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Abstract of thesis entitled: 
Weighted quantile regression and oracle model selection 

Submitted by Jiang, Xuejun 
for the degree of Doctor of Philosophy 
at The Chinese University of Hong Kong in July, 2009 

In this dissertation I suggest a new (regularized) weighted quantile regression 
estimation approach for nonlinear regression models and double threshold ARCH 
(DTARCH) models. I allow the number of parameters in the nonlinear regression 
models to be fixed or diverge. The proposed estimation method is robust and 
efficient and is applicable to other models. I use the adaptive-LASSO and SCAD 
regularization to select parameters in the nonlinear regression models. I simulta-
neously estimate the AR and ARCH parameters in the DTARCH model using the 
proposed weighted quantile regression. The values of the proposed methodology 
are revealed. 

Under regularity conditions, I establish asymptotic distributions of the pro-
posed estimators, which show that the model selection methods perform as well as 
if the correct submodels are known in advance. I also suggest an algorithm for fast 
implementation of the proposed methodology. Simulations are conducted to com-
pare different estimators, and a real example is used to illustrate their performance. 

Keywords: Weighted quantile regression, Adaptive-LASSO, High dimensionality, 
Model selection, Oracle property, SCAD, DTARCH models. 
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Chapter 1 

Introduction 

1.1 Overview 

In this dissertation I focus on two important models, the nonlinear regression model 

with a fixed or diverging number of parameters and the DTARCH models. 

The real world is nonlinear. From the economic society to human intelligence, 

nonlinearity widely exists. Our economy could not expand in a linear way, and 

artificial neural networks are complicate nonlinear models. Existing statistical the-

ory is beautiful for linear models, but there is too much work to be done about 

nonlinear models. There is a genuine demand for us to advance statistical tech-

niques for various nonlinear models. I work on the above two models to introduce 

a new modeling methodology, the weighted quantile regression (WQR) with asso-

ciated model selection strategies, which can be extended to other models, such as 

transformation models and semiparametric/nonparametric models. 

Quantiles regression (QR) is a statistical technique designed to estimate and 

conduct inference about conditional quantile functions. Advantages of QR over 

mean regression are advocated by Koenker and Bassett (1978) and Chaudhuri, 

Doksum and Samarov (1997). In addition to more accurate portrayal of the 

stochastic relationship between random variables, QR provides more robust and 



consequently more efficient estimates than the mean regression when the error is 

non-normal (Koenker and Bassett, 1978; Koenker and Zhao, 1996). 

The proposed WQR includes the QR as a special case and is considerably more 

efficient than QR (see Chapters 2-4). Since the WQR involves a vector of weights 

which may take negative values, I develop a data-driven strategy for deciding 

the weights. The WQR with data-driven weights is adaptive, in the sense that 

it performs as well as if the optimal weights were known, and hence it achieves 

maximum asymptotic efficiency among all WQR. 

The nonlinear regression model is very useful in statistics, econometrics and 

human intelligence. It includes linear models and generalized linear models with 

continuous responses as specific examples. It can also be used when the effects of 

some covariates are linear and the remaining are nonlinear. A number of artificial 

neural networks are special cases of the nonlinear regression model with a lot 

of parameters. For these nonlinear models, it is fundamental to efficiently and 

robustly estimate the parameters and to select the best model from them. This 

motivates me to propose the WQR estimation. Common stepwise deletion and 

subset selection procedures have difficulty in implementation and derivation of 

sampling properties. To this end, I study regularized WQR which simultaneously 

estimates the parameters and selects the models. 

The DTARCH model is also nonlinear. It is useful for capturing changing 

volatility. Modeling volatility lies at the core of activity in financial markets. 

Since volatility is fundamental for asset pricing, monetary policymaking, propri-

etary trading, portfolio management and risk analysis, it is especially important 

to accurately forecast volatility. The celebrated ARCH model (Engle, 1982) is an 

important tool in modeling the changing volatility. It has received tremendous 



attention. A number of variants of the ARCH model have been proposed as im-

portant tools in modeling the changing volatility. See for example, Bollerslev et al. 

(1992), Bern and Higgins (1993), Fan and Yao (2003), and Peng and Yao (2003). 

One example is the DTARCH model in Li and Li (1996). The DTARCH model 

is very useful in detecting nonlinear structures in the mean and volatility of an 

asset return, and heteroscedasticity with clustering in the volatility. As financial 

returns can be very heavy-tailed, the maximum likelihood (ML) method may cre-

ate serious problems in parameter estimation and conditional prediction intervals. 

Given that, the efficiency of the ML estimators may be very low under this case. 

Therefore, more efficient estimators than the ML estimators are required, and an 

attractive alternative is to use quantile regression (QR) estimation. This again 

motivates me to consider the WQR estimation approach for estimating the model 

parameters, especially for simultaneously estimating the parameters in the AR and 

ARCH parts. 

The (regularized) WQR estimators admit no close form and involve minimizing 

complicate nonlinear functions, so it is challenging to derive asymptotic properties 

and to implement the methodology. Theoretically, I establish asymptotic normality 

of the resulting estimators and show their optimality, no matter whether the error 

variance is finite or not. Practically, I develop an algorithm for fast implementation 

of the proposed methodology, based on the "interior point algorithm" [Vanderbei, 

Meketon and Freedman (1986) and Koenker and Park (1996)]. The resulting al-

gorithm is easy to implement. The advantages of the proposed methodology are 

illustrated by simulations and real data examples. 

The findings of this dissertation will contribute to the theory and practice of 

statistics and econometrics in many important aspects. Our methodology will 
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be particularly attractive in QR settings and should greatly expand the scope of 

inference currently described in the statistics and econometrics literature. 

1.2 Outline of the Thesis 

The thesis is organized as follows. In Chapter 2, I proposed a weighted QR method 

for nonlinear models with finite parameters and use adaptive-Lasso and SCAD 

penalties to select parameters in the models. In Chapter 3, I study the same prob-

lems as in Chapter 2 but allow for a diverging number of parameters. Implementa-

tion of the proposed methodology, simulations and real data analysis are presented 

in this chapter. In Chapter 4, I study the weighted QR method for DTARCH mod-

els and propose a simultaneous estimation method for the parameters in the AR 

and ARCH parts. Conclusions and further developments are presented in Chapter 

5. Finally, proofs of theorems are given in the Appendices. 

• End of chapter. 



Chapter 2 

Weighted QR with a fixed 
number of parameters and oracle 
model selection 

2.1 Introduction 

Various techniques have been developed for simultaneous variable selection and 

coefficient estimation, based on the penalized likelihood or least squares princi-

ples. Examples include the nonnegative garrote [Breiman (1995) and Yuan and 

Lin (2007)], the LASSO [Tibshirani (1996, 1997)], the bridge regression [Fu (1998) 

and Knight and Fu (2000)], the SCAD [Fan and Li (2001)], etc. These methods 

have advantages over traditional stepwise deletion and subset selection procedures 

in implementation and derivation of sampling properties, and have been extended 

by several authors to achieve robustness. For instance, for linear models, Wang, 

Li and Jiang (2007) considered the LASSO for least absolute regression (LAD-

LASSO), and Zou and Yuan (2008a) studied the LASSO for composite quantile 

regression (CQR-LASSO), among others. These endeavors have enriched the vari-

able selection theory for different models by using different regularized estimation 

methods, with aim at oracle model selection procedures [see Fan and Li (2006) for 

a comprehensive overview] and robustness and efficiency of the estimation [Zou 



and Yuan (2008a). 

The CQR-LASSO in Zou and Yuan (2008a) is robust and efficient and performs 

nearly like an oracle model selector. The CQR they used is a sum of different 

quantile regression (QR) [Koenker and Bassett (1978)] at predetermined quantiles, 

which can be regarded as a weighted quantile regression (WQR) with equal weights 

(see also Section 2 for details). Intuitively, equal weights are not optimal in general, 

and hence a more efficient WQR should exist. Therefore, in this article we suggest 

a WQR estimation method and let the data decide the weights to improve efficiency 

while keeping robustness from the QR. The WQR method is applicable to various 

models, but in this chapter we focus only on the nonlinear model 

Vi = /(xi,/3) + i = l , . . . , n , (2.1.1) 

where e^'s are independent random errors with an unknown distribution function 

G'(-), and the function /(•, (3) is known up to a p-dimensional vector of parameters 

/3. Model (2.1.1) contains many submodels. Linear models and generalized linear 

models with continuous responses are specific examples. The nonlinear model can 

also be used when the effects of some covariates are linear and the remaining are 

nonlinear. 

QR estimation of model (2.1.1) with a fixed p has received much attention. 

See Oberhofer (1982), Dupacova and Wets (1988), Powell (1986, 1991), Jureckova 

and Prochazka (1994), and Wang (1995), among others, but for model (2.1.1) 

with a diverging number of parameters, to the best of our knowledge, there is no 

formal work using QR in the literature. Hence, the WQR for model (2.1.1) is 

new and fundamental. We will address the issue of variable/parameter selection 

using the penalized WQR with the adaptive LASSO and SCAD penalties. The 
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resulting method is robust against outliers and heavy-tailed error distributions, 

like the Cauchy distribution, and efficient as nearly as the MLE when the error is 

normal. In addition, the weights in the WQR are allowed to be negative, so the 

proposed WQR is essentially different from the common QR and the CQR (see 

also Section 2). When the weights are all equal and the model is linear with a fixed 

number of parameters, our method reduces to that of Zou and Yuan (2008a) if the 

LASSO penalty is employed. Since the proposed WQR involves a vector of weights, 

we develop a data-driven weighting strategy which maximizes the efficiency of the 

WQR estimators. The resulting estimation is adaptive in the sense that it performs 

asymptotically the same as if the theoretically optimal weights were used. 

The penalized WQR estimators admit no close form and involve minimizing 

complicate nonlinear functions, so it is challenging to derive asymptotic properties 

and to implement the methodology. Theoretically, we will establish asymptotic 

normality of the resulting estimators and show their optimality, no matter whether 

the error variance is finite or not. Practically, we will develop an algorithm for fast 

implementation of the proposed methodology. This algorithm solves a succession 

of (penalized) linearized WQR problems, each of whose dual problems is derived. 

We will extend the "interior point algorithm" [Vanderbei, Meketon and Freedman 

(1986) and Koenker and Park (1996)] to solve these dual problems. The resulting 

algorithm is easy to implement. Simulations endorse our discovery. 

This chapter is organized as follows. In Section 2.2 we introduce the WQR for 

model (2.1.1) with a fixed number of parameters and use a data-driven weighting 

scheme to maximize the efficiency for the resulting WQR estimators. In section 

2.3, we study the variable/parameter selection problem using the adaptive LASSO 

and SCAD penalties. In section 2.4, we consider the computation method for the 
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proposed methodology. Conclusion is given in section 2.5. Finally, we give proofs 

of theorems in the appendix A. 

2.2 Weighted Quantile Regression 

Our idea can be well motivated from the linear model, 

Hi = X-/3 + for z = 1 , . . . , n, (2.2.2) 

where {ei} are i.i.d. noise with unknown distribution G{-) and density g{-). 

By Koenker and Basset (1978), the r-th QR estimate of (3 can be obtained via 

minimizing 
n 

^ PriVi - - K ) 
i=l 

over (3 and B” where pr{U) = U{T — I(u < 0)) is the check function with derivative 

= T — I{u < 0) for u ^ {). Noticing that the regression coefficients are the 

same across different QR models, Zou and Yuan (2008a) proposed to estimate (3 

by minimizing 
K n 

(2.2.3) 
k=l i=l 

over (3 and b̂ ^ and used the adaptive LASSO penalty [Zou (2006)] for (2.2.3) to 

select variables, where {Tk}f=i are predetermined over (0,1). This is the afore-

mentioned CQR-LASSO. 

Note that the CQR method uses the same weight for different QR models. In-

tuitively, it is more effective if different weights are used, which leads to minimizing 

K n 

k=l i=l 

where uj = (cj i , . . . , uk) ' is a vector of weights such that ||a;|| = 1 with ||. || denoting 

the Euclidean norm. The weight ujk controls the amount of contribution of the 丁k-

th QR. The components in the weight vector uj are allowed to be negative, since 



{Er=i pTkiVi — — may not be positively correlated. Thus, the WQR 

is essentially different from the CQR. Applying the weighting scheme to model 

(2.1.1), one can estimate (3 by minimizing 
K 

LniAh) = Y^uJkY^PTkiM — /(x. , /3) - 6J， （2.2.4) 

k=l i=l 

over (3 and b = (1)丁” . . . , B丁尺)'• For convenience, we denote by 百丄 the minimizer of 

(3 for (2.2.4) and refer to it as "the WQR estimator". The CQR method can be 

regarded as an example of the WQR estimation with uji = 1 / V k . In general, given 

K, one can use the equally spaced quantiles at Tk = k/{K + 1) for k = 1, 2 , . . . , K. 

Typically, one can use at least the three quantiles at Tk = 0.25, 0.5, and 0.75. 

In order to derive the asymptotic property of the proposed estimator, in the 

following we introduce some notations and conditions. Let (3* be the true value of 

/3, b ; be ther^-th quantile ofe, and b* = (6；^,.. .,6；^)'. Denote by /* = / ( x “ / 3*)， 

• i T = [^f{^^,f3)/^f3] I卢=卢*，and = [沪 / ( x ” / 3 ) / 明明 ' ] | 卢 = 卢 A s s u m e t h a t 

(a) G = var(V/i*) > 0. 

(b) The error £i has the distribution function G{-) and density function g(.). The 

density function g is positive and continuous at the Tk-th quantiles b*^. 

(c) There is a large enough open subset fl e 'RP which contains the true param-

eter point /3*, such that for all x^ the second derivative matrix /3) of 

/ (x“ /3) with respect to (3 satisfies that 

| |VV(x„/3i) - •2/(X”/32)| | < M(X,)||/3i - (3^ 

for all e O, where E[M^{yLi)\ < oo and E[N^^{yLi)\ < Ci < oo for all j, k. 
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Under these mild conditions, we have the following asymptotic normality result. 

Theorem 2.2.1. Under the conditions (a)-(c), 

藉 1 —/T) A 々 ， 1 ) ， 

where 

K K 

cr^i^) = {^(jJkgiKk)}'^ WWmin(TA:，TA:')(l - max{Tk,Tk')). 
k=l k,k'=l 

For linear models (2.2.2), G = var(xi). If all u^ are equal, then Theorem 2.2.1 

reduces to the asymptotic normality of the CQR estimators in Zou and Yuan 

(2008a). When K = 1 and ti = r , it follows from the above theorem that the r - th 

QR estimate of (3 is y^-consistent and asymptotically normal with mean zero and 

variance — N o t e that the asymptotic variance of the least squares 

estimator is cr^G"^ [see for example Jennrich (1969) and Wu (1981)], where is 

the variance of the error. It follows that the asymptotic relative efficiency (ARE) 

of the WQR estimation with respect to the least squares estimation is 

Since G does not involve a;, the weights should be selected to minimize cr^(a;). 

Let g = {g{b*J,..., and let be a K x K matrix with the {k, k') element 

being Q^k' = min(rA；, rA;/)(l — max(rA；, r̂；/)). Then the optimal weight u^opt, which 

minimizes can be shown as 

� )t = ( g ' f r 2 g ) - i / 2 f r i g . 

The optimal weight components can be very different, and some of them may 

even be negative. In fact, in our simulations we also experience such a scenario. 
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This reflects the necessity to use a data-driven weighting scheme. The density 

function g{-) of £i can be estimated by running the kernel smoother over residuals. 

Let the resulting estimate of g be g. Then a; = provides 

a nonparametric estimator of uj. This leads to an adaptive estimator of /3* by 

minimizing 
K n 

— /(x,;/3) - 6 J (2.2.5) 
k=l i=l 

over brk and /3, where Uk is the k-i]i component of Cj. Let the resulting estimator 

of (3 he Then 尾 is asymptotically normal from the following theorem. 

Theorem 2.2.2. Under the same conditions as in Theorem 2.2.1, 

- "*) - A/'(0, ( g ' f T i g ) - i G - 1 ) . 

Since a^{uJopt) = (g'�ig)—丄，02 has the same asymptotic variance matrix as 

if û opt were known. That is, the estimator 02 is adaptive. By Theorem 2.2.2, 

the asymptotic relative efficiency (ARE) of the optimal WQR estimation with 

respect to the least squares estimation is 

2.3 Penalized W Q R and oracle model selection 

In the section, we consider the model selection method using the penalized WQR 

and establish the oracle properties of the resulting estimates. 

2.3.1 Parameter selection with S C A D penalty 

Partition the parameter vector as /3 = (/3'i，/3'2)'，where (3i G R^ and (32 G 

Assume that the true regression coefficients are /3* = (3*^)' with each com-

ponent in (3\ being nonzero and in (3*2 being zero. Denote f*^ = /(x^, f3l), V/*i = 

[o'/(x„/3)/o'/3] I 卢=卢:，and 乂 = {j : j = 1，2，...，s}. Following Fan and Li (2001), for 
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an estimation procedure《，the resulting estimator of /3, = . . . , 

is called a WQR-oracle estimator if it satisfies 

(i) consistency in selection: P{{j : 0} = ^ 1; 

(ii) efficient estimation: — Pi) — A / '(0, where G n is the 

sub-matrix of G with both row and column indices in A and is defined 

in Theorem 2.2.1. 

Zou and Yuan (2008a) obtained a CQR-oracle estimator of (3 for model (2.2.2) 

using the adaptive LASSO penalty. This stimulates us to study the penalized 

WQR estimation for the nonlinear model (2.1.1) using the adaptive LASSO and 

SCAD penalties. The SCAD penalty (Fan and Li, 2001) is mathematically defined 

in terms of its first order derivative and is symmetric about the origin. For 0 > 0, 

its first order derivative is given by 

(aA - 0)— 
m = x{i{e <A) + > A (a - 1)A 

where a > 2 and A > 0 are tuning parameters. We define the SCAD penalized 

WQR by solving 

( k , . . . X k ,的 = a r g m i n g ^ ^ ( / 3 , b ) , (2.3.6) 

b,/3 

where b) = Ljj3,h) + n Y7j=iPXn{\f^j\)- For convenience, the estimation 

is coined as WQR-SCAD method. 

Theorem 2.3.1. (Consistency) Assume that Conditions (a)-(c) hold. / / ^ 0 

as n ^ 00, there exists a local minimizer 百 such that — f3*\\ = Op{rr^). 

The following condition from Fan and Li (2001) is needed for deriving asymp-

totic normality of the WQR-SCAD estimator: 
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(d) l iminf l iminfp ' (6» ) /A„�0 . 
n^+cx) “ 0 + 

Theorem 2.3.2. (Oracle) Assume that Conditions (a)-(d) hold. / / ^ 0 and 

oo, then with probability tending to one the ^/ri-consistent estimator 
八 八/ 八/、/ 

(3 = ( / 3 i ， / 3 2 ) in Theorem 2.3.1 must satisfy that 

(i) Sparsity:自2 = 0/ and 
V (ii) Asymptotic normality: ^/n{(3l — j3l)——> A/'f 0, G^^ 

\ / 

Theorem 2.3.2 demonstrates that ^ is a WQR-oracle estimator. Note that 

involves the density but not the variance of the error term. The theorem still 

holds when the error term has an infinite variance, like the Cauchy distribution. 

This property is possessed by the CQR-oracle estimator but not shared by the 

least-squares oracle estimators, which demonstrates that the WQR-SCAD is quite 

robust. 

2.3.2 Parameter selection with adaptive-LASSO 

As a variable selection method, LASSO was proposed by Tibshirani (1996) using 

the Li penalty. Zou (2006) introduced the adaptive LASSO by penalizing different 

parameters with adaptive weights, which makes the LASSO be an oracle method. 

In what follows we develop the adaptive LASSO theory for the WQR estimation 

of model (2.1.1). By Theorem 2 . 1 ,氣 is root-n consistent. Using 氣 ， w e construct 

the adaptive LASSO penalized estimator: 

A A A AL A T 
(b 丁 ” … 丁 ) = argming^^(/3,b), (2.3.7) 

b,/3 

where b) = Ljjs^h) + nhn Y7j=i '^il/^iL and the weights are set to be 

Wj = l/̂ ijl—7 for some 7 > 0. The estimation approach is referred to as the adaptive 
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WQR-LASSO for convenience. When f is linear about (3 and the weights are equal, 

it reduces to the adaptive CQR-LASSO in Zou and Yuan (2008a), which has been 

shown to enjoy the CQR-oracle property. The following theorem extends the result 

to the WQR-LASSO for nonlinear model (2.1.1). 

Theorem 2.3.3. Assume that Conditions (a)-(c) hold. Ifri^^^hn — 0 and hnn�’+”,2 — 

oo, then 

A AL 
(i) Sparsity: (32 = 0. 

(ii) Asymptotic normality: ^ ^ ( 々 二 丄 — ( 3 \ ) A/'(0, 

Theorems 2.3.2 and 2.3.3 indicate that the adaptive WQR-LASSO is asymp-

totically equivalent to the WQR-SCAD. 

2.4 Numerical Implementation 

Since the target functions are high-dimensional with singularities, and minimiza-

tion in (2.2.4), (2.3.6) and (2.3.7) involves complicate nonlinear optimization prob-

lems, it is challenging to implement the proposed methodology. In the following 

we introduce a fast algorithm for computation. This algorithm solves a succession 

of penalized linearized WQR problems, each of which is solved by extending the 

interior point algorithm [see Osborne and Watson (1971) and Koenker and Park 

(1996)]. Matlab codes are available upon request for the proposed methods. 

Minimization problem (2.2.4) is a specific example of (2.3.7) with hn = 0, and 

(2.3.6) can be solved using a similar method to (2.3.7). First, we consider the 

minimization of (2.3.7). This problem is equivalent to 

K n p 

mill ^uJkYl PrdVi - hk{0)) + nhn ^ (2.4.8) 
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where kkiO) = / (x“/3) + and 6 = (b'，/3')'. Following Osborne and Watson 

(1971), we solve (2.4.8) using the following algorithm: 

(1) Given the current value, 6、丫、, of 6 , calculate t to minimize 

K n p 

— W 权 ⑷ ） — + (2.4.9) 
k=l i=l j=l 

where 认 ( 0 ( ” ) = ^ ^ ^ �a n d [3] is the ( K + j ) t h component of 0 ( ” + t . 

Let the minimizer be t = t(” = . . . , t � 

e=e' 
-fAr) , 

K+p^ 

(2) Calculate A to minimize 

K n 

k=l i=l 
P 

+ A 力 容 ( 2 . 4 . 1 0 ) 
i=i 

Let the minimizer be A = A(”. 

(3) Set = + A(”t(”. Update the current value of 6 by 0("+1)，and repeat 

the above procedure until the new iteration fails to improve the objective 

function by a specified tolerance. 

For the above method, the problem (2.4.10) can easily be solved by line search 

in the resulting direction t = but one has to solve a succession of penalized 

linearized WQR problems in (2.4.9). Let y*认=y, - Z认 ( 0 � )a n d a；̂  = 认 ( 0 � ) . 

Then the problem (2.4.9) becomes 

K n p 

— aj^t) + (2.4.11) 
k=l i=l j=l 

For j = 1 , . . . and k = 1,..., K, lei 左=0 and a(n+j)k = nhnWj^K+j, where 

ex+j is a (K + p) X 1 vector with the {K + j ) t h entry being one and others being 



16 

zeros. Then (2.4.11) becomes the linear programming problem: 

K n n+p 

min Pr, {y*k - a；̂  t) + [ a ; 冲 . （2.4.12) 
k=l i=n+l 

For /i： = let y l = {yl^,.. • u^ = vec(y^, O^xi), u = (u；,... 

and Ajt = (ai^^,..., a„+p，jQ'，and A = (A'l，..., A'^)'. Then, the dual problem of 

(2.4.12) can be shown as 

max{u 'd |A 'd = 0}, (2.4.13) 
d 

where d = vec(di, . . .，d^), dk = d f d f = (du,...，d^kY e [uJkirk — 

d f ) = (4+1, A；,...，dn+p,ky e [-ul.ulY'. 

There are two methods, the simplex and the interior point [see Vanderbei, 

Meketon and Freedman (1986)], for solving (2.4.13). Here we opt for the latter due 

to its two advantages [Bassett and Koenker (1992) and Koenker and Park (1996)]: 

a) computational simplicity and natural extensions to nonlinear problems; and b) 

unlike the simplex-based method, the interior point algorithm can be shown to 

converge to the correct answer. Algorithmic details for the dual problem (2.4.13) 

proceed as follows: 

1. For any initial feasible d, e.g., d = 0, following Meketon (1986), set an 

n X n diagonal matrix D ^ ) with the zth diagonal element being mm{uJkTk — 

dik, dik — uJki^k — 1)}, and a p x p diagonal matrix D f with the zth diagonal 

element being min{a;^ — dik, dik + � • } . Let D̂ ^ = diag(Dp)，D?))，for k = 

D = d i a g ( D i , . . . , D K ) , s = D2(I — A ( A ' D 2 A ) — i A ' D 2 ) u，a n d 

t = (A'D2A)—iA'D2u. 

2. Set d* = d + (ao/7)s, where s = vec(s i , . . . ,8^), Sk = {sik,.. .,Sn+p,ky, 
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7 = max(7i，.. . , 7k) , = max(7f ) ， ) ) ， 

= miix{ma.x{sik/{uJkrk — 40，-Sik/{dik —�k[Tk — 1))}), 
l<i<n 

7 f ) = max {ma.x{sik/{ujl — (kuh -Sik/{dik + (^l)}), 
n+l<t<n+p 

for k = 1 , . . . , K, and ao G (0,1) is a constant chosen to insure feasibility. As 

suggested by Koenker and Park (1996), we take ao = 0.97. 

3. Set d = d*. Updating D, s and d continues the iteration. 

After solving (2.4.13) using the above interior point algorithm, we arrive at 

the next loop which uses the current value 6 = 0(�+1) for the primal problem in 

(2.4.12). This leads to the updated dual problem (2.4.13) with y*汝=yi — lik{6�r+A� 

and a;& = VZ认(0(�+1)) for i = 1 , . . . , n. The current d should be adjusted 

to ensure that it is feasible for the new value of A. Similar to Koenker and 

Park (1996), we project the current d onto the null space of the new A, i.e. 

d = (I —A(A'A)-iA')d，and then shrink it to insure that d f ) G [uJk{rk — l),uJk^k 

and dp) G [—o;̂ , ujI]^. So the adjusted d becomes d = d / ( m + for some 

5 > 0, where m = max(mi，m2，...，mx)，with rrik = maxfmp)，mg))，mf)= 

max{max( f • 让 a n d mp) = max { dik/ujl }• 

As noted by Koenker and Park (1996), the difficulty with the above method is 

twofold: first, it is required to fully solve a linearized problem (2.4.9) or equivalently 

(2.4.12) at each iteration; second, the resulting search directions may actually 

be inferior to directions determined by incomplete solutions to the sequence of 

linearized problems. As they suggested, when fi is nonlinear, there is no longer a 

compelling argument for fully solving (2.4.9), and only a few iterations to refine 

the dual vector is preferable. This reduces the computational burden. 
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Next, we consider the minimization problem (2.3.6). By Taylor's expansion for 

the SCAD penalty at an initial consistent estimate (for example the common 

Li-norm estimate), we have 

where — is a constant. Therefore, minimization in (2.3.6) is 

reduced to 

K n p 

k=l i=l j=l 

which can be solved using the same algorithm as for (2.4.8). Update the initial 

value for (3 and do iterations until convergence, where a few steps can lead to 

convergence since is close to the true parameter. 

2.5 Conclusion 

In this chapter, we have proposed the WQR for model (2.1.1) with a fixed num-

ber of parameters and used the the adaptive WQR-LASSO and the WQR-SCAD 

to study variable/parameter selection problem. We have demonstrated that the 

adaptive WQR-LASSO and the WQR-SCAD estimators all enjoy oracle properties 

and are asymptotically equivalent. We have also developed an efficient algorithm 

to implement the WQR, but simulations and real data analysis are delegated to 

next chapter. 



Chapter 3 

Weighted QR with infinite 
parameters and model selection 

3.1 Introduction 

Model selection with a fixed number of parameters has been widely pursued in 

the last decades. However, to reduce possible modeling biases, many variables are 

introduced in practice. As noted in Huber (1973, 1988), Portnoy (1984, 1988) and 

Donoho (2000), the number of parameters p is often large and should be modeled 

as Pni which tends to oo. Fan and Peng (2004) and Lam and Fan (2007) advocated 

that in most model selection problems the number of parameters should be large 

and grow with the sample size. In a recent seminal paper, Fan and Lv (2008) also 

studied model selection for linear models with the number of parameters higher 

than the sample size. Therefore, in this chapter the dimensionality p is allowed to 

be independent or dependent of the sample size n. 

QR estimation of model (2.1.1) with a fixed p has received much attention. 

See Oberhofer (1982), Dupacova and Wets (1988), Powell (1986, 1991), Jureckova 

and Prochazka (1994), and Wang (1995), among others, but for model (2.1.1) 

with a diverging number of parameters, to the best of our knowledge, there is no 

formal work using QR in the literature. Hence, the WQR for model (2.1.1) is 

19 
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new and fundamental. We will address the issue of variable/parameter selection 

using the penalized WQR with the adaptive LASSO and SCAD penalties. The 

resulting method is robust against outliers and heavy-tailed error distributions, 

like the Cauchy distribution, and efficient as nearly as the MLE when the error is 

normal. In addition, the weights in the WQR are allowed to be negative, so the 

proposed WQR is essentially different from the common QR and the CQR (see 

also Section 2). When the weights are all equal and the model is linear with a fixed 

number of parameters, our method reduces to that of Zou and Yuan (2008a) if the 

LASSO penalty is employed. Since the proposed WQR involves a vector of weights, 

we develop a data-driven weighting strategy which maximizes the efficiency of the 

WQR estimators. The resulting estimation is adaptive in the sense that it performs 

asymptotically the same as if the theoretically optimal weights were used. 

The penalized WQR estimators admit no close form and involve minimizing 

complicate nonlinear functions, so it is challenging to derive asymptotic properties 

and to implement the methodology. Theoretically, we will establish asymptotic 

normality of the resulting estimators and show their optimality, no matter whether 

the error variance is finite or not. Practically, we will develop an algorithm for fast 

implementation of the proposed methodology. This algorithm solves a succession 

of (penalized) linearized WQR problems, each of whose dual problems is derived. 

We will extend the "interior point algorithm" [Vanderbei, Meketon and Freedman 

(1986) and Koenker and Park (1996)] to solve these dual problems. The resulting 

algorithm is easy to implement. Simulations endorse our discovery. 

This chapter is organized as follows. In Section 3.2 we introduce the penal-

ized WQR for model (3.2.1) with a diverging number of parameters and study 

the variable/parameter selection problem using the adaptive LASSO and SCAD 
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penalties. In Section 3.3 we present numerical studies which include the choice of 

tuning parameters, simulations and a real example. Conclusion is given in section 

3.4. Finally, we give proofs of the theorems in the Appendix B. 

3.2 Weighted QR with a diverging number of parameters 

As discussed in the introduction, in most model selection problems the number of 

parameters should be large and grow with the sample size. In practice, many vari-

ables are introduced to reduce possible modeling biases. The variable/parameter 

selection methods in Section 2 are limited to the finite-parameter setting. In this 

section, we allow the number of regression parameters tends to infinity as the 

sample size increases and study the sampling properties of the penalized WQR 

estimators with adaptive LASSO and SCAD penalties. To stress dependence on 

the sample size, we denote the vector of parameters by = . . . , PnpnY 

and rewrite the nonlinear model (2.1.1) as: 

Vi = / (x“/3„) + £“ i = 1 , 2 , . . . , n . (3.2.1) 

Without loss of generality, we assume that the first Sn components of the true re-

gression coefficients /3*, denoted by do not vanish and the remaining Pn — 

Sn components, denoted by (3:2, are zeros. Let /二 = / ( x “ / 3 : ) and V / * . = 

[5/(x„/3j/5/3j I凡=卢：. 

3.2.1 Regularity conditions 

The following conditions are needed for our theoretical results. 

(i) Regularity condition on penalty. Let Up = 
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and bn = maxi<j<p^(|/？*^-1), /？*̂ - ̂  0}. The conditions on penalty functions we 

require are: 

(Ai) liminfliminfp； (6») /A„�0; 
n^+oc “ 0 + 几 

� a„ = 0 ( n - i ) ; 

(As) ^ 0 as n ^ +oo. 

{A4) there are constants C and D such that \Px^{Oi) 一]？‘乂^没2)| < D\Oi — ^2!, where 

O2 > CXn-

Conditions {Ai)-{A4) are also the regularity conditions on the penalty given in Fan 

and Peng (2004). 

(ii) Regularity condition on regression function. 

{Bi) There is a large enough open subset G R^" which contains the true param-

eter point /3*, such that for all x^ the second derivative matrix /3„) 

of / (x“/3„) with respect to satisfies that 

l |VV(x„/3, i ) — •2/(x”/3„2)II < M(x,) 11/3,1-/3,2II 

for all e and E[M^{yii)\ < 00, < Ci < 00 for all j , k. 

{B2) var((Vf:严)=G几,and 0 < d^ < Amin(G„) < Amax(GJ < < 00, 

for all n, where Amin(Gn) and Amax(Gn) represent the smallest and largest 

eigenvalues of respectively. 

(^3) K i , K 2 , … ， I satisfy 

mm 
l<3<Sr 

as n ^ 
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(^4) Pnl. • • • , Satisfy 

mill oo as n — oo. 
i<i<sn J 

Condition (Bi) is a natural extension to Condition (c) in §2. Condition {B2) 

is similar to the condition (F) placed on the information matrix of Fan and Peng 

(2004). Condition {B^) is the same condition of Fan and Peng (2004) used to 

obtain the oracle property. Condition (B4) acts the same role as (B3) does, which 

is used to obtain the oracle property when using the adaptive LASSO penalty. 

fiiij Regularity condition on error distribution. 

(C) The error £i has the distribution function G{-) and density function g{-). The 

density function g is positive and continuous at the Tk-th quantiles b*^. 

3.2.2 Model selection with SCAD penalty 

Similar to (2.3.6), the WQR-SCAD estimators for model (3.2.1) are defined as 

(^r i，…人K A ) = a rg m i n b ) , 

b,/3n 

where b) = L„(/3„,b) nY7jl i PXnilf^njl)• The following theorems estab-

lish consistency and asymptotic normality of the SCAD penalized estimator. 

Theorem 3.2.1. (Consistency) Suppose that the density g{-) satisfies Condition 

(C), penalty function px^ (•) satisfies Conditions (A2)-(A^), and regression function 

/(x“/3_J satisfies Conditions (Bi)-(B2). If pl^/n 0 as n ^ 00, then there is a 

local minimizer 良 of Q^^{(3^, b) such that — /3* || = + a„)). 

Denote 

bn = {pimilHriiP：,),... ^p'xMPLJHriiPLjy 
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and 

SA„=cliag{((/3:i)，.. 乂 (/3 : J} . 

Let G„ii be the Sn x Sn sub-matrix of corresponding to ( 3似 , a n d let be a 

q X Sn matrix such that — B, where 'B is a. q x q nonnegative symmetric 

matrix and q is a. fixed positive integer. 

Theorem 3.2.2. (Oracle property) Suppose the conditions in Theorem 3.2.1, Con-

dition (Ai), and Condition (B^) hold. If 0 ， o o , and p^/n 0 as 

n ^ oo, then, with probability tending to 1, the root-rip consistent local minimizer 

i^n = (i^ni，i^n2)'仇 Theorem 3.2.1 must satisfy 

(i) Sparsity:每几2 = 0 ; and 

(ii) Asympto t i c normal i ty : 

X [ 0 N I - / 3 : I ) + ( G N N + ^ ^ Y ' K / U J ' G ] 
⑴g 

Remark 3.2.1. Fan and Peng (2004) set the oracle property condition for the 

penalized likelihood estimator with the assumption of convergence rate p^/n 0. 

As they noted, this condition may be weakened to p l J n 0, which is verified by 

the current WQR-SCAD estimation. 

3.2.3 Variable selection with adaptive-LASSO 

Denote by the resulting solution to min知b Ln(/3„，b). Then using the same 

argument as for Theorem 3 .2 .1 ,良 is y/^-consistent. Thus, we can use 百几 to 

construct the adaptive LASSO penalty. Let Wnj = ) for some 7 > 0, and 
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define the adaptive WQR-LASSO estimator as 

A A A AL A T 
{h丁h …，b丁K，f3几)=argming^ ( / 3 N , B ) , 

where 

Pn 

QtL�(^n, b) = L氣，b) + nhn 〜 礼 . 
i = i 

Theorem 3.2.3. (Consistency) Suppose that the density g{-) satisfies Condition 

(C), and regression function satisfies Conditions (Bi)-(B2). Ifp^/n — 0 

and ^hn 0 as n ^ oo, then there is a local minimizer 每几 of h^) 

such that — /3* II = Opiji;”� 

Denote = . . . , 

Theorem 3.2.4. (Oracle property) Suppose the conditions of Theorem 3.2.3 and 

the condition (B^) hold. If hnrif^+i�,"^ — oc, then, with probability tending to 
八 j 八AL 八AL 

1, the consistent local minimizer = }', {/3„2 }')'仇 Theorem 3.2.3 

must satisfy 
A AL 

(i) Sparsity: /3„2 = 0； and 

(ii) Asymptotic normality: 

Note that when n is finite and large enough, = 0 and = 0 for the 

WQR-SCAD, but is not zero and hence the bias term for the WQR-LASSO in 

Theorem 3.2.4 cannot be ignored. By Condition (^4), 0, as n ^ 00. 

Hence, Theorem 3.2.2 (ii) and 3.2.4 (ii) become 

V ^ A ^ G ^ ^ n i — /3：1) ^ A/'(0, 
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and 

— /3：1) ^ A/'(0, a ' H B： 

respectively. This demonstrates that the adaptive WQR-LASSO and WQR-SCAD 

estimators have the same asymptotic efficiency as the WQR estimator of based 

on the submodel with (3^2 = 0 known in advance. That is, the penalized WQR 

estimators enjoy the oracle properties. 

3.3 Numerical studies 

3.3.1 Choice of the tuning parameters 

For the penalized WQR estimators, one has to select the tuning parameters 

and hn, respectively for the SCAD and LASSO penalties. The two parameters can 

be chosen using the same method. We here focus on the choice of 

There are several methods for selecting which include the generalized cross-

validation (GCV) criterion [Wang, Li and Tsai (2007)] and the Schwartz Infor-

mation Criterion (SIC) [see Koenker, Ng and Portnoy (1994) and Zou and Yuan 

(2008b)]. Since the resulting estimators depend on we denote the estimators 

by 0A„，t̂ ArJ to stress such dependence. Applying the SIC method, we propose to 

select \n by minimizing 

SICiXn) = + 释 n) 

over where df{Xn) is the effective degrees of freedom of the fitted model. For 

a given tuning parameter we define a set as 

^Xn = { ( M ) ： m - - i、丁k = 0 } . 

Let I denote the size of the set Koenker, Ng and Portnoy (1994) conjectured 

that is the effective degrees of freedom in the quantile regression. Li, Liu and 
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Zhu (2007) and Li and Zhu (2008) verified the conjecture. Therefore, we use 

The final turning parameter is estimated by = arg minA„ SlC(Xn). 

3.3.2 Simulations 

In this section we conduct simulations to investigate finite sample performance of 

the WQR estimation and the associated model selection. The following exponential 

regression model is used: 

^ = 1 + 6exp(c'x) + 

where b and c = (ci, C2, Cs)' are parameters, e is the error. The true values of 

parameters are set as 6 = 1.5, and c = (—0.6, —0.8, —0.7)'. 

When the penalized WQR methods are considered, we shall allow the lengths 

of c and the relevant x increasing with the sample size, by setting 

c = ( - 0 . 6 , - 0 . 8 , - 0 . 7 , 0 , . . . ,0 ) ' . 

The following two penalties are employed: 

(i) the adaptive LASSO penalty, defined by nhn Ef二i lA/.l/l/^jl， 

(ii) the SCAD penalty, defined by 

where hn and are tuning parameters and are consistent estimators of " / s . 

In simulations, the tuning parameters are determined by the SIC method. 

Let (3 = (6, c')' be the x 1 vector of parameters in the working model. We 

draw from the working model 400 samples of sizes 100 and 400 with = [n^/^] + 

3. In each simulation, the first component of x is generated from [/[—1,1], and 

the remaining components of x are generated from the joint normal distribution 
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with the pairwise correlation coefficient being 0.4 and the standard normal as the 

marginal. We consider three sets of errors: 7V(0，1), t(3)，and All of them 

are centralized and scaled so that the medians of the absolute errors are ones. 

We compare four estimation methods: the penalized QR (Li, CQR, and WQR) 

estimation and the WQR-oracle estimation. In each simulation the "root of mean 

squared error (RMS)" for different penalized QR estimators and their summation 

are calculated, and their average over simulations are reported in Tables 1-3, where 

S denotes the sum of RMS for all components in (3. Therefore, better methods 

should have smaller values in the tables. As expected, the WQR-oracle estima-

tor performs the best, the penalized WQR performs comparably to the oracle 

estimator, and the penalized Li is the worst. This exemplifies the theory about 

the penalized WQR estimation: asymptotically the penalized WQR estimation 

performs as well as if the correct submodel were known. The penalized WQR per-

forms much better than the penalized CQR and Li when the error is chi-squared, 

but the two methods are comparable when the errors are normal and 力(3). In Table 

4 we report the frequency that zero coefficients are set to zero correctly if their 

estimates are less than 10—8. It seems that the WQR-SCAD has higher probability 

of correctly identifying zero coefficients than the WQR-LASSO. 

3.3.3 A real example 

The patients in hospital faces an infection risk. To study the Efficacy of Nosocomial 

Infection Control (SENIC), the Hospital Infections Program was conducted by 

Robert W. Haley and his collaborators, Center for Infectious Diseases, Centers for 

Disease Control, Atlanta, Georgia 30333. This resulted in the SENIC dataset for 

the 1975-76 study period, consisting of a random sample of 113 hospitals selected 
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Table 3.1: RMS (multiplied by of penalized estimators under the normal error; 
ujopt = (0.6362,0.4365,0.6362)'. 

n = 100 n = m 
Method 八 

b Ci C2 C3 S 
八 
b Cl C2 C3 E 

SCAD-Li 427 117 97 97 791 144 45 34 32 259 
SCAD-CQR 339 98 80 81 652 126 40 29 28 231 
SCAD-WQR 329 98 79 82 637 124 40 28 27 231 
LASSO-Li 412 112 94 94 782 145 45 34 32 266 

LASSO-CQR 331 97 79 82 656 126 40 29 28 241 
LASSO-WQR 329 98 78 81 647 124 40 28 27 240 
WQR-oracle 321 99 78 80 578 124 40 28 28 219 

Table 3.2: RMS (multiplied by of penalized estimators under the normalized t(3) 
error; uJopt = (0.4856，0.7269，0.4856)'. 

n =100 1 1 = 400 
Method b Cl C2 C3 E b Cl C2 C3 S 

SCAD-Li 412 122 104 89 806 154 45 39 33 289 
SCAD-CQR 393 117 94 82 755 145 42 35 31 272 
SCAD-WQR 386 117 95 83 748 145 42 35 31 268 
LASSO-Li 411 123 104 90 819 156 46 39 34 298 

LASSO-CQR 392 115 93 82 763 145 43 35 31 283 
LASSO-WQR 385 117 94 84 760 144 42 36 31 273 
WQR-oracle 373 116 93 82 664 144 42 35 31 253 

Table 3.3: RMS (multiplied by of penalized estimators under the normalized 
error; uJopt = (0.9916,0.1115,0.0658)'. 

n =100 1 a = 400 
Method b Cl C2 C3 E b Cl C2 C3 S 

SCAD-Li 374 118 96 89 688 133 40 31 28 237 
SCAD-CQR 329 101 82 75 617 109 33 23 199 
SCAD-WQR 249 76 70 65 466 93 28 23 20 166 
LASSO-Li 379 115 95 88 697 134 41 31 29 242 

LASSO-CQR 330 101 82 75 626 109 33 26 23 200 
LASSO-WQR 250 77 70 65 473 93 28 23 20 170 
WQR-oracle 247 77 70 65 460 93 28 23 20 164 
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Table 3.4: The frequency of zero coefficients set to zero correctly under the adaptive 
LASSO and SCAD penalties. 

n = 100 n = 400 
Method error LASSO SCAD LASSO SCAD 

normal 0.519 0.556 0.705 0.762 
Li m 0.320 0.393 0.559 0.644 

⑶ 0.663 0.705 0.700 0.761 
normal 0.531 0.567 0.764 0.851 

CQR m 0.453 0.528 0.598 0.691 
X2(3) 0.618 0.671 0.808 0.867 

normal 0.543 0.598 0.718 0.804 
WQR m 0.452 0.546 0.674 0.759 

x2(3) 0.839 0.890 0.862 0.921 

from the original 338 hospitals surveyed (see Kutner et al. 2005). For each single 

hospital there are 11 variables: 

• Infection risk (y): Average estimated probability of acquiring infection in 

hospital. 

• Length of stay (xi): Average length of stay of all patients in hospital (in 

days). 

• Age {X2)： Average age of patients (in years). 

• Routine culturing ratio (xs)： Ratio of number of cultures performed to num-

ber of patients without signs or symptoms of hospital-acquired infection, 

times 100. 

• Routine chest X-ray ratio Ratio of number of X-rays performed to 

numbers of patients without signs or symptoms of pneumonia, times 100. 

Number of beds Average number of beds in hospital during study pe-
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riod. 

Medical school affiliation (XQ): l=Yes, 2=No. 

Region (XJ-XQ): Geographic region, where: 1=NE, 2=NC, 3=S, 4=W. 

Average daily census (a îo): Average number of patients in hospital per day 

during study period. 

• Number of nurses {xn): Average number of full-time equivalent registered 

and licensed practical nurses during study period (number full time plus one 

half the number part time). 

• Available facilities and services {x^)'. Percent of 35 potential facilities and 

services that are provided by the hospital. 

Now we study whether the infection risk depends on the possible influential 

factors and target at providing a good estimate for the infection risk, after adjusting 

contributions from confounding factors. Since the medical school affiliation and 

region are categorical, we introduce a dummy variable Xq for the medical school 

affiliation and three dummy variables (a^j, for the region as covariates. Note 

that the response y (infection risk) is the average estimated probability of acquiring 

infection in hospital. It is sensible to use the following logistic model with all of 

covariates, 

Ui — “ ‘ ~ ‘ “ 7 5 ^ — 1 5 • • • 5 1 13, 
exp(A) + Y.f=i Pi^i 

1 + exp(A) + E j = i 讽 

to model the relationship between the infection risk and all possible infection fac-

tors, where all of covariates are used to reduce possible modeling biases and the 

number of non-zero parameters is assumed to depend on the sample size. 
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We apply the Lg-penalized least squares estimation (LSE) and the penalized 

CQR and WQR methods with adaptive LASSO and SCAD penalties to select 

the non-zero parameters or significant variables. The SIC criterion (Section 5.1) 

is applied to choose the tuning parameters. The results of variable selection are 

presented in Table 3.5. From Table 3.5, we can see that penalized SCAD and 

penalized LASSO methods both select four variables: age {X2), routine chest X-ray 

ratio {x^), number of beds (X5)，and average daily census (xio), but the penalized 

LSE selects all variables (note that X7-X9 together represents the region). Similar 

to the ridge regression for linear models, the LSE with Lg-penalty fails in shrinking 

any coefficients directly to zero for the nonlinear model. 

Table 3.5: Estimates and standard errors (in parentheses, multiplied by 

Penalty L2 LASSO SCAD 

Method LSE CQR WQR CQR WQR 

Xl 574 (335 ) o(-) o(-) o(-) o(-) 
X2 -667 (105) -743 (113) -705 (102) -745 (114) -713 (103) 
X3 55 (40) o(-) o(-) o(-) o(-) 
X4 -31 (23) -25 (36) -32 (33) -25 (37) -23 (32) 
X5 -18 (12) -12 (17) -5 (16) -10 (17) -5 (16) 
Xq 229 (1302) o(-) o(-) o(-) o(-) 

X7 66 (1512) o(-) o(-) o(-) o(-) 
X8 -100 (1359) O(-) o(-) o(-) o(-) 
Xq 250 (1343) O(-) o(-) o(-) o(-) 

XlO 15 (14) 23 (21) 12 (21) 21 (21) 12 (20) 
Xll 9(7) o(-) o(-) o(-) o(-) 
X12 -14 (46) O(-) o(-) o(-) O(-) 

To check the significance of the selected model, we consider the hypothesis 

testing problem: 

Hq\ [52 = fh = fh = Ao = 0 versus 
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Hi ： at least one of them are non-zeros. 

Use the LSE to estimate the parameters in the null and alternative models and 

let S S E { H q ) and S S E { H i ) be the residual sum of squares under Hq and H i , 

respectively. Define the F statistic: 

S S E ( H o ) - S S E ( H i ) / S S E ( H i ) 

= dfo - df\ 丨 ^ ‘ 

where dfo = n — 1 and dfi = n — 5 are degrees of freedom for the null and 

alternative models, respectively. The approximate null distribution of i^-statistic is 

F{dfo — dfi, dfi). The realized value of F is calculated as 124.541 with approximate 

p-value equal to zero. Therefore, the selected model is significant. 

3.4 Conclusion 

In this chapter, we have suggested the penalized-WQR for model (3.2.1) with pa-

rameters depending on the sample size and study the variable/parameter selection 

problem by the adaptive LASSO and SCAD penalties. We have established the 

asymptotic properties of penalized-WQR estimators and proved that these estima-

tors all enjoy oracle properties. We have also proposed an algorithm to implement 

the penalized WQR and analyzed a real data. Simulation results and SENIC 

dataset analysis all endorse the use the proposed methodology. 



Chapter 4 

Quantile Regression and its 
application in DTARCH models 

4.1 Introduction 

Modelling volatility is important in financial data analysis. One of the most widely 

used tools in modelling the changing volatility is the autoregressive conditional 

heteroscedasticity (ARCH) model pioneered by Engle (1982). ARCH models and 

its extensions have been widely applied in finance and econometrics (Bollerslev 

et al., 1992, Bera and Higgins, 1993, Bollerslev et al., 1994, and Fan and Yao, 

2003). Li and Li (1996) proposed a double-threshold autoregressive conditional 

heteroscedastic (DTARCH) model to study the piecewise linear patterns of the 

conditional mean and the conditional variance. They studied model identification, 

estimation and diagnostic check based on the maximum likelihood principle. This 

approach is useful for detecting nonlinear structures such as asymmetric behav-

ior in the mean and the volatility of an asset return, and heteroscedasticity with 

clustering in the volatility. In practice, it is observed that financial returns tend 

to have thicker tails than normal distributions. Note that misspecification of the 

conditional distribution in the likelihood approach may create serious problems 

in parameter estimation. Moreover, likelihood based testing methods may fail in 

34 
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detecting false structures in the conditional variance of asset return. It is worth in-

vestigating robust modelling techniques without specific distribution assumptions. 

This motivates us to consider DTARCH models for conditional scale based on 

quantile regression. The advantage of such an approach was discussed in Koenker 

and Zhao (1996) for ARCH models. 

Quantiles regression (QR) is a statistical technique designed to estimate, and 

conduct inference about conditional quartile functions. The basic motivation for 

using quantiles rather than simple mean regression is that the stochastic relation-

ship between random variables can be portrayed much better and with much more 

accuracy. See for example Chaudhuri, Doksum and Samarov (1997). The QR 

provides more robust and consequently more efficient estimates than the mean re-

gression when the error is non-normal (Koenker and Bassett, 1978; Koenker and 

Zhao, 1996). This approach has been widely used in time series analysis (see for 

example, Koenker and Zhao, 1996; Davis and Dunsmuir, 1997; and Peng and Yao, 

2003), but not for the DTARCH models. 

The existing work considered only the MLE and Li estimation for the DTARCH 

model. Jiang, Zhao and Hui (2001) and Hui and Jiang (2005) studied the ARCH 

models and the DTARCH models, respectively, for the conditional scale (standard 

deviation) based on Li regression. 

For the DTARCH model, both the MLE of Li and Li (1996) and the Li esti-

mation of Hui and Jiang (2005) are useful in practice. The former is efficient when 

the error is normal, but it is sensitive to outliers and not robust against the error 

distribution, while the latter is resistant to outliers in the Y-space but not efficient 

when the error is normal. Hence, there is a genuine need for us to study robust 

and efficient estimation of the model. 
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An important problem now is how to efficiently and robustly estimate, and to 

make inference about, the DTARCH models. Related results can be used to analyse 

various financial data including those highly related to economy. This motivates 

us to use the proposed "weighted quantile regression (WQR)” in Chapter 2 for 

analyzing the DTARCH models. The proposed WQR is more efficient than the 

traditional QR while inheriting robustness. 

This chapter is organized as follows. In §4.2 we give a review on DTARCH 

models. In §4.3 we apply the WQR to analyze DTARCH models and establish the 

asymptotic properties of the WQR estimators derived, where Data-driven weights 

are introduced to maximize the asymptotic efficiency of the estimators. Compu-

tational aspects and simulation results are presented in §4.4. Conclusion is given 

in §4.5. Proofs of theorems are presented in the Appendix C. 

4.2 Review on D T A R C H models 

Given a time series 饥，力=1，…,n, let Tt be the cr-field generated from the realized 

value Vt-h … } at time t. Assume that yt is generated by 

yt = X i， j . a � + St if < yt-d < (4.2.1) 

where j = 1,... ,m; the delay parameter d is a positive integer; the threshold pa-

r a m e t e r s rj sa t i s fy - o o = r �< n < ”2 < . . . < r ^ = oo; X t j = (1, yt—i, • • • , Vt-pJ 

is a (pj + 1) X 1 vector of lagged variables; a � ={ a Q \ a i \ • • • , a �志� 'i s a (p^ + l) x 1 

parameter vector. The stochastic error satisfies £t = ht{f3)ut with 
m m 

h m = E 了 。 + /^i'Vt-il + … + 三;^/t，滿，力⑴，（4.2.2) 
i=i i=i 

where I t j = /(”)—i < Vt-d < r̂ -); Z^j = (1, \st-i\,..., the parameters 

in the conditional scales satisfy > 0, > 0 {i = 1, • • • , qj)] and the inno-
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vat ions {ut} are independently identically distributed random variables with an 

unknown distribution F{x) and a density function f{u). For convenience, as in 

Tsay (1989) and Li and Li (1996), we refer to the model in (4.2.1) and (4.2.2) as 

a DTARCH(pi , . . . qi, - • • , q^) model, where the first rn integers p's represent 

the AR orders in the rn regimes and the last rn integers q's denote the ARCH 

orders. The interval r)—i < yt-d < r j is the j-th regime of yt- The proposed model 

is similar to that in Li and Li (1996) where the conditional scale instead of the 

conditional variance is specified as the ARCH structure. 

The distinguished features of the model in (4.2.1) and (4.2.2) are: (i) the con-

ditional scale ht is a piecewise linear function of the absolute values of the lagged 

errors and each piece has an ARCH structure, which depicts the clustering of de-

viations at different regions of the lagged variable yt-d] (ii) the double-threshold 

structure extends Tong's threshold model in a natural way and is capable to capture 

nonlinear phenomena such as asymmetric cycles, jump resonance and amplitude-

frequence dependence (see Tong and Lim, 1980); and (iii) no assumption on the 

form of error distribution enables a robust inference for the model. 

Modeling the conditional scale is important. As noted by Bickel and Lehmann 

(1976), scale provides a more natural dispersion concept than variance, and also 

offers substantial advantages from the robustness viewpoint (see Bickel, 1978; Car-

roll and Ruppert, 1988). Therefore, model (4.2.2) is especially appropriate for QR 

modeling. 

Let a = vec(a⑴，..”a(—) and /3 = vec(/3⑴，…，/3(—). Denote by X^ = 

vec(/t，iXt，i，..�It,mXt,m) and Zt = vec(/t，iZt，i，..�It,m7H,m)• Then ht{(3) = ZJ/3. 
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4.3 Quantile regression est imation of the D T A R C H model 

4.3.1 The purely conditional heteroscedastic linear model 

For explicit exposure of our methodology, we first consider the DTARCH model 

without the AR part: 

yt = £t = ht{f3)ut, (4.3.3) 

where ht{f3) is the same as in (4.2.2). 

Quantile Regression. Since the r- th conditional quantile of £t given J^t-i is 

Qr{£t\^t-i) = ht{f3)F~^{T). It is apparent that (3 is only identifiable up to a scale. 

For identifiability of /3, we assume that the first nonzero component of (3 is 1, that 

is, i f ) = 1. 

Note that (/d)£t\^t-i) = H t )三 1)了. Following the idea in Koenker 

and Bassett (1978), one can define the r- th regression quantile estimator for T G 

(0,1) by minimizing 
n 

P r { K \ f 3 ) S t - b r } , (4.3.4) 
t=s+l 

over br and /3, where s = max(g'i, • • • , Q^) and pr{U) = U(T — I(u < 0)) is the check 

function and with derivative ^^(m) = T — I{u < 0) for u # 0. Let the resulting 

estimator be jOq. 

In order to derive the asymptotic property of the proposed estimator, we in-

troduce some notations and conditions. Let /3* be the true value of /3, b* be the 

r- th quantile of Ut- Denote by ht = ht(/3*), E(^) = fji, ai = E(ut'ipr{ut — 6*)), 

bi = —E{ut6{ut — b*)), 62 = E{u^6{ut — b*)), where 6{.) is Dirac delta function 

such that f : � 6{x)F{x)dx = for any continuous function F{x). Assume that 

(aO) < +00 for S > 0 and yt is strictly stationary and ergodic. 
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(al) i?(ZfZ;/i�2) = G2 is positive definite. 

(a2) The density of Ut, f{u), is positive and continuous at b” 

Conditions (aO) is used to insure the ergodicity of Zt such that the mean ergodic 
n 

theorem for holds, that is lim • E f^ ^ p E(^�. Conditions (al) is the 
t n^oo “ t=s+l t t 

natural extension to the conditions for establishing the asymptotic normality of 

single quantile regression [Koenker (2005) and Zou and Yuan (2008a). 

Theorem 4.3.1. Suppose that the threshold and the delay parameters are known. 

Under assumptions (a0)-(a2), 

V ^ . o — /3*) = -{(&2 + 2a i )G2 — — 如，0) + o 乂 1)， 

i
s
 I

 

n
 

1
 

I
 I

J
 

u.
 ̂

 

的
/
 

where qn,o = — n — E 功 tK — b*丁) and = —n部 E —幻 f f . 
t=s+l t=s+l 

The resulting estimator /3o is, unfortunately, biased because is not asymp-

totically unbiased. To overcome this shortcoming, we define a modified form of 

QR estimator. Note that log(|£t|) = log{ht{fi)} + Ct, where et = log(|Mt|), the r - th 

QR estimate of (3 can be obtained by minimizing 
n 

八 ( l o g N - log{ / i t ( /3 )} - C丁•) (4 .3 .5) 
t=s+l 

over (3 and c” 

The distribution of \£t\ is confined to the nonnegative half-axis and is typically 

skewed. Intuitively the log-transform will make the distribution less skewed. Peng 

and Yao (2003) advocated the log-transform and studied the Li regression for the 

ARCH/GARCH models. 

Weighted quant ile regression. As we discussed in Chapter 2, the WQR is more 

efficient than traditional QR such as the single QR [Koenker (2005)] and CQR [Zou 
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and Yuan (2008a)] while inheriting robustness. Applying this weighting scheme to 

DTARCH models and combining with (4.3.5) motivate us to estimate the model 

parameters in (4.3.3) by minimizing 

K n 

" T ^ L O G N - M / ^ t ( / 3 ) } - C丁J ( 4 . 3 . 6 ) 

k=l t=s+l 

over Ct-̂  and /3, where uj = (uJi,..., ojkY is a vector of weights such that ||a;|| = 1, 

and Crf^ be the Tk-th quantile of Ut- Denote by ^^ the resulting solution of (3. For 

convenience, we refer to it as the WQR estimator. 

For UJi = l / \ f K , the above method can be regarded as an extension of the 

CQR estimation to the DTARCH model. Typically, one can use the equally spaced 

qauntiles: 丁k = k/{K ^ 1) for k = 1, 2 , . . . , K. The weight uJk controls the amount 

of contribution of the Tk-th quant ile regression. Since some weights are allowed to 

be negative, the WQR method is essentially different from the CQR method. 

In order to derive the asymptotic properties of 久，we introduce the following 

conditions and assumptions: 

(bl) T = E { ^ ) > 0 . 

(b2) The innovation Ut has cumulative distribution function G{-) with density g{-) 

being positive and continuous at c* .̂ 

Theorem 4.3.2. Suppose that the threshold and the delay parameters are known. 

Under condition (aO) and conditions (bl) — (62), 

m a - /3) 

where 
2, min(rA：, - max(Tk, n')) 

a 0； 
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Theorem 4.3.2 indicates 白丄 is asymptotically unbiased, which confirms the log-

transformation of \et\ we made previously is reasonable. 

4.3.2 Choice of weights 

Since F does not involve a;, the weights should be selected to minimize (j{uj). 

Let g = (^(ct-J, . . . , and A he du K x K matrix with the {k, k') element 

being Â î̂ t = mm{Tk,Tk'){l — max(rA；, r̂；/)). Then the optimal weight uJopu which 

minimizes cr(a;)，can be shown as 

� =( g ' A - 2 g ) - 1 / 2 A - I g 

by the maximization lemma (see for example Richard A and Dean W (2007)) under 

the condition of ||a;|| = 1. The optimal weight components can be very different 

and some of them may even be negative, which reflects the necessity to use a 

data-driven weighting scheme. In fact, in our simulations we also experience such 

a scenario. 

4.3.3 Adaptive Estimation 

The density function g{-) of Ct can be estimated by running the kernel smoother 

over residuals. Let the resulting estimate of g be g. Then Co = 

provides a nonparametric estimator of uiopt- This leads to an adaptive estimator 

of (3 by minimizing: 
K n 

Y . / ^ r , ( l ogk t | - l og ( / i t ( / 3 ) ) - c . J . (4.3.7) 
k=l t=s+l 

over Crk and (3. Let the resulting estimator of /3 be 

Theorem 4.3.3. Under the same conditions as in Theorem 4-3.2, 

M A - /3*) A/'(o, ( g ' A - i g ) - i r - 1 ) . 
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Since a^{uJopt) = (g'A-ig)-丄，成 has the same asymptotic variance matrix as 

if Uopt were known. That is, the estimator 么 is adaptive. 

4.3.4 Estimation of the D T A R C H model with A R part 

In this section, we introduce two estimation methods. In both scenarios, asymp-

totic properties of quantile regression estimators will be derived. 

Estimates based on residuals. 

Residual-based modeling of heteroskedasticity was studied by Engle (1982) and 

Koenker and Zhao (1996). This approach is carried out in two steps: in the first 

step they estimated the autoregressive parameters and computed the residuals, 

and in the second step they estimated the ARCH parameters by regressing the 

(squared) residuals on the lagged (squared) residuals. In the following we use an 

analogous procedure to study the asymptotic behavior of weighted QR estimators. 

Rewrite the DTARCH model in (4.2.1) and (4.2.2) as 

yt = X � a� + ht{f3)ut, if r)—i < yt—d < ”力 

which is equivalent to 

yt = XtCx^ht{f3)ut. (4.3.8) 

Suppose there exists an estimator, d , of the AR parameter, a , such that 如、dt — 

a ) = Op{l). Let £t(d) = yt — X^d be the residuals. Then similar to (4.3.6) we can 

estimate the ARCH parameters by the solution 成 of the following minimization 

problem: 
K n 

m i n ^ o ; ^ ^ Pr^i\og \it\ - \og{ht{f3)} - cu). (4.3.9) 
Ck，f^ k = l t=s' + l 
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where it = £t(a), s' = max(pi , . . . qi,...，gVn) and 

m 

k m = Y . if^o^+M 力 kvi I +...+怎.)k̂ t -ij 

Theorem 4.3.4. Suppose that the threshold and the delay parameters are known 

and there exists an estimator, a„，of the AR parameter, a, such that = 

Op{l). Under assumptions (aO) and (hl)-(h2), 

M h - P) = N — r - a * ) + o“l)， 

where N is a normal random variable with mean 0 and covariance matrix 

and the definition of C is delegated to the notations in next theorem. 

The result of the theorem reduces to that of Theorem 4.3.2 if the initial estimate 

cxn is superefRcient (i.e. — a*) = 0^(1)) or C = 0 when the innovation 

density is symmetric about zero. The result also demonstrates that the residual-

based WQR estimate of (3 is consistent but generally depends on the initial estimate 

of a . In general, when the innovation is asymmetric, the initial estimate inflates 

the asymptotic variance of the estimator of (3 in the second step. This is similar 

to the QR estimate of the ARCH parameters in Koenker and Zhao (1996), which 

is not a desired property. 

Simultaneous estimation of the A R and A R C H parameters. 

Simultaneous estimating the parameters (a, (3) receives attention in Koenker 

and Zhao (1996). However, the mathematical property of the joint estimation is 

challenging and remains unknown. Although the simultaneous estimation is com-

putationally more demanding than the two-step estimation, it avoids the symmet-

rical assumption on the innovation and does not require a y^-consistent initial 
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estimator of the a parameters. In the following we jointly estimate the model 

parameters using the WQR. 

Let £t(a) = yt — X^a. By model (4.3.8), 

QrM^og\et{oL)\] I J^t-i) =log(/ i t (a , /3)) + c^,. 

Similar to (4.3.6), we propose to estimate the parameters by minimizing 

K n 

min ujk — log{/it(a，/3)} —Ct,). (4.3.10) 
k=l t=s'+l 

over c丁a and/3, where /it(a,/3) = ZJLi it，j.("?.)+":P)h-i(a)| + .. k t - , , (a) | ) 

Let the resulting estimators be (d i , ^4 ) . 

Let a* be the true value of a . In order to keep the accordance of signs, we abuse 

some signs to mark St = £t(a*), ht = ht{a*,(3*), T̂ t = Zt(a*) such that £t = hfUt, 

ht = ZJ/3*. Denote by 0* = (a*',/3*'y, D, = J , = 普 + D, 

C = cov(Jt, f^), = 所 J 丄 n = EiJtJt), n = var(Jt) and D = T - CTE—iC. 

Then, we have the following asymptotic results for simultaneous estimation of AR 

and ARCH parameters. 

Theorem 4.3.5. Suppose that the threshold and the delay parameters are known. 

Under the assumptions (aO) and (61) — (62), 

K / ^ ^ \ v^K 
v ^ f 二 ： ） = & 錦 - 1 ( ) ( … 台 — 卜 ⑴ : 

where q = {QI,..., QK)', (q', z')' being jointly normal with cov(q, r) = � 

cov(q, z) = Aw!!'，cov(r, z) = ( J A w C , q — J\f{0, A), r — A/̂ O，ct/Act；!!)，z — 

A/'(0, UJ'AUJU) and cov(r — J2k=I 叫收，z — /JL E f = i �kqk) = — 

- M a Efc=l �kQk 
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Corollary 4.3.1. Under conditions of Theorem 4-3.5, we have 
K 

- a*) = —{[0；^《)}—i[(n—i + n—ICD—ic'n-

K K 

^ \ » UJ 

k=l k--

-AXa - n - I C D - i ( z - AX [ “ � + 0,{l) 

K K 

M k - P l = — { [ 0；^《)}-1 [ D - i ( z — 
k=l k=l 

K 

— D - i C ' n - i ( r — 會 o“l)， 

k=l 

Where (o/g)—i(r — fi^EtiVk)�A/^O，一(a;)n) and (o/g)—i(z — f ^ E t i V k ) � 

Remark 4.3.1. If Ut is symmetric and a �= ..., «�)=0，then C = 0. 

Remark 4.3.2. If there are no AR part in DTARCH models, then C = 0. In this 

case, Theorem 4-3.5 reduces to Theorem 4-3.2 

4.4 Computational Issue 

Minimization problems (4.3.6)-(4.3.7) and (4.3.9) are special cases of (4.3.10). We 

use the following algorithm to solve (4.3.10): 

(a) Given a consistent estimate of a , say a。，use the interior point algorithm to 

find the solution (ai，/34) to 
K n 

arg min V Pr.i^og |£t(ao)| - log{/it(a,/3)} - c^J. 
^ k=l t=s'+l 

The optimization problem can be solved by the updated interior algorithm 

developed in §2.3 of Chapter2. 

(b) Use a i to replace the above ao, and then solve the above optimization prob-

lem to get an updated estimate of a . Repeat this procedure until convergence. 
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4.4.1 Simulation results 

In this section we conduct 1000 simulations to investigate the advantages of the 

WQR estimation. The following DTARCH model is studied: 

_ j yt-i + St if yt—i < 0 
Ut — \ (2) I .r \ n 

[ y t - 1 + £t if yt-i > 0, 

where = (0.20, 0.35) and £t = htUt, with 
1 + M'Vt-il if yt-i < 0 

+ il if yt-1 > 0, 

where = 0.3 and = (1.00, 0.25). We employ three sets of innovation 

variables: 7V(0，1), t(3)，and which are centralized and normalized so that 

the medians of the absolute innovations are I's. In each simulation, we draw a 

sample of size n = 2400. For the CQR and WQR methods, we take equal spaced 

quantiles at 丁k = 0.25, 0.5, and 0.75. 

We compare the proposed robust estimation approach with that based on the 

MLE when the innovation is normal. For non-normal innovations, we compare 

the robust approach with the quasi-likelihood based method (QMLE). In each 

simulation the bias and the "root of mean squared error (RMS)" for different 

estimators are calculated, and their average over simulations are reported in Tables 

1-3, which lead to the following two points: 

(i) When the innovation is normal, the MLE dominates the others for estimating 

the parameters of AR part, but the WQR and CQR estimates for the ARCH 

part compare favorably to the MLE. However, the QMLE is quite unsatisfac-

tory in the two nonnormal innovation cases since the averages of (3 estimates 

are far away from the true values even though the parameters a are well 
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Table 4.1: Comparison of different estimators of parameters under the scaled normal 
innovation, ujopt = (0.1031,0.2622,0.9595)'. 

Esti Measures 必 ） 
(2) 

/ f ) / f ) 
QMLE Bias -0.0019 -0.0017 -0.0018 0.0020 -0.0012 

RMS 0.0385 0.0304 0.0199 0.0389 0.0258 

Li Bias 0.0022 -0.0053 0.0076 0.0025 0.0033 
RMS 0.0813 0.0728 0.0530 0.0765 0.0367 

CQR Bias -0.0040 -0.0064 0.0047 0.0041 0.0012 
RMS 0.0444 0.0385 0.0236 0.0359 0.0182 

CWQR Bias 0.0002 -0.0084 0.0047 0.0012 -0.0004 

RMS 0.0425 0.0341 0.0215 0.0323 0.0163 

^ut is normalized to satisfy that E{ut) = 0 and Median{\ut\ = 1). 

estimated. This result queries the use of QMLE for DTARCH models, which 

is different for ARCH models (see Jiang et al. 2001). 

；ii) The WQR 

estimation 

method. 

estimation with data-driven weights uniformly dominates the Li 

and the CQR estimation. This endorses the value of our WQR 

4.5 Conclusion 

In this chapter, we have studied the WQR estimation for DTARCH models. Simul-

taneous WQR estimation of AR and ARCH parameters has been proposed, and 

the asymptotic properties of WQR estimators have been established. Theoreti-

cal and computational results all support our finding that the data-driven WQR 

estimation uniformly dominates the Li estimation and the CQR estimation. 
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Table 4.2: Comparison of different estimators of parameters under the scaled t(3) inno-
vation. ujopt = (0.2032，0.4409，0.8742)'. 

Esti Measures 必 ） 必 ） / f ) / f ) 
QMLE Bias -0.0000 -0.0024 0.6080 0.6943 0.1758 

RMS 0.0646 0.0384 0.7633 0.7405 0.2386 

Li Bias -0.0041 -0.0054 0.0076 0.0060 0.0024 

RMS 0.0683 0.0589 0.0505 0.0845 0.0367 

CQR Bias -0.0055 -0.0093 -0.0001 -0.0104 0.0009 

RMS 0.0614 0.0564 0.0382 0.0651 0.0310 

CWQR Bias 0.0033 -0.0060 0.0014 -0.0085 0.0019 
RMS 0.0448 0.0364 0.0247 0.0488 0.0195 

^ut is normalized to satisfy tha t E{ut) = 0 and Median{\ut\ = 1). 

Table 4.3: Comparison of different estimators of parameters under the scaled 
innovation, ujopt = (—0.0053，0.0785，0.9969)'. 

Esti Measures 必 ） 
(2) 

/ f ) / f ) 
QMLE Bias 0.0015 -0.0034 0.7977 0.5504 0.0757 

RMS 0.0467 0.0326 0.8018 0.5636 0.0941 

Li Bias 0.00186 -0.0023 0.00059 0.0059 0.0039 
RMS 0.1157 0.0503 0.0617 0.0803 0.0377 

CQR Bias 0.0197 -0.0043 0.0146 0.0053 -0.0003 
RMS 0.0987 0.0486 0.0422 0.0619 0.0301 

CWQR Bias 0.0183 -0.0081 0.0085 0.0037 -0.0075 

RMS 0.0800 0.0407 0.0296 0.0509 0.0238 

'̂ Ut is normalized to satisfy tha t E{ut) = 0 and Median{\ut\ = 1). 



Chapter 5 

Conclusions and Further 
Developments 

5.1 Conclusions 

The proposed weighted QR has been demonstrated as a powerful tool for modeling 

nonlinear models. Its advantages have been advocated for the nonlinear regression 

models and the DTARCH models. Our results provide new insights into quantile 

regression. The values of the WQR and regularized WQR are revealed in statistical 

modeling. 

5.2 Further Developments 

The proposed WQR is applicable to other models and can be extended to the 

nonparametric smoothing world. Further topics include but not limited to 

(i) Extensions of the proposed WQR to other models such as the transformation 

models, nonparametric/semiparametric regression models and time-varying 

or functional coefficient models. Due to the nonparametric nature, we need 

to develop local weighted QR modeling methods. 

(ii) Regularized estimation of the DTARCH models. This is an important prob-

lem. Since the GARCH(1,1) model with ARCH[oo) representation has suc-

49 
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cessfully applied in modeling real financial data, if one use a DTARCH model 

to fit such data, the order of model may be very high. It is natural to consider 

estimation of the DTARCH model with a diverging number of parameters and 

to develop the regularized WQR modeling strategy for model selection. 

(iii) Hypothesis testing based on the WQR fitting. The generalized likelihood 

ratio tests in Fan et al. (2001) and Fan and Jiang (2005, 2007) can be 

accommodated to the WQR but with more technical challenges. 

(iv) Extensions of the WQR to multivariate cases. This is challenging since there 

is no unique definition for multivariate quantiles. 

• End of chapter. 



Appendix A 

Proofs of Theorems for Chapter 2 

A . l Proofs of Theorems 

In this appendix we give proofs of our theorems. Let 

V) = L ‘ ( r + n - " V b* + n- i/2v) - L„(/3*,b*). 

n 

Vn,k = n部uJk < KJ — n], 
i=l 

n K 

zn = n-1/2 [ < b*J - rd, 
i=l k=l 

Proof of Theorem 2.2.1. Let — /3*) = u , 讽 b 丁 [ — = Vk，v = 

(v i , . . . , VKY, and ^^(u, Vk) = (Vf*yu+Vk. Then minimizing the L„(/3，b) in (2.2.4) 

is equivalent to minimizing v). Put 

S: = 厂 — ( V / n ' n - 1 � — 1 � ) ） 
k=l i=l 

-PrM- f t -

K n 

ST = - f7 - 議 ' n - ' � 
k=l i=l 

—去 U ' ( V 2 / > — K + 一〜 ) )— P r A m - /； -
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Then 
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K n 

s： = E叫 E {〜 ( £ 2 — 《 — 咖 , 叫 ) — 

—PT丄 - b Tk 

Denote by jj, = E{Vf*) and r = Then G = r — fjL柳.We will show ,(8)2 

that 

5'n(u, V) ^ > S(U,V] (A.1.2) 

where 

K K 

S{u,v) = ^rikVk + z u + -^uJkOiKJivl + u'Tu + 2vklJ^'u] 

with ？7 = (r/h . . . , TIKY and ( r f , z/)' being jointly normal with mean zero and co-

variance matrix Cov(j], z) = diag(a;)Aa;)Lt'. 

Statement (i): Asymptotic expression for S'*; 

K K 

s： = J2r]n,kVk + Z^u + -J2uJkg{b*J{vl + u'Tu + 2vkl^'u) + Op{l). (A.1.3) 

In fact, by the identity [Knight (1998) 

r - s\-\r\ = —s(I(r > 0) - / ( r < 0) + 2 / [I{r < x) - I{r < 0)]dx, 
Jo 

we have 

Pr{r - s ) - pr{r) = s[I{r < 0) - r] + / [I{r < x) - I{r < 0)]dx. (A.1.4) 
Jo 
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Combining (A.1.4) and (A.1.1), we obtain that 

K n ^ 

Sn = JZ^f'Yl <b*J- Tk 

where 

+ 

\ /n 

k=l .=1 
K 

= { Y . ”叫、+ + I Z 叫Ai幻 

K 几 “+帥，̂；知） 

K 

(A.1.5) 

u fc) 
< b* + 冗 ） — < b;)]dx 

Decompose A^f) into = A^̂ } + with 

f

 >
 

>
 

I

I
 

^
 n
 

A
 

几"•妳， 

and 

— E J l ^ f e < K +工 ) - 了 f e < K,) - [G{h\ +x)-卿J]} dx. 

By the mean value theorem, 

n 妳,Vk) 

= E I ^MDdx 
. 1 «/o 

f

 

>
 

1

1
 

妳’叫) “/•方妳，卯） 

卯K) dx + Y . J ^^idK) - g{b:j] dx 

= A i k ) , Aik) - ^nl l 十 Anl2. 

where 6** is between b*^ and b*^ + x. By simple algebra, the central limit theorem 

and the continuity of we have 

a S i = i^giKM + u T u + + Op � 
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and 4 忍 = O p { l ) . Note that = 0 and v a r [ 4切 = o ( l ) . It follows that 

4怨= 0 ^ ( 1 ) . Therefore, 

A j f ) = l o K M + u'Tu + 2 等 + 0,(1). 

It follows from (A.1.5) that (A.1.3) holds. 

Statement (ii): S** — S'* ——>p 0. This can be obtained using the same argument 

as in Davis (1997). 

Statement (in): v)—S** = 0^(1). Using the inequality /V(r2)|/ki — 

r2| < max(r, 1 — r) < 1, we obtain that 

K 

SJu^v)-ST = 
k=l i=l 

—去 u ' V V ( x ” 匆 u — (6; J n - 1 � ) ） 

K n 

- E 叫 E [pr. fe-f：-几-
k=l i=l 

—去 u ' V V / u — 1 〜 ) ） 

K n 
1 

k=l i=l 

where 百 is between /3* and /3*+n—i"!!. Then by Condition (c), S'„(u, v) — - ^ p 0. 

Combining Statements (i)-(iii) leads to 

K 

V) = rin,kVk + Z > 
k=l 

1 K 
+ 3 叫 乂 � ) ( ” • + u T u + 2vkfi'u) + 0^(1). (A.1.6) 

k=l 

Let ？ = {fjn,!,..., r}n^K)'• Using the Cramer-Wold device and the multivariate 
V central limit theorem, we establish that {rj'̂ , z'^)' {rj', z')', and hence 

K 

n' n/ 
K 

Vn,kVk + Z ^ u ^ ^ r]kVk + Z ' u (A.1.7) 
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where rjn,k — Vk and — z. Therefore, by Slutsky's theorem and (A.1.6), (A.1.2) 

is true. 

Let and u be the minimizers of v) and S'(u, v) for u, respectively. 

Since S'(u, v) is a quadratic form of (u'，v')'，u is unique. Simple algebra gives 

that 
K K 

k=l k=l 

Since the minimization operator is continuous under the infimum topology, by 

(A.1.2) and the continuous mapping theorem [see for example Theorem 25.7 in 

Billingsley (1995)], 

^ u . (A.1.8) 

Since 叫 / W J ] — U z — is normal with mean 0 and covariance 

matrix a^{uj)G and = — /3*), 

MPi - PI -^d 

Proof of Theorem 2.2.2, Note that Cc = uJopt{^ +Op{l)) and cr(a;) = a{uJopt){^ + 

Op{l)) = (g'A- ig)-1(1 + Op{l)). The result can be proven by using the same argu-

ment as in Theorem 2.2.1. 

Proof of Theorem 2.3.1. Let \/n{(5j — /?*) = Uj, \/n{brf^ — = Vk, u = 

. . . , UPY, and v = (UI,..., VK)'- T O prove consistency of 白,it suffices to show 

that for any 5 > 0, there exists a large constant C such that 

P{ inf > > 1 - 5 , (A.1.9) 
( u , v ) e c 

where C = {(u, v) : ||u|| = ||v|| = C} . This implies that with probability tending 
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1 1 

to one there exists a local minimum (3 in the ball {(/3* + n ~ 2 u , b* + n ~ 2 v ) : ||u|| < 

C, ||v|| < C} such that p - /3*|| = Op(n—臺）. 

Define D^^^m, v) = + n-羞u, b* + n—-v) — b*). Then 
p 

Using Pa„(0) = 0, we get 

(A.1.10) 

Note that, for large n 

+ — PxM\)} = 0 (A.1.12) 

uniformly in any compact set of R^ due to the facts that |/?*| > 0 (for j = 

1, 2 , . . . , 5) and the SCAD penalty is flat for coefficients of magnitude 

larger than aA„, and — 0. It follows from (A.1.6) and (A.1.7) that the right 

hand side of (A.1.11) is dominated by the positive quadratic term 

, K 
-^ujkg{b*J{vl + u'Tu + 2vki^'u] 
2 

k=l 

as long as ||u|| and ||v|| are allowed to be large enough. This means (C.2.18) holds. 

The proof is completed. 

Lemma A.1 .1. Suppose Conditions (a) — (d) hold. / / ^ 0 and \/nXn — 00. 

then with prohahility tending to 1, for any given (/3i，b) satisfying ||/3i — [3] 

Op{n~^) and ||b — b*|| = Op{n~^) and for any positive constant C, 

= mill 1 
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Proof . Let - = ui , - /3*) = U2, - /3*) = u, and 

— b*) = V. By the definitions of QSC(j3，b) and v), we have 

=Sn{{u[,0')Y,v)-Sn{{u[,u',Y,v)-n t PxSm). 
3=s+l 

From (A.1.2), we obtain that 0')', v) = Op{l) and u'2)', v) = Op{l). 

By pAn(O) = 0 and the mean value theorem, there exists between 0 and 

such that for large n, 
上 rl. ( f^h 

n 
p P ( /9T\ 

A. 

> \/nA„(lim inf lim inf {$) /A„) Y^ 

If (32 + 0, then for ||/32|| < C n - � w e have 0 < IV^/^jl < E Iv^/^j < 
3=s+l 3=s+l 

^/P\/n\\(32\\ < Cp. Then, by Condition (d) and 00, for larger n, Q^'^0')'，b) — 
p 

Q S C f d ' ^ y , b) is dominated by the term —n Y^ PXnilf^jDi which is less than zero. 
s+l 

Hence, the lemma holds. 

Proof of Theorem 2.3.2. 

(i) (Sparsity) It follows Lemma C.1.1. 

(ii) (Asymptotic normality) Let — /^I) = ui , \/n{br^ — b* )̂ = Vk and 

V = {vi , . . . , Vk)'• By (A.1.10), we have 
s 

i>^c((u'i，0')'，V) = s ; ( ( u ' i ， 0 ' ) ' ， V ) + n - 1 � � —P A � / ? ; ! ) } . 
i=i 

Note that u i = — f̂ V) minimizes 
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It follows from (A.1.2) and (A.1.12) that 

i^,(u'i，0')'，v) ^ 邓 u'i，0')'，v) 

with 

K 1 K 
St(u'i，0')'，V) = + Z'lUi + -^UJkg{K^){vl + UiFiiUi + 2VklJi\Ml), 

k=l k=l 

where zi and Hi are the sub-vectors consisting of the first s components of z and 

respectively, and F n is the sub-matrix of F with both row and column indices in A. 

Therefore, by the same argument as for (A.1.8), the minimizer = ~ f^i) 

converges in distribution to the minimizer ui of S{{u[, 0')'，v). 

Tote that 
K K 

= — 叫 5<�)]—iGriMzi -

where — ”kYi is normal with mean 0 and covariance 

matrix cr^(a;)Gii. It follows that 

- A / ^ O乂M G r / ) . 

yK 

Proof of Theorem 2.3.3. 

(i) follows the same argument as in Zou and Yuan (2008a). 

(ii) Let - = ui , - /3D = U2, u = (u'i，u'2)' = {ui, . . 

— b*J = Vk, and v = {vuV2,... .Vk)'. Define 仙(u，v) = + 

n - i u , b* + n - i v ) — b*). Then minimizing Q仙 ( A b) in (2.3.7) is equiv-

alent to minimizing 

D ^ ' ^ i u , V ) = S ; ( u ， + ^ - ^ ^ V ^ d / ? * + n - 1 / � . | — \p;\). (A.1.13) 
j=l v^ Pj ^ 

If Uj + 0, then + n - i ^ j ] — \(5*\) — UjSgn{(3*). If (3* + 0, then by the 

sparsity, {î  + 0 holds with probability tending to one, and hence J � " !? 0 by 
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the assumption n…hn — 0. If [3* = 0, then by y^/^j = Op{l) and the assumption 

(什i)/2 — oo, we have = " 广 二 f — oo. Therefore, by Slutsky's 

theorem, 

P nh 

oo, if [5* = 0 and Uj 0; 
0, otherwise. �E 哪 ， + 

i=i 

It follows from (A.1.2) and (A.1.13) that 

p 

i^i(u，V) ^ M(u, V) = ^(u, + ^ W[l3;,uj). 
i=i 

Then similar to (A.1.8), the minimizer = ( u j ^ ^ , o f D仙(u，v) converges 

in distribution to the minimizer u = U2) of M(u, v). Note that U2 — 0, 

ui and u„i = ^^(合，—(3*^. It follows that 

This completes the proof of the theorem. 



Appendix B 

Proofs of Theorems for Chapter 3 

B, Proofs of Theorems 

In this appendix we give proofs of our theorems. Let 

V ) = L ‘ ( r + n - b * + n - i / 2 v ) — 

- ^ - 1 / 2 , Vn,k = n ^'^Uk < KJ — 丁k 

K 
-r^-1/2 Zr, = n Tk 

Proof of Theorem 3.2.1, The idea of proof is similar to that for Theorem 

2.3.1, but much more techniques are involved. Let = - + and set 

Cn = {(u„, v) : ||u„|| = ||v|| = C}. We will show that, for any 5 > 0, there is a 

large constant C such that, for large n, 

P I inf g f (/3： + b* + > g f (/3：, b*)} > 1 - (B.1.1) 
(Un,v)GCn 

which implies that, with probability tending to one, there is a local minimum 良 

in the ball {(/3* + b* + : ||u„|| < C, ||v|| < C} such that — /3* | = 

、sc ‘ 

Op{a, 

Let = + «nUn,b* + — and = 

60 
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+ c^nUnjl) - P x A K l ) ] - Then 

(B.1.2) 

where 

5'n(Un, V) = Ln iP l + «nUn, b* + O^V) — L„(/3*,b*). 

By Taylor's expansion for / ( x “ / 3 : + at /3*, there exists a 百们 between /3* 

and /3* + such that 

〜 / 

/(Xi,/3* + ttnUn) = fni + Q^nV/(X“/3j  
~ / 

Let Sik = + /3„) Un. Then using the identity (A.1.4), we obtain that 

K n 

k=l i=l 
K n 

=^ ^ Sik <KJ- n. 
k=l i=l 

K n ^g^j^ 
+ / (B.1.3) 

Let 

and 

fSik 

Bit) = E / [了(q < K, + 工)-了fe < KJ]dx 

^n(Un) = Vn«nU nK^n 一 "^n 

where = n — J ] o;左 E • / ( x “ < b* ) — Tk]. Then v) can be 
K n 

rewritten as 

K K 
Sn{un,v) = VnanC^r]n,kVk + + ^ î kB^n^ + �( B . 1 . 4 ) 
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By Conditions {Bi) and by directly computing the mean and variance for each 

component, it can be shown that 

乏n — Zn = Op(l). 

Then by the Cauchy-Schwartz inequality, we have 

(B.1.5) 

Using Condition {B2) and the same argument as for (A.1.7), we obtain that 

E^Li Vn,kVk + = This combined with (B.1.4) and (B.1.5) 

leads to 
K 

5'nK,v) = [uJkBil"�+ Op{na (B.1.6) 

Using Condition (C) and taking iterative expectation, we establish that 

mit^] = nE[£\G{bl^+x)-G{b*J]dx]. 

n 
=jgiKJEslii^oii)). 

Put f i 几 = a n d = By Conditions straightforward 

calculation leads to Esff, = + + + o(l)), and hence 

赠 ) ] = l o K W n i ^ l + K^nUn + 2 够 X ) ( l + o{l)). 

Simple algebra yields that 

i=i 九 

n 

< 4 = 0{nal){vl + u'J^Un + 2 靜 
i=i 

Therefore, 

Bit^ = ^9{b:,)nal{vl + u ^ r . u , + + Op � ) . (B.1.7) 
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Combining (B.1.6) and (B.1.7) yields that 

K 

+ Op{na^)\\Mn (B.1.8) 

Finally, we consider the Taylor expansion for the penalty term in (B.1.2), 

Using pAn(O) = 0 and Condition (A4), we establish that 

Sn 

PXni^n) > nJ2{PXni\+ «nUnj \) - PxAlf^njl)} 
i=i 

8n 1 

i=i 
Then by the Holder inequality and Conditions (成)-(•)，we have 

Pxni^n) > + -nalh 

> -{nalWuJ ^ Opinal)). 

=(1 + 0(1))) 

(B.1.9) 

It follows from (B.1.2), (B.1.8) and (B.1.9) that v) is dominated by the 

positive quadratic term ^na^ + u “ r „ u „ + as long as 

|u„|| and ||v|| are large enough. Therefore, (5.1.1) holds, and the proof is com-

pleted. 

Lemma B.1.1. Suppose Conditions (Bi)-(B^) and (C) hold. If — 

0； oo, and pl/n 0； as n ^ oo, then with probability tending to 1, for 
_ 1 _ 1 

any given satisfying — /3* = Op{np ||b — b*|| = Op{np and any 

constant C, we have 

Q f ((/3:i，0')'，b) = mill 1 Q n 0 3 ' J ' � ' M 
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Proof. Let 一 f^h) = 一 fKa) = Un2, = ( l^”! ! n2. 

and — b*) = v. By the definition of Q f i P n , b) and v), we have 

C^f((/3;i，0')'，b)-Qf’((/3;i，/3;j'，b) sc. 
Pn 

=s; ( (u :0'))'，v) — S ; ( K i，心广V ) — n Y^ VxMn, 
.+1 

Using (B.1.8), we obtain that 

K 

0'广 V) = -pn Y^ UJk9{K,){vl + u'^^TnllUn + 2v k fl'^iUnl) (I + Op(l)) 
2 

k=l 
+ Op{pn)\\Unl 

and 

K 

&(«i，<2)'，V) = -Pn Y^ UJk9{K,){vl + u'j^nUn + 2v k fl'^Un) (I + Op(l)) 
k=l 

+ Op{pn)\\Un\ . 

By Condition {B2), we have < | | G „ | | = Note that 

|u„i|| = Op(l), ||v|| = Op(l), andO < ||u„2|| < C. It follows that S^(i4i，0')'，v)= 

Op(pn'^) and S^(u“i，u“2)'，V) = Op{pn^)- Using pAn(O) = 0 and the mean value 

theorem, we arrive at 

Pn Pn 

n n 
=Sn + l 

伊nj. 

E p'xMjIM 
j=Sn + l 

=n\n ^ — 
j=Sn + l 
I yn 

^ p � /含 忽 f l i 二 i ， ' ; j 0 ) / A j ^ lA 

A. 

where 0 < < \(5j\ for j = + 1 , . . . Since ^/ri^Xn — 00 and pj^/n — 0, 

P n - s J ^ V ^ ^ ^ is of higher order than Opijpt!�. This together with Condition 

(Ai) means that 0')', b) — b) is dominated by the term 
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Pn 
—n V\n{\(^nj\) for larger n, which is less than zero. This result of the lemma 

j=Sn + l 

holds. 

Proof of Theorem 3.2.2, 

(i) follows Lemma (B.1.1). 

(ii) Let = — /3*). Partition the vectors = ( u j ^ i , z = 

(z'i，z'2)', and = ((•/：」',（•/二2)7，in the same way as (3, = (/3；̂1， 

Partition as a 2 x 2 block matrix G„ = (Gnij) (for i,j = 1, 2), where G^n was 

defined before, and let 

Sn 

PXni^m) = n[(PA�":j. + ^nUnjl) - PxA\Pnj\))-

Then by Taylor's expansion and Condition {B丄 the j t h component of dPx^ (u„i)/duni 
IS 

1 
nanP'x^ ilPlj I )sgn{Pl^)Unj + + ^(l))-

By (B.1.2), we have 

Put tik(unuUn2,Vk) = “nVk + /(xi,/3； + — Then by (B.1.3), we 

have 

K n 

s;((l4,0')'，V) = — K, - — p 丁丄 Si — b*j}. 

k=l i=l 

Therefore, the minimizer (u„i, v) of 0')', v) satisfies the score equations: 

K n 

n-1 Y^uJkY^ A^Si — b; — UkiunuO, + 0,(1)) 
k=l i=l 

= + + (B.1.10) 
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and 

(^k — Kk — tik{UnuO,Vk)) = 0. 

Note that '(pr{u) = r — I{u < 0). We rewrite 

K n 

n 

K 

= — n -1 /2 Znl + ^ �kB. (k) 
n2 • 

(B.1.11) 

where z^i = n 部 Y. E ^^klH^i < K J " ^k] and 
i=l k=l 

n 
B � =n - ' ^ K f e - 6； - ^..(Unl, 0, Vk)) - i J r M -

i=l 
n 

E 陶 < KJ - 了(q < Kk + W n n i，(M , ) ) ] v / : i . = n 

Decompose into B 泛 = + '̂a：), where 

n 
B^l = n—1 — + t秦h 0, v,))]Vf] nil' 

Bn22{Unl,Vk)=几-丄 ^ { [ / ( ^ i < - I(£i < b; + (^nl, 0, Â；)) 
i=l 

'nil' 

By the mean value theorem, 

i=l 
n 

=—n—1 g{bljtik{unu 0, Vk)^f, 
i=i 
n 

- n - 1 ^[g{b：：) - g{b*J]Uk{uni,0, 

'nil 
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where b** is between b*^ and b*^ + tik{uni,0, Vk). The first term above is 

-ang{KJ(TnllUnl + + 

and the second term is dominated by the first term. Therefore, 

By directly calculating the mean and variance, we obtain that B监 (Uni ,Vk)= 

Op{an). For any given large number M > 0, using Bickel's (1975) chaining ap-

proach, we can show as in Jiang et al. (2001) that 

sup \B^n22î nUVk)\ = Op{ 
l | u | | < M 

a. 

Since Uni = 0^(1) and Vk = 0^(1), = Hence, 

Bn2 = -«n^(&;j(rnllUnl + + Op(l)). 

This combined with (B.1.10) leads to 

K 

—(n—+ = (^kOiK, ) (rnllUnl + Mnl^A；) + ^^An^nlKl + Op{l)). 

(B.1.12) 

Similarly, the score equation (B.1.11) can be simplified as 

n 部 rin,k + anUkg{hl^){Vk + MnlUnl(l + Op(l))) = 0. 

Solving (B.1.12) and (B.1.13), we obtain that 

(B.1.13) 

a, 
K 

= — n - — + 1/2): 
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where (z„i — fj,^-^ Vn,k)/is normal with mean 0 and covariance matrix 

cr^(a;)G„ii. Note that u„i = — /3:i). It follows that 

X [(良 1 — + + i b j o / g ] 

Proof of Theorem 3.2.3. This can be proven using an argument similar to that 

for Theorem 3.2.1. Let — /3*) = and — b*) = v. Partition the 

vectors = (uj^i，uj^2)' according to = ( / 3 j ^ i ， W e will show that for any 

inf Q f (/3： + b* + > g f (/3：, b * ) | > 1 - (B.1.14) 

八 j\Xj _ 1 ! r\ 
which implies that there is a local minimum in the ball {(/3* + rip 丨 b* + 

1/2， n„ V u卞 
AL 

< C, ||v|| < C} such that ||/3„ - /3；|| = Op(n 
-1/2、 

Let Ph^iun) = + — \p*J) and nj nj 

PhA^nl) = + �i � „ j . | -

Define 

D f i i J i n , V) = g f ( / 3： + � — 1 / 2 �b * + � -i / V ) — b̂  

Then 

Similar to (B.1.8), 

5'n(Un, V ) = 

+ 

v) = ^ n K , v) + P h M - (B.1.15) 

K 

2 
k=l 

Op(Pn)\\Un 
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� _ 1/9 � 

Note that f^nj is the n; consistent estimator for f3*j such that pnj = /?*j(l+Op(l)). 

~ + Therefore, P / J u J > P ‘ M and 
Sn Yj^fj^ 

PhJUnl) — [ � 1 � 
1=1 f^nj 

7 = R* 
" n j Pnj 

、 n'/'K 
> ：——^ �/ I , — P n 

mm 

By Condition {B4) and ri^^^hn — 0, it is easy to see that D ^ is dominated by the 

positive quadratic term 

1 K 

丄 k=\ 

as long as ||u„|| and ||v|| are allowed to be large enough. This means (B.1.14) holds. 

Proof of Theorem 3.2.4. 

(i) Following the same argument as for Lemma B.1.1, we can complete the 

proof for sparsity. 

(ii) By (B.1.15), we have 

^ i ( K i， o ' ) '， v ) = s;((<i，o')'，v) + i U u „ i ) 
Sn 

= S n i i K , , o y , V ) + ； ^ ^ � 1 / 2 �s g n ( / ? ; . ) ( l + 0 ( 1 ) ) . 
j=l Pnj 

Let tik(uni,Un2,Vk) = n;”�k + f � X i , [3: + n;…Un) — / (x“ /3 : ) . Then 

K n 

V) = ^UJk^iPrM — K, — tik{UnuO,Vk)) — P 丁丄 £i — J }. 
k=l i=l 

Therefore, the minimizer (u„i, v^) of 0')'，v) satisfies the score equations: 

K n 

n'^^uJkYl i^nM — Kk — tikiunuO, + Op(l)) 
k=l i=l 

=hndn{l + Op{l)) 
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and ujk Ya=i Vk)) = O.Then similar to (B.1.12) and (B.1.13), 

the above score equations can be simplified as 

K 

—(n—+ hndn) = + /Llnl 公 fcXl + Op(l)) 

k=l 

and + + Op(l))) = 0. Solving the above equa-

tions, we obtain that 

g 
K 

= - n - - ^lnlI”n,kW实 + 1/2). 
k=l 

Note that = - It follows that 



Appendix C 

Proofs of Theorems in Chapter 4 

The arguments for the theorems in Chapter 4 are different from those used nonlin-

ear regression models, and the previous arguments cannot be used to deal with the 

simultaneous estimation of the AR and ARCH parameters. We will need the the-

ory about generalized functions of random variables and stochastic limit operations 

with partial sums of these generalized functions of random variables. 

C . l Generalized functions 

For convenience, let us introduce at first the theory of generalized functions, which 

can be found in Phillips (1991b) and Phillips (1995). 

C.1.1 Generalized functions of random variables and generalized limit 
theory 

Phillips' idea is to treat non-smooth objective criteria like pr{.) that appears in QR 

estimation as generalized function and uses generalized Taylor's series expansions 

to represent their local behaviors. 

Although has no meaning as an ordinary derivative for Pt{-), it can be 

interpreted in terms of the derivative of generalized function by using the 

"regular sequence" approach given in Lighthill (1958). 

71 
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Definition C.1.1. A regular sequence for any generalized function f{x) is a se-

quence f 讯(cc) of good functions (i.e., functions which are everywhere differentiable 

any number of times and such that it and its derivatives are 0( X -N� as X 

for all N, the set of such functions is denoted as GF) converging weakly to f{x). 

denoted by /饥 4 /，in the sense that 

f{x)F{x)dx = lim / r{x)F{x)dx (C.1.1) 

exists for any F G GF. 

Since the sequence 广(.）is measurable ,广 (ut ) has a meaning as ordinary 

random variable on the probability space where Ut is defined. From (C.1.1), it 

follows that, if pdf{u) G GF is the density of Ut, then the expectation of the 

generalized function / ( . ) of Ut is defined by 

E[f{ut)] = lim Eiriut)) = lim / r{u)pdf{u)du, (C.1.2) 

which also means E[f"^{ut)] E[f{ut) 

Next, we introduce a weak law of large numbers (WLLN) or strong law of large 

numbers (SLLN) for partial sums of the generalized function of random variables 

f M . 

Definition C.1.2. A WLLN and SLLN for f{ut), that is, 
T 

(C.1.3) 

is defined by the corresponding weak and strong laws for partial sums of the regular 

sequence 广(uf) of ordinary random variables, that is, by 
T 

- ^ p E i r M l Vm (C.1.4) 

and the limit that appears on the right side of (C.1.4) is given by (C.1.2), 
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Lemma C.1.1. (Lemma 3.1 Phillips 1995) (SLLN for Ordinary Random Variables 

as Generalized Functions of Random Variables). Suppose Ut is strictly stationary 

and ergodic and f{ut) is an ordinary (measurable) function of Ut- Then, (C.1.3) 

holds in the sense of ordinary random sequences if and only f it holds in the sense 

of generalized functions of random sequences, that is, if and only if (C.I.4) holds. 

C.1.2 Ordinary functions as generalized functions 

The following examples illustrate ordinary functions as generalized functions. 

Example 1. (Philips) The discontinuous function sgn(x), which is 1 for a; > 0, 

0 for a; = 0 and — 1 for a; < 0, satisfies the condition of Definition 7 (Lighthill, 

1958, p.21) as a generalized function and can be defined by the following regular 

sequence: 

roo 
sgn"\u) = / sgn{v)S{m{v — dv, 

J—00 

where the function S{.) is a "smudge function" defined in Definition 7 (Lighthill, 

1958, p.21) whose role in sgn"^{u) is to smudge out sgn{v) when v is outside the 

interval (u — m—i,u + m—i). 

The regular sequence sgn讯(Uf) has the property E[{sgn"^{ut)y] E[sgn'^{ut) 

(see for example Phillips, 1995, p. 923). It follow that 

var{sgn'^{ut)) var{sgn{ut)) (C.1.5) 

from (C.1.2). 

Example 2. (Philips) The sign function sgn{x), as a generalized function, has 

its derivative sgn'{x) = 26{x), where is the Dime delta generalized function 

with the property that f : � 6{x)F{x)dx = for any continuous function F{x). 

With this property, it follows that 5^(u) = is a regular sequence 
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for 6{u). Note that = 6{u). Therefore, d讯(u) is also a regular sequence for 

Let pr(u) = + and ^^(m) = ^sgn{u) + ^ ^ = 丁一 I{u < 0). From 

Definition 6 (Lighthill, 1958, p.18), pr{u) can be defined by the sequences 

P : � =一 , u ) u + ^ ^ u (c.1.6) 

and p^ (̂u) can be defined by the sequence 

C M = ^ s g n ^ N + (C.1.7) 

Also, we know p'丁(u) and are defined by the sequence and 

respectively. Therefore, and are equivalent regular sequences of 

and f)二(u) and d爪(u) are equivalent regular sequences of p'^{u). Combining 

(C.1.5)-(C.1.7) produces that — var{^pr{ut)) and 

var{p^ (ut))) — var{ipr{ut)). (C.1.8) 

C.2 Proofs of Theorems 

In this appendix, we give rigorous proofs of our theorems. To facilitate the formu-

lation of proofs, we introduce the following notations: 

K 

= var —c 

K 

三 E J � Ut ) - c丁k 

K 

V —s'+l 
(C.2.9) 
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- E � ( l o g ( M ) — 4 
V 1 1 

m _ ( m m y 
qn — Wn,l5 • • • 5 Hn,K) 

and 

Proof of Theorem 4.3.1, Let - /3*) = u and —巧）=v . Put 

l(v, u) = (ht{f3* + n - i / 2 u ) ) - — (b* + n-i/2i；). Define 

n 

Sn = Sniv, U)= ^ M i v , U)) — f j 八[h 砍))-％ — 6;)}. 
t=s+l 

Then minimizing (4.3.4) is equivalent to minimizing Sn- However, Sn{v, u), as a 

generalized process, is defined by the following regular sequence of process 

u ) = E {p:物,u)) — p:你卿-ht -K)}, 
t=s+l 

where is the regular sequence defined in (C.1.6). 

Denote by h = U f T ) ， • " 力 = 我 = ^ and 

•Vr = -pTiut - & ： ) ( 丄 , ] + -Pfiu, — b 
n V 

( 0 0 
\ 

efVhtVh'^ J n' T " 0 StV'ht , 

which is the Hessian matrix of u)) with respect to {v, u')'. By Taylor's 

expansions, we have 

n 
= {pfiut - - n-h) 

t=s+l 

+ ( 以 力 — + Stpfiut — b*丁 )V\)u 

X (1 + 0^(1))]}. 

Rewrite u) as 

S^iv, u) = qZoV + ( 7 n ) u + i C (C.2.10) 
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where 

< 0 = - 4 叫 
V t=s+l 

1 "‘ 7 

and 

-I n -| n y 
K = ^ Y ： pTi^t - KW - E ^tPriut-K)j^}v 

t=s+l t=s+l t 

+ 臺 E — K) + 2utpnut — + 0 , ( 1 ) ) . 

t=s+l t 

Denote by af = E{utpf{ut — 6；)), bf = -E{utpf'{ut — 6；)), b^ = E{ulp^"{ut — 

6*)), and c^ = {ut — h* )̂). Then, by the Chebyshev weak law of large number, 

we have 

B : B讯= l - c ^ v ' + bTu'fiv + + 2a r )u 'G2u( l + o“ l ) ) . (C.2.11) 

Using the Cramer-Wald device and the martingale CLT, we obtain that 

< 0 ” + W ) ' u �q �+ ( f )'u， (C.2.12) 

where q � a n d are normally distributed. Then, combination of (C.2.10)-(C.2.12) 

leads to 

Statement (i): ^ for V m, where 

S^'iv^u)三 + ( f )'u + + ； 
Li 

+ *(6r + 2 O ' G 2 U ( l + 0“ l ) ) . 

n n 
Denote by gv̂，o =—n—1/2 J ] 功 � K — a n d = — n — J ] 叫 功 � K — 

t=s+l t=s+l 

Let 7 be the limit variable of and qo be the limit variable of qn,o with qq � 

A/'(0, r ( l - r)) . Then we have 
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Statement (ii): u) — u)as m ^ oo, where 

S{v, u ) = qov + V u + I f i b ^ y + + 2 a i ) u ' G 2 U + biu>. (C.2.13) 
Zi Li 

The proof of the statement is stated briefly as follows. First, it is easy to show 

— qo and — 7. Second, from Definition 6 (Lighthill, 1958) and (C.1.1)-

(C.1.2), we have o^ — a：, bf — 61, bf — 62, c �— E { S { u t — 6；)) = /(6；). 

Therefore, Statement (ii) holds. 

By Lemma C.1.1 and the above two statements, S{v, u) is also the limit of 

Sn{v, u). Therefore, we establish that the weak convergence of Sn{v, u) u) 

as generalized process (Phillips, 1996, p. 941). 

Let and u be the minimizers of v) and S{u, v) for u, respectively. 

Since S{u, v) is a quadratic form of (u'，v')'，u is unique. Simple algebra gives 

that 

U = - { ( 一 — 緒 為 。 ) ， 

where (7 — jj^Qo) is a random variable with mean nonzero. 

Since the minimization operator is continuous under the infimum topology, 

by the continuous mapping theorem [see for example Theorem 25.7 in Billingsley 

(1995) 

- ^ u . (C.2.14) 

Note = — Therefore, 

M P o — /3*) = -{(&2 + 2ai)G2 — j ^ r ' h n — + 0,(1). 

Proof of Theorem 4.3.2, Let \/n(l3 — (3*) = u, — c* )̂ = Vk, and 

V = {vi,...，vk)'. Put /o(£t, Vk, u) = log — log(/it(/3* + n — — 
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and li{ut,Vk,u) = (log(|Mt|) - c*J — - ^ { ^ u + Vk). Then minimizing the objective 

in (4.3.6) is equivalent to minimizing 
K n 

5'n(v,u) = ^CJ/e Y ^ {pr,{lo{et,Vk,u) - Pr,{log{\Ut\) - c l j } 

Define 
K n 

=s+l 

K n 

S7(V，U) = X I 叫 H {Pr,{h{UuVk,u) — -u'Htu) — Pr,{log \Ut\ — C;J} 
f I -s+l 

We will show that S'* converges to a quadratic form of 

following 3 steps: 

Step (i). We first prove S*̂  >d S on C(R时i). 

By the identity (Knight 1998) 

and V through the 

r-s\-\r\ = -s{I{r > 0) - / ( r < 0) + 2 / [I{r < x) - I(r < 0)]dx, 
Jo 

we have 

八(r - s ) - pr{r) = s[I[r < 0) - r ) + / [I{r < x) - I(r < 0)]dx. 
Jo 

Thus, we rewritten 
K K 

(C.2.15) 

where 

qn = (J(log(l权d < O — n), 
^ ^ t=s+l 

1 K n z 

V 1,-1 丄 1 t 

K z, 
= - n ^ ' ^ L J k " ^ • ( l o g M — c；. 

= s + l 
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Bit)三 E / 
y/n 

/(log\ut\ < c* -^x)- /(log \ut\ < c*)dx 

Let Qn = 1, • • •, QTIKY- Usiiig the Cramer-Wold device and the multivariate 
V central limit theorem, we establish that (qj^，zjj' (q', z')', and hence 

K K 

�kqn,kVk + Z^U ^ ^kQkVk + z'u, (C.2.16) 

where q = {qi,..., qk)' — A/'(0, A) and z — 7\/(0，a/Ao^Gg) with (q', i!)' being 

jointly normal with mean zero and covariance matrix CVw(q，z) = Kui^i!. 

By taking iterative expectation, we obtain that 

ht 
mi'^] = ^ { E / ^ [G{cl+x)-G{c*J]dx]. 

t=s+l 

Using the mean value theorem and Condition (b2), we arrive at 

=知 ( c : J ( u ' G 2 U + + vl) + 0,(1). 

Denote by rrikiiH, x) = /(log \ut\ < c*̂  +x) — /(log \ut\ < c*J. It is straightforward 

to show that 

ht 
\/n 

rnk{ut,x) - (G(c* + x) - G(c*))]dx} 
=S+1 

容u 

M
 

f

 

y
 

V
I
 

川秦,x) - {G{c* -^x)- G{cl))]dx\} 

X 2 

s+l 

ht 
\/n 

< 4 难 P 

— 0 
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from the condition sup^ 二 which holds by the assumption (aO). 

Hence, by Chebychev's inequality, we have 

BL'̂  = ^g{c^J{u'G2U + 2vkfi'u + vl) + 0,(1). (C.2.17) 

From (C.2.15)-(C.2.17), it follows that 

K 1 K 
Sl^d S = "^uJkQkVk + z^u + - ^Ukg{clJ{uG2U + 2够'vi + vl) + Op{l). 

k=l k=l 

(C.2.18) 

Step (ii). Following the same argument as in Davis (1997), we can show that 

S二 has the same limit, that is, — S'* ^ > p 0. 

Step (iii). We show that Sn has the same limit as S**. By Taylor's expansion, 

we can rewrite Sn(u, v) as 
K n ” 1 ~ 

5'n(v,u) = ^(^k {p丁kMut,Vk,U) — - u H t ( ^ ) u ) — Pr,{log \Ut\ — C;J}， 

k=l t=s+l 

where 百 is between /3* and jS* + n - �� ,U s i n g the inequality 

Priri) - /V(r2)|/|ri - ”2| < max(r, 1 - r) < 1, 

we establish that 

n 
=s+l 

—p 0. 

Therefore, combining Steps (i)-(iii) leads to Sn ——>d S. Let u„ and u be the 

minimizers of S'„(u, v) and S(u, v) for u, respectively. Since S'(u, v) is a quadratic 

form of (u', V')', u is unique. Simple algebra gives that 

K K 
U = — �( � ) ] - i r — 1 ( Z — fiCEuJkQk))-
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八 

By the same arguments for (C.2.13), ——> u. Note that = — /3*) 

and (Xl^Li — ^kQk)) is normal with mean 0 and covariance 

matrix cr^(a;)r. Therefore, 

M01 - /3*) 

Proof of Theorem 4.3.3. The proofs are basically the same as for Theorem 2.3.1 

with Cc replaced by uJopti^ + Op{l)). 

Proof of Theorem 4.3.4, Let c*̂ ) = vk,v = {v[,..., Vk)', \/n{f3—f3*)= 

u, — a*) = Sn- Put l{vk,Sn,u) = log |£t(a* + n—-〜）| — log(/it(a* + 

r r ^6n , /3* + n—全u)) — (c*̂  + n—“之^；左).Then minimizing the objective in (4.3.9) is 

equivalent to minimizing 

However, dn, u), as a generalized process, is defined by the following regular 

sequence of process 

K 
人,u) = [ K ^ G K入， u ) ) — � ( l o g M — � ) } 

Denote by H^ = 
Ht i i Hti2 \ 

where H/ =— iog(ht(a,j6)) 

dOdO' y Ht21 Ht22 y 

matrix and 6 = (a'，/3')'. Let Dg = E(Det), H = E(Ht)= 

e* is a 2 X 2 block 

(Hii Hi2 \ 

V H21 H22： 

Taking Taylor's expansion for Sn,u), we obtain that 

‘ u) = d几,u) + u) + or(〜，u) + 0^(1), (C.2.19) 

where 

1 K n ry/ 

^ ^ k=l t=s'+l t 

d PT,{log\u, V. 
K 

k=l 
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K n 

k=l t=s'+l 

+ u'^U + 2VkJ[dn + + 2dnJt^u), 
'h Ik 

K n 

or(〜，U) = ^ + 
k=l t=s'+l 

+ + uHt22u), 

and Lagrange remainder Op{l) holds from the assumption (cl) and the boundedness 

of and 

Rewrite Sn, u) as 
K 

S …U) = + (Z-)'U + [ _:，kVk. 
k=l 

Using the Cramer-Wald device and the martingale CLT, we have 
K 

d几,u) 1 d几,u) = 知 + ( z - ) ' u + uJkqTvk： (C.2.20) 

where r讯 ^ z讯 ^ E ^ ) and qf ^ A / ^ / i 工 ， w i t h = 
n K n K n 

n—oo V 力=召/+1 &=1 n^oo v 力=召/+1 &=i n^oo v 力=召/+1 

� =v a r ( ^ - ( l o g ( | n , | ) — c；)), = Q = E{JtJ[) and = 

Denote by ^ = E制)and f = E{p^J'{\og{\ut\) — < J ) . Applying the 

Chebyshev weak law of large number, we have 
1 K 

i C ( v 人 U ) � i ? - ( v 人 u) = (C.2.21) 
丄k=i 

with 

m{Vk, dn, u) = [vl + d^Jldn + U'G2U + 2VklJ^'aSn + 2哪'U + 2《屯'U 

and 

1 K 
C'^iSn, u) Cidn, = + H n ) ^ n + <H22U + 2 � H i 2 U ) . 

(C.2.22) 
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Combining (C.2.20)-(C.2.21), we establish that 

1 ^"^(v, ^n, u) = 6几,u) + B^iv, ‘ u) + C^idn. u), (C.2.23) 

Let q 饥 = { q ^ , . . . ， q ^ ) ' and q = { q i , . . . , Qk)' • Denote by 

K K 

S(v,dn,u) = r'dn + z'u + ^uJkQkVk + - ^uJk9{c*rJm(vk,Sn,u), (C.2.24) 

V where q 饥 q , (q', r', z')' being jointly normal with cov(q, r) = Aojfji'^, cov(q, z ) = 

Aujfji', cov(r, z) = a;'Aa;cov(Jt, f^) and r 么 J\f(0,(jj'A(jjft). We'll prove 

S饥iy, Sn, u) S{y, Sn, u) as m ^ oo. (C.2.25) 

Note that p̂̂ k ('") can be defined by the sequence and 6{u) can be defined 

by the sequence From (C.1.1)-(C.1.2), we have 

and 

^ E{5{log{M) < c*J) = g{c*J 

(C.2.26) 

(C.2.27) 

as m ^ oo, 

Also, we have — + ) from (C.1.8). Thus, 

K 

6n, u) r'6n + z ' u + ^ uJkQkVk，as m ^ (C.2.28) 

It follows that (C.2.25) holds from (C.2.21)- (C.2.23) and (C.2.26)-(C.2.28). There-

fore, by Lemma C.1.1, S'(v, Sn, u) is also the limit of Sn, u). 

Finally, by the same argument as for (C.2.14), the minimizer of dn, u) 

converges in distribution to the minimizer u of S'(v, dn, u) such that 

K 

u =— 
Ylk=i^kg{c*) 

� z — " f ujkQk) — r—1(屯一fifi ' jd, 
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where Sn = — «*)• 

Denote by C = 屯 — w h i c h equals to cov(g, J^) and N = ( E f = i 叫 乂 丄 ] 

JjL ^kQk) which is a normal random vector with mean 0 and covariance matrix 

cr2(a;)r—i. Then , we have 

- /3) = N - r - - a * ) + o “ l ) . 

Proof of Theorem 4.3.5. Let — = Vk, v = {v[,v2,..., v'j^)', \/n(l3 — 

(3*) = u, and — a*) = 6. Put 

Kvk, 6, u ) = log |£t(a* + n—全…| — log(/it(a* + n - “ , /3* + n—去u)) — (c； + n - ” 、 Y 

Then minimizing the objective in (4.3.10) is equivalent to minimizing 
K n 

= ^ {pAKVk, U) - Pr {\0g l^tl - C; j } . 
k=l t=s'+l 

Define 

K n 

k=l t=s'+l 

Taking Taylor's expansion for ？7, u), we obtain that 
K 

ST(V，么 u) = ( C ) ? + ( z :) 'u + [ uJuQkVk + 么 u) + u), 
k=l 

where and are defined in (C.2.19). Then, similar to The-

orem 4.3.4, we can show that 

and S, u) — S'(v, u), as m ^ 00, where S'(v, ？7, u) is defined in (C.2.24) 

with dn being replaced of 6. 

Therefore, by Lemma C.1.1, S'(v, u) is also the limits of Sn, that is 

S j v , 6, u) — S{v, 6, u). (C.2.29) 

z— 



E
E
 

a
 

I
 

u,
 u,
 

I

 I
 

r
 z
 

L ^kQk 
^kQk 

+Op(l). 

K 

Equivalent ly, 

^ = —(o/g)—i[(n—i + n—iCD—ic'n—i)(r — 
k=i 

K 

k=l 

and 

K K 

U = —(o/g)—1[D—1(Z -I^^uj^qk) — D—ic'n—i(r — 叫收： 

k=l k=l 

where (o/g)—i(r — fjL̂  Vk)�A/ ' ( 0 , cr^(a;)n). Therefore, with the same argu-

ment as (C.2.14), we have 

\/n(d2 - a*) = ^ + Op{l) 

and 

This completes the proof of the theorem. 
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Finally, since Sn is a convex function of (v', u')'，the minimizers of S'(v, u: 

for u)' are 

c A n 
a 

K 

{^Ukoic'l 
6 \ 
u / 
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