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文摘 

本文研究了漸進不 t s定畏扣依時問序列的剩佘經驗過 f d �在H o和H s i n g 

(1997)的文章中提出了雄于經驗過程的K-S統計撥 )|j于檢驗--列几打•// i f分 

布的長相依随機變置序列的遗際分布。基r這•理論，Chan和Ling ( 2 0 0 7 )研 

究了丨与回歸時問序列的剩佘經驗祝并提出丫 i r r K的K - S統計量。丨他們的 

研究中表明，當不®定m"丨歸時問序列的特征多项式A打取位报時，111 Ho和 

Hsing提出的基r•經驗過程的K-S統計歷的倾限分布不丨nj于丨丨1 Chan和Ling捉出 

的基于剩余經驗過程的K-S統計量的械附分布。本文研究的电•liM I的足通過硏 

究漸進不a定長相依時問序列的剩余經驗過fi丨提出•個难于此剩余經驗過朽丨的 

K-S統計S：用來檢驗投ffl依更新序列的逷際分布。本文的研究表明，111 Chan和 

Ling提出的K-S統計量可以應)|�到漸進不e定相依時問序列模艰常中，Jt - IL 

此統計量的極限分布不同于Ho和Hsing提出的K-S統計量的械限分布，它的倾 

限分布『丨丨以丧示為山分数布胡迎勋生成的Omstein-Uhlenbeck過祝的i^i数� 
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Residual Empirical Processes for Nearly Unstablo Loiig-iiKMiiory 

Time Series 

Submitted by LIU, Weiwei * 

for the degree of Doctor of Philosophy 

at The Chinese University of Hong Kong in .Iim(、，2009 

The first part of this thesis considers tli(，residual empirical proccss of 

a nearly unstable long-memory time series. Cliaii ami Ling [8] sliowcxl 

that the usual limit distribution of tlio Kohiiogorov-Siiiiniov test st atis-

tics does not hold when the characteristic polynomial of the unstable 

aiitor(^grcssivc model luus a unit root. A k(�y question of interest is 

what happens when this model has a near unit root, tliat is, whvu it is 

nearly noii-stationary. In this thesis, it is established that the statistics 

proposed by Clian and Ling can be extended. The limit distribution 

is expressed as a functional of an Oreiisteiii-Ulilciihe(-k process that is 

driven by a fractional Browiiiaii motion. This result extends and geiier-

alizos Chan and Ling's results to a nearly iioii-stationary loiig-inoiiiory 

time series. 

The second part of the thesis investigates the weak (:oiiv(�rg(�ii(:e of 

weighted sums of random variables that are fuiicttionals of moving aver-

age processes. A non-central limit theorem is established in which the 

Wiener integrals with respect to the Hermite i)roccsses appear as the 

limit. As ail application of the noii-cx^ntral limit tlieoreiii, we oxainiiio 



the asymptotic theory of least squares estimators (LSE) for a iioarly 

unstable AR(1) model when the iiiiiovation s(�(im�ii(.(�s are fniictioiials 

of moving average procc^ssos. It is shown that tlio limit (listributioii 

of the LSE ai)poais as fmictionals of t he Oriistein-Ulileiibock processes 

driven by Heriiiite proctossos. 
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Chapter 

Introduction 

1.1 Empirical Processes 

L(�t {( f be a s(Kiuoii( (» of i(l(?iit.i(tally clist ribiiUHl niiidoiii variables 

with a coiiiiiioii distrihiitioii, F(x) == " ((i < j:). DcHiie t he (�mpii.i( al 

disti.il川tioii fiiiictioii by 

r„(:/:) = i V l ( r , <./：). (1.1) 

By virtue of the Glivoiiko-Caiitdli tli(H)i.(�m, 1)” = su])̂ . | 厂"(•/.)—厂(:!:)-
p 

(),a.s. Quantity / ) „ Cfiii bo used to construct stat istics to t(�st the liy-

l)othosis of F. Those statistics aixi usually known as t he Koliiiogorov-

Siiiiriiov statistics. It is iiiipoitaiit to undorstaiid t he asymptot ic pi.op-

crtics of / ) „ , j)artic.\ilarly the rate of />„ docayiiig to zero. When {( 

arc i.i.d. raiidoiii variables, tlio oiiipiri(-al proccss is doHiiod hy 

Y„(x) = y/^{F,,{x)-F(x)). (1.2) 

Koiiilos, Major and Tiisnady [31] proved that y„(.7；) convcngcs w(�akly 

to a Browiiiaii bridge. 

An interesting probloin is what happens to ,̂(：7；) vvlion is 
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strongly dopoiKioiit. The pr()i)(Tti(，s of Y„(x) can 1)(�very (liH(�i.(�nt. (1(�-

l)eiKliiig on t.li(�striK-turo of thv. undtTlyin^ procoss { o } . 
. < . 

Tliis thesis is (:oii(.x，m(，(l with a sit nation in wliicli { ( / } / � i s a lin(�m. 

moving av(uago process, of which the long-iiioinory proccss coiistitiitos 

an iinportaiit example. A moving av(nVig{； pmcess is (l(�Hm�(l by 
oo 

(t = y ^ j i , ( 1 . 3 ) 
i=0 

where {r, , i G Z) aro i.i.d. raiidoiii variables with '/(�m moan and finil(* 

variance, and the (:()cffi(:i(�iits {a,, / > 0} a re s( (u a r( vs ii 111111 a hl(\ A lot of 

work liav(�boon coiKhuttod on tlir ease in which {a , } t ak(?s tlio sixx ific 

form (li = i" -:�"21八i), II G (0,1)，and L(x) is a slowly vaiyiiig funct ion. 

When II G ( 1 / 2 , 1 ) ( / / < 1/2), the process { � } exhibits a loiig-iiiciiiory 

(sliort-iiioinory) i)h(�uom(�m)n. This thesis focuses on thv results of (ho 

loiig-nieinory ease. 

Wlnni { f , },>! is a loiig-iiieniory Gaussian process, weak coiivergcMicc 

of t he empirical i)io(:(，ss can be derived through th(�H(�miit(，expansion 

approach; s(!0 Dohling and Taqqu [18], Koul and Siirgails [34]. Tlio iin-

l)ortaiit paper pnl)lisho(l by Ho and Hsiiig [27] (l(niv(�(l an asyuiptotic 

expansion of tlie cinpiric.al proccss (1.3) and developed a iirw approach 

to the study of the iioii-liiioar fuiictioiials of non-Gaussian moving av-

erages. Specifically, l(，t 

A„(.7;) = — > < . : ) - r ( . r ) l (1.4) 
tr 

be the ornpirical proctoss, wh(u.(，a'f, — Var (X^JLi ^i)- Ho and Hsiiig 

proved that , 

1 “ 
sup \Kj,(x) H 广(:r) = ) a.s. (1.5) 

- 、 X. (Tu f - ' 

ctI � c ( / / ) V " / ; 乂 " . ） a n d rr- ' > " ( 0 ’ 1), (1.6) 
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wh(，r(， * 
r 

c(ll) = { / / ( 2 / / - 1) X [ r { : r - \ - x y ( 1 . 7 ) 

Herein, a” � / ) „ ineaiis that ",„//、，—> 1，as “ —> oo, and — c (l(�u(>t(�s 

、(：oiiv()i,g(m(:(�ill (listril)uti()ii, as n —> oo. By (1.5), 

sup F'{x)\-^ sui)|/\„(:/:)| — c |/V((U)|. (1.8) 
X X 

If sup^ IF'{x)\ < oo, then this bcxtoiiios the Kolinogorovv-Siniriiov test 

statistic used l)y Ho and Hsiiig [27] to test tlio distribution F{x). 

Ill other words, t,li(�asyniptot i(: flistiil)utioii of the eiiipirical pi()(:(�ss 

of loiig-iiioiiiory moving avcnagos cliaiigcs according to the (l(�i)(m(l(m(:(� 

structure of { ( , } . If { ( , } is wc^akly dq)cii(k�iit,, ihoii (F„(.t)—尸(./'•)) 

converges in distribution to a Brownian bridge. When [ , } exhibits th(� 

long-iiieiiiory pheiioiiiciioii,厂„(•/:) — F(x) is of order ""，0 < ^ < 1/2, 

and the weak limit of n^{F„(x) — F(x)) exists. 

、 

1.2 Residual Empirical Processes 

Empirical processes have many applications in testing the si)ccifi(： clis-

tributioii of the uiidorlyiiig random variables (”i(:()iiiit(u.(»(l, iiichidiiig 

iiicoiiie and wealth distribution, tlio (listribiitioiis of asset i.otunis and 

the (listrihiition of profit and loss in risk inaiiagoiiiciit. 

Let the tiino series { " , } bo gciicratccl by tJic iiiodol 

Vt = P Xt + (• and = > ^ (1.9) 
<二0 

wlierc {yV/} is a seciucnce of yxlimensioiial time series that arc measur-

able with resi)(x;t to = . . . } and { ( , } is a loiig-iiioiiiory 

moving average procxiss defined by (1.3). By reforeiicte to tho results of 
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Ho and Hsiiig [27], wo have 

0 

sup I八„(:/:) + ——厂'(.7:) h … = o ( l ) a.s. (1.10) 

whore Kj, is dcfinod in (1.4). ‘ 

， 111 model (1.9), as (i is unobspivablc, the statistics liavc to be evalii-

aUxl ha.sed on an estimator of (卜 Uiidor such circiinistancos, a key issue 

of interest is to (Icteriiiiiio the validity of (1.10) for the Koliiiogorov-

Siiiiriiov statistics when { r , } is roplacccl by its coiTespoiidiiig (\stiiiiat(xl 

residual proccss. Fiirthorinorc, when (1.10) bc(toiiios invalid, how can 

one test for the distribution of { ( / } ? These two issues have b(K�ii iiiv(\s-

tigated extensively for when { f , } is i.i.d. or exhibits a sliort-nioinory 

l)liciioinciioii. Ling [38] cstahlisliecl the weak (:()iiv(，rg(�iK:(，of the residual 

oiiipirical process for noiistatioiiary aiit.oregressivc iiiodols and showed 

that this process converges weakly to a Kiefer i)n)(:(，s‘s when the diai.-

actcristic polynomial does not iiichide the unit root 1; otherwise, it 
\ 身 

('oiivorges weakly to a Kiefor proccss plus a functional of the stochastic-

integrals of a standard Browniaii mot ion. Bai [3] iiivcstigatod the weak 

convergence of the rcsichial process for ARMAlJ), q) iiioclels. For both 

model (1.9) and for tho Kolinogorov-Sininiov st atistic considered in Ho 

and Hsiiig [27], tlieso two iiiiportaiit issues wore iiivostigated by Chan 

and Ling [10]. In their paper’ a uniform expansion of the rosidual eiii-

l)irical process of { f / } was established under a general framework. They 

showed til at the tost statistic (1.4) consiclcrwl by Ho and Hsiiig [27] is 

no longer valid when the characteristic polynomial of the unstable AR 

model has a unit root. Fiirtlieniioie, Cliaii and Ling [8] propose a new 

statistic to test the distribution of long-inciriory noises. Inspired by 

their i)apcr, a key question in this study becomes what happens when 

tlio model has an approximate unit root. Does the statistic proposed 

by Chan and Ling still hold? If tlio answer is affirinativc, th(iii what 
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kind of approximation should b (�used for it? 

The remainder of this thesis is organizchI as follows. In Chapter 

2, it is established that the statistic proposed by Chan and Ling can 

be extended to test for the distribution of loiig-nioiiiory noises. The 

limit distribution is expressed as a functional of an Ornstein-Uiileiih(»c:k 

process driven by a fractional Browiiiaii motion. This result exteiuls 

and generalizes the results of Chan and Ling to a nearly non-stationary 

long-memory tim6 series. In Chapter 3, we investigate the weak con-

vergence of weighted sums of raiidoiii variables that aro fiiiictioiials of 

moving average processes. To this end, a non-central limit theorem 

is established, in which the Wiener integrals with respect to Hennite 

processes appear as the limit. In Chapter 4，we investigate the asymp-

totic theory of the least squares estimator (LSE) for a nearly unstable 

AR(1) model when the innovation sequences are fuiictioiials of moving 

average processes. It is shown that the limit distribution of the LSE is 

expressed as a fuiictioiial of the Oriisteiii-Ulileiibeck processes driven 

by Herniite processes. Chapter 5 concludes the thesis. 

• End of chapter. 

5 



Chapter 2 

Residual Empirical Processes 

Let the time series {.(/*’„} be generated by the model 

oo 
yt，n = Pnyt-\,u + (t and Cf = (2.1) 

/ 二0 

where p„ = 1 — 7/7? and 7 is a real number. The coefficients a, satisfy 

J af < 00; tto = 1 and a 人 . = L ^ l k ) for some slowly varying 

function Lq, with II < 1. { e , } is a sequence of i.i.d. mean zero random 

variables with a'j — Ee'j < 00. The process {e；} exhibits a loiig-inciiiory 

(short-inemory) phenonieiion when II G (1 /2 ,1 ) ( / / < 1/2). Here, we 

focus oil the case H G (1 /2 ,1) . 

This chapter is organized as follows. In Section 2.1, we examine the 

expansion of the empirical residual processes investigated by Chan and 

Ling [8]. It is shown that this expansion can be extended to model (2.1) 

under similar assuinptions. In Section 2.2, it is shown that model (2.1) 

satisfies these aussuinptions. To this end, a new statistic is proposed to 

test the distribution of the long-memory noises for the nearly unstable 

model. In section 2.3, a number of siiinilations are presented to assess 

the finite sample behavior of the limit distrihutioii established in the 

previous section. 
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2.1 Expansion of Empirical Residual Processes 

Let /3„ be the least s(|uares estimator of />„ in model (2.1). L(�t (�.,，= 

Vt̂ n— PnVt,n the rcsidiial of model (2.1). Further. deHno the (Miipiricril 

process based on residuals { ( � , „ } hy 

f<n{T) = — y ； < .r) - F(.r)] , (2.2) 

where cr'f̂  � ( • ( / / ， / ； 气 “ ） a i i d A- = 1 

c(JL k) = {A-!(l - A-(l - / / ) ) ( ! - A-(2 - 2 / / ) ) 
roc 

+ 圳 ( 2 . 3 ) 

Lot Cf\) be the coiniiioii distribution of {e , } . Lot ” 二 + and 

Af(x) = Go(x - ^t-i) - E[6o(.t —� , - 1 ) ] , where = Y.T=\ "" ’ /_ , . 

First, let us introduce the following two assiiiiiptioiis. 

Assumption 2.1. G'o is three times diffeiTJitiablc with bounded, con-

tinuous and integrahle deHvatives such that f x^ dCi\){x) < oc. 

Assumption 2.2. Assume that the folUnmng statertieiits hold: 

(a) 7l{pn - Pn) = 

(h) 

(d) c j - ' sup, I \= o,{\). 

Theorem 2.1. Assume that Assinnptions 2.1 and 2.2 hold, iJieii 

sup I - K,(x) — R„F\x) 1= o,{l), (2.4) 
X 

where R,, = (I'^Pn — Pn) Vt-i，，, = Op(l). 
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R e m a r k 2.1. Assumptions 2.1 and 2.2 arc identical to those given 

in Chan and Ling [lOj. Assmnption 2.2 (a) is satisfied by the •weak 

convergence of least squares estimator, sec Duclniunm, and Chan [Sj. 

P r o o f . Lot = n[f)n — ,)»»), multiply —i,,, on both sidos of this 

equation, we have 

“nVt-\,” = - fJl-\,nPn) 

= ” (fj 丨，” —fjt-l,upv — {yi,u 一 A,)) 

SO that (f — (f — j^iinfjf一Therefore, 

h'Ux) — h'(x) — = 
1 " 1 1 

— < X + -u„//f-i,„) — 1(q < .r) i,„F'(.r 
(7„ 7? n 

To stiidy the j^roceding process, consider the following i)r()(:(�ss 

1 
Anix.u) = — � [ l ( C ( <X+ — • - 1 ’ „ (Tu u‘ n 

\ -H^t < •？0 — -/////-I n 

for all u € /? and x € II. By Assumption 2.2 (a), if w() can show that 

sup sup I u) \= Oj,(l) (2.5) 
u e [ - A , A | X 

for every A G (0，oo), we then add and subtract F(:r), F(:r+jjii yt— 

to Au{x, u) and split it into two parts -

An{x, u) = Z„(a:, u) + 7/„(.t, u). (2.6) 

By the triangular inequality, we have 

A„(x,u) I引 Z„Or，w)丨 + I fl„(x, ii) I, (2.7) 
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wlicre 

Z,,(.7V")= 
(J. Ut—\‘ 

1 
< J： + -u V 

77 

1 “ 
(J- + - i / V — < .r) + 厂(. 

ri ( > 

and 

//„(:r，a) 二 
"
V
/
 

1
1

 “
 

+
 

/r---.
 

-F(x)--r{x)nY,yt-i 
t=l 

Since sup .̂ | OQ{X) |< oo, we have sup^ | F"{x) |< oc. By Assumption 

2.1 and Taylor expansion, it suffices to show that 

sup I 7/„{j：, u) 1= Op(l) for all u 6 /?. 

Now we need to proof that the following equation holds 

(2.8) 

sup sup I u) 1= f;p(l) 
we 卜 A, A] a* 

u + A yt-

(2.9) 

Partition [—A, A] into m parts Let g,(u,\) = ^ 

{ / i , . . . , /„,} eacli interval with length less than <5. Take one point in 

each Ir and denote it by u ” Then for any u G /r, wo have 

!h-\’n, 
仍（w, A) - gt{ur,X) |< S 

n 
(2.10) 

Thus, gi{ur, X - S ) < ry,(w, A) < (jt{ur, A + 6). 
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(T, 
1 ( ( , < X + U 

fJl 
11 

F(x + “ Vi-

-1((/ < .r) + F(. 

a 

< x) + F(j 

< 
(7 

1 ( � < X + (]i(Ur, 6))-厂(.,.+ //,(", j ) ) 

一1((/ < X) + F{x)] 
1 " 1 " 

+ [— y； F(x + (ji(ur,S))——V r(j： + gt(uA))) 

“ / = i '' /=i 
Zn{x,Ur,S) 

1 “ 
+ — y\F{x + gtiur^S)) — F{2： + (//,())) 

where 

a. H(l < X (Jt(Ur,S)) - F(:l： -h (J, {(ir^d)) 

< x) + F{x 

Using the same argument, we have 

> Zn(x,Ur,S) 

VI 
+ — > \F{x + fMur, -S)) - F(x + .(力（",())) 

cr. 

Thus, for any (- > () and ?/ > 0, if we can prove that 

1 一 

and 

P { — max max sup | � F(x + (jt {ur, 土力)) 
^n r uelr X f^ 

� C IJ 
P{maxsup I Z„ ( : t ; ’ "T，土|> - } < 

r X O 6 

(2.11) 

(2.12) 
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then 

I) { sup sup I Z,,(:,.，//) |> ( } 
ue 卜 A’A1 "T 

~ ( < / ' {maxsup I UrJ) \> - } 
r T 6 

+ "{iimxsiii) I Z„(.r, Ur, S) |> 
3 

1 lU 
+ " { — max max sup | � [ / " ( . r + y,(〃,，土 

(T„ r ueir T ^ ^ 

—厂(IT + ",("，()))] |> - } 

< "’ 

when n —> oo. W(，omit the proofs of (2.11) and (2.12) l)(�( aus(�they 

routinely follow from the arguinoiits iii Chan and Ling [8]. • 

2.2 Kolmogorov-Smirnov Statistic 

2.2.1 The Hermite Process 

To j)rci)arc our analysis in this section, w(�first introduce t h(�notion 

of a Herrnite ])rocoss, Z^] = ( Z M / ) ) , 它 o f ord(�r k> i,k e Z with 

Hurst parameter 11 € (1/2,1) . This stochastic process is (l(�fin(�(l ais 

a multiple Wiener-Ito integral of order k wit h resi)(u;t to t,h(�standard 

Browiiian m o t i o n , ( " � 广 as follows. 

zfM = c{ii,k) [ [\f[{s-my ))"“/% 丨）….崎,-)， 

(2.13) 

whore = riiax(a:, 0) and 

c(//,A：) = {A:!(l - A - ( l - / / ) ) ( ! - A : ( 2 - 2 / / ) ) 
poo 

X (2.14) 

( 
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niaking E[{Z^i{t))'^] = 1. VVlioii A- = 1, this process (.on.(�si>mi(ls to 

the fractional Browiiiaii iiiotioii with Hurst paraiiH^tcr 11 € (0, 1). 

Lot /?(/., .s) flciiote tlio (:ovaiiaii(:(�function of that is, / / ( / , . s )= 

E[Z{)(/.)Zf/(,s)]. Ma(\jiiim and Tudor [39] slimv(�d that 

/Y(/„.s) = + S川 -丨（—.sf" ) . (2.15) 

Consider tlie Langoviii typr stochastic (lifioroiitial (xpuit ion, 

A] 二 -X f AV/.s + rrZ/VO, (2.1G) 

where rr, A > (), the Hurst index II £ (1/2, 1) wit h A- > 1 is an iiitcgor, 

and Honiiito process Zf j is reprcsoiitxxl as a driving iioiso. For A- = 1, 

that is, Z'l) = " / / ( / ) , " / / is a frac.tioiml Browiiiaii motion. The pi.o(:(�ss 

{ X / } was considered in Chcridito, Kawagiic.hi and Ma(ijiiiia [14], and 

the unique solution of t he stocliastic ecinatioii (2.16) is 

a I (r入(丨-11�(W,,(u�. 
‘‘oo 

The process, Z j , i s callod a fractional (hiist,dn-Ulil(mb(M:k jjroccss. 

Maejirna and Tudor [39] exteiidod this result to the of A- > 1, that 

is, the solution of equation (2.16) is givoii by 

然，7 = " f e 务 “ ) " 4 ( / . ) ， (2 .17) 
J ~oo 

where Z � ’ is the Onistoiii-Ulilenheck (lriv(�ii by t he H(Tinit(� 

process. It is shown by Maejiiria ami Tudor [39], for all I. > a, th(� 

integral e^^ (lZfi{u,uj) exists in the Rieinann-Sticltjes ‘s(m‘s(�and it is 

equal to 

- - A / � d a . (2.18) 
• / a 

Therefore, (^cjuation (2.17) can be re-wiitton as 

Z，/’7(0 = a Z ^ f i i ) - X a f 一 ( / - « ) 妳⑴山 , (2 .19) 

•III 
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Lot r'[(), 1] he the c;olkx:ti()ii of all contiiiuous riiiic.t ions (l(�fiiK�d on 

0,1] and do til 10 the metric / / ( / , (j) = sup,)<^< , |/(/) — (j(l)\ for /，" G 

C''[(), 1]. Let => (loiiotc th(�w(�a.k coiivcrgonco of to ( in tlic spncx^ 

1] iiiulor the iiictric； d, if for any h(mii(lc(l ruiict ion •/_ G C'[(), 1], 

t hat is, lim„—oo = Ef � . 

L(�t //,’„ bo generated by the model (2.1), then w(�have the following 

tliooroiii. 

T h e o r e m 2.2. For / / e (1 /2 ,1) , 

where Zj, dcjiolcs the fractional Brownian iiioitoii and Zj,/.s the 

(hiiHtcAn- Ufilenbcck proccss. 

R e m a r k 2.2. A (jeneral thcornti for k > 1 /,s (jivcii in Hi corn ii 4.置. 

P r o o f . /J . s ) = and /„’„(.s) = (1 - . ()|)vi(msly. 

(T„ n V 

[，ml . 

丨 

= 从 ’ ” + A/2’》， (2.20) 

whore 

and 

71 f /• 

(""1 

(2.21) 

(2.22) 
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W(�now show that |A/i„| = � . L e t <l.„ = — : / " ) . For 

fixed 7, d,, —> —1 as n —+ oc. For miy .s, u (() < .s < / / < ! ) , wv. havr 

J n’.u� (1 — 

-7("-‘s),/J(去） , - l in-s) 

二 0(1///). 

乂作 7； = sup |/„,„(.s) — /„(.s)|, w(�have T„ = ( ) ( 

(2.23) 

n i “ Jl J t > / ) 

- z ] 

V7, 

< e n > Ez '11 11 'II 1) 

By the Hc')lder ( oiitiiiiiity of the sample ])atli, for p > 1 and 11 > 1, \v(� 

have 

E Z J 
/ /丨 Z J 

II < (:n II (2.24) 
71 II 

whore ( : is a constant. Coinbiiiiiig (2.23) and (2.24), w<�lmv(’ A/|„ = 

Op(l). For M2v, one; so(̂ s that /^(.s) 二〔「，(“一**) 1{(>’…belongs lo H 

1/(JV} and satisfies conditions in Tlieomn 3.1, thus w(�have 

[""1 • fU 

j=i '11 7/ (2.25) 

Thus the finitc-diiiieiisioiial (:oiiverg(nic.(» of !j卜、/rr’, to Zjf’)(u) holds. 

It roniains to prove the tightness. By Theonuu 12.3 of Billingsloy [G], 

it suffices to show that, for all m there exist C < oc and n > 1 such 

that 

E(//m,n < C (2.2(3) 

For any II G (1/2,1)，tlioix^ exists a positivo S such that a = 211—S > 1. 

Bccaviso^ E("…，„)2 二 产’(,")）肌(i ；̂̂  二 ()(."川 J户(u)). Thus by 
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cleiiK^ntriry propcn t ios of slowly varying funct ions, \v(�have 
n。Efa,,’,,尸 广-‘2"川 (川) 

liiii max = l i i i i max C ‘ —— = 1，{2.27) 
7/—OO TM<» ni'^crfj T» — OC VI<1I lj{ll) 

which (:()udii(l(�t ho n^sult. • 

S()iii() useful limit (listributioiis ai.(�given in th(�iollowing tht�(>i.(Mii. 

Theorem 2.3. If II G (1/2, 1)，wr, have as u — oc. 

�"-丨 丨 //“„ —L ,/;;(幻/’》)、"/; 

(i'o " — I Er=i "卜 1,” —C Id Zi,’�(“�dit: 

" " 0 ) z , : ’ ) ( l ) - B Z j , ’ 7 ( l ) ) ‘ 2 —7./:;(Z;,，>))2r/",. 

M "(A, - "”）一£ 

l^J^lfrM))' + 7 ii； ( 4 ’乂 " )尸圳 [ . / ; ; (Z/V,(“)尸 

Remark 2.3. In (v), asjpaptotic distributions of the least Hquarcs csit-

iriator of a ncmiy iiitstabic AR( 1) process with loiuj inrinoi-y errors arc 

derived. 

Proof. (?:) and (•//) follow from continuous mapping 1 hooreiii toget her 

with Thooniiii 2.2. 

To prove (//'/•), squaring and siiinniiiig (2.1), wc decoiiiposr 

Y^i-1 yI-1,11̂ 1 into throe terms wliich we aiuilyzo se])aratcly, that is, for 

all n 
^ 一 “ 2 丄 7(2" — 7) + 2 “ 2 

h = , ^ 1 ^ " ” ’ " + h - h (丨. 

Define the auxiliary raiidoin variables 

= —〉/ fJt - i ,u ( t 

厂山'+ 〜〜（"•、”) — 9“，—〜、 
2 

2{n — 7) “ - 7 \ ’ ' 2(7/, - 7 ) , 
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where 

Hi 

T'2, /Air, T. 
(Ji 

1 “ 
3’" = CI-

As the function f —>• ( / ( I ) , /(;/(.、尸丄s) is a contiinious inaj)j)iug (Voiii 

/)[()，1] into " 2 ， h a v e the following results 

fo丨⑶/’>))•-、/" 

T2„ 
_y广 

八" i 
By (lefiiiitioii, we hav(� 

Tl，’, —L 

For part (//;), since 
“ ‘ 11 

,(1)尸 + 7 / ⑶ /， //))"" (hi. 

}
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(
V
 

r
 

V
 (Ty, (T, 

f

 

y
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r
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 vz
 

I
 )
 

-
 f

 -

/
 

(7、、 (7, 

iPv 
a： 

by Theorem 1 of Wu [62] (sec; also Corollary 3.3 of Ho and Hsiiig [28 

we liave 
f
 

y
 cr’. 

Ihlil). (2.28) 

Also it follows from Theorem 2.1 in Bucliiiiaiiii and Chan [10] tliat 

(J, 
(2.29) 

Thus by the continuous mapping t.li(K)rem together with (2.28), (2.29) 

and ( / / / ) , we have 

f

 

y
 

\
/
 

/
n
v
 

f

 

y
 

"
V
/
 

(t s(iPn 
(7., a. 

c 
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For (")，by a similar argniiioiit in (/•/•/:) and (iu) and (he fact tliat 

(v) follows from (/:)，(//) and (///). 

T h e o r e m 2.4. For H G (1/2, 1), 

"/-丨’”丨 1 V^'' 2 
7t 乙 / 二 I “厂-1 

Slip F'(:r)]~' Hup I /\'„(j 

X 

A' == l " / / ( l ) — [5(Z/ ' /。⑴) ‘ '+ 7 乂） 

Proo f . By (/) (//') and ( /") of Theoroiii 2.3, Assumption 2.2 (a), (/;) and 

(cj hold. Now we consider Assumption 2.2 (d). Tlio proof follows from 

the argiiment of Chan and Ling [8]. First, siiicc is 1)ouii(1(k1 and by 

Theorem 2.1 of Biicliinaiiii and Chan [8], wcyiavo Esupj^i^yy/ A'f(:r) 一 0 

as A / —> oo and inaxi< /<„ „ = 0 ( 1 ) . T h u s for any givoii ( > 0 

and i) > 0，there exists a constant M > 0 such t hat 

I) ( sup 
|x|>A/ " 巧 

At(x)yt.i^n\ > V) 

< 
\At{x 

1!而” 
Vt < (2.30) 

imifornily in n. Partition [—A/, M] into in = [4/17(5一” si11)-intervals 

such that —M = Xo < X\ < • • • < .t„, = A/ with 1 — Xr < S, for any 



Since ^̂；二 Ai{x)/n = Op{l) for each x and 少 XT/:, =尸⑴，we 
have iiiaxr I � , ( : r r ) | = for a given S > (). Let, Rt{x) = Ai{x)— 
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given S > 0. Tims 

sup 
|;r|<A/ 而” 

1 “ 

< max su]) — 力 / ! / ( . / : ) " / - 1 , 
rr t 

< 丨imx sup 
//rr, 

Ai(Xr)]lJt-

+ l l lMX 
7/cr,, f=i 

A l ( X r ) l J i - \ , u \ = '乂 I " + '•2n ( 2 . 3 1 ) 

Since siipj. < oo, by Taylor expansion, we liav(� 

� < o{S) 7/YT,, 1 』 = O p i ^ ) ' ( 2 . 3 2 ) 

For J-iu, we have the following (leconi])o.siti()ii 

11(71 nan A; 

1 
no,, E M'^w.r 

:1 l=i+] 

ncT, 
A,{x\ 

11 

2 . 3 3 ； 

•
K
 

\
)
/
 

X
 

/
(
\
 

I
I
 

f

 

^
 

}
 

I
 

/=1 
cr„ 

= f A n i X 
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we have 

ncjy 

lid. 
At{x) — r;; 

⑷ + flAnix). (2.34) 

For each x and by Theorem 3.1 in Ho and Hsing [28], \vc have 

. R t ( x ) f = o(/"戲{1，4("-"2)+2<}) 

For any ?/ > 0 and a > 0, we have 

1 
P(niax\Us„{xr)\ > 7/) < - Y E \ U : i „ { x , 

(2.35) 

< 
ipiaj =1 j=i i=\ 

rpicTj, 

= 0 ( n — " j � i ( n ) ) — 0 ’ (2.:'>tl 

when 71 —> oo, where a = min { / / — 1/2，1 — / / — ( } � （） a n d the last 

inequality follows from (4.8) in Chan and Ling [10]. Note that 

U,n{x) = 
nat 

na. 

s/ )。p;;-

11(1, 
o
 

By {iv) of Th(�()i(，m 2.1 and a,, = ( ) {n" L 

t(M iii ill I,,(‘/.) is Op(l) uiiifoi.nilv in ./• E H. 

,(n)). we li;i\-

Nolc t hat 

'丨 f'’i . 

lit I he l i l M 

'\ln< 

1 = 
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XlJLi kilA? = Op(l) by the ergodic theorem and i i i a x i < , < „ 丨 = 

Op(l) , the sccond term in f/4,, is Op(l) uniformly in x G Thus, we 

have max^. \U\u(a:)| = Op(l) iiiiiformly in x € 11. Furtheriiiore, by (2.36) 

and (2.34), inax^ |"‘2n(3V)| = Op(l) for any given S when II e (1 /2,1) . 

Thus, Assumption 2.2 (d) holds when II e (1/2，1). 

Now we are ready to analyze the limit (listrihiitioii of /?,,. First, 

note the following identity holds, 

Hit = - p„ Vt. 

^n n 
(2.37) 

By the continuous mapping theorem and (/:)，(//), ( / / / ) of Theorem 

2.3, the limit distribution of R„ becomes 
71 

f^n = {Pn - Pn) Y^ VI-Xm 

c I {z]au)rdu 

X 
'0 Jo 

By (3.2) in Ho and Hsing [27], we have 

(2.38) 

sup F'{x)\~^ sup|/<„(:r)| —>•£ |/:^//(l) (2.39) 

Combining (2.4), (2.38) and (2.39), we can conclude the result. • 

Theorem 2.4 gives the limit distribution of the Kolinogorov-Siiiiniov 

statistic. It can be used to test for the distribution of the long-memory 

noise in model (2.1). The percentiles of the limit distribution are tab-

ulated in section 2.3. 
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2.3 Simulation Study 

To assess the finite sample behavior of the limit distribution established 

in the preceding section, a number of siinulatioii studios are presented 

here. 

2.3.1 Simulating the Sample Paths of the OU Processes 
» 

First recall the AR(1) model defined in equation (2.1). Let the tiiiio 

series {yt,„} be generated by model 

oo 

yt’n = Pnyi-\,u + (t and (t = y^ajCt^i, (2.40) 
1 = 0 

where = 1 - 7 / n and the coefficients a, satisfy 二 a'f < oc; «() = 1 

and (Ik = kH-奶Lo(k) for some slowly varying function 厂(> with / / G 

(1/2,1) ; and {e<} is a sequence of i.i.d.iriean zero random variables with 

cTg = Ee'f < 00. 

On the basis of Theorem 2.2, the sample path of the Ornsteiii-

Uhlenbeck process can be simulated approximately by the linear process 

on the left side of equation (2.20). However, this linear process has 

an infinite number of terms, which makes it difficult to implement. 

To deal with this problem, the truncation scheme proposed in Diet-

rich and Newsam [19] is adopted; see also Wii, Michailiciis and Zhang 

63]. In this scheme, the first m terms arc used to simulate the linear 

process, that is, e； is approximated by e,’„, = JZJIq ^i^t-i- Here, in 

is the truncation number, which is chosen to ensure the difference be-

tween the truncated version and the infinite-sum version is sufficiently 
r 

small. Moreover, to speed up calculations, we embed the coefficients a, 

in a circiilant matrix. In this ca.se, {e^ „ , } is generated by the following 
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relation. 

22 

Cl，m 
"1 (L.2 

« 2 «3 

a川 "1 

"川—1 ĥu 

dm "1 

(J 711-2 ( ' i n -

e = /le. 

where A is the circulant matrix and e^ == (ei,...，e,,,). Then, the 

Oriistein-Uhlenbeck processes are siiniilated approximately by 

(1 一 卜 卜 ‘ " < u < 1). Here, wc investigate�the (.儿s(� 

in which e is standard normal. In this simulation study,川 is s(�t to 

4,000. Sample paths of Ornstein-Ulilenbeck processes with different 

parameters, / / and 7，are shown in the following figures. 

Figure 2.1: Sample paths of Ornstein-Ulileiiheck proĉ ess with Hurst index 

and H = 0.65. 

Figure 2.2: Sample paths of Ornstein-Uhleiibeck process with Hurst index 

H = 0.75. 
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Figure 2.3: Sample pat lis of Onisteiii-Uhleiibock i)r(K.(�ss with Hurst index 

H = 0.85. 

2.3.2 Percentiles of K 

The critical values of K for different parameters are tatiulated in the 

following tables. These tables are constructed as follows. First, th(� 

interval [0,1] is partitioned evenly with tj+\ - t j = 1/n, and the integral 

f(; e - - s ) (IBjiis) is approximated by X] exp(—,/(, 一 .s'j)). A , whore 

A Bj^ = — Bu(tj). K is simulated iii(le])endeiitly N times to 

obtain the percentiles of K. By increasing n and N, the percentiles of 

K exhibit ignorable differences from those in Tables 2.1, 2.2 and 2.3. 

Here, let n = 500 arid N ~ 10,000. Histograms of K arc plotted in 

Figures 2.4-2.6. 

Table 2.1: Percentiles of K for H = ().G5 (sample size= 10,()()()). 

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

7 = 0 . 0 0.0097 0.0238 0.0490 0.0916 0.G197 0.7220 0.818G 0.9151 

7 = 1 . 0 0.0067 0.0171 0.0362 0.0698 0.4922 0.5891 0.G848 0.8113 

7 = 2 . 0 0.0069 0.0151 0.0288 0.0536 0.4177 0.5057 0.6038 0.7341 

7 = 3 . 0 0.0045 0.0112 0.0228 0.044G 0.3585 0.4432 0.5445 0.6694 

7 = 4 . 0 0.0039 0.0099 0.0194 0.0398 0.3287 0.4099 0.4911 0.5967 



CHAPTER 2. RESIDUAL EMPIUICAL I'!<()( 'ESSES 

Figure 2.4: Histogram of statistic with Hurst index H = ().G5. 
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Table 2.2: Peranitiles of K for H = 0.75 (sample si'/o=： 10,()()()). 

0.01 0.025 0.05 0.1 o.y 0.95 0.975 o.yo 

7 = 0 . 0 0.0091 0.0245 0.0473 0.0820 0.0553 0.0491 0.7287 0.8382 

7 = 1 . 0 O.OOGG 0.0105 0.0331 O.OGIG 0.4403 0.5218 0.5952 ().t)988 

7 = 2 . 0 0.0048 0.0140 0.0203 0.0493 o.mm 0.4300 ().5()().4 0.5974 

7 = 3 . 0 0.0(339 0.0100 0.0201 0.0398 0.3079 0.3700 0.4284 0.5301 

7 = 4 . 0 0.0034 0.0084 0.0173 0.0331 0.2083 ().32GG ().391() 0.4884 

Table 2.3: Porcontikjs of K for H = 0.85 (sample sizc=l(),()()()). 

0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 

7 = 0.0 0.0079 0.0213 0.0399 0.0710 0 . 4 嶋 0.5499 ().G2G3 0.7147 

7 = 1.0 0.0050 0.0135 0.0288 0.0528 0.3775 0.4415 0.4978 0.5708 

7. = 2.0 0.0049 0.0110 0.0218 0.0419 0.3013 0.3533 0.4052 0.4704 

7 = 3.0 0.(K)3G 0.0083 0.0174 0.0346 0.2518 0.2953 0.3427 0.3960 

7 = 4.0 0.0030 0.0073 0.0151 0.030G 0.2170 0.2541 0.2973 0.3571 

Figure 2.5: Histogram of statistic with Hurst index / / = 0.75 and 7 = 0 

(left), 7 = 1 (middle) ami 7 = 2 (right). 
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Figure 2.G: Histogram of statist ic with Hurst index H = 0.85 and 7 = 0 

(left), 7 = 1 (iiiiddlo) and 7 = 2 (right). 
H-6BkCwww-1 

2.3.3 Examples 

Wo now consider some siiiipki cxainplos to exainino the jxn fonnaiicc of 

the tost statistic. 

Example 2.5. Consider tha nearly uTistahk modal 

VLU = (>nyt-\,n + (t (2.41) 

where = 1—7/7?. and (i = S^o cocJjii:ients a,= 厂(/) 

ait square smrnnable. Here, we considar the case that {Cj} is a sajucncc 

of cantered statimiary Gaussian random vmiahks with variance, a'^. (• 

is approximated by its truncated version, ( f，„, = YllLo (^if'i-i ‘厂(0 , � 

chosen, such that 二 0 以 ? = 1 . Obviously, (/，„, follows a mmii.al distii-

butioii with variance cr之. 

Consider the following Hypothesis. 

//() : (T^ = \ versus II i o^ 1. (2.42) 

We tahfi sample sizes in = 1,000 and 2, ()()(), and 1, ()()() replications are 

used. -

The power and size are given in Tables 2.4 and 2.5 at the sdcxtej 

level and parameters. From tlicse tables, we can that wlioii n 
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is iiKTea.s(xl, the size is very dose to th(�iioiiiiiuil signiflcaiicc level. 

As a'̂  is increased from 1, the rejection rato also iii(T(�a^s(�‘s. This is 

reasonable, a.s the tost depends on the (lifforoiic.(» h(�tw(，(、ii t he shape of 

the empirical (listribution mid the tni(，clistrihutioii. Wh(m a丄 is fW 

froiii 1, th(，(lifforonc.e between tlio slmpc of yV((), 1) and yV(0, a'̂ ) is 

large, which moans the rojoc.tioii rate is high. These siiimlatioii st udios 

indicate that the proposed test Iuls satisfactory size and i)(nv(;r b(�liavioi. 

in the finite samplers. Tlioy should he useful in pm(:ti<:<，. 
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Table 2.4: Size and power of tost statistic A'„ witli II = ().G5 ajul 7 = 0. 

n = 1,()()() n = 2,000 

(I 0.025 0.05 0.1 ().()25 0.05 0.1 

a"= 

a 

a 

0.015 0.031 0.087 

siz(、 

l)ow<、r 

0.019 0.042 0.097 

1.2 0.017 0.051 0.110 0.033 0.070 0.104 

1.3 0.043 0.093 0.208 O.OGG 0.159 0.307 

1.4 0.078 0.135' 0.271 0.131 0.28G 0.490 

1.5 0.127 0.250 0.403 0.283 0.479 •.71(3 

l.G 0.204 ().34G 0.549 0.404 ().04；3 0.849 

1.7 0.289 ().4GG 0.711 0.013 0.821 ().95G 

1.8 0.411 O.GOG ().8()G 0.772 0.917 0.980 

1.9 0.495 0.709 0.905 0.889 0.977 0.998 

2.0 0.G24 0.820 0.950 0.903 0.993 0.998 

2.1 0.713 0.88G 0.918 0.985 0.999 1.000 

2.2 0.813 0.938 0.988 0.997 1.000 l . _ 

2.3 0.887 0.978 0.998 1.()()() 1.000 1.000 

2.4 0.948 0.994 0.998 1.000 1.()()() 1.000 

2.5 0.959 0.994 1.000 1.000 1.000 1.000 
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Figure 2.7: P(>w(�r Fmirtkm. 

Power Function 
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Tahle 2.5: Size and i)()w(�r of test statistic A',, with H = 0.65 and 7 = 1 

n = 1,000 n = 2,()()() 

a 0.025 0.05 0.1 ().()25 0.05 (3.1 

o r— _ 

(T"= 

(T' 

a 

a 

a 

(J 

C7' 

0.013 0.04G 0.129 

sr/o 

l)(nv(�r 

0.021 0.050 0.101 

1.2 0.023 0.074 0.170 0.042 0.102 0.234 

1.3 0.()G7 0.158 0.303 0.109 0.241 0.432 

1.4 0.122 0.240 0.440 0.272 0.470 0.G99 

1.5 0.17G 逸 ̂  0.350 0.577 0.43G 0.(388 0.850 

l.G 0.312 0.558 0.7(54 0.655 {).85G 0.957 

1.7 0.404 0.729 0.889 0.829 0.1)54 0.992 

1.8 0.G09 0.82G 0.939 0.935 0.992 1.000 

1.9 0.750 0.911 0.980 0.978 0.99G 1.000 

'U) 0.857 0.9G1 0.996 0.994 0.999 1 .()()() 

2.1 0.914 0.989 0.999 0.999 0.999 1.000 

2.2 0.956 0.993 0.999 1.000 1.000 1.000 

2.3 0.986 0.998 1.000 1.()(){) 1.()()() 1.000 

2.4 0.989 1.000 1.000 1.000 1.000 1.000 



CHAPTER 2. RESIDUAL EMPIUICAL I'!<()( 'ESSES 

Figure 2.8: Power Function. 

Power Function 

The estimated density functions of the statistics with i)araiiictors 

/ / = 0.65 and 7 = 1 for n = 500 (dashed line) and ii = 4000 (dotted 

line) are plotted in Figure 2.9. The density function of the limit distri-

butions of K (solid line) is also given on the same figure. We can see 

that when the sample size is increased, the estimated density function 

of the statistic ai)proaclies to that of its limit distribution, indicating 

that convergence behavior of the statistic is fast. 
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Figure 2.9: Density Functions 

Example 2.6. hi this example, %ue restrict our attention to test the 

normality. Consider the following model. 

VlM = Pnyi-l,n + (2.43) 

•—J. where = 1 — 7/71 and = YlZo (^f^t-i- The cocfficieiits (ij 

are square smnniable. When {e!/},>i is an i.i.d. Gaussian 

sequence, then Ci is also Gaussian. Let F denote the d.f. of ci, and 
、 

consider the following hypothesis., 

//() F = versus F •中. (2.44) 

In this simulation study, the selected alternatives of Ci are /I, : v/^/,5, 

A2 ： yj\j2i\ and A-^ : s/Tj^k^, respectively, ct is approximated by its 

truncated version, c/，”, = 仅i七<-»•， {^tlSo ^^ smiulated indepen-

dently, and L(i) is chosen such that YllLo — 1. take the sample 

sizes rri = 1,000 "and 2,000，and 1,000 replications are used. 
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Table 2.G: Size and jxnvcr of test st a1 ist ic I\,, with II -- (l.(ir) aii(: 

II = lOOO II = ._)�"( 1 

rv 0.025 0.05 0.1 ().()：>：> (u>r) 0.1 

si /r 

.V((). 1) 0.013 O.OKi 0.12!) O.O'Jl ().()',() 0.101 

power 

0.019 ().()(j8 O.OTN (1.221 

0.027 0.106 O.'ilK) 0.07!) O.IMM ().;i!)r, 

0 .285 0.514 0.752 0.177 0.71:5 O.Ml 

From Table 2.G. w ( � c a n srr t liat wlicn s �…)“，s i / c “ is iii( n�;is('(l, 1 lie 

size Ikh;()1 i i ( ' s very close to t h ( � n o m i n a l si^iiificaiil l(�\rl l‘)r ；ill •�(�“�< tr<l 

l<�vds. T h ( � i ) m v ( � r of this t(\st (l(”)(�n(ls on t lie (liifrrciicc hc t wccii tlir 

sliajx; of A,((), 1) and that of {},=丨••丄3. This is icasoiial)l('. a^ 1 lie 

cliffercMicc between th(� sliaprs of .V((). 1 ) m i k I . \ ^ is more t Imii 1 liat 

hot ween thr sliapos of A ' (0 . 1) and . \ 1. This cxaiiiph' allows I hat (,v(�ii 

if tlio sample (.()m(�s from t he (list l ihut ion faiiiik rlini (lr\-i ;i"�s 110111 

t liat hyi)(>tii(�siz(�(l. the r(�j(�(.t rate remains sal islncloiw 

• End of chapter. 

n. 



Chapter 3 

Auxiliary Results 

III this chapter, we investigate the limit distribution of the weiglitccl 

sum of the fuiictioiials of moving average ])rocesses. It is shown that 
• % 

this distribution can be expressed as Wiener integrals with resjxxtt to 

Hermite proc^esses. Now let us begin with the (lefinition of the stochas-

tic integral with resj^ect to tlic Herniite ])rocess when the integrands 

are some deterministic functions. 

3.1 Background 

Self-similar processes have been widely applied to models of various 

phenomena, inchiding hydrology, network traffic analysis and finance. 

Al l interesting class of self-similar processes is the Htr i i i i te i)ro(:oss, 
t * 

given by 

Z^j 二 k) L JjJl^^ 一 (Is 崎“)…dB�收�’ (3.1) 

where the foregoing integral is a Wieiier-Ito multiple integral of order k 

wi th respect to the standard Brownian motion (JKuYhjen and c{ I l , k) is 

a positive norinalization constant such that E[Z'[)Y = 1. When k = 1', 

34 
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Zf{( i ) corresponds to the fractional Browniaii inotioii (fBiii), " / / ( / ) . 

Due to the various applications of the fractional Brownian motion, a 

rich theory of stochastic： iiitegratioii with rospcct to the fBm has boon 

established. For example, Docreiisefond and Ustiincl [17] defined a sto-

chastic integral with respoc;t to the fBm by using the stochastic calculus 

of variations (also known as the Malliaviii calculus) and the fact that 

the fBm is a Gaussian process. A different approach, t hat of path-

wise integration, wa.s taken by Dudley and Norvais [20] and Zahlo [66 . 

They used the specific path properties of the fBm, iiainely, variat ion 

in Dudley and Norvais [20] and Holder continuity in Zahle [66]. A 

particular case in which the integrands are not raridoin was examiiuHl 

by Pipiras and Taqqu [43], who investigate a class of functions can bo 

used to construct the integral with rcspect to tlio fBin. For the general 

case, Maejiina and Tudor [39] introduce Wicnier integrals with respect 

to the Hermite process of order k when the iiitograiicls ar(�(leteriiiiiiistic 

functions of specific clgusses. 

Of central interest here is to investigate the limit of the woightinl 

sums of a sequeiic:e of long-range dependent random variables, which 

appears as the Wiener integral with respect to the Hennito process, Z},. 

Pipiras and Taqcjii [42] proved that if / is a (letoriiiiiiistic fiiiictioii, then 

tlie secj-ueiice 
J 

n" ^^ n 

where is in the domain of attraction of the fBm, converges 

weakly, as n — oo, to the Wiener integral J^ f { i i ) dBu(u) , where 

denotes the fractional Brownian motion. A natural extension of this 

result is to consider the convorgorice of sequences: 

y j { l ) g { X j ) . (3.2) 
nH ^ ‘ n 
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When {Xj}j^z are stationary Gaussian sequences and g has the Her-

iTiite expansion g{x) = with Heniiite rank k，when�/// 

is the Hermite polynomial of degree I and rv = ["(A'o)///( Â o: 

shown in Maejirna and Tudor [39], 

ais 

J 
— / fdZ^j , as " — o o , (3.3) 

where — d e n o t e s weak convergence and Zf, is (iefinecl as in (3.1). 

In this chapter, we relax the Gaussian a.ssuriiption and consider 

{ X j } to be moving average processes and g to havo power rank k. It 

is shown that, under certain conditions, 

f{-)g{Xj) ^C / fdZl (3.4) 

When dealing with the non-Gaussian ease, no appropi.iate cxpmi-

sion of g { X j ) can be used to prove the convergence of partial sums 

in the L之 sense. To fix this problem, we restrict our attention to the 

case in which X, is a moving average process, that is, g{Xi) is a func-

tional of the moving average process. Ho and Hsing [27] (l(�vdoi)(Hl 

a new tediiiique to decompose g(Xi) into two asymptotically uiicorrc-

lated terms to obtain the weak convergence of the partial sum of 

They showed that the weighted sum of the functional of the moving 

average processes weakly converges to a limit of the Wiener integral 

with respect to the Hermite process. 

3.2 The Hermite Process and Wiener Integrals with 

respect to it 

3.2.1 The Hermite Process 

First, some of the basic properties of the Herrnitc pi occss Zjy = 

of order A: > 1, A: G Z , with Hurst pararnetei. II 6 (1/2,1) , arc�pre-
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seiited. This stochastic process is defined a.s a iiniltiplo Wiener-Ito 

integral of order k with respect to the standard Browiiian motion, 

( / i � ) 则， a s follows. 

Z，/⑴=c(//，A.) I fiHis - 认 . ) ( “ 平 ) . . . 
J"矢《A) f J i 

(3.5) 

where x^ = max(:r，0) and 

c(//,A') = {A'!(l - A : ( l - / / ) ) ( ! - A - ( 2 - 2 / / ) ) 
POO 

+工‘2)"-3/2 制-A•广2 

making E[(Z/y(/))^] = 1. When A' = 1, the j^rocoss corresponds to 

the fractional Brownian motion with Hurst parameter II G (0,1). 

Let R{t, s) denote the c:ovariaiice function of that is li(t , s)= 

E Z'if{i)Z^f(s) . Maojiina and Tudor [39] showed that 

" ( , ， s ) = 沪 " + 8 川 - I , - (3.6) 

Figure 3.1: Sample paths of the fractional Brownian motion with Hurst 

index H = 0.25(lcft), H = ().5(iniddle) and H = 0.75 (right). 

The following are some of the properties of the HerniUe process 

used in this thesis. 

• Process Z{/ is //-selfsimilar with stationary iiicreriicnts. 

J / 
Y A i 

V 
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• From the stationarity of the iiicreiiients and the fon^^oing self-

similarity, it follows that, for any /> > 1, 

E [\Z'l,(t) - = c(7)’ / / , A ) |/ - . s f " . (3.7) 

As a consociuonce, the Hcnnito process has Hokler-contiiiuoiis 

paths of order S < //. 

3.2.2 Wiener Integrals with Respect to the Hermite Process 

Let Zff denote the Hermite process of oixier k for a (Icterministk: fiiiicv 

tion / ; j f dZ'ij is called the integral on the real line of f with n�si)(K:t 

to this Hennite process. The following question now arises. What is 

the class of functions from which the integral on the real lino can bo 

well-defined? This interesting isssiic has b m i extensively investigatcHl; 

see Pipiras and Taqqii [42] and Maojiiiia and Tudor [39]. Now, lot iis 

review their results beginning with the definition of t he iiit(;gral on tlic 

real line with iesp(x:t to Z � . 

Let 

/ (? ! ) = L<^�1(/ , ’ / , "|(") , /,• < (', G / :=1，...，"， (3.8) 
t=i . 

he an element from the set, S, of elcniontary functions. For such an 

f (u), it is natural to define its Wiener iiitc^gral with respect to Hcriiiitx; 

I)rocess Zjy by 

/ f(n)dZf,(u) = (/,,+,) - Zf,(/,)). (3.9) 
J丨i » = 】 

Let be the closurc of the span of the increiiioiits of Zff. It is 

obvious that the right side in (3.9) belongs to 可)(Z�). It is also well-

known that when Z, , = Z f " is the usual Browiiiaii motion, eloiii(?iit 

X € 可)[1” can bo (•.harac;torizo(l by the unique function fx G in 
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which case one writes X in the integral form X = (ll^( u) and 

B[u) is a standard Browriian motion. From a diffc^ront persi)(H;tivo, t h(� 

spacc forms a class of iiitograiicls for the iiit(�gml on tlic real Hue 

with resi)C(:t to " ( " , ) . As is a, coiiipleto spacc and is dense in 

"2(")，we can assodatc X with a seciiionce of okuiKMitary functions, / „ ’ 

fn 一 f , such that f fn{a) dB(u) f f(u) dH{n.) in the L^ souse. In 

this case, the integral j /("‘）dB{u) can be appi.()ximat(xl by a s<�qu(�nr() 

of the integral of / „ wit h respect to "("〉，that is, 

[f{u)dH{n)= liiii I Uu)dH{u) 
J ”一oo./ 

and 

Var( I f{u)dn{a)) = Im^Wciii Jn{u}dB{u)) = j f{u)''du. 

Because the mapping / j J dB is a linear and onto iiiap lK�tw(�(�ii 

厂2(7̂ ) and 7Pp{IJ), which preserves iiinor products, it is an isoiiK^try, 

and tho Hilbert s|)ac:c, and / ) ( " ) arc isometric. 

Based on this idea, Pipiras and Taqqu [42] investigatcxl a case in 

which Z认k = 1) is the fractional Browiiian motion. In that work, th(�y 

explored whether a similar diaracterizat.ion of the oleiiieiits of ^ ( / i / / ) 

could be obtained when II € (1/2,1) . Those charac.txuizations form 

a class of integrands for tho integral on the real lino with r()si)(�(:t to 

Bn{u). These classes of integrands are inner product spares. If tlic 

space of the integrands is not complete, then that spa(:() dmm(.t(Ti'/(�s 

only a strict subset of ^ ( / i / / ) . From the left side of (3.14), it is ob-

vious that S is coiitaiiiod in this spa(;(\ Now, wr introduce the spaxtc 

constructed by Pipiias and Taqqu [42 . 

Let 

H= {f — 1 f f{u)f{v) \u -叫‘2"_2 dudv < o g } 

.In Jn 
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be equipped with the inner prod net 

<LfJ>n= / / ( 2 / / - i ) f I f{u)fj(v) 
J v. ''n 

(I — V 211 (hi dv. 

The following are some of tho i)mp(�i,ti(，s provtul by Pij)ira.s and Taqqu 

421. , 

• Set E is (Icnso in H. 

• For / / € (0 ,1/2) , n is a coinploto spaco. For II G (1/2, 1)，H is 

not a coiiiph^to space. 

• The si)a(:(，17̂ 1 is not coiiiploto with rospoc.t to noriii || • Ĥ ,̂ but is 

a Baiiadi space with ros])o(:t tojionii 

f U r [[丨/(")丨1/⑷ 
./7^ .In 

\u — V 111 dv dv. 10) 

H\ is a strict subspacc of H and is, in fact (s(�(�Pipii.as and Taqqu 

421)， - : 

/>' (7^) n /；̂  {71) c c n ’ ( : i . i i ) 

whcMc 人 1 (TZ) and 1/ {TZ) an; defined, resix^ctivcly. 

/J {71) = {/: [ |/(")| du < 
./7^ 

oo 

and 

( 尺 ） = { / : / |/(",)|2 “ “ < o c 
'JZ 

As S is (loiis(» ill H , for any arbitrary fuiiction f € 

a scqueiico of olenioiitary fiiiictioiis { / „ } , )>i such t.liat |/„ 

Theroforo, wo Imve 

(3.12) 

(3.13) 

th(U'(； (�xist.‘s 

— f \ \ n \ —今。• 

fiu)dn„{u)= liiii / L { u ) d H n ( n ) (3.14) 



/ 
i 
I 
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and 

Var( I / ( " ) " " " ( " ) ) 

= l i m Var( / / , , ( " ) " " " ( " ) ) 
”一oo J 

=ll{2H I I/(")/(")l" — (3.15) 

Th(? integral on the real lino with rosi)(x;t to B" with II G (1/2，1) is 

wcll-dcfiiiod in (3.14). 

Based on the obsorvatioii that the covariaiKte struct urr of the H(�i.-

iiiito i)ro(:css is similar to tliat of the fractional Browiiiaii motion, IVlm�-

jinia and Tudor [39] extoii(l(Hl this rosult to the Hmiiitc i)r()(:(�ss us-

ing \H\ a.s the classes of (lotoriiiiiiistic integiaiids. Let ‘V州 1)(�the 

correspoiidiiig siihspacc? of 7Pp{Bfi); then, tlio mapping f i—>• / ./�//�/, 

f G 17̂ 1 and II G (1/2，1) is an isoinotry from \H\ to . As \7i\ is a 

coinplote spaco, wo can make the following L̂ssort ions. 

• Every cloiiiciit of liii(;ar subspacc ‘V州 can t)(�expresscxl a.s an ii卜 

t(;gral of a (loteriniiiistic function with r()sp(�(:t to Bn. 

• The int(^gral on tlio real lino with n，!sp(�(:t to " " with 11 G (J /2 , 1) 

is well-dcfinocl for th(�fiiiictioiis froiii \7i . 

3.3 Non-central Limit Theorem 

Coiisi(l(;r a moving av(M ag(̂  process 

Xj = y (3.1(i) 
t = ( ) 

wh(�m ( j aro iiioaii ya'Ao i.i.d. random variabk^s having at l(�a.st fi-

nite second iiioiriont.s, and the moving avcuage c.oofficiciits a, satisfy 

二 1 (if < Our goal is to investigate the a,synipt.()t.ir behavior of 
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E j / (^) K{Xj), fus 71 — oo，wli(H-o f is a dcUuiiiiriist ic function on 7Z 

and K coiiics from a general c.la.ss of iiicasm abk; funct ions. 

Wc focus on the primary chusc whm�th(，a,,s an? rogiilarly varying 

with exponent —p, (ionotocl by a, € for sonic /J £ (1/2,1)，that 

is, rt, = i-0L(x) and /j{x) is slowly varying at oo. 

Lot. Ĵ t = { . . . , f / _ | , f / } and define the? tniiicati^d procc^ss 

Xj t = E[Xj I Tj^i] = 〉 j a 
�'m* 7 — 771 (3 .17) 

and lot 

^Ui = 兄 / 一 X i,i = a. 
0<m<i-\ 

Lot F“ Fi, (ii and (1 be the (listributioii functions of X 

(1 r(，sp(H:t‘ivdy. For i > ()，(lofiiio 

(3.18) 

X , 1 and 

Ki{x) = / K(x + y)dF,{y)，K^{x) = / K{x + y)dF{y) 

and 

K(x-\-y)dF{y). 

Definition 3.1. We say that K has power rank k for sonic, positive 

integer' k, if exists and is iionzcro and = 0 for 1 < 

771 < k. 

⑴ ‘ 

If the t-th derivative K) of Ki exists, dofiiio 

’ M<A 

Condition 1. Let E{\ci\'') < oo for some 2 < q < 4 and K, € 

for all large 1. Assume that for some X > ()， 

fc+l k-\ 

E l l i k e I I 
/.=() t-O 

(3 .19) 

(3 .20) 
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Condition 2. If G (1/2, 1) and k{2fi — 1) < 1, />• is the. power rank 

of K{') and condition 1 holds with r/ = 4. 

Lot / / = 1 - k.(l3 — and rx,, = c ( / / ’ A,)//"/>•(//), iiitr()(lu(:(�t he 

so(iuciu:o of stoclia^stic processes Zjy" (i(，fim�(l by 

("«1 
4’”("）= 二 ; L 八 从 ） （ " > ()) 

CJII 

and 
1 

^ifiu) = - 八 ‘ ⑷ （ " 侧 

j = — [nu\— 1 

(3.21) 

(3.22) 

where K is a function of power rank k. By Tlioorein 1 of Wii [62 

under condition (2), it follows that 

4 ’ " ( " ） 1 /、'，0)Zji(") a�s n — oo , 

where —>£ doiiotc w(，a,k coiivorgoiico and Zf] is a Hcnnito procoss do 

fined in (3.5). 

We also us(�the notation that’ if / is a fiinct ioii on 
oo . 

J 
11 ‘ 

and 

/ 二 - 7 ’ 

Also, let / + 二 J;t，。o In = /,7,oo-‘ 

Theorem 3.1. Under condition 2, for A:(2/i — 1) < /i, let f G \H\ such 

that f^ G 17̂ 1 for everij n > 1. / / — /|州—（)，仏s n — oo, and for 

cvej-y 71’ l/^fy, — f^fl —0，as T oo, then, as ii —> oo, 

1 f f in) dZ^,{u). 
a„ ^ n H 
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Remark 3.1. k{2p— 1) < fl is a strict condition, however for K{X)= 

X, that is, A: = 1, Theorem. 3.1 coincides 'with the results in Pipiras and 

Taqqu [42]. 

Proof. Let us prove first that the siiin 

1 ) 

where / / = 1 — k[(3 — is ctoiivorgeiit. Note that 

(3.23) 

聊 养 ; 陣 力 ) 叩 . 
Juh 

Let K{Xj) = ^ ^ , [ A ' , _ 1 (XJ , , _ , ) - A',-(XJ-)] and s u p p o s e .；! + h-iy-

then wc have 

E[八 i丨 - i (X力’,1-丨）-K i , (A ' j , , ) ] [A ,2 -1 (_ 1)-八“兄/2’》2 

According to the crucial observation in Ho and Hsiiig [28 

where is the <T-field generated by (k, A： < .s. Suppose ji — / � 

and without loss of generality assiiirie that j�— “ > jo — 

have 

= 0 . 

(3.24) 

+ h - � i 

then wo 
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ji.n 

X 

二 E [E( /< ( : r )|«F�_“ + i ) - E ( A ' � I � , '1 

X [ E ( A > ) I - E(K(X) I JS.-.-. 

二 E[E{K(x) I 巧… , + 1) — E(K(x) I 

xE[[E{K(x) I ,.2+1) - E(I<(x)丨 

=E[E(K{x) I + — E{l<{x) I 

xE[E(K{x) I JT^i —, + 1) — E{l<(x) I J•力—+ 1 

Observe tliat 

E[S{n] 
77,2"/乂& (71) — n n 

iJ^hi) ^ n n 
,JI,J2 

n •211 

Ki人义 

X 

Assume h > j\, since - Ki{Xj^i)Y < C(af_^+(Lf), by the 

Cauchy-Scliwarz inequality 

E 举 ( 义 , 
KuiX, 

X 

ii = \,i2=ii+h-ji 
— 八 义 . Ji.'i X 

〜 〜 

-力一1 (Aj2’,�+j2-ji -1 ) — \\ X 1 -\-j'2 - j 1 ( 1 +h " j I 
00 

< Cj2-:ii 
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where ^ is a positive constant. Since for any positive (•.onstant《，wo 

have L狄、Ti) < thus 

C 
n 

J\ E 附 ] < ^ 1 / ( ^ ) 1 1 / ( ^ ) 1 
n 

J\ J'l 
71 n n 

211-

= 

./ R J, It = I I / II； I叫• 
V 

Since the \7{\ space is cornplctc, we can choose a sociueiictc f^, r < 1, of 

elementary functions such that / ” —> / as r oo with rcspect to the 

norm 州.Let 

= 

jez 
r ( - ) i , 

n ‘ 
丨⑷ n < (3.25) 

and 

外 i ) 
jez t L 

(3.26) 

By Theorem 4.2 in Billingsley [G], there are three steps to complete the 

proof. 

Step 1: 

a s n — o o , f o r _ T r y . (3.27) 

Step 2: 

(3.28) 

Step 3: 

liin l in iE | ‘S> , ) - � = 0 (3.29) 

Step 1: The coiivergerice (3.27) follows from the convergence of tho 

sequence Z � " g i v e n by (3.21) and (3.22) to the Herinitc process Z；； 

because S^(n) constitutes a finite linear combination of instants of the 



CHAPTEn 3. AUXILIAnV RESULTS I 

process Z " ’ " and f in) (JZ'jfiu) rrpirsri " .s a finite ( " n i l i i 

instants of Z � . . . 

St (�p 2: Since . ’ 

>11 

E[丨 / II 

jH, 0. 

as m — oc. . ‘ 

St (�p 3: B y the Dominated Coiiv(�i-g(�iH ( � T h ( � � n � i n . \v(‘ \\iw 

liiii Hill E I .V'.(//) — .S'(" 
r—oc/J—oc .L 

< liiii liiii r —"V-M - •'X •H 

lin. 1/' — /If^i = 0 

This concliKic^s t he proof. 

T\\v following (^xaiiij)l(^ illustrat rs an applicat ion of Th(�� i . r i i i ？>.l. 

Example 3.2. Let / ( , s ) = (’，('、•̂) 7|(,,/|(.s). If niu h n nji(<j Ifnil / ( . s ) 

bdongfi to / J ( 7 e ) 门厂尺） . t h u s by (：111). f{s) e /‘’""""""/"" 

fiava {Jri('f')}}}>i sat'isjies mudUwn.s vu Tficonm 1. thus tiu li"n 
» ‘ i 

1 . 
/ ( W � � <1/ II 

whei'e /(((广7('一:s) "Z�,（.s‘）is a H(T川U( Ornsit ni- Vfilrnhcc 

a coiiscqueiicc, at aarJi t, the Hrrnntr Onisicm-Uhlcnix ( 

he (ipproxtiiiaU'd m law by the partial sunt "i the left suit 

( :�5()) 

j)r()<( .s.s. /1 s 

.f)l <>( ( SS ((III 

of 

• End of chapter. P.: _ 

fc 



Chapter 4 

Auxiliary Results II 

III this (•liai)ter, wv. investigate the asymptotic t heory of the least s(|imi(�s 

estimator for nearly unstable i)rocoss<?!ft w^th'a funct ional of long-ineiiiory 

noises. ^ 

4.1 Least Squares Estimator (LSE) 

Consider tlie nearly unstable 4̂/1̂ (1) inodol proposed hy Chan and Wei 

12], 

yi,n = MJt-�’n + (t, (4.1) 

where f)n — I — 7/7/. and 7 is a fixed constant. Let 

A — 乙 y t - 、 ， n W , i i ( . 
f)n — 2 

2_W=1 yt-],n 

(l('iu)te the LSE of p,,. When { � , } is a sequence of iiKlcpeiiclent standard 

normal random variables, Chan and Wei [12] showed that 

“ � ./qI 外 2 , 7 ⑴辉 A 7 , n � 
n“ - Pn) . / ， (4」） 

Jo ( 么 / v y � ) 也 

where ^1/2 the Ornstein-Uhleiibec^k process driven by a stand arc! 

Hrowiiian motion. When 7 = 0, this model reduces to the AU(1) 

48 
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model, that is, 

fjt 二 Ut-\ + 0 ， for f e A^ !jo = 0. (4.4) 

White [60] showed that 

n[pn — 1) — £ 山)，^ ) ~ ~ — . (4.5) 

This particular result is eiicoiiipasscd in (4.3). These r(�sults for the 

nearly unstable AR(1) iiiociel are somewhat surprisingly different from 

those for the strictly stationary or explosive Ali(l) model given by 

Maim and Waki [40] and Ancicrson [1]. In those papers, it was shown 

that the limit distribution of the normalized LSE of tlio autoi.(�gr(，ssiv(� 

coefficient is standard normal. 

Now, consider the following model. Let 

yt,u = M t - � ’ 1 � + for / = 1, (4.6) 

wliere p„ = 1 — 7 / n and 7 is a fixed constant, arid K is a function t hat 

satisfies certain conditions. Obviously, model (4.G) is a generalization 

of iTiociel (4.1). When K(x) = x, (4.6) ix^dvices to (4.1). 

In this c;hapter, we focus 011 the c.aso in which {(1} is a moving 

average proc:ess, that is, 
00 

f/ = - (4.7) 
1=0 

where Yl^o ^ f � 沈 and {e, } is a secincncc of i.i.cl. iiioaii zero raiidoiii 

variables with finite socond moments. For the case in which K{x) = x 

and { ( / } exhibits strong dependence, Buchmann and Chan [8] showed 

that 1 
” � J o 礼 ’ 7 ⑴ 収 … 

一 p.) —c 1 " , (4.8) 
‘ . /o (Z//，7�)出’ 

where is the Ornstein-Uhlenbeck process driven by a fBin. 
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For a case in which h'{x) takes the more goiioral form, Wu [62 

investigated the unit root testing problem (when = 0, niodol (4.6) 

is rochiccd to a unit root AR(1) model). When { f / } is generated by 

iiioviiig average processes, Wii [62] shows that 

” 1� iH幻/’0(1))2 , “ “ • - 1) —L , ’ ， (4.9) 
J( , (Z / / ’ o ( " ) ) ' ( , " 

where Z]/q denotes the fBin. A natural extension would be to extend 

Wii's result to model (4.10). which is tlie main theme of this clmpter. 

It is shown that the limit distrihution of the LSE is expressed as the 

fuiictioiials of the Oriistoin-Uhleribcck processes driven by ( he H(Tiiiit(� 

processes. 

4.2 Limit Distributions 

Definition 4.1. Lai pn = 1 — 7/71，for f = I,... ,11. Suppose that /力’„ 

satisfies the reparametcrized AR( 1) model, 

yt’n = Pnyi-\,n + 工t fju’” = ()，f()'r M 11, 

and . 

工f =八'((/)， Q 二〉aiCf-i, 

(4.10) 

(4.11) 
1=0 

The coefficients a, satisfy a'f < oo, ao = 1 and (if. = 

for some slowly varying function /)() with " < 1，and {e, } is a sequence 

of i.i.d. mean zero Gaussian random variables with variance a'^. The 

process {e , } exhibits a long-memory pheiioineiioii when 0 G 1). K 

is the function satisfying EK'^{Xi) < oo and EK(Xi)==(). 

Let / / = 1 - k(f3 - i ) and = c ( / / ’ A : ) 7 / " / / ( " ) . VVc have the 

following theorem. 
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Theorem 4.1. For the rnodd (4.10入(i) if A-(2/i - 1) < 1, then under 

condition 2 we have 

{"[—/"”,(）< ” < 1} { / (5 ( ( ) )Z /V>(")，(）< “ < 1} (4.12) 

/ / ’ ( " ) I / ' " < oc, 

wheiT. Z � ’ is a Hentiite Ornstein- Ufdenbeck proccss. 

(ii) If k{2fj - 1) > 1 or - 1) = 1 and [二 

then 

"m/V^ —c X{ii) = (J 厂 " " � ， (4.13) 

whcTe B{s) denotes the standai'd Drmiinian motion and a^ < oc is a 

constant given by 

cji = lini " —1 Vai,(y~\'r,). (4.14) 

P r o o f , (i) Lot ！ = and / " ’ , “ ,s) = ( 1 - � — H H . Obviously， 

fJlrm] 
(7, 

[""1 

T1' 11 

= A / l . n + M-IM (4.15) 

where 

and 

3 J 
It T}j 

？=1 1=1 

—1 
J 

^―' 11 

(4.16) 

(4.17) 
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Now l(�t us prove |A/i„| = ()p{l). L('t (1” 二 ( " / : , ) l()g( 1 - 7 / " ) . For fixed 

7, d„ — —1 as 7? — 00. For any .、"((）< s < / / < ! ) , w(�havr 

fn’u(S) 一 /aI ( 1 _ —厂 ('卜.s) 
n 

-7(1 

Let Tn = |/„, 

11 

� - / “ ⑷ 丨 ’ we have T„ = ()(j；). 

f I' f ‘ 

(4.18) 

“ ‘ n 
rkJ 

11 
(4.19) 

By the Holder continuous path property, for j) > 1 and II > 1，w(�lmv(’ 

E\Z 的、—ZRi^ �)< C n II (4.20) 

whore ( ! is a constant. Coiiihiiiiiig (4.18)，(4.19) and (4.20), \v(�hav() 

A/i„| — Op(l). For M2n, we see that /„(.s) = ")li(j’“j holongs to 

门厂2(7^) and sat.isfi(\s (:()iiditi(ms of Theorem 3.1. Thus, 

�rmj , 广 

/ C f (0) / •力 J fu(-){Xi/(Tn) n 

The firiite-diriiensioiial convergence of / / ( „ „ ) t o Z�通。、u) hold. It r o 

mains to prove the tiglitiie\ss. By Theorem 12.3 in Billiiigsley [6], it 

suffices to show that for all rn there exist (> < 00 and n > 1 such that 

< C 
.nr 

(4.21) "I 

For any II € (1/2,1) , there is a positive 6 such tliat, a = 211 — S > 1. 

Because E("„, ’J2 = I 汽 a r i d af, = " � " ) ) . Thus by 
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the (^leiiieiitary j)r()p(utios of slowly varying funct ions, w<�have 

liin max —~: j——=li in max ( ————-——=1, (4.22) 
rt—'oo 7ti<7i jj—»oc tn<7/ /v (//) 

which completes tho proof of part (i). 

(ii) Wo follow the similar argunioiit in part (i) and note; that /,„(.s)= 

(「7("-«)if()⑷ belongs to /)(7^)，i)y thcomi i 3.1, w(、can concludc th(、 

result. • 

Soino useful limit (list ril)uti()iis are given in the following tlKu)i(�iii. 

T h e o r e m 4.2. For the model (4.10), (i) if 人:(2" - 1) < /六 Hum under 

condition 2 we have 

(n) n - ' yi-^,u —c J;)' 

(m) yi,nXt/cTf, —C �(0)Z》/，>))2+7 /�l( /\ t ) ( ( ) )Z�,,>) ) ‘ 2r / " . 

Proo f . (/) and (/:/) follow from the coiitiinioiis nmj)i)ing theorem to-

gether wit h Thooroiii 4.1. 

To proves (?>/./), squaring and summing (4.10), we (l(�c(>iiipo:s(�t:li(� 

iiuirieratons into three tcu'iiis which w(? analyze s<�pai.atdy in tli() s(，qu(�l’ 

that is, for all n ^ N, 

W(，define the auxiliary landoiii variahU^s 

�1，" 二去： f > - i ’ " ( ' = � . + — (4.24) 

where 

= 、 ， ' 二 ’ , = (4/25) 



CHAPTER 4. AUXILIARY RESULTS II r)r) 

As the function f — (/(l)，Jo .产圳 is m coiit iimoiis fuiict ion, as " 一 

OG, ) 

\ 

T'i’,，j 

Jo ( / / i "« l / "”)2"、 J；! ht\0)Zf,Js)d. 

… ， 、 ， \ , 

� , � ‘ \ (4.26) 

For tlie part T^ „ = 去 i ：厂？，驟 l m v ( � - f ' f ] = ( ) ( " ) and rr , ,= 

7 / " / / ( n ) ( / / > 1 /2 ) , h ( 慧 ( � w ( � l m v ( � = ；4 E I L i = Thus. 

(/"//) is ])1()V(kI. • 

Now wc arc; in tho position to study the limit (list ribut ion of the 

lca«t squares estimators. L(�t denote the least square�estimator of 

Pin given by 

Pv 
r
 

y
 

"
V
/
 

/
 I

 

f

 

y
 

"
V
/
 -

(4:27) 

Lot 

ihn = ？'(A. - f)n (4/28) 

and 

P2v = f>v (4.29) 

Lot 

(J;; ( / ( � ， > ) ) : 〜 / " ) - ' " 

and 

B ( X ) = 

We have the following th(K)rcm. 
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T h e o r e m 4 . 3 . (i) If k{2fi — I) < li and condition (2) holds, thru for 

11 —> oo 

P\v 

(ii) If - 1) > 1 or k{2li 一 1) 二 1 and [ 二 , |//(")|/" < oo, the 11 

for 11 —> oo 

f)ln 

Pin 

Remark 4.1. The. tain 对/，’⑴尸+ , (")).-�/") can he re 

wntUm as ("4.30) in tciins of stochastic hitcfpal 

/ z 丨 必 丨 , ( . s ) . (.1.30) 

This type intcfpul is w(,ll-d(ijiiwd in fJic Ricviaiiii-Siudtjcs sense. 

Remark 4.2. For K{x) 二 x, one am verify that k = I. Tfiiis we liacc 

— P.) —C , ， ( ' 'U i ) 
./(,(Z//’7("))2(/" 

where. Zjf ^ is the jTactioiial Dj'ownian motion. This result (upvcs wifJi 

Thaorain 2.1(/) of Duchinmin and Chan [8]. ‘ 

Remark 4.3. For 7 = 0，model {4.li)) reduces to the ami root AR(l) 

model pToposad by Wu [62]. By Theoreni 4.3, we have 

“ \ • ( 絲 ⑴ 尸 / " q � 
. - A,) ’ • ( 4 .均 

This particular result (mcoTn])(Lsscs the unit root case of Wu [02]. 

Proof. Note that 
V u 

(>\n = '"(x^"'-丨’"。/x^";2-丨’"） （4.33) 
/=1 /=I 
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and 

P2„ (4.34) E" ii~ • /=1 .V/—I，n 

Tims by thoorciii 4.2 togotlior with the cont iiiuous mapping t li(�oi.(�in. 

w(�havo 

P\v 

(hn 

= T 

where ("")(絲 
• 

f\_ 

V 2 

X 

( 

V 2 

丨 

(八 ' ^ ( 0 ) 4 , - , ( 1 ) ) 2 + 7 / ( / V 5 ( ( ) ) Z � > ) ) 2 山/ 

^ ( . / ; ; (八 t ’ ) ( ( ) ) 4 » ) 2 山 / ) - i / ‘ 2 

(八 t ) ( o ) z f ,，7 ( i )尸 

_ \ +7 I (/(3(())Z,(/.>))V">)(4’ . 'II,. 
./(’ / 

is the vector (IcHiied iii (4.30). This •()ii( lu(l(\s t,h(�result. 

• E n d o f c h a p t e r . 



Chapter 5 

Conclusions and Directions 

for Further Research 

Based oil the analytical and expcriiiieiital investigations i>i(�s(�iitc(l in 

this tliosis, the following conclusions are i,(�adi(�(l. 

(1) Tlie expansion of the residual (�mpii,ical i)ro('.esses in Chan and 

Ling [10] can b(�extended to a nearly uiistablo l(mg-m(�mory t ime 

series. Moreovor, the statistics proposed by Chan and Ling (tan l)(� 

used to tost for the distrihiitioii of long-niomory iioisos. The limit 

(listrihiitioii is oxpr(\sso(i as a functional of an Onistoiii-Uhlonbock 

process driven by a fractional Browiiiaii motion. 

(2) The results of a iiuinbor of siimilatioii studios have been i)i(?s(�iit(�(l 

in this thesis along with the critical values of t he proposod t,(�st . 

The porforiiiaiice of this tost lia« also been oxaiiiiiuxl. As shown 

ill Section 2.3, the proposed test has satisfactory size and power 

behavior in finite samples and shoiikl be useful in practico. 

(3) The weak convcrgencc of the weighted sums of random variables 

that are the fuiictionals of moving average processes have also 

57 
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1)0011 considered. To this end, a iioii-coiitral limit thcorciii is est ah-

lishod, ill which the Wiener iiitograls wit h rc^spect to the Honiiito 

j)ro(:essos apjx^ar as the limit. 

(4) The asymptotic; theory of tlie LSE for nearly uiistahlo AR( 1) 

iiiodol when tlie iiiiiovatioii so(nieii(;es arc func.tioiials of moving 

average pi()c:cssos has been investigated. It is shown that the 

limit (listributioii of the LSE is expressed as the fmictionals of 

()r 11 s t oi 11- U11 lei lb eck jjrocesses drivoii by Heniiito processes. 

A iinniher of issues roiiiaiii to he addressed in furtlior research. 

(a) 111 Soctioii 2 .3 .1 . , on the basis of Thoorein 2.2 , the saiiipk^ paths 

of the fract ional OriiHt.oiii-Uhlenbock pi.o(:(�ss()s w(t(�siiniilated by 

the linear proctoss on the left side of cqiiatioii (2.20). In those 

siniTilations, the tniiicatioii sdieine proposed by Wu, Mic.liailidis 

and Zhang [63] wfus adopted to deal with the infinite iHiiiibcr of 

toiiis in cxIllation (2.20). This sclieine could also be extended 

to simulate the sample paths of the Hennit(�Ornstoiii-UhkMiheck 

processes on tho ha.sis of Th(X)roiii 4.1. Hero, a proper function 

K could l)(，dioscni. The sample paths of tlio Heniiite Oriistoiii-

Uhleiibock processes could he siiiiiilated by the linear process on 

the left side of equation (4.12). The accuracy of thcso siriiula-

tioiis could also bo estimated. However, these issues reiiiaiii to 1)(� 

pursued in further detail. 

(b) As the proposed tost is applied in practice, the paiamet,(�i. II iioods 

to bo ostiiriatod. However, the asyiiiptotk: validity of such a pi,()c(�-

(liirc remains to be cxainiiiod. To deal with this problem, Durbiii 

21] suggested a half-sample device in which the innovation se-

([iienc-.o { f , } is i.i.d.. In this device, the uiikiiown i)araincter voc：-
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tor is est i Ilia tod from a raiKloiiily-cliosoii lialf-saini)lc of data and 

treated as the tnie paraiiieUu.. Durhin's study showed that the 

limit dist ribution of the Kolniogorov-Siiiiniov tests so obt aincHl 

was the same as if the values of the parameters w(� i(�known. Uii-

fortiiiiatoly, this cievico is not valid when {(<} is (Icpoiulent. A 

device for a nearly unstable long-ineiiiory tiinc series rem a ins to 

proposed. 

((:)However, the limit distribution of tlio Koliiiogorov-Siiiiriiov test 

i)aso(l on the rosiduals goiierally ( i e p � ( i s on the undorlyiiig model 

parameters, which moans that cliffcroiit critical values arc ii(�(�(l(�(l 

for (lifForciit parameter values. To ovorcoiiie this (Icpondeiico on 

the uiiderlyiiig inoclel parameters, Koiil and Ling [33] proposed 

the weighted residual cinpirical i^roc.esses. Tlioy investigated the 

tests based on a vector of woightcci residual cinpirical ])ioc;osscs 

for some hotenoscodastic time series and showed that the limit 

(listribiitioii of these tests depciids only on the fitted (listribiitioii, 

not on the model. A natural extoiivsion would he to apply the 

, weighted residual empirical processes in the nearly luistablo loiig-

ineiiiory tiiiio series to derive tlie Koliiiogorov-Sniirnov statistics 

that do not depend on tlio model. 
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