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摘要 

本文使用一种基于有限单元法的水平集方法来解决结构拓扑优化问题。 

使用水平集方法进行结构拓扑优化，是一种新兴的并己得到广泛关注和研 

究的方法。该方法通常分为两个阶段：应力分析阶段和基于水平集方法的边界 

演化阶段。前者通常由有限元法求解；后者通常由有限差分法求解。本文的目 

的是将两个阶段统一在有限单元法的体系下。此外，基于有限单元法的水平集 

方法更适合于求解不规则设计域上的结构优化问题。 

由于水平集方程是一个双曲型偏微分方程，传统的伽辽金型有限元法会产 

生振荡的数值解。本文釆用 SDFEM (streamline diffusion finite element method) 

求解水平集方程，从而得到稳定的数值解。该方法的优势在于：方程组的系数 

矩阵对称正定，且为常矩阵，因此非常便于求解。此外，该系数矩阵类似于结 

构动力学中的质量矩阵，因此“集中系数矩阵”的方法被借鉴过来，从而使得 

方程组完全解親，求解及存储的成本都极大地降低了。而且数值结果显示，使 

用集中矩阵使得方法更加稳定。本文将基于有限元法的水平集方法和传统的基 

于有限差分法的水平集方法进行了对比，并对它们的精度以及精度对结构优化 

问题的影响进行了讨论。 

重新初始化方程同样采用S D F E M求解，但是由于边界附近稳定效果不 

足，需要在方程中增加额外的耗散项。本文讨论了如何选择及调整耗散项的系 

数。由于数值误差及耗散项的影响，结构边界在重新初始化的过程中会发生漂 

移D为了限制结构边界的移动，本文采用了施加本质边界条件的方法。在有限 

元的体系下，该方法可以很自然地实现。 

本文还讨论了两种速度扩展方法：自然扩展法及基于偏微分方程的扩展 

法。其中第二种扩展法同样采用SDFEM求解。同时也讨论了和速度扩展有关 

的“弱材料”法，应力磨平等话题。 

本文以最小柔度问题为例，检验了本文所提出的方法在结构拓扑优化中的 

表现。数值算例既包括规则设计域上的优化问题，又包括非规则域上的优化问 

题。数值结果表明了本文所提出的方法的可靠性，并且展示了该方法在求解非 

规则域上的结构优化问题的优势。 
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A finite element (FE) based level set method is proposed for structural 

topology optimization problems in this thesis. The level set method has 

become a popular tool for structural topology optimization in recent 

years because of its ability to describe smooth structure boundaries 

and handle topological changes. There are commonly two stages in 

the optimization process: the stress analysis stage and the boundary 

evolution stage. The first stage is usually performed with the finite 

element method (FEM) while the second is often realized by solving 

the level set equation with the finite difference method (FDM). The 

first motivation for developing the proposed method is the desire to 

unify the techniques of both stages within a uniform framework. In 

addition, there are many problems involving irregular design domains 

in practice, the FEM is more powerful than the FDM in dealing with 

these problems. This is the second motivation for this study. 

Solving the level set equation with the standard Galerkin FEM 

might produce unstable results because of the hyperbolic character-



istic of this equation. Therefore, the streamline diffusion finite element 

method (SDFEM), a stabilized method, is employed to solve the level 

set equation. In addition to the advantage of simplicity, this method 

generates a system of equations with a constant, symmetric, and pos-

itive defined coefficient matrix. Furthermore, this matrix can be di-

agonalized by virtue of the lumping technique in structural dynamics. 

This makes the cost in solving and storing quite low. It is more im-

portant that the lumped coefficient matrix may help to improve the 

stability under some circumstance. 

The reinitialization equation is also solved with the SDFEM and an 

extra diffusion term is added to improve the stability near the bound-

ary. We propose a criterion to select the factor of the diffusion term. 

Due to numerical errors and the diffusion term, boundary will drift 

during the process of reinitialization. To constrain the boundary from 

moving, a Dirichlet boundary condition is enforced. Within the frame-

work of FEM，this enforcement can be conveniently preformed with the 

Lagrangian multiplier method or the penalty method. 

Velocity extension is discussed in this thesis. A natural exten-

sion method and a partial differential equation (PDE)-based extension 

method are introduced. Some related topics, such as the "ersatz" ma-

terial approach and the recovery of stresses, are discussed as well. 

The accuracy of the finite element based level set method (FELSM) 

is compared with that of the finite difference based level set method 

(FDLSM). The FELSM is a first-order accurate algorithm but we prove 

that its accuracy is enough for structural optimization problems con-

sidered in this study. Even higher-order accurate FDLSM schemes are 

used, the numerical results are still the same as those obtained by 



FELSM. It is also shown that if the Courant-Friedreichs-Lewy (CFL) 

number is large, the FELSM is more robust and accurate than FDLSM. 

Numerical examples are involved in this thesis to illustrate the reli-

ability of the proposed method. Problems on both regular and irregu-

lar design domains are considered and different meshes are tested and 

compared. 
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Chapter 

Introduction 

1.1 Background 

Structural shape and topology optimization has become an effective 

design tool for obtaining more efficient structures. The topology opti-

mization, as a conceptual design tool, has been regarded as a power-

ful structural optimization method because of its ability in producing 

structures with the highest performance. On the other hand, structural 

topology optimization has been identified as one of the most challenging 

tasks in structural design since it is not easy to handle the topologi-

cal changes in structures. Since the birth of the finite element (FE) 

based topology optimization at the end of 1980s, various techniques 

and approaches have been developed during the past decade. 

One main approach to structural design for variable topologies is the 

method of homogenization introduced in [1] (see also [2,3]), in which a 

material model with micro-scale voids is introduced and the topology 

optimization problem is solved by seeking the optimal porosity of such 

a porous medium using one of the optimality criteria. By transforming 



the difficult topology design problem into a relatively easier “sizing” 

problem, the homogenization technique is capable of producing inter-

nal holes without prior knowledge of their existence. However, the 

homogenization method may not yield the intended results for some 

objectives in the mathematical modeling of structural design. It often 

produces designs with infinitesimal pores in the materials that make 

the structure not manufacturable. Furthermore, numerical instabili-

ties may introduce "non-physical" artifacts in the results and make the 

designs sensitive to variations in the loading. 

A number of variations of the homogenization method have been 

investigated to deal with these issues by penalization of intermediate 

densities, especially the "solid isotropic material with penalization" 

(SIMP) approach for its conceptual simplicity [4,5]. Material proper-

ties are assumed constant within each element used to discretize the 

design domain and the design variables are the element densities. The 

material properties are modeled to be proportional to the relative ma-

terial density raised to some power. The power law-based approach 

has been widely applied to topology optimization problems with mul-

tiple constraints, multiple physics, and multiple materials. However, 

numerical instability and unsmooth structure boundary remain to be 

the major difficulties for realistic requirements. 

A simple method for shape and layout optimization, called "evolu-

tionary structural optimization" (ESO), has been proposed by Xie and 

co-workers [6, 7], which is based on the concept of gradually remov-

ing material to achieve an optimal design. The method was developed 

for various problems of structural optimization including stress consid-

erations, frequency optimization, and stiffness constraints. The ESO 



method uses a fixed model with standard finite elements to represent 

the initial design domain while the so-called optimum design is found 

as a subset of the initial set of finite elements. A key process of this 

method is to use an appropriate criterion to assess the contribution 

of each element to the specified behavior (response) of the structure 

and subsequently to remove some elements with the least contribution 

(usually known as hard kill). This approach is essentially based on an 

evolutionary strategy focusing on local consequences but not on the 

global optimum. It is typically computationally expensive. A simi-

lar approach called "reverse adaptivity" was proposed by Reynolds et 

al. [8], in which a fixed percentage of relatively under-stressed material 

is removed to find approximately fully stressed structures. Essentially, 

both ESO and reverse adaptivity are homotopy methods based on ma-

terial hard kills. In reverse adaptivity, finite element meshes near the 

boundary during the design procedure are refined to reduce computa-

tional cost or increase resolution. 

Another related approach is called "bubble method" which is pro-

posed by Eschenauer and coworkers [9,10]. In this method, so-called 

characteristic functions of the stresses, strains and displacements are 

employed to determine the placements or insertion of holes in known 

shape at optimal positions in the structure, thus modifying the struc-

tural topology in a prescribed manner. In such case, the design for a 

given topology is settled before its further changes. 

All the methods mentioned above focus on material and take mate-

rial properties as design variables. Differently, the "level set method" 

is based on boundary variations. In this method, the design variable is 

actually the exterior and interior boundaries of the structure. Bound-



aries are represented by the level set function and are propagated by the 

level set equation. Since the level set method can handle the merging 

and separating of interfaces naturally and flexibly, it offers a tool for 

simultaneous shape and topology optimization. A short introduction 

will be given in the next section. 

1.2 Level Set Methods for Structural Optimiza-

tion 

The level set method is introduced into the structural optimization 

field first by Sethian and Wiegmann [11]. In their method, the bound-

aries are allowed to move according to the stresses on the boundaries. 

A level set method is employed for tracking the motion of the struc-

tural boundaries under a speed function and handling the presence of 

potential topological changes. An explicit jump immersed interface 

method is used for computing the solution of the elliptic problem (the 

Lame equations) in complex geometries with a regular mesh. Osher 

and Santosa [12] propose a level set method for frequencies optimiza-

tion problems. They use functional gradients to calculate the velocity 

of the level set and deal with optimization problems with geometrical 

constraints. 

In a series of papers [13-16], the theories and algorithms of level set 

based structural optimization method are developed gradually and the 

technique is implemented into more general problems. As stated in [15], 

a boundary-based method with the capability of handling topology 

changes has the most promising potential. It is a more direct approach 

than material-based methods. For example, in general it allows more 



explicit representation of any features to be incorporated in the design. 

There are some variations of the level set based optimization method, 

which usually focus on the solution method for the level set equation. 

In [17,18], radial basis functions (RBFs) are used to discretize the level 

set function. By means of the method of lines, the authors separate 

the dependence of the level set function on time and space and trans-

form the partial differential equation (PDE) into a system of ordinary 

differential equations (ODEs). 

RBFs are also employed in [19-22] but in a different manner. In-

stead of solving the level set equation, this kind of methods parame-

terize the level set method. The level set equation, which has been 

discretized using RBF, is substituted into the shape derivative formu-

lation. By virtue of the chain rule, design sensitivities with respect 

to parameters are derived, and the level set function can be updated 

by varying parameters according to sensitivities. This method differs 

from other level set methods in that it needs boundary velocity only 

and requires boundary integration. 

A piecewise constant level set (PCLS) method is implemented to 

solve the structural optimization problems in [21,23, 24]. In this ap-

proach, a piecewise density function is defined over the design domain. 

This function is regarded as the link between the level set function and 

the objective function. The PCLS method retains advantages of the 

conventional level set method and it is free of the Courant-Friedrichs-

Lewy (CFL) condition and reinitialization. More importantly, this 

method allows new holes to nucleate so it is useful in two-dimensional 

topology optimization. 



1.3 Finite Element Based Level Set Methods 

The level set equation is a hyperbolic PDE. If the standard Galerkin 

finite elements are used to solve it, numerical instabilities may arise. 

There are usually two categories of methods to overcome this difficulty. 

The first category is to use some stabilized finite element methods 

which are suitable for hyperbolic or advection dominated equations. 

The second category changes the level set equation to what can be 

solved by using the standard Galerkin finite element method. Most 

of the finite element based level set methods fall in the first category, 

which are introduced below. For details of the stabilized finite element 

methods, the reader is referred to [25] and references therein. 

Barth and Set hi an are the first to discretize the level set equation 

on unstructured triangular meshes using finite element techniques [26 . 

They use the stabilized Petrov-Galerkin method to approximate the 

Hamilton-Jacobi equation. To remove small oscillations sometimes 

presenting near slope discontinuities, a discontinuity capturing oper-

ator [27] is employed. This method is subsequently applied in [28] to 

treat the growth of cracks. Petrov-Galerkin method is also used, with 

different formulations, to solve the level set problem in some special 

applications. For example, the incompressible multiphase flow is simu-

lated in [29,30] and the geodesic contours problem in image processing 

is handled in [31]. In [31], the Eikonal equation is combined with 

the level set equation, and both equations are solved simultaneously. 

No reinitialization is needed in this case. To improve the efficiency, 

the authors use a banded algorithm which restrict computation to the 

vicinity of the zero set of the level set function. It is worthwhile to note 



that there are some different names of the Petrov-Galerkin method for 

advection dominated equations in the literature, such as the stream-

line upwind/Petrov-Galerkin (SUPG) [32], and the streamline diffusion 

method [33 . 

The Galerkin least squares (GLS) finite element methods [34], which 

coincide with SUPG, have also been implemented to solve level set 

equations [35-37]. In [35], both the level set equation and the velocity 

extension equation are discretized with GLS and the shock capturing 

operator [27] is added to prevent numerical oscillations at sharp corners 

in the interface. Formulations for reinitialization are not proposed in 

this paper. In [36], the same method is used to solve the level set 

equation for modeling thermal oxidation of Silicon. The reinitialization 

is not discussed either. 

The discontinuous Galerkin (DG) method is originally developed to 

provide an approximation exhibiting a better behavior in the presence 

of discontinuous solutions. A complete review on the method can be 

found in [38]. This method has also been implemented for level set 

problems in [39,40 . 

The least squares finite element method (LSFEM) [41,42] is another 

stable FEM for hyperbolic problems. It is applied in [43’ 44] to solve 

the level set equation on curvilinear coordinates. This FE-based level 

set technique is subsequently used to optimize the shell structure. 

In another kind of stabilized FEMs, temporal discretization pre-

cedes the spatial one. The unknown variable is often expanded by Tay-

lor series in time and then the time derivatives are replaced by using the 

advection equation. This procedure introduces into the equation some 

additional terms that add the stabilizing diffusion in the streamline di-



rection. The characteristic-Galerkin method and the Taylor-Galerkin 

method belong to this kind. Although these two methods are devel-

oped differently, they are very similar to each other [25]. The former 

is applied in [45-47] to solve the level set equation; the latter is used 

in [48,49:. 

Next, we introduce the second category in which the hyperbolic 

level set equation is modified first. The new equation can. be solved 

with the standard Galerkin finite element method. The first method in 

this category is to add a diffusion term to the level set equation. Then 

the hyperbolic equation becomes a advection-diffusion equation, which 

can be solved with the standard Galerkin FEM because the stability 

is guaranteed by the artificial dissipation. This idea is realized in [50 

and the authors couple the level set method with structural topology 

optimization via the FEMLAB package [51]. It is pointed in [33] that, 

however, adding artificial diffusion term is not a good choice since this 

terms usually causes too much dissipations in the crosswind direction. 

The second method in the second category is to assume that the 

level set function is always a signed distance function. Consequently, 

the advection term disappear and the level set equation becomes a 

ordinary differential equation. This is method is called the assumed-

gradient method in [52] and the same idea is used in [37,53,54] too. In 

this method, one obtains a very simple level set equation at the expense 

of the task to maintain a signed distance function strictly. Ordinarily, 

the level set function used in structural optimization is not sensitive 

to its slope. In most cases, we reinitialize the level set function after 

several steps. Moreover, it is not necessary to obtain a strict signed 

distance function. However, in the assumed-gradient method, the level 



set function needs to be fully reinitialized before each step. In [52], the 

reinitialization requires locating the closest-point projection of each 

node onto the interface. In [53,54], a geometric reinitialization scheme 

is proposed, which also needs to calculate the closest distance from each 

node to the interface. It is interesting that，in [37], the reinitialization 

is realized by solving the Eikonal equation with GLS and Newton-

Raphson iteration. 

In [43,44,50,53,54], the finite element based level set methods have 

been applied to structural optimization. 

1.4 Contributions and Organization of this Disser-

tation 

The advantages of the level set method for structural optimization have 

been extensively discussed in literature. In most of the applications, 

the level set method is implemented with the finite difference method 

(FDM). This method works well on a structured grid, but difficul-

ties happen if the problem involves complex geometries and bound-

aries, where spatial discretization with the structured grid is impossi-

ble. However, the finite element method (FEM) handles these problems 

flexibly. This is one of our motivations for implementing the level set 

method with the FEM. The second motivation is related to the proce-

dure of the structural optimization. There are generally two stages in 

a level set based structural optimization procedure: the stress analysis 

stage and the boundary evolution stage involving level set methods. 

The first one is typically carried out with FEMs as often in industrial 

applications. Therefore, our aim is to unify the techniques of both 



stages within a uniform framework. 

In this dissertation, a finite element based level set method is intro-

duced for structural topology optimization. The streamline diffusion 

finite element method (SDFEM) is used to solve the level set equa-

tion and the reinitialization equation, and this SDFEM-based level 

set technique is combined with the structural optimization in the first 

time. The reason that we employ SDFEM for level set methods may 

be summarized as follows: 

1. This method is relatively simple compared with other stabilized 

FEMs. 

2. In this method, the coefficient matrix of the discretized level set 

equation is symmetric and positive definite. Moreover, we point 

out that this matrix is similar to the mass matrix in structural 

dynamics. Therefore, the mass lumping technique is borrowed. 

Numerical results show that using the lumped coefficient matrix 

improves efficiency significantly. 

We have also discussed the accuracy of the proposed method and 

compared it with the finite difference method (FDM) commonly used 

in conventional level set methods. The presented method possesses the 

same order of accuracy as ENOl, the first-order accurate upwinding 

FDM. Although there are some higher-order schemes in FDM, we show 

that, in this study, the accuracy of the presented method is enough for 

structural optimization problems. 

While the reinitialization equation is solved, numerical errors or 

added diffusion term will cause the boundary to move. We use the 

Lagrangian multiplier method or the penalty method to fix the bound-



ary. It turns out that this is a natural procedure within the FEM 

framework. 

Since the performance of the level set method depends highly on the 

velocity field, the velocity extension aiming at structural optimization 

problems is discussed. Some related issues, such as the influence of 

stresses singularities and stresses smoothing, are also discussed. 

This dissertation is organized as follows. In Chapter 2, the back-

ground knowledge of the structural optimization and the level set method 

are introduced. Some algorithms for level set based structural optimiza-

tion are discussed. In what follows we present the finite element based 

level set method in Chapter 3. Formulations are derived in details and 

parameters are defined explicitly. Some test cases demonstrate the per-

formance of the proposed method. The velocity extension is discussed 

in Chapter 4’ where two methods are introduced and compared. Chap-

ter 5 exhibits numerical examples including problems in regular and 

irregular domain, with structured and free mesh. Results illustrate the 

feasibility of the presented method. Conclusions and future work are 

discussed in the last chapter. 

• End of chapter. 



Chapter 2 

Level Set Methods For 

Structural Optimization 

2.1 Structural Optimization Problems 

There are several kinds of structural optimization problems, such as the 

minimum mean compliance problem, the maximum natural frequency 

problem, and the minimum stress problem. In this chapter, the first 

one is taken for example. In general, the minimum mean compliance 

problem can be specified as: 

minimize J(u, fi) = f F(u) dQ (2.1) 

J ft 

with 

F(u) = (2.2) 

where is the domain occupied by a structure and u is the displace-

ment of the structure under some loads and boundary conditions, e the 

strains and D the elasticity matrix. J is called the objective function 

and the integrand F(u) is actually the strain energy density. 



The design variable is the shape of the structure, Q, and the ob-

jective function J depends on Q in two ways: the explicit dependence 

since the integral is defined on fi and the implicit dependence through 

u which is the solution of the following state equations defined on fi: 

div<T(u) = f in 

u = 0 on (2.3) 

o-{u) • n 二 g on rV-

where a is the stresses, f the body force, g the specified traction acting 

on Neumann boundary T^. The boundary of structure is denoted by 

dQ and following relationships are satisfied: 

a Q ^ r ^ u r ^ u r / , 

r o n r v 二 0’ 

r v n r v = 0， 

where Fp is called the Dirichlet boundary and Tj means the traction 

free boundary. 

Eq. (2.3) can be expressed as the following weak form: find u e U 

such that 

a(u,v) = l{v), V v € U. 

with 

a(u，v) 二 I c { u , v ) d n = I e(u)^De(v) dQ 
Jn Jn 

/(V) = f f-vdQ-\- f g-vdr 
Jn Jvn 

(2.4) 

(2.5) 

(2.6) 



where U is the space of kinematically admissible functions. 

U = {u: = 0 on Td} (2.7) 

2.1.1 Shape Design Sensitivity Analysis 

In the shape and topology optimization based on boundary variation, 

the shape of the domain Q is treated as the design variable. The 

material derivative idea of continuum mechanics and the adjoint vari-

able method of design sensitivity analysis are applied to obtain a com-

putable shape derivative. 

We introduce a mapping T which is defined only by one parameter 

t, then 

(2,8) 

The process of deforming Q to Qt may be viewed as a dynamic process 

of deforming a continuum, with t playing the role of time. A design 

velocity can be defined as 

V 二 (2.9) 

Suppose that 2 is a component of the solution to Eq. (2.3) defined in 

Q. Then the material derivative of z is defined as 

i = y + (2.10) 

where z' is the partial derivative of z with respect to t and V is the 

velocity vector; 

dt' 
or in three-dimensional form, 

dx dy dz�T 
dt' dt' dt 

14 



One attractive feature of the partial derivative with respect to t 

is that, with an assumption of smoothness, the differentiation order 

between it and the spatial derivative are interchangeable, i.e., 

dz\' /dz' /Czy __ foz \ (2,11) 

material 

domains 

Next, two Lemmas are given to show how to compute the 

derivative of integrals in which both the integrands and the 

of integration depend on the parameter t. 

Lemma 1 Let Ii be a domain integral over fi 

h = f f { u ) d n 
Jn 

where f is a regular function defined on The material derivative of 

Ii is 

h = [ [ f(u)Vndr 
Jn JdQ 

where Vn is the normal velocity on boundary dfl. 

Lemma 2 Consider a boundary integral over F, 
l2 = J ^ 9 { u ) d r 

where g is a regular function defined on F. The material derivative of 

h is 

/2 = j 严 W + . n + 一 ) ) K " r . 

where n is the unit normal in P and k the mean curvature of F, 

According to Lemma 1，we take the material derivative of the ob-

jective function J: 

J= [ F'(u)dn + [ F{u)Vndr (2.12) 
Jn Jdn 



where 

F\u) = £ • u' (2.13) 

Computing u' is generally nontrivial but fortunately this term can be 

eliminated if we resort to the material derivative of state equations and 

the adjoint method. 

We first take the material derivative of both sides of Eq. (2.4) using 

Lemma 1 and Lemma 2, 

d(u，v)= / c\u,v)dn-\- / c{u,^r)Vnd^ 
Jn Jdo. 

/•(V) = f f- Vdn + / f . wVndT + / g . VdT 
Jn Jan Jr^ 

+ / ( V ( g - v ) - n + /^g-v)Kc?r 
Jr^j 

(2.14) 

(2.15) 

It should be noted that f ' = 0 and g' = 0 are used in the derivation 

because we assume that both f and g are independent on the design. 

Consider the integrand of the first integral on the right hand side 

of Eq. (2.14): 

c'(u,v) = ( £ ( u f D s ( v ) ) ' 

= ( • “ • ) ) ' (2.16) 

According to Eq. (2.11), the shape derivative of e can be transformed 

as follows: 
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and similarly 

4 ( v ) = e , i { V ) ( 2 . 1 8 ) 

Substituting Eq. (2.17) and (2.18) into Eq. (2.16) produces 

C'(U,V) = AjjfcK己”‘(U')£々）+£"(U)£fc“V')) 
(2.19) 

= c ( u '， v ) + c(u，v')’ 

so the material derivative of the bilinear form becomes 

d ( u , v ) = [ c(u' ,v)c/n+ [ c(u’V)iin+ [ c(u,v)V;c/r. (2.20) 
Jn Jn Jan 

From Eq. (2.20) and Eq. (2.15), we have 

[c{u\w)dQ-h f f c ( u， v ) V；冗 

Jn Jn Jdct 
= / f • V d Q + [ f • v \ 4 d r ( 2 , 2 1 ) 

Jn Jdn 

+ f g • v'dT + f (V(g-v)-n+/ ig-v)KvC?r 

Note that 
[c{u,V)dQ= [ f • v'dQ + [ g • VdT 

Jn Jtm 
(2.22) 

'rv 

which is the variational identity. Hence these terms can be canceled 

out from Eq. (2.21) and the following equation is obtained: 

a(u'，v) 二 f c(u',v)dQ 
Jn 

= / (f • v - c ( u , v ) ) V ; d r (2.23) 

+ / (V(g-v) -n + z^g-v)V;dr 

Next, we construct the adjoint equation: 

f OF 

Va) 二 Yq ‘ • VadQ, V € U , 

17 

(2.24) 



where a(.’ .）is the bilinear form defined in Eq. (2.5) and the subscript 

a means "adjoint" variables. Since the test function v^ can be selected 

arbitrarily as long as it belongs to U, we can replace it with u' (u' e U) 

and change Eq. (2.24) into 

dF 
Jn 

Similarly, we can replace v in Eq. (2.23) with û ： 

a ( u ' ’ u j = / (f .u„-c (u’Ua))Kt^r 
Jdn 

(2.25) 

Jtn 

(2.26) 

Comparing Eq. (2.26), (2.25), and (2.12) and noting that the bilin-

ear functional is symmetric, we can eliminate all the terms related to 

u' from Eq. (2.12): 

j= [ {F{u)-i-f •Ua-c{u,Ua))VndT 
"如 （2.27) 

+ / (V(g-Ua) •n + «g-Ua) l4dr . 

It is worthwhile to note that in the derivation we assume the Dirich-

let boundary Tj：, can not move in its normal direction. This means that 

Vn is zero onTj) and the shape derivative should be 

J= f (i^(U)+f .！！广咖’！̂，仏̂ 厂̂ 
•/rvuiv (2.28) 

JrN 
Substituting Eq. (2.2) into the adjoint equation Eq. (2.24), we ob-

tain 

— a ’ 0 = a (u ’<) , Vv, G [/, (2.29) 

which means that the adjoint variable Uq is same as the state variable 

u. Therefore, the minimum mean compliance problem is a self-adjoint 



(2.30) 

problem and the shape derivative reduces to 

j= f {{ • u - ^e(ufBeiu))Vndr 

+ I (V(g-u) + 
JrN 

2.1.2 Volume Constraint 

In practical problems, a volume constraint is always applied: 

f dft< vol, (2.31) 

Jn 

which describes an upper limit on the amount of material in terms of 

the maximum admissible volume vol of the structure. One can combine 

it with the objective function using the augmented Lagrangian method 

55] to construct an augmented objective function: 

J = J + 3
.
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where A > 0 is the Lagrange multiplier and r > 1 is the penalty 

parameter. 

Similar as in section 2.1.1, the material derivative of J is: 

j = j (f .u —*£(u ,D£(u) + ” K ^ ^ r (2.33) 

where 

A = maxjo , :K~\~r�j dQ - ？ ; ( 2 . 3 4 ) 

It has been assumed that Fyv is fixed while Eq. (2.33) is being derived, 

so the integral over Fyv vanishes. This assumption will be used in this 

study, unless otherwise specified. 

It is proved in [56] that along with the design variable converges 

to a local optimal solution, the Lagrange multiplier A converges to the 



correct value A*. In theory, the penalty parameter r should be large 

enough to speed up the convergence of A. However, in structural opti-

mization problems, if r is too large, the volume changes too drastically 

and some useful intermediate shapes will be missed. Consequently, r 

should be selected properly. 

2.1.3 Optimization Algorithm 

To guarantee the reduction in J, we require the boundary to move 

under the velocity I4 that satisfies the descent property: 

J < 0. (2.35) 

A simple descent method is the steepest descent method in which 

K = - ( f - u - 十 A). (2.36) 

Substituting Eq, (2.36) into (2.33), we can see that the descent property 

is satisfied. 

The boundary velocity is not only the important result of the shape 

design sensitivity analysis but also the critical link between the struc-

tural optimization and the level set method, which will be introduced 

in the next section. 

It is worthwhile to note that in practice, minimization of volume 

(weight) subject to compliance constraint is more popular than mini-

mization of compliance under volume constraint. As has been proved 

in [57], these two problems are equivalent to each other. If one can 

solve one of them, the other one is just the dual problem. We consider 

the later problem in this thesis because enforcing the volume constraint 

is much easier than enforcing the compliance one. 



2.2 Level Set Methods 

The level set method, first introduced in [58], has become a powerful 

tool for computing and analyzing the motion of an interface in two or 

three dimensions. It has been applied in many fields, such as image 

processing, solids modeling, fluid mechanics, and combustion [59,60 . 

The fundamental concept of level set methods is described here to 

provide necessary background for later parts. 

2.2.1 Implicit Interface Representations 

In the level set framework, an interface T (curve or surface) is repre-

sented implicitly through a level set function (/)(x), which is Lipschitz-

continuous, and the interface itself is the zero isocontour or the zero 

level set. Mathematically, it can be stated as 

r = { x : ( f > { ^ ) = 0 , x e D } (2.37) 

where D is a domain that contains F completely. To describe a struc-

ture Q, we give the following definition: 

( ^ ( x ) > 0 X 6 n 

(^(x) - 0 ^ E d n (2.38) 

( ^ x ) < 0 X E D\n 

where Q 二 QuarL Figure (2.1) shows a implicit representation through 

a level set function. 

Implicit representations include some very powerful geometric tools. 

For example, the unit outward normal on the interface can be defined 

(2.39) V0 
as: 



⑷ (b) 

Figure 2.1: Implicit interface: (a) level set function 0 and (b) interface and 

partition of domain 

Note that the minus sign guarantees that n points from the interior 

to the exterior. From now on, I shall use outward normal and normal 

interchangeably unless otherwise noted. The mean curvature of the 

interface is defined as the divergence of the normal n: 

K = V • —T-— 
V丨•於丨乂 

(2.40) 

Actually, since the level set function defines the interface in a domain 

of one higher-dimension, instead of defining n and k on the interface 

only, we can use Eq. (2.39) and (2.40) to define them everywhere on 

the domain. 

2.2.2 Level Set Equation 

Level set methods add dynamics to implicit interfaces. The implicit 

function • is used both to represent the interface and to evolve the 

interface. If we take derivative of the following equation: 

0(x, t)=0 yiE on (2.41) 



we get a advection (or convection) equation: 

l ^ + V - V 0 = O (2.42) 

which is referred to as the level set equation. If the motion of the 

interface is only in the normal direction, as in the structural shape 

optimization, the velocity becomes V = V^n, Substituting it into 

Eq. (2.42) and using Eq. (2.39), we obtain the level set equation for 

motion in the normal direction: 

尝一 Kl•於|二0 (2.43) 

This partial differential equation defines the motion of the interface 

where 0(x) = 0 under the velocity Kj. It is an Eulerian formulation of 

the interface evolution, since the interfaces is captured by the implicit 

function • as opposed to being tracked in the Lagrangian formula-

tion. The greatest advantage of implicit representation lies in the fact 

that it is able to deal with topological changes, such as splitting and 

merging of the boundary, in a natural manner. And in addition, with 

implicit representation boolean operations on the boundaries are easy 

to implement. 

It should be noted that in some literature, the definition of interior 

and exterior of the structure in Eq. (2.38) is reversed: 

(j){x) < 0 x e f i 

(^(x) - 0 x e d n (2.44) 

(f){x) > 0 X e D\n 

In this case, the normal n becomes 

n = 両 

23 



and then Eq. (2.43) reads 

m 
+ K V0I = 0 

2.2.3 Reinitialization 

The level set function of a given interface is not unique~if 0 is the 

level set function of F, then acj) {a ^ 0) defines the same interface F. 

Therefore, one can choose the best level set function according to some 

criteria. In general, the criteria concern the stability and accuracy 

of solving the level set equation and the accuracy of extracting the 

interface from the level set function. In most applications, analytical 

solution of the level set equation does not exist and the level set function 

4> has to be replaced by an approximated function and the PDE must 

be solved numerically. In this case, in addition to smoothness of 0"，one 

may desire that the level set function is neither too steep nor too fiat, 

especially near the interface. According to these, the signed distance 

function should be a good choice [60 , 

A signed distance function is an implicit function (j) with 

0(x) = 

X € Q 

xe on 

XE D\n 

(2.45) 

where 

= X - X c | (2.46) 

with xc the closest point on the boundary to x. 

As the interface evolves, 0 will generally drift away from the feature 

as a signed distance function. In other words, it will becomes too steep 



or flat. Thus, one always needs to re-construct the signed distance 

function during the evolution, which is called "reinitialization". 

There are various techniques for reinitialization [59,60]. In this sec-

tion, the method of solving the reinitialization equation is introduced. 

The reinitialization equation [61 

d(f) 

IS 

dt 
5((/)o)(l - |V(/>|) (2.47) 

where S is the sign function. It is evident that when this equation is 

solved to a steady state, which means 

d(t) 
dt 

0, 

the signed distance function is rebuilt since 

|V0| = 1. 

Equation (2.47) can be written in the following form 

dcf) 
dt 

+ W . •(/) 二 *S(0o)， 

where 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

For numerical purposes it is useful to smooth the sign function. 

In [61], S is smoothed as 

s{M = 
•0 (2.52) 

where a is a small constant, which can be specified as the mesh size. 

Peng et al. [62] suggest that 

5 • � (2.53) 

is a better choice, especially when the initial is too flat or steep, i.e 

when V(̂ o is far from 1. 
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2.2.4 Numerical Discretization 

A simple first-order accurate method for the time discretization of 

Eq. (2.43) is the forward Euler method: 

凌n+l _ An 
A Z _ K I W I = 0 (2.54) 

where V^ is the given velocity at time t几 and is the gradient of 4> 

at time f \ 

The upwind differencing or upwinding is used to calculate the spa-

tial derivatives of We describe it in one dimension. 

dx 

<k — (k-l .r T/ ^ r. 
办工=Ao: 代 〉 0 

. . (2.55) 
紀二 ¥ � f K ^ < 0 

This is a first-order accurate discretization of the spatial operator. To 

improve the accuracy, the idea of essentially non-oscillatory (ENO) 

introduced in [63] has been used [61,64,65]. In ENO, the velocity is 

still used to decide whether 4>~ or 小：is used, but the approximation 

for 4>; or (^J can be improved significantly. In [66], Liu et al. pointed 

that the ENO is overkill in smooth regions where the data are well 

behaved and proposed a weighted ENO (WENO) method that takes 

a convex combination of three ENO approximations. Later, Jiang and 

Shu [67] improve the WENO method to obtain the optimal fifth-order 

accuracy in smooth regions of the flow. In [68], Jiang and Peng extend 

WENO to the Hamilton-Jacobi framework. 



2.3 Structural Optimization With Level Set Meth-

ods 

As has been mentioned, the boundary velocity is the link between the 

structural shape and topology optimization and the level set method. 

Once the stress analysis has been performed and the velocity has been 

calculated based on stresses and strains, one can evolve the boundary 

by solving the level set equation. Then a new boundary and therefore a 

new structure is obtained. If this new structure is not satisfying, a new 

analysis step begins; otherwise, the optimization process terminates. 

For details, readers are referred to [13—16]. 

In addition, there are some level set structural optimization meth-

ods based on the radial basis function (RBF) techniques. These meth-

ods can be divided into two categories. In the first, the procedure 

is similar to what we have discussed above except that the level set 

function is approximated with RBF and the Hamilton-Jacobi PDE is 

transformed into a system of ODEs. This category is called the RBF 

level set optimization method and is introduced in (2.3.1). In the sec-

ond category, the velocity is eliminated and the level set equation is 

embedded into the shape derivative formulation. Then the sensitivities 

of the objective function with respect to the parameters are derived 

and the parameters are updated with a proper optimization algorithm. 

This category is called the parametric level set optimization method 

and is described in (2.3.2). 



2.3.1 RBF Level Set Optimization Method 

In this method, the level set function is approximated with radial basis 

functions: 
N 

(2.56) 
1=1 

where is the well defined radial basis function on knot i and ai{t) 

is the related unknown coefficient, which is usually called expansion 

coefficient. Substituting Eq. (2.56) into Eq. (2.43), we get 

一 $ 飞 丨 • 〜 
0 (2.57) 

and the PDE problem becomes a initial value problem. To determine 

N unknown coefficients, one can use the collocation method and obtain 

a system of ODEs as follows： 

^^doL ^ . 、 

H j 二 B � (2.58) 

where 

H = 
y^i(xi) 

(xat) 

B(a) = 

(2.59) 

(2.60) 

Using forward Euler method, an approximate solution to Eq. (2.58) 

can be given by 

二 a � + A m - i B ( a ⑷） (2.61) 

For details, please refer to [17,18 



2.3.2 Parametric Level Set Optimization Method 

In this method, the level set function is approximated in the same 

manner as in Eq. (2.56). From Eq, (2.57), we obtain 

= ( 卿 

Substituting Eq. (2.62) into the shape derivative formulation (2.33), 

we can eliminate the velocity and get 

_ p . N 
j = i (G + A) ^ ^ Y . 釣 d r (2.63) 

T/ 

with 

G = f - u - - £ ( u ) ' ^ D £ ( u ) (2.64) 

Note that the summation and integration can be interchanged and 

di can be taken out from the integral since it is independent of the 

spatial coordinates. Then we get 

N 

么 纖 " r (2.65) 

Because J depends on 0，i.e. 

N 

J(0) 二 叫⑷) (2.66) 

we can take the derivative by the chain rule 

N Q〒 
7 • dJ . J = > 

and define 
- _ 吐 

as the sensitivity of J with respect to parameter 

(2.67) 

(2.68) 



Comparing Eq‘ (2.63) and (2.67) and noting that all ai are inde-

pendent, we get 

la.=人(C + � dV i = l,…，N (2.69) 

Therefore, the sensitivities are evaluated as a boundary integral. 

An advantage of the parametric level set optimization method is 

that one can use not only the simplest steepest descent method but 

also many other advanced optimization algorithms, e.g. mathematical 

programming, optimal criteria (OC), and method of moving asympote 

(MMA). For details, the reader is referred to [19—22:. 

• End of chapter. 



Chapter 3 

Finite Element Based Level 

Set Method 

3.1 Discretization of the Level Set Equation 

3.1.1 Formulation 

The level set equation (2.42) has the following weak formulation: to 

find t) e H^ such that 

( 尝 ’ � + ( V . Ws 7；) = 0 V v e H ' (3.1) 

where 

(/i, /2) = [ fif2dn 
Jd 

However, this standard Galerkin formulation gives rise to central 

difference type approximations of differential operator, and therefore 

produces spurious oscillations when advection dominated equations are 

considered. In order to get stable numerical solutions, the streamline 

diffusion (SD) method [33] is used, with which Eq. (3.1) becomes the 



follows: Find ^ H^ x T„，Tn = [in，tn+i]’ such that 

( L � ,v + ^L(v})dt-h ([(/>'' ,n+\ _ = 0 

where 

L[v)=芸+V.V^； 

(Ti = - r-

s—>0 

= lim (/)(x, tn — s) s—>0 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

and is a parameter which will be discussed later. Here, the trial 

function 0 and the test function v are piecewise constant in time and 

is the jump of 0 at time tn. Therefore, we can state that 

瓦 = G and ^ = 0 onTn (3.8) 

and write Eq. (3.2) as 

At{Y • •於’ ；̂十 /JV . V̂；) + ？ = 0 (3.9) 

where At = tn+i — tn is the length of T„. Substituting Eq. (3.5) into 

Eq. (3.9) and designating <?!>"" and (/>"+ as (f)'̂  and 时i’ we obtain the 

final weak formulation: Given € find G H^ such that 

( 0 打 + 1 W + A � V . V 0 ， ” + 0V.V^;) = 0 " i v e H " (3.10) 

Similarly, for Eq. (2.43) describing the motion in normal direction, 

the weak formulation reads: Assume that (f)̂  = 0(x, tn) and are 

given, find e IP, such that 

-0"，…二 z l � \ g V ( r i ’句 w e (3.11) 



The parameter is chosen as [30 

A 二。“ A • … T (3.14) + |J-iV|2 

where J is the Jacobian matrix for the transformation from the global 

coordinates to the local coordinates. In two dimensions, it is defined 

as 
dx 迎 
一 … （3.15) 

with {x, y) meaning the global coordinates and 77) the local coordi-

nates. 

The whole design domain is discretized with a finite element mesh 

and the level set function tp is approximated by 
n 

0(x) 二 ；^ (3.16) 

where n is the number of nodes, iVj(x) are shape functions, and (pi 

are nodal value of the level set function. Equation (3.16) can also be 

written in the vector form: 

0(x) = N ^ (3.17) 

with 

A^n(x) (3.18) 
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where 

v = v + p i y -Vv (3.12) 

and V is K n . If we let dcj) = — Eq. (3.11) can be written as: 

find 5(1) e H^, such that 

(6(l),v) = At(VnV(l)'' ,v) \ f v e H ' (3.13) 

y
l
w
 y
l

 cr
 

X
T
 ̂

 



^ = [01, 02, • • • , (pnV (3.19) 

Similarly, the increment 6(p and the test function v are approximated 

as 

= N d (3.20) 

= Nv (3.21) 

with 

T H2, • . �H n 

V = I?；!, V2, . . . ’ Vr^^ 

After substituting Eq. (3.17), (3,20)，and (3.21) into (3.13), we ob-

tain the following finite element equations: 

Ad = b 

where the coefficient matrix is 

A = / N ^ N d n 
JD 

and the right hand side vector is 

b = At[ WT\4|•作n 
JD 

with 

W = N + P iY^VN 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) VN = [VyVi(x), • A ^ 2 ( x)，…，V I V n ( > 

Once the unknown vector d is obtained, we can update the nodal 

values of the level set function using: 

二 + d (3.27) 



The temporal discretization is the forward Euler scheme, so the 

time step size At is restricted by the CFL condition: 

八 h ^ i S S ^ ， M ( 0 ’ 1 ) (3.28) 

where h is the size of element. In this study, a = 0.5 is used. 

3.1.2 Discussions And Comparison With Upwind Differenc-

ing 

The streamline diffusion method uses a modified weighting function for 

the advection term. The modified weighting function is constructed by 

adding a perturbation term, which acts only in the streamline direction 

(or, in other words, the direction of velocity), to the standard Galerkin 

weighting function. In this way, the the streamline diffusion finite 

element method introduces diffusion effect in the streamline direction, 

and hence is more stable than the Galerkin finite element method which 

is actually quite under-diffused for hyperbolic equations [69]. 

Unlike other classical artificial diffusion methods, the streamline 

diffusion method does not introduce diffusion in the direction perpen-

dicular to the streamlines. Therefore, it circumvents the problem of 

excessive diffusion in crosswind direction and is more accurate than 

artificial diffusion methods. 

Furthermore, the SDFEM and upwind differencing have some char-

acters in common. To show this, we consider a simple one-dimensional 

case, where the advection term in level set equation (2.42) reduces to 

a linear, first-order partial derivative term Vd^/dx, and the SDFEM 

formulation of this term is 

n g ’ 一 £ ) (3.29) 



If the one-dimensional domain is meshed with elements, (j) is ap-

proximated as 

小[X) 二 Y^N人x)ck = N屯, (3.30) 

and the advection term becomes V K ^ , where K is a global matrix 

assembled from element matrices: 
fh 

Ke 二 / (Ne + (3.31) 
Jo 

Considering the linear elements as shown in Figure (3.1), we have 

(3.32) 

V N . = . (3.33) 

Ne = [iVe, Ne+i] 

idNe (9AUi 
dx ‘ dx 

N, 

Figure 3.1： Linear shape functions for a one-dimensional problem. 

The parameter j3 defined in Eq. (3.14) becomes the following form, 

if we ignore the contribution of At and note that J—i Ijh because 

the local integration domain is [0， 

h 
2 V 

(3.34) 

Now, we consider the equation related to node i, in which element 

matrices of element I and II are involved: 

Kj = Kjj = 
- 1 + S 1 - 5 

2h 
(3.35) 

- 1 - 5 + 5 



with 

s = V/\V 

s = 
if V > 0 

if V < 0 

After assembly, we have 

+ s 

2h —s 

—s 

2s 

(k 

0 - 1 —s l + s j \(j)i+iJ 

So the approximated advection term at node i becomes 

D(j)i = ^((-1 - _i + 2s<k + (1 -

D(k = 

((pi - (k 
h 

- (k 
h 

iiV>0 

iiV <0 

(3.36) 

(3.37) 

(3.38) 

which is just the upwinding scheme as defined in Eq. (2.55). 

For multi-dimensional formulations, it is not easy to find the similar 

relationships between the SDFEM and upwind differencing. In time-

dependent problems, p defined in Eq. (3.14) is recommended because 

it is stated that in addition to depending on the spatial discretization, 

the weighting function must also depend on the temporal discretiza-

tion [70]. Numerical results also demonstrate that adding (Si into the 

paramter can improve the performance of the method. 

3.1.3 Numerical Schemes 

In this study, to implement the proposed method, we use the four-node 

quadrilateral element, which is also called Q4 element for simplicity. If 



the element is square or rectangle, it is called the regular Q4 element; 

otherwise, the irregular Q4 element. See Figure (3.2) for the exam-

ples. In this section, some numerical schemes related to Q4 element 

are discussed. 

Figure 3.2: Q4 element: regular (left) and irregular (right). 

Consistent and Lumped Coefficient Matrix 

The integral in Eq. (3.23) is calculated with numerical integration. 

For the Q4 element, two-point Gaussian quadrature is needed to get 

the accurate result. The matrix A is independent on time so it is a 

constant matrix. This means that although we need to solve the system 

of equations (3.22) in each step, matrix decomposition is needed only in 

the first time step and after that only substitution is used. In addition 

to the property of constant, A is symmetric and positive definite and 

therefore is easily to be decomposed. 

The coefficient matrix A is something like the consistent mass ma-

trix in structural dynamics problems. Therefore, we call A the con-

sistent coefficient matrix analogously. In structural dynamics prob-

lems, the consistent mass matrix is frequently replaced by the so called 

lumped mass matrix. An important advantage of using a lumped mass 

matrix is that the matrix is diagonal, and the numerical operations for 



the solution of the dynamic equations of equilibrium are in some cases 

reduced very significantly. Similarly, If the coefficient matrix A is di-

agonalized to a lumped coefficient matrix A, the system of equations 

in Eq. (3.22) can be solved without decomposing a matrix. After the 

right-hand-side vector is constructed, the unknown vector are obtained 

using 

= h/Ai, (3.39) 

where bi is the ith component of the vector b and An is the ith diagonal 

element of the lumped coefficient matrix. Therefore, using the lumped 

coefficient matrix is more convenient and economical. 

There are various methods for matrix lumping [71,72]. In this study, 

the row sum method in which 

= (3.40) 

3 

is used. This method works well for four-node quadrilateral element 

(Q4). However, it should be noted that the row sum method sometimes 

produces negative masses for some other types of elements, e.g., the 

eight-node serendipity element. 

Integration Schemes for Right-Hand-Side Vector 

To compute the integral in Eq. (3.24), the standard numerical integra-

tion scheme is the two-point Gaussian quadrature. However, for regular 

Q4 element (square or rectangle), one-point scheme is accurate enough, 

which can be demonstrated by the result of test case (see 3.1.4). 



3.1.4 Test Case 

In this test case, we consider a circle which shrinks with constant nor-

mal velocity = 1，as shown in Figure (3.3). The computational 

domain is a two by two square. The origin radius of the circle is 0.5. 

Ten steps are computed with 0.01 as the time step size and the final 

radius of the circle reduces to 0.4. 

(-1,1) (1，1) 

1 - 1 ) (1-1) 

Figure 3.3: A circle shrinks with constant normal velocity. 

To measure the accuracy, three error indicators are defined: 

1. Error of the interface. 

Assume there are n! intersections of the exact interface and el-

ement edges, and let the coordinates of intersections be denoted 

by 

> X2, . • • > ^nj . 

Then, the error of the interface is defined as 

El 二 

n/ 

E (编 )‘ 

1/2 

(3.41) 

where means the approximated level set function 



2. Error of the area. 

Let and fi® denote the numerical and exact results of the 

shrinking circle. Let A^ and A^ denote the area of and ri® 

respectively. Then the error of area is defined as 

Ah 一 Ae 

Ea = - — — X 100% (3.42) 

Error of the length (perimeter). 

Let L^ and L® denote the perimeter of and Then the error 

of length is defined as 

E l = 丨 "「 "丨 X 100% (3.43) 
L 

Uniform four-node quadrilateral elements 

First, the computational domain is uniformly meshed with 100 by 100 

regular Q4 elements. By uniform, we mean that all elements have the 

same shapes and sizes. For the proposed finite element based level 

set method (FELSM), four schemes are tested: NGllump, NG21ump, 

NGIcons, and NG2cons. The number following "NG" means the num-

ber of Gaussian quadrature points in each dimension. The strings 

"lump" and "cons" mean the "lumped matrix" and "consistent ma-

trix" ,respectively. The finite difference based level set method (FDLSM) 

is also implemented on the same grid for comparison. Four schemes 

are considered: ENOl, EN02，EN03, and WENO, which are first-, 

second-, third-, and fifth-order accurate, respectively. 

Table (3.1) shows the CPU time and errors of virous schemes. All 

CPU time are normalized with respect to the CPU time of ENOl, 

which is 0.375 second. 



Table CPU time and errors of uniform Q4 elements• 
Program Scheme CPU time 

(0.375 s) 

Error Program Scheme CPU time 

(0.375 s) EL EA{%) EL{%) 

FDLSM 

ENOl 1 1.384e-2 0.4744 0.2360 

FDLSM 
EN02 1.21 7.677e~4 0.0240 0.0120 

FDLSM 
EN03 1.46 4.922e-5 0.0015 7.6e-4 

FDLSM 

WENO 3.96 2.545e-7 8.9e-6 4.4e-6 

FELSM 

NGllump 1 9.686e-3 0.3927 0.1965 

FELSM 
NG21ump 2.29 9.676e-3 0.3932 0.1967 

FELSM 
NG Icons 9.37 9.684e-3 0.3926 0.1964 

FELSM 

NG2cons 10.7 9.674e-3 0.3931 0.1967 

The difference of accuracy among different schemes of FDLSM is 

obvious. The higher the order, the smaller the errors. However, the ac-

curacies of four schemes of FELSM are almost the same. If we compare 

the CPU time, we find that the lumped scheme is faster than the con-

sistent scheme. This fact states that using lumped coefficient matrix 

improves the efficiency significantly while loses nearly no accuracy. 

Now, we compare the performances of FDLSM and FELSM. The 

accuracy of FEMLS is a little higher than ENOl while much lower than 

other higher-order FDLSM schemes. The speed of NGllump, which is 

the fastest one in FELSM, is similar to ENOl. However, CPU time 

of other FELSM schemes are larger than FDLSM, It should be noted 

that the code can be optimized to speed up for uniform mesh. If the 

non-uniform mesh mentioned later is used, the CPU time for FELSM 

will be even larger. 

It seems that higher-order finite difference schemes are superior to 



FELSM because of the high order of accuracy. However, it is notewor-

thy that the velocity field is simple and can be calculated analytically 

in this test case. Therefore, the accuracy of the results depends only on 

the accuracy of discretization of the level set equation. In the structural 

optimization problems, the velocity can not be obtained analytically. 

If the velocity is of lower-order accuracy, higher-order results can not 

bee obtained even higher-order level set method is used. This will be 

shown in numerical examples. 

Irregular four-node quadrilateral elements 

Figure 3.4: A mesh of irregular four-node quadrilateral elements. 

Next a mesh containing 2920 irregular Q4 elements and 3023 nodes, 

as shown in Figure (3.4) is considered. This mesh is automatically gen-

erated by ALGOR [73]. Mesh generation and the influence of meshes to 

the performance of FELSM beyond the scope of this study. Hence, we 



just generate a mesh and use it. Table (3.2) shows erros of four schemes 

of FELSM. It is shown that errors of two-point Gaussian quadrature 

are lower than one-point quadrature. This is coincident with the prin-

ciple of quadrature in finite element technique, which states that the 

reduced integration is often insufficient for accuracy when irregular Q4 

element is considered. 

Table 3.2: Errors of irregular Q4 elements. 

Scheme EL EA{%) EL(%) 

NGllump 0.02139 0.3968 0.1557 

NG21ump 0.00919 0.4622 0.2291 

NG Icons 0.02757 0.3935 0.3687 

NG2cons 0.00912 0.4528 0.2251 

Three-node triangular elements 

At last the computational domain is divided into 3632 three-node tri-

angular (T3) elements and 1897 nodes as shown in Figure (3.5). For 

triangular elements, area coordinates are used [71] and one-point and 

three-point integration are tested. Errors are listed in Table (3.3). 

Table 3.3: Errors of triangular e ements. 

Scheme EL EA{%) EL(%) 

NGllump 0.01085 0.5160 0.2585 

NGSlump 0.01085 0.5160 0.2585 

NG Icons 0.01076 0.5108 0.2560 

NG Scons 0.01076 0.5108 0.2560 

The accuracy of the consistent matrix is a little higher than the 



Figure 3.5: A mesh of three-node triangular elements. 

lumped one. For either types of matrices, the accuracy of three-point 

quadrature is the same as one-point quadrature. To explain this results, 

let's observe Eq. (3.24), On T3 elements, shape functions are linear and 

their derivatives are constant. The velocity is constant (equals 1 every-

where) in this test case. Consequently, the integrand in Eq. (3.24) is 

linear and one-point Gaussian quadrature is enough to obtain accurate 

retults. 

However, in practice, Vn is not always constant. For example, 

in structural optimization problems considered in this study, veloc-

ity is sometimes described by shape functions (see Chapter 4). In this 

case, the integrand becomes quadratic polynomials, for which one-point 

Gaussian quadrature is inadequate. 

Actually, T3 elements are not recommended because of its lower 

accuracy. It is well known that T3 element is strain constant element 



for structural analysis. As a result, the velocity field which is calculated 

based on strains and stresses is inaccurate and this inaccuracy will lead 

to rough boundary. If one has to use T3 elements in some cases, such 

as meshing a very irregular domain or the transition zone between two 

types of meshes, he should pay attention to the issue of accuracy. 

3.1.5 Discussion 

It seems that higher-order finite difference schemes (EN02, EN03, and 

WENO) are more accurate than the finite element based schemes. This 

is true in the test case and some applications while it is not the case 

in the structural optimization problems. In this test case, the velocity 

is simple and can be expressed analytically. Errors of the results come 

from the errors of approximating the derivatives. Hence, higher-order 

schemes produce higher-order results. In structural optimization prob-

lems, however, the velocity can not be described analytically and it 

can only be approximated in a low-order manner. For instance, if Q4 

elements and bilinear interpolations are used, the final velocity field is 

only first-order accurate. Under the circumstances, even fifth-order ac-

curate WENO scheme can only give first-order accurate results because 

of the velocity bottleneck. 

CPU times listed in Table (3.1) are used to give us an intuitive un-

derstanding of the efficiency of the FELSM. In this case, NGllump is 

similar to ENOl in CPU time; but if the scale of the problem increase, 

cost for FELSM might go up more rapidly than that for FDLSM. Fur-

ther analysis of the time complexity is necessary, if one want to know 

the rigorous algorithm efficiency. It is worthwhile to remark that one 

level set step is much cheaper than the solution of the state equation. 



For examples, in this study, time for one level set step is always less 

than one fifth of the time for one optimization step. Hence, increase in 

the time for the level set method will not affect the optimization time 

dramatically. 

3.2 Discretization of the Reinitialization Equation 

3.2.1 Formulation 

Similar as in 3.1, the weak formulation of Eq. (2.50) is expressed as: 

Let 功0 =小孔 and suppose is known, find 功̂+丄 £ I P such that 

(於杆 1 一 妙i，y) + AT(e•妙糾’ 

二 - At(w^ . Vip\V) + A t ( 5 , V) \/V G 

where S is the sign function defined in Eq. (2.53) and 

(3.44) 

V — V ^ • V f 

where w is defined as in Eq. (2.51). The parameter ft is 

1 
(h 

(3.45) 

2 V(At)-2 + iw� 
(3.46) 

and the time step size is selected according to the CFL condition: 

A t = a — — J r a E (0’ 1) (3.47) max{|w|} 

with a = 0,5 in this study. From Eq. (2.51) we know that max{ |w|}= 

1, hence A t is actually h/2. 

Eq. (3.44) should be solved iteratively until the steady state to ob-

tain the signed distance function. With numerical algorithms, however, 

achieving the steady state is impractical. Once the solution has con-

verged according to some criteria, one can think of the result as a steady 



solution. An indicator is usually defined to determine the convergence: 

r 1 11/2 
I c = — [ ( I•也 I - 1 ) 2 ， (3.48) 

“1=1 

where rip is the number of points at which the gradient is evaluated. 

li Ic < u {u is a small number specified in advance), the solution is 

regarded as convergence and the iteration stops. 

It should be noted that an extra diffusion term is added into Eq. (3.44). 

since the streamline diffusion modification gives an insufficient diffu-

sion effect around the boundary, where S is small and w is therefore 

small in magnitude [30]. The factor e of the diffusion term is decided 

according to the following criterion 

e = c ^ (3.49) 

where c is a constant coefficient to adjust the diffusion effect. This 

coefficient should be selected properly. On one hand, it provides enough 

diffusion effect to stable the numerical results, especially results near 

the boundary; on the other hand, it should not be so large that extra 

numerical errors are introduced. We suggest that c is selected in [0.1,1 . 

One can use firstly a relatively small value, say 0.1, and if he find that 

the iterations of the reinitialization equation are unstable, for example, 

the value of Ic increases, he can increase c until the iterations become 

stable. In this study, c = 0.1 is used and it is enough for stable results. 

Equation (3.44) can be written as 

(3.50) 

=AT{S - • v) + {iP\ v) \fv E H^ 

After discretization, the system of finite element equations is 

C 屯 = R (3.51) 
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with 

C = A + AreB 

R = Ar(Ri ~ R2) + R3 

The matrix A is same as Eq. (3.23) and B is 

B = j (VN)'^VNrfQ 

(3.52) 

(3.53) 

(3.54) 

Similar as A, the matrix B is also a constant matrix. Therefore the 

coefficient matrix in Eq. (3.50) is constant since both Ar and e are 

constant. Only one time of matrix factorization is needed. The right-

hand-size vectors are 

Ki= [ W^Sdn 
JD 

K2= [ 
JD 

R3= [ n V dn 
JD 

(3.55) 

(3.56) 

(3.57) 

(3.58) 

with 

W 二 N + "2wTVN 

3.2.2 Enforce Dirichlet Boundary Condition 

In theory, the boundary remains stationary during the reinitialization 

procedure because the velocity w is zero on the interface. But in prac-

tice, there are two factors that will tend to move the boundary. The 

first factor is the numerical errors introduced by discretization and the 

second one is the diffusion term in Eq. (3.44). To fix the boundary 

during reinitialization, the Dirichlet boundary condition 

- 0 x G (3.59) 



should be enforced. The procedure of enforcing this boundary condition 

is explained with a Q4 element. The method for other types of elements 

is similar. Consider a Q4 element intersected by the boundary as shown 

in Figure (3.6). The Dirichlet boundary condition require 

3 

Figure 3.6: A Q4 element intersected by the boundary. 

(3.60) 

Hence, for each intersection, there is a submatrix 
t 

G , = 
N2(r,rr 

N3(e,rr 
(3.61) 

M E , ! ' 

Actually, shape functions N^ and N4 vanish on the considered intersec-

tion, so the submatrix reduces to 

A global matrix G can be assembled 

G(/，loc) = G j 

50 

(3.62) 

(3.63) 



where I is the index of intersection and loc is the locations of nodes in 

the global nodes sequence. We can now describe the Dirichlet boundary 

condition as a series of constraint equations: 

G ^ = 0 (3.64) 

This constraint can be enforced with the Lagrange multiplier method, 

in which the system of equations is augmented to 

C GT 

G 0 

with the penalty method 

A 
(3.65) 

{C + pG^G)^ = R (3.66) 

where p is a large number. 

Numerical results show that the Dirichlet boundary condition is 

enforced satisfactorily and drift of the boundary during reinitialization 

is tiny. 

3.2.3 Test Case 

In this test case, level set functions of the interface shown in Fig-

ure (3.3) are reinitialized with the proposed method. For the circle 

in Figure (3.3)，the signed distance function is 

(l>s = R- yjx" + 1/2 (3.67) 

where R = 0.5 is the radius. Given two level set functions with respect 

to the circle, 二 20s and 02 = 0.50s> we now rebuild them to the 

sign distance function. 



First, a structured mesh with 50 by 50 uniform Q4 elements are 

used. The time step size Ar is 0.025 and 20 iterative steps are run. 

In theory, the reinitialization equation propagate information at speed 

1 in the direction normal to the interface and the information will be 

moved to 0.5 away from the interface after 20 iterations. In other 

words, in this test case, the information will occupy a unit circle after 

20 iterations, whose center lies in the origin. The level set function on 

this unit circle should be reset to the signed distance function. 

However, because of the smoothness of the sign function S and 

numerical diffusion, the speed is always less than 1 and so the reinitial-

ization is slower than theory. Figure (3.7) shows the results of reini-

tializing . Some contours of the final level set function are plotted. 

These contours correspond to 0 = [-0.5 : 0.1 : 0.5] and the bold line is 

the interface where 小=Q. Dash grid lines help to judge whether these 

contours have reached their theoretical positions. One can see that 

there are six contours that have almost reached the right positions. 

They are contours of < 0.3. The others have not been completely. 

Next, 02 is reinitialized in the same mesh. Figure (3.8) shows those 

contours, whose values are same as those in Figure (3.7). Once again, 

one can find out that numerical speed is slower than theoretical speed. 

To measure the difference between the numerical results and the 

exact signed distance function, an error is defined as 

份 二 r " ) �l Q O (3.68) 

where 屯s is the vector of nodal values of the signed distance function, 



Figure 3.7: Reinitializing 4)1 

屯 is the nodal values of the reinitialized function, and In means the 

set of nodal indices, 

In = {i- I 中 < n x d } (3.69) 

with d = 0.1. Figure (3.9) shows the errors of NGlcons and NG2cons 

schemes, with n from 1 to 5. It is apparent that errors increase rapidly 

from 71 = 3, which coincides with the conclusions obtained by observing 

the contours. 

Next, we use the free mesh shown in Figure (3.4) to reinitialize 01. 

Errors are exhibited in Figure (3.10). Contrary to the case in solving 

the level set equation, the one-point quadrature scheme on irregular 

Q4 element works well when solving the reinitialization equation. 



Figure 3.8: Reinitializing 02 

-e—NG Icons 
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4 

Figure 3.9: Error on uniform Q4 

3.2.4 Discussion 

For a particular application, one has to decide how sensitive the relevant 

techniques are to 0's approximation of a signed distance function. If 
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Figure 3.10: Error on free Q4 

they are very sensitive, 0 needs to be reinitialized to signed distance 

both accurately and often. If they are not sensitive, one can reinitialize 

with a lower-order accurate method on an occasional basis. 

Fortunately, the proposed method, when employed in structural 

optimization problems, is not sensitive to whether the level set function 

is a strict signed distance function or not. Therefore, we can perform 

one reinitialization every three or five steps. Furthermore, in each 

reinitialization, there is no need to solve the reinitialization equation 

to steady state. Several iterations are enough. 

• End of chapter. 
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Chapter 4 

Velocity Extension 

To solve the level set equation, the normal velocity 14 must be defined 

on the whole computational domain, or at least on Gaussian quadrature 

points. However, we can get only the velocity on the boundary from 

the shape derivative. Therefore, an extension from the boundary to the 

entire design domain should be preformed and the new velocity field is 

known as the "extension velocity". 

Recall that the level set technique relies on the embedding of the 

moving interfaces as the zero level set of higher dimensional time-

dependent function. We can consider the extension as the embedding 

of interface's velocity to this higher dimensional level set function. This 

means that the velocity is now defined for all level sets, not just the 

zero level set. 

In practice, we have considerable freedom to construct the extension 

velocity as soon as the following constraint is satisfied, 

Vext = Vn on(f> = 0. (4.1) 

In the level set field, several extension methods have been intro-



duced, such as the fast marching method [74] and the PDE-based 

method [62]. Although all these methods can be employed in the 

structural optimization problems, we prefer the PDE-based method 

because we are using FEM. Actually, there is also a natural and physi-

cally meaningful extension method in structural optimization problems, 

which is called the "natural extension". 

Prom Eq. (2.36), we know that velocity involves the computation of 

stresses and strains. So the accuracy of velocities depends on the accu-

racy of the stress analysis. Before introducing the extension methods, 

we shall discuss the issue of computing velocity. 

4.1 Velocity Computation 

4.1.1 Stress Analysis 

A challenge to structural topology optimization is the fact that if the 

conventional FEM is used for the stress analysis, the finite element 

mesh will become distorted after the shape and topology change. Under 

these circumstances, the structure domain must be remeshed. However, 

remeshing is a complicated and time consuming task, and will bring 

down the efficiency of optimization. 

In this study, we use the so-called "ersatz material" approach [14 

which has been widely used in stress analysis of the compliance op-

timization problem. In this approach, the state equations (2.3) are 

extended from the structure domain H to the whole design domain D, 

The void domain D\Vt is assumed to be replaced by a type of "weak" 

material, whose Young's modulus is very low. For example, Young's 



modulus of the weak material is often defined as 

Eo = C ' E (4.2) 

where E is the Young's modulus of the solid material of the structure 

and c is a small coefficient. In this study, c is selected as 0.001. Note 

that c can not be too small, otherwise the stiffness matrix will be 

singular. 

For elements intersected by the boundary, Young's modulus is cal-

culated according to the fraction of solid material. For example, in 

one element, if the volume of solid takes one half of the volume of the 

element, then Young's modulus of this element is set to Q.5E. 

With the assumption of ersatz material, state equations are ex-

tended to the whole design domain: 

—diva(u) 二 f in D, 

u = 0 on FD, (4.3) 

cr(u) n = g on IV. 

Because the design domain is fixed，no remeshing is required during 

the structure evolution process. 

This method is simple and can give satisfactory results for com-

pliance optimization. If more accurate stresses are required, such as 

in minimum stress optimization, some advanced techniques should be 

adopted, e.g., the extended finite element method (XFEM). About the 

implementation of XFEM in topology optimization, the reader is re-

ferred to [75] and references herein. 

In this study, once a mesh is generated, it will be used for stress 

analysis, velocity extension, and level set evolution. 



4.1.2 Recovery of Stresses 

With bilinear Q4 element, the stress is piecewise continuous. On edges 

of elements, the stress is discontinuous. So we can not get a smooth 

stress field. This can be resolved by using the recovery of stresses. 

The recovery of stresses is also known as the "stress smoothing". In 

this study, the superconvergent patch recovery (SPR) method [71,76 

is adopted. In this method, the stresses are first evaluated on the su-

perconvergent sampling points because the values of stresses on these 

points are more accurate than those on other points. Typically, the 

superconvergent sampling points are Gaussian quadrature points. If 

we take the Q4 element as an example, the superconvergent sampling 

point is the point where one-point Gaussian quadrature is executed. 

Subsequently, nodal values of stresses are recovered from stresses on 

superconvergent sampling points. Stresses on any point can be ob-

tained by interpolation in the same manner as the displacements. This 

recovered stress field is smooth and has the same order of accuracy as 

the displacement field. For details, the reader is referred to the cited 

references. 

4.2 Natural Velocity Extension 

Equation (2.36) tells us that the boundary normal velocity depends 

on the displacements, stresses, and strains. All these quantities have 

physical meanings on the whole design domain by virtue of the ersatz 

material approach. So the extension velocity can be naturally obtained 

by evaluating these quantities everywhere and using Eq. (2.36): 

二 G — A (4 .4 ) 



where 

G = 3 咖 阳 u ) -

Although this method is simple, a problem will arise if there are 

stresses concentrations or singularities. When these phenomena hap-

pen, stresses and hence velocity on the relevant regions become enor-

mous. If we consider the CFL condition: 

一 1 ) , ( 4 . 5 ) 

the time step size has to be very small to satisfy it. As a result, the 

propagation of the boundary is slow and the optimization takes a large 

of steps to converge. 

If the regions of stresses concentrations and singularities are what we 

care about, we have to resort to some techniques to relieve the concen-

trations or singularities. However, in the minimum mean compliance 

problems—at least in problems in this study—stresses concentrations 

and singularities occur always on the regions which are either far away 

from the boundary or within the non-designed domain. There is no 

need to consider these extreme stresses within the context of compli-

ance optimization. 

Therefore, instead of eliminating stresses concentrations and singu-

larities, we use a relatively simpler "modified natural extension method" 

to circumvent the difficulty. This method reads: Define 5 as a narrow 

band around the boundary, then the extension velocities are calculated 

with the following formulation, 

G-X onB 
Ve.t = { (4.6) 

G-X on D\B 



where 

G 二 = max{G} on B 

The modified natural extension method pays attention to the ve-

locity near the boundary, which influence the boundary propagation 

directly. On the region outside the narrow band B, extreme values of 

velocity are cut off. 

4.3 PDE Based Extension 

The idea of the PDE-based extension method is first proposed and ana-

lyzed in the appendix of [77], but the authors do not try to implement 

it. Later, this method is employed in [78] and extensively discussed 

in [62]. Suppose we have a quantity q defined on the interface T. The 

most natural way to extend g off r is to let g be a constant along the 

characteristic line normal to r . This suggests the following hyperbolic 

PDE, 

q t ^ S ( < J > ) ^ - V q = Q, (4.7) 
V0I 

where 5(0) is the sign function of • and is approximated by 

_ = (4.8) 

where a is a small smoothing parameter which can be taken as Ax. 

In [28], Eq. (4.7) is solved with the method proposed by Barth et 

al. [26]. Here, we solve it with the SDFEM. If we define 

w = _ 蒜 ， （4.9) 



Eq. (4.7) can be written as 

qt-\-w •Vq = 0. (4.10) 

Obviously, this is a first-order hyperbolic PDE and can be discretized 

with SDFEM as follows: Suppose g fP is given, find G H\ 

such that 
rjn+l _ n 

{ . .v) + Vv) + (w" • Vq",v) = 0, W e i f i (4.11) 

l̂aZ/ 

where 

V = v + • Vv, (4.12) 
p = I . (4.13) 

2v/(A 艺)-2+ J-iwT 
Similar to SDFEM discretization of the reinitialization equation, an 

extra diffusion term is added into Eq. (4.11), because the velocity w 

is small near the boundary and consequently the streamline diffusion 

effect is too small to stablize the numerical results. The coefficient e of 

the extra diffusion term can be selected as in Eq. (3.49). 

The system of finite element equations is 

(A 十 AteB)Q = R (4.14) 

where A and B are defined as in Eq. (3.23) and Eq. (3.54) respectively, 

and 

R = R i - A 恥 (4.15) 

R i = [ N V f i Q (4.16) 
J D 

R 2 = / (N 十 ( 4 . 1 7 ) 
JD 

The advantage of the PDE-based extension method is that the ob-

tained velocity field has a tendency to preserve the signed distance 



function. As discussed in [77], if (pQ is a signed distance function, up-

dating it with the extension velocity obtained from Eq. (4.7) produces 

a new level set function (j)new, which is also a signed distance function. 

In this sense, the reinitialization stage can be omitted. 

Nevertheless, there are some disadvantages of the PDE-based method. 

First, this method involves solving PDE which makes it more time-

consuming than the natural extension method. In addition, to get 

the property of preserving signed distance functions, the PDE must 

be solved to steady state. This asks for many iterations if the design 

domain is large, because the information can only be extended forward 

a distance of At in each iteration, similar as in reinitialization process. 

The second disadvantage is due to the numerical errors. Although the 

signed distance function should be retained in theory, numerical errors 

always weaken this ability and the signed distance function degenerates 

gradually. So we have to resort to the reinitialization again. 

As stated in [74], if one's goal is to extend the velocity in a nar-

row band several cells around the interface, one might try the iterative 

technique. Because in the narrow band scheme, the number of freedom 

in Eq. (4.14) is small and solving the system of equations is fast. Fur-

thermore, in this case, the computational domain is the narrow band 

and several iterations are enough to extend the velocity to the whole 

band. On the contrary，if the whole domain scheme is considered, the 

natural extension method is appreciate. 

In this study, only the whole domain scheme is considered, hence 

the natural extension method is used. The narrow band scheme will 

be investigated in the future. 



• End of chapter. 



Chapter 5 

Numerical Examples 

In this chapter, the proposed method is implemented to solve some 

compliance optimization problems in two dimensions. Unless stated 

otherwise, all the units are consistent and the following parameters 

are assumed as: the Young's modulus E = 1 for the solid material, 

E = 0.001 for the weak material, and Poisson's ratio v 二 0.3. The 

convergence criterion for the optimization is defined as follows: If 

J " - J " 
< le - 6, jn-1 

the optimization process terminates and the design of step n is the 

final design. However, we have found that this criterion is too strict 

for most cases. Therefore, a maximum number of steps is specified. If 

this number is reached, the optimization stops. In this chapter, this 

number is specified as 200. For all the numerical examples tested in 

this study, this number is enough and no obvious change in the designs 

and the objective functions is found even if more steps are used. 



5.1 A Cantilever Beam 

The minimum compliance design problem of a cantilever beam is shown 

in Figure (5.1), which is a well known benchmark of the structural 

topology optimization problem. The design domain is a rectangle with 

L = 2 and H = 1. A vertical concentrated load P = 1 acts on the 

middle of the right edge and the left edge of the cantilever beam is fixed. 

As in the current problem, the obejctive function is a linear function of 

the Young's modulus and the load, their values would not change the 

final design. With different values of the load and Young's modulus, 

the minimum point will not change although the value of the objective 

function at this point will be different. The maximum allowable volume 

fraction is 0.5. An initial design is shown in Figure (5.2). With current 

level set algorithm, no hole can nucleate inside a material region in two 

dimensions. The number of holes always decreases through merging of 

initial holes. Therefore, in this chapter, all initial designs have more or 

less interior and exterior holes. The implicit level set function is initially 

defined as a signed distance function with respect to the initial design. 

It is pointed out in [14] that, in 2D, the best results are obtained if 

the number of holes of the initial design is sufficiently large. In this 

study, we don't investigate the effect of different initial designs. Only 

one initial design is used for each numerical example. It is also shown 

in 14] that, in general 3D case, new holes can easily be created and 

then the initial topology is less important. 



Figure 5.1: A cantilever beam 

0.8 

0.6 

0.4 

0.2 

0 
0 0.5 1 1.5 2 

Figure 5.2: The initial design of the cantilever beam 

5.1.1 Structured Mesh 

Firstly, a structured mesh consisting of 100 by 50 uniform Q4 elements 

is used. Each element is a 0.02 by 0.02 square. Four schemes of FELSM 

and four schemes of FDLSM are tested. Final designs are presented 

in Figure (5.3). All results have the same topology, shape, and even 

the details except that in Figure (5.3(a)) and (5.3(c)), there are two 

little gaps at the corners of interior holes. On the one hand, these are 

not good designs because these gaps may cause stress concentration 

and cracks will propagate from the tips. On the other hand, designs 

obtained by NGllump and NGlcons possess less compliance than de-

signs obtained by their two-point Gaussian quadrature counterparts, 

as listed in Table (5.1). The appearance of small gaps has been found 

H 



for a MBB beam problem in [18] and the authors explain that these 

gaps mean the hinge-like or pin connections. 

( a ) N G l l u m p ( b ) N G 2 1 u m p 

( c ) N G l c o n s ( d ) N G 2 c o n s 

( e ) E N O l ( f ) E N 0 2 

( g ) E N 0 3 ( h ) W E N O 

Figure 5.3: Final design of the cantilever beam 

It seems that higher-order ENO schemes and WENO scheme have 

no apparent advantage in accuracy in this example. The same fact 

is also stated in [14] that there is no clear difference on the objective 



Table 5.1: Mean compliance of the final canti ever beam 

FELSM 
NGllump NG21ump NG Icons NG2cons 

FELSM 
29.8421 29.8549 29.8153 29.8327 

FDLSM 
ENOl EN02 EN03 WENO 

FDLSM 
29.8528 29.8435 29.8424 29.8409 

function between a first-order or second-order scheme for the Hamilton-

Jacobi equations (both the level set equation and the reinitialization 

equation). The optimal shapes for first or second order schemes are 

slightly different, mainly near the boundary of the design domain D. 

Figure (5.4) displays some intermediate designs produced by NG2cons 

and WENO. The optimal topology is achieved after about 60 steps, 

and the subsequent steps are mainly performed to achieve the optimal 

shape. It is shown that the evolution speed of the boundary is slower 

when WENO is used. This fact can also be observed in Figure (5.5), 

where the compliance obtained by NG2cons tends towards stability 

faster than that obtained by WENO. 

5.1.2 Free Quadrilateral Mesh 

To illustrate the performance of the proposed method on unstructured 

mesh, we implement the method on a free mesh that contains 4864 

bilinear Q4 elements and 5015 nodes as shown in Figure (5.6). Fig-

ure (5.7) displays the final level set function obtained by NG21uinp 

scheme and the black line means the boundary of the final design. The 

final level set function is quite regular with current frequency of reini-

tialization. Figure (5.8) shows the convergence history of the objective 

function and the volume fraction. Along with the convergence of the 



( a ) N G 2 c o n s , s t e p 3 2 ( b ) W E N O , s t e p 3 2 

0 0.5 1 1.5 2 

( c ) N G 2 c o n s , s t e p 3 7 

0 0.5 1 1.5 2 

( d ) W E N O , s t e p 3 7 

x>x» E : » 0 
0 0.5 1 1.5 2 

( e ) N G 2 c o n s , s t e p 5 5 

0 0.5 1 15 1 
( f ) W E N O , s t e p 5 5 

戮0 
5 0.5 1 1.5 2 

E>00 
0。 0.5 1 1.5 2 

( g ) N G 2 c o n s , s t e p 6 5 ( h ) W E N O , s t e p 6 5 

Figure 5.4: Intermediate designs of the cantilever beam 



Figure 5.5: Convergence history of the cantilever beam on the structured 

mesh. 

mean compliance, the constraint on volume is gradually satisfied by 

using the augmented Lagrangian method. 

Figure 5.6: A free quadrilateral mesh for the cantilever beam. 

5.1.3 Free Triangular Mesh 

A free triangular mesh containing 5550 elements and 2896 nodes as 

shown in Figure (5.9) is also considered for this example. Three-point 

integration is used to calculate the right-hand-side vector of the sys-
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Figure 5.7: Final level set function of the cantilever beam on free Q4 mesh 

o b j e c t i v e f u n c t i o n ( b ) v o l u m e f r a c t i o n 

Figure 5.8: Convergence history of the cantilever beam on free Q4 mesh 

tern of level set equations and lumped coefficient matrix is used, so 

the scheme on the triangular mesh is "NGSlump". The optimization 

process terminates after 114 steps since the specified convergence crite-

rion is satisfied. Figure (5.10) shows the final design. To compare the 

results on the structured mesh, the free quadrilateral mesh, and the 

free triangular mesh, two regions in the dashed and solid rectangles are 

enlarged and exhibited in Figure (5.11). The left and right columns 

show the regions in the dashed and solid rectangles, respectively. The 
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boundaries are generated as follows: For each element that is crossed 

by the boundary, we calculate the coordinates of intersection points of 

the boundary and element edges according to nodal level set value and 

in each element, the boundary is assumed as a straight line connect-

ing two intersection points. One can see the swings of the boundaries 

when the problem is solved on the free triangular mesh (Figure 5.11(e) 

and 5.11(f)). Boundaries on quadrilateral meshes are smoother and 

the uniform Q4 mesh gives the best results. 

As we have mentioned in Chapter 3，the triangular mesh is not rec-

ommended for structural optimization because it produce lower-order 

accurate velocity fields. If one has to use triangular elements, he should 

be careful about this issue. 

Figure 5.9: A free triangular mesh for the cantilever beam. 

Figure 5.10: Final design of the cantilever beam on free T3 mesh 



u n i f o r m Q 4 ( b ) u n i f o r m Q 4 

( c ) f r e e Q 4 ( d ) f r e e Q 4 

f r e e T 3 ( f ) f r e e T 3 

Figure 5,11: Enlarged regions in the dashed rectangle (the left column) and 

in the solid rectangle (the right column) in Figure (5.10) 

5.1.4 Influence of the CFL Number 

It has been stated in Chapter 3 that the CFL number a is specified as 

0.5 in this study. To investigate the influence of the CFL number, we 

now increase it to the critical value 1 and the time step size becomes 

bd = h! max{yex<}-

Two FELSM schemes, NG21ump and NG2cons, and four FDLSM 

schemes are tested with this CFL number. Figure (5.12) shows final 

results on the structured mesh. The result obtained by NG21ump is 



very different with that by NG2cons (compare Figure (5.12(a)) with 

Figure (5.12(b))). The former is good and very similar to the result 

with a 二 0.5 while the latter has many fragments at the free end. The 

failure of NG2cons results from the instability when the critical CFL 

number is used. The scheme with lumped coefficient matrix turns out 

to be more robust than the scheme with consistent one. In this sense, 

it is more reliable to use the NG21ump scheme especially when the 

CFL number is near the critical value or there is a possibility that the 

time step size can not be accurately estimated according to the CFL 

condition. It is interesting that a similar statement about the lumped 

technique is given in [71], which reads that it has occasionally been 

found that lumped matrix can improve the accuracy of some problems 

because the lumping process introduces additional dissipation and this 

can help in canceling out numerical oscillation. 

Figures (5.12(c)) to (5.12(f)) show the results by the FDLSM. We 

can see that only EN03 gives a similar result as what is obtained when 

small CFL number is used, the others create little cracks near corners 

of interior holes and lead to swings on the boundaries. 

Figure (5.13) shows the convergence history of the objective func-

tion, when NG21ump is used with different CFL numbers. Prom Fig-

ure (5.13(a)), one can see that with a = 1 the compliance converges 

faster since the time step size is larger. However，Figure (5.13(b)) 

shows that when a is large, the oscillation in the objective function is 

more drastic than that with the smaller CFL number. In addition to 

the risk of instability, an optimization process with a large time step 

size might miss some useful intermediate topologies. Therefore, in this 

work, a conservative choice of a (0.5) is used. 



(a) Step 5 to 200 (b) Step 120 to 200 

Figure 5.13: Convergence history of the cantilever beam with different CFL 

numbers (NG21ump). 
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Figure 5.12: Final designs of the cantilever beam when the CFL number is 
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5.2 A Michell-Type Structure 

5.2.1 Single Load 

The classical optimization problem of the Michell-type structure is con-

sidered .The model is shown as in Figure (5.14). The design domain is 

a rectangle with L = 1 and H = 1. Two bottom corners are constrained 

with pin supports. A concentrated load _P = 2 is applied in the middle 

of the bottom. The limit of the volume fraction is 0.3. Because of the 

symmetry, only the right half part is analyzed, so the design domain is 

actually a unit square. The initial design for this problem is shown in 

Figure (5.15). 

Figure 5.14: A Michell-type structure 

First, a structured mesh with 50 by 50 uniform quadrilateral el-

ements is used. Three schemes are implemented. They are WENO, 

NG21ump, and NG2cons. Figure (5.16) shows the final designs ob-

tained with these schemes. A whole optimal structure is constructed 

based on the results by NG21ump and is shown in Figure (5.17). The 

final structure consists of two 45° arms extending from the supports to-

wards an approximately 90° central fan section which extends upwards 

from the point of application of the force. This design is quite similar 
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Figure 5.15: The initial design of the Michell-type structure, 

to the theoretical optimum structure. The convergence history of the 

objective function and the volume fraction are shown in Figure(5.18). 

Although the objective function increases in the early steps due to the 

decline in the volume to satisfy the volume constraint, as shown in 

Figure (5.18(a)), it finally converges in a smooth and stable way. 

W E N O ( b ) N G 2 1 u m p ( c ) N G 2 c o n s 

Figure 5.16: Final design, of the Michell-type structure on uniform mesh. 

Next, a free mesh as shown in Figure (5.19) is used. This mesh 

contains 2490 Q4 elements and 2591 nodes. The whole final design 

obtained by NG21ump after 153 steps on this mesh is shown in Fig-

ure (5.20), which is almost the same as the design in Figure (5.17). Ap-



Figure 5.17: The whole final design of the Michell-type structure on the 

uniform mesh (by NG21ump), 

100 200 100 
Step 

( a ) o b j e c t i v e f u n c t i o n ( b ) v o l u m e f r a c t i o n 

Figure 5.18: Convergence history of the Michell-type structure by NG21ump 

on the uniform mesh 

plying the presented FELSM on unstructured meshes has no additional 

difficulties and this feature facilitates the optimization on irregular de-

sign domains as will be shown in following sections. The convergence 

history of the objective function and the volume fraction is shown in 

Figure (5.21). 
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Figure 5.19: A free quadrilateral mesh for the Michell-type structure. 

Figure 5.20: The whole final design of the Michell-type structure on the free 

mesh (by NG21ump). 

( a ) o b j e c t i v e f u n c t i o n 

Step 

( b ) v o l u m e f r a c t i o n 

Figure 5.21: Convergence history of the Michell-type structure by NG21ump 

on the free mesh 
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5.2.2 Multiple Loads 

The same structure is optimized where three loads are applied on the 

bottom side. Figure (5.22) shows the positions of these loads, whose 

magnitudes are P = 2 and Q = I. WENO, NG21ump, and NG2cons 

are used to optimize this model on the uniform mesh used in single 

load case. The final results shown in Figure (5.23) are almost the 

same. A whole structure is recovered from the result by NG21ump and 

is displayed in Figure (5.24). 

Figure 5.22: A Michell-type structure with multiple loads. 

( a ) W E N O ( b ) N G 2 l u m p ( c ) N G 2 c o n s 

Figure 5.23: Final design of the Michell-type structure under multiple loads. 



Figure 5.25: A cantilever beam with a fixed hole 

In this problem, no design is allowed inside the hole. In practical 

structures, this hole might be created beforehand for operation or in-

( f t R ) 
Figure 5.24: The whole final design of the Michell-type structure under 

multiple loads (by NG21ump). 

5.3 A Cantilever Beam with a Fixed Hole 

A optimization problem with an irregular design domain is considered 

in this example. This problem has been studies in [79,80). As shown 

in Figure (5.25), the dimensions of the cantilever beam are: L 二 9 and 

H = The radius of the hole is 2 and its center is determined by 

VT = 3 and D ~ 3. A vertical concentrated load P = 1 is applied at 

the bottom right corner. The maximum allowed volume is half of the 

volume of the design domain which is 54 — 47r. 

H 



stallation. Figure (5.26) shows the initial design of this problem. Only 

the NG21uinp scheme is used in this example. 

6 

Figure 5.26: The initial design of the cantilever beam with a fixed hole. 

First, a mapped mesh is considered. This mesh consists of 5400 

quadrilateral elements and 5670 nodes. Because the right part of the 

structure is a regular domain, this part is actually meshed with uniform 

elements as shown in Figure (5.27). The optimization process converges 

after 110 steps. Figure (5.28) shows some intermediate designs and the 

final design. The topology and shape of the final design is very similar 

to what is reported in [79, 80]. Figure (5.29) shows the convergence 

history of this problem on the mapped mesh. 

Figure 5.27: A mapped mesh for the cantilever beam with a fixed hole. 
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Figure 5.28: Intermediate designs of the cantilever beam with a fixed hole 

on the mapped mesh. 

In Figure (5.30), we plot the zero isocontour of the extension veloc-

ity field as well as the boundary of the final design. It is shown that 

the zero isocontour almost coincides with the boundary except at some 

sharp corners of interior holes. This phenomena agrees with the theo-

retical prediction that normal velocity on the boundary of the optimal 

) ) 



100 110 60 
Step 

( a ) o b j e c t i v e f u n c t i o n ( b ) v o l u m e f r a c t i o n 

Figure 5.29: Convergence history of the cantilever beam with a fixed hole 

on the mapped mesh. 

structure is zero. It is noteworthy that there are two segments of zero 

isocontour at the top and bottom of the fixed circle, which means that 

there should be two segments of boundary. However, boundaries can 

not emerge in this region because no hole is pre-collocated here in the 

initial design shown in Figure (5.26) and current method has no nucle-

ate mechanism. Now, two holes are punched on the final design shown 

in Figure (5.28(f)) and the obtained structure as shown in Figure (5.31) 

is used as a new initial design for a new optimization process. After 

15 steps, a new final design is obtained and the boundary as well as 

the zero isocontour of velocity are shown in Figure (5.32). The newly 

added holes evolve to two segments of boundary which coincide with 

zero isocontour. The compliance of the design in Figure (5.28(f)) is 

27.83 and that in Figure (5.32) is 27.77. The decrease in compliance is 

not significant, but the new design is much closer to a truss structure 

than the design in Figure (5.28(f)). 

Next, the design domain is discretized with a free mesh containing 

3913 irregular quadrilateral elements and 4127 nodes. This mesh is 
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5 6 7 8 9 

Figure 5.30: Zero isocontour of the velocity field (red line) and the boundary 

(black line). 

8 9 

Figure 5.31: New initial design by adding holes to the final design. 

illustrated in Figure (5.33). Intermediate designs on the same steps as 

in Figure (5.28(a)) to (5.28(e)) are shown in Figure (5.34) and the con-

vergence history are shown in Figure (5.35). On this free quadrilateral 

mesh, the optimization process runs up to 200 steps. In this and the 

next cases, we don't plot the zero isocontour of the velocity field of the 

final design as in Figure (5.30). However, the same phenomena exist if 

we perform that analysis. 

At last, a free triangular mesh as shown in Figure (5.36) is used. 



8 9 

Figure 5.32： New final design: zero isocontour of the velocity field (red line) 

and the boundary (black line). 

Figure 5.33: A free Q4 mesh for the cantilever beam with a fixed hole. 

There are 4030 three-node triangular elements and 2157 nodes. Some 

intermediate designs and the final design after 200 steps are exhibited 

in Figure (5.37). Similar to previous results on triangular meshes, there 

are oscillations on the boundary, which shows the shortcoming of this 

type of elements. The convergence history of the objective function 

and the volume fraction is shown in Figure (5.38). 



( a ) s t e p 1 4 

( d ) s t e p 3 6 

2 3 4 5 6 7 8 9 

(e) Step 89 

2 3 4 5 6 7 6 

( f ) Step 2 0 0 ( f i n a l ) 

Figure 5.34: Intermediate designs of the cantilever beam with a fixed hole 

on the free quadrilateral mesh. 
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Figure 5.35: Convergence history of the cantilever beam with a fixed hole 

on the free quadrilateral mesh. 

Figure 5.36: A free triangular mesh for the cantilever beam with a fixed 

hole. 
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( e ) s t e p 8 9 

2 3 4 5 6 
( f ) Step 2 0 0 ( f i n a l ) 

Figure 5.37: Intermediate designs of the cantilever beam with a fixed hole 

on the free triangular mesh. 
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Figure 5.38: Convergence history of the cantilever beam with a fixed hole 

on the free triangular mesh. 
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5.4 A Michell Structure with a Semicircular Sup-

port 

This example is related to a Michell-type structure as shown in Fig-

ure (5.39). The structure is fixed on a semicircular support (the bold 

curve) and a concentrated load P = 1 acts on the middle of the right 

edge. Geometric sizes of the design domain are: L = H = 1, and 

= 1. This problem is previously studied in [2,81]. The initial design 

is shown in Figure (5.40). 

\f 

IfT 
H 

-W 

Figure 5.39: A Michell structure with a semicircular support. 

5.4.1 Lower volume fraction 

First, the maximum volume fraction is specified as 0.2. Two mapped 

meshes are used in this example. Mesh 1 is a coarse one that contains 

1750 quadrilateral meshes and 1856 nodes as shown in Figure (5.41(a)) 

and mesh 2 is a fine one with 4480 elements and 4649 nodes as shown 

in Figure (5.41(b)). Final designs by NG21uinp on both meshes are 

shown in Figure (5.42). They are very similar to each other. 

Some intermediate designs are displayed in Figure (5.43). It can be 

seen that the evolution speed on mesh 1 is faster than that on mesh 2. 



Figure 5.40: The initial design of the Michell structure with a semicircular 

support. 

( a ) m e s h 1 

Figure 5.41: Two mapped meshes for 

cular support. 

( b ) m e s h 2 

the Michell structure with a semicir-

The reason for this phenomenon is that the time step size for mesh 1 

is larger because the element size of mesh 1 is larger than that of mesh 

2. 

The convergence history on mesh 2 is shown in Figure (5.44). The 

bump in the objective function curve is due to a change of topology 

(bar elimination). When the bar is separated from the structure, the 



(a) mesh 1 (b) mesh 2 

Figure 5.42: Final designs of the Michell structure with a semicircular sup-

port. 

compliance increase rapidly. However, after several steps, the boundary 

is optimized and the compliance decreases gradually. Figure (5.45) 

demonstrates this process, which is related to the bump at about step 

94 in Figure (5.44(a)). 

5.4.2 Higher volume fraction 

Now, the same problem is optimized subject to a higher volume frac-

tion constraint. The limit of the volume fraction is specified as 0.5 this 

time. The finer mesh as shown in Figure (5.41(b)) is used. The opti-

mization process converges after 172 steps with the NG21ump scheme. 

Figure (5.46) shows some intermediate designs and the final design. 

The final design in Figure (5.46(f)) is very different from the final 

design at lower volume fraction as shown in Figure (5.42(b)). The 

topology (number and positions of holes) at higher volume fraction is 

similar to the topology of the optimal cantilever beam in section 5.1. 

The convergence history is illustrated in Figure (5.47). 
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(b) mesh 2，step 15 
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(f) mesh 2，step 70 

(h) mesh 2，step 88 

Figure 5.43: Intermediate designs of the Michell structure with a semicircu-

lar support. 
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Figure 5.44: Convergence history of the Michell structure with a semicircular 

support. 

( a ) s t e p 9 1 

( c ) s t e p 9 3 

( b ) s t e p 9 2 
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Figure 5.45: Topological change from step 91 to step 96. 
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(a) step 15 

(c) step 49 

step 90 
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(d) step 61 

(f) step 172 (final) 

Figure 5.46: The final and intermediate designs of the Michell structure with 

a semicircular support at higher volume fraction. 
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Figure 5.47: Convergence history of the Michell structure with a semicircular 

support at higher volume fraction. 

• End of chapter. 
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Chapter 6 

Conclusions And Future 

Work 

6.1 Conclusions 

In this thesis, a finite element based level set method (FELSM) is 

employed in the structural topology optimization problems. 

To discretize the level set equation and reinitialization equation on a 

finite element mesh, the SDFEM is used because it can produce stable 

numerical solutions of the advection dominated level set equations by 

introducing a diffusion term in the direction of the streamline. Formu-

lations are derived in this thesis. For the discretized level set equation, 

the coefficient matrix is a constant, symmetric, and positive defined ma-

trix. Furthermore, we find that it is quite similar to the mass matrix in 

structural dynamics and the lumping technique is used to replace the 

consistent coefficient matrix with a lumped one. With the lumped co-

efficient matrix, the cost in solving and storing is reduced remarkably. 

The accuracy of the FELSM is compared with the conventional finite 



difference based level set method (FDLSM). It is shown through test 

cases that the accuracy of the FELSM is similar to the first-order fi-

nite difference scheme ENOl. Although higher-order FDLSM schemes, 

such as EN02, EN03, and WENO, are more accurate than the FELSM 

schemes in approximating the spatial derivatives, we demonstrate that 

higher-order accurate schemes fail to create higher-order accurate de-

signs in the structural optimization problems because the low-order 

accurate velocity field is the bottleneck. In other words, the proposed 

FELSM is accurate enough to produce reliable optimal results for the 

minimum compliance design considered in this study. 

In the discretized reinitialization equation, because of the insuffi-

cient stability effect, an extra diffusion term is added. We give the 

criterion for selecting the factor of the diffusion term. To prevent the 

boundary from moving during the reinitialization, we treat the fixing 

of the boundary as a Dirichlet boundary condition and enforce this 

boundary condition by both the Lagrangian multiplier method and 

the penalty method. Solving the system of reinitialization equations is 

more time consuming than solving the level set equation. Fortunately, 

the structural optimization problems are not very sensitive to the level 

set function's approximation to the signed distance function, hence it is 

not necessary to perform the reinitialization frequently and accurately. 

In this study, we carry out reinitialization every five steps and the nu-

merical results show that the level set function is regular enough with 

this frequency of reinitialization. 

Two velocity extension methods are introduced in this thesis. The 

modified natural extension method is natural and direct. It is a ef-

ficient and simple method for the whole domain scheme. Hence it is 



used in the numerical examples in this study. The PDE-based velocity 

extension method has rigorous mathematical theory. However, solv-

ing the equation is not easy. Therefore, only formulations are derived 

and no implementation is performed in this work. Some related issues, 

such as the "ersatz" material approach, recovery of stresses, and the 

influence of stress concentrations and singularities, are also discussed. 

Numerical examples, which involve regular and irregular domains, 

structured and unstructured meshes, are solved with the proposed 

method. Results illustrate the reliability of the method. In this study, 

only low-accurate elements are tested. It is shown that the four-node 

quadrilateral element works well. The three-node triangular element is 

not recommended due to the feature of constant strains. To calculate 

the right-hand-side term of the level set equation, two-point Gaussian 

quadrature scheme (for Q4 element) is necessary. The scheme using 

lumped coefficient matrix is recommended because it is quite efficient 

and, more important, it provides more stability effect than the scheme 

using the consistent coefficient matrix and schemes of FDLSM when 

the CFL number if large. 

6.2 Future Work 

There are lots of possibilities for future work of the presented method. 

The numerical examples clearly demonstrate the feasibility of this method 

in solving the minimum mean compliance problems. However, the per-

formance of this method in frequencies optimization and stresses opti-

mization problems is still needed to be investigated. 

For the purpose of practical application, the presented method 



should be extended to three dimensional problems. Although there 

is no theoretical difficulty, some numerical issues are still needed to be 

considered. Algorithms for conventional level set methods have been 

extensively researched for 3D problems, but finite element based level 

set methods are still in the initial stage. 

In this study, only four-node quadrilateral elements and three-node 

triangular elements are used. In the future, high-order accurate ele-

ments will be studied. It is apparent that the high-order elements can 

improve the accuracy of velocity computation. However, the perfor-

mance of high-order elements in the level set stage is still needed to be 

verified. 

The implementation of the narrow band scheme is also a remarkable 

topic. By virtue of the lumped coefficient matrix, the system of level 

set equations are decoupled completely and equation on each node can 

be solved independently. This might make the narrow band scheme 

more attractive. 

• End of chapter. 
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