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ABSTRACT 

Active vision systems are about mobile platform equipped with one or more than 

one cameras. They perceive what happens in their surroundings from the image streams 

the cameras grab. Such systems have a few fundamental tasks to tackle — they need to 

determine from time to time what their motion in space is, and should they have multiple 

cameras, they need to know how the cameras are relatively positioned so that visual 

information collected by the respective cameras can be related. In the simplest form, the 

tasks are about finding the motion of a camera, and finding the relative geometry of 

every two cameras, from the image streams the cameras collect. 

The relative motion between a camera and the imaged environment generally 

induces a flow field in the image stream captured by the camera. The flow field, which 

is about motion correspondences of the various image positions over the image frames, 

is referred to as the optical flows in the literature. If the optical flow field of every 

camera can be made available, the motion of a camera can be readily determined, and so 

can the relative geometry of two cameras. However, due to the well-known aperture 

problem, directly observable at any image position is generally not the full optical flow, 

but only the component of it that is normal to the iso-brightness contour of the intensity 

profile at the position. The component is widely referred to as the normal flow. It is not 

impossible to infer the full flow field from the normal flow field, but then it requires 

some specific assumptions about the imaged scene, like it is smooth almost everywhere 

etc. 

This thesis aims at exploring how the above two fundamental tasks can be 

tackled by operating on the normal flow field directly. The objective is, without the full 

flow inferred explicitly in the process, and in turn no specific assumption made about the 



imaged scene, the developed methods can be applicable to a wider set of scenes. The 

thesis consists of two parts. The first part is about how the inter-camera geometry of two 

cameras can be determined from the two monocular normal flow fields. The second part 

is about how a camera's ego-motion can be determined by examining only the normal 

flows the camera observes. 

On determining the relative geometry of two cameras, there already exist a 

number of calibration techniques in the literature. They are based on the presence of 

either some specific calibration objects in the imaged scene, or a portion of the scene 

that is observable by both cameras. However, in active vision, because of the "active" 

nature of the cameras, it could happen that a camera pair do not share much or anything 

in common in their visual fields. In the first part of this thesis, we propose a new 

solution method to the problem. The method demands image data under a rigid motion 

of the camera pair, but unlike the existing motion correspondence-based calibration 

methods it does not estimate the optical flows or motion correspondences explicitly. 

Instead it estimates the inter-camera geometry from the monocular normal flows. 

Moreover, we propose a strategy on selecting optimal groups of normal flow vectors to 

improve the accuracy and efficiency of the estimation. 

On determining the ego-motion of a camera, there have been many previous 

works as well. However, again, most of the works require to track distinct features in the 

image stream or to infer the full optical flow field from the normal flow field. Different 

from the traditional works, utilizing no motion correspondence nor the epipolar 

geometry, a new method is developed that operates again on the normal flow data 

directly. The method has a number of features. It can employ the use of every normal 

flow data, thus requiring less texture from the image scene. A novel formulation of what 
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the normal flow direction at an image position has to offer on the camera motion is 

given, and this formulation allows a locus of the possible camera motion be outlined 

from every data point. With enough data points or normal flows over the image domain, 

a simple voting scheme would allow the various loci intersect and pinpoint the camera 

motion. 

We have tested the methods on both synthetic image data and real image 

sequences. Experimental results show that the developed methods are effective in 

determining inter-camera geometry and camera motion from normal flow fields. 
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摘要 

主動視覺系統一般都有一個或者幾個相機構成，它們被安置在自由運動的 

工作平臺上。視覺系統通過相機捕捉的圖像序列感知外界的變化。這種系統有一 

些基本的問題需要解決——需要時時地判斷它們各自的運動情況，如果視覺系統 

包括多個相機，我們還需要知道相機之間的相對位置，從而可以收集到各個相機 

之間互相關聯的視覺信息。簡單來説，這些問題就是從相機捕捉的圖像序列中估 

算相繼的運動和估算相機之間的幾何參數。 

相機之間的相對運動和成像的環境的變化導致了相機捕捉的圖像序列的流 

場。關於圖像序列中像點位置的運動匹配在文獻中叫做光流。如果可以得到每個 

相機的光流場，相機的運動就可以被馬上估算出來，因此各個相機之間的幾個參 

數也可以被估算出來。然而，由於存在著名的“小孔問題”，通常情況下，從像 

點可以直接觀察到的並不是光流，而只是光流的一個分量，即像點位置所在的垂 

直于圖像灰度圖的等亮度綫的那個法向分量。這個分量通常被稱爲法向流。從法 

向流場可以推斷出光流場，但是需要一些特定的假設，例如成像場景處處平滑等 

等的約束條件。 

本篇論文致力於從法向流場入手，研究如何直接解決上述的兩個基本問 

題。我們的研究目標是提出一個應用更廣泛的算法，使得在計算過程中不需要估 

計光流場，因此不需要利用關於成像場景中的特定假設。本篇論文包括兩部分： 

第一部分工作是從相機的法向流場直接估算雨個相機之間的幾何參數；第二部分 

工作是通過相機的法向流直接計算相機的運動參數。 

文獻中已經有很多關於確定兩個相機之間的幾何參數的相機標定的算法。 

他們或是基於成像場景中特定的標定參照物，或是基於兩個相機都能觀察到的場 

景的重疊部分來做計算的。然而在主動視覺系統中，由於相機的這個“主動”的特 
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性，一對相機的視場裏面可能沒有任何重疊部分。在本篇論文的第一部分，我們 

提出了新的方法來解決這個問題。我們的算法要求這對相機作剛體運動的的時候 

紀錄圖像信息，但是不同于現在的基於運動匹配的標定算法，我們的算法不需要 

估計光流或者建立運動匹配。取而代之的，我們從單目相機的法向流直接估計相 

機之間的幾何參數。更多的，我們提出了如何選擇法向流的組合，從而提高算法 

的準確性和高效性。 

同樣的現在已經有很多關於計算相機運動的研究工作。然而，大部分的算 

法需要在圖像序列中追蹤顯著特徵點，或者需要由法向流推斷光流。和以往的傳 

統工作不同的是，我們的新算法直接從法向流入手，避免了建立運動匹配和内極 

綫幾何。我們的算法有如下幾個特點。它可以充分利用每一個法向流，因此對成 

像場景沒有紋理的要求。我們建立了如何從一個像點的法向流推斷相機運動的新 

的方法。這一方法使得每一數據點的數據都可以提供相機可能的運動的所在軌 

跡。如果圖像可以提供足夠的數據點或者法向流，相機的運動可以通過不同的軌 

跡相交的重疊區域來進行投票得到。 

我們用模擬圖像數據和真實圖像數據對我們的上述算法進行測試。實驗結 

果證明了我們的算法可以有效的利用法向流計算相機之間的幾何參數和相機運動 

參數。 
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INTRODUCTION 

CHAPTER ONE 

INTRODUCTION 

Normal flow, the local gradient of the intensity information in the video, could be 

calculated directly from a captured image stream. Combined with additional artificial 

constraints, such as smoothness constraint and continuity constraint etc., normal flow is 

often utilized to develop algorithms to calculate camera motion parameters or inter-

camera geometry of an active vision system. However, these artificial constraints are not 

always realistic when dealing with the image-sequence-pictured real world. Therefore, 

this thesis aims at exploring what could be observed in an active vision system when 

these restrictive assumptions are not applied as normal flow is the only source of 

information available. This thesis consists of two parts. First, a method to determine the 

inter-camera geometry of two cameras from two monocular normal flow fields is 

presented. Second, a novel method to estimate the camera's ego-motion by using 

direction information of monocular normal flows is proposed. 

1.1 Background 

Multi-camera system that allows relative camera movement has the advantage of 

dynamically configurable visual coverage. With cameras becoming more affordable 

these years, such active systems become more widely used and manifested as active 

binocular heads in the field of robotics, active camera networks in surveillance systems 

and others. The respective cameras in the system generally collect visual information 

independently. In order to build a relationship between different channels of visual 

information, no matter quantitatively or qualitatively, it is required that the inter-camera 
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geometry should be made known from time to time. This task, in the simplest form, is 

about determining the relative geometry of every two cameras in the multi-camera 

network system and is referred as inter-camera geometry or binocular geometry in this 

research. 

A number of methods have been proposed in the literature for determining the 

inter-camera geometry. Some of the methods require the presence of specific objects in 

the scene [Malis, 2002] [Unal, 2007] [Takahashi, 1988], and some tackle the problem 

by exploiting the properties of vanishing lines and vanishing planes in the image data 

[Jaynes, 2004] [Junejo, 2006]. However, a problem of these proposed methods is that, 

the applicability is restricted to certain scenes. One widely adopted approach to 

overcome this problem is to make use of cross-camera feature correspondences[Zhang, 

1996] [Bjorkman, 2002]. Another approach is to use motion correspondences in the 

respective cameras [Domaika, 200IB, 2003] [Ma, 1996] [Neubert, 2002]. However, 

establishing cross-camera feature correspondences or motion correspondences is let 

alone a challenging topic due to the ill-posed nature of establishing the correspondences. 

Estimating the relative motion between an observer and an object is a 

fundamental problem in computer vision. In this research, only the estimation of the 

relative motion between a moving observer and a static scene is of interest, and is also 

referred as camera ego-motion estimation. Ego-motion provides useful information for 

human-computer interaction and vehicle navigation. 

There are already abundant research works on ego-motion estimation. The 

classical approaches attempt to determine the camera motion parameters by establishing 

and analyzing certain motion correspondences from the video data. Hence, the 

establishment of the motion correspondences ultimately remains as the key issue for 
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these classical approaches. There are two major categories in the literature. One is the 

displacement category[Hom, 1990] [Chipolla, 1993] [Armangue, 2003], which is to 

track the distinct features across the image frames. The other one is the gradient category 

[Heikkonen, 1995] [Chena, 2001] [Zhang, 2006], which is to interpolate the full optical 

flows from the normal flows. 

Optical flow is the distribution of apparent velocities of the movement of 

brightness patterns in the image. The optical flow at an image point cannot be computed 

independently without introducing additional constraints because the velocity field at 

each image point has two components while the change in brightness caused by motion 

at a point yields only one constraint. Consider, for example, a patch of pattern where 

brightness varies as a function of one image coordinate but not the other. Movement of 

the pattern in one direction alters the brightness at a particular point, but motion in the 

other direction yields no change. Thus, the component of movement in the latter 

direction cannot be determined locally [Horn, 1981]. The phenomenon described above 

is called the aperture problem. As a consequence of this well-known problem, what is 

directly observable at any image position is generally not the full optical flow. Instead, it 

is the projection along the direction of the intensity gradient at this very image position. 

Optical flows can be inferred from normal flows usually by enforcing some artificial 

constraints such as smoothness constraint. However, such constraint typically assumes 

that the image domain is continuous or differentiable in space and time, and this is not 

always realistic when dealing with the real image data. It is unfortunate that although 

techniques for computing optical flow have been researched for decades, the current 

computing techniques still do not yield accurate and dense results. 
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Approaches based on motion correspondences establishment and optical flow 

estimation both require that the particular scene contains distinct features or dense 

texture. However, plenty of distinct features are not always presented in practice. 

Furthermore, in man-made scenes, dense texture is often rare for the reason that 

exposure to strong texture for extended period of time is not always welcomed by 

human eyes. 

Another category of methods is the direct methods[Duric, 2000] [Sinclair, 1994] 

[Silva, 1996, 1997] [Fermuller, 1995A, 1995B, 1998], which attempts to recover camera 

motion parameters by using normal flows directly. The method proposed in this research 

could also be categorized into this group. 

1.2 Motivation 

In a novel work [Fermuller, 1995A, 1995B, 1998], Fermuller and Aloimonos 

proposed a method (hereafter referred to as the FA method) of determining the ego-

motion of a camera directly from normal flows. They first define for any particular 3D 

direction (or axis that passes through the camera's optical center) a vector field for the 

entire image space. We shall refer to the axis as the field-inducing axis. Once a field-

inducing axis and in turn the accompanying vector field is chosen, some data points in 

the image data could have the normal flows there parallel or anti-parallel with the field 

vectors induced at the image positions. Each of such data points will be labeled “+，’ if 

the normal flow has a direction the same as that of the field vector induced there, and 

labeled "-" if it has an opposite direction. Fermuller and Aloimonos showed that the “+，’-

labeled data points and the "-"-labeled data points generally span two separate regions in 

the image space, and the boundary in the image space that separates the two regions, 
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which is either a linear boundary or a quadratic boundary, actually gives a mathematical 

constraint on the camera motion parameters. In other words, if a sufficient number of 

field-inducing axes (and the accompanying vector fields) are chosen, a number of 

boundaries in the image space between the "+"-labeled and "-"-labeled regions can be 

identified, and a number of constraints can be made available to determine the camera 

motion precisely. 

In this thesis we explore how the above single-camera mechanism can be used 

for a multiple-camera problem - that of determining the inter-camera geometry. 

One important issue is that the FA method operates not from the available data 

points but from arbitrarily chosen field-inducing axes. With this, not all data points can 

be utilized, but only those with normal flow directions consistent with the specific vector 

fields defined by the chosen axes. Different sets of axis choices would thus allow 

different subsets of the data points to be usable, each subset with a different density of 

the labeled positions in the image space. Naturally, the denser the usable data points, the 

more precise can the boundary between the “+，’ labeled positions and the "-" labeled 

positions be localized in the image space. 

In practice there is a limit on how many field-inducing axes can be used, or else 

the total computation time will be prohibitive. The choices of the axes are thus crucial. 

They determine the total number of data points usable in the method and in turn the 

accuracy in determining the inter-camera geometry. However, no particular scheme was 

ever offered for choosing the field-inducing axes. In this thesis we provide a scheme of 

choosing the axes, with the objective of, for any given number of axes, maximizing the 

number of data points usable in determining the inter-camera geometry. 
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Estimating the motion parameters of the individual cameras in an active vision 

system is yet another important issue. As mentioned above, traditional algorithms that 

are based on both the displacement approaches and the gradient approaches require a 

particular scene with distinct features or dense texture which are not always available in 

practice. 

Algorithms which attempt to recover the camera motion parameters by using 

normal flows directly, are referred as direct methods. In [Duric, 2000], Z. Duric et al. 

proposed a method that is able to determine limited types of camera motion such as z-

axis rotation, z-axis translation, lateral translation or pan without estimating the explicit 

parameters. C. Silva et al. presented a method [Silva, 1996, 1997] that is able to 

calculate the explicit camera motion parameters. This algorithm typically requires that 

the magnitude and direction information of the normal flows are known accurately. 

However, it has been pointed out [Burgi, 2004] [Chen, 2000] that the magnitude 

component of normal flow, in comparison with the direction component, is less tolerant 

in its extraction to illumination variations in the image data. Fermiiller and Aloimonos 

proposed a method [Fermiiller, 1995A, 1995B, 1998] that allows the direction and 

magnitude information of the normal flows to be separated for simpler determination of 

the camera motion parameters. However, dense texture of the imaged scene is the crucial 

factor which greatly affects the efficiency and precision of the estimated result. 

An algorithm is proposed in this research in order to overcome the problems that 

the above works have encountered. In particular, the direction information of normal 

flows is the only required input to the proposed algorithm. Given a specific normal flow, 

the entire 3D space that describes the camera motion can be divided into two halves, and 

the direction of this normal flow indicates which half the camera motion will fall into. 
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Consequently, the intersection of all the half spaces that each normal flow votes for will 

reduce the possibilities of camera motion and eventually pinpoint it. Therefore, the 

density of the texture within the image domain is not crucial, as long as enough data 

points with detectable normal flows could be obtained. 

1.3 Research Objective 

This thesis presents two topics by investigating monocular normal flows. The 

aim of the first topic is to determine inter-camera geometry of two cameras directly from 

the monocular normal flows in the respective image streams, without establishing 

neither cross-camera correspondence nor explicit motion correspondence like optical 

flow. It is assumed that the intrinsic parameters of the cameras have been determined by 

camera self-calibration methods proposed by [Domaika, 2001 A] [Heikkila, 1996, 2000] 

[Maybank, 1992] [Zhang, 1996] [Zhang, 1999] [Bouguet] [Gurdjos, 2005]. The focus of 

this topic is the estimation of the camera-to-camera geometry. On the other hand, the 

aim of the second topic of this research is to estimate the camera's ego-motion by using 

monocular normal flows directly. In practice, a voting scheme similar to Hough 

Transform that transforms the image position and normal flow direction to possible 

camera motion in the (p-9 domain will be used. Spherical image space is also adopted in 

order to analyze camera motion because the spherical image space has no ambiguity in 

describing camera motion. In the present stage, only pure camera translation and pure 

camera rotation estimation are investigated and general camera motion estimation will 

be explored in the future. 

Concisely, the objective of this research can be summarized as follows: 
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(1) A novel algorithm on estimating inter-camera geometry of two cameras by directly 

using monocular normal flows is proposed and in particular: 

• It does not need to establish the motion correspondences, or epipolar geometry. 

Also it does not require any calibration object, particular structure of the scene, 

or overlaps across image pairs. 

• The scheme of choosing the axes to maximize the number of data points usable 

in determining the inter-camera geometry is proposed. 

(2) A novel algorithm on estimating camera ego-motion by directly using monocular 

normal flows is also proposed and in particular: 

• Spherical image space is adopted to avoid the ambiguity in describing camera 

motion. 

• A voting scheme is presented to locate the camera motion parameters in the two-

dimensional (p-6 domain. 

1.4 Thesis Outline 

The rest of the thesis is organized as follows: 

• Chapter 2: Literature Review 

In this chapter, previous works on binocular geometry estimation and camera 

ego-motion estimation are reviewed. 

• Chapter 3: Preliminaries 

In this chapter, the concepts on optical flow and normal flow are introduced, as 

well as the concepts on Focus of Expansion (FoE), Focus of Contraction (FoC), 

Right-hand Axis of Rotation (RAoR) and Left-hand Axis of Rotation (LAoR). 

Also, the well-known aperture problem is explained. Furthermore, the basic 
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knowledge on calibrating binocular cameras is briefly introduced at the end of 

this chapter. 

Chapter 4: Estimation of the Binocular Geometry from Normal Flows 

In this chapter, the FA concept is first summarized. By utilizing the FA concept, 

our novel method on binocular geometry estimation is proposed. The rotational 

component and translational component of the inter-camera geometry will be 

estimated respectively. Also, a scheme on maximizing the number of data points 

usable in the estimation is presented. At the end, experimental results on both 

synthetic image data and real image sequences are presented. 

Chapter 5: Estimation of Camera's Ego-motion from Normal Flows 

In this chapter, the flow vector on the spherical image space is first defined. A 

scheme to project flow vectors from planar image space to spherical image space 

is introduced. Next, our strategies in estimating the pure translation and rotation 

of the camera are presented. Furthermore, the voting scheme for determining the 

motion parameters in (p-6 domain is proposed. Finally, experiments with both 

synthetic data and real image data show our methods provide excellent results. 

Chapter 6: Conclusion and Future Work 

In this chapter, the contributions and future work are summarized. 
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CHAPTER TWO 

LITERATURE REVIEW 

Estimating inter-camera geometry and estimating camera ego motion are both essential 

problems in the field of computer vision. Especially in the last two decades, more and 

more research focus on these topics, as the active vision systems have become more 

widely used in navigation, surveillance etc.. In this chapter, previous works on binocular 

geometry estimation and camera ego-motion estimation are briefly reviewed. 

2.1 Literature Review on Binocular Geometry Estimation 

There have been a number of methods proposed in the literature on determining 

the inter-camera geometry. 

A great deal of research on the camera calibration problem could be dated as 

early as the 1970s [Sobel, 1974]. A well known method for calibrating a camera has 

been proposed by Tsai [Tsai, 1986]. The method is based on the knowledge of the 

position of some points in the world and the correspondent projections on the image. It 

required the camera to be pointed to a calibration grid (that must be accurately prepared). 

A lot of classical calibration techniques are based on surveying a 3D distribution of 

control points of known position [Wolf, 1983] [Weng, 1992] [Faugeras, 1993]. The 

control points must be positioned with extreme precision and distributed over the entire 

working volume to achieve a high accuracy. Some methods require the presence of 

specific objects in the scene, such as planar surfaces [Knight, 2000A, 2000B] [Malm, 

2001] [Malis, 2002] [Unal, 2007] and cubic objects [Takahashi, 1988]. DeSouza et al. 

[DeSouza, 2002] utilized a calibration object of known metric structure, with only 

opting for self-calibration based on multi-view relationships. Such methods constitute 
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simpler solution mechanisms, but their operability is restricted to certain scenes or 

applications. Moreover, the overlap across the stereo image pairs is usually necessary for 

the techniques classified into this group. 

Some technologies are developed by using particular camera motions. Especially 

planar motions are often applied in order to simplify the mathematical model. Moons et 

al. [Moons, 1996] describes a method based on vanishing point detection through pure 

translational motions of the stereo rig. One basic observation introduced by Beardsley et 

al. [Beardsley, 1995] and by Zisserman et al. [Zisserman, 1995] is that the projective and 

rigid motions of a stereo rig 紅e conjugated. These authors investigated two types of 

motions: 1) planar motion and 2) general motion. In the first case, the stereo rig is 

allowed to move in a plane perpendicular to a unique axis of rotation and the plane at 

infinity is defined by a line at infinity and a point at infinity. The line and point are the 

same, regardless of the number of motions. In the second case, the plane at infinity can 

be recovered as the unique eigenvector associated with the double eigenvalue (equal to 1) 

of a 3D projective transformation. These authors therefore have made a major 

contribution since they showed for the first time that affine calibration of a stereo rig 

amounts to a straightforward algebraic property. The solution suggested in [Zisserman, 

1995] computes both the epipolar geometry of the stereo rig and the epipolar geometry 

of the left camera motion. It will be shown that the latter computation is not mandatory. 

Inspired by Zisserman's direction, Horaud et al. proposed a method for calibrating a 

stereo pair of cameras using general or planar motions [Horaud, 2000]. They firstly 

establish the affine calibration via homography, and then metric unit is applied to obtain 

the explicit calibration parameters. In the recent work, Nedevschi et al. presented a 

method [Nedevschi, 2007] that is able to perform online estimation of the binocular 
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geometry by driving a car on a flat and straight road, which is parallel with the 

longitudinal lane marks. Same as the research based on calibration reference objects 

introduced above, the techniques based on planar motions or other specific motions are 

also limited within particular applications. 

One widely adopted approach is to make use of cross-camera feature 

correspondences. These techniques, appearing in the last two decades, do not need a 

calibration reference object with known metric structure to perform the calibration. And 

they are more and more popular as the research works on active vision systems are 

deemed as the promising direction in the field of computer vision. Some early research 

was proposed by Faugeras et al. [Faugeras, 1994] [Maybank, 1992] and Hartley et al. 

[Hartley, 1994]. In [Horaud, 1998], Horaud et al. used stereo correspondence across a 

sequence of stereo pairs. Using different projective reconstructions that are associated 

with each stereo pair，they proposed an algorithm for the recovery of the camera 

parameters and the 3D Euclidian shape. One of the state of the art was proposed by 

Zhang et al. in [Zhang, 1996]. They proposed a method for calibrating a stereo rig by 

moving it in an environment without using any reference points. They make use of the 

motion and stereo correspondences across two stereo pairs (one motion of the stereo rig). 

The only geometric constraint between a pair of uncalibrated images is the epipolar 

constraint, which has been formulated from a point of view in Euclidian space. 

Bjorkman et al. presented their real time stereo calibration method based on epipolar 

constraint [Bjorkman, 2002]. Other works classified into this group include the 

algorithms [Knight. 2000C] [Harming, 2004]. However, in active vision systems there is 

no guarantee of how much overlap is between the visual fields of the cameras, meaning 

that cross-camera correspondences are not always possible. 
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Some algorithms tackle the problem by exploiting the properties of vanishing 

lines and vanishing planes in the image data. In [Jaynes, 2004], they assumed a common 

ground plane for all cameras, and relative rotation of each camera to the ground plane is 

computed independently. The motion trajectories of objects tracked in each camera are 

then reprojected on to a plane in front of the camera frame in order to compute 

corresponding unwrapped trajectories. Camera-to-groimd-plane rotation and plane-to-

plane transform computed from the matched trajectories are then used to compute 

relative transform between a pair of cameras. This method assumes that all cameras are 

calibrated. It requires motion trajectories on objects, and each camera is considered to be 

stationary looking at a common ground plane. Jimejo et al. proved that only one 

automatically computed vanishing point and a line lying on any plane orthogonal to the 

vertical direction are sufficient to infer the dynamic camera network configuration 

[Jimejo, 2006]. However, certain a priori knowledge about the parallel lines (for 

distinguishing them among the other lines) is often necessary, not to mention the 

requirement that features as specific as parallel lines or planes must be present in the 

image data in the first place. 

Another existing approach is to make use of motion correspondences in the 

respective cameras [Domaika, 2001B, 2003] [Ma, 1996] [Neubert, 2002]. Ma proposed 

a method [Ma, 1996] that is also categorized into this group of research. However, a 

planar polygonal object in the scene is suggested so as to simplify the computation of 

focus of expansion (FoE), which is the point that the translational component of object 

motion is directed toward in the images when the observer is approaching. Domaika 

proposed a method [Domaika, 2001B]，which shows the computation of the intrinsic and 

extrinsic parameters of the stereo rig can be recovered from the motion correspondences 
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only, i.e. the monocular fundamental matrices. Suppose that the two cameras are 

considered at a time. A rigid motion of the camera pair is first conducted, motion 

correspondences [Domaika, 2003] in the respective image streams are then established, 

camera motions A and B of the two cameras are subsequently determined from the 

respective sets of motion correspondences, and finally the inter-camera geometry X is 

recovered from the composite transformation relation AX=XB. The solution was 

investigated starting from 1980s [Shiu, 1989] [Park, 1994] [Fassi, 2005]. One challenge 

of the approach is that due to the well-known aperture problem camera motions A and B 

can only be determined up to unknown scales from visual motion data alone, though 

there have been partial answers [Domaika, 2003] proposed to tackle the challenge. 

Motion correspondences are established by either tracking distinct features in the video 

or interpolating the full optical flows (the field of dense motion correspondences) from 

the apparent flows in the video data. While tracking distinct features requires the 

presence of scene features that are distinct enough to have unique correspondences 

across the motion frames, interpolating the full optical flows from the apparent flow is a 

task that generally requires certain conditions of the imaged scene. However, a global 

full flow technique that is able to make realistic assumptions has not yet appeared. Due 

to the well-known aperture problem, directly observable in an image stream are 

generally not the full optical flows，but only their projections onto the directions of the 

local intensity gradients; such apparent flows are widely referred to in the literature as 

the normal flows. As has been well pointed out in the literature, interpolating the full 

flows from such partial observations requires the use of certain global assumptions like 

the scene-smoothness or flow-smoothness assumption, which are generally not 

applicable to everywhere in the scene. In this work, we explore if inter-camera 
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geometry can be determined directly from the normal flows without the full flows 

interpolated in the process. 

2.2 Literature Review on Camera's Ego-motion Estimation 

Camera's ego-motion, the problem with history in computer vision, has long 

been a challenge for machine vision researchers. It is still an active research topic 

recently, as the active vision systems become more and more popular in use. 

The methods on camera's ego-motion estimation are usually classified into two 

major schools in the literature. One of them is the displacement school, in which the 

camera's ego-motion is estimated by tracking the distinct features across the image 

frames. The works in this group were dated as early as [Barnard, 1980] [Anandan, 1984]. 

The distinguished features including points, lines, or contours are firstly extracted from 

successive frames, then the motion correspondences are used to extract the epipolar 

geometry of the camera frames, whose decomposition will reveal the camera motion 

parameters [Lustman, 1987] [Horn, 1990] [Chipolla, 1993]. Armangue et al. reviewed 

the methods on ego-motion estimation by means of differential epipolar geometry in 

[Armangue, 2003]. 

Another major school is the gradient school, in which the camera's ego-motion 

is often estimated from the full optical flows. The works were dated as early as [Lee, 

1980] [Prazdny, 1981] [Bruss, 1983] [Schunck, 1985]. Heikkonen proposed an 

algorithm [Heikkonen, 1995] for recovery of the 3D motion parameters from an optical 

flow field. The proposed approach is based on the ideas of Randomized Hough 

transform (RHT), i.e., the principles of random sampling of velocity vectors and 

accumulation of motion parameters. Chena et al. presented a robust method [Chena, 

2001] to estimate the 3D ego-motion of an observer, by combining the optical flow field 
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observed with multiple cameras, to avoid the ambiguity of 3D motion recovery due to 

small field of view and small depth variation. In [Zhang, 2006], Zhang et a l presented a 

novel algorithm to determine optical flow field with large motion. At first, the 

translational direction of the observer's motion is recovered by searching a candidate 

over a discrete space to minimize a residual function. Once the translation has been 

estimated, the rotation components of the observer's motion can been resolved from the 

second set of equations by using the least square optimization. 

Different from the above approaches categorized into the two major schools, 

there is also a approach, called direct method, tackling the ego-motion problem by using 

the image brightness informaiton, normal flows direclty. Our novel method can also be 

classfied in this group of reserach. Hence, the reviews will be focused on the direct 

methods in the rest following section. 

In [Duric, 2000], Z. Duric et al. proposed a method to derive the qualitative 

information about the camera motion by using histograms of the normal flow vectors. 

The direction of normal flow vector is orthogonal to the edges, and the magnitude 

depends on the difference between the image intensities of the corresponding position on 

the two neighboring images of an image sequence. The strategy of generating the 

histogram is similar to "Hough Transform". One normal flow vector votes for its 

corresponding position in the 2D histogram. A histogram is finished after all the normal 

flow vectors take their votes. One histogram is drawn for every two neighboring images 

in an image sequence. That is, for an image sequence with n images, totally («-l) 

histogram of normal flow vectors can be obtained. Different types of histograms 

correspond to different types of camera motion，for example, z-axis rotation, z-axis 

translation, lateral translation and pan. In this work, they showed that normal flow 
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vectors can provide qualitative information about the camera motion. However, it is 

difficult to interpret the complicated motions, such as general motion. Moreover, their 

work does not concern the analysis on quantitative motions. 

In [Sinclair, 1994], D. Sinclair et al. proposed an algorithm to recover the FoE 

from normal flow, which is tolerant to rotational motion. Some allowance must be made 

for uncertainty in angular velocity. However, the rotational motion parameters can not 

be calculated. The efficiency of their algorithm strongly depends on the angular values. 

In [Silva, 1996, 1997], C. Silva et al. presented a method for ego-motion 

estimation uniquely by using normal flows. Different from the works listed above, they 

calculated the explicit camera motion, including both camera translation and camera 

rotation. They made use of the image points with their normal flows pointing to specific 

directions to calculate the ego-motion parameters. The method includes two steps. 

Firstly, the image points having circular normal flows are selected. Circular normal flow 

is defined as the flow vector perpendicular to a line，which passes through its image 

position and the image center. This line is named as 'feline. The slope of "feline 

provides a one-dimensional constraint for determining FoE. More precisely, it indicates 

FoE must locate on the 'feline. Secondly, the location of FoE and the rest two 

components of camera rotation are determined by searching (^line. (^line is determined 

by normal flow vectors pointing to specific directions. Camera rotation corresponds to 

the minimum variance of (Mne. And FoE is the intersection of the 0AmQ and the T-

line. 

In [Fermuller, 1995A, 1995B, 1998], C. Fermiiller and Y. Aloimonos proposed 

the vector field models (including both spherical image model and planar image model) 

to classify the normal flows into two groups, positive or negative, according to the 
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direction information of normal flows. The positive-negative pattern is generated by 

examining whether it is a positive flow vector or a negative flow vector at each image 

position. Camera ego-motion parameters are estimated by locating the zero-boundaries 

on the positive-negative patterns. Finally Fermiiller and Aloimonos convert the ego-

motion estimation problem to a pattern recognition problem. 
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CHAPTER THREE 

PRELIMINARIES 

This chapter aims to introduce the concepts and theories concerned in this thesis. 

Starting from the motion equations for a monocular observer, the concepts of optical 

flow (or full flow), normal flow, and the aperture problem are introduced concisely. 

Then the definitions of the camera intrinsic parameters, extrinsic parameters and 

binocular geometry will be given. 

This chapter is organized as follows. Section 3.1 is an introduction of motion 

equations. Definitions of camera calibration parameters are given in section 3.2. 

3,1 Motion Equations for Monocular Observer 

The relative motion of the observer with respect to the scene gives rise to motion 

of the brightness patterns in the image plane. The instantaneous changes of the 

brightness pattern in the image plane are analyzed to derive the optical flow field, a two-

dimensional vector field reflecting the image displacement. 

Optical flow is the apparent motion of brightness patterns in the image. The 

gradient-based approach proposed by Horn and Schimck [Horn, 1981] is based on the 

assumption that for a given scene point the intensity E at the corresponding image point 

remains constant over time. If the scene point P projects onto image point (x, y) at time t, 

and onto image point 权 y^^y) at time t+St, the equation should be: 

E{x, y,t) = Eix + Sx, y+Sy,t+St) (3.1) 

Now we develop the right hand side of Equation (3.1) in a first order Taylor's 

series expansion and let u{x, y), v(x, y) be the velocity {dxidt, dy/dt) of the image point (x. 
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y), then the following optical flow constraint equation for the optical flow (m, v) is 

obtained [[Horn, 1981]: 

E^u + E^v + E, =0 (3.2) 

From this constraint, the aperture problem [Jain, 1995] can be easily derived. The 

linear equation defines a line in velocity space ((w-v)-space). Thus only the vector 

component in the direction of gradient (五工，Ey) can be computed. Et is the variance in 

intensity at image point (x, y) between image frames taken at different time interval. 

Obviously, Ex, Ey, and Et can all be computed directly from the image sequence. Thus, 

for each image point there is only one equation (Equation (3.2)) for solving the two 

unknowns, u and v，describing the movement of the image point. This is known as the 

aperture problem, as shown in Fig. 3.1. 

Direction of 
normal flow \ 

\ 

\ 
\ 

(a) (b) 
Figure 3 .1 Aperture problem, (a) Line feature observed through a small aperture at time f. (b) At 

time t+3t the feature has moved to a new position. 

Imagine you are watching a bar, which is moving towards a specific direction, 

through an aperture that is small compared to the bar at two instants of time, as shown in 

Fig. 3.1(a). By only watching through the aperture, it is impossible to determine where 

the bar is moving to. As shown in Fig. 3.1(b), each arrow represents a direction that the 

bar is possibly moving towards. The only information directly available from the local 
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measurement is the component of the velocity which is perpendicular to the bar. This 

component indicates the direction of normal flow. 

The optical flow (w, v) can not be calculated by only using Equation (3.2) if there 

was no more constraints derived. Computation of optical flow is a fundamental problem 

in processing sequences of images, because optical flow is often a convenient and useful 

image motion representation. Abundant research works are concentrated on optical flow 

calculation. The existing numerous computational models can be classified into the 

following groups: intensity-based differential methods [Longuet-Higgins, 1980] [Horn, 

1981] [Glazer, 1987A,B] [Nagel, 1989] [Uras, 1988] [Aisbett, 1989] [Tistarelli, 1990] 

[Schnorr, 1991,1992] [Simoncelli, 1991] [Sobey, 1991] [Bergen, 1992] [Black, 1992] 

[Fleet, 1995], frequency-based filtering methods [Fleet, 1990] [Grzywacz, 1990] 

[Heeger, 1988] [Watson, 1985], and correlation-based methods [Anandan, 1989] 

[Barnard, 1980] [Kalivas, 1991] [Scott, 1987] [Singh, 1990] [Sutton, 1983]. 

Equation (3.2) shows that only the vector component in the direction of the 

gradient (E^, Ey) can be computed directly from the images, which is called normal flow 

u„. Suppose the normalized direction of the intensity gradient direction at the image 

point (x, y) is n: 

[E. El' 

([五x五 
(3.3) 

Then the normal flow u„ is: 

r - i T 

{[u v]^.n)—= -E具 一 EyE‘ (3.4) 

Consider the monocular imaging situation where the observer is in motion 

relative to the scene. Suppose the 3D relative velocity of every point P= (X, Y, Z) with 

21 



PRELIMINARIES 

respect to a camera that moves with the translational velocity t= [U, V, W\ and rotational 

velocity 0 = [a, y], is P = {X, Y, Z), which leads to the following equation: 

X = -U-f3Z + yY 

Y = -V-V( + /3Z (3.5) 

Z = -W-aY+pX 

Here we introduce two concepts, Focus of Expansion (FoE) and Focus of 

Contraction (FoC). When the camera undergoes a forward translation, t is usually 

referred to as Focus of Expansion (FoE), which is the point where all the motion 

trajectories intersect when they are extended. The camera's motion t can also be 

described as an intersection point of all motion trajectories, Focus of Contraction (FoC), 

if the camera takes a backward translation. 

Another two definitions mentioned in the following chapters are Right-hand Axis 

of Rotation (RAoR) and Left-hand Axis of Rotation (LAoR). For a camera taking a pure 

right-hand rotation, co is often represented by a point, Right-hand Axis of Rotation 

(RAoR), about which all the motion trajectories rotate about. Certainly, there is also a 

corresponding definition for Left-hand Axis of Rotation (LAoR), when the camera 

rotates about a left-hand axis. 

Suppose that the camera undergoes a general motion. Using a camera-centered 

coordinate system, the equation relating the velocity (u, v) of an image point (x, y) to the 

3D velocity P = {X, Y, Z) and the depth Z of the corresponding scene point is: 

一 Uf,+xW xy 饥 ？ ， 、 

\ 八 (3.6) 

乙 J V Jv 

where f={fx,fy) is the focal length of the camera [Fermiiller, 1995B]. 
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If the direction of the intensity gradient at image point (x, y) is fiy), and the 

Uf Vf 
FoE is represented by (xq , Jq) = ，~ - ] , then the normal flow u„ is: 

W W 

3.2 Binocular Geometry 

Camera calibration is the process of relating the ideal model of the camera to the 

actual physical device and of determining the position and orientation of the camera with 

respect to a world reference system. 

Depending on the model used, there are different parameters to be determined. 

The pinhole camera model, which is also the camera model adopted in our work, is 

broadly used and the parameters to be calibrated are classified in two groups. One is 

called intrinsic parameters, which describe the internal geometric and optical 

characteristics of the lenses and the imaging device. Usually intrinsic parameters include 

focal length, principal point, skew coefficients, and distortions of the lens. The other 

group is called extrinsic parameters, which actually describe the rotation and translation 

of the camera with respect to the world coordinate system. 

Suppose we have a pair of stereo cameras, each of which has its own extrinsic 

parameters with respect to the world coordinate system. The binocular geometry is 

actually referred as the rotation and translation between the two cameras' coordinate 

systems, which is illustrated in Fig. 3.2. 
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+ti =R2 

y2 + t, 

Figure 3. 2 Binocular geometry. Cj and C: represent the coordinates of the two cameras' 

respectively.炉is degfined as the world coordinate system. 

As illustrated in the above Fig. 3.2, Ci and G represent the coordinates of the 

two cameras' respectively. Wis defined as the world coordinate system. The binocular 

geometry is defined as the translation t^ and rotation R^. Via t；̂  and R；̂, we can describe a 

point, which was defined in coordinate system C2, in the new coordinate system Ci, 

assuming coordinate system C\ is the reference coordinate system. One of the state-of-

art algorithms on camera calibration was proposed by Tsai [Tsai, 1986]. 
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CHAPTER FOUR 

ESTIMATION OF THE BINOCULAR GEOMETRY FROM 

NORMAL FLOWS 

For a multi-camera system that permits relative camera movement, an important task is 

to determine from time to time the relative geometry of the cameras in order to relate the 

various channels of visual information. There are a number of proposed solutions in the 

literature with most of them relying upon the establishment of either cross-camera 

(binocular) correspondences or cross-time (motion) correspondences. However, for the 

case in which the cameras have little or no overlap in their visual fields, the 

establishment of cross-camera correspondences would become impossible. Also, the 

acquisition of explicit motion correspondences also demands certain conditions of the 

imaged scene which are not always satisfied. In this chapter, we describe a solution of 

determining the cameras' relative orientation and translation, which requires no overlap 

in the visual fields of the cameras and thereby no cross-camera correspondence. The 

solution requires neither optical flow nor any explicit motion correspondence to operate. 

Instead, the inter-camera geometry is determined from observations that are directly 

available in the two image streams - the monocular normal flows. Experimental results 

on synthetic and real image data are shown to illustrate the performance of the solution 

mechanism 

This chapter is organized as follows. The concept of vector field is first 

introduced and summarized in section 4.1. Then, we propose our novel method on 
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binocular geometry estimation in section 4.2. Finally, Section 4.3 shows the 

experimental results on both synthetic image data and real image sequences. 

4.1 Fundam ental of Vector Field 

Fermuller and Aloimonos proposed an algorithm that estimates ego-motion of a 

monocular camera from normal flows directly [Fermuller, 1995A, 1995B, 1998]. For 

any particular 3D axis that passes through the camera's optical center, they first define a 

vector field for the entire image space. The models of vector field in both spherical 

image space and planar image space are then proposed. The following section is a brief 

introduction to the models of vector field. Moreover, we summarize and unite the vector 

field models in spherical image space and in planar image space, in order to achieve 

more explicit mathematical expressions. 

4.1.1 Vector Field for the Spherical Image Space 

Consider the following spherical representation of the image space of any camera: 

a unit sphere has its center located at the optical center of the camera, its diameter 

toward north overlapping the optical axis of the camera, and its north hemisphere as the 

image space which, if unfolded, represents a plane perpendicular to the optical axis at 

unit distance from the sphere center. This is another representation of the infinitely large 

planar image space. For the camera coordinate frame, we shall use the optical axis (the 

diameter of the sphere toward north) as the z-axis, and two other axes that point out of 

the sphere center and are orthogonal to each other and to the z-axis as the x- and y- axes. 
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4.1.1.1 Expression of Vector Fields on the Spherical Image Space 

A vector pointing from the sphere center to any particular point s on the spherical 

surface represents an arbitrary direction in the 3D (x-y-z) space. Given such an axis, two 

vector fields can be naturally defined for the entire image space, as described by 

Fermiiller and Aloimonos [Fermuller, 1995A, 1998] in their camera motion 

determination method. These vector fields are also utilized in our binocular geometry 

determination. A brief review of the vector fields is given in this section. 

Assume a point s lies on the spherical surface. The axis through point s on the 

spherical surface defines a vector field for the entire spherical surface. This vector field 

corresponds to the longitudinal lines of the sphere that have the s-axis as the pole-to-pole 

reference diameter, as shown in Fig. 4.1(a). To be more precise, imagine that the camera 

is purely translating in the direction of the s-axis. Then, optical flows at various 

positions of the image space will be along the above longitudinal lines in directions that 

are away from point s. Such flows represent one vector field. Specifically, at any image 

positionp = [x，j;,l]T / [jc,少’ 1]T , the field vector induced there by s is in the direction of 

(sxp)xp on the spherical image space. 

Consider another point s，which lies on the spherical surface. The axis through 

point s，on the spherical surface could also define another vector field for the entire 

spherical surface. This vector field corresponds to the latitudinal lines of the sphere, as 

shown in Fig. 4.1(b). If the camera is purely rotating about the s'-axis in the right-

handed manner, the optical flows at various positions of the image space will be along 

the latitudinal lines in directions that are left-handed with respect to the s'-axis. Such 

flows represent another vector field. Specifically, at any image 
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position p = [x，y’l]T / |[x, y,\Y，the field vector induced there by s，is in the direction of 

一 (s'xp) on the spherical image space. 

The first longitudinal vector field with respect to the s-axis is referred to as the 

co-point field while the second latitudinal vector field with respect to the s '-axis is 

referred as the co-axis field and they j 

choices of the s-axis define different 

space. 

shown in Fig. 4.1. It is obvious that different 

-point fields and co-axis fields for the image 

(a) co-point field (b) co-axis field 

Figure 4. 1 Illustration of vector fields in the spherical image space (a) A co-point field defined 

by axis s. At every image point p, the co-point vector is(sxp)xp, and the direction, that the 

arrow is pointing at, is the positive direction, (b) A co-axis field vector field defined by axis s'. 

At every image point p the co-axis is — (s'xp) , and also the direction that the arrow is pointing 

at is the positive direction. 

4.1.1.2 Positive-negative Patterns for Motion Determination in Spherical Image Space 

Now we consider the vector fields defined by two s-axes, Si and S2. Each s-axis 

defines a co-point vector field and a co-axis vector field, as shown in Fig.4‘2. The locus 
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of points on the sphere where the S]-co-point vectors are perpendicular to the S2-co-point 

vectors (or where the directions of Si-co-axis vectors are perpendicular to the directions 

of S2-co-axis vectors) constitutes two quadratic curves, as illustrated by Fig.4.2 (a). 

Similarly as described in Fig.4.2 (b), the Si-co-axis vector field and the S2-co-point 

vector field define a great circle, which is the locus of the points where the two field 

vectors are perpendicular to each other. 

(a) (b) 
Figure 4.2 Quadratic curves defined by s-axes on the spherical surface, (a) On the sphere, the 

green quadratic curves determined by the two co-point vector fields or the two co-axis fields are 

(s丨 xp)-(s2 xp) = 0 •p)(s2 -p) = Si .S2. (b) On the sphere, the purple great circle determined 

by a co-point vector field and a co-axis field is (s! x ŝ )̂. p = 0 . 

Obviously, the two quadratic curves in Fig.4.2 (a) divide the spherical surface 

into the positive region (where (s| xp)-(s2 xp) > 0 ) and the negative regions 

(where(Si xp)-(s2 xp) <0) . Similarly the great circle in Fig.4.2 (b) divides the spherical 

surface into a positive hemisphere (where (S| x S2) • p > 0 ) and a negative hemisphere 

(where(Si x s2 ) ' p < 0 ). It turns out that these vector fields are related to the camera 

motions. 
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The motion of the camera can be described by a translational vector t and a 

rotational vector co. Suppose the camera undergoes a pure translation in the direction of t， 

the optical flow at each point induced by this motion on the spherical image is identical 

to the t-co-point vector at its corresponding image position when the t-co-point vector 

field is drawn on the spherical surface. Then, we apply an arbitrary s-axis and draw its s-

co-point vector field on the same spherical surface, and examine where the two 

quadratic curves s - t - ( t - p ) ( s -p ) = 0 (the green quadratic curves shown in Fig.4.2 (a)) 

locate. The two quadratic curves divide the spherical surface into three regions 

according to whether the expression s • t - (t • p)(s • p) at each image position is positive 

or negative. The image point is labeled positive i fs - t - ( t .p ) (s -p) > 0, and is labeled 

negative if s t - ( t - p ) ( s -p ) < 0 . Then, all the image points with positive labels are 

merged together to form a positive region and similarly, all points with negative labels 

are merged together to form a negative region. Therefore, the positive-negative pattern 

for the pure camera translation is obtained. This method is illustrated in Fig.4.3 (a). 

Similarly, when the camera undergoes a pure rotation about a rotational axis »， 

the optical flow at each point induced by co on the spherical image is identical to the o -

co-axis vector at its corresponding image point when the w-co-axis vector field is drawn 

on the spherical surface. Again’ we apply an arbitrary s-axis and draw its s-co-point 

vector field on the same spherical surface and examine where the great circle 

(sx(o).p=:0 (the purple great circle shown in Fig.4.2 (b)) locates. The great circle 

divides the whole spherical surface into two regions according to whether the expression 

(sxa))-p at every image point is positive or negative. The image point is labeled 

positive if(sx(o)-p > 0，and it is labeled negative if (sxto).p < 0. Then, all the image 

points with positive labels are merged together to form a positive region and similarly, 
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all points with negative labels are merged together to form a negative region. The 

positive-negative pattern for the pure camera rotation is obtained and is shown in Fig.4.3 

(b). 

For a general camera motion including both pure translation and rotation, the 

above two positive-negative patterns (Fig.4.3 (a) and Fig.4.3 (b)) are combined together 

to generate a new positive-negative pattern by enforcing the following rules: 

Positive+Positive= Positive; 

Negative— Negative: Negative; 

Positve+Negative=Don't know (depends on the structure of the scene) 

Therefore, the positive-negative pattern for a camera that undergoes a general 

motion is shown in Fig.4.3(c). 

In summary, for a camera that undergoes a general motion, the positive-negative 

patterns generated with an arbitrary choice of s-co-point vector field are shown in 

Fig.4.3. 

• f 
• Negative B Positive \ Don't Know 

tr V ^ 

(a) (b) (c) 

Figure 4.3 s-co-point positive-negative patterns, (a) s-co-point positive-negative pattern for a 

camera taking pure translation, (b) s-co-point positive-negative pattern for a camera taking 

pure rotation, (c) s-co-point positive-negative pattern for a camera taking a rigid general 

motion, including both translation and rotation. 
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It should be noted that the positive-negative patterns can also be determined by 

arbitrarily choosing the s-co-axis vector field instead of the s-co-point vector field as s-

co-point vector field and s-co-axis vector field have equivalent roles in camera motion 

determination. 

4.1.2 Vector Field for the Planar Image Space 

If projected from the spherical image space to the planar image space, the co-

point vector field will appear as a set of arrows emerging from the same image point — 

the point projected from point s to the planar image space, and that is how the name co-

point comes about. On the other hand, the co-axis vector field will appear in the planar 

image space as a set of conic sections around a particular image point - again the point 

projected from point s to the planar image space through the optical center. Notice that 

in defining the co-point and co-axis vector fields, only vector directions are considered; 

vector magnitudes are ignored. 

4.1.2.1 Expression of Vector Fields on the Planar Image Space 

The planar image space is often used in practice. Thus we give below the 

algebraic expressions of the co-point and co-axis vector fields in the planar image space. 

For simplicity, in the subsequent discussion we shall assume that image coordinates in 

the planar image space have all been normalized by the focal length f of the camera. In 

such a case an image position p (a 3-vector) in the spherical image space J is equivalent 

to the image position p'= [l2’0ix2]P /(P .k) (a 2-vector) in the planar image space (image 

plane) 1. Also, a field vector u(p) (a 3-vector) at image position p in the image space J 
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is equivalent to the field vector Q>j (u(p)) = [I2,01^2 ]{(p x u(p)) x k} (a 2-vector) at the 

equivalent image position in the image plane L 

Consider the image plane perpendicular to the optical axis at unit distance from 

the optical center. Given any 3D axis s = {A,B,cf which impacts the image plane at the 

image position (A/C, B/C), the co-point vector field of the axis on the image plane is the 

set of arrows emerging from the image point (A/C, B/C). More precisely, the field 

vector at image position {x, y) is in the direction: 

^ J ((s X p) X p) =： [I2，0lx2 ]{(P X {(s X p) X p)}) X k} 

where p = [x,y,\f and k 三[0，0,lf. 

By simple algebraic manipulation the above expression can be simplified to: 

¥^{s,x,y)=,[{x-A/C),(y-B/C)f 

which is the direction of the co-point field vector defined by axis s at any image position 

(x,y) in the planar image space. However, in the work of Fermiiller and Aloimonos 

[Fermtiller, 1995B], for ease of algebraic manipulation the direction is rotated in the 

planar image space by -90°. Upon the rotation the field direction at image position (x, y) 

becomes 

F^is,x,y)=,[{y-B/C),{-x + A/C)f (4.1) 

We refer to the above field as the orthogonalized co-point vector field, so as to 

distinguish it from the above regular co-point vector field. 

The same s-axis can also be used to define the co-axis vector field, which is the 

set of conic sections centered around the point (A/C, B/C) on the image plane. More 

precisely, the field vector at image position (x, y) is in the direction: 
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X p)) = [l2,0ix2 ]((P X {-(sxp)}) X k} 

where p 三[x, y,lf and k = [0,0,1] 丁. 

By simple algebraic manipulation the above expression can be simplified to: 

which is the direction of the co-axis field vector defined by axis s at any image position 

(X，少）on the image plane. However, similar to the previous field, in the work of 

Fermiiller and Aloimonos [Fermuller, 1995B], for ease of algebraic manipulation the 

direction is rotated in the planar image space by 90°. Upon the rotation the field 

direction at image position (x, y) becomes: 

+ + + - l ( l + x^) + ̂ x y + yf (4.2) 

We refer to the above field as the orthogonalized co-axis field induced by axis s 

at image position 

Examples of the orthogonalized co-point and orthogonalized co-axis vector 

fields are shown in Fig.4.4 where the arrows indicate the field directions assigned to 

various image positions. 

In fact the orthogonalized co-axis and orthogonalized co-point vector fields have 

equivalent roles in camera motion determination. However, different vector fields are 

usually preferred to simplify the positive-negative pattern analysis. 
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Figure 4.4 Two vector fields definable for the image space by any axis going through the optical 

center: (a) the orthogonalized co-point vector field, (b) the orthogonalized co-axis vector fleld, 

induced by a particular axis s = [A,B, C]^. 

4.1.2.2 Positive-negative Patterns for Motion Determination in Planar Image Space 

In [Fermiiller, 1995B, 1998] a mechanism is proposed to let the orthogonalized 

co-point and orthogonalized co-axis vector fields of any arbitrarily chosen s-axis be used 

to determine camera motion directly from normal flows. The mechanism to pave the 

background for the subsequent discussion is briefly reviewed in the following. 

Suppose the camera undergoes a pure rotation, which is described by the vector 

(o=[a p y]T in the rotation axis-magnitude representation. We shall refer to this o as 

the axis of rotation (AoR). The optical flows in the image plane induced by the rotation 

will be conic sections about the point (a/ y, p/ y) where the AoR (or to) impacts the 

image plane. 

If an axis s is chosen to define a co-point field for the image space, and this s 

happens to coincide with co, on the spherical image space the co-point field of the s-axis 

will be exactly orthogonal to the optical flow field at every image position for the reason 

that one is about longitudinal lines and the other the latitudinal lines of the above 

spherical surface with respect to the same axis (s or o ) of the sphere. In the planar image 
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Space, it will be that at all image positions the orthogonalized co-point field of axis s is 

more or less parallel to the optical flow field induced by (o. In other words, given a 

choice of the s-axis whose accompanying orthogonalized co-point field happens to be 

more or less parallel with the observed optical flow in the image plane, it is known that 

the rotation to is in the direction of s, and the camera rotation is determined. Of course, 

in practice there are two issues: optical flow is generally not directly observable, and 

acquiring the above choice of the s-axis generally demands exhaustive search. 

If the s-axis is chosen only arbitrarily, it generally exhibits an offset from the 

AoR, and at any image position (x,^) the orthogonalized co-point field direction and the 

optical flow are generally not parallel, as illustrated by Fig.4.5. Suppose to each image 

position (Xy) we assign the label "+" if the two field directions there differ by less than 

90°, and the label "-" if they differ by more than 90°. Fig.4.5. shows some illustrations: 

image position J] has label "+", and image position h has label “-’’. Notice that once s is 

chosen, the orthogonalized co-point field is defined, and every image position can be 

examined if a "+" label or "-" label should be given to it according to the direction of the 

optical flow there. 

It can be shown that given any general choice of the s-axis, the "+"-labeled 

image positions and the "-" -labeled image positions again will occupy two distinct 

regions of the planar space, and they are separated by a second order curve, which is 

called zero-boundary. The boundary is the locus of all image positions where the 

orthogonalized co-point field direction makes right angle with the optical flow direction. 

This zero-boundary is related to the unknown co and the known s = [X,5,C]Tby the 

locus of all image positions (jc,j) such that F^(s,jc,_y)-F^(co,;c, j ) = 0 , which can be 

simplified to the following: 
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(4.3) 

Figure 4.5 Optical flows due to camera rotation, 

any arbitrary axis s. 

the orthogonalized co-point vector field of 

As illustrated by Fig.4.6 (a), the zero-boundary is a second order curve. Notice 

that once an s-axis is arbitrarily chosen, most of the image positions can be labeled as 

either "+" or “-’’，and the zero-boundary can be identified in the image space by finding 

the best second order curve that separates the‘‘+，Mabeled image positions and the “-，,-

labeled image positions. Equation (4.3) of the boundary then provides a constraint for 

the determination of the AoR. In principle, if enough s-axes are chosen, enough 

constraints will be made available for the AoR, and the camera motion can be 

determined. 

Of course, in general only normal flow not full optical flow is directly observable 

from image data. However, we can still assign label "+" to at least those image positions 

where the normal flow direction exactly coincides with that of the orthogonalized co-

point field vector there. The reason is, normal flow is only the projection of full flow to 

certain direction (the direction of the intensity gradient), and thus the normal flow and 
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the full flow cannot have directions differing by more than 90°. At the above image 

positions, the normal flow direction and the orthogonalized co-point field direction are 

the same, meaning that the full flow and the orthogonalized co-point field vector must be 

of directions satisfying the requirement of the “+’，label. For a similar reason, we can 

also assign label “-，’ to those image positions where the normal flow direction is exactly 

opposite to that of the orthogonalized co-point field vector. In other words, even though 

full flow is not observable but only the normal flow, a number of image positions can 

still be labeled, and the above zero-boundary can still be located though perhaps of 

compromised precision. 

Suppose now that the camera undergoes a pure translation, which is described by 

the vector i=[U, V，Wf. The optical flow in the image plane induced by the translation 

will be arrows emerging from a point called FoE (Focus of Expansion) which is where 

the 3D vector t impacts the image plane. 

If an axis s is again chosen to define a co-point field for the image space, and this 

s happens to coincide with t, the co-point field of the s-axis will be exactly the same as 

the optical flow field if only vector directions are considered. In the planar image space 

it will be that at all image positions the orthogonalized co-point field of axis s is exactly 

orthogonal to the optical flow induced by t. In other words, given a choice of the s-axis 

whose orthogonalized co-point field happens to be exactly orthogonal to the observed 

optical flow field at all image positions, it is known that the FoE is precisely in the 

direction of s, and the direction of camera translation is determined. 

If the s-axis is chosen only arbitrarily, it generally exhibits an offset from t, and 

at any image position (x,y) the orthogonalized co-point field direction and the optical 

flow are generally not exactly orthogonal. Suppose we assign the label "+" to the image 
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position {x,y) if the two directions differ by less than 90°, and the label “-” if they differ 

by more than 90°. It can be shown that given any general choice of the s-axis, the “+，’-

labeled image positions and the "-"-labeled image positions again will occupy two 

distinct regions of the planar space, and they are separated by a straight boundary. The 

boundary, which is another zero-boundary analogous to the previous one, is the locus of 

all image positions where the orthogonalized co-point field direction makes right angle 

with the optical flow direction. This zero-boundary is related to the unknown t and the 

known s 二 [為 5，(7]丁 by the locus of all image positions (x，y) such that 

F^ (s, ；c,少）.(t, x,y) = 0, which can be simplified to the following: 

】，A B U V - .V B. U A. U B V A. ^ (a 
/(—，一,一，一,x,y)= x( ) — ) + ( ) = 0 K^-V CC WW W C W C W C W C 

assuming that 炉 is non-zero, i.e., the camera translation is not restricted to the x-y plane. 

Fig. 4.6 (b) presents an example zero-boundary for camera translation, which is a 

straight line in the image space. Similar to the case of rotation, even though in general 

only normal flow not full optical flow is directly observable from image data, once an s-

axis is arbitrarily chosen, we can still assign label "+" to those image positions where the 

normal flow direction exactly coincides with that of the orthogonalized co-point field 

vector of the s-axis, and label “-，’ to those image positions where the normal flow 

direction is exactly opposite to that of the orthogonalized co-point vector. In other words, 

a substantial number of positions of the image space can still be labeled, and the above 

zero-boundary can still be located. If enough s-axes are chosen, enough constraints will 

be made available for t, and the camera translation can be determined. 

A general camera motion has both rotation component <o and translation 

component t. Given any choice of the s-axis, there are two underlying positive-negative 
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patterns for the image space: one induced by (o),s), and the other by (t’s). The trouble is, 

the two underlying patterns are not individually observable, as the flow components Va, 

and Vt induced by co and t respectively to any image position are only observable as a 

single total sum v=va,+vt. In other words, the image space can only be labeled with 

respect to v not Vo, or Vt. 

However, for any arbitrarily chosen s-axis we still have the following. At any 

image position, if the labels from the (o3,s)-induced pattern and the (t,s)-induced pattern 

are both positive, the flow components VM and Vt contributed by « and t must both be of 

directions within 90° of the orthogonalized co-point field vector there, and the same can 

be said about their sum v. In other words, given a choice of the s-axis, if an image 

position is labeled positive with respect to the full flow v there, it is also labeled positive 

in the (®’s)-induced pattern and in the (t,s)-induced pattern. Similarly, if an image 

position is labeled negative with respect to the full flow v there, it is also labeled 

negative in the ((d,s)-induced pattern and the (t,s)-induced pattern. The image positions 

whose labels remain unknown are those where the (o),s)-induced pattern and the (t,s)-

induced pattern do not carry the same labels: one says positive and the other negative. 

This set of image positions are referred to as the "Don't know" region. 

Fig. 4.6 (c) displays an image space labeled with respect to the overall flow v (or 

more correctly the normal component of the full flow) under a particular choice of the s-

axis. There are the positive region, negative region, and the "Don't know" region. 

Separating the positive and negative regions are the order zero-boundary for o and 

the linear zero-boundary for t. If such boundaries can be located in the image space from 

the image positions with known labels, Equations (4.3) and (4.4) will provide constraints 
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for (0 and t. With enough s-axes chosen, enough constraints will be made available to 

allow (0 and t to be determined precisely. 

(a) (b) (c) 

Figure 4.6 Positive-negative patterns in the image space with respect to the orthogonalized co-

point field of the same s-axis. (a) The case of pure camera rotation, (b) The case of pure camera 

translation, (c) The case of general camera motion (with both translation and rotation). 

Orthogonalized co-axis field and orthogonalized co-point field are totally 

equivalent on camera motion determination. Fig.4.7 illustrates the positive-negative 

patterns with respect to the orthogonalized co-axis vector field of an arbitrary s-axis. 

(a) (b) (c) 
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Figure 4.7 Positive-negative patterns in the image space with respect to the orthogonalized co-

axis field of the same s-axis. (a) The case of pure camera translation, (b) The case of pure 

camera rotation, (c) The case of general camera motion (with both translation and rotation). 

The essence of the described mechanism is that the original motion parameters 

determination problem is converted to a pattern recognition problem, namely the 

identification of the zero-boundaries in the image space under a number of choices of 

the s-axis. In this work, we address the question of how the mechanism can be borrowed 

to determine the relative geometry of multiple cameras. 

4.2 Inter-camera Geometry Determination 

In this section we present a method of determining inter-camera geometry by 

observing only monocular normal flows in the respective cameras. The method assumes 

no availability of cross-camera correspondences, meaning that even cameras with no 

overlap in their visual fields can still be processed. 

Suppose the relative geometry of two cameras at a particular configuration of the 

camera system is to be determined. Our procedure consists of the following. With their 

relative geometry fixed, the cameras are moved rigidly in space while image streams are 

collected from the respective cameras, which serve as data for the determination task. 

Fig. 4.8 shows the relative geometry (R；̂，t；̂,) that is fixed during the rigid motion of the 

camera pair. (R^, t^,) and (R^, ts) represent the motions of camera A and camera B 

respectively. 
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B : Rs, Xb 

Figure 4.8 A camera pair undergoing rigid motion for the determination of the cameras' 

relative geometry. 

If the cameras' relative geometry is expressed by a 4x4 matrix X, and the two 

respective camera motions by A and B, because of the rigidity of the overall motion of 

the camera pair we have the relationship AX=XB, where A 
R A ^A 

0 1 

B Rb (B 
0 1 ,and X Rx tx 

0 1 
In details, the above equality can be rewritten into: 

R A lA 

0 1 
Rx 
0 0 0 

And it could be decomposed into two expressions: 

(or co^ = R ^ 5 in vector form) 

(4.5) 

= (4.6) 

where R；̂, R^, R^ are the 3x3 orthonormal matrices representing the rotational 

components of X, A, B respectively, t^, t^ are the 3-vectors representing the 

translational components, and cd ,̂ cô  are the rotations R^, Rb expressed in the axis-

angle form. 
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If the camera motions A and B can be determined from normal flows by using 

the orthogonalized co-point vector field mechanism, Equations (4.5) and (4.6) would 

provide constraints for the determination of the parameters in X. Simple the solution 

scheme might appear, there are however two issues to overcome. We take the planar 

image space for an example to explain the two issues. First, if the process involves 

general motion of any particular camera (i.e., motion that involves both translation and 

rotation), the image space associated with that camera contains not only positively 

labeled and negatively labeled regions in the orthogonalized co-point vector field 

mechanism, but also two "Don't know" regions as illustrated by Fig. 4.6(c) (or Fig. 4.7(c) 

if the orthogonalized co-axis vector field is applied). The presence of the "Don't know" 

regions would add much challenge to the localization of the zero-boundaries. Second, 

with only the normal flows not the full flows accessible in the respective image streams 

of the two cameras, generally only a small fraction of the data points can be made usable 

in the image space under any random choice of the s-axis. This issue is the most 

troubling, as the localization of the zero-boundary from very sparsely labeled data points 

would be an almost formidable task. In this work, we specifically address these two 

issues. 

On the first issue, we adopt specific rigid motions of the camera pair to avoid as 

much as possible the presence of general motion of any particular camera. On the second 

issue, we propose a scheme that allows the s-axes to be chosen not randomly, but 

according to how many data points they can make useful in the co-point vector field 

mechanism. The scheme allows each data point (an image position with detectable 

normal flow) to determine a family of s-axes that could make that particular data point 

useful, and to vote for such axes in the space of all possible s-axes. Once the votes from 
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all data points have been collected, the s-axes in the s-axis space that have high counts of 

votes are then should be used in the co-point vector field mechanism. 

4.2.1 Determination of R；^ 

To determine the rotation component R^ of the inter-camera geometry, we let the 

camera pair undergo a specific motion - pure translation 一 so as to reduce the 

complexity in locating the zero-boundary of the positive-negative labeled pattern in the 

image space. 

When the camera pair exercises a rigid-body pure translation, the motion of each 

camera is also a pure translation, and From Equation (4.6) we have t^ - R ^ ^. By 

normalizing both sides of the above equality, it could be rewritten as: 

I = R J及 （4.7) 

where t̂  and t^ correspond to the FoEs of the two cameras as unit vectors in 

homogeneous coordinates. 

The following subsections will present how to estimate R；̂  from normal flows. 

We analyze the problem based on both the spherical image space and the planar image 

space. Since, planar image space is often used in practice, we will only test the 

developed algorithm with real image data in planar image space. The application of the 

developed algorithm in the spherical image space will not be explored and will remain 

as future research opportunities. 
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4.2.1.1 Estimating R；̂  in Spherical Image Space 

Suppose the camera pair undergoes a pure translation t rigidly. The s-co-axis 

vector field model is adopted to simplify the positive-negative pattern analysis. For an 

arbitrarily chosen axis Si, the Si-co-axis vector field is generated, and then on the 

spherical surface it is applied to the flow vectors induced by the translation t. A great 

circle will always exist and it is determined by the arbitrarily chosen axis Si and the 

normalized translational vector t . The great circle will divide the spherical surface into 

two hemispheres, a positive hemisphere and a negative hemisphere. The normalized 

vectors representing the translations in their own coordinate systems of camera A and 

camera B are t^ and t召 respectively. Furthermore, we will choose the same s-axis for 

both translations, and the arbitrarily chosen axis for both translations is Si. Then, there 

would be two great circles, which are defined by (t^ xSj)-p = 0 and (t及 xsi)-p = 0 

(where p represents the image point on the spherical surface) respectively, locating on 

the spherical surface. 6i, the angle between the two planes in which the two great circles 

lie on, is related to the rotation component R^ of the stereo cameras and it is illustrated in 

Fig. 4.9: 
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Figure 4.9 Two s,-co-axis positive-negative patterns are overlapped on one sphere model. O is the 

optical center of spherical image space, and Si is the arbitrarily chosen axis, t^ and T̂  are the 

normalized transnational vectors with respect to the coordinate systems of camera A and camera 

B, respectively. is the angle between the planes consisting of the two great circles. 

A different choice of the s-co-axis vector field would result in a different angle 6. 

If one more axis, S2, is applied to the stereo cameras undergoing pure translation in the 

direction of t, two new S2-co-axis positive-negative patterns will be generated with 

another two great circles defined by ( t j xs2).p = 0 and (t^ x83)• p = 0 respectively. 

Then, we overlap the new positive-negative patterns on the previous Si-co-axis positive-

negative patterns as illustrated by Fig. 4,9. Finally, the four great circles defined by si, S2, 

t^ and ig will present on the spherical surface as shown in Fig. 4.10 where 6\ is the 

angle between the two planes consisting the great circles satisfying (t^ x s j - p = Oand 

(t孜 xs i ) .p = 0，and 62 is the angle between the other two planes consisting the great 

circles satisfying ( t jXS2).p = 0 and (t^ x s j ) - ? = 0.. 
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Figure 4.10 Overlap four s-co-axis positive-negative patterns in the same spherical image space. 

Oi is the angle between the two planes consisting of great circles (t^ x S j ) - p = 0 and 

( T ^ x S i ) - ? = 0 , and 0i is the angle between the other two planes defined by the great circles 

(X(XS2) p = 0 and ( T ^ x s ] ) - ? ^ � . 

Angle 6\ and 62 depend on the selection of the s-axes; however, they are also 

related to the rotation of the vectors t^ and t^. More precisely, we aim to investigate 

how to determine the rotation component of stereo cameras by using angle 6i and the 

normalized translation vectors t^ and t^. 

Once axes Si and S2 are selected, 6\ and 62 are fixed. However, the angle between t̂  

and 飞B is not fixed since the two planes t^ O S\ and S]0 t^ , which share the 

intersection Si are able to rotate about si arbitrarily while keeping 6\ constant. Similarly, 

the other two planes t^ OS2 and S2O also able to rotate about S2 randomly. In other 

words, the angle between t . and U can not be determined with the aid of angles 61 and 

O2 unless both t . and known. 
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〜 〜 

However, if one more axis, S3, is applied, the angle between the t^ and t^ is 

fixed and R；̂  can be estimated with the aid of the angle 6i (/=1, 2，3) with the condition 

that only one of the two normalized translation vectors t^ and tg is known. Moreover, 

two independent translations of the stereo rig are necessary to obtain a unique R；̂- The 

mathematical expression and proof are shown in the following. 

The angle (9/ (/=1, 2, 3)，is defined as follow: 
COS<9i=(t^XSi)-(t5XSi； 

COS6*2 = (t^ XS2)-(t5 XS2 
COS<93=(t^XS3)-(t5XS3 

Equation (4.8) can be rewritten as: 

c o s ^ p t / R / A i t , 

(4.8) 

C0S6*2= (4.9) 

where At = [ s j / [ s j ] , A^ =|>2]/[>2]’ A3 =1>3 1丁|>3] with Si，S2 and S3 being the 

three arbitrarily chosen and normalized s-axes in generating s-co-axis vector fields. 

Also, Rx is the rotation component of the binocular geometry. It can be seen that <9i，O2 

and 没3 could be estimated by analyzing the s-co-axis positive-negative patterns defined 

by s-axes and the normal flows on the spherical surface‘ 

Equation (4.9) can be rewritten as follows: 

cos 沒 1 

COS 6*2 = 

cos 6*3 
V J 

B； B? B； 

B; B; B; 
Bl B � B ； 

尺 11 ^12 RI3 ^21 ^22 ^23 ^31 ^32 ^33 (4.10) 

3x1 
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where R, 
尺 11 ^12 

灭21 及22 

及 3 1 ^ 3 2 

R 
R 

23 

33 

and By, which is a 1 X 3 matrix representing the term 

calculated by Ay and T^. The index j stands for different s-axis. 

It can be proved that rank 
B； 

B； 

B( 
=1, where r - l , 2 ,3 and rank 

B； 

=2, 

wherep, q=\, 2, 3 ( a n d p ^ q ) , and rank 
B； 

B； 

B\ 

B； 

B； 

B： 

B； 

B; 
B： 

= 3 . Details of the proof ； 

provided in the appendix. 

By manipulating Equation (4.10)，it can be arranged into: 

' m y "Cj 0 0 - - -I 

m ) = 0 C2 0 及 11 ^12 ^13 ^21 ^22 ^23 ^31 ^32 ^33 

m ) 0 0 C3 _ 1x9 _ 

3x1 

(4.11) 

where/(份 is a scalar and Q is a 1x3 matrix with rank 

c . 

Equation (4.11) is then further rearranged into the following form: 

' 洲 ) - K 、 J B ) -

GI^D KS2 J B ) 

J B ) _ 

(4.12) 

subject to R / R = I , where g(6i) and h(Si, t . ) , (7=1, 2, 3) are both scalars. 
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Unique R^ cannot be obtained from Equation (4.12) if only one unit translational 

vector ig is available by locating zero-boundaries of the positive-negative patterns on 

the spherical surface. At least two translational motions of the stereo cameras in 

different directions are required to obtain from Equation (4.12) a unique solution of R^ 

[Kanatani, 1993]. Suppose the stereo rig translates towards different directions twice, 

then the solution for R. will be: 

R„ = U V (4.13) 

One problem that may arise here in using Equation (4.13) is that rotational 

matrix Rx obtained from Equation (4.13) can have a determinant of-1. Aiming at solving 

the above problem, Equation (4.13) can be modified as follows: 

R . = U 
1 0 0 

0 1 0 
0 0 det(UV] 

V (4.14) 

where U and V are the matrixes of eigenvectors obtained by SVD (singular value 

decomposition): D = USV^ . More specifically, the matrixes U and V are the 

decomposed components o f : 

1 N 

N U 

g m (4.15) 

where the index i represents the 产 translation of the stereo rig and min (7V)=2. 

By far the unique solution for the rotation component Hx of the binocular 

geometry is obtained, via the knowledge of the translational direction of camera B, 

Angle Oi ( / -I , 2, 3) (angle between the different loci on the spherical surface.) can be 

estimated by analyzing the s-co-axis positive-negative patterns. 
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4.2.1.2 Estimating R；̂  in Planar Image Space 

As Equation (4.7) provides no more than two scalar constraints for Rx which 

contains three degrees of freedom, at least two translational motions in different 

directions are required to achieve from Equation (4.7) a unique solution of R j [Kanatani, 

1993]. In general, we can use more than two rigid translations of the camera system, 
i v � ~ 

With N {N> 2) rigid-body translations of the camera pair, the matrix K^ = ^ I^tg^ can 
1 

be computed, and the least-square-error solution for is what Equation (4.14) 

describes, where U,，V, are results of SVD (singular value decomposition) of K, as 

On determining t̂  and Tg in each rigid-body translation of the camera pair, we 

adopt the orthogonalized co-point vector field model (with respect to a chosen s-axis) to 

generate patterns from the normal flows in the respective image streams. Both cameras 

will exhibit patterns like the one shown in Fig.4.6 (b), which contains only the positive 

and the negative regions separated by a straight line (the zero boundary) with no "Don't 

know" region. Hence, the analysis of the positive-negative pattern is not difficult. In a 

word, the reason that the pure translation of the stereo rig is employed is to simplify the 

positive-negative pattern division problem. 

The alternative orthogonalized co-axis vector field model (with respect to the 

same s-axis) can also adopted to generate the positive-negative pattern. If orthogonalized 

co-axis vector field is applied, the patterns will have positive region and negative region 

separated by a order curve shown in Fig.4.7 (a), still without the "Don't know" 

region. 
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4.2.2 Determination of tx up to Arbitrary Scale 

Here we describe how a solution scheme similar to that for determining the 

relative orientation can also be used to determine the separation t̂  of the cameras. 

However, we must point out that the required rigid motions of the camera pair in this 

case are not as easy to conduct precisely as that in the case of determining the relative 

orientation, and thus the scheme has certain limitation on its accuracy. It should also be 

emphasized again that, unless with certain metric measurement about the imaged scene, 

due to the aperture problem t^ can only be determined up to arbitrary scale from visual 

motion data alone. 

To determine the baseline tx of the camera pair, we let the camera pair undergo 

rigid-body pure rotations while the cameras capture the image stream data. In particular, 

suppose the camera pair together have a pure rotation about an arbitrary axis passing 

through the optical center of one camera say camera A. Then on the motion of each 

camera, camera A only undergoes a pure rotation, while camera B's motion consists of a 

rotation about an axis containing the optical center of camera A, and a translation 

orthogonal to the baseline link between the cameras. In this case Equation (4.6) can be 

rewritten as: 

(R 厂 = (4.16) 

where Rank (R^-1) = 2. We then rewrite Equation (4.16) to a homogeneous system: 

At ,=0 (4�17) 

where t^ is the normalized vector representing the direction of the baseline, and A is a 

2x3 matrix calculated from Rx, Ri, U as 
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Notice that Rank ( A ) 二 1. At least two rotations are needed to 

determine \ uniquely. With at least two rigid-body rotations of the camera pair, like in 

the determination of R^, we apply SVD to the homogeneous linear system of equations 

expressed by Equation (4.17) to determine the least-square-error solution of t̂  (up to 

arbitrary scale). 

If the orthogonalized co-point vector field mechanism is adopted, camera A, 

which has only pure rotations in the process, has the positive-negative labeled patterns in 

the image space just like the one shown in Fig.4.6 (a), in which a order curve (the 

zero-boundary) separates the ‘+，and ‘-，labeled regions. We use the axis-angle 

expression Pa, to represent the rotation of camera A. With first the ratios 

/yA and Pa /ja determined from the order curve, the third component ja (which 

together with a^/y^ and Pa Ha define the magnitude of rotation) can then be determined 

using the method named "detranslation" as presented in [Fermiiller, 1995B] [Fermuller, 

1998]. As for camera B, the positive-negative labeled patterns in the image space take 

the form of Fig.4.6 (c), and pose more challenge because of the existence of two "Don't 

know" regions. There are two zero-boundaries to be determined: one a order curve, 

and the other a straight line. Fortunately, the rotational component (Ob of camera B can 

be computed directly from Equation (4.5) once R^ has been determined from the 

previous step. With knowledge of (Ob, by applying the orthogonalized co-point vector 

field to the image space, the order zero-boundary dividing the positive-negative 

labeled patterns can be pinpointed. With this, the other straight zero-boundary defined 

by the FoE can be easily located despite the presence of the two "Don't know" regions. 
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The direction Xb of the translational component can thus be determined from the straight 

boundary. Finally the inter-camera separation tx (up to arbitrary scale) can be calculated 

from Equation (4.17) once R^ and ig are both made available from the positive-

negative patterns. In a word, the reason that the pure rotation about the optical center of 

one camera but not a general motion is employed, is to simplify the positive-negative 

pattern division problem. 

A similar strategy can be used if the orthogonalized co-axis vector field is 

adopted to determine the direction of the baseline. 

The shortcoming of the above solution scheme is that rigid rotation about the 

optical center of a camera cannot be conducted precisely unless the optical center of the 

camera is well positioned in space. For this reason we view the above solution scheme 

of determining t̂ ，which is parallel to the solution scheme of determining R^, as one for 

obtaining only approximate knowledge about the inter-camera separation. We must 

point out however that the shortcoming is not present in the solution scheme of 

determining R；̂. 

4.2.3 Optimal Selection of the s-Axis Set 

For any single camera, a different choice of the s-axis would allow a different 

subset of the data points (i.e., image positions with normal flow observable) to be usable 

in generating the positive-negative labeled pattern in the image space. Obviously a 

higher density of the labeled patterns is desired, as it would make the localization of the 

zero-boundary easier. Here we propose a scheme of selecting a set of s-axes that lead to 

higher densities of usable data points. 
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In the following discussion, for simplicity we only describe the scheme under the 

case that the camera motion is a pure translation. The scheme for the pure camera 

rotation is the same when the orthogonalized s-co-axis vector field is applied to it. 

4.2.3.1 From Normal Flow Data Point to a Locus of s-axis 

Given any choice of the s-axis, an orthogonalized co-point vector field is defined 

for the image space, and only the data points with the normal flows exactly parallel or 

anti-parallel with the orthogonalized co-point field vectors there are usable in the 

positive-negative pattern analysis process. Below we re-visit the mechanism from the 

opposite angle, more precisely from the angle of data point not s-axis. A data point (x/，ŷ ) 

with normal flow v'„) is usable only under the adoption of the following family of s-

axes: s-axis whose equivalent position S =(知，Sy) in the image plane is located on the line 

k that contains the data point (xi, yt) and that is orthogonal to the normal flow v„). 

This is illustrated by Fig. 4.11. We call the line the S-line of the data point (X，少,)，and 

it can be expressed as: 

-{u'nXi = 0 (4.18) 

fe乃广、、、、、、、、邦义，s� 

Figure 4. 11 The S-lines of data points (jc„ yi) (with normal flow («'„, v'„)) and (xj, yj) (with normal 

flow (i/„, O ) . 
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Thus, to find the s-axis which can make the maximum number of data points useful, 

a simple scheme is to let each data point vote for the members of its S-line in the space 

of all possible s-axes (which is only a two-dimensional space, as an s-axis has only two 

degrees of freedom). The s-axes of high count of votes are then the good choices that 

should be used in the orthogonalized co-point vector field mechanism. 

4.2.3.2 Optimum Determination 

It seems that we could obtain a linear system of equations for the optimal s-axis 

(point S in the image space) from say n data points using Equation (4.18)，and solve for 

the optimal s-axis. However, the optimal s-axis can not be calculated as the least-square 

solution of Equation (4.18). Because no matter how "good" the s-axis is, the normal 

flows that could vote for this s-axis are still a very small portion of all the detectable 

normal flows in the image domain, for instance 2 � 3 % in average. Hence estimating the 

solution of Equation (4.18) must be failed by the idea of eliminating the outliers. 

We thus adopt a voting scheme similar to the Hough Transform. We use an 

accumulator array to represent the entire space of all possible s-axes, and to collect votes 

from each data point. The accumulator is a two-dimensional array whose axes 

correspond to the quantized values of Sj, and Sy. For each data point (an image point with 

detectable normal flow), we determine its S-line, look for bins in the accumulator array 

that the line falls into, and put one vote in each of those bins. After we finish this with all 

the data points, we identify the bin with the highest count of votes in the accumulator 

array. An example of an accumulator array is shown in Fig. 4.12. 

57 



ESTIMATION OF THE BINOCULAR GEOMETR Y FROM NORMAL FLOWS 

Figure 4. 12 Two-dimensional accumulation array that corresponds to various values of s,, and Sy. 

The S-Iine associated with each data point is determined, the array bins corresponding to the line 

are identified, and each of such bins has the vote count increased by one. The bin with the highest 

vote count is identified (and marked as a red circle in this figure), which corresponds to the 

optimal s-axis. 

To increase computational efficiency we use a coarse-to-fine strategy in the 

voting process, as illustrated by Fig. 4.13. 

Figure 4. 13 The development of the voting process under the -to-fine strategy. 

Since the orthogonalized co-point vector field-based mechanism demands the use 

of not one but at least a few s-axes, in our case we use not only the optimal s-axis but 

some s-axes of the highest vote counts. While in synthetic data experiments the scene 

texture (and thus the orientation of the normal flow) is random and thus all s-axes have 

similar density of usable data points, in real image data the scene texture is generally 

concentrated around a few directions (and so is the normal flow), and the densities of the 

usable data points could be drastically different under a different choice of the s-axis set. 
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Experimental result shows that, in cases of real image data, the adoption of the optimal 

set of s-axes almost always makes great improvement to the solution quality over those 

under random choices. More specifically, our experiments on real image data show that 

the pattern generated by the optimal s-axis set often has 60% more data points than those 

generated by the average s-axis set. 

A brief summary of the entire solution procedure on optimal s-axes selection is 

illustrated by the following flowchart. 

Normal flows 

Initial 2D accumulation 
array of coarse resolution 

S-line of data points 

No 
f 

Optimal s-axis 

Increase accumulator's 
resolution 

Neighborhood of 
the Selected Bins 

Figure 4 . 1 4 Flow chart to illustrate the process of selecting the optimal s-axis 
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4.2.4 Entire Solution Procedure on Binocular Geometry Estimation 

On estimating binocular geometry, we first let the stereo rig take pure translations 

to estimate R；̂，and then let the cameras rotate about the optical center of one camera to 

estimate the baseline t;rUp to scale. In details, the steps could be summarized as follows: 

Step 1. Let the stereo rig translate as a whole twice, and the two translational 

motions should be in different directions. 

Step 2. Calculate the normal flows from the image sequences. 

Step 3. Choose orthogonalized co-point vector field and apply the scheme of 

optimal selection of the s-axis set. 

Step 4. Apply the optimal s-axes to estimate the FoEs of the two cameras 

Step 5. Use Equation 4.7 to calculate R；̂  

Step 6. Let the stereo rig rotate about the optical center of one camera (for 

example Camera A) twice, and the two rotational axes should point to 

different directions. 

Step 7. Calculate the normal flows from the image sequences. 

Step 8. Choose orthogonalized co-axis vector field and apply the scheme of 

optimal selection of the s-axes set to camera A. 

Step 9. Apply the optimal s-axes to estimate the AoR of camera A. And then 

calculate using the method of "detranslation" [Fennuller, 1995B]. 

Step 10. Choose co-axis vector field to the normal flows of camera B, and estimate 

FoE of camera B, with the help ofR；^ and (o^. 

Step 11. Use Equation 4.17 to calculate t̂ ^ 
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4.3 Experimental Results 

In this section, we present experimental results to illustrate how the described 

method performs on synthetic and real image data. 

4.3.1 Synthetic Data Experiments 

Synthetic data experiments are particularly useful for examining solution 

accuracy because they come with exact ground truth for reference. To synthesize the 

experimentation data, we first kept the relative geometry of two cameras locked’ and 

then instructed the camera pair undergo the necessary rigid motion. Each of such rigid 

motions generated the full optical flow on each camera's image plane. We then at each 

image position of the image plane projected the full flow to an intensity gradient 

direction there that was generated randomly. In the solution process we then assumed 

that we did not have access to the full flow fields but only the normal flows. We used 

image resolution 101x101 pixels in all synthetic data. Moreover, the strategy of optimal 

selection of the s-axis set was not applied when dealing with the synthetic data, as the 

gradient directions were assigned to image points arbitrarily. Hence, the strategy of 

optimal selection of the s-axis set will not improve the efficiency of the algorithm 

obviously. 

4.3.1.1 Determination of R^ 

To determine the rotation component Rx of the inter-camera geometry, we first 

conducted two rigid pure translations of the camera pair. The resultant full flow fields in 

the two cameras' image planes under the two pure translational rigid motions are shown 

in Fig. 4.15. 
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(a) Camera A，Motion 1 (b) Camera B, Motion 1 

(c) Camera A, Motion 2 (d) Camera B，Motion 2. 

Figure 4. 15 Full flow fields in the two cameras' image planes under two pure rigid translations 

of the camera pair. 

We then assigned each image point an arbitrary gradient direction to project the 

full flow along this direction and obtained the normal flow at this image position. The 

resultant normal flow fields in the two cameras' image planes under the two pure 

translational rigid motions are shown in Fig. 4.16. 
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(a) Camera A, Motion 2 (b) Camera B, Motion 2 

Figure 4 . 1 6 Normal flows in the two cameras' image planes under two pure rigid translations of 

the camera pair. 

Given the first arbitrary s-axis, for instance s=[l 0 0], we obtained the first s-co-

axis pattern as shown in Fig.4.18. Initially, we arbitrarily chose the FoE anywhere within 

the image frame. After investigating the pseudo FoEs 0.25 by 0.25 pixel, as many as 

1000 curves determined by these pseudo FoEs could divide the pattern into two regions 

well. Then, we applied a second s-axis to examine whether these 1,000 pseudo FoEs that 

performed well in the first pattern would still perform well in the new pattern. We 

discarded wrong FoEs that had bad performance when the second s-axis was applied and 

kept others to the next round of new s-axis until all the possible FoEs became relatively 
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small. The number of possible FoEs dramatically decreased when more s-axes were 

applied. Finally, the center of all possible FoEs’ was considered as the input to compute 

R；̂. Table 4.1 shows the FoEs estimated by locating the zero-boundaries. 

Table 4 . 1 Estimation of FoEs. CA: Camera ̂ ； CB: Camera B\ M l : Motion 1; M2: Motion 2 

Ground Truth Experiment 
CA’M1 [29.534 12.465] [30.000 12.950] 

FOE CB,M1 [-5.000 30.000] [-5.000 29.775] FOE CA,M2 [30.972 9.198] [32.000 9.475] 
CB,M2 [-3.000 27.000] [-3.000 27.375] 

As mentioned, the number of possible FoEs dramatically decreased when more 

s-axes were applied to the normal flows. In the beginning, we applied the first s-axis 

s=[l 0 0] to the normal flows, generated the first positive-negative pattern, and 

investigated the pseudo FoEs 0.25 by 0.25 pixel within the possible location of FoE. (It 

is reasonable to roughly know the parameters of the camera's translation by reading the 

data from the platform controller in practice.) There were a total of 1,353 order 

curves defined by these 1,353 corresponding possible FoEs for camera A during motion 

one, that could divide the positive-negative pattern into two regions very well. Then we 

applied the second s-axis s=[0 1 0] to generate a new pattern and examined whether the 

previous pseudo 1,353 FOEs that had good performance in the first pattern would still 

perform well in the new pattern. Finally, 82 of the 1,353 ones were proved to still have 

to good performance. We discarded wrong FoEs that had bad performance when the 

second s-axis was applied and kept others to the next round of new s-axis until all the 

possible FoEs became relatively small. The FoE could be located precisely if sufficient 

s-axes were used. Fig. 4.17 shows the FoEs shrank to quite a small area (within one 

pixel) after a number of s-axe were applied. For example, 28 s-axes are enough to obtain 
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a precise location of FoE for camera B during motion 2, while 82 s-axes are enough to 

obtain a precise location of FoE for camera A during motion 1. 

Number of S-axes 

Figure 4, 17 The number of candidate FoEs decreased dramatically with the number of s-

that were used. 

Fig. 4.18 shows the zero-boundaries determined by the estimated FoEs which 

divided the image domain into two regions according to the positive labels and negative 

labels. 

alpha pattern i beta pattern for camera: B in motion: 1 gama parttem for camera; B in motion; 

alpha pattern for camera: A in motion: 1 beta pattern for camera: A in i I pattern for camera: A in motion: • 
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alpha pattern for A in motion: 2 I pattern for camera: A in motion: 2 I pattern for camera: A in motion: 2 • 
Figure 4. 18 Three patterns: alpha pattern ( s=(l 0 0]) , beta pattern (s=[0 1 0]), gamma pattern 

(s=[0 0 1|), Green dots represent negative position; red dots represent positive position. 

Finally, the rotation component (o；̂  of the stereo geometry was estimated from the 

FoEs by SVD. The estimated rotation component (Ox of the experimental binocular 

geometry is shown in Table 4.2. The error is 0,80® in direction and 1.26% in length. 

Table 4. 2 Estimation of the rotational component of the binocular geometry. 

COx 
Ground Truth [0.1000 0.2000 -0.2000]' 
Experiment [0.0974 0.2041 -0.2029]‘ 

In this synthetic data experiment, we added 45dB white Gaussian noise to the 

normal flow vectors to see how sensitive the result is to noise. The example of the 

normal flows vectors added Gaussian noise is shown in Fig. 4.19. 
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Figure 4.19 Normal flow vectors added 45dB white Gaussian noise. Vectors in blue are the 

optical flows; vectors in green are the original normal flows; and vectors in red are the nromal 

flows added Gaussian noise. 

Fig. 4.20 shows the zero-boundaries determined by the estimated FoEs which 

divided the image domain into two regions according to the positive labels and negative 

labels.. We compared the result to the one that was obtained by using the noise-free 

normal flows, and found they are very close. 

alpha pattern for camera: B in motion; pattern for camera; B in motion; gama pattern for camera; B in motion: 

alpha pattern for camera: A in motion: 

alpha pattern for camera: B in motion: 

beta pattern for ( • gama pattern for camera: A in motion: 

beta pattern for camera: B in motion: 2 gama pattern for camera: B in motion: 2 
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alpha pattern for A in motion: 2 beta pattern for camera: A in , 

• 

gama pattern for camera: A in motion: 2 

Figure 4. 20 Three patterns by using normal flow vectors added Gaussian noise: alpha pattern ( 

s=[ l 0 0])，beta pattern (s=[0 1 0|), gamma pattern (s=10 0 1|). Green dots represent negative 

position; red dots represent positive position. 

We applied s-axes to the normal flow vectors of the two cameras during the two 

motions to estimate the FoEs, and set the threshold to let the estimation shrink to the 

same small area (within one pixel) after a number of s-axes were applied. We compared 

the number of s-axes totally applied in the two experiments, as shown in Tab.4.3. 

Obviously, more s-axes are needed to achieve the estimation of the same accuracy, if the 

normal flow vectors are disturbed by noise. 

Table 4. 3 The number of s-axes applied to estimate FoEs. CA: Camera/I; CB: Camera B; Ml : 

Motion 1; M2: Motion 2 

The number of s-axes The number of s-axes 
(Noise-free) (With Gaussian noise) 

CA，M1 82 112 
CB, Ml 63 128 
CA, M2 101 203 
CB, M2 28 616 

The rotation component cô  of the stereo geometry was estimated from the FoEs 

by SVD. The estimated rotation component dx of the experimental binocular geometry 

is shown in Table 4.4. 
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Table 4. 4 Comparison of the estimations of the rotational component of the 

using noise-free data and the data disturbed by Gaussian 

Noise-free [0.0974 0.2041 -0.2029]‘ 
With Gaussian noise [0.0890 0.1955 -0.1874]‘ 

Experimental results show that the algorithm is stable when dealing with the 

input data with limited noise. However, much more number of s-axes have to be used to 

help eliminate the disturbance caused by the small portion of wrong data. 

4.3.1.2 Determination of t；̂  up to Scale 

After Rx (i.e., was determined, we permitted the camera pair to rotate about 

the optical center of camera A in two different velocities and we observed the resulted 

normal flow fields. We located the zero boundaries on the positive-negative labeled 

patterns to determine the rotation coa of camera A using an algorithm called 

"detranslation" [Fermiiller, 1995B, 1998]. FoE of camera B was obtained readily from 

the patterns. 

Again, full flow fields and normal flow fields were generated according to the two 

pure rotations about the optical center of camera A and the arbitrarily gradient direction 

were assigned to each image point. The samples of flow fields are shown in Fig. 4.21. 
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(a) Optical flow: Camera A. 
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(c) Normal flow: Camera A 
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Figure 4.21 Optical flow and normal flow fields generated with respect to 

rotations about the optical center of camera A. 

(d) Normal flow : Camera B 

of the two pure 

For camera A, we first estimated its rotation component, and by using 

obtained in the previous step, we analyzed the patterns generated by camera B to locate 

FoE. The results are shown in Table 4.5 

Table 4. 5 Estimation of tĵ  by using synthetic data. 

Real Value Result from Experiment 
Camera A, Motion 1 [0.00008 0.00008 0.0008] [0.8023 0.8023 8.0237]e-oo4 
Camera A, Motion 2 [0.00006 0.00004 0.0002] [0.5920 0.3947 1.9733]e-_ 

tb 
Camera B, Motion 1 [0.0910 -0.5495 0.0459] tb /| it 1： [1.9645 -1L2941] 

tb Camera B, Motion 2 [0.0216 -0.1352 0.0206] tb /| tb 1： [1.5864 -6.1978] 
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Finally, we obtained t;c up to an arbitrary nonzero scale using Equation (4.17). The 

result, shown in Table 4.6, is a unit vector describing the direction of the baseline. 

Table 4. 6 Determination of (up to scale) 

tx 
Ground Truth [-700 20 80] 1 
Experiment [-0.9883 0.0428 0.1466] ! 

The result is a unit vector describing the direction of the baseline of the camera 

pair. The inter-vector angle between the ground truth and the result is calculated to be 

2.09�. 

We emphasize that in the synthetic data experiments the intensity gradient 

direction at each image position was generated randomly. The normal flows at the 

various data points were thus more evenly distributed in their directions, therefore, 

making the intelligent selection of s-axes would not result in significant effect. So the 

experiments on the selection of s-axes using synthetic image data is not presented here. 

In this work synthetic data experiments were used to investigate accuracy, since ground 

truth was available. It is expected that when dealing with real image data, in which the 

normal flows are more concentrated in a few directions, the effect of s-axis selection 

would be significant. Therefore, experiments using real images (in which the reference 

solution could only be "estimated" by another method) were used primarily to examine 

the effect of the s-axis selection. 
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4.3.2 Real Image Experiments 

Here we show results on the recovery of Hi (i.e., o)；̂) by using real image data. 

We moved a camera pair on a translational platform while letting the cameras capture 

image sequences of the sinxoimdings. The cameras are Dragonfly CCD cameras of 

resolution 640x480 pixels. We used the algorithm described in [Bouguet] to determine 

the intrinsic parameters of the two cameras. Normal flows were then extracted from the 

captured image sequences once the images were smoothed (by Gaussian Filter with «=5 

and <7=1.4). 

For the normal flow field of either camera under any particular translation, we 

first determined the optimal set of s-axes. With the first most optimal s-axis we got the 

first s-co-point positive-negative labeled pattern in the image plane. Even though the s-

axis was chosen optimally, because of the sparseness of the usable data points under any 

single s-axis the zero-boundary could not be located very precisely on the image plane. 

The zero-boundary which should be a straight line could only be confined to a set of 

possible straight lines that well separated the "+"-labeled data points and the "-"-labeled 

data points. Notice that by Equation (4.4) each of such straight lines represented two 

possible linear constraints for the FoE of the camera under the particular translation. In 

other words, from the vector field of this first s-axis the translation of the camera could 

be determined up to a family of possible FoEs. Then we added the second most optimal 

s-axis to obtain a second positive-negative pattern in the image plane, determined the set 

of possible zero-boundaries from it, examined which of the above candidate FoEs still 

satisfied this second set of zero boundaries, and kept only those candidate FoEs that did. 

We repeated the iterations, until all candidate FoEs were located within a small enough 

area (one pixel in our experiment) of the image plane. 
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The first experiment we show here was to investigate the accuracy of the method. 

Different number of s-axes were used for different cameras as the image captured by 

each camera has its own texture characteristics. In any case, no more than 377 s-axes 

were used to pinpoint to Ix 1-pixel accuracy the FoE of each camera under every rigid 

motion of the camera pair. The zero-boundaries under the determined FoEs are shown in 

Fig. 4.22, and they all well separated the positively labeled data points from the 

negatively labeled data points in the image space 

(a) (b) 

(c) (d) 
Figure 4.22 Determination of the relative orientation of a camera pair that have substantia] 

overlap in their visual fields. The zero-boundaries (blue lines) under the determined FoEs of the 

respective cameras are shown. Green dots represent negatively labeled date points; red dots 

represent positively leveled data points, (a) Camera A, Motion 1; (b) Camera B, Motion 1; (c) 

Camera A，Motion 2; (d) Camera B, Motion 2. 

The computational time is 7441.825503 seconds by running the Matlab code 

using the PC (Pentium(R)4 CPU: 3.40GHz, RAM :1.00GB). However, the 
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computational time greatly depends on the accuracy of the FoE. Obviously there are two 

ways to speed up the computation. One is to reduce the searching accuracy of the 

estimation of FoE. For example we investigated the pseudo FoEs one by one pixel in 

this experiment, and the computational time would be greatly shortened if two by two 

pixels were investigated. The other way is to enlarge the tolerance of the estimation of 

FoE, in order to make use of less number of s-axes to analyze the positive-negative 

pattern. 

To examine if the result was reasonable, we also calibrated the relative geometry 

of the camera pair using the traditional stereo calibration method [Bouguet], in which 

the inputs were not normal flows but manually picked comer correspondences over the 

chess-board pattern in the image data. This was possible because the camera pair were of 

such a configuration that the images taken had substantial overlap in their visual fields, 

rendering traditional methods possible. Table 4.7 compares the results from the proposed 

method and from the traditional stereo calibration method. 

Table 4 . 7 Results of determining o)̂  of a camera pair that have substantial overlap 

in their visual fields. 

The Proposed Method Traditional Stereo Calibration Method 
[Bouguet] 

cox [0.0131 -0.6821 0.1005JT [0.0270 -0.4109 -0.0100] T 

The traditional stereo calibration method took much more informative input than 

the proposed method, and naturally its result should be more trustworthy. On 

comparison it can be observed that the result of the proposed method was close to such a 

reference. Inevitably there was error, which was mainly due to the much less informative 

input: the mere normal flow fields. However, the downside of the method is also its 
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upside. In cases where objects like checker board or distinct image features are absent 

from the imaged scene, or manual effort of picking feature points and establishing 

correspondences are inconvenient, or the two cameras have little or no overlap in their 

visual fields, while traditional method cannot proceed, the proposed method can still 

operate. 

In another experiment we calibrated two cameras which had only little overlap in 

their fields of view. Shown in Fig. 4.25 are sample images grabbed by the respective 

cameras, which also display how little was the overlap between the fields of view of the 

cameras. The resolution of the images is 640x480. 

The effect of the optimal s-axis selection is shown in this experiment. Lets take 

the image sequence captured by camera A during motion 2 for an example, which is 

shown in Fig. 4.25 (C). We applied our scheme of optimal determination and obtained 

the first optimal s-axis marked with red circle in Fig.4.23. Among the total 18,9887 

normal flows at the image positions, the optimal s-axis is capable to select 5,770 normal 

flows to generate the positive-negative pattern. Compare to the optimal s-axis, an s-axis 

that selected the least number of normal flows marked with green circle is also shown in 

Fig.4.23. 
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Figure 4. 23 Two-dimensional accumulation array with the optimal s-axis marked with red circle. 

The green circle represents the s-axis (bad axis) that selected the least number of normal flows to 

generate positive-nagetive pattern. 

Table 4.8 shows the number of normal flows selected by the two different s-axes: 

optimal s-axis and bad s-axis. 

Table 4. 8 The number of normal flows selected by the two different s-axes. 

Image domain Optimal s-axis Bad s-axis 
Number of normal flows 18,9887 5,770 1,145 

Percentage 2.933% 0.603% 

The comparison of the positive-negative patterns defined by the two s-axes is 

shown in Fig.4.24. The pattern generated by the optimal s-axis is much denser than the 

one generated by the s-axis that only can select a small portion of the normal flows. 

• • 

Figure 4. 24 The comparison of the positive-negative patterns defined by the two s-axes 

Fig. 4.25 presents how well the zero-boundaries under the determined FoEs of 

the respective cameras could separate the differently labeled data points in the image 

space. The total computational time is 8755.714201 seconds by running the Matlab code 

using the PC (Pentium(R)4 CPU: 3.40GHz, RAM :1.00GB). Similar to the presented 
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experiment above, the computational time could be shortened greatly by reducing the 

accuracy of the estimation of FoE. 

(a) (b) 

(c) ⑷ 

Figure 4. 25 Determination of the relative orientation of a camera pair with only little overlap in 

their visual fields. The zero-boundaries (blue lines) under the determined FOEs of the respective 

cameras are shown. Green dots represent negatively labeled date points; red dots represent 

positively leveled data points, (a) Camera A, Motion 1; (b) Camera B, Motion 1; (c) Camera /I, 

Motion 2; (d) Camera B, Motion 2. 

Determining the binocular geometry of such a camera pair using 

correspondence-based methods would be difficult since there are very few 

correspondences that could possibly be established across the views. However, our 

method demands only monocular normal flows could still operate. The result is shown 

in Table 4.9 and visual examination shows that the result is reasonable. 
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Table 4 . 9 Result of determining Ox of a camera pair that have little overlap in their visual fields. 

CO, [0.2157 -0.2811 -0.0289] 

4.4 Summary 

In this chapter, we have presented a novel method on estimating the binocular 

geometry directly from monocular normal flows. Establishing motion correspondences 

and epipolar constraints are not required under our algorithm. Two kinds of specific 

motions (pure translation and pure rotation) of the stereo rig are applied to simplify the 

scheme of locating zero-boundaries on the positive-negative patterns. Moreover, we also 

proposed a scheme on optimal selection of the s-axis to improve the efficiency of the 

calculation. Good experimental results were obtained with both synthetic and real image 

data. 
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CHAPTER FIVE 

ESTIMATION OF CAMERA'S EGO-MOTION FROM NORMAL 

FLOWS 

In this chapter, we present a novel method on camera's ego-motion estimation for a 

monocular moving observer, under arbitrary translation or rotation. According to our 

mechanism, each normal flow will give a locus for the location of camera motion in the 

voting domain. The intersection of such loci determined by different normal flows will 

reduce the possibilities of camera motion and even pinpoint the camera motion. As the 

method does not track distinct features nor interpolate optical flow, it is applicable even 

to cases where the imaged scene is not displaying distinct features nor smooth. The 

method does not leave any normal flow unused in the visual data either, so it requires 

much less texture from the imaged scene than the traditional methods to operate. 

Experimental results show that the method has promising performance on office, 

laboratory, and urban outdoor scenes in their natural appearance that is often only 

sparsely textured. 

This chapter is organized as follows. Section 5.1 describes how the image space 

and the camera motion space are represented in this work. Section 5.2 provides a new 

understanding of how the normal flow direction at any image position constrains the 

camera motion parameters. The voting scheme will be proposed in section 5.3. Finally, 

Experimental results on both synthetic data and real image data are presented in Section 

5.4. 
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5.7 Flow Vectors from Planar Image Space to Spherical Image Space 

The advantage of the spherical image space I over the planar image space / '’ is 

that the spherical image space I can represent all possible camera motion parameters o 

and t, while the planar image itself can only encode a subset values of camera motions. 

Although the planar image estimation domain can be arbitrarily expanded to enlarge the 

subset, it still can not easily tackle the case when the camera undergoes some specific 

motions, translating parallel to the image plane for instance, as the FoE or FoC may be a 

point at infinity. 

Moreover, in the planar image domain, when the camera undergoes a forward 

translation, t is usually referred to as Focus of Expansion (FoE). The camera motion t 

can also be described as an intersection point of all motion trajectories, Focus of 

Contraction (FoC), if the camera takes a backward translation. Provided there is merely 

one image point with its motion trajectory determined by the full optical flow, it is not 

known whether the camera undergoes a forward or a backward translation. Similarly for 

a camera taking a pure right-hand rotation, o is often represented by a point, Right-hand 

Axis of Rotation (RAoR), about which all the motion trajectories rotate. There is also a 

reciprocal definition of Left-hand Axis of Rotation (LAoR), when the camera rotates 

about a left-hand axis. We are facing the same problem so far when analyzing the pure 

camera rotation, if merely one full optical flow is provided, because we can not tell 

whether the camera is rotating about a right-hand axis or a left-hand axis. Fig.5.1 shows 

the ambiguity on camera motion analysis, supposing that only one image point with its 

full optical flow V' (p，）is available in the planar image space. 
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FoC 
/ 

• LAoR ？ v'(p') / 
• 

© ^ / • 
• 

• 

‘ FoE ？ 
RAoR? 

• 
• 

‘ FoE ？ 

Figure 5.1 The ambiguity on camera motion analysis. The direction of camera motion can not be 

determined by merely one full optical flow V'(p') 

However, since the spherical image space I could provide all possible camera 

motion parameters co or t, it is not necessary for us to define whether the intersection of 

all motion trajectories is FoE or FoC, assuming that a camera with the spherical retina is 

translating toward a specific direction. More precisely, given a full optical flow V(p) on 

the spherical retina, the size of searching region for the possible motion will be a half as 

that in the planar image space r , which will be detailed in section 5.2. For the sake of 

(0 adopted to represent camera's convenience, the unit vectors t = t / 1 and S = (o, 

translation t and rotation o respectively, when we analyze camera's ego-motion using 

spherical image space, t is the intersection point of t on the spherical surface, and S is 

the intersection point of rotational axis co on the spherical surface assuming the right-

hand rule is followed to describe the camera rotation. 

In many places of this chapter we are concerned only with a vector's direction 

not its magnitude. For simplicity of presentation we shall use the notation =+ to 

represent vector equality without regard to magnitude but only direction, i.e., it is 

equality up to arbitrary positive scale on its either side. On the other hand, the notation 

=represents equality up to arbitrary nonzero scale as widely used in the literature; it is 

generally used for entities in homogeneous coordinate representation which is defined 

up to arbitrary nonzero scale. 

81 



ESTIMA TION OF CAMERA ’ S EGO-MOTION FROM NORMAL FLOWS 

In various places of the discussion we shall run into the following entities of the 

spherical surface S\ great circle, great half-circle (one half of a great circle that is cut by 

a diameter of the sphere), and half-sphere (one half of the sphere that is cut by a great-

circle), as locus of either w or t in various cases. Notice that such entities on S if 

projected through the optical center C to the planar space F will become line, half-line, 

and half-plane respectively. That will help relate solutions in S to solutions in F. 

To recap, the input to our problem is a set of image positions where the normal 

flows are observable, and the desired output is two positions i and S on the full 

spherical surface S. 

Usually only planar images, rather than spherical images，can be obtained from 

cameras. Consequently, the full optical flows or normal flows calculated from these 

planar image sequences must be projected onto the upper hemispherical retina, before 

the camera motion is estimated using the spherical image model. Fig.5.2 illustrates how 

to project flow vectors from the planar image space to the spherical image space. The 

upper hemispherical retina and the planar image share the same optical center C which is 

also the center of the spherical surface. Z-axis, perpendicular to the planar image, is 

defined as the optical axis. The radius CF is the focal length of camera. We use 

normalized image domain to simplify our mathematical model by setting CF=1. 

Consider any normal flow v’(p’)=+(cosv，sin^), \}/ e [0， In) at image position p'=(jc, 

y) (a 2D-vector)on the normalized planar image. The projection of p' on the upper 

hemispherical retina isp 三[口’丁，1]丁 (a 3D-vector), and its corresponding normal flow v(p) 

at image position p must belong to the plane defined by optical center C and the planar 

normal flow v'(p'), and at the same time tangent to the hemispherical surface 
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(perpendicular to p). The normal flows' projections from the planar image space to the 

upper hemispherical image space can be expressed as: 

v(p) =+ (px 
v-(p’). 

0 
\ x p = (px[cos^ s in^ 0]xp) (5.1) 

where y/ e [0, 2;r) 

Similarly, given a normal flow v(p) on the hemispherical retina / at image 

position p，its corresponding normal flows v'(p') on the planar image F at image 

position p' will be: 

" 0, 
v,(P’）二— 

0 
{[p X v(p)] X k} , where k = [0 0 1] (5.2) 

Moreover, Equation (5.1) and (5.2) are also applicable to full optical flows' 

projections from the planar image space to the spherical image space and vice versa. 

/ ' ( P ' ) y ^ 

/'么， 

� z 

VX 
‘ \ \ 

X 务 � � � 
、、-

t t 1 / f / 

/ / • z t ^" 

Figure 5.2 Flow vectors projected from the planar image space onto the spherical image 

space. 

Since normal flows are the projections of full optical flows along their intensity 

gradient directions in the planar image space r , for a given normal flow v'(p,)=+ {cosy/ , 
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sin^), {j/ e [0, In) at image position p，二(x, y), the full optical flow V'(p') at this image 

position will be: 

V'(p') =+ (cos(y/ + a ) ， + a)) (5.3) 

for any cr g . 

Consequently, according to Equation (5.1) V，(p，)，s corresponding full flow V(p) 

on the hemispherical retina at image position p must be: 

V(p)、（px 

for any ere 

V'(P') 
0 

=(p X [cos(^ + a ) sin(^ + a ) 0j^)xp (5.4) 

5.2 Estimating Camera，s Ego-motion Using Spherical Image Space 

The spherical image space I and the planar image space F are equivalent on 

investigating camera's ego-motion. The spherical image space / is adopted in this work 

because of its simple mathematical expression. In this section, we will also give the 

mathematical expression on camera's motion estimation by directly using the planar 

image space. 

5.2.1 From Direction of Normal Flows to Direction of Pure Camera Translation 

We assume a camera undergoes a pure translation in the direction of t, as shown 

in Fig. 5.3. FoE is the intersection of t on the normalized planar image F (focal length 

CF=\), since the motion shown in the figure is a forward translation. V’,(p，）is the full 

optical flow at image position p' on the planar image F . While on the upper 

hemispherical image I, p is the projection of p,，and V/(p) is the corresponding full 
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Optical flow at image position p according to Equation (5.1).In the following we will 

discuss the hints that a flow vector would provide for estimating the camera translation. 

For the full flow vector V^p) on the hemispherical image /，on the spherical 

surface -S, T ( the intersection point of t on the spherical surface) must lie on the red 

great circle defined by full flow vector V,(p) at its image position p, as illustrated in 

Fig.53. The great circle contains p and at the same time is tangent to V,(p). 

Mathematically, the red great circle can be expressed as: 

t - (pxV,(p)) = 0 (5.5) 

The great circle is divided into two segments by the line passing through optical 

center C and image position p. Moreover for a given V,(p) in a specific direction, T can 

only locate on half-circle drawn in solid line, as shown in Fig.5.3. The great half-circle 

describing the locus of t is 

t - (pxV,(p)) = 0 and t -V , (p )<0 (5.6) 

Suppose that the camera with the planar image translates in the direction of t, 

which is shown in Fig.5.3. The equivalence of the above in the planar image space F is 

the following. In the planar image space FoE is used to represent the camera translation t. 

Given a full optical flow V',(p') at p，，FoE must lie on the line that contains p' and 

V'f(p') , but only on the half of it that starts from the point p ' and goes in the direction 

opposite to V'f(p'). Mathematically, the locus of FoE is the half-line: 

for all KO (5.7) 

Assuming that the camera translation is a backward motion, FoC would locate on 

the half-line: 

FoC=p'+A:V';(p') for all ^>0 (5.8) 
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Figure 5.3 Locus of camera translation t according to a single full optical flow V^p) at 

hemispherical image position p; and the locus of FoE according to a single full optical flow V,’(p，） 

at planar image position p，. 

Now we consider the clue that the normal flows can provide to the estimation of 

camera translation. Fig.5.4 also illustrates pure camera translation in the direction of t. 

v,’(p')=+ (cos…siny)is the normal flow at image position p' on the planar image 

space r . Then the full optical flow at p' will be V, (p’）二+ (cos(y + (T), sin(y+ cr)), 

cr e { - n / 2, k H ) according to Equation (5.3). It means the full flow on F will be of a 

direction that is 土;r/2 of the normal flow direction in the planar image space, and the 

two possible extreme values of the full flow are V'f(p').^/2 and V',(p');r/2, as shown in 

Fig.5.4. Therefore, on the spherical image /, its corresponding full flow at image 

position p is V,(p) ((p x + a ) + a) Of^xp ， cr e {-n / 2, n i l ) . 

Consequently, the above great half-circle locus of t on the spherical surface S has to 
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swing about the line of sight Cp accordingly. Moreover the two possible extreme values 

of the full optical flow V/(p) are V/(p).;r/2 and Vr(p);r/2, where: 

V/(P)_W2 二+ ((px[cos(y — ;zr/2) ?>m{\i/-nl2) 0]T)xp 

V“P)W2 =+ ((px[cos(v/ + 7r/2) sin(v/ + 7r/2) O f j x p 

At image position p, \tivd-di and Vf(p);r/2 define a great circle M on the spherical 

surface S, whose normal vector is: 

n(M；) p X [cos(v/ - k I T ) sin<y — 0 ] ^ \
l
y
 

v
r
!
 

/
I
V
 

In Fig.5.4, the great circle M!, which is drawn in red on the ^-space, exactly 

divides the spherical surface S into two halves. The locus of t is the particular half-

spherical surface that is constrained by t - n ( M � < 0 , or more precisely, 

t •(px[cos(v/-;r/2) sin(v/-;T/2) 0]丁)<0 

which is illustrated by the shaded half-spherical surface in Fig.5. 4. 

A z 

(5.10) 

n(M) 

Figure 5.4 Locus of camera translation t according to a single normal flow v,(p) at hemispherical 

image position p. The shaded hemispherical surface illustrates the possible location of t . 
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The equivalence of the above in the planar image space F is the following. The 

locus of t a s a half-spherical surface ( T - n ( A / , ) < 0 ) on the spherical surface S will be 

projected to a half-plane locus of FoE (or FoC) in the planar space. More precisely, FoE 

lies on the half-plane (Fc»£'-p') v / (p ' ) < 0 if camera translates forward; otherwise FoC 

lies on the half-plane ( F o C - p ' ) • v /(p') > Oin the case of the backward translation. 

Camera translation can be determined by the mechanism described above using 

merely the direction information of normal flow field. Each data point gives a locus for 

the location of t , the intersection of such loci offered by different data points will 

reduce the possibilities of t and even pinpoint it. 

5.2.2 From Direction of Normal Flows to Axis of Pure Camera Rotation 

Suppose a camera is rotating about a rotational axis co, as shown in Fig.5.5. 

RAoR is the intersection of « on the normalized planar image F , as we follow the right-

hand rule to describe camera rotation. \V(p，）is the full optical flow at image position 

p' on the planar image F. As illustrated in Fig.5.5, for a given full flow vector V � ( p ) at 

image position p which is the projection of p', » must lie on the great circle passing 

through p and exactly orthogonal to V^Xp). This great circle, which is drawn in red on 

the spherical surface S，is defined by: 

= 0 (5.11) 

However, this locus of S only guarantees that the full optical flow induced by (o 

and p must be parallel or anti-parallel to V^Xp) in the hemispherical space, but not 

necessarily in the same direction of V^Xp). The line of sight Cp divides this great circle 

into two haves. If the right-hand rule is followed to describe the camera rotation, the 
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possible locus of 5 would be the half-circle drawn in red solid line on the spherical 

surface S, as shown in Fig.5.5. Mathematically, this great half-circle can be described by: 

S . V , ( p ) = 0 and S - [ p x V , ( p ) ] < 0 (5.12) 

Figure 5.5 Locus of camera rotation CO according to a single full optical flow V(j(p) at 

hemispherical image position p. 

In the planar image space, c5 becomes RAoR (or LAoR), but the mechanism is 

not that simple. The locus of 5 as a great half-circle ( c5 • V^(p) = 0 and 

V� (p ) ] < 0 ) on the spherical surface S will be projected to a half-line locus of 

RAoR (or LAoR) in the planar image space. If it is an RAoR, the half-line is: 

RAoR p'+A ( V » x k ) (5.13) 

where A > 0 and k = [0 0 
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If CO is an LAoR, the locus of LAoR is: 

LAoR =+ p'+/l ( V » x k ) (5.14) 

where / l < 0 and k二[0 0 1]丁. 

After investigating the locus of & offered by a specific full optical flow, we 

consider how to locate c5 by using merely normal flows' direction information. Similar 

to the case when we analyze the camera translation, we also start from the normal flow 

v^'(p ') (cosi//, siny/) at image position p ' on the planar image F, then its 

corresponding full optical flow at position p on the hemispherical image I is 

V份(p) =+((px[cos(Y + cr) sin(y + <j) of )xp , (7 e {-Till, nil), which is shown in 

Fig.5.6. The above expression indicates that the half-circle locus of S o n the spherical 

surface S has to swing about the line of sight Cp，as the possible full optical flows at 

image position p is varying from -nil to nil. The two extreme possible values of the full 

optical flows on the hemispherical image space are: and , which are 

corresponding to flows V’仿(p’)_冗,2 and on the planar image F respectively. 

VftXP)-;r/2 and image position p define a great circle M^ ’ drawn in red on 

the surface S in Fig.5.6, divides the spherical surface S into two half-spherical surfaces. 

The normal vector of the great circle MQJ is: 

n ( M J = + ( p x [ c o s ( Y - ; r / 2 ) sm{y/-7rl2) Of ) x p (5.15) 

The locus of ©is the particular half-spherical surface c5•n(M^) > 0, and more 

precisely: 
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S • [(p X[cos(^ -7112) s\\\{y/ -71：H) 0]T)xp]>0 

which is illustrated by the shaded half-spherical surface in Fig.5.6. 

(5.16) 

V � ’ (P’),/2 

Figure 5.6 Locus of camera rotation CO according to a single normal flow V ^ ( p ) at hemispherical 

image position p. The shaded hemispherical surface illustrates the possible location of ra . 

The equivalence of the above in the planar image space is the following. The 

locus of 5 as a half-spherical surface (c5-n(M^) > 0) on the spherical surface S will be 

projected to a half-plane locus of co' in the planar image space. More precisely, (o' lies 

on one of the half-planes separated by the line /.(M�）：p,+2e� for all X, where 

I i (M^)xk ) (k=[0 0 1]^),which is the projection of the great circle Moj 

onto the planar image F. In fact co’=+ p'+zljC^ +/I2 、 
0 x k ) for all 义1，and all 
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义2<0 if CO’ is an RAoR, and co’=+ + 
0 

xk) for all 义 1, a i i d a l U 2 � 0 

if 0)' is an LAoR. 

Upon algebraic simplification, it can be shown that in the planar image space, we 

have: 

s i n ( ^ - y ) 
-[x cos(^ -昏 ) + sin(^ - y ) ] 

-X 

(O 
0 

xk) • l> c o s ( y s i n O -營)] 
-X 

-y. 

- c o s (『營： 

- 營] 

Therefore, in the planar image space F , for a given normal flow 

/ (p ' ) =+ (cosy, s i n^ ) , where p，=(义，y), if to' is used to represent RAoR (or LAoR), 

the locus of o ' is: 

X 

y 
+ ；1^{(义2+/+1) 

sm{y/-7r/2) 
-cos{ij/~7r/2) 

CO却-TT/1) 

sm.{i//- TT / 2) 

-[xcos{t//-7r/2)+ysm{i//-7r/2) y 
X 

-n 1y^iniy/-TT12) (5.17) 

(i) If w，is an RAoR, the locus of RAoR in the planar image space is expressed by 

equation (5.17) on condition that all /l̂  e i? and all 

(ii) If CO’ is an LAoR, the locus of LAoR in the planar image space is expressed by 

equation (5.17) on condition that all \ and all 

Similar to the case of camera translation, the algorithm above also provides a 

mechanism of determining camera rotation from the direction information of normal 

flow field. Each data point gives a locus for the location of 5 , and the intersection of 
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such loci offered by different data points will reduce the possibilities of c5 and even 

pinpoint it. In practice, a voting scheme that transforms the image position and normal 

flow direction to possible locations of & in the 5'-space, similar to Hough Transform, 

will be used. Our voting scheme is presented at the end of this section. 

5.3 Voting Scheme in the (p-0 Domain 

The above analyses show that given a data point in the image steam (where the 

normal flow direction is available), a locus for the location of t or S can be plotted 

on the spherical surface S, and the intersection of such loci from different data points 

would allow the camera motion be narrowed down or even pinpointed. 

In our implementation we used the spherical coordinates p-(p-Q as illustrated 

in Fig.5.2 to parameterize positions on the spherical surface S which is also the camera 

motion space. The spherical coordinates are related to the camera frame coordinates by: 

y = p^mij) sin 0 where ,6 ^ [0，2;r] 
z = p c o s ^ 

Notice that for points on the camera motion space S’ we have p=l . Each data 

point supplies a locus of t or c5 in the (p-6 domain, where all the votes take place 

domain. 

Suppose that the camera undergoes a pure translation in the direction of t . As 

pointed out in the previous analysis, given a normal flow v，t(p,)=+(cos 外 sin 的 ( fo r 

some y/) at image position p'=(x, y) on the planar image space /, , the locus of t as 

constrained by the normal flow is the half-spherical surface 

t •n(M^)<0 
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where =+px[cos(y— ;r /2) s i n ( ^ - n i l ) 0]丁， and p 三[x,少，1广 is the 

equivalent image position on the spherical image space I. 

The above locus can be represented in the (p-9 domain in the following way. 

sm a,— 
h t f H r I f 

t = [sin 於 cos sin 於 sin 约 cos 於], 

Then in the (p-6 domain the inequality t • n ( M � < 0 can be rewritten as: 

sinpt sin伞玄 coscos(j)^ (5.18) 

O r t a n ^ < _ _ — 《 白 [ 0 ， l n \ for 
tan Pt +《） 

Pt 本 kTt 

Of 本 kjT 
j>. ^kn+ 7112 

With a number of data points available, each supplying a generally different 

locus for t as above, we can use a voting process similar to Hough Transform to find 

the best intersection of the loci. The two dimensional (p-0 domain is first discretized to 

become an accumulator array for receiving votes. Each data point offers a particular 

locus of the motion parameter in the (p-6 domain, and we just walk along the locus in the 

domain, casting a vote to each of the (p-6 bins we come across. Once all the votes from 

all the data points have been casted, the bins with the highest number of votes become 

the solution space of the motion parameter. How precise can the motion parameter be 

determined depends upon how fine is the discretization of the (p-0 domain, which can 
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always be increased at the expense of the computation load. Issues like this have been 

well addressed in the literature related to Hough Transform. 

Similarly, suppose that the camera undergoes a pure rotation about the axis S . 

As pointed out in the previous analysis, given a normal flow v， (̂p，)=+(coŝ î ，sin 的(for 

some If/) at image position y) on the planar image space /,，the locus of as 

constrained by the normal flow is the half-spherical surface: 

份 sin^^ sm{a^ + 0 J > - c o s凡 cqs伞份 (5.19) 

where, sin a , 二 , , = ^ ( / ' J 

a n d S ( M J 二 = 

In the (p'6 domain, the region that v^/p) votes for S is a half space that lets 

Equation (5.19) hold. 

Actually only normal flows on the planar image space are what could be 

obtained directly from image sequences. For each normal flow on the planar image, we 

firstly calculate its projection in the hemispherical image space. And then we determine 

which half-spherical surface this normal flow would vote for according to Equation 

(5.10) or Equation (5.16). Finally the half-spherical surface is projected into the (p-6 

domain: the accumulator domain. An example of the (p-6 accumulator array is shown in 

Fig.5.7. 
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(C) 

camera translation t . 

after one normal flow 

The green star 

vector has been 

Figure 5. 7 The voting process over the (p-0 domain for 

marks the ground truth of t . (a) The accumulation array 

used. The region marked black is the half-space that the normal flow votes for. (b) The 

accumulation array after two normal flow vectors have been used. The darker region is the 

intersection that both the two normal flows vote for. (c) The accumulation array after 25 normal 

flow vectors have been used. The region marked red is the bins with the highest voting value, and 

it is the intersection that all the normal flows vote for. 

5.4 Entire Solution Procedure on Camera Ego-motion Estimation 

On estimating camera ego-motion, each data point with its normal flow gives a 

locus for the location of the camera motion, the intersection of such loci offered by 

different data points will reduce the possibilities of the motion and finally pinpoint it. In 

details, the steps could be summarized as follows: 

Step 1. Calculate normal flows from the image sequences. 
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Step 2. Determine the great circle Mt and the particular half-spherical surface 

according to Equation 5.9 and Equation 5.10 ( or the great circle My and 

the particular half-spherical surface according to Equation 5.15 and 

Equation 5.16 )for one normal flow. 

Step 3. Apply voting scheme for the normal flow in the (p-6 domain. 

Step 4. Check the accumulation array and look for the bin with the highest voting 

value, which is the solution for the camera motion. 

5.5 Experim ental Results 

We tested our algorithm with both synthetic image data and real image 

sequences. The experiments with synthetic image data include the estimation of t or S 

when the camera undergoes pure translation and rotation respectively. The experiment 

with real image sequences only tested the method on estimating t when the camera 

took a pure translation, since the algorithm on pure camera rotation estimation is 

equivalent to the one on pure camera translation estimation. The (p-9 domain is of 

resolution 1000x2000 pixels. 

5.5,1 Experiments on Synthetic Image Data 

Synthetic data experiments are important because they are the ones with ground 

truth easily and truly accessible. We used them to examine the accuracy of the method. 

Normal flows are the only input, same as in the case of real image experiments. 

97 



ESTIMA TION OF CAMERA ’ S EGO-MOTION FROM NORMAL FLOWS 

5.5. Estimation of Camera's Pure Translation 

The scene was assumed to be of a texture that caused randomly distributed 

intensity gradient directions in the image domain. The optical flows were induced by the 

assumed camera translation at each image position of the image plane, and only their 

components in the directions of the intensity gradients were made accessible as the 

normal flows. Our synthetic data consisted of images of resolution 500x500 pixels, but 

with 2394 (i.e., 0.9576% ) of the randomly selected image positions having normal 

flows observable. The two flow fields are shown in Fig.5. 8. 

(a) (b) 
Figure 5. 8 The flow field incurred from a camera translation, (a) The full optical flow field, (b) 

The normal flow field under the assumption that the intensity gradient directions in the image 

domain were randomly distributed. 

We firstly projected the normal flow vectors shown in Fig.5.8 (b) onto the 

hemispherical image L For the normal flow vector at each image position, we drew its 

great circle M, of the spherical surface S according to Equation (5.9), and then determine 

which hemispherical surface, that the particular normal flow vector votes for, would 

represent the locus of camera translation t，according to the Inequality (5.10). Fig.5.9 
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gives an example of the voting scheme on the spherical surface S for a given particular 

normal flow v' (p’）in the planar image space. 

Figure 5.9 The voting scheme on the spherical surface S for a given particular normal flow assuming 

that camera undergoes pure translation. The normal flow v'(p') on the planar image was first 

projected onto the spherical surface as v(p). Then the spherical surface is divided into two 

hemispherical surfaces by the blue great circle M,. The hemispherical surface marked with red dots is 

the region that the normal flow v'(p') votes for t . 

The above hemispherical surface with red dots marked can be transformed to the 

region marked with red dots in the (p-6 domain, as showed in Fig.5.10. The purple curve 

in the (p-6 domain is exactly the projection of the blue great circle Mt shown in Fig.5.9. 
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T 
II 

"H. 

theta=[0 2*pi ] 

Figure 5.10 The voting scheme in the (p-0 domain for a given particular normal flow v'(p') 

assuming that camera undergoes pure translation. The region marked with red dots is the 

normal flow v'(p') voting for t . 

We let the 2394 normal flows be used in the proposed method. The accumulation 

array in the (p-6 domain is shown in Fig.5.11. The (p-6 domain was discretized to 

1000x2000 in the vote collection process. 
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Figure 5.11 The accumulation array in the (p-0 domain for camera translation determination, 

with only 2394 normal flows used. The tp-0 domain was made of 1000x2000 resolution in the 

vote collection process. The region marked in red is the narrowed solution space for the camera 

translation t，which perfectly encloses the ground truth (the green star), showing that the 

method works as predicted. 

As can be seen from Fig.5.11, even with 2394 data points the method managed to 

narrow down the camera translation T to a rather small solution space (the region 

marked in red), which perfectly encloses the ground truth of T (the green star in 

Fig.5.11). The experiment indicates that not only does the method work as predicted, it 

also allows less texture to be present on the scene. Table 5.1 summarizes the findings 

from the experiment. We calculated the angle between each estimated solution and the 

ground truth, and used the standard deviation (STD) of these angles to describe the 

accuracy of the estimated result. 



ESTIMA TION OF CAMERA ’ S EGO-MOTION FROM NORMAL FLOWS 

Table 5.1 Accuracy analysis of camera translation determination. 

Ground truth of t [-0.2673 -0.8018 0.5345]'^ 
STD of the determined solution zone 1.78520 

5.5.1.2 Estimation of Camera's Pure Rotation 

In this experiment we assumed that the camera was rotated about an axis S that 

passed through the camera's optical center. Again, an image resolution of 500x500 

pixels, but with 2256 (i.e., 0.9024% ) of the randomly selected image positions having 

normal flows observable was used, and a random distribution of the intensity gradient 

directions in the image domain were assumed. Fig.5.12 shows the full flow field and the 

normal flow field. 

(a) (b) 
Figure 5.12 The flow field incurred from a camera rotation, (a) The full optical flow field, (b) 

The normal flow field under the assumption that the intensity gradient directions in the image 

domain were randomly distributed. 

Similarly, we firstly projected each normal flow vector onto the hemispherical 

image domain, and then drew its great circle M^i of the spherical surface S according to 

Equation (5.15). According to the Inequality (5.16)，the particular normal flow v(p) 

determined which hemispherical surface is the domain that it should vote for & . 
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Fig.5.13 gives an example of the voting scheme on the spherical surface S for a given 

particular normal flow v'(p ') in the planar image space. 

Figure 5. 13 The voting scheme on the spherical surface S for a given particular normal flow 

assuming that camera undergoes pure rotation. The normal flow v'(p') on the planar image was 

first projected onto the spherical surface as v(p). Then the spherical surface is divided into two 

hemispherical surfaces by the blue great circle M„j. The hemispherical surface marked with red 

dots is the region that the normal flow v'(p') votes for CO. 

The above spherical 

Fig.5.14. The purple curve 

circle Mm shown in Fig.5.13 

surface can be projected into the (p-6 domain, as shown in 

in (p-0 domain is exactly the projection of the blue great 
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T 
li 

"2 . 

theta=[0 2*pi] 

Figure 5.14 The voting scheme in the (p-0 domain for a given particular normal flow v'(p') 

assuming that camera undergoes pure rotation. The region marked with red dots is the possible 

location that normal flow v，(p’）votes for (6. 

We let the 2256 data points be used in the proposed method. The accumulation 

array in the (p-6 domain was shown in Fig.5.15. The result again shows that the proposed 

method works well even with rather few data points 
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Figure 5.15 The accumulation array in the <p-0 domain for camera rotation determination, with 

only 2256 normal flows used. The domain was made of 1000x2000 resolution in the vote 

collection process. The region marked in red is the narrowed solution space for the camera 

rotation o5，which perfectly encloses the ground truth (the green star), showing that the method 

works as predicted. 

Tab.5.2 summarizes the findings from the experiment. We also calculated the 

angle between each estimated solution and the ground truth, and used the standard 

deviation (STD) of these angles to describe the accuracy of the estimated result. 

Table 5.2 Accuracy analysis of camera rotation determination 

Ground truth of ® [0.2673 -0.5345 0.8018]' 
STD of the determined solution zone 0.5035a 

Obviously, the more data points (image positions with normal flow directions 

observable) are used, the more precise would be the camera motion determined. The 

solution zone in the (p-6 domain for the motion parameters will only get smaller as more 

data points and in turn more loci of the motion parameters are included. Tab.5.3 shows 

how the precision of the solution improves as more data points came into the process. It 

can be seen that the improvement is much better than linear.. 

No. of input 
normal flows 

Number of Possible Solutions 
for S (under the same 

resolution of the voting space) 

STD of the determined 
solution zone 

25 93413 10.5226� 

90 2387 5.4537° 
225 1242 2.8902� 

380 119 I.7333G 
552 98 1.2482° 

2256 19 0.5035° 
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As more input normal flows are applied, the number of possible locations of c5 

decreases dramatically, so does the STD of the estimation results. 

5.5.2 Experiments on Real Image Sequences 

The experiments on real image data include applying our algorithm to both 

highly textured images and the images without plenty of distinct features. When dealing 

with the highly textured image sequence, a small portion of image data is sufficient to 

achieve a result with the similar precision as that by using all the image data. 

5.5.2.1 Experiment on the Highly Textured Images 

The image sequence was captured by the Dragonfly camera when it took a pure 

translation on a translational platform. The sample images of resolution 640x480 pixels 

are shown in Fig. 5.16. 

Figure 5.16 Sample images of the input 

• 丄 智 • 画 • « “ • , • • ^ _ 

^.jssiisil 
which is highly textured. 

The input image data was first smoothed by Gaussian filter (with n=5 and G=\A) 

before the normal flows were determined. The normal flow was computed by using 
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3 x 3 Sobe! operators to estimate the spatial derivatives in the x-direction and；/-direction, 

and by subtracting the 3 X 3 box-filtered values of consecutive images to estimate the 

temporal derivatives. Only 1% of image data with their normal flows were chosen 

randomly to estimate camera translation t , as the texture of the scene is approximately 

normally distributed. The elapsed time is 167.338696 seconds by running the Matlab 

code using the PC (Pentium(R)4 CPU: 3.40GHz, RAM :1.00GB). For comparison, we 

also measured the camera translational using a traditional camera calibration method 

[Bouguet], in which the inputs were not optical flows, but the manually picked corner 

correspondences over the chess-board pattern in the consecutive images. The calibration 

methods by using chess-board patterns and manually picked corners are usually able to 

achieve the results of high accuracy. However, they have to rely on human intervention 

during the calibration process. Fig.5.17 shows and compares the results from the 

proposed method and the traditional camera calibration method. The two results are 

close to each other, showing that the proposed method does produce reasonable result. 

- 2 0 0 

500 1000 

theta=[0 2*pi] 

1500 2000 
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Figure 5. 17 The accumulation array in the <p-0 domain when dealing with the highly textured 

images. The (p-O domain was made of 1000x2000 resolution in the vote collection process. The 

region marked in red is the narrowed solution space for the camera translation T，and the green 

star is the result from an established method in the literature. 

Estimation result is detailed in Tab.5.4. Two possible locations of t , which we 

named as solution 1 & 2 respectively in Tab.5.4, were obtained after we applied 1% of 

the detectable normal flows (non-zero normal flow vectors) in the image domain. The 

estimation result by the traditional camera calibration method [Bouguet] is also listed in 

the following table. 

Table 5.4 The experimental result on estimating camera translation using the real image data of 

highly textured images 

Our 
Approach 

Solution 1: [0.1827 0.0999 0.9781]' Our 
Approach Solution 2: [0.1247 0.0655 0.9900]’ 

Traditional Camera Calibration [0.1190 0.0630 0.9909] 1 

We evaluated the experimental result by calculating the angles between the 

solutions, since t is a unit vector. The angles between these estimated vectors for t are 

shown in Tab.5.5. (51 and S2 represent the two solutions achieved by our algorithm, and 

rrepresents the result calculated by the traditional camera calibration method [Bouguet]. 

For instance, Angle <S\~S2> represents the angle between Solution 1 and Solution 2.) 

the angle between the unit vectors 

Angle <S\-S2> Angle <S\-T> Angle <S1~T> 
3.9328° 4.2623° 0.5326� 
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5.5.2.2 Experiment on the Images without Plenty of Distinct Features 

We moved the camera on a translational platform against a typical office scene. 

The image sequences were captured by PENTAX DSLR camera at 1536x1024 

resolution. Fig.5.18 shows sample images of the input image sequence. The scene was 

sparsely textured, which poses great difficulty to all existing direct methods (that do not 

require to establish explicit motion correspondences including optical flows as 

intermediate terms in the process). 

Figure 5.18 Sample images of the input image sequence without plenty of distinct features. 

The input image data was smoothed by Gaussian smoothness filter (with n=5 and 

<7=1.4) before calculating the normal flows. Only 10,003 pixels with detectable normal 

flows (0.6% of all pixels in the image) were obtained due to the sparse features. All 

these detectable normal flows were applied to estimate camera translation t . And the 

elapsed time is 1374.122204 seconds by running the Matlab code using the PC 

(Pentium(R)4 CPU: 3.40GHz, RAM :1.00GB).. We also calculated camera translational 

direction using the traditional camera calibration method [Bouguet]. Fig.5.19 shows and 

compares the results from our proposed method and from the traditional camera 

calibration method. 
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theta=[0 2*pi] 

1500 2000 

Figure 5.19 The accumulation array in the (p-O domain when dealing with the images without 

plenty of distinct features. The (p-0 domain was made of 1000x2000 resolution in the vote 

collection process. The region marked in red is the narrowed solution space for the camera 

translation 7，and the green star is the result from an established method in the literature. 

The results from the two methods are summarized in Tab.5.6. The two possible 

solutions for t , referred to as solution 1 and 2 respectively in Tab.5.6, were the only 

ones left after we applied all the normal flow data available in the image domain. The 

result of the traditional camera calibration method [Bouguet] was also listed in the table. 

Table 5.6 The experimental result on estimating camera translation using the real image data of 

images without plenty of distinct features. 

Our 
Approach 

Solution 1: [-0.6078 -0.0115 -0.7940]' Our 
Approach Solution 2: [-0.5977 -0.0169 -0.8016]丨 

Traditional Camera Calibration [-0.6887 -0.0981 -0.7184]‘ 
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We compared the results also by calculating the angles between the determined 

translation directions. The angles T are shown in Tab5.7 (iSland SI represent the two 

solutions from our method, and T represents the result from the traditional camera 

calibration method [Bouguet]). The angular differences are rather small, showing that 

the results are close. 

Table 5.7 Evaluation of the experimental results (dealing with images without plenty of distinct 

features) by checking the angle between the unit vectors 

Angle <S\~S2> A n g l e 〈幻〜 7 > Angle <S2�T> 

0.5910� 8.0568 ° 8.4426 0 

5.6 Summary 

We have presented a method of determining camera motion directly from 

normal flows, without requiring to establish explicit motion correspondences in the 

process. The method is based upon a new understanding of how the normal flow 

direction at any image position constrains the camera motion parameters. The essence of 

the method includes that it allows the imaged scene not to contain distinct features that 

are uniquely trackable over time, nor dense texture for letting the full optical flows be 

interporatable. As the method does not leave any normal flow data unused, it also 

demands less texture from the imaged scene. Experimental results show that the method 

is effective in determining camera translation and camera rotation from just a small 

amount of normal flow data present in typical office scenes that are generally only 

sparsely textured. The results also show that the determined motion parameters are of 

reasonable accuracy. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORKS 

6.1 Conclusion 

In this thesis, we focused on the normal flows, the information directly obtained 

by the application of some simple derivative filters to the image streams, to explore what 

we could achieve by only making use of them directly. Our work includes two 

approaches. One is to estimate the inter-camera geometry of cameras directly from the 

monocular normal flows. The other is to calculate camera's ego-motion (pure camera 

translation and pure camera rotation) by directly using normal flows. 

Firstly，we presented a method of determining the inter-camera geometry of 

cameras in chapter 4. The essence of the method is that its operation does not require 

presence of specific objects, parallel lines or distinct features in the imaged scene, nor 

does it require overlaps in the visual fields of the cameras. In a way the method is 

correspondence-free, as it does not depend upon correspondences across binocular views 

nor those across motion frames. The required normal flows are directly and locally 

acquirable from the image data without involving interpolation or high level processing. 

Experiments on synthetic data show that the solution is close to the ground truth, and 

experiments on real image data illustrate that the method is operable even for cameras 

with little overlap in their visual fields. 

The method is much about locating the zero-boundary in the image space that 

separates the data points - the image positions with normal flows observable — that are 

labelled differently. The more s-axes are used, the more of the data points can be used in 

the process. We have provided a way of selecting the s-axes so that the same number of 
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the axis choices offers the maximum number of data points that are involved in the 

solution process. Experimental results indicate that the selection scheme does make a 

dramatic impact. 

Secondly, in chapter 5 we proposed our direct method on estimating camera's 

ego-motion. Spherical image space is applied in order to avoid the ambiguity on 

describing camera motion. Hence, before addressing our novel method, we presented the 

projection scheme to project flow vectors from planar image space to spherical image 

space and vice versa. Our method on estimating FoE and RAoR makes use of only the 

direction information of normal flows. A voting scheme in the (p-6 domain is applied to 

simplify the 3D voting space to the 2D voting space. We tested our method using both 

synthetic image data and real image sequences. The experimental results showed the 

good performance. 

6.2 Future Work 

Our future works are concentrated on the camera ego-motion estimation. 

In this thesis, we only proposed the framework of the solution we attempted, but 

there is much more works to be explored. 

Firstly, the magnitude of rotational component can be determined from the 

magnitude information of the normal flow field without association with the scene depth. 

The first task of our future work is about the camera rotation magnitude estimation. 

Secondly, we attempt to challenge the case of general camera motion. When the 

camera undergoes general motion, the normal flows are affected by both the rotational 

component and the translational component in unknown proportion. One thing is sure 

however: since the roles of rotation and translation in affecting the normal flow are 

113 



CONCLUSION AND FUTURE WORKS 

generally of the same significance and no particular order, if they can be determined, 

they should be determined simultaneously. We will further explore the algorithm to 

fulfil the task. 
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APPENDIX 

A.l Analysis on Equation (4.9) 

In Chapter 4, Equation (4.9) can be rewritten as follows: 

COŜ I B; B? B � 
「 

-1 T 

COS = B; B; Ru Ru 尺 13 F Rll ^23 $31 R32 ^33 
J 

(6.1) 
COS <93 B； B � B ; _ 1x9 _ 

3x1 

where R, 
穴 11 Ryi ^13 

^ 2 1 穴 22 及 23 

^31 Rn ^33 

，and By, 1 X 3 matrix , represents the term calculated by 

Aj and t^，and j stands for different s-axis. 

Proposition 1. rank 

3, and p 右 q, rank 

Bi 
B； 

B： 

=1，where 2 ,3. rank =2，where p, 2, 

Proof. In (6.1), = 

. B ； 

； B ； 
> 1 ¥> i 
3 B; 

二 3 

fi'2, Jc. + A 

+ A ,7=1, 2, 3, and j represents 

axes. Hg = [t^ t i is the normalized translational component three different 

with respective to the coordinates of camera B 

A, =[s,;L [S,] = 
V z 

- S ； S ； 

, 2 
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Then element B', can be rewritten as: 

Since rank(PQ) < min {raiik(P), rank(Q) }, we have rank 
B； 

Bi 
Bl 

Now we prove rank(B风)=2，where B) 
B? 
B? p. 2, 3, andp^q 

As we known, both rank 
Bl 
B 1 and rank =1 • Hence the possible maximum 

rank of B^^ is 2. Choose two columns from B / and B / respectively and rewrite them 

into a new matrix: 

BPq = 
dot{[A^\ 

A'] A 
A 

A'] 

似 A 

A 

hi 
1 

hi 
2 

h2 
3 

A 
A 
A 

dot{[A^\ A'] 
dot{[A^\ A'lli] 

A'llil) dot{[A'\ A 

A 
A 
A 

yt3i im 
k3-\ ；m 
lU^B 

k3i 7m 

A'! A k2 

A 
A k3 

A'l A Jfc3 

A'l A kl A kl, 

' (3x1) 

0 (3x1) 

where h, k, m, «=1, 2,3 (h ^ k), and 
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t2 

(玄1 

ft 

Clearly, if rank(A^^)>l, rank(B刊)> 1,because generally rank(T饥”)=2. And 

A only depends on the 3 arbitrarily chosen 

such that rank(A^^)=2. 

Hence, there always exist 3 s-axes 

Similarly, rank 
B; Bf B； 

B^ B: 
B； B � B ； 

3 is also can be proved. 

Since s-axes are chosen arbitrarily, there always exist such 3 s-axes to obtain 

Equation (6.1). By applying some elementary matrix operations, (6.1) can be arranged 

into: 

' m ) C, 0 0 -- - 丁 

m ) = 0 C2 0 灭 11 Rn ^13 只 21 ^22 ^ ？23 ^31 ^32 $33 
/ 

(6.3) 

m ) 0 0 C3 - 1x9 -
3x1 

where J{9i) is a scalar, and Q is a 1x3 matrix with rank 
c . 

1. If equation (6.3) 

could be obtained, we prove rank 
C, 
C, 
c . 

=1 below. 

Equation (6.2) is rewritten as follows: 

A ^B + ^B^ + ^B 
乂2 ^B + ^B^ + tg 
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Then we further rewrite the 3x9 coefficient matrix: 

B̂  B 
2 

B 
B “ 
B\ BI B 

B2 B, 
K 
K 21 

K ,31 

K 12 

K 22 

K 
32 

K 13 

K 
23 

K 33 

where k • 力 . = + A?t/ + A^ft/ is a scalar J , /二 1’ 2, 3. 

As presented above, the expression could be arranged in the form of (6.3) by 

applying some elementary matrix operations. Then the coefficient matrix of (6.3) must 

be: 

C, 0 
0 c 
0 0 

0 

2 0 

c 

一 
A("'，W2) - 0 “ ‘ 0 ， 

= 0 V t T 0 T 
I5 

」 0 0 _ •力 J 忍 )」 

3x9 

where t^), tfi)and scalar functions, i,j=l, 2, 3. 

Therefore, the rank ( 
Ci 

c . 

丨)V 
〜 

o v )=i‘ 

A,2 Locus of Full Flow from Normal Flow in Planar Image Space 

We present here the proof of the locus of full flow from normal flow in planar 

image space in Chapter 5. 

Consider any image position on the normalized image plane, where the 

normal flow is observed to be v’(j)，)=+(cos% sin的 in the planar image space. As v,(p，） 

is only the projection of the true flow onto a certain direction (the direction of the local 

intensity gradient) in the image space, the true flow V,(p,)’s direction must be in the 

range: 
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V' (p') =+ (cos(y + cr), sin(y + cr)) for any cr e {-7t / 2，;r / 2) 

The above description in the hemispherical image space is that at image position 

(x, y,\), where the normal flow v(p) is: 

v(p) =+ [px 
，(P，) 

0 
]X p 二（[x’乂If X [cos^,sin^^，0]�）x [x, 

(which is constructed from v'(p') to have the property v(p)丄 p), the full flow V(p) is 

of the following range of values: 

V(p)=+ ([;c，_y，l]r x[cos(y+<T)’sin(y+ cr),0;f )x [；c’少,1]�for any cr e (- ;r / 2, ;r / 2) 

Notice that given any flow u(p) (normal or full; a 3-vector) on the hemispherical 

image space I at image position p = ，the corresponding flow u'(p') (a 2-vector) 

on the planar image space F at image positionp'= [x,yY ’can be determined as: 

{[p X u(p)] X k} where k = [0,0,1]' 

In other words, for the above full flow locus 

V(p) =+ ([x, X [cos(^ + cr), sin(^ + cr),0]^) x [x, y,\Y for any cr e {-tt H.tcH) on 

the spherical image space, the corresponding full flow locus on the planar image space is 

O" 
V'(p') =+ 

0 
{[px V(p)] X k}, which can be simplified to: 

V'(P') 二+ {[pxV(p)]xk} 

{[px{(px 
cos(y + cr) 
sin(^ +cr) 

0 
ixp}]xk} 
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o1 cos(^ + cr) cos(^ + cr) 

0_ {[(p •?)(?>< sin(^ + cr) 
0 

)-(p-(px sin(^ + (j) 
0 

{[(P'P)(PX 

))p]xk} 

by the identity a x (b x c) = (a • c)b -（a. b)c 

sin(^ + (j) ) - 0 ] x k } 

0 

{(px 

COS(y+ (T) 
sin(y + cr) ) x k } 

0 

because (p. p) is positive 

{( 
cos (y+ cr) 

sin(y + (j) 

0 
丨xk} 

—sin(y + cr) 

cos(^ + {T) 

X s i n ( ^ + cr)—少 c o s ( y + cr) 

xk} 

-s in(Y + cr) 
COS(y +<T) 

X + ( j ) - y cos(^ + cr) 

cos(y + cr) 

sin(^ + cr) 

0 

which is simply a result that is expected: 

V，(P’）=+ 
cos(y + a) 
sm(^ + cr) 
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