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Abstract 
This thesis proposes an error detection and correction (ED-EC) framework to incorporate 
advanced linguistic knowledge sources into large vocabulary continuous speech recognition. 
Previous efforts that apply sophisticated language models (LMs) in speech recognition normally 
face a serious efficiency problem due to the intense computation required by these models. The 
ED-EC framework aims to achieve the full benefit of complex linguistic sources while at the 
same time maximize efficiency. The framework attempts to only apply computationally 
expensive LMs where needed in input speech. First, the framework detects recognition errors in 
the output of an efficient state-of-the-art decoding procedure. Then, it corrects the detected 
errors with the aid of sophisticated LMs by (1) creating alternatives for each detected error and 
(2) applying advanced models to distinguish among the alternatives. In this thesis，we 
implement a prototype of the ED-EC framework on the task of Mandarin dictation. This 
prototype detects recognition errors based on generalized word posterior probabilities, selects 
alternatives for errors from recognition lattices generated during decoding and adopts an 
advanced LM that combines mutual information, word trigrams and POS trigrams. The 
experimental results indicate the practical feasibility of the ED-EC framework，for which the 
optimal gain of the focused LM is theoretically achievable at low computational cost. On a 
general-domain test set, a 6.0% relative reduction in character error rate (CER) over the 
performance of a state-of-the-art baseline recognizer is obtained. In terms of efficiency, while 
both the detection of errors and the creation of alternatives are efficient，the application of the 
computationally expensive LM is concentrated on less than 50% of the utterances. We further 
demonstrate that the potential benefit of using the ED-EC framework in improving the 
recognition performance is tremendous. If error detection is perfect and alternatives for an error 
are guaranteed to include the correct one, the relative CER reduction over the baseline 
performance will increase to 36.0%. We also illustrate that the ED-EC framework is robust on 
unseen data and can be conveniently extended to other recognition systems. 

In addition to the ED-EC framework，this thesis proposes a discriminative lattice 
rescoring (DLR) algorithm to facilitate the investigation of the extensibility of the framework. 
The DLR method recasts a discriminative n-gram model as a pseudo-conventional n-gram model 
and then uses this recast model to perform lattice rescoring. DLR improves the efficiency of 
discriminative n-gram modeling and facilitates combined processing of discriminative n-gram 
modeling with other post-processing techniques such as the ED-EC framework. 

Thesis Supervisor: Professor Helen Mei-Ling Meng 
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摘 要 

對於大詞彙量連續語音(LVCSR)識別來說，加入高級語言知識雖然可能提高識別的準確 

率，但是往往會顯著降低識別的效率。這主要是因爲高級語言模型的使用會增加識別複 

雜度和計算量。本論文提出一個新的框架，錯誤檢測與糾正(ED-EC)框架，來利用高級語 

言知識進行大詞彙量連續語音識別。該框架試圖在最大化高級語言知識帶來收益的同時， 

盡可能地減少計算量來保證識別系統的效率。其主要思想是在識別語音信號時，只在需要 

的地方使用複雜的語言模型。該框架以一個高效的當代主流語音識別器為基礎，首先檢測 

識別結果中的錯誤，然後使用複雜的高級語言模型來糾正檢測到的錯誤。在糾正錯誤的過 

程中，該框架為每個找到的錯誤建立一系列候選，然後利用高級語言模型從這些候選挑出 

最可能對的那一個來作糾正的結果。在本論文中，我們針對普通話的聽寫開發了一個該框 

架的原型。該原型基於一般化的詞后驗概率(generalized word posterior probability, GWPP) 

來進行錯誤檢測，它從識別過程中生成的識別網絡中提取候選，並且使用了一個結合了交 

互信息模型(mutual information)�詞三元模型(word t r igram)�詞性三元模型 (POS trigram) 

的高級語言模型。在理論上，ED-EC框架在使用高級語言模型時可以用低計算量達到最 

佳效果。實驗證明，該框架在現實中也是可行的。在一個普通領域的測試數據集上，相對 

于基礎識別器的識別結果而言，普通話原型的使用把識別錯誤率降低了 6.0%。言及識別 

效率，該原型的錯誤檢測與建立候選的過程都是高效率的，而計算量很大的高級語言模型 

的使用，則集中到了不到一半的數據上。我們進一步證明了 ED-EC框架的提升空間非常 

大。如果錯誤能夠被完美地檢測到並且候選中總是包含正確結果，使用原型帶來的識別錯 

誤率降低將會擴大到 3 6 . 0 % �我們還展示了 ED-EC框架對於未見數據具有良好的魯棒 

性，該框架還可以方便地延展至其他識別基錢上去。 

爲了協助研究ED-EC框架的可延展性，我們還額外提出了一個區別性網絡重評分 

(discriminative lattice rescormg，DLR)算法。該算法把區別性n元模型轉化成傳統n元模型 

的形式，然後進行網絡重評分。該算法在兩個方面提高了區別性n元建模技術。它提高了 

使用區別性n元模型的效率。同時，它方便了區別性n元建模與其他技術的結合使用。 
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Chapter 1 

Introduction 

This thesis focuses on large vocabulary continuous speech recognition (LVCSR), the purpose of 

which is to automatically transcribe natural speech. LVCSR technology has many uses. For 

example, it has been applied to facilitate communication between computers and users. Speech-

based computer-human interfaces not only have high usability but can also enhance human 

productivity; people can control machines by talking to them, which is especially useful for 

hands-busy/eyes-busy applications. In addition, LVCSR is a key component of automatic speech 

translation (AST), which is meant to help remove the language barriers between people in cross-

national communications. For speech translation, reliable speech transcription (i.e.，speech-to-

text conversion) is the basis of effective text-to-text translation and text-to-speech synthesis. 

Other applications of LVCSR include audio/video retrieval and assistance of disabled people. 

LVCSR has been actively studied since the 1980s，and substantial improvements have 

been made. However, there is still a long way to go towards developing real-time recognition 

systems with satisfactory performance. A promising direction to further enhance LVCSR is the 

incorporation of advanced linguistic knowledge sources, such as parsing knowledge and word 

mutual information. Modern recognizers model local word-sequence dependencies by trigram 

language models (LMs). Adopting more sophisticated linguistic knowledge sources can 

introduce better constraints in recognition and thus benefit overall performance. 

Since advanced linguistic knowledge sources normally require a long context span and 

relatively intense computation, the application of sophisticated sources greatly increases the 

decoding complexity and reduces the decoding speed. Given certain sophisticated linguistic 

knowledge sources, identifying a suitable way to incorporate these sources into an efficient 
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LVCSR system becomes a challenging task. This thesis proposes an error detection and 

correction (ED-EC) framework to address this challenge. The ED-EC framework reduces the 

complexity related to advanced language models by concentrating the application of these 

models on signal segments where the baseline recognizer is likely to make mistakes. The 

framework aims to take advantage of sophisticated linguistic knowledge sources to improve 

recognition accuracy as much as possible, while at the same time maximizing efficiency. 

Most previous efforts that incorporate sophisticated linguistic knowledge in LVCSR 

process speech segments indiscriminately. The selectiveness in the application of sophisticated 

knowledge is what differentiates the ED-EC framework from these efforts. Among the works 

that aim to correct recognition errors, the ED-EC framework is unique because it involves 

decoupling the error detection and error correction procedures. This separation leads to high 

flexibility in selecting detailed algorithms for error detection, error correction, or both. In this 

work, we have developed an error correction procedure that does not rely on recognizer-specific 

information. Hence, the procedure is generalizable. 

In this chapter, we introduce the history of research on speech recognition in Section 1.1. 

Then, state-of-the-art approaches for LVCSR are described in Section 1.2. Recent progress in 

LVCSR is discussed in Section 1.3. Our focus of investigation and the motivation for proposing 

the ED-EC framework are addressed in Section 1.4 and Section 1.5，respectively. Finally, the 

organization of the thesis is given in Section 1.6. 

1.1 History of Automatic Speech Recognition 

Active research in automatic speech recognition (ASR) started in the 1950s. Since then, ASR 

technology has evolved from digit recognition to robust, speaker-independent, large vocabulary 

continuous speech recognition. 

In the 1950s，researchers attempted to exploit the fundamental ideas of ASR. The first 

word recognizer that could recognize the ten digits by approximating the form ants was built at 

Bell Labs in 1952 [26]. A classifier that continuously evaluated the frequency spectra of speech 

signals was proposed in 1958 [27]. The usage of grammar probabilities and distinctive linguistic 

features, such as voiced/unvoiced [33] and turbulent/non-turbulent [135]，in recognition was 
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investigated. In the 1960s，several major breakthroughs were made, e.g.. Linear Predictive 

Coding (LPC) [3, 58] and Dynamic Time Warping [127]. Neural networks have also been 

deployed for phone recognition [83]. In the 1970s, small-vocabulary isolated word recognition 

matured. The first ARPA (Advanced Research Projects Agency) project was established in 1971 

to build speech understanding systems that could perform 1000-word connected speech 

recognition with a few speakers and constrained grammar. To fulfill this goal, new techniques 

were introduced in speech recognition. These include LPC segments， high-level 

syntactic/semantic models, and hidden Markov models (HMMs) [4，78]. 

In the 1980s，the focus of ASR research turned to continuous speech recognition，which 

transcribes fluently spoken utterances. ARPA sponsored a new program to develop a speaker-

independent recognition system using a 1000-word lexicon. With intense research related to the 

ARPA projects, the HMM approach became prevalent in speech recognition, replacing the 

template-based approaches that did not facilitate the incorporation of knowledge and were 

difficult to generalize. Within the stochastic framework of HMM, detailed modeling and 

decoding techniques continue to become more sophisticated [138]. Acoustic modeling evolved 

from simple context-independent monophone modeling to cross-word triphone modeling. For 

language modeling, n-gram modeling techniques, along with various smoothing algorithms, were 

proposed and gained wide usage [46]. Decoding strategies that improve search efficiency were 

designed. The capability of automatic speech recognition was greatly enhanced by the 

development of these technologies. Today, the lexicon size has increased to hundreds of 

thousand words, and spontaneous speech can also be handled. 

Modem systems for speaker-independent large-vocabulary continuous speech recognition 

adopt statistic frameworks，including HMMs, and alternative models based on artificial neural 

networks [41]. Recognition accuracy depends on various aspects, such as the availability of 

abundant training data and the disfluency level of the focused speech. For general-domain 

dictation tasks in clean environments, the recognition accuracies of state-of-the-art LVCSR 

systems are normally higher than 90% [20, 147]. Several companies, such as IBM and Microsoft, 

have commercialized various products to transcribe dictation [154，155，156]. For those 

relatively difficult tasks，such as the recognition of spontaneous speech and recognition in noisy 

environments, the accuracies are relatively low, depending on the characteristics of the input 

speech. For example, on the Switchboard corpora which are telephone conversations and widely 
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used in research institutions, the word error rates (WERs) normally range from 20% to 40% [54， 

85，106，124]. 

1.2 LVCSR Basics 

State-of-the-art LVCSR can be viewed as a Bayesian decision problem. Let X=XIX2..XT be the 

sequence of acoustic observations corresponding to a speech utterance and W=WIW2...WM be a 

sequence of words into which the utterance may be transcribed. The task of speech recognition 

seeks the most likely word string W^ such that 

W^ = arg max p{W | X ) = arg max p{X | W)p{W) (1.1) 

w w 

where p(X\W) is the acoustic likelihood determined by acoustic models (AM) and p(W) is the 

linguistic likelihood determined by a language model (LM). 

Acoustic models are usually implemented by hidden Markov models (HMMs). To model 

the acoustic variability and co-articulation effects, context-dependent phone units, such as 

triphones and quinphones, are adopted [49]. Since there are many such context-dependent units, 

sparseness of training data becomes a problem. A widely used approach to solve this problem is 

parameter tying, that is，sharing parameters for models with similar contexts [15]. Normally, 

maximum likelihood estimation (MLE) is utilized to iteratively estimate the parameters of the 

HMMs with an efficient forward-backward algorithm [55]. 

The most prevalent language modeling technique is n-gram modeling, which predicts the 

next word by estimating its conditional probability after truncating the conditioning word history 

to n-1 words: K K 
P ( 炉 ( 狄 …"̂；̂-！，二丄丄众：！/̂̂ “̂̂；̂-“+！，“̂；̂-“+之，…"̂；̂-!) (1.2) 

The n-gram probabilities can be estimated from training corpora by simply counting the 

occurrences of word sequences. However, as n increases，data sparseness becomes a more 

serious problem. To overcome this issue, various smoothing approaches have been proposed 

that range from simple methods, such as absolute discounting, to relatively complicated ones， 

such as Katz smoothing [46]. 



Decoding is the procedure of searching for the most likely utterance among all possible 

utterances based on acoustics and available linguistic knowledge sources. State-of-the-art 

recognizers use a pre-compiled static recognition network to store all utterances along with 

parameters of acoustic/linguistic models [152]. The concept of this network can be illustrated in 

Figure 1.1. Each word in the lexicon is represented as a sequence of context-dependent phone 

HMMs. The n-gram probabilities p(wi\h) are assigned to the links between words as the 

transition probabilities. The most likely word sequence W* is thus identified by performing a 

Viterbi search [55] in the network search space. Pruning is performed during the search to keep 

computation load and memory consumption under control. In practice, decoding is a complex 

design problem, especially for n-gram models with n>2. Since the assignment of an n-gram 

probability to a word depends on the previous n-1 words, all possible (?7-7)-word histories for 

each word need to be maintained in the static recognition network. While efficient decoding 

algorithms have been proposed for trigrams [13，121], performing higher-order n-gram decoding 

remains a challenging task. 

Figure 1.1: The concept of the recognition network 

Given an input speech utterance, the decoder can be set to generate the recognition lattice 

and/or TV-best hypotheses for post-processing. The recognition lattice is a compact 

representation of active hypotheses (i.e.，those hypotheses that survive pruning during the search)， 

as shown in Figure 1.2. In a recognition lattice generated by n-gram decoding, each word 

hypothesis has a unique (?7-7)-word history that is needed to compute a unique LM likelihood. 

Some recognizers may merge two word hypotheses that have the same identified word and the 

same starting/ending times if (1) their LM likelihoods are the same and (2) merging will not 

cause ambiguities in the assignment of LM likelihoods for the subsequent word hypotheses. The 
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TV-best hypotheses are the top N hypotheses contained in the recognition lattice, as illustrated in 

Figure 1.3. The recognized utterance is the top-scoring hypothesis contained in the TV-best lists 

or the recognition lattice. 

WE LOVE FLOWERS 

WILLIAM FLOWERS 

Figure 1.2: A sample recognition lattice generated by trigram decoding ("SIL" marks pauses) 

Hypothesis 1: We love flowers. 

Hypothesis 2: We are flowers. 

Hypothesis 3: We love for hours. 
• • • 

Hypothesis N\ William for hours. 

Figure 1.3: An example of the TV-best hypotheses 

1.3 Previous Efforts to Improve LVCSR 

This thesis proposes a novel framework to post-process the output of a baseline recognition 

system with advanced language models, as will be discussed in the subsequent sections. 

Theoretically, the baseline system of the framework could be any LVCSR system. In order for 

readers to get an overall understanding of the recent progress in LVCSR，as well as what the 

baseline system of the framework could be, this section briefly introduces the previous attempts 
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to improve state-of-the-art LVCSR. We will review the previous works that are related to the 

framework in details in Chapter 2. 

The discriminative training technology has recently received increasing interest in 

LVCSR. State-of-the-art recognizers estimate the model parameters under the framework of 

maximum likelihood estimation. This may lead to suboptimal performance in terms of 

recognition error rate. Discriminative training approaches attempt to adjust the parameters with 

the aim of directly minimizing the recognition error rate. These approaches may bring lower 

recognition error rate but the discriminatively trained models tend to be less general than the 

models trained by maximum likelihood estimation. The discriminative training technology has 

been applied in different aspects of LVCSR. For acoustic modeling, various discriminative 

training criteria，such as maximum mutual information estimation (MMIE) and minimum 

classification error (MCE), have been adopted to adjust the parameters of state-of-the-art 

acoustic models or novel new acoustic models [8, 65, 87, 98，137, 99]. For language modeling, 

n-grams have been adjusted using different discriminative training methods [20, 69, 71，106]. 

For example, Roark et al. [106] adjusts n-grams discriminatively in a linear framework of TV-best 

re-ranking; Kuo et al. [69] used the generalized probabilistic descent (GPD) algorithm to 

minimize string error rate. For the decoding procedure, algorithms have been proposed to 

discriminatively adjust the transition weights in the recognition network in a unified way [70，76]. 

The results reported for the use of discriminative training in LVCSR show that this technology 

can be beneficial. For instance, training HMMs discriminatively using the Minimum Phone 

Error (MPE) criteria leaded to a 4.8% absolute reduction in WER on corpora of telephone 

conversations [99]. However, it is often observed that the effectiveness of discriminatively 

training relies on a good match between the training and testing conditions [147]. In addition, 

the discriminative training procedure can be computationally expensive, especially when 

iterative decoding is needed. 

Modern recognizers use HMM acoustic models as the acoustic models and use the word 

trigram as the language model. In literature, many new acoustic/language models have been 

investigated. Among the new acoustic models, some models (e.g., the subspace precision and 

mean model (SPAM) and the extended maximum likelihood linear transformation (EMLLT) 

model) refine the details such as the precision matrices in the computation of the Gaussians in 

HMM to achieve better recognition accuracy and/or efficiency [35，54，97]. Some models (e.g.， 
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the segmental models and the switching linear dynamical models) extend the standard HMM 

with the aim of better modeling the dependency between successive speech frames [9，36，37，53， 

72, 73, 108，120, 140]. Other models (e.g., the graphic models and template-based models) 

adopt novel modeling designs that are different from the HMM framework [10，95，128]. 

Encouraging LVCSR results have been obtained for some new acoustic models. For example, 

the EMLLT model achieves an absolute reduction in word error rate of around 1% over the 

baseline performance (from 23.6% to 29.1%) for the Switchboard task. On the other hand, many 

new acoustic models are still preliminary. Some novel models may even perform worse than the 

state-of-the-art acoustic HMMs, but they still have the potential to benefit LVCSR in certain way 

(e.g., providing complementary information) [128]. 

For new language models (LMs), some of them adopt Neural Network frameworks to 

estimate n-gram probabilities in a continuous space with the aim of solving the data sparseness 

problem [40，113，114]. Most of the new LMs attempt to capture relatively advanced linguistic 

knowledge sources. Note that the word trigrams in state-of-the-art recognizers only capture local 

word-sequence constraints. The usage of advanced LMs in LVCSR has great potential. Various 

advanced LMs have been proposed. Higher-order n-grams，which capture longer-distance word-

sequence constraints, were used to post-process the recognizer output [85, 124]. Advanced LMs 

that model sophisticated syntactic/semantic knowledge sources, such as parsing information [125， 

18], triggers extracted based on mutual information [107，117], and Latent Semantic Analysis 

(LSA) [7，21，144], were also investigated. We will discuss the advanced LMs in more details in 

Chapter 2. Higher-level linguistic knowledge sources have been shown to be beneficial for 

LVCSR. For example, an advanced LM that linearly combines phonetic, lexicon, syntactic and 

semantic knowledge sources brought a 2.9% absolute WER reduction over the baseline 

performance of 30% for the Switchboard task. However, most of the advanced LMs are 

computational expensive, as will be discussed later. Incorporating them into LVCSR will lead to 

systems too slow for real-time applications. Thus, it is meaningful to find a suitable way to 

apply advanced LMs so that their optimal gains can be achieved at lowest computational load. 

Efforts have been made to improve LVCSR in other ways. New decoding methods have 

been proposed to reduce memory usage and/or improve search efficiency. For example, an 

Order-Preserving LM Context Pre-computing (OPCP) method was proposed to reduce memory 

cost without slowing down the speed of LM lookup [75], an efficient likelihood ratio test 
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approach was developed to perform fast-matching [1] and virtual hypothesis copies were used to 

reduce the computational load [115]. Combining multiple recognition systems to achieve further 

improvement has been popular since the introduction of ROVER [31], an algorithm that aligns 

the recognition outputs from different systems into confusion networks and votes. Some 

extensions of ROVER such as TV-best ROVER [29] and Confusion Network Combination (CNC) 

[29] have been proposed. Siohan et al. [118] attempted to use the randomized decision tree state 

tying procedure to systematically build multiple recognition systems preceding the usage of 

ROVER. Sankar [109] presented a Bayesian decision-theoretic algorithm, called BAYCOM, for 

system combination. The combination of multiple systems has been observed to be effective to 

further improve recognition accuracy, as long as the information provided by individual systems 

is complementary. 

1.4 Problem Statement 

State-of-the-art LVCSR systems involving HMM acoustic models and n-gram language models 

have been prevalent due to their effectiveness and efficiency. However, their detailed modeling 

techniques have evolved to a state of considerable sophistication whereby their performances are 

stabilizing at a local maximum [138]. Possible breakthroughs may come from various directions, 

such as designing new acoustic models, performing discriminative training，combining multiple 

systems and applying more advanced linguistic models. Among these options, the usage of 

advanced linguistic knowledge is especially attractive. Note that modern recognizers normally 

utilize trigrams which only capture local constraints. The potential benefit of incorporating 

higher-level information sources in LVCSR is large. 

There are many works in the literature that attempt to model sophisticated linguistic 

knowledge to improve LVCSR, as mentioned in the previous section. However, most of these 

efforts face a serious efficiency problem. This is mainly due to the heavy computational load 

required for the application of advanced linguistic models. These models require relatively 

complex text processing procedures (e.g., parsing) to extract the needed information and/or 

intense calculations. The attempts to incorporate long-distance semantic/syntactic constraints 

into single-pass decoding or lattice-based post-processing may introduce additional complexity 
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in the search procedure and thus further decrease efficiency. The efficiency issue associated 

with knowledge application may be removed by enhancing the power of PCs or by inventing a 

novel LVCSR framework that simulates human perception. However, in the foreseeable future, 

this issue will have to be addressed for real-time applications. Given certain sophisticated 

linguistic knowledge sources, designing a suitable method to apply them in LVCSR becomes a 

challenging but meaningful task. The aim is to fully capture the benefit of the knowledge 

sources in focus to enhance recognition accuracy while maximizing efficiency. 

1.5 Motivation 

LVCSR is the task of transforming the input speech signals into corresponding text with the aid 

of various knowledge sources under a certain framework. Given a set of knowledge sources 

available for LVCSR, the application of these sources should consider their characteristics. 

When both acoustic and linguistic knowledge sources captured in LVCSR are elementary, it is 

attractive to adopt the island-driven approach [67] to decode speech. This island-driven 

approach first detects a keyword as a robust island based on acoustic similarity in continuous 

speech and then expands the island by verifying the neighboring words using acoustic features 

and linguistic rules. After the performance of hidden Markov acoustic models was raised to a 

higher level, bigram and trigram language models were developed to jointly work with acoustic 

models in a unified left-to-right HMM framework. Currently, after decades of evolution, the 

HMM framework with trigram models has already achieved good recognition accuracy, 

especially when the operating conditions are similar to the training conditions. For those 

utterances or speech segments where the current framework already works well, applying 

additional knowledge sources is unnecessary. Only those signals where efficient state-of-the-art 

decoding makes mistakes need to be processed by advanced knowledge sources. Based on these 

observations, we propose an error detection and correction (ED-EC) framework to focus the use 

of computationally expensive linguistic knowledge sources on correcting the errors made by a 

modern recognizer. 

The ED-EC framework aims to only apply computationally expensive LMs where needed 

in the signals for LVCSR. The framework post-processes the output of a relatively efficient 
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baseline recognizer using two sequential procedures: error detection and error correction. The 

main structure of the framework is illustrated in Figure 1.4. The error detection procedure 

attempts to explicitly detect errors in each recognized utterance generated by the baseline 

recognizer. For each utterance containing one or more detected errors, the error correction 

procedure first expands each detected error into a candidate list of alternatives with the aim of 

including the correct transcription of the focused error. This results in a new search network. 

Then，sophisticated LMs are applied to rank the utterance hypotheses in the new search network. 

The candidate alternatives (e.g.. Alternative x and Alternative in the top-ranking utterance 

hypothesis are the results of error correction for the target utterance. Generally speaking, the 

ED-EC framework attempts to use sophisticated linguistic constraints to re-decode the erroneous 

regions in the signals based on the surrounding utterance context. 

Recognizer transcript of a speech utterance 

Error Detection 
Region A * Region B Region C * Region D Region E 

(detected as erroneous) (detected as erroneous) 

Error Correction 
1. Create a new search network: 

Region A — 

Alternative 1� 

Alternative 2 
—Region C-

'Alternative 1' 
Alternative 2' 

—Region E 

Alternative n Alternative m' 

2. Use advanced LMs to rank utterance hypotheses: 
Top-ranking utterance hypothesis 

Region A Alternative jc Region C Alternative y’ Region E 
\ / A/ 

(correction result for Region B) (correction result for Region D) 
I 

Figure 1.4: The structure of the ED-EC framework 

Given a set of advanced LMs, the optimal gain of these models is theoretically achievable 

for the ED-EC framework. This is because the new search network will be guaranteed to contain 

the correct utterance hypothesis in the ideal case that (1) all errors can be correctly detected and 

(2) alternatives created for errors can always include the correct transcripts. In reality, both the 
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detection of errors and the creation of alternatives are difficult, if not impossible, to perfect. The 

correct utterance hypothesis may be absent in the new search network due to missed errors 

and/or candidate lists without correct answers. The ability of the framework to capture the 

benefit of focused LMs thus depends on the performance of both error detection and candidate 

creation. 

The framework attempts to minimize the computational load of sophisticated LMs by 

applying these models to distinguish among alternatives only for the erroneous regions in signals. 

Note that the decoding search space and most post-processing search spaces (e.g.，recognition 

lattices and TV-best hypotheses generated during decoding) create alternatives for all signals 

indiscriminately. If advanced LMs are applied in such a space, these models will be used to 

score alternatives for correct utterances/segments. The framework aims to avoid this part of LM 

computation. To achieve this goal, additional computation, such as the detection of errors and 

the creation of alternatives, is needed. However, compared with the time saved in LM 

computation, the additional computational load can be relatively small or even negligible. A 

more detailed analysis of the framework efficiency will be provided in Section 5.3. 

Given a set of computationally expensive LMs, it is suitable to use the ED-EC framework 

to apply these models if: 

1) The baseline recognizer already provides good performance 

Suppose that all errors can be correctly detected. When the baseline recognizer makes fewer 

errors, the framework is more efficient. In contrast, if the entire transcript for the input speech 

signal is erroneous, the framework actually applies sophisticated LMs to re-decode the entire 

speech signal. 

2) An acceptable error detection method exists 

The feasibility of the framework depends on the performance and efficiency of error detection. 

If errors cannot be detected, they cannot be corrected. If error detection is inefficient, the 

framework will be less efficient. 

3) An acceptable candidate creation method exists 

Candidate lists that include correct transcriptions are the basis for advanced LMs to correct errors. 

The efficiency of candidate creation as well as the sizes of candidate lists affects the overall 

efficiency of the framework. 
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The ED-EC framework is designed to be general. Both the error detection and the 

creation of the alternative lists for detected errors can be carried out by various techniques. It is 

convenient to incorporate new linguistic knowledge sources into the ED-EC framework. 

The ED-EC framework has been proposed to improve the performance of a recognizer. 

However, the framework can also be applied to improve the performance of a multi-pass 

recognition system that already uses certain techniques (e.g.，lattice rescoring) to post-process 

the output of a recognizer. In other words, the baseline recognition system of the ED-EC 

framework is not necessary to be a recognizer. Theoretically, any LVCSR systems can serve as 

the baseline recognition system for the framework. 

1.6 Thesis Organization 

In this work, we develop an initial prototype of the ED-EC framework for Mandarin LVCSR. 

The prototype attempts to detect the recognition errors in the output of a state-of-the-art 

baseline recognizer and then corrects the detected errors with the aid of an advanced language 

model that captures long-distance semantic constraints and local syntactic constraints. Based 

on this prototype, we aim to investigate the feasibility of the ED-EC framework，as well as the 

framework characteristics (e.g., factors that influence the capability of error correction， 

performance upper bounds and computational efficiency). To evaluate the effectiveness of the 

framework across various baseline recognition systems, we also analyze the performances of 

the ED-EC prototype on the multi-pass recognition baseline systems that use a discriminative 

lattice rescoring (DLR) technique to post-process the output of the recognizer. The DLR 

technique that we propose in this thesis is another contribution of this thesis. We refer to the 

multi-pass recognition baseline systems as discriminatively enhanced baseline systems, and to 

the original recognition baseline system of the state-of-the-art recognizer as the recognizer 

baseline system. 

The remaining chapters are organized as follows. 

Chapter 2 discusses the previous works related to the ED-EC framework. The previous 

efforts that inspired us to propose the framework are presented. Approaches that are relatively 
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similar to the framework are discussed and compared with the framework. Methods that are 

potentially useful in different aspects (e.g., error detection) of the framework are introduced. 

Chapter 3 presents the initial prototype of the ED-EC framework for Mandarin in detail. 

The error detection procedure detects erroneous words and erroneous characters sequentially in 

an incremental way. For the error correction procedure, a two-part algorithm to correct detected 

errors along with an additional mechanism to handle the false alarms of error detection is 

proposed. 

Chapter 4 describes the experiments to evaluate the ED-EC framework. A state-of-the-

art recognizer is developed as the baseline recognition system. Based on this baseline system， 

the error detection and error correction procedures of the ED-EC framework are trained 

sequentially. The performance of the individual procedures and the overall framework 

performance are evaluated. 

Chapter 5 analyzes the effectiveness of the ED-EC framework. Various factors that 

influence the error correction effect are investigated, including the selection of knowledge 

sources, the characteristics of search space and the usage of an additional mechanism to handle 

false alarms. Based on the observations, an equation is introduced to describe the overall 

effectiveness of the framework. The performance upper bounds and computational efficiency of 

the framework are also discussed. 

Chapter 6 compares the ED-EC framework with previous approaches that utilize 

advanced linguistic knowledge sources in LVCSR. These previous approaches either 

incorporate the advanced models into single-pass decoding or apply those models in post-

processing (e.g., TV-best re-ranking). We analyze the differences between the ED-EC framework 

and each type of previous work. A detailed competitive analysis of computational expense is 

performed. 

Chapter 7 proposes the DLR technique that will be used to provide discriminatively 

enhanced baseline systems for the ED-EC framework. DLR is an extension of discriminative n-

gram modeling. We first briefly review discriminative n-gram language modeling. We prove 

that the discriminative n-gram model defined in a linear framework can be represented as a 

pseudo-conventional n-gram model under certain conditions. The DLR algorithm that uses the 

pseudo-conventional n-gram model to rescore recognition lattices is then discussed. 
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Chapter 8 evaluates the performance of the ED-EC framework on the discriminatively 

enhanced baseline systems. We post-process the output of the state-of-the-art recognizer with 

DLR. This multi-pass recognition procedure is then used as the new baseline recognition system 

(i.e., the discriminatively enhanced baseline system) for the framework. The effectiveness of the 

framework across various baseline recognition systems is analyzed by comparing the framework 

performances on the recognizer and discriminatively enhanced baseline systems. 

Chapter 9 summarizes this thesis and discusses future research directions for the ED-EC 

framework. Our future work on discriminative n-gram modeling is also mentioned. 
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Chapter 2 

Related Work 

This chapter reviews the previous work related to the error detection and correction (ED-EC) 

framework proposed in Section 1.5. The ED-EC framework attempts to use advanced language 

models to correct errors that are detected in the output of a baseline LVCSR system. In this 

chapter. Section 2.1 reviews the previous efforts in error correction. We first introduce the 

context-sensitive spelling correction technology that initially inspired us with the idea for the 

ED-EC framework. We then discuss previous error correction efforts for LVCSR and compare 

the ED-EC framework with those methods that have relatively similar concepts. Section 2.2 

describes previous works in the detection of recognition errors. Error detection for automatic 

speech recognition has been intensely investigated. Many different approaches have been 

proposed and have the potential to be used in the ED-EC framework to detect recognition errors. 

Section 2.3 compares the search spaces that were used for the application of advanced 

knowledge sources in the literature. For the ED-EC framework, the advanced language models 

are applied in a sausage-type search space, which is generated by creating candidate lists of 

alternatives for detected errors. Finally, Section 2.4 discusses the advanced language models that 

have been proposed for different tasks. These language models are potentially useful for the ED-

EC framework. 
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2.1 Correction of Written/Recognition Errors 

The ED-EC framework is inspired by the context-sensitive spelling correction technology [45， 

64, 93] which attempts to correct written errors that result in valid, though unintended/misused 

words (e.g.，quiet and quite; among and between) [45]. This technology predefines a collection 

of confusion sets such as {quiet, quite} and {among, between}. During the processing of a 

particular utterance, it views an occurrence of a word in one of the confusion sets as a potential 

error and attempts to verify/correct this potential error. In the verification/correction process, 

one or more linguistic knowledge sources are applied to distinguish among the words in the 

corresponding confusion set based on the context information. Linguistic knowledge sources 

that have been investigated in context-sensitive spelling correction include word trigrams [86]， 

part-of-speech (POS) trigrams [45，93], latent semantic analysis [64] and rules/features that 

capture the semantic/syntactic patterns in the neighborhood of the potential errors [45]. 

It is difficult, if not impossible, to directly apply the context-sensitive spelling correction 

technology in the field of LVCSR. The difficulty lies in the predefinition of confusion sets for 

potential errors in speech recognition. The decoding of speech is very complicated. Many 

acoustic and/or linguistic factors such as acoustic environment variation and speaking style 

variation can lead to recognition errors. A word may be recognized as various words under 

different situations. This makes the confusions between words inconsistent and hard to group 

into static confusion sets. The ED-EC framework circumvents this problem by (1) dynamically 

detecting recognition errors and (2) dynamically creating a confusion set (i.e., a candidate list of 

alternatives) for each detected error. By doing so，the framework adapts the context-sensitive 

spelling correction to speech recognition error correction. 

There have been previous studies on error correction for LVCSR. Generally speaking, all 

algorithms that attempt to reduce recognition error rates can be viewed as error correction 

methods. Here we focus on those works that aim explicitly to correct recognition errors. These 

works can be categorized into two types: (1) methods to correct misrecognitions caused by a 

known mismatch between the training and testing conditions and (2) methods to correct 

misrecognitions caused by the defects of the recognizer. 
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The first type of error correction effort attempts to correct the recognition errors that 

regularly happen when the testing conditions (e.g.，domain, acoustic environment) are known to 

differ from the training conditions in a certain way. For example, when a general-domain 

recognizer is applied to the medical domain, the word "cephalosporin" will always be 

misrecognized if this word is not included in the recognizer lexicon. Most of these works view 

the baseline recognizer as a "black box" and transfer each recognized utterance into a new 

utterance hypothesis through a channel model, which can either be a simple word-to-word 

transition model [102] or a "fertility" model that maps ？7-word sequences to m-word sequences 

[102，103]. The channel models have also been used to generate TV-best utterance hypotheses, 

among which advanced syntactic/semantic models are applied in distinguishing with the aim to 

achieve further improvement [61，62]. The channel-model-based approaches have been applied 

to some small-scale dialogue tasks and achieved encouraging results (e.g., 24.0% relative 

reduction in WER). One advantage of these approaches is that they do not rely on recognizer-

specific information. In this way, the error correction procedures can be conveniently adapted 

from one baseline recognizer to another. The main disadvantage is that these approaches are a 

kind of adaptation technology (i.e.，adapting from the training conditions to certain testing 

conditions) and are inapplicable if the testing conditions are changed or unknown. With 

inconsistent testing conditions (e.g.，general-purpose recognition with multiple users under 

various environments), recognition errors are highly unpredictable and are difficult to model as a 

statistical mapping of words. 

The second type of error correction effort attempts to handle recognizer defects. Modern 

recognizers are imperfect in many aspects. The recognizer lexicon may not adopt a suitable set 

of words and/or include suitable pronunciations for each word entry. Both the acoustic Hidden 

Markov models and trigram language models are built based on simplifying assumptions (e.g.， 

the frame-independence assumption and short-range linguistic dependencies) [138], leading to 

the fact that the correct hypothesis may not have the highest likelihood among the competing 

hypotheses. The current decoding strategy is suboptimal in terms of word error rate. This 

strategy searches for an utterance hypothesis having the highest utterance posterior probability 

instead of an utterance hypothesis having the lowest WER [80]. 

Many approaches have been proposed to correct the recognition errors that are due to 

recognizer defects. Wakita et al. [129] addressed the lexicon defect by selectively adding new 
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pronunciations to word entries based on POS-dependent HMM-state confusion characteristics. 

This approach reduced the WER from 13.1% to 11.8% on a Japanese spontaneous speech corpus. 

Roark et al. [105] attempted to reduce the errors that are due to imperfect language modeling. 

They discriminatively modeled n-gram features and used the resulting discriminative language 

models to post-process the recognizer output (e.g. the recognition lattice and the TV-best 

hypotheses). This leaded to a 1.3% absolute reduction (from 39.2% to 37.9%) in WER on the 

Switchboard corpus, which are telephone conversations. Venkataramani and Byrne [126] 

attempted to handle the defects in acoustic modeling by adopting support vector machines 

(SVMs) to distinguish between acoustically confusing word pairs that were identified through a 

lattice pinching technique. This approach is still preliminary, only reducing the overall WER 

from 45.6% to 45.5% on a spontaneous Czech conversational speech corpus. Mangu et al. [81] 

focused on the suboptimal decoding issue that was mentioned in the previous paragraph and 

proposed a post-processing algorithm to minimize word error rate. This algorithm converts a 

recognition lattice into a sequence of confusion sets. The words having the highest word 

posterior probabilities in the confusion sets are then concatenated to form the output. 

Experimental results demonstrated that this approach was effective, reducing the WER from 

38.5% to 37.3% on the Switchboard corpus and from 33.1% to 32.5% on the Broadcast News 

corpus. Nowadays, this technique has been widely utilized in LVCSR systems. Mangu and 

Padmanabhan [82] further extended this approach by introducing rules to make a second 

decision between the top two words in a confusion set in terms of word posterior probability. 

The rules were induced from the confusion sets based on context-independent features such as 

the difference in word posterior probability. This enhanced confusion-set method further 

brought relative WER reductions of around 1.8% over the performances of the original 

confusion-set method on the Switchboard corpus. 

Error correction methods that were proposed to fix certain recognizer defects aim to 

generally improve the performance of the baseline recognizer and thus are not restricted to 

specific testing conditions. The ability to work under flexible testing conditions is a common 

advantage of this type of error correction. However, most of these algorithms rely heavily on 

side information (e.g., word posterior probability) derived from a specific baseline recognizer. 

This makes such error correction mechanisms less general; adapting them from one baseline 

recognizer to another may require repeating the whole training procedure. 
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The ED-EC framework proposed in this thesis differs from previous error correction 

efforts in the de-correlation of error detection and correction. The proposed framework first uses 

an explicit error detection procedure to detect recognition errors. Then in a disjoint error 

correction procedure, a search space is generated by creating alternatives for the detected errors 

and advanced linguistic knowledge sources are applied to rank the hypotheses in the search space. 

The separation of error detection and error correction leads to high implementation flexibility for 

both procedures. By adopting general advanced linguistic knowledge sources in error correction, 

it is possible to design a generally applicable error correction procedure. Errors occurring in 

various testing conditions may be corrected by advanced linguistic constraints. If the creation of 

candidate alternatives for detected errors does not rely on the side information derived from the 

baseline recognizer，the error correction procedure will be totally independent from the baseline 

recognizer and thus can be conveniently adapted to other baseline recognition systems. 

2.2 Detection of Recognition Errors 

The ED-EC framework attempts to detect and correct the recognition errors contained in the 

output of a baseline recognition system. The error detection procedure serves as the basis for the 

error correction procedure. Since the error detection and correction procedures are relatively 

independent, the error detection procedure can be implemented by any error detection algorithm 

theoretically. In this preliminary work, we made no efforts to identify the best error detection 

method - we only want to choose a typical method as an example of possible error detection 

approaches. We thus choose the generalized word posterior probability (GWPP) [77, 122], 

which has been shown to be effective and efficient in error detection for both English and 

Mandarin LVCSR, as the feature to perform binary classification (i.e.，correct or wrong) using 

the Naive Bayes algorithm. However, we still introduce the previous error detection approaches 

in this subsection since they may be used in the error detection procedure potentially. 

The technology to detect the recognition errors made by a recognizer has been intensely 

investigated and been used in a variety of tasks. These tasks include rejecting erroneous 

recognition results prior to speech understanding in spoken dialogue systems, filtering out those 

speech segments with wrong transcriptions in unsupervised training/adaptation, etc. [96，130]. 
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The task of error detection can be viewed as a classification problem. For each instance (e.g, 

phoneme, word, utterance) to be verified, one or multiple features are extracted and a certain 

classification algorithm is used to label each instance in focus as either correct or erroneous. 

Most features utilized in error detection are based on the recognition information (i.e.，the 

information contained in the output of the recognizer or obtained during decoding). The 

complexity of such recognition-based features varies. Some features are simply extracted from 

the information assigned by the recognizer to the target instance (e.g.，a word hypothesis). These 

features include the number of component subunits (e.g.，acoustic observations), the 

acoustic/language model scores and the score-based statistics (e.g.，the standard deviation of the 

acoustic scores across all component acoustic observations of a word hypothesis) [16，51，111， 

148，149]. More complicated features attempt to capture the structures of search spaces. For 

example, one effective feature for word verification is calculated as the fraction of the 

hypotheses containing the target word in the same position among the TV-best list [51，148]. A 

similar feature is such a fraction computed among a different hypothesis list, that is, among a list 

of top-best hypotheses that are generated by changing the weight between the acoustic scores and 

language model scores in decoding [30, 111], Other popular structural features include posterior 

probabilities. Posterior probability features have been shown to be effective for detecting 

erroneous words/utterances and can be efficiently computed from either TV-best hypotheses or 

recognition lattices [77, 101，122, 131，133]. There are also recognition-based features that 

analyze elaborate recognition information, such as the rank of the best state (i.e.，the one in the 

state sequence that corresponds to the best path in decoding) among the competing states [11] 

and the neighborhood location of the target instance in HMM model space [63]. 

Recently, features based on additional knowledge sources that are unavailable in baseline 

recognition have been introduced in error detection. Leung and Siu [74] presented two 

articulatory features that evaluate the match in articulatory properties (e.g., rounding and manner) 

between the target phoneme sequence and the corresponding speech segment using neural 

network classifiers. A myriad of works used various semantic and/or syntactic features to detect 

recognition errors for domain-specific dialogue systems [14，48，96，100，110，143]. For a 

limited domain such as travel planning, it is feasible to design a grammar covering the task and 

perform robust parsing. This makes the extraction of syntactic/semantic features reliable. The 

syntactic/semantic features investigated for domain-specific dialogue systems include the 
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number of transitions between parsed and unparsed fragments [14]，slot-based language model 

probabilities [100]，semantic weights of word classes [96]，etc. Several efforts have been carried 

out to use syntactic and/or semantic features in error detection for general-domain speech 

recognition. In this case, a covering grammar is absent and the performance of parsing is 

typically unsatisfactory. Zhou et al. [146] attempted to capture the left/right relationships 

between words as syntactic features using a link grammar. Semantic features that have been 

suggested for general LVCSR are extracted based on latent semantic analysis [25, 47] or inter-

word mutual information [47]. Adopting features based on additional knowledge beyond the 

side information derived from a specific recognizer enhances the generality of error detection. 

However due to robustness concerns, these features are mainly used to complement the 

recognition-based features. 

While using a single feature in error detection leads to a simple binary decision task, 

adopting multiple features triggers the involvement of complex classification algorithms. Many 

classification approaches have been utilized for error detection, including generalized linear 

models [43]，neural networks [111，131，132，143，146]，decision tree [143], linear discriminant 

projection [51, 96, 111], Gaussian mixture modeling [66] and support vector machines [79, 143， 

146，149]. Research in feature selection has been carried out. Zhou et al. [146] used maximum 

likelihood to assess the importance of each feature; Zhou and Meng [148] developed an iterative 

procedure to filter unnecessary features. There has also been works combining utterance- and 

word-level verification [51，148]. 

2.3 Search Spaces for Knowledge Application 

After detecting recognition errors，the ED-EC framework creates a candidate list of alternatives 

for each detected error in an utterance. Connecting the candidate lists with the utterance context 

leads to a sausage-type search space. Advanced LMs are then applied to correct the detected 

errors by ranking the utterance hypotheses in this search space. For LVCSR，different post-

processing search spaces have been utilized to apply additional acoustic/linguistic knowledge 

sources. In this section，we introduce these search spaces and compare them with the sausage-

type search space used in the ED-EC framework. 
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The TV-best hypothesis list is the most frequently utilized search space for post-processing 

due to its simplicity [5，147]. Applying knowledge models to score those hypotheses listed in 

parallel is straightforward. The TV-best hypotheses can be those output by a baseline recognizer. 

They can also be created by a more complicated procedure. For instance, Jeong et al. [61] 

processed the recognized utterance produced by a baseline recognizer with a word-for-word 

channel model and used this channel model to create TV-best hypotheses. Zhang and Rudnicky 

[145] adopted a number of acoustic model (AM) sets to construct a hypothesis list in which each 

hypothesis was a recognized utterance generated by decoding with an individual AM set. 

The lattice search space is also widely used for applying additional acoustic/linguistic 

sources [28，85，124]. A lattice search space is normally more informative than the 

corresponding TV-best hypothesis list because (1) it normally contains a larger number of 

utterance hypotheses and (2) it illustrates time relationships as well as the connections between 

word hypotheses. Similar to the search space of TV-best hypotheses, a lattice search space can be 

either a recognition lattice generated during decoding or a lattice produced by post-processing. 

For the latter case, the most widely used representation is the confusion network (i.e., sequence 

of confusion sets) derived from the recognition lattices [82, 126]. A lattice search space can also 

be obtained by merging the recognized utterances that are generated by multiple recognizers for 

an input speech utterance into a single network [31]. 

The difference between the previous post-processing search spaces and the sausage-type 

search space used in the ED-EC framework lies in the distribution of competing hypotheses. In 

the sausage-type search space, competing hypotheses (i.e., alternatives in a candidate list) only 

exist for the signal segments that are detected as erroneous. In contrast, for previous post-

processing search spaces, hypotheses are typically generated for all speech segments in a unified 

way. We will discuss the impact of this difference on the computational load of advanced LMs 

in Section 6.3. 

The sausage-type search space is similar to the confusion network [82] in the sense that 

they both generate lists of alternatives (i.e., confusion sets) for speech segments. The confusion 

network is created by merging the hypotheses in the recognition lattice. A large confusion set 

indicates that the original recognition result corresponding to the confusion set is likely to be 

erroneous. At the same time，a small confusion set that contains few hypotheses indicates that 

the corresponding recognition result tends to be correct. The ED-EC framework detects 
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recognition errors in a more explicit way. Using a separate error detection procedure, 

information beyond the recognition lattice can be used and sophisticated classification methods 

can be adopted in error detection. With better error detection, the competing hypotheses can be 

more concentrated on the erroneous regions in the signals. In addition, for the sausage-type 

search space, the alternatives are not necessary to be the hypotheses in the recognition lattice. 

2.4 Advanced Linguistic Knowledge Sources 

The ED-EC framework applies advanced LMs to improve LVCSR. Theoretically, any advanced 

LMs that can be used to rank utterance hypotheses are readily to be applied in this framework. 

Similar to the choice of the error detection algorithm, in this preliminary work, we made no 

efforts to identify the best advanced LM and instead portrayed a typical advanced LM as a 

representative of all possible advanced LMs. This LM uses mutual information as an example of 

long-distance constraints and uses POS trigram as an example of syntactic constraints. In this 

section, we introduce previous advanced LMs which are potentially applicable for the ED-EC 

framework. 

Many works have been proposed to model linguistic knowledge sources that are more 

advanced than trigram information. Some of these efforts attempted to extend trigrams to 

higher-order n-grams to capture longer-distance constraints [2，19，46]. To address the data 

sparseness problem, several variations of n-gram model have been investigated, including 

category-based n-gram models [38, 94] and skipping models (i.e., word probability models that 

condition the probability of word Wi on an incomplete (?7-7)-word history such as (wi.4,wi.2,wi.i)) 

[56，84，119]. Although raising n for n-gram modeling is beneficial for improving recognition 

accuracy, the performance plateaus after n rises to a certain number (e.g.，6) [46]. To achieve 

breakthroughs, "high-level" syntactic and/or semantic constraints have been introduced in 

language modeling. By "high-level" we mean that the constraints cover complex linguistic 

knowledge beyond the word sequence information. High-level syntactic constraints capture the 

hierarchical characteristics of a language, while high-level semantic constraints capture long-

distance semantic dependencies across the context of the entire utterance/document. 
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As mentioned in Section 2.2, extracting syntactic/semantic information is relatively 

convenient for domain-specific applications but is difficult for general-domain applications. For 

domain-specific speech recognition tasks，various high-level syntactic and/or semantic sources 

have been applied in different ways [12, 50, 57, 92，116，142]. For example, Mou et al. [92] 

incorporated phrase-based shallow parsing information in recognition using a layered Finite 

State Transducer framework. Seneviratne and Young [116] assigned parse probabilities to word 

sequences using a right branching stack automaton. Huning et al. [57] compiled small 

deterministic grammars into syntactically enhanced word bigrams，which are applicable without 

a parsing procedure. 

For general-domain LVCSR, efforts have been made in utilizing high-level knowledge 

although the parsing procedure may not be robust in this case. Several semantic sources that do 

not rely on tagging/parsing have been modeled using data-driven approaches. These sources 

include topic information [42, 59, 134]，latent semantic analysis (LSA) [7，144] and word 

triggers selected based on mutual information [107, 117]. There are also semantic constraints 

(e.g.，semantic tags and semantic arguments for predicates) extracted using a semantic 

tagger/parser [5，141]. Syntactic sources that have been investigated range from POS tags to 

hierarchical structures such as linkage graphs (i.e., graphs that depict the link relationships 

between words) and parse trees [18，52，60, 104]. Syntactic information can be extracted by 

traditional text tagging/parsing techniques which process whole utterances [123]. A recent trend 

to capture structural knowledge in recognition is to design the parsing methods that are suitable 

for left-to-right decoding. These models include probabilistic shift-reduce paring [18], 

probabilistic top-down parsing [104] and probabilistic left-comer parsing [125]. Semantic and/or 

syntactic constraints have been applied in speech recognition with different frameworks. Wang 

and Harper [5] used a dependency-grammar almost parsing model to combine syntactic and 

semantic constraints. Bellegarda [6] integrated the LSA and n-gram paradigms into the 

calculation of conditional word probabilities. Multiple constraints have also been jointly applied 

with an TV-best re-ranking mechanism [5], a Softmax network [144] or dynamic Bayesian 

networks [134]. A popular choice for constraint combination is to adopt the maximum entropy 

framework [17, 68，107，141，142]. 

Most efforts to incorporate high-level syntactic/semantic knowledge into general LVCSR 

brought negligible or even no improvement compared with state-of-the-art trigram decoding. 
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This is partially because of the difficulty in robustly extracting and modeling syntactic/semantic 

knowledge. When applying an unreliable high-level linguistic model, the distinguishing power 

of advanced constraints may be greatly reduced by the misleading information introduced. Even 

so，several works that incorporated high-level constraints in LVCSR obtained encouraging 

improvements over the performance of trigram decoding [18，125]. This demonstrated the 

power of sophisticated linguistic knowledge sources. Focusing the application of high-level 

linguistic models on those signals where an n-gram decoding procedure makes mistakes can 

relieve the unreliability problem of these models, because in this case the influence of misleading 

information on the correct regions in the signals can be eliminated. 

Another thing worth noting is that advanced linguistic knowledge sources that are 

modeled for error detection are potentially beneficial for enhancing recognition performance. A 

linguistic knowledge source that can be utilized to determine whether a hypothesis is wrong 

should also be able to help identify the correct hypothesis among the competing ones. 

2.5 Chapter Summary 

This chapter presents the previous works that are related to the ED-EC framework. The ED-ED 

framework is inspired by a spelling correction technology, which attempts to correct potential 

written errors by applying additional linguistic constraints to distinguish among the alternatives 

in predefined confusion sets. For LVCSR, it is difficult to predefine confusion sets for all 

possible recognition errors. The ED-EC framework adapts the spelling correction technology to 

the field of LVCSR by dynamically detecting recognition errors and dynamically creating 

confusion sets (i.e., candidate lists of alternatives) for detected errors. Compared with the 

previous error correction efforts in LVCSR, the ED-EC framework is different in the sense that 

the error detection and error correction procedures are independent. The separation of error 

detection and error correction leads to high flexibility in the implementation of the error 

detection/correction procedure. This chapter also reviews the previous works that are related to 

different components of the ED-EC framework. The framework detects recognition errors, 

creates candidate lists for detected errors to generate new search spaces, and then applies 

advanced LMs in the new search spaces to correct errors. Thus, previous efforts in the detection 
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of recognition errors，the construction of search spaces and the use of advanced LMs are also 

discussed in this chapter. 
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Chapter 3 

An Error Detection and Correction Framework 

3.1 Overview 

This thesis proposes an error detection and correction (ED-EC) framework to incorporate 

sophisticated linguistic knowledge sources into large vocabulary continuous speech recognition 

(LVCSR). The main idea of the ED-EC framework is to post-process the output of a state-of-

the-art recognizer by (1) detecting recognition errors and (2) correcting the detected errors with 

the aid of advanced linguistic knowledge sources. This framework attempts to achieve the full 

benefit of advanced linguistic knowledge at minimal computational cost by applying 

computationally expensive language models only to regions of the signal where the state-of-the-

art recognizer fails. To test the feasibility of the ED-EC framework，we propose a prototype for 

Mandarin LVCSR. 

Although the ED-EC framework is conceptually language independent, the detailed 

design of the framework should consider the characteristics of the language of interest. For 

Mandarin, the recognition result of a recognizer for an input utterance (e.g.，在新闻中心拜会议 

长 Translation: Meet the prolocutor at the news center) is a word sequence (e.g. ,在 at/新I司 

news/中心 center/拜会 meet/议长 prolocutor), which can also be viewed as a character sequence 

(e.g.，在新闻中心拜会议长).One distinguishing characteristic of Mandarin LVCSR is that if 

the recognition results are viewed as character sequences, substitutions normally represent the 

majority of all character errors (i.e.，substitutions, insertions and deletions) [34]，[88]. This is 

because Mandarin has a relatively simple syllable structure. For Mandarin, all syllables share the 
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restricted form of consonant(optional)-vowel-consonant(optional) and consequently, the 

decoding procedure rarely makes mistakes in segmentation. On the basis of this characteristic, 

we assume that all character recognition errors are substitutions. Thus, the task of the ED-EC 

prototype is simplified to detecting and correcting erroneous characters in the output of the 

baseline recognition system. The complexity of handling insertions/deletions is avoided. 

The basic structure of the Mandarin ED-EC prototype is as follows: 

• Error Detection. The error detection procedure attempts to detect erroneous characters in 

the output of a baseline recognizer. We first detect erroneous words by means of a word 

verifier based on Generalized Word Posterior Probability (GWPP), a probability scoring 

method that will be introduced later. We then detect erroneous characters within each 

erroneous word. 

• Error Correction. The error correction procedure attempts to correct the detected erroneous 

characters. For each erroneous character，we create a candidate list of character 

alternatives with the aim of including the correct character (i.e.，the reference). The 

candidate creation algorithm will be presented later. Combining these candidate lists 

with the context in the utterance leads to new search networks. We formulate an 

advanced linguistic model by combining inter-word mutual information, word trigrams 

and part-of-speech (POS) trigrams. We then use this advanced model to re-rank the 

utterance hypotheses contained in the new networks. Character candidates in the top-

ranking hypotheses are output as the results of error correction. The main handicap in 

this process lies in the fact that the previous error detection procedure is imperfect and 

"correcting" detected errors that are already correct may introduce new errors. To 

alleviate this problem, an additional mechanism is proposed to accept the correction 

results only when certain conditions are satisfied. 

Figure 3.1 shows an example of the Mandarin prototype. In this example, the baseline 

recognizer transcribes the speech utterance “在新 I司中 >已、岸长” (translation: "Meet the 

prolocutor at the news center") as “在新 I司中 >已、泣议长” (translation: "Hundreds of prolocutor 
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at the news center").拜/bai4/i and 会/hui4/ are wrongly recognized as two acoustically similar 

characters,百/bai2/ and 位/wei4/，respectively. The ED-EC framework first applies the error 

detection procedure to identify the two erroneous characters 百 and 位 as errors. The error 

correction procedure is then applied to correct the detected errors. In the top-ranking hypothesis, 

the two errors are successfully corrected into the characters 拜 and 会 respectively. 

Input: < speech utterance� 在新闻中心拜会议长 
(Meet the prolocutor at the news center.) 

Baseline Recognition: 在新闻中心歹没议长 

Error Detection: ^^(hundred),泣(number) detected as errors 

Error Correction: 

1. Expand each error into a candidate list>- new search network 

-议-长 在-新-闻-中-心- 外 -
会 
1 

1 
M 

1 
(回7 

2. Rerank the hypotheses with the advanced language model 
(Sources: Mutual Information; Word Trigram; POS Trigram) 

Output. <top-ranking hypo > 在新闻中心拜会议长{Corrected) 

Figure 3.1: An illustration of the ED-EC prototype for Mandarin LVCSR 

It should be noted that we focus on erroneous characters instead of erroneous words 

when performing error detection and error correction. This is to circumvent the segmentation 

problem of the Chinese language. In Chinese，a sentence is a character sequence without an 

explicit word delimiter, and the definition of words is debatable. The segmentation of a sentence 

into a string of words is not unique, decided by both the lexicon and the segmentation algorithm. 

For example, the sentence “在新闻中心拜会议长” may be segmented into various word 

sequences, including a meaningful word sequence “在(at)/新 I司（news)/中 ̂ [^(center)/拜会(meet)/ 

议长(prolocutor)，，and a meaningless sequence “在(at)/新闻(news)/中心(center)/拜(bow)/会议 

(meeting)/长(long)” However, advanced linguistic models are normally based on words which 

1 /[syllable] [tone]/ denotes the tonal syllable according to Chinese pinyin. There 
denoted by 1, 2, 3, 4 and 5, respectively. 

in total five tones. 
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bear semantic information. By choosing the character as the basic unit of recognition error，the 

error correction procedure can be independent of the recognition baseline in terms of knowledge 

usage and will have more freedom in selecting suitable word lexicons to model linguistic 

knowledge sources. For instance，in this work, the lexicons utilized in error correction are 

different from the one incorporated in the baseline recognizer. The lexicon chosen by the POS 

trigram model is different from the lexicon adopted by the MI and word trigram models. 

The main structure of the Mandarin ED-EC prototype can be illustrated as Figure 3.2. In 

the rest of this chapter, we describe the Mandarin ED-E prototype in detail. Section 3.2 

discusses the input to the ED-EC prototype. Sections 3.3 and 3.4 present the error detection and 

error correction procedures, respectively. 

Figure 3.2: The structure of the ED-EC prototype for Mandarin LVCSR 
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3.2 Input to the ED-EC framework 

The ED-EC framework has been proposed to improve the performance of a baseline recognizer. 

For each speech utterance, the baseline recognizer generates an utterance hypothesis, called a 

recognized utterance, from which the ED-EC framework detects and corrects errors. The 

baseline recognizer may also provide additional decoding information such as TV-best hypotheses 

and recognition lattices as an extended input to the ED-EC framework if needed. For the 

proposed Mandarin prototype, recognition lattices are required for both the error detection and 

error correction algorithms, as will be discussed later in this chapter. Therefore，the inputs to the 

Mandarin prototype are the recognized utterances along with the corresponding recognition 

lattices generated by the recognizer. 

The ED-EC framework can also be applied to improve the performance of an enhanced 

LVCSR system that already adopts one or more techniques to post-process the output of a 

recognizer. In this case，the framework attempts to detect and correct recognition errors in the 

recognized utterances generated by the enhanced baseline system. The enhanced baseline 

system may provide the framework with some additional recognition information to facilitate the 

error detection and/or correction. To investigate the applicability of the framework to enhanced 

baseline systems, we (1) propose a discriminative lattice rescoring technique to rescore the 

recognition lattices generated by a recognizer，(2) use the new recognized utterances (i.e.，the 

top-best utterance hypotheses in the rescored lattices) along with the rescored lattices as the input 

of the Mandarin ED-EC prototype and (3) apply the prototype to the discriminatively enhanced 

system in the same way as to the original recognizer system. 

In the subsequent sections，we develop the Mandarin ED-EC prototype with the aim to 

improve the performance of a baseline recognizer. We will apply the proposed prototype to the 

discriminatively enhanced baseline systems in Chapter 8. 
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3.3 Error Detection 

We propose a two-step procedure for error detection. This procedure first detects erroneous 

words (i.e.，words containing erroneous characters) within the recognized utterances. The 

procedure then detects erroneous constituent characters from these words. The two steps for 

error detection are described in Sections 3.3.1 and 3.3.2，respectively. Missed detections and 

false alarms, which are typical errors in error detection, are discussed in Section 3.3.3. 

3.3.1 Detecting Erroneous Words 

The first step of the error detection procedure is to use a word verifier to classify each word in a 

recognized utterance as either correct or erroneous. In this study, we implement the word 

verifier as a binary classifier based on a Generalized Word Posterior Probability (GWPP) feature. 

This subsection first describes the concept of GWPP. Then, two related posterior probabilities 

(i.e., string posterior probability and word posterior probability) and GWPP are defined. The 

word verifier is then presented. 

Given a sequence of acoustic observations, the String Posterior Probability (SPP) of a 

hypothesized word string that is generated by a recognizer can be expressed as， 

M J � p { x l \ [ w - s A f ) - p { [ w \ s A f ) 

M 
I w j - P i w j w f " ) (3-1) 

Pixl) 

where x( = is the given acoustic observation sequence; [w,sj] denotes a word 

hypothesis for the word w, starts at time s and ends at time t; [w; s, is a hypothesized word 

string [Wi;>Si， ]々[W2;&，Z2]...[〜；&，,m]; andp{x；^ \ a n d | Wj )are the acoustic model 

probability and the language model probability respectively. 
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The Word Posterior Probability (WPP) for a word hypothesis [w; s,t] is computed by 

summing the string posterior probabilities of all paths for an identical word hypothesis in the 

search space (e.g.，the recognition lattices and the TV-best hypotheses). It can be written as 

P([w;sj]\xl)= ； ^ 尸 | x f ) 

3nA<n<M 

M 

s Pi^l I ) . Pî m I < ) (3.2) 
m=\ 

3n,\<n<M 

GWPP is a generalization of WPP. GWPP extends the calculation of WPP by (1) 

relaxing time registration and (2) re-weighting acoustic and language model probabilities to 

achieve optimal performance in word verification. We follow [77] to define GWPP as 

M 

m=\ 

3n,l<n<M 

(3.3) 

where a and y^are acoustic and language model weights, respectively. As shown in Equation 3.3， 

we relax the time registration to allow overlapping. If an utterance hypothesis contains a word 

hypothesis for the word w and overlaps in time with [w; s, t], we include the posterior probability 

of this utterance hypothesis in the summation. 

In this study, we utilize the recognition lattices that are generated during the decoding as 

the search space to compute GWPP. For each recognized word, we select its GWPP value as the 

feature of interest. Based on this GWPP feature, the word verifier uses the Naive Bayes 

algorithm to perform binary classification [136]. The details for developing the word verifier, 

such as the tuning of a and P，will be presented in Section 4.3.1. The word verifier assigns each 

word a confidence score，which ranges from 0 to 1. This score indicates the confidence level of 

the judgment that the word is erroneous. If the confidence score of a word is less than 0.5，the 

word verifier labels this word as correct. Otherwise, this word is labeled as erroneous. 
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3.3.2 Detecting Erroneous Characters 

Focusing on the words deemed erroneous, the error detection procedure proceeds to detect 

erroneous characters. It is possible to design a character verifier to classify each character in 

focus as either correct or erroneous. However, for simplicity and efficiency，this study makes the 

assumption that all the characters of an erroneous word are wrong. With this assumption, we 

label all characters in focus as erroneous. 

Figure 3.3: The concept of the recognition network. Wi is a word which contains one or more 

characters; p(wi\h) is the conditional probability of W/ given a history h 

This assumption is plausible because state-of-the-art Mandarin decoding uses the word as 

the smallest linguistic unit (see Figure 3.3). If the speech segment corresponding to a word is 

wrongly transcribed as another word or word sequence, the correct characters may only appear 

by coincidence. More often, they are transcribed as other characters with same/similar 

pronunciations. Note that for each Chinese character, there are on average 30 other characters 

sharing the same syllable, as will be further discussed in Section 3.4.1. The number of characters 

with acoustically similar syllables is even larger. Given a long list of acoustic similar characters 

for each character，the occurrence rate of correct characters is low in erroneous words. For 

example, the word 幻境/huan4 jing4/ (fantasy) may be recognized as 欢迎 /huanl ying2/ 

(welcome),安静/anl jing4/ (peaceful), or 幻听/huan4 tingl/ (acouasm). Only the last word 幻 

听 coincidentally includes one correct character 幻.W i t h low character accuracy of erroneous 

words, labeling all component character as erroneous leads to high computation efficiency and 

limited performance loss. 
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We assign a confidence score to each character labeled as erroneous. The confidence 

score of a detected erroneous character is set to be the same as the confidence score of the 

detected erroneous word that contains the character. 

3.3.3 Missed Detections and False Alarms 

The error detection procedure is imperfect. Error detection may produce missed detections and 

false alarms. False alarms involve correct characters wrongly labeled as erroneous. There are 

three types of missed detections. First，all detections are missed detections due to the usage of 

the simplifying assumption that all character recognition errors are substitutions. Second, those 

substitutions wrongly labeled as correct are missed detections. Third, those insertions that are 

deemed correct are also missed detections. 

Both missed detections and false alarms have an impact on the error correction procedure. 

In error correction, an advanced linguistic model is applied to rank utterance hypotheses within a 

search space, in which detected errors have alternatives and the utterance context is unique. 

Missed detections lie in the utterance context in a search space. Their existence will bring 

misleading information into the discrimination of competing alternatives. False alarms will not 

only cause unnecessary computational load via candidate creation and linguistic ranking but may 

also introduce new misrecognitions. If a correct character is labeled as erroneous, applying an 

error correction procedure may actually turn it into a wrong character. 

3.4 Error Correction 

The error correction procedure attempts to use advanced linguistic knowledge sources to correct 

the erroneous characters detected by the previous error detection procedure. As described in 

Section 3.1，the error correction procedure first creates a candidate list of character alternatives 

for each detected erroneous character to construct new search networks. An advanced linguistic 

model is then used with the aim of correcting the detected errors. To handle false alarms in error 

detection, an additional mechanism is also applied. 
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We describe the method to create candidate lists for erroneous characters in Section 3.4.1. 

The application of an advanced linguistic model in error correction is described in Section 3.4.2. 

The special mechanism to handle error-detection false alarms is proposed in Section 3.4.3. 

3.4.1 Candidate Creation 

The task of candidate creation is to create a candidate list of alternatives for each detected error. 

Candidate creation is an important component of the error correction procedure since it is the 

basis for the subsequent knowledge application. If the alternatives created for each error are 

similar in pronunciation, we may simply apply linguistic models to re-rank the utterance 

hypotheses in the new networks, since all competing utterance hypotheses are acoustically 

similar. Otherwise, acoustic models have to be involved in hypothesis re-ranking. Additionally, 

if candidate creation fails to include the actual correct candidate for selection, the error will have 

no chance of being corrected. Our goal is to create candidate lists in which character alternatives 

are similar in pronunciation, and at the same time the correct characters are included. 

Given a character error, the easiest way to create a list of acoustically similar character 

alternatives is to include all the homophonous characters. For Mandarin, characters are 

pronounced as tonal syllables (e.g., /hal/)，which are syllables with tone information. We refer 

to syllables without tone as base syllables (e.g.，/ha/). On average, there are 8 characters sharing 

the same tonal syllable and 31 characters sharing the same base syllable in Mandarin, according 

to CCDICT (2000). Incorporating the characters that have the same tonal/base syllable as a 

given error into the candidate list seems possible. However, such candidate lists may often fail 

to include the correct characters. Due to the use of language model in decoding, correct 

characters are recognized as erroneous characters with different base syllables in many cases. 

For the example in Figure 3.1，the character 会/hui4/ is wrongly recognized as 位/wei4/. The 

two base syllables /hui/ and /wei/ are similar in pronunciation, but different. Thus, the correct 

character 会/hui4/ will not be found in the candidate list created based on the syllable /wei/. To 

handle this problem, one would think that homophonous characters for those base syllables that 

have similar pronunciation with the error should be added to the candidate lists. However, this is 

unrealistic. Since the decoding procedure is complex, it is hard to predict which acoustically 
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similar base syllables should be considered for candidate creation, and the number of such 

possible base syllables is large. 

In this work, we attempt to seek help from recognition information for candidate creation. 

We propose an approach to select acoustically similar character alternatives for each erroneous 

character from recognition lattices that are generated during decoding. This approach creates a 

candidate list for each character error using three steps: 

Step 1. From the recognition lattice, select character hypotheses with starting and ending times 

similar to the erroneous character. For each selected hypothesis, if the character carried by 

the focused hypothesis has not been included in the candidate list, add this character to the 

candidate list. 

Step 2. Rank the character alternatives in the candidate list based on their Generalized Character 

Posterior Probabilities (GCPPs). 

Step 3. Prune the candidate list by keeping only the top TV (e.g.，N=20) character alternatives. 

In Step 1, we state that a character hypothesis has starting and ending times similar to the 

target erroneous character if these time boundaries encompass the midpoint of the target 

erroneous character. With this definition of time similarity, we further define GCPP in a similar 

way as GWPP: GCPP is the summation of the posterior probabilities of all utterance hypotheses 

in the lattice bearing the character in focus with similar starting and ending times. GCPP can be 

written as， 

Vr’[c;"]f 
3iA<i<K 

^ (丄 4) 

where Ca is a character alternative; [c;s,t\ is a character hypothesis bearing character c, starting at 

time s and ending at time t; [c;s,t]i^ is an utterance hypothesis (i.e.，a sequence of character 

hypotheses); and Se and 4 are the starting and ending times of the target erroneous character. 

The GCPPs of candidate characters can be computed efficiently during the creation of 

candidate lists. For each character hypothesis selected in Step 1, we record its posterior 

probability, which is equal to the posterior probability of the word hypothesis containing it. We 

then sum up the posterior probabilities for those selected character hypotheses with the same 
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character identity. The summations 

equation below. 

the GCPPs of the candidate characters, as proven in the 

Z ^ ( K ；〜,u I Z 八[狄;�,]I ) 

X 
VM,[w-s,lf： 
3i,j,\<i<K,\<j<M 

= X 她 ； ⑷ 々 

(3.5) 

3iA<i<K 

= PG{cAXI) 

where P(y\xi^) is the posterior probability of the item y in focus 

In the last step, we prune the size of the candidate lists to N. This is to keep the 

computational load of the subsequent processing (i.e.，ranking the utterance hypotheses in the 

new search) under control. 

There are three underlying assumptions behind the proposed three-step algorithm. First, 

we assume that recognition lattices contain the correct transcriptions in similar time periods as 

the errors (i.e.，that the correct transcriptions will be selected). This assumption is grounded on 

the fact that state-of-the-art recognizers have achieved high lattice accuracies (i.e.，accuracies of 

the best paths in recognition lattices). For example, on the Switchboard telephone conversation 

corpus, Mangu et al. [6] reported a lattice accuracy of 90% while the recognition accuracy was 

only 62%. The high lattice accuracies indicate that recognition lattices have a good chance of 

including the correct transcriptions in similar time periods with the errors. Second, we assume 

that in a recognition lattice, all character hypotheses with starting and ending times similar to 

those of the erroneous character have similar pronunciations (i.e., the character alternatives 

selected are acoustically similar). This assumption is generally true since the character 

hypotheses selected for an error more or less match the corresponding signals in acoustics. Third, 

we assume that if the candidate characters selected include the correct transcription, the correct 

character has a relatively high GCPP (i.e.，the correct transcription will not be pruned). As we 
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discussed previously, GCPP is defined in a similar way as GWPP, which has been shown to be 

effective to measure the correctness of word hypotheses. We expect that GCPP is effective at 

measuring the correctness of characters and that the correct character will have a GCPP high 

enough to be kept during the pruning. 

3.4.2 Linguistic Scoring 

After creating candidate lists of alternatives for detected errors, the ED-EC framework combines 

the candidate lists with the corresponding utterance context to form new search networks. Then， 

the framework attempts to correct the detected errors by using advanced language models (LMs) 

to rank the utterance hypotheses in the new search network. The underlying assumption is that 

among the competing utterance hypotheses, the advanced LMs will assign the highest score to 

the correct hypothesis or the best hypothesis with the highest accuracy. This assumption may be 

true if the chosen LMs can handle the operating conditions well. 

For the Mandarin prototype, the utterance hypotheses in new search networks (see Figure 

3.4) are scored and ranked by an advanced LM that combines three knowledge sources: inter-

word mutual information, word trigrams and POS trigrams. The three sources aim to capture 

long-distance semantic constraints, local constraints and syntactic constraints respectively. 

Those candidate characters (e.g.,拜 and 会）contained in the top-ranking hypotheses (e.g.,在新 

闻中心拜会议长）are viewed as the error correction results. 

-议-长 

Figure 3.4: A sausage-type search network 

This subsection presents the methodology to score an utterance hypothesis using the 

advanced LM. Given an utterance hypothesis, we first score it by the three individual linguistic 

knowledge sources separately and then calculate the overall score as a linear combination of the 

individual scores. The scoring method for each linguistic knowledge source and the score 

interpolation are described in this subsection. Note that all the three individual LMs are word-
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based because the word is the basic unit carrying semantic information. For each individual LM, 

hypotheses need to be segmented into word strings by certain segmentation algorithm using the 

lexicon used for the modeling of the individual LM of choice. 

• Inter-word mutual information 

Mutual Information (MI) is used to capture long-distance semantic dependencies between words. 

The algorithm we propose to score utterance hypotheses by MI is adapted from [47], which 

applied MI in confidence measuring. We first follow [47] to define MI between two words x and 

少as， 

MI(x,y) = \og( f ^ f ) � ) (3.6) 

where 

y) = Nix, y) / ( I Nix, y)); (3.7) 

/ K 义 ) = Z 咖少 )； (3.8) 
y 

= (3.9) 

X 

N(x, y) refers to the times that both word x and word y appearing in an utterance; p(x’y) is the 

joint probability of co-occurrence of x and y in an utterance; and p(x) and p(y) are the two 

corresponding marginal probabilities. 

Due to data sparseness, we smooth the MI model as follows, 
N'{x, y) = N{x, y) + C (3.10) 

where C is a constant tuned by grid search. 

Using the above definitions, we assign a score to each utterance hypothesis based on the 

mutual information between the candidate alternatives and their utterance contexts. To facilitate 

the discussion, we first introduce the concept of a target word. A target word refers to a word 

that contains one or more candidates (i.e., character alternatives in candidate lists that are created 

for detected errors) in an utterance hypothesis. For example, there is an utterance hypothesis 在 

新 闻 中 心 冷 长 in the search network shown in Figure 3.2, where 白 and 会 are two 
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candidate characters. After segmentation, the utterance was transformed into a sequence of 

words 在 /新闻 /中心 /应义 /长 .A m o n g these words, the two words 白 and 会议 contain 

candidate characters and are thus target words. With the target word defined, we proceed to 

score each utterance hypothesis by (1) assigning each target word a score that is the average MI 

value of the word with all the other words in this hypothesis, as shown in Equation 3.11，and (2) 

assigning the average score of the target words as the hypothesis's score，as shown in Equation 

3.12. 

AvgMI{wj^ \ = MI(w^ 1) (3 n ) 
i=\,..m 
i^k 

尺 紐 ( 你 1 , 〜 " J 附 ） = ( I 〜 〜 " J 』 / " (3.12) 
k=\,...n 

where wi, W2, ...Wm is the word sequence of the utterance hypothesis; Wk is a target word; and n is 

the number of target words. 

• Word trigram 

Word trigrams capture local constraints. Although the baseline recognizer has already 

incorporated a word trigram model, we continue to apply word trigrams for error correction 

because the search networks constructed for error correction differ from the decoding search 

space. The word trigram model scores each utterance hypothesis as， 

I 隱 . . " O = S 八拟7 I 拟 ( 3 . 1 3 ) 
i=l...m 

where P(Wi\Wi.2,Wi.i)s are the word-based trigram probabilities in the log domain. 

• POS trigram 

We adopt POS trigrams to capture syntactic constraints. The hypothesis scoring method for the 

POS trigram model is similar to that of the word trigram model. The only difference is that in 

this case，the trigram probabilities are computed based on the sequence of POS tags as follows, 

= Y ^ — � I (3.14) 

42 



where posi is the corresponding POS tag of the word Wi and P(poSi\poSi.2,poSi.i)s are the POS-

based trigram probabilities in the log domain. 

• Linear combination of linguistic knowledge sources 

Combining complementary linguistic knowledge sources should be beneficial. There are many 

approaches, such as the maximum entropy framework, to combine multiple sources. In this 

study, as an initial prototype, we simply interpolate the individual sources linearly as， 

歸 ) = n • ^M/ W + • K塵(h) + 广3 • KposT„ (h) (3.15) 

where h refers to the utterance hypothesis and r；, r�and r j are the linear combination weights 

tuned by grid search. 

3.4.3 Handling False Alarms 

The ED-EC framework is a two-pass post-processing system. The first pass is error detection and 

the second pass is error correction. A common characteristic of multi-pass systems is that the 

mistakes made in the preceding pass will propagate to the subsequent pass. Propagation of errors 

affects system stability and effectiveness. For the ED-EC framework, neither error detection nor 

error correction can be guaranteed to be perfect. The error detection procedure labels certain 

correct characters as erroneous and passes them to the subsequent error correction procedure. 

The error correction procedure may transform some of these false errors into further (new) 

misrecognitions. This reduces the benefit of applying the ED-EC framework. If the number of 

new misrecognitions introduced is larger than the number of recognition errors corrected, 

adopting the framework will degrade overall recognition performance. 

We believe that for multi-pass systems, designing particular algorithms to handle the 

propagation of mistakes is meaningful and beneficial. In this study, we propose a special 

mechanism to deal with the propagation of error-detection false alarms for the ED-EC 

framework. As described in previous subsections, the error correction procedure of the 

framework corrects the detected errors by using the advanced LM to score and rank the utterance 

hypotheses in the new search networks. The special mechanism to handle false alarms accepts or 
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rejects the results of error correction based on the error-detection confidence scores and the LM 

scores (i.e.，the scores assigned by the advanced LM to the utterance hypotheses in the new 

networks). Figure 3.5 illustrates the procedure of the special mechanism. Note the recognized 

utterance is one of the utterance hypotheses in the new network. 

1 For each detected erroneous character (confidence score is x) 

2 � = t h e LM score of the top-ranking utterance hypothesis in the network 

3 S2 = the LM score of the recognized utterance 

4 t = Sj -S2 

5 For t > f(x) {f(x) is the threshold function) 

6 Accept the correction result for the target error 

7 Otherwise 

8 Reject the correct result (i.e., keep the target character unchanged) 

Figure 3.5: The special mechanism to handle error-detection false alarms 

The main idea behind this special mechanism is to only accept an error correction result 

when the correction seems reliable. We define the threshold f(x) as a function that depends on 

the confidence score x based on an intuitive expectation. That is，the smaller the x，the larger the 

threshold. In other words, the more likely the detected character is a false error, the more 

conservative we tend to be in accepting any modification. 

We use a data-driven approach to estimate f(x). This method attempts to find the suitable 

form of f(x) by analyzing the relationship between the confidence scores and the optimal 

thresholds on development data, as shown in the steps below: 

Given a set of detected erroneous characters along with their confidence scores, 

1) Divide the full range of confidence scores (i.e.，from 0.5 to 1) into a sequence of segments: 

So, si, ... Sn. Each segment is then represented by its middle point Xi. For example, if s, is 

from 9.80 to 9.90，x/is 9.85. 

2) Create a bin bi for each Si to store those erroneous characters detected with confidence scores 

falling into the range of Si. 

3) For each bin bi, use a grid search to find a threshold f i that provides the optimal correction 

performance on the detected errors stored in bi. 

4) Analyze the relationship between fi and Xi to estimate a simulation function f(x). 
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The algorithm above groups detected errors with similar confidence scores and then finds 

an optimal threshold for each group. Thus, the dependency between the threshold and 

confidence score can be modeled. The experiments using the development data to estimate f(x) 

will be described later in Section 4.3.2. 

3.5 Chapter Summary 

This chapter proposes an ED-EC framework to improve Mandarin LVCSR with advanced 

linguistic knowledge sources. Based on the fact that substitutions constitute the majority of 

character recognition errors for Mandarin recognition，this framework adopts the simplifying 

assumption that all character errors are substitutions. The framework consists of two parts: (1) it 

uses an error detection procedure to label each character in the output of a baseline recognizer as 

either correct or erroneous and (2) it applies an error correction procedure to correct the detected 

erroneous characters. The error detection procedure involves a verifier based on generalized 

word posterior probabilities. The error correction procedure first creates a candidate list of 

character alternatives for each erroneous character. Connecting these candidate lists with 

utterance context leads to new search networks for error correction. An advanced linguistic 

model combining inter-word mutual information, word trigrams and POS trigrams is then 

adopted to rank all utterance hypotheses in the new search networks. The candidate characters in 

the top-ranking hypotheses are the error correction results. Since the previous error detection 

procedure is imperfect, correct characters may be wrongly labeled as erroneous and be 

"corrected" to new misrecognitions by the error correction procedure. To handle this problem, 

we introduce an additional mechanism to accept/reject error correction results based on the 

confidence levels of error detection and the scores from the advanced linguistic model. 
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Chapter 4 

Experiments 

This chapter presents the experiments used to develop and evaluate the Mandarin error detection 

and correction (ED-EC) prototype proposed in Chapter 3. We first describe the organization of 

the data in Section 4.1. Separate development sets are adopted for developing the baseline 

recognizer, the error detection procedure and the error correction procedure. Two independent 

test sets are used in evaluation. 

We then present the baseline recognizer in Section 4.2. The baseline recognizer uses 

state-of-the-art techniques, including cross-word triphone acoustic modeling and trigram 

language modeling. We train this recognizer with an ample quantity of training data to ensure 

that any possible improvement brought by the ED-EC framework is meaningful. Otherwise, the 

same improvement may be achieved simply by using more data in acoustic modeling and/or 

language modeling. 

We outline the development of the ED-EC prototype in Section 4.3. The development of 

the error detection procedure and the error correction procedure are addressed in turn. For error 

detection, we list the steps we used to develop the procedure, along with details such as the 

assignment of reference labels and the tuning of the word verifier. For error correction, we 

present various development issues including the pruning of candidate lists, the application scope 

of the error correction procedure, the training of the advanced linguistic model and the 

estimation of the threshold function in the mechanism to handle false alarms. 

Finally, in Section 4.4，we present the evaluation results of the prototype in terms of the 

reduction in recognition error rate. The baseline performance, the error detection performance, 

the error correction performance and the overall performance of the framework are described. 
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4.1 Data Organization 

We conduct experiments on the task of Mandarin dictation. We select the general domain as the 

target domain, attempting to (1) train a general-domain state-of-the-art baseline recognizer，(2) 

train a general-domain advanced LM and (3) develop the proposed ED-EC prototype with the 

aim of using the advanced LM to benefit general-domain LVCSR. 

Two general-domain Chinese text corpora are used in this study (see Table 4.1). The first 

corpus (LM Rec Set) was collected by Microsoft Research. This corpus contains a total of 28 

gigabytes of text and is well balanced across a variety of domains. We use this large corpus to 

train the trigram model for the baseline recognizer. The second corpus (Lm_Corr_Set) consists 

of the text from the People's Daily and Xinhua newswire in the LDC corpus the Mandarin 

Chinese News Text corpus. This corpus is a text set of about 340 megabytes. We train the 

advanced LM on this corpus. Note that we choose the relatively small corpus Lm_Corr_Set 

instead of the large corpus Lm Rec Set for training the advanced LM; this facilitates the 

modeling of sophisticated linguistic knowledge sources. 

LM Training Corpora Name Domain Number of Characters 

For Baseline Recognizer L m R e c S e t General 14* 109 

For ED-EC Framework Lm_Corr_Set General 151 * 10' 

Table 4.1: Organization of text corpora 

All speech data involved in this study are read speech recorded in a clean environment. 

There are two speech corpora available. One is a standard general-domain test set provided by 

Microsoft Research Asia [15]. This test set is referred to as TestSet G in this study and is used 

to evaluate the effectiveness of the framework. The other is a separate large corpus originally 

recorded for acoustic modeling at Microsoft Research. This corpus is a mixture of novels, news 

and reports. Because novels constitute the majority of the content，we refer to this corpus as 

novels-domain data in this paper for simplicity. The reference text of this novels-domain corpus 

is included in the LM training corpus (Lm_Rec_Set) for the baseline recognizer，but it occupies 

only 0.1% of LM Rec Set. Note that this will not affect the generality of LM Rec Set since 

LM Rec Set is balanced across different domains. 
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We analyze the discrepancy in domain between the two speech corpora (i.e.，the general-

domain corpus Testset_G and the novels-domain corpus). Using a general trigram trained on 

Lm Rec Set with a 60,606-word lexicon (i.e.，the recognizer lexicon that will be described in 

the next section), the perplexity [22] of the general-domain corpus (TestSet G) is 463，while the 

perplexity of the novels-domain corpus is 1528. The difference in perplexity between the two 

corpora is large, indicating that the domain mismatch between the novels-domain corpus and the 

target general application data is substantial. 

Since we aim to use the ED-EC framework to benefit general-domain LVCSR，the 

development speech sets should preferably be in the general domain. However, owing to limited 

data availability, we had to choose development data in the domain of novels. We divide the 

large novels-domain speech corpus mentioned above into four disjoint subsets randomly. These 

subsets serve different purposes, as follows: 

1) BaseRec Set: the training data for the acoustic models in the baseline recognizer 

2) ErrDect_Set: the development set for the error detection procedure in the framework 

3) ErrCorr_Set: the development set for the error correction procedure in the framework 

4) TestSet_N: an additional test set, which is adopted to evaluate the influence of using 

novels-domain speech during development on the generality of the 

framework 

Name Domain Size 
Development Sets 

Baseline Recognizer BaseRecSet Novels 
about 700 hours 

(458 K utterances) 
(14 M characters) 

ED-EC 
Framework 

Error Detection ErrDectSet Novels 2,000 utterances 
(31,490 characters) ED-EC 

Framework 
Error Correction ErrCorr_Set Novels 8,000 utterances 

(125,463 characters) 
Testing Sets 

TestSetG General 500 utterances 
(9,572 characters) 

TestSet_N Novels 4,000 utterances 
(62,691 characters) 

Table 4.2: Organization of speech corpora 
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The details of the four subsets are shown in Table 4.2. For the baseline recognizer, the 

development set BaseRec Set is large enough for acoustic modeling. Compared with the error 

detection procedure, the error correction procedure is assigned a larger development set because 

there are more parameters to train in error correction than in error detection, as will be discussed 

later in this chapter. 

For the baseline recognizer, adopting novels-domain acoustic training data (BaseRec Set) 

will have little, if any, influence on the generality of the recognizer. This is because 

BaseRec Set is sufficient to estimate acoustic parameters. With acoustic models that model 

pronunciation well, the domain of the recognizer is determined by the domain of the LM in the 

recognizer. For the ED-EC framework，using novels-domain development data (ErrDect_Set 

and ErrCorr_Set) instead of general-domain development data will have an impact on the 

generality of the framework. However, we estimate that the influence is limited. In the ED-EC 

framework, the power to correct recognition errors mainly comes from the advanced LM, which 

is in the general domain, in the sense that the detection of errors and the creation of candidate 

lists only provide the basis (i.e., the new search networks) for the application of the advanced 

LM. 

4.2 Developing the Baseline Recognition System 

In this chapter, we use a general-domain recognizer as the baseline recognition system for the 

ED-EC framework. This recognizer is trained with state-of-the-art techniques on abundant 

training data. The recognizer adopts a 60,606-word lexicon, in which 6,763 commonly used 

characters are included as single-character words. 

For acoustic modeling, gender-independent cross-word triphone mixture Gaussian tied-

state HMM models are trained on 700-hour speech (BaseRec Set). The speech signal is sampled 

at a rate of 16 kHz. The analysis frames are 25 ms wide, with a shift of 10 ms. A 39-

dimensional feature vector that includes log energy, 12-dimensional cepstral coefficients and 

their first- and second-order time differences is extracted for each framework. The HMM 

models are set to have three emitting states and left-to-right topology. We first train flat single 

Gaussian mixture component monophone models, obtaining 97 monophones in total. We then 
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create 5,000 speech tied-states using a decision-tree clustering method. Through standard 

iterative mixture splitting [15]，36 Gaussian mixture components with diagonal covariance 

matrices are obtained for each tied-state as the final acoustic models. 

For language modeling, a word trigram model is trained on a 28G (disk size) text corpus 

(LM Rec Set). Since LM Rec Set is in the general domain, the trained word trigram model is 

also general. In the training of the word trigram model, the absolute discounting algorithm is 

chosen to perform smoothing. 

The Hapivite decoder [91] is used to combine the acoustic/language models into the 

recognition network and to perform decoding. We use the decoder to recognize all the remaining 

speech corpora involved in this study. The decoder generates an automatic transcription, known 

as a recognized utterance, for each input speech utterance. The recognized utterance can be 

viewed as either a word sequence or a character sequence with word delimiters inserted. The 

decoder also delivers the recognition lattice generated during the decoding for each utterance. 

The lattice provides information for the subsequent procedures of error detection and error 

correction. 

4.3 Framework Development 

4.3.1 Developing the Error Detection Procedure 

We develop the error detection procedure using the corresponding development set (ErrDect_Set) 

which has 2,000 utterances in total. The proposed error detection algorithm sequentially detects 

erroneous words and erroneous characters. We first verify the two underlying assumptions: (1) 

all recognition errors are substitutions and (2) all characters in an erroneous word are wrong. 

Experiments on ErrDect Set show that both assumptions are plausible. Substitutions account for 

93.5% of the recognition errors, and 88.4% of the characters in the erroneous words are in fact 

erroneous. These observations indicate that the two assumptions, which are made to reduce 

system complexity, will cause limited performance loss. Development of the error detection 

procedure is summarized in the following steps. Details about the first two steps will be 

presented later in this subsection. 
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Step 1. Assign each recognized word/character a reference label (i.e.，"actually correct" or 

"actually erroneous") to facilitate the tuning and evaluation of the error detection schema. 

Step 2. Tune the parameters of the word verifier through ten-fold cross validation on ErrDect Set. 

Step 3. Train a "final word verifier" on the whole ErrDect Set, using the optimal parameters 

identified in Step 2. 

Step 4. Implement the error detection procedure. For each input utterance, the error detection 

procedure first applies the final word verifier obtained in Step 3 to detect erroneous words 

and then labels all characters in the detected erroneous words as erroneous. 

The error detection procedure implemented in Step 4 is used to fulfill all the error 

detection tasks that are involved in the subsequent experiments in this chapter. These 

experiments include the development of the error correction procedure and the evaluation of the 

ED-EC framework. 

• Assigning reference labels 

Based on the manual transcripts of speech utterances, we assign a reference label to each 

character in the recognized utterances. We use the Viterbi algorithm to identify the character 

errors by mapping every recognized utterance to the corresponding reference utterance. Based 

on the assumption that all misrecognitions are substitutions, we ignore the deletions and view 

insertions in the same way as substitutions. Accordingly, we label all substitutions and insertions 

as erroneous and label the remaining characters as correct. For example, the speech utterance 

“他遺醒地意识到这一点” ("He clearly realized this point") is wrongly recognized as “他/鳌醒/ 

地/意识/到/了/这/点” The mapping result from Viterbi is shown in Figure 4.1. There are three 

character recognition errors: one substitution 警，one insertion 了 and one deletion. We label the 

substitution 警 and the insertion 了 as erroneous. Other characters are labeled as correct. Note 

that with such a labeling method, an insertion becomes a kind of erroneous character that may be 

detected but will never be corrected. In error correction, insertions that are labeled as erroneous 

will not be deleted since they are viewed as substitutions. 
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Manual transcript: 他 清 醒 地 意 识 到 这 一 点 

Recognizer transcript: 他 醒 地 意 识 到 ⑦ 这 

T r \ 
substitution insertion deletion 

Figure 4.1 ： Identifying misrecognitions by the Viterbi algorithm 

We then assign a reference label to each recognized word. This facilitates the tuning of 

the word verifier. If a recognized word contains no substitutions or insertions, we label it as 

correct. Otherwise, we label the word as erroneous. For the example above, the reference labels 

for words are shown in Figure 4.2. The words 翻星 and /"are labeled as erroneous, since the 

two words contain one substitution and one insertion, respectively. 

他 / _ /地 /意识 /到 / 77这/点 
C E C C C E C C 

C=Correct E=Erroneous 

Figure 4.2: Obtaining reference labels for the recognized words. 

• Tuning the word verifier 

The word verifier has been designed to classify each word as either correct or erroneous based on 

the Generalized Word Posterior Probability (GWPP) of the focused word using the Naive Bayes 

algorithm [136]. The GWPP value of a word is calculated from the recognition lattice using two 

parameters: the acoustic model weight a and the language model weight P. The task of tuning is 

to identify the optimal a and P to calculate the GWPP. Once the optimal a and P are found, the 

word verifier can be trained on all words in the development set (ErrDect_Set) using the two 

weights. 

We search for the optimal a and P by grid search. For every possible weight pair {a, p), 

we evaluate its performance on word verification by ten-fold cross validation on ErrDect Set. 

The {a, p) having the best performance is then identified and used as the optimal weights. 
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4.3.2 Developing the Error Correction Procedure 

The error correction procedure begins by creating a candidate list of character alternatives for 

every detected erroneous character. In this way，we build a new search network for each speech 

utterance. The utterance hypotheses in the new networks are then ranked by an advanced 

linguistic model combining inter-word mutual information (MI), word trigrams and part-of-

speech (POS) trigrams. The candidate characters in the top-ranking hypotheses are the error 

correction results. To handle false alarms of error detection, an additional mechanism is also 

designed to accept/reject the correction results. This subsection presents the implementation 

details of the error correction procedure. All the experiments are performed on the 8,000 

utterances of the corresponding development set (ErrCorr_Set). 

• Details of the candidate creation approach 

The algorithm to create a candidate list for each erroneous character has been proposed earlier in 

Section 3.4.1. For each error, the algorithm (1) selects candidate alternatives from the 

corresponding recognition lattice, (2) ranks the candidates based on their generalized character 

posterior probabilities, and (3) prunes the candidate list to only keep the top TV candidates. 

One problem is that the candidate creation algorithm requires the starting and ending 

times of character hypotheses in recognition lattices. However, the HapiVite decoder only 

annotates starting and ending times for word hypotheses. Forced alignment can be applied to 

identify the accurate times for character hypotheses, but the resulting computational load will be 

considerable. To maintain system efficiency，we simply assume that all character hypotheses 

contained in a word hypothesis have equal duration. Thus the starting/ending times of each 

character hypothesis can be derived from the starting/ending times of the word hypothesis 

containing it. This assumption is plausible because the speech rate is usually consistent over a 

short time period. The time expended to pronounce each character in a word (e.g.，苹果"apple"; 

珠穆朗玛峰"Mount Everest") is normally similar. 

With this problem addressed, we proceed to decide N (i.e., the scale of pruning) on the 

23,346 character substitution errors in the ErrCorr_Set, which contains 125,463 characters in 

total. To facilitate the discussion, we define the reference coverage rate (RL) of candidate lists as 
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the equation below. Reference characters refer to the correct characters given by the manual 

transcription. 

R _ number of candidate lists that contain the corresponding reference characters ^) 
L total number of candidate lists 

We create and rank candidate lists for the focused set of erroneous characters. The 

reference coverage rate RL is 64.5%. Among the candidate lists, the largest one (i.e., {前，显，... 

闲}) contains 52 characters. The average size of the candidate lists is 10.6. For all the candidate 

lists that contain the corresponding references，the reference character is ranked on average, 

and the lowest position of a reference is 27也. 

It is possible to use adaptive N in pruning. In this preliminary work，we adopt a constant 

N for simplicity. Based on the observations mentioned above, we set N=20. After pruning the 

candidate list size to 20, the RL becomes 64.4%. The drop in RL is only 0.1%. 

• Application scope of the error correction procedure 

Based on the error detection results, we cluster recognized utterances into three utterance subsets: 

a correct set, a lightly erroneous set and a seriously erroneous set. The correct set contains those 

utterances in which all characters are labeled as correct. The lightly erroneous set includes those 

utterances that contain one to four detected erroneous characters. The remaining utterances with 

more than four detected errors are assigned to the seriously erroneous set. Theoretically, the 

error correction procedure should be applied on both the lightly erroneous set and the seriously 

erroneous set to correct the errors detected. In this study, we focus the application of the error 

correction procedure on the lightly erroneous utterance set due to efficiency considerations. 

The error correction method simply enumerates all the utterance hypotheses in the new 

search networks for ranking. When the number of detected erroneous characters for an utterance 

increases，the number of utterance hypotheses in the new search network grows exponentially. 

When the number of detected errors is larger than four, the computational load of ranking 

utterance hypotheses becomes overwhelming, making the correction prohibitive. Thus, this 

work only attempts to correct errors in the lightly erroneous utterance set. Note that the current 

framework is only an initial prototype. If a more efficient algorithm were to be developed to 

identify the top-ranking utterance hypothesis, processing utterances with more than four errors 

would also be possible. 
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We apply the error detection procedure on ErrCorr_Set and cluster the utterances in this 

development set into three sets based on the number of detected erroneous characters. The 

correct set, lightly erroneous set and seriously erroneous set contain 2724, 3592 and 1684 

utterances respectively. The lightly erroneous set makes up nearly 50% of utterances. Among 

the utterances containing detected errors, more than 2/3 of these utterances are deemed lightly 

erroneous. Since the error correction procedure will focus on the lightly erroneous sets of 

utterances in application, the training of the error correction procedure concentrates on the lightly 

erroneous utterances in ErrCorr_Set. 

• Training the advanced linguistic model 

To fairly compare the error correction effects of the linguistic knowledge sources, we train all 

three individual LMs (i.e., MI, word trigram and POS trigram) on the same training corpus 

(Lm_Corr_Set). While the training data are identical, the lexicons used are different. The MI 

and word trigram models are trained with a LDC lexicon [153] that has 44,402 words. For the 

POS trigram model, we first use an 11,908-word lexicon to segment the training utterances into 

word sequences. A tagger [89] that maps the 11,908 words into 86 POS tags according to certain 

rules is then applied to transfer the word sequences into POS sequences. A trigram model is 

trained with the POS sequences using a lexicon that contains the 86 POS tags. The CMU LM 

toolkit [22] is adopted to perform the trigram training for both the word trigram and POS trigram 

models. The great flexibility in selecting lexicons for linguistic modeling is one advantage of 

choosing the character instead of the word as the basic unit of recognition errors. This allows 

linguistic knowledge sources to be modeled independently of each other. 

With the individual models trained, we tune the interpolation weights r；, r � a n d n in the 

combination equation (i.e.. Equation 3.15) that linearly interpolates the individual models. The 

optimal ri, r � a n d r j are identified by grid search on the lightly erroneous utterances in 

ErrCorr_Set. The final advanced linguistic model is built with the optimal interpolation weights 

using the combination equation. 

• Developing the mechanism to handle false alarms 

For a detected erroneous character with confidence score x (x ranges from 0.5 to 1)，the 

mechanism to handle false alarms (see Figure 3.5) accepts the error correction result if t，the 
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difference in scores between the top-ranking utterance hypothesis and the recognized utterance, 

is larger than a threshold f(x). Otherwise, the error correction result is rejected and the original 

recognized character remains unchanged. Using the data-driven approach proposed in Section 

3.4.3，we estimate f(x) based on the lightly erroneous utterance subset in ErrCorr_Set. This 

focused utterance subset contains 8,443 detected erroneous characters in total. The experiments 

show that our expectation holds true: for most cases, the smaller x is, the larger the f(x). 

However, the data set is not large enough to robustly estimate a smooth f(x). Based on our 

observations, we adopt the equation below: 

f f if X > 0.9 
/ W = ； �� （4.2) 

f b if 0.5 < X < 0.9 

where fa and ft are two constants，and fa < ft- fa and ft are identified by grid search on the 8,443 

detected erroneous characters on which we focus. 

4.4 Framework Evaluation 

We evaluate the ED-EC framework on the two test sets TestSet G and TestSet_N. TestSet G is 

in the general domain while TestSet_N is in the domain of novels. In this section, we first 

present the baseline performance in Section 4.4.1. We then discuss the error detection 

performance and the error correction performance in Section 4.4.2 and Section 4.4.3， 

respectively. Finally, the overall performance of the framework is given in Section 4.4.4. 

4.4.1 Baseline Performance 

To facilitate the discussion, we first define the Character Error Rate (CER) as follows: 

r j ^ j . Nums-tuunon + Nunii丽她 + NuniD—on ^ 、 
CiSA = (4 3) 

Nuniaii . 

where Nuniaii is the number of characters in the given recognized utterances; Numsubstmtion, 

Numinsertion and Numoeietion SLTQ the numbcrs of substitutions, insertions and deletions respectively. 

All substitution/insertion/deletion errors refer to character recognition errors. 
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The baseline recognizer achieves 8.9% CER on TestSet G and 19.9% CER on TestSet_N. 

For Testset_N, the CER is relatively high due to the discrepancy in domain between the 

recognizer and the application data. The novels-domain utterances in TestSet_N are difficult to 

handle using the general language model in the recognizer. 

The numbers of substitutions, insertions and deletions for the two test sets are listed in the 

table below. For both test sets，more than 90% of character errors are substitutions. This is 

consistent with the results reported in previous works [34]，[88]，further demonstrating that 

substitutions tend to occupy the majority of all character errors for Mandarin LVCSR. As 

discussed in Section 3.1，the reason is that Mandarin has a relatively simple syllable structure 

and the decoding procedure rarely makes mistakes in segmenting signals into syllable sequences. 

This observation also indicates the feasibility of the assumption "all character errors are 

substitutions" made for the ED-EC prototype in Section 3.1. With this assumption, less than 

10% of character errors are missed, but the complexity of handling insertions/deletions is 

avoided. 

Number of 

Utterances 

Number of 

Characters 
CER o/o 

Number of errors Number of 

Utterances 

Number of 

Characters 
CER o/o 

Subt. Inst. Delt. 

Tes tSetG 500 9,572 8.89 766 15 70 

TestSet_N 4,000 62,691 19.86 11,721 213 516 

Table 4.3: Performance of the baseline recognizer. Subt. Inst, and Delt. 

refer to substitutions, insertions and deletions respectively 

The proposed ED-EC prototype also assumes that all characters in an erroneous word are 

wrong, as discussed in Section 3.3.2. The experiments show that in erroneous words (i.e., the 

recognized words that contain substitutions and/or insertions), 84.5% and 88.3% of characters 

are wrong for TestSet G and TestSet_N, respectively. This is consistent with our expectation. 

In addition, we notice that when a substitution error occurs, the reference character (i.e., 

the correct character for the corresponding speech signal) is often recognized as a character with 

similar but different pronunciation. For example, the percentage of the substitutions that have 

the same tonal syllables (e.g.，/ta2/) with the corresponding references is only 25.5% and 22.5% 

for TestSet G and TestSet_N respectively. The remaining substitutions have different tones or 

even different base syllables (e.g., /ka/) with the corresponding references, as illustrated in the 
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table below. This phenomenon takes place because language models play an important role in 

state-of-the-art recognizers such as the baseline recognizer. A hypothesis with relatively low 

acoustic likelihood and high linguistic likelihood may be selected in decoding as the recognition 

result. Note that a character can have multiple pronunciations in Mandarin. In this section, for 

simplicity, we state that character A has the same tonal/base syllable with character B if one of 

the possible tonal/base syllables for A matches one of the possible tonal/base syllables for B. 

Since a character in the utterance context is pronounced as one tonal/base syllable only, the 

statistics reported in Table 4.4 for "same tonal/base syllables" are larger than the ones in reality. 

Number of Substitutions 

Total 

Substitution and the corresponding reference character have: 

Total Same Tonal 

Syllable 

Same Base Syllable 

and Different Tone 

Different Base 

Syllable 

TestSetG 766 195 (25.5%) 149(19.5%) 422 (55.1%) 

TestSet_N 11,721 2,605 (22.2%) 2518(21.5%) 6598 (56.3%) 

Table 4.4: Acoustic similarity between the substitutions and 

the corresponding reference characters 

Table 4.4 also shows that more than 55% of substitutions have different base syllables 

with the corresponding references for both test sets. This means that if we create a list for each 

substitution by including all characters sharing the same base syllable with the substitution, the 

chance that the list contains the reference character is less than 45% on average for both test sets. 

In other words, in the error correction procedure of the framework, creating a candidate list for 

each error by including all homophonous characters may not be a good idea. Note that the 

proposed candidate creation algorithm provided a reference coverage rate (i.e., the rate that a 

candidate list includes the corresponding reference character) of above 70% for misrecognitions， 

as will be discussed later in Section 4.4.3. 

4.4.2 Performance of Error Detection 

To evaluate the performance of error detection, we define the Detection Error Rate (DER) for a 

certain instance (character/word/utterance) as follows: 
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DER = 
the number of incorrectly classified instances 

(4.4) 
total number of instances 

We apply the error detection procedure to label each character in the output of the 

baseline recognizer as either erroneous or correct. The detection error rate on TestSet G is 6.9%. 

The DER on TestSet_N is much higher, at 14.5%. Details are in Table 4.5. 

TestSetG 

(DER: 6.9%) 

TestSet_N 

(DER: 14.5%) 

Classified as — Correct Erroneous Correct Erroneous 

Correct 8,443 293 46,849 3,605 

Erroneous 364 417 5,445 6,489 

Table 4.5: Performance of detecting erroneous characters 

Table 4.5 shows that for both TestSet G and TestSet_N, more than half of the 

misrecognized characters are successfully detected as erroneous. At the same time，more than 

1/3 of detected erroneous characters are actually correct for both test sets. The percentages of 

these false errors (i.e.，false alarms) among all detected errors are 41.3% (293/710) and 35.7% 

(3,605/10,094) for TestSet G and TestSet_N，respectively. These indicate that false alarms will 

have non-negligible influence on the subsequent error correction procedure. 

We further measure the performance of error detection by the balanced F-measure, which 

can be written as follows: 

F = 
2 • precision • recall 
precision + recall (4.5) 

The balanced F-measures of the two test sets are relatively similar. On TestSet G and 

TestSet_N，the balanced F-measures for correct characters are 96.3% and 91.2%, respectively, 

while the balanced F-measures for erroneous characters are 61.0% and 58.9%, respectively. 

Note that the error detection procedure is trained on ErrDect Set, which is in the domain of 

novels. The observation that the error detection procedure performs better on the general 

TestSet G than on the novels-domain TestSet_N shows that the proposed error detection 

algorithm is robust to domain shift. 
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We proceed to evaluate the ability of the error detection procedure to identify those 

utterances that have been recognized correctly. We label each utterance as either correct or 

erroneous based on the error detection results. If an utterance contains no detected errors, it is 

labeled as correct. Otherwise, it is labeled as erroneous. The performance in terms of detecting 

correct utterances is shown in Table 4.6. More than 4/5 of correct utterances are detected on 

both test sets. The DERs for utterances are 23.2% and 18.6% for TestSet G and TestSet_N 

respectively. 

TestSetG 

(DER: 23.2%) 

TestSet_N 

(DER: 18.6%) 

Classified as Correct Erroneous Correct Erroneous 

Correct 165 27 794 175 

Erroneous 89 219 568 2,463 

Table 4.6: Performance of detecting correctly recognized utterances 

We cluster the recognized utterances in each test set into three subsets. The utterances 

with 0，1-4 and >4 detected erroneous characters are assigned to the utterance subsets of correct， 

lightly erroneous and seriously erroneous, respectively. This subset division is illustrated in 

Figure 4.3. Table 4.7 provides the details for the utterance subsets. We observe that in either 

test set, the seriously erroneous subset does have the relatively highest CER，while the correct 

subset has the relatively lowest CER. This reflects the effectiveness of the proposed error 

detection procedure. 

门 Correct 

Light Erroneous 
I—I (1-4 errors) 
1—1 Serious Erroneous 

(>4 errors) 
42% 

TestSet N 

51% 

45% 

Figure 4.3: Division of each test set into three subsets 
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In TestSet G In TestSet_N 

Number of 

Utterances 

CER 

o/o 

Number of 

Utterances 

CER 

o/o 

All Utterances 500 8.9 4,000 19.9 

Utterance Subset of Correct 254 3.3 1,362 6.4 

Utterance Subset of Lightly Erroneous 209 11.9 1,790 20.4 

Utterance Subset of Seriously Erroneous 37 27.7 848 37.1 

Table 4.7: Details of the utterance subsets 

4.4.3 Performance of Error Correction 

We apply the error correction procedure on the lightly erroneous utterance subset for each test 

set. There are 209 and 1,790 such utterances for TestSet G and TestSet_N respectively. 

The error correction procedure first creates a list of candidate characters for each detected 

error. The reference coverage rates (RCRs) of the candidate lists are presented in the table below. 

For false errors，the reference coverage rates are 1. This is because, with the proposed candidate 

creation algorithm, the candidate list of a detected error always includes the corresponding 

recognized character. For true errors, more than 70% of candidate lists include the 

corresponding references on both test sets. This result is acceptable for a preliminary work. In 

addition, the RCR for true errors is relatively higher on the general-domain test set TestSet G, 

although the development data (ErrCorr_Set) are in the domain of novels. This implies that the 

candidate creation procedure is insensitive to the difference in domain between the development 

data and test data. 

Number of 

Detected Errors 

True Errors False Error Number of 

Detected Errors Number RCR Number RCR 

TestSetG 468 272 81.6% 196 100% 

TestSet_N 4,385 2,793 73.3% 1,592 100% 

Table 4.8: Reference coverage rates (RCRs) of the candidate lists that were created for the 

detected errors in the utterance subsets of lightly erroneous 
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We also analyze the acoustic similarity between the candidate characters in the created 

lists for errors. For clarity, we focus here on true errors. In a candidate list, the percentage of the 

characters that have the same pronunciation (i.e., the same tonal syllable) with the reference 

character is 21.0% on average for TestSet G and 22.2% on average for TestSet_N. The 

percentage of the characters that have the same base syllable but different tone as the reference is 

on average 17.7% and 18.8% for TestSet G and TestSet_N respectively. The remaining 

candidate characters have different base syllables as the reference character. However, the 

remaining candidate characters are more-or-less acoustically similar to the reference since they 

are all recognition hypotheses for the corresponding speech signals. 

With the created candidate lists, the error detection procedure proceeds to correct errors 

by distinguishing among the competing candidate characters. We notice that the error correction 

performances on TestSet G are consistently better than those on TestSet_N. Of the true errors, 

34.9% are corrected on TestSet G, while only 26.3% are corrected on TestSet_N. Of the false 

errors, 77.6% and 73.9% remain correct (i.e.，avoid being "corrected" into new misrecognitions) 

on Testset_G and TestSet_N respectively. Regarding the overall CER on the focused data sets 

(i.e., the lightly erroneous utterance subsets), the relative CER reduction on TestSet G is almost 

twice that on TestSet_N, as shown in Table 4.9. The fact that the error correction procedure 

works better on the general-domain test set indicates that (1) the advanced linguistic model is 

critical for the effectiveness of error correction and (2) the domain of development speech has 

little influence on error correction. We will further analyze the performance of error correction 

in greater detail in Section 5.1. 

Baseline CER % CER after Correction % Relative Reduction % 

TestSetG 11.9 10.6 10.9 

TestSet_N 20.4 19.2 5.9 

Table 4.9: Error correction performance, evaluated on the lightly erroneous utterance subsets 

4.4.4 Overall Framework Performance 

In this subsection, we view the ED-EC framework as a black-box tool to improve the 

performance of the baseline recognition system. To analyze the overall effectiveness of the 
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proposed ED-EC prototype, we evaluate the CER reduction on all data for each test set. The 

results are included in the table below: 

Baseline CER % CER after Correction % Relative Reduction % 

TestSetG 8.89 8.36 6.0 

TestSet_N 19.86 19.35 2.6 

Table 4.10: Error correction performance, evaluated on the full test sets 

As shown in Table 4.10，the relative CER reductions over the recognizer baselines are 

6.0% and 2.6% for TestSet G and TestSet_N, respectively. The good performance on the 

general-domain test set TestSet G is especially encouraging since the objective of the ED-EC 

framework is to improve recognition performance on general-domain application data. Note that 

in this study, we adopt the novels domain for the development speech sets owing to limited data 

availability. Better performance can be expected on TestSet G when general-domain 

development sets become available. 

In this preliminary work, the proposed error correction procedure focuses on the lightly 

erroneous utterance subsets to correct errors. Thus, the correct and seriously erroneous utterance 

subsets remain unchanged after applying the ED-EC prototype. Designing a more advanced 

error correction algorithm that can also correct errors in seriously erroneous utterances may 

further improve the performance of the ED-EC framework. However, handling seriously 

erroneous utterances may introduce considerable computational load. 

4.5 Chapter Summary 

This chapter describes the implementation and evaluation of the proposed ED-EC prototype. We 

first train a state-of-the-art baseline recognizer on ample training data. We then develop the error 

detection and error correction procedures on separate development sets. For error correction, the 

size of the candidate lists created for detected errors is pruned to 20 based on our observations on 

the corresponding development set. As a consequence, the application scope of the error 

correction procedure is limited to those utterances with one to four detected erroneous characters 

to constrain the computational load. This limitation may be removed by designing a more 

63 



efficient algorithm to rank competing hypotheses during error correction. We evaluate the 

developed ED-EC framework on two independent test sets: a general-domain test set and a test 

set in the domain of novels. The results are encouraging. Non-trivial CER reductions are 

observed on both test sets. For the general-domain test set, a 6.0% relative CER reduction over 

the recognizer baseline is observed on the whole test set, whereas on the focused utterances of 

error correction，the CER reduction is as high as 10.9%. In the next chapter, we will analyze the 

effectiveness of the ED-EC framework in detail. 
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Chapter 5 

Analyses of Framework Effectiveness 

Previous chapters have described a prototype of the error detection and correction (ED-EC) 

framework for Mandarin LVCSR. This chapter examines this Mandarin prototype in detail to 

analyze the effectiveness of the ED-EC framework. We first analyze the ability of the ED-EC 

framework to reduce the baseline recognition error rate in Section 5.1. In the framework, while 

error detection provides the basis for error correction, error correction is the step that reduces the 

error rate. The effect of error correction is influenced by three major factors: (1) the linguistic 

knowledge sources utilized, (2) the search space created and (3) the mechanism adopted to 

handle false alarms of error detection. The last two factors depend on the error detection 

performance. This chapter demonstrates that different linguistic knowledge sources have 

different error correction capabilities. The error correction effect also relies on search space 

properties, such as the number of competing hypotheses and the amount of misleading 

information (e.g., unexpected erroneous characters in the hypotheses). Handling false alarms of 

error detection by an additional mechanism substantially enhances the framework performance, 

indicating that designing special strategies to control error propagation between procedures is 

beneficial for the overall system. In Section 5.2, we proceed to propose a formula to describe the 

ability of the ED-EC framework in error rate reduction. We also present the performance upper 

bounds in Section 5.3. The upper bounds for improving error detection or candidate creation or 

both are estimated separately. Finally, we discuss the computation efficiency of the framework 

in Section 5.4. While the error detection procedure is very efficient，the time spent on error 

correction to process an utterance varies greatly, as it depends on the number of detected errors 

in the target utterance. 
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5.1 Factors Affecting Error Correction 

5.1.1 Linguistic Knowledge Sources 

Different linguistic knowledge sources capture different types of information and thus have 

different capabilities to correct recognition errors. The proposed Mandarin ED-EC prototype 

uses mutual information (MI), word trigrams and POS trigrams to capture long distance semantic 

constraints, local constraints and syntactic constraints, respectively. This subsection compares 

the error correction capabilities of the three individual linguistic models and their linear 

combination. 

To facilitate the discussion, we first define the Correction Rate (CR) as follows: 

CR — Num ErrorCorrected 
Num (5.1) 

allError 

where Numaimrror is the number of character errors; NuniErrorCorrected is the number of the character 

errors that are successfully corrected by the error correction procedure. 

To clearly analyze the power of these linguistic models in error correction, we assume 

both error detection and candidate creation are perfect in this set of experiments. We apply the 

error correction procedure to correct the substitutions in those utterances that contain one to four 

substitutions. If a created candidate list fails to include the corresponding reference character， 

we insert this reference into the candidate list by replacing the lowest-ranking candidate with the 

reference. In this way, all erroneous characters in focus are correctable true errors. The 

experimental results are as follows: 

Test Set 
Number 

of Errors 

Correction Rate % 
Test Set 

Number 

of Errors MI Word Trigram POS Trigram Combination 

Tes tSetG 529 46.3 47.6 19.3 57.8 

TestSet_N 4,626 44.8 39.9 24.3 54.5 

Table 5.1: The abilities of various linguistic knowledge sources to correct erroneous characters, 

evaluated on the lightly erroneous utterance subsets. Both error detection and candidate creation 

are assumed to be correct in this experiment. 
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Table 5.1 shows that the use of MI achieves high correction rates. With the MI model 

alone, about 45% of errors in focus are successfully corrected for both test sets. Note that the 

MI model captures the co-occurrence information of an error with all other words in the 

utterance context. The effectiveness of MI for error correction demonstrates the power of long-

distance constraints. 

As illustrated in Table 5.1，the word trigram model adopted in error correction is also 

effective to correct recognition errors，despite the fact that the baseline recognizer has already 

employed a well-trained word trigram model (Rec_Trigram). One possible reason is that the 

training corpus (Lm_Corr_Set) for the LMs in error correction is "closer" to the testing data than 

the training corpus (Lm_Rec_Set) for the baseline trigram. To verify this，we train a new word 

trigram model (Verify—Trigram) on the corpus Lm_Corr_Set using the same lexicon and training 

techniques as the baseline word trigram model. In other words, the training procedures of 

Very_Trigram and Rec_Trigram only differ in the training data. If Lm_Corr_Set is closer to the 

testing data than Lm Rec Set, decoding with Verify_WdTrigram instead of Rec_WdTrigram 

would lead to better recognizer performance. In this work, for simplicity, we re-rank the 1000-

best hypotheses generated by the original baseline recognizer using the Verify_WdTrigram to 

simulate the Verify_WdTrigram decoding. The results show that the re-ranking hurts the 

recognition performance on both test sets. The CER increases from 19.9% to 25.4% on 

Testset_N and from 8.9% to 16.5% on TestSet G. This shows that the possible reason stated 

above does not hold. The corpus LM Corr Set may contain complementary information but is 

not "closer" to the testing data. We believe that the benefit of word trigrams for error correction 

is mainly due to the new search space for error correction, which may include more alternatives 

for erroneous regions in the signal. We will discuss the search space in detail in the next 

subsection. 

For the POS trigram model, the correction rates are relatively low, as shown in Table 5.1. 

This is partially because different utterance hypotheses may degenerate to the same tag sequence. 

We further evaluate the rate that the reference hypothesis is among the top-ranking tag sequences. 

The rates are 20.6% and 27.6% for TestSet G and TestSet_N respectively, which are still lower 

than the correction rates of the MI and the word trigram. The POS trigram model is relatively 

ineffective for error correction possibly because local syntactic dependencies (i.e., those captured 
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by POS trigrams) are weak compared with either local word dependencies (i.e., those captured 

by word trigram) or long-distance constraints (i.e., those captured by MI). 

The combined model achieves the highest correction rate at around 55%. On both test 

sets, the combination brings about a 21.5% relative increase in correction rate over the 

performance of the best individual model. This shows the advantage of knowledge combination. 

The current prototype simply uses linear interpolation to combine individual linguistic models. 

Adopting more advanced combination techniques, such as the maximum entropy approach, may 

bring further improvement. 

We also notice that if we exclude the POS trigram model from the combination，the 

correction rate of the combined model (i.e., the linear interpolation of the MI and word trigram 

models) will only drop less than 1% for both test sets. This implies that for the application of the 

POS trigram model, the benefit in accuracy may not compensate for the related computational 

load. Whether or not to adopt linguistic knowledge sources in error correction should be a 

decision that considers the balance between accuracy and efficiency. We will further discuss this 

point in Section 5.4. 

Finally, we compare the performance differences between the two test sets. Except for 

the POS trigram model, the correction rate of a model for TestSet G is consistently higher than 

that for TestSet_N. Note that the individual models in error correction are trained on a general 

corpus. The semantic knowledge captured by the MI or word trigrams is more effective in 

correcting errors in a general context. On the other hand, the syntactic information captured by 

the POS trigram is relatively domain-independent. Since MI and word trigrams play major roles 

in the linearly combined model, the combined model also performs better on TestSet G. 

5.1.2 Search Space 

For each utterance that contains detected erroneous characters, the error correction procedure 

expands every detected character error into a candidate list of alternative characters and thus 

generates a sausage-type search space as Figure 5.1. The search space is the basis for the 

subsequent application of linguistic models (i.e.，correcting errors by ranking the competing 

utterance hypotheses with the aid of linguistic models). The effect of error correction is thus 
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influenced by the properties of the search space. In this subsection, we analyze two major search 

space properties: the number of competing hypotheses and the amount of misleading information. 

-议-长 

Figure 5.1: A sausage-type search space 

The first property, the number of competing hypotheses, has an impact on error correction 

effect since a greater number of competing hypotheses lead to more confusion. When the 

number of erroneous characters in a recognized utterance increases，the number of utterance 

hypotheses in the search space grows exponentially and the confusion level increases 

substantially. To analyze this phenomenon, we conduct a series of experiments. For clarity, we 

assume that both error detection and candidate creation are perfect, as in Section 5.1.1. Without 

loss of generality, we utilize the combined model to correct errors in those testing utterances 

containing one to four substitutions. The results are included in Table 5.2. 

Number of 

Possible Hypotheses 

in the search space 

Correction Rate % Number of 

Possible Hypotheses 

in the search space 
On TestSet_G On TestSet_N 

Errors in those 

Utterances that 

Contain TV Errors 

N=\ 20 63.4 57.7 
Errors in those 

Utterances that 

Contain TV Errors 

N=2 60.2 56.4 
Errors in those 

Utterances that 

Contain TV Errors 
N=?> 20' 57.1 54.8 

Errors in those 

Utterances that 

Contain TV Errors 
N=A 20' 50.0 51.6 

Total Errors / 57.8 54.5 

Table 5.2: The impact of the size of the search space on error correction，evaluated on the lightly 

erroneous utterance subsets. Both error detection and candidate creation are assumed to be 

correct in this experiment. 

If an utterance has N erroneous characters，the search space created for this utterance 

contains 2(f utterance hypotheses at most. When N grows from 1 to 4，the number of possible 

utterance hypotheses in the search space increases from 20 to 160,000. The complexity of 

distinguishing among utterance hypotheses also increases greatly. As a consequence, the 
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correction rate decreases, as shown in Table 5.2. However, compared with the increase in 

complexity, the drop in correction rate is limited. The relative reductions in correction rate are 

only 21.1% and 10.6% on TestSet G and TestSet_N，respectively. This indicates that the 

capability of the advanced linguistic knowledge sources to identify the correct utterance 

hypothesis from the competing ones is robust for the number of competing hypotheses. 

The second search space property is the amount of misleading information. Misleading 

information in the search space is introduced by imperfect candidate creation and/or imperfect 

error detection. The search spaces are created by connecting the candidate lists for detected 

errors with the corresponding utterance context. If error detection is imperfect, the utterance 

context may contain missed detections and be misleading. If candidate creation is imperfect, a 

candidate list may fail to include the corresponding reference character, making all areas related 

to this candidate list in the search space misleading. The existence of misleading information is 

unavoidable in real applications, since it is very hard (if not impossible) to achieve perfect 

performance for both error detection and candidate creation. 

The amount of misleading information will affect error correction. When both error 

detection and candidate creation are perfect, reference utterances are always contained in search 

spaces, and the task of error correction is to score the reference utterance highest among its 

competing utterance hypotheses for each utterance. With imperfect error detection or imperfect 

candidate creation or both，reference utterances may not be included in the search spaces. The 

error correction task thus reduces to selecting the best hypothesis (i.e.，the one with the lowest 

CER) from the competing utterance hypotheses for each utterance. Note that the best hypotheses 

may contain misrecognitions in either utterance context or areas related to the candidate lists. 

This affects the effectiveness of linguistic models in error correction because linguistic models 

are trained on an error-free text corpus. 

We analyze the impact of misleading information by comparing the error correction 

effects under scenarios with perfect/imperfect error detection and candidate creation procedures, 

as shown in Table 5.3. Perfect error detection refers to the procedure that manually labels all 

character substitutions as erroneous. Perfect candidate creation refers to the procedure that 

manually inserts reference characters into the candidate lists if they are absent. Imperfect error 

detection refers to the application of the proposed error detection procedure. Imperfect lattice 

creation refers to using the proposed candidate creation procedure as is without manually 
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inserting reference characters (i.e.，without any guarantee that the reference characters are 

present). SI, S2, S3 and S4 are the four scenarios using different error detection and candidate 

creation procedures, as illustrated in Table 5.3. 

Error 

Detection 

Candidate 

Creation 

Tes tSetG TestSet_N Error 

Detection 

Candidate 

Creation RT% RT C O/o RF% RT% RT C O/o RF% 

SI 
Prefect 

Prefect 57.8 57.8 / 54.5 54.5 / 

S2 
Prefect 

Imperfect 39.9 54.5 / 32.8 49.9 / 

S3 
Imperfect 

Prefect 55.5 55.5 59.7 46.2 46.2 58.2 

S4 
Imperfect 

Imperfect 43.8 53.6 58.2 33.5 45.8 56.9 

Table 5.3: The influence of misleading information in search space on error correction. Under 

each of the four scenarios (SI, S2, S3, S4), the error correction procedure was applied on the 

corresponding lightly erroneous utterance subsets. 

We evaluate the effectiveness of error correction in terms of three rates: (1) the correction 

rate for all true errors，denoted RT, (2) the correction rate for the correctable true errors, denoted 

RT c, and (3) the rate of uncorrected false errors (i.e., those that have not been turned into new 

errors)，denoted RP. We state that a true error is correctable if the corresponding reference is 

contained in the candidate list. Otherwise, we refer to the true error as an uncorrectable true 

error. For false errors，reference characters are always included in candidate lists based on the 

current candidate creation algorithm. When candidate creation is perfect, all errors are 

correctable. When error detection is perfect, all detected errors are true errors. In this set of 

experiments, without loss of generality, we use the advanced language model that combines 

three individual sources to correct errors. Since this set of experiments concentrates on the 

impact of search space, the special mechanism to handle false alarms of error detection is not 

involved. The experimental results are shown in Table 5.3. 

Table 5.3 shows that on both test sets, Rt c is the highest under SI and is the lowest 

under S4. This demonstrates that the ability to select correct answers from candidate lists 

decreases when search spaces contain more misleading information, such as misrecognitions in 

the utterance context and erroneous areas related to those uncorrectable true errors. Similarly, Rp 

under S3 is always higher than that under S4 because only S4 contains uncorrectable true errors, 

which are misleading. We can also see that the quality of candidate creation greatly affects the 
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error correction effectiveness. Applying perfect candidate creation instead of imperfect 

candidate creation always increases the rates under both perfect and imperfect error detection. 

One observation that seems counterintuitive in Table 5.3 is that the RT under S2 is lower 

than under S4 for both test sets, although S2 has perfect error detection. For S2 and S4, while 

the error correction procedures are the same, different error detection procedures lead to different 

sets of detected errors. In each set of detected errors，true errors are composed of correctable 

true errors and uncorrectable true errors. For S2, although the correction rate for correctable true 

errors (i.e., RT c) is higher, the overall correction rate for true errors (i.e., RT ) is lower because of 

the higher percentage of uncorrectable true errors (i.e., the lower reference coverage rate of 

candidate lists), as shown in Table 5.4. This observation further proves that improving the 

candidate creation algorithm is a worthwhile direction to enhance the error correction effect. 

Error 

Detection 

Candidate 

Creation 

Reference Coverage Rate % for True Errors Error 

Detection 

Candidate 

Creation Tes tSetG TestSet_N 

S2 Perfect Imperfect 73.2 65.7 

S4 Imperfect Imperfect 81.6 72.2 

Table 5.4: Reference coverage rates of candidate lists, evaluated on true errors in the 

corresponding lightly erroneous utterance subsets under a certain scenario (S2 or S4). 

The above discussions show that both RT c and Rp are influenced by misleading 

information contained in search spaces. RT is jointly decided by RT c and reference coverage rate 

RL as: 

R , = R , (5.2) 

5.1.3 False Alarms 

The special mechanism to handle false alarms of error detection selectively accepts error 

correction results to avoid turning false errors into new misrecognitions. This subsection 

analyzes the benefit of this mechanism for error correction. We apply the proposed error 

detection procedure to detect errors in the test sets. For the detected lightly erroneous utterances, 

the error correction performances before and after applying this mechanism are included in Table 

5.5. M* refers to the special mechanism. In this set of experiments, we use the proposed 
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candidate creation algorithm, which is imperfect. The observations under perfect candidate 

creation are similar. 

Number of 

Utterances 

Number of 

Characters 

Baseline 

CER o/o 

Error Correction CER % Number of 

Utterances 

Number of 

Characters 

Baseline 

CER o/o Before M* After M* 

TestSetG 209 4,098 11.9 11.0 10.6 

TestSet_N 1790 28,456 20.4 19.5 19.2 

Table 5.5: CER before and after applying the mechanism (M*) to handle false alarms, evaluated 

on the lightly erroneous utterance subsets 

Table 5.5 shows that the mechanism to handle false alarms brings substantial 

improvements for error correction. If we compare with the correction performance before 

applying this mechanism, the relative CER reductions are 3.6% and 1.5% for TestSet G and 

TestSet_N respectively. These demonstrate that it is feasible to design special strategies to 

handle error propagation between the subsequent procedures in a multi-procedure system. We 

further illustrate the details of error correction on the TestSet G and TestSet_N in Figures 5.2 

and 5.3 respectively. 

From these two figures, we can see that the overall performance of error correction is 

determined by two character sets: (1) those true errors that are corrected and (2) those false errors 

that are "corrected" to new misrecognitions. For the remaining characters, the error rate remains 

unchanged after the error correction procedure. The first character set (Set P) represents the 

positive effect of error correction，while the second set (Set_N) represents the negative effect. 

The overall performance is the competing result of these two conflicting effects. The strategy for 

handling false alarms is to substantially reduce the size of Set P and at the same time to keep the 

reduction of Set_N relatively small. This enlarges the size difference between the two 

competing sets，making the overall error correction performance improved. 

Given a specific automatic error detection procedure, the sizes of Set P and Set_N are 

respectively determined by 尺r(i.e.，the correction rate for all true errors) and Rp (i.e., the rate of 

uncorrected false errors). We further analyze the impact of applying the mechanism to handle 

false alarms on these two rates. The result is shown in Table 5.6. 
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468 Characters detected as erroneous 

272 Erroneous characters 
(i.e., true errors) 

196 Correct characters 
(i.e., false errors) 

Before M^ � 雲 c ^ e d : 119 _ 
^ Not Corrected: 153 (56%) 

Remaining correct: 114 (58%) 
"Corrected" into errors: 82 (42%) 

After M^ Corrected: 95 (35%) 
J Not Corrected: 117(65%) 

Remaining correct: 152 (78%) 
"Corrected" into errors: 44 (22%) 

M* = the mechanism to handle false alarms of error detection 

Figure 5.2: Error correction details on TestSet G, 

evaluated on the lightly erroneous utterance subset 

4385 Characters detected as erroneous 

2793 Erroneous characters 
、 

1592 Correct characters 

Before M^ 

(i.e., true errors) ！ (i.e., false errors) 

Not Corrected: 1856 (66%) i"Corrected" into errors: 686 (43%) 
颜er M* Corrected: 735 (26%) " Remaining correct: 1177 (74%) 

J 汉 Not Corrected: 2058 (74%) |"Corrected" into errors: 415 (26%) 
M* = the mechanism to handle false alarms of error detection 

Figure 5.3: Error correction details on TestSet_N 

evaluated on the lightly erroneous utterance subset 

TestSetG TestSet_N 

RT% RF% RT% Rf% 

Error Correction 
without M* 43.8 58.2 33.5 56.9 

Error Correction 
with M* 34.9 77.6 26.3 73.9 

Table 5.6: The influence of the mechanism (M*) to handle false alarms on RT and RF, 

evaluated on the lightly erroneous utterance subsets. RT refers to the correction rate for all true 

errors and RF refers to the rate of uncorrected false errors. 
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In Table 5.6，we observed that after applying this mechanism, Rp is substantially 

increased. This means the ratio of turning a false error into a new misrecognition is greatly 

reduced. Although RT is dropped at the same time, the reduction scale for RT is relatively much 

smaller. Thus the overall CER is reduced, as illustrated in Table 5.5. 

5.2 Formulation 

In this subsection, we summarize the previous discussions by describing the overall effectiveness 

of the ED-EC framework in a formal way. We evaluate the benefit of applying the ED-EC 

framework in terms of the reduction in CER over the baseline recognizer performance. Based on 

the proposed error detection and correction procedures, the ED-EC framework only attempts to 

detect and correct substitution errors. Thus after applying the framework, the total character 

number and the number of insertions/deletions remain the same. The impact lies in the change 

of the number of substitutions. Some substitutions are corrected, and at the same time, some 

correct characters are "corrected" into new substitutions. The effectiveness of the framework 

can be described as the formula below: 

— NE^R^^RL c-Nc'^Rp.Hi-R,) 
LED-EC -LORI _ ^ (5 .3) 

1�all 

In Equation 5.3，CED-EC is the CER after applying the ED-EC framework, while C � „ is the 

CER of the baseline recognition. NE and Nc are the number of substitutions and the number of 

correct characters，respectively in the recognized utterances. Naii is the total number of 

characters. RNN and RPN are two rates related to the performance of error detection. RMN is the 

percentage of substitutions that are detected as errors. RPN is the rate at which a correct character 

is wrongly detected as an error. RL T is the reference coverage rate of the candidate lists created 

for the true errors. For false errors, the reference coverage rate is 1. RT c and RF are the two 

error-correction related rates described in Section 5.1.2. As discussed previously, both RT c and 

RF are affected by a series of factors: the linguistic knowledge sources utilized, the number of 

detected errors in an utterance, the performances of error detection and candidate creation, and 

the special mechanism to handle false alarms. For the numerator of Equation 5.3，the first part is 
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the number of corrected substitutions while the second part is the number of newly introduced 

misrecognitions. 

5.3 Performance Upper Bounds 

We also estimate the performance upper bounds of the ED-EC framework，as shown in Table 5.7. 

Imperfect/perfect error detection and candidate creation are defined in the same way as in 

Section 5.1.2. The current framework uses proposed procedures (i.e.，imperfect procedures) of 

error detection and candidate creation. Up-bound 1，Up-bound 2 and Up-bound 3 refer to the 

three upper bounds that are achieved by using perfect candidate creation, perfect error detection, 

and both, respectively (see Table 5.7). In this subsection, CER reduction refers to the relative 

CER reduction over the recognizer baseline. All CERs are evaluated on the whole test sets. 

Error 

Detection 

Candidate 

Creation 

Tes tSetG TestSet_N Error 

Detection 

Candidate 

Creation CERo /o Reduction% CERo /o Reduction% 

Baseline / / 8.89 / 19.86 / 

Framework Imperfect Imperfect 8.36 6.0 19.35 2.6 

Up-bound 1 Imperfect Perfect 8.01 9.9 18.83 5.2 

Up-bound 2 Perfect Imperfect 6.69 24.7 17.44 12.2 

Up-bound 3 Perfect Perfect 5.69 36.0 15.83 20.3 

Table 5.7: Performance upper bounds for the ED-EC framework 

The results show that the potential benefit of the ED-EC framework is substantial. On 

Testset_G and TestSet_N，improving error detection alone can achieve maximal CER reductions 

of 24.7% and 12.2%, respectively, while improving candidate creation alone can obtain maximal 

CER reductions of 9.9% and 5.2%, respectively. The upper bounds in CER reduction for 

refining both candidate creation and error detection are as high as 36.0% and 20.3% for 

Testset_G and TestSet_N，respectively. 

Another observation is that the CER reductions on TestSet G are consistently larger than 

the corresponding ones on TestSet_N. While the current framework achieves better performance 

on TestSet G, the improvement space is also bigger for TestSet G. This indicates that the ED-
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EC framework is more promising for general-domain LVCSR. One reason is that the framework 

adopts general-domain linguistic models for error correction and thus is more effective at 

correcting recognition errors in the general-domain context. Another reason is that the general 

baseline recognizer performs better for general-domain LVCSR, leading to less misleading 

information (e.g.，misrecognition) in the search space for error correction. 

Note that in Table 5.7，only error detection and candidate creation are included. The 

performance upper bound of the ED-EC framework may further be enhanced in other directions, 

such as adopting better knowledge (linguistic and/or acoustic) model in error correction and 

refining the special mechanism to handle false alarms of error detection. 

5.4 Computation Efficiency 

For the proposed ED-EC prototype, the error detection procedure is very efficient, taking about 

0.2 seconds to handle a test utterance. The efficiency of the current error correction procedure 

varies for utterances with different numbers of detected errors. This study applies the error 

correction procedure to utterances with one to four detected erroneous characters. Table 5.8 

shows the average time for applying error correction. The overall average correction time for an 

utterance is also listed. In this study, computation times are estimated on a server with Pentium 

4 CPU of 3.20 GHz. All data in Table 5.8 are presented in seconds as the time unit. 

Number of detected 

erroneous characters 

Candidate 

Creation 
Segmentation 

POS 

Tagging 

Linguistic 

Scoring 

Total 

Time Cost 

One 0.18 0.074 0.057 0.0046 0.32 

Two 0.36 1.5 1.1 0.091 3.1 

Three 0.54 28.5 22.6 1.8 53.5 

Four 0.72 589.6 452.8 36.5 1079.6 

Overall 0.45 135.1 103.8 8.4 247.7 

Table 5.8: The average time to apply the error correction procedure on an utterance, 

evaluated on the lightly erroneous utterance subsets. The time unit is second. 

77 



Table 5.8 shows that the processing time for an utterance grows dramatically when the 

number of contained errors increases. For an utterance with one or two errors, the error 

correction procedure is efficient. Processing a single-error utterance uses less than 0.5 second, 

and processing a two-error utterance normally takes several seconds. For those utterances with 

three errors，nearly one minute is needed to handle an utterance. For an utterance with four 

errors，the average computation time is 18 minutes. These observations suggest that with the 

proposed algorithms, the ED-EC framework may adjust the application scope of the error 

correction procedure to meet the requirement of system efficiency. For real-time recognition， 

processing utterances with four detected errors is obviously inappropriate. 

The results in Table 5.8 also show that the current search approach of enumerating all 

utterance hypotheses in a search space has a direct impact on computational load. When the 

error number increases in a target utterance, the number of hypotheses in the search space grows 

exponentially from 20 to 160,000. As a consequence, the computational load on segmentation， 

POS tagging and linguistic scoring also increases dramatically, occupying the majority of 

computation for utterances with more than one error. These indicate that designing a more 

efficient algorithm to identify the top-scoring path in search space should be beneficial. With an 

efficient search method, application of the error correction procedure to utterances with more 

than four errors would be feasible. Efficient search algorithms such as A* search can usually 

work directly over search networks. The segmentation problem is the major obstacle for the 

design of such network-based search algorithms. Sacrificing some accuracy may be necessary to 

achieve efficiency. We will further the investigation in this direction in the future. 

The efficiency of error correction may also be improved in some other ways. First，it is 

possible to reduce or even eliminate segmentation cost. The current linguistic scoring algorithm 

requires each utterance hypothesis to be segmented into two word sequences using two lexicons 

(i.e., a lexicon used for the mutual information and word trigram models and a lexicon used for 

POS tagging). If all lexicons used are identical, the segmentation cost will be substantially 

reduced. If we chose a word instead of a character as the smallest unit for error detection and 

correction, it would be unnecessary to perform segmentation, and the related cost will be 

eliminated. Second, better efficiency can also be achieved by abandoning the usage of some 

knowledge sources. For example, if we exclude the POS trigram model, whose contribution for 

error correction is relatively small, the requirement for POS tagging will disappear, and the cost 
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for segmentation and linguistic scoring will decrease accordingly. Whether or not to adopt a 

knowledge source is a decision that must take into account two conflicting factors, the improved 

accuracy and the decreased efficiency. Other possible approaches to enhance efficiency include 

optimizing detailed implementations, such as the tagging method. 

5.5 Chapter Summary 

This chapter analyzes the effectiveness of the ED-EC framework. We first demonstrate that the 

error correction effectiveness of the framework is determined by multiple factors. The 

effectiveness of error correction varies from one linguistic knowledge source to another. 

Properties of the sausage-type search spaces created for error correction, such as the number of 

utterance hypotheses and the amount of misleading information, also influence the effect of error 

correction. The special mechanism designed to handle false alarms of error detection is shown to 

be effective. We then evaluate the overall framework performance in terms of CER reduction, 

performance upper bounds and computational efficiency. We describe the ability of the ED-EC 

framework to reduce recognition error rate by a single equation (i.e.，Equation 5.3). Experiments 

to estimate the performance upper bounds show that the potential benefit of the ED-EC 

framework is big. Concerning the computational efficiency of the framework, while the error 

detection procedure is efficient，the computational load of the error correction procedure to 

process an utterance depends heavily on the number of detected erroneous characters. 

In the next chapter, we will further the analysis by comparing the ED-EC framework with 

other methods that incorporate advanced linguistic knowledge in LVCSR. 
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Chapter 6 

Competitive Analyses 

This chapter compares the error detection and correction (ED-EC) framework with other 

approaches that use advanced linguistic knowledge sources to benefit large vocabulary 

continuous speech recognition (LVCSR). Methods to incorporate additional linguistic 

knowledge into LVCSR can be categorized into two classes: single-pass strategies and multi-

pass strategies. Algorithms of single-pass strategies incorporate advanced linguistic models into 

a single-pass decoding procedure. Implementation of multi-pass strategies applies sophisticated 

knowledge models to post-process the recognizer output. The ED-EC framework adopts a 

multi-pass strategy. In Section 6.1，we compare the properties of single-pass strategies and 

multi-pass strategies. These properties include the application of knowledge sources and the 

usage of context information. 

Section 6.2 describes the specifics of multi-pass strategies. Previous post-processing 

approaches applied linguistic models to re-rank the TV-best hypotheses, to rescore recognition 

lattices, or to process other post-processing search spaces, as discussed in Section 2.3. These 

previous efforts processed all signals in an indiscriminate way. In contrast, the ED-EC 

framework attempts to selectively apply computationally expensive models only to the necessary 

parts of the signal. Section 6.2 compares these two different ways of processing. TV-best re-

ranking is selected as a representative of post-processing methods that treat all signals equally. 

A similar advanced linguistic model is used to implement the ED-EC framework and TV-best re-

ranking. The performance of the ED-EC framework and TV-best re-ranking are compared and 

analyzed. 
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Finally, we analyze the computational expenses of different strategies in Section 6.3. 

Single-pass strategies and most post-processing methods evenly distribute the computational 

load for all signals. We compare the ED-EC framework with such methods in four aspects: 

computation saved for correct utterances, computation saved for correct characters in erroneous 

utterances, computation expended for erroneous characters and computation expended on error 

detection. 

6.1 Multi-Pass Strategy vs. Single-Pass Strategy 

Single-pass strategies are theoretically more advantageous than multi-pass strategies, because 

single-pass strategies apply advanced linguistic knowledge sources in the decoding search space. 

Since this space contains all possible hypotheses, the optimal benefit of introducing certain 

linguistic knowledge sources is theoretically achievable. In practice, various factors (e.g.， 

pruning that has to be performed to keep computational load and memory consumption under 

control) will make the performance suboptimal. 

Multi-pass strategies use advanced knowledge sources to distinguish among hypotheses 

in post-processing search spaces, such as TV-best hypotheses and recognition lattices. Since a 

post-processing search space is a subset of the decoding (full) search space and may not include 

the reference utterance, the performance of multi-pass strategies can be suboptimal. Given 

certain advanced knowledge models, the performance of a post-processing approach depends on 

how well the search spaces cover reference utterances. For the ED-EC framework, when the 

performance of error detection and candidate creation procedures improve, the rate of inclusion 

of reference utterances in the sausage-type search spaces will increase. As a result, the gain of 

the knowledge sources approaches optimal. 

Although single-pass strategies may provide better performance, there are two practical 

issues making single-pass strategies unfavorable. First, it is difficult to apply advanced linguistic 

knowledge sources in the decoding procedure. Since high-level linguistic models (e.g.，the inter-

word mutual information model) require long-distance dependency, incorporating these models 

into the decoder will greatly increase the decoding complexity, leading to expensive computation 

and high memory consumption. Second, context information is not fully utilized in single-pass 
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strategies. In conventional left-to-right decoding, only the left context is available. This may 

reduce the effectiveness of the advanced knowledge. In the rest of this subsection, we address 

these two issues in detail, in Section 6.1.1 and Section 6.1.2，respectively. 

6.1.1 Difficulty in Incorporating Knowledge 

Incorporating advanced linguistic knowledge sources into single-pass decoding is challenging. 

Using a pre-compiled static recognition network to store linguistic models that capture long-

distance dependencies leads to a major difficulty in network design, as discussed in Section 1.2. 

Even if the recognition network can be successfully designed, the size of the network would be 

prohibitive since all partial paths covering the required dependencies have to be included in the 

network. Besides, for complicated linguistic knowledge sources, such as syntactic knowledge, 

redesigning a recognizer to capture structural information may be necessary [116]. 

An alternative approach to applying additional linguistic models in single-pass decoding 

is to dynamically interpolate linguistic scores during decoding. This method keeps the original 

static recognition network in the baseline recognizer and adopts an additional scheme to use 

advanced linguistic models to score hypotheses. Searching is then performed by interpolating 

the scores from the original recognition network and the scores from the additional scheme of 

active hypotheses in the decoding search space. This approach circumvents the difficulty of 

designing a static recognition network. However, heavy computation has to be spent on 

exchanging information between the additional scheme and the recognition network constantly 

throughout the decoding procedure. This may result in serious system inefficiency. 

Compared with incorporating sophisticated linguistic knowledge sources into single-pass 

decoding, applying advanced models in a post-processing procedure is much more convenient, as 

a post-processing search space normally contains only a limited number of hypotheses. For the 

example of the inter-word mutual information (MI) model, which evaluates the average MI of a 

target word with all other words in the utterance context (see Section 3.4.2) the ED-EC 

framework applies this model to score hypotheses in sausage-type search spaces without 

difficulty. In contrast，incorporating this MI model into single-pass decoding would be very 

difficult because the calculation of MI scores depends on the whole left and right utterance 

context. 
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6.1.2 Usage of Context 

State-of-the-art recognizers decode speech in a left-to-right style. When processing a specific 

speech segment, only the left context is available for computing the acoustic and linguistic 

likelihoods. Although the right context of the target speech segment will be taken into account 

when the recognizer processes the subsequent segments of the signal, the correct path may have 

already been wrongly pruned and thus be unrecoverable. One advantage of the multi-pass 

strategy is that both the left and right context are available during post-processing. For the ED-

EC framework，if the sausage-type search spaces always contain reference utterances, the 

framework will outperform the single-pass strategy, since the framework can set better linguistic 

constraints by considering the right context. In other words, when the error detection and 

candidate creation procedures approach perfection, this framework will eventually outperform 

the single-pass strategies. 

We evaluate the benefit of utilizing the right context for the example of the ED-EC 

framework. In this framework, the scoring of MI, word trigrams and POS trigrams are based on 

both left and right context as reflected in Equation 3.11，3.13 and 3.14 respectively. This set of 

experiments modifies the scoring by limiting the calculations to only one side of the context，as 

illustrated in Equation 6.1 to 6.6. For simplicity, we assume error detection is perfect and apply 

the error correction procedure on each test utterance that contains a single substitution. In the 

equations below, Wk refers to the word containing the single substitution in a target utterance w； 

W2...Wm- The correction rates for the substitutions in focus are shown in Table 6.1. 

KmI_/e/,(狄1, ,.. ) = 丄1众 (6.1) 

= ^ ^ ； (6.2) 
m- k 

KwdTri _ _/e/“狄 1, 
狄2,. =K議(W” W2”..W々） (6.3) 

Kjvdm _ nghA^l 丨 … n ) = K臉i (^/t (6.4) 

KposTri JefX^V … = K p o s T r M (6.5) 
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(6.6) 

Correction rate % under various context usage 

Tes tSetG TestSet_N 

Both Left Right Both Left Right 

MI 49.5 48.4 45.2 49.2 46.0 48.0 

Word Trigram 55.9 40.9 44.1 42.7 33.3 34.5 

POS Trigram 21.5 14.0 12.9 25.0 22.6 22.4 

Table 6.1: Error correction based on various context usages. Corrections rates are evaluated on 

the utterances that contain a single substitution. 

From Table 6.1，we can see that (1) the right context is almost equally as effective as the 

left context and (2) utilizing both contexts increases the correction rate for all the three linguistic 

knowledge sources. These observations indicate that the two sides of the context provide 

complementary information and are beneficial for improving LVCSR performance. If a post-

processing search space is a network (e.g.，the sausage-type search space in the ED-EC 

framework)，methods that search within the network based on both contexts should be an 

interesting research topic. The current ED-EC prototype simply enumerates all hypotheses in a 

network. Developing more efficient searching algorithms is also possible. 

6.2 ED-EC Framework vs. TV-Best Re-Ranking 

There are various post-processing techniques such as TV-best re-ranking and lattice rescoring. In 

contrast with the ED-EC framework, which selectively applies sophisticated linguistic 

knowledge sources to parts of the signal, existing post-processing techniques normally process 

all signals equally. This subsection selects TV-best re-ranking as a representative of equal-

processing methods and compares it with the ED-EC framework. Given a knowledge model, 

while the ED-EC framework ranks utterance hypotheses in the created sausage-type search 

spaces, TV-best re-ranking ranks TV-best hypotheses generated during baseline decoding. 
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6.2.1 TV-Best Re-Ranking 

The TV-best re-ranking approach uses a knowledge model to score and re-rank TV-best utterance 

hypotheses generated by the baseline recognizer. Recognizer scores (i.e.，scores assigned to 

utterance hypotheses by the baseline recognizer) are also included in hypothesis scoring to 

enhance robustness. We define the scoring method of the TV-best re-ranking algorithm as linear 

interpolation of recognizer scores and knowledge model based scores as: 

S(h) = JU • D(h) + (!-//)• K(h) (6.7) 

where h refers to an utterance hypothesis; D(h) and K(h) refer to the recognizer score and the 

knowledge-model based score assigned to the hypothesis, respectively; and ju is the interpolation 

weight. D(h) is computed as follows: 

n 
D{h) = Pam O , ) + PO-PLM O , ) ) - n - r (6.8) 

i=\ 

where wiw2...wn is the word sequence corresponding to h; /WfW,) and Pim Score(wi) are the 

acoustic likelihood and language model (LM) likelihood in the log domain for the word w/， 

respectively; a � a n d P��a re the acoustic and LM weights adopted by the recognizer, respectively; 

and r refers to the word insertion penalty. 

To fairly compare the behavior of the ED-EC framework and the TV-best re-ranking, we 

use the same knowledge model for both techniques. In the ED-EC framework，we adopt an 

advanced linguistic model that linearly combines MI, word trigrams and POS trigrams, as shown 

in Equation 3.15. To facilitate reading, we rewrite this equation as follows: 

K{h) = rvK碰(h) + r, • K議(h) + r, • I 滅 ( h ) (6.9) 

where KMi(h), KwdTri(h) and KposTri(h) refer to the scores computed based on MI, word trigrams 

and POS trigrams, respectively; and ri, r] and n are the interpolation weights. For TV-best re-

ranking, we also use this advanced model to score corresponding utterance hypotheses, or in 

other words, to compute K(h) in Equation 6.7. In this case，all words in h are viewed as target 

words for the computation of KMi(h). In addition, since the ED-EC framework attempts to only 

modify those lightly erroneous utterances (i.e.，utterances with one to four detected character 

errors), we focus comparison experiments on the lightly erroneous utterance sets only. 
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With the definitions and settings above, we conduct a set of experiments on the lightly 

erroneous utterances in the development set ErrCorr_Set to identify the optimal number of N-

best hypotheses along with the optimal interpolation weight ju for TV-best re-ranking. To 

facilitate the discussion, we refer to the maximum number of TV-best hypotheses allowed for an 

utterance as M. Given M, the performance of the TV-best re-ranking (i.e.，the CER of the top-

ranking hypotheses) depends on the value of ju . For each M’ we identify the optimal ju by grid 

search and record the corresponding optimal performance of TV-best re-ranking in Figure 6.1. We 

notice that when M increases to 60，the CER drops to its minimum point. After that，including a 

greater number of the TV-best hypotheses slowly decreases the re-ranking performance. Based on 

this observation, we adopt the 60-best hypotheses along the corresponding optimal // in the task 

of TV-best re-ranking. 

Performance (CER) of /V-best re-ranking 
18.75% 

Maximum number of 
/V-best hypotheses 

10 20 30 40 50 60 70 80 90 100 1000 for an utterance 

Figure 6.1: The change of the performance of TV-best re-ranking when the maximum 

number of TV-best hypotheses that is allowed for an utterance increases. Performances are 

evaluated on the lightly erroneous utterance subset in the development set ErrCorr_Set. 

6.2.2 Comparison 

We evaluate the TV-best re-ranking on the lightly erroneous utterance sets of the two test sets 

based on the 60-best hypotheses. The experimental results are included in Table 6.2. In the table. 
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"With Recognizer Score" refers to the TV-best re-ranking that considers recognizer scores as 

specified by Equation 6.7; "Knowledge Only" refers to the case in which an hypothesis is 

scored/ranked by knowledge (hypo) only for TV-best re-ranking; and "With Perfect Candidate 

Creation" refers to the ED-EC framework using a perfect candidate creation procedure with 

100% reference coverage rate. This perfect procedure of candidate creation is implemented by 

manually replacing the lowest-ranking candidate with the reference if the reference is absent in 

the created candidate list. 

CER o/o 

Tes tSetG TestSet_N 

Baseline 11.9 20.4 

TV-best 

Re-ranking 

With Recognizer Score 10.2 18.9 TV-best 

Re-ranking Knowledge Only 11.9 20.1 

ED-EC framework 
Proposed Framework 10.6 19.2 

ED-EC framework 
With Perfect Candidate Creation 9.8 18.1 

Table 6.2: Comparison of the TV-best re-ranking and the ED-EC framework 

on the lightly erroneous utterance subsets. 

Table 6.2 shows that the TV-best re-ranking considering recognizer scores outperforms the 

current ED-EC prototype. However, given a specific knowledge model, room for improvement 

in TV-best re-ranking is very limited, but in the ED-EC framework, it is big, as discussed in 

Section 5.3. The ED-EC framework is expected to outperform the TV-best re-ranking quickly 

when error detection and/or candidate creation performance improves. As shown in Table 6.2， 

the ED-EC framework performs better than the TV-best re-ranking on both test sets if candidate 

creation is perfect (i.e., if candidate lists always include reference characters). For the current 

candidate creation algorithm, the reference coverage rates {RL) of candidate lists for true errors 

are 81.6% and 73.3% for TestSet G and TestSet_N respectively. Assuming that CER decreases 

linearly when RL increases, the ED-EC framework will outperform the TV-best re-ranking when 

the RL for true errors rises above 90.8% and 80.6% respectively. Note that the benefit of 

improving error detection is much larger than that of enhancing lattice creation，as discussed in 

Section 5.3. The ED-EC framework is potentially more promising than the TV-best re-ranking. 
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Another interesting observation in Table 6.2 is that incorporating recognizer scores is 

critical for effective TV-best re-ranking. If only the advanced linguistic model is used to 

score/rank hypotheses, as in the ED-EC framework, TV-best re-ranking performs worse than the 

ED-EC framework. This result indicates that the sausage-type search space of the ED-EC 

framework is more advantageous than the search space of TV-best hypotheses. It also illustrates 

the usefulness of acoustic likelihood and LM likelihood assigned by the baseline trigram model. 

Including the two likelihoods to rescore hypotheses in the ED-EC framework may be beneficial 

too. However, additional computational overhead is incurred to calculate the two likelihoods for 

the ED-EC framework, whereas the TV-best re-ranking can directly obtain these two likelihoods 

from the recognizer output. 

6.3 Differences in Computational Expense 

Previous efforts to incorporate advanced linguistic knowledge in LVCSR applied related models 

to process all signals in an indiscriminate way, by using either the single-pass decoding strategy 

or a post-processing technique such as TV-best re-ranking. The difference of the ED-EC 

framework is that it attempts to apply sophisticated models only to the necessary parts of the 

signal. This section discusses four aspects of how computation is saved and expended in the ED-

EC framework. 

• Computation saved for correct utterances 

State-of-the-art recognizers can already achieve high recognition accuracy for dictation speech. 

The baseline recognizer correctly recognizes 38% of the utterances and 24% of the utterances for 

TestSet G and TestSet_N respectively. For these correctly recognized utterances, applying 

additional knowledge models in either decoding or post-processing wastes computation and may 

even decrease recognition accuracy. The ED-EC framework attempts to use an error detection 

procedure to filter out these correct utterances from the processing of sophisticated linguistic 

models. 

With the proposed error detection procedure, more than 80% of the correct utterances are 

successfully detected as correct for both test sets. For these truly correct utterances, unnecessary 
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computation is saved and possible accuracy degradation is avoided. This is the positive effect of 

filtering out detected correct utterances from further processing. However at the same time, the 

negative effect is that a number of erroneous utterances are wrongly labeled as correct，as shown 

in Table 3.4，and not "correcting" these false correct utterances leads to a performance loss. The 

influence of filtering out those utterances labeled as correct thus becomes the competing result of 

the positive and negative effects. We analyze this phenomenon with the example of TV-best re-

ranking. We apply the TV-best re-ranking algorithm described in Section 6.2.1 to the correct 

utterances detected in the two test sets. The interpolation weight // is re-tuned on all the 

utterances in the development set ErrCorr_Set. The results are illustrated in the figure below. 

• True correct utterances • False correct utterances 
C_ori: 9.17% C_ori: 14.34% 

C rank: 8.99% C mnk: 13.77% 

C ori: 0 
r rank: 0.26% 

J C_ori: 

Cor i : 3.29% Cor i : 6 . 3 7 % " ^ ^ 
C_rank: rank: 6 . 4 2 % ^ ^ ^ 

Detected correct utterances Detected correct utterances 
in TestSet—G in TestSet—N 

Figure 6.2: Performance of the TV-Best re-ranking on detected correct utterances. 

C_ori refers to the baseline CER; C_rank refers to the CER of the re-ranking. 

Figure 6.2 shows that although the application of TV-best re-ranking reduces the CERs on 

false correct utterances, it introduces errors into the true correct utterances, and the overall 

performance with regard to the utterances labeled as correct is hurt. This observation supports 

the decision of filtering detected correct utterances from further processing. Note that the error 

detection procedure labels about half of the utterances as correct for TestSet G and more than a 

third of the utterances as correct for TestSet_N. The reduction in computation load is substantial. 

• Computation saved for correct characters in erroneous utterances 

Given a recognized utterance, the EC EC framework attempts to create alternatives only for 

misrecognitions in the sausage-type search space. The application of advanced linguistic 
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knowledge is then focused on distinguishing among those alternatives. Compared with the 

efforts that equally process all signals with sophisticated LMs in decoding or post-processing, the 

ED-EC framework is computationally economical in the sense that it is unnecessary to 

distinguish among alternatives for detected correct regions in signals. 

With an automatic error detection procedure, some recognition errors are missed, and 

alternatives may be created for correctly recognized characters. With the proposed error 

detection algorithm, 40.0% and 49.5% of the character errors are missed for TestSet G and 

TestSet_N，respectively. Not applying advanced linguistic knowledge to these undetected errors 

may lead to performance loss. However, 94.5% and 93.0% of the correct characters are 

successfully detected for TestSet G and TestSet_N, respectively. The LM computation saved on 

these correct characters is substantial. This may compensate for the possible loss related to the 

undetected misrecognitions. 

• Computation expended for erroneous characters 

The ED-EC framework applies advanced linguistic models to errors. Given a recognition error, 

in most search spaces, such as recognition lattices and TV-best lists, the number of alternatives for 

this error is limited, and these alternatives may not include the corresponding reference. 

Enlarging the alternative lists for errors to enhance the coverage rate of references should be 

beneficial. The ED-EC framework attempts to fulfill this objective by introducing a separate 

candidate creation scheme. As a result, the computation on the detected erroneous regions in 

signals for the ED-EC framework may be heavier than that for other post-processing techniques, 

since it is more focused. 

The ED-EC framework places more computational emphasis on those utterances 

containing multiple errors. When the number of errors in an utterance increases，the size of the 

sausage-type search space grows, making the subsequent processing slower. We believe that this 

is reasonable since the worse the recognizer performs, the larger the effort needed to compensate. 

For a state-of-the-art recognizer, heavily erroneous utterances that require intensive computation 

normally only occupy a small portion of recognized utterances. 

With the proposed error detection algorithm, about 40% of the detected errors are false 

errors. While the computation expended on true errors is worthwhile, the computation on false 

errors is wasted and can harm performance. 
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• Additional computation expended on error detection 

As shown in Section 5.4，compared with the heavy computation load of error correction，the cost 

of error detection is small. Adopting a better error detection algorithm may lead to heavier 

computation for this procedure. However at the same time, the efficiency of other aspects will 

be improved. For example, unnecessary computation of false errors will be reduced. Thus, the 

efficiency of error detection should be evaluated based on overall system behavior. 

6.4 Chapter Summary 

This chapter presents a competitive study. We first compare two types of strategies，namely 

single-pass strategies and multi-pass strategies，for utilizing advanced linguistic knowledge to 

benefit LVCSR. Single-pass strategies incorporate advanced models in single-pass decoding, 

whereas multi-pass strategies apply these models in post-processing. The ED-EC framework is 

based on a multi-pass strategy. Compared with single-pass strategies, multi-pass strategies have 

two main advantages: (1) the simplicity to apply a knowledge model and (2) the ability to utilize 

the right context. We then compare the ED-EC framework with a widely used post-processing 

technique named TV-best re-ranking. Both performance and potential benefits are discussed. 

Finally, we discuss the differences in computational expense between the ED-EC framework and 

the approaches that equally process entire signals. The ED-EC framework saves computation on 

detected correct regions in signals while expending additional computation for error detection. 

In the rest of this thesis, we will investigate the effectiveness of the ED-EC framework 

across various baseline LVCSR systems. 
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Chapter 7 

An Approach to Enhancing the 

Baseline Recognition System 

Previous chapters have outlined the development and analysis of an error detection and 

correction (ED-EC) framework with a state-of-the-art baseline recognizer. The remaining 

questions are: (1) Will the ED-EC framework be effective for other baseline recognition systems 

with different performance? (2) Can the baseline recognition system be a multi-pass system that 

already uses certain techniques to post-process the output of a recognizer? Note that the baseline 

recognition system for an ED-EC framework does not have to be a single-pass recognizer. To 

answer the two questions, in this chapter we propose a novel post-processing approach, called 

Discriminative Lattice Rescoring (DLR), to enhance the recognizer baseline system. The 

analyses regarding the two questions above can thus be performed based on the discriminatively 

enhanced baseline systems in the next chapter. 

The DLR algorithm is an extension of discriminative n-gram modeling. Discriminative 

n-gram modeling has been shown to be effective in improving LVCSR when the training and 

testing conditions are similar in nature [147]. The novel aspects of the DLR algorithm lie in (1) 

recasting the discriminative n-gram model as a pseudo-conventional n-gram model and (2) using 

this pseudo model to rescore recognition lattices generated by decoding. In this chapter. Section 

7.1 provides an overview of the DLR technique. The motivation and advantages of this 

technique are addressed. Section 7.2 briefly reviews discriminative n-gram modeling. Section 

7.3 discusses the pseudo-conventional n-gram representation of a discriminative n-gram model. 
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Section 7.4 presents the approach of using the pseudo-conventional n-gram model to rescore 

recognition lattices. Finally, the experiments and analyses are given in Section 7.5. 

7.1 Overview 

Recently there has been a growing interest in adopting discriminative training methods to 

enhance LVCSR performance [8，76，137], as discussed in Section 1.3. Among these efforts, 

one effective method is discriminative n-gram modeling, which selects the n-gram counts along 

with the recognition scores as features and defines a global linear model to distinguish among the 

utterance hypotheses in TV-best lists or recognition lattices. Encouraging results have been 

reported for using discriminative n-gram modeling to improve English LVCSR [105, 106]. Our 

own previous effort [147] showed that this technology can also effectively reduce the error rate 

for Mandarin LVCSR, especially when the training and testing conditions are of similar nature. 

In addition, discriminative n-gram modeling is efficient in training, compared with those 

discriminative training methods that require iterative decoding [20, 71]. 

In this work, we want to use discriminative n-gram modeling to raise the recognizer 

baseline and apply the ED-EC framework on the raised baseline. However, we notice that it is 

not straightforward to extend discriminative n-gram modeling with other techniques. Previous 

works have used the trained discriminative n-gram model to score and rank TV-best hypotheses. 

Some works have used a weighted finite-state automaton (WFA) to store the discriminative n-

gram model. By viewing a recognition lattice as an acyclic WFA, they then identified the 

discriminatively top-scoring paths in recognition lattices with a series of WFA operations, 

including the intersection of two WFAs [106]. In both cases，only the top-scoring hypothesis is 

generated for each speech utterance. This makes the further application of other techniques 

difficult, since most post-processing techniques require more than the best scoring hypothesis, 

e.g.，a recognition lattice or the TV-best hypotheses. 

To facilitate the extension of discriminative n-gram modeling, this thesis demonstrates 

that the linear discriminative n-gram model can be recast as a pseudo-conventional n-gram 

model if the order of the discriminative n-gram model is lower than or equal to the order of the 

n-gram model in the baseline recognizer. Using this pseudo-conventional n-gram model, the 
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power of the discriminative n-gram model can be easily captured in single-pass n-gram decoding 

or lattice rescoring. Since both single-pass decoding and lattice rescoring can generate lattices, 

other post-processing techniques can be applied on these discriminatively generated lattices in 

the same way as the conventional recognition lattices. Extending discriminative n-gram 

modeling with other techniques to achieve cumulative improvement thus becomes convenient. 

In this work，we use the pseudo-conventional n-gram model to rescore recognition 

lattices using an efficient algorithm, which computes the pseudo-conventional n-gram 

likelihoods online. Within the discriminatively rescored lattices, the best hypothesis (i.e., the 

utterance hypothesis scored highest by the discriminative n-gram model) can be efficiently 

identified by A* search. These discriminatively rescored lattices can also be delivered to provide 

information for further processing of the ED-EC framework, as will be discussed in the next 

chapter. 

7.2 Discriminative N-Gram Modeling 

Discriminative n-gram modeling defines a linear framework that re-ranks utterance hypotheses 

generated by a baseline recognizer. These utterance hypotheses can either be the TV-best 

hypotheses or the ones contained in recognition lattices [105，106]. Discriminative n-gram 

modeling can be described as follows: 

• We need a training data set with N speech utterances and RII i i= l . . .N) hypotheses for each 

utterance. Define Xij as they-th (j=l... rij) hypothesis of the z-th utterance. Define Xi’R as the 

hypothesis with lowest CER among { Xij }. 

• We need a separate test set o f j / j with similar definitions as the training set. 

• Define D+1 features fd(h), d=O...D’ where h is a recognition hypothesis. The features could 

be arbitrary functions that map h to real values. 

• Define a discriminant function as: 

D — 
= Y , a丄、h) = a • f { h ) ( 7 .1 ) 

z = 0 

The task of discriminative training involves a search for a weight vector a that satisfies the 

following conditions on the test set: 
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g ( 兄 , 幻 ( 7 . 2 ) 

For discriminative n-gram modeling, the features are the recognition scores and the n-

gram counts. For each utterance hypothesis h, the base feature fo(h) is the recognizer score of h. 

The recognizer score for an utterance hypothesis is the weighted summation of acoustic and 

linguistic likelihoods that are assigned by the baseline recognizer. The recognizer score of h is 

computed as Equation 6.8. Since the calculation of fo(h) includes acoustic likelihoods, the 

discriminative n-gram model is acoustically relevant. 

The remaining features are the counts of each n-gram (i.e.，an n-word sequence) in h. We 

first assign each selected n-gram with a unique index i (l<i<D). fiQi) is then defined as the 

count of the 产 n-gram in h. For instance，the unigram ''new'' and the bigram ''new solutions,, are 

assigned with indexes j and k respectively. Given that h is “There are new ideas and new 

solutions,,, fj(h) =2 and fk(h)=l. Normally, a discriminative TV-gram model considers all n-grams 

with order n< N. For example, a discriminative bigram model usually utilizes both unigram s 

and bigrams. 

The weight vector a can be trained by various discriminative training methods (e.g.， 

perceptron and boosting) to minimize the training error [147]. This study adopts the perceptron 

algorithm. This algorithm optimizes a minimum square error (MSB) loss function [90] to 

approximate the minimum training error. The MSB loss function can be written as: 

floss = \ E , 句 - , 句 ) 2 (7.3) 

where Xi’k is the utterance hypothesis having the highest g(h, a) value among all the candidate 

hypotheses for the 产 speech utterance. 

In this study, we follow [39] to use the averaged perceptron algorithm [23, 32] to train the 

weights. This method first uses the standard perceptron with delta rule to iteratively update the a， 

as shown in Figure 7.1. The weights are then averaged to increase model robustness. Define 

a'f as the value of ad after processing the 产 utterance in the 产 iteration. The average weights 

are calculated using Equation 7.4: 

(以上g d = Q …D (7.4) 
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1 Initialize the weight vector 
2 For j = l...t{t is the total number of iterations) 
3 For the 产 speech utterance, i = 1 ...n 
4 Choose the x,’众 with the highest g(h，a) value among all the XjjS 

5 For d = O...D( rj is the size of the learning step) 

6 "(gO,’尺，a) - ，a ) ) { f , ) - f , U,)) 

Figure 7.1: The standard perceptron algorithm with delta rule 

7.3 The Pseudo-Conventional N-Gram Representation 

In this section，we first prove that the linear discriminative n-gram model can be recast as a 

pseudo-conventional n-gram model in Section 7.3.1. The deduction of equations is given. Then 

we discuss the computation of this pseudo-convention n-gram model in Section 7.3.2. Two 

computation methods, building a complete pseudo model offline and generating pseudo-

conventional n-gram probabilities online, are presented. Some of the material presented in this 

section was previously published in [148]. 

7.3.1 Theory 

For each speech utterance, the discriminative n-gram model scores each hypothesis as shown in 

Equation 7.1 and selects the top-ranking hypothesis as the new recognition result. If ao is larger 

than zero, we can rewrite the scoring method as equation 7.5 without changing the ranking of the 

candidate hypotheses. Note that given a reasonably good baseline recognizer, the base feature 

fo(h) (i.e.，the recognizer score) is a reliable source of information to distinguish among 

competing hypotheses, and thus ao is always positive. 

D 

1 a, 
(7.5) 

The first part fo (h) is the score that the baseline recognizer assigns to h, as follows: 
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tn 
= 尸 崖 + 尸似(w, I 卜 i ) - m . r (7.6) 

Z=1 Z=1 

where wiw2...wm is the corresponding word sequence of the utterance hypothesis h, PAufwi) and 

PLM(Wi\wi, W2, ...,Wi.i) are the acoustic likelihood and language model (LM) likelihood in the log 

domain for the word w,; a and p are the acoustic and LM weights adopted by the recognizer; and 

r refers to the word insertion penalty. 

For a discriminative TV-gram model that considers all n-grams with order n< N, the 

second part of Equation 7.5 can be written as: 
D a 1 

Ya 丄 fiW = — ( 以 + 以 + …+ 〜，+ + + … 

^ (7.7) 
=1 a^ a 

+ V̂f + + + ^W.W. ..W.r., "' + ... w...) N + \"' m-N + 2 

where 以 …众 is the weight of the n-gram (wiWi+i...Wi+k). 

Combining Equations 7.6 and 7.7, Equation 7.5 can be rewritten as: 

D a 

7-1 Clf\ 

= 仅 E 尸 愈 ( ^ i ) + 尸 1 狄 1 , 狄 2 , •..狄卜1)-阶厂 
Z=1 Z=1 

"o 

m m 

z=l z=l 

where 

P l a A M I = I + 
1 

(7.8) 

O^^w, + 以 w,�w’. + •••+以W,.-；̂,丄iW,-；̂,丄，...w,. 
(7.9) 
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Equations 7.8 and 7.9 indicate that scoring an utterance hypothesis by the discriminative 

TV-gram model is equivalent to scoring the hypothesis by an updated recognizer. The updated 

recognizer replaces the original language model P i M f W / l w ； , i n the baseline recognizer 

with the modified language model 尸im丫w/|w7，...,Wi.i). Suppose that the original language model 

is a conventional n-gram model with order L. If N<L,WQ can recast the discriminative TV-gram 

model as a pseudo-conventional 丄-gram model as the equation below. The power of this 

discriminative model to distinguish among candidate hypotheses can thus be captured by the 

pseudo-conventional 丄-gram model. 

'(巧 I 巧-Z+l,"^卜 Z+2””"^卜 1) = Pl-grami^r I 巧-Z+1, 卜Z+2 ” ” 卜i) + 

“ n ( 〜 + + … + ) ( ) 

7.3.2 Model Computation 

The pseudo-conventional n-gram model can be computed based on Equation 7.10 using two 

possible methods: 

Method 1: Compute the pseudo-conventional n-gram model offline 

A complete pseudo-conventional n-gram model can be built by modifying the n-gram entries in 

the original n-gram model incorporated in the baseline recognizer using Equation 7.10. The 

difficulty lies in the fact that the n-gram model in the recognizer normally does not contain all 

possible n-grams. This is due to the usage of the back-off strategy for n-gram modeling. Given 

an n-gram model, an n-gram probability may not be included and may be computed via back-off 

to lower-order n-grams. For example, a bigram not included is calculated as follows: 

A 評 K I � = K ^ l ) P u n r g r a S ^ l ) (7.11) 

wherepbrigram(^ '̂2\\ '̂i) andPunigram(^ '̂2\\̂ 'i) are bigram and unigram probabilities respectively. b(wi) 

is the back-off weight of wi. 

For n-grams that are absent from the original n-gram model but are updated by Equation 

7.10，we can insert them into the model as new entries. But this may cause the resulting model to 
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be too large. An alternative method is to keep the model size unchanged and adjust the related 

back-off weights and/or probabilities of lower-order n-grams. However, the adjustment of 

backup weights and lower-order n-grams is controversial [69]. 

Method 2: Compute the pseudo-conventional n-gram likelihoods online 

This approach does not create a physical model and computes the pseudo-conventional n-gram 

likelihoods only when they are needed for either decoding or lattice rescoring. Thus, the 

problem caused by the back-off strategy can be circumvented. Section 7.4 describes the details 

of how to compute the pseudo-conventional n-gram likelihoods online for lattice rescoring. The 

online calculation of pseudo-conventional n-gram likelihoods for single-pass decoding is similar. 

7.4 Discriminative Lattice Rescoring 

A pseudo-conventional n-gram model can be applied either in a single-pass decoding procedure 

or during post-processing. This work uses the pseudo-conventional n-gram model to rescore 

recognition lattices generated by the baseline recognizer. The pseudo-conventional n-gram 

likelihoods are computed online when needed. We refer to this process of lattice rescoring as 

discriminative lattice rescoring (DLR). 

In a recognition lattice, each word hypothesis along with its acoustic and LM likelihoods 

is stored in either a node or a link. As discussed in Section 1.2，if the lattice is generated by a 

conventional L-gram model, the (L-7)-word history for each word hypothesis is unique. Figure 

1.2 provided a sample recognition lattice generated by a recognizer with a trigram model. To 

facilitate reading, we redraw it as Figure 7.2. 

The basic idea of DLR is to replace the original LM likelihood with the pseudo-

conventional n-gram likelihood for each word node/link in a lattice based on the word history. 

As shown in Equation 7.10, the calculation of the pseudo-conventional L-gram likelihood is 

composed of two parts: (1) the score from the original L-gram model, and (2) the score from the 

discriminative TV-gram model. For each word node/link, the original L-gram score is exactly the 

original LM likelihood, which has already been stored in the node/link in focus. The 
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WE LOVE FLOWERS 

WILLIAM FLOWERS 

Figure 7.2: A sample recognition lattice generated by trigram decoding ("SIL" marks pauses) 

discriminative TV-gram score for each word node/link can be computed unambiguously based on 

the corresponding (A^-7)-word history. This is because the (A^-7)-word history for every word 

node/link is always unique. In a recognition lattice generated by 丄-gram decoding, the {L-1)-

word history for each word node/link is unique. Thus, the (A^-7)-word history for each word 

node/link is also unique, since N must be no larger than L in pseudo-conventional n-gram 

presentation. 

Based on these analyses, we propose the following DLR algorithm. We traverse all word 

nodes/links in a recognition lattice. For each word node/link, its discriminative TV-gram score is 

calculated based on the corresponding (A^-7)-word history and is then added to the original LM 

likelihood. The summation is assigned to the word node/link in focus as the new LM likelihood. 

Having obtained the rescored lattice, the top-scoring utterance hypothesis is identified efficiently 

by the A* search. This selected hypothesis is the one having the highest g(h, a) value among all 

utterance hypotheses in the lattice search space. 

As mentioned in Section 1.2，some recognizers may merge two word hypotheses that 

have the same identified word and the same starting/ending times if (1) their LM likelihoods are 

the same and (2) the merging will not cause ambiguities in the assignment of 丄-gram likelihoods 

for the subsequent word hypotheses. In this case，the (L-7)-word history for a word node/link 

may not be unique in a recognition lattice. This problem can be solved by various methods. For 

example, the function of merging word nodes/links satisfying the two conditions above can be 

disabled for generating recognition lattices. Another convenient approach is to insert duplicate 
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word nodes/links for those word nodes/links having ambiguous (L-7)-word histories to ensure 

that each word node/link has a unique (L-7)-word history. 

7.5 Experiments and Analyses 

7.5.1 Settings 

We use a disjoint Mandarin speech corpus, referred as DT Set, to train the discriminative n-gram 

models. This corpus contains 84,498 read utterances, which are recorded in Microsoft Research 

Asia. As for the development sets of the ED-EC framework, DT Set is also in the domain of 

novels. We evaluate the discriminative models on the general test TestSet G and the novels-

domain test set TestSet_N that are mentioned in Section 4.1. All recognized utterances, TV-best 

hypotheses and recognition lattices involved in this chapter are generated by the baseline 

recognizer described in Section 4.2. 

We adopt discriminative bigram modeling in this study. The features include the 

recognizer score and the counts of unigrams and bigrams. Since it was shown in [105] that the 

benefit of adding trigram features is limited, we focus on unigrams and bigrams for simplicity 

and efficiency. We use the lexicon entries in forming unigrams. All the word pairs in the 20-

best hypotheses of the training data DT Set are included as bigrams. There are 3,657,348 

bigrams in total. 

With these features, we train discriminative models on DT Set using the average 

perceptron algorithm. We initialize the weight for the base feature (i.e.，the recognition score) at 

0.8. The weights for other features are initialized at 0. All the feature weights are updated in the 

following way during the training procedure: the size of the learning step is set to be 0.01 and 

the number of iterations is set to be 60. Our previous effort [147] showed that more iterations 

may lead to better performance, especially if the training and test conditions are similar in nature. 

However, since the objective here is to investigate the feasibility of discriminative lattice 

rescoring instead of to develop optimal discriminative n-gram models, we did not optimize the 

iterations in this study. 



Discriminative n-gram models are trained on certain numbers of TV-best hypotheses. To 

facilitate the discussion, we denote the number of TV-best hypotheses for each speech utterance 

for the training of a discriminative model as NTR. A given discriminative model is applied to re-

rank the TV-best hypotheses and/or to rescore the recognition lattices on test data. We denote the 

number of TV-best hypotheses for each speech utterance in testing as NTE-

7.5.2 Model Development 

We investigate the influence of NTR on the effectiveness of discriminative n-gram modeling. 

First, a series of discriminative bigram models are trained on the 84,498 utterances in DT Set 

using different NTRS，as illustrated in Figure 7.3. The model trained with NTR =m is named as 

Model_Nm (m=20, 50’ 100, 500, 1000). We then compare the performance of these 

discriminative models on test data. The five models are used to re-rank the 1000-best testing 

hypotheses, as illustrated in Figure 7.4. The results are shown in Figure 7.5. 

From Figure 7.5，the first observation is that for TestSet_N，adding a greater number of 

TV-best hypotheses in training smoothly improves the performance. The CER quickly drops from 

19.9% to 17.1% when the training TV-best number increases from 1 to 100. After that，the CER 

slowly converges to around 16.3%. The model trained on 1000-best hypotheses achieves a 

relative CER reduction of 18.1% on TestSet_N over the recognizer baseline. 

The second observation is that for TestSet G, the CER curve fluctuates greatly. Among 

the five discriminative models, only the model trained on the 20-best hypotheses is beneficial, 

bringing a very small improvement of 0.08% absolute CER reduction over the baseline 

performance. All the other models perform worse than the baseline. The poor performance on 

TestSet G is due to the domain discrepancy. While the training data DT Set is in the domain of 

novels, the TestSet G is in general domain. As reported in [147], discriminative training with 

perceptron is domain-sensitive. For testing data similar in nature to training data, perceptron 

training is very effective. However, for testing data whose domain is different from that of 

training data, perceptron over-trains easily. This is because of its indiscriminate way of selecting 

and tuning features. If a general-domain speech corpus that is large enough for discriminative 

training becomes available, a discriminative n-gram model trained on this corpus can bring 

substantial improvement on TestSet G. 
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Training data 
DT Set 

Decoding 

A -̂best hypotheses 

20-best hypotheses 

50-best hypotheses 

DT Model N20 

DT + Model N50 

100-best hypotheses 肌� M o d e l _ N 1 0 0 
f 500 

500-best hypotheses 

1000-best hypotheses 

DT Model N500 

DT + Model NIOOO 

Figure 7.3: The development of discriminative bigram models. NTR refers to the number of N-

best hypotheses for each speech utterance for the training of a discriminative model. DT refers 

to the procedure of training a discriminative n-gram model. 

Model_N20 

Model_N50 

Model_N100 

Model_N500 

Model NIOOO 

Testing data 
TestSet N/TestSet G 

Decoding 

t 1000-best hypotheses 

Figure 7.4: The comparison of the discriminative bigram models. RR refers to the procedure of 

re-ranking TV-best hypotheses 
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N-best re-ranking 
Recognizer baseline 

1000 

Ni 
200 400 600 800 1000 

Evaluated On TestSet G 
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N-best re-ranking 
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NTR : the number of the A/-best hypotheses for each training utterance 

Figure 7.5: The performance of discriminative bigram models trained 

on various numbers of TV-best hypotheses 
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We selected Model_N20 and Model_N1000, which are trained on the 20-best hypotheses 

and the 1000-best hypotheses, respectively, to cover discriminative models with various levels of 

effectiveness. The subsequent experiments are focused on the two models. 

The discriminative models are economical in memory consumption. Although the 

number of total features (i.e.，recognizer score，60,606 unigrams and 3,657,348 bigrams) is very 

large, the number of active features (i.e., those features whose weights are different from the 

initial weights after training) is much smaller. Only 12.6% and 17.2% of total features are active 

for Model_N20 and Model_N1000 respectively. Deleting all inactive features leads to compact 

discriminative models. The compact models provide the same performance as the corresponding 

original discriminative models while consuming much less memory. 

The cost of perceptron training depends on the number of TV-best hypotheses adopted in 

training. For example, while Model_N20 was trained within twelve minutes, the training of 

Model_N1000 needed nearly two days. The computational load for linguistic scoring and 

hypothesis ranking increases when the training TV-best number grows. When NTR is so big that it 

becomes infeasible to store all training hypotheses in memory, the training procedure will be 

very slow, because training hypotheses need to be repeatedly read into and removed from 

memory during iterations. 

7.5.3 DLR vs. Discriminative TV-Best Re-Ranking 

In previous works, discriminative n-gram models are used to re-rank the TV-best hypotheses using 

Equation 7.1 [106]. We refer to this procedure as discriminative TV-best re-ranking. In this 

subsection, we present the performance of discriminative TV-best re-ranking for Model_N20 and 

Model_N1000. Then，the performance of discriminative lattice rescoring is evaluated and 

compared with the discriminative TV-best re-ranking performance. 

• Discriminative TV-Best Re-Ranking 

We apply Model_N20 and Model_N1000 in re-ranking various numbers of the testing TV-best 

hypotheses. We increase NTE (i.e.，the number of TV-best hypotheses for each speech utterance in 

testing) from 1 to 1000. The performance of discriminative TV-best re-ranking on TestSet_N and 

Testset_G are illustrated in Figures 7.6 and 7.7 respectively. 
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Figure 7.6: Performance of discriminative TV-best re-ranking on TestSet_N. 
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Figure 7.7: Performance of discriminative TV-best re-ranking on TestSet G. 
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Figure 7.6 shows that on TestSet_N, adopting a greater number of TV-best hypotheses in 

testing constantly brings better performance for either discriminative model. When the testing 

TV-best number increases, the character error rate (CER) drops quickly at the beginning. Then, 

the rate at which the CER decreases becomes increasingly slow. The decreasing slopes of CER 

are almost flat for both models when the TV-best number is larger than 500. For Model_N20 and 

Model_N1000, re-ranking the top 20 hypotheses provides relative 9.7% and 14.7% CER 

reductions, respectively, over the baseline performance, while relative CER reductions for re-

ranking the 1000-best hypotheses are 10.6% and 18.1%, respectively. This indicates that most of 

the benefit comes from the top-20 hypotheses. 

For TestSet G, Figure 7.7 shows that the minimum CERs are achieved by adopting only 

three or four TV-best hypotheses in testing. When the testing TV-best number increases to around 

100，the CER curve reaches and fluctuates around a relatively high position for each model. For 

most of the TV-best numbers tested, using the Model_N1000 to re-rank TV-best hypotheses always 

hurts the performance while the Model_N20 only brings a negligible improvement. These 

observations are consistent with our previous work [147] in that perceptron training is sensitive 

to the difference in domain between the training and testing data. In this case, finding the 

optimal testing TV-best number on a held-out general domain data set may be beneficial. 

• Discriminative Lattice Rescoring 

For both models (i.e.，Model_N20 and Model_N1000), we use the algorithm described in 

Section 7.4 to perform discriminative lattice rescoring. This approach processes each 

recognition lattice generated by the baseline recognizer in two steps: 

Step 1. Rescore the recognition lattice 

We represent the discriminative bigram model of interest as a pseudo-conventional trigram 

model. We then traverse all the word nodes/links in the lattice and modify their LM 

likelihoods. For each word node/link w/，if it has no history, we add a^^ lia^ • P ) to the LM 

likelihood. Otherwise, we add 仲 + 仲 I{a^ • P ) to the LM likelihood, where w/.； is the 

previous word hypothesis connected to Wi in this lattice. 

Step 2. Find the top-scoring utterance hypothesis 

We perform an A* search in the rescored lattice to find the top-scoring utterance hypothesis. 
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In this study, we store all the unigram weights â ^ and the bigram weights 

red-black search tree. These weights can thus be efficiently identified during rescoring. 

results of discriminative lattice rescoring on TestSet_N and TestSet G are shown in Table 

The performance of discriminative 1000-best re-ranking is also listed for comparison. 

in a 

The 

7.1. 

CERs on TestSet_N % 

Baseline DLR Discriminative 1000-best Re-ranking 

Model_N20 19.86 17.74 17.75 

Model_N1000 19.86 16.27 16.31 

CERs on TestSet_G % 

Baseline DLR Discriminative 1000-best Re-ranking 

Model_N20 8.89 8.83 8.82 

Model_N1000 8.89 9.06 9.04 

Table 7.1: Performance of the discriminative lattice rescoring (DLR) 

From Table 7.1, we can see that discriminative lattice rescoring provides similar CER 

reductions to discriminative 1000-best re-ranking. On TestSet_N, discriminative lattice 

rescoring slightly outperforms the 1000-best re-ranking for both discriminative models. This is 

consistent with the previous observation that adopting a greater number of hypotheses in testing 

slowly reduces the CER on TestSet_N when the hypothesis number is larger than 500. Since the 

effect of discriminative lattice rescoring is equivalent to ranking all the utterance hypotheses in 

the lattice search space, the performance of discriminative lattice rescoring is the upper bound of 

the discriminative TV-best re-ranking performance on TestSet_N. For TestSet G, discriminative 

lattice rescoring performs slightly worse than discriminative 1000-best re-ranking. Note that the 

CER curves for TestSet G fluctuate when the TV-best number increases during testing. This 

observation is not surprising, since discriminative lattice rescoring functionally re-ranks a 

greater number of TV-best hypotheses than discriminative 1000-best re-ranking. 

The experiments also show that discriminative lattice rescoring is efficient. The 

discriminative top-ranking hypothesis in a lattice is identified within 0.25 second on average. 

Rescoring a lattice costs 0.22 second on average, and identifying the top-scoring utterance 

hypothesis in a rescored lattice takes only 0.03 second on average. As a reference. 
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discriminative 1000-best re-ranking takes 0.78 second on average to process a speech utterance. 

Re-ranking all hypotheses to find the discriminatively top-ranking hypothesis in a lattice is even 

more time-consuming. For both discriminative lattice rescoring and TV-best re-ranking, most of 

the computation is devoted to calculating the discriminative scores. The computational load is 

thus mainly determined by the number of word hypotheses in focus. There are on average 2,908 

word hypotheses (nodes/links) in a lattice and 12,120 word hypotheses in the TV-best (7V=1000) 

hypothesis lists of an utterance. 

In conclusion, the above observations indicate that when the testing data are similar in 

nature to the training data, discriminative n-gram modeling can bring significant improvement. 

In this case, performing discriminative lattice rescoring is especially beneficial. First, by 

applying discriminative lattice rescoring, the performance upper bound of discriminative TV-best 

re-ranking can be achieved. Second, discriminative lattice rescoring can be efficiently 

implemented. Finally, applying other post-processing techniques, such as the ED-EC framework, 

on top of the rescored lattices to obtain cumulative improvements is convenient. 

7.6 Chapter Summary 

This chapter proposes a DLR algorithm to post-process the output of a recognizer. DLR is an 

extension of discriminative n-gram language modeling, which defines a global linear model to 

re-rank utterance hypotheses generated during decoding. This chapter demonstrates that a linear 

discriminative n-gram model can be recast as a pseudo-conventional n-gram model if the order 

of the discriminative n-gram model is no higher than the order of the n-gram model incorporated 

in the baseline recognizer. The DLR algorithm then uses the pseudo-conventional n-gram model 

to rescore recognition lattices generated during decoding. Using DLR is functionally equivalent 

to using the original discriminative n-gram model to re-rank all hypotheses contained in 

recognition lattices. Compared with the latter, the process of DLR has two main advantages: (1) 

discriminative top-ranked utterance hypotheses within the lattice search spaces can be efficiently 

identified by the A* algorithm and (2) the rescored lattices can be further enhanced with other 

post-processing techniques (e.g.，the ED-EC framework) to achieve cumulative improvement 

conveniently. 
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In the next chapter, we will use DLR to provide enhanced baseline recognition systems 

and extend the ED-EC framework to the discriminatively enhanced systems. 
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Chapter 8 

Applying the ED-EC Framework to 

Enhanced Baseline Systems 

The error detection and correction (ED-EC) framework is theoretically applicable to any given 

baseline recognition system. In other words, the performance of the baseline system can vary, 

and the baseline recognition can be either a single-pass decoding or a multi-pass recognition 

procedure. This chapter attempts to (1) analyze the effectiveness of the framework over baseline 

systems with difference performance and to (2) investigate the feasibility of applying the ED-EC 

framework on multi-pass baseline systems. 

We first apply the Mandarin ED-EC prototype to the enhanced baseline systems that use 

a discriminative lattice rescoring technique (i.e., the algorithm proposed in Section 7.4) to post-

process the output of the recognizer. The experimental details are described in Section 8.1. We 

then evaluate the effectiveness of the ED-EC prototype for different baseline systems in Section 

8.2 by comparing the prototype performance on the recognizer and enhanced baseline systems. 

The results show that the error detection procedure, the error correction procedure and the 

overall ED-EC prototype are all effective for different baseline systems. This implies that the 

ED-EC framework is potentially widely applicable to recognition systems, not only single-pass 

decoding systems but also multi-pass recognition systems. Finally, we analyze the prototype 

performance on unseen data in Section 8.3. The experimental results indicate that the ED-EC 

framework can be robust to the discrepancies between the training and testing conditions. 
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8.1 Experiments 

The ED-EC prototype has been proposed to detect and correct recognition errors in the output of 

a state-of-the-art single-pass baseline recognizer. For the current prototype, both the error 

detection and error correction procedures depend on the recognition lattices that are generated 

during decoding. The error detection procedure uses lattice probabilities as the features, and the 

error correction procedure selects candidate alternatives for detected errors from the lattices. If 

an alternative baseline system can provide corresponding lattices, the ED-EC prototype can be 

applied to this baseline system without any algorithm modifications. Discriminatively enhanced 

baseline systems provide the corresponding discriminatively rescored lattices in addition to the 

recognition results (i.e.，the top-scoring utterance hypotheses in rescored lattices). We thus 

extend the ED-EC prototype to discriminatively enhanced baseline systems simply by 

developing and evaluating the prototype on the discriminatively rescored lattices in the same 

way as on the original recognition lattices. The procedure is illustrated in Figure 8.1. 

Recognizer baseline 

A discriminatively 
raised baseline 

Develop an ED-EC framework 
on recognition lattices — • 

Evaluate the framework 
on recognition lattices 

Develop an ED-EC framework 
on rescored lattices — • 

Evaluate the framework 
on rescored lattices 

Figure 8.1: The extension of the ED-EC prototype to a discriminatively enhanced 

baseline recognition system 

We develop two discriminatively enhanced baseline systems in this study. The 

experimental setup is described in Section 8.1.1. Section 8.1.2 presents the training and testing 

procedures. 

8.1.1 Experimental Setup 

To obtain two discriminatively enhanced baseline systems, we use two discriminative n-gram 

models, Model_N20 and Model_N1000 (trained in Section 7.5.2), to post-process the output of 

the recognizer (trained in Section 4.2) using the discriminative lattice rescoring (DLR) technique. 
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We refer to the enhanced recognition systems achieved by applying Model_N20 and 

Model_N1000 as DT_N20 and DT_N1000，respectively. The relationship between the two 

discriminatively enhanced baseline systems and the original baseline recognizer are illustrated in 

Figure 8.2. 

Input speech utterances 

Decoding with the baseline recognizer 

Recognition results: Recognized utterances 
Lattices: Recognition lattices 

7 ^ 
Discriminative Lattice Rescoring 

/ \ 
using Model—N20 using Model—N1000 

z — —\ 

K^Rec^nizer baseHne^ 

Figure 8.2: The two discriminatively enhanced baselines and the recognizer baseline 

To train and test the ED-EC prototype on the discriminatively enhanced baseline systems, 

we organize the speech and text corpora in the same way as Section 4.1，except that we evaluate 

the prototype only on the test set TestSet_N in this set of experiments. The other test set 

Testset_G is not utilized since TestSet G is inconsistent with the discriminative training data in 

domain and DLR consequently fails to improve the recognition performance on this test set，as 

discussed in Section 7.5. Because this set of experiments aims to investigate the behaviors of the 

ED-EC framework over baseline systems having different performance, we focus on TestSet_N， 

on which DLR can effectively bring higher baseline performances. 

8.1.2 Training and Testing Procedures 

We retrain and test the ED-EC prototype for each enhanced baseline system. For the enhanced 

system of interest，the recognition lattices generated by the baseline recognizer are rescored by 

the corresponding discriminative n-gram model. The top-scoring utterances in the rescored 
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lattices are output as the new recognized utterances (i.e.，the recognition results). The ED-EC 

prototype aims to detect and correct recognition errors in these new recognized utterances. We 

first retrain the ED-EC prototype on the rescored lattices in the same way as on the original 

recognition lattices. For the error detection procedure, the acoustic and language model (LM) 

weights that are used to compute the generalized word posterior probability (GWPP) feature are 

retimed by performing a ten-fold cross validation on ErrDect Set. Based on the new acoustic 

and LM weights, the word verifier is retrained on the whole ErrDetect_Set. For the error 

correction procedure, we directly limit the size of a candidate list to 20. The interpolation 

weights of the three individual linguistic models in linguistic scoring as well as the two 

thresholds (i.e.，fa and ft in Equation 3.2) in the special mechanism to handle false alarms are 

retimed on ErrCorr_Set. We then evaluate this retrained ED-EC prototype on TestSet_N based 

on the new recognized utterances and rescored lattices for the enhanced baseline system of 

interest. Figure 8.3 lists the procedures to retrain and test the ED-EC prototype for a 

discriminatively enhance baseline system. 

Figure 8.3: Retraining and testing the ED-EC prototype 

for a discriminatively enhanced baseline recognition system 
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8.2 Results and Analyses 

8.2.1 Performance of Various Baseline Systems 

As discussed in Section 8.1.1, all experimental results are evaluated on TestSet_N in this chapter. 

The performance of the discriminatively enhanced baseline systems and the recognizer are listed 

in Table 8.1. Over the recognizer baseline, rescoring recognition lattices using Model_N20 

brings a 10.7% relative reduction in CER，and rescoring lattices using Model_N1000 achieves an 

even larger relative CER reduction of 18.1%. Table 8.1 also shows that for all three baseline 

systems, insertions and deletions account for only a very small portion of the total recognition 

errors. This further supports the decision of the ED-EC prototype to focus on substitutions to 

reduce the system complexity. 

Baseline 
CER 

o/o 

Number of Character Errors 
Baseline 

CER 

o/o Substitution Insertions Deletion 

Recognizer 19.9 11,721 213 516 

DT_N20 17.7 10,428 194 501 

DT_N1000 16.3 9,535 191 475 

Table 8.1: Performance of various baseline systems 

8.2.2 Effectiveness of Error Detection 

The error detection performance for each of the different baseline systems is shown in Table 8.2. 

The detection error rates (DERs) and the balanced F-measures are compared. The two error 

detection related rates R EDM and R—EDPN, which are critical for the effectiveness of the ED-

EC framework as discussed in Section 4.2，are also considered. R EDm is the rate that 

misrecognized characters are detected as errors, while R EDPN is the rate that a correct character 

is wrongly detected as an error. 
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Baseline CER o/o DER o/o 

F-measure for 

Correct 

Characters % 

F-measure for 

Erroneous 

Characters % 

R—EDNN 

o/o 

R EDPJQ 

o/o 

Recognizer 19.9 14.5 91.2 58.9 54.4 7.1 

DT_N20 17.7 13.2 92.2 57.8 53.1 6.3 

DT_N1000 16.3 12.1 93.0 56.2 50.1 5.2 

Table 8.2: Error detection performance for various baselines 

The results above show that for the discriminatively enhanced baselines, the error 

detection performances are comparable to those for the recognizer baseline. When the baseline 

decreases, the detection performance for correct characters improves, whereas that for erroneous 

characters worsens. This is possibly because for enhanced baselines, there are more correct 

words and the less erroneous words in the training data of the word verifier, making the resulting 

word verifier perform better on correct words and worse on erroneous words. As illustrated in 

Table 8.2，when the baseline CER decreases, fewer recognition errors are identified, but a 

smaller portion of correct characters are wrongly labeled as errors. Since the number of correct 

characters is relatively large, the improvement for correct characters overcomes the performance 

decrease for erroneous characters. This leads to the result that the better the baseline, the lower 

the overall detection error rate. 

We further analyze the error detection performance in terms of utterance clustering. For 

each baseline, we cluster the test utterances into three utterance subsets based on the number of 

detected errors in the same way as described in Section 4.3.2. The utterances that contain zero， 

from one to four, and more than four detected errors are labeled as correct, lightly erroneous and 

seriously erroneous respectively. The performances of utterance clustering are included in the 

table 8.3. The results show that the error detection procedure performs similarly in terms of 

utterance clustering for the various baselines. For every type of utterance set，the CERs are 

comparable. We also notice that when the baseline system is better, more utterances are labeled 

as correct and fewer utterances are labeled as lightly/seriously erroneous. This reflects the 

effectiveness of the error detection. In addition, for the discriminatively enhanced baselines, 

more utterances are filtered from further error correction processing. This raises the efficiency 

of the ED-EC framework. 
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Baseline 

Correct Utterances 

(0 error) 

Lightly erroneous 

Utterances (1-4 errors) 

Seriously erroneous 

Utterances (>4 errors) Baseline 

Utt. Num CER o/o Utt. Num CER o/o Utt. Num CER o/o 

Recognizer 1,362 6.4 1,790 20.4 848 37.1 

DT_N20 1,541 5.2 1,764 19.6 695 36.6 

DT_N1000 1,776 5.5 1,668 19.1 556 37.3 

Table 8.3: The character error rates (CERs) of the utterance subsets of correct, lightly erroneous 

and seriously erroneous. Utterances are labeled based on the number of detected errors. 

8.2.3 Effectiveness of Error Correction 

For each enhanced baselines, we apply the retrained error correction procedure on the 

corresponding lightly erroneous utterance subset. The results are illustrated in Figure 8.4. 

Figure 8.4 shows that when the baseline CER decreases, the number of detected errors also 

decreases. However, the ratio of true to false errors is about 1.8 for all the baselines. Table 8.4 

lists the two correction rates for the true and false errors. RT refers to the rate of successfully 

correcting true errors. Rp refers to the rate of remaining correct after correction for false errors. 

Baseline RT% RF% 

Recognizer 26.3 73.9 

DT_N20 19.0 82.4 

DT_N1000 21.7 71.9 

Table 8.4: RT and RF on the lightly erroneous utterance sets for various baselines 

In Table 8.4，the first observation is that the correction rates for the true errors are 

relatively low for the discriminatively enhanced baselines compared with that for the recognizer 

baseline. This is partially because the misrecognitions of the enhanced systems tend to be more 

difficult to correct. Those that are easy to correct may have already been corrected through 

discriminative lattice rescoring. The second observation is that both RT and RF depend on the 

specific set of detected errors. DT_N1000 has a lower CER than DT_N20. Intuitively, we 
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For recognizer baseline (CER: 20.4%) 

4385 Characters detected as erroneous ^ � 

2793 Erroneous characters i 1592 Correct characters 
(i.e.，real errors) 

Corrected: 735 (26%) 
Not Corrected: 2058 (74%) 

(i.e.，false errors) 
Remaining correct: 1177 (74%) 

'Corrected" into errors: 415 (26%) 

For DT_N20 baseline (CER: 19.6%) 

4230 Characters detected as erroneous ^ � 

2695 Erroneous characters 
(i.e.，real errors) 
C^rrecSd:' '512(19%) 

Not Corrected: 2183 (81%) 

1535 Correct characters 
(i.e.，false errors) 

Remaining correct: 1265 (82%) 
'Corrected" into errors: 270 08%) 

For DT_N1000 baseline (CER: 19.1%) 

3881 Characters detected as erroneous 
Z � 

2491 Erroneous characters 
(i.e.，real errors) 

1390 Correct characters 
(i.e.，false errors) 

Corrected: 541 (22%) 
Not Corrected: 1950 (78%) 

Remaining correct: 999 (72%) 
'Corrected" into errors: 391 (28%) 

Figure 8.4: Error correction details on the lightly erroneous utterance set for various baselines 

expect that the true errors for DT_N1000 are more difficult to correct. However, RT for 

DT_N1000 is slightly higher than that for DT_N20. This means that the correction ability is 

greatly influenced by the specific errors along with their corresponding context. The fluctuation 

of RF across various baselines also proves this point. 

Evaluated in terms of CER, the performances of error correction on the utterance sets of 

lightly erroneous are shown in Figure 8.5. 
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Figure 8.5: The reduction in CER brought by the error correction procedure, evaluated on the 

lightly erroneous utterances 

Figure 8.5 shows that the better the baseline, the smaller the CER reduction. The relative 

CER reductions are 5.9%, 4.6% and 3.1% over the recognizer baseline, DT_N20 baseline and 

DT_N1000 baseline respectively. As discussed in Section 5.1.3，the CER reduction is 

determined by the number of misrecognitions corrected and the number of new wrong characters 

introduced by "correcting" false errors, along with the total number of characters. The CER 

reductions over the discriminatively enhanced baselines are smaller than that over the recognizer 

baseline, mainly because fewer true errors are corrected. Fewer true errors are detected and the 

correction rates RT are lower for the enhanced systems. Compared with DT_N20, DT_N1000 

has a higher RT, and its CER reduction is smaller because many more false errors are transferred 

into new errors, which limits the overall improvement. 

8.2.4 Overall Framework Effectiveness 

We further evaluate the ED-EC framework on the entire TestSet_N for the various baselines. 

The results are presented in Table 8.5. We can see that applying the ED-EC framework 

consistently improves the baseline performance. This verifies the effectiveness of the framework 

and indicates its feasibility for application to multi-pass baseline recognition systems. Another 
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observation is that the benefit brought by the framework decreases when the baseline 

performance increases. Recall from Section 4.4.4 that on TestSet G, the framework achieves 

greater improvement (i.e., 6.0% relative CER reduction) over a high recognizer baseline (i.e., 

8.9% CER). This conflict shows that the effectiveness of the ED-EC framework depends on 

multiple factors. These factors include (1) how well the knowledge sources adopted in the ED-

EC framework match the test data in domain and (2) how difficult the recognition errors are for 

the baseline of interest. 

Baseline 
CER before 

Correction % 

CER after 

Correction % 

Absolute CER 

Reduction % 

Relative CER 

Reduction % 

Recognizer 19.86 19.35 0.51 2.6 

DT_N20 17.74 17.36 0.38 2.1 

DT_N1000 16.27 16.03 0.24 1.5 

Table 8.5: The overall reduction in CER, evaluated on the full test set 

8.3 Further Discussions 

In previous sections，we view the baseline recognition system as a black box that provides 

recognized utterances along with corresponding lattices. For each recognizer/enhanced baseline 

system，an ED-EC prototype is trained and tested in the same way. The training and testing 

conditions are known to be consistent. This section investigates the performance of the ED-EC 

framework on unseen data. A trained ED-EC framework may be applied to an unseen set of 

recognized utterances and corresponding lattices which are generated in a scenario different from 

the training situation. This mismatch in training and testing conditions leads to performance 

decline normally. Since in real applications it is hard to guarantee that the input data is similar in 

nature to the training data, the capability of the ED-EC framework to handle unseen data is an 

interesting topic. We investigate the effectiveness of the error detection and correction 

procedures on unseen data in Section 8.3.1 and Section 8.3.2，respectively. 
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8.3.1 Error Detection on Unseen Data 

The error detection procedure detects erroneous characters using the GWPP feature described in 

Section 3.3. The GWPP feature is calculated based on the acoustic and LM likelihoods in the 

lattices. If the training and testing scenarios use different methods to assign likelihoods to the 

nodes/links in the lattices, the effectiveness of error detection may be affected. We evaluate the 

error detection effectiveness on unseen data by directly applying the error detection procedure 

trained for the recognizer baseline system to the enhanced baseline systems. In this case, the 

acoustic and LM likelihoods in the training lattices are directly assigned by the recognizer， 

whereas the LM likelihoods are modified in the testing lattices via discriminatively lattice 

rescoring. We calculate the GWPPs for the testing data in the same way as for the training data, 

as if we do not know the difference in assigning likelihoods. The error detection results are 

presented in Table 8.6. We refer to the error detection procedure trained for the recognizer 

baseline system as ED rec and refer to the error detection procedure retrained for the 

corresponding discriminatively enhanced baseline system as ED dt. 

On DT_N20 baseline 

DER o/o 
F-measure for 

Correct Characters % 

F-measure for 

Erroneous Characters % 
R ED 丽 % R_EDPN% 

E D r e c 13.20 92.20 57.1 51.6 6.0 

E D d t 13.21 92.17 57.8 53.1 6.3 

On DT_N1000 baseline 

DER o/o 
F-measure for 

Correct Characters % 

F-measure for 

Erroneous Characters % 
R_EDNN% R_EDPN% 

E D r e c 12.19 92.92 56.0 49.7 5.2 

E D d t 12.15 92.95 56.2 50.1 5.2 

Table 8.6: The robustness of error detection on unseen data 

Table 8.6 shows that the performance achieved by ED rec is similar to that of ED dt on 

both enhanced systems, indicating the robustness of error detection on mismatching unseen data. 

The difference in F-measures of correct characters is negligible for both baselines. ED rec even 
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slightly outperforms ED dt on the DT_N20 baseline, because it labels fewer correct characters 

as errors. For erroneous characters, retraining the error detection procedure consistently 

increases the detection rate R EDm and the F-measure is reduced by 1.2% and 0.4% for 

DT_N20 and DT_N1000 respectively. 

8.3.2 Error Correction on Unseen Data 

The proposed error correction procedure has three major components: candidate creation, 

hypothesis re-ranking with linguistic knowledge sources, and the additional mechanism to handle 

false alarms of error detection. In this subsection, we discuss the effectiveness of these three 

components on unseen data. Then we evaluate the overall effectiveness of the error correction 

on unseen data. 

• Candidate creation 

As discussed in Section 8.1.2，we use the same approach to create candidate alternatives for 

errors on either the recognizer or discriminatively enhanced baselines. For each error, character 

hypotheses with similar starting and ending times are selected from the corresponding lattice and 

inserted into the candidate list. The candidate list is then pruned, and only the top 20 characters 

with the highest generalized character posterior probabilities (GCPPs) are retained. As 

illustrated in Equation 3.5，GCPPs are derived from word posterior probabilities and thus depend 

on the acoustic and LM likelihoods in the lattices. When the lattices are rescored, the 

performance of candidate creation may be affected. To evaluate the influence of lattice rescoring 

in candidate creation, we compare the performance of candidate creation on the various baselines. 

For clarity, here we assume that the error detection procedure is perfect, and candidate 

alternatives for substitution errors are created. The comparison results are presented in Figure 

8.6. We can see that when the baseline performance increases，the reference coverage rate (RCR) 

slightly decreases. Note that the average sizes of the unpruned/pmned candidate lists are 

comparable for different baselines. The RCR loss caused by pruning is very small for all three 

baselines. 
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Figure 8.6: Reference coverage rate (RCR) of candidate lists created for substitutions. 

The various baselines have different sets of substitution errors. For each baseline, we 

further divide its substitution errors into two subsets. One subset, referred to as the common 

subset, stores those errors shared by all three baselines. The other contains the remaining errors 

and is referred to as the private subset. In other words, the three baselines share the same 

common subset and have different private subsets. The candidate creation performances for the 

two subsets are compared in Table 8.7. All values are RCRs after pruning. The performance 

losses due to pruning are small for both the common and private subsets for every baseline. 

Baseline Overall RCR % RCR for the Common Subset % RCR for the Private Subset % 

Recognizer 65.2 56.08 78.8 

DT_N20 61.6 56.14 72.8 

DT_N1000 58.5 56.13 65.2 

Table 8.7: Reference coverage rate (RCR) for common and private error subsets 

Table 8.7 shows that for all three baselines, the RCRs on the subset of common errors are 

very similar to one another (about 56.1%). This indicates that for common errors, discriminative 

lattice rescoring almost has no impact on candidate creation. Another interesting observation is 

that the RCR for the private subset decreases greatly when the baseline performance improves. 

This may be because errors tend to be more difficult for a baseline system with better 
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performance. Many easy errors have already been corrected by performing discriminatively 

lattice rescoring for the enhanced baseline systems. For the remaining errors, which are 

relatively difficult, the ability of the decoder to include the correct answers into the lattice search 

space is reduced. This also explains why the RCRs for the common subset are much lower than 

those for the private subsets. Generally speaking, common errors are the most difficult ones to 

correct among all errors. They normally appear in those dramatic expressions (e.g., the utterance 

“浑身长着金鳞的菠萝堆成一座座小山散发着浓香” Translation: "Pineapples whose bodies 

are covered by golden scales are piled into small mountains which smell sweet”)，which rarely 

occur and are difficult to model. 

• Knowledge combination for hypothesis re-ranking 

For hypothesis re-ranking，different linguistic knowledge sources are linearly combined using a 

set of interpolation weights. We investigate the effectiveness of interpolation weights on unseen 

data by applying a trained set of interpolation weights to data that is different from the training 

corpus. More specifically, we modify the ED-EC framework developed for a discriminatively 

enhanced baseline by replacing its interpolation weights with the original interpolation weights 

(i.e., the ones in the ED-EC framework trained for the recognizer baseline). We then apply the 

modified ED-EC framework on the enhanced baseline system of interest. The procedures are 

illustrated in Figure 8.7. The error correction results on the utterance sets of lightly erroneous in 

TestSet_N are shown in Table 8.8. To clearly show the effectiveness of the interpolation 

weights，the additional mechanism used to handle false alarms is not utilized in this set of 

experiments. 

Replace the interpolation weights 

Figure 8.7: The procedures to evaluate the effectiveness of interpolation weights on unseen data. 
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Baseline CER before Correction% 
CER after Hypothesis Re-ranking % 

Baseline CER before Correction% 
Retrained Weights Original Weights 

DT_N20 19.56 19.04 19.02 

DT_N1000 19.09 18.95 18.94 

Table 8.8: The effectiveness of linguistic scoring on unseen data, evaluated on the lightly 

erroneous utterance sets. 

In Table 8.8，Original Weights refers to the performance of the retrained ED-EC 

framework with the original interpolation weights, and Retrained Weights refers to the 

performance of the retrained framework with retrained interpolation weights. From Table 8.8， 

we can see that this knowledge combination is effective across various baseline systems. The 

original weights even slightly outperform the retrained ones for both of the enhanced baselines. 

This means that when adapting the ED-EC framework to another baseline recognition system, 

retraining the interpolation weights may be not necessary. 

• Mechanism to handle false alarms 

In the special mechanism to handle error-detection false alarms, the two thresholds fa and f t may 

also be affected as the baseline system varies. Similarly, we analyze the effectiveness of this 

mechanism on unseen data by replacing the fa and fb in the ED-EC framework retrained for an 

enhanced baseline with the ones trained for the recognizer baseline. The error correction results 

are shown in Table 8.9，evaluated on the corresponding lightly erroneous utterance sets for each 

enhanced baseline. Original Thresholds refers to the fa and f t trained for the recognizer baseline, 

and Retrained Thresholds refers to the ones retrained for the corresponding enhanced baseline. 

Baseline 
CER before Applying 

this Mechanism % 

CER after Applying this Mechanism % 
Baseline 

CER before Applying 

this Mechanism % Retrained Thresholds Original Thresholds 

DT_N20 19.02 18.71 18.73 

DT_N1000 18.94 18.54 18.56 

Table 8.9: The effectiveness of the mechanism to handle false alarms on unseen data, evaluated 

on the lightly erroneous utterance sets 
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The results in Table 8.9 show that retraining fa and f t improves the effectiveness of the 

framework. However, the differences between the performance of the original and retrained 

thresholds are very small, being about 0.02% CER for both of the enhanced baselines. 

• Overall error correction procedure 

We analyze the overall effectiveness of the error correction procedure on unseen data by directly 

applying the error correction procedure trained for the recognizer baseline to the discriminatively 

enhanced baselines. The CERs on the utterance sets of lightly erroneous are shown in Table 8.10. 

Baseline CER before Correction% 
CER after Correction % 

Baseline CER before Correction% 
Retrained ED Proc Original ED Proc 

DT_N20 19.56 18.71 18.75 

DT_N1000 19.09 18.54 18.61 

Table 8.10: The effectiveness of the overall error correction procedure on unseen data, evaluated 

on the lightly erroneous utterance sets 

In Table 8.10，Original ED Proc refers to the error correction procedure trained for the 

recognizer baseline, and Retrained ED Proc refers to the error correction procedure retrained for 

the corresponding enhanced baselines. Table 8.10 illustrates that the original error correction 

procedure trained for the recognizer system is effective at correcting errors of the enhanced 

systems. This indicates that the error correction procedure can be effective across various testing 

scenarios. In addition, the table indicates that retraining the error correction procedure for 

enhanced baselines is beneficial. Over the DT_N20 baseline, the relative CER reduction using 

the Original ED Proc is 4.1%, while the Retrained ED Proc achieves a 4.6% relative CER 

reduction. Over the DT_N1000 baseline, the relative CER reductions are 2.5% and 3.1%, for the 

Original ED Proc and Retrained ED Proc respectively. 

8.4 Chapter Summary 

This chapter first investigates the effectiveness of the ED-EC framework across various baseline 

systems. We post-process the output of the baseline recognizer using the discriminative lattice 
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rescoring technique described in Chapter 6 to provide discriminatively enhanced baseline 

systems. We train and test the ED-EC framework for each discriminatively enhanced baseline 

system in the same way as for the original baseline recognizer. Experiments show that the ED-

EC framework achieves consistent improvements over various baseline systems, indicating that 

the framework can effectively improve the performance of both single-pass and multi-pass 

recognition systems. Further, this chapter evaluates the effectiveness of the ED-EC framework 

on unseen data. We directly use the ED-EC framework trained for the baseline recognizer to 

improve the discriminatively enhanced baseline systems. Experimental results demonstrate that 

the error detection procedure is robust to the discrepancy in training and testing conditions. For 

error correction，the influence of this training-testing discrepancy is a bit large. 
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Chapter 9 

Summary and Future Directions 

9.1 Thesis Summary 

For large vocabulary continuous speech recognition (LVCSR)，the language models utilized in 

state-of-the-art recognizers are still elementary. The word trigram models which have been 

prevalent for decades only capture local constraints. To achieve breakthroughs for LVCSR， 

incorporating advanced language models that model long-distance semantic/syntactic constraints 

is promising. However, most such efforts face a serious efficiency problem. This is mainly due 

to the intense computation and high complexity associated with the application of sophisticated 

models. This thesis proposes an error detection and correction (ED-EC) framework with the aim 

of taking advantage of advanced knowledge in LVCSR while maintaining efficiency. The 

framework post-processes the output of a state-of-the-art baseline recognizer by (1) detecting 

recognition errors and (2) correcting detected errors with the aid of sophisticated language 

models. Basically, the framework attempts to only apply computationally expensive models 

selectively, i.e., to the parts of the signals where an error is detected. 

The ED-EC framework offers the following main advantages. First, the framework 

reduces the efficiency problem by selectively applying advanced language models on erroneous 

regions of signals. This selectiveness in model application differentiates the ED-EC framework 

from previous efforts that use sophisticated models to indiscriminately process speech segments. 

Second, using this framework, the optimal gain of the advanced models in focus for LVCSR is 

theoretically achievable. Third, the framework is general in the sense that the implementation of 
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the error detection/correction procedures is flexible，and incorporating new linguistic knowledge 

sources into the error correction is convenient. 

In this study, we design a prototype of the ED-EC framework for Mandarin LVCSR. The 

prototype focuses on detecting/correcting character substitutions, which are the majority of 

character-based errors for Mandarin recognition. The error detection procedure classifies each 

recognized character as either correct or erroneous based on posterior probabilities. Those 

detected erroneous characters are passed on to the subsequent error correction procedure. For 

error correction, a candidate list of character alternatives is created for every detected character 

error. The candidate lists are then connected with the utterance context to construct new search 

spaces, as shown in Figure 9.1. Within the new search spaces, utterance hypotheses are scored 

by an advanced language model that combines three linguistic knowledge sources: mutual 

information, word trigrams and POS trigrams. The candidate alternatives contained in top-

scoring utterance hypotheses are viewed as the results of error correction. To handle error-

detection false alarms, the error correction procedure also adopts an additional mechanism to 

accept/reject the correction results based on error-detection confidence scores and linguistic 

scores. 

-议-长 

Figure 9.1: A sausage-type search network 

The experimental results demonstrate that the ED-EC framework is feasible. On a 

standard general-domain test set, applying the trained prototype brings a 6.0% relative reduction 

in character error rate (CER) over the performance of the baseline recognizer. Among the 

utterances, 50.8% are detected as error-free (i.e.，containing no detected character errors). 

Consequently, the additional computation of the advanced language model (LM) on these 

utterances is avoided. For those utterances on which the error correction procedure is applied, 

the relative CER reduction is as high as 10.9%. 

We analyze the factors that affect the effectiveness of the framework. These factors 

include the linguistic knowledge sources adopted, the properties of the sausage-type search 

spaces and the existence of error-detection false alarms. We observe that the error correction 

performance varies for different linguistic knowledge sources. Combining multiple sources is 
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beneficial. For the search networks, both the network size and erroneous status (e.g., the number 

of undetected errors in the utterance context) have an impact on error correction. The error-

detection false alarms lead to a major problem that correct characters may be wrongly 

"corrected" into new errors. The special mechanism to handle false alarms has been shown to be 

effective in relieving this problem. Based on these observations, we propose a single equation 

(i.e.，Equation 5.3) to describe the ability of the ED-EC framework to reduce the recognition 

error rate. 

We further analyze other characteristics of the ED-EC framework. First, we evaluate the 

performance upper bounds of the framework. The results demonstrate the potential benefit of 

the framework. If both error detection and candidate creation were perfect, the Mandarin 

prototype would achieve a 36.0% relative CER reduction over the baseline performance on the 

general-domain test set. Adopting better/more linguistic knowledge sources in error correction 

may further increase the performance upper bound. Second, we investigate the framework 

efficiency. We observe that the framework computational load while processing an utterance 

depends heavily on the number of detected errors. Using efficient algorithms to search for the 

top-scoring hypotheses in the networks will be especially beneficial. Third, we investigate the 

effectiveness of the ED-EC framework across various baseline recognition systems. We propose 

a discriminative lattice rescoring technique to obtain discriminatively enhanced baseline systems. 

The experimental results show that the ED-EC prototype proposed for the recognizer baseline 

system can be easily extended to the discriminatively enhanced baseline systems, and the 

framework improves the recognition performance for both the recognizer and discriminatively 

enhanced systems. In addition, analyses show that the framework can be robust for unseen data. 

We compare the ED-EC framework with other approaches that use advanced linguistic 

knowledge to benefit LVCSR. Compared with the methods that incorporate advanced LMs into 

a single-pass decoding procedure, the ED-EC framework is advantageous for two reasons: (1) 

the difficulty in merging long-distance constraints into the decoding structure can be 

circumvented and (2) the context for each erroneous region detected can be better utilized. We 

demonstrate that the framework should outperform the single-pass methods when the error 
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detection and candidate creation procedures approach perfection . Compared with the 

algorithms that post-process the recognizer output with sophisticated LMs, the framework can 

theoretically also achieve better performance. This is because the search spaces of the 

framework will guarantee the inclusion of correct utterances if error detection and candidate 

creation are perfect, while other post-processing spaces are normally suboptimal. We use the N-

best re-ranking technique as an example. The experimental results illustrate that TV-best re-

ranking with the identical advanced LM performs much worse than the ED-EC prototype. 

Finally, we present an analysis of computation expenses. Both single-pass methods and post-

processing approaches typically process all signals indiscriminately. In contrast，the ED-EC 

framework concentrates the application of sophisticated LMs on detected erroneous regions in 

signals. The computation saved and expended for the framework is analyzed in detail. 

The discriminative lattice rescoring (DLR) algorithm, which is proposed to provide the 

discriminatively enhanced baseline recognition systems, is another contribution of the thesis. 

The DLR approach is an extension of discriminative n-gram modeling. It recasts a linear 

discriminative n-gram model as a pseudo-conventional n-gram model and uses this pseudo 

model to rescore recognition lattices generated during decoding. Performing DLR is 

functionally equivalent to using the discriminative n-gram modeling method to rank all utterance 

hypotheses in recognition lattices, but is much more efficient. It is also possible to apply the 

pseudo-conventional n-gram model in a single-pass decoding procedure. Section 9.3 will further 

discuss this possibility. 

1 In this chapter, "Perfect error detection" refers to the case that all recognition errors are correctly 
detected; "Perfect candidate creation" refers to the case that the reference characters are guaranteed to be 
present in the candidate lists. 
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9.2 Contributions 

The main contributions of this thesis can be summarized as follows: 

• Propose a novel framework, the error detection and correction (ED-EC) framework, to 
incorporate advanced linguistic knowledge sources into LVCSR 

This framework aims to achieve the optimal gain of sophisticated language models at the 

lowest computational cost. The framework consists of two sequential procedures, error 

detection and error correction, as described in the previous section. The main idea is to only 

apply computationally expensive models where an efficient state-of-the-art recognizer fails. 

This selectiveness in knowledge application differentiates the framework from those 

previous efforts that process speech segments indiscriminately. 

• Implement a prototype of the framework 

A prototype of the ED-EC framework on the task of Mandarin dictation is implemented. 

Note that the ED-EC framework is conceptually language-independent. The Mandarin 

prototype involves an error detection procedure based on posterior probabilities and a novel 

error correction procedure that creates/ranks alternatives for every detected error. An 

advanced LM that combines mutual information, word trigrams and POS trigrams is adopted 

in error correction. 

• Investigate the characteristics of the framework systematically 

The ED-EC framework has been analyzed in many aspects with the example of the 

Mandarin prototype. These aspects include the feasibility, effectiveness, efficiency， 

performance upper bounds, extensibility to alternative recognition baselines and robustness 

of the framework. Competitive analyses have also been performed to compare the ED-EC 

framework with other techniques that adopt advanced linguistic knowledge in LVCSR. 

• Propose a discriminative lattice rescoring (DLR) algorithm 

The DLR algorithm is proposed to facilitate the investigation of framework extensibility. It 

can also be used as a general approach to improve LVCSR. This approach is an extension of 
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discriminative n-gram modeling. It recasts discriminative n-grams as pseudo-conventional 

n-grams and then performs efficient lattice rescoring. Compared with discriminative n-gram 

modeling, DLR can achieve equal performance with better efficiency. DLR also facilitates 

the combination of discriminative n-gram modeling with other post-processing techniques. 

9.3 Future Directions for the ED-EC Framework 

This thesis proposes and implements an initial prototype of the ED-EC framework for Mandarin 

LVCSR. This prototype can be improved in various directions for both error detection and error 

correction. For example, the error detection procedure may utilize more features and/or adopt 

alternative classification algorithms for the word verifier that classifies each recognized word as 

either correct or erroneous. The performance of the error correction procedure can be enhanced 

by refining the candidate creation algorithm, incorporating new knowledge sources and/or using 

better mechanisms to handle false alarms of error detection. Adopting more efficient approaches 

to identify the top-scoring utterances in search networks created in error correction will benefit 

the system efficiency. In this subsection, we discuss in detail possible research efforts for error 

detection and error correction in Section 9.3.1 and Section 9.3.2 respectively. 

Additionally, the application of the ED-EC framework is not limited to Mandarin 

LVCSR. We demonstrate that the Mandarin ED-ED prototype can be adapted to LVCSR for 

other languages, such as English, in Section 9.3.3. We also illustrate that it is possible to use the 

ED-EC framework to benefit spoken dialogue systems in Section 9.3.4. 

9.3.1 Improving Error Detection 

The current error detection algorithm is relatively simple. It first uses a word verifier to detect 

erroneous words based on a single feature of Generalized Word Posterior Probability (GWPP). 

Then，it simply labels every character in detected erroneous words as erroneous. Improving the 

error detection procedure can significantly benefit the overall effectiveness of the ED-EC 

framework，as discussed in Section 5.3. The improvement may be due to adopting more features 

in word verification. Our previous experiments demonstrated that the error detection 
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performance can be effectively enhanced by combining the GWPP feature with TV-best based 

features (i.e., features extracted based on acoustic/LM scores and the purity information from the 

TV-best hypotheses) [151]. This illustrates that using multiple information sources in error 

detection is beneficial. In addition, adopting features that capture higher-level knowledge may 

be especially helpful. For example, Guo et al. [47] reported that incorporating a mutual 

information (MI) based feature brought a 7.4% reduction in equal error rate for word verification 

over the performance of using a word posterior probability feature alone. 

Another possible direction for improving error detection is to use better classification 

algorithms. Choosing a classification method that is both effective and efficient is an interesting 

topic, especially when multiple features are adopted in error detection. Advanced techniques, 

such as support vector machines, may lead to better decisions than the simple linear interpolation 

method [148]. Moreover, involving utterance verification into the error detection procedure may 

improve erroneous word detection because utterance-based features can capture some useful 

information that is unavailable for word-based features [51，148]. 

It is also possible to design a new scheme for error detection. The current error detection 

algorithm assumes that (1) all recognition errors are substitutions and (2) all characters in 

erroneous words are erroneous. Designing more delicate error detection schemes without these 

two assumptions is possible. First，deletions/insertions may be explicitly identified and handled. 

Detected insertions can be simply deleted. Each detected deletion can be processed by re-

decoding its neighborhood area in the signals to recover what is missing. Second, a Character 

Verifier (CV) may be utilized to classify each character in erroneous words as either correct or 

wrong. For the development of CV, only using features that are based on decoding information 

may be insufficient due to the lack of linguistic constraints. When verifying a character, 

introducing constraints based on the context of the character in focus may be a necessity. 

9.3.2 Improving Error Correction 

The proposed error correction procedure can be improved mainly in four aspects. First, the 

candidate creation approach can be refined to increase the reference coverage rate (RCR) of 

candidate lists and/or to enhance efficiency. Given a certain list size (i.e., the number of 

alternatives in a candidate list), the higher the RCR，the better the correction effect. Both the 
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efficiency of candidate creation and the size of resulting candidate lists will impact the overall 

efficiency of the error correction procedure. Second, more/better knowledge sources can be 

adopted in the procedure of linguistic scoring. The power to correct recognition errors mainly 

comes from the knowledge models utilized. Thus, introducing models that can effectively 

distinguish between the correct hypothesis and the competing ones is critical to improve the error 

correction effect. Third, efficient algorithms that search for the top-scoring hypotheses in search 

networks can be designed. The current search method is slow, especially for utterances with 

multiple errors. This also limits the application scope of the error correction procedure to a 

subset of recognized utterances due to the efficiency problem. Adopting more efficient search 

algorithms will benefit not only the system efficiency，but also the correction effect. Finally, 

better mechanisms can be used to minimize the influence of error-detection false alarms on error 

correction. In the rest of this subsection, we will discuss the above four aspects in detail and also 

briefly mention other possibilities that may improve error correction. 

• Candidate creation 

For a detected character error, the current algorithm of candidate creation selects those character 

hypotheses having a similar time period from recognition lattices to form the candidate list. 

However in the recognition lattices, the starting and ending times of character hypotheses are 

unknown and thus roughly estimated based on a simplifying assumption. Both the effectiveness 

and efficiency of candidate creation would be improved if accurate times of character hypotheses 

are available. This can be realized by modifying the decoder to annotate times for characters in 

recognition lattices. It is also possible to perform a forced alignment to estimate the time 

information for characters. However, this procedure can be computationally expensive. 

Novel candidate creation algorithms that do not rely on recognition lattices may be used. 

For example, the candidate list for a character error can be obtained by re-decoding the 

corresponding speech segment using a character-based recognizer (i.e., a recognizer whose 

recognition network is a list of all Chinese characters and contains no LM probabilities). The N-

best character hypotheses generated by this recognizer can be utilized as the candidates for the 

error under consideration. In this way, a higher RCR may be achieved, since those references 

that are not included in recognition lattices may be recovered by this re-decoding procedure. 

Note that a reference character with high acoustic likelihood may be pruned during the baseline 
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decoding due to the application of language model. Since the character-based recognizer has a 

simple structure, the re-decoding based candidate creation method would be efficient. The 

created candidate lists should be pruned to a suitable size to strike a balance between the 

efficiency of subsequent processing and the RCR. 

• Knowledge usage 

Adopting more powerful knowledge sources in linguistic scoring may further increase the error 

correction rate. Among the three linguistic knowledge sources utilized in the proposed error 

correction procedure, only mutual information captures long-distance constraints. Word trigrams 

and POS trigrams model local semantic and syntactic constraints. Incorporating other high-level 

knowledge sources, such as long-distance syntactic structure [18，104] and semantic document 

information [7，144], in error correction may be helpful. Besides, acoustic similarity may also be 

a usable source to distinguish among competing hypotheses. 

In the current framework, we interpolate various knowledge sources linearly. Using 

more advanced combination algorithms, such as the maximum entropy approach [68，107], may 

further enhance the ability to correct errors. 

• Search algorithm 

The task of search in error correction is to identify the utterance hypothesis that is scored highest 

by the advanced linguistic model for each sausage-type search space. The current search 

algorithm simply enumerates all utterance hypotheses in the search spaces. As discussed in 

Section 5.4，this method is inefficient for utterances with multiple errors. For those seriously 

erroneous utterances, inefficiency makes the error correction procedure unfeasible. Designing an 

efficient lattice search algorithm is thus important. When the search speed becomes sufficiently 

high, the application scope of the error correction procedure can be extended to all erroneous 

utterances. This will further enhance the effectiveness of the ED-EC framework. 

The major difficulty in the design of efficient lattice search algorithms lies in the 

segmentation problem for Chinese. A candidate character may belong to various words in 

different utterance hypotheses in a sausage-type search space. For the example of Figure 3.1, the 

candidate character 会 belongs to the word 拜会 in the utterance hypothesis 在/新闻冲心/拜会/ 

议长，but belongs to the word,会议，in the utterance 在/新闻/中心/白/会议/长.Note that 
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effective language models are normally word-based. This segmentation problem makes it 

controversial to assign a unique LM likelihood to each candidate character. Without a unique 

likelihood stored in each node (i.e.，each candidate character) in the search space, existing 

efficient lattice search methods are inapplicable. This problem may be solved by calculating a 

unique likelihood for each candidate based on some rules (e.g., selecting the highest one among 

the LM likelihoods of the words that contain the candidate in focus). Designing new lattice 

search algorithms to circumvent this problem is also possible. 

• Method to handle error-detection false alarms 

Experiments showed that the special mechanism introduced to handle false alarms of error 

detection brings a non-negligible improvement. It substantially reduces the rate that false errors 

are "corrected" into new misrecognitions, as was shown in Section 5.1.3. This special 

mechanism utilizes two thresholds to accept/reject the error correction results based on the 

confidence scores of error detection. It may be helpful if we adopt more training data to estimate 

a smooth threshold function of confidence score. Designing new algorithms to reduce the 

influence of false alarms is also possible. 

The discussions above demonstrate the possible ways to improve error correction under 

the proposed error correction scheme. Adopting a totally different error correction scheme is 

another option. For instance, it is possible to change an TV-best re-ranking technique into an error 

correction procedure. TV-best re-ranking scores the TV-best hypotheses using some method and 

output the top-ranking hypotheses as the new result. When adapting TV-best re-ranking to an 

error correction method, we can first identify modifications made by TV-best re-ranking by 

comparing the new results with the original recognition results. On the erroneous regions 

detected by error detection, all modifications can be viewed as the error correction results. On 

the remaining regions deemed to be correct, modifications can simply be discarded. Using such 

an error correction procedure, the ED-EC framework will outperform the original TV-best re-

ranking approach if the error detection performance is good enough. If error detection is perfect, 

all incorrect modifications can be avoided. 
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9.3.3 Adapting to Other Languages 

The basic idea of the ED-EC framework is language independent. This is because, theoretically, 

LVCSR for whatever language can be improved by detecting and correcting recognition errors. 

However the detailed implementation of the framework for a specific language should consider 

the characteristics of the language. For example, characters are linguistically meaningful for 

Chinese，and most recognition errors for Mandarin LVCSR are character substitutions. We thus 

focus the Mandarin ED-EC prototype on detecting/correcting character substitutions. For 

English, the word is the smallest linguistic unit and insertions/deletions cannot be ignored for 

LVCSR. An ED-EC framework for English LVCSR needs to handle word insertions and 

deletions as well as word substitutions. 

It is possible to adapt the proposed Mandarin ED-EC prototype to other languages by 

modifying the component algorithms. We use the adaptation to English LVCSR as an example. 

For English LVCSR, between two correctly recognized words, insertions/deletions of short 

words may happen. A more common type of misrecognition is to transcribe a word sequence 

that contains one or more words into another word sequence that may have a different number of 

words. For instance，“Toledo,, may be recognized as “to leave", which has two words. If 

focusing on this type of misrecognition，the current ED-EC prototype can be adapted to English 

LVCSR by (1) simplifying the error detection procedure, and (2) slightly modifying the 

candidate creation algorithm along with the mechanism to handle false alarms in error correction. 

For error detection, those erroneous words detected by the word verifier can be directly passed to 

the subsequent error correction procedure. The modifications needed for error correction mainly 

lie in candidate creation. Instead of creating a candidate list for each erroneous character, a 

candidate list should be created for each erroneous region (i.e.，each sequence of erroneous 

words). Candidate alternatives can still be selected from recognition lattices generated during 

decoding. Those word sequence hypotheses having the same starting and ending times with the 

erroneous region in focus can be included into the candidate list as alternatives. With candidate 

lists created, the subsequent processes of constructing search networks and scoring/ranking 

utterance hypotheses can remain the same. The special mechanism to handle error-detection 

false alarms has to be adjusted correspondingly. A confidence score can be assigned to each 

erroneous region based on the confidence scores of the component words by some approach. 
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Then, the threshold function of confident score can be re-estimated to accept/reject the correction 

results for erroneous regions. 

9.3.4 Incorporation in Spoken Dialogue Systems 

Spoken dialogue systems (SDSs) provide real-time interfaces that allow users to speak to 

computers for various tasks (e.g., air traffic information retrieval) [44，112, 139]. Speech 

recognition is one important component of an SDS because (1) high recognition accuracy is the 

basis for the subsequent processing (i.e.，language understanding, dialogue management) and (2) 

the recognition efficiency heavily impacts the overall system efficiency. The ED-EC framework 

is especially suitable to be applied in SDSs. The framework increases the recognition accuracy 

while maintaining the efficiency as much as possible. In addition, the interaction between users 

and computers can be an additional information source to facilitate error detection. For example, 

a multi-modal dialogue system can display the suspicious areas in recognized utterances on the 

screen and let users confirm which of these areas are indeed erroneous through clicking the 

mouse or circling with an electronic pen. Such interactions can improve error detection and 

eventually greatly enhance the effectiveness of the ED-EC framework. Although these 

interactions increase the user load, they tend to be acceptable. When people hear something 

difficult and are not sure whether they hear it correctly, they may repeat what they heard and ask 

for confirmation. For a dialogue system, users may also tolerate this kind of behavior from 

machines. We only need to design natural system actions to simulate the communications 

between human-beings. 

9.4 Future Directions for Discriminative Language Modeling 

This thesis proposes an algorithm for recasting a discriminative n-gram model as a pseudo-

conventional n-gram model. In this work，this pseudo model is used to rescore recognition 

lattices that are generated during decoding. It is also possible to incorporate this pseudo model 

into a single-pass decoding procedure. There are two ways to implement such discriminative 

decoding. First，we can build a complete pseudo-conventional n-gram model, replace the 
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original language model of the baseline recognizer with this pseudo model and then simply 

perform decoding using the modified recognizer. Second, the recognizer may adopt an 

additional mechanism to compute pseudo n-grams online during decoding. The pseudo n-grams 

may be calculated online for decoding in a similar way as that for discriminative lattice rescoring. 

In addition, since discriminative training has been shown to be sensitive to domains, selectively 

applying the pseudo n-grams to certain domains should be beneficial. This selectiveness may be 

realized by selectively turning this additional mechanism on or off based on the domain 

information. 
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