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Abstract 

This thesis contains two parts. The first part studies the global robust stabilization 

problem of feedforward systems and the second part further addresses the global robust 

output regulation problem of the same class of nonlinear systems. 

The stabilization problem of feedforward systems has absorbed a lot of attention during 

the past fifteen years. More recently, the stabilization problem of feedforward systems 

subject to input unmodeled dynamics is studied. Nevertheless, the more realistic case 

where the system is subject to both time-varying static and dynamic uncertainties has 

not been adequately investigated. The first part of this thesis focuses on the global robust 

stabilization problem for various classes of feedforward systems containing both time-

varying static and dynamic uncertainties. The major results are summarized as follows. 

(i) A pure small gain approach is proposed to handle a disturbance attenuation problem 

for a class of feedforward systems subject to both dynamic uncertainty and disturbance. 

Two versions of small gain theorem with restrictions are employed to establish the global 

attractiveness and local stability of the closed-loop system at the origin, respectively. 

Unlike Lyapunov's linearization method and asymptotic small gain theorem combined 

approach, the proposed approach does not require the stabilizability assumption of the 

Jacobian linearization of the system at the origin. 

(ii) A small gain based bottom-up recursive design is developed to solve a global robust 

stabilization problem for a class of feedforward systems subject to both time-varying static 

and dynamic uncertainties. Unlike most existing results, our design does not require the 

bottom dynamics at each recursion be locally exponentially stable. 

(iii) The small gain based bottom-up recursive design is further extended to deal with 

a global robust stabilization problem for a class of feedforward systems which are approx-

imated at the origin by a nonlinear chain of integrators and perturbed by some type of 

input unmodeled dynamics. Even in the special case where the input unmodeled dynamics 

is not present, our result is new in the sense that our approach can handle some cases that 

cannot be handled by any existing approaches. 

It is now well known from the general framework for tackling the output regulation 

problem that the robust output regulation problem can be approached in two steps. In 

the first step, the problem is converted into a robust stabilization problem of a so-called 

augmented system which consists of the original plant and a suitably defined dynamic 

system called an internal model candidate, and in the second step, the robust stabilization 



problem of the augmented system is further pursued. The success of the first step depends 

on whether or not an internal model candidate exists. Even though the first step succeeds, 

the success of the second step is by no means guaranteed due to at least two obstacles. 

First, the stabilizability of the augmented system is dictated not only by the given plant 

but also by the particular internal model candidate employed. Second, the stabilization 

problem of the augmented system is much more challenging than that of the original plant 

with the exogenous signal set to 0, because the structure of the augmented system may 

be much more complex than that of the original plant. Perhaps, it is because of these 

difficulties, so far almost all papers on semi-global or global robust output regulation 

problem are focused on the lower triangular systems, feedback linearizable systems and 

output feedback systems. The second part of this thesis aims to study the global robust 

output regulation problem of feedforward systems. The major results are summarized as 

follows. 

(i) We first identify structural properties of the plant so that an internal model can-

didate exists. Then, by looking for a suitable internal model and performing appropriate 

transformations on the augmented system, we succeed in converting the global robust 

output regulation problem for a class of feedforward systems into a global robust stabi-

lization problem for a class of feedforward systems subject to both time-varying static and 

dynamic uncertainties. As a result, the global robust stabilization result obtained in the 

first part of this thesis is used to solve the global robust output regulation problem for a 

class of feedforward systems. 

(ii) We apply the result of the global robust output regulation problem to solve two 

trajectory tracking problems for a chain of integrators with uncertain parameters and the 

Vertical Take-Off and Landing (VTOL) aircraft, respectively. In contrast with the existing 

designs, for the chain of integrators, our design is low gain and does not need to know the 

reference trajectory exactly, and for the VTOL aircraft, our design is a complete low gain 

design and thus is more cost effective. 

(iii) We propose a Lyapuiiov approach to a special case of the output regulation prob-

lem, the input disturbance suppression problem for a class of feedforward systems. When 

the exosystem is known, we solve the problem via dynamic output feedback control. When 

the exosystem. is unknown, we solve the problem via adaptive dynamic state feedback 

control and we also give the conditions under which an estimated parameter vector can 

converge to the true parameter vector. 
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摘要 

本文分爲兩個部分。本文的第一部分研究了前饋系統的鎮定問題，而第二部分則研 

究了前饋系統的輸出調節問題。 

在過去的十五年裏，前饋系統的鎮定問題吸引了許多研究者的注意。最近，許多研 

究者對受到輸入未建模動態影響的前饋系統的鎮定問題進行了硏究。然而，現在還 

沒有人研究同時受到動態和靜態不確定性影響的前饋系統的鎮定問題。本文的第一 

部分硏究了受到動態和靜態不確定性影響的各種類型的前饋系統的鎭定問題。所取 

得主要結果如下所示： 

(I)我們提出了一種僅基於小增益定理的方法來處理同時受到動態不確定性和外 

加干擾影響的一類前饋系統的干擾抑制問題。我們用兩種類型的受限小增益定理分 

別確定閉環系統在平衡點處的局部穩定性和全局收斂性。與Lyapimov線性化和小 

增益定理相結合的方法不同，我們的方法並不需要所研究的系統在平衡點處的線性 

化可鎮定。 

(2 )爲解決同時受到動態和時變靜態不確定性影響的一類更一般的前饋系統的鎭 

定問題，我們提出了一種以小增益定理爲基礎的遞迴設計方法D與大多數已有方 

法不同，我們的方法並不要求每次遞推過程中位於串聯系統下面的動態子系統局部 

指數穩定。 

(3)通過對上面提出的以小增益定理爲基礎的遞迴設計方法的推廣，我們研究了 

在平衡點處可近似爲非線性積分器並且受到輸入未建模動態影響的一類前饋系統的 

鎮定問題。在不受到輸入未建模動態影響的特殊情況下，我們的鎭定結果也是新的， 

這是因爲我們的方法仍然可以處理一些不能用已有方法來處理的前饋系統。 

根據處理輸出調節問題的一般框架，輸出調節問題可以分爲兩個步驟解決。第一步’ 

將所研究系統的輸出調節問題轉化爲一個增廣系統的鎮定問題，這裏的增廣系統由 

所硏究系統和一個候選內模所組成。第二步，解決增廣系統的鎮定問題。第一步的 

成功取決於候選內模是否存在。即使第一步成功，因爲兩個障礙，第二步不一定會 

成功。第一，增廣系統的可鎮定性不僅取決於所研究的系統，還取決於所選取的特 

殊內模。第二，因爲增廣系統的結構要比所硏究系統更加複雜，所以增廣系統的鎮 

定問題要比在外加信號設置爲零時所研究系統的鎮定問題更加困難。可能由於如上 

所述的諸多困難，到目前爲止幾乎所有的半全局或全局魯棒輸出調節問題都是針對 

下三角系統，可反饋線性化系統和輸出反饋系統。本文的第二部分將以前績系統的 

全局魯棒輸出調節問題爲主要研究內容。所取得的主要結果如下所示： 

(1 )爲確保候選內模的存在性，我們首先確定了所硏究系統需要滿足的結構條件。 

然後，通過設針合適的內模和尋找合適的座標和輸出變換，我們成功地將原系統的 

魯棒輸出調節問題轉化爲同時受到動態和靜態不確定性影響的一類一般的前饋系統 
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的鎮定問題。最終，我們利用本文第一部分中所得的鎭定結果解決了一類前饋系統 

的全局魯棒輸出調節問題。 

(2 )我們利用所得的全局魯棒輸出調節問題的結果研究了帶有不確定參數的積分 

器和垂直起降飛行器的軌跡跟縱問題。與已有設計相比，對於帶有不確定參數的積 

分器，我們的設計並不需要確切的參考軌跡；對於垂直起降飛行器，我們的設計是 

低增益的。 

(3 )針對一類特殊的前饋系統，我們用Lyapimov方法硏究了一類特殊的輸出調 

節問題，即輸入干擾抵消問題。當外部系統已知時’我們設計了動態輸出反饋控制 

器；當外部系統未知時，我們設計了動態狀態反饋控制器，而且我們還給出了估計 

參數收斂到其真値的充分條件。 
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Chapter 

Introduction 

1.1 Introduction and Literature Survey 

The control of nonlinear systems has been one of the major subjects in control theory. 

Due to the complexity of nonlinear systems, there is no general approach for the control of 

nonlinear systems. Instead, there are a lot of approaches, each of which is best applicable to 

a particular class of nonlinear systems. Since the 1990s, some recursive design approaches 

have been developed for two important classes of nonlinear systems, namely, systems in 

feedback form and systems in feedforward form. While the research on the first class 

of systems has reached a certain degree of maturity, the research on the second class of 

systems is still in its infancy. 

Since Teel's seminal work [82], feedforward systems have gradually attracted the atten-

tion of the nonlinear control community. It is now known that, feedforward systems occur 

naturally in the model of many physical systems, such as, the ball and beam system [84], 

the vertical take-off and landing aircraft [56, 85], the inverted pendulum on a cart [59，85], 

the translation and rotational actuator system [33] and the spherical inverted pendulum 

[1，52]. Moreover, under certain conditions, a given nonlinear system can be (locally or 

globally) transformed, via a coordinate or a feedback transformation, into a feedforward 

system [8, 81, 82]. In particular, a food-chain system [19] is shown to be locally feedback 

equivalent to a feedforward system in [8]. As a result, it would be meaningful to study 

the control of feedforward systems. 



1.1.1 stabilization of Feedforward Systems 

Stabilization and output regulation are two fundamental problems in the control of nonlin-

ear systems. During the last fifteen years, most of the researchers' attention was devoted to 

the stabilization problem of feedforward systems. By utilizing the feedforward structure, 

a general way of handling the stabilization problem of feedforward systems is by setting 

up a bottom-up recursive design procedure: design a control for the bottom dynamics first 

and then iterate the design upwards by n — 1 times. There are two major approaches to 

the stabilization problem of feedforward systems: the Lyapunov approach and the small 

gain approach. 

Lyapunov Approach 

The Lyapunov approach to the state feedback stabilization problem was first introduced by 

Mazenc and Praly [59] where the feedforward system should satisfy some restrict structural 

properties. Jankovic, Sepulchre and Kokotovic [29] developed a different Lyapunov ap-

proach for an enlarged class of feedforward systems. However, their approach requires, in 

general, complicate computations to derive the exact cross term in the Lyapunov function. 

The same authors in [72] refined, their results [29] for a special class of feedforward systems 

as studied in [29, 59] and introduced formally the "forwarding" approach. Nonetheless, 

to apply the forwarding approach, one still has to solve a series of nonlinear systems and 

compute a series of integrals. More recently, Krstic provided in [45] closed-form solutions 

to these nonlinear systems and integrals for some more special classes of feedforward sys-

tems than the one studied in [72]. In both [45] and [72], the designed control, by inverse 

optimality [46, 47’ 71], can guarantee the global asymptotic stability of the equilibrium of 

the feedforward system in the presence of a class of input unmodeled dynamics satisfying 

certain, passivity property. 

The Lyapunov approach [29, 59] has been further developed [16, 50, 58, 60’ 69, 72, 86， 

88]. Mazenc [58] extended the Lyapunov approach [59] to handle a class of feedforward 

systems which are approximated at the origin by a nonlinear chain of integrators and 

satisfy some growth conditions. Lin and Qian [50, 69] generalized the work of Mazenc [58] 

by relaxing both the restriction on the nonlinear chain of integrators and those growth 

conditions. In the spirit of [50, 59], Ye and Unbehauen [88] designed a global adaptive 

stabilizer for the feedforward system, as studied in [50, 59, 69], but perturbed by some 

unknown constant parameter whose bound is not known a priori. A common assumption of 



[50, 59, 69, 88] is that the order sequence of the chain of integrators has to be nondecreasing. 

The case where the assumption does not hold was also studied by Tsinias and Tzamtzi 

[86], and Frye, Trevino and Qian [16]. The price to be paid for removing the assumption 

is that the feedforward system has to satisfy some more restrict growth conditions. 

The Lyapunov approach to the output feedback stabilization problem has also been 

widely addressed in the recent literature [9，14，16, 40, 44’ 61, 66, 68]. Maznec [61] studied 

the global asymptotic stabilization problem for a class of cascaded systems. For a class of 

feedforward systems satisfying linear growth condition, a linear output feedback controller 

is constructed in [14]. Qian and Li [68] proposed a homogeneous domination approach 

for a class of feedforward systems satisfying some nonlinear growth conditions. Later, the 

approach of [68] was further extended in [16] to handle feedforward systems which are 

approximated at the origin by a nonlinear chain of integrators and satisfy some restrict 

growth conditions. Polendo and Schrader [66] presented an approach for a very special 

class of feedforward systems. The advantage of their approach is that the maximum 

amplitude of the nested saturation controller can be set prior to designing the control. 

More recently, the dynamic high gain scaling technique proposed by Krishnamurthy and 

Khorrami [39, 40] has been applied to feedforward systems [41, 43, 44]. In particular, 

[44] studied an output feedback stabilization and disturbance attenuation problem for a 

class of feedforward systems subject to some dynamic uncertainty satisfying certain ISS 

property. However, the feedforward systems studied in [41, 43’ 44] have to satisfy some 

bounds which are linearly bounded in the unmeasured states and polynomially bounded 

in the output. 

Small Gain Approach 

In [85], Teel generalized his stabilization result of [82] by utilizing the nonlinear small gain 

technique. In particular, Teel proposed an asymptotic small gain theorem and Lyapunov's 

linearization method combined approach for constructing a nested saturation control such 

that the closed-loop system is input-to-state stable (ISS) with restriction on the external 

disturbance. Following the lines of [85], Angeli, Chitour and Marconi extended the result 

of [85] in [4] where the feedforward system is allowed to contain some unknown bounded 

constant parameters. However, their result only holds for the feedforward system where 

the order of each subsystem is not greater than 3. 

The recursive design of [85] lies in how to determine a suitable saturation level A and a 

good saturated linear controller F at each recursion. F can be determined in advance and 

3 



two straightforward methods are given in [85]. It can be seen from the proof of Theorem 3 

of [85] that, given any F, the small gain condition can always be satisfied by adjusting only 

the saturation level A. Therefore, the main difficulty of the solution of Theorem 5 of [85] is 

how to determine a suitable saturation level 入 at each recursion. Since the designed control 

at each recursion generally depends on all the states of the cascaded system considered at 

the recursion, as evident from Theorem 5 of [85], such recursive design usually necessitates 

that all the states of the feedforward system should be available for feedback. If part of 

the states of the lower subsystem of the cascade system considered at the recursion is not 

available for feedback, then as shown in [7], adjusting only the saturation level A is not 

enough to guarantee the satisfaction of the small gain condition. As a result, F cannot be 

determined in advance anymore and should be chosen suitably to render the satisfaction 

of the small gain condition. In this case, how to determine F becomes a difficult and 

challenging task. It is because of this difficulty that Arcak, Teel and Kokotovic in [7] 

provided a different recursive design for a subclass of feedforward systems as studied in 

[85] in the presence of some type of input unmodeled dynamics. In the recursive design of 

[7], the designed control at each recursion only depends on the state of the upper subsystem 

of the cascade system considered at the recursion. Nonetheless, the recursive design of [7] 

will fail if the feedforward system contains certain time-varying static uncertainty. There 

are two reasons causing the failure of the recursive design of [7]: first, it relies upon the 

existence of a time invariant coordinate transformation; second, the argument to show 

the exponential stability of the Jacobian linearization does not hold when the Jacobian 

linearization contains certain time-varying parameters. 

Inspired by [7] and [17], Marconi and Isidori presented in [53] a new design to handle the 

case where the feedforward system contains time-varying static uncertainty. The problem 

is solved by first showing an auxiliary system is ISS with restriction on the exogenous input 

with arbitrarily small linear gains and then utilizing an adaptation of the asymptotic small 

gain theorem [28] to conclude the global asymptotic stability. Later, the design of [53] 

was further extended in [54] to handle a global robust stabilization problem for a class of 

feedforward systems subject to input unmodeled dynamics. 

More recently, a partial state feedback stabilization problem of an affine control cascade 

system is solved by Kaliora and Astolfi [33] using the linear bounded real lemma and 

a generalized version of the small gain theorem [70]. In particular, by assuming the 

controllability of the linearized system, [33] converted the stabilization problem for the 

original feedforward system into a stabilization problem for its linearized system. The 



approach of [33] was further extended to handle an output feedback stabilization problem 

for a class of block feedforward systems in [9]. 

1.1.2 Output Regulation of Feedforward Systems 

Output regulation problem of nonlinear systems has been one of the central control prob-

lems for nearly two decades [10, 12, 15, 20, 21, 22，23, 24，25, 27, 34, 35，63，64, 73, 74]. 

The research was first focused on the local version of the problem where all the initial 

conditions and uncertain parameters are assumed to be sufficiently small [10, 20，23，24, 

27, 63]. The research on the nonlocal version of the problem started in the late 1990s 

[12’ 15，22’ 25’ 34，35，64, 73, 74]. It is now well known (see e.g. [22]) that the robust 

output regulation problem can be approached in two steps. In the first step, the problem 

is converted into a robust stabilization problem of a so-called augmented system which 

consists of the original plant and a suitably defined dynamic system called an internal 

model candidate, and in the second step, the robust stabilization problem of the aug-

mented system is further pursued. The success of the first step depends on whether or 

not an internal model candidate exists which can usually be ascertained by the property 

of the solution of the regulator equations. Even though the first step succeeds, the success 

of the second step is by no means guaranteed due to at least two obstacles. First, the 

stabilizability of the augmented system is dictated not only by the given plant but also 

by the particular internal model candidate employed. An internal model candidate can be 

chosen from an infinite set of dynamic systems and a suitable internal model candidate is 

usually obtained from the past experience and some trial and error. Second, the structure 

of the augmented system may be much more complex than that of the original plant. 

Therefore, even though the stabilization of the original plant with the exogenous signal 

set to 0 is solvable, the stabilization of the augmented system may still be untractable. 

Perhaps, it is because of these difficulties, so far almost all papers on semi-global 

or global robust output regulation problem are focused on the lower triangular systems 

[12, 22, 25, 74], feedback linearizable systems [34, 35], and output feedback systems [15, 73]. 

To our knowledge, the only papers that are relevant to the output regulation problem of 

feedforward systems are [9] and [56]. An approximate and restricted tracking problem 

for a class of block feedforward systems is studied in [9] via dynamic output feedback 

control. In [56], the authors deal with an input disturbance suppression problem via 

dynamic state feedback control. The problem is addressed by converting it into a global 

robust stabilization problem for a class of feedforward systems subject to input unmodeled 

5 



dynamics. Several results about this robust stabilization problem have been reported, see 

e.g., [7, 45, 54, 72]. 

1.2 Organization of the Thesis 

The reminder of this thesis is organized as follows. 

Chapter 2: To make the thesis self-contained, we introduce some fundamental concepts 

and methods which will be utilized in the subsequent chapters. 

Chapter 3: A pure small gain approach is proposed to handle a disturbance attenua-

tion problem for a class of feedforward systems subject to both dynamic uncertainty and 

disturbance. 

Chapter A small gain based bottom-up recursive design is developed to solve a 

global robust stabilization problem for a class of feedforward systems subject to both 

time-varying static and dynamic uncertainties. 

Chapter 5: The small gain based bottom-up recursive design is further extended to 

handle a global robust stabilization problem for a class of feedforward systems which are 

approximated at the origin by a nonlinear chain of integrators and perturbed by some 

type of input unmodeled dynamics. 

Chapter 6: Using the stabilization result obtained in Chapter 4, a global robust output 

regulation problem for a class of feedforward systems is solved. 

Chapter 7: The result of global robust output regulation problem obtained in the pre-

vious chapter is applied to solve two trajectory tracking problems for a chain of integrators 

with uncertain parameters and the VTOL aircraft, respectively. 

Chapter 8: The dynamic high gain scaling technique is utilized to handle an input 

disturbance suppression problem for a class of feedforward systems. 

The thesis was typeset using JMjgX. All numerical simulations were done using MAT-

LAB. 



Chapter 2 

Fundamental Properties of 
Nonlinear Systems 

In this chapter, we introduce some fundamental concepts and properties of nonlinear 

systems that will be utilized in the subsequent chapters. The stability property and some 

fundamental methods to check the stability property of nonlinear system will be given 

in Section 2.1. In Section 2.2, the input-to-state stability and its local extensions are 

summarized. Finally, we provide two small gain theorems with restrictions adapted from 

[85]. 

Throughout the thesis, we will use (工 1，工2) with xi e K叫 and X2 G M"̂  to denote 

the vector [x^, x ^ Y ^ 脱“工 x R"^, and let C ^ be the set of all piecewise continuous 

functions u : [0, oo) — R"^ with a finite supremum norm ||w||oo — supf>Q ||u(t)|j, and let 

||u||a = limsupt^oo ||u(t)|| denote the asymptotic Coo norm of u, where |卜|| denotes the 

standard Euclidean norm. A function 7 : R>o — M>o is called a gain function if it is 

continuous, nondecreasing, and satisfies 7(0) ~ 0. A function a : R>o — ]R>o is said to be 

of class /C if it is continuous, strictly increasing, and q:(0) = 0. If, in addition, Q;(r) 一 oo 

as r ^ 00, then it is said to be of class /Coo- A function /? ： R>o x R>o IR>o is said to be 

of class KC if /?(•, t) is of class K, for each fixed t > 0 and /3(r, t) decreases to 0 as t — 00 

for each fixed r > 0. For a function g{u, d) satisfying 没(0, d) ~ Q for any d, the notation 

g{u, d) — Od{u) means l im|卜0 丨丨巧：’丨产丨 二 0. For a square matrix F, let A(F) and A(F) 

denote the maximal and minimal eigenvalue of P, respectively. 



2.1 Stability of Nonlinear Systems 

Consider the following nonlinear system 

x^ fix, d) (2.1) 

where f : W x R " is locally Lipschitz and f(0,d) = 0 for any d G and 

fi : [0, oo) — X) is a continuous function with its range T> a compact subset of I R � . Let 

x{t) denote the trajectory of system (2.1) with initial state x(0) and time-varying static 

uncertainty d. 

Remark 2.1.1 Clearly, x = 0 is an equilibrium point of system (2.1). Since d in (2.1) is 

a function of time, system (2.1) is a nonautonomous system. However, system (2.1) will 

be treated as an "autonomous" system in the following because d ranges in a compact set 

V. 

The stability concept considered in this thesis is defined as follows. 

Definition 2.1.1 The equilibrium point x == 0 of system (2.1) is said to be: 

a) stable, if for each e > 0，there exists 6{e) > 0 such that ||x(0)|| < (5(e) implies 

l|x(i)|| < e for all t > 0. 

b) unstable, if it is not stable. 

c) locally asymptotically stable, if it is stable and there exists an open set X of the 

origin of E" , such that a;(0) G X implies x{t) — 0 as t — oo. Moreover, if X — W^, 

then the equilibrium point a; — 0 is globally asymptotically stable. 

d) exponentially stable, if there exist positive constants c, k and A such that for any 

I 刚 II < c , 

\\x{t)\\ < k\\xme-'K (2.2) 

Moreover, if (2.2) holds for any x(0), then the equilibrium point x = 0 is globally 

exponentially stable. 

There are many useful Lyapunov stability theorems in literature. Here we only list 

some theorems relevant to our work. All these theorems can be found in [36] (see also 

[26, 75]). 
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We first introduce two theorems which are usually called Lyapunov's indirect or lin-

earization method for nonautonomous and autonomous nonlinear systems respectively. 

From Theorem 4.13 of [36], the exponential stability of the equilibrium point of a 

nonautonomous nonlinear system can be dictated by the exponential stability of its lin-

earization about the equilibrium point. 

Theorem 2.1.1 [36] Let a; = 0 be an equilibrium point for the nonlinear system 

i 二 f{t,x) 

where / : [0，oo) x Z) — R " is continuously differentiable, D — {x e : ||a;|| < r}, and 

the Jacobian matrix 髮 is bounded and Lipschitz on D�uniformly in t. Let 

df{t,x) 
A � 

Then, x — 0 is an exponential stable equilibrium point for the nonlinear system if it is an 

exponential stable equilibrium point for the linear system 

X .. A{t)x. 

From Theorem 4.7 of [36], the stability property of the equilibrium point of an au-

tonomous nonlinear system, under certain circumstances, can be dictated by the location 

of the eigenvalues of its Jacobian matrix about the equilibrium point. 

Theorem 2.1.2 [36] Let x = 0 be an equilibrium point for the nonlinear system 

i 二 fix) (2.3) 

where f{x) is continuously differentiable in some neighborhood of re = 0. Let the Jacobian 

matrix 

: d x . 

Then, 

1. a: = 0 is exponentially stable if ReA^ < 0 for all eigenvalues of A] 

2. ；T = 0 is unstable if ReA^ > 0 for one or more eigenvalues of A. 

Remark 2.1.2 For the autonomous system (2.3), the Lyapunov's linearization method 

fails when ReA^ < 0 for all i and ReA^ = 0 for some i. In this critical case, the equilibrium 

point X ~ 0 could be asymptotically stable, stable or unstable (for illustration, see Example 

4.14 of [36]), Nonetheless, the critical case can be handled by the center manifold theory 

[111,[65]. 
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The following theorem is a sufficient condition for the uniform asymptotic stability of 

a nonautonomous system. 

Theorem 2.1.3 [36] Let x — 0 be an equilibrium point for system 

x = fit, x) (2.5) 

where / ( t , x) is piecewise continuous in t and locally Lipschitz in x on [0, oo) x D, and 

D C M" is a domain containing x — 0. Let V : [0, oo) x £) —> K. be a continuously 

differentiable function such that 

Wi{x)<V{t,x)<W2{x) 

for all t > 0 and j： G D, where Wi{x), i — 1,2,3, are positive definite functions on D. 

Then, x = 0 is uniformly asymptotically stable. Moreover, if D = M" and is 

radially unbounded, then x = 0 is globally uniformly asymptotically stable. 

The next theorem is known as Barbalat's Lemma. 

Theorem 2.1.4 [36] Let 0 : M —> M be a uniformly continuous function on [0, oo). Sup-

pose that limt—oo fg (p(T)dr exists and is finite. Then 

lim � = 0 (2.6) 
t—oo 

The following theorem is an extension of LaSalle's invariance theorem to nonau-

tonomous system. 

Theorem 2.1.5 [36] Let D C be a domain containing a: — 0 and suppose f(t, x) 

is piecewise continuous in t and locally Lipschitz in x, uniformly in t, on [0, oo) x D. 

Furthermore, suppose / ( t , 0) is uniformly bounded for all t >0. Let V : [0, oo) x D —̂  M 

be a continuously differentiable function such that 

Wr{x)<V{t,x)<W2{x) 

for all t > 0 and x e D, where Wi{x) and W2{x) are positive definite functions and 

W^{x) is a positive semidefinite function on D. Choose r > 0 such that B^ d D and let 
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p < min||a;||二r 14^1(2;). Then all solutions of i ^ f(t, x) with x{to) e {x e Br ： W2{x) < p) 

are bounded and satisfy 

lim ⑴） - 0 (2.7) 
t—*oo 

Moreover, if all the assumptions hold globally and Wi{x) is radially unbounded, the state-

ment is true for all x{to) G M". 

2.2 Input-to-State Stability and Its Local Extensions 

Input-to-state stability (ISS) was introduced by Sontag in [76] and many results related to 

ISS have been obtained during the last fifteen years, see [78] for a tutorial. As a result, ISS 

and its extended variations, such as integral-ISS [5]> together with their related notions 

of input-output stability and detectability have become a very useful framework—ISS 

framework [77] for nonlinear feedback analysis and design [38]. 

2.2.1 Input-to-State Stability 

Consider the following system 

fix, u) (2.8) 

where / : R™ x R ^ ^ R " is locally Lipschitz and / ( 0 , 0 ) = 0，and input u : R>o — K爪 

is piecewise continuous. Let x{t) denote the trajectory of system (2.8) with initial state 

a:(0) and input u. 

Definition 2.2.1 [76] System (2.8) is input-to-state stable (ISS) if there exist class KC 

function (S and class Ki function 7 such that, for all a;(0) G and u G the following 

holds 

_ | | < m a x { / 3 ( | | x ( 0 ) i i ) , i ) , 7 ( l k l U ) } , W > 0 (2.9) 

Remark 2.2.1 If the equilibrium point x = 0 of system (2.8) with u = 0 is globally 

asymptotically stable, then system (2.8) is said to be 0-GAS [5]. Obviously, if system 

(2.8) is ISS, then system (2.8) is 0-GAS. 

There exists a Lyapunov-like characterization of ISS, which extends the well known 

Lyapunov theorem for asymptotic stability. 
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Def in i t ion 2.2.2 [79] A continuously differentiable function : R"" — R>o is called an 

ISS Lyapunov function for system (2.8) if there exist class /Coo functions a, a , a and class 

K function x, such that for all x G R^ and u G M" ,̂ it holds that 

« ( l k l l ) < ⑷ < q(||x!|) (2.10) 

dv 
X( IMI ) < W l 4 ^ ( X ) f ( x , u ) < - a ( i | x | | ) (2.11) 

The following theorem shows that the existence of an ISS Lyapunov function is neces-

sary as well as sufficient for the system to be ISS. 

T h e o r e m 2.2.1 [79] System (2.8) is ISS if and only if it admits an ISS Lyapunov func-

tion. 

Remark 2.2.2 If one can find an ISS Lyapunov function for a given system (2.8), then 

the system is ISS by the above theorem and moreover, the gain function 7 which appears 

in the estimate (2.9) can be computed from the functions a, a, a and x as follows [26]: 

7 ( r )=这—1 o 5 o (2.12) 

R e m a r k 2.2.3 Notice that, for any pair /5 > 0,7 > 0, max{/3,7} < < max{2/?, 27}, 

thus an equivalent characterization of ISS is that, there exist class KC function (3 and class 

K, function 7 such that, for all 2：(0) e R^ and all u e the following holds 

lix(t)||</?(||x(0)Il),t)4-7(||n||oo), V t > 0 (2.13) 

The imposition of some restriction on the input leads to the notion of ISS with restric-

tion on the input. 

Def in i t ion 2.2.3 [4] System (2.8) is said to be ISS with restriction A on u, if there exist 

A > 0, class JCC function /3 and class /C function 7 such that, for all x(0) € R " and u G 

with ||u|jco < A , the following holds 

Mt]\\ < max{/3(| lx(0)| | ) , t ) ,7(| |n| |oo)}, Vt > 0 

Def in i t ion 2.2.4 [4] System (2.8) satisfies the ultimate boundedness (UBND) property 

with restriction A on the input u, if there exists a nondecreasing function 7 : R>o — M>o 

such that for any initial condition a:(0) € M" and any u e with \\u\\oo < A , the 

following holds 

l k L < 7 ( M o o ) (2.14) 
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Remark 2.2.4 If 7 is strengthened to be of class K function, then UBND is strengthened 

to the asymptotic gain (AG) property [80]. Clearly, UBND is a concept weaker than AG. 

The following fact states an equivalent characterization of ISS with restriction on the 

input. 

Theorem 2.2.2 [4] System (2.8) is ISS with restriction on the input if and only if it is 

0-GAS and satisfies UBND with suitable restriction. 

2.2.2 Local Extensions of ISS 

The imposition of restrictions on both of the initial state and the input leads to the local 

extension of ISS. 

Definition 2.2.5 [85] The output y of system (2.8) is said to satisfy an a-Coo stability 

bound (a-LB) with restrictions X, A on a:(0), u and gains 7 respectively, if there exist 

open set X of the origin of R"', positive real number A, gain functions 7, such that, 

for each x(0) G X , ||u|[oo < A, the solution of (2.8) exists for alH > 0 and 

||?/l!oo<max{/(|lx(0)|i),7(||^||oo)}, (2.15) 

y ! a < 7(IMia). (2.16) 

Remark 2.2.5 It has been shown in [80] that, the state of system (2.8) satisfies a-LB if 

and only if the system is ISS. As a result, a-LB with restrictions is also called ISS with 

restrictions in some literature, e.g., [4],[26], 

Lemma 3.3 of [85] provides a sufficient condition for a-LB with restrictions. 

Theorem 2.2.3 [85] Suppose there exist V ^ E>o, globally invertible gain functions 

a and a, a gain function 7 , and strictly positive real numbers (or possibly 00) 6u and Sx, 

such that (2.10) and the following inequality hold 

dv 
7(|M|) < ||x|| <、，IMI < 知 4 < 0. (2.17) 

Let r and A be strictly positive real numbers (or possibly 00) satisfying 

这—1 o a{r) < 6：,, a-^oao 7 ( A ) < A < (5奴. (2.18) 

Then the state of system (2.8) satisfies a-LB with restriction {x e M" : I|a:|| < r } on x(0) 

and gain a—^ o a, restriction A on u and gain o a o 7. 
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Definition 2.2.6 [85] The output y of system (2.8) is said to satisfy an asymptotic bound 

(AB) with restriction X on 工(0), restriction A on n and gain 7, if there exist open set 

X of the origin of R"", non-negative real number A, gain function 7, such that, for each 

2：(0) E X and piecewise continuous u satisfying |jw||a < A, the solution of (2.8) exists for 

all t > 0 and 

b l|a<7( !Hla ) . (2.19) 

Remark 2.2.6 If the state of system (2.8) satisfies a-LB with restriction on x(0), then 

the equilibrium point a: = 0 of system (2.8) with u = 0 is locally asymptotically stable; 

if the state of system (2.8) satisfies AB with restriction no restriction on a:(0), then the 

equilibrium point 工 = 0 of system (2.8) with n = 0 is globally attractive. As a result, 

the combination of a-LB and AB can be used to study the global asymptotic stability of 

the equilibrium point j; = 0 of system (2.8) with u = 0. However, it can be seen from 

(2.16) and (2.19) that, there is some overlap between a~LB and AB, and (2.16) turns out 

redundant in showing the asymptotic stability. This observation motivates us to introduce 

the iCoo stability bound. 

Definition 2.2.7 The output y of system (2.8) is said to satisfy a L � stability bound 

(LB) with restrictions X , A on x(0), n and gains 7^,7 respectively, if there exist open set 

X of the origin of M"", positive real number A, gain functions 7®, 7 such that, for each 

a;(0) € X , ||ii||oo < A, the solution of (2.8) exists for alU > 0 and 

|M|ooSmax{70(HO)ll)，7(IMloo)}. (2.20) 

Remark 2.2.7 A subtle difference between the concept a-LB and the combination of the 

concepts LB and AB is that AB requires that inequality (2.19) hold for all ||u||a < A 

while a-LB requires that inequality (2.16) hold for all ||u||oo < A. To be more specific, 

we first show that LB+AB a-LB. Suppose the output y of system (2.8) satisfies LB 

with restrictions Ag on a:(0), n and gains 7°, respectively, and satisfies AB with 

restriction Xa on :r(0), restriction Aa on u and gain 7a. Then, the output y of system (2.8) 

satisfies a-LB with restrictions Xs 0 Xa, min{As, Aa} on x(0), n and gains 7。，max{7s, 7 � } 

respectively. However, the converse is not true. Note that, the state of the system 

i: = + x^u (2.21) 

satisfies a-LB with restriction 1 on u. However, x does not satisfy AB with any restriction 

on a:(0) and u, because given any a:(0) + 0 there exists u � satisfying ||u�||a = 0 such 
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that x(t) diverges in finite time. For example, let b > ^~，u{t) — 2 for 0 < ^ < 6 and 

u{t) = 0 for i > 6, then the solution of (2.21) becomes x{t) = (:c(0)-2 — 21)'^ and x{t) 

diverges as i — In addition, the relation between a-LB and AB is also discussed 

on page 1260 of [85]. 

Remark 2.2.8 The combination of LB and AB can also be used to study the asymptotic 

stability of system (2.8) with u = 0. More specifically, if the state x of system (2.8) 

satisfies LB with restriction on rc(0), then the equilibrium point 工 二 0 of system (2.8) with 

u = 0 is locally stable; if the state x of system (2.8) satisfies AB with restriction Xa on 

a;(0), then the equilibrium point rc = 0 of system (2.8) with u — 0 is locally attractive. As 

a result, the equilibrium point j: — 0 of system (2.8) with u = 0 is locally asymptotically 

stable, and if, in addition, Xa = W^, then it is globally asymptotically stable. 

In the following, for simplicity, if the state x of system (2.8) satisfies LB, AB or a-LB, 

then we will say system (2.8) satisfies LB, AB or a-LB. If the output y of system (2.8) 

satisfies LB with restriction on :r(0)’ restriction A on u and gain 7，and satisfies AB with 

no restriction on a:(0), restriction A on u and gain 7, then we will say y satisfies LB with 

restriction and AB with no restriction on 2；(0), both with restriction A on u and gain 7 . 

Remark 2.2.9 It would be interesting to show that, if system (2.8) satisfies LB with 

restriction and AB with no restriction on x(0), both with restriction A on u, then system 

(2.8) is ISS with restriction on u. By Theorem 2.2.2 and Remark 2.2.8，we only need to 

show system (2.8) satisfies UBND with restriction. Define U\ — {u e C ^ ; ||u||oo < A } 

and U2 = {u : ||u||a < A } . Clearly, U\ <Z U2. Since system (2.8) satisfies AB with 

restriction A on u, ||:r||a < 7(||w||a) for all x(0) G M" and u G U2. Then, noting Ui c U2 

and ||u||o < ||u||oo yields the UBND property as follows 

I W K < Tdl^lU), ll^iu < 7(IMIoo)，vu g U I 

2.3 Small Gain Theorems with Restrictions 

Over the years, several different versions of the small gain theorem in the framework of 

ISS have been established [31, 32, 85]. In the following, we introduce two versions of the 

small gain theorem with restrictions adapted from [85] which play a crucial role in the 

subsequent chapters. 

Consider the following nonlinear system 

i = f[x,u,d), y — h{x,u,d), (2.22) 
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where x G M"" is the plant state, y E MP the output, u E R"^ the piecewise continuous 

input, /(a:, u, d) and h(x,u,d) are locally Lipschitz functions vanishing at (0, 0, d) for all 

d G T>, and d : [0, oo) — P is a continuous function with its range V a compact subset of 

Let x(t) denote the solution of system. (2.22) with initial state a:(0), input u and d. 

Definition 2.3.1 The output y of system (2.22) is said to satisfy a robust Coc stability 

bound (RLB) with restrictions X , A on a:(0), u and gains 7 respectively, if there exist 

open set X of the origin of R"", positive real number A , gain functions � ’ y, all independent 

of d, such that, for each x(0) e X, d e T>, ||u|joo < A , the solution of (2.22) exists for all 

i > 0 and 

I I ^ IU < inax {7M|x (0 ) | | ) , 7 ( | | ^ i l oc ) } . (2.23) 

Def ini t ion 2.3.2 [85] The output y of system (2.22) is said to satisfy a robust a-Coo 

stability bound (Ra-LB) with restrictions X , A on x(0), u and gains 7 respectively, if 

y satisfies RLB with restrictions X, A on a:(0), u and gains 7 respectively, and for each 

x(0) e X , d e T > , IMIoo < A , 

b l l a < 7 ( M U ) . (2.24) 

The output y is said to satisfy a robust asymptotic bound (RAB) with restriction X 

on :c(0)’ restriction A on u and gain 7 , if there exist open set X of the origin of M"', 

non-negative real number A , gain function 7，all independent of d, such that, for each 

x{0) e X, d e V and piecewise continuous u satisfying ||ii||a < A , the solution of (2.22) 

exists for all t > 0 and 

I I 2 / I U < 7 ( IMiJ . (2.25) 

R e m a r k 2.3.1 In both Definitions 2.3.1 and 2.3.2’ the word "robust" is used to emphasize 

that the inequalities (2.23)-(2.25) hold regardless of the presence of the disturbance d in 

(2.22). For convenience, we will simply use, in the following, LB, AB and a-LB to mean 

RLB, RAB and Ra-LB, respectively. 

Remark 2.3.2 Lyapunov's linearization method and the asymptotic small gain theorem 

combined approach [4, 7, 85] has been one of the standard approaches in dealing with 

the problem of global asymptotic stabilization of feedforward systems. In particular, the 

Lyapunov's linearization method is utilized to guarantee the local stability, and the asymp-

totic small gain theorem is used to establish the global attractiveness. The employment 
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of the Lyapunov's linearization method necessitates that the Jacobian linearization of the 

closed-loop system at the origin must be exponentially stable. However, it is difficult to 

achieve the exponential stability of the Jacobian linearization at the origin for feedforward 

systems with uncertain constant parameters [4]，and it is even more so if the feedforward 

system contains both time-varying static and dynamic uncertainty. Furthermore, when 

it is impossible to use the Lyapunov's linearization method to conclude the local stability 

at all. Thus, we resort to the pure small gain approach instead of combining Lyapunov's 

linearization method and asymptotic small gain theorem. Note from [85] that, a-LB can 

be used to study the asymptotic stability of x = 0 of system (2.22) with u = 0. Therefore, 

we first turn to a-LB small gain theorem, i.e. Theorem 1 in [85]. It can be seen from [85] 

that, given two subsystems that satisfy a-LB with no restriction on the initial state and 

with restriction on the input, a finite restriction on the initial state of the interconnected 

system may still be incurred due to the restrictions on the inputs of the individual subsys-

tems. As a result, even if the two subsystems satisfy a-LB with no restriction on the initial 

state and with restriction on the input, a-LB small gain theorem alone can not conclude 

the global asymptotic stability but the local asymptotic stability. On the other hand, note 

from [4，7，85] that, the global attractiveness can be studied by AB property. Thus, the 

local stability and the global attractiveness can also be checked by a-LB and AB, and 

correspondingly the a-LB and asymptotic small gain theorems, respectively. However, it 

can be seen from (2.16) and (2.19) that, there is some overlap between a-LB and AB, and 

(2,16) turns out redundant in showing the asymptotic stability. This observation moti-

vates us to introduce LB, and use LB and AB, and correspondingly, LB and AB small 

gain theorems as described by Propositions 2.3.1 and 2.3.2 to study the local stability and 

the global attractiveness respectively. As can be seen from the subsequent chapters, such 

setup leads to a more concise and simpler treatment, since a-LB strictly implies LB. 

Now consider the following two systems 

(2.26) 

subject to the interconnection 

= y2�v2 = y\ (2.27) 

where for i = 1,2, € Vi e m G 肢爪、yi G R^̂  with pi = h and p2 = 
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Uî  d) and hi{xi,Vi^Ui,d) are locally Lipschitz functions vanishing at (0,0,0, d) for 

all d e v . Also suppose the following. 

Assumption 2.3.1 The equations 

yi = hi{xi, h 2 ( x 2 y 2 = h2{x2, hi{xi,y2, ui, cf), U2, d) 

have unique solutions yi and 於 such that, under the interconnection (2.27), the intercon-

nected system (2.26) can be written in the form of (2.22) where x 二 (xi, 0:2), y ~ (jj 1,1/2) 

and u — (ui,U2), and the resulting f and h as in (2.22) are locally Lipschitz. 

Proposition 2.3.1 Suppose Assumption 2.3.1 is satisfied. Let yi 二 (j/ii, ^12) and V2 = 

(”2i,^^22) with yii = V21 and yi2 = V22‘ Assume for i — 1,2, the output yu satisfies LB 

with restrictions X^i, A i , A^i on a;i(0), vi ,ui and gains 7?, respectively, and the 

output y2 satisfies LB with restrictions Xs2-> -^21,^22, on 工2(0), "21, "22, W2 and gains 

72 5721 >722,72^ respectively. If the small gain condition holds, i.e., 72^。知(s) < s for 

all s > 0 and i = 1,2, then for i = 1,2, the output yu satisfies LB with restrictions 

Xsi Alii, on 3：(0), Til, U2 and gains respectively, and yi satisfies LB with 

restrictions Xg, At^i, on x(0),7ii,ii2 and gains 72>72S 72^ respectively, where Xg 二 

X Xs2, and 

文si = {xi e Xsi :7i(!|XI||) < min{A2i,A22},7ii°722 07f(||xi||) < A21 

5i2�52i�^(l lTi i l )<A22，％ iO^(||aM||)<Ai ,%2�^(||:c i||)<Al}， (2 .28) 

文 s2 = {X2 e Xs2 ：究(II 工 2") < Ai,7u0 7?(lk2||) < A21,卞2。劳(|| 工 2 ||) < A22}, 

and for i 二口, 7?,, 7 i ' , . are defined as 

7ii(s) 二 max {7 f ( s ) , 7 i i。对 ( s ) ,力 i。乂2�对 ( s ) } ’ 

72(5) 二 max {^ ( s ) ’ 7 2 1 � 7 i ( s ) , 7 2 2 � 7 i ( s ) } , 

7i2(s) 二 max{7f(s),7i2。询(s)，卞 1 2 � � 7 i ( s ) } , 29) 

111 ⑷ = ( s ) , 7 i i 。 7 2 2 。 I n («)}, 

=力1�究2(5)，背】(力=max{�2 i (吐 � � i � 对 l U s ) } , 

= 7 1 2 。 对 对 = m a x { 7 2 i 。 。 = 侧 , 

A^ii, are positive real numbers satisfying Ai^i < < and 

s e [0, A ^ i )玲 (5), 711 072207^2(5)} < ^21, 

i n a x { � 2 n s ) , 5 i 2 � � 1 � 背 l U s ) } < A22,max{72i o7nns),722 0 < 么1， (2.30) 

S e [0,A,2) 4 711 0 72^(5) < A21,712 0 72'(5) < A22 , 72'(5) < Al . 
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Proof: The result can be viewed as a variant of Theorem 1 of [85] and the proof is divided 

into two parts as that of Theorem 1 of [85]. 

Ai = A21 二 A22 = oo: Given a particular initial condition x(0) G Xsi x 义s2 and 

input signal w 二 (iii，ti2) with |jiiijjoo < A^i and ||u2||oo < let [0, T) be the maximal 

interval of definition. Then, since w is piecewise continuous, by Assumption 2.3.1 we have 

that ||?/iit||oo < 00, \\yi2t\\oo < 00 and ||?/2t||oo < 00 for all t G [0,T). Then, by casuality we 

have for each t E [0, T) 

Ibmlloc < max{7f(||xi(0)ll),7n(||y2dloo),7nMll^illoo)} (2.31) 

l|yi2d|oo < max{7?(||xi(0)l|),7i2(||y2i|!oc),7r2^(IN||oo)} (2.32) 

\\y2t\\oo < niax{^(||:r2(0)||)’�i(||2/nt||oo),�2(||l/m||oo),究2(11 购 11^)} (2.33) 

Substituting (2.31) and (2.32) into (2,33)，we get 

||2/2t||oo S max{^(||:r2(0)丨丨),加。对(llaM(O)ll),如。如(II於tiloo)，彻。谓（lluilloo), 

加。对(11:^1(0)11)，加。加(bdloo),加。锁(IMIoo)，究 2(||u2||oo)}(2.34) 

Noting 711�721 (s) < s ,7 i2�722(5) < s, gives 

||y2dloo<max{72M|x2(0)||),72iO7f(||:t:i(0)||), 

知。劝 Ik i (O) l l)，加。谓 ( Ik i lU ’知。诏 ( Ik i l l oo ) ,究2(11 购I丨⑷)} (2.35) 

Substituting (2.35) into (2.31) and (2.32) respectively yields 

||?/iK||oo<max{7f(||xi(0)||),7iio72'(ll^2(0)||), 

711�722 o 7?(lki(0)II), 7 1 1 � 7 2 2 �诏 ( l l i ^ i Hoc), liliWui lloo), 7 1 1 � i n i M l o o ) } (2.36) 

||i/i2t||oo <max {7 f (11X1(0)11),712 O7?(l|:^2(0)|i), 

加。加。对 ( I k i ( O ) l l ) ,加。加。沿 ( l l m l l o o ) ,谓 ( I I 例 lico)，加。对 2(||u2|U}(2.37) 

Now, noting that the right hand sides of (2.36), (2.37) and (2.35) are independent of i, 

shows that supte[o’r) � il < � ’ supte[o’r) Il"i2�|1 < 00 and supt^队ĵ ) ||y2� II < oo. 

Using Lemma 3.1 in [85] yields that if T is finite then the state is also bounded on [0, T). 

This contradicts [0 ,r) being the maximal interval of definition and thus we conclude that 

T — CO. Letting i — 00 on the left hand sides of (2.36), (2.37) and (2.35) yields that, for 

i = 1, 2，the output yu satisfies LB with restrictions Xs, A^ î, Au2 on x(0), ui, U2 and gains 

71?' respectively, and y2 satisfies LB with restrictions Xg, A^ î, Au2 on x(0), ui, 

and gains 72 >72 respectively. 
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Finite Ai or A21 or A22： Given a:(0) G X^i x Xs2 and input signal w == (ui, U2) with 

ljuilloo < Aui and ||u2||oo < let p(:c(0)’A) represent a continuous path in Xgi x 文s2 

from the origin to x{0) with the property that p(a:(0), 0) = 0 and p(x(0), 1) = a:{0), and let 

Vii, yi2 and y^ represent the outputs produced starting at = p(:c(0),A) with input 

Xw‘ Note that when A — 0, the solutions and the outputs are identically zero. Note also 

that the solutions are a continuous function of 入（see Theorem 3.5 in [36]). In other words, 

given T > 0 (arbitrarily large) and given £21 > 0, £22 > 0 and e\ > 0, there exists A * � 0 

such that A G [0’ A*] implies that the solution exists on [0, T\ and 

ll^nrlioo < ^21, II必riloo < ^22, Wv^tWoc < £1 (2.38) 

Now, let 

A2i = max{7?(!|x^(0)||),7iiO722 O7f(||^t(0)||), 

h i o 朔ll^r肿)||)，加。知。论(IMIoc),带(IWU,加。究2(11 购II J } , 

A22 = max{7?(| |x^(0)i |) ,712 0 7 2 1 � 劝 

知 。 鄉 II 幼 0)11)，加。加。沿(IMIoo),殆（IWioo),加。对 

Ai:^max{72iO7f(lk^(0)||),722 O7f(||a:t(0)||), 

动 114(0)11)，加。滞(lluil丨oc),如。诏(lluill�),究2(1丨u2||oo)} 

From (2.28) and (2.30), we have A21 < A21, A22 < A22 and Ai < Ai . Now let T > 0 

be arbitrarily large, let £21, £22 and si satisfy A21 < £21 < A21, A22 < £22 < A22, and 

Ai < £1 < Ai respectively, and let A* be the largest value belonging to the interval (0,1] 

such that (2.38) holds for all A G [0, A*]. Suppose A* < 1. Then we have, using the same 

calculations as for the case when A2i, A22 and A j were infinite, that < A21 < 

£21} ||j/i2tIIoo ^ A22 < £22, |丨?/签lloo < Ai < £1. By continuity of solutions, there exists 

A' > A* so that (2.38) holds, thus contradicting that A* < 1_ We conclude that A* 二 1 and, 

since T is arbitrary, the solutions are defined on [0, 00) and ||̂ ii||oo < A21, ||yi2||oo < A22 

and ||̂ 2||oo < Ai . The reminder of the proof of is the same as for the case where A21, A22 

and Ai are infinite. 

Proposition 2.3.2 Suppose Assumption 2.3.1 is satisfied. Let yi 二（如，她）and V2 — 

(1̂ 211 ^22) with y\\ = V21 and y\2 = V22. Assume for i — 1,2，the output yu satis-

fies AB with restriction Xai on xi (0), restrictions Ai , A x̂i on f i , ui and gains 71 ̂ , 

respectively, and the output 1/2 satisfies AB with restriction Xa2 on 工2(0), restrictions 

A21, A22, Au2 on U2 and gains 721,722,72^ respectively. Assume that, for all 

(a:i(0), 2:2(0)) G Xai X Xa2, all piecewise continuous ui satisfying ||ui||a < A^ î, where 
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A til is a real number satisfying 0 < Aui < Aui ,7n (Aui) ^ ^21 and < ^22, and 

all piecewise continuous U2 satisfying ||ti2||a < (a:i(t),X2{t)) is defined for all t > 0. 

Assume 

1) A i = 00; 

2) \\m.s-.oc lii{s) < 00 and linis^oo 7ii(s) < ^ == 1, 2; 

3) the small gain condition holds, i . e . ,加 o 加 ( s ) < s for all s > 0 and i = 1，2. 

Then for i 二 1，2，the output yu satisfies AB with restriction Xai x Xa2 on x(0), restrictions 

Aui, Au2 on U1,U2 and gains 75"/, respectively, and y2 satisfies AB with restriction 

Xai X Xa2 on x(0), restrictions A^i, Au2 on ui,u2 and gains ,̂ 72^ respectively, where 

l u ^ l i i ^ ^ ' n T are defined as (2.29). 

Proof: The proof is a modification of Theorem 2 of [85]. 

The bound ||a < A^i implies 

ll^iilla < max{7ii(|l^/2l!a),7ri{lki|la)} < A21, 

WyuWa < max{7i2(||l/2||a),7r2ni|m||a)} < ^22-

This, together with ||w2||a < Au2, implies 

llyslla < max{72i(||2/ll||a),722(||yi2||a),7r(l|t^2||a)}. 

(2.39) 

(2.40) 

(2.41) 

From the definition of 巧 = 1,2, if either or 7^ (̂|tu2|ta) is infinite 

then there is nothing to prove. Otherwise, both ||yi||a and \\y2\\a are bounded so that 

substituting (2.39) and (2.40) into (2.41) and noting the small gain condition gives 

||j/2||aSmax{ho 带（ l l u i l l J ,如。诏（ l l u i l W ,究丨a ) } , (2.42) 

Then, substituting (2.42) into (2.39) and (2.40) respectively yields 

ll?/ii lU < max{7ii o 加 o 究？丄（ll̂ î lU), T n H K y , 7 i i � 劳 2(||u2 ||a)}, 

||yi2||a < n i a x { 7 l 2 �加�带（ l i u i 丨|„)，袍(||ui l|a),7l2�究2 (丨 

Using (2.29) gives the desirable result. If either tĴ /(||wi lU) {i = 1, 2) or 72̂ (||u2||a) is 

infinite, then (2.29) implies either (||ui||a) or 72̂ (||u2||o) is infinite. Thus, nothing is 

left to prove. 
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Remark 2.3.3 Suppose the two subsystems satisfy LB and AB with no restriction on 

the initial state, i.e., Xgi —叉ai 二 股"“工，叉s2 二 文a2 二 M"'̂  and with restriction on the 

input, and all other assumptions of Propositions 2.3.1 and 2.3.2 are satisfied, then the 

interconnected system satisfies LB with restriction Xg and AB with no restriction on the 

initial state (xi(0), 3:2(0)). 

Remark 2.3.4 By letting the dimension of pi2 be zero, Theorem 2 of [85] can be viewed 

as a special case of Proposition 2.3.2. The reason for partitioning yi into yn and y u is to 

allow yii and yn to satisfy LB and AB with different gains from vi. 

Corollary 2.3.1 Consider the following system 

. 丢 ⑷ （2.43) 

where for i — 1, 2, Xi G € R"^^, wi), /2(52, i i , are locally Lipschitz 

functions satisfying / i (0 , 0) = 0 and /2(0, 0, 0) = 0. Assume xi satisfies LB with restriction 

and AB with no restriction on xi(0), both with restriction A^^ on ui and linear gain; X2 

satisfies LB and AB with no restriction on X2(0), both with no restriction on xi , ui and 

linear gains. Then, xi ,x2 satisfy LB with restriction and AB with no restriction on 

(ii(0)’i2(0))，both with restriction Â ^̂  on ui and linear gain. 

Proof: System (2.43) can be seen as a cascade connection V2 : yi of the following two 

systems 

= Vi ~ 

Since xi satisfies AB with no restriction on xi(0) and restriction A^^ on ui, for all xi(0), 

piecewise continuous ui satisfying ||ui||a < A^^, xi{t) is defined for all t > 0. Since X2 

satisfies AB with no restrictions on ^2(0) and xi , wi, for all (云i(0), X2(0)), and all piecewise 

continuous ui satisfying j j u i < A^^, xi{t},x2{t) are defined for all t > 0. Let — 

Noting that 勺2 has no effect on yi shows 7ii(s) 二 712(5) = 0, A i = oo in Propositions 

2.3.1-2.3.2. Thus, all assumptions of Propositions 2.3.1-2.3.2 are satisfied. Finally, noting 

that all gains from ui and V2 are linear completes the proof. 

Corollary 2.3.2 Consider the cascade connection V2 = yi of the following two systems 

XI = / i (xi ,ui,cJ), yi 二 hi{xi,ui,d) 
. (2.44) 
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where for i = 1,2, e G 股饥i,i)2’仏 G W^ and / i ’ / n , / 2 are locally Lipschitz 

functions vanishing at (0,0, c?) for all d e V. Assume yi satisfies LB with restriction 

and AB with no restriction on xi(0), both with restriction A^^ on ui and gain iVĵ ^s; X2 

satisfies LB with restriction and AB with no restriction on X2(0), both with restriction A2 

on V2 and gain N2S. Then X2 satisfies LB with restriction and AB with no restriction on 

(无i(0)’i2(0))’ both with restriction min{An,, A2/iVf^} on ui and gain R 2 辦 、 . 

Proof: Note that V2 = yi and no finite escape time exists for any i i ( 0 ) G R"^, ^2(0) G R " � ’ 

and for any piecewise continuous ui satisfying |jui||a < min{Aii” A 2 / 对 1}. Thus letting 

y2 = X2 shows that the result is a direct application of Propositions 2.3.1 and 2,3.2. 
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Chapter 3 

Disturbance Attenuation of 
Feedforward Systems with 
Dynamic Uncertainty 

3.1 Introduction 

In this chapter, we consider the following system 

— Q — 1 + fii^ii ^ i—1:…，工1，d) 

ii = d), i = n, ...，2 
(3.1) 

二 Di^i + ciu + d) 

ii = + Biu-\-gi 

where for i — 1 , n , Xi ^ R, d £ L G 脱几“，u G R, and gi are locally Lipschitz 

functions satisfying / “O , ...,0) = 0 and 队(0，...,0) = 0, ^ i , B\^Di and c i , a r e con-

stant matrices and constants, respectively. The dynamics governing (^i,<^2,.",�n is called 

dynamic uncertainty because the state of the dynamics is not allowed for feedback. Thus 

we can view system (3.1) as nonlinear systems in feedforward form subject to dynamic un-

certainty 1^1乂2,…，and disturbance d. System (3.1) contains two classes of well known 

nonlinear systems as special cases. First, when there is no dynamic uncertainty, that is, 

n“ = 0, i 二 1,…，n, system (3.1) becomes a subclass of the feedforward systems studied in 

[4],[53],[85],[87], and second, when n “ + 0 and n^. = 0, i = 2 , n , system (3.1) becomes 

the feedforward system subject to input unmodeled dynamics as studied in [7]. System 

(3.1) is interesting on its own, on one hand, because dynamic uncertainty is ubiquitously 
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present in real systems. On the other hand, the robust output regulation problem for 

nonlinear systems in strict feedforward form can be converted into a robust stabilization 

problem of an augmented system in the form of (3.1) where the dynamic uncertainty 

models the internal model [21，22]. Thus the stabilization solution of system (3.1) also 

shed light on the solution of the robust output regulation problem of nonlinear systems in 

feedforward form. 

The objective of this chapter is to design a static partial state feedback control law 

so that the closed-loop system is input-to-state stable (ISS) with the disturbance d as 

input [76, 80], with no restriction on the initial state and restriction on d. As a result, 

when d vanishes, the origin of the closed-loop system is globally asymptotically stable. 

For the second special case mentioned above, the same problem is studied in [7] under 

the assumption that the Jacobian linearization of the system at the origin is stabilizable. 

We will manage to remove this assumption. Like [7], we use the asymptotic small gain 

theorem to establish the global attractiveness of the closed-loop system. However, unlike 

[7], we cannot use the linearization technique to establish the local stability of the closed-

loop system because the Jacobian linearization of the closed-loop system at the origin may 

have eigenvalues on the imaginary axis. To overcome this difficulty, we have to employ 

two versions of small gain theorem with restrictions adapted from [85]. An advantage of 

our result and technique is that we can handle a larger class of systems than those in [7], 

It should be noted that a similar problem was studied recently for system (3.1) in [90]. 

However, the result is semi-global. 

з.2 Robust Stabilization of Feedforward Systems 

Like [7], [85], our approach will utilize saturation functions characterized as follows. 

Definition 3.2.1 A locally Lipschitz function a{-) : M —> [—A, A] is said to be a saturation 

function with saturation level A > 0, if for all s G R, 

1) a(s) — s when |s| < 令； 

2) I < sgn{s)a{s) < min{|s|, A} when |5| > 

The assumptions for system (3.1) used in this chapter are introduced below. 

Assumption 3.2.1 = o(6，w)’ ffj (^i ,u,0) = and / i (& , : rb i ’ ...’;ri’(^i， 

и, 0) = . . . , x i , ( i , u ) , i 二 2’ ...,n. 
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Assumption 3.2.2 The dc gain 6i — ci — •DiAfiBi and C 2 , c ^ are positive. 

Assumption 3.2.3 satisfies LB and AB with no restriction on no restrictions 

on u, d and linear gains, and for i — 2，...，n, & satisfies LB and AB with no restriction on 

(^i(O), no restrictions on ；Ti—i, (̂ [i,...，工丄，�i, w, d and linear gains. 

Lemma 3.2.1 Consider the following control system 

z — 9u + u, d) 

where z’u e R, ^ G M^^.d e IR""，0 is a positive real number, are 

locally Lipschitz, and (7(0,0,0) = 0. Assume u, 0) = u), a n d � s a t i s f i e s LB 

with restrictions H, A^, on ^(0), u, d and gains N^s, N^s respectively, and AB with 

restrictions A^,么d on u, d and gains NuS, N^s respectively. Then there exist A, A: > 0 such 

that under the control 

(3.2) 

u = —cr(kz + kH( — u] (3.3) 

where a is a saturation function with level A, and H is a 1 x n^ constant matrix, 2, ^ satisfy 

LB with restriction and AB with no restriction on (2(0), <^(0)), both with restrictions on 

i2, d and linear gains. 

Proof: Define A = ^A and A: = Ok. Then 

Ou 二 ^ea{k{z 兰 )）= - a { k { z + II�—兰)) 
rC rC 

where a(s) = 6a{s/6) is a saturation function with level A. 

With (3.4), system (3.2) can be viewed as the interconnection 

V2l 

V22 
=yi 

of the following two subsystems 

S i : t I = yi = 
yii 

= 

y\2 

(3.4) 

(3.5) 

Hi 

S2 : i = -a{k{z + V21 - -)) + kv22, "2 = ^ + 巧1 一 

Let us first apply Propositions 2.3.1-2.3.2 to show that the output (yi,仍）of Si and 

S2 under the interconnection (3.5) satisfies LB with restriction and AB with no restriction 

on (z(0), ^(0)), both with restrictions on u, d and linear gains. 
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Step 1. Consider Si system viewing , d as inputs. Show that for i = 1，2，yu satisfies 

LB with restriction and AB with no restriction on ^(0) and restriction on d. 

The assumption on ^ subsystem and \(7{kvi)\ < minj/clvil, A} with A < A^ implies 

that, for all ^(0), piecewise continuous vi and d satisfying ||d||a < A山 ^{t) exists for all 

i > 0, and 

I旧loo < max{7f (11^(0) ||), |ioo, A}, N M \ o o } (3.6) 

for all ^(0) e 3 , vi e \\d\\oc < 么d, and 

IKIla < max{iV,min{/c||i;i||„,A},iVdMI|a} (3.7) 

for all ^(0) G piecewise continuous vi and d satisfying \\d\\a < 

L e U � 0 such that ||丑|| < I. Then, from ||2/ii|| - \\H^\\ < we obtain 

llmilU < max{/7?(lk(0)||),7ii(||^^i||oo),7fi(Nlloo)} (3.8) 

for all ^(0) G H, e \\d\\oo < A^, where 7i i (s) = ZiVy min{fcs, A}, 7^1(5) = IN^s, and 

||yii||a<max{7ii(ibi||a),7fi(N!la)} (3.9) 

for all 1 (̂0) G , piecewise continuous vi and d satisfying j|(i||(j < Â .̂ 

Next consider yu. The Lipschitz continuity of u, d) implies that, if belong 

to a compact set, then there exists L > 0 such that 

< |F(^,u,0)| + LiM|!. (3,10) 

Without loss of generality, by selecting A^̂ ，A^ to be finite and H to be bounded, it follows 

from (3.6) that, with \\d\\oo < A^, A < A^ and ^(0) G S, IÎ CIloo belongs to some compact 

set, and from (3.7) that, with ||d||a < A^ and A < A^, ||̂||a also belongs to some compact 

set. Then from (3.6)，(3.7), (3.10), and li, 0) = u), there exist L^ > 0 and a gain 

function 7o(s) = o(s) such that 

\\y12 lloo < niax{27o�7?( i l€(0) ||), 27o(max{iV„, 1} mm{k\\vi ||oo, A}, 2Ld\\d\\oc}/~k 

< max{27oO7i0(似0)11)/石,加(||t;i||沉)’记(||d|U} (3.11) 

for all ^(0) e S, vi e Clc, ||d||oo < A^, where 712(5) = 27o(niax{iVu，1} mm{ks, X})/k and 

712(5) = 2Lds/k, and 

\\yi2\\a < 腿 ftl2(IHIa),殆(Wa)} (3.12) 
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for all (^(0) G M"'̂ , piecewise continuous vi and d satisfying jjtilla < 八d. 

Now let 7 j (s ) = 2max{^7f(s),27o o 7 f ( s ) / ^ } . Then, it follows from (3.8) and (3.11) 

that, for 2 = 1,2 yu satisfies LB with restrictions H, A i , A^ on ^(0), vi^d and gains 

7i 1 lii-> l\i respectively, and from (3.9) and (3.12) that for i = 1,2, yu satisfies AB with 

restrictions A i , Kd on vi^d and gains 知，光 respectively, where A i = oo and Kd = A小 

Step 2. Consider E2 system viewing V2i u as inputs. Show that, 1/2 satisfies LB with no 

restriction on u, restriction 嘉 on V2, and linear gains respectively, and satisfies AB with 

no restrictions on H, V21, restriction 金 on V22 and linear gains respectively. 

We first claim that, there exists a gain function 72 such that, for all 2(0) G M, piecewise 

continuous u, V21 and V22 satisfying ||?;22|!a ^ 金，^：� exists for all t > 0, and satisfies 

I H I o o l m a x { 7 2 � ( l _ l ) , 3 | M o o， 3 | M | o o , � H o o } (3.13) 

for all 2(0) G R, u,V2i G /：^, |卜22II00 < 盛，and 

| | ‘ 5 m a x { 3 | h i L ， 3 | M « , ^ N | a } (3.14) 

for all 2(0) e R, piecewise continuous u, V21 and V22 satisfying ||v22||a < In fact, the 

proof of (3.14) can be extracted from the derivation of (A.16) of [7] and the proof of (3.13) 

can be derived similarly. 

It follows from (3.13), (3.14) and y2 = 2 + 仍1 — | that, 7/2 satisfies 

l|y2lloo < max{275(k(0)|),6||i;2i!ioo,6||7;22lloc,^||^!ioo} 

=max{72^k(0)|),72i(||^2ilioo),722(||^^22||oo),r(ll^lloo)} (3.15) 

for all 2(0) e M, u, V21 G JC,]^, ||i'22||oo < 嘉，and 

6 
||y2||a < max{6||i;2lL,6|| ;̂22||a, ^li^lla} 

=max{72i(lb2i|U),722(lk22||a),7"(ll^^lla)} (3.16) 

for all 2(0) € R, piecewise continuous u, V21 and V22 satisfying ||t>22||a < where 72 (5 )= 

272(^)^721(5) = 722(5) = 65, and 7^(s) = 6s/k. 

That is, y2 satisfies LB with no restriction on 2(0)，restriction A21, A21, A^ on ”21,灼2，u 

and gains 7®, 721? 722»respect ive ly , and satisfies AB with restrictions A21, A22J ^u on 

”21，”22，u and gains 721, 722, respectively, where A^ — A21 = 00 and A22 =壳‘ 

Step 3. Choose A, k appropriately to satisfy the small gain conditions of Propositions 

2.3.1 and 2.3.2. 
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Let us first consider the small gain condition 加 o 知 ( s ) < s for s > 0 and z ~ 1, 2 of 

Proposition 2.3.1. Note that 712(5) can be written as follows: 

{ 2yo(max{Nu,l}ks) • < < A 

、 — ： ’ m)， (3-17) 
Gk ， ^ - it-

Since 7o(s) = o(s), given any e � 0 , there exists <5 > 0 such that 7o(s) < es for 0 < s < 

Thus, letting 6 = max{iV们 1}A gives 
712(5) < ’1}“，s > 0. (3.18) 

Then, the small gain condition 67^(5) < s for 5 > 0 and i = 1,2 reduces to 

6max{lNuk,之^"-’”}^ < s, s > 0. 

It suffices to choose k and e sufficiently small such that 

QlNuk < 1’ 62咖X严，” < 1. (3,19) 

Note that 入 is determined by e and is independent of k. Therefore, it is possible to choose 

sufficiently small positive numbers A, k such that the small gain condition is satisfied. 

Thus, by Proposition 2.3.1’ the output y of the interconnected system satisfies 

buWoo < niax{(7f + ^(0))!i), 2 (帆 + 2Ld/~k)\\d\U II^IUA} (3.20) 

||y2||oo S 6 m a x { ( 对 + *对)(||C2(0U(0))||)，2(ZiVrf + 2ZW_^oo，|N|oo//0(3.21) 

for z - 1,2 and for all z(0) G {z G R :对(|z|) < 警}’ C(O) G G S : 7f(lkll) < 嘉}’ 

ll̂ ijloo < Au’ and \\d\\^ < A^, where A,, - | and A^ - minf^,〜么丄^,…么丄 

Next consider Proposition 2.3,2. First note that the solution of the interconnected 

system exists for alH > 0 using the same argument as that in Lemma 3.5 of [85]. To check 

the second condition, note that since lim^^oo 711(5) < 00, lims_oo 7i2(s) < 00 and since 

Ai = A21 二 oo and A22 = 嘉 ’ we only need to check l i m s — �加 ( s ) < From (3.17), 

(3.18) and the second inequality of (3.19), we have 

Iim..oo7i2(.) < j，，i” < A < 盖. 

Finally, note that the small gain condition, i.e.’ 72̂  o 加（s) < s, for s > 0 and i = 1,2, 

is implied by (3.19). Thus it is satisfied when the positive numbers A, k are so small that 

(3.19) holds. 
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Thus, by Proposition 2.3.2，the output y of the interconnected system satisfies 

tl"n||a < m^^{2{lNa^2Ljk)\\d\\aA\u\\a/k],i^ 1,2, (3.22) 

I M a <6max{2(ZiV^ + ||ii!U/A:} (3.23) 

for all ^(0) e E, ^(0) € E"-^, piecewise continuous u and d satisfying ||(i|la < A^. 

Let n = { ( 2 , 0 e IR X 三：（对 + < = max{(} + 3)(对⑷ + 

For all (之(0)’<^(0)) e A IHIoc < A , and < A^, (3.20) implies 

billoo < 嘉.Using (3.20), (3.13), (3.21), (3.6) and noting (3.19) yields 

for all G n , llulioo < K�IMIIoc < Ad. 

Then for all (2(0),�(0))，piecewise continuous u and d satisfying ||u|!q < A^ and 

\\d\\a < Ad respectively, (3.22) implies H^mlla < 嘉.Using (3.22), (3.14), (3.23), (3.7) and 

noting (3.19) yields 

PIU < niax{6(/iV, + 2L,/k)\\d\\a^ 

ll̂ lla < max{2(iVrf + 2L,/(fcO)IMIIa, 6iV.||t2|U} 

for all (2(0),<^(0)) G IR X piecewise continuous u and d satisfying ||u||a < A î and 

IMIla < Ad respectively. 

Remark 3.2.1 Unlike [7], we do not require the Jacobian linearization of ^ dynamics be 

Hurwitz. Thus, we cannot use the linearization technique to conclude the local stability of 

system (3.2). To overcome this difficulty, we have utilized LB and AB small gain theorems 

to conclude the local stability and global attractiveness respectively. 

Now we are ready to state the main result of this chapter. 

Theorem 3.2.1 Consider system (3.1). Under Assumptions 3.2.1-3.2.3, there exist posi-

tive real numbers A ,̂ /cj, i = 1 , n , such that under the control 

u = -ai{kiXi + 02{k2X2 H h On{knXn — Un))) (3.24) 

where for i — 1,..., n, cr̂  is a saturation function with level Aj, the closed-loop system 

satisfies LB with restriction and AB with no restriction on ^n(O),..., (0), .^i(O)), 

both with restrictions on Un, d and linear gains. In particular, when Un 二 0, the closed-loop 

system with d — 0 is globally asymptotically stable at the origin. 
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Proof: To make use of Lemma 3.2.1, performing on system (3.1) the following coordinate 

transform: 

zi ^ x i - 二 : + - p - Z i - u i = 2, ...,n 
"卜1 

where 9i — Ci/ki^i,i = 2 , n , gives 

Zi 二 沒 + 1,…，21 乂 i ’U,d) 

ii = ^i,2i—i,...’2;i’<^i，w’d), i = n, ...,2 

6 = 4i�i + Biu + gi (^1, K, d) 

(3.25) 

(3.26) 

where = / i , u, d)-Di A^^gi, u, d) and for i = 2,.. . ,n, 

u,d) 二 / i ( “ ;r i—1, ..yCCijfhUid) + + 一i 1(3 25)， 

where zq is a dummy variable, and Zi-i , . . . , 21, u, d) — ..., x i , <̂ 1, u, 

州(3.25)- Moreover, under the coordinate transform (3.25)，the control (3.24) takes the 

following form: 

u = —cTi(/ci2;i + kiDiA^^^i +a2(k2Z2 — &努2:1 (？购 

H + (TniKZn - kn-^Zn-l _ U„))), 

Thus, the proof will be completed if we can show that, for system (3.26), under the control 

(3.27), the closed-loop system satisfies LB with restriction and AB with no restriction on 

(2;n(0),^n(0), ...,2;i(0),^i(0)), both with restrictions on d and linear gains. 

Since the last two equations of (3.26) is in the form of (3.2) and satisfy all assumptions 

of Lemma 3.2.1, there exist Ai, k\ > 0 such that under the control u = —<y\{k\Z\-\-k\H\^\ — 

•ui) with H\ — _D iA� i , z i , s a t i s f y LB with restriction and AB with no restriction on 

(2i(0),<^i(0)), both with restrictions on ui ,d and linear gains. 

Let (1 = (<̂ 2，21乂1). Then, under the control u — —cri{kizi + kiHi^i — Ui), the last 

four equations of (3.26) can be put into the following form: 

Ci = 

where 為(Ci’ui，d) = 6 — + kiHi^i — u{),d) + 92{-(T\{kiZi + hHi^i — 

•Ĵ i) — ^i)- By the property of the saturation function, —a\{kiXi — ui) + kiXi — Ui = 

o {x i ,u i ) . Then F2 ((1,1x1,0) = o(Ci,ui) since Fi(^i ,u,0) = o(^uu), f2(^2, 0 ) = 
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Ci subsystem of (3.28) can be viewed as in the form of (2.43) with xi = (2:1, ̂ i), X2 — 

and ui — {ui,d). Noting (3.25), Assumption 3.2.3 and \(7i{kiZi + kiHi^i - ui)| < 

3 m a x { / c i | | , [ui|} shows that, under the control u = —cri{kiZi-\-kiHi^i—ui), 

� 2 subsystem of (3.26) satisfies LB and AB with no restriction on <̂ 2(0)，no restriction on 

and linear gains. Thus by Corollary 2.3.1, (̂ 1 satisfies LB with restriction and 

AB with no restriction on ("i(0), both with restrictions on lii, d and linear gains. Then, 

since system (3.28) is in the form of (3.2) and satisfies all assumptions of Lemma 3.2.1, 

there exist A2, /c2 > 0 such that under the control ui = —a2{k2Z2 + ksIhCi — ^2) with 

H2 = [Oixn^2 一 势 Oixn�J, Satisfy LB with restriction and AB with no restriction 

on (22(0), Ci(0))> both with restrictions on U2,d and linear gains. 

Repeating the above procedure (n — 1) times leads to the following system 

where Cn î = (̂ n,之n-

Zn = dnUn-1 + Fn{Cn-l, Un-i, d) 

Cn-1 = G n - l { C n - l , U n - l , d ) 

and Fn(Cn - l , = o(Cn-l, ^^n-l)- Cr 

(3.29) 

satisfies 

LB with restriction and AB with no restriction on 1(0), both with restrictions on 

d and linear gains. Then applying Lemma 3.2.1 to system (3.29) shows that, there 

exist kji > 0 such that under the control u^-i — —Gn{knZn + knHnCn-i — ^m) with 

Hn 二 [Oixn“ ^ 0 ix(n-2+n�n- i+�+n� i ) ] , ^n, Cn-1 satisfy LB with restriction and AB 

with no restriction on (2n(0), (n—1(0)), both with restrictions on Un, d and linear gains. 

Finally, setting = 0 in (3.24) gives the result of global robust asymptotic stabiliza-

tion for system (3.1) with d = 0. 

3.3 An Example 

Consider the following system 

& 随 2 + 0 .取 i | | 2 + 0‘la:? 

- 1 0 6 (3.30) 

0 

0.4 0 

0 - 1 

1 0 

+
 

0.1 

0 

2
 3
 

o
 1

 1
 

where = < ^ 2 , T h e Jacobian linearization of system (3.30) at the origin is 

not stabilizable. Even without the dynamics, system (3.30) still cannot be handled 
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by the approach in [7]. However, since system (3.30) is in the form of (3.1) and satisfies 

Assumptions 3.2.1-3.2.3，Theorem 3.2.1 can be applied to design the stabilizing control 

law. 

Let zi = xi — DiA^^^i, Z2 = X2 + where == 1.1, 02 — 1/&1. Then, system (3.30) 

can be transformed into the following form: 

i2 - O2U + 0.2这 + � 0 . 6 ( 法 - ^ 1 2 — + 
PI 

where for convenience, we retain the original coordinates on the righthand side of (3.31). 

First, consider the last two equations of (3.31). It can be verified by the a-LB small gain 

theorem [85] that, subsystem satisfies a-LB with no restriction on < î(0)，no restriction 

on u and gain 0.4s. Thus, G subsystem satisfies LB and AB with no restriction on >̂ 1(0)， 

no restriction on u and gain 0.4s. 

Since DxA'^ = [ - 1 0 - 0.6], we let I = 1.1662. Note that d) = 0 .6(“ i — 

1̂2 — and it is independent of u. Then the small gain condition becomes 

6 X 1.1662 X 0 為 < 1, 

6 X 2 X 0.6(0.4min{A:is,Ai})3/(没ifci) < s, s > 0. 

The above inequalities are satisfied with = 0.178 and Ai = 1.092. Thus, under the con-

trol u ™ —cri{kizi ^i, zi, xi satisfy LB with restriction and AB with no 

restriction on (21(0), (^i(O)), both with restriction 0.36 on ui and gains 2.4s, 16.85s, 33.75, 

respectively. 

It can be verified that, satisfies LB and AB with no restriction on <̂ 2(0)，no restric-

tions on (̂ 1, and gains 0.4472s, 0.4472s respectively. Now let ( i = (<̂ 2，仏 Then 

satisfies LB with restriction and AB with no restriction on Ci(0), both with restriction 

0.36 on ui and linear gain, and in particular, the gain from ui to is 15.1s. 

Next, we consider the following system 

22 = O2U1 + F2{C\,ui,d) 

where = + 訪 0 . 6 ( 忍 — — 络 + e2hi{xuui) and h t { x i , u i ) = 

kixi — ui — ai{kixi — ui). 
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In this case, we have yu •= Then 711(5) = “̂；!̂̂  min{/c2S,入2}. With 入2 2 各 

and by the property of the saturation function, it can be seen that hi (a;i, ui) has no 

contribution to 712(5). Then, from the expression of ^2(^1,111, d) and by the gains from 

ui to we have 

— , � z 0.4fci (15.1 min{fc25,A2})2 + f f (2.4 min{A;25,A2})3 � n 
712(S) < fcT"^ ’ 5 > 0. 

Then k<2 and A2 should satisfy 

6 X 3^2/(1.lA;f) < 
^0.4fci(15.1min{fc23,A2})̂  + ̂ (2.4min{fc25,A2})^ � 
o < s, s � u . 

The above inequalities are satisfied with k) = 0.0096,入2 = 0.00256. 

As a result, we obtain the following nested saturation control law: 

u == -ai{0.178xi + (72(0.00962:2)) (3.32) 

where cJi, (72 are saturation functions with level 1.092 and 0.00256 respectively. As an 

illustration, Fig. 3.1 shows the simulation result of system (3.30) under the control (3.32) 

with initial state (0:2(0), ^2(0), a:i(0),<ei(0)) - ( -10 ,2 ,15 , ( - 1 0 , 1 0 , - 1 0 ) ) . 

3.4 Conclusion 

In this chapter, we have studied the disturbance attenuation problem for a class of feedfor-

ward systems subject to both dynamic uncertainty and disturbance. The system includes 

the feedforward system subject to input unmodeled dynamics as studied in [7] as a special 

case. Moreover, by utilizing two versions of small gain theorem with restrictions adapted 

from [85], we have removed the stabilizability assumption of the Jacobian linearization of 

the system at the origin needed in [7]. 

It might also be possible to use a combination of a-LB and AB, as mentioned in [85], 

to study the problem of this chapter. However, since a-LB strictly implies LB, our current 

approach leads to a simpler treatment of the problem. 
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Figure 3.1: Profile of xi ,x2 and u 
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Chapter 4 

Global Robust Stabilization of 
Feedforward Systems with Both 
Time-Varying Static and Dynamic 
Uncertainties 

4.1 Introduction 

In this chapter, we study the global robust stabilization problem of the system described 

by the following equation 

= 工i-i, 

— 9i i^i 1 ••'•> 1《1, "̂ )，i — ..., 2 

(4.1) 
二 fi(Xi’u,d) 

where for i = l，...，n, Xi G R, & G d G w G R, are globally defined 

smooth functions vanishing at ( 0 , 0 , d) for all d E T>,气 and n^ are dimensions of & 

and d respectively. System (4.1) contains two types of uncertainties, i.e., time-varying 

static uncertainty represented by the external disturbance d where d : [0, oo) T> is 

a continuous function with its range V a compact subset having a known bound, and 

dynamic uncertainty represented by dynamics governing < î，“ ...，“. The dynamics gov-

erning ^2) n̂ are called dynamic uncertainty because “ …，“ are not allowed for 

feedback. Thus, we call system (4.1) a class of feedforward systems with both time-varying 
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static and dynamic uncertainty. 

As will be seen in Chapter 6，the global robust output regulation problem for a class 

of feedforward systems can be converted into a global robust stabilization problem of 

an augmented system in the form of (4.1). Therefore, if we can solve the global robust 

stabilization problem of system (4.1), then in turn, we can solve the global robust output 

regulation problem for a class of feedforward systems. For this purpose, we study the 

global robust stabilization problem of system (4.1) in this chapter. 

When n^. = 0, i = 1 , n , i.e., the dynamic uncertainty is not present, the stabilization 

problem of various special cases of system (4.1) has been studied extensively, see e.g., 

[4，29, 45, 53, 59，72, 85, 87] and the references therein. On the other hand, the global 

robust stabilization problem of another special case of system (4.1) with n̂ ^ ^ 0 and 

n^. = 0, i — 2,…’ n, also gathers a lot of interest [7, 33，45，54，56, 72]. Recently, [44] studied 

an output feedback stabilization and disturbance attenuation problem for a system of the 

form of (4.1) without î i dynamics. The feedforward systems considered in [44] have to 

satisfy some bounds which are linearly bounded in the unmeasured states and polynomially 

bounded in the output. In Chapter 3, a state feedback stabilization and disturbance 

attenuation problem for a system of the form (4.1) was studied under the assumption that 

for i = 2, . . . ,n, /““，a:—i’ …，:ri, <̂ 1’ u, d) = qa î—i + rr!—i, ‘.‘’ 工1’ <̂ i，u, d) where q is a 

nonzero constant and 

//"(&’a;i_i,...，a;i’€i’w’0) = (4.2) 

To solve the global robust output regulation problem in Chapter 6, we need to study 

the global robust stabilization problem of system (4.1) without the condition described 

by (4.2) made in Chapter 3. As a result, the approach in Chapter 3 cannot be applied to 

the stabilization problem of system (4.1). Thus, we need to develop a approach to solve 

the global robust stabilization problem of system (4.1). In particular, we will present a 

small gain based bottom-up recursive design for constructing a nested saturation control. 

At each recursion, a cascade subsystem is considered and a saturation control is designed 

to guarantee the stability property of the subsystem by invoking two versions of the small 

gain theorem with restrictions adapted from [85] to establish the local stability and global 

attractiveness of the closed-loop system at the origin respectively. Unlike most existing 

results, our approach does not require the bottom dynamics at each recursion be locally 

exponentially stable. 
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4.2 A Technical Lemma 

In this section, we first introduce a technical lemma and then by recursively applying the 

lemma, a small gain based bottom-up recursive design for the global robust stabilization 

problem of system (4.1) is accomplished. 

Like Chapter 3, our approach will utilize saturation functions characterized in Defini-

tion 3.2.1. 

In the following, we will consider the system 

where F : x M x P R, G : x R x are locally Lipschitz functions 

vanishing at (0, 0, d) for all d e T>, and 6 : V R is continuous, nonzero and does not 

change its sign. 

Under the control 

(4.3) 

-a{kz + kH{d)^ - u] (4.4) 

where a is a saturation function with level A > 0, fc is a nonzero real number with the 

same sign as 6{d), is a 1 x matrix depending on d and satisfying \\H{d)\\ < v for 

all c? G P and some positive constant system (4.3) takes the form 

i -e{d)a{kz + kH{d)^ -u)^ -a{kz + kH{d)^ — w), d) 

i - -a{kz + kH{d)^ -u),d) 

which can be viewed as the interconnection 

—— y2.. 

(4.5) 

of the following two subsystems 

= ~<j{kvi), d), yi = 

V21 
(4.6) V2 — 

V21 
yi (4.6) 

V22 

yii (4.7) yi = = (4.7) 
yi2 

： Z = -a(k(z + V21 -岩)）+ kV22, y2 = Z + V21 (4.8) 

where a(s) — is a saturation function with level A = \9{d)\X and k = 6{d)k > 0. 

Lemma 4.2.1 Consider system (4.3). Assume i subsystem satisfies LB with restriction 

and AB with no restriction on < (̂0), both with restriction A on w and gain Ns. Then 

under the control (4.4), the following results hold: 
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1) With A < A, for i — 1, 2, the output yu of Si subsystem satisfies LB with restriction 

and AB with no restriction on (^(0), both with no restriction on vi and gain ^u. 

2) Further assume j u satisfies 

lim.^oo 71.(5) 1,2 (4.9) 

and 

6711 (s) < 5,6712(5) < 5,5 > 0. (4.10) 

Then z^ z u satisfy LB with restriction and AB with no restriction on 

( : ( • ) ’ � 0 ) ) , both with restriction | on u and gains jljS, j||S, 6Ns, 65, respectively. 

Remark 4,2.1 Put the closed-loop system (4.5) in the compact form x = f{x, u, d(t)) 

where x = (z, Then Lemma 3.1 implies that the equilibrium point x = 0 of the system 

± — / ( x , 0, d(t)) is globally asymptotically stable for all d(t) G V. In particular, since 

X — 0, d{t)) is time-varying, the local stability of the equilibrium point x — 0 cannot 

be implied by the global attractiveness of the equilibrium point a: — 0 of the system 

X — f{x, 0, d{t)). That is why we need to separately establish the LB and AB properties 

of the closed-loop system (4.5). In contrast, the corresponding result in the Appendix of 

[7] only requires that the equilibrium point : 0 of the system x : / ( x , 0’ 0) be globally 

asymptotically stable. Due to the special structure of the function / ( x , 0, 0), the global 

attractiveness of the equilibrium point a: = 0 of the system x — / ( x , 0, 0) implies the 

local exponential stability of the equilibrium point x = 0 of the system x = / ( x ,0 , 0). 

Therefore, in [7], it suffices to establish the AB property of the closed-loop system (4.5). 

Proof: Part 1): The assumption on ^ subsystem and \a{kvi)\ < min{|/c|It'll, A} with A < A 

implies that, there exist an open set S of the origin of K � a n d a gain function 7°, all 

independent of d, such that, for all 之(0) G M〜，c/ e V and piecewise continuous vi, ({t) 

exists for alH > 0 and satisfies 

IKIU < max{7f(l|^(0)||),iVniin{|/c|||^i||oo,A}} 

for a l l � ( 0 ) e E . d e V and vi € Cl^, and 

lldU<iVmm{i/cii|^i|la,A} 

for all <̂ (0) G G V and piecewise continuous vi. 
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Noting I 如 丨 - < � I I I旧丨 < Hi�l丨 yields 

biilloo < max{i/7f(lle(0)||),i^iVmin{|/c|||7;i||oo,A}} (4.13) 

=max{z.7f(ll^(0)||),711(11^1 lloo)} (4.14) 

for all (^(0) G E, cf G "D and vi G jCl^, where 711(5) = i/jV min{|/c|s, A}, and 

bu l la < î iVmin{l/c|||7;i||a, A} = 7ii(ll^il|a) (4.15) 

for all (^(0) G W^^^d e V and piecewise continuous vi. 

Next consider yi2- Since u, d) is continuous and F(0, 0, d) 二 0 for all d G V, there 

exists a gain function a(s), independent of d, such that u, < a(||((̂ , u)||) for any 

^ G G U and de V. Then from (4.11) and (4.12), 

Ibdioo < max{a(27f(||^(0)||)),a(2max{iV,l}min{|/c|||^i||oo,A})}A 

二 max{Q(27f(||<e(0)||))/fc,7i2(||^i||oc)} (4.16) 

for all 4(0) e3,deV and vi G where 712(5) 二 a{2 max{iV, 1} min{|A:|s, A}) /^, and 

Ill/I2lla < a(2max{iV, 1} min{l/c||l̂ ;i A}) - 7i2(|| î lU) (4.17) 

for all <̂ {0) G R"^, d 6 T> and piecewise continuous vi. 

Letting 对 (s ) 二 max{i/7?(s), a � 2 7 ? ( s ) / & } and noting (4.14), (4.15) and (4.16), (4.17), 

completes Part 1). Since yu, z = 1, 2, satisfies LB and AB both with no restriction on vi, 

let Ai = 00. 

Part 2): Let us first apply Propositions 2.3.1 and 2.3.2 to show that the output (yi, 2/2) 

of Si and E2 under the interconnection (4.6) satisfies LB with restriction and AB with no 

restriction on (^(0), (f(0)), both with restriction on u and linear gain. 

Step 1. Show that, for S2 system viewing V2i,V22i u as inputs, y) satisfies LB with no 

restriction on 2(0) and gain restrictions A21, A22, A^ on V21, t>22, u and gains 721,722,72 

respectively, and satisfies AB with no restriction on 2(0), restrictions A21, ^u on 

V2i,V22,u and gains 721,722,72 respectively, 

We first claim that, there exists a gain function 7®, independent of d, such that, for 

all 2(0) e M, c? e "D, piecewise continuous u,f2i and x>n satisfying 丨丨V22||a < 命 ’ z{t) is 

defined for all i > 0, and 

P I U <max{72°(k(0)|),3|hi||oo,3]|^22||oc,^||H||oo}, ⑷ 叫 
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for all z(0) G R, <i G u, V2\ G and |k22||oo < •，a n d 

||z|U<max{3||^2l||a, 31^22 (‘.叫 

for all z(0) e R, rf e piecewise continuous w, and V22 satisfying ||î 22||a < 命 . I n 

fact, the proof of (4.19) can be extracted from the derivation of (A.16) of [7] and the proof 

of (4.18) can be derived similarly. 

Then it follows from (4.18), (4.19) and ^ ^ + 2̂1 — f that,於 satisfies 

felloe < inax{272�(W0)丨)，6| …2i||oo，6|h2lloo’|f|Woo} 

二 inax{7?(k(0)|), 721(1^21 Hoc), 722(1^22 Hoc),对(I问loo)} 

for all z(0) e R , d e ' D , u,V2i G and ||i;22||oo < and 

\\y2\\a < ma^{6\\v2l\\a,^V22\\a.^^Ma} 

=max{72i(||^;21 lla)’ 722 (11̂ 2̂2 lU), 72(ll^lla}) 

for all z(0) e R, e P , piecewise continuous u, V21 and V22 satisfying ||t*22l|a < 

(4.20) 

3|fc| 

(4.21) 

(4.22) 

where 

72(5) = 272(3),721 (s) = 722(5) = 6s, 72 (s) 二 |||S. Since y^ satisfies LB and AB both with 

no restriction on u, V21 and restriction 命 on V221 let A^ = A21 — 00 and A22 = 

Step 2. Check the conditions of Propositions 2.3.1 and 2.3.2. 

Obviously, condition (4.10) implies the small gain condition 721 o 7ii(s) < 

and for i = 1,2. Thus, by (4.14), (4.16) and (4.20), and Proposition 2.3.1, 

ll2/ii||oo < max{7f(||e(0)||), |究 ( I W � ) " ) , j^ylWoc}, i = 1，2 

||y2||oo<max{67?(||^(0)||),7§(|!z(0)||)4||u||oo} 

2A 

3ifcr 

s for s > 0 

(4.23) 

(4.24) 

d eV and for all z(0) 对 ( H ) < 簡}, ^(0) € S = e S : 7?(||̂ ||) < * } ’ 

W o o < i 

Next consider Proposition 2.3.2. First note that the solution of the interconnected 

system exists for all i > 0 using the same argument as that in Lemma 3.5 of [85]. Then 

Ai 二 00 implies that the first condition of Proposition 2.3.2 is satisfied. To check the 

second condition, note that for i = 1,2 limg^oo 7h(s) = ， < 00 by condition (4.9), 

and A21 — 00, A22 = 命 . T h e n we only need to check lims_^oo 7i2(s) < From (4.10), 

we have 

l i m s —⑴加⑷= 7 i 2 ( i f | ) < 命 < 戒， 
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Finally, condition (4.10) implies the small gain condition o 7^(5) < s for all s > 0 and 

i - 1,2. Thus, by (4.15), (4.17) and (4.22), and Proposition 2.3.2, 

| | ? / H ! i a < | i | | | ^ | | a , i - l , 2 , ||y2||a < ^^Ma (4.25) 

for all 2(0) G G R"《，d G V and piecewise continuous u. 

Now we can conclude Part 2). Let 7^(5) 二 对⑷,3对 ( s ) , 树(s), 

For all (2(0)，<^(0)) G Z x S, G P and ||u||oc < 全， (4 .23 ) implies \\yn\\oo < 

Using (4.23), (4.18) and (4.24)，（4.11) yields 

Iklloc < max{7°{|l(^(0),4(0))||), |f|||n||oo} (斗 ^̂ ^ 

||^||oo<max{7M|(2(0),«0))||),6iV||u|U} “ 

for all (2(0)，(^(0)) e Z x%d eV ond ||u||oo < f - For all (2(0),<^(0)) G M x G V 

and piecewise continuous u satisfying ||u||a < (4.25) implies ||yi2|丨a < 命 . U s i n g (4.25) 

and (4.19), (4.12) yields 

iklla<ifil|^||a, ll̂ ||a<6iV||niU 

for all (z(0), (^(0)) G M x G T) and piecewise continuous u satisfying \\u\\a < 

Finally, noting (之 + / f ( c O � 二 \z + yu\ < 2max{H, |奶11}, |u| = \c7{kvi)\ = \c7{ky2)\ < 

|/c||y2| and equations (4.23) to (4.25) completes the proof. 

Remark 4.2.2 Another major difference between Lemma 4.2.1 and the result in the 

Appendix of [7] is that we have removed the higher order assumption u, 0) — u). 

Without assumption u, 0) = u), the LB and AB properties of the closed-loop 

system rely on a small gain condition (4.10). Nevertheless, as will be seen in the proof 

of Theorem 4.3.1, the condition (4.10) can be made satisfied by proper design of the 

controller. 

Remark 4.2.3 Lemma 4.2.1 can also be proved by invoking Proposition 2.3.2 and a-LB 

small gain theorem, i.e., Theorem 1 of [85]. However, in doing so would make the proof 

further lengthy and complicate, because at each time when one intends to replace LB by 

a-LB，one redundant inequality like (2.24) will be added. 

Remark 4.2.4 Suppose the assumption of Lemma 4.2.1 hold. Assume y = u, d) is 

an output of ^ subsystem and moreover, y satisfies LB with restriction and AB with no 

restriction on ^(0), both with restriction A on u and gain Ns. Then from u 二 cr(/cfi) 二 

(T[ky2), (4.24), (4.25), it can be concluded that, y satisfies LB with restriction and AB 

with no restriction on (2(0), ^(0)), both with restriction ^ on u and gain 6Ns. 
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4.3 Nested Saturation Controller Design 

Now we are ready to state the main result of this section. We make two assumptions on 

system (4.1), under which the global robust stabilization problem of system (4.1) can be 

solved. 

Define � = 紫 | ( o ’ m ， 执 ⑷ 二 势 l ( � ’ o ， d ) , c i � = 势 | ( � ’ m ) ， A � 二 錯 l (。，M and 

for i = 2," . ,n，Ai{d) - W = ^f^l(o，...,o’d)’ = 5i^l(o’...’o，d)’ A(t^)-

To simplify the notation, we drop the argument d in the matrices defined 

above, then system (4.1) can be rewritten in the following form: 

i = n, 
(4.27) 

ii - + CiXi-i + 

(i — + B 而 _i + gJUi^Xi-i 

ii 二 "Dih +C1U + d) 

where gl are suitably defined smooth functions. 

Assumption 4.3.1 For i = 1, .,.，n, DiA^i is a constant matrix and im = Ci — DiA^iBi 

is a positive (or alternatively negative) constant. 

Assumption 4.3.2 î i satisfies LB and AB with no restriction on both with restric-

tion A i on u and gain Nis, and for i = 2,..., n, satisfies LB and AB with no restriction 

on ^i(O), both with restriction A^ on ^i-i , . . . , xi and gain NiS. 

Theorem 4.3.1 Consider system (4.1). Under Assumptions 4.3.1-4.3.2, there exist Â  > 0 

and nonzero ki with the same sign as 9i where Oi = /xi and 6i — 叫 i = 2,..., n, such 

that, under the control 

u = - c r i { k i x i + cr2{k2X2 + ... + cr„(fc„x„))) (4.28) 

where for z = 1 , n , cJi is a saturation function with level Xi > 0，the closed-loop system 

is globally asymptotically stable at (0, ...,0) for all d 

To prove Theorem 4,3.1，we first note some facts. Let hi{xi, u^) 二 kiXi — Ui — a八kjXi — 

Ui). By the property of the saturation function, h八Xi, Ui) = 0 when \kiXi — < 每.Thus 

hi{xi,Ui) 二 o{xi, Ui). From Assumption 4.3.1 and the smoothness of /!，没i，there exist 

positive constants /zf, ju^, z = 1, • • • , n, such that /uf < < j i f and < î i 

for all d e V, and moreover, there exist positive constants Li,i : 1 , n — 1, and gain 
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functions 7f (s ) = o(s), i — 1,..., n, such that, for any ..., x i , (̂ i, u and d e V, the 

following inequalities hold: 

|/i , n, ti) - ( 6 ,u ,d)\<Yi{\\(6, II) (4.29) 

< + - 2, ...,n (4.30) 

where XQ is a dummy state. Since 7f (s ) 二 o(s), for any > 0, there e x i s t s � > 0 such 

that 

7 ? 0 ) < 0 < s 仏 i = 1, , n (4.31) 

Proof: First, performing the coordinate transformation 

21 = XI - DiA-^^uZi =工广 4- ^ Z i - u i = 2 , n (4.32) 

on system (4.1) gives 

ii ~ ..., i = n, . " ,2 
(4.33) 

i i = Oiu + Fi{ii,u,d) 

where gi, i ~ 1 , n , are suitably defined functions, = fi(“,u,d) — D i A f i 

gi(^i,u,d), and for i = 2, ...,n, <̂ i，tx’ c?) = fi(A” 工i-i”"乂i,u,d) - A A — i 

+ 色 FiiiXi 一 z“2’ …,u, d) + Oiki^IXI-I 1(432) and ZQ is a 

dummy state. Moreover, under the coordinate transformation (4.32), the control (4.28) 

becomes 

U = -(JL(KIZI + KIDIA^^^I + …+ (7N{KZN + FCN^N^N^^N — ^N^-^N-L))- (4-34) 

The proof will be completed if we can show that, for system (4.33), under the control 

(4.34), the closed-loop system with d G V at (0，...,0) is globally asymptotically stable. 

By recursively applying Lemma 4.2.1, we can use mathematical induction to prove 

the theorem. For convenience, let ( • ) � denote the corresponding notation in the j th 

induction. The proof will be completed in three steps. 

Step 1: Under the control u — —(Ti{k\Zi + kiHi^i — m ) where H\ — D i A \ the 

subsystem consisting of the last two equations of (4.33) can be viewed as the interconnec-

tion (4.6) of the two subsystems (4.7) and (4.8) where = 必 ） = z i Hi^i — ui/fci , 
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ug) — Vn —丑 i � i , u 忠 = y i P 二 f Fi(€i’w，o() with ki = Oiki. By Assumptions 4.3.1 and 

4.3.2, and Lemma 4.2.1, with Ai < A i , y'\\\i — 1, 2, satisfies LB with restriction and AB 

with no restriction on (^i(O), both with no restriction on Moreover, it follows from 

the expression of that = i^iNi min{|/ci|s, Ai} and from the expression of yj^) 

and (4.29) that 712^(s) 7i (2 max{l , iVi} min{|/ci|s, Clearly,，{；) and，{^) satisfy 

(4.9). We now further show that there exist sufficiently small Ai, l/cil such that 

6力 ) ( s ) < 5,67(2^ («) < s, s > 0. (4.35) 

Noting (4.31) and substituting the expression of 劝）and into (4.35)，we can obtain 

劝 ) � < < I s , 识 ) � < } � < i s , s > 0. (4.36) 

The first inequality of (4.36) can be satisfied with j/cil < Next note that for any 

0 < n < i there exists £1 > 0 such that < 丁^ Corresponding to this £1， “ Ml 
there exists a > 0 such that 入 1 < min{Ai , 2maxO Ni}^ implies the second inequality of 

(4.36). By Lemma 4.2.1, 21, xi , u satisfy LB with restriction and AB with no restriction 

on (21(0), (0)), both with restriction ^ on ui and gains p^s, p^s, QNis, 6s, respectively. 

Note that (xi, u) can be seen as an output of the subsystem consisting of the last 

two equations of (4.33) and moreover, the last three equations of (4.33) can be seen in 

the form of (2.43) with xi — (21, X2 = Vi = (xj, u), ui — ui, by Assumption 

4.3.2 and Corollary 2.3.2，satisfies LB with restriction and AB with no restriction on 

(6(0):2i(0), .^i(0)), both with restriction Ai = m i n { ^ , i 8 m a x { l ， j ^ i ’ i } } a n d gain 

18iV2 max{p^ , iVj, l } s . Now let Ci = (€2’ Then, both Ci and (<̂ 2, ̂：!, u) satisfy 

LB with restriction and AB with no restriction on (�2 (0) , 21 (0), ^i(O)), both with restriction 

Ai and gain Nis on ui, where Ni — 36max{iV2,1} m a x l j ^ , iVj, 1}. 

Step 2: The last four equations of (4.33) can be put into the form: 

如=6>2UI + 冉(CI，UI’GO (4 37) 

Ci = Gi(Cl’ui，gO 

where F2{Ci,ui,d)=厂2((1，^^，gO + � ( u —例）= / 2 ( 6 , ：̂!, 6 , c ? ) - ( 6 , ；̂!, .̂ i, u, rf) 

+ u,d) + 92h\{xi,u\) and G\ is a suitably defined function. Under the control 

ui = — 22+&2^^2(1—购）where/i2 == ^ — f^ Oixn^J, system (4.37) can be viewed 

as the interconnection (4.6) of the two subsystems (4.7) and (4.8) where vp) = y � ; � =： 

+ 4 ? = Vx} = H2C1 = — 仏 1/仏 and = 冗 ) = ^ ^ ( C l , ^ ! , ^ ) 

with 石2 — By Step 1, subsystem satisfies LB with restriction and AB with no 
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restriction on Ci(0), both with restriction Ai and gain Nis on ui. Then by Assumption 

4.3.1 and Lemma 4.2.1, with A2 < A i , for i = 1,2, y[f satisfies LB with restriction and 

AB with no restriction on (i(0), both with no restriction on v̂ K̂ Moreover, it follows from, 

the expression of yfi) that 祀)（ s ) < 2(181/2^2 m a x { i ^ , iVi, 1} + niin{|fc2|s, A2}, and 

from the expression of 冗 a n d (4.30) that 

丨過丨 < M ^ + teM + + 南 

Noting kixi — m — ”；” = yg), (4.24), (4.25) and the property of hi (x i ,ui ) yields 

that hi(xi, ui) has no contribution to 裙 ) ( s ) when A2 < min{Ai ,叙}, and moreover, from 

(4.16), (4.24) and (4.17), (4.25)，we obtain 

-(2)/ X . orl2Li max{jVi,l}min{|A;2i5,A2}丄 min{|fc2 丨…A2}) fci - (1) / 6 min{|fc2|5,A2} 
TI2 S 々 ^ 十 &2 十"fcr^l2 ( Ifcit 仆 

Clearly,裙）and 诏）satisfy (4.9). We now further show that there exist sufficiently small 

Ai, lkil,2 = 1, 2 such that 

6 微 s ) < 5,67^2^ (5) < s, s > 0. (4.38) 

Noting (4.31) and substituting the expression 

of and into (4.38), we can obtain 

< 2(18r/2iV2 max{iVi, 1, + < s > 0 
诏 ) � < 2(l2Limax"•{产 + : S>0 

The first inequality of (4.39) can be satisfied with \k2\ < 長(18"2戚 m a x { " i , 1, j ^ } + 

— Next note that for any 0 < T2 < i , there exist |A;i|, EI > 0, n > 0 such that 
pti fci _ - o 

^^i2Limax{Ni.i}|fci| + + 6ti) < Ts- Corresponding to this £2’ there exists a 如 > 0 

such that 入2 < mi i i {A i ,各,奢} implies the second inequality of (4.39). By Lemma 4.2.1， 

C11 satisfy LB with restriction and AB with no restriction on (2:2(0), (i (0)), both 

with restriction 夸 on U2 and gainsy^s, j ^ s , QNis, 6s respectively. 

Note that (<̂ 2, (̂ 1, u) can be seen as an output of Ci subsystem of (4.37), then from 

the paragraph above equation (4.37) and by Remark 4.2.4, (<̂ 2, .̂ i, li) satisfies LB with 

restriction on (22(0), Ci(0)) and AB with no restriction on (2：2(0), Ci(0))，both with restric-

tion 警 on U2 and gain 6/^1 s. Since the last five equations of (4.33) can be seen in the form 

of (2.43) with XI 二 (之2,(1)，壬2 二 6)1/1 二 = U2, then by Assumption 

4.3.2 and Corollary 2.3.2, satisfies LB with restriction and AB with no restriction on 

(^3(0), -^2(0), Ci(0))i both with restriction A2 ^ m i n { ^ , f ^ - } on U2 and gain 

12N3max{i^,7Vi}s. Now let C2 二（6,2：2，（1)- Then, both (2 and (6，工2, "̂ 2，工1’ <̂ 1, u) 
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satisfy LB with restriction and AB with no restriction on (1^3(0), ^2(0), Ci(0))i both with 

restriction A2 on U2 and gain N2S, where N2 — 24max{iV3,1} max{|^, iVi}. 

Step 3: For S < j < n^ put the last 2j equations of (4.33) into the form: 

= ^jUj-i + FjiCj-i^Uj-i^d) (4 40) 

where Q - i = {^j, Cj-2), Gj_i is a suitably defined function and 

+ (Cj-2, U j - 2 , d) + 

Under the control Uj-i = —aj{kjZj + kjHjQ-i — Uj) where Hj — [DjAj^ — 

OixO-2+n“+."+nt 1)], system (4.40) can be viewed as the interconnection (4.6) of the two 

subsystems (4.7) and (4.8) where = yg) ~ Zj + H j Q ^ i - U j / k j , V21 = ？ = HjCj-i = 

DjAj^^j — ̂ Zj-i and = Vu = Wj-i, c?) with kj 二 Ojkj. 

Assume, Z j - i , X j - i , (^j-i, Xj-2, ••••> u) satisfy LB with restriction and AB with 

no restriction on (2j-_i(0)’Cj—2(0))，both with restriction ^^^ on Uj-i and gains !矢二丨•§’ 

1而 6 ii^，QNj_2S respectively, and <̂ j.，�j_i，（$).，rcj—1，...，;ri，(̂ 1，it) satisfy LB with restriction 

and AB with no restriction on (<^ (̂0), 2;j_i(0), (^j_2(0)), both with restrictions A j _ i on 

Uj-i and gains 12Nj max{丨"丄丨 ,fjj_2}s�Nj-\s, Nj~\s respectively, where A j _ i 二 

— { ¥ ， 1 2 • � 么 a n d 匆 - 1 = 24niax{ iV, - , l }max{|^, iV,_2} . By this as-

sumption,《卜丄 subsystem satisfies LB with restriction and AB with no restriction on 

Cj—1(0)，both with restriction A j _ i on Uj — i and gain Nj - is . Then by Assumption 4,3.1 

and Lemma 4.2.1, with Xj < A j _ i , for z = 1, 2, satisfies LB with restriction and AB 

with no restriction on both with no restriction on Moreover, it follows from 

the expression of̂ /̂ )̂ that (s) < 2{Uuj Nj max{ ^ ^ , iV̂  _2 } + ^ ^ ) min{|A;̂  |s, A^}, 

and from the expression of ？/；仏？/̂ "̂” and (4.30) that 

Noting kj-iXj-i — Uj一 1 — 一” = y广”，(4.24), (4.25) and the property of 

h j - i ( x j - i , U j - i ) yields that hj—i(ocj_i,Uj_i) has no contribution to 识 ) ( s ) when Xj < 

min{Aj_i , and moreover, from (4.16),(4.24) and (4.17), (4.25), we obtain 

(…^ k. 十 —k] 十 Ifcjl 7i2 I |fcj_i| 仆 

Clearly,识）and 袍) 

satisfy (4.9). We now further show that there exist sufficiently small 

Aj, l^ij, i — 1’ 2,…’ jf, such that 

67^(5) < s, 6识 ) ( s ) < 5 , s > 0. (4.42) 
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Noting (4.31) and substituting the expression of and 卞̂ )̂ into (4.42), we can obtain 

I J 丄 I — 1 j — 1 

识 ) ⑷ < 2(6丄.)々|A:hI + ？々 小 0. 
(4.43) 

The first inequality of (4.43) can be satisfied with |A:j| < 去(12")為• max{丨；̂丄一丨,匆—2} + 

3 - ^ 丨》-2丨)-1. Next note that for any 0 < Tj- < there exist |A;j_i|, sj > 0, r j_ i > 0 such 

that 广i| + � - 丨 。 + 6 t j — 1 ) < Tj. Corresponding to this ej, there exists a 

6j > 0 such that Xj < m in {A j_ i , implies the second inequality of (4.43). By 
1�j — 1 

Lemma 4.2.1, Z j ,X j , ( j — i ,U j - i satisfy LB with restriction and AB with no restriction on 

Cj-i(O)), both with restriction 令 on Uj and gains j ^ s , j ^ s , 6 N j - i s , 6s respectively. 

Note that (^j, X j - i , < ^ 1 , n) can be seen as an output of Cj-i subsystem of (4.40), 

then by Remark 4.2.4，{^j^Xj-i,..., u) also satisfies LB with restriction and AB with no 

restriction on (0), Cj_i(0)), both with restriction ^ on Uj and gain GNj^is. Since the 

last 2j + 1 equations of (4.33) can be seen in the form of (2.43) with xi = = 

�+i,yi 二 {xj^^j^u), — Uj, then by Assumption 4.3.2 and Corollary 2.3.2， 

satisfies LB with restriction and AB with no restriction on ( � j + i ( 0 ) , 2j(0), ( j _ i (0 ) ) , both 

with restriction A j = m i n { ^ , ^ j } on Uj and gain 12iVj+i m a x { ^ , i V j _ i } s . 

Now let Q = Zj, Cj-i) . Then, both Cj and fe+i, satisfy LB with restric-

tion and AB with no restriction on (^j+i(0), Cj_i(0)), both with restriction A j on 

Uj and gain NjS, where Nj — 24max{iVj+i, 1} m a x { y j ^ , N j - i } . 

Therefore, the proof is completed by induction. Finally, setting Un — 0 gives the result 

of global asymptotic stabilization for system (4.33) with d e T>. 

R e m a r k 4.3.1 The recursive design in this chapter is quite different from those in [7] 

and Chapter 4 where by taking advantage of the high order condition like (4.2), for each 

j — 1，…，n, Aj, kj can be determined separately at the j th recursion. However, due to the 

presence of the time-varying static and dynamic uncertainties and due to the absence of 

the high order condition like (4.2), Ai, A ; i , A ^ , kn, cannot be determined by the recursive 

designs of [7] and Chapter 4. Nevertheless, from the proof of Theorem 4.3.1, it can be 

seen that, Ai, A : i , A n , kn, are governed by a set of algebraic inequalities and can be 

determined simultaneously at the end of the whole recursive design. For example, with 
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Tj = 喜 = l， . . . ’n ’ Ai,A;i,...,A„,A:n, are governed by 

2EI max{Nt, 1} 
“ 6 1 ^ ， 

_ 1 
歸 1 丨 < •̂， 

D 
max{iVi,l}|A:i| , Ni\k,\e2, , 1 

( + " T T " ^ < i ^ ， 

6 L j — 1 | I i^j-ilfcj-ilgj , 1 
^v "T ‘ r. ) < / j j f i^ ) 18 〜 1 ’ 

I〜—il f ^ j - i ^ j - i “ 

which are extracted from the inequalities (4.36), (4.39) and (4.43), respectively. It can 

be seen that this set of inequalities are solvable, and Xi,ki,,.., A„, kn can be determined 

in order. In fact, Ai can be determined from the 1st inequality, ki from the 2nd and 3rd 

inequalities, and for i — 2,..., n, Â  can be determined from the {2i — l)th inequality and 

ki from the (2i)th and (2i + l)th inequalities (kn from the last inequality). 

Remark 4.3.2 The approach in [85] cannot be applied to system (4.1). In [85], by recur-

sively applying Theorem 4 of [85]，the author proposed a recursive design for constructing 

a nested saturation control. Prom Theorem 4 on p.1263 of [85]，it can be seen that, for 

Xi^i subsystem, the designed control takes the following form 

: fc“A(7(〜广 r � + l U (4.44) 

where A is the saturation level of a and F is a good saturated linear controller for 

Bi+i) which is the Jacobian linearization of the Xi+i subsystem. It can be seen 

from the proof of Theorem 3 of [85] that, given any F, the small gain condition can al-

ways be satisfied by adjusting only the saturation level A. In fact, F can be determined 

in advance and two methods are given to determine F (See Lemma 4 of [85] and the 

remark following Lemma 4). Both of these two methods are straightforward. Therefore, 

the main difficulty of the solution of Theorem 5 of p5] lies in how to determine a suitable 

saturation level A at each recursion. By using either of the two methods, the term Fx^+i 

in (4.44) shows that the designed control at each recursion in general depends on all the 

states of the cascaded system considered at the recursion, i.e., the Xj+i subsystem. As 

evident from Theorem 5 of [85], such recursive design usually necessitates that all the 

states of the feedforward system should be available for feedback. When part of Xi+i is 
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not available for feedback, as shown in [7], adjusting only the saturation level A is not 

enough to guarantee the satisfaction of the small gain condition. As a result, F cannot be 

determined in advance anymore and should be chosen suitably to render the satisfaction 

of the small gain condition. In this case, how to determine F becomes a difficult and 

challenging task. It is because of this difficulty that Arcak, Teel and Kokotovic provided 

in [7] a different recursive design for a subclass of feedforward systems as studied in [85] 

in the presence of some type of input unmodeled dynamics. Note that, besides the input 

unmodeled dynamics i^i, system (4,1) also contains another n — 1 dynamic uncertainty 

<̂ 2，"”<U. Furthermore, like [7], d is treated as the disturbance to be attenuated in [85]. 

However, d in (4.1) is a time-varying static uncertainty to be rejected. Thus the Jacobian 

linearization of (4.1) with d ^ V at (0,..., 0) in general contains certain unknown time-

varying parameters. In the presence of the unknown time-varying parameters and the 

dynamic uncertainty ^ i , … ’ � n , there is no clue how to guarantee the existence of a suitable 

good saturated linear controller at each recursion. Therefore, the approach in [85] cannot 

be applied to the stabilization problem of system (4.1). 

Remark 4 .3 .3 The approach in [7] does not work for the global robust stabilization 

problem of system (4.1) either. By applying Lemma 1 of [7], the authors proposed a 

different (from [85]) recursive design. A crucial assumption of Lemma 1 is the existence of a 

time invariant coordinate transformation (equation (A.2) of [7]) such that the stabilization 

and disturbance attenuation problem for the original cascaded system can be converted to 

the same problem for system (4.3) with u, 0) = u). However, since system (4,1) 

contains the time-varying uncertainty d, there does not exist any time invariant coordinate 

transformations such that u, d) in (4.3) satisfies n, d) = u). Furthermore, 

as already discussed in Remark 4.2.1, since d is a time-varying static uncertainty to be 

rejected, the arguments on p. 271 of [7] cannot be applied to prove the local exponential 

stability of system (4.5) with d eV as time-varying static uncertainty. Therefore, one has 

to take extra efforts to show the local exponential stability of the Jacobian linearization 

of system (4.5) with d eV. However, there is no clue how to show the local exponential 

stability because system (4.1) takes a general form. As a result, the approach in [7] cannot 

be applied to the global robust stabilization problem of system (4.1). 
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4.4 An Example 

Consider the global robust stabilization problem of the following system 

±2 = D2^2 + + 0.05(xi + d{t)){u + 0.1Z?i^i) 

6 - A2^2 + B2X1 + 0.05B2(xi + d(t))(u + 0.1Z)i6) 

XI = + lOu 

where d{t) = 0 . 5 [ c o s � ] 3 ’ Di = [70.83 — 90 32.5 — 3.33], D2 - [5 — 2], B2 = [1 1]了’ and 

(4.45) 

乂 1 

-4 0 0 0 

0 - 3 0 0 

0 0 - 2 0 

0 0 0 - 1 

- 2 0 

0 - 1 

Clearly, system (4.45) is in the form of (4.1). It can be verified that system (4.45) 

satisfies Assumptions 4.3.1- 4.3.2, thus Theorem 4.3.1 can be applied to solve the global 

robust stabilization problem of system (4.45). 

To solve the problem, performing the coordinate transformation 

zi = — 二工2- D2A~\2 + ff^i, 

on (4.45) gives (for convenience, we retain the original coordinates on the righthand side 

of the following equation) 

22 = O2U + 0.025(2:1 + d(t))(u + O.lDi^i) + e2kixi 

6 = + B2X1 + 0.05^2 + d{t)){u + 0.1Z)i6) 

Z\ = 9iu 

ii = 杨 

(4,46) 

where 没1 =…==10 ,没2 = M2/&1 二 0.5/fci. Since k̂ i has the same sign with 氏，ki,k2 are 

both positive in this case. 

First, consider 21, dynamics. Since iVj — 0, A i — 00, for arbitrarily positive Ai, fci, 

under the control u = —ai{kiZi + kiDiA^^^i — ui), zi,xi,u satisfy LB with restriction 

and AB with no restriction on { z i ( 0 ) , ( 0 ) ) , both with restriction 夸 on ui and gains 

^ ' Id, ^ • Id,6 • Id respectively. 

Then consider Z2, dynamics. We first calculate the gain from ui to €2. Let P2 

be a positive definite and symmetric matrix such that A2P2 + 尸2成=—2/, and U2 — 
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xi +0.05(:ri -h d(t))(u-h0.1Di^i). It can be verified that, subsystem satisfies a-LB with 

no restriction on <^2(0), no restriction on U2 and gain xl^J) 11-̂ 2-521| • Id. Then note that 

(4.47) 
{xi + d{t)){u + O.lDi^i) = xiu + d{t)u + O.lxiDi^i + O.ld � Z^ifi 

< 0.50005X? + O.Su^ + |uj + 50||Dil|2||^if + 0.1||Di|l||<ei|| 

which implies 

+ d{t)){u + O.ID16) < 0.50005|xi I + 1.5|n| + (50||Di || + 0.1)[|Di ||Ĥ i || 

for |xi| < 1, < 1 and ||&|丨 < 1. Then we have 

1̂ 2! < 1.026|a:iI+ 0.0751^1 +3546211^1 II 

for |xi| < 1, |u| < 1 and || < 1. Thus, satisfies LB with restriction and AB with no 

restriction on�2(0)，both with restriction i } on ui and gain . Id, where 

" � 1 = 2 ( 1 ^ ^ + 0 . 0 7 5 x 6). 

Now let Ci — (€2,21,(1). Then (4.46) can be written in the following form 

i2 = 02U1 + 爲(Ci’t/i,cO 

Ci = Gi{Ci,ui,d) 

where = 0.05(1 - + + O.lDi^i) + ui) and Gi is 

a suitably defined function. 

Let = -a2{k2Z2 + - 努A) . Clearly, 7n (s) < 

Note that h i {x i ,u i ) has no contribution to 诏 ) ( s ) when A2 < m i n { ^ ,脊 , 

then from (4.47) and the expression of F 2 ( C i w e have (s) < 0.l|^(6 min{A;2S, A2} 

+ (0-50005x36 + 18) A2}2). By solving 6max{7( i\s) , 7i2^(s)} < s for s > 0, we set 

ki 二 0.2, k2 = 0.00041, Ai = 10 and A2 二 0.0049, and obtain 

u = -cri(0.2a:i + cr2(0.00041(x2))) (4.48) 

where cti, cr2 are saturation functions with level 10 and 0.0049 respectively. 

For illustration, Fig. 4.1 and Fig. 4.2 show the simulation result of system (4.45) under 

the control (4.48) with initial state (0)，:C2(0)乂 1(0),工i(0)) = ( (0.5,1) , -1 .9, (1,1,1,1), 

4). 

4.5 Conclusion 

In this chapter, we solve the global robust stabilization problem for a class of feedforward 

systems subject to both time-varying static and dynamic uncertainties. By recursively 
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Figure 4.1: Profile of xi and X2 

Figure 4.2: Profile of u 
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applying Lemma 4.2.1, a small gain, based bottom-up recursive design has been developed. 

Unlike most existent results, the global asymptotic stability of the closed-loop system is 

guaranteed by employing two versions of the small gain theorem with restrictions adapted 

from [85] to establish the local stability and global attractiveness of the closed-loop system 

at the origin respectively. A specific feature of our approach is that, our approach can deal 

with the global robust stabilization problem for a class of feedforward systems with both 

time-varying static and dynamic uncertainties, and does not require the bottom dynamics 

at each recursion be locally exponentially stable. 
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Chapter 5 

A Small Gain Approach to Global 

Stabilization of Feedforward 

Systems with Input Unmodeled 

Dynamics 

5.1 Introduction 

In this chapter, we study the global robust stabilization problem of strict feedforward 

systems described by 

ij — (工•i—i ,…’ ’ V, d), i = n,..., 2 
(5.1) 

= 9iiv,d) 

subject to the following input unmodeled dynamics 

6 = q {^uu,d) ,v (5.2) 

where pi, .",Pn—i are odd positive integers satisfying pi < P2 ^ ... < Pn—i, Xf G R, i = 

1,..., n, € , u,v € R, d € M"''̂  is a uncertain constant vector ranging within a 

compact set V having a known bound, and Qi, i — 1 , n , p, q are locally Lipschitz, and 

vanish at (0，..., 0, d) for all d & T>. 

The robust stabilization problem of nonlinear systems subject to input unmodeled 

dynamics has been studied for over fifteen years, see, e.g., [2, 6, 7, 30, 32, 37, 45，48, 

54, 67, 71, 72, 89] and the references therein. Among them, [7，45, 54, 72，72] stud-

ied various special cases of system (5.1) with p\ = ... = Pn-i 二 1- For example, it 
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is assumed in [7] that, for i = 2 , n , gi{xi-i, = xi-i + gi{xi-i,xi,v, d) 

where g i { x i - i , x i , i ; , 0 ) = o ( x i _ i , x i , v ) . A common assumption of these papers is 

the stabilizability of the Jacobian linearization of system (5.1) at ( 0 , 0 , d). However, 

this assumption is not satisfied by system (5.1) when some of the Pi,s are greater than one. 

As a result, the approaches in [7，45, 54，72j do not work for our problem. In particular, 

the Lyapunov linearization technique cannot be used to establish the local stability of the 

closed-loop system as what was done in [7]. In this chapter, we will adopt the small gain 

approach to handle the global robust stabilization problem of system (5.1) subject to the 

input unmodeled dynamics (5.2)，and to design a nested saturation controller recursively 

to guarantee the global robust asymptotic stability in the presence of the input unmod-

eled dynamics. Over the years, several different versions of the small gain theorem in the 

framework of input-to-state stability [51，76, 80] have been established [3, 13, 32, 85]. More 

specifically, we will employ two versions of small gain theorem with restrictions adapted 

from [85] to establish the local stability and global attractiveness of the closed-loop system 

at the origin respectively. 

It is noted that when the input unmodeled dynamics (5.2) is not present, the problem 

reduces to the global robust stabilization problem of system (5.1) viewing v as the input. 

This special case is also treated in [50，58, 69, 86, 88] under various assumptions. The 

approaches in [50, 58, 69, 86，88] are Lyapunov based. In contrast, ours is a small gain 

approach which leads to the well-known nested saturation controller. It will be seen 

later that even for this special case, the results in [50, 58, 69, 86, 88] do not contain 

ours because the functions gi,s in this chapter only need to satisfy Assumption 5.3.1 to 

be given in Section 5.3, while in [50, 58, 69, 86，88], the functions gi's are subject to 

some other assumptions. For example, a problem similar to ours was studied in [88] 

under the assumption that, for i — 2,..., n, Xi — ；r仁Y + v, d) where \gt{x, v,d)\ < 

ai{l + + ... + ；r二^+丄 + ^i-i； with > 0 being an unknown 

constant and Xi(町，…’ i, t*) > 0 being a known function. In the case when v, d) 

is a polynomial in x i , v , the above assumption implies that the degree of each 

Xj { j — 1 , i — 2) and v has to be greater than pj and 1 respectively. However, we allow 

the degree of each Xj (J = 1 ’ i — 2) and v to be equal to pj and 1 respectively. As an 

illustration of this point, a simple example that cannot be handled by the approaches in 

[50, 58, 69, 86, 88] will be given in Section 5.4. 

Finally, we note that, like [7], the major technique used in this chapter is the small gain 

technique. However, due to the general form of our system, the small gain condition cannot 
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be made satisfied by a "naive" calculation of the gain functions, A deliberated calculation 

taking advantage of the special structure of various nonlinear functions is needed. This 

point will be made clear in the proof of Theorem 4.2 and Remark 4.2. 

The rest of the chapter is organized as follows: In Section 5.2, we give the main 

technical lemma of this chapter. The main result of this chapter is contained in Section 

5.3: we first design a nested saturation controller for system (5.1) and then show how 

to redesign the controller in the presence of the input unmodeled dynamics (5.2). An 

example is elaborated in Section 5.4 to show that the input unmodeled dynamics can be 

destabilizing, and thus a redesign of the controller is necessary to guarantee the global 

robust asymptotic stability in the presence of the input unmodeled dynamics. 

5.2 A Technical Lemma 

Like the previous chapters, our approach will utilize saturation functions characterized in 

3.2.1. 

As in Section 4.2, we will consider the system 

. (5-3) 
i 二 Gl^^d) 

where z, u G R , ^ G and d E M"'̂  is a uncertain constant vector ranging within 

a compact set V having a known bound, u, d), u, d) are locally Lipschitz and 

vanish at (0,0, d) for all d E V^ and 0 : D —> R is continuous, nonzero and does not change 

its sign. 

Under the control 

u - -a{k{z + H[dW — u) (5.4) 

where cr is a saturation function with level A > 0, /c is a nonzero real number with the 

same sign as 0(d), H[d) is a 1 x n^ matrix depending on d satisfying ⑷丨丨 < v for all 

d e V and some positive constant and p is an odd positive integer, system (5.3) takes 

the form 

i 二 -e{d)a{k{z 4- -a{k{z + H{d)^)P - u), d) 

i ^ G{i,-a{k{z + - u),d) 

which can be viewed as the interconnection 

Vi 二 V2 ^ (1̂ 21,̂ 2̂2) ^ y\ (5-5) 
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of the following two subsystems 

Si ： ^ ^ -a{kvi),d), yi 
yn 

yi2 _ 
(5.6) 

^2： i=： -aCk[{z + V2ir - 11) + “22, 2/2 = + 仍1 广 — I (5.7) 

where CT(S) 二 0(d)a(s/0(d)) is a saturation function with level A 二 \9{d)\X, and k = 

e{d)k > 0 . 

Lemma 5.2.1 Consider system (5.3). Assume ^ subsystem satisfies LB with restriction 

and AB with no restriction on ^ ( 0 ) , both with restriction A on u and gain 7 ( 5 ) . Then 

under the control (5.4)，the following results hold: 

a) With A < A , for i — 1, 2, the output yu of Ei subsystem satisfies LB with restriction 

and AB with no restriction on < (̂0), both with no restriction on vi and gain 7ii(s). 

b) Further, assume 加 ( s ) satisfies 

lims_oo 7H(S) = ^ = 1, 2, (5.8) 

and 

2 . 6P(7 i i ( s ) f < s’ 2 • 6^712(5) < > 0. (5.9) 

Then, 2 + u, ^ satisfy LB with restriction and AB with no restriction on 

( 2 ( 0 ) , ^ ( 0 ) ) , both with restriction | on w and gains 3(命）*, 6 ( 命 ） 去 ， 2 . 6Ps, 7 ( 2 - 6?^s)’ 

respectively. 

Remark 5.2.1 Let a > 0 and 7 ( 5 ) be a gain function. Since for s > 0, ^(7(5))^ < s 

7(0:5^) < s, we have 

2 . 6^(711(5))^ < 6PsP) < 5 , 5 > 0 , 
(5.1U) 

2 • 6^712(5) <s 台 712(2 • 6^5) < s, s〉 0 . 

Remark 5.2.2 Lemma 5.2.1 is an extension of Lemma 4.2.1 in two aspects: first, ^ 

dynamics is allowed to satisfy a nonlinear gain 7 rather than the linear gain and second, 

the control (5.4) takes a more general form than (4.4). 

Proof: Part a): The assumption on ^ subsystem and |a(A;i;i)| < min{|fc||vi |, A} with A < A 

implies that, there exist an open set 5 of the origin of R'̂ ^ and a gain function 7^(5), all 
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independent of d, such that, for all ^(0) G , deV, piecewise continuous vi,�(t) exists 

for all t > 0, and 

II引loo < max{7?(li浏)||)’7(min{|/c||M|co’A})} (5.11) 

for all C(O) eE, d ev, VI e Cl^, and 

||^|U<7(min{|/c||bi|U,A}) (5.12) 

for all (^(0) e ]Rn《，d e V and piecewise continuous vi. 

Noting 丨 = \H{d)^\ < < HHI yields 

llyiilloo < max{z.7f(ll^(0)||),7ii(l|^i||oc)} (5.13) 

for all ^(0) e d e V, vi e where 711(5) = " 7 ( m i n { | f c | s ’ A}) and 

112/11 lU < A}) = 7ii(lki||a) (5.14) 

for all ^(0) e ]R"《，d G V and piecewise continuous 

Next consider yi2. Since u, d) is continuous and F(0, 0, t/) = 0 for all d eV, there 

exists a gain function a{s), independent of d, such that, 

(5.15) 

for ^ G G R and d e V . Then, using (5.11) and (5.12) gives 

II2/12II00 < max{a(27?{||e{0)|!))A,712(111^1 iloo)} (5.16) 

for all C(0) eE, d eV, VI e where 712(5) = max{a(27(min{|/c|s, A})), 

a{2 min{|/c|5, and 

||2/l2||a<7l2(|kl||a) (5.17) 

for all (^(0) G , d e V and piecewise continuous vi. 

Letting 对 (s) = niax{z/7?(s)，ao27?(s)/^} and noting (5.13), (5.14) and (5.16), (5.17), 

completes Part a). In addition, note that yu, i — 1,2，satisfies LB and AB both with no 

restriction on vi, let Ai = oo. 

Part b): Let us first apply Propositions 2.3.1-2.3.2 to show that the output of 

El and S2 under the interconnection (5.5) satisfies LB with restriction and AB with no 

restriction on ( 2 ( 0 ) ,《 ( 0 ) )， b o t h with restriction on u. 

Step 1. Show that, for E2 system viewing 2̂1,1̂ 22, ̂  as inputs, yi satisfies LB with 

no restriction on z{0) and gain 72(5), restrictions A21, A22, on V2i,V22,u and gains 

59 



721 (s), 722(5)) 72 respectively, and satisfies AB with no restriction on 2(0), restrictions 

A21, A22, A^ on V2i,V22,u and gains 72i(s), 722(5), 72 (s) respectively. 
Let V{z) = Then its time derivative along the trajectory of S2 subsystem satisfies 

V^~{dCk[{z + V2ir-^])~kv22)z 

Now consider the following three cases: 

� 补 2 + V2iY - II < f： We have V = -k((z + - f - ” 22) 二 Thus, 

> 3max{|i;2i|, If I*，1^221'} > h i l + I f F + 1^221' 
k 

u > \V21\ + + V22\P 

^ |2： + 仍 > If +1；22| 
,^V <0 

z\ > 3 丨 丨 

(2) k\{z + V2iy - f I > f and z > 0: We have 

2 = H � 2 m a x { K L | , If |云} 2 —吻 + ( f ) : 

+ V2iy 一 f I 二 h � z + V2xy - | ) > 

^V <-z{\-~k\V22\)<Q 

for all |1；22| < i = 命 -

(3) k\{z + V2iy - f I > I and 2 < 0: We have 

� k\{z + V2ir — f I = + 吻广一誉） � 臺 

=5> K < -z{-~^^k\v22\) < 0 

(5.18) 

(5.19) 

(5.20) 

for all |”22丨 < 会 = = 壶 -

Noting (5.18) to (5.20), we claim that, there exists a gain function 7彻)，independent 

of d, such that, for all z(0) G M, rf G P , piecewise continuous u, V21 and V22 satisfying 

||i;22|(a < z{t) exists for t >0, and satisfies 

PIloo < max{7§(!^(0)|), Hilloo,3(||t;22||oo)^3(Mp)?} (5.21) 

for all 2(0) eR.de V,u,V2i € C]^, \\v22\\oo < and 

Iklla < max{3||t;2i||a,3(|ii;22||a)',3(i||^)'} (5.22) 
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for all 2(0) £ M, c? G P , piecewise continuous u, V21 and V22 satisfying < 命 . I n 

fact, the proof of (5.21) and (5.22) follows from Lemma 3.3 in [85] and the derivation of 

(A.16) of [7] respectively. 

Then, from (5.21), (5.22) and |奶| = + - f | < max{2P+i ^ 2|f |}, 

we obtain 

II1/2II00 < niax{7?(k(0)|),721 ||c«),722(11^^22||oo),7?(ll^lloo)} (5.23) 

for all z(0) € G V,u,V2i € 广L, 1̂ 22 ||oo < A22, and 

IMla < max{72l(!k2l|la),722(||^^22||a),7f(ll^lla}) (5.24) 

for all z(0) G R, G? G P , piecewise continuous u, V21 and V22 satisfying ||v22||a < A22, where 

- 2州(7扑)F,加(s) = 2-6PsP,J22(s) = 2 - 6 ^ 5 , 7 1 ( 5 ) = 赞 s and A22 = 命 . S i n c e 

y2 satisfies LB and AB both with no restriction on u, V21, let A^ — A21 — 00. 

Step 2. Check the conditions of Propositions 2.3.1-2.3.2, 

Clearly, condition (5.9) implies the small gain condition 加 o 71^(5) < 5 for 5 > 0 and 

z - 1,2. By (5.23), (5.13)，(5.16) and (5.10), and Proposition 2.3.1, 

||?/ii||ocSmax{�i(||(z(0)’€(0))||)，（li|f)*} (5.25) 

ll?/i2|U<max{7f2(||(^(0),4(0))||),!l|f} (5.26) 

b2|U <max{72°(||(z(0) ,^(0) )||) ,2 .6P^} (5.27) 

for all z(0) < 输 }， ^ ( 0 ) G S 二 G 三：max{^(| 旧 |)’ ( 劝 | 旧 1 ) ) ” 

< gj^}, d £T> and ||uj|oo < 舍,where the gain functions 7i 1, 1\2172 are defined by (2.29). 

Next consider Proposition 2.3.2. First note that the solution of the interconnected 

system exists for all i > 0 using the same argument as that in Lemma 3.5 of [85]. Then 

A i = 00 implies that the first condition of Proposition 2.3.2 is satisfied. To check the 

second condition, note that, for z = 1, 2, lim^^oo 7 h ( s ) = 如 (斋） < oo by condition (5.8) 

and A21 = 00, A22 = 3 ^ . Then we only need to check 712(s) < 壶 . F r o m (5.9)， 

we have 

lim.^oo712(5) = 712(||) < 2 ： ^ < m 

Clearly, condition (5.9) implies the small gain condition �7it(5) < 5 for 5 > 0 and 

i = 1,2. By (5.24), (5.14), (5.17) and (5.10), and Proposition 2.3.2, 

b u l l a (5.28) 

IMs 
W 
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for all 2(0) G R, ^(0) eW^, deV and piecewise continuous u. 

Now we can conclude Part b). Let 7^(5) - m a x { 7 ? ( s ) ， 3 对 1 (s), 3(对2(力 

7(^72(5))}- For all (z(0),4(0)) e Z x E . d e V , and ||u|ieo < 全’ (5.26) implies ||奶2II00 < 

命 .U s i n g (5.21), (5.25), (5.26) and (5.11), (5.27), yields 

PIloo < 

it^lU <max{7M|(^(0),<^(0))||),7(2 .6P||n!U)} 

for all (2(0)，<e(0)) eZxE,deV and |问！⑴ < 

For all ( 2 ( 0 ) , “ 0 ) ) G M x I R � d e T> and piecewise continuous u satisfying ||u||a < 

(5.28) implies Ht/islU < Using (5.22), (5.28), and (5.12), (5.29), yields 

for all (2(0)，�0)) G R X M"'̂ , d G V and piecewise continuous u satisfying t|u|ja < 

Then, noting jz + = \z + yn\ < 2max{|2|, jyn |}, |n| 二 |a(/cui)| - 们）| < 

\k\\y2\ and equations (5.25) to (5.29) completes the proof. 

Remark 5.2.3 Suppose the assumption of Lemma 3.1 holds. Assume y = u, d) 

is an output of ^ subsystem of system (5.3), and satisfies LB with restriction and AB 

with no restriction on ^(0), both with restriction A on u and gain 7(5). Then, from 

u — a{kvi) = (5.27),(5.29), it can be verified that y satisfies LB with restriction 

and AB with no restriction on (2(0), (^(0)), both with restriction | on ii and gain 7(2-6^5). 

Remark 5.2.4 Although we have obtained the general expressions of 711(5), i 二 1,2, in 

the proof of Lemma 5.2.1, these expressions are not specific enough to render the satisfac-

tion of the small gain condition of Propositions 2.3.1-2.3.2. Therefore, in the statement 

of Part b) of Lemma 3.1, we have to expediently impose conditions (5.8) and (5.9) on 

i = 1,2, for rendering the satisfaction of the small gain condition. It will be seen 

later from the proof of Theorem. 5.3.2 that conditions (5.8) and (5.9) can always be made 

satisfied when the more specific form of 7h(s) , i = 1,2, are obtained by taking advantage 

of the specific expressions of yn and ^12-

5.3 Nested Saturation Controller Design 

We first design a nested saturation controller for system (5.1) and then show how to 

redesign the controller when the input unmodeled dynamics (5.2) is present. 

Let us make the following assumption. 
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Assumption 5.3.1 Assume, for i — 1 , n , gi is continuously differentiable at (0,..., 0, d) 

for d eV, and Ci{d) is nonzero and does not change its sign for all d eV, where ci{d)— 

Ci{d) = ^ ^ ^ 1 ( 0 ’ … ’ 二 2，.，.,71. 

As a result of this assumption, system (5.1) can be rewritten in the following form: 

= CiX^iL~i + ’ …’工r，d), i = n,...’ 2 
(5.30) 

= civ + gi(v,d) 

where i — 1 , n , are suitably defined functions vanishing at ( 0 , 0 , d), and for 

simplicity, we have dropped the argument d in q , i = ..., n. 

Theorem 5.3.1 Consider system (5.30). Under Assumption 5.3.1, there exist \ � 0 and 

nonzero ki where ki has the same sign with ci and ki has the same sign with Ci/ki^i, i — 

2 , n , such that under the control 

V = -aiikix^' + …+ GniKxl^ - Un)) (5.31) 

where, for i = 1,..,, n, ai is a saturation function with level Xi and pn > Pn-i is an 

odd positive integer, the closed-loop system satisfies LB with restriction and AB with no 

restriction on (a:„(0),..., xi (0)), both with restriction on In particular, when Un — 0, 

the closed-loop system is globally asymptotically stable at the origin for all d eV. 

Proof: The proof is a special case of the proof of Theorem 5.3.2 with v = u and n“ = 0, 

i.e., when the input unmodeled dynamics (5.2) is not present. 

As will be shown in Section 5.4，the control law (5.31) can be destabilizing when the 

input unmodeled dynamics (5.2) is present. So we have to redesign. Let us make the 

following assumption on the input unmodeled dynamics (5.2). 

Assumption 5.3.2 Assume, subsystem satisfies LB with restriction and AB with no 

restriction on <^i(0), both with restriction A j on u and gain Nis, and moreover, the 

functions d), w, d) are continuously differentiable at (0, 0, d) for d £ T> and 

山⑷=急丨 ( o， o ’ d ) , _ B i � 二 盜|(o，o，d)，Diid) 二 条丨(o,o，d), e i � =瓷| ( o ’ o，d ) are such that 

ei(d) — (d)A^^(d)Bi (d) is nonzero and does not change its sign for all d £ V. 

To simplify the notation, we drop the argument d in the above defined matrices and 

numbers. Then, system (5.1) subject to (5.2) can be written as follows: 

士i ~ Ci工『一 1 + fii^-i—i，…’ , , w, ci), i — n^2 

±1 二 ciDi<^i + cieiu + / i ( � i , w’cO (5.32) 

6 = + Biu-\- fo{^uu,d) 
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where /o(€i,u，d) = A i ^ i - B i u , 二 g l + ci 

Di^i - eiu), and , ^ , i 二 2 n. 

Theorem 5.3.2 Consider system (5.32). Under Assumptions 5.3.1-5.3.2, there exist 入i > 

0 and nonzero ki with the same sign as 9i where 9i 二 ci(ei — D i A f i ^ i ) and 9i — 

Ci/k^-i, i — 2, ...，n, such that under the control 

u = + ... + (Jn(knX^n - Un)) (5.33) 

where for i — 1,..., n, cr̂  is a saturation function with level A � a n d pn > Pn-i is an 

odd positive integer, the closed-loop system satisfies LB with restriction and AB with 

no restriction on (2；„(0)，...,i;i(0),4i(0)), both with restriction on Un- In particular, when 

Un = 0, the closed-loop system at the origin is globally asymptotically stable for all d e V. 

To prove Theorem 5.3.2, we first note some facts. Let Uj) = —cr办口广—Ui) + 

kiX^' — Ui. By the property of the saturation function, hi{x^\Ui) — 0 when {kiX "̂- — Ui\ < 

令.Thus h八oc?, Ui) = o{x^\Ui). From Assumptions 5.3.1-5.3.2, there exist positive con-

stants c f , c f , such that cf < |ci(ei — Z^ iA f i^ i ) ! < c f , cf < |cj| < c f , i = 2,..., n, and 

||ciDi < ui for all d e T>, and there also exist positive constants Lj, i — 1 , n — 1, 

and gain functions 7°(s) = o(s), i — 1 , n such that, for any Xn-i-,xi, ^i, u and d 6 T>, 

the following inequalities hold: 

2 7M(6，t^)ll) (5.34) 

+ 側 ( 工 f n i , … … 2 广 . ， n (5.35) 

where xq is a dummy variable. Since 7f (s) = o(s), given any £{ > 0, there exists a ^̂  > 0 

such that 

n. lt{s) < 0 < s < i = 1 

Proof: First, performing the coordinate transform: 

21 二：Ci — 二 + 

where i 二 2,..., n, on system (5.32) gives 

ii = OiU + i = n, ...,2 

i i = 0iu + 

6 = + Biu + MG,u’ d) 
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where F i ( � i ’ u , d ) = fo{^i,u,d) and for i = 2,...,n, ..., zi, ^i, 

= + + Oiki^ix^ti 1(5.37)’ where zq 

is a dummy variable. Moreover, under the coordinate transform (5.37), the control (5.33) 

becomes 

u = — + C i D i A 「 l ⑴ P I + … + (7n{kn{Zn — ^ 广 " — ( 5 - 3 9 ) 

The proof will be completed if we can show that, for system (5.38), under the control 

(5.39), the closed-loop system at the origin is globally asymptotically stable for all d e V. 

By recursively applying Lemma 5.2.1, we can use mathematical induction to prove the 

theorem. The proof will be divided into three parts and ( , ) � will be used to denote the 

corresponding notation in the jth induction. 

Step 1: Under the control u = ~(7i{ki{zi + Hi^iY^ — uj) where H\ = c i D i A � i , the 

subsystem consisting of the last two equations of (5.38) can be viewed as the intercon-

nection (5.5) of the two subsystems (5.6) and (5.7) where i;;” 二 ŷ ^̂  — (zi + ffi^i^^ — 

舒，t；《；）=— Hi^i and v^l^ — — u, d) with 石i =• B\k\. By Assumption 

5.3.2 and Lemma 5.2.1, with Ai < Ai , i = 1, 2, satisfies LB with restriction and AB 

with no restriction on both with no restriction on ！； ^丄） .M o r e o v e r , it follows from the 

expression of that = I'lNi min{|/ci |s, Ai}, and from the expression of 化）and 

(5,34) that = 7f(iVi mm{|fcils, Ai})/fci where Ni = 2max{l , iVi} . Clearly, 

and 7^2 (̂5) satisfy (5.8). We now further show that there exist sufficiently small Ai, \ki\ 

such that 

In fact, substituting the expression of ( 

< 5 , s � 0 . (5.40) 

s) into the first inequality of (5.40) gives 

2-6P'ii^iNimm{\ki\s,Xi})P' < s , s > 0 . (5.41) 

It can be verified that (5.41) is satisfied with \ki \ < ^̂ ^̂ ^̂ ^ when pi — 1，and with 

Ai < 丨 2 — 六 — 告 when pi 

there exists an ei > 0 such that 

> 1. Next note that, for any 0 < ti < 

<T i . (5.42) 

Prom the expression of 戎)(s)，(5.36), and (5.42), corresponding to this £1, there exists a 

> 0 such that Aj < m i n { A i ,务 } implies the second inequality of (5.40). By Lemma 
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5.2.1, 2i, a：!, n, satisfy LB with restriction and AB with no restriction on (21(0), ^i(O)), 
A 丄 丄 一 

both with restriction 专 on u\ and gains ， , 2 . G^^s, respectively. 

Step 2: Let =(之 i ’€i ) - Then the last three equations of (5.38) can be put into the 

form: 
i2 = O2U1 + F2{i2,ui,d) 

. . (5.43) 
6 二 Uud) 

where 冉 ( “ u i , c O = , <̂ 1, u, c?) + 02(u — ui) = /2(a:f ’ <̂ 1, w, cQ + + 

62hi{x'^\ui). Under the control ui = — + — where H2 = Oixn^Ji 

(5.43) can be viewed as the interconnection (5.5) of the two subsystems (5.6) and (5.7) 

where = y f - ( 幻 + 丑 2 �口。 _ 二 yf^ 二 丑 ^ and 二 必 ) ^ 

ui^d) with 左2 = By Step 1, subsystem satisfies LB with restriction and 

AB with no restriction on ^2(0) and both with restriction ^ on ni. Then, by Lemma 5.2.1, 

with A2〈夸，y愁’ i 二 1,2, satisfies LB with restriction and AB with no restriction on 
⑵ (2) $2(0), both with no restriction on ijJ ' . Moreover, it follows from the expression of that 

7(1^(5) < min{|A:2ls, A2})斤，and from the expression of "[【)，y!̂ )，and (5.35) that 

I 沿 )| < + 過 1 +南丨知 ( � ,对 )丨 .N o t i n g 知 c^r—ui ^ fci.S^ 

"U广 二 (5.27), (5.29) and the property of ui) yields that, ,u i ) has no 

contribution to (5) when A2 < and moreover, from (5.16), (5.27)，and (5.17), 

(5.29) y p o ) < 2[2Li�i6pi rnin{|fc2|a,A2} + 7 讽 min_{|fc2丨…A2}) + . gpi ElElMi iM)] 

where N2 = 2 m a x { ’ }6外.Clearly, 7(1^(5) and satisfy (5.8). We now further 

show that there exist sufficiently small Xi,\ki\,i = 1,2，such that 

2 • < S, 2 • (5) < s, 5 > 0. (5.44) 

Substituting the expression of 裙)(>?) into the first inequality of (5.44) gives 

广 茫 〈 … 。 • （ 5 - ) 

It can be verified that (5.45) is satisfied with |̂；2| < 2-1 • 巧 when p2 — pi, 
PI P2 c^H/c I P1P2 2 

and with A2 < 2''p2~pi \k2\ . when p2 > pi. Next, note that for any 

0 < r2 < 2：^, there exist |feij, £2 > 0, ri > 0, such that 

2 ( 2 L I 气 6 叫 + + 〈乃. (5.46) 

From the expression of 袍 ) ( s ) , (5.36), and (5.46), corresponding to this £2, there exists a 

(̂ 2 > 0 such that A2 < 奢 } implies the second inequality of (5.44). By Lemma 
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(5.47) 

5.2.1, 2 2 , w i , satisfy LB with restriction and AB with no restriction on (2:2(0), <^2(0)), 
A 丄 丄 

both with restriction ^ on U2, and the gains from U2 to Z2, X2, ui are ， ， 2 -

s respectively. Note that u) can be seen as an output of subsystem of (5.43), 

by Remark 5 . 2 . 3 ， s a t i s f i e s LB with restriction and AB with no restriction on 

( 2 2 ( 0 ) , ( ^ 2 ( 0 ) )， b o t h with restriction 警 on U2 and gain 

Step 3: For 3 < j < n ~ 1, put the last j + 1 equations of (5.38) into the form: 

ij = OjUj-i + Fji^j, Uj—i,d) 

ij = 
where ( j = and 

Under the control uj-i — ~aj{kj{zj + Hj^jY^ — Uj) where Hj = [-0ix(j_2+n�i)]’ 

(5.47) can be viewed as the interconnection (5.5) of the two subsystems (5.6) and (5.7) 

where 力 = y i ' ^ = ( 勺 + H 紹 ] — 岩 = = 恥 二 —在•^广i and = 

Uj-i, d) with kj = Ojkj. 

Assume, x j - i , j > satisfy LB with restriction and AB with 

no restriction on (zj_i (0) , both with restriction ^̂ ^̂  on and the gains 

from Uj- i to are 3 ( | ^ ) 六 ， 六 ’ 2 " 厂 16 巧 - is 

respectively, where Nj-i is a positive real number dependent on fci,kj-2- By this 

assumption, subsystem satisfies LB with restriction and AB with no restriction on 

(0) and both with restriction ^^^ on Uj—i. Then by Lemma 5.2.1, with Xj < 

i = 1,2，satisfies LB with restriction and AB with no restriction on <^j(0)，both with 

no restriction on • Moreover, it follows from the expression of y?) that 喊 ) ( s ) < 

inin{|A:j|s, Ay}”� -1，and from the expression of 必)，也 ”，and (5.35) that 

丨 1 - r + T . rvn rt"i 

Noting kj-ix^/Si - Uj- i = = 1), (5.27), (5.29) and the property 

of ) Wj-i) yields that, > ^ i - i ) has no contribution to 袍 ) ( s ) when 

Xj < and moreover, from (5.16), (5.27) and (5.17), (5.29), 

_ 。 • ) ， � ， Q r 2 L — l A ^ j — 1 6 巧 - i m i n { | % | s ’ A j } j^jNj mm{\kj\s, Xj}) 
7i2 � S ~ I ~ 

K j Kj 

+ ¥ � 2 - i ) ( ^ ^ n i i n { | f c + A � ] (5.49) 
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where Nj - 2 m a x { , 2 i V j _ i - 1 . Clearly, and "y^^ {s) satisfy (5.8). We now 

further show that there exist sufficiently small 丄 i = 1,..., j , such that 

2 • 6巧 (撒 s ) )巧 < s,2 . 6 巧 � i 细 < s ， s � 0 . (5.50) 

Substituting the expression of 裙 ) ( s ) into the first inequality of (5.50) gives 

M 
� … 0 . (5.51) 

It can be verified that (5.51) is satisfied with |A;j| < 2-i|A:j_i|| 二 I巧.when pj — pj._i, 
_ Pj-i , pj , It. ,1 pj-ipj 3 

and with Xj < 2 Pj-pj-i • ^ 丨 ( 丄 ^ ^ 丨 二 ！ 广 ” " w h e n pj > ‘ Next, note 

that for any 0 < tj < ^：^，there exist |A;j_i|, £j > 0, Tj„i > 0 such that 

Cj Cj 

Prom the expression of "^[^)(s)’ (5.36), and (5.52), corresponding to this there exists 

a > 0 such that Xj < m i n “ . � � ; l i , 务 } implies the second inequality of (5.50). By 

Lemma 5.2.1, zj^ satisfy LB with restriction and AB with no restriction on 

(zj(0), ^j(O)), both with restriction ^ on lij, and the gains from Uj to Zj, X j ,Uj - i are 
丄 丄 

3( ， , 2 . 6巧.s respectively. Note that (xji" / ‘…，《,。,"）can be seen as an 

output of subsystem of (5.47), by Remark 5.2.3, (rĉ 二Y,…，工？，€i，“）satisfies LB with 

restriction and AB with no restriction on (2j(0), both with restriction ^ on Uj and 

gain 2NjQP^s. 

Therefore, the proof is completed by induction. Finally, setting = 0 in (5,33) gives 

the result of global asymptotic stabilization for system (5.32). 

Remark 5.3.1 The design parameters A ,̂ ki, i ~ 1 , n , are governed by a set of algebraic 

inequalities and can be determined simultaneousiy at the end of the whole recursive design. 

For illustration, we consider the special case 1 < < • • • < Then, if we let ko — I 

and choose r, = ? 几 一 + i 6 P t 丄 � = 1 , . . . , 几 , = 1, are governed by the 

following set of inequalities： 

NiSi < 1 
QL •一 1 ‘ 

iVi 

.+pn+n-j+l 

Xj < min{2P广P广 1 
18(fkj—2 丨 4 • ‘ JVj 

68 

) j 二 2，…，71, 



which are extracted from (5.42),(5.41), (5.52) and (5.51). It can be seen that this set of 

inequalities are solvable and Ai,... ’ A„ can be determined in order. More specifically, 

for j — 1 , n — 1, kj can be determined from the {2j + l)th inequality, \j can be 

determined from the (2j — l)th and (2j)th inequalities, k^ can be arbitrary nonzero real 

number with the same sign as Qn, and A„ can be determined from the (2n — l)th and the 

(2n)th inequalities. 

Remark 5.3.2 Like the proof of Lemma 3.1, we could have obtained a much simpler 

expression for the gain function 裙 ) ( < § ) � = 2 , n , by making use of the inequality 

d)\ < ttjdK^j, iAj_i)||) where aj{s) is some gain function independent of d. 

However, doing so will lead to a gain function which cannot guarantee the satisfaction of 

the condition 2,6巧裙 ) (3) < s, s > 0, no matter how the parameters Aj, i — 1 , j , are 

adjusted. Therefore, we have to take into account the specific expression of Fj (^j, u j - i , d), 

i.e., (5.48) in order to calculate appropriate = 2’..., n. In particular, from (5.48), 

for j = 2 , n , we note that the contributions to the gain function 袍 ) ( s ) come from 

the first two terms of (5.48). In calculating the contribution of the first term of (5.48) to 

识 ) ( s ) , we have taken advantage of the inequality (5,35), and in calculating the contribu-

tion of the second term of (5.48), we have made use of the fact that the gain function from 

to u 广 1) is already given by calculated at the ( j — l)th step. Thus we can 

obtain 袍 ) ( s ) in the form of (5.49). It is this specific expression of the gain function that 

enables the satisfaction of the second inequality of (5.50) by adjusting the parameters of 

the controller. Similarly, for j — 2 , n , using the fact that — Hj^j — 

allows the gain being calculated from u j - i to Zj—i instead of being calculated from Uj—i 

to ^j, which leads to a much simpler expression for 

5.4 An Example 

Consider the system 

O 
±2 — + av 

(5.53) 

where a is a positive real number. Clearly, system (5.53) satisfies Assumption 5.3.1 al-

though it does not satisfy the assumptions needed in [50, 58’ 69, 86，88]. 

Let zi = xi and Z2 — X2 + where 61 = 1, 62 — Since ki has the same sign 
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with 9i, i 二 1, 2, ki, k] are positive in this case. Then system (5.53) becomes 

Z2 = O2V + av 没 

i i — 9iv. 

Note that zi — xi and no high order terms appear in the zi dynamics, i.e., v^^ = 

yji) = 0, then it can be verified that, for arbitrary positive Ai, fci, under the control 

V — —ai{kizf — wi), zi, V satisfy LB and AB both with no restriction on 21 (0), and no 

restriction on and gains (合)i,2s，respectively. 

Next, consider the 22 dynamics. Let ui = ~a2{k2{z2 — Since u) = 0, it 

can be verified using the same arguments as that in Lemma 5.2.1 that 适 ) ( s ) = 

and 722^(s) = 2®s in this case. Thus, the small gain condition becomes 26(裙)(>s))3 < 

s , 26难 ) ( s ) < s,s > 0. Note that 裙 ) ( s ) = min{A:2S, A s } ) ^ then 26(卞Pi)(s))3 < s 

reduces to < 1 and hence we obtain < O n the other hand, note that 

鳥 ( € 2 ’ lii, d) = 没2" i (工?，ui) and h i (x f ,u i ) has no contribution to 7^2^(5) when 入2 S 

thus 2^7(2^ (s) < s reduces to aki < 1. To avoid too small design parameters, setting 

a = 2—5’ Ai == 10 and solving the corresponding inequalities yields 入2 = 2.5, ki — 0.24, k)— 

6.10 X 10—5 Thus the designed nested saturation control law is 

V 二 -a i (0 .24x? + (72(6.10 x IQ-^x^)) (5.54) 

where cti, (72 are saturation functions with level 10 and 2.5 respectively. 

However, it can be shown that, for system (5.53), in the presence of the following 

non-minimum phase input unmodeled dynamics 

= (5.55) 

and under the control 

u = -(7l{kix\ + (J2{k2x\)) 

where cJi, <72 are saturation functions with level Ai,入2 respectively, and X”k“i 二 1,2, are 

arbitrary positive real numbers, the resulting closed-loop system is not only unstable at 

the origin, but also has unbounded solutions. 

Note that the state space equation of (5.55) is 

V = -2^1 + u 
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then the resulting closed-loop system becomes 

a ( - 2 � i - aiikixl + a2{k2xl))) 

XI = - (Jiikixl ^ a2{k2xl)) (5.56) 

^ ~ aiikixl + a2{k2xl)) 

Suppose xi(0), 0:2(0) are any positive real numbers such that 

Let (0) = — Ai. Then, 二 一Ai for alH > 0 and xi( i ) , X2{t) are strictly increasing 

and diverge to infinity as i — 00’ because Xi{t) = Ai > 0, X2{t) ~ + aAi > 0 for 

all t > 0. 

To show the instability of the origin of (5.56), let (j) — (02, (p\) where 4>2 — X2 — clxi 

and (t)\ — x\ — 2^1. Then, system (5.56) can be written as follows: 

/ l ( 0 ’ 6 ) 
“ / O M i ) 6 = (5.57) 

where h i M i " ) = + 2 � 3 ^^d = + 2 6 ) 3 + + (P2 ^ 2 a i i f ) ) , 

and 9{(pAi) = + + a2(k2(a<^i + 0 2 + 2a� i )3 ) ) . 

By the property of the saturation function and the Local Center Manifold Theorem 

[65] (see also [11]), there exists a local center manifold = h((p) for sufficiently small 

where h is C^, /i(0) = 0’ = 0 and satisfies 

嗎 + H<f>) ~ fM 嚇=0. 

In turn, by Theorem 2 in Chap. 1 of [11], the equation which determines the stability of 

the origin of (5.57) is 

(5-58) 

Now, let x (0 ) — —ki树—k2{a(f)\ + 4>2~f • For sufficiently small we obtain 

， / ( 也 xW) + x{<f>) - 9{4>. xm - Oiuf). 

Then, by Theorem 3 in Chap. 1 of [11], h{4)) = x{(p) + O(||0f) for sufficiently small |10||. 

Thus, (5.58) becomes 

+ A:2(a0i + 02)" 
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^ 二 + 0(|M|5) (5.60) 

We further let (p = ((p2,<pi) where <^2 = (fn _ &i</>2，= 02- Then (5.59) can be rewritten 

as follows: 

k2[a<^2 + [aki + 

O2 + ki^if 

If we can show the instability of the origin of system (5.60) for arbitrary positive a, Ai, A2, 

&2，then the origin of (5.56) is unstable for arbitrary positive a, Ai, A2, k\^k2. 

Let (p(t) denote the solution of (5.60) starting from (^(0). We will show the instability 

of the origin of (5.60) by definition, that is, given some e � 0 , there exist some <^(0)( 

||(ŷ (0)|| can be arbitrarily small) and a finite T > 0 such that ||(̂ (r)|| > To show this, 

note that if p̂i > 0, 2 = 1,2, then 

+ {aki + > 仍((^2 + ^if > + 暑 = q i y f 

+ kiipi)^ > q2{ip2 + 仍 > + = g2\\<pf 

where qi — A:2(min{a, a/ci + 1})^, 92 = (min{/ci, 1})3. By the definition of given 

any 0 < q^ < J minj^'i, ^2}) there exists > 0 such that ||0(||v?||̂ )|| < gslMI� for all 

|j(/?|| < q4. Let £ =辜94. Then, for any positive (pi,<p2 satisfying ||c/?|| < 2e, we have 

V ^ z � f e — ^ ) I M | 3 � 0， i = l ,2 . (5.61) 

Thus, the solutions (pi(t), (f2(i) starting from any positive ^2(0) satisfying ||(̂ (0)|1 < 

are strictly increasing. In turn, (5.61) becomes 

<Pi > { g ^ - Q 3 ) y f > (gt —93)llv^(0)||3’:j = 1,2, 

which shows that, there must exist a finite T > 0 such that ||(/?(T)|| > £. Hence, the origin 

of system (5.60) is unstable for arbitrary positive a, Ai, A2, /ci, k). 

As a result, when (5.55) is present, we have to redesign the control (5.54) by Theorem 

5.3.2. In the presence of (5.55), system (5.53) becomes 

a(-2^i + u) 

±1 二 -2^1 + u (5.62) 

- - 6 + u. 

Let z\ — x\— 2^1, 2:2 — 3：2 + 2̂；!, where 没1 = — 1,没2 =是 .S i n c e ki has the same sign with 

Qi, z — 1, 2, /ci, k2 are negative in this case. Then system (5.62) becomes 

i2 = B2U + a ( -2^ i + u) + e2kix\ 

i i = B i u ( 5 . 6 3 ) 

ii = + u. 

72 



Let u — —ai{ki{zi + 2 � i ) 3 — ui). Note that no high order terms appear in zi dynamics, 

i.e., — ~ 0, then it can be verified using the same arguments as that in Lemma 

5.2.1 that = 722^(s) = 0 in this case. Thus, the small gain condition becomes 

< s, s > 0. Note t h a t � 1 subsystem satisfies LB and AB both with no restric-

tion on €1(0)，no restriction on u and gain N\s — s, < 2inin{|fci|s, Ai}. Thus, the 

small gain condition is satisfied with Ai < . As a result, satisfy LB with 

restriction and AB with no restriction on (€i(0), 21 (0)), both with restriction ^ on ui and 

gains 2 (1^ )1 , 27s, 27s, respectively. 

Next, consider the Z2 dynamics. Let ui = —<72(̂ :2(-̂ 2 — ^zi )^) . Since U2 = 0, it 

can be verified using the same arguments as that in Lemma 5.2.1 that 裙 ) ( s ) = 

and 诏 = 2®s. Thus, the small gain condition becomes 26(裙)(s))3 < s，26^)(s) < 

s,s > 0. Note that 裙)（s) ； min{|A:2is, Aa } )^ then 26(裙)（s))3 < s reduces to 

26(2势)3轻 < 1 and hence we obtain |/c2| < On the other hand, note that ^2(^2, u ^ d ) = 

a(—2� i + ti) + d2hi{xl ,ui ) and h i (x f ,u i ) has no contribution to ^[^^(s) when A2 < 

thus 264�)（s) < s reduces to 2a(2^ + < 2—6. Setting a 二 2—�and solving the 

corresponding inequalities yields ki = —6.5 x 10"'^, k2 二 —3.5 x 10"^®, Ai = 1.2247 and 

A2 = 0.0047. Thus, the redesigned nested saturation control law is 

u - - c r i ( - 6 . 5 X IQ - '^X? + cr2(-3,5 X (5.64) 

where cri, <72 are saturation functions with level 1.2247 and 0.0047 respectively. 

For illustration, Fig. 5.1, Fig. 5.2 and Fig. 5.3 show the simulation results with the 

initial condition (^i(O), a;i(0), X2(0)) = (0.1, 0.2, —5) for system (5.53) under the control 

(5,54)，and for system (5.53) subject to the input unmodeled dynamics (5.55) under the 

control (5.54), and for system (5.53) subject to the input unmodeled dynamics (5.55) 

under the control (5.64), respectively. 

5.5 Conclusion 

In this chapter, we have addressed the global robust stabilization problem for feedforward 

system (5.1) subject to some type of input unmodeled dynamics (5.2). A specific difficulty 

in dealing with this problem is that the Jacobian linearization of (5.1) is not stabilizable. 

We have overcome this difficulty by employing two versions of small gain theorem with 

restrictions adapted from [85] to establish the local stability and global attractiveness of 

the closed-loop system at the origin respectively. 
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Figure 5.1: Profile of x: original design without the presence of input unmodeled dynamics 

It is noted that, even in the special case where the input unmodeled dynamics (5.2) 

is not present, our result cannot be covered by the existing results in [50, 58, 69, 86，88] 

because in this chapter the functions 仇，s in (5.1) do not have to satisfy the structural 

constraints needed in [50, 58, 69, 86，88]. In particular, the functions gi's are allowed to 

be linear in its arguments. 
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Figure 5.2: Profile of x: original design in the presence of input unmodeled dynamics 
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Figure 5.3; Profile of x: redesign in the presence of input unmodeled dynamics 
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Chapter 6 

Global Robust Output Regulation 

of Nonlinear Systems in Strict 

Feedforward Form 

6.1 Introduction 

In this chapter, we study the global robust output regulation problem of nonlinear systems 

in strict feedforward form: 

ii — fi{Xi —�，•••5 Xj , 'It, t/*, W^, i — Tl’ ..•’ 2 

±1 = cu-\- fi(v, w) (6.1) 

e = xi - qd(v, w) 

where x = Xn) € M" is the state, -u G M the control, e E R the tracking error, 

w e M"^ the uncertain constant parameter, t; 6 M^ the state of the exosystem 

v = Sv (6.2) 

where all eigenvalues of the matrix S are simple with zero real parts, c is a known nonzero 

constant, and for i — 1 , n , the functions fi and qa are globally defined smooth functions 

satisfying / ‘ (• ’ …’ 0, w) — 0 and 彻(0, u;) = 0 for all w e K如. 

Global robust output regulation problem (GRORP) : For any compact set Vq C 

M^ with a known bound and any compact set W C …with a known bound, we will 

design for system (6.1) a dynamic state feedback controller in the following form 

u = / C ( r 7 , a ; , e ) , r) = x, e) ( 6 . 3 ) 
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where r] is the compensator state and /C, T are locally Lipschitz functions vanishing at 

the origin, such that the closed-loop system composed of (6.1) and (6.3) has the following 

properties: 

(a) For all ^ Vq,w e W and for all initial state :c(0),r7(0)’ the trajectory of the 

closed-loop system exists and is bounded for all t > 0; 

(b) The tracking error converges to zero as t tends to infinity, i.e., limt-^oo e(t) = 0. 

To our knowledge, the only chapters that are relevant to the problem described above 

are [9] and [56]. An approximate and restricted tracking problem for a class of block 

feedforward systems is studied in [9] via dynamic output feedback control. The term 

approximate refers to the approximate regulation which is achieved by utilizing the k-

fold internal model [20]. The term restricted refers to the fact that the state of the 

exosystem should be sufficiently small. In [56], the authors deal with the input disturbance 

suppression problem (IDSP) via dynamic state feedback control for the following system 

Xi = Wi-iXi-i + gi{xi-i, i = n,..., 2 
(6.4) 

xi 二 ti -� i ( i；), 

where w ” i — 1,..., n — 1, are possibly time varying. The goal of IDSP is to achieve 

property (a) of GRORP and lim^^oo = 0. There is distinct difference between IDSP 

and GRORP. Roughly speaking (See Remark 6.2.4 for more specific comparison between 

IDSP and GRORP), for the IDSP, only one internal model associated with the input 

u needs to be constructed. The IDSP of system (6.4) can be converted into a global 

robust stabilization problem of a class of feedforward systems subject to input unmodeled 

dynamics. Several results about this robust stabilization problem have been reported, see 

e.g., [7, 45, 54, 72]. In contrast, for the GRORP, n internal models associated with Xn 

and the input u need to be constructed. The GRORP of system (6.1) will be converted 

into a global robust stabilization problem of a class of feedforward systems subject to 

both time-varying static and dynamic uncertainty described by equation (4.1) below. The 

global robust stabilization problem for this class of systems has not been studied so far. 

Therefore, even if we succeed in converting the output regulation problem of system (6.1) 

into the global robust stabilization problem of system (4.1), how to stabilize system (4.1) 

is still a challenging problem. 

We will present a set of solvability conditions on the GRORP of strict feedforward 

system (6.1). In order to obtain our results, we first identify the structural properties 
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of the functions q^ and f i in (6.1) so that an internal model candidate exists. Then, by 

looking for a suitable internal model and performing appropriate coordinate and input 

transformations on the augmented system consisting of (6.1) and the internal model, the 

GRORP of system (6.1) can be converted into a global robust stabilization problem for a 

class of feedforward systems subject to both time varying static uncertainty and dynamic 

uncertainty in the form of (4.1). Therefore, by applying the stabilization result obtained 

in Chapter 4，i.e., Theorem 4.3.1, the global robust output regulation problem of system 

(6.1) will be solved. 

6.2 Main Result 

As pointed out in Introduction, the GRORP of system (6.1) can be 

global robust stabilization problem of a well defined augmented system, 

conversion, we make following assumptions. 

converted into a 

To introduce this 

. . . , w ) ) and Assumption 6.2.1 There exist smooth functions 'x.{v, w) — (xi(v, w), 

with x(0，0) 二 0 and u(0 ,0) = 0 satisfying for all G G , 

二 (u, w), ...xi (v, w), u(v, w), V, w), i 二 n，... ,2 

x i (t;, w) = cu ( f , w) + / i {v, w) (6.5) 

Assumption 6.2.2 There exist sufficiently smooth functions r̂  : x ^ i ~ 

1,..., n, vanishing at (0,0)，such that 

fi{v,w) = 7Ti{v,w)=屯 iTi[D,W) (6.6) 

where the pair (屯i, is observable and all the eigenvalues of are simple with zero real 

parts, and 7Ti{v, w) = u(t;, w), 7:̂ (1;, w) — Xi(v, w), i = 2 , n . 

Remark 6.2.1 Equation (6.5) is called regulator equations and the solvability of these 

equations is necessary but not sufficient for the solvability of the robust output regulation 

problem [10, 21, 22, 27]. Assumption 6.2.2 is made for the existence of appropriate linear 

internal models. Both Assumption 6.2.1 and 6.2.2 are quite standard in literature though 

Assumption 6.2.2 can be relaxed when nonlinear internal models are employed [21, 22]. 

Under Assumption 6.2.2, given a pair of controllable matrices (M^, Ni) with M^ € IRrixr� 

Hurwitz and Ni G IR^i，there exists a unique and nonsingular matrix Ti € satisfying 
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the Sylvester equation 

T 爽 — M i T i = Ni^ , (6.7) 

since the spectra of M^ and are disjoint and the pair is observable. 

We define the following system 

7)1 = Mirn+Niu-
c ， (6.8) 

Vi 二 MiTji + NiXi, i 二 2, ..,,n. 

as the internal model of (6.1) with output {u, X2, 

Next, we will convert the GRORP for system (6.1) into a global robust stabilization 

problem for the augmented system composed of the original plant (6.1) and the internal 

model (6.8). Performing the following coordinate and input transformation 

无1 二 Xi - Xi(v, w) — e 

=Xi — ^OT 
1 . _ r) ”i, 'J — Z, 71 

m = ” i — TiTi, i = 1 , …， n (6.9) 

u = u ~ ^^iTf-

on the augmented system gives 

xi = c^iTf^fji +CU 

m 二 (Ml + i V i ^ i T f + Niu - ^ ^ ^ ^ X i (6.10) 

A 1 
where f2 {x i , f j i ,u , v ,w ) = - / 2 ( x i , u, v, w) + /2(xi + x i , n + ^ j T f fii + n,v,w) and fi{xi-i, 

= —/i(Xhl,...，Xi,U’?;,W) + fi{Xi-l + 二\巧i-i + 

x i , u + '^iT^^fji + u, V, w), i — 3,…’ n. 

It is known from [21, 22] that the GRORP of system (6.1) will be solved if we can 

make the equilibrium of system (6.10) at (x, fj) = (0,0) globally asymptotically stable 

for all trajectories v{t) starting from Vq and all w G W. A system of the form (6.10) 

has never been encountered and there is no clue whether or not the equilibrium of this 

system at the origin is stabilizable. Nevertheless, by performing some further coordinate 

and input transformation on (6.10), it is possible to convert (6.10) to the form of (4.1) 

with all desirable properties. For this purpose, we introduce two more assumptions. 
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Assumption 6.2.3 For i = 2, . . . ,n,屯 i is invertible. 

Assumption 6,2 .4 For 2 = 2, • • • , n, is a pos-

itive (or alternative negative) constant. 

Now define the following coordinate and input transformation 

6 = cfji - iViXi,^, 二 (M, + N 邮 � ” f i i + m” i = …,n, 
- - I 尘 1厂 1 州 - (6,11) 
U = U ^——-Xi. 

Prom ( 6 . 7 ) ,风 + N �免 i T f � 二 T 來 T � \ and then from Assumption 6.2.3 and c — •’ the 

transformation (6.11) is globally invertible. Performing the transformation (6.11) on (6.10) 

yields, 

ii = M么 + 无 元 1 乂 i 二 n, ,,.,2 

XI = + 

6 = Mi^i (6.12) 

where d = {v,w), hi^iAi^u^v^w) = - / 2 ( x i , u, v, ii;)+ /2 (x i+xi , u + i^ iT^^^i+ u, v, u；), 

and fi(无i—u�i-i, = - / x ( x i _ i , . . . , x i , u, v, i/;) + ((1 - i $ N i _ i ) 

^i-i + +Xi_i,…，王 1 + x i , i Z + i^^iTf^^i + u,v,w),i = 3, ...,n 

Without loss of generality, assume d e V ~ V xW where V is a compact set containing 

all trajectories of (6.2) starting from Vq. Since Vq is compact, and all eigenvalues of the 

matrix S in (6.2) are simple with zero real parts, V exists. Thus V is compact. Clearly, 

if we can globally asymptotically stabilize the origin of system (6.12) with d E V, the 

GRORP of system (6.1) will be solved. 

Theorem 6.2.1 Suppose system (6.1) satisfies Assumptions 6.2.1 to 6.2.4. Then, the 

GRORP can be solved by a dynamic state feedback controller of the form 

u 二 屯 — i^ie) - cri(kie + ... + an(knXn — /Cn^^nT-Sn)), �� 
(6.13) 

7?1 = M l 7 7 1 + Niu - ^MiiVie, 77, 二 MiTii + Nioc” i 二 2’ …’ n. 

Proof: Since system (6.12) is in the form of (4.1), by Theorem 4.3.1, it suffices to show 

that, system (6.12) satisfies Assumptions 4.3.1 and 4.3.2. 
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Let us first verify that system (6.12) satisfies Assumption 4.3.1. Rewrite (6.12) in the 

form of (4.27) as follows: 

ii = +A^iSi无hi + N i f l i ^ 无 … i 二 n ’ " ‘，2 
(6.14) 

where fj^, i = 2 , ? i , are suitably defined smooth functions, and ci = c,c2 — §|̂ |(o，o’o，d)= 

and for i = 3, ...,n, c, = 二（1 — 屯卜 i ^ ^ A T二 i V i ) • 

Then noting (6.14) yields 

"1 = C ， = (1 + 屯 錯 l(�…=(xi，u), 

" 广 （ 1 + — ̂ hi$�—ii:z;:\iVi)5|^|(Thi，...，，i’，)=(xq,...’xi’u)’z = 3 

We claim that, 1 + 屯 J ] - i M � i N i 0, i = 2, ...,n, and 1 — i = 

3 , n . From (6.7), Assumption 6.2.3 and the identity detain — PQ) — d e t ( /饥— Q P ) 

where P, Q are n x m and m x n matrices respectively, we have 

1 + 中 所 = d e t ( / , , + iVî r 1) = det(T,$ J；— iM� i ) — 0, 

1 — ̂ V i $ � _ i i i ; : i i i V i = - 二 d e t ( M , _ i r , _ i $ - \ T - \ ) + 0. 

Then noting Assumption 6.2.4 shows that Assumption 4.3.1 is satisfied. 

Next, we show that system (6.12) also satisfies Assumption 4.3.2. For i 二 1, the spe-

cific form of the last equation of (6.12) immediately implies that (̂ 1 satisfies Assumption 

4.3.2 with iVi = 0 and Ai 二 oo. For i 二 2 , n , let Ui = 1’ 1,...’ 5i’（i, u, d). 

Then [i subsystem in (6.12) is rewritten as = Mi^i + NiUi. Since Mi is Hurwitz, 

satisfies a-LB with no restriction on no restriction on Ui and linear gain J^s, 

where Ji is an appropriate nonnegative constant. Since /^(S^-i, ( ^ ^ - i , ^ i , <̂ 1, u, d) is 

smooth and /^(O,..., 0, d) — 0 ioi d E V, there exist positive constants L ,̂ Si such that 

lluill < " ^ z l l ( 无 卜 1,…，无 1,6,旬II for < 民 and d E V. Thus, 

Assumption 4.3.2 is satisfied with Ni 二 JiZi and A j 二 6i, i = 2 , n . 

By Theorem 4.3.1，there exist Â  > 0 and nonzero ki such that, the following control 

U = -ai{kiXi + (T2{k2X2 + ... + (Jn{knXn))) (6.15) 

can globally asymptotically stabilize system (6.12). Noting (6.9), (6.11) and (6.15) yields 

the controller (6.13), which solves the GRORP of system (6.1). 
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= (6.21) 
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Remark 6.2.2 For the class of nonlinear strict feedforward systems which only involve 

polynomial nonlinearities, Assumptions 6.2.1 to 6.2.3 can be easily testified. Let us first 

review some facts which can be found in [21]. Let i ; � 二 v 二 (vi, ,",Vq) G M*̂  and for 

I > 2, i ； � = v ' f ' ^ v ^ , T h e n from Section 4.2 of 

[21], there exists a matrix denoted by such that 

^ 彻 = S � ” � (6.16) 
av 

Moreover, all the eigenvalues of � are given by 

A = Ij Al + ... + Agr, + ... iq = I, , Iq — 0, 1, I 

where 入i,..., \ are eigenvalues of S. As a result, when all eigenvalues of S are simple with 

zero real parts, S^^^ is nonsingular if and only if q is even and I is odd. Moreover, the roots 

of the minimal polynomial of � coincide with all distinct eigenvalues of � . 

In the following, we call f x M"'" —> M a polynomial in t?，if it takes the form 
K 

f{v,w) = � (6.17) 
1=1 

where Fi(w), I = 1 , k , are row vectors of appropriate dimensions. 

Proposition 6.2.1 Assume / : R^ x R"̂ ^ —> R is a polynomial function in v and takes 

the form (6.17). If q is even and Fi{w) = 0 when I is even, then there exists a polynomial 

solution x{v,w) in v for the following partial differential equation 

？ ^ S v ^ f M (6.18) 

Moreover, there exist an integer r and matrices $ e ^ € R ix f , where $ is non-

singular with all its eigenvalues simple and on the imaginary axis and the pair (屯， i s 

observable, such that t { v , w) — {x{v, w), x(v, w),…，乂 也()二(i^广))satisfies 

f(v, w) 二 $t(v,1(；)’ x{v, w) == "U；). 

Proof: Assume w) takes the following form 
K 

x{v, w) 二 

1=1 

where Xi(w), I = 1 ， a r e suitable row vectors to be determined. 

Substituting (6.17) and (6.20) into (6.18), and using (6.16) gives 

(6.19) 

(6.20) 



Equating the coefficients of v � on both sides of (6.21) gives 

炉 1 I 二 …，ft (6.22) 

By Remark 6.2.2’ 讲� i s nonsingular when I is odd and q is even, and thus equation (6.22) 

has a solution Xi {w) as follows: 

Xi{w)= 
0, Z - 2 , 4 , 

Thus we can write w) as follows 

(6.23) 

for some integer k and for all v G w G E"^. 

By Remark 6.2.2, it can be deduced that the minimal polynomial of …]div ides the 

minimal polynomial of •？_+i] whenever i < j. Without loss of generality, let ac 二 2fc + 1 

and FK(w) + 0. Denote the minimal polynomial of the matrix by P{X) = X^ — ai — 

a2A — — f o r some real numbers ai, . . . , a^. Then, the roots of P{X) are non-repeated 

with zero real parts. By the Cayley-Hamilton Theorem, = 0, i — 1,..., k. Thus 

we obtain 

crx(v(t), w] 
aix{v{t),w) - a2^ ^ ^ ,-…一dr 广 」 广 ) = 0 (6.24) 

dt dtir-l) 

for all trajectories v{t) of the exosystem and w G IR"切. 

Next, let T{V, W) = (x(v, tu),x(v, w),…，於二：衆―).Then it can be verified that (6.19) 

holds with 

$ 二 屯 = 0 ... 0 

0 0 0 

ai 02 as 

It can be seen that the pair (^‘, is observable. Moreover, since the characteristic poly-

nomial of $ is the minimal polynomial of iS[片】，by Remark 6.2.2, $ is nonsingular, and all 

its eigenvalues are simple and on the imaginary axis. 

Remark 6.2.3 We call x(v, w) an odd polynomial in v if it takes the special form (6.23). 

Assume q is even and qd{v, w) is an odd polynomial in v. Then by Proposition 6.2.1, it can 

be concluded that, Assumptions 6.2.1 to 6.2.3 are satisfied if J\(v, w) is an odd polynomial 

in V and for i = 2’ …，n, fi(xi^i,xi,u, v, w) is an odd polynomial in ( 工 卜 ！ ， v ) . 
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W) = WVi Xi(l', W) — w)— 

which also implies that Assumption 6.2.2 is satisfied. Simple calculation shows that 

0 1 0 0 

<̂ 1 = 
0 1 

—1 0 
$2 二 

0 0 1 

0 0 0 

0 

- 9 0 - 1 0 0 

[1 0], 二 [1 0 0 0]. (6.26) 
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Remark 6.2 .4 When qd{V, w) = 0 and the functions fi, i = 2 , n , in (6.1) are inde-

pendent of u and vanishing at ( 0 , 0 , v, w), the GRORP of system (6.1) reduces to the 

IDSP studied in [56]. For this special case, u{v,w) = —^fiiv, u;),x(i;, w) = 0 and thus 

Assumptions 6.2.1 is satisfied automatically. Moreover, since x(i；, w) — 0，there is no need 

to estimate x(u, w). It suffices to use one single system i)i = Mi771 + N\u —似广 x\ to 

define the internal model which is essentially the same as what has been done in [56]. 

Clearly, Assumption 6.2.3 is not needed anymore and thus Assumption 6.2.2 with i — 1 

and Assumption 6.2.4 become the assumptions to the IDSP of system (6.1). The IDSP of 

system (6.1) can be converted into a global robust stabilization problem of a class of feed-

forward systems with input unmodeled dynamics. On the other hand, when qd{v, w) + 0, 

in general w) 0. To estimate u ( f , w) and X2(f, w),..., lî ), we define the in-

ternal model (6.8). If Assumptions 6.2.1-6.2.4 are satisfied, then the GRORP of system 

(6.1) can be solved by converting it into a global robust stabilization problem of a class 

of feedforward systems with both time varying static and dynamic uncertainty. Thus, the 

IDSP can be seen as a special case of the GRORP. 

6.3 An Example 

We study the GRORP of the following system 

X2 = - 0.05u^ + 3wviV2 

Xi — u — WVi (3ViV2 + 1) 
(6.25) 

Vl — -V2, V2 = 

e = xi — wvi 

where 0.8 < < 1 is the uncertain parameter and vf{t) + vHt) < 1 for all t>0. 

System (6.25) is in the form of (6.1). Let us first verify that (6.25) satisfies Assumptions 

6.2.1 to 6.2.4. Firstly, Assumption 6.2.1 is satisfied with 

3
2
 



which implies the satisfaction of Assumption 6.2.3. Prom the form of (6.25), Assumption 

6.2.4 is also satisfied. 

To design the internal model, let 

Ml = 
- 2 0 

0 - ] 
M2 = 

- 4 0 0 

0 - 3 0 

0 0 - 2 

0 0 0 

Ni = N2 = 

Solving the Sylvester equation (6.7) gives 

Ti = 

The internal model takes the following form: 

= Ml771 + Niu - MiNie, 772 = M2T?2 + N2X2. 

0.2447 -0 .0612 0.0094 -0.0024 

0.4 - 0 . 2 0.3167 -0 .1056 0.0167 一 0.0056 
.T2 = 

0.5 - 0 . 5 0.4308 -0.2154 0.0308 -0 .0154 

0.5500 -0 .5500 0.0500 -0 .0500 

(6-27) 

Then Theorem 6.2.1 can be applied to solve the GROUP for (6.25). First, using the 

coordinate and input transformations (6.9), (6.11) and (4.32) with z — 1,2 and D\ — 

^ i T f =-屯2了2—1，二 Ml , 二 M2 , the augmented system consisting of (6.25) 

and (6.27) is put into the following form (for convenience, we retain the original coordinates 

on the righthand side of the following equation) 

22 = e2U - 0.01875[(u + '^iTf^^i + 灼）3 — 动 + o^kixi 

i2 二 M2�2 + 0.05场[«;2无1 -(u + ^iTfi^i + wvif + w^vf] 

i i —- 9iu 

ii = MiCi 

(6.28) 

where Oi = 1, — 0.01875w^//:i. Clearly, ki, k? are both positive in this case. 

First, consider 2 1 , � i dynamics. Since N\ — 0, A i 二 oo, for arbitrarily positive Ai, 

under the control u ~ — ( y \ { k i Z i - \ - k i ' ^ M ^ ^ ^i—ui), satisfy LB with restriction 

and AB with no restriction on ( 2 1 ( 0 ) , ^i(O)), both with restriction 夸 on ui and gains 

悬s,悬s，6s respectively. 

Then consider dynamics. We first calculate the gain from ui to Let 尸2 be 

a positive definite and symmetric matrix such that MJ-P2 + P2M2 = —2/, and U2 二 

— (u + 屯 12\一1(̂ 1 + wvi)^ + It can be verified that, subsystem satisfies 
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a-LB with no restriction on <^2(0), no restriction on U2 and gain Note that 

for |tZ| < 0.9 and H^'iTf^^iH < 0.1， 

1̂ 21 < 0.05|xi| + 0.35|n| + 0.3511 屯iTfi||||�i||. 

Thus, satisfies LB with restriction and AB with no restriction o n � 2 ( 0 ) , both with 

restriction m i n { ^ , on ui and gain N^^^ ŝ̂  where N 协 ! = 2 m a x { ^ , 2.1}. 

Now let Ci 二 (^2, ^i)- Then (6.28) can be written in the following form 

i2 = O2U1 + F2(Ci,tii,cf) 

where 户2(�1, = -0.01875[(u + ^ iT f^^ i + wvi}^ 一 w^vf] + 92hi(xi, m) and Gi is a 

suitably defined function. 

Let ui - Clearly,识 ) (s ) < 2max{|1^27r'M2-^|| 

) Since h i ( x i , u i ) has no contribution to when A2 < m i n { ^ , 

we have 戎 ) ( s ) < min{/c2S’ A2} + 3min{fc25, A2}^ + min{fc2"5’ A ? } � ) . By solving 

4 m a x { 7 i ? ( s ) , 7^2^(8)} < s for s > 0, we set ki = 0,024’ fc�=0.000129，入1 = 10 and 

A2 = 0.083, and obtain 

u =屯 1771(771 — iVie) — cri(0.024e + (T2(0.000129(x2 — ̂ '277^2) ) ) , (6,29) 

where cri, 0-2 are saturation functions with level 10 and 0.083 respectively. 

As an illustration, Fig. 6.1, Fig. 6.2 and Fig. 6.3 show the simulation result of 

system (6.25) under the control (6.29) with initial state (xi(0), X2(0), i'(O), rji (0), 772(0))= 

(2.1，一1.15’ 0.5, —0.6, 0.5,1, 2.5, —2’ 2.5’ 2.5) and w = 0.9. 

6.4 Conclusion 

In this chapter, we have presented the solvability conditions of the GRORP for nonlinear 

systems in strict feedforward form. The problem is approached in two steps. In the first 

step, the GRORP of the feedforward system is converted into a global robust stabilization 

problem of an augmented system. In the second step, the stabilization problem of the 

augmented system is further addressed by applying Theorem 4.3.1. Both of these two 

steps involve some nontrivial technical difficulties. In particular, for the success of the 

first step, a suitable internal model and appropriate transformations have to be found so 

that the augmented system takes some special form and is stabilizable. 

87 



10 15 20 25 30 35 40 45 50 

Figure 6.1: Profile of x 

-0.5 
10 15 20 25 30 35 40 45 50 

Figure 6.2: Profile of x\ — wv\ and X2 — WV2 
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Figure 6.3: Profile of u and u — wvi 
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Chapter 7 

Applications of Global Robust 

Output Regulation 

7.1 Trajectory Tracking of a Chain of Integrators 

Teel [85] studied a "restricted" tracking problem for a chain of integrators described by 

the following equation 

Xi 二 x^-i, i 二 n,…,2 
(7.1) 

Xi — u 

The task therein is to let Xn track a reference trajectory 如⑷‘ To accomplish the task, it 

is assumed that the trajectory qr{t) as well as the time derivative of g ” � up to the order 

n, i.e., Qrit)-, Qr{t)', Qr^^ had to be known, and moreover, \qr^\t)\ < A — £ for some 

positive constants A and e. Under the above assumptions, Teel designed the following 

nested saturation control 

U = g 严⑴— ( J n { h n { x ) + (Jn-x{hn-i{x) + … + (J i ( " i ( i ) ) ) ) (7.2) 

where x is defined Xi = Xi~- i — 1 , n , such that \u{t)\ < A for all t > 0, and 

the closed-loop system satisfies the following property 

lim [xi(t) ~ qlJ^-'Ut)] =0,i = l， . " ,n (7.3) 
t-+oo 

In this section, we first study the trajectory tracking problem for a chain of integrators 

with uncertain parameters by formulating it into a global robust output regulation problem 

with full order internal model. Then, we further show that, the trajectory tracking problem 

for system (7.1) can also be solved by converting it into a global output regulation problem 

with only one internal model. 
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7.1.1 Full Order Internal Model Design 

In this section, we study the trajectory tracking problem for a chain of integrators with 

uncertain parameters described by the following equation 

= w^^iXi^i, i 二 n,…,2 
• (7.4) 

Xi = u 

where w — (wi, ‘.., Wn-i) is the uncertain parameter and for i 二 1,…’ ri — 1, is bounded 

from below and from above by known positive real numbers, i.e., 0 < $ S i c f . 

Same as [83], we aim to let Xn track a reference trajectory qv � . D i f f e r e n t from [85], 

instead of assuming the knowledge of gv � as well as the time derivative of qv � up to the 

order n, we assume that qr{t) — qd{v{t), w) where qd{v(t), w) is a smooth function satisfying 

<7d(0，ui) — 0 for all w G R™—\ and i; e R*̂  is generated by the following exosystem 

v ^ S v (7.5) 

where all eigenvalues of S are simple with zero real parts. 

This trajectory tracking problem can be solved by formulating it as a global robust 

output regulation problem of system (7.4) with tracking error 

e = 1 ) � = (7.6) 
Wi • • • Wn-l Wi • ‘ • Wri-l 过 

Since system (7.4) is in the form of (6.1), we can solve by Theorem 6.2.1 the global 

robust output regulation problem of system (7.4) with the tracking error (7.6). 

To solve the problem, we first determine the solution of the regulator equation. Due 

to the specific form of system (7.4)，the solution of the regulator equation can be derived 

straightforward as follows: 

xjv，？i；) = = 1，...,n - 1, 

购 … 切 1 1 ^ (7.7) 

m …^^n-l 

Assumption 7.1.1 Assume there exists a sufficiently smooth function r : M^ x 

K” vanishing at (0, 0), such that 

t(V, W) ~ W), U{V, W) = W) (7.8) 

where the pair is observable, and $ is nonsingular and all its eigenvalues are simple 

with zero real parts. 
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Given a pair of controllable pair (M, N) with M eW xW Hurwitz and N e W, there 

exists a unique and nonsingular solution T to the following Sylvester equation 

— M T 二 N免 (7.9) 

because the spectra of M and $ are disjoint and the pair (M, TV) is controllable and the 

pair (屯，$) is observable. 

Under the above assumption, the global robust output regulation problem of system 

(7.4) with the tracking error (7.6), and in turn, the trajectory tracking problem of system 

(7.4) with the reference trajectory g v � 二 qd{v{t),w) can be solved. 

Proposition 7.1.1 Consider system (7.4). Under Assumption 7.1.1, there exist suffi-

ciently small A” = 1 , n , such that, under the control 

u 二 免 - Ne) - aiikie + … + an{knXn — kn屯T-'TIM 
(7.10) 

771 — Mrji + Nu - MNe, r]i = Mrji + Nxi, i = 2,..., n, 

the trajectory tracking problem of system (7.4) with the reference trajectory g v � 二 

qd{v{t), w) can be solved, i.e., the closed-loop system satisfies the property 

lim [x^(t) - KiqlJ'-'Ht)] = 0,z = l,...，n (7.11) 
t—>oo 

where Ki = i = 1 , n - 1 and = 1. 

Proof: Note from (7.7) and Q < w!< < w^^ i 二 1, .",n, that Assumptions 6.2.1 and 

6.2.4 are satisfied, thus we only need to check Assumptions 6.2.2 and 6.2.3. From (7.7) 

and Assumption 7.1.1, Assumption 6.2.2 is satisfied with 

ri(v, W) = T(V, W), $1 = — 

_ (7,12) 
Ti(V, 10) 二 . . . w卜 1 . T(V, W), = = i 二 2 , n 

Note that $ is nonsingular by assumption, thus Assumption 6.2.3 is also satisfied. As a 

result, the global robust output regulation problem of system (7.4) with the tracking error 

(7.6) can be solved by Theorem 6.2.1 and thus a controller in the form of (6.13) can be 

obtained. 

Furthermore, we choose for convenience Mi == M, Ni 二 ~ 1 , n . Then the 

Sylvester equation (6.7) with i = 2,..., n, becomes 

7；$ — MT, = ^ Ti^'^ - MTi^'==购 
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Prom (7.9) and the above equation, we have Ti = T 屯 — 2 , n . Let J\ — T. Then 

substituting the above defined Mi, Ni, Ti, i 二 1 ， n , into (6.13) yields the controller 

(7.10). 

Finally, note from (7.11) and (6.9) that limt^oofa：! (i) 一 ^qgi打-i)(i)] — limt^oo e(i) ~ 0 

and for i — 2,…’ n, 

lim — K^^- 'Ht ) ] = lim [ x ^ — 凡 广 ” ( ” � , H ] 
t—oo t—•OO 

二 lim lx^{t) — Xi(v,w)] t—oo 

= l i m lxi(t) + ^ T - ' 7 ^ i { t ) ] = 0 

Thus the trajectory tracking problem of system (7.4) with the reference trajectory ~ 

qd{v{t), w) is solved. 

7.1.2 Reduced Order Internal Model Design 

In this section, we further show that the trajectory tracking problem for system (7.1), i.e., 

a chain of integrators without uncertain parameters can be solved by converting it into a 

global output regulation problem with only one internal model. 

Same as the previous section, we aim to let Xn track a reference trajectory qr{t)— 

(亡)’切)• Similarly, this trajectory tracking problem can be solved by formulating it as 

a global output regulation problem of system (7.1) with tracking error 

… 1 - (7.13) 

Under Assumption 7.1.1，the global output regulation problem of system (7.1) with 

the tracking error (7.13), and in turn, the trajectory tracking problem of system (7.1) with 

the reference trajectory q y � = c a n be solved. 

Proposition 7.1.2 Consider system (7.1). Under Assumption 7.1.1, there exist suffi-

ciently small Ai, \ki\, i = 1,..., n, such that, under the control 

u =屯r—1(77 — Ne) - ai{kie + …+ — 屯‘了““工？?）) 
(7.14) 

t) = Mrj + Nu- MNe 

the trajectory tracking problem of system (7.1) with the reference trajectory Qrit)— 

qd{v{t)^w) can be solved, i.e., the closed-loop system satisfies the property 

lim — ( ？ 广 ‘ ) � ] l , . . . , n (7.15) 
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Proof: Due to the specific form of system (7.1), the solution of the regulator equation can 

be derived straightforward as follows: 

X , i{v,w) ^ ^ 1, uO, i/;) 0 � , l i； ) (7.16) 

From the above equation and Assumption 7.1.1, 

w) = w),i = 1,..., n (7.17) 

which shows that all the solutions of the regulator equation can be generated by the linear 

autonomous system (7.8). This observation implies that, the output regulation problem 

for a chain of integrators (7.1) can be solved by using only the first internal model in (6.8), 

i.e., 

1] = Mri + Nu- MNe (7.18) 

and the other n — 1 internal models in (6.8) with i = 2, • • • , n, turn out redundant and thus 

can be removed. As a result, the global output regulation problem for system (7.1) can 

be converted into a global robust stabilization problem for a class of feedforward systems 

subject to an input unmodeled dynamics. 

First, performing the following coordinate and input transformation 

= x i — x i ( f , w) = e, Xi = Xi —屯扩吓 -^ T ] , f] — 7] — TV, a 二 u — 屯 ( 7 . 1 9 ) 

on (7.1) and (7.18) yields, 

= Xi-i ~ 少 ( N u — MNxi), i = n,-.�3 

X2 - XI - 2t—i((M + Nm"-�fj + Nu — MNxi) 

xi = 屯 T_if} + u, 

f) - ( M + + Nu — MNxx (7.20) 

Further performing the coordinate and input transformation 

^ = N x u w = w + 屯T-iNxi (7.21) 

on (7.20) gives 

Xi 二 元 + 少 无 1 — ̂ ^-'T-^Nu, i 二 n , . . . , 3 

X2 = x i - + + Nu), 

XI = ^T'^i + u 

i ^ M i (7.22) 
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Therefore, the global output regulation of system (7,1) has been converted into a global 

robust stabilization of system (7.22) with ^ dynamics as the input unmodeled dynamics. 

Since system (7.22) is in the form of (4.1) and satisfies Assumptions 4.3.1 to 4.3.2’ 

the global robust stabilization problem of system (7.22) can be solved by Theorem 4.3.1. 

Thus we can design a stabilizing controller in the form of (4.28) for system (7.22). Then, 

noting (7.19), (7.21) and the internal model (7.18) yields the controller (7.14). 

Finally, note from (7.15) and (7.19) that that limt_+oo [；ri � — i ) � j = lim, 

0 and for i = 2 , n , 

e � = 

• oo = lim f: 
t—oc/ 

1 广 ) 嫩 — 1 

— lim [: 
t—»oo 

~ lim f: 

Thus the trajectory tracking problem of system (7.1) with the reference trajectory g” � = 

q(l{v{i)^ w) is solved. 

Remark 7.1.1 Under the assumption that gy � — q d [ v { t ) , w), we solve the trajectory 

tracking problem [83] for a chain of integrators by formulating it into a global output 

regulation problem. In contrast with [83], we do not need to know the reference trajectory 

qr{t) exactly and what we need to know is Assumption 7.1.1. 

Remark 7.1.2 Given any A > 0, the control (7.2) designed in [83] satisfies < A 

for all t > 0. However, it is worthy to note that this feature is achieved by assuming 

打）(t)| < A — e for some positive constant e. This is the reason why the tracking problem 

studied in [83] is called a "restricted" tracking problem. In the following, we further show 

that, if the reference trajectory qr{t) is known exactly and < A —£ for A > 0, e > 0, 

the control (7.14) will satisfy \u{t)\ < A for all i > 0 as well. Noting (7.19)，(7.21) and 

� ( 冲 y i e l d s 

'^T-^rj - Ne) = + T t - N x i ) = + u(i；, w) - + g … � 

Then from the last equation of system (7.22) and noting the fact that the Hurwitz matrix 

M can always be chosen such that � | | = ||exp(Mi)^(0)|| < ||̂ (0)|| for any ^(0) and 

^ > 0, we have 

I屯r—1(77 - Ne)\ < lirr-1||||浏)|| + I必 " ) � I (7.23) 
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Note that 

^(0) =77(0) ~Nxi{0)^Ny.i{v{0),w) -Tr{v{0),w) 

thus if Xi(f (0), lu) and Tt(i ;(0), lu) are known, i.e., the reference trajectory qr{t) is known 

exactly, then we can choose 77(0) = Nxi{0) ~ iVxi(t;(0), w) + Tt(i ;(0), it;) so that ^(0) = 0 

and thus (7.23) becomes 

Prom the above equation and the expression of (7.14), we obtain 

where Ai is the saturation level of a i . Finally, note that 产⑴丨 < A — £ and Ai can be 

arbitrarily small, thus choosing Ai < £ yields \u{t)\ < A for all t >0. 

7.1.3 An Example 

For illustration, consider the following system 

(7.24) 

generated 

X2 — WiXi 

Xi — u 

We aim to let X2{t) track a reference trajectory g v � 二 where vi, V2 

by 

vi = 0.51；2，i>2 — —0.51^1 

Pull Order Internal Model Design 

In this case, assume wi is unknown and I < wi < 2. 

Clearly, xi(t；, w) — {y\ — v\)lwi^ X2(i?, w) — 2v\v2 and u(f, w) — —2v\v2lw\. It can 

be verified that Assumption 7.1.1 is satisfied with 

^ = [1 0], $ -
0 1 

—1 0 

Therefore, Proposition 7.1.1 can be applied to solve the trajectory tracking problem for 

system (7.24). To design the internal model, let 

- 2 0 1 
M = ,N 二 

0 —1 1 
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Solving the Sylvester equation (7.9) gives 

0.4 -0.2 

T = (7.25) 
0.5 - 0 . 5 

The internal model takes the following form 

T7i = Mrji + Nu — MNe, r}2 - Mt]2 + Nx^ (7.26) 

Using the coordinate and input transformation (6.9) and (6.11), the augmented system 

consisting of (7.24) and (7.26) is put into the following form: 

X2 - + W\Xi 

6 二 + NwiXi 
(7.27) 

Performing the coordinate transformation 

- - 屯 r - i M —1^，Z2=X2-V 少T—lM —1�2 + 
PI 

on (7.27) gives (for convenience, we left the right hand side in the original coordinates) 

Z2 ~ O2U + 没2&I元 1 

(7.28) 
Zl = diU 

where = /ii = 1,02 — M2/&1 = 0.5wi/ki. Note that ki has the same sign with 氏，thus 

ki and k) are both positive in this case. 

Since iV = 0, A i — 00, for arbitrarily positive Ai, A;i, under the control u = —(Ji{kizi + 

— til), satisfy LB with restriction and AB with no restriction on 

(zi(0), <Ci(0))) both with restriction Ai /3 on u\ and gains 2s//ci, 4s/A:i, 4s, respectively. 

Now consider Z2,之2 dynamics. We first calculate the gain from ui to h . Let P be a pos-

itive definite and symmetric matrix such that M^P + PM 二 —21. It can be verified that, 

satisfies a-LB with no restriction on <^2(0)，no restriction on x\ and gain 2^;^\\PN\\s. 

Then, (̂ 2 satisfies LB with restriction and AB with no restriction on (^2(0), 2;i(0), (0)), 

both with restriction Ai /3 on ui and gain N(饥^s, where N^̂ û  — 
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Figure 7.1: Profile of xi — (v^ — v f ) /w i and X2 — 2̂ 11 

Under the control u = —(7i(fci2i + — ni), system (7.28) becomes 

22 二 O2U1 4- F2(Cl,Ui,d) 
(7.29) 

where (i — •^2(Ci,丘,d) 二 没 2 八 i ( 无 a n d G is a suitably defined function. 

Since hi(xi, ui) has no contribution to 712(5) with A2 < 警 ， ( s ) — 0. Note that 

诏 ) � — 7 2 2 ^ (s) = 45 in this case, then the small gain condition reduces to 

Solving the small gain condition gives ki = = 0,0021, Ai = 1 and A2 = 0,125. 

Thus, the designed controller takes the following form 

u =屯r—i(r/i - Ne) -ai(e-h (72(0.0021x2 — 0.002WT-^7j2)) (7.30) 

where ai , fT2 are saturation functions with level 1 and 0.125 respectively. 

Fig. 7.1 and Fig. 7.2 show the simulation result of system (7.24) under the control 

(7.30) with wi = 1.5 and initial condition (xi(0),x2(0),i;(0),r7i(0),r?2(0)) 二 (0.2,-0.15, 

(0,1), (0,0), (0,0)). 
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Figure 7.2: Profile of u and u + 2v\v2lw\ 

Reduced Order Internal Model Design 

In this case, we assume = 1 in (7.24). 

For convenience, we choose M,屯，T same as the previous section. Performing the 

coordinate transformation 

= - 屯 r — i M — l f , 二无2 + ^ Z U 

on (7.22) with n = 2 gives (for convenience, we retain the righthand side in the original 

coordinates) 

i2 二 秘 + 92kixi — ̂ ^-^T-^iM + iV少r-i)�+ Nu) 

zi 6lu 

t二 m 

(7.31) 

where = /ii, = y^ij^x- Since /ii = /i2 = 1 and ki has the same sign with 氏’ ki and k2 

are both positive in this case. 

Since ^ dynamics is globally exponentially stable, for arbitrarily positive Ai, ^i, under 

the control u ~ + — z\,x\,u satisfy LB with restriction and AB 

with no restriction on {zi (0),i^(0)), both with restriction Ai/3 on u\ and gains 是s, 4s 

respectively. 

99 



0,2 

0 

-0.2 

-0.4 

-0.6 

-0.8 
50 100 150 200 250 300 350 400 450 500 

50 100 150 200 250 300 350 400 450 500 

Time (Sec) 

Figure 7.3: Profile of X1 — V2 + v\ and X2 — '2,viv2 

Under the control u 二 -cri(fci2i + - wi), system (7.31) becomes 

-22 = O2U1 + F2{CuUud) 

= G ( C l ’ W i ’ d ) 
(7.32) 

where Ci 二 (之i，《）’ F2( ( i ,u ,d) = - ^ ^ - ^ T - ^ d M + N ^ T ' ^ X + + and 

G is a suitably defined function. Note that h i ( x i , u i ) has no contribution on 712(5) with 

A2 < 警，then 裙 ) � = I n this case, the small gain condition becomes 

识 ) � < < i s , 裙 ) � 二 < \s 

.3563 X 10一5 and Solving the small gain condition gives ki = 0.0104, Ai — 1, k2 -

X2 二 0.125. 

Thus, the designed controller takes the following form 

u 二 ̂ ^了-1(77 — Ne) - (Ti(0.0104e + cr2(1.3563 x - ^^''^T-'^r}))) (7.33) 

Fig. 7.3 and Fig. 7.4 show the simulation result of system (7.24) under the control 

(7.33) with initial condition (a;i(0),0:2(0), i;(0), 771 (0)) = (0‘2, —11，（0,1), (0，0)). 
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Figure 7.4: Profile of u and u + 2viv2 

7,2 Trajectory Tracking of the VTOL Aircraft 

In this section, we study a robust trajectory tracking problem of the Vertical Take-Off 

and Landing (VTOL) aircraft. As in [18, 49，55, 57], a simplified model governing the 

dynamics of the aircraft in the vertical lateral plane is described by the following equation 

My cos{e)T + 2 sin(6') sin(a)F - gM 

Mx = - sm{9)T + 2 cos(6') sm(a)F 

j'e - 21 cos(a)F 

(7.34) 

where, as shown in Fig. 7.5, a:, y denote the horizontal and vertical position of the center 

of mass C, 9 the roll angle of the aircraft with respect to the horizon, M the mass of 

the aircraft, J the moment of inertia about the center of mass C, I the distance between 

the wingtips, and g the gravitational acceleration. The control inputs are the thrust T 

directed out the bottom of the aircraft and the rolling moment produced by a couple of 

equal forces F acting at the wingtips respectively. The direction of F is not perpendicular 

to the horizontal body axis, but tilted by some fixed angle a. 

Similar to [55, 85], we also take into account some parameter uncertainties in (7.34). 

In particular, we assume |a| < f and J range in some compact set with a known bound. 
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Figure 7.5: The vertical take-off and landing aircraft [56] 

For convenience, let w = (J, a) represent the parameter uncertainty in the following. Like 

[55, 85], we choose the control inputs T, F as follows: 

M 
cos (asgn( f )min{|f| , l } ) 

{g + w2 ) , f = 
Jo 

21 cos(q;o) 
ui (7.35) 

where ui^u2 are new control inputs, and a is a positive constant satisfying a < tt/2. 

Robust trajectory tracking problem of the V T O L aircraft: Assume e — y — 

and y, x, i , 9 are available for feedback. We aim to design appropriate controls 

Ui,U2 such that, the vertical position y of the aircraft asymptotically tracks an unknown 

reference signal qd{v{t)), while the horizontal position x and roll angle 9 asymptotically 

converge to the origin, i.e., 

lim (y ⑴一•⑷）， : c ⑷’叩 )）= 0 (7.36) 

where qd{v) is a polynomial of v and = 0, and i; G R^ is generated by the following 

known exosystem 

V — Sv (7.37) 

where all eigenvalues of S are simple with zero real parts and the initial condition v{0) is 

unknown but ranging in some compact set with a known bound. 

Note that the exosystem (7.37) does not contain any unknown parameters. This is the 

major difference between the problem studied in this section and the one studied in [55] 
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where the exosystem can be unknown in the sense that it is perturbed by some unknown 

constant parameter ranging in some compact set with a known bound. In [55], Marconi, 

Isidori and Serrani studied first a robust (non-adaptive) and in turn an adaptive, trajectory 

tracking problem for the VTOL aircraft. To address the problem, they proposed a high 

gain and low gain combined design. In particular, a high gain design is provided for both 

the robust output regulation problem of the vertical dynamics with known exosystem and 

the adaptive output regulation problem of the vertical dynamics with unknown exosystem, 

and a low gain design is provided for the stabilization of the horizontal-angular dynamics. 

In contrast, we study a robust trajectory tracking problem for the VTOL aircraft. In 

particular, by employing the output regulation result obtained in Chapter 6，we provide 

a low gain design for a robust output regulation problem of the vertical dynamics with 

known exosystem. As for the stabilization of the horizontal-angular dynamics, we resort 

directly to the low gain design in [55], As a result, we obtain a complete low gain design 

for the robust trajectory tracking problem of the VTOL aircraft. 

7.2.1 Main Result 

Since qd(v), qd{v) are polynomials of v and vanishing at = 0, then there exist sufficiently 

smooth functions Ti : W vanishing at the origin, such that 

n{v) 二 龟iniv�7Ti{v) = i = 1, 2 (7.38) 

where the pair (^j , is observable and all the eigenvalues of are simple with zero real 

parts, and 7ri(v) = ~ qd{v)-

For i = 1, 2，given a pair of controllable matrices (Mi, Ni) with Mi € K^iXri fjurwitz 

and Ni e ，there exits a nonsingular matrix such that 

- MiTl = N 龙 . (7.39) 

Then, we can define the following system 

Til = Mi7?I + NiU2 一 MiiVie 
(7.40) 

m 二 M2m + N2y 

as the internal model of (7.34). 

The main result of this section is given as follows. 

Proposition 7,2.1 Consider system (7.34). Assume qd{v) is such that the matrix $2 is 

nonsingular and \gd{y)\ < 9- Then there exist positive real numbers Ai, ki, i 二 1,…’ 6, such 
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that, under the control 

U2 = ^iTr'im ' iVie) — cj.ikse + ae(ke(y - (7,41) 

m — Mi7?I + NiU2 — MiNie, 772 = M2V2 + Niy 

where cr : M ^ E is any differentiable function satisfying (j(0) = 0, sa{s) > 0 for all s 0, 

|s| < jcr(s)| < 1 for all 0 < js| < 1, a{s) = sgn(s) for |s| > 1，a'(s) < 2 for all s, and CT5 

and (Tg are saturation functions with level A5 and Ag, respectively, the robust trajectory 

tracking problem of the VTOL aircraft is solved, i.e. (7.36) is achieved. 

Remark 7.2.1 ui is the stabilizing control for the horizontal-angular dynamics and it 

is constructed by applying the low gain design provided in [55]. u^ is the dynamic state 

feedback controller for the robust output regulation problem of the vertical dynamics 

with known exosystem and it is constructed by applying the low gain design provided in 

Chapter 4. As a result, our design is a complete low gain design and different from the 

high gain and low gain combined design provided in [55]. Another difference between our 

design and the one in [55] is that the measurement of y — qd{v) is not needed for feedback 

because of the particular form of the internal model (7.40). In addition, the mass M of 

the V T O L is assumed to be unknown in [55], which can be viewed as a benefit of the high 

gain technique. 

7.2.2 Design Procedure 

We will first convert the robust trajectory tracking problem of the VTOL aircraft into a 

robust stabilization problem of an augmented system. 

Problem Conversion 

Like [55, 85], define the following functions 

. , sin(5) / , � — cos(5) 
中a�s) = c o s { a s g n ( J ) m i n { l J | , l } ) '侧 = c o s ( a s g n ( J ) min{| 1}) _ (7.42) 

Clearly, < a implies <pa(s} — tan(s) and ipa(^) — 0. 
Let n — Josin(a) — Jo C O S ( Q ) 1 
Let Pu, — icos(ao) ‘ g叫 -Jcos (ao ) ' ^^^ 

以 1 二 々 ，以2 =没,yi = y,y2 = y, = x,x2 ^ x (7.43) 
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Then, system (7.34) can be rewritten as follows: 

y2 = yi 
Pw = U2 + (£/ + U2)斗aih) + J^ sin(6'2)ni 

X2 = 

JJ 

O2 = Oi 

Ol = QwUl 

Performing the following coordinate and input transformation 

yi = yi- Qd{y) 二 e, y2 = 1/2- Vi^m- Tin, ^ = i , 2, 

on the augmented system composed of (7.44) and (7.40)，yields 

h^yi-屯 2『2-1[(似2 + N2^2T2^)fj2 + N)秘 

(7.44) 

(7.45) 

m = (M2 + N2^2T2^)m + N2y2 

+ 屯lT�lfh + b + li2 + 屯lT「％ + gd(v)]lpa(02} + ^ 

m = (Ml + + NiU2 — MiNiyi 

X2 = 工 1 

(7.46) 

Xi = -~[g + u2 + + Uy)]M02) + ^ 隱 ⑷ ！ ^ 

02 二 01 

Ol = qwUi 

It is known from [21, 22] that the robust trajectory tracking problem of the VTOL 

aircraft (7.34) will be solved if we can make the origin of system (7.46) asymptotically 

stable for all trajectories v{t) starting from Vq and allw ^W where Vq and W are compact 

sets with known bounds. 

Noting from (7.39) that Af? +iV2少2了s] 二 了 2 少 a n d noting that $2 is nonsingular 

by assumption, the coordinate and input transformation 

iVi^i,^ = {M2 + 广询2 + N2y2 

二彻 + 巾iTTiiVi歹 1 

(7.47) 

is globally invertible. 
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Performing the transformation (7.47) on (7.46) yields 

y2 = yi- 6 

6 = M242 + N2yi 

- + 屯 l T � � l + [5 + � 2 + ^iTjT'^i + � d K W a ( 似 + ^ s i n (一 1 

i2 =工1 

i l 二—[5 + U v ) + U 2 ] M 0 2 ) - 屯 似 + ^ COS(一 1 

6 二 — Ni[g 4-U2 + ^i^fi^ + qd{v)]M02) — iVi 券 sin(一 1 

(7.48) 

02 = ei 

Ol = QwUi 

Controller Design 

The design will be divided into two steps. In the first step, we will utilize the low gain 

design proposed in [55] for constructing the controller ui in (7.41). In the second step, we 

will utilize the low gain design proposed in Chapter 4 for constructing the controller u? in 

(7.41). 

Step 1: Design of the controller ui in (7.41) 

Consider the subsystem consisting of the last five equations of (7.48). We first introduce 

a lemma which is a combination of Propositions 1 and 2 of [55]. 

Lemma 7.2.1 [55] Consider the following system 

X2 —工 1 

= -di{t)M02) - + ^ cos(02)ui 

= Ml 6 — iVi^s in (^2)n i — + � )么 (没 2 ) (7.49) 

B2 = Ox 

Ol - qwUi 

where xi , % € M, G W^ '̂i, and Mi , iVi, Di are constant matrices with appro-

priate dimensions, d认t)為(f) are unknown bounded time varying functions, and Qw^Pw 

are unknown bounded uncertain parameters. Assume that 

0 < d ^ < di{t) < 0 < < q秘,0 < < 1 < < (7.50) 
” 2 
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for some positive constants d ^ . d F . ( j ) ^ , and Mi is Hurwitz, and the functions (pa：妙a 

are as defined in (7.42). Then, there exist positive real numbers \i,ki,i = 1 , 4 , such 

that, under the control 

二 + — + A4^(^X2)) ) ) ) ) ) (7.51) 
M A4 

system (7.49) is asymptotically stable at (工2，2:1，6，02，没 1) = (0,0,0,0,0) . 

Proof: The proof can be found in Section 4 of [55]. 

Clearly, the subsystem consisting of the last five equations of (7.48) is in the form of 

(7.49) with 

di{t) - d2{t) + Uv) + Ci - Di = ^iTf' (7.52) 

Note that \u2\ < A5 for all i > 0, thus if \qd{v)\ < 仏 we can always choose a sufficiently 

small A5 such that 0 < d^ < di{t) < dF for some positive constants d^, dP. As a result, 

Lemma 7.2.1 can be applied to the global robust stabilization problem of the subsystem 

consisting of the last five equations of (7.48) viewing Ui as the control input and U2 as the 

time-varying static uncertainty. 

To derive the stabilizing controller (7.51) for the subsystem consisting of the last five 

equations of (7.48), i.e., system (7.49) with di{t), Ci, Di that are as defined in (7.52), 

we need to determine the parameters = 1 , 4 , 

According to Proposition 1 of [55], there exist positive real numbers r* and c*, positive 

numbers ci, C2, C3 and (5i, <52, 64 such that, if 

ks = €3̂ 4, 二 C2k4, ki — cik^ 

and 

A4 — A3, A2 = S2k4Xs, Ai = SikjX^-
K4 

then under the control (7.51), the following system 

土2 = xi 

ii = -di{t)tan{92)-\-i 

O2 = Oi 

0\ — qwUi 

(7.53) 

(7,54) 

(7.55) 

where 

^ = - t a n ( � 2 ) 屯 i T T 1 � + ^ cos(松til 
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satisfies ISS with restriction r^Aa on the input t and moreover, ui satisfies AB with 

restriction r*入3 on £ and gain c*k\s. 

Further by Lemma 1 of [55], 

<54〈警，C3>^, � � C 3 ， 

C2 > m a x { 2 ( 5 2 ， + 72}, <5i = miC2, ci = 171202 (7.56) 

where mi and m2 are arbitrary positive constants such that mi > 4/g^ and 7712 > 16/g^. 

In what follows, we determine A3 and /C4. By Proposition 2 of [55], there exists 入$ > 0 

such that 入3 < 入$ implies that, there exists Ta > 0 such that |没2�| < cl for all t > Ta.入$ 

can be determined by the following inequality 

A 犯 + • + + 2 从 4 ) 為 

When |(92�I < a, ⑷）= 0 . In this case, subsystem of (7.49) becomes 

6 二 M i C i - i V i 告 sin(似 

(7.57) 

(7.58) 

and E becomes 

(7.59) 

Since Mi is Hurwitz, let F\ be a positive definite and symmetric matrix such that M^Pi + 

Pi Ml = —21. Then, it can be verified that £ satisfies AB with no restriction on ui and 

gain R*s where 

iT 二 2max{|tari(a)|||屯 irri||體丨 iPi iVil l勞|sii i (a)|,� (7.60) 

Then according to equations (43) and (44) of [55], /C4 should satisfy 

Step 2: Design of the controller U2 in (7.41). 

Hereinafter, we will design the control U2 by applying Lemma 4.2.1 recursively. To 

apply the lemma, performing the following coordinate transformation 

Z5 =勾1 — ̂ ^ r f i M f 1 ^ ， = y 2 + + I f (7.62) 
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where i + 少 。 打 ( 7 . 4 8 ) yields 

ie = + i^ek^yi + d) 

= 恥 + N彻 (7.63) 

C 二 G{C,U2,d) 

where d={v,w)X = ( ^ 2 , x j , ^ i ) , F{C,U2,d) - ( 1 + ^ i T f ^ M f ^ i V i ) ! ^ + 

+ and G(C, U2, d) is a suitably defined function and G(0, U2, 

d) = 0 . 

Under the coordinate and input transformations (7.43), (7.45), (7.47) and (7.62)，U2 

in (7.41) becomes 

召2 二 -(J5{k5{z5 + ^ ^ i T f i M f i ^ i ) + ae ih ize — — f^^s))) (7.64) 

Clearly, if we can show that, there exist sufficiently small A ,̂ fcj, i — 5, 6, such that under the 

control (7.64), system (7.63) is globally asymptotically stable, then the robust trajectory 

tracking problem of the VTOL aircraft (7.34) will be solved. 

First, consider the last two equations of (7.63). Since > 0, let k̂  > 0. Under the 

control U2 = —cr^iksiz^ + H4C) — U21) where H4 = [0ix2 ^iT^^M^^ 0ix2], the last two 

equations of (7.63) can be viewed as the interconnection (4.6) of the two subsystems (4.7) 

and (4.8) where ” f ) = - + H4C - 二 = H^Q = ^ i T ' ^ M ' ^ ^ i and 

v^ — = c?) with ks — 'd^k^. Note from Step 1 t h a t � s u b s y s t e m of (7.63) 

is globally asymptotically stable at the origin C = 0, then by Lemma 4 . 2 . 1，y � , i = 1,2’ 

satisfy LB with restriction and AB with no restriction on C(0)，both with no restriction 

on and gain 裙 ) ( s ) 二 0. Clearly，the small gain condition is satisfied trivially for any 

positive A5. Thus 2:5, C satisfy LB with restriction and AB with no restriction 

on ( 2 5 ( 0 ) , C(0))> both with restrictions 警 on U21 and the gains from 2:5, |/i, U2 to U21 are 

^ s , ^ s , 6s, respectively. However, it should be noted from Step 1 that A5 has to be chosen 

sufficiently small such that g + 如(v) + 丑 2 � 0 for all t > Q. 

Next c o n s i d e r d y n a m i c s . Let Pi be a positive definite and symmetric matrix such 

that M2P2 + P2M2 = —21. Then, it can be verified that satisfies LB with restriction 

and AB with no restriction on ($2(0), 2:5(0), (^(0)), both with restriction 警 on U21 and gain 

where N — = 聽 l l P s i V � 悬 . 
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Now let Ci = (1^2,站，C). Then (7.63) can be written in the following form 

ie ^ ^6^21 + Fi{Ci,u2i,d) 
. (7.65) 

Ci = Gi(Ci,u2i,d) 

where Fi(Ci,U2i,d) 二 A^siyi, U2i) + §fF(C, U2, d), M仍’她）=^5yi-U2i-cr5(k5yi-U2i), 

and Gi is a suitably defined function. By assumption, $2 is nonsingular and all eigenvalues 

of $2 is simple with zero real parts, thus $2 is an even dimensional square matrix and so 

is M2. Further, note that the determinant of a matrix is equal to the multiplication of all 

the eigenvalues of the matrix, then 1 + > 0 because 1 + = 

det(T2$2T2-^M2"') 二 and M2 is Hurwitz. Since 办 。 = N ^ � i ^ t 

/C6 > 0. 

Under the control U21 = —^JeCM-e+^sCi)) where H5 二 卜屯2了2—丄似？-丄 _ Oix(4+ri)], 

(7.65) can be viewed as the interconnection (4.6) of the two subsystems (4.7) and (4.8) 

where vf^ 二 yf^ 二 + 丑sCi,”《？ 二 vfi = = - 衆 2 5 and = 

yfJ — T-Fi{(^i,U2i,d) with ke 二 î e知‘ Then, by Lemma 4.2.1, y[f, i = 1,2，satisfy LB 

with restriction and AB with no restriction on (1 (0), both with no restriction on . More-

over, it follows from the expression of̂ S®^ that 喊 ) ( s ) = 2 m a x { | | t l ^ ^ } 

mm{kQS, Ae} and from the expression of that 

yi2 = 巩 , 则 ） + ^Vn (7.66) 

From the property of h^{yi,U2i) that U21) = 0 when Ae < "̂！？⑷ only depends 

on the last term of (7.66) when Ag < Furthermore,袍 ) (s) = 0 because 趙 ) ( s ) = 0. 

Clearly, i — 1,2 satisfy (4.9). Note that the small gain condition 4冗 ) ( s ) < 5, s > 

0, i = 1, 2, is satisfied with appropriate A“ fc‘，i 二 5,6, satisfying 

< i Ag < (7.67) 

Thus Zq, Ci satisfies LB with restriction and AB with no restriction on {zq{0),Ci (0)). 

7.2.3 Simulation Result 

Same as [28}, we choose 

M : 4 X 104 Kg, / = 5 m, a 二 f , Jo = 1.25 x 10^ Kg m^, ao = 2 � 

and the uncertainties in J and a can change up to 50 percent of the nominal values, and 

we aim to let the vertical position y track the reference trajectory 

qd{t) - Ai cos(0.5£ + 0i ) + A2 cos(t + (̂ 2) (7.68) 
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where the amplitudes Ai and phase are unknown constants ranging within fixed closed 

intervals. Further assume |如⑷| < g/3. 

Simple calculation shows that y 2 � — q d ( v ) — •I'l + f3 , y i ( f ) — qd{v) — 0.5v2 + V4 and 

U 2 � =豆 d W ) = —0.25vi — V3 where v is the generated by the following exosystem 

0 

Then we have 

心 1 0 - 0 . 5 0 

心 2 0.5 0 0 

0 0 0 

- 心 4 _ 0 0 — 1 

- 1 0 ] , 屯 2 ： = [ 1 0 1 0], = 

VI 

V2 

少 1 二 [—0.25 0 

To design the internal model (7.40), let 

0 0 0 

- 0 . 2 5 0 0 0 

0 0 0 1 

0 0 - 1 0 

Ml = M2 = 

- 4 0 0 

0 - 3 0 

0 0 -2 0 

0 0 0 

Solving the Sylvester equation (7.39) gives 

Ti = 

Ni = N2 = 

-0.0615 0.0154 -0.2353 0.0588 0.2462 -0.0615 0.2353 -0.0588 

—0,0811 0.0270 -0.3000 0.1000 
,了2 = 

0.3243 -0.1081 0.3000 一 0.1000 

-0.1176 0.0588 一 0.4000 0.2000 
,了2 = 

0.4706 -0.2353 0.4000 -0.2000 

—0.2000 0.2000 -0.5000 0.5000 0.8000 -0.8000 0.5000 -0.5000 

Then, by Proposition 7.2.1, we can construct a controller in the form of (7.41) which 

solves the robust trajectory tracking problem of the VTOL aircraft. The design parameters 

Xi,ki,i = 1,..., 6 involved in (7.41) can be calculated according to the steps described in 

the previous section. In particular, we have 

Ai = 0.39317, A2 - 0.09771, A3 - 0.71019, A4 二 10, As - 0.12, Ag - 0.01， 
(7.69) 

ki 二 10,^2 - 0.98012,^3 - 0.0093125,/C4 - 0.00093125, = 100, k^ - 0,021865. 

For illustration, the following figures show the simulation result with J — 10"̂ , a 二 2° and 

e{Q) 二 0’ 6>(0) 二 0.5, :r(0) = 5, x(0) = 55, y(0) = 0.17, ^(0) = 48, t;(0) - (2, 2.2,1, 2.2), 

771(0) = (—3,512,—3.5124’—3.4306,—2.88)，772(0) = (168.5305, 224.6097, 336.6424,672.12). 
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Figure 7.7: Profile of y, y — 0.5^2 — V4 and y ~ vi — v^ 
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Figure 7.8: Profile of F, T, and U2 

113 

(
I
)
 
(
i
 

；
•
/
t
u
)
卜
 

20 

20 

r̂
—.—.—u
 

o
 o

 o

 o

 o
 

o
 o

 o

 o
 

2
 
2

 
4

 
6
 

I

 I

 -

(
I
)
 
f
c
 



Chapter 8 

Input Disturbance Suppression for 

a Class of Feedforward Systems 

8.1 Introduction 

In this chapter, we study the input disturbance suppression problem for feedforward sys-

tems in the following form: 

it 二 + fi-i{xi-2, ..•,xi,u- d{v,w),v,w), i 二 n, ...，3， 

±2 = cixi + /i(xi,n - d(v,w),v,w), 
(8.1) 

xi = u — d(v, w), 

y = 

where x ~ {xi,..., Xn) G M" is the state, w € E the control, y G M^ the output, w) the 

input disturbance to be suppressed, w G W '̂" the uncertain parameter, € 脱“the state 

of the exosystem 

V 二 (8.2) 

where all the eigenvalues of S{a) are simple with zero real parts and a E K " � r a n g e s over 

some compact subset with a known bound, and q , i — 1 , n — 1, are known nonzero real 

numbers, and the functions fi’i : 1 , n — 1, and d(v, w) are locally Lipschitz functions 

satisfying fi(0, ...,0,v,w) = 0, i 二 1 , n - 1, and d(0,w) — 0 for all f G M ,̂ if； G M"^, and 

the following assumption: 
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Assumption 8.1.1 

\fi{xi,u- d{v,w),v,w)\ < 7i(zi)|u - div,w)\, 

1/“工 i—1’ d{v,w),v, w)\ < \xj \ + - d{v,w)\),i = 2，...’n — 1 

where 71 (x i ) is a known positive continuous function and 71 (工1) < ai +a2|2;i|外 for some 

positive real numbers ai, a2,/>i. 

The input disturbance suppression problem is defined as follows: given arbitrary fixed 

compact sets Vq C M^ and W C , find a controller in the following form 

u^JCiC.z ) , i ^ T i C ^ z ) (8.3) 

where z — x ov y, ( is the compensator state, and /C, T are locally Lipschitz and ((0，0)— 

0, 0) = 0, such that the closed-loop system composed of (8.1) and (8.3) has the 

following properties: 

1) For all 7；(0) e Vq,w ^ W and for all initial state a;(0), the trajectory of the closed-loop 

system exists and is bounded for all i > 0; 

2 ) l im“oo 工 ⑷ = 0 , 

In particular, when z = x or y, (8.3) is called dynamic state or dynamic output feedback 

controller, respectively. 

The input disturbance suppression problem for a more general class of feedforward 

systems than (8.1) was studied by Marconi, Isidori and Serrani [56]. Therein, the input 

disturbance to be suppressed was assumed to be generated by a known exosystem and the 

authors solved the problem via dynamic state feedback control. In this chapter, we extend 

the results of [56] in two aspects. When the exosystem is known, we solve the problem via 

dynamic output feedback control. When the exosystem is unknown, we solve the problem 

via adaptive dynamic state feedback control and we also give the conditions under which 

an estimated parameter vector can converge to the true parameter vector. 

Like [56], the input disturbance suppression problem will be converted into a robust 

stabilization problem for a class of feedforward systems subject to an input unmodeled 

dynamics. But different from the small gain approach used in [56], the robust stabilization 

problem will be solved in this chapter by the dynamic high gain scaling technique intro-

duced recently by Krishnamurthy and Khorrami [39, 40]. The dynamic high gain scaling 

technique has been employed to solve the robust state and output feedback stabilization 
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problem for feedforward systems [41, 43, 44]. In particular, [44] studied the output feed-

back stabilization and disturbance attenuation problem for a class of feedforward systems 

subject to some dynamic uncertainty satisfying certain ISS property. However, the dy-

namic uncertainty considered in [44j does not contain the input unmodeled dynamics and 

therefore, the approach in [44] cannot be applied directly to the stabilization problem to 

be studied in this chapter. In what follows, we will use the dynamic high gain scaling 

technique to solve the global robust stabilization problem for a class of feedforward sys-

tems subject to an input unmodeled dynamics and in turn, to solve the input disturbance 

suppression problem for system (8.1). 

8.2 Internal Model Design 

To solve the input disturbance suppression problem for system (8.1), we first make the 

following assumption on the input disturbance d{vy w). 

Assumption 8.2.1 There exists a sufficiently smooth function r : R^ x —> R"̂ ^ such 

that, r(0,0) = 0 and 

f(v, w) = ti')^ w) — w) (8.4) 

where the pair is observable and all the eigenvalues of are simple with zero 

real parts. 

Under Assumption 8.2.1，given a pair of controllable matrices (M, N) with M e 

Hurwitz and N G R""", there exists a unique and nonsingular matrix T^^ G 股titXtv satisfying 

the Sylvester equation 

Ta^a - M T , = _ (8.5) 

since the spectra of M and are disjoint and the pair ( 屯 ， i s observable. 

The following system 

力二 M7] + NU — MNxi (8.6) 

is defined as the internal model of system (8.1). 

R e m a r k 8.2.1 The internal model in this chapter is different from the one in [56]. It 

will be shown later that such internal model is instrumental for the proof of the global 

asymptotic stability of the closed-loop system. In addition, since T̂ - usually depend 

on cr, Ta cannot be used to construct the controller if a is unknown. 
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8.3 Dynamic Output Feedback Control 

In this section, we assume that a in the exosystem (8.2) is known. As a result, in (8.4) 

and Tfj in (8.5) are known as well. 

Theorem 8.3.1 Consider system (8.1). Under Assumptions 8.1.1 and 8.2.1, there exist 

a locally Lipschitz function 7, and real numbers ai > 0, 0:2 > 0 and ki, gi,i = 1 , n , such 

that the input disturbance suppression problem is solved by the following dynamic output 

feedback controller 
A /S 

u =虹a—1(” - + fcli + … + kn^ 
/p f Ir 

77 = Mrj + Nu — MNxi, 

Xi = Ci_iXi_i + r卜gi(全n - = n,…，2, (8.7) 

xi + r'^^giixn - Xn) 

r = + > 1 , 

The input disturbance suppression problem for system (8.1) will be converted into a 

global robust stabilization problem of a feedforward system subject to an input unmodeled 

dynamics. 

Performing the following coordinate and input transformation 

二 77 — T(j丁 — Nxi,u — u — H(j{ri — Nx\) 

where Ha =屯Tj^i，on the augmented system gives 

ii = Ci^iXi^i + + 

±2 = CIXI + / l ( x i , U + HAI, V, W), 

(8.8) 

n. 

XI u + H^i, 

t
s
 

M
 

I

I
 

•
c
s
 

(8.9) 

Since T{V, W) are not available, from (8.8), ^ cannot be used for feedback. Thus, system 

(8.9) can be viewed as a feedforward system subject to an input unmodeled dynamics. 

Clearly, (x, (̂ ) 二 (0,0) is an equilibrium point of system (8.9) with ？2 = 0. Then from 

(8.8), the input disturbance suppression problem for system (8.1) has been converted into 

a global robust stabilization problem of system (8.9) with u as the new control input. In 

the following, we will solve the global robust stabilization problem via output feedback 

control. 
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Like [42], we use the following dynamic high gain observer 

工i 二 + r 9ii^n —工n)，i 二几,…，2, 

£l r'^'giiXn _ Xn) 

a2r 

(8.10) 

where gi, i — 1 , n , and ai , a^ > 0 are design parameters to be specified, and 7(-) is a 

positive locally Lipschitz function to be specified. Clearly, r{t) > 1 for alH > 0 if r(0) > 1 

and 7(工1) > cvict� for all xi. 

We first consider the scaled error dynamics. Let 

Xi — Xi 
r-i-l+b = 1 . n, (8.11) 

where 6 is a positive design parameter to be specified. Then, we obtain 

£i.= 
-IX^^I + - Xn) ~ Ci-iXi-i ~ fi-i rx^-x 

(i — 1 + o j --1+b l+b 

1 I 1 / • 1 I j^�f h 
二 一 q 一 — 1 + -QiEn - ( « - ! + 0)-Ei — , , , .1+6 

. u + (Xn -Xn) -U - Ha^ ,rxi - Xi 
二 b -T 

二 n, 

二 -9l£n -

where for simplicity, we use fi,i 二 1,..., n — 1, to denote the corresponding functions in 

(8.9). Let E — ( £ „ , £ i ) . The scaled error dynamics can be rewritten as follows: 

i = 一 — -De - F (8.12) 

where 

9n Cn-

92 0 C l 

D 二 diag(n - + 6’ 

T+b 

gi 0 ... 0 

Next, we consider the scaled observer dynamics. Let 

Xi n. 

Then, we obtain 

Xi 

Xi 

卜 1 + - Xn) — (. _ 

J.l-1+b (卜 

1 1 r 
-Ci-iXi'i + -Qi^n — (i — 1 + b) - Xi, 
r r r 

\
—
/
 

&
 •

 X

 ̂

 

•
，
 

「

 
,
 

+ b)— Xr 
- l + b 

= n , 

,rxi 
—0 r 
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1
 

X
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^
 

6
 -n

 

£
 

1
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丄
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V
 

+
 

1
1
 

(8.13) 
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By further letting 

u kx 
(8.14) 

where k = { k n , … ， i s a design parameter vector to be specified. Let x = (Xn，…，Xi)-

The scaled observer dynamics can be rewritten as follows: 

-AcX- -Dx+-Gen (8.15) 

where 

Ar -

0 Cn-

0 0 Cl 
G = {gn,…’仍）• 

kji h2 … 

By now, we have obtained the closed-loop system as follows 

1 r 
i 二 -An£ — -De — F 

7
 

£
 

G
 

丄

I

 
r
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X
 

D
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r
 

I
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c
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 c
s
 

i
 
r
 
M
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1
 

•
X
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t
s
 

(8.16) 

Hereinafter, we will introduce three Lyapunov functions for the subsystems in (8.16), 

respectively, and then use a linear combination of them as the overall Lyapunov function 

for the closed-loop system (8.16). 

By Theorem A l in [39], given any positive real number b and nonzero real numbers 

I — n — 1, there exist positive definite matrices Pq,尸c, and ki�gi, i — 1，".，tz, such 

(8.17) 

that, the following Lyapunov inequalities 

A^Po + PoAo < IcJ, q j < PoD + DPo < qol 

AjPc + PcA, < -qJ, q I < P,D + DPc < qJ 

hold for some positive real numbers Qo, Q^-, Qc-

Define Vq = and Vc = x^PcX- The time derivative of Vq along the trajectory of 

e subsystem in (8.16) and the time derivative of I4 along the trajectory of \ subsystem in 

(8.16) are 

qo 
Vo < —E|kl�2 — -{PoD + DPo)\\6r — 2eTPoF� 

r r 

Vc <-^-Wxf — -{PcD + DPMxW + -X^PcGsr 
(8.18) 
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Noting Xj = - (8.14), r > 1 and Assumption 8.1.1 yields that, for 

2 — 2 ’ " ” Tt 1， 

…，3：1’ iZ + HA, V, w) I 
—+i 

< � t e l + + r i - , I I M ] + 丨丨丑yi)丨旧I 

< ^ [ ( v ^ + P I I ) l l x l l + v ^ N I ] + "丑⑵A) I旧I 

In turn, we obtain 

IIFII < 小 IHIl + ̂ ！⑶⑷丨旧 I 小 ^ I K I I 

which implies 

where k is any positive real number. Also note that 

2x^PcGsn < 2A(P,)||x||||G|ll|.li < i g d l x f + � ( 奶 ] 躺 ^ tf. (8.20) 

Let 14 = pK + Vc where p > 8(久(々 。)::丨丨�丨丨�.Noting equations (8.17) to (8.20), r > 1, 

b > 0 and the dynamics of r in (8.10) yields 

么 < - f W - l ^ l l x f + ( 。 - 德 腿 2 丨旧丨2 + 麵 
zr Jr K Qo'^ 

+ ⑷ 丨 ⑷ + 咖 ⑷ 2 + 
厂z 

+ + g-ctlxf) - ^ ( P i J k f + qjlxf) (8.21) 

Let = ^ min{|^, a2 = q^}. By Assumption 8.1.1, there exists a locally 

Lipschitz function 7(0:1) such that 

70ri) > 丨_)71(：̂：1) + (8.22) 

Then, (8.21) becomes 

么 ^ — f N P — I丨 I W + ( n — 巢 + M W M , , , , , . (8.23) 

Now consider the ^ dynamics in (8.9). Since M is Hurwitz, there exist positive definite 

and symmetric matrices P, Q such that M?P + PM = —Q. Define V^ 二 P � . The time 

derivative of V̂  along the trajectory of ^ subsystem in (8.9) is 

= + PM)i = -eQi < -A(Q)||^||2 (8.24) 
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Further define the overall Lyapunov function for the closed-loop system (8.16) as fol-

lows 

kA(Q) 

where ^ > 1 is a real number to be specified. Noting (8.23) and (8.24) yields, the time 

derivative of V along the trajectory of the closed-loop system (8.16) is 

Qc M ,,2 (q - - l)pHPo)\\Haf 2 
= 一 丨 I'll — : 旧 I 

- 转 M 2 - 4 " ( ， n f j 2 丨,"2) 

Consider the following two 

1) 0 and 

there 

Then 

When f l l x f — 诺2Ji，丨丨 > 0, i.e., |旧| < V < 

thus 亡)are bounded for all t > 0. Prom (8.22) and Assumption 8.1.1, 

exist positive real numbers 61,62 such that 7 (x i ) < bi + M 工 f o r all x j . 

from xi = — ^i) and the dynamics of r in (8.10), we have 

. 丄 ^ 丄 h + 
r — —Q：! + < —Q：! H . 

Ct2r Oi.2T 

Let 0 < 6 < Then the above inequality implies that r{t) is bounded for all i > 0. 

2) When f l l x l P < 0, i.e., ^ < 4乂凡)||//J 旧 i t follows 

from (8.14) that 

V HoHc 

Then, from the above inequaltiy, from the xi subsystem of (8.9) and from the ex-

ponential stability of ( subsystem of (8.9), x i { t ) is bounded for all i > 0. In turn, 

from the r subsystem of (8.10), r{t) is bounded for alH > 0 as well. 

In either of the above two cases, r{t) is bounded for all t > 0 and thus we can assume 

1 < r{t) < Tm for some finite r ^ and for t > 0. As a result, we can always choose a 

sufficiently large Q such that 

—1)舰）I 知邮))2 < 1 

K -

and in turn, the time derivative of V is bounded as follows: 

(8.25) 
耿 m ^^m 
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which by Theorem 2.1.3 implies the global asymptotic stability of (£ ,x ,0 二（0,0,0). 

Finally, noting Xj = r广糾(Xj _ ^j) and 1 < r(t) < r爪 yields x(t) —> 0 as t ^ oo, 

and then noting (8.8), (8.11), and (8.13) yields the boundedness of the trajectory of the 

closed-loop system composed of (8.1) and the dynamic controller (8.7). 

8.4 Adaptive Dynamic State Feedback Control 

In this section, we assume that the parameter a in the exosystem (8.2) is unknown but 

ranges over some compact subset with a known bound. As a result, in (8.4) and T^ in 

(8.5) cannot be used to construct the controller. 

To solve the problem for system (8.1)，we further make two more assumptions. 

Assumption 8.4 .1 The functions f”i = 1 , n — 1, can be written into the following 

form 

fii^i.u- d{v,w),v,w) 二 fi{xi){u — 

— 二 ff{xi){u - d{v,w)) (8.26) 

二 2, . . . , n — 1 

where j f , /J are continuously differentiable functions. The positive real number pi defined 

in Assumption 8.1.1 satisfies pi < 0.5. 

Assumption 8.4.2 The smooth function W) defined in Assumption 8.2.1 is persistent 

exciting (PE), i.e., there exist a, (5 > 0 such that, for all to > 0, 

fto+5 

/ T{t)T'^{t)dt > a l (8.27) 

J to 

Remark 8.4.1 We assume that / “ i 二 1 , n — 1, are continuously differentiable, because 

we will invoke Barbalat's Lemma to prove the parameter convergence. The expansion of 

fi, i — 1,..., n — 1, into the form of (8.26) is to guarantee the applicability of the adaptive 

control method. In addition, note that the assumption 0 < < 0.5 is not restrict in 

the literature of output feedback stabilization of feedforward systems. For example, it is 

assumed = 0 in [14]. 

Theorem 8.4.1 Consider system (8.1). Under Assumptions 8.1.1, 8.2.1, 8.4.1 and 8.4.2, 

there exist continuously differentiable functions 7 , and real numbers r � 0 , ai > 0, «2 > 

0 and fci,i — 1,..., n, such that the input disturbance suppression problem is solved by the 
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following dynamic state feedback controller 

u = HJrj - Nxi) + Zci^ + …+ kn — 
r r" 

7) = Mt] + NU — M Nxi, 

, (8.28) 

Ha = rV(:r，77’r)’ 

+ > 1 , 
Ot2T 

where H^ is the estimate of H�=屯T广,and moreover, Ha{t) H^ as t 00. 

The input disturbance suppression problem for system (8.1) will be converted into a 

global robust stabilization problem for a class of feedforward systems subject to an input 

unmodeled dynamics. 

Performing the following coordinate and input transformation 

^ = 77 - r ^ r - Nxi, H ^Ha- Ha, u = u - H^T] + H^Nxi (8.29) 

on the augmented system composed of system (8.1), the internal model (8.6), and Ha 

dynamics in (8.28) and noting that H^ is a unknown constant vector, yields 

Xi = Q—lO；卜 1 + /卜 1(3：卜2’ Ha^ + — NxiYH^, V, w), i = n, ...,3 

±2 = Cixi + fiixi,u + Hai + (7? - Nxif H'^ 

±1 =1x4- H^i + (7] — Nxi fH^ (8.30) 

Since w) and H^ are not available, from (8.29), ^ and H ^ cannot be used for feedback. 

Thus, system (8.30) can be viewed as a feedforward system subject to the input unmodeled 

dynamics composed of the ^ subsystem and H ^ subsystem. Clearly, (x, H^) ~ (0,0,0) 

is an equilibrium point of system (8.30) with iZ = 0. The input disturbance suppression 

problem for system (8.1) has been converted into a global robust stabilization problem 

of system. (8.30) with u as the new control input. In the following, the global robust 

stabilization will be further pursued. 
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From Assumption 8.4.1, system (8.30) can be rewritten as follows 

ii = Ci-iXi-i + 

土2 = Ci2:i + h{xuu + Ha^, V, w) + f^{xi){r] - Nxif H'^ 

XUU + H � l V, w) + ft-Axi){r] - NxifH^, i - 77- * • • ” 2 • 

T FJT (8.31) 

M
 

-
I
 

•
c
s
 

h t = r v (工," T, 

Now let 

Xr 
Xi = •1+6 n. (8.32) 

then we have 

Xi = 
Q- -1:^.-1 + 1 + f ^ - i M i v — N x i f H ^ Xi 

^ —C卜 iXi-i + -1+6 

^ + 6 — — l + ^ r r 卜 1+b 

[f^-l + ftiMiv - NxifH^] - { i - l + bfx” i 二 n, 

XI 二 -b hZh 
1 u T fVTi "Xi； 

where for simplicity, we let fi, i — 1 , n — 1, denote the corresponding functions in (8.31). 

By further letting 

u kx (8.33) 

where k = (A;„,..., fci)^ and x = (Xn,".，Xi), system (8.31) can be rewritten into the 

following form: 

X= -AcX ~ + F + E{xur,rj)H 
T 

(8.34) 

H T 
(工，"’ 

where 

Ar^ 

kr 

0 

fC2 

ci 

ki 

D 二 diag(n — 1 + 6,... 

F — ( fn-l fi TTb T+b 
.
 \

—
/
 

1
—
I
 

-

(8.35) 

风:ri,r, 77) = ( ^ ^ ^ ’ 去 ) ( " -

Note that system (8.34) is the closed-loop system with (x, H'^) as state. Hereinafter, 

we will introduce three Lyapunov functions for the subsystems in (8.34), respectively, and 
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then use a linear combination of them as the overall Lyapunov function for the closed-loop 

system (8.34). 

By Theorem A1 in [39], given any positive real number b and nonzero real numbers c " 

i : 1，..., n — 1, there exist positive definite matrix Pc and ki, i ~ 1 ， n , such that, the 

following Lyapunov inequalities 

A^Pc + PcAc < - q j , qj < PcD + DP, < qj (8.36) 

hold for some positive real numbers q ^ ^ A c -

Define 

Noting (8.36) and the H^ dynamics in (8.31) yields that the time derivative of V̂  along 

the trajectory of x and ff^ subsystems in (8.34) is 

K = \x^{AlPc + PcAc)x - -^{PcD + DP,)\\xf + 2x^PcF + r,77) + 

< --WxW - -{PcD + Z)Pc)||xf + 2A(F,)||X|||!F|| (8.37) r r 

where we have set 

77, r) = ~2x^PcE{xi , r , 7 y ) . (8.38) 

= r j - i + b ^ j , (8.33), r > 1 and Assumption 8.1.1 yields that, for i = Then, noting x 

2 • • • • ’ 71/ 11 

•^i+b 

< + r i—III IMl + ^ ^ ^ W 

Thus, we have 

IIFII < � ” H - ” G 严 ) 丨 旧 1 + ， M 

which implies 

llxlllli^ii < ^ 11x11 + ~ ~ ~ ~ l l ^ l l 

+ 命 丨 
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where k is any positive real number. 

Then, from r > 1, 6 > 0 and the dynamics of r in (8.10), (8.37) becomes 

K <— - + 請 ll�l|2 + 4 ( = r ， " 2 丨 旧 + ， 鋼 2 

⑷ 2 旧 ⑷ + 咖 ⑷ ) 2 “』2 — ̂ ^ (8.40) 

Let a\ = a2 = q .̂ By Assumptions 8.1.1 and 8.4.1, there exists a continuously 

differentiable function 7 (x i ) such that 

> m a x { A ( P c ) [ 2 v V ^ ( v / r r ^ + ||A;||)7i (xi) + ^ l a s } (8.41) 

Then, (8.40) becomes 

K , + ( - - _ 耐 丨 旧 丨 2 + 4 ( 气 旧 丨 2 (8.42) 
ZT hi Qc^ 

Define the overall Lyapunov function for the closed-loop system (8.16) as follows 

" + 。 ^ — K 

where ^ > 1 is a real number to be specified. Noting (8.42) and (8.24) yields that, the 

time derivative of V along the trajectory of the closed-loop system (8.34) is 

二 — � 丨丨 2 _ — 丨丨2 一 4 ( ， : j ， l | 2 _ 2 ) 

Now we consider the following two cases: 

1) When f l l x l P 一 忠 旧 | 2 > 0, i.e., |旧| < 二 丨 “ < 0 and thus 

x{t) is bounded for all t >0. From (8.41) and Assumption 8.1.1, there exist positive 

real numbers 61,62 such that, 7(2:1) < 61 + 6 2 I 工 f o r all xi . Then from xi = r^xi 

and the dynamics of r in (8.28)，we have 

a2r _ a2r 

Let 0 < 6 < 告 . T h e n (8.44) implies that r{t) is bounded for all t > 0. 

2) When f M 2 - 4 ( ， g ^ i � | | 2 < 0, i . e . , 興 < 舆 — 0 as 力—oo 

because ^(i) does. In this case, (8.44) becomes 

一 2 叫 列 ： — 刘 + i + � M 产 (8.45) 
a2r a2T 02 

Since Pi < 0.5 by Assumption 8.4.1, (8.45) implies that r{t) is bounded for all t > 0. 
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In either of the above two cases, r{t) is bounded for all t > 0 and thus we can assume 

1 < r{t) < Tm for some finite r ^ and for all t > 0. As a result, we can always choose a 

sufficiently large p such that 

( p - l ) ( n - l 細 + 4(A(Pc))' < —1 

K — 

and in turn, (8.43) becomes 

which by Theorem 2.1.5 implies the trajectory (x(i)： ^^W^^( i ) ) is bounded for all i > 0, 

and moreover, x(^) 0 as t oo. Noting Xj — and 1 < r(t) < r ^ yields 

x(t) — G as t 一 oo and further noting (8.29) yields the boundedness of the trajectory of 

the closed-loop system composed of system (8.1) and dynamic state feedback controller 

(8.28). 

It remains to show that H{t) 0 as i ^ oo. To this end, we first show by Barbalat's 

lemma that x{t) — 0 as 力—oc . Since x ( 力） 0 as i ^ oo, to show x( i ) 0 as i —> oo, 

we only need to show is uniformly continuous. Note that f i , i = 1,…，n, ip, and 7 are 

all continuously differentiable, then from (8.34), x(^) is continuously difFerentiable, i.e., 

x{t) exists. Furthermore, note that x{t) is bounded because of the boundedness of the 

trajectory of the closed-loop system. Then, it follows that x{t) is uniformly continuous. 

In turn by the following lemma [62], we can conclude that H{t) 一 0 as f 一 00. 

Lemma 8.4.1 [62] Consider the vector functions r, H^ : [0,00) — R " : . Suppose 

is continuously difFerentiable, and —> 0 as i —> 00. Assume further that r ( i ) is 

uniformly bounded and persistently exciting. Then —> 0 as i —> 00 provided that 

H{t)T{t) 4 0 as t 一 00. 

From (x(i), X(力），力)’ 0 as i ^ cxd, and the x, subsystems in (8.34), we 

have H^{t ) 0 as i — 0 0 and 

l i m五 ( 0， r � ’巧⑴)应T⑴二 0 (8.46) 
t—oc 

and (8.35), (8.46) can be written explicitly as follows: Noting (8.8) 

0 二 lim 丑(0, r � ’ v i m ^ i t ) = lim . . . ， … ， 
i—>00 t—co r 几 十 r ^ 十 

- … ， … ， 1 ) _ + TMt) + NMt)VH^{t) 

- 織 , … ， m i t ) T M t ) f (8.47) 
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fo. � fa � 

Since the last element of ( � , / i + 1 � ， … ’ 1) is 1 and nonzero, 

lim H{t)Tar{t) = 0 (8.48) 
t—oo 

Since r(t) is PE, by Lemma 8.4.1，H{t)Ta — 0 as i 一 oo. Finally, note that T̂ - is 

nonsinguiar, then it follows that H{t) 0 as t oo. 

8.5 An Example 

Consider the following feedforward system 

— X2 ~ 0.001(3：1 + 0.1^)4 (lyxi + U — WV1V2) 

± 2 = ^ X 1 - 0.001 (xi + - WV1V2) 

Xi = U — WV1V2 

y 二 

where < 1, and vi, V2 are governed by the following exosystem 

i)i - —(7^2, V2 二 

(8.49) 

(8.50) 

where the initial state i;(0) satisfies |卜(0)|| < 0.5. In the following, we will study the input 

disturbance suppression problem of system (8.49) via dynamic output and dynamic state 

feedback control, respectively. 

8.5.1 Dynamic Output Feedback Control 

In this section, assume a 二 0.2. On one hand, note that system (8.49) is in the form of 

(8.1) and satisfies Assumption 8.1.1 with 

71 (xi) - 0.001(x? + 0. l2) i < a i 4 - (8.51) 

where ai — a2 = 0.001(1 + 0.1^)4 and pi — 0.5. On the other hand, note that d{v, w)— 

WV1V2, therefore Assumption 8.2.1 holds as well. As a result, Theorem 8.3.1 can be applied 

to solve the input disturbance suppression problem. To derive the controller (8.7), we have 

to determine ci, C2, b, and M, N, H�, and 仍，仍，仍’ fci, A；�，and a i ， 7 ( 工 i ) -

First, we determine ci, C2, b. From (8.49), ci — C2 = 1, and from 0 < 6 < ^ = 1, let 

6 二 0.9. 

Then, we determine M, N, Ha- Since d{v, w) ~ wv仍,it can be verified that Assump-

tion 8.2.1 is satisfied with 

少a = “ ^ 1 0 
-0.16 0 
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To design the internal model, we let 

—2 0 1 
M = ，iV = 

0 - 1 1 

0.48077 -0.24038 

0.86207 -0.86207 

Solving the Sylvester equation (8.5) gives 

Ta-

and thus H^ = ^ T ' ^ = 4.16 —1,16 

Next, we determine &2，&3 and a i , a 2 ’ 7 . 

any positive real number b and nonzero real numbers ci 

matrices P � , P � a n d fc“仍，i 二 1 

By Theorem A l in [39], given 

C2, there exist positive definite 

= 1 , 3 , such that (8.17) is satisfied. Here we set 

ki 二 - 3 . 6 , A:2 = -4 .32 , k^ = -1 .728, = -0.512,52 = —1.92’ 分3 = 一2.4 

Under the above setting, 

Furthermore, let 

-2.4 1 0 

- 1 . 9 2 0 1 

—0.512 0 0 

Ar = 

0 

0 

.728 - 4 . 3 2 一 3.6 

(8.52) 

0.86638 - 0 . 5 -1 .2096 1.0259 1.1148 0.11574 

Po = - 0 . 5 1.2096 - 0 . 5 1.1148 2.7251 0.30434 

一 1.2096 - 0 . 5 6.5683 0.11574 0.30434 0.40398 

then the coupled Lyapunov inequalities (8.17) is satisfied with 

go = 1,望。二 0.72139，知 二 14 .144 ,如 -0 .4 ,9^ = 0.65195, ĉ 

From p > 丨丨2’ set p = 2131.5, Then, we have 

14.008. 

a i 二 = 0.007139,^2 = = 0.65195 
4 Qo Qc —-— 

Noting (8.22) and (8.51) yields the expression of 7. Finally, we set k 二 10-1°. 

As an illustration, Fig. 8.1 and Fig. 8.2 show the simulation result of system (8.49) 
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under the control 

u - ^T-^ry — Nx,) + kA + + 細浮 

力—Mr] + Nu — MNxi， 

^ + r~^g2{x2, 一 xs), 
. , (8.53) 

X2 = xi + r g2{x3 — X3), 

£1 = u + - X3) 

a2r 

with initial state (a:i(0), 2:2(0), 3:3(0), 7；(0), 7^(0), f i (0), ^2(0), X3(0), r(0)) = (0.002,0.04’ 

0.00125, (—0.01，0), (0.002,0.002), 0.002,0.04，0.002,1) and w = 0.5. 

8.5.2 Adaptive Dynamic State Feedback Control 

In this section, we still let a — 0.2 but assume a is not known beforehand. Clearly, system 

(8.49) satisfies Assumptions 8.1.1, 8.2.1, and 8.4.1. In particular, /{^(xi) — / ^ ( ^ i ) — 

—0.001(xf + 0.l2)$, Thus Theorem 8.4.1 can be applied to solve the input disturbance 

suppression problem. To derive the controller (8.28), we have to determine M, N, and 

6, , /C2, ； and a i , a2 ,7 i and r , if. 

First, we determine M, N. For convenience, let M, N, H^ be the same as the above 

section, Note that H^ is not available for feedback. 

Then, we determine 6, k^ and a i , 02 ,7 . For convenience, we set ki, k2, k^ and 

Ac, Pc same as the previous section. The coupled Lyapunov inequalities (8.36) is satisfied 

with 

qc = 0.4, g = 0.65195, ^c = 14.008. 
一C 

Furthermore, we have 

ai = I 二 0.007139,^2 =q 二 0.65195, 

Noting (8.41) and (8.51)，and (8.38) yields the expression of 7 and (/?, respectively. Finally, 

we set r = 104 and k — lO—io. 

As an illustration, Fig. 8.3, Fig. 8.4 and Fig. 8.5 show the simulation result of system 
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(8.49) under the control 

u = - iVxi) + + + ks^ 

77 二 Mrj + Nu - MNxi, 

Ha 二 IV(:c，77，r)’ 

a2r 

with initial state (a;i(0), 0:2(0), 0:3(0), v(0), r(0),r](0), (0)) - (0,005’ 0,0，（0.5，0), 1, 

(0.001，0.02)，(-0.003, 0.008)) and w = 0.5. 

8.6 Conclusion 

In this chapter, we have utilized the dynamic high gain scaling technique to address the 

input disturbance suppression problem for a class of feedforward systems. In contrast with 

[56], we take into account two critical cases respectively: the state of the given system 

is not available and the exosystem is unknown. Especially in the second case, we have 

proved that the estimated parameter vector can converge to the true parameter vector if 

some PE condition is satisfied. 
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Conclusion 

In this thesis, we have investigated the global robust stabilization problem and the global 

robust output regulation problem of feedforward systems. In what follows, we will conclude 

this thesis with some remarks. 

In the first part of this thesis, we have studied the global robust stabilization problem 

for various classes of feedforward systems containing both time-varying static and dynamic 

uncertainties. Different from most of the existing approaches, we proposed a pure small 

gain approach to solve the problem. In contrast with the Lyapunov's linearization method 

and the asymptotic small gain theorem combined approach, our approach removes two 

restrictions brought by the Lyapunov's linearization method. On one hand, we do not 

assume the Jacobian linearization of the given system at the origin be stabilizable. The 

unstabilizability may come from two aspects: the Jacobian linearization of the dynamic 

uncertainty is not stabilizable or the Jacobian linearization of the feedforward system itself 

is not stabilizable. Both of these two cases have been addressed in this thesis. On the 

other hand, we do not require the Jacobian linearization of the bottom dynamics at each 

recursion be exponentially stable. It has been shown in the literature that it is difficult to 

achieve the exponential stability of the Jacobian linearization at the origin for feedforward 

systems with uncertain constant parameters. It is even more so if the feedforward system 

contains both time-varying static and dynamic uncertainties. The removal of these two 

restrictions is made possible because the LB small gain theorem, instead of the Lyapunov's 

linearization method, is employed to guarantee the local stability of the given system at 

the origin. Furthermore, the recursive design procedure proposed in this thesis is also 

quite different from the existing ones, and particularly works for feedforward systems 

subject to both time-varying static and dynamic uncertainties. Even without the dynamic 

uncertainty, applying our recursive design procedure can still yield some new results which 

cannot be handled by the existing approaches. 

In the second part of this thesis, we have studied the global robust output regulation 
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problem for a class of feedforward systems. To solve the problem, we first construct a 

suitable internal model so that the augmented system is stabilizable. Then by performing 

appropriate coordinate and input transformations on the augmented system, the global 

robust output regulation problem is converted into a global robust stabilization problem 

for a class of feedforward systems subject to both time-varying static and dynamic uncer-

tainties. As a result, the global robust stabilization results obtained in the first part of 

this thesis has been used to solve the global robust output regulation problem. We have 

applied the results of global robust output regulation problem to solve two trajectory 

tracking problems for a chain of integrators with uncertain parameters and the VTOL 

aircraft, respectively. In contrast with the existing designs, for the chain of integrators 

with uncertain parameters, our design is low gain and does not need the exact knowledge 

of the reference trajectory, and for the VTOL aircraft, our design is a complete low gain 

design and thus is more cost effective. Finally, to complete the thesis, we have studied 

a special case of output regulation problem, the input disturbance suppression problem 

for a class of feedforward systems by Lyapunov approach. We have designed an adaptive 

dynamic state feedback controller which can handle the uncertain parameters not only in 

the plant but also in the exosystem. Furthermore, we have also given the conditions under 

which an estimated parameter vector can converge to the true parameter vector. In the 

particular case where the exosystem is known, a dynamic output feedback controller has 

been designed. 

To conclude this thesis, we will depict some future research stemming from the work 

in this thesis. On one hand, the feedforward systems considered in this thesis are all com-

prised of n scalar subsystems. Thus it would be meaningful to study the stabilization and 

output regulation problem for feedforward systems in more general form. On the other 

hand, to study the stabilization problem of feedforward systems subject to dynamic un-

certainty via Lyapunov approach is also a potential issue. However, since the feedforward 

system does not lend itself easily to the Lyapunov design, research in this direction would 

be challenging. 
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