: A1 and A2 are on one JRS side; A3, A4, A5, and 

A6 are on the other JRS side.  

Branches will be formed between every two branch points. This general RRCCR mechanism 

has a total of three branches: A1 and A2 form one branch; A3 and A4 form one branch; A5 and A6 

form one branch (Fig. 6.5(c)).  

 By checking the θ2 value of a linkage configuration, we have the following observations.  

• θ2 Є (0, 1.81), no linkage assembly; 

• θ2 Є [1.81, 3.09), on the branch A1-A2; 

• θ2 Є [3.09, 3.11] and side identification criterion of the virtual loop, on the branch A1-

A2 or A5-A6; 

• θ2 Є (3.11, 3.48], on the branch A5-A6; 

• θ2 Є (3.48, 3.71), no linkage assembly; 

• θ2 Є [3.71, 4.49], on the branch A3-A4; 

• θ2 Є (4.49, 6.28), no linkage assembly. 
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(a) An RRRPCR mechanism 

 
(b) Tangent points on I/O curve (θ6 vs θ1) (c) Location of tangent points on the circle of θ2 

Figure 6.6 Mobility analysis of an RRRPCR mechanism 

Table 6.5 Tangent points of a RRRPCR mechanism 

 θ6 θ1 θ2 Property 
A1 0.16 -3.11 0.15 branch point 
A2 -1.94 -2.25 5.68 branch point 
A3 -0.56 -0.89 4.26 branch point 
A4 -2.82 0.05 3.34 branch point 

 

Example 3:  

The RRRPCR mechanism is shown schematically in Figure 6.6(a). The axes of the joints R, 

C, P, R, R, and R are labeled as 1, 2, 3, 4, 5, and 6, respectively. The input and output angular 

displacements are θ6 and θ1 while the intermediate angular displacement is denoted by θ2.  The 
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remaining four variables are the angular displacements θ4, θ5 and the slider displacements S2 and 

S3. By using the D-H notation [42, 43], ο3012 =α , ο3523 =α  ο3034 =α , ο4545 =α , ο6056 =α , 

and ο1061 =α  are the angles between the corresponding joint axes, 1012 =a , ,4023 =a  

2034 =a , 3045 =a , 2556 =a , and 3261 =a  are the distance between the corresponding joint 

axes, ο9033 =θ  is angular displacement on P-joint, and S11 = 10, S44 = 10,  S55 = 15, and S66 = 30 

are the offset along the corresponding R-joint axes.  

The two fundamental equations in the form of Eq. 6-1 can be derived by following Duffy’s 

sine, sine-cosine, and cosine laws [18, 19]. The corresponding coefficients are listed as follows: 
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Tangent points: A total of four tangent points A1, A2, …, A4 (θ6, θ1) are found and listed in 

Table 6-5. The corresponding intermediate joint parameter θ2 values can be determined by 

solving the two fundamental equations simultaneously. All tangent points A1, A2, A3, and A4 are 

generalized branch points. 

The branch rectification procedures are outlined as follows. 
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Identify the branch of the first virtual five-bar loop (spherical indicatrix): it is a Class II loop, 

therefore no branch defect exists according to the N-bar rotatability laws [14-17] or the mobility 

criteria of virtual loops [34].  

Identify the branch of the second virtual five-bar loop: it is a Class II loop too and no branch 

defect exists according to the mobility criteria of virtual loops [34].   

In the second virtual five-bar loop, the side identification criterion is applied to separate the 

branch points into different groups: A1 and A3 are on one JRS side; A2 and A4 are on the other 

JRS side.  

Branches will be formed between every two branch points. This RRRPCR mechanism has a 

total of two branches: A1 and A3 form one branch; A2 and A4 form one branch (Fig. 6.6(c)).  

 By checking the θ2 value of a linkage configuration, we have the following observations.  

• θ2 Є (0, 0.15], on the branch A1-A3; 

• θ2 Є (0.15, 3.34), no linkage assembly; 

• θ2 Є [3.34, 4.26), on the branch A3-A4; 

• θ2 Є [4.26, 5.68] and side identification criterion of the virtual loop, on the branch A1-

A3 or A2-A4; 

• θ2 Є (5.68, 6.28], on the branch A1-A3. 

 

6.4 Conclusions 

 

With the increased number of links or joints, the complexity of the linkage increases 

drastically. The concept of virtual loops is used to highlight the mobility similarity or 

compatibility of planar and spherical multiloop linkages. The generalized branch points offer 
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explicit explanation of branch formation. In this dissertation, the mobility analysis scheme of 

group 2 linkages is carried out in a systematic manner based on the similarity of the mobility 

features rather than the specific or individual linkage structure. 
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CHAPTER 7 

ON THE JOINT ROTATION SPACE OF MULTILOOP LINKAGES 

 

ABSTRACT 

 

Joint rotation space (JRS) is an important concept of mobility analysis of complex linkages. 

However, the current concept and practice of JRS is based on the N-bar rotatability laws for 

single loop linkages. In this chapter, JRS is extended to multiloop linkages, including spatial 

linkages. Besides sheets and sides, a new element, bulk, is introduced to complete the concept 

of JRS. The JRS of any multiloop linkage reflects the interaction among all individual loops. 

Bulk, the new added component in JRS, will be helpful for the explanation and prediction of the 

branch formation of any complex linkage, particularly spatial linkages. 
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7.1 Introduction 

 

The joint rotation space (JRS) [1-3] of a linkage represents the maximum possible input 

domain or the entire configuration space of the linkage. Each possible linkage configuration 

corresponds to a point in the input domain. But each point in the input domain may correspond 

to more than one linkage configuration. To control a linkage to reach a specific linkage 

configuration, it is important to understand its JRS.  

 The current concept and practice of JRS is based on the N-bar rotatability laws [4-6] for 

single loop linkages. One may envision the general mobility criteria as the algebraic form of the 

N-bar rotatability laws. The input and output relationship of any four-bar bimodal linkage has 

the form of  

0=C+Bcos+Asin θθ oo    (7-1) 

where θo is the output variable and A, B, and C are functions of the input variable. By using x = 

tan(θo/2), the above equation can be written as a quadratic equation, from which the 

discriminant function (∆) can be obtained and the algebraic form of the Grashof criterion [7] can 

be derived.    

The fundamental equation of any single loop planar/spherical linkage, virtual loop [8], or 

spatial group 1 linkage can be expressed in the form of Eq. 7-1 with A, B, and C as functions of 

all input parameters. Thus, the discriminant function can be obtained and then the JRS as well 

as the unified mobility criteria in the algebraic form can be established. Fig. 7.1 shows the JRS 

of a two-DOF linkage obtained through the discriminant function (θi1 and θi2 are the two input 

variables).  
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Figure 7.1 JRS of a single loop 2-DOF linkage 

 
 

Figure 7.2 A two-sided sheet 

 
The sheets and sides of a JRS provide an intuitive model to explain the relationship among 

branches, sub-branches, and singularities and establish not only a one-to-one correspondence 

between the input and the output but also an input domain free from any mobility defect [1-3].  

JRS Sheet: The JRS of a linkage branch is called a JRS sheet. It represents the configuration 

space of a linkage branch in the input domain. There is no motion continuity between sheets, i.e. 

a linkage cannot be transformed between configurations corresponding to points on different 

JRS sheets (Fig. 7.2). 
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Edge of a JRS sheet: The edge of a JRS sheet is the boundary curve of the JRS (Fig. 7.2). 

Each point on the boundary curve of the JRS corresponds to a unique uncertainty singularity 

configuration of a linkage.  

Side of a JRS sheet:  The edge of a JRS sheet separates the sheet into sides (Fig. 7.2).  Each 

side of a JRS sheet represents the configuration space of a linkage sub-branch in the input 

domain. A point on one side of a JRS sheet corresponds to one and only one linkage 

configuration. Since a linkage can be programmed within one side of a JRS sheet without 

reaching the boundary where an uncertainty singularity occurs, each side of a JRS sheet 

represents a (uncertainty) singularity-free configuration space.  

 

7.2 JRS of Multiloop Linkages 

 

The practice of JRS was first used in predicting the full input rotatability of geared linkages 

[9] and subsequently the mobility rectification of Stephenson six-bar [10] and geared five-bar 

linkages [11]. The research of JRS on multiple loop linkages did not start until recently. Fig. 

7.3(b) shows a 7-bar parallel manipulator with the mobility chart [12]. With the use of the virtual 

loop concept [8], single loop spatial linkages can be treated as multiloop spherical linkages 

containing one or more virtual loops. In this chapter, a new component, bulk, is introduced to 

explain the formation of JRS in multiloop linkages, including spatial linkages. 

The JRS of any multiloop linkage is affected by not only each individual loop but also the 

interaction among loops. There are three branches in the Stephenson six-bar linkage shown in 

Fig. 7.3(a), so it has three sheets. However, we may come up with different conclusion if this 

linkage is treated as a single loop and the corresponding principle is applied. In a single-DOF 
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linkage, there exists one input only, so the projection of I/O curves on the input (horizontal) axis 

is called the input domain or sheet of JRS [3].  In Fig. 7.3(a), if the I/O curves are projected onto 

the input (θ3) axis, one may have the following observations: only two independent segments on 

the input axis are leading to two sheets; this is not correct. To avoid this misreading, the JRS of 

multiloop linkages is defined as the domain of all input variables of each individual loop. A 

Stephenson six-bar linkage consists of two individual loops. One of them is a five-bar loop with 

two input joint variables, so the JRS of Stephenson six-bar linkages must be presented and read 

in the domain of these two joint variables. The bulk is caused by the interaction between loops. 

For any double loop linkages, the number of bulks may be one, two, or four.  
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(a) Stephenson six-bar linkage 
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(b) Planar seven-bar linkage 

Figure 7.3 JRS and branches of two loop linkages 
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The bulk of JRS represents the configuration space of a group of branches (or sheets) in the 

common input domain of all single loops. For configurations in the same bulk, they may or may 

not be on the same branch. For those not in the same bulk, they are definitely on different 

branches. The concept of bulk and its property is helpful to the mobility analysis of multiloop 

linkages, including spatial linkages.  

In Fig. 7.3(a), both loops of the Stephenson six-bar linkage are Class II, so the result of their 

interaction is one bulk. Its JRS are divided into three separate areas (or curve segment for this 

one DOF example), so this bulk has three sheets. In Fig. 7.3(b), both loops of the 7-bar parallel 

manipulator are Class II, so the result of their interaction is one bulk. Its JRS are divided into 

three separate areas representing three sheets in this bulk of JRS. 

 

7.3 Spatial Group 2 Linkages 

 

The purpose of this chapter is to study the JRS of spatial group 2 linkages, particularly two-

DOF. Any spatial group 2 linkage, physically or virtually, is governed by two fundamental 

equations in the form of 

0=C+cosB+sinA ioioi θθ , (i = 1, 2)  (7-2) 

where θo is the output variable and Ai, Bi, and Ci  (i = 1, 2) are functions of the common input 

joint variables and an intermediate joint variable. The two fundamental equations depict two 

virtual loops of a spatial linkage. One is derived from the spherical indicatrix; the other is 

induced by the presence of joint offsets and skew distance between joint axes. The JRS of any 

group 2 linkage is affected by not only each individual virtual loop but also the interaction 

between them.   
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The research on JRS of two-DOF group 2 linkages is both for practical and theoretical 

reasons. First of all, group 2 linkages are commonly used as parallel manipulators. They may 

also form a basic cell of a more complex linkage. For example, 2R-3C is a physical linkage, 

which can be used independently as a mechanism or a basic cell of a more complex linkage. 

Secondly, each pair of fundamental equations in a group 3 linkage is virtually equivalent to a 

two-DOF group 2 linkage; the property of its JRS is necessary for the mobility study of group 3 

linkages.  

The discriminant method can be used to derive the JRS bulk of any spatial group 2 linkage. 

Each loop may be regarded as a group 1 linkage; the discriminant function ∆ ≥ 0 describes the 

JRS of a group 1 linkage. Two fundamental equations of a spatial group 2 linkage correspond to 

two discriminant functions and generate two independent JRS accordingly. Their intersection is 

the JRS bulk of this group 2 linkage. According to the mobility criteria of single loop linkage, 

each loop can be easily identified as Class I or II. If both loops are Class I, then there will be 

four bulks. If only one loop is Class I, then the number of JRS bulks is two. If neither loop is 

Class I, then there is only one bulk. The discriminant method is simple and straightforward; it 

applies to any multiloop linkage. 

Besides the discriminant method, the discrete method is another approach to derive the JRS 

bulk of two-DOF group 2 linkages in which there are two input joint variables (say θ1 and θ2, 

respectively) and one output joint variable (say θ6), and one intermediate joint variable (say θ3). 

If the output joint variable (θ6) is held constant, then Eq. 7-2 becomes the form of 3R-2C 

mechanism, which is one-DOF group 2 linkage. The JRS bulk of this one-DOF group 2 linkage 

can be easily derived via the discriminant functions. By varying the θ6 value, Eq. 7-2 yields a 
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family of one-DOF group 2 linkages and the corresponding JRS bulks can also be derived. By 

connecting them in order, the JRS bulk is formed of the two-DOF group 2 linkage. 

The discrete method can also be used to derive the JRS sheet of two-DOF group 2 linkages. 

If the output joint variable (θ6) is held constant, then Eq. 7-2 becomes the form of 3R-2C 

mechanism, which is one-DOF group 2 linkage. The mobility relationship of the two input joint 

variables (θ1 and θ2) may be derived. By varying the θ6 value, Eq. 7-2 yields a family of one-

DOF group 2 linkages and the corresponding mobility relationship of the two input joint 

variables can be derived and connected in order to form the JRS sheet(s) of this two-DOF group 

2 linkage. 

 

7.4 Examples 

 

The JRS of one-DOF group 2 linkage 

Example 1: The RCRCR mechanism is shown schematically in Fig. 7.4(a). The axes of the 

joints R, C, R, C, and R are labeled 1, 2, 3, 4, and 5, respectively. The input and output angular 

displacements are θ1 and θ5 while the intermediate angular displacement is denoted by θ3. The 

remaining four variables are the angular displacements θ2, θ4 and the displacements S2 and S4. 

By using the D-H notation [13, 14], ο6012 =α , ο4523 =α  ο3534 =α , 
ο3045 =α , and 

ο1051 =α  are the angles between the corresponding joint axes, 2512 =a , ,3023 =a  4034 =a , 

1045 =a , and 3251 =a , are the distance between the corresponding joint axes, and S11 = 30, S33 

= 25, and S55 = 8 are the offset along the corresponding R-joint axes. 
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(a) RCRCR mechanism    (b) JRS bulk and sheet  

Figure 7.4 One-DOF group 2 linkage 

The two loop-closure equations derived by following Duffy’s sine, sine-cosine, and cosine 

laws [15, 16] are 

0cos11.0coscos05.1

cos32.0sinsin07.138.0cos

551
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 =θθθ

θθθθ

−−

−+−
   (7-3) 

0sin034.0cossin603.1sin385.0

cossin618.1cos666.0coscos098.1

cos442.2sinsin356.1012.1cos485.3sin

5511

15551

11533

=θθθθ

θθθθθ

θθθθθ

−−−

−++

+−−−

 (7-4) 

The corresponding discriminant functions and the input/output displacement equation can be 

derived and plotted in Fig. 7.4(b). Since both loops are Class II based on the mobility criteria of 

single loop, there is only one JRS bulk. As shown in Fig. 7.4(b), there are three sheets 

(branches) in this one-DOF group 2 linkage. 

The JRS of two-DOF group 2 linkage 

Example 2: In example 1, let S33 be a variable (R3 is replaced with C3), then the linkage 

becomes RCCCR, which is a two-DOF group 2 linkage. The two loop-closure equations can be 
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derived by following Duffy’s sine, sine-cosine, and cosine laws [15, 16]. The first loop-closure 

equation (7-3) remains unchanged, while the second one contains one more variable S33 is listed 

as follows: 

0sin35.0cossin26.16sin91.3

cossin40.16cos75.6coscos13.11

cos76.24sinsin75.1327.10cos34.35sin406.0

5511

15551

1153333

=

S

θθθθ

θθθθθ

θθθθθ

−−−

−++

+−−−

 (7-5) 

The second loop-closure equation corresponds to a six-bar virtual loop. From example 1 we 

know when S33 =25, the six-bar is degenerated into a Class II five-bar loop, thus this six-bar 

loop is Class II according to the mobility criteria. The first loop-closure equation corresponds to 

a Class II five-bar loop, so their intersection will lead to one bulk only in this RCCCR linkage.  

The JRS sheet of this RCCCR linkage is derived with the discrete method. When S33 is held 

constant, this linkage becomes RCRCR, and the mobility relationship between the two input 

joint variables (θ1 and θ5) may be obtained. By varying the S33 value, Eqs. 7-3 and 7-5 yield a 

family of one-DOF group 2 linkages and the corresponding mobility relationship of the joint 

variables θ1 and θ5 may be derived and connected to form the JRS sheet of this two-DOF group 

2 linkage. There is only one sheet (branch) in this example as shown in Fig. 7.5(b). 
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(a) RCCCR mechanism                                 (b) JRS sheet  

Figure 7.5 Two-DOF group 2 linkage 

Example 3: The RRRRCR mechanism is shown schematically in Fig. 7.6(a). The axes of the 

joints R, R, R, R, C, and R are labeled 1, 2, 3, 4, 5, and 6, respectively. The input and output 

angular displacements are θ1 and θ6 while the intermediate angular displacements are denoted 

by θ2 and θ3. The remaining three variables are the angular displacements θ4, θ5, and the 

displacement S4. By using the D-H notation [13, 14], ο9012 =α , ο9023 =α  ο9034 =α , 

ο9045 =α , ο9056 =α , and ο9061 =α  are the angles between the corresponding joint axes, 

212 =a , 023 =a , 834 =a , 245 =a , 256 =a , and 361 =a  are the distance between the 

corresponding joint axes, and S11 = 8, S22 = 3,  S33 = 0, S44 = 0,  and S66 = 2 are the offset along 

the corresponding R-joint axes. 
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(a) RRRRCR mechanism                 (b) JRS sheet 

Figure 7.6 Virtual two-DOF group 2 linkage 

By following Duffy’s sine, sine-cosine, and cosine laws [15, 16], there are three loop-

closure equations equivalent to three virtual loops. Each pair of fundamental equations is 

virtually equivalent to a two-DOF group 2 linkage. Two fundamental equations are listed as 

follows: 

0cossinsinsin)sincoscoscos(sin 316326216  =θθθθθθθθθ −−  (7-6) 

0)2coscos2cos3cossin3sin8(

cos)cos2coscoscos8sinsin8(

sin)sincos2coscos8(

616616

3112626

31216

 =+++++

−++

−

θθθθθθ

θθθθθθθ

θθθθθ

  (7-7) 

Since both loops are Class II based on the mobility criteria of single loop, there is only one 

JRS bulk. The discrete method is used to derive the JRS sheet of this virtual two-DOF group 2 

linkage. By varying the θ6 value, Eqs. 7-6 and 7-7 yield a family of one-DOF group 2 linkages 

and the corresponding mobility relationship of the joint variables θ1 and θ2 may be derived and 
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connected to form the JRS sheet of this virtual two-DOF group 2 linkage. There is only one 

sheet (branch) in this example. 

 

7.5 Conclusions 

 

The JRS of multiloop linkages represents the domain of all common input variables of each 

individual loop. The JRS of any multiloop linkage, including spatial linkages, is affected by not 

only each individual loop but also by the interaction among loops. The addition of bulk into JRS 

completes the concept. The discriminant function and the discrete methods are introduced to 

obtain the JRS bulks and sheets. Several examples are presented to explain the form of JRS 

bulks and sheets of spatial one-DOF and (virtual) two-DOF group 2 linkages. The extension of 

JRS to multiloop linkages is helpful for the explanation and prediction of the branch formation 

of complex linkages, particularly spatial linkages. 
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CHAPTER 8 

CONCLUSIONS 

 

In this dissertation, the geometry attribute hidden behind spatial linkages has been 

investigated. The successfully developed concepts will form the foundation and backbone to 

support the mobility analysis of more complex linkages or manipulators. The often endless 

blind or trial and error search may be done intelligently.  

 

8.1 Significance, Contribution, and Unique Features of this Research 

 

8.1.1 Extension of the N-Bar Rotatability Laws 

 

The N-bar rotatability laws are extended to N-bar chains containing prismatic joints. The 

effects of long and short links, full rotatability, linkage classification, and the formation of 

branches and sub-branches are discussed. The extension provides a consistent method to 

understand all aspects of linkage rotatability disregarding the existence of prismatic joints. In 

this dissertation, a Watt six-bar linkage is converted and equivalent to a Stephenson six-bar 

linkage. The equivalency offers a simple and clear visual explanation on the formation of 

branches and sub-branches and how Watt and Stephenson linkages differ in mobility. Although 

the formation of branch, sub-branch, and full rotatability of general Watt six-bar linkages is 

explained via the stretch rotation of a four-bar loop, the resulting mobility criteria and algorithm 

in this dissertation requires no stretch and rotation and is easy to use. The algorithm is suitable 
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for automated mobility identification and is valid regardless whichever link is used as the input 

or fixed link and whether prismatic joints are contained or not. 

 

8.1.2 Concepts of Virtual Loops and Virtual Linkages 

 

The concept of virtual loops is presented to describe the essential geometry behind spatial 

linkages in this dissertation. The similarities are demonstrated between a virtual loop and a 

physical loop (known as planar or spherical loop). Each group 1, 2, 3, or 4 spatial linkage can be 

regarded as a virtual spherical linkage formed by one or more virtual loops. The links among spatial 

linkages are discovered: each pair of fundamental equations in a group 4 linkage is virtually 

equivalent to a three-DOF group 2 linkage; each pair of fundamental equations in a group 3 

linkage is virtually equivalent to a two-DOF group 2 linkage. The fact that all Duffy’s group 1 

linkages and planar and spherical four-bar linkages are bimodal linkages is consistent to the 

proposed virtual loop concept. From the viewpoint of linkage mobility and displacement 

analysis, simple RCRCR and group 2 linkages with parallel joint axes are virtually equivalent to 

Stephenson six-bar linkages. A unified mobility identification and rectification is offered for 

both ordinary and virtual Stephenson linkages in this dissertation. From one virtual loop to 

virtual Stephenson linkages and then to any virtual multiloop spherical linkages, a big picture of 

spatial linkages is presented. The concept of virtual loops is subtle but significant. It establishes 

a unified view on planar, spherical, and spatial linkages and a useful model to view or even 

understand complex spatial linkages. 
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8.1.3 Branch Formation of Spatial Linkages 

 

The current use of branch point for branch identification is limited to linkages with simple 

topology and singularity conditions, such as Stephenson-type linkages, which are simplified 

versions of group 2 mechanisms. In this dissertation, tangent points, the counterpart of branch 

points for Stephenson-type linkages, are sought to explain the formation of branches. The 

discovery of tangent points and the generalization of branch points offer an explicit explanation 

and prediction of the branch formation of spatial group 2 linkage. 

 

8.1.4 Extension of JRS to Multiloop Linkages 

  

Joint rotation space (JRS) is an important concept on mobility analysis of complex linkages. 

It represents the domain of all common input variables of each individual (virtual) loop. In a 

multiple DOF linkage, the JRS is like a map for one to program the linkage in the input domain. 

The JRS of any multiloop linkage, including spatial linkages, is affected by not only each 

individual loop but also the interaction among loops. However, the current concept and practice 

of JRS is based on the N-bar rotatability laws for single loop linkages. In this dissertation, the 

extension of JRS is sought to account for the mobility of multiple loop (including virtual loop), 

single- and two-DOF systems. The addition of bulk into JRS completes the concept and is 

helpful for the explanation and prediction of the branch formation of any complex linkage, 

particularly spatial linkages. 
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8.2 Future Work 

 

The mobility of spatial group 2 linkages is governed by two fundamental equations and how 

they influence each other. The generalized JRS and branch points may lead to the fundamental 

theory in treating the interaction between loops. The mobility theory of general group 2 linkages 

will be explored to develop an automated mobility analysis scheme. Mobility rectification is a 

bottleneck in complex linkage synthesis and programming. The research results of this 

dissertation may support computer-aided mobility rectification to remove this bottleneck. The 

mobility of complex linkages may be predicted in a simple and decisive manner rather than by an 

experimental or trial and error search. The mobility of spatial group 3 and 4 linkages can be 

identified progressively by treating two loops at a time. The ultimate objective is to establish a 

mobility theory treating the issues of discontinuity and singularity avoidance, full rotatability, 

and order or path of motion, which are intrinsic to all group 2, 3, and 4 spatial linkages.  
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