
A Geometric Approach to Integer Optimization and Its Application for Reachability Analysis in Petri Nets

GU, Shenshen

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Automation and Computer-Aided Engineering

July 2009

UMI Number: 3480787

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI 3480787

Copyright 2011 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProOuesf
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Thesis/Assessment Committee

Professor Chung, Chi-kit Ronald (Chair)
Professor Wang, Jun (Thesis Supervisor)
Professor Li, Duan (Thesis Supervisor)

Professor Lam, Kai-Pui (Committee Member)
Professor Li, Han-Lin (External Examiner)

Abstract
Integer programming plays an important role in operations research and has a wide range

of applications in various fields. There are a lot of research directions in the area of integer
programming. In this thesis, two main topics will be investigated in details. One is to find the
optimal binary solution to a quadratic object function, and the other is to find integer solutions
to linear equations.

Finding the optimal binary solution to a quadratic object function is known as the Binary
Quadratic Programming problem (BQP), which has been studied extensively in the last three
decades. In this thesis, by investigating geometric features of the ellipse contour of a concave
quadratic function, we derive new upper and lower bounding methods for BQP. Integrating
these new bounding schemes into a proposed solution algorithm of a branch-and-bound type,
we propose an exact solution method in solving general BQP with promising preliminary com-
putational results. Meanwhile, by investigating some special structures of the second order
matrix and linear term in BQP, several polynomial time algorithms are discussed to solve some
special cases of BQP.

In the realm of integer programming, finding integer solutions to linear equations is an-
other important research direction. The problem is proved to be NP-Complete, and several
algorithms have been proposed such as the algorithm based on linear Diophantine equations
as well as the method based on Groebner bases. Unlike the traditional algorithms, the new
efficient method we propose in this thesis is based on our results on zero duality gap and the
cell enumeration of an arrangement of hyperplanes in discrete geometry.

Finding integer solutions to linear equations has various real world applications. In the the-
sis, we investigate its application to the reachability analysis of Petri nets. Introduced by Petri
in 1962, Petri net has been a powerful mathematical formalism for modeling, analyzing and
designing discrete event systems. In the research community of Petri nets, finding a feasible
path from the initial state to the target state in Petri net, known as reachability analysis, is prob-
ably one of the most important and challenging subjects. The reachability algebraic analysis is
equivalent to finding the nonnegative integer solutions to a fundamental equation constructed
from the Petri net. We apply our algorithm in this thesis to reachability analysis of Petri net by

finding the nonnegative integer solutions to the fundamental equation.

Ill

摘要

整數規劃不僅在運籌學研究中扮演著十分重要的角色同時對各種領域也有著十分廣泛的應

用•在整數規劃研究領域中具有許多研究方向•本篇論文具體討論其中兩個主要課題•其一

是尋找二次目標函數的最優0-1解，其二是求解線性方程組的整數解•

尋找二次目標函數的最優0-1解也稱為0-1 二次規劃問題•在過去的三十多年時間裡該問題

得到了廣泛的研究•在本篇論文中，通過探索二次凹函數橢圓型等高線的幾何特性，我們對

0-1 二次規劃問題提出了新的計算上界和下界的方法•將這些方法與一個分支定界類型的求

解演算法相結合，我們得到了一個求解0-1 二次規劃問題的確切解演算法•同時，通過對

0-1 二次規劃問題的二次矩陣和線性項特殊結構的研究，我們討論了 0-1 二次規劃問題中一

些特例的多項式時間複雜度演算法•

在整數規劃的研究領域中，求解線性方程組的整數解也是一個重要的研究方向•該問題被證

明是NP-Complete問題•對於該問題，一些演算法相繼提出，諸如基於線性Diophantine方

程組的演算法以及基於Groebner基的方法等等•同這些傳統演算法不同，我們在論文中提

出的新演算法是基於我們對零對偶間隙的研究結果以及在離散幾何學中對一組超平面所劃

分區域進行枚舉的方法•

求解線性方程組整數解的問題具有許多現實的應用•在本論文中，我們研究了其在Petri網

可達性分析中的應用• 1 9 6 2年由P e t r i提出的P e t r i網是一個對離散事件系統進行建模、分

析以及設計十分有效的數學形式•在Petri網的研究中，尋找從初始狀態到終結狀態的有效

途徑（即可達性分析）無疑是最重要且最具有挑戰性的課題之一 •可達性的代數分析方法等

同於對一個由Petri網構造的基本方程的非負整數解進行求解•通過尋找基本方程的非負整

數解，我們將論文中所提出的算法應用於Petri網可達性分析•

Acknowledgement
I would like to express my heartful gratitude to my supervisors, Professor WANG Jun and
Professor LI Duan, for their supervision throughout these four years. Without their continuous
encouragement and help, this thesis is unlikely to be accomplished in its shape as it is. What
is more, I am deeply grateful to Professor LI Duan for his patience and kindness. He always
puts high priority on my research and is willing to discuss new ideas with me at anytime he is
available. I have learnt a lot from him these years.

I am also grateful to my Ph.D. thesis committee members, Professor LI Han-Lin and Pro-
fessor LAM Kai-Pui, for giving valuable comments on my research works.

I treasure this chance to thank in particular Professor SUN Xiaolin and Professor YAO
Yirong who give me great assistance and valuable comments on my research.

In addition, I would like to convey my appreciation to my labmates and friends GAO Jian-
jun, YI Lan, LIU Chunli, CHIU Mei-Choi, CUI Xiangyu, WANG Chongyu, HU Xiaolin, Liu
Qingshan, Xiang Tao, PAN Yunpeng, HU Jin and former lab visitors Professor ZENG Zhigang
and Professor SHEN Yi.

VI

This work is dedicated to my parents.

Vll

Contents

Abstract i

Acknowledgement vi

1 Introduction 1
1.1 Binary Quadratic Programming Problem 1
1.2 Finding Integer Solutions to Linear Equations 3
1.3 Petri Nets and Reachability Analysis 5
1.4 Thesis Organization 7

2 Polynomially Solvable Cases of Binary Quadratic Programs 8
2.1 Introduction 8
2.2 Problem (0-lQP) with all off-diagonal elements of Q being non-positive . . . 11
2.3 Problem {0-lQPh) with fixed rank Q 14
2.4 Problem {BQP) defined by a series-parallel graph 18
2.5 Problem (0-lQP) defined by a logic circuit 25
2.6 SDP representation of Lagrangian dual and polynomial solvability 28
2.7 Summary 31

3 Geometric Solution Approach to Binary Quadratic Programming Problem 32
3.1 Introduction 32
3.2 Perturbed Quadratic Function and Contour 33
3.3 Upper Bound 34

3.3.1 The Nearest Point to Center Point ^ 35

Vlll

3.3.2 An iterative method to find point x 36
3.3.3 The Upper Bound Achieved from the Point x 39

3.4 Lower Bounds 40
3.4.1 Lower bound derived from the maximum distance sphere 40
3.4.2 Lower Bound Based on the kth Farthest Point 41
3.4.3 Finding the kth Farthest 0-1 Point 42
3.4.4 A Condition for optimal solution to (P) within the farthest k 0-1 Points 45
3.4.5 Improved lower bound achieved on the switching points 47

3.5 Variable Fixation 52
3.5.1 One classical sufficient conditions 52
3.5.2 A new sufficient optimality condition 53

3.6 The Algorithm 54
3.7 Numerical Results 56

4 Polynomial Algorithms to Binary Quadratic Programming Problems with Q being
a Tri-Diagonal or Five-Diagonal Matrix 59
4.1 Basic Algorithm to Binary Quadratic Programming in General Form 59
4.2 Problem (0-lQP) with Q being a tridiagonal Matrix 63
4.3 Problem (O-IQP) with Q being a five-diagonal Matrix 64
4.4 Algorithms to Linearly Constrained BQP with Q being a Tri-diagonal Matrix

Based on Dynamic Programming Method 66
4.4.1 A Simple Example 70

4.5 Computational Results 73

5 A New Algorithm to Find Integer Solutions to Linear Equations 77
5.1 Brief Introduction to the Methods for Finding Integer Solutions to Linear Equa-

tions 77
5.2 Finding Integer Solution with Cell Enumeration Method 78
5.3 An Illustrative Example 81

6 Reachability Analysis of Petri Nets 85
6.1 Brief Introduction to Petri Nets and Reachability Analysis 85

IX

6.2 Solving the Reachability Analysis Problem by Finding the Integer Solutions to
the Fundamental Equation 87

6.3 Convertion of the Firing Vector to Firing Sequence in Petri Nets 91

7 Conclusion and Future Work 96

Bibliography 97

List of Figures
1.1 A simple with four places and four transitions 5

2.1 Illustration for cell enumeration process 18
2.2 Examples of series-parallel and non-series-parallel graphs 19
2.3 The original graph and the reduced graphs of the example instance 20
2.4 The graph of {j, kj,0} 21
2.5 The original and reduced neural networks of the example problem 25
2.6 Eight cases of different combinations of w and 1 26

3.1 The closest point on the contour with respect to the center point is not with the
box [0, 36

3.2 Finding the point x with iterative method 38
3.3 Normal vector on the ellipse and better solution 40
3.4 Optimal solution achieved after three iterations 43
3.5 Group Ti, i = 0, 45
3.6 A graph represents all the points in T2 and T3 when n = 4 45
3.7 Illustrative example to Theorem 3.3 47
3.8 Lower bounds calculated with respect to different switching points 51
3.9 Illustration of variable fixation by inscribed sphere 54

4.1 Average computational time for different dimensional UP with Q being a tri-
diagonal or five-diagonal matrix 74

4.2 Number of states and cost-to-go functions at every stage for one example with
n = 100 74

XI

5.1 Cell arrangement for the example problem 82

6.1 Example of a Petri net 86
6.2 Cell arrangement for the example problem 90
6.3 Firing sequence with respect to the firing vector (1 ,0 ,0 ,0 ,1 ,1)^ 93
6.4 Firing sequence with respect to the firing vector (1 ,1 ,1 ,0 ,0 ,1)^ 94
6.5 Flowchart of converting the firing vector to firing sequence in petri nets 95

Xll

List of Tables
3.1 Numerical Results for Carter-type test Problems 57
3.2 Numerical Results for Williams-type test Problems (n = 40) 57
3.3 Numerical Results for Williams-type test Problems (n > 60) 58

4.1 Illustrative example of mapping A^ 62
4.2 Definitions for (f)k{xk-2, ^fe-i) according to the value of si , S2, ss and S4 . . . 65
4.3 Experimental results for U P where Q is a tri-diagonal matrix 73
4.4 Experimental results for U P where Q is a five-diagonal matrix 75
4.5 Experimental results for CP 76

5.1 A full list of cells and their closest integer points 84

6.1 A full list of cells, their sign vectors and the closest integer points 92

Xlll

Chapter 1

Introduction
Integer programming plays an important role in operations research and has a wide range of
applications in various fields. There are several research directions in the area of integer pro-
gramming. In this thesis, we investigate two main topics in details. One topic is to find the
optimal binary solution to a quadratic object function. The other is to find integer solutions to
linear equations.

1.1 Binary Quadratic Programming Problem
Binary quadratic programming problem is a well known problem in the field of operations
research, which is described as follows:

(P) min f (x) = -x^Qx + c^x.
a;G{0,i}" 2

Binary quadratic programming problem has wide spectra of applications in a variety of
fields, for example, financial analysis, molecular conformation problem and cellular radio
channel assignment. Many combinatorial optimization problems, such as Max-Cut problem,
are special cases of (P). As Max-Cut problem has been proved to be NP-hard, (P) is NP-hard
in general.

To solve the binary quadratic programming problem, many algorithms have been proposed.
These algorithms can be divided into two main categories. One is the class of heuristic algo-
rithms [17, 18, 19], and the other is the class of exact solution algorithms. Heuristic algorithms
include, for example, neural network algorithm, genetic algorithm and simulated annealing al-

CHAPTER 1. INTRODUCTION

gorithm. Exact solution methods for solving (P) can be roughly classified into five categories:
algebraic method [33, 1], linearization method [2, 3, 4], cutting plane method [5, 25, 43], re-
formulation to a quadratic concave minimization problem [7, 8, 9, 10, 11, 12] and implicit
enumeration method or branch-and-bound method [29, 13, 14, 32, 15, 16].

For the heuristic algorithms, the main advantage is their cheap computation cost and fast
computational speed. However, they have a fatal disadvantage: There is no guarantee to find
the global optimum.

For the exact solution algorithms, there is a guarantee to find the global optimum. However,
the expense is the computational cost which might be exponential to the problem dimension.

Our idea in this thesis is to take the advantage of both heuristic algorithms and exact solu-
tion algorithms. Our algorithm is an exact solution method to find the global optimum. Mean-
while, by investigating geometric properties of the problem, we adopt some heuristic rules in
the branch and bound algorithm to speed up the convergence speed.

For the exact solution scheme, we focus in this paper on development of an exact solution
method of a branch-and-bound type for solving (P). It is well-known that the efficiency of a
branch-and-bound method for solving a general integer minimization problem largely depends
on the quality of the upper and lower bounds and the corresponding computational efforts to
obtaion them. Existing approaches in the literature for computing the bound of (P) and its
subproblems include simple lower bound estimation and improvements via reformulations [16,
48], convex quadratic programming relaxation [29, 14], roof duality [13, 40], decomposition
method [32] and semi-definite programming relaxation [43]. Another significant contributing
factor to the efficiency of the solution algorithms for binary quadratic programming, although
received much less attentions in the literatures, is the capability of variable fixation to fix certain
variables at their optimal values based on some optimality conditions. The bounds of the
gradient of the objective function is used in [16,48] to fix variables. The outer box(rectangular)
containing the ellipse contour of the objective function is employed in [14] to fix variables.

As a special but important case of integer programming, binary quadratic programming
problem processes rich geometric properties. Although there exist rich geometric properties
in binary quadratic programming, only a few papers, e.g. [18], have devoted to explore such
prominent features hidden behind until recently. An exact solution method has been recently
proposed by exploring these rich geometric properties [45]. In that paper, the object function is

2

CHAPTER 1. INTRODUCTION

assumed to be convex. Unlike that method, in this thesis the objective function is assumed to be
concave. Under this assumption, we study the geometric properties behind the original problem
to propose some new bounding algorithms and variable fixation methods. The reason to study
the objective function in concave form is that, for the concave cases, it is more convenient to
find an integer point outside the current contour so that a better solution can be found. We
exploit the geometric properties of the ellipse contour of a concave quadratic function. One
new upper bound for (P) is derived by finding some special points on the contour. Two new
valid lower bounds for (P) are derived by constructing a family of minimum ellipse contours.
Based on the properties of the maximum inscribed sphere inside the ellipse contour, a new
variable fixation condition is also derived. These findings further lead to some new optimality
conditions for binary quadratic programming. Integrating these prominent features of binary
quadratic programming into an exact solution scheme, we have developed a solution algorithm
of a branch-and-bound type. Preliminary numerical results for test problems in the literature
show that our proposed solution algorithm is promising.

1.2 Finding Integer Solutions to Linear Equations
Consider the linear Diophantine equations: Ax = 6, x G Z" and the Diophantine equations
on a bounded integer set: Ax = b,x e X = {x e < x < u}, where Z" denotes the
set all integer vectors in M", A is an m x n integral matrix with m < n and rank(4) = m,
and b e M"̂ is integral. It is well known that linear diophantine equations are polynomially
solvable [66,47], while linear diophantine equations on a bounded integer set are NP-complete,
as the special case of linear Diophantine Equations with m = 1, x G {—1,1}" and 6 = 0 is
NP-complete [37].

The most classical method in solving linear Diophantine equations is the Smith normal
form [20]. And the most popular method in solving linear Diophantine equations is the so
called Hermite normal form [47].

Based on the Hermite normal form, many algorithms have been designed for finding integer
solutions to linear Diophantine equations. As the computation of the Smith normal form and
the Hermite normal form of integer matrix A plays a central role in finding integer solutions
to linear Diophantine equations, some methods, such as the Euclidean algorithm in [47], have

CHAPTER 1. INTRODUCTION

been devised to improve the algorithmic efficiency. However, a notorious phenomenon of
coefficient explosion gives rise a major obstacle in such computations. Various strategies have
been proposed to alleviate this computational difficulty.

Under the linear transformation x = y + I, solving linear Diophantine equations over
bounded integer set [/, u] is equivalent to solving the following problem: Ay = d,0 < y < f3,
y G Z", where d = b — Al and j3 = u — I. Based on lattice basis reduction, an algorithm
was developed to identify if there exists a y G Z" satisfying bound constraints. In fact, the
algorithm is to firstly derive the Hermite normal form, based on the Lovassz basis reduction
algorithm which possesses good capability in avoiding coefficient explosion, to obtain a short
solution Xd and a short basis xx to system Ay = d. Secondly, branching on integer linear
combinations of xx is adopted to obtain a solution that satisfies bound constraints, or to prove
an infeasibility.

Utilizing the results of [21] to express explicitly integer solutions to a linear equation of two
variables, [22] developed an algorithm based on the Euclid's algorithm for computing the set
of integer solution of Ax = b on bounded set X. In its first phase, the algorithm in [22] reduces
the problem dimension recursively by aggregating two variables into an artificial variable with
calculated lower and upper bounds, finally into a linear system with only two variables whose
integer solutions can be specified. In the second phase of the algorithm, by repeating using
the results for a linear equation of two variables, the solution set is expanded by determining
progressively integer values for remaining undecided elements of x.

We propose in the thesis a novel method for solving the linear Diophantine equations on
a bounded integer set. Our method is based on a recognition that whether or not there exists
a solution to the fundamental solution is equivalent to whether or not the distance from X to
the affine solution set of Ax = h in R^ attains zero. Furthermore, from recent results in [67]
for solving binary quadratic programming problem, finding the distance from an integer set to
an affine set can be efficiently achieved by the cell enumeration method for an arrangement
of hyperplanes in discrete geometry. This cell enumeration approach provides a promising
platform for designing an efficient method to find integer solutions to linear equations on a
bounded integer set.

CHAPTER 1. INTRODUCTION

1.3 Petri Nets and Reachability Analysis
A Petri net is a particular kind of bipartite directed graph consisting of three types of elements:
places, transitions, and directed arcs connecting places and transitions. In a graphical repre-
sentation of a Petri net, places are depicted by circles and transitions as bars. Furthermore,
each place may hold a non-negative number of tokens, depicted by a corresponding number of
solid dots. The distribution of tokens on places, called Petri net marking, defines the state of
the modeled system. A marking for a Petri net with m places is represented by an (m x 1)
vector M, where Mj,j = 1, 2 , . . . , m, are nonnegative integers representing the number of
tokens in the corresponding places. Fig.3.3.2 illustrate a simple Petri net with four places, four
transitions and eight arcs.

Figure 1.1: A simple with four places and four transitions

A general Petri net is characterized by a five-tuple (P, T, I, O, Mq) [69], where P =
{pi,p2, • •. ,Pm} is a finite set of m places, T = {ti,力2，• • •，力n} is a finite set of n transi-
tions, Dj： (_P X T) H Z ^ x n is an input function that defines weights associated with directed

'mxn (z"^) is the set of (m x n) dimensional matrices arcs from places to transitions, where
(m dimensional vector) with all entries being in Z+’ Dq： {P x T) i-^ Z^' “ is an output
function that defines weights associated with directed arcs from transitions to places, and Mq：

P ZF is the initial marking.
The change of the distribution of the tokens represents the dynamics of the modeled system,

while the distribution of tokens on places may change according to the following enabling rule

5

CHAPTER 1. INTRODUCTION

and firing rule [69]:
Enabling Rule: A transition t is said to be enabled if each input place p of t contains at

least the number of tokens equal to the weight of the arc connecting p to t.
Firing Rule: (a) An enabled transition t may or may not fire depending on the additional

interpretation, and (b) A firing of an enabled transition t removes form each input place p the
number of tokens equal to the weight of the directed arc connecting p to t, and deposits in each
output place p the number of tokens equal to the weight of the arc connecting t to p.

Reachability analysis is no doubt one of the most important behavioral properties of Petri
nets. Given both the initial state Mq and a target state M, a natural question to answer is
whether or not we have a sequence of firing rules such that the system can reach the specific
target state within finite steps. There are two primary approaches in investigating reachability:
Reachability graph analysis and reachability algebraic analysis. The first method is based on
the creation and investigation of a reachability graph or a reduced reachability graph. However
using the reachability graph will be encountered with the state explosion problem while trans-
ferring the reachability graph to a reduced counterpart is proved to be NP-hard. The second
approach is based on methods of linear algebra. It is well known that a necessary condition
for reachability of marking M from some other marking Mq of a Petri net is the existence of a
nonnegative integer vector solution of the following system of linear equations,

M = Mq + DF (1)

where F = [/i, /2, • • •, fm]' is a firing count vector with fi indicating the number of firing for
transition i in the whole progress and the incidence matrix is given by

D = [d{U,pj)] = [cy，i = l , 2 , . . . , m = |T|, j = l , 2 , . . . , n = |P | (2)
where d{ti,pj) = 0{pj, U) — I{pj, U). This equation is often called the fundamental equation
of Petri net. When the Petri net is acyclic, i.e., has no directed circuits, the above condition
becomes both necessary and sufficient[61].

The first step in the reachability algebraic analysis is to find firing count vectors by solving
the fundamental equation directly or by other methods. Then the second step is to translate a
firing count vector into a firing sequence, if there is any.

6

CHAPTER 1. INTRODUCTION

1.4 Thesis Organization
In this thesis, both the binary quadratic programming problem and the problem of finding the
integer solutions to linear equation are discussed. Algorithms to the above two problems are
proposed and studied in details in this work. This thesis is divided into seven chapters and it is
organized as follows:

In Chapter 2, some polynomial-time solvable algorithms to several special cases of the
binary quadratic programming problem are summarized.

In Chapter 3, a new branch and bound type algorithm for the binary quadratic program-
ming problem is proposed. By investigating the geometric properties of the binary quadratic
programming problem, some novel algorithms to calculate the upper bounds and lower bounds
are designed to improve the algorithm efficiency.

In Chapter 4, the properties of three special diagonal cases of binary quadratic program-
ming problem are studied. And by combining the basic algorithm and the dynamic program-
ming algorithm, three polynomial-time solvable algorithms to these special problems are pro-
posed.

Chapter 5 gives a new algorithm, based on our results on zero duality gap and the cell enu-
meration of an arrangement of hyperplanes in discrete geometry, to find the integer solutions
to linear equations.

In Chapter 6, a brief introduction to Petri Nets is given. In the realm of Petri Nets, the
study of reachability analysis is of a highest concern. Since reachability analysis is equivalent
to finding integer solutions to certain linear equations, the algorithm proposed in Chapter 5 is
applied to reachability analysis.

Chapter 7 gives a conclusion to this thesis. In addition, several future research directions
in these areas are also presented.

• End of chapter.

Chapter 2

Polynomially Solvable Cases of Binary
Quadratic Programs
We summarize in this chapter polynomially solvable subclasses of binary quadratic program-
ming problems studied in the literature and report some new polynomially solvable subclasses
revealed in our recent research. It is well known that the general binary quadratic program-
ming program is NP-hard. Identifying polynomially solvable subclasses of binary quadratic
programming problems not only offers theoretical insight into the complicated nature of the
problem, but also provides platforms to design relaxation schemes for exact solution meth-
ods. We discuss and analyze in this chapter five polynomially solvable subclasses of binary
quadratic programs, including problems with special structures in the matrix Q of the quadratic
objective function, problems defined by a special graph or a logic circuit and problems char-
acterized by zero duality gap of the SDP relaxation. Examples and geometric illustrations are
presented to provide algorithmic and intuitive insights into the problems.

2.1 Introduction
We consider in this chapter the following unconstrained 0-1 quadratic programming or binary
quadratic programming problem:

(0- lQP) min x^Qx + c^x,

where Q = {qij)nxn is symmetric and c G M". Termed also as the pseudo-Boolean program-
ming, problem (O-IQP) is a classical combinatorial optimization problem and is well known

8

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

to be NP-hard (see [37]).
There exist many real-world applications of 0-1 quadratic programming, including financial

analysis [46], molecular conformation problem [49] and cellular radio channel assignment [32].
Many combinatorial optimization problems, such as the Max-Cut problem (see e.g., [34, 38]),
are special cases of the 0-1 quadratic programming problems. Various exact solution methods
of a branch-and-bound framework for solving (O-IQP) and its variants have been proposed in
the literature (see, e.g., [26][29][32][43][44][45][48][51] and the references therein).

We focus in this chapter on the polynomially solvable cases of the quadratic binary pro-
gramming problems. Identifying polynomially solvable subclasses of binary quadratic pro-
gramming problems not only offers theoretical insight into the complicated nature of the prob-
lem, but also provides useful information and powerful relaxations for designing efficient algo-
rithms for finding optimal solution to (O-lQP). More specifically, the properties of the poly-
nomially solvable subclasses of (O-lQP) provide hints and facilitate the derivation of efficient
relaxations for the general form of (O-lQP). Polynomially solvable binary quadratic programs
even play an important role in devising exact methods for linearly constrained quadratic 0-1
programming. For example, the Lagrangian relaxation of the quadratic 0-1 knapsack problem,
which is a special case of (0-lQP), turns out to be polynomially solvable and thus makes it
possible to efficiently compute the Lagrangian bounds in a branch-and-bound method for the
quadratic 0-1 knapsack problem.

It is sometimes more convenient to consider some equivalent forms of (O-lQP). Since
xf = Xi for Xi G {0,1}, (O-lQP) can be reduced to the following homogenous form (O-lQPh)
without the linear term, using the substitution Q := Q + diag(c), where diag(c) is the diagonal
matrix formed by vector c,

(0-lQPh) min x'^Qx.
In many binary quadratic programming models arising from combinatorial optimization, the
decision variables take values —1 or 1. The resulting binary quadratic programs take the fol-
lowing form:

(BQP) min x^Qx + (Fx.

It can be seen that (O-lQP) with 0-1 variables (in x space) can be reduced to a form of {BQP)
with (—1,1) variables (in y space) using transformation Xi = \{yi ^ 1).

9

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

As xf = 1, for both Xi = \ and —1, we can assume, without loss of generality, that all
diagonal elements of Q in (BQP) are zero. Thus, we can write the objective function in
(BQP) as n

\ Ci Xi
l<i<j<n i=0

By introducing an artificial variable xq = 1, we further have

= �: ^Qij^i^j^
{)<i<j<n

where 彻 = i = 1 , … ， n . Since for any x G {—1,1}时i, f (x) = /(—x), we can relax the
domain of xq to {—1,1} and (BQP) now takes the following equivalent homogenous form:

(BQFh) mill x^Qx,

(0 where Q := .
\ Q)

The well-known max-cut problem, which has being attracting remarkable attentions in
recent years in combinatorial optimization, can be expressed in the form of (BQPh). Consider
a graph G = (E, V) with vertex set F = { 1 , . . . , n} and edge set E = { i j \ l < i < j < n}.
For every edge ij G E, there is an associated weight Wij. For a given set S V, a cut
6{S) is the set of all edges with one endpoint in S and the other inV \ S, and the weight of
cut 6{S) is then given by E帐即、Wij. The max-cut problem is to find a cut 6{S) with the
maximum weight. Note that each x e {—1,1}" corresponds to a partition that divides V into
S = {i e V \ Xi = 1} and V\S = {ieV\xi = —1}. We can now express the max-cut
problem as the following binary quadratic problem,

{Max-Cut) max ^ ^ — ^i^j)

S.t. X G { - 1 , 1}".

While all the weights in the conventional definition for the max-cut problem considered in
graph theory are assumed to be nonnegative, we consider here a more general setting of the
max-cut problem without confining the weights to be nonnegative.

This chapter aims to give a systematic survey of the polynomially solvable subclasses of
(O-IQP) and its variants studied in the literature and to report some recent progress in this

10

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

subject. Our goal is to present a self-contained writing and to provide step-by-step examples
and geometric illustrations in an effort to capture the essence of the polynomial solvability of
binary quadratic programming problems. In Section 2.2, we discuss the problem (O-IQP) with
all off-diagonal elements of Q being non-positive. This subclass of problems has been known
for long time to be polynomially solvable due to the total unimodularity of the constraint matrix
in its linear integer programming reformulation. Its relation to the maximum flow problem is
also discussed. In Section 2.3, we analyze the polynomial solvability of problem (O-lQPh)
with a fixed rank Q using the properties of zonotope in discrete geometry. The relationship
between zonotope and hyperplane arrangement is exploited to derive an efficient procedure to
enumerate all extreme points of a zonotope. Sections 2.4 and 2.5 devote to problems defined by
a special graph or a logic circuit. Relations between the polynomial solvability and the special
properties of the series-parallel graph and logic circuit are studied. We investigate in Section
2.6, a possible zero duality gap between problem (BQP) and its SDP relaxation. A sufficient
condition for the polynomial solvability of {BQP) via the SDP relaxation is presented. We
conclude this chapter in Section 8 with a brief summary.

2.2 Problem [O-lQP) with all off-diagonal elements of Q being
non-positive

Consider a subclass of problem (O-lQP) where all off-diagonal elements of Q are non-positive.
It is easy to see that XiXj = min(a:“ xj) when cci, xj e {0,1}. Since xf = Xi, we can assume,
without of loss of generality, Qii = 0, i = 1, . . ., 71. Let zh —OC'I OC j, If Qij < 0 for 1 < i < j < n,
then (O-lQP) is equivalent to the following linear integer programming problem:

n
min ^ CiXi + 2 ^ qijZij (1)

i=l l<-j<j<n
s.t. Zij < Xi, 1 < i < j < n, (2)

Zij < Xj, l<i < j < n, (3)
Xi, Xj, Zij G {0,1}, 1 <i < j <n. (4)

Consider the linear programming relaxation of the above problem by replacing constraint (4)
with

Xi, Xj, Zij G [0,1], 1 <i <j <n. (5)
11

The capacities of the arcs in E are defined as follows:

(6) ZS3 max{0, - 2) : qy, - Cj}. , s j e E,

ij e EQ,
max(0,: 7%

^) : (1.P + Cj), it G Et.

Let ([/, U) be a partition of G with s e U andt eU. The set of arcs 6+{U) = {ij |
U, j e U} is called an s — t cut. The capacity of S^{U) is The minimum-

(7)
(8)

i G
•cut

12

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

Recall that a matrix A = (aij) is called totally unimodular (TU) if every square sub-matrix
of A has determinant +1, —1 or 0. It is well known that a linear programming problem with
a totally unimodular constraint matrix and an integral right-hand side has an integral optimal
solution. Recall also that a matrix A is TU if (i) a幻.G {+1，—1, 0} for all i, j; (ii) Each column
contains at most two nonzero coefficients \O'ijI < 2); and (iii) There exists a partition
(Ml, M2) of the set M consisting of the rows of A such that each column j contains two
nonzero coefficients satisfies J^i^Mi “ij — “ij = 0.

Note that the constraint matrix in the linear programming relaxation problem (l)-(3) and
‘ c \ (5) is of the form where C comes from these inequalities of Zij < Xi and Zij < xj.

It suffices to show C is TU as a matrix A is TU iff (A^, I)^ is TU. Recall that a matrix A is
TU iff is TU. Note that there is one 1 and one — 1 in each row of C and the third sufficient
condition mentioned above can be satisfied by selecting Mi = C and M2 = 0.

In conclusion, (O-IQP) with all off-diagonal elements of Q being non-positive can be
reduced to a linear programming problem and thus can be solved in polynomial time [40] [52].

The polynomial solvability of this subclass of (O-LQP) can be also shown by associating
the problem with a graph and reducing the problem to a maximum flow problem. Consider a
directed graph G = (F, E) with V = (s, 1,2,... ,n, t), where s denotes the source and t the
sink, and with E = Eg U En U E f , where

Es = {sj I J =
<j< n}

L
n

 2
 .
 Eq = {ij I qij < 0 ,

I

I

•
J

I
T

I

I

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

problem is to find a cut with the minimum capacity. Let 屯 be the capacity of the minimum-
cut of G. Then 屯=min^/ Eij伊([/) ^ij- Associate each cut of G with a 0-1 vector
(1, x i , . . . , Xn, 0) satisfying xi = 1 if i ^ U and = 0 otherwise. Similar to the proof for
Property 6 in [30], we prove the following result which is also stated in [50].
Theorem 2.2.1 Problem (O-IQP) with all off-diagonal elements of Q being non-positive can
be reduced to the minimum-cut problem of the graph G = (F, E) via the following relation:

n rji rji ^ min]x Qx + c = ^ — > e.j.

Proof. By (6)-(8), we have
n n

^ i=l l<i<j<n j=l
n n n n—1 n

= I Z e 巧 + ^ ^ n n ^ Y l min(0，2 ^ q]̂ + C j) x j - 2 ^ ^ + 2 ^ q^jx^x
j=l i，上 j=l i=j+l i=l j=i+l l<i<j<n

n n + ^ max(0, 2 ^ qji + Cj)xj}
n n n n—1 n

j=l ， j=l i=j+l i=l j=i+l l<'^<j<n
n n

= I ^ e s j + j f j A n i Z ^ c j巧 + 2 I Z q的叫冗3�
j=l ， j=l l<-ii<j<n

n
= > Csj + min {x^Qx +

This proves the theorem. •

It is well-known that the minimum-cut problem is equivalent to the maximum-flow problem
that can be solved in polynomial time (see [47]). Therefore, problem (O-lQP) with all off-
diagonal elements of Q being non-positive can be solved by computing the maximum-flow of
a graph with n + 2 vertices and 2n + n(n — l) / 2 arcs. Algorithms with different complexity
bounds have been proposed for finding a maximum-flow in G (see e.g., [36][39][47]), for
example, an O(n^) maximum-flow algorithm proposed in [36] or [39].

13

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

2.3 Problem (O-lQPh) with fixed rank Q

We consider now a subclass of problem (O-lQPh) where Q is negative semidefinite and rank{Q)
= d . Let G = —Q. In this situation, there exists a row full rank d x n matrix, V, such that G
= V ^ V , where the rows of V are suitably scaled eigenvectors of G. Problem (0-lQ_P/J can be
thus expressed as

d
(BQPfr) m a x x ^ G x = x ^ V ^ V x = J ^ f v i x f ,

t 丄

where Vi is the i-th row of matrix V.
If d is equal to 1, i.e., the matrix G is of rank one with G = vjvi, the solution to (BQPfr)

can be easily found by inspection. More specifically, we only need to select x such that the
absolute value of vix is maximized on {0,1}".

In general cases with rank{G) = d > 1, we consider a linear map <l>: x G M" ^ ^ = Vx G
M^, in which <l> maps the hypercube [0,1]" into a convex polytope Z{V) = <l>([0,1]") = {z e
M^ I ^ = Vx, X G [0,1]"}, known as a zonotope. Note that

d d
max x^Gx = max = max y ^ zf = max IblP,

a;G{0,l}" a;G{0,l}" ^ ZEZ{V)

1=1 1=1
where the second equality is due to that the maximization of a convex function over a convex
set is always achieved at the vertices. Based on the same argument, the convex function
achieves its maximum over the convex set Z(V) at some extreme point 乏.Thus, (BQPfr)
reduces to a problem of finding the maximum norm in a zonotope.
Theorem 2.3.1 For any extreme point z of the zonotope Z{V), there is a point x G {0,1}"
such that z = Vx.

Proof. Since V is row full rank, we can assume that V = (V, Vi), where V is SL d x d
X nonsingular matrix. Let x =

\工

where x is a (i-dimensional vector corresponding to

the columns of V. Letting x = 0 in the equation 乏 = V x , we obtain 乏 = V x . Then x =
‘ y-H \

satisfies 乏=Vx and is an extreme point of [0,1]". Indeed, suppose that there
V 0 ； exist xi and X2 with xi • x i such that x = \ x i + (1 — \)x2 for some A G (0,1). Then

14

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

XI
XI

0
and X2 X2

for some xi, X2 G [0,1]以 with xi + x^. Thus, I
0 _

XVXI + (1 — \)VX2. Since V is nonsingular and xi + X2, we deduce that VXI, VX2 G Z(V)

and Vxi + Vx2, which in turns implies that 乏 is not an extreme point of Z{V), a contradiction.
•

The following is a classical result in discrete geometry (see, e.g., [56]) which gives a poly-
nomial upper bound of the number of extreme points of Z{V) for fixed d.
Theorem 2.3.2 Let Nep{Z) denote the number of extreme points of the zonotope Z{V). Then
NEPIZ) = O (n ^ - i) .

An immediate implication of Theorems 2.3.1 and 2.3.2 is that problem (O-lQPh) with fixed
rank Q is polynomially solvable.

We now discuss how to enumerate all the extreme points of the zonotope Z{V). Let v^
denote the j th column vector of V. Assume that the regularity condition is satisfied for the
zonotope Z{V), i.e., each column of V is nonzero and v'^ + kv^ for any i ^ j and k ^ 0.
Associated with Z{V), we define a set of hyperplanes in M^ with v-^ (j = 1 , . . . , n) being
normal vectors:

AiV) = {hj\j = l,...,n},
where hj = {y G M^ | = 0} for j = 1 , . . . , n. The set A{V) is called central
arrangement of V. Denote = {y G M"̂ | (v^)^y > 0} and = {y G M"̂ | (v^)^y < 0}.
For any c G M^, define the location vector 7(c) G {+, 0, — b y

if c G
7(c)i = 0, if c G hj ,

— , i f c e h~.
V J

Let c G M^ be such that 7(c) j 0 for j = 1 , . . . , n. A cell of the arrangement A{V) is defined
as the following c/-dimensional subset:

Cc = { y e M^ I 偏=7(c)}. (9)

Obviously, Cc is invariant for any y G C�. Thus, a cell can be represented by its sign vector.
Denote by C{V) the set of all cells of the arrangement A{V), i.e.,

C{V) = {Cc I c G M^}.

15

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

For any cell C�G CiV), denote 7+(c) = { j | 7(c)j = + } and 7—(c) = { j | 7(c)j = —}.
Theorem 2.3.3 There is a one-to-one correspondence between the extreme points of Z{V) and
the cells ofA{V).

Proof. For each cell Cc G C{V), define Xc by

(Xc), = <! - ， � (10)
’ 0, i f j G7- (c) .

Let Zc = Yxc. Then z^ = vK Since > 0 for j G 7+(c) and c^v^ < 0 for
j G 7~(c), Zc is the unique optimal solution to the linear program max^^^(y) d?z. Thus Zc is
an extreme point of the polytope Z{V). Conversely, for any extreme point i of Z{V), there
is a c G M^ such that 乏 is the unique optimal solution to the linear program max^^^(y) c^z.
Notice that

n rji % ^ rji • max c z = max > Xjic v^).

So 乏 must be of the form Vxc with Xc being defined in (10). There must be no j such that
cTyj = 0, i.e., 7(c)j 0 for any j, since otherwise the optimal solution to the linear program
max^^^(y) cTz is not unique. The cell Cc defined in (6.2) is then the cell in C{V) correspond-
ing to 乏.The one-to-one property of the above correspondence can be easily established by
noting that V is row full rank. •

Theorem 2.3.3 implies that enumeration of all the extreme points of the zonotope Z(V)
is equivalent to the enumeration of all the cells of the arrangement A{V) for which various
procedures have been proposed (see [23][24][35][54]).

Note that the central arrangement A{V) satisfies = {0} and the cells of A{V) are
symmetric to the origin. We thus only need to generate half of the cells or the corresponding
sign vectors. Consider a shift of the last hyperplane h = {x eR'^ | = b}, where 6 0.
The intersection of A{V) and his a general arrangement of n — 1 hyperplanes in It can
be seen that the sign vectors (cells) of A'{V) = A{V) n h corresponds to the half of the sign
vectors of A{V) with the last element being + or —.

Now, consider a general arrangement A = {hj | j = 1 , . . . , m}, where hj = {y G M^ |
a � y = hj, j = 1 , . . . , m}. The sign vector of a cell in a general arrangement can be defined

16

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

similarly as for the central arrangement. A root cell is the cell with all + elements in the sign
vector. A root cell can be found by selecting any cell and reversing the orientation of some
of the hyperplanes if necessary. Two cells are called neighbors if only one of the hyperplanes
separates them, i.e., the sign vectors differ only in exactly one element. A parent cell of c is a
unique neighbor of c which contains one more + in its sign vector. Any cell with c being its
parent is called a child of c. If a unique parent of each cell (except for the root cell) is assigned,
then a directed tree structure can be obtained for the cells and the reverse search algorithm can
be used to traverse this tree backward, enumerating all the cells exactly once. A procedure to
search all the adjacent cells of a cell c is needed in the reverse search algorithm. The procedure
of cell enumeration can be described as follows.

Procedure 1 (Cell Enumeration)

Input: a cell c represented by its sign vector, and the hyperplanes represented by {A, b)

Output: a set C{A) containing all the cells of the arrangement (rooted at c)

begin
(i) output c to C{A).
(ii) call a subroutine to list all adjacent cells of c
(iii) for each cell e of c do

if c is the unique parent of e then
recurse the procedure with e as the input cell

endif
endfor

end

The above recursive procedure starts from the root cell and terminates when all the cells
are enumerated. The details of the procedures for finding all neighbors of a cell and searching
for the unique parent of a cell can be found in [24] [54]. To illustrate the cell enumeration
procedure, let's consider an instance of (O-lQPh) where Q = —V^V and

' - 1 - 1 0 1 0 \
V = - 1 0 1 - 1 0

0 0 0 - 1 1

17

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

hs

Figure 2.1: Illustration for cell enumeration process

Using the parallel translation of the last hyperplane of the arrangement ys =
general arrangement contains 4 hyperplanes in M^ and is represented by

the reduced

A ^ - 1 - 1 0 1 \

Figure 2.1 illustrates the cell enumerating process of the arrangement {A, b), where each cell
is represented by its sign vector and the number indicates the order of the cell enumeration
process in Procedure 1.

As there are 10 cells in the reduced general arrangement, there are 20 cells in the original
central arrangement. Thus, the zonotope Z{V) has 20 extreme points among which Zc =
Vxc-, where Xc = (1,1, 0,1, 0)^, is the optimal solution to max^^^(y) Therefore, Xc =
(1,1, 0,1, 0)T is the optimal solution to the original problem (0-lQPh) with optimal value 6.

2.4 Problem (BQP) defined by a series-parallel graph
We consider graph G = {E, V). Given a subset of vertex T c V, wq use G[T] to denote an
induced subgraph of G, where it consists of T and all edges whose endpoints are contained in

18

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

(A) (B)

Figure 2.2: Examples of series-parallel and non-series-parallel graphs

T. For any node v eV, the degree of v is the cardinality of cut (5(何)，denoted as deg{v).
Given two edge sets Ei c E and E2 C E in graph G such that Ei n E2 = 0, we use

/?(丑1，丑2，G) to denote the weight of a cut 6{U) such that Ei c 6{U) and 丑2 n 6{U) = 0
and the weight of such a cut, w{6{U)), is maximized in G. Therefore, /3[Ei, E2, G) can be
interpreted as a constrained max-cut that must include all edges in Ei and does not include any
edge in E2. Furthermore, /5(0, 0, G), for short /5 (G) , actually is the weight of the max-cut of
graph G. Note ^i;((5(0)) = 0.

We use Kn to denote the complete graph with n vertices, where all n vertices are pairwise
adjacent. A graph G is a contractible to G', if G' can be obtained from G by a sequence of
elementary contractions, in which edge ij is replaced by a single vertex whose incident edges
are the edges other than ij that were incident to i or j. The multiple edges arising from the
contraction are merged into a single edge in such a procedure. A graph is called series-parallel
if it is not contractible to K/^. Graph (A) in Figure 2.2 is series-parallel and {B) is not.

We consider problem (BQP) and reduce it first to a max-cut problem. Define a graph
G{Q) := {V, E} for problem {BQP), which is associated to Q = {qij}nxn, as follows:

^ = {1,2, n}，

ij e E ^ Qij ^ 0,

w.

where Wij is the weight assigned to edge ij. We then construct a new graph G{Q, c) by adding
a universal vertex {0} which is connected to each vertex of G{Q) and assign weight woj = Cj

19

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

(a) Original graph G (b) Reduced graph G2

(c) Reduced graph G3

Figure 2.3: The original graph and the reduced graphs of the example instance

to edge Oj, for j = 1, . . . , n. Clearly, G{Q) = G(Q, c) \ {0}. Then, solving (BQP) is
equivalent to finding the max-cut of graph G(Q, c):

max

y

Consider an instance of {BQP) with

[[— ” 如 = - V j }
i=0 j=i+l
2 — 1’ for i = 0, • n.

Q

-1.5

0

-0.5

-1 . 5 0 -0 . 5 0

2.5

- 2

.5

The correspondent graph of this example problem is given in Figure 2.3(a). It is easy to check
that graph G(Q) in this example is series-parallel.

If graph G(Q) is series-parallel, then graph G(Q, c) is not contractible to K5. Recall the
facts [25] that any sub-graph of a series-parallel graph is still series-parallel and there always
exists a vertex in a series-parallel graph that has degree not greater than 2. The main result
in [25] is that if graph G(Q) is series-parallel, the corresponding max-cut problem of graph
G(Q, c) can be solved by a linear-time algorithm which we are presenting below.

20

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

Figure 2.4: The graph of {j, k, 0}

If graph G(Q, q) is of 3 vertices or less, the max-cut problem can be solved by enumeration.
Otherwise, for every vertex i in G{Q), we compute its degree di and place all vertices with
degree not greater than 2 into a list L, which can be achieved in linear time 0 (n) . In each
iteration, we choose a vertex j from L and perform a reduction. We need to consider the
following three different situations.

Case 1. If deg{j) = 2, let k and I be the vertices adjacent to j in G{Q). We assume that q)
contains all three edges O/C, 0/ and kl. Otherwise, we can add the missing edge with
weight 0. Let W be the subgraph of G(Q, q) induced by {0, j , k, 1} with edge weights
the same as in G{G, q). See the left subgraph of Figure 2.4 for graphical presentation of
subgraph W. Note that any cut of W either contains 2 edges of Ok, 01 and kl, or none of
them.
The max-cut problem is solved by recursively generating G' := q) \ {j}. All the
edge weights in G(Q, q) \ { j } are the same as in q), except for these edges in
subgraph W, Ok, kl, and 0/, which need to be modified. For the reduced graph W'=
W \ { j } depicted in the right subgraph of Figure 2.4, there are only three possible cuts,
{Ok, Ik}, {01, Ik} and {Ok, 0/}. All of such cuts have to satisfy the following balance
equations,

Wol + wok = /3({0/, Ok}, 0, T^) - /3(0, {Ok, kl, 01}, T^),
+ wik = /3({0/c, kl}, 0, T^) - /3(0, {Ok, kl, 0/}, T^),

woi + wik = /3({0/, kl}, 0, T^) - /3(0, {Ok, kl, 0/}, T^).

The meaning of the above equations is clear. For example, the weight of the cut {Ok, kl}
in the reduced graph W' should be equal to that of the max cut involving {Ok, kl} in

21

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

the original graph W, while taking away the contribution of the edges leading to node j,
/5(0，{Ok, kl, 01}, W). The solution to the above system of linear equations is

woi ：= 0.5[/3({0/, kl}, 0, T^) + /3({0/, OA:}, 0, T^)
kl}, 0, MO - /3(0, {Ok, kl, 01}, W)],

wok ：= 0.5[/3({0/?, kl}, 0, W) + /3({0/, OA:}, 0, W)
-/3({0/, kl}, 0, W) - /3(0, {Ok, kl, 01}, W)],

wik := 0.5[/3({0/, kl}, 0, W) + PiiOk, kl}, 0, W)

01}, 0, MO - /3(0, {Ok, kl, 01}, W)].

It is evident that (3{G{Q, q)) = (3{G') + /3(0, {Ok, kl, 0/}, W). The optimal cut in G'
is extended to an optimal cut in G{Q, q) by taking the appropriate cut in W. Set then
deg{l) = deg{l) — 1 and deg(k) = deg{k) — 1. If deg{l) < 2 or deg{k) < 2, add I or k
to L.

Case 2. If deg{j) = 1, let k be the vertex adjacent to j in G{Q). Let W be the subgraph
of G{Q, q) induced by {0, j , k}, in which the weights are the same as in q). In
G' := q) \ {j}, we only need to modify the weight of edge O/c to

：= /3({o/c}, 0, MO - m {Ok}. "WO-

It is clear/3(G(Q,g) = {Ok}, W). Set deg{k) = deg{k)-l. lfdeg{k) < 2,
we include k in L.

Case 3. If deg{j) = 0, the problem can be solved in G' := q) \ { j } and in the subgraph
induced by {j, 0}, separately.

In any of the above three cases, we reduce the nodes of the graph by one in each iteration.
If the size of q) is n, the computational effort needed by this algorithm is bounded by
0(n).

We now illustrate the above solution scheme for the example given in Figure 2.3(a).

Step 1 The initial list is given by L := {a, b, c, d}. As deg(a) = 2, we consider a reduced graph
G2 = G \ { a } given in Figure 2.3(b). Let subgraph Wi be induced by vertices {a, b, d, 0}.

22

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

We calculate /5({06, Od}, 0, Wi) based on its definition. Consider two possible cuts in
Wi that include edges 06, Od in subgraph H, {ab, ad, Ob, Oc/} and {Oa, Ob, Oc/}. Thus,

/3({0b, Od}, 0, Wi) = m a x { (2 - 3 - 2 + 1.5), (2.5 — 2 + 1.5)} = 2.

Similarly, wecanget/3({06, bd}, 0, Wi) = 0, f5{{0d, bd}, 0, Wi) = 6 and/3(0, {06, bd, Od}, Wi)
1.5. Furthermore, the modified weights for 06, bd and Od are given as

wob = 0.5[/3({06, bd}, 0, Wi) + /3({06, Od}, 0, Wi) - f3{{0d, bd}, 0, Wi)
-/3(0, {06, bd, Od}, Wi)] = -2 .75 ,

Wbd = 0.5[/3({06, bd}, 0, T^I) + f3{{0d, bd}, 0, T^I) - /3({06, Od}, 0, T^I)
-f5{0,{Ob,bd,Od},Wi)] = 1.25,

wod = 0.5[/3({0(i, bd}, 0, T^i) + f3{{0d, 06}, 0, T^i) - /3({06, bd}, 0, Wi)
-/3(0, {06, bd, Od}, W i)] = 3.25.

We also have
_ = (5{Gi) + /3(0, {06, bd, 0 4 , T^i).

After deleting a, the node list is updated to L := {6, d, c}.

Step 2 As deg{h) = 1 in graph G2, we consider a reduced graph G3 = G2 \ {6} given in Figure
2.3(c). Let subgraph W2 be induced by vertices {b, d, 0}. We have

/3({0(i}, 0, = 4.5, /3(0, { 0 4 , = w{6{(D)) = 0,
wod = 0 ， - m { 0 4 , = 4.5.

It is clear that (^例=f^iGs) + /3(0, {Oc/}, W2).

Step 3 There are only 3 vertices in G3. Comparing all possible cuts yields = 7.5 with
max cut {Oc, Oc/}. Tracing back gives rise,

/3(G2) = PiGs) + /3(0, {Od}, = 7.5 + 0 = 7.5,
(3{G) = (3{G2) + /3(0, {06, bd, Od}, Wi) = 7.5 + 1.5 = 9.

The remaining problem is how to identify the optimal solution to the primal problem. As
the max cut in G3 gives rise an optimal division as ({c, d}, {0}). Comparing two possible

23

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

"expanding" divisions of nodes in G2, {{d, c}, {b, 0}) and {d, c, b}, {0}) yields the optimal di-
vision in G2, {{d, c}, {6, 0}). Finally, comparing two possible "expanding" divisions of nodes
in G, ({a, d, c}, {b, 0}) and {{d, c}, {a, b, 0}) identifies the optimal division of the entire prob-
lem, ({a, d, c}, {6,0}).

We indicate here that the solution process dictated by the above graphical method can
be also produced by the basic algorithm which is also applicable to binary situations with
X G { —1,1}". Expressing f (x) as

/4(xi, X2j XSj X4) = 2xiX2 — 8X1X4 — X3X4 + 2.5X1 — 2X2 + 3X3 + 1.5X4
=XiA4(X2, X3, X4) + 64(X2, X3, X4),

where A4 = 2x2 一 3x4 + 2.5 and 64 = —X3X4 — 2x2 + 3x3 + 1-5x4, we have

4>4{x2, XA) = ^ (1 - X2){1 + X4) - 1,
which leads to a reduced form of the objective function

/3(X2,X3,X4) = X3, X4)A4(X2, X3, X4) + 6*4(̂ 2, X3X4)
=1.25X2X4 — X3X4 — 2.75x2 + 3x3 + 3.25x4 — 3.75.

Note that the graphical representation of the max-cut problem corresponding to f3{x2, X3, X4)
is exactly Figure 2.3(b). We further write /a in the following form,

M X 2 , X3, X4) = X2AS{X3, X4) + 63(2^3, X4),

with A3 = 1.25x4 — 2.75 and 6 3 = —X3X4+3X3+3.25x4 —3.75. We can derive 03(x3, X4)=
1 which yields

/2(X3, X4) = 3X3 + 4.5X4 一 XsX4 一 6.5,
whose graphical representation is exactly Figure 2.3(c). Minimizing f2(X3, X4) yields Xg = — 1
and xl = —1. We can then determine x^ = 03(x3, X4) = 1 and x^ = 04(x2, X3, X4) = —1.

When the corresponding graph of problem (BQP) is serial-parallel, there are at least one
row and one column in Q that have no more than two non-zero elements. This pattern remains
unchanged during the reduction process. As cpk is at most a quadratic function, fk remains to
be a quadratic function. In essence, if the structure of {BQP) is governed by a serial-parallel
graph, the coupling among x^'s is low, and the problem can be solved efficiently by the basic
algorithm.

24

(a) Original neural network (b) Reduced neural net-
work after 1 iteration

入-

i

2

C
D

/
L
l
v
 「

v
/
t

\

\

、
 7

\

\
\

丫
人

2.5

(c) Reduced neural network (d) Reduced neural network after 3 iterations
after 2 iterations

Figure 2.5: The original and reduced neural networks of the example problem

Problem (0 - 1 Q P) defined by a logic circuit
Let Wij = —2qij, Li = —Ci for i, j = 1, 2 . . . , n. The objective function f{x) = x^Qx + c^x
in (O-IQP) can be expressed as the following form

n
E(x) = - �: W'ljX'iXj - �: IjXi,

l<i<j<n i=l
which can be viewed as the energy function of a neural network where Wij G M is the weight
associated with the connection between neurons j and i, Xi G {0,1} is the activation value of
neuron i, and G M is the threshold of neuron i. For example, the following objective function

f = —[— 6X1X2 + 5X1X3 — 7xiX4 + 5X2X3 — 7X2X4 — 2X3X4 — 8X3X5 — 3X4X5]
-[5X1 + 6x2 - 5X3 + 6x4 + 2x5],

can be expressed as the energy function of the neural network in Figure 2.5(a).
It can be verified easily for the example in Figure 2.5(a) that for any value of xs and X4, we

should assign X5 at X3 V X4 = 1 — max{x3, X4}, i.e., optimal X5 which minimizes the energy
function should be the output of a NOR logic gate if we assign X3 and X4 to be the inputs of the
gate. This conclusion can be also derived from our earlier discussion of the basic algorithm.

25

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

y
/

3
 3

A

-

-
〜
T
又

K
y

\

 \

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

Let Xj and Xk be the inputs to a logic gate. Then Xi is the output of an AND logic gate if
Xi = Xj 八 a：/̂ = min{xj, x^}, the output of an OR logic gate if Xi = x j W x^ = max{xj, x^},
the output of a NAND logic gate if Xi = xj A Xk = 1 — min{xj, Xk}, and the output of a NOR
logic gate if Xi = Xj W Xk = I — max{xj, Xk}. We can now relate the following special form of
the 3-variable energy function,

E{xi, Xj, Xk) = -[w{xixj + XiXk) + WjkXjXk] - [Ixi + I j X j + IkXk] + K,

with these 4 different logic gates. Using the basic algorithm, we can identify eight cases of
different combinations of w and I and their corresponding logic gates, which are given in the
following table. Figure 2.6 offers details in figuring out these eight cases. For example, both
conditions of it; < 0 and —w — I <0 < —2w — I give rise case 6.

十 Xk) I Cases 1 & 5 Case 2 Case 3 Cases 4 & 8 Case 6 Case 7 0 0 0 1 -I
—w — I

< 0 < 0 > 0 < 0 > 0 > 0 > 0 > 0 < 0 < 0 < 0 > 0 1 1 0 1 —w — I
-2w - I < 0 < 0 < 0 < 0 > 0 < 0 > 0 > 0 < 0 > 0 > 0 > 0 Logic Gate OR AND NAND NOR 1 工j -h Xk - XjXk ̂ k 0 1 XjXk (1 - f̂c)

w >0

0 0 0 0

2 s e 2

Figure 2.6: Eight cases of different combinations of w and 1.

Replacing Xi by x^) in the 4 cases associated with different digital logic gates yields

26

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

a reduced form for the energy function,
E{xj, Xk) = -WjkXjXk - [IjXj + IkXk] + K,

where the calculation of wjk, I j and Ik is summarized in the following table.

AND Tj = I j , h = h and Wjk = Wjk
OR I j = I j +w + I,Ik = --Ik ^ w ^ I and Wjk = wjk — I
NAND Tj = I j +w,!k = h-+ w and Wjk = Wjk — 2w — I
NOR I j = I j - Lh = h -- I and Wjk = Wjk + I

Based on the above recognition between problem (O-IQP) and logic circuits, Chakradhar
and Bushnell have designed an iterative method [31] to check whether or not a neural network
corresponding to (O-lQP) can be converted into a logic circuit. If we are able to construct
a logic circuit such that all the consistent input/output values together minimize the energy
function of the neural network, then the original problem (O-lQP) can be solved by a linear
time algorithm.

The assumptions to ensure that the quadratic function f can be transformed into a combi-
national logic circuit are (i) The neural network corresponding to the energy function and all
the reduced neural networks generated during the iteration have at least one vertex of degree
one or two; and (ii) Both edges incident to the vertex with degree two have equal weights.

A satisfaction of the above assumptions will enable us, in each iteration, to identify a vertex
with degree one or two by uniquely determining the corresponding logic gate.

Let us now apply this solution scheme to the example problem in Figure 2.5(a). As the
terms involving X5 satisfy the condition of NOR logic gate with X3 and X4 being the inputs
and X5 being the output: W35 = W45 = w = —3 < 0, wi^ = 0, for / 3 and 4, —/ = —2 < 0 <
—w — I = 1, we express X5 as (1 — X3)(l — X4), resulting in the reduced neural network given
in Figure 2.5(b).

We find in Figure 2.5(b) that xi , X2 and X3 satisfy the condition of AND logic gate with
xi and X2 being the inputs and X3 being the output: wi^ = W23 = w = —5 > 0, W34 = 0, and
—2w — I = —3 < 0 < —w — I = 2. Expressing X3 as X1X2 results in the reduced neural network
given in Figure 2.5(c).

From Figure 2.5(d), we can figure out xi , X2 and X4 satisfy the condition of NOR logic
gate with xi and X2 being the inputs and X4 being the output: wu =切24 = w = —7 < 0, —I

27

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

=—4 < 0 < —w — 1 = 3. Expressing x^ as (1 — x i) (l — X2) results in the reduced neural
network given in Figure 2.5(d).

Solving the reduced binary quadratic minimization problem,

min —X1X2 — xi — 2x2,

yields XL = L and X^ = 1. Further calculation gives X^ = XLXL = I, XL = {1 - XL){L - X^) = 0

andxl = {l-xl){l-xl) = 0.
The condition to define problem (O-IQP) by a logic circuit is very strict, especially the

requirement of the same weights of the edges incident to the vertex of degree two which is to
be removed. If problem (O-lQP) can be defined by a logic circuit, matrix Q and its reduced
forms generated during the process all have, at least, one row and one column that have no
more than two non-zero elements, and when there are two, these two elements are the same.
These conditions are stronger than the conditions for problems defined by the series-parallel
graph.

2.6 SDP representation of Lagrangian dual and polynomial solv-
ability

Based on our recent finding in [55], we discuss in this section how to identify a polynomially
solvable subclass of (BQP) using Lagrangian dual. Notice that (P) can be rewritten as

(BQPc) min f{x) = x^Qx + (Fx
s.t. xf — 1 = 0, i = 1 , . . . , n.

Dualizing each xf — 1 = 0 by a multiplier \ ’ we get the Lagrangian relaxation problem (Lx)：
n

d{\) = inf L(x, A) := f{x) + y - 1)
i=l

= i n f {x^{Q + diag(A))x + c^x - e^A}, (11)

where e = (1，...，1)̂ and diag(A) denotes the diagonal matrix with \ being its ith diagonal
element. Obviously, the weak duality holds

d{X) < /0)， for any x G { - 1 , 1 } " .

28

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

The dual problem of (P^) (or {BQP)) is

(D) max d(\). Am"
Notice that the dual problem {D) can be rewritten as

viD) = max diX) = max inf \x^\Q + diaff(A)lx + (Fx — e^Aj,

which has an equivalent form:

(12) v(D) = max — r

s.t. + diag(A)]x + C^X - E^X > - r , x G W.

Let function g{x) be the constraint in problem (12),

g{x) = + diag(A)]x + c^x — e^A + r .

Using homogeneous quadratic form (see [53] and Section 3.4 in [28]), we show below that
g{x) > 0, V X G M", the satisfaction of the constraint in problem (12), is equivalent to

G{x,t) = {x\t)

which holds true if and only if

T 丄、I Q + diag(A) 2'
i c ^ T - e^X

> 0, y{x,t)

Q + diag(A) i c �
\ T-E^X y

Since g{x) = G{x, 1), G{x, t)>0 for all (x, t) G implies g{x) > 0 for all x G M". Now,
suppose that g{x) > 0 for all x G M". Then, git-^x) > 0 for all x e and t ^ 0, which
implies

+ diag(A)]x + - e^A + r > 0, Vx G t ^ 0,

or equivalently,

t) + diag(A)]x + c^xt + (r - e ^ > 0, Vx G R �t + 0.

By continuity, we have

i) + diag(A)]x + ^xi + (r - ^ > 0, V (x, i) G

29

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

Thus, the dual problem (D) can be expressed by the following equivalent semidefinite
programming formulation,

{DSDP) m a x - r (1 3)

2 , Q + diag(A) 乙 —0

Since (DSDP) is a semidefinite programming problem, it is polynomially solvable. The
above discussion implies that if there is no duality gap between (BQP) and (DSDP), i.e.,
v{BQP) = v{D) = V{DSDP), then v{BQP) is polynomially computable.

The following theorem further gives a sufficient condition for the polynomial solvability of
{BQP).

Theorem 2.6.1 Assume that the optimal solution A* to (DSDP) satisfies Q* = Q+diag(A*)—
0. Then x* = is the unique optimal solution to {BQP) and v{BQP) = v{D)=
V{DSDP)- Moreover, {BQP) is polynomially solvable.

Proof. From [27], we know that, for any A G M", d{X) > —oo with x solving {Lx) if and only
if

(i) Q + diag(A) t 0;
(ii) (Q + diag(A))x = - i c .
Since the optimal solution A* to (DSDP) satisfies Q* Y 0, we can verify that (D) or

(DSDP) is equivalent to the following problem,

(Di) sup 盃(A) = -jC^iQ + diag(A))—ic - e^A (14)
s.t. Q + diag(A) — 0.

Thus, A*, an interior point of the feasible region of (Di), also solves (Di). By KKT theorem,
we must have V<I>(A*) = 0, where ^ is defined in (14). Calculating the gradient of ^ at A* and
setting it at zero yield the following,

ic^(Q*)-Miag(e ,) (Q*)-^c = 1, z = 1，...，n. (15)

This is to say {x*)^ = 1, for all i = 1，...，n. Thus x* G { - 1 , 1 } " . As Q* y 0, x* is the
unique optimal solution to {BQP) and v{BQP) = v{D) = V{DSDP) = V{DI). Moreover,

30

CHAPTER 2. POLYNOMIALLY SOLVABLE CASES OF BINARY QUADRATIC
PROGRAMS

since A* is polynomially computable and x* = — | (Q + diag(A*))~^c, we deduce that (BQP)
is polynomially solvable. •

2.7 Summary
We have summarized the state-of-the-art of polynomially solvable cases for binary quadratic
programming problems. Separating certain easy subclasses from a general NP-hard class facil-
itates identification schemes to peel off hard covers of some seemingly intractable, but actually
manageable, binary quadratic programming problems. Furthermore, investigation of this sub-
ject not only helps us better understand inherent nature of the problem, but also stimulates inno-
vative thinking for development of solution schemes for general binary quadratic programming
problems.

• End of chapter.

31

Chapter 3

Geometric Solution Approach to
Binary Quadratic Programming
Problem
3.1 Introduction
We consider in this chapter an exact solution method to the following unconstrained quadratic
0-1 programming problem:

X r I ‘ rji (P) min fix) = -X Qx + c x, a;G{0,i}" 2
where Q is an n x n symmetric matrix and c G M". Without loss of generality, we assume
in the sequel that f (x) is strongly concave, i.e., Q is negative definite. Otherwise, we can
always rewrite f (x) in an equivalent strongly concave form using the property xf = Xi, for
Xi G {0,1}. We assume that n > 2 and the eigenvalues of matrix Q are ranked in an ascending
order: Ai < A2 < . . . < A^ < 0.

We focus in this chapter on development of an exact solution method of a branch-and-
bound type for solving (P). It is well-known that the efficiency of a branch-and-bound method
for solving a general integer minimization problem largely depends on the quality of the lower
bound and upper bound estimation and the corresponding computational efforts to obtain them.
Existing approaches in the literature for computing a lower bound of (P) include simple lower
bound estimation and improvements via reformulations, convex quadratic programming re-

32

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

laxation, roof duality, decomposition method and semi-definite programming relaxation. Our
approach here is based on the geometric features of the ellipse contour of a concave quadratic
function. As a special, albeit important, case of integer programming, binary quadratic pro-
gramming problem processes rich geometric properties. Although there exist rich geometric
properties in binary quadratic programming, only a few papers, e.g. [18], have devoted to ex-
plore such prominent features hidden behind until recently. An exact solution method has been
recently proposed in [45] by exploring these rich geometric properties .

Another significant contributing factor to the efficiency of the solution algorithms for zero-
one optimization, although received much less attentions in the literature, is the capability
of variable fixation to fix certain variables at their optimal values based on some optimality
conditions. The bounds of the gradient of the objective function can be used to fix variables.
The inscribed sphere inside the ellipse contour of the objective function can be also employed
to fix variables.

3.2 Perturbed Quadratic Function and Contour
In this section, we investigate basic properties of the contour of the perturbed quadratic objec-
tive function.

Define the perturbed quadratic objective function as follows,

M x) = — + (c + (1)
where p is a positive parameter, / is an n x n identity matrix, and e is an n-dimensional vector
with all elements equal to 1.

Since xf = Xi for any Xi G {0,1}, it can be easily seen that f (x) = /^(x) on {0,1}".
Thus, the following perturbed problem is equivalent to (P):

(P,j) min fu(x).

When setting ji large enough, e.g., (A^ — jj,) < 0

I狗 I

33

n,

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

matrix (Q — iiI) will be negative definite. Therefore in the following sections, we always
assume f (x) is concave.

Since Q is a real symmetric matrix, an orthogonal matrix P which consists of eigenvectors
of Q can be found such that P^P = I and P^QP = A = diag{Xi, X2,...，A^} with all
Â < 0, i = 1,... ,71. Note that f{x) can be written as

fix) = ^(X - xYQi^ - A - - c T q - V (2)

where x^ = Also note that {x G K^\f{x) > v} forms an ellipsoid for any v <
— and the center of the ellipse f{x) = v is x^. It is clear that any point in {0,1}"
outside the ellipse f{x) = v possesses an objective value less than v.

3.3 Upper Bound
Here we introduce our new method to find an upper bound for (P). Suppose that the incumbent,
the best solution found so far, is x and the current best upper bound is v = f (x) . The next
question is how to search for a solution better than x. If the incumbent is not the optimal
solution to the original problem, there must exist an intersection between the ellipse contour
f (x) = V and the box [0,1]". Note that any outer normal vector on the ellipse f (x) = v
represents a descent direction. Therefore, if we can find a point x located on the ellipse contour
f (x) = V and within the box [0,1]", the normal vector of this point directs to a better integer
point.

If any point on the objective contour/(x) = i; is inside the box [0,1]", this point provides
a descent direction. We thus propose to solve the following problem to identify the point on
f (x) = V that is closest to the center of the box [0,1]".

min E O i —0.5)2
s.t. f i x) = V, (3)

而 G [0, 1].

See Fig. 3.1 for an illustration.

34

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

3.3.1 The Nearest Point to Center Point |
Dropping the constraint, x G [0,1]", the above problem can be solved almost analytically.
Consider f{x) = ^X^Qx + C^X, x G {0,1}". Let x — XQ = Py, we have f{x) = g{y)=

Let a = — xo). To find the point on the contour of f (x) = v that is closest to
(i , . . . , is equivalent to solving the following optimal problem.

min YXVi - a i f
s.t. E H i >Hyf = 2i; + cTQ-^c.

The Lagrangian function of (4) is
n

L i y , ") = Y M — cnf + " (E A ⑶？ - 2 v - c^Q-^c),
i=l

where i> is the Khun-Tucker multiplier. We have the following KKT Conditions,

�

�

Vi + i^KVi = i = 1，...，n，

The above necessary conditions yield yi = , i = 1 , . . . , n, and the value of v can be
found by solving the following nonlinear equation by some numerical method,

^ 入双2 21； + c^Q-^c. (6)

From the second-order necessary condition, we must have

仏 I An
It is not difficult to find out that is a strictly decreasing function of v in

(—oo,却.Thus, there is a unique solution of (6) in (—oo,劫.

The first equation in the KKT Conditions actually states that the direction a — y is propor-
tional to the norm vector on the surface of g{y) = d aty,

a-y = i^y,
where 7 is a constant.

35

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

There is an obvious problem of the above approach: the point on the contour that is closest
to the center point | could be outside the box [0,1]" in certain situations. For example, in Fig.
3.1, the point on f{x) = /(O, 0) that is closest to the center, [—0.0455, 0.5640], is outside of
the box [0,1]2. In such situations, we can not take advantage of the information of the point
to find a better binary point. To overcome this problem and to find x under this situation, we
developed the following iterative method.

Figure 3.1: The closest point on the contour with respect to the center point is not with the box
[0,1]'

3.3.2 An iterative method to find point x
Suppose that an initial point xq is located on the current ellipse contour and xq is not inside
the box [0,1]". To find a point that is located on the contour and inside the box, we design
the following iterative method. First, we compute the tangent plane of the contour at the initial
point XQ. Then we can calculate the project point XP at the tangent plane with respect to the
center point Connecting the center point and the project point xp with a straight line, there
exists an intersection point x j on the contour. Check the property of these two points xp and
XI. If one of them inside the box, we find x. Otherwise, let xq = x j and repeat the above

36

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

procedure.

Example 3.3.1 We consider a problem with f{x) = ^x^Qx + c^x, where

(- 1 6 43 \ , Q= , c = 4 6 , 3 5 f . V 43 - 1 2 3
Suppose that the incumbent is (0, 0)̂ and we locate an initial point on the ellipse contour,

i.e. xo = (—0.0622, 0.1142)^. Since xo is not within the box [0,1]"，we apply the above
iterative method to find point x. As shown in Fig. 3.2(a), with xo = (—0.0622, 0.1142)^
we can figure out both Xp = (-0.1210, 0.2814)^ and xj = (-0.0753, 0.2975)^. Since both
xp and XI are located outside of the box [0,1]"，we set xo = xp = (—0.1210, 0.2814)^

and repeat this procedure. In Fig. 3.2(b), it is shown that, xp = (—0.0554, 0.5447)^ and
XI = (—0.0064, 0.5407)^ in the second iteration. Due to the same reason that neither xp
nor XI is located within the box [0,1]", we set xq = xp = (—0.0554, 0.5447)^ and perform
the third iteration. In the third iteration, we figure out xp = (0.0661, 0.6989)^ and xj =
(0.0773, 0.6937)t as shown in Fig. 3.2(c). Since both xp and xj are within the box [0,1]",
we stop the procedure and set x = xj = (0.0773, 0.6937)^. Fig. 3.2 demonstrates the whole
process to find the point x.

The general procedure to calculate xp and x j is given now as follows,
Suppose that A^X = b is the expression of the tangent plane at XQ. Finding the project

point Xp at the tangent with respect to the center point | is equivalent to solving the following
optimal problem:

min ^ II xp - f IP (7)

s.t. a^xp = b
1 AT E B

Solving this optimization problem, we get xp = | — Xa, where A = • The intersec-
tion point XI can be expressed as x j = + (1 — /5)xp, (0 < < 1). Since x j is located on
the contour f{x) = v, we have / (x j) = v. Substitute xj = + (1 — /5)xp into the above
equation, we get a quadratic equation according to (3. Solve this equation, we can get the value
of (3 and further the value of x j .

More specifically, suppose that the function of the current contour is given as follows
1 T' T' -Xj Qxj + c xj = V (8) Zi

37

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

(a) first iteration

(b) second iteration

(c) third iteration

Figure 3.2: Finding the point x with iterative method

38

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Substitute xj = (3x ^ {1 — (3)xp into the above equation gives rise

\{l3x + (1 — l3)xpfQ{l3x + (1 — I3)xp) + + (1 — I3)xp) = v

Writing out this equation we get the following expression:

^{x^Qx — x^Qxp — x^Qx + x^Qxp)j3^
+ - x ^ Q x p + c^x + c^xp)(3 (9)

+ c^xp = V
Let A = i{x^Qx — x^Qxp — x^Qx + x^Qxp), B = {^x^Qxp + — x^Qxp +

c^x + c^xp) and C = p + c^xp — v, Eq.(9) can be simplified as Af]'^ + BjS + (7 = 0.
This is a quadratic equation in one variable. Solving this equation, we can get two roots of (3.
Choose the root within the range [0,1] and substitute it into x j = + (1 — /3)xp’ then we get
the result of xj.

3.3.3 The Upper Bound Achieved from the Point x
After finding the point x, which is on the ellipse f (x) = v and within the box [0,1]", the
gradient of f (x) = v dX x can be calculated as Qx + c. The next incumbent, x, can be
identified a follows,

/

= 1 , if {Qx + c)j < 0,
= 0 or 1, if {Qx + c)j = 0, j = l , . . . , n . (10)
= 0 , if {Qx + c)j > 0,

Example 3.3.2 Consider the problem stated in Example 3.3.1. It is clear from Fig. 3.3 that the
optimal solution is (0,1)^. Suppose that the incumbent is (0, 0)^. The normal vector at the
point X = (0.0773,0.6937)^, (74.5923, -47.0012)^, defines the shadow region. Note that
any integer point inside the shadow region, in our case (0,1)^, is a better solution.

The following optimality condition is obvious.

Theorem 3.1 A solution x G {0,1}" is an optimal solution to if and only if there is no point
in {0,1}" outside the ellipsoid E = {x G R^\f{x) > v}, where v = f{x).

39

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Figure 3.3: Normal vector on the ellipse and better solution

3.4 Lower Bounds
In this section, we discuss how to compute a good lower bound of the optimal value of (P).
We first introduce a lower bound derived from the maximum distance sphere. Two new lower
bounds are then derived by exploiting the geometric properties of the ellipse contour of f{x).

3.4.1 Lower bound derived from the maximum distance sphere
The center of the ellipse contour

E{v) = {x e R''\f{x) = v}

is

= - Q - i c .
Ranking the integer points in {0,1}" according to a descending order with respect to their

distance to x^ yields

«, «,

with corresponding distance

r^ > r^ > r'^ >

40

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

where

Let f be the contour level such that E { f) = {x G R^\f{x) = f } is the minimum
circumscribed contour containing the ball Si = {x G || x —
following theorem:

'}, we have the

Theorem 3.2 f = - for i =
(P)-

2, In addition, f^ is a lower bound of

Proof. Consider F{x) = + C^X, x G {0,1}". Let x — XQ = Py, we have F{x)=
9iy) EHi Xivt It can be easily seen that the intersection points between
the ellipse and the sphere in y coordinates are y = (r“ 0 ， . . . ， 0) and y = (—r “ 0 , . . . , 0) .

Substitute y into g{y) = | E H i XiVt —知�Q—丄c, we can easily get f = f r f - ^c^ Q'
Since r^ is the distance between the center of the ellipse and the farthest 0-1 point. All the
0-1 points are located inside this sphere and thus located inside the ellipse. As a result, is a
lower bound of (P). •

3.4.2 Lower Bound Based on the kth Farthest Point
The following algorithm provides a lower bound to Problem (P) based on the kth farthest point
to center point of the ellipse (k > 2), which is better than f \

Algorithm 3.4.1
Step 1 Calculate x^

Step 2 Calculate x^

step 3 Let

and Let T* = x^ and f = f{x*). Let k = 2.

and fk. If f < f \ stop and x* is the optimal solution.

X = i f f i x *) < fix'
i f f i x ') < fix'

41

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Step 4 I f k = 2", stop and x* is the optimal solution. Let k = k ^ 1 and go back to Step 2.

Theorem 3.4.1 Algorithm 3.4.1 identifies optimal solution of{P) infinite steps.

Proof. From Step 3, we know that x* is the incumbent solution. If the algorithm stops at
Step 2, as all points, . . . , process objective values larger than or equal to /左,

and / corresponds the best solution among . . . , condition / < implies that
incumbent x* is optimal. If the algorithm stops at Step 4, the algorithm does an exhaustive
search before reaching the conclusion. •

Example 3.4.1 We consider a problem with f{x) = ^x^Qx + c^x, where

f -10 3 \ , Q = ，c = (-5，2.5)t V 3 -10
By applying Step 1 in Algorithm 3.4.1, we get x^ = (1,1)^, r^ = 1.7159 and f = -17.8342
as shown in Fig. 3.4(a). Let x* = x^ = (1,1)^, / = f{x*) = —9.5 and k = 2.

Go to Step 2 in Algorithm 3.4.1 and figure out that x^ = (1, 0)^, r^ = 1.4711 and 产=
- 1 2 . 7 6 2 8 as shown in Fig. 3.4(b). Since f{x*) > f and f{x*) > f{x^) = —10，according
to the algorithm, we set x* = and f = /(x)̂ = —10.

Go back to Step 2 in the algorithm and figure out that x^ = (0,1)^, r^ = 1.0052 and
f = —5.2628 as shown in Fig. 3.4(c). Since, at this time, f = -10 < f = —5.2628，the
algorithm stops and x* = (1,0) is the optimal solution.

Fig. 3.4 illustrates the whole progress that the global optimum of this problem can be
achieved after three iterations by applying the above algorithm.

In real implementation, we do not only implement Algorithm 3.4.1 as the exact algorithm
but also use this algorithm to provide us with a lower bound. For the latter case, we implement
the algorithm for a few steps. When we stop the algorithm at the kth iteration, the optimal
value is bounded by [八 /] .

3.4.3 Finding the kth Farthest 0-1 Point
To apply Algorithm 3.4.1 in practice, we need to sort the zero-one point with respect to their
distance to the center point in a descending order. Here we introduce an algorithm to find
the kth farthest zero-one point. Suppose that the nearest zero-one points to xq is x, then the
distance of any other zero-one points to xq can be written as:

42

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

(a) first iteration

(b) second iteration

(c) third iteration

Figure 3.4: Optimal solution achieved after three iterations

43

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

d^ix.xo)
= l X l (而 - 狗

=ŷ j—1 (̂ i ~ Xi Xi — XQi)
=Y^i^liXi - X i ^ X i - Xoi)^ + — % + % — ^Ojf (11)
=Ŷ î iXi - XOi)^ + 一 - ^Ojf
= - 狗 - T^jeli^j -勒+ 一 % -勒
= - + - 2X0,)(1 - 2%)

where I = {i\xi + Xi, i = 1, 2 , . . . , n} is an index set. If xqj < 0.5, then Xj = 0 and
(1 - 2xoj){l - 2x) = (1 - 2xoj) > 0, otherwise, Xj = 1 and (1 - 2xoj)(l - 2x)=
—(1 — 2x0j) > 0. Then from (11), we get

n
d^{x,xo) = ^{xi - xoif + ^ |1 - 2xoj\

Let aj = |1 - 2xoj\, (j = 1,2, . . . , n) and dj = Y^jeJ^j^ (� [{ 1 , 2 , . . . , n}). By
sorting dj on all possible J in descending order, we can get, x^, the kth farthest integer point
to x^, where k = 1，2，...，2" and its corresponding distance. However, when n is very large,
performing this sorting task is very difficult and time consuming. In addition, in most cases we
just need to sort a small portion of these zero-one points. Following is a novel algorithm we
invent.

Consider dividing all these 2" zero-one points into n + 1 groups, Ti{i = 0 , 1 , . . . , n).
Group Ti contains x, where ~ = It is obvious that group T] contains Cf
zero-one points and both Tq and contain just one 0-1 point. They are x and x^, the nearest
and farthest point to xq respectively. And for every group Ti{i = 1，...，n — 1), we can easily
find out the nearest point U^rnim and the farthest point U^max in each group by finding out the i
largest and smallest elements in set {ai, a 2 , . . . , respectively.

From Figure. 3.5, we can easily find that U^max is the farthest point within the points in
T o , . . . , Ti. From this important property, it obvious that if we want to sort the point farther
than ti,jnax, (/ = 0 , . . . , n — 1), we just need to sort the points in I]+i，...,

For the method to sort the elements within T^+i , . . . , in a descending order, we first
construct a graph to represent the points in these groups and to apply the k-th farthest algorithm.

44

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

I to I

Figure 3.5: Group T“ i = 0,1, n

For example, the graph in Figure 3.6 represents all the points in T2 and T3 when n = 4, i.e.
{ai + (22, ai + (23, ai + 04, a<2 + (23, a<2 + 04, as + 04, 04 + (22 + (23, ai + (22 + 04, 04 + (23 +
(24，(22 + (23 + (24}. And then we can apply the k-th shortest path algorithm proposed in [6] to
this graph to help us perform the task of picking up the farthest points in T2 and T3 one by one.

/
Start

\\

\

人h

^ End

Figure 3.6: A graph represents all the points in T2 and T3 when n = 4.

3.4.4 A Condition for optimal solution to {P) within the farthest k 0-1 Points
Here we derive a condition for optimal solution to (P) within the farthest k 0-1 points, so that
the method described in the previous subsection can be applied.

45

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

When the condition number of Q, CQ, is 1, the locus of the objective contour F{x) = C
becomes a sphere and the optimal solution to (_P) is clearly x^, the integer point in {0,1}" that
has the maximum 2-norm distance to x^ =

A natural question to ask is what is the condition for optimal solution to (P) within the
farthest k 0-1 points, i.e. . . . ,

Theorem 3.3 Optimal solution to (P) must be within ..., if

A.
A7 II x i - x O IP

or if

AN

(12)

(13)

Proof. Please refer to Figure 3.7. Let the maximum objective contour that inside the sphere
{x — — = {x^ — — is f{x) = V. Clearly, we have

nxT/ 1 J � 21； + c^Q-- XY -
A,

The maximum x'^-centered sphere that inside f{x) = v is given by

(14)
\N

,0

、：T “ 』、21； + C^Q-(x - x y {x - x ^) = AI
If

Ai

(15)

(16)

then all integer points, except . . . , x^, will be falling inside the ellipse {x G IR"|/(x) <
v}. Combine Eq. (14) with Eq. (16), we get

师 〉 I I - XO IP •
XN

We finally have

An l l x ^ + ^ - x " f
A7 II x i - x O P

46

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

which is Eq. (12).
On the other hand, the shortest axis of the ellipse {x G W'\f{x) > f{x^)} is 柳丄丄-納)

If Eq. (13) is satisfied, then no other integer point will have an object valve less than •

Fig. 3.7 illustrate the above theorem with an example. In this case, is within the sphere
[X — X 0\T (x - X^)= _ 2v+c'^Q-An

\T
That is to say ^ > 2 is satisfied in this example.

Therefore, x^ = (1,1)^ is the optimal solution.

Figure 3.7: Illustrative example to Theorem 3.3

Let / = m a x { i | ^ > -}. Then we just need to sort the points in T^+i , . . . , in
order to find the optimal solution to (P).

3.4.5 Improved lower bound achieved on the switching points
The lower bound in the previous subsection is derived by using the information of the sphere
center at x^. This lower bound can be further improved by considering more spheres centered
at the switching points located on the longest axis of a contour ellipse.

47

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Let V = f{x), where x G {0,1}" is the incumbent. Let E{v) = {x e = v}. Let
2p{v) be the length of the longest axis of E{v), where

州 = , 2 (晴 0))

An
The longest axis of E{v) can be expressed as

where Pn = (-Pin, • • •, Pnn)^ is the last column of the orthogonal matrix P.
We consider now a family of the integer points in {0,1}" that are farthest to points on

the longest axis I{v) parameterized by parameter a. For i = 1 , . . . , n, if Pin 0, then the
equation aPm + = 0.5 determines a switch — point a = (0.5 — x^)/Pin at which the ith
component of x of {0,1}" that is farthest to x^ + aPn switches from to 1 — Xi. It is easy to
see that there are at most n different switch-points in the interval (—00, +00). Consequently,
there are at most n + 1 different farthest points of {0,1}" to the points on the longest axis I{v).
Suppose these m switch-points are:

5 5 . . . 5 冗SN

For each switch point, rank the integer points in {0,1}" according to a descending order
with respect to their distance to Xg.,

冗Si 1冗Si 1冗Si
with corresponding distance

rl > r^ > >
where

XI

Let f j be the contour level such that E { f j) = {x G R^\f{x) = f j } is the minimum
circumscribed contour containing the ball Sj = {x G 111 x — Xg. = (r^J^}. We can
utilize the following theorem to calculate f L

48

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Consider a standard ellipsoid E = {y e i ^^ l^EILi XiVf < v} with 0 < Ai < A2 <
. . . < An. We have the following theorem for the maximum sphere centered on the longest
axis of E.

Theorem 3.4 For any given a G {—y y the radius of the maximum inscribed sphere
centered at (a, 0 , . . . , 0)^, r{a), satisfies

r{a)
2V

Ar;. A7 Ai

- a

ifa' < (T

IFO? >

where the constant (3 satisfies / - Ai)2
^ ^ N ^

Proof. Due to the symmetry, we only need to consider cases with a > 0. Given a , finding
out the maximum (a, 0, 0 , . . . , 0)-centered sphere inside E is to identify the minimum distance
from {a, 0, 0 , . . . , 0) to the ellipse by solving the following minimization problem:

max
f i A -

(17)

Also due to the symmetry, we only need to find a solution with all its components nonneg-
ative. The Lagrangian function of Problem (17) is:

\
—
/

I

2

i

i

A

-
V
/

1

I

2

/
—
V

+

2

-
V
/
 +

2

\
—
/

a

I

I

I
 、

—
/

a

L
 (18)

where jn e R is the Lagrangian multiplier. From the first order necessary condition, we get

= 2y, + = 0, z = 2 n (19)

which implies

？/i(l + ！M l) = «
？/.(l + i^A.) = 0, n (20)

49

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

We assume first that A,

？/* = a = aAn
"1 一 l+|/iAi 一 An-Ai (21)
y*2 = yl = ••• = y*n-i = •

* — /2£ _ ĝ AiAs y n - y Xn (An-Al)2
satisfy the first order necessary condition. Furthermore, we get > 0,i = 1 , . . . , n —1
and 1 + = 0. Thus, the above solution satisfies the second-order sufficient condition,
i.e., for any nonzero y = {yi,y2,.. •, Vn)^ satisfying Xiylyi + XnynVn = 0, ？/^diag{l +
^fi*Xi}y > 0. Finally, the corresponding optimal radius satisfies = — Xn-h .

,,* — v ^ a _ _2_
^ — 7 m —石

y\ =我 (22)
？/2* = "3* = . . . = Vl - l =?/n = 0

satisfy the first order necessary condition. Note

乂 = _ 2 L > _ 2 L (2 3)
\Al公 入1 Xn

Therefore, when o? > — M ^ ^ ^ l L , the second order sufficient condition is satisfied due
to 1 + \lJ*\i > 0, i = 1,... ,71, and when a^ = — M ^ i ^ ^ l L , the second order necessary
condition is satisfied. The corresponding optimal radius r(a) satisfies r^(a) = (y ^ — a)^.

The above proof can be easily extended to situations where there exist multiple largest
eigenvalues.

•

Note that f (x) = — — — = v can be transformed into a standard
form i YA=I ^iVi =公 + by an orthogonal transformation x = Py ^ x^ and the
distance is invariant under any orthogonal transformation. Combined with the above proof, we
can immediately get the result of Theorem 3.4. Figure 3.8 illustrates the minimum contours
circumscribed the switch-point-centered points along the longer axis in situation of n = 2.

50

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Figure 3.8: Lower bounds calculated with respect to different switching points

The following algorithm provides a lower bound to Problem (P) based on the Kth farthest
point to switch-point of the ellipse.

Algorithm 3.4.2
Step 1 Find out all switching points si, S2, Sm on the longest axis of the ellipse contour.
Step 2 Calculate the lower bound with respect to each switching point. Select the switching

point Si with the best lower bound.
Step 3 Calculate xj., rj, and f^^ . Let x*. = xj, and f = / (x y . Let k = 2.
Step 4 Calculate x^., rj, and . I f f < , stop and x*. is the optimal solution.
step 5 Let

4 ， i f M) < / «

51

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Step 6 I f k = 2", stop and x*. is the optimal solution. Let k = k ^ 1 and go back to Step 4.

The above algorithm either provides a better lower bound or the optimal solution to (P).
The proof is similar to the proof of Theorem 3.4.1.

3.5 Variable Fixation
In this section, we discuss how to fix some variables at their optimal values in (P) or in its
subproblems using information from the objective contour. Variable fixation based on some
optimality condition is one of the most efficient strategies in exact solution methods for solving
(P)-

3.5.1 One classical sufficient conditions
The following is a well-known sufficient condition for fixing variable by utilizing the bounds
of the gradient of f{x).

Theorem 3.5 ([48]) Let x* denote the optimal solution of. Let

k = C i ^ + ^ min(0, Qij), (24)

U i = C i ^ ^qu + ^ max(0, qij), (25)

(i) I f k > 0，then x* = 1;
(ii) Ifui < 0, then x* = 0;

The above result can be used to fix variables in a branch-and-bound method. Let Jjree
denote the indexes of the free variables. 慨 the index of variables fixed at 0 and the
index of variables fixed at 1 at a node of the branch-and-bound tree.

The following procedure uses Theorem 3.5 to fix variables in the branch-and-bound method.

Procedure 2 Input: ij-^ and I free- Output: updated ij--^, ij-^ and I free-
Step 1. For each i G I free- compute the gradient bounds li and Ui by Eqs. 24 and 25,

respectively.

52

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Step 2. I f k > 0，set := U {z}, 慨 ： = \ {z}. I f u , < 0，set % :=

Step 3. Update the gradient bounds and repeat Steps 1-2 until no variable can be fixed.
Return.

3.5.2 A new sufficient optimality condition
Now we consider a new approach to fix variables at 0 or 1. Let x{ii) be the farthest of {0,1}"
to Let t{ii) = fn{x{ii)). By Theorem 3.4, the maximum sphere that inside the ellipse
contour 丑乂力-⑷）= {xG = ^(m)} is

^(m) = II X — 11= f(M)}, (26)
where

2 剛 + Ic^Q-'c) r ip) = ^ . (27)
入N

Denote W = {x e = 1 - Xi{fi)}. Let be the farthest point from W n {0,1}"
to Since x{ii) is the farthest point from {0,1}" to for i = 1, 2 , . . . , n, y乂fi) can
be given as follows:

=对")j， j + = i - 对 (2 8)

Define

u j , { i i) = \ \ y \ i i) - x \ i i) II . (29)

If uJiiji) < f{ii), then all points of {0,1}" on the hyperplane W are inside of En{t{ii)) and
thus S{ii). Therefore, for any point W n {0,1}", it holds f{x) = /^(x) > /^(x^) = f{x),
which in turn implies that the ith variable in the optimal solution of (P) must be equal to Xi (ji).
In summary, we have the following result.

Theorem 3.6 Let x* be the optimal solution of{P). If for some i G {1, 2 , . . .} , uji{fj,) <
then X* = Xi{fj,).

53

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Figure 3.9 demonstrates a two-dimensional example where x{ii) = (1,1)^, ？/(/U)=
(0， l) , ? /2 (�=(1 ,0) . We see that both || - | |< and || - | |<
f { f i) . Therefore, both x\ and x*2 can be fixed at 1 by the inscribed sphere.

Figure 3.9: Illustration of variable fixation by inscribed sphere

A procedure that employs Theorem 3.6 to fix variables can be described as follows:

Procedure 3 Input: ij-^ and I free- Output: updated ij--^, ij-^ and I free-
Step 1. Compute fn and x^ o / { 0 , 1 } " .
Step 2. For each i G I free，compute y'^i). Ifuji{fj,) < f{fJ,), then set I free := I free \ W，

and set := U {i} ifx{ii) = 0，or set := 1}以 U {i} if 元(p) = 1.

3.6 The Algorithm
Integrating the upper bounding method, the lower bounding method variable fixation strategies,
techniques of seeking feasible solutions and optimality conditions discussed in the previous
sections, we formally present an exact solution algorithm of a branch-and-bound type.

54

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

An initial incumbent solution is first computed and is set to be the current best upper bound.
Procedure 5.1 is used to fix some variables at their optimal values. The algorithm matains a
list L of nodes at each of and ij-^, the indexes of fixed variables, I free the index of free
variables, and I and u, the lower and upper bounds of the gradient of the free variables, are
stored. At each iteration, a node is selected from the list for which the upper bound u{fi) and
the lower bound l(ji) are computed for a suitable fi. If u{ij,) is less than the current best upper
bound, then the current best upper bound is replaced by this value. A node is fathomed if the
lower bound is greater than or equal to the current best upper bound. Otherwise, conditions for
variable fixation are checked. Again, a node is fathomed if all free variables are fixed. If there
are still free variables for this node, then one of the free variables, say Xi, is selected to prune
into two new nodes with Xi = 0 and Xi = 1, respectively. The gradients bounds are updated
and the two new nodes are added to the list. The algorithm terminates with the incumbent being
the optimal solution if there is no node left in the list.

we describe the main algorithm as follows.

Algorithm 3.6.1 (Branch-and-bound method for (P))
Step 0. (Initialization).
(i) Choose x^ = and the farthest point x o /{0 ,1}" to x^. Let fopt = f{x) and

Xopt =
(ii) (Variable fixation). Set = ij-^ = (f) and I free = { 1 , 2 , . . . , n}. Apply Procedure 2

and 3 to fix as many variables as possible at their optimal values.
(in) If I free = 4>’ Set k = 0. Otherwise, set L = ij.虹,I free,'，权)}肌 d k = 1.

Step 1. If k = 0’ stop and Xopt is the optimal solution. Otherwise select a node from L
and construct the subproblem at the selected node by setting Q = {Q)if^^^xifree and Ci =
Ci + E.'GJi Qijfori e I free. Let J IT

”/以=̂ IZ IZ 狗 + IZ
Setk:=k-1

Step 2. (Upper bounding, lower bounding and fathoming) Choose a suitable > 0.
(i) Compute the upper bound u{fj,) defined in Eq.(lO) for the subproblem at this node. If

u{n) + Vfix < fopt> update fopt = u{fj,) + Vfi^.

55

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

(ii) Find out all the switch-points for the subproblem and calculate their associate lower
bound by Theorem 3.4. If the dimension of the subproblem, n'’ is great than n x 20%, set
k = and choose the swithch-point that has the best lower bound then improve the lower
bound l{fi) according to Algorithm 3.4.2. I f K j i) > fopt — Vfix’ fathom the current node and
goto Step 1.

Step 3. (Variable fixation and fathoming) Apply Procedure 2 and 3 to the subproblem at
the current node. If all the free variables are fixed, goto Step 1.

Step 4. (Branching). Choose an i G I free and set I free := / /ree \ {0- Set fj、工:=
and ij-^ := ij-^ U {i}, respectively, to generate two new nodes. Add these two nodes to L and
set k := k 2. Goto Step 1.

3.7 Numerical Results
In this section, we present numerical results for proposed algorithm. The main purpose of
our computational experiments is to test the efficiency of the new upper bounding and lower
bounding methods discussed in the previous sections.

The algorithm was coded by Visual C++ 6.0 and run on a Pentium IV PC. Two classes
of test problems in the literature are considdered in our computational experiments. The first
class of test problems is Carter-type of problems with g幻.G [—50, 50] for i + j, qu = 0,
and Ci G [—dm, dm], where dm = 25(n — l)p and p G (0,1) is the parameter to control the
diagonal dominance of Q. The second class of test problems is Williams-type of problems with
qij G [—50, 50] for i + J, qu = 0, and q G [—25, 25]. In problems of a Williams-type, qij
takes zero with a probability 1 — d where d G (0,1) is the adjustable parameter to control the
density of Q.

Numerical results are reported in Tables 3.1, 3.2 and 3.3, where Nnode is the average num-
ber of nodes generated in the method for 10 test problems, Tcpu is the average CPU time used
for 10 test problems. Tables 3.1, 3.2 and 3.3 indicate that our algorithm has considerably good
performance in terms of average number of nodes generated and average CPU time. This is
largely due to the improvement of the lower bound and the efficiency of fixing variables by the
proposed new optimality condition.

56

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Table 3.1: Numerical Results for Carter-type test Problems

n d Nfiode Tcpu
40 0.8 787.6 1.262
40 0.9 1706.2 1.529
50 0.8 6540.3 9.181
50 0.9 1814.1 3.164
80 1.0 2091.2 6.302

Table 3.2: Numerical Results for Williams-type test Problems (n = 40)
n 40 40 40 40 40

d 0.2 0.3 0.5 0.8 0.9

Nnode\Tapu 106|0.282 7|0.266 19|0.296 2151|14.734 2961|25.844

Nnode\Tcpu 41|0.265 78|0.282 121|0.297 1681|12.438 1531|9.063

Nnode\Tapu 66|0.281 13|0.250 37|0.250 2216|11.984 2835|31.953

Nnode\Tapu 35|0.250 103|0.281 131|0.313 700|3.172 5184|42.828

Nnode\Tcpu 139|0.297 37|0.250 66|0.266 1768|19.547 113|3.875

Nnode\Tapu 50|0.265 28|0.250 154|0.375 1169|7.922 3249|32.828

NjiodJTlpu 36|0.266 103|0.297 120|0.313 755|7.375 3121|23.313

Nnode\Tapu 46|0.250 21|0.250 67|0.266 436|2.047 1026|2.984

Nnode\Tcpu 154|0.344 55|0.266 120|0.313 496|3.953 1623|4.295

Nnode\Tapu 166|0.359 16|0.266 211|0.484 1181|11.437 1409110.406

njave \rnave 丄 X node\i cpu 83.9|0.286 46.1|0.266 104.6|0.317 1255.3|9.461 2305.2|18.739

• End of chapter.

57

CHAPTER 3. GEOMETRIC SOLUTION APPROACH TO BINARY QUADRATIC
PROGRAMMING PROBLEM

Table 3.3: Numerical Results for Williams-type test Problems (n > 60)
n 60 60 60 70 70 80

d 0.1 0.2 0.7 0.1 0.2 0.1

Nnode\Tapu 933|4.750 379|2.204 211|1.250 619|3.375 465|3.437 766|10.984

Nnode\Tapu 253|1.518 227|1.390 561|6.875 705|5.250 426|3.391 1722|26.015

Nnode\Tcpu 394|1.718 666|6.890 301|1.625 859|4.813 430|3.640 552|6.109

Nnode\Tapu 364|1.641 133|1.031 79|1.000 1098|7.093 166|1.812 852|14.715

598|2.531 346|1.985 379|2.219 1669|29.469 248|2.047 741|9.172

Nnode\Tapu 575|1.703 183|1.110 667|7.047 727|8.828 526|4.750 869|10.094

NnodeP^cpu 260|0.453 325|1.609 465|3.156 491|3.953 466|3.702 1701|41.187

Nnode\Tapu 362|1.266 226|1.187 379|2.203 827|5.547 377|2.437 1423|18.453

Nnode\Tapu 519|3.031 231|1.297 79|1.016 761|5.922 426|3.375 998|6.594

Nnode\Tcpu 814|3.312 491|3.266 631|6.188 442|2.985 430|3.109 869|12.250

njave \rnave 507.2|2.192 320.7|2.197 375.2|3.258 819.8|7.724 396.0|3.170 1049.3|15.557

58

Chapter 4

Polynomial Algorithms to Binary
Quadratic Programming Problems
with Q being a Tri-Diagonal or
Five-Diagonal Matrix
We focus in this chapter polynomial algorithms to binary quadratic programming problems
with Q being a tri-diagonal or five-diagonal matrix by taking advantage of the basic algorithm
proposed in [1, 33, 44]. We review the basic algorithm firstly and then modify this algorithm
to solve binary quadratic programming problems with Q being a tri-diagonal or five-diagonal
matrix. Furthermore, by combining the basic algorithm and dynamic programming method,
we propose a new method to solve linear constraint binary quadratic programming problems
with Q being a tri-diagonal matrix.

4.1 Basic Algorithm to Binary Quadratic Programming in Gen-
eral Form

We first consider problem (O-IQP) in its general form in this section. Denote by Ai{x) the ith
derivative of f{x) = x^Qx + c^x at x,

df
dxi

— / (^ l 5 • • • 5 ^i — h 1，5 • • • 1 ^n) — fi^l 5 • • • 5 ^i — h 0, Xi-\-i, . . . ^ X^

59

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX
Denote by Qi(x) the ith residual

= /(^l； • • •,工i—1, 0, • • • , Xfi)
= f (x) - XiAi(x).

Both and Oi(x) are, in general, linear functions of a^i , . . . , x^-i, x^+i；

over, f can be expressed as

f{x) = XiAi{x) + ei{x).

It is clear that a point x G {0,1}" is a solution to (O-IQP) only if for all

Xr,. More-

⑴

n.

Xi — 1, if < 0 ,
0, otherwise.

�

The basic algorithm [41] [33] is developed based on the above necessary optimality condi-
tion. We first express f{x) in (O-IQP) as

f{x) = XnAn(xi, ...，Xn-l) + X'T (3)

From the optimal condition (2), the global minimizer of / satisfies

00 RT.——
1, if A „ (x i , . . . ,x„_ i) < 0,
0, otherwise.

Therefore, if we can express Xn defined in (4) as a polynomial o fx i ,
then we can eliminate from the expression of f{x) in (3),

(4)

冗n—l, 0n(冗 1,...，冗n—l)，

/n—1 . . .，^n—l)=诊n(尤 1, . . ” ^ n — • • • , ^n—l) + ©n(工 1:

Note that, in general cases, f n - i i ^ i , . . . , Xn-i) may not be a quadratic function, as • • • ^x^
in general, is not a linear function. Performing the same elimination process for fn-i, we will
get a function fn—2 of x i , . . . , Xn-2 and this process continues recursively until we obtain
/ i (x i) . Let X* denote the optimal solution of (O-IQP). Notice that x* = 1 if / i (l) < / i (0)
and x* = 0 otherwise. Then …，a:二 can be obtained by using = (a:*,…，x*)
recursively for i = 1 , . . . , n — 1.

The basic algorithm [41][33] can then be described as follows.

60

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

Algorithm 4.1.1 (Basic Algorithm for (0- lQP))

Step 0. Set fn(x) = f (x) and k = n.

Step 1. Calculate

Ak{xi,.. .,Xk-i) a九 dxk
.. • = fkixi,..

Determine the polynomial expression of (pk defined by
乂, 、 / 1， if Ak{xi,... ,Xk-i) < 0,
(pk{xi,.. . ,Xk- i) = < (5) [0 , otherwise.

Step 2. Compute

fk-iixi,...，Xk-i) = (pkixi,...，Xk-i)Ak{xi,...，Xk-i) + Okixi,...，Xk-i).

Step 3. If k > 1, then set k := k - 1 and go to Step 1. Otherwise, set = 1 if / i (l) < / i (0)
and = 0 if / i (l) > fi(0). Calculate x^ by x^ = (/>k(xi,..., for k = 2,..., n.

It is proved in [41] that the basic algorithm produces an optimal solution x* to (0-lQP).
The following small-size example illustrates the algorithm.

Example 4.1.
max f (x) = 4xiX2 — X1X3 -h 2x2X3.

5 G { 0 , 1 } 3

By the algorithm, we have A3(xi, X2) = — + 2x2 and thus

f 1, if A3(xi,X2) < 0 1 03(X1,X2) = < > = Xi(l - X2).
I 0, otherwise I

Hence we get

f 2 { x i , X 2) =如 (0； 1， 0； 2)么 3 (0； 1， 0； 2) + © 3 (町，仍)

=Xi{l - X2){-Xi + 2X2) + 4X1X2
= b X i X 2 — Xi-

Since A2(xi) = 5xi, we get

, � , , if 92{xi) < 0,
hixi) _

0, otherwise

61

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

Thus,
flixi) = 02(a:i)A2(xi) + e2(x i) = -Xi.

Therefore, xf = 1, x^ = 02(对）=0 and x^ = (pslxl.xl) = 1. The optimal solution to the
example is x* = (1,0,1)^ with f{x*) = - 1 .

The key task in performing the basic algorithm is how to identify the polynomial expres-
sion of (pk defied in (5). Techniques to obtain the polynomial expression 小奴 are discussed in
[33] [42]. In principle, cpk can be always constructed systematically. Let's consider the follow-
ing instance, A4(xi, X2, x^) = 4xi — X2 — 5x3. The first step is to find the mapping from all
possible combinations of xi , X2 and xs to the value of A4 which is given in the following table.

Table 4.1: Illustrative example of mapping A^
XI X2 X3 A4(xi,X2,X3)
0 0 0 0
1 0 0 4

0 1 0 - 1
0 0 1 - 5

1 1 0 3

Using Boolean algebra and noticing that all possible combinations of xi , X2 and X3 are
mutually exclusive, we can get

= (1 - X1)X2(1 - X3) + (1 - Xi){l - X2)X3 + Xi{l - X2)X3

+ (1 - XI)X2XS + X1X2XS
= X 2 - Xs - X1X2 - X2X3 + X1X2X3.

Note that if A^ involves s variables, then we need to examine combinations. In the worst
case, if involves n — 1 variables, calculating cpn is more than enumerating 1 possible
solutions. The basic algorithm could become very powerful for (O-IQP) when interactions
among variables are weak, for example, when matrix Q in (O-lQP) is tridiagonal.

62

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

4.2 Problem (0 - l Q P) with Q being a tridiagonal Matrix
In this section, we consider the following special case of problem (0- lQP):

(UP) f (x) = mill x'Qx + c'x,

where Q is a tridiagonal symmetric matrix with zero diagonal elements
^ 0 qi2 0 . . . 0 0

gi2 0 g23

Q =
0 g23 0

0 qn-

Qn- 0

0 0 0

\ 0 0 0

In this special case, it can be verified that both functions A/̂ and cpk are linear functions
of a single variable Xk-i. Thus, fk remains a quadratic form all the way through the iteration.
The basic algorithm becomes polynomial in such a special case.
Algorithm 4.2.1 (Exact Algorithm for (0 - lQP) with Q being Tridiagonal)
Step 0. Set fn(x) = f (x) and k = n.
Step 1. Calculate

= 势 = 2 q k
©A：(外

dxk
Xk-l) = fk{xi

,kXk-l + Ckj
i • • • 1 ^k — h 0).

Determine the polynomial expression of cpk defined by

(pk{xk-

Step 2. Compute
fk-iixi,

1 if 2g左—1，左 + Q： < 0 a n d Ck < 0 ,
0 if 2qk—�k + ca： > 0 and Ck > 0,
Xk-i if 询k-�k + Q： < 0 and Ck > 0,
1 - Xk-i if 2qk—i,k + CA： > 0 and Ck < 0.

Xk-l) = (i)k{Xk-l)^k{Xk-l) +
and simplify the expression using xl_

(6)

Xk-

63

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

Step 3. If k > 1, then set A: := A: - 1 and go to Step 1. Otherwise, set = 1 if / i (l) < / i (0)
and = O i f / i (l) > / i (0) . Calculate 4 by 4 = 4>k{xl_i) for A: = 2 , . . . , n.

Note that at every iteration, (l)k{xk-i)Ak{xk-i) will always be a linear function of Xk-i.
Therefore, fk-i{xi,...，Xk-i) is also a quadratic function with Q being a tri-diagonal ma-
trix. Then we can further calculate (f)k-i{xk-2) and Ak_i{xk-2) very easily. As a result, the
algorithm we proposed is very efficient.

4.3 Problem (O-IQP) with Q being a five-diagonal Matrix
In this section, we consider the following special binary quadratic programming problems:

(UP) fix) mm x'Qx + c'x,

where Q is a five-diagonal matrix with zero diagonal elements, and c G M".
When Q is an n-dimensionsl five-diagonal matrix, Q takes the following form:

Q

u qi2 qrs u

qi2 0 m g24
qi3 g23 0 g34
0 m m 0

0 0 0 0

0 0 0 0

0 0 0 0

0

0

0

0

0

Qn-2,n-
qn-2,1

0

0

0

0

Qn-2,1
0

qn-1

0

0

0

0

qn—2,n
Qn—l,n

0

Based on the basic algorithm and the algorithm for solving {UP) with Q is a tri-diagonal
matrix stated in Section 4.2, an algorithm can be developed for solving {UP) where Q is a
five-diagonal matrix.

By applying the method described in Section 4.2, we let si = Ck, S2 = qk-i,k + Q；,

S3 = qk-2,k + Ck and S4 = qk-2,k + qk-i,k + Ck. And by assigning different value to si, S2,

64

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

S3 and S4, we can easily get the definitions of cpk under different situation shown in Table 4.2.
Then, we figure out the algorithm for U P with Q is a five-diagonal matrix as follows:

Table 4.2: Definitions for (f)k{xk-2, Xk-i) according to the value of si , S2, S3 and S4
Si S2 S3 S 4

< 0 < 0 < 0 < 0 1
< 0 < 0 < 0 > 0 1 - Xk-2Xk-l
< 0 < 0 > 0 < 0 1 - Xk-2 + Xk-2Xk-l
< 0 < 0 > 0 > 0 1 - Xk-2
< 0 > 0 < 0 < 0 1 - Xk-l + Xk-2Xk-l
< 0 > 0 < 0 > 0 1 - Xk-l
< 0 > 0 > 0 < 0 1 - Xk-2 - Xk-l + 2Xk-2Xk-l
< 0 > 0 > 0 > 0 1 - Xk-2 - Xk-l + Xk-2Xk-l
> 0 < 0 < 0 < 0 Xk-2 - Xk-2Xk-l
> 0 < 0 < 0 > 0 Xk-2 ^Xk-l - 2Xk-2Xk-l
> 0 < 0 > 0 < 0 Xk-l
> 0 < 0 > 0 > 0 Xk-l - Xk-2Xk-l
> 0 > 0 < 0 < 0 Xk-2
> 0 > 0 < 0 > 0 Xk-2 - Xk-2Xk-l
> 0 > 0 > 0 < 0 Xk-2Xk-l
> 0 > 0 > 0 > 0 0

Algorithm 4.3.1 (Exact Algorithm for (O-IQP) with Q being Five-Diagonal)

Step 0. Set fnix) = f{x) and k = n.
Step 1. Calculate

dfk
dxk

Xk-l) = fk{xi
Qk-2,kXk-2 + Qk-l,kXk-l + Ck,
•)••••) 0).

Let Si = Ck, S2 = qk-i,k + Ck, S3 = qk-2,k + Q： and S4 = qk-2,k + Qk-i,k + Q：.
Determine the polynomial expression of (pk defined by Table 4.2

Step 2. Compute

Xk- 4>k{Xk-2, Xk-l)Ak{Xk-2, Xk-l) + Sk{xi, Xk-

65

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

and simplify the expression using x\—2 = Xk-2^ ^ l - i = ^k-i-
Step 3. l f k > 3, then set k := k — 1 and go to Step 1. Otherwise, determine the value of x\ and

X2 that minimize f2{xi, X2). Calculate x l by x l = (f)k{xl_2,对—1) for A: = 3 , . . . , n.

Note that at every iteration, (f)i.{xk-2j Xk-i)Ak{xk-2, Xk-i) will always be a linear com-
bination of Xk-2Xk-i^ Xk-2 and Xk-i- Therefore, f k - i { x i ^ . . . , Xk-i) is also a quadratic func-
tion with Q being a five-diagonal matrix. Then we can further calculate (f)k-i{xk-3, Xk-2) and

very easily. As a result, the algorithm we proposed is very efficient.

4.4 Algorithms to Linearly Constrained BQP with Q being a Tri-
diagonal Matrix Based on Dynamic Programming Method

Here we combine the dynamic programming method with the previous exact solution algorithm
to solve the following linearly and singly constrained quadratic 0-1 problem:

(CP) f{x) = min x'Qx + c'x,
Subject to: a'x < b

where Q is a tri-diagonal symmetric matrix with zero diagonal elements, c G M", a G Z" , and

To apply dynamic programming, we first introduce a stage variable k, 0 < k < n, and a
state at stage k, Sk G M, satisfying the following recursive equation:

Sk+i = Sk^ CLkXk, k = 1,... ,n - 1,

with an initial condition si = 0.
Since the constraints are integer-valued, we only need to consider integer points in the state

space. Furthermore, the feasible region of the state vector at stage k with 2 < k < n can be
confined as follows:

Sk < Sk < Sk

where
k-l

Si, = > min atXt = 0

66

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

and

Sk = m i n { y ^ max a^Xt, b — y ^ min atXt} = m i n { y ^ a^, b}.
台神， 1 } t t

Then for each stage k, we can write out all its possible states of Sk- Then we can define
{sk} = {s\sj^ < Sk < Sk, Sk G Z}. For every state, we can define its cost-to-go function,
ik{sk), which is a function defined over { x i , . . . , x ^ - i } with the following procedure.
Procedure 4 (Define the cost-to-go function for state s^)

• Case l . l f k = n

We need to consider the following two cases:

- C a s e la. If + > b. It means that, at this state, Xn must be set as zero
in order to satisfy the linear constraint, so we set x* = 0 and define i n { s n) =
f i x i , . . . ,Xn-l ,0) .

- C a s e lb. If s^ + a^ < b. It means, at this state, Xn can be either 0 or 1. Therefore
we apply the exact solution algorithm introduced in previous section to fn{x) and
finally get x* = (pnixn-i) and = fn—i(xi, • • •, Xn-i)

Applying the calculation procedure described above, we will generate a series of cost-to-
go functions in(sn), and they have the property that all the cost-to-go functions ik(sk)
generated at each stage k are only different in the linear term coefficient before Xk-i and
the constant coefficient. The proof is given after the procedure.

• Case 2.lfk <71

We also have two cases to consider

- C a s e 2a. If Sk + a^ • {s/j+i}. Similar to the situation described in Case la, x^
must be set as zero in this case. So we set = 0 and define 4 (s) = 4 + i (s) k = o .
Here, we should note that, for the state Sk in the stage of {k + 1), there might
exist multiple 4+i('Sa：). Therefore, we need to find out the minimum one from
these candidates. It has already been proved that all these candidate functions have
the same nonlinear term coefficients and linear term coefficients except the linear
term coefficient before Xk+i and the constant coefficient. For this reason, the best
candidate function is the one with the minimum constant coefficient.

67

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

- C a s e 2b. If Sk + ctk G {s/^+i}. Similar to the situation described in Case lb, Xk can
be either 0 or 1 in this case. But here we have following two different situations to
discuss:

(i) At stage A: + 1, there exists only one cost-to-go function at Sk + a^ and
Sk respectively, i.e. h+ i i sk) and ik+i{sk + ak), and the constant term coef-
ficient as well as the sum of the constant term coefficient and the linear term
coefficient before Xk of ik+i{sk + ak) are less or equal to the counterparts of
ik+iisk)- From the discussion in Case 2(a), we know that ik+i{sk + ak) is
either equivalent to or better than 4 + i (sa：) under this situation. We then apply
the exact solution algorithm to 4+i(sa； + ak) and set xl and ik{sk) using the
procedure introduced in case 1(b).
(ii) For other situations except Situation (i), we shall set Xk = 0 in ik+i{sk)
and set x/̂ = 1 in ik+i{sk + ak), and assign these functions to be the cost-to-
go functions ik{sk). Obviously, in this progress, multiple x l and ik{sk) will
be generated in a single state. Therefore the number of cost-to-go functions
should be reduced to the minimum. For the cost-to-go function generated by
setting x/s = 0 in ik+i{sk), since ik+i{sk) have the same nonlinear term co-
efficients and linear term coefficients except the linear term coefficient before
Xk+i and the constant coefficient, then by setting Xk = 0 will result in the
new functions that just different at the constant coefficient. Therefore, just the
function that has the minimum constant coefficient should be chosen as the
cost-to-go function for Sk- For the same reason, for the cost-to-go function
that generated by setting Xk = 1 in ik+i{sk + ak), we can also easily find
out the best cost-to-go function for Sk- So, in this case, only two cost-to-go
function will be generated with respect to Sk-

Lemma 4.4.1 All the cost-to-go functions generated at stage n are only different in the
linear term coefficient before Xn-i and the constant coefficient. Furthermore, this property
holds for ik{s) at stage k, (A: = n — 1,..., 2).
Proof. From the description of the basic algorithm given in the previous section, we know that
in{sn) is calculated with the following equation:

inisn) = fnixi, ...，Xn-1,0) + (f)niXn-l)iqn-l,nXn-l + Cn)

where (pnixn-i) can be one of the following four expressions, i.e. 0, 1, Xn-i and 1 — Xn-i-
Since both Qn-i^nXn-i + Cn and (f)n{xn-i) are linear functions of Xn-i, and in addition,

68

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

can be replaced by Xn-i, then (l)n{xn-i){qn-i,nXn-i + c^) is also a linear function of Xn-i-
Different assignments of (pnixn-i) will result in different linear term coefficient before Xn-i,
i.e. gn—i,n, and the constant coefficient, i.e. in the expression of 小n(Xn-i)(qn-i,nXn-i +
Cn) = qXn-1 + c. Therefore, we can get the conclusion that all the cost-to-go functions gener-
ated in stage n, have the same nonlinear term coefficients and linear term coefficients
except the linear term coefficient before Xn-i and the constant coefficient.

With this property, we can express in{sn) as

INISN) = FNIXI, ...，X N - 2 , 0, 0) + QN-2,N-LXN-2XN-L + CN-LXN-1 + QXN-1 + C

= / n (x i , . . .，Xn-2 , 0, 0) + Xn-l{qn-2,n-lXn-2 + Cn-1 + q) + C

By assigning Xn-i with where (.工n-2) can be one of the following four
expressions, i.e. 0, 1, Xn-2 and 1 — Xn-2, we can get the cost-to-go function, in - i{sn- i) , at
stage n — 1. Similar to the proof of stage n, we can get the conclusion that in-i{sn-i), have the
same nonlinear term coefficients and linear term coefficients except the linear term coefficient
before Xn-2 and the constant coefficient.

Then apply the above proof to stage (n — 1) till stage 2, we can get the same conclusion
that, at any stage k, (k = 2 , . . . , n), ik{sk) are only different in the linear term coefficient
before Xk-i and the constant coefficient. •

In the previous procedure, the maximum number of cost-to-go functions generated under
different situations can be summarized with the following table.

Case Maximum number of cost-to-go functions generated
Case la 1
Case lb 1
Case 2a 1

Case 2b(i) 1
Case 2b(ii) 2

After this procedure, we get a complete table for all the states. Then by applying the
tracking procedure, we can obtain the optimal solution to (CP) . And it can be found from the
above table that for each state at any stage, at most two cost-to-go functions will be generated.

69

X4 9XIX2 + 18x2X3 + 47x3x4 — 32xi + 42x2 一 23x3 一 19x4
X4 9xiX2 + 18x2X3 + 47x3x4 — 32x1 + 42x2 — 23x3 一 19x4
X4 9xiX2 + 18x2X3 + 47x3x4 — 32xi + 42x2 一 23x3 一 19x4
0 9X1X2 + 18X2X3 + 47X3X4 - 32X1 + 42X2 — 23x3 - 12x4

In this table, we have four possible states, i.e. S5 = 0,1, 2 and 3. For S5 = 0,1 and 2,
S5 + as = S5 + 1 S 6 = 3 is satisfied. Therefore, we can get the value of x^ and from
Case 1 (b). Since S5 = 3, S5 + as < 6 can not be satisfied, x* and should be determined
with the procedure described in Case 1 (a).

Then we generate the table for S4. Since A: = 4 < n = 5, the remaining tables should be
constructed according to the procedure described in Case 2 of the algorithm.

70

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

Therefore, the number of cost-to-go functions generated at any stage will be less than the
double of then number of stages at this stage.

4.4.1 A Simple Example
Consider the problem:

m i n / (x) = 9xiX2 + 18x2x3 + 47x3x4 — 21x4x5 — 32xi + 42x2 一 23x3 一 12x4 + 14x5
Subject to: 3x1 + 2x2 + 3x3 + 2x4 + X5 < 3

The optimal solution to the above problem is known to be x = (1 0 0 0 0)^. Now, We use
our algorithm to find out how it works to get the above optimal solution.

By applying the algorithm described above, we can get the following five tables.
We first generate the table for S5. Since in this example n = 5, the table should be con-

structed according to the procedure described in Case 1 of the algorithm.

S5 feasible region for X5 xl ^5(55)
o

r
l

o

r
l

o

r
l

0

0

3

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

S4 feasible region for X4
X 4 力4(S4)

0 {0,1} 1 - X3 9X1X2 H h18x2X3 - 3 2 x 1 + 42x2 - 4x3 - 19
1 {0,1} 0 9XIX2 H h18x2X3 - 3 2 x 1 + 42x2 - 23x3
1 {0,1} 1 9X1X2H h18x2X3 - 3 2 x 1 + 42x2 + 24x3 一 12
2 0 0 9XIX2 H h18x2X3 - 3 2 x 1 + 42x2 - 23x3
3 0 0 9XIX2 H h18x2X3 - 3 2 x 1 + 42x2 - 23x3

In this table, for S4 = 0, S4 + (24 = S4 + 3 e {55} = {0,1, 2, 3} is satisfied. And it can
be easily found out that when S4 = 0, the conditions coincide with the Situation (i) in Case
2(b). Therefore, we can get the value of x l and 4 (s) from Situation (i) in Case 2(b). Similarly,
two cost-to-go functions can be defined for S4 = 1 with the procedure described in Situation
(ii) in Case 2(b). While for S4 = 2 and 3, the condition S4 + (24 e {55} can not be satisfied.
Therefore, for these two states, x l and 4 (s) can be determined by the approach introduced in
Case 2(a).

We further generate the table for S3.

S3 feasible region for X3 x^
0 {0,1} 0 9XIX2 -32X1 + 42X2 - 19
0 {0,1} 1 9xiX2 -32x1 + 42x2 — 23
1 0 0 9xiX2 -32x1 + 42x2 - 12
2 0 0 9xiX2 -32x1 + 42x2
3 0 0 9xiX2 -32x1 + 42x2

For S3 = 0, x\ and can be determined by the method described in Situation (ii) in
Case 2(b). Then for S3 = 1, x\ and £3(5) can be determined by the procedure described in
Case 2(a). Here we should be noted that, for this state, we have two candidates to define the
cost-to-go function. Then apply the method described in the algorithm, one candidate, i.e.,
9xiX2 + 18x2x3 — 32x1 + 42x2 + 24x3 — 12, is determined to be the best one. For S3 = 2 and
3, the method described in Case 2(a) should be applied.

We then generate the table for S2.

71

For S2 = 0, three cost-to-go functions will be generated by using the algorithm described in
Situation (ii) in Case 2(b). The three functions are —32xi — 19, —32xi — 23 and —32xi. Only
the best one —32xi — 23 is kept. Likewise, for S2 = 1, two cost-to-go functions —32xi — 12
and —32x1 can be generated, and only —32xi — 12 is kept.

We finally generate the table for si .

Si feasible region for xi x^ ii{si)

0 -32x1 - 23
0 -32x1 - 12
0 -32x1
0 -32x1

From the last table, we can find that when xi = 1 the value of ti{si) is the smallest. Then
we use the tracking procedure to find out the optimal value of X2, X3, X4 and X5 as follows:

52 = Si + a ix l = 0 + 3 x 1 = 3
X* = = 0
53 = S2 + a2X*2 = 3 + 2 x 0 = 3

54 = S3 + asxl = 3 + 3 x 0 = 3
xl = = ^4(3) = 0
s* = S4 + a^xl = 3 + 2 x 0 = 3
4 = x ^ s D = = 0

Then we get the optimal result, i.e. x = (1 0 0 0 0)^.

72

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

S2 feasible region for X2 xl £2(52)

23
32

0 o

r
l

o

r
l

0

0

o

r
l

o

r
l

0

0

0

3

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

4.5 Computational Results
In this section, we present numerical results for the algorithms proposed in Section 4.3. The
main purpose of our computational experiments is to test the efficiency of methods discussed
in the previous sections.

The algorithm was coded by Matlab R14 and run on a Pentium IV PC. Numerical results are
reported in Tables 4.3, 4.4 and 4.5. Table 4.3 and 4.4 provide the computation time of our algo-
rithm for solving different dimensional (UP) where Q is tri-diagonal matrix and five-diagonal
matrix respectively. Table 4.5 provides the computation tim of our algorithm for solving (CP) .
These three tables indicate that our algorithms have considerably good performance in terms
of computational time.

Table 4.3: Experimental results for U P where Q is a tri-diagonal matrix

n = 300 400 500 600
Round 1 0.4531 1.0625 1.9531 3.2656
Round 2 0.4219 0.9531 1.8594 3.2031
Round 3 0.4063 0.9844 1.9063 3.3125
Round 4 0.3906 0.9531 1.8906 3.2656
Round 5 0.4844 1.0625 1.8594 3.2188
Round 6 0.4688 0.9688 1.8750 3.1875
Round 7 0.4375 1.0625 1.8594 3.3438
Round 8 0.5625 0.9219 1.9219 3.1719
Round 9 0.5000 1.0000 1.9531 3.1875

Round 10 0.4375 1.0156 2.0156 3.3438
Max time 0.5625 1.0625 2.0156 3.3438
Min time 0.3906 0.9219 1.8594 3.1719

Average time 0.4563 0.9984 1.9094 3.2500

Based on the information listed in Table 4.3 and 4.4, the average computational times for
problems with different dimension are plotted in Figure 4.1(a) and 4.1(b). It is obvious that
when the dimension of problem increases the computational time increased linearly.

For the algorithm to (CP), it has been proved that for each state at every stage, at most
two cost-to-go functions will be assigned. Figure 4.2(a) and 4.2(b) can obviously reveal this

73

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

400 450 500
dimension (n)

(a) Q being a tri-diagonal matrix (b) Q being a five-diagonal matrix

Figure 4.1: Average computational time for different dimensional UP with Q being a tri-
diagonal or five-diagonal matrix

(a) Number of states

Figure 4.2: Number of states and cost-to-go
n = 100

(b) Number of cost-to-go functions

functions at every stage for one example with

74

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

Table 4.4: Experimental results for U P where Q is a five-diagonal matrix

n = 300 400 500 600
Round 1 0.9531 2.0313 3.5000 6.0156
Round 2 0.9219 1.9375 3.3750 5.8594
Round 3 0.8594 1.9531 3.5313 5.8750
Round 4 0.8750 1.9531 3.4375 5.8906
Round 5 0.8438 1.8906 3.4375 5.8594
Round 6 0.9063 1.9688 3.3906 5.9219
Round 7 0.8750 1.9219 3.5000 5.9375
Round 8 0.8594 1.9219 3.3906 5.9063
Round 9 0.9219 1.9063 3.3594 6.0156

Round 10 0.8906 2.0156 3.3594 7.5156
Max time 0.9531 2.0313 3.5000 7.5156
Min time 0.8438 1.8906 3.3594 5.8594

Average time 0.8906 1.9500 3.4281 6.0797

important property. We apply our algorithm to a problem with 100 variables. Figure 4.2(a)
shows the number of states of each stage for this problem. Figure 4.2(b) shows the number
of cost-to-go functions that generated at each stage. It can be obviously found out that, at
each stage, the number of cost-to-go function is less than or equal to the double of the number
of state. That is to say, the complexity of the algorithm will not increase exponentially with
respect to the dimension of the problem. The computational results reveal that our algorithms
are very effective and efficient.

• End of chapter.

75

CHAPTER 4. POLYNOMIAL ALGORITHMS TO BINARY QUADRATIC
PROGRAMMING PROBLEMS WITH Q BEING A TRI-DIAGONAL OR

FIVE-DIAGONAL MATRIX

Table 4.5: Experimental results for CP

n = 10 25 40 100
Round 1 0.2500 2.6406 2.8438 13.2969
Round 2 0.1875 1.6406 1.5469 62.8594
Round 3 0.1563 0.8750 1.5000 51.6875
Round 4 0.1406 0.4688 1.6094 18.2344
Round 5 0.1875 1.9531 3.6250 60.2344
Round 6 0.2813 0.6094 5.1719 12.5156
Round 7 0.1563 1.0156 10.2031 65.5625
Round 8 0.1250 0.6719 5.8750 49.4375
Round 9 0.1406 2.5625 8.4688 59.5781

Round 10 0.1094 0.9219 2.3438 37.7031
Max time 0.2813 2.6406 10.2031 65.5625
Min time 0.1094 0.4688 1.5000 12.5156

Average time 0.1735 1.3360 4.3188 43.1109

76

Chapter 5

A New Algorithm to Find Integer
Solutions to Linear Equations
5.1 Brief Introduction to the Methods for Finding Integer Solu-

tions to Linear Equations
Consider the linear Diophantine equations: Ax = 6, x G Z" and the Diophantine equations on
a bounded integer set: Ax = b, x e X = {x e < x < u}, where Z" denotes the set all
integer vectors in M", A is an m x n integral matrix with m < n and rank(4) = m, and b G
is integral. It is well known that linear diophantine equations are polynomially solvable, while
linear diophantine equations on a bounded integer set are NP-complete, as the special case of
linear Diophantine Equations with m = 1, x G {—1,1}" and 6 = 0 is NP-complete.

The most classical method in solving linear Diophantine equations is the Smith normal
form, which invokes the identification of two unimodular matrices U G Z讯她 and V G
Znxn such that UAV = [S, 0] with S = diag{si,s2,..., Sm), 1 < i < m — 1.
Furthermore, there exists integer solution to the linear Diophantine equations if and only if
yf = di/si,i = 1，...，m, are integers, and if yes, every integer solution takes the form of
X = Vy = Vy^ ^ kiVy\ ki G Z, where y? = 0, i = m + 1，...，n and =
Cm+l； • • • 5 y^ — ^n-

The most popular method in solving linear Diophantine equations is the so called Hermite
Normal Form, which states that there exists an n x n unimodular matrix C such that AC =
[H, 0), with H being in Hermite normal form. Furthermore, there exists integer solution to

77

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

the linear Diophantine equations if and only if G and, if yes, every integer solution
takes the form of x = CiH~^b + C2Z, z G where Ci and C2 are the first m rows and
last n — m rows of C, respectively.

Based on the Hermite normal form, many algorithms have been designed for finding integer
solutions to linear Diophantine equations. As the computation of the Smith normal form and
the Hermite normal form of integer matrix A plays a central role in finding integer solutions to
linear Diophantine equations, some methods, such as the Euclidean algorithm in [Nemhauser
and Wolsey 1988], have been devised to improve the algorithmic efficiency. However, a noto-
rious phenomenon of coefficient explosion gives rise a major obstacle in such computations.
Various strategies have been proposed to alleviate this computational difficulty.

Under the linear transformation x = y + I, solving linear Diophantine equations over
bounded integer set [/, u] is equivalent to solving the following problem: Ay = d,0 < y < f3,
y G Z", where d = b — Al and j3 = u — I. Based on lattice basis reduction, an algorithm was
developed to identify if there exists ay e satisfying bound constraints. In fact, the algorithm
is to firstly derive the Hermite normal form, based on the Lovassz basis reduction algorithm
which possesses good capability in avoiding coefficient explosion, to obtain a short solution Xd
and a short basis xx to system Ay = d. Secondly, branching on integer linear combinations of
xx to obtain a solution that satisfies bound constraints, or to prove an infeasibility.

Utilizing the results of [21] to express explicitly integer solutions to a linear equation of
two variables, an algorithm based on the Euclid's algorithm for computing the set of integer
solution of Ax = b on bounded set Xis developed [22]. In its first phase, the algorithm of
Ramachandran reduces the problem recursively by aggregating two variables into an artificial
variable with calculated lower and upper bounds, finally into a linear system with only two
variables whose integer solutions can be specified. In the second phase of the algorithm, by
repeating using the results for a linear equation of two variables, the solution set is expanded
by determining progressively integer values for remaining undecided elements of x.

5.2 Finding Integer Solution with Cell Enumeration Method
In this section, we propose a new algorithm with cell enumeration method for finding integer
solution to linear equations. Let U = {Ui,..., Un-m) be an orthogonal basis for the null

78

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

space of A and xo be a special solution to Ax = 6 in R^, then C = {x ^ R^ \ Ax = b} can be
expressed by

C = {x G I X = Xo + ^ ZiUi,
i=l

Zi G R, i = 1,... ,n — m}.

Consider the Euclidian distance from C to X = {x e Z^ \ 0 < Xi < Ui, i = 1 , . . . , n}:

(5 = dis t (C,X) = min{ | |x -? / | | \ x e X, y e C}.

⑴

�

It is obvious that Ax = b has a solution in X if and only if (5 = 0. Furthermore, when (5 = 0,
any x* G X that achieves the zero distance is an integer solution to the linear equations Ax
i n X .

Note that combining (1) and (2) yields

b

6 = d is t (C,X)

where, for j

viy)'

minmin{| |y — x|| | 0 < < Ui, Xi E Z, i = 1, yec
min II?/-(/?(?/) II, yec
n, (fi{y)j is determined by the following equation:

0， y] G (—(

n}

h V j G (i - + 2) ' i e {l，...，wj. — 1 } ,

Uj, Vj G [Uj - 00).

Let's consider the hyperplane arrangement generated by the following Uj hyper-
planes in R几—爪:

hij = {z G R^ 9ij{z) := (a^o)：

for i = Uj, J =

I

I

\
—
/

1

I

9

I

y

X

I

.

.

.
，

.
+

n. Note that for each j, hij (i =

(3)

Uj) are paral-
lel hyperplanes. A cell E of the hyperplane arrangement corresponding to hi/s is an (n —
m)-dimensional polyhedral set formed by the half-spaces induced by hij 's and can be char-
acterized by a Wj-dimensional sign vector, sign(丑)={w^,... , w^), where w^ =

79

A ~ w] = (+ ,

where i G {1,

It has been known that the number of cells of the hyperplane arrangement generated by
(3) is bounded by where u = maxi=i，...，„ Ui [56, 58]. Moreover, using the cell
enumeration methods in [24] and [54], we can find all the cells of the hyperplane arrangement
generated by (3) in time. Listing all the distinct (f>{y) for y G C as (/？^,..., 左,

the distance 5 = dist(C, X) can then be calculated as follows:

5 = min dj 三 min dist(C,
= m i n \\(UU^ - - xo)\\. (5)

Therefore, finding a solution of the linear system Ax = b over the integer set X or checking
its infeasibility can be done in time. Especially, when r = n — m is fixed
(0 < r < n — 1), the linear system Ax = b over X is polynomially solvable.

80

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

(m,j, • • •, Wu”j) is specified by

+， if 讲j.(7r)>0 .
Wij = \ , « = (4)

if < 0
with TT being an interior point of E. For fixed j, since hij (i = 1,..., Uj) are parallel hyper-
planes, ujj = (it；! 1, • • •, Wu.： j) must take the following form:

(+，...，+，—，...，—)，i = 0，1，...，Uj.

The one-to-one map between all distinct Lp{y) fory e C and the sign vectors of all the cells
of the hyperplane arrangement can be established as follows:

W =(切 1; • • • 夫~、(^l,---, ^n) ,

where for j = 1 , . . . , n,

=(—，...，—）夫~> (f i j = 0 ,

up = (+ ,...,+) ^——> (f j = Uj,

Vj =

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

5.3 An Illustrative Example
Let us consider now a simple example as follows to illustrate the solution algorithm for the
following set of linear equations using the cell enumeration method.

- 6 3 9 - 2 - 2
-5 - 3 3
I 4 4 4

X
6

7

where x e X = {x e Z^ \ -1 < xi < 2,-1 < X2,X3 < 1,-2 < X4, X5 < 0}.
Since the matrix is of rank 3 in this example, solving the fundamental equation in R^ yields

C = {x^R^\Ax = h}
= { x G I X = Xo + ziUi + Z2U2, Zi e R,i = 1, 2},

where

and

xo = (0.3182, 0.0043,1.0069, 0.4404, 0.1425) T

u = {Ui,U2)=

-0 .4513 -0.3197
-0.1833 -0.8280
-0.1468 0.1181
0.7808 -0.1649

-0.3625 0.4136
With the information of U, XQ and the bound of X, we generates the following 11 hyperplanes

81

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

Figure 5.1: Ce

on C defined in (3),

J = 2

J = 3

j = 4

j = 5

arrangement for the example problem.

911 z)= 一 0 . 4 5 1 3对- 0 . 3 1 9 7勿 = - 0 . 8 1 8 2

921 z)= 一0.4513尉-0.3197么2 = 0 . 1 8 1 8 ,

931 z)= 一0.4513尉-0.3197^2 = 1 . 1 8 1 8 ,

912 z)= -0.1833^1 - 0.8280^2 = - 0 . 5 0 4 3

922 z)= -0.1833^1 - 0.8280^2 = 0 . 4 9 5 7 ,

913 一0.1468尉 + 0.1181 么 2 = - 1 . 5 0 6 9 ,

923 z)= -0.1468^1 + 0.1181^2 = - 0 . 5 0 6 9 :

9u Z)= 0 . 7 8 0 8尉- 0 . 1 6 4 9幻 = -1.9404,

924 z)= 0.7808^1 - 0 . 1 6 4 9 ^ 2 = -0.9404,

915 z)= -0.3625^1 + 0.4136^2 = - 1 . 6 4 2 5：

925 z)= 一0.3625尉 + 0.4136 约 = - 0 . 6 4 2 5 ,

As illustrated in Fig. 5.1, these 11 hyperplanes partition set C into 60 cells, each of which
corresponds to a unique sign vector defined in (4), sign(五)=(w^,..., w”，where w^ =
{wii, 1(̂21，切 31) and w^ = [Wij, W2j), {j = 2,..., 5). Table 1 lists the integer vector according
to all these 60 cells.

Let us take Cell 1 in Fig. 5.1 as an examplt. As any interior point tt of Cell 1 satisfies
(TT) > 0，2̂1 (TT) < 0, ^31 (TT) < 0, ^12 (TT) < 0, ^22 (TT) < 0’ ^13 (TT) > 0, ^23 (TT) > 0, 5̂ 14(TT)

82

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

> 0, 5^24(tt) > 0, 5̂ 15(71") > 0, and 5̂ 25 (tt) > 0, the sign vector for any interior point tt of Cell
5 is thus specified by((H)(——）（++)(++)(++)). Furthermore, for all points in Cell 1,
the closest integer point in X = {0,1, 2}® is clearly given by cp̂ =

Then we calculate the distance between (/？̂ and Cell i (i = 1,
function:

(0 ,-1,1,0 ,0) .

. . . , 60) using the following

= dist(X, Cell i) = \\{UU^ — I5W —勒)ll
We find that, for Cell 21, 621 = 0. That is to say = (1,1,1, 0, 0)^ is the solution to

Ax = b.

• End of chapter.

83

CHAPTER 5. A NEW ALGORITHM TO FIND INTEGER SOLUTIONS TO LINEAR
EQUATIONS

Table 5.1: A full list of cells and their closest integer points.
Cell

10
11
12
13
14
15
16
17
18
19
20 2r
22

23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

0,1
0,1
0,0
1,0
0,0
1,0
0，-

0,0广
1,0,0)
0,0)^ 0’-

1,0,-幻」 0.0, o r
-1 ,0 ,0
0,0,-1
-1,0,-
0,0, -2
-1,0,-
1,-1,0
1,0,-1

0
0
0
0
0
0

0,0

0/

- 1)
-2)；
- 2) 」

^
 I

1,0
1,0
1,0
0,0
0,0
0,0
0,0

二

T
 T

 T

 ̂
^
/
T

 T

T
 T

 ̂
^
^

 I

 T

S
S
 I
 I

 I

2
,
:

⑴

^
^

1
,
2
,
2
,
2
,
2
,

I

1
,
1
,
2
,
2
,
0

0,0,0,

2,-
2,0,

厂
J

厂
J

T
 T

 T

 T
 ̂
/
T

 T

\
—
/

I

 \

—
V
 \

—
/
\

—
/
\

—
/

\
—
/
\

—
V

2

I

 2
^
y
o

 o
 o

2
,
o

 o
^
y
^

o
^
 o
^

 I

 o,

-

 4

 1,
1
,
2
,

I

2
,
2
,

 o

-
-
0
,
1
,
0
，
-

I
 I

 I

1,

I

1
2
，

denotes the cells corresponding to the integer solutions of AQ

84

Chapter 6

Reachability Analysis of Petri Nets
6.1 Brief Introduction to Petri Nets and Reachability Analysis
Petri net, introduced by Petri in his seminal work "Communication with Automata" [64], has
been a promising mathematical formalism for modeling, analyzing and designing discrete event
systems, especially by its remarkable capability in modeling process synchronization, asyn-
chronous events, concurrent and distributed operations and conflicts or resource sharing. The
past four decades have witnessed innumerable successful applications of Petri nets in various
areas, such as i) modeling and analysis of communication protocols and networks, production
systems, sequence controllers and software development, and ii) performance evaluation of
the modeled systems.

The Petri net is a particular kind of bipartite directed graph consisting of three types of
elements: places, transitions, and directed arcs connecting places and transitions, while each
place may hold a non-negative number of tokens. In a graphical representation of a Petri net,
places are depicted by circles and transitions as bars. With these three types of elements, Petri
net may be used to model various systems. See Fig. 6.1 for an illustrative example of Petri nets
with 4 places and 6 transitions. The distribution of tokens on places, called Petri net marking,
defines the state of the modeled system. A marking for a Petri net with m places is represented
by an (m X 1) vector M, where Mj, j = 1, 2 , . . . , m, are nonnegative integers representing the
number of tokens in the corresponding places.

A generalized Petri net is a five-tuple defined as follows:

PN= (P, T, Di, Do, Mo); where

85

and Mo = (1,1,0,0)^.
The change of the distribution of the tokens represents the dynamics of the modeled system,

while the distribution of tokens on places may change according to the following enabling rule
and firing rule [69]:

Enabling Rule: A transition t is said to be enabled if each input place p of t contains at
least the number of tokens equal to the weight of the arc connecting p to t.

86

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

Figure 6.1: Example of a Petri net

1. P = {pi,p2,...，Pmj is a finite set of places,

2.T = {h,t2: J is a finite set of transitions, P U T 0 and P n T = 0,

3. Dj： (P X T) H zpxn is an input function that defines weights associated with
directed arcs from places to transitions, where Z ^ ^ ^ (Z^) is the set of (m x n) dimen-
sional matrices (m dimensional vector) with all entries being in Z+,

4. Do: {P X T) ^ ^mxn is an output function that defines weights associated with
directed arcs from transitions to places , and

5. Mo : P Z^ is the initial marking.

For the Petri net given in Figure 6.1, we have

Di
0
0
4
0

0
1
0
0

1
0
0
0

0
0
0
2

0
0
1
0

Do

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

Firing Rule: (a) An enabled transition t may or may not fire depending on the additional
interpretation, and (b) A firing of an enabled transition t removes form each input place p the
number of tokens equal to the weight of the directed arc connecting p to t, and deposits in each
output place p the number of tokens equal to the weight of the arc connecting t to p.

Petri nets have been used in many well known engineering application fields including
modeling flexible manufacturing systems, workflow systems and sequence controllers, anal-
ysis of communications protocols and software development, and performance evaluation of
multiprocessor systems and parallel computer architectures.

6.2 Solving the Reachability Analysis Problem by Finding the In-
teger Solutions to the Fundamental Equation

Reachability analysis is no doubt one of the most important behavioral properties of Petri
nets. Given both an initial state Mq and a target terminal state M, a natural question to ask is
whether or not we have a sequence of firing rules such that the system can reach the specific
target state within finite steps. There are two primary approaches in investigating reachability:
reachability graph analysis and reachability algebraic analysis. Reachability graph analysis is
based on the creation and investigation of a reachability graph or a reduced reachability graph.
As this approach relies on exhaustively generating all the reachable markings from a given
initial marking, it suffers the state explosion phenomenon, while transferring the reachability
graph to a reduced counterpart is NP-hard [60]. The second approach is based on methods of
linear algebra. It is well known that a necessary condition for reachability of marking M from
an initial marking MQ of a Petri net is that there exists a nonnegative integer vector solution of
the following system of linear equations [63, 68],

Ax = 6, (1)

where b = M — Mq, X = (XI, X2, . . . , XM)^ is a firing count vector and A is an (M x N)
dimensional incidence matrix given by A = [a{pi, t j)] = [Dq{pi, t j) — DJ{pi, t j)] . When the
Petri net is acyclic, the above condition becomes both necessary and sufficient [61]. Equation
(1) is also termed ih& fundamental equation in Petri nets. For example, if we set in Figure 6.1
the final marking to be M = (2, 0,1, 3)^, the fundamental equation for this example is then

87

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

0
1
^
0
5

1
 I

0
1
0

4

0
0

〕
1

1

0
 I

1
0

1
 I

1
0
0

2
0
0
^

/

n

e

w

X =

\ , \ 3 ,
The above discussion reveals that the investigation of reachability can be achieved, to cer-

tain degree, by finding out nonnegative integer solution(s) to a system of linear equations.
Thererfore, the first step in the reachability algebraic analysis is to find firing count vectors,
which can be performed either by solving the fundamental equation directly, or by solving
the corresponding integer programming problem. Unfortunately, finding nonnegative integer
solutions to the fundamental equation in Petri nets is NP-complete [62]. In essence, solving
the fundamental equation is an integer programming problem (see, for example, [66] [47] and
[44]). Generally speaking, the capability of the existing methods for finding the nonnegative
integer solution to the fundamental equation (1) is still very limited. In particular, the Petri
nets community has been largely dependent on some existing softwares to obtain nonnegative
integer solutions to the fundamental equation. More efficient solution schemes that invoke the
state-of-the-art from some other related subjects, especially from discrete optimization and in-
teger programming, deserve further investigation. There have been a few attempts in the Petri
net communities in this direction. For example, [62] applied Groebner Bases method from
integer programming to solve reachability problems in Petri nets.

The algorithm of finding the negative integer solutions io Ax = h with Groebner Bases,
where A is a m x n matrix and 6 is a column vector with m elements, is given as follows:

1. Define 命、=nj=i <”.，(i = 1，...，m);

2. If cLij < 0, then apply t = IIJLi ^k^ to z?” such that all the powers appears in (pi(w)

are greater or equal to zero;

3. Define an ideal J =< t YYk=i 之k — 1，Pi(切)—切i，• • •, fm(切)—切m >；

4. Calculate the Groebner Bases, g, for J

5. Define f = f l l t i And if there exists k < 0, apply t = YlT=i 々 to z-' such that
all the powers appears in f are greater or equal to zero;

6. Calculate P , If P is in the form P =]Xi=i '^T and ai is nonnegative integer, then
{ a i , . . . , am) is the solution to the original problem.

88

= { x G i?® I X = xo + ziUi + Z2U2, Zi e R,i = 1, 2},

where
xo = (0.2912, -0.2138, 0.0100, -0.2984, -0.2038, 0.776) T

and

u = {Ui,U2)=
0.3508 0.3944 -0.1605 0.6882 -0.2713 0.5636 0.1477 0.1661
0.8622 0.1006 0.1108 0.1245

89

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

From the above algorithm, it can be easily found that the solution approach using Groebner
Bases depends heavily on symbolic computing power, and its capability in solving large-scale
problem is thus not promising.

We propose in Chapter 5 a novel method based on cell enumeration approach for find-
ing integer solutions of a linear system Ax = b over a bounded integer set X. This cell
enumeration approach provides a promising platform for designing an efficient method with
a complexity of where u = maxi=i，...，„ to find integer solutions to lin-
ear equations on a bounded integer set. Although the original analytical reachability anal-
ysis is to find nonnegative integer solution(s) to the fundamental equation, a more practical
problem is to find integer solution(s) to the fundamental equation on a bounded integer set,
X = {x e Z^ \ 0 < Xi < Ui, i = 1 , . . . , n}, where Z^ denotes the set of all integer points
in R几.This confinement is reasonable as there always exist resource constraints in real-world
applications of Petri nets. For example, in chemical processes, the operation of reactors (tran-
sitions in a corresponding Petri net) is expensive, thus the number of such operations should
not exceed a given upper bound. As a result, the algorithm we proposed can be applied in
reachability analysis in Petri net.

Let us consider now the example in Fig. 6.1 to illustrate the solution algorithm for the
fundamental equation using the cell enumeration method. For this instance, we assume that the
bounded integer set is given by X = {x G Z® | 0 < < 2, i = 1，...，6}.

Since the incidence matrix is of rank 4 in this example, solving the fundamental equation
in yields

Ax C = {x e B}

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

Figure 6.2: Cell arrangement for the example problem.

Note that Uj = 2, j = 1, ...’ 6. Setting each Xj, j = 1, . . 6 , equal to ^ and respectively,
generates the following 12 hyperplanes on C defined in (3),

—1 . / 9ii{z\ = 0.3508^1 + 0.3944勿= 0.2088,
— 丄 ， \ 92i{z)= 0.3508尉 + 0.3944^2 = 1.2088,

—9 • [f f l 2 � = -0.1605^1 +0.6882^2 =0.7138
— L . \ ff22(z)= 一0.1605对 +0.6882约

=1.7138

f m (^) = -0.2713^1 +0.5636^2 =0.4900 —o ,
\ 似 ⑷ = -0.2713^1 +0.5636^2 =1.4900

—4 • / m (^) = 0.1477^1+0.1661^2 = 0.7984,
— ^ •

I 彻 ⑷ = 0.1477^1+0.1661^2 = 1.7984,

—^ . / 5̂ 15 ⑷ = 0.8622^1 +0.1006^2 = 0.7038,
\ 5̂ 25 ⑷ = 0.8622^1 +0.1006^2 = 1.7038,

— a . / ffiei^)= 0.1108 尉 + 0 . 1 2 4 5约 = -0.2762, ——u • I ff26(^)= 0.1108 釣 + 0 . 1 2 4 5约 =
0.7238.

As illustrated in Fig. 6.2, these 12 hyperplanes partition set C into various cells, each of
which corresponds to a unique sign vector defined in (4), sign(£^) = {w^, . . . , w^), where
w^ = (wij, W2j). Note that the arrow attached to each hyperplane points to the positive half
space generated by this hyperplane. Table 1 lists all the 61 cells identified with their sign
vectors and the corresponding distances to X = {0,1, 2}®.

Let us consider Cells 5 and 61 labeled in Fig. 6.2. As any interior point tt of Cell 5 satisfies
仍 1(71") > 0, ^21 (TT) < 0, ^12(77) < 0, 2̂2(TT) < 0, ^13(77) < 0, 2̂3(TT) < 0,仍4(7̂) < 0, 2̂4(TT) <

90

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

0, 5̂15 (tt) > 0, 5̂25 (tt) < 0, 5̂16 (tt) > 0, and 5̂26 (tt) < 0, the sign vector for any interior point tt
of Cell 5 is thus specified by((H)(——)(——)(——）（H)(H)). Furthermore, for all points
in Cell 5, the closest integer point in X = {0,1, 2}® is clearly given by (f^ = (1, 0, 0, 0 ,1 ,1)
and the distance between X and Cell 5 is given by

(55 = dist(X, Cell 5) = \\{UU^ - - xo)\\ = 0 .

We observe from Table 1 that there exist two solutions, (1 ,0 ,0 ,0 ,1 ,1)^ and (1 ,1 ,1 ,0 ,0 ,1)^ ,
to the fundamental equation of this example, as they both achieve the zero distance. We need
to emphasize that our solution scheme enables us to identify all solutions to the fundamental
equation on a finite integer set. Note also that the total number of cells in this example is 61,
which is much smaller than the upper bound of the cell numbers 0 ((6 x 2)(6-‘)).

6.3 Convertion of the Firing Vector to Firing Sequence in Petri
Nets

The second step in the reachability algebraic analysis is to translate a firing count vector into a
firing sequence, if there is a reachable path. Fig. 6.5 presents a flow diagram of this conversion,
which is of a combinatorial nature. Applying this algorithm to two firing vector we got from
the previous section, i.e. (1 ,0 ,0 ,0 ,1 , 1) t and (1 ,1 ,1 ,0 ,0 ,1)^ , we finally find two feasible
firing sequences exist. For (1, 0, 0, 0 ,1 ,1)^ , the firing sequence is 力5 —力6 — h- And for
(1,1,1, 0, 0 , t h e firing sequence is 力6 —力1 —力2 —力3. The whole progresses for these
two firing sequences are displayed in Fig. 6.3 and Fig. 6.4 respectively.

• End of chapter.

91

denotes the eel corresponding to the integer solutions of Ax

92

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

Table 6.1: A full list of cells, their sign vectors and the closest integer points.
Cell j u)2，切3，切4，切5，切(j) (_p3

- -) (+

- -) (+

- -) (+

- -) (+ + -) (+
- -) (+

+
+
+
+
+
+
+
+
+
+
+
+

+ + + + + + +

+ -
+ -
+ -
+ -

++
+ -+ -+ -+ -+ -++ ++ + -++ + -++ ++ ++ + -++ ++ ++ ++ ++ ++ ++ ++

+ -++

+

+ -+ -

++ ++

+ -+ -

++ ++

+ -++ ++ ++

+ -
+ -
+ +
+ +
+ +
+ +
+ -

+ +
+ +
+ +
+ +
+ +
+ -

++ ++ ++ + -++ ++

+

+ +
+ +

+ -+ -++ + -+ -+ -+ -+ -++ + -+ -++ + -++ + -++ ++ ++

+ +

+

+ +

+ -
+ +
+ -

++ + -++
+ -
+ +
+ -
+ -

+ +
+ +
+ +
+ -
+ -

+ +
+ +
+ +
+ -
+ -
+ -

+ +
+ +
+ -
+ -

+ +
+ +
+ +
+ -

++ ++ + -++

+

+ + +

+ +
+ -
+ -
+ -
+ -
+ -
+ -

+ +
+ +
+ +
+ -
+ -

+ +
+ -
+ +
+ +
+ -
+ -

+
 +

 +
 +

 +

I
 I

+
+
+
+
+
+
+

(+ -

(+ -(+ -
(+ -

I
 I

 I

+

I

+

+

I
 I

+
 +

 +

+
+
+
+
+
+

N

N

N

/

(+ + (+ + (+ +
(+ + (+ +
(+ + (+ + (+ +
(+ + (+ + (+ + (+ +
(+ + (+ + (+ +
(+ + (+ + (+ +
(+ + (+ + (+ + (+ +
(+ + (+ + (+ +
(+ + (±±

20

21

22

23
24
25
26

27
28

29
30

1
2
3
4
5
6
7
8

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

t 5

Pi t2 -H； 132 V t s

又

-KP3

t 5

Pi t2 A 92}^ h K P3 hKP4

Step 1: Firing ts

Pi y^ t 2 - n P 2 V t s t 4 pi H K P 4 h t 2 hKP2 t s -K P3

t e

/ ox^ - n P4
�V

Step 2: Firing te Step 3: Firing t.

Figure 6.3: Firing sequence with respect to the firing vector (1, 0, 0, 0,1,1) T

93

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

t 5

Pi H t2 � P 2 t 3

X.

t e

t 5

t 4 94 h (P1 广 t 2 -K P2 t 3
/ "K
\

P s) + t4 - (P
� r

5 16

Step 1: Firing te

P i卜 t2 -»{p2 t 3 -K P3 h^

t e

-K P 4 h
丫

Pi t2 P2 y^ t s

A �
-K P3

t e

/ 3x#
A P A

Step 2: Firing 1 Step 3: Firing t2

t 5

P1 t 2 - » { p 2 H t 3 ^ P 3 H t

t e

Step 5: Firing ts

Figure 6.4: Firing sequence with respect to the firing vector (1,1,1, 0, 0,1) T

94

CHAPTER 6. REACHABILITY ANALYSIS OF PETRI NETS

start

A reachability

path is found.

Figure 6.5: Flowchart of converting the firing vector to firing sequence in petri nets

95

Chapter 7

Conclusion and Future Work
Binary quadratic programming problem is a both classical and long-standing challenging re-
search topic in the realm of operations research. Numerous algorithms have been proposed to
solve this problem. These algorithms can be divided into two main categories, i.e. heuristic al-
gorithms and exact solution algorithms. Although heuristic algorithms are more time efficient
than exact solution algorithms, the fatal disadvantage that there is no guarantee for them to find
the global optimal prevents them from many important applications. In the foreseeable future,
the exact solution algorithms will continue to be the dominating force in solving quadratic pro-
gramming. In Chapter 3 of this thesis, we have proposed a new algorithm by investigating the
geometric properties of the original problem. This new algorithm seems to be efficient from
our preliminary numerical results. More importantly, with the optimality condition we derived,
we can estimate the difficulty in solving a certain problem. In the future, there is still potential
to further extend our results along this direction. In Chapter 4, we find out some special cases
of the binary quadratic programming problems and develop polynomially solvable algorithms
for them so that these special cases can be solved efficiently. By exploring situations where
function (p is ensured to be linear, more polynomially solvable cases can be identified. Some
other polynomially solvable cases of binary quadratic programming problems are reported in
Chapter 2. We find that, in these special cases, special matrix structures have close relation-
ships with graph structures. In the future, efforts will be placed to investigate the relationship
between the algebraic structure and their graph representation, in order to benefit us to figure
out more polynomially solvable cases.

Finding integer solutions to linear equations is another challenging and interesting work in

96

CHAPTER 7. CONCLUSION AND FUTURE WORK

operations research. In Chapter 5, we have proposed a new algorithm to this problem on the ba-
sis of cell enumeration method. Unlike other methods, our approach is applicable to situations
with real-valued matrix A. In addition, the complexity of our algorithm can be estimated with
the information of n, m and u. In detail, the complexity of this algorithm is closely related
with the difference between the number of variables and the number of equations. This crucial
phenomenon will lead us to fight for further improvement.

• End of chapter.

97

Bibliography
[1] p. L. Hammer and S. Rudeanu. (1968). Boolean Methods in Operations Research and

Related Areas, Springer-Verlag, Berlin, Heidelberg, New York.

[2] F. Glover and R. E. D. Woolsey. (1973). Further reduction of zero-one polynomial
programs to zero-one linear programming problems. Oper. Res., 21 , pp. 156-161.

[3] F. Glover and R. E. D. Woolsey. (1974). Note on converting the 0-1 polynomial pro-
gramming problem into a 0-1 linear program. Oper. Res., 22, pp. 180-181.

[4] L. J. Walters. (1967). Reduction of integer polynomial programming problems to zero-
one linear programming problems, Oper. Res., 15, pp. 1171-1174.

[5] W. P. Adams and H. D. Sherali. (1986). A tight linearization and an algorithm for zero-
one quadratic programming problems, Manage. Set, 32, pp. 1274-1290.

[6] Jin Y. Yen. (1971). Finding the K Shortest Loopless Paths in a Network, MANAGE-
MENT SCIENCE, Vol. 17, No. 11, pp. 712-716.

[7] L. T. H. An and P. D. Tao. (1998). A branch and bound method via d. c. optimization
algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems,
J. Global Optim., 13 , pp. 171-206.

[8] B. Kalantari and A. Bagchi. (1990). An algorithm for quadratic zero-one programs,
Naval Res. Logist., 37, pp. 527-538.

[9] H. Kinno. (1980). Maximizing a convex quadratic function over a hypercube, J. Oper.
Res. Soc. Japan, 23, pp. 171-189.

98

BIBLIOGRAPHY

[10] N. V. Thoai. (1998). Global optimization techniques for solving the general quadratic
integer programming problem, Comput. Optim. Appl, 10, pp. 149-163.

[11] D. Vanderbussche and G. L. Nemhauser. (2005). GA branch-and-cut algorithm for non-
convex quadratic programs with box constraints, Math. Program., 102, pp. 371-405.

[12] Y. Yajima and T. Fujie. (1998). A polyhedral approach for nonconvex quadratic pro-
gramming problems with box constraints, J. Global Optim., 13 , pp. 151-170.

[13] A. Billionnet and A. Sutter. (1994). Minimization of a quadratic pseudo-Boolean func-
tion, European J. Open Res., 78, pp. 106-115.

[14] M. W. Carter. (1984). The indefinite zero-one quadratic problem Discrete Appl Math.,
7, pp. 23-44.

[15] V. P. Gulati, S. K. Gupta, and A. K. Mittal. (1984). Unconstrained quadratic bsivalent
program- ming problem, European J. Oper. Res., 15, pp. 121-125.

[16] H. X. Huang and P. M. Pardalos. (2006). Lower bound improvement and forcing rule
for quadratic binary programming, Comput. Optim. Appl., 33, pp. 187-208.

[17] E. Beasley. (1998). Heuristic algorithms for the unconstrained binary quadratic pro-
gramming problem, tech. report, Imperial College.

[18] E. Boros, P. L. Hammer, and G. Tavares. (2005). Local search heuristics for uncon-
strained quadratic binary optimization, tech. report, RUT COR, Rutgers University, Rut-
cor Research Report.

[19] W. Liu, D. Wilkins, and B. Alidaee. (2005). A hybrid multi-exchange local search for
unconstrained binary quadratic program, tech. report, Hearin Center for Enterprose
Science, The University of Mississippi, Working Paper, HCES-09-05.

[20] Newmann, M. (1972). Integral Matrices. Academic Press, New York and London.

[21] Kertzner, S. (1981). The linear diophantine equation. American Mathematical Monthly,
88, pp.200-203.

99

BIBLIOGRAPHY

[22] Ramachandran, P. (2006). Use of extended euclidean algorithm in solving a system of
linear diophantine equations with bounded variables. Lecture notes in computer science,
4076, pp.182.

[23] K. Allemand, K. Fukuda, T.M. Liebling, and E. Steiner. (2001). A polynomial case of
unconstrained zero-one quadratic optimization. Math. Program., 91:49-52.

[24] D. Avis and K. Kukuda. (1996). Reverse search for numeration. Discrete Appl Math.,
65:21-46.

[25] F. Barahona. (1986). A solvable case of quadratic 0-1 programming. Discrete Appl
Math., 13:23-26.

[26] F. Barahona, M. Jiinger, and G. Reinelt. (1989). Experiments in quadratic 0-1 program-
ming. Math. Program., 44:127-137.

[27] A. Beck and M. Teboulle. (2000). Global optimality conditions for quadratic optimiza-
tion problems with binary constraints. SI AM J. Optim., 11:179-188.

[28] A. Ben-Tal. (2002). Conic and Robust Optimization. Lecture Notes, Universita di Roma
La Sapienzia, Rome, Italy.

[29] A. Billionnet and S. Elloumi. (2007). Using a mixed integer quadratic programming
solver for the unconstrained quadratic 0-1 problem. Math. Program., 109:55-68.

[30] P. Chaillou, P. Hansen, and Y. Mahieu. (1986). Best network flow bounds for the
quadratic knapsack problem. Lecture Notes in Mathematics, 1403:226-235.

[31] S. T. Chakradhar and M.L. Bushnell. (1992). A solvable class of quadratic 0-1 program-
ming. Discrete Appl Math., 36:233-251.

[32] P. Chardaire and A. Sutter. (1995). A decomposition method for quadratic zero-one
programming. Manage. Set, 41:704-712.

[33] Y. Crama, P. Hansen, and B. Jaumard. (1990). The basic algorithm for pseudo-Boolean
programming revisited. Discrete Appl Math., 29:171-185.

100

BIBLIOGRAPHY

[34] C. Delorme and S. Poljak. (1993). Laplacian eigenvalues and the maximum cut problem.
Math. Program., 62:557-574.

[35] J. A. Ferrez, K. Fukuda, and T.M. Liebling. (2005). Solving the fixed rank convex
quadratic maximization in binary variables by a parallel zonotope construction algo-
rithm. European J. Open Res., 166:35-50.

[36] G. Gallo, M. Grigoridis, and R. E. Tarjan. (1989). A fast parametric maximum flow
algorithm and applications. SIAM J. Comput., 18:30-55.

[37] M. R. Garey and D. S. Johnson. (1979). Computers and Intractability: A Guide to the
Theory ofNP-Completeness. WH Freeman & Co. New York, NY, USA.

[38] M. X. Goemans and D. P. Williamson. (1995). Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. Assoc.
Comput. Mack, 42:1115-1145.

[39] A. V. Goldberg and R. E. Tarjar. (1986). A new approach to the maximum flow problem.
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pp. 136-146.

[40] P. L. Hammer, P. Hansen, and B. Simeone. (1984). Roof duality, complementation and
persistency in quadratic 0-1 optimization. Math. Program., 28:121-155.

[41] P. L. Hammer and S. Rudeanu. (1968). Boolean Methods in Operations Research and
Related Areas. Springer-Verlag, Berlin, Heidelberg, New York.

[42] P. Hansen, B. Jaumard, and V. Mathon. (1993). Constrained nonlinear 0-1 programming.
ORSA J. Computing, 5:97-119.

[43] C. Helmberg and F. Rendl. (1998). Solving quadratic (O,l)-problems by semidefinite
programs and cutting planes. Math. Program., 82:291-315.

[44] D. Li and X. L. Sun. (2006). Nonlinear Integer Programming. Springer, New York.

[45] D. Li, X. L. Sun, and C. L. Liu. (2006). An exact solution method for quadratic 0-1
programming: A geometric approach. Technical report, Chinese University of Hong
Kong, Department of Systems Engineering and Engineering Management.

101

BIBLIOGRAPHY

[46] R. D. Mcbride and J. S. Yormark. (1980). An implicit enumeration algorithm for
quadratic integer programming. Manage. Set, 26:282-296.

[47] G. L. Nemhauser and L. A. Wolsey. (1988). Integer and Combinatorial Optimization.
John Wiley & Sons, New York.

[48] P. M. Pardalos and G. P. Rodgers. (1990). Computational aspects of a branch-and-bound
algorithm for quadratic zero-one programming. Computing, 45:131-144.

[49] A. T. Phillips and J. B. Rosen. (1994). A quadratic assignment formulation of the molec-
ular conformation problem. J. Global Optim., 4:229-241.

[50] J. C. Picard and H. D. Ratliff. (1975). Minimum cuts and related problems. Networks,
5:357-370.

[51] F. Rendl, G. Rinaldi, and A. Wiegele. (2007). Solving max-cut to optimality by intersect-
ing semidefinite and polyhedral relaxations. Lecture Notes Comput. ^'d., 4513:295-309.

[52] J. Rhys. (1970). A selection problem of shared fixed costs and network flows. Manage.
ScL, 17:200-207.

[53] N. Z. Shor. (1987). Quadratic optimization problems. Sov. J. Comput. Syst. Set, 25:1-
11.

[54] N. Sleumer. (1999). Output-Sensitive Cell Enumeration in Hyperplane Arrangements.
Nordic Journal of Computing, 6:137-161.

[55] X. L. Sun, C. L. Liu, D. Li, and J. J. Gao. (2007). On duality gap in binary quadratic op-
timization. Technical report, Chinese University of Hong Kong, Department of Systems
Engineering and Engineering Management.

[56] T. Zaslavsky. (1975). Facing up to arrangements: face-count formulas for partitions of
space by hyperplanes. Mem. Amer. Math. Soc, 1:1-101.

[57] Aardal, K., Hurkens, C.A.J., and Lenstra, A.K. (2000). Solving a system of linear
diophantine equations with lower and upper bounds on the variables. Mathematics of
Operations Research, 25, 427-442.

102

BIBLIOGRAPHY

[58] Edelsbmnner, H. (1987). Algorithms in Combinatorial Geometry. Springer.

[59] Kertzner, S. (1981). The linear diophantine equation. American Mathematical Monthly,
88, 200-203.

[60] Kostin, A.E. (2003). Reachability analysis in t-invariant-less petri nets. IEEE Transac-
tions on Automatic Control, 48, 1019-1024.

[61] Matsumoto, T., Miyano, Y., and Jiang, Y. (1997). Some useful sufficient criteria for
the basic reachability problem in general petri nets. In Proceedings of the 36th IEEE
Conference on Decision and Control, volume 4, 4104-4109. San Diego, CA, USA.

[62] Matsumoto, T., Takata, M., and Moro, S. (2002). Reachability analyses in petri nets by
groebner bases. In Proceeding of SICE 2002’ 841-846.

[63] Murata, T. (1977). State equation, controllability, and maximal matchings of petri nets.
IEEE Transactions on Automatic Control, 22, 412-416.

[64] Petri, C.A. (1962). Kommunikation mit Automaten. Ph.D. thesis, Schriften des
Rheinisch-Westfalischen Instituts fur Instmmentelle Mathematik, Bonn, Germany.

[65] Ramachandran, P. (2006). Use of extended euclidean algorithm in solving a system
of linear diophantine equations with bounded variables. Lecture Notes in Computer
Science, 4076, 182-192.

[66] Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley & Sons,
New York.

[67] Sun, X.L., Liu, C.L., Li, D., and Gao, J.J. (2008). On duality gap in binary quadratic
optimization. In Working paper series. Department of Systems Engineering and Engi-
neering Management, Chinese University of Hong Kong.

[68] Yen, H.C. (2006). Introduction to petri net theory. In Recent Advances in Formal Lan-
guages and Applications, Studies in Computational Intelligence, 25, 343-373.

[69] Zurawski, R. and Zhou, M.C. (1994). Petri nets and industrial applications: A tutorial.
IEEE Transactions on Industrial Electronics, 41, 567-583.

103

