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ABSTRACT 

With the increasing amount of data in financial market, there are two types of 

data streams attracting a lot of research and studies, time series index stream and 

related news stream. In 'this thesis, we focus on discovering patterns from these 

data streams and try to answer the following challenging questions, I) given two 

co-evolving time series indices, what is the co-movement dependency between 

them. II) given a set of evolving time series, could we detect some leaders from 

them whose rise or fall impacts the behavior of many other time series? Ill) could 

we integrate the news stream information into stock price prediction? IV) could 

we integrate the news stream information into stock risk analysis? and V) could 

we detect what are those events that trigger time series index movement. For 

each of the question, we design algorithms and address three technique issues I) 

how to detect promising patterns from the noisy financial data II) how to update 

the old patterns when new data arrives in high frequency. Ill) how to use the 

pattern to support the financial applications. ' 

We start from investigating the co-movement relationship of multiple time 

series. We propose techniques to study two aspects of this problem. First, 

we propose a c o movement model for constructing financial portfolio by analyz-

ing and mining the co-movement patterns among two time series. Second, we 

presents an efficient streaming algorithm to discover leaders from multiple time 

series stream. Both of the algorithms are evaluated using real time series indices 

data and the result proves that co-movement patterns and detected leaders are 

promising and can support various applications including portfolio management, 
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high frequency trading and risk management. 

Then, wc consider the patterns between news stream and time scries in-

dices stream. We first transform the news stream into a set of bursty feature 

(keywords) time series streams and propose three technique to study their re-

lationship to time series index. First, we explore a Non-homogeneous Hidden 

Markov Model (NHMM) to predict the stock market process winch takes both 

stock prices and news articles into consideration. Second, we propose a risk 

analytical model to predict the volatility of price indices by integrating news 

information. Finally, we devise an algorithm to detect the priming event from 

text and a time series index. The evaluation on real world dataset suggests the 

significant correlation exists between news stream and time series stream and our 

pattern discover algorithm can detect promising patterns from this relationship 

to support real world applications effectively. 



摘要 

•当今金融市场，信息与n倶增。在这些海量信息中，有两种类_型的数据流受 

到研究界最多的关注，他们是时间序列指数流以及相关的新闻数据流。在这 

篇论文里，我们专注于从这些数据流中挖掘出有用的模式从而来回答以下挑 

战性的问题。 I )给定两条数据流，在共冋移动中，他们之间到底有什么相互 

影响的关系？ I I )给定一系列数据流，我们是否可以从他们中找到领头的数据 

流，该数据流的上升下降会影响很多其他数据流的移动。ni)我们能否把外部 

的新闻信息整合到对股票价格趋势的®测中去？ IV)进一步，我们能否把新闻 

信息整合到对股票价格波幅的预测中去？ V)我们能否自动发现和组织那些对 

时间序列流移动产生重大影响的事件。我们为每一个具体问题设计算法并试图 

解决以下三个技术难点， I )如何从充满扰乱的金融数据中找到那些有用的模 

式？ II)如何在新的数据到来的时候尽快更新这些模式？ III)如何利用这些模式 

去解决金融应用中的实际问题。 

我们从调查多条数据流的相互移动影响关系幵始。我们提出了技术去解决 

两个方面的问题。第一，我们通'过分析两条时间序列的相互移动关系提出了 

同移模型来构建金融投资组合，第二，我们提出了一种有效的流算法从多条 

时间序列中找到领头的时间序列。我们用真实的时间序列数据测试了这两种 

方法。实验证明，我们的同移模式和领头时间序列能够很好的支持包括投资 

组合管理，高频交易以及风险分析在内的多种金融应用。 

另外，我们分析新闻事件流和时间序列流之间的关联模式。我们首先把 

新闻转化为一系列爆发关键字流，然后提出了三种方法来分析这些爆发关键 

字流同时间序列指数流之间的关系。首先，我们使用异质的马尔可夫模型来 

整合新闻和股价信息，从而对股票市场的变化过程进行建模。通过这种方法 
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我们可以预测股价的未来走势。其次，我们提出了能够整合新闻信息的风险分 

析模.型，该模型可以自动找到与股价波幅相关的新闻信息从而来判断股价波幅 

的变化。圾后，我们设汁了一套方法用来从新闻流中找到对时阅序列指数产 

生重大影响的事件。我们在真实数据中测试了上述方法，ii丨：明新闻事件流跟 

时间序列指数流间存在着明显的关系，而我们的模式挖掘方法能够打效的找出 

这些关系，并能够很好的支持实际金融应 j l j。 
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C H A P T E R 1 

I N T R O D U C T I O N 

With the increasing amount of data in financial market, there are two types of 

data widely observed by the investors and government officers. I) Price Index 

Stream. In the stock market, at each time tick, every equity has a quoted 

price for trade. And the buy and sell actions from investors will alter this price 

from time to time and generate an evolving price time series stream. II) News 

Stream. The buy/sell decision of investors are largely influenced by the external 

information related to the market, Most of external information is interpreted 

in the form of market news. As soon as an event emerges, the reporter will 

write a story and publish it as a news article. Therefore, the news stream is 

characterized by the arrival of the news articles. However, the influence of news 

articles over the market largely depends on its content. For example, a good 

news about company earnings is likely to drive the price index up. While a news 

report about company's regular operation may have little impact on the price 

movement. 

Here, we use figure 1.1 to illustrate these two data streams, as well as the 

interaction between them. In this figure, there are four time series index streams 

and a stream of news articles. Each of the stream is evolving over time. And 

we can see there are relationship between a pair of price indices, i.e., the link 

between T\ and T2. On the other hand, a time series indices is also related to 

some news articles. For example, news articles N\ and N2 are related to price 

1 
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Figure 1.1: Financial Data Streams 

index T l , news articles NZ and N1 are related to price index T2. 

Based on the above data modeling, some pattern discovery questions arise 

naturally. First, from the co-movement of time series indices, 

• What is the co-movement dependency between two price indices [79]? 

• Given a set of evolving time series, could we detect some leaders from them 

whose rise or fall impacts the behavior of many other time series [82, 81]? 

Second, from the evolving time series index and news streams, 

• Could we utilize the impact of news articles to predict the trend of the 

price index [78, 80]? 

• Could we utilize the impact of news articles to predict the volatility of the 

price index? Moreover, can the risk generated from news stream transfer 

from one price index to another if they are highly correlated [63]? 

• Could we detect and organize these news events which trigger the move-

ment of time series index? 
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These questions are exactly what we want to answer in this thesis. And for 

each of them, we want to address the following technique problems: I) How to 

detect promising patterns from the noisy financial data II) How to update the old 

patterns when new data arrives in high frequency. Ill) How to use the pattern to 

support the financial applications. We will formally define these problems and 

discuss the challenges in next section. 

1.1. Problems and Challenges 

In this section, we will introduce following patterns discovery problems which 

are challenging and have many practical financial applications. 

1.1.1. Co-movement of Two Time Series 

Many financial applications can converge to the problem of analyzing the co-

movement of two time series. For example, in the modern financial engineering 

discipline, while the underlying principle of governing how the portfolios should 

be constructed is simple and intuitive - minimize the expected risk and maximize 

the expected return, the definition of expected risk and the definition of expected 

return are usually ambiguous and questionable. 

For instance, given two financial assets, A and B, where we know that 

whenever the price of A drops, the price of B will drop, and vice versa. Intuitively, 

it may not be appropriate to construct a portfolio by including both A and 

B concurrently, as the exposure of loss will be increased. Yet, such kind of 

relationship can not always be captured by co-variance(i.e traditional statistics). 

In fact, this problem is exactly what lead to the major differences among 

different portfolio management theories. Little consensus exists among different 

theories regarding to their meanings and their measurements [56, 4，51, 31，41. 

Therefore, our task is to design a new comovement model to capture the de-

pendency relationship between two time series indices and measure the expected 

return and risk of the portfolio. 
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1.1.2. ‘ Leaders of Multiple Time Series 

In the literature, the lagged correlation between two streams litis been well stud-

ied in empirical research [15, 5, 68] and efficient algorithms to discover lagged 

correlations have also been developed [69]. However, the study oii suininarizing 

the relationships across multiple data streams is still lacking. The comprehensive 

relationships among multiple data streams are very helpful in financial applica-

tions to monitor and control the overall nioveineiit of the market where the price 

indices streams are generated. 

For example, the stock market can be modeled as a financial network, in 

which each stream represents the price of a stock. The lead-lag effect between two 

streams implies that the price change of one stock influences that of another [68 • 

In finance crisis, when the market goes down dramatically and the government 

plans to launch finance bailout, the regulators desire to know the subset of stocks 

which poses risks (influences) on others and triggers the movement of the whole 

market. They can then apply a program to these market leaders and control the 

overall systemic risk. 

However, the problem of finding the leaders among multiple time series poses 

great challenges. First, the observations of stock price usually change rapidly over 

time, which implies that the leaderships among them may also change from time 

to time. Therefore, the lagged correlations between pairs of time series, which 

are used for leadership identification, must be re-computed for every new time 

tick, while the correlation computation at each time tick is already costly. This 

high computational complexity makes the design of an efficient solution difficult. 

Second, after computing the lagged correlation between each pair of price indices, 

how to define and extract useful leaders out of the whole set of time series is also 

a big challenge. 

Therefore, our task is to design an algorithm to detect the leaders among 

the multiple correlated price indices effectively and efficiently. 
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1.1.3. Integrating News Stream for Stock Prediction 

In many real world applications, decisions are usually made by collecting and 

judging information from multiple different data sources. Let us take the stock 

market as an example. We never make our decision based on just one single 

piece of advice, but always rely on a collection of information, such as the stock 

price movements, exchange volumes, market index, as well as the information 

from the news articles, expert comments and special announcements (e.g., the 

increase of stamp duty). 

Yet, modeling the stock market is difficult because: (1) The process related 

to market states (up and down) is a stochastic process, which is hard to capture 

by using the deterministic approach; and (2) The market state is invisible but 

will be influenced by the visible market information, such as stock prices and 

news articles. 

Therefore, our task is to develop a new model to integrate both news and 

price information into the stock market modeling and predict stock price move-

ment. 

1.1.4. Integrating News Stream for Risk Prediction 

Modern risk management system has been strongly criticized in the recent fi-

nancial tsunami, where the numerous different arguments converge to one single 

theme: the current system failed to accurately estimate the risks of financial 

instruments, which were considered to be isolated, but in many cases seemingly 

challenge human understanding [28]. In stock markets, risk means the uncer-

tainty of future outcomes, and is the probability that an investment's actual 

return is different from the expected value. Volatility, which measures the vari-

ation or dispersion or deviation of an asset's returns from the mean value, is 

used to quantify risk over a time period. The risk of a financial instrument is 

commonly estimated by the stock price volatility, which measures the variation 

or dispersion or deviation of an asset's returns from the mean value. 
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Several models (e.g., ARM A [27], GARCH [9j) were proposed to prcdict 

the future volatility based on historical stock pricc (time series information). 

However, these models cannot fully capture the bursty behavior of stock prices, 

especially when there is some breaking news hitting the market. 

Several studies (67, 27, 17] have discussed the GARCH forecast errors and 

related the errors to the arrival of asset specific news articles, i.e., the existing 

models cannot interpret the change of external environment (news) and therefore 

could not react accordingly. In [67], a classification model is designed to detect 

interesting news articles that would help understand the behavior of stock price 

volatility. However, except for some empirical studies, none of these methods 

attempted to incorporate news information into risk analysis, or in other words, 

volatility prediction and ranking. 

Therefore, our task is to explore the possibility to predict and rank the risk 

of stocks by news. 

1.1.5. Priming News Event Detection from Time Series 

There are a lot of events related to the company or the stock market happening 

while only some of them would change the valuation of the company in investors' 

mind. The greedy/fear will drive them to buy/sell the stock and eventually 

change the stock index. Therefore, the investors will be eager to know and 

monitor these events as they happen. 

This case indicates that there is a need to find out the priming events which 

drive an interested time series index. Such priming events are able to help people 

understand what is going on in the world. However, the discovery of such priming 

events poses great challenges: 1) with the tremendous number of news articles 

over time, how could we identify and organize the events related to a time series 

index; 2) several related events may emerge together at the same time, how can 

we distinguish their impact and discover the priming ones; 3) as time goes by, 

how could we track the life cycle of the priming events, as well as their impact 

on the evolving time series index. 
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Some existing work hcks focuscd on discovering a set of topics/events from 

the text corpus [2，25) and tracking their life cyclc [52]. But these methods make 

no effort to guarantee these events are influential and related to the index that 

people arc concerned with. There is another stream of work considering the 

relationship between the keyword trajectory and interested time series [30, 78’ 

G3]. However, these work can only identify a list of influential keywords for users 

and do not consider to organize these words into some high level meaningful 

temporal patterns (i.e., topics, events). 

Here, our ta.sk is to address these challenges and design an algorithm to 

detect priming events from a time series index and an evolving news stream. 

1.2. Contributions and Outlines 

In this thesis, we present a series of tools to discover patterns from financial time 

series streams to enlighten the real world applications. 

In Chapter 2, we present two techniques to analyze the co-movement of 

multiple time series streams. Section 2.2 presents a co-movement model for con-

structing financial portfolio by analyzing and mining the co-movement patterns 

among multiple time series. Different from traditional statistical approach in 

financial world, which takes the co-variance among the portfolio as risk and the 

summation of individual expect return as portfolio return, our approach mod-

els the risk from the co-movement patterns and computes portfolio returns by 

considering all dependency relationships among assets. Section 2.3 presents an 

efficient streaming algorithm to discover leaders from multiple time series stream. 

The main contributions are I) we formalize a new problem of discovering the lead-

ership among multiple time series, which well captures the overall co-movements 

of time series. II) We devise an efficient solution that discovers the leaders in a 

real-time manner. Our solution utilizes an effective update strategy, which sig-

nificantly reduces the computational complexity in a stream environment. Ill) 

we justify the efficiency of our solution, the effectiveness of our update strat-
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cgy, as well as the usefulness of the discovered leaders by conducting extnrusive 

experiments over the real financial data. 

Chaptor 3 presents three different techniques to analyze the relationship be-

tween time scries streams and news stream. Section '3.2 prasciits an approach 

to model the stock market process by using a Non-hoiiiogcneoiis Hidden Markov 

Model (NHMM). It takos both stock prices and news articles into considera-

tion when it is being computed. A unique feature of our approach is event-

driven. We identify associated events for a specific stock using a set of bursty 

features (keywords) with significant impact on the stock price changes when build-

ing the Nil MM. We apply the model to predict the trend of future stock price 

and the encouraging results indicated that our proposed approach is practically 

sound and highly cffcctive. Scctioii 3.3 presents a new problem of predicting 

stock risks based on the predicted volatility by utilizing both time series infor-

mation (stock price) and textual infoniiation (news articles). First, a new feature 

selection algorithm is proposed to select bursty volatility features which have co-

occurring bursty patterns with the volatility bursts of stocks. A set of such 

selected bursty volatility features can accurately represent the stock volatility. 

Feature weights arc learned from historical stock prices and news articles to mea-

sure the impact of bursty keywords on stock volatility. We further use random 

walk to propagate the impacts of news among stocks based on their correlation. 

The random walk approach can greatly improve the volatility prediction perfor-

mance for those stocks with very limited news reports. The volatility prediction 

and ranking methods are built on top of the random walk model. Finally, we 

conducted extensive experimental studies using real datasets and demonstrated 

the superiority of our approach in comparison with existing approaches. Section 

3.3 formulates the problem of detecting priming events from a text stream and 

a time series index. A priming event is an object which consists of three com-
f� 

poiients: (1) Two timestamps to denote the beginning and ending of the event; 

(2) A sequence of local influential topic groups identified from the text stream; 

(3) a score representing its influence on the index. We design an algorithm that 
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first discovers the influential topics at a global level and then drills clown to local 

time periods to detect and organize the priming events based on the influential 

topics. We evaluate the algorithm on a real world dataset and the result shows 

that our method can discover the priming events effectively. 

In siiniinary, this thesis conccms two aspects of the pattern discovery from 

financial time series streams: First, we analyze the co-movcni(3nt of multiple time 

series indices. Scconcl, wc exploit different techniques to analyze the relationship 

between time series stream and news stream. In particular, we apply the discov-

ered patterns to practical financial application, including portfolio manageinent, 

market evciits/treiid detection, stock price trend prediction and risk analysis. 



C H A P T E R 2 

P A T T E R N DISCOVERY ON M U L T I P L E 
T I M E SERIES 

Co-nioveinent of multiple time series has received troinendoiis attention in finan-

cial engineering, due to many important applications: 

• Portfolio Management The classical portfolio management model, 

mean-variance model requires to compute the expected risk of each pair 

of assets. Therefore, it is a big challenge to analyze the co-movement of 

two time series and estimate its corresponding risk. 

• High Frequency Trading In the stock market, a lot of trcoding institu-

tions look for arbitrage opportunity by analyzing the co-movement of time 

series stream. For example, given two stocks, A arid B, where we know 

there are patterns that whenever the price of A drops, the price of B will 

drop, and vice versa. Then it is a good pair trading for traders, i.e., when 

A drops and B has not dropped yet, he can short B and long A by assum-

ing this two index will eventually move together. Besides, if wc are able 

to detect leaders of the market, then the price movement of stock leaders 

implicates the future market trend and thus has prediction power of mar-

ket index (Dow Jones Index, Standard Poor 500, etc.). In other words, the 

market trend can be detected in an early stage. For example, traders can 

buy the call option of the market index when detecting stock leaders begin 

10 
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a rising trend. On the other hand, index arbitrage can be iiiipleinentecl by 

trading these stock leaders, the sample of which closely mirrors the market 

index 

• Empirical Finance Co-movement patterns can also provide evidence and 

ideas for financial empirical research. For example, The stock leaders we 

exploit from the correlated time series graph provide the empirical finance 

researchers, financial analysts and investors with insightful understanding 

and tracking of the market behavior. Those people are always curious 

about the cause of market movement and try to predict and monitor the 

market movement. Stock leaders present a new perspective to analyze 

the stock market: a revealed news event introduces some changes to stock 

leaders' prices, whose effect then propagates to related stocks by lagged 

correlations. As a result, analysts only need to monitor and analyze stock 

leaders in order to evaluate the whole market. 

In this section, we first present some background and related work in Sec-

tion 2.1. We then present a co-movement model to capture the dependency 

relationship of two time series and explore this model for portfolio management 

in Section 2.2. After that, we present our algorithm to detect the leaders from 

multiple time series stream in Section 2.3. We summarize this chapter in Section 

2.4. 

2.1. Multiple Time Series Co-movement 

Related work 

In this section, we present some related work on co-movement patterns of the 

time series stream and corresponding applications in portfolio maYiagement. 
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2.1.1. Segmentation of Time Series 

When we process time vseries for co-movement study, wc often explore segrnen-

tat ion algorithm to discretize the time series [42, 54, 66, 26]. Keogh [42] gives a 

good survey of segmentation algorithm on time series, where three segmentation 

approaches are compared, the sliding window, the bottom-up arid the top-down 

algorithm. From the experiment results of [42]’ the bottorn-iip algorithm, which 

starts from the finest possible approximation and merges segments until some 

criteria is mot, can achieve best performance on the selected financial dataset. 

2.1.2. Portfolio Management 

Most of the modern portfolio theory is motivated by the mean-variance model 

56], which is also know as Markowitz model. It uses the minimum variance 

strategy to select the portfolio which can be summarized as below: 

n 

min ^t'i^j^tj (2.1) 
t j=i 

n 

subject to: ^ — R (2.2) 
t j=i 

n 

Z 秘一 1 (2.3) 

where � i s the covariance of the asset i and the asset j�Wi is the weight of asset 

i in this portfolio, R is the desired rate of return, and r̂  is the expected return of 

asset i. Hence, if 7\ and a” are identified and R is specified, we can identify the 

weight, Wî  of each asset in this portfolio. Intuitively, given a specified return, a 

portfolio with the minimum risk can always be formulated. It is obvious that the 

covariance of two asset i and j is taken as the measure of risk for the allocation 

of the two assets. 

Yet, this mean-variance model perceives the expected risk is a combination 

of and is equal for both the down-side (the possibility of earning less than the 

desired level of return) and up-side (the possibility of earning more than the 
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desired level of return). Obviously, this cannot mimic the real-life situations in 

the financial markets, where the investors always concern with the down-side 

risk only rather than the up-side risk. Accordingly, many different theories are 

proposed which are targeting for modeling the expected risk as down-side risk 

only [31，53, 51, 50]. Nevertheless, their concepts for modeling the down-side risk 

are the same - the variance of the portfolio's expectcd return below a specified 

desired level of return. 

Ill rcspect to downside risk, even the pioneering work hy Markowitz acknowl-

edged the relevance of risk associated with failure to achieve a target return. 

Harlow and Rao [31] discussed asset allocation to minimize portfolio downside 

risk for any given level of expected return. The downside risk approach is more 

attractive than traditional mean-variance approach because of its consistency 

with the observation that investors are averse to downside results but not upside 

variability [19]. In this regards, Harvey et.al [18] indicated that the usual mea-

sure of correlation represents average co-movement in both up and down markets. 

Separate correlation estimates in different return environments would permit de-

tection of whether correlation increases or decreases in down markets. Increased 

correlation in down markets reduces the benefit of portfolio diversification. How-

ever, different from the definition in our model, they define the down (up) market 

as the time with return below(upon) average return and compute the correlation 

in the same way as semi-variance measure [53 . 

2.1.3. Lagged Correlation 

When we study the leadership of time series, we consider a set of N synchronized 

time series streams . . . , 5^} , where each time series S] = ( s ] , . . . , s{) is 

a sequence of discrete observations over time, and s{ represents the value of time 

series S] at the most recent time point t. 

Given a sliding window of length w and a time point t, the sliding window 

for time series S^, denoted as s i^ , is the subsequence ( s ^ 边 • . . . s j ) . Below, we 

discuss lagged correlation between two sliding windows of two time series streams 
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and the transition probability in a Markov chain which play an important role 

in this work. 

The lagged correlation between two sliding windows 仏， a n d 让’ of two 

time series and S^ at lag I, denoted as 二(0’ is computed by considering the 

common parts of the shifted sequences. 

. I： 二 

pI ' J I ) = 一 , 一 ’ - ， (2.4) 
, , ’ � ’ ' < 0 ， 

where s ; a n d are the mean values in the shifted sliding windows 

and s)卜I u’_i，respectively, and and are the standard deviations in 

and sj一…—I, respectively. Here, is the correlation with zero lag 

(known as the local Pearson's correlation [64]). When I > 0 ， d e n o t e s the 

correlation between the sliding windows, sj^^ and s � … w h e n is delayed by a 

lag I. Therefore, 山(I) is essentially the correlation between the common parts 

of the shifted windows, s;如—,and 一 ！ 也 _ � w i t h zero lag. The case when / < 0 

can be easily handled symmetrically. Since is computed on the common 

parts of the two windows, I is less than the window length w, and in practice 

/{ < w/2 as suggested in [10]. 

In a stream context, it is not desirable to compute from scratch at 

each time point t. As shown in [84, 69], the lagged correlation can be computed 

efficiently by tracking some statistics as follows. 

lij (J\ _ 
Ij “ � “ /r) rx 

‘PtA^) = -j ’ （2-5) 

where 切(Z) is the inner product between the shifted windows sj and s j — i , ’ � 

and are the sum over the two shifted windows, respectively, 

and crJ u；-/ can be computed as follows. 

’ - 知一)2-([!；〒’ (2.6) 

“ where denotes the sum of the squares of the shifted window 

The value of a^t一“如]can be computed similarly. It implies that as long as the 



Chapter 2. Pnttern Discovery on A/u/tipk Time Series 1_6 

inner product, the sum of squares and the sum of the shifted windows are kept 

track of, the correlation value at each lag can be computed quickly. 

Finally, we introduce some empirical study on lead-lag effect in finance do-

main. One of the theoretical analysis was based on the study of informativeness 

68]. If the price of a security is informative for prices of other securities, its 

return will lead those of other securities. The inside mechanism is that trad-

ing reveals information that causes price revisions of securities with correlated 

underline values or information. On the other hand, more empirical work [11 

concentrated on the speed of price adjustment. In this mechanism, a security is 

said to lead other securities if its price adjustment to a common factor is earlier 

than that of other securities. The leaders detected by our approach is indepen-

dent of these two mechanisms and can provide an insight analysis for the source 

of the lead-lag effect across the graph G-

2.1.4. Matrix Analysis 

In-a Markov chain, the transition probability matrix H = {/i： }̂ describes the 

state transition property, where � i s the probability of being in state j at the 

next step given that the chain is in state i at the current step. The stationary 

probability distribution vector for a Markov chain with / / is a probability vector 

亓 such that 亓// 二 开 .T h e Markov chain defined by H has a unique stationary 

probability distribution if H is aperiodic and irreducible (primitive) [3]. Besides, 

the A;-th step probability distribution vector for a chain with N states is defined 

to be n^ = {冗� 1 ) ’ . . . ’ 7r'=(N)}, where is the probability of being in state j 

‘ at the fc-th step. Given tt知,the classical power method can be applied to compute 

T T � as follows: 
• = TT'H. (2.7) 

For any starting vector, as long as the transition matrix H is stochastic and 

primitive, the power method applied to H converges to a unique stationary 

probability distribution vector 开. 
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However, the stochastic and primitivity properties are often violated in large 

graphs, for example, WWW. Therefore, to measure the importance of Web pages 

in a large WWW graph, Brin and Page applied the stochasticity adjustment 

and primitivity adjustment to convert the original induced matrix H to the 

irreducible Markov matrix G as follows. 

G = a / / + ( l / n ) ( aa + (1 — a)e)e 了’ (2.8) 

where n is the number of pages (i.e., states), e is a size-n vector with all ones, a 

is a size-n vector with a! = 1 if page i is a dangling node (i.e., a node with zero 

out-degree), and a controls the proportion of time that the random teleportation 

follows the hyperlinks as opposed to teleporting to a random new page (a is set 

to be 0.85 in [13]). 

Recently, there are also a stream of work that constructs the weighted graph 

by connecting two time series based on their correlation and attempt to de-

tect abnormal behavior among multiple time series. Tsuyoshi [38] computed 

the anomaly score of a node based on analyzing its /c-neighborhood time series. 

'37] reported an anomaly detection method which was based on analyzing the 

eigenspace of the dependency matrix. 

2.2. Mining Co-movements of Multiple Time 

Series 

In this section, we will present our co-movement model to compute the expected 

return and risk of the portfolio. Section 2.2.1 will define four different kinds of co-

movements between two time series, whereas Section 2.2.2 and Section 2.2.3 will 

respectively present how the expected return and expected risk are computed 

based on the idea of co-movements. Section 2.2.4 will show how a portfolio 

will eventually be constructed by applying these novel measures and concepts. 

Section 2.2.5 evaluates the effectiveness of our proposed model and reports our 
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• 

n I , I I I 

I . — I — 1 — 
Time 

to t l t2 t3 t4 t5 t6 t 7 

Figure 2.1: The definition of comovement. In the figure, there are two financial 

assets: A and B. With respect to A, there are four types of co-movements: (1) 

up-up {to - t u t e - tl)； (2) up-down “3 - 。 )； � down-up - h — ^e)；� 

down-down (̂ 2 —艺3，尤i 一 （5) 

findings. Finally, Section 2.2.6 summarizes this section and discusses its possible 

, extensions. 

2.2.1. Four Different Types of C o m o v e m e n t s 

In order to account for different types of co-movements, let us first refer to figure 

2.1. In Figure 2.1，it shows two time series: A and B. For time series A, 

there are totally five segments, whereas for time series B, there are totally three 

segments. With respect to time series A, four different types of co-movements 

can be identified: (1) up-up; (2) up-down; (3) down-up; and (4) down-down. Let 

us explain this in the next paragraph. 

In figure 2.1’ the co-movement between i and j forms a total number of seven 

CO-movement patterns (1) Two up-up co-movements, from to to ti and te to t?； 

(2) Two down-up co-movements, from U to 亡2 and (5 to ie； (3) Two down-down 

CO-movements, which has the longest cumulative duration, from (2 to and U . 

to £5； and (4) one up-down comovements, from t^ to 
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2.2.2. Co-movement Based Expected Return 

As discussed previously, the existing literatures compute the portfolio's expected 

return when they will ignore the dependence relationships among Eussets in the 

portfolio. Its computation is based on a linear combination of the multiplication 

between the expected return of each individual asset and its contribution in 

the portfolio. In this work, we try to incorporate the dependence relationships 

among assets by using the concept of co-movement, which has been defined in 

the previous section. Given two financial assets, i and j , conceptually, our co-

nioveinent based expected return is as follows: 
• 

1. If whenever the price of i rises(drops), the price of j will rise(drop) (i.e. a 

lot of up-up (down-down) co-movements), then their co-movement based 

expected return should be higher (lower) than the sum of their independent 

expected return. 

2. If whenever the price of i rises(drops), the price of j will drop(rise) (i.e. 

a lot of up-down(down-up) co-movements), then their co-movement based 

expected return should a mixture of their independent expect return con-

sidering their contribution to portfolio. 

As a result, there are four different kinds of returns, which in-turn depends 

on the four different kinds of co-movements. Intuitively, the overall expected 

return of a portfolio should be the summation of these four kinds of returns. In 

the followings, we will provide the mathematical details for this formulation step 

by step. 

In the most simplest case, let us consider there are only two financial assets, 

i and j, in the portfolio. The expected return of the portfolio is therefore: 

t” = J 2 � P : ” (2-9) 

s 

where s denotes different types of co-movements (up-up, up-down, down-up and 

down-down); rf^ denotes the expected return between asset i and asset j when 
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their type of co-movement is 5； P^� is the probability that the type of co-movement 

between asset i and asset j is s. Hence, Eq. (2.9) computes the portfolio's ex-

pected return by summing the expected return of each type of co-movement with 

its probability of occurrence. . 

The probability, /),” in Eq.(2.9) is computed as follows: 

P；, = 5 ’ （2.10) 

‘ where denotes the accumulative length of which the type of co-movement 

between asset i and asset j is s and T is the total length of the time series. Let 

us illustrate the idea of Eq. (2.10) with the help of Figure 2.1. In the figure, 

there are two periods for the up-up co-movement between asset A and asset B\ 

from to and from to i-j. Assume further that the differences between 

to and ti is 10, between t̂  and ty is 12 and between to and ty is 50. Then, 

PXb = n^/T =((�1 - to) + (̂ 7 — te))/{t7 - to) = (12 + 10)/50. ‘ 

The expected return, r � ’ in Eq.(2.9) is computed as follows: 

” kes 

where Wt and w � a r e respectively the weights of^asset i and asset j in the portfolio; 

N:] denotes the number of segments of type s in the time series; A: is a segment 

belongs to the co-movement of type s; rf and are respectively the expected 

return of asset i and asset j in segment k. Again, let us use Figure 2.1 to illustrate 

the idea of this equation. Consider for the case where s denotes for the up-up co-

movement. In this situation, there are two segments, from time to to and from 

time te to time h, belong to s. Assume further that the expected return of asset A 

in the two segments are respectively r\ == and t\ = $4. Similarity, let r^ = $6 

and rl = $3. Hence, t^q = (1/2) {{wa . $5 + it^s . $6 + it^ . $4 + %wb • $3)). 

Now, we extend this simple portfolio with two assets only into a portfolio 

with n multiple assets. In the multiple assets situation, we can obtain the ex-

pected return of the portfolio, re , by a pairwise linear summation of every two 



v 

Chapter 2. Pattern Discovery on Multiple Time Series 20 

assets: 

re = E i > 。 ， （2.12) 
广 1 j^i 

where r” is preciously defined in Eq. (2.9). In order for efficient computation by 

using linear programming [74], Eq. (2.12) can be formulized in this form: 
n 

re (2.13) 
1=1 

二 ̂  E [ 破 r化, (2.⑷ 
\ , j = i’j力 s kes 

where the component l / ( n — 1) in Eq. (2.14) is added for the reason of normal-

ization and is the return generated from asset i in its co-movement with all 

the other assets. 

2.2.3. Co-movement Based Expected Risk 

In this section, we will present how we quantify and derive the expected risk of the 

portfolio, Pe- Unlike the approaches used in the modern portfolio theories where 

the portfolio's expected risk is usually defined as the variance of the portfolio's 

expected return (a statistical perspective), in this work, we define the portfolio's 

-expected risk as the chance of exposure to loss, by considering the c o movement 

among the time series of the assets in the portfolio (a data mining perspective). 

In the beginning, let us use Figure 2.1 again to illustrate our idea. For 

simplicity, assume we only have two choices for formulating the portfolio: either 

buy asset i solely (i.e. ŵ  — \ and w] = 0) or buy equal shares of aiiset i and 

asset j (i.e. k;, = 0.5 and w] = 0.5). Let Pi and P2 be the risk associated with 

buying asset i solely (the first option) and risk associated with buying asset i 

and asset j simultaneously (the second option), respectively. Suppose we have 

identified Pi. Now, if we switch to the second option (buy asset i and asset j 

simultaneously), would the chance of exposure to loss be increased or decreased? 

That is, would P2 > P\ or < 
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In Figure 2.1, from to tj, the type of co-movement between asset i and 

asset j belongs to down-down. If this type of co-movement occurs frequently in 

• the entire time series, wc might have to expect the price drops of asset i would 

usually accompany with the price drops of asset j. In other words, the chance 

of exposure to loss is increased. So if two assets frequently involved in the down-

down CO-movement, they should generate a higher level of risk with respect to 

having cither of themselves alone. To conclude, if the down-down co-movement 

frequently appears among the two time-series, then P2 > P � ' 

On the other hand, from (3 to t̂  in Figure 2.1, the type of co-movement with 

respect to asset i is up-down. This means that when the price of asset i goes up, 

the price of asset j will goes down. From asset i，s stand point of view, the chance 

of exposure to loss is also increased in this situation. Thus, the more frequently 

this situation happens, the higher the risk should be expectod. Yet, it is worth 

noting that this type of risk is not symmetric. From asset j’s angle, the chance of 

exposure to loss is decreased. This is because when the price of asset j decreases, 

the price of asset i will increase. This compensate effect will surely reduce the loss 

from asset j,s perspective. As a result, the expected risk of the portfolio should 

take the considerations of both sides. Therefore, in our co-movement model, the 

underlying idea is to consider the frequency of this up-down co-movement as well 

as the relative magnitude of their movements. The mathematical details of how 

the expected risk should be computed will be discussed in the later paragraphs. 

Finally, the co-movements with respect to asset i for the remaining time 

periods in Figure 2.1 are either up-up co-movement or down-up co-movement. 

Both of these co-movements imply the chance of exposure to gain increase (a 

kind of up-side risk). Hence, these two types of co-movements do not need to be 

included in computing the portfolio's expected risk, as our definition of risk is 

the chance of exposure to loss (a kind of down-side risk). 

To summarize, following these discussions, the expected risk of a portfolio is 

computed by having a pairwise comparison of the assets in the portfolio against 

the frequencies and magnitudes of this down-down co-movement or up-down co-
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Figure 2.2: Different level of risks generated by different kinds of co-movement. 

movement. Mathematically, the risk of the port folio, jds, is computed eus follows: 

^e = 叫 Y l � 3 ” � (2.15) 
1=1 j=i 

where p” is the risk of buying asset j with respect to asset i. Note thai P” + p” 

according to the previous discussion about the asymmetric relationship of risk. 

Note that the summation in Eq.(2.15) includes /?“, which can be interpreted â i 

risk of buying the asset i itself. 

Now, the only remaining question here is how to quantify 3”. Unfortunately, 

it is not a trivial task. To account for it, let us refer to Figure 2.2 which shows 

the down-down and up-down comovements with different kinds of slopes. In the 

figure, the first row (A, B, C and D) compares four different cases of down-down 

CO-movements, whereas the second row (E, F, G and H) compares four different 

cases of up-down co-movements• 

In case A, both time series, 51 and 52, go down straightly, whereas in case 

B, only the time series 52 goes down straightly. Comparing case A and ease B, 

one should agree that the risk (chance of exposure loss) associated with case D is 

higher than that of case A, because case B outlines a small drop of SI will lead 

to big drop of S2. Similarly, in case C, a big drop of 51 will only lead to a small 

drop of 52, whereas in case D, a small drop in 51 will immediately accompany 
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with the same amount of drop of 51. Accordingly, the risk (chance of exposure 

loss) associated with ca.se C should be less because the relative magnitude of 

dropping in case C is less. Lastly, it is obvious that the risk associated with case 

D is less than that of case A, meanwhile ca.se C is associated with less risk than 

case B. To summarize, the impact of 0” in down-down correlation for these four 

cases should be: B > A > D > C. 

By using an analysis similar to the above discussion, the impact of p” in 

the up-down co-movement for case E, ease F, case G arid case II should be: 

E > F > G > H. To conclude, in order to quantify the risk, wc need to consider 

the relative magnitude of the slopes in each segment within the entire time series. 

Eventually, ftj (the risk of buying asset j with respect to asset i) is formulated 

as follows: 

(2.16) 
kes I 

where 5 belongs to either down-down or up-down co-movements. and 0，are 

respectively the slope of asset i and asset j in segment k. Hence, the second 

component represents the magnitude of slope of asset j , the third component 

O'^accounts for the relative slope difference between asset i and asset j. cf 

and c � a r e respectively the coefficient of determination(60] for asset i and asset 

j in segment k, which denote how confident is the c o movement relationship of 

that segment for the two time series, f f is the probability of segment k appears 

in asset i. dt，k is defined as: 

- 1 ê  < 0, 
= (2.17) 

1 otherwise. 
\ 

which identifies the type of co-movements (up-down or down-down) between i 

and j . 
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2.2.4. Co-movement Based Portfolio Construction 
» 

According to the discussions of the previous sections about how tlic portfolio's 

expected return and the portfolio's expected risk are derived, we now present 

how a portfolio could be constructed in our proposed co-movement model in this 

section. 

Underlying for all of the portfolio management theories is that wc should 

choose a portfolio that provides an expected return equals to a desired level of 

return, /?, meanwhile it accumulates the lowest level of expected risk. Mathemat-

ically, we arc trying to solve the following optimization problem by identifying 

all Wi based on a given R: 

mill 卢e = 叫 也jA” (2.18) 

1=1 
n 

^ 

subject to: 二 Ft. (2.19) 
t=:i 

where Vi, j , Wt > 0，u»j > 0 and their summation equals to 1. The r, in Eq. (2.19) 

is defined in Eq. (2.14). Finally, if short selling is allowed, then constraint it̂ ^ > 0 

and Wj >0 can be omitted. 

2.2.5. Evaluation 

‘ In this section, we evaluate the effectiveness of our proposed co-movement model 

by using a real life dataset, the Morgan Stanley Capital International G7 index 

(MSCI-G7).i This dataset, MSCI-G7, consists of equity indices of seven countries 

(Canada, France, Germany, Italy, Japan, United Kingdom and United States) 

that are recorded in every working day (5 working days per week). The period 

that we have archived is from 2003/1/3 to 2007/4/30 (around 4.3 years). Two 

experiments are conducted to compare and evaluate our proposed co-movement 

model: 

I http://www.mscibarra.com 

http://www.mscibarra.com
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Figure 2.3: The returns obtained by different portfolio models 

1. Different Portfolio Models Comparison We compare our proposed 

CO-movement model with three different kinds of portfolio models. This 

experiment tries to identify the necessity of the assets' dependency rela-

tionships when computing the portfolio's expected return, and the possi-

bility of having the non-traditional view of the portfolio's expected risk as 

the exposure of loss. 

2. Sensitivity of Segmentation As discussed in the previous section, since 

all financial time series contain high levels of noise, we need to smoothen the 

time series by using bottom-up segmentation [42] and regression analysis. 

In this experiment, we try to evaluate the sensitivity of our proposed co-

movement model with different number of segments. 

Different Portfolio Models Comparison 

In this section, we compare the performance of different portfolio models 

with our proposed co-movement model. Here is a list of models that we have 

implemented: 

1. COM: This is the proposed model that we have discussed in this work. 
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2. M V M ; This is the traditional mean-variance model [55] for portfolio con-

struction. It serves as the benchmark approach in our experimental study. 

Mathematically details of this model is discussed in Section 2.1 - Related 

Work. 

3. C O M - M e a n : This model is similar to our proposed co-movement model, 

except that the portfolio's cxpected return is computed by the traditional 

method, i.e. the dependency of the expected return of the assets in the port-

folio is ignored. Mathematically, the r, in Eq. (2.19) is simply the expected 

return of asset i in the portfolio, but not the one defined in Eq. (2.12). 

4. COM-Var iance : This model is similar to our proposed co-movement 

model, except that the portfolio's expected risk is computed by using the 

traditional method, i.e. the portfolio's expected risk, /3e, is the variance 

of the the portfolio's expected return. Mathematically, we change Pq in 

Eq. (2.18) with the following equation: 
n - 1 n 

" e = $^Zv^ar ( r”)， （2.20) 
1=1 j=i 

• where Var{rij) is the variance of the expected return. 

In order to evaluate these four alternative allocation strategies in terms of 

their expected returns and risks, we evaluate their difference on realized portfo-

lio performance. We use the first three years' data (784 days) of MSCI-G7 as 

training data, so as to compute the optimal weights, w” for each asset, i, in the 

portfolio. The rest of the data, 15 months, are served as the testing data for ' 

evaluation. The portfolio will be re-constructed each month in these 15 months, 

so as to capture the latest movements of the time series. The oldest month 

would be discarded whenever for the re-construction, so as to denote for ignor-

ing the outdated information. The average segment number is set to 90 in this 

experiment. The sensitivity of number of segments will be discussed in the next 

section. The desired level of return, R, in Eq. (2.19) is set as the mean return of 

their corresponding efficient frontiers [71]. 
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Figure 3.5 shows the returns that we get from each model in each month, 

as well as the cumulative return for the four approaches over the 15 months in 

the bottom right corner in the box. Although our proposed co-movement model, 

COM, is not a sole winner for all of the months, the cumulative return of COM 

does outperform the other approaches significantly. The highest cumulative re-

turn that we get is came from COM, with a profit of 33.88%, which is 11% 

higher than that of MVM (the traditional Mean-Variance model, the benchmark 

approach), which obtains only 24.5%. 

Furthermore, it is worth noting that all the approaches that are related to co-

movements (COM, COM-Mean and COM-Variance) outperform the MVM (the 

benchmark approach). It demonstrates clearly that the importance of identifying 

different types of co-movements is justifiable. 

By comparing between COM and COM-Variance, one can justify the possi-

bility of regarding risk as the exposure of loss rather than the traditional point of 

view — variance of return. Although COM-Variance performs better than COM 

in a few months, it performs inferior than COM most of the time. Similarly, 

COM-Mean performs inferior than COM, which demonstrates the importance of 

considering the dependency relationship when computing the portfolio's expected 

return. 

Sensitivity of Segmentat ion 

Since our proposed co-movement model requires data pre-processing by us-

ing bottom-up segmentation and regression analysis for identifying the trends of 

the time series, a question commonly asked would be: how sensitivity is the co-

movement model with the number of segments? As a result, we try to evaluate 

how the average number of segments will affect the performance of our approach 

in this experiment. 

The settings of this experiment is the same as the previous one (Section 

2.2.5), except that we alter the number segments from 10 to 300, and then we 

record down the cumulative returns. Figure 2.4 shows the empirical result of this 

. expe r imen t . We address some interesting findings below. 
t 
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Figure 2.4: The cumulative return of different number of segments. 

1. The cumulative returns Jor all kinds of segments are always positive. This 

is a very encouraging sign, since it implies the number of segments will not 

‘ change the cumulative return from positive to negative or vice versa. 

2. The overall shape of the graph is concave. This suggests that the cumu-

lative return and the number of segments have some kinds of dependency 

relationships, where the cumulative return is not distributed randomly with 

respect to the number of segments. Moreover, a concave shape also sug-

gested that there should exist a "best" range against the number of seg-

ments, which is around 100 to 150’ i.e. each segment lasts for around 5 to 

7 days (a week). 

3. When the number of segment is too few (less than 50) or too many (more 

than 300) the cumulative return would drops to around 25%. Nevertheless, 

it still performs better than MVM (the benchmark model, 24.5%). 

We also conduct segment number analysis on the combination types of other 

CO-movement models and come out the similar result. 

t 
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2.2.6. Summary 

We describe a co-movement model for constructing financial portfolio by ana-

lyzing and mining the co-movement patterns among multiple time series. Dif-

ferent from traditional statistical approach in financial world, which takes the 

CO variance among the portfolio as risk and the summation of individual expect 

return as portfolio return, our approach models the risk from the co-movement 

patterns and computes portfolio returns by considering all dependency relation-

ships among assets. As the first step of this area, the promising experiment 

results on real financial data show the new formulation of our return and risk 

can bring great benefits for effective asset allocation. 

- - 、 

2.3. Detect ing Leaders from Correlated Time 

Series 

In this section, we present our algorithm to detect leaders from multiple corre-

lated time series streams. 

2.3.1. Leadership Discovery 

In this section, we first define the problem of leadership discovery. 

Problem Definit ion The problem of leadership discovery is to find the leaders 

among N synchronized time series, . . . , S \ that exhibit significant lead-

lag relations over the set of time series in a real-time manner, where the lead-lag 

relation is measured by the concept of lagged correlation. 

In this work, we focus on high-frequency time series, i.e., the time series 

whose data points are generated in high frequency (seconds, minutes) from the 

finance market. Although most of the studies in financial literature [14, 16] deal 

with low-frequency data (i.e., daily or hourly), we find that high-frequency data 

carries more information about lead-lag that is not revealed by low-frequency 
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Figure 2.5: Lagged Correlation at Different Data Frequency 

data. We demonstrate this point by the following real example. 

Fig. 2.5 shows the lagged correlation computed on two stock price time 

series at four different data frequency (5 seconds, 1 minute, 1 hour and 1 day) 

but starting from the same date 01/02/2004. As shown in the figure, the low-

frequency data (1 day and 1 hour) has a maximum correlation value at zero 

lag and exhibits positive correlation at most of the lags, which implies that the 

two stocks CO-move with the same trend at zero lag from a macro perspective. 

On the other hand, the correlation computed on high-frequency data (1 minute 

and 5 seconds) has its peak value at a non-zero lag and exhibits more negative 

correlations, which means that the two stocks actually undergo a co-movement 

in an opposite�trend with some delay from a micro perspective. Therefore, it is 

necessary and interesting to investigate the high-frequency data since it indicates 

the microstructure of the finance market (e.g., the process of practitioners making 

their trading decision and generating stock price). 

Solution Overview Our solution to the problem of leadership discovery has 

three main steps: (1) compute the lagged correlation between each pair of time 

series; (2) construct an edge-weighted directed graph based on lagged correlations 

’ to analyze the lead-lag relation among the set of time series; (3) detect the leaders 

by analyzing the leadership transmission in the graph. We now discuss each step 
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Figure 2.6: Two Time Series and the Lagged Correlation Plot over their Local 

Sliding Windows 

in detail. 

Lagged Correlation Computation 

The first step is to compute the lagged correlation between each pair of time 

series. Existing work [69] on computing lagged correlations cannot be directly 

applied to our problem, since i) it tries to capture lag correlation in the whole 

history of streams while our objective is to obtain the local lags in the current 

sliding window, and ii) the approximation in their updating algorithm has ac-

curacy preference to the points with small lags and may generate a large error 

for large lags, which is not desirable for our problem. Therefore, we propose to 

aggregate the effects of various lags and define an aggregated lagged correlation. 

Without loss of generality, we focus on positive correlation, while negative cor-

relation can be handled similarly. We explain how to compute the aggregated 

lagged correlation by the following example. Fig. 2.6(a). shows two time series 

X (top) and Y (bottom) with a length of 150. The window length is set to be 

120 and we consider the window marked by the dotted rectangle. Fig. 2.6(b) 

shows the lagged correlation at each lag I computed by Eq. (3.25) over the two 

windows. The maximum lag m = 60, i.e., |/{ < 60. When / < 0 (i.e., Y is 
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delayed), the positive correlation only exists for I E [—60, —39] (the shadowed 

area). When I > 0 (i.e., X is delayed), starting from I — 1, we observe a strong 

increase in positive correlation and it achieves a peak value of 0.81 at I — 32. In 

order to identify the leadership {X leads Y ov Y leads X), we need to aggregate 

all the observed correlation values over the entire lag span and take the expected 

correlation value given the two cases of I. The aggregated lagged correlation be-

tween two time series and denoted as E'^(p), is then defined as the larger 

expectod correlation value: 

E'^p) = > 0), < 0)). (2.21) 

We say that leads S] if = < 0), and is led by S] otherwise tf 

E”�p) = > 0). Such leadership (S^ leads S] or vice versa) is also called 

the lead-lag relation between and S^. The value of > 0) is computed , 

as 
m 

> 0) = E m a ^ ( p ” ⑴ ’ 0).p(/|/ > 0)， (2.22) 
/=o 

where max(p”(/)，0) takes only positive correlations and p{l\l > 0) takes the 

value of l / ( m + 1) since the contribution of each lag is equal. < 0) can 

be computed symmetrically. In Fig. 2.6，by Eq. (2.22), < 0) = 0.1056 

and 2 0) = 0.4017. Thus, E^^'(p) = ma2:(0.1056,0.4017) = 0.4017 

indicating X is led by Y. 

Graph Construction 

In order to model the leadership relationships among a set of time series, we 

construct a simple edge-weighted directed graph, 5(V, S), where the set of nodes 

V = . . . , S^} represents N time series, and the set of directed edges S 

represents lead-lag relations between time series. An edge {S\ S^) indicates that 

" S^ is led by S � a n d its weight is set as 丑” (p). Since we are interested in significant 

lead-lag relations, we set a correlation threshold 7 such that only those pairs 

and S] with E'^(p) > 7 have edges in Q. It is important to note that, when the 

window slides, the edges and their weights in Q will change dynamically. 
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Figure 2.7： Graph S on Component Stocks of Dow Jones Industry Average 

Figure 2.7 shows the graph Q constructed on 30 component stocks of Dow 

Jones Industry Average. Each node in the graph represents a stock, each edge 

represents a significant lagged correlation between two stocks and the arrow on 

the edge points to the leading stock (we omit the edge weight for clear visu-

alization). For example, there is an edge from Intel Corporation (INTC) to 

Hewlett-Packard Company (HPQ), which indicates that there is a significant 

lagged correlation between the world's largest semiconductor company and the 

largest worldwide seller of personal computers in this sampled period. In the 

graph, there are some nodes that have relatively more in-links than others, which 

indicates that these stocks are the leading centers. Citigroup Inc. (C), the major 

American financial service company, has the largest in-degree of 11, leading 1/3 

of Dow Jones component stocks at the time. On the other hand, there are some 

dangling nodes in the graph, which are not led by any other stocks. Wal-Mart 

Inc. (WMT), the world's largest public corporation, is an isolated stock without 

out-link or in-link. ‘ 

Leader Extraction 

Given the graph we now extract leaders from it. Since a good leader needs 

to capture both direct and indirect leaderships, we first analyze the leadership 

transmission in Q. Suppose that each time series has a leadership score, ba^ed 
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Figure 2.8: Comparison of Leadership Score on Different Graph Structures 
oil which a ranking among time series can be obtained. We now discuss how to 

assign a good leadership score. 

Consider the leadership score of A under different graphs as shown in 

Fig. 2.8. In case I and II, A dircctly leads 3 time series, B, C, arid D. In 

case I, all of the three have zero in-degree. In case II, C has an in-degree of 3, 

which implies that A indirectly leads the three that are led by C as well as the 

three directly led by A itself. It indicates that the leadership score of A in case 

II should be larger than that in case I. On the other hand, consider case III and 

case IV. In case III, B is exclusively led by A, whereas in case IV’ B is led by A 

as well as the other two, C and D. The leadership score of A in case III should 

be larger than that in case IV. Therefore, we define leadership score as 

• score' 
scored 二 ,纟叫 ’ 

where Lsi is the set of time series that are led by score' is the leadership 

score of and dout[S^) is the summation of out edge weights of S\ This leader-

ship score defined above is similar to that defined for the Web Graph on which 

PageRank score is computed to represent the popularity of web pages. In this 

thesis, we adopt PageRank [13] as the leadership score of a time series to quantify 

its importance in the graph Q. 

Finally, based on the structure of Q and the PageRank values of time series, 

we extract the leaders by eliminating redundant leaderships. The basic idea is to 

first sort the time series by the descending order of their PageRank values and 

then to remove iteratively the time series that is led either by previously found 

leaders or by the descendant of previously found leaders. 
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The Overall Algorithm 

Our solution is presented in Algorithm 1. Given the latest values in time se-

ries at time point t, the algorithm first updates the statistics needed in computing 

lagged correlations as stated in Section 2.1. It then computes pairwise aggregated 

correlations (Lines 2-5). Graph Q is then constructed (Line 6) arid the power 

method computes the PageRank vector n (Line 7). Finally, the Extract Leaders 

procedure (Algorithm 2) identifies leaders. In Extract Leaders, time series are 

first sorted by the descending order of the rank tt. Then starting from the time 

series with the highest rank, it checks the time series led by it and removes them 

as well as their descendants from the list. The procedure RemoveDescendant 

repeats the process recursively until all descendants of the current leader are 

removed. The remaining time series on the list are returned as leaders. 

We now analyze the complexity of Algorithm 1. Correlation computation in 

Lines 2-5 needs to compute (2m + VjN] correlation values, which involves com-

plex mathematical calculation. PageRank computation and the Extract Leaders 

procedure take 0{kN'^) and 0{N) time, respectively, where k is the number of 

power method iterations. Thus, the most time-consuming steps in Algorithm 

1 are in computing correlations and PageRank. The space complexity of the 

algorithm for storing the correlation statistics and 0(N'^) for storing 

the values in power method. 
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Algorithm 1 Discover Leaders 

INPUT： N time series, S\ . .. , up to current time t, sliding window length 

w, iriciximurn lag m, correlation threshold 7 

OUTPUT： leaders 

1： Update statistics needed for correlation computation; 

2： for every pair of time series and S] do 

3： Compute correlation for |/{ < m; 

4： Compute aggregated lagged correlation i?”（p) by Eq. (2.21); 

5： end for 

6： Construct graph Q with respect to 7; 

7： Compute PagcRank vector tt on Q\ 

8： L 'tr- Extract Leader s{Q,7t) \ 

9： return L; 

Algorithm 2 ExtractLeaders 
INPUT： graph G, rank vector TT 

OUTPUT： leaders 

1： L Sort time series in descending order by tt; 

2: for each time series S^ in L do 

3： Remove Descendant [L, 

4： end for 

5： return L\ 

6： Procedure RemoveDescendant(L, Q, S^) 

7： for each time series in L after S] do 

8： if (S\ S3) is an edge in Q then 

9： RemoveDescendant{L, 

10： Remove from L; 

11： end if 

12: end for 
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Figure 2.9: Tracking the Interesting Area 

In a stream environment, correlation computation becomes the bottleneck 

of Algorithm 1 since the implementation of Page Rank is fast when the graph is 

small enough to store in the main memory (e.g., N = 500). Too many correlation 

values need to be computed at each time point and there are endless time points 

coming into the stream. In order to accomplish prompt leadership detection, we 

further propose an effective update approach that is able to reduce the number 

of correlation computations and meanwhile retaining high accuracy, which is 

described in the following section. 

2.3.2. Real-Time Correlation Update 

In order to speed up the computation of the aggregated lagged correlation for 

a pair of time series, we propose an efficient update approach by investigating 

the evolutionary characteristics of lagged correlations. Recall that in Eq. (2.22), 

all positive lagged correlation values are aggregated, i.e., we compute the area 

with positive correlations. Therefore, compared with the exact correlation value 

at each lag, the area formed by these positive correlations is more crucial to 

determine the lead-lag relation. We call this area the interesting area. The basic 

idea of our update approach is to track the interesting area. More specifically, 

at an initial time point, we compute the exact correlation value at each lag and 
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record the interesting area. Then at the subsequent time point, we track and 

update this interesting area by computing the correlation for only a small number 

of lags. We then use this interesting area to approximate the aggregated lagged 

correlation. 

We now discuss how to track and update the interesting area. Fig. 2.9(a) 

gives an example of the evolutionary shapes of the interesting area between two 

time series. The lagged correlation is computed at each lag I G [-60, 60]. At time 

t = 1, the interesting area spans from I = —60 to I 二 一20 and the corresponding 

correlation value decreases gradually from 0.8 to 0. We call such continuous area 

a wave. When t = 5, we note that there are two waves of the interesting area. 

The first one spans from I 二 —60 to Z 二 -17，which is obviously an evolution 

from the previous wave. Compared with the wave at i = 1，the boundary of this 

wave enlarges from I = - 2 0 to /二 - 17 . Hereafter, we call this type of wave an 

existing wave. The second wave spans from / = 55 to / 二 60. Since this wave 

does not exist at 亡=1, we call this type of wave a new wave. When t = 10 arid 

t = 15, the existing wave changes slowly, while this new wave enhances its effect. 

The above example shows that, in order to keep track of the interesting 

area, we need to capture the evolutionary pattern of two types of waves, existing 

waves and new waves. Our solution is based on two observations. 

Observation 1. An existing wave at time t is relatively stable at subsequent 

time points after t. 

Observation 1 can be explained as follows. For a specific lag I，the correlation 

at time t is computed on two shifted windows s;也一之 and 川When the 

time moves to 亡 + 1, correlation is computed on sj+i 讼and …’如 

Notice that there is a large overlap in these two sets of windows. Specifically, 

the difference between and (also between the other two windows) 

is only one point. As a result, the two correlations and p ; 乂 c a n n o t 

differ a lot. Therefore, we have the above observation of an existing wave. 

Using Observation 1，we can track an existing wave as follows. The most 

important features of a wave are its magnitude and width. The magnitude of a 
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wave can be characterized by its maximum points, while the width can be charac-

terized by the minimum points. Therefore, we propose to approximate the area 

of an existing wave by tracking its peak points. Specifically, after we compute 

the exact correlation value for each lag at the initial time point, we record the 

peak points for the existing wave. Then, at the subsequent time point, we only 

compute the exact correlation value for the lag of each maximum peak point 

and conduct a geometric progression probing to both sides of the lag until the 

probe reaches the boundary. The boundary can be either the adjacent minimum 

peak point, the maximum lag 土m or the point with a negative correlation value. 

Then, we conduct a linear interpolation over the computed correlation points to 

approximate the area of the wave. Finally, the peak points are updated accord-

ing to the probed correlation values so that they can be used for the subsequent 

time point. 

Fig. 2.9 (b) shows the points, at which we compute (probe) correlation 

values. Suppose that i = 1 is an initial time point. We compute all the lagged 

correlation values for I G [-60,60] and record a maximum peak point at I = —60. 

When t = 5, we probe from the maximum peak point / = —60 until reaching the 

boundary, where we detect a negative correlation. In this process, the probing 

step is increased exponentially so that the approximated wave has higher accu-

racy around the peak point. There are altogether 7 correlation values computed 

in the probing process. Then, as shown in Fig. 2.9(c), linear interpolation is 

applied to these 7 points to form the approximated existing wave. As further 

shown in ^ = 10 and t — 15, this existing wave can be well tracked. 

Now, the remaining problem is to track a new wave. As there is no existent 

evidence of a new wave at the initial time point, we are not able to record its 

peaks for tracking purpose. Fortunately, we have the following observation of 

new waves. 

Observation 2. A new wave at t only emerges at maximum lag values of 土m. 

Observation 2 can be explained as follows. We first consider the case when 

0 < Z < m. At a specific time t�the correlation is computed on two 
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Algorithm 3 UpdateCorrelation 

INPUT： new value at t for two time series and sliding window length w, 

maximum lag m, the set of peak points peak^,^ at time t — 1 

O U T P U T： the lead-lag relation of S^ and S] 
1： if there is no existing wave at I = 土m then 

2： Compute p\]^[rn) and to detect potential new waves; 

3： if there exists new waves then 

4： Add the corresponding I to pea/cjij； 

5： end if 

6： end if 

7： for each maximum peak point pi Max in peak\t i do 

8： sampleWave Point Set = Probe{ptMax)\ 

10： Add wavePointSet to corresponding p;么⑴； 

11： end for 

12: peaky = de如£PeaA;(pit"^“Z)); 

13： Compute aggregated lagged correlation by Eq. (2.21); 

14； Decide the lead-lag relation of S^ and S^] 

windows of length (w - I). Therefore, with the increase of I from 0 to m, the 

window length, on which is computed, decreases. On the other hand, 

compared with the previous time point t - 1, each time series evolves by adding 

a new data point to and deleting an old data point from the sliding window. 
» 

This causes the value of to be different from However, the effect 

of the time series evolvement on the value of is different for different lag 

I. With the increase of the windows, on which is computed, becomes 

smaller and thus the effect of the evolvement becomes larger, which results in 

larger difference of and This explains why a new wave may 

emerge at the largest lag I = m. Similarly, a new wave is also likely to emerge 

at I = —m. 
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Algorithm 4 Probe 
INPUT： a peak point ptMax 

O U T P U T： sampleWave Point Set 

1： sampleWavePoiniSet Compute 

2: step = 1; 

3： index = ptMax 干 step,� / / + for right side probe 

4: while index is not a left(right) boundary point do 

5： sampleWave Point Set Compute 

6： step = step X 2; 

7： index = ptMax 干 step'� / / + for right side probe 

8： end while 

According to Observation 2，we can track new waves by monitoring the 

correlation values at I = 土m. As shown in Fig. 2.9(b), although there is no sign 

of a new wave at Z = 60 when t = 1, we also compute its correlation at 亡=5. 

This strategy successfully detects a positive correlation value at I — 60. Then, 

we take it as an existing wave and track it using the approach we have discussed 

above. In summary, at i = 5, we use 11 points to track the whole interesting 

area, saving 91% of correlation computation. 

Our update approach, Update Correlation^ is presented in Algorithm 3. It 

first checks the correlation values at the two maximum lag points to detect po-

tential new waves (Line 2). If there exists a new wave, the algorithm treats it 

as an existing wave (Lines 3-5). Then, the algorithm approximates each exist-

ing wave by two procedures Probe and Interpo (Lines 7-11). Procedure Probe is 

shown in Algorithm 4. After computing the correlation value at the maximum 

peak point, it probes the points on its two sides in a geometric progression style. 

The probing stops when the boundary is met, which we have discussed above. 

As for the procedure Interpo, we use the linear interpolation [58] to connect the 

probed values and form the approximated interesting area. We then detect and 

� update peak points according to the probed correlation values (Line 12), which 
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can be implemented by an existing peak detection algorithm [12]. Finally, we 

decide the lead-lag relation based on the approximated interesting area (Lines 

13-14). 

The Update Correlation algorithm enables us to track the interesting area 

using only 0{\ogm) correlation computations instead of 0(m) that a brute-

force approach requires. Moreover, since we start probing from the maximum 

peak points and stop probing when detecting the boundary, the actual number 

of correlation computations is much smaller. We further study the efficiency 

improvement of Update Correlation in Section 2.3.3. 

2.3.3. Evaluation 

In this section, we design a comprehensive set of experiments to answer the 

following questions: ^ 

(1) What are the effects of the parameters (e.g., the length of the sliding win-

dow, the correlation threshold) on the performance of our algorithm in 

term of discovered leaders? 

(2) How does the set of discovered leaders evolve as the sliding window moves 

forward? Does the set of leaders remain stable or evolve a lot with time? 

(3) Whether the detected leaders really make sense and give insight to market 

modelling? How can we apply them to help the real investment? 

(4) How much improvement we can gain by using U pdateC or relation? What 

is the approximation accuracy? Does the accuracy degrade over time? How 

does U pdateC or relation scale with the maximum lag? 

We perform our experiments on a PC with a Pentium IV 3.4GHz CPU and 

2GB RAM. We retrieve intraday transaction data for stocks from the NYSE 

Trade and Quote (TAQ) database� . We extract the tick data of stock prices 

^The database covers all securities listed in the NYSE and American Stock Exchange 

(AMEX), as well as in Nasdaq National Market System (NMS) and SmallCap issues. 
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Figure 2.10: Stock Leaders in S&P 500 when Varying Correlation Threshold 

by computing the Volume Weighted Average Price (VWAP) for transactions at 

each tick as follows: 

n Numberof Share Bought x Share Price 
V\V'A.P = . [Z.Zh) 

Total Share Bought 

In this way, we obtain two real stock datasets: 

• D O W 30. The selected stocks are 30 component stocks of the Dow Jones 

Industrial Average, which are the largest and most widely held public stocks 

in the United States. We compute their VWAP by setting one tick as 5 

seconds. 

• 500. The selected stocks are component stocks of the S&P 500 index. 

These 500 stocks are Large-Cap corporations, which are heavily traded 
• -

every day. We compute their VWAP by setting one tick as 1 minute. 

Sensit ivity of Parameters 

This set of experiments tests the sensitivity of parameters on the perfor-

mance of our algorithm. As shown in Alggrithm 1’ there are three parameters: 

the length of the sliding window w, the correlation threshold 7 and the maximum 

lag m. As recommended in [10], m is set to be w/2. Therefore, we only test 

different values of 7 and w. We use the dataset S&cP 500 and vary 7 from 0.2 to 

0.9 with a step of 0.05. We also test three values of window length: w = 120, 

w = 180 and w = 240. 
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Figure 2.10(a) presents the number of stock leaders we detect at each 7. For 

all values of w, we find a clear rise in the number of leaders when 7 increases 

from 0.2 to 0.8. This is because the number of edges in the graph Q decreases 

with the increase in 7. And as Q becomes sparser, the stocks are less likely to 

be covered by the same leader, which results in more leaders. When 7 exceeds 

0.8, there is a drop in the number of stock leaders. This is because when 7 is 

set too high, many stocks become isolated and are not led by any other stocks. 

Therefore, the number of leaders decreases when 7 is high and reaches 0 when 7 

is set to he 1. 

In order to study the evolution of the leaders when varying 7，we com-

pute the containment rate of leaders between two consecutive 7 values as 

力 丨 A s shown in Figure 2.10(b), for all values of w, the 

containment rate for different values of 7 remains to be high until 7 reaches 0.8. 

This indicates that most of the leaders discovered at a low 7 can also be discov-

ered by a higher 7, as long as 7 is not set to be too high. This gives us some hint 

for choosing 7: normally, 7 can be set to be around 0.3 since it tends to select 

a small number of leaders. If users want to be more confident with the lead-lag 

relation, they can set 7 higher and a higher 7 also covers most of the results that 

are produced by the lower ones. From our experimental study, we found setting 

7 = 0.3 can generally comes out a good result. 

Stability of Leaders Over Time A user may raise the following question: 

since the leaders are updated every time tick, can I trust the current detected 

leaders? This set of experiments studies the stability of detected leaders as time 

goes by. We adopt the Jaccard coefficient [72] to measure the similarity between 

the set of leaders extracted at two consecutive time ticks. Therefore, Jaccard 

coefficient is computed as | = 二 :二二 : : : 丨丨 . 

Figure 2.11 reports the result on the two datasets, DOW 30 and S&P 500. 

For DOW 30，we fix ii; = 240, 7 = 0.3，m = 120 and extract leaders at 4000 

consecutive time ticks in an entire trading day. As shown in Figure 2.11(a), there 

are 3095 time ticks when the leaders remain the same as those of the previous 
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Figure 2.11： Stability of Leaders 

time tick (the similarity is 1) and the average similarity is 0.9536, which suggests 

that the detected leaders are quite stable for most of the time. This is because 

the interval between each consecutive time tick is only 5 seconds, which leads to 

little difference of the graph Q. However, since the size of graph is quite small, 

an altered edge related to the leaders may result in a significant change in the 

set of leaders. For example, the standard deviation of the similarity is 0.10 arid 

at time tick 1113，the similarity is as low as 0.2. 

On the other hand, for the 1-minute per tick data of S&P 500, we fix if = 

120, 7 = 0.3，m = 60 and extract leaders at 270 consecutive time ticks in an 

entire trading day. The result is shown in Figure 2.11(b) and we find that the 

similarity is quite stable (The standard deviation is 0.07 and the lowest similarity 

is 0.55). This is because the graph G of this dataset is large and a small number of 

altered edges is not likely to affect the whole PageRank vector tt. However, since 

the interval between each consecutive time tick is 1 minute, it is more likely that 

there are several altered edges in the graph. As a result, the average similarity is 

0.82, which is lower than that of DOW 30. In summary, this set of experiments 

suggests a certain degree of stability for the evolution of the leaders and we will 

further explore this nice property in the next section. 
Leadership Index Vs. Market Index 

In this section, we study the usefulness of the detected leaders in market 

investment. We construct a Leadership Index by the following procedure. I) 
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Figure 2.12: Leadership Index VS. DOW 30 Market Index 

Initially at time t^ = w, we form a portfolio using the extracted leaders. The 

weight Pi of each leader in the portfolio is decided by their relative leadership 

score, i.e., — ^——^ . The initial return of the portfolio rn = 1. II) At 

the following time tick t, we record the cumulative return of the portfolio r̂  and 

update the portfolio using the newly detected leaders and their weights. The 

Leadership Index is then represented as a time series recording the cumulative 

return of the portfolio. We now present some numerical examples to demonstrate 

the application of our approach to portfolios of stocks in DOW 30 and 500. 

While these examples by no means constitute a thorough numerical study, they 

are indeed representatives of a much larger set of experiments that we have run. 

Figure 2.12 presents the Leadership Index using the leaders of DOW 30. 

We set w = 240，7 = 0.3 and extract an average of 6.5 leaders out of 30 stocks 

over the 4000 time ticks of a day. Besides, as a comparison, we also present 

the corresponding cumulative return of the DOW Jones Industry Average Index 

(DJI). As shown in Figure 2.12，Leadership Index formed by the small set of 

leaders vividly tracks the entire market index behavior (The cross correlation 

between the two indices is 0.949). This tracking ability of Leadership Index 

comes from the facts I) the detected leaders are the power source of the market 

movement and they can represent other stocks' behavior II) these leaders have 

a certain degree of stability so that holding them can track the portfolio of the 
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entire market. This tracking property has mainly two usages. I) The financial 

analysts can easily detect the information source and evaluate the investment 

opportunity by studying these leaders. II) The money managers, who are always 

trying to make their funds beat or match market indices, can even form their 

portfolio using the leaders. The stability of leaders also suggests that they do 

not need to adjust the portfolio very often if the transaction cost is considered. 

Figure 2.13 shows the Leadership Index we obtain on S&P 500. We set 

w = 120, 7 = 0.3 and extract an average of 10.8 leaders out of 500 stocks in a 

trading day. In the comparison with the Standard & Poor 500 Index, we detect 

‘ there are four phases for both indices： up, down, up and down. In the first rising 

phase, these two indices move together in a synchronous style. Then, at t = 95, 

the Leadership Index begins to go down first while the S&P 500 Index keeps 

rising and meets its first turning point until t = 145, 45 minutes later. After 

that, the Leadership Index rebounds at t 二 177 with a first steady rise trend 

followed by a steep burst at t = 209. In contrast, S&P 500 Index starts the rise 

trend at t = 197 and meets the burst point at t = 214 which are both delayed 

with the Leadership Index. The final turning points for both indices is at i = 220 

and they resume synchronous correlation until the end of the trading day. As a 

summary, in the first and fourth phases, the Leadership Index correlated with 

S&P 500 Index around zero lag point while in the second and third phase the 

Leadership Index lead S&P index and the lag decrease from 45 minutes in the 

beginning to 5 minutes in the end. 

So the question arises naturally: why there are two types of tracking prop-

erty, the zero-lag tracking property and the prediction tracking property? Why 

at some period, the prediction tracking property is stronger than the zero-lag 

tracking property but at some other periods in an opposite way. In order to 

answer these questions, we study again the shape of the interesting area and 

differentiate two types of waves, the zero-lag wave and non-zero-lag wave. The 

zero-lag-wave would be centered around zero lag point. And the two time series 

with the zero-lag wave would correlate closely with few time lag, i.e., they tend to 
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Figure 2.14: Zero-Lag Correlation Strength 

track w i th each other. We call this type of lead-lag relation zero-lag correlation. 

We compute the strength of the zero-lag correlation on the tota l relations 

as , where e is set to be 0.8. The strength indicates how likely the 

Graph is contr ibuted by the zero-lag correlation. Figure 2.14 (a) presents zero-

lag correlation strength over t ime for D O W 30. And we can see the strength 

fluctuates and tends to be quite strong occasionally (reach 0.5) which implies 

the graph is largely contributed by zero lag correlation. Therefore, the leaders 

detected in this graph tends to move closely w i th other t ime series and exhibits 

strong zero-lag tracking property and weak prediction tracking property. On the 

other hand, in figure 2.14 (b), from f = 1, we observe a strong but decreasing 

strength curve and i t reaches 0.1 at i = 95 (The end of the first rise phase of 
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Figure 2.15: Performance of Correlation Update 

figure 2.14). I t then stays very low unt i l t = 220(thc end of the th i rd phase) and 

rises-again afterwards. The evolution pattern of the strength coincides wi th the 

transit ion between the zeros-lag tracking and prediction tracking property well. 

Therefore, as a conclusion, when the zero-lag correlation strength is strong (i.e., 

when there are no significant leaders in the market) the Leadership index wi l l 

have strong zero-lag tracking property while when i t is weak (i.e., when there 

are significant leaders in the market), the Leadership index wi l l show stronger 

prediction power over the market index. 

C o r r e l a t i o n U p d a t e 

This set of experiments studies the effectiveness of the UpdateCorrelation 

algori thm, which approximates the lagged correlation in deciding the lead-lag 

relation between t ime series. We test on the dateuiet D O W 30 and vary w f rom 

120 to 1440 (i.e., vary m from 60 to 720). For each w, we move forward the sliding 

window over that t rading day and report the average result. We compare our 

approximate approach w i th the exact approach which computes the correlations 

for all lag values in a brute-force way. 

Figure 2.15(a) reports the number of correlation computations. When 

w 二 120, the exact approach needs around 54,000 correlation computations, 

while our approximate approach only needs 7571 computations. The number of 

correlation computations for the exact approach increaises linearly w i th w, while 
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our approximate approach grows very slowly wi th w. When w = 1440, our ap-

proxiniat-e approach only neods to coinputc 20,767 correlation values, which is 

over 30 times less than 648, 000 computations in tl ie exact approach. 

Figure 2.15(b) presents tl ie average runmiig t ime for tho two approaches. 

The running t ime shares a similar trend to that of correlation computations pre-

sented in Figure '2.15(a). When w — M40, the running t ime for our approximate 

approach is 0.94s, which is an order of magnitude faster than 9.3s for the cxact 

approach. W i t h the increase of w, the difference between the running t ime of the 

two approaches wi l l continue to enlarge. Note that the f luctuation in the rui i i i ing 

t ime of our approximate approach is mainly due to the extra cost of conducting; 

linear interpolations and updat ing peak values. 

Figure 2.15(c) shows the accuracy of the approximation. The error rate 

is computed as the Jaccard distance between the two sets of leaders detected 

by the two approaches. We can see that the average error rate is loss than « 
1.5% and decreases when w increases. In Figure 2.15(d), We also present the 

approximation error rate over t ime when we move forward the sliding window by 

setting w = 360, 7 = 0.3. The result shows that the error docs not continuously 

increase (always lower than 0.15) as t ime goes far away from the ini t ia l t ime 

tick, on which the exact interesting area is computed. This is simply becausc 

our approximate approach refines peak values at cach t ime t ick, so that the 

approximation at the following t ime ticks does not accumulate previous errors. 

This justifies the effectiveness of our correlation update approach in achieving 

good approximation accuracy. 

2.3.4. Summary 

In this section, we formalize a novel problem of discovering leaders from mult iple 

correlated t ime series based on real t ime lagged correlation. A t ime series is 

identified as a leader if its movement triggers the co-rnovernent of many other 

t ime scrips. Since the lagged correlation computat ion is very costly in a stream 

environment, we develop an effective update approach that is able t,() significantly 
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reduce the number of correlation computations 'c\s well as to retain good accuracy. 

We typical ly study the leadership discovery problem in the financial domain and 

at tempt to find loaders in the stock market. The experiments on real stock price 

(lata show that the discovered leaders demonstrate high tracking and predictive 

power in the market. Our experiments also show that the approximate update 

approach of correlations is up to an order of magnitude faster than the exact 

approach at a low approximation error rate. 

2.4. Chapter summary: multiple t ime series 

co-movement 

Co-movement patterns of t ime series stream have a variety of applications in 

financial domain, including portfol io management, risk analysis and high fre-

quency trading. The key questions are the following: How to detect co-movement 

patterns from evolving t ime series streams? How to update them efficiently? How 

to use them to assist financial applications. 

We introduced two techniques that exploit two aspects of co-movement pat-

tern. First , we presented co-movement model which capture the dependency 

relationship of two t ime series. We explored this model to compute the expected 

return and risk for the portfol io. Second, we studied the lead-lag effect in finan-

cial market and proposed an algor i thm which can detect leaders from mult iple 

t ime series stream efficiently. Both of technique exhibits sound result in real 

financial data. 

Next, we wi l l present techniques which integrate news information into pat-

tern discover. 



C H A P T E R 3 

P A T T E R N DISCOVERY ON T I M E 
SERIES AND N E W S S T R E A M 

Time-series analysis always plays a significant role in the financial markets, where 

predictions (the decision making processes) are made based solely on the histori-

cal movements of the stock prices (time-series). However, there are many factors 

that do not expl ici t ly exhibit in the time-series but have large impact on the 

movements of these t ime series. As an evidence, in the stock market, the price 

changes are the consequences of the actions taken by the investors. Investors' 

actions, although occasionally irrat ional, are predominantly understandable and 

rat ional w i th respect to the social structure, social organization, perceptions and 

collective beliefs of this complex arena [1, 7, 21, 45]. A key issue is whether i t is 

possible to interpret the t ime series movement better by using some addit ional, 

widely available and actionable information, together w i th the time-series data. 

In this section, we t ry to answer this question by introducing three tech-

niques to discover the relationship between the t ime series stream and news 

stream. Specifically, we first present some background and related work in Sec-

t ion 3.1. Then, we present an approach to model and predict the stock market 

process by using a Non-homogeneous Hidden Markov Model ( N H M M ) in section 

3.2. After that , we present our technique for volat i l i ty prediction by ut i l iz ing both 

t ime series data (stock prices) and textual information (news articles)in section 

3.3. Finally, we present the algor i thm which can detect the pr iming events which 

52 
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pose great impact on t ime series movement in Section 3.4 We summarize this 

chapter in Section 3.5. 

3.1. Time Series and News Stream Related 

work 

111 this section, we present some related work on mining news stream and t ime 

scries stream. 

3.1.1. News Sensitive Stock Prediction 

The first systematic examination against the impacts of textual in format ion on 

the financial markets is conducted in [46], which compares the movements of 

Dow Jones Industr ia l Average w i th general news dur ing the period f rom 1966 to 

1972. [20] formulates an activity monitoring task for predict ing the stock price 

movements, which issues alarms based on the content of the news articles. [73 

integrates the textual information into t rading rules, where for the textual data, 

a max imum entropy text classification approach [61] is used for classifying the 

impacts of the posted messages on the stock prices. 

83] develops an online system for predict ing the opening prices of five stock 

indices, where by combining the weights of the keywords f rom news articles 

and the historical closing prices of a part icular index, some probabil ist ic rules 

are generated using the approach proposed by [77]. [49] proposes a system for 

predict ing the intra-day stock price movements by analyzing the contents of the 

real-t ime news articles based on a language modeling approach, which is in tu rn 

proposed by [65]. [22] and [24] propose a model for min ing the impact of news 

stories on the stock prices by using a Mes t based spl i t and merge segmentation 

a lgor i thm for t ime series preprocessing and S V M [39] for impact classification. 

59] uses a hand-made thesaurus to forecast intraday stock price trends from 

informat ion contained in press relefujes and report a very nice result. 
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3.1.2. Bursty Features 

As discussed, we consider the news articles as an impor tan t data sourcc that 

have a signif icant impact on the investors' behaviors, which in t u r n w i l l affect 

the stock pricc changes. A n d we observe tha t the emergence of an impor tan t 

event is caused by a burst of features (keywords): some features “suddenly appear 

frequent ly" when the event emerges, and their frequencies drop when the event 

fade away. By mon i to r ing the d is t r ibu t ion changes of the features in the news 

articles, we can ident i fy whether there is any new event occurred. Specifically, 

i f the feature, / G •F, suddenly appears frequently in some t ime windows (e.g. 

a day), w, we consider tha t an event emerges. Below, we discuss how to handle 

the issue of "suddenly appear ing frequent ly" as the problem of bursty feature 

ident i f icat ion. 

A bursty feature is a keyword tha t appears at an abnormal ly high rate in a 

bounded t ime interval (bursty per iod). I t is impor tan t to note tha t ident i fy ing 

the bursty periods is impor tan t because we need to know which periods the 

bursty features w i l l have impact on the stock price changes. 

The ident i f icat ion process of the bursty feature is s imi lar to t ha t of [25]. I t 

presents a probab i l i t y model to capture the probabi l is t ic d i s t r ibu t ion of burst 

events. Here, the probab i l i t y of bursty of a feature, P(w, / ;Pe ) , is computed by: 

/^(t^，/;Pe) 二 E p ( A : ; M ^ ’ P e ) (3.1) 

/ / V \ 
P(/c•儿 Pe�= - p M - P e 产 ( 3 . 2 ) 

\ 、 ） 

where pc is the probab i l i t y tha t f appears in a t ime window given tha t i t is 

not bursty, N ^ is the to ta l count of the features tha t appear in w, and ri/", is 

frequency of f appears in w. f \Pe) is the cumulat ive d is t r ibu t ion funct ion 

of the b inomia l d is t r ibu t ion , and P{k\ N^j, pe) is the corresponding probabi l i ty 

mass funct ion. 
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3.1.3. Markov Model 

There are also a lot of work [26, 43] which use hidden niarkov model to model 

interest time-series. [26] explores the segmental hidden inarkov model to model 

the pat tern of t ime series and each state is responsible for the generation of 

a segment of overall t ime series. In [26], the Vi terb i - l ike a lgor i thm is used to 

recognize a specific pat tern f rom a new t ime series. I t also extends the model as 

an online a lgor i thm for detect ing the ending point. [26] focuses on apply ing the 

segmental H M M model for pat tern matching and does not consider the influence 

from informat ion of environment. 

36] proposes the Non-homogeneous hidden markov model for relat ing pre-

c ip i ta t ion occurrence at mul t ip le rain-gauge stations to broad scale atmospheric 

c i rculat ion patterns. [44] describes how to capture temporal and mul t ivar ia te 

dependencies in the mul t ivar ia te time-series data, w i t h a review and comparison 

on H M M and N H M M . These works jus t present a theoretical framework for sta-

t is t ical modeling, but do not address how to construct and control the model on 

complex in format ion environments, like the stock markets. 

3.1.4. Volatility 

I n this thesis, we not only look at the r ise/ fal l of t ime series, but also we study the 

change of vo lat i l i ty of t ime series [67] • Volat i l i ty is the standard deviat ion of the 

continuously compounded returns of a stock w i th in a specific t ime horizon and 

is used to measure how widely prices are dispersed f rom the average as follows: 

(3.3) 
> i = l 

where Ri is the possible rate of return, E{Jli) is the expected rate of return, and 

Pi is the probabi l i ty of 

The volat i l i ty of t ime series index is influenced by the news event. For 

example, [67] discovered a relationship between the news and abnormal stock 
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prices behavior. B u t i t focused more on how to detect these inf luent ia l news 

using tex t categorizat ion. 

3.1.5. Event Detect ion . 

The problem of Topic Detect ion and Track ing ( T D T ) [2] is a classical research 

problem for many years. The first stream of work used graphical probabi l is-

t ic models to capture the generation process of document stream [6，29]. [76 

extended the L D A model and incorporated locat ion in format ion. [75] analyzed 

mul t ip le coord inated tex t streams and detected correlated bursty topics. [57 

added the social network in fo rmat ion as a regulat ion into the topic detect ion 

f ramework. O n the other hand, there are another stream of work which detected 

topic based on the burs ty features [47]. [25] detected bursty features and clus-

tered them into bursty events. [23] fur ther bu i l t an event hierarchy based on the 

bursty features. [32] analyzed the characterist ics of bursty features (power and 

per iod ic i ty ) and detected various types of events based on i t . [52] proposed an 

a lgor i thm to t rack short phrased and organized them in to different news threads. 

A l t hough these work can detect topics and track event efficiently. They can not 

tel l the users which topics/events are changing the real world 's interested t ime 

series, President Approva l Rat ing, Stock Marke t Index. 

3.2. Integrating Multiple Data Sources for 

Stock Prediction 

In our work, instead of using news articles d i rect ly for predict ion, we ident i fy the 

associated events by selecting a representative set of bursty features (keywords) 

tha t have impacts on a single stock. We present a non-homogeneous Markov 

model ( N H M M ) t ha t can ident i fy the hidden market states f rom the sequences 

of observed stock price segments. One of the d ist inct ive features of this model is 

t ha t the observed stock price segments are inf luenced by a stream of associated 
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event states that are computed f rom the burst of selected keywords in news 

articles. 

The main contr ibut ions of this work are summarized below. First , we pro-

pose a model ing approach based on non-homogeneous Markov model ( N H M M ) 

by tak ing mul t ip le data sources into consideration for pricc predict ion in stock 

market. Here, the mul t ip le data sources are stock prices (time-series data) and 

news articles ( textual data). These two data sources are different in nature. 

Second, we study how to deal w i t h the influences of news articles on the stock 

pricc changes in N H M M . For a specific stock, we ident i fy the associate events 

in the news articles tha t wi l l tr igger different kinds of market states. We wi l l 

discuss how we determine the associate events by using bursty features, as well 

as how the market states could be identif ied based on the associated events. 

Th i r d , we conduct prel iminary experiments using real datasets, which confirms 

the effectiveness of our proposed approach. 

In the fol lowing sections, we discuss a non-homogeneous Markov model and 

, use i t to model stock market in Section 3.2.1. In Section 3.2.2, we discuss our 

event-driven approach w i t h the focus on how to use the bursty features obtained 

f rom the news articles together w i t h the stock prices in N H M M . Section 3.2.3 

evaluates our model. Section 3.2.4 concludes this work. 

3.2.1. Modeling Stock Market 

The overview of our approach is shown in Figure 3.1. On the left hand side, 

i t i l lustrates tha t stock prices are associated w i th a set of relevant news articles 

where an event (represented by a set of bursty features(keywords) extracted f rom 

news articles) may tr igger a change of the stock price immediately. Note: each 

news art icle is indexed by a t imestamp. On the r ight hand side, i t outl ines a 

model which considers the relationships between stock price changes and events 

occur. In brief, we ident i fy the hidden market states, S、that w i l l generate a 

sequence of observed stock segments (short - term trends), O , meanwhile i t (5 ) 

w i l l be affected by a sequence of associated event states, Xo- X。consists of 
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Figure 3.1: Model ing Financial Market 

the bursty features in the finance news corpus tha t are signif icant related to the 

stock prices change. On the top of the r ight hand side of Figure 3.1, i t shows two 

observed trends, p̂  and i. They are generated by the hidden market states , 

Si and Si+i, respectively ( in the middle). The t ransi t ion f rom s, to 5,4.1, which is 

represented by the solid arrow, is influenced by the associated event state, Xo,,+ i , 

which is shown at the b o t t o m of the figure. 

The reason why we adopt the Non-Homogeneous Hidden Markov model 

( N H M M ) [36] in this work is given below. I t is widely agreed tha t market state 

sequence, S = { sq , 5 i , . . . , s „ } , is a k ind of stochastic process, where i t can be 

represented by a discrete Markov chain. Each state, Sj, in 5 denotes the s i tuat ion 

of the market at a certain period of t ime. In 5 , the state s^+i depends only on 

the state of ŝ  and the corresponding associated event state, :ro’i+i，but does not 

depend on the previous status, s] for j < i. Th is memoryless characteristic of 

S is based on the Efficient Market Hypothesis ( E M H ) [8]. E M H states tha t the 

current market state must reflect al l of the current market in format ion and the 

change of state must satisfy the properties of random walk. Under E M H , that 

state Si w i l l reflect al l of the in format ion in the previous state but the t ransi t ion 

behavior of Sj to s^+i w i l l not be influenced by any of the previous market state. 

We wi l l present the mathemat ica l details of the model ing process in next 
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part . 

P r o b a b i l i s t i c M o d e l i n g 

N H M M defines a jo in t d is t r ibut ion of the observed states and the hidden 

states, where the observed states, o,, are also rely on the influence variables, x,. 

The fol lowing assumptions hold for NHMM： 

f 

i > 2 , 
P(s,|Si:,_i,Xo,i；,) 二 （丄。） 

i = 1. 
\ 

where Si；, and denote the sequence of hidden states and the sequence of 

the corresponding associated event states, respectively. Eq. (3.4) formalizes the 

generation process tha t observed state, o^, wi l l only depend on the current hidden 

state, s,, and is independent w i th the previous observed states, o,_ i , and also the 

aissociated event states, Xo,i：；. Eq. (3.5) addresses the inemoryless characteristic 

of the discrete state chain, S. The current state, s” is independent of the hidden 

state sequence tha t is the previous of as well as the corresponding previous 

associated event states, x i： , - ] . Based on these two equations, we wi l l specify the 

model by parameterizing 尸 (o js , ) and x^,,) in the fol lowing sections. 

The observed variable in our scenario is the trends of stock prices. Each 

t rend is characterized by two elements: (1) t ime (durat ion of its occurrence); 

and (2) slope. In order to model these informat ion, we represent each segment 

o, e O as Si vector (<9„ 山)where is the slope of the trend tha t is generated by 

the regression line against the original data points in tha t specific t ime period on 

the t ime series, and d, is its durat ion. Then, we combine the semi-Markov models 

26，35] into our model to allow arb i t rary state durations. In this approach, the 

slope distr ibut ions and the state durat ion distr ibut ions are bo th set to he a 

Gaussian d is t r ibut ion. Since the slope 9, and d, are independent, we have: 

P{o,\s,) = P{d,\s,)P[d,\s,) (3.6) 

We employ the mul t inomia l logistic regression to parameterize the hidden 
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state t ransi t ion 户(sjs卜】，工…J. Mu l t i nomia l logistic regression is a widely used 

framework in the speech ami language processing area. I t is based on proba-

bi l ist ic machine learning, also known as Max imum Enlropy, that usually used 

to tackle the classification problems which involved mul t ip le classes [40]. The 

parameterized state t ransi t ion probabi l i ty is described as follows: 

尸(s, = n |s ,_ i = m, Xo,,) = 二 x p ( c r 醒 + Pn工。j__ (3.7) 

P ( … | : ^ 。 ’ i ) 〜 严 队 1 ) 、 (3.8) 

Here, K is the number of hidden Markov states, a is the baseline Markov state 

t ransi t ion mat r ix , p is the corresponding weight vector for each and A is the 

constant f irst-state probabi l i ty vector. The denominator in the summat ion form 

is the normal izat ion factor, so as to ensure that the value of these two equations 

is f rom 0 to 1. 

W i t h the parameterized equations for the hidden Markov state t ransi t ion 

probabi l i ty, we can estimate the parameters Aj, cr̂ , and p^ by using the classical 

E M (expectat ion-maximizat ion) a lgor i thm, which is described in [44 . 

Classification and Prediction 

Online stock t rend classification and predict ion is given below based on 

NHMiM, where the stream data of stock price, and news articles arc archived 

continuously. 

Let y =〈2/1’?/2，... , Vt) be a sequence of stock priccs (a single t ime series), 

where y^, for 1 < z < is a stock price (a point on the t ime series), w i th y\ 

as the first point of current market state and yt as the newest archived point. 

The predict ion is conducted only when is identif ied as the end point of the 

current market state (This approach wi l l be discussed in more details in Section 

3.2.2.), and yi is the s tar t ing point of next market state. The process is given 

in A lgo r i t hm 5. The funct ion create.segment() approximates y\ ,y2 • • - Vt- i as a 

new segment ô  (l ine 2). I t computes the associated event state, rCcM+i，from the 

news articles (line 3). We wi l l discuss this issue in Section 3.2.2 (Eq. (3.19)). 



Chapter 3. Pattern Discovery on Time Series auci News St renin 71 

A l g o r i t h m 5 Stock Trend Classification and Predict ion 

INPUT： coming Stream {y \、y2 ,…’ ?/<〉 

1： i f y,—1 is detected as the end point of current segment t h e n 

2： o, 二 create segment�yiy2 …yt- \ � 

3； Compute Xo,,4i a.s the current associated event state {FA{. 3.19) 

4： •s, = MLS(o,) 

5： f o r each state k e K do 

6： compute + i 二 A:|s" :r(,,“ i ) 

7： end for 

8: = arginax/cP(s, + i 二 A:|s,’ 工̂’“ i ) 

9： re turn s,41 、 

10： end if 

In line 4，for s ” i t conducts classification by cal l ing MLS() to obta in the Most 

Likely State (MLS) , which is given in A lgor i thm 6. Let us discuss A lgor i thn i G 

below. 

Af ter the classification phase of A lgor i thm 5，in line 5-9, the state transi-

t ion probabi l i ty for each possible state wi l l be calculated, and the one w i th the 

max imum transi t ion probabi l i ty w i l l be returned as the predicted state. Users 

can therefore issue buy/sel l decision according to the parameters of the pre-

dicted state, s⑷，which is the mean values of the slope and the durat ion of the 

corresponding trend. 

In A lgo r i t hm 6’ a/t represents the probabi l i ty that the N H M M model, which 

has generated the first i observed segments of O, is in hidden state k at step i. 

A n d cach computat ion of a j i ) wi l l use the value of a,-(2 - 1), Vr e [1 : K]. cu-O) 

is computed by the fol lowing equation: 

a k { l ) = p (o i |s i 二 k、p、s人=k\xo,\) (3.9) 

A lgo r i t hm 6 takes the state w i th the highest value of a ^ i i ) as the most likely 

state of St. 
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A l g o r i t h m 6 MLS “ ~ 
INPUT： Detected segnient o, 

1： fo r each st ate k e. K do 

2: = p(o,|.s, = k) \ - l )p(s, = 二 r, x j 

3 end for 

•1： s , = a r g iimx人-Q人-(2) 

5； return .s, 

3.2.2. An Event-Driven Approach 

The N H M M was discussed in tl io previous section. However, there ax(、two 

problems left unsolved: (I) the compulat ion of the associated event state x^,, and 

( I I ) the detection of the end point of current market state. In this section, wc wil l 

concentrate on identifying fi^ssociatod events to solve these two problems. There 

arc several issues. First, after detecting bursty features according to Section 

3.1.2, we discuss how to evaluate the influences of the feature on a specific t ime 

t. Second, we discuss how to identify the associated events and compute their 

influence on stock price changes. Finally, we discuss how to detect N H M M stales, 

which is strongly related to the data segmentation, or in other words, the early 

determination of the end point of the segments. 

F e a t u r e I n f l u e n c e I d e n t i f i c a t i o n Given a stream of news articles, we first 

identify bursty feature rate according to Section 3.1.2. In order to discretize 

the bursty rate time-scries into M-Sta tc transit ion sequence, so as to be used 

in our N H M M , we discretize the probabil ity, P(w, f ； Pe), into M states, where 

M 二 {0,1，…，M — 1}. Hcnce, we need M — 1 thresholds between 0 and 1. 

Each state indicates its burst intensity. The higher the value, the more strong is 

the bursty intensity. In the following discussions, we explain our approach iLsiiig 

M — 2 which identifies two states for the burst time-series, the bursty state and 

noil-bursty state. 

Given all the bursty state sequences of features / G F ( F is tho whole feature 
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Figure 3.2: Feature Slate Influence 

set) that are obtained cus discussed in previous section, wc need t,o identify the 

associated event influcricc vector Xi at t ime t. Here, we use "influence rate” ’ 

C ( / j , to measure the influence of a feature state at t ime t’ and C ( f , t) to 

measure the total influence rate of f for this stock at t ime t. 

Figure 3.2 gives an example of how a feature influences segments of stock 

pricc, where the stock price is split into three segments o!’ 02 and 03. As shown in 

Figure 3 .2 ,…star ts from 1 2 / 1 8 / 2 0 0 6 ( M M / D D / Y Y Y Y ) and ends at 12/19/2006, 

02 starts from 12/19/2006 and ends at 12/21/2006, 03 starts from 12/21/2006 and 

ends at 12/22/2006. The feature state sequence f exhibits two bursts in the t ime 

window, [12/18/2006, 12/19/2006] and [12/20/2006, 12/21/2006), respectively. 

Let f j denote a bursty state of feature f and [6；̂ , c / J denote the t ime window 

of f j . We define C ( / j , t) as follows: 

1 \ibf <t < e/, , 
< “一 】 (3.10) 
I 0 otherwise 

I t is based on the Efficient Market Hypothesis (EMH) , and many existing works 

([48], etc) bui l t their prediction systems babied on EMH. In Figure 3.2, w i th 

Eq. (3.10), for the two bursty states of feature / ’ only the state for the t ime 

window [12/18/2006, 12/19/2006] is correlated wi th Oj and the influence rate is 
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1. 

W e i g h t e d Fea tu re In f l uence I d e n t i f i c a t i o n : Unfortunately, Eq. (3.10) is 

often violated in real market situations. In Figure 3.2, the bursty state in the 

time window [12/20/200G, 12/21/2006) may have influence on 03. This i'unv lag 

is due to the fact that the real world market may not be so efficient as d(，scril)(、(l 

in the Efficient Market Hypothesis. The influence rale of / , may fade a»s t he l ime 

distance between e a n d t becomes larger. Ba«eci on this observation, Eq. (3.11) 

formalizes tho weighted influence rate. 

y 

c x p - 冲 i f < t 

C i f j . t ) = 1 if b j ^ < t < Cf̂  (3.11) 

0 otherwise 
V 

Here, Lhc a indicates the fading intensity of infiiicncc rate of the bursty state. 

The total influence rate of feature f at. time t can he computed as below: 

I/I 
= (3.12) 

where I / I equals to the number of states in the state sequence of feature f . 

Assoc ia ted Even ts I d e n t i f i c a t i o n 

Let us assume that the influence rate of features f G F at t ime t is identified. 

Lot O be a sequence of stock price segments generated by any segmentation 

algorithms [42]. In this section, we describe how we identify the events and 

features that are related to stock price segments O. For the events that are highly 

related to O, wc call thern associated events Similarly, for the features that 

are highly related to O, we call them associated features fo. 

As stated in above, the eincrgencc of events contains a set of bursty features, 

therefore, in order to identify X„, we need to identify a set of fo G F which is 

formally defined as below: 

D e f i n i t i o n 1. X�arc associated events to O if they contains a set of iissociatocl 

features which arc significantly related to O. 
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In definition 1，one problem is tha i wc have to carefully deftiic the phrcuse 

"significantly related to" . Given a feature / G F and a sequence of stock price 

segments O, we determine whether f is significantly related to O by two niea-

svires: inter-c()7Tel(itiori(Cli) and intra -corrdcLtwn�C八、.We first present how 

they are conipiitod, then 叫) la in why they are com puled in this way. For the. 

inter-coiTelaiion[C 

I�丨 

CHU.O) 二 T J j l ^ n / A J (3.13) 

where C7(/, as defined in Fai'SA'Z, is the influence rate of f on the beginning 

of the segnieiit o,’ or in other words, the change point between o,_i and o,. 

Eq.3.13 computes Ihc average influence of feature / on the cliaiige of stock price. 

This is why Cr is tornied a^ inter-comlation. For the intra-cojrelaHon{Ca), wi th 

the similar conce])t to infonnal ion gain [70], we divide the stock price segments 

O into'thre(3 classes (up, down, steady) using the trend labelling approach we 

proposed in [22]. Wc also identify two classcs of feature states (burst or not), 

then O) can be cornputocl by: 

= E{0) — [p{f)E{OJ)-^p{f)E(Oj)] (3.14) 

where p(/)，p{ f ) are the probabil i ty of the feature burst or not and E(0) is the 

entropy [72] of the segment sot that can be computed aa below: 

3 

E(o) = -Y^pm\ogpm (3.15) 
1=1 

where 0 ' contains all the segments belonging to one of the three clcusses(up, 

down and steady) and p(O') is its proportion. And E(0,f) and E{Oj) are 
•‘ 一 

the entropies of stock segments set classified wi th / and wi th f respectively and 

E ( 0 , / ) is computed cus below 

E(0，J) = - X > ( 0 \ / ) l o g p ( 0 ' , / ) (3.16) 
1=1 
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P(()'，/) = K ( ( t \ ) (3.17) 

and p(0\ f ) can he computed likewise. Eq.3.14 computas the i i i fonnat ion gain 

f rom f which measures ihc significance of t,ho feature f w i t h r(、spc(,t, to cla.ssi-

fy ing different classos of st,()(:k price segments O. This is why Ca is termed as 

intra- corrclatwn. 

* Intui t ively, th(； feature f tha t is significant related to O should have both 

high inter-conrAation, / ) and intra-coiTclation, C,\[0^ f ) . However, sim-

ply adding or i i iu l t ip ly ing them together is not appropr iate because the two 

inea.sures evaluate the correlat ion between the feature and the change of stock 

pricc from different aspects. To capture these ideas, we first ident i fy two sub-

sets of F\ Ffi o and F,\ q, which contains the top M and N features ranked by 

/ ) and f ) respectively. Then the associated events X,) are formed 

by a set of associated features f „ a«: 

^ o 二 F 似 ) r U \ o (3.18) 

where the intersection part of F/^ q and Fa。contains the features that have both 

relatively high inter-coiTelaiion and intra-coirelation. 

Therefore, the associated event influence vector Xq ( at t ime t can })e formed 

by the influence rate of all / G Xq at t ime t as 

Xo, = (3.19) 

where is the z-th feature in X。. Final ly, the associated event state :r(,’，for o, 

equals to ToA,丨，where is the beginning t i i i io of segment o^. As mentioned in 

Section 3.2.1, associated event state 工。,，would be computed for predict ion and in 

next section, wc would explore associated event influence vector rr。’, to identi fy 

the state of stock market. 

M a r k e t S t a t e I d e n t i f i c a t i o n 

Recall, given a sequence of stock price points, (?/i, y2、...、？//), the predict ion 

is conducted when 队 i s identif ied as the end point of the current, market state 
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and yt is the s tar t ing point of the next market state. Below, we discuss how to 

to detect the end point of each state when construct ing a N H M M . Th is issue 

is related to data segmentation. We first examine a t rad i t iona l segmentat ion 

approach which only considers in format ion f rom single data source (the stock 

prices only) . Then, wc propose a new segmentation approach tha t considers 

in format ion f rom mul t ip le sources. 

The single-source segmentation (SS) is based on the sl id ing window seg-

i i ientat ion a lgor i thm [42]. Given a stream of stock price data < t/ i , 2/2, •••〉’ the 

a lgor i thm t ry to extend current market state by approx imat ing the data f rom 

？/I to the r ight . A t sonic point y “ if the approx imat ion error e exceeds the max 

(MTor threshold, t l i cn an end point 一 1 is detected a.s the end point of c i i r re i i t 

market state aiici t l ie subscquencc f rom the star t point y、to y t - i is trai isforr i ied 

into a segment, which is the linear in terpolat ion of • ，？/t-i〉. Then the 

a lgor i thm continues to search for a new potent ia l segment s tar t ing f rom y [ 

SS is able to ident i fy the end points of the hidden market states by detect ing 

the changcs of the shapes of stock price streams. However, i t does not consider 

the in format ion f rom other sources, like the bursty features obta ined f rom news 

articles. Rccall: in our N H M M , the bursty features influence w i l l lead to the 

t rans i t ion of market state by using influence event vectors. In order to detect 

the end points of hidden states by mon i to r ing the change of associated event 

influence vectors, wc propose a mult iple-source segmentation approach. 

The new mult iple-source segmentation (MS) works similar as SS, but i t w i l l 
t 

declare an end point of segment when either the fol lowing two condi t ion happens. 

1. The approx imat ion error of〈？/i，2/2’. . . is larger than the max error 

threshold. 

2. The s imi lar i ty of associated event influence vector between the events at 

the t ime of y： and at the t ime of yt is smaller than a m i n i m u m s imi lar i ty 

threshold. 

Lot Xo,ti and Xo,t2 he two events. We mt、讓re the event s imi lar i ty by the cosine 
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Figure 3.3: State Changes 

sifnilarity. The idea behind is that an influence event wi l l trigger the burst of a set 
� 

of features and two different events should lead to burst of different features. I f 

the bursty features between two t ime points are significantly different, i t implies 

that there is emergence of two different events. 

A n example shown the diffcrcncc between these two approaches SS and MS is 

in Figure 3.3. In Figure 3.3, the top figure show observed stock-segments, namely, 

Oi and 02’ where o! is a down-trend (from 12/18/2006 to 12/19/2006) and Oo is an 

up-trend (from 12/19/2006 to 12/21/2006). The SS approach wi l l model it using 

two states Si and s) to generate the two observed stock-segments. Note: in Figure 

3.3, the next three figures show three bursty features: cu r rency , exchange, and 

i n t e r e s t . The bursty feature c u r r e n t c y is f rom 12/19/2006 to 12/20/2006, 

the bursty feature exchange is f rom 12/19/2006 to 12/21/2006, and the bursty 

feature i n t e r e s t is from 12/21/2006 to 12/22/2006. The MS also considers 



Chapter 3. Pattern Discovery on Time Series auci News St renin 71 

I 二 L ^ 一 一 一 ^ ^ ^ ^ 。 

* I ‘ 
- — 一 • • 一 - — — 1 . — 1 — — — — - ‘ — — — * * 1 * 10 n̂ no 4o fso oo 7|0 eo 

. I ‘ 
� I I 

f ； : 
- j 1 1 1 I I 1 1 1 .1111 I.I 1 •'： • •M1 i I.I 1 1 1 . . . 1111：.1111 丨.丨丨 

io po :«> 丨 4(> f>() on ô HO 
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Figure 3.4: SS v.s. MS 

the impacts of bursty features, and detects tha t there is a change among the 

bursty features f rom c u r r e n c y and exchange to i n t e r e s t . T h e change occurs 

at 12/21/2006. Based on bo th the observed stock-segments and bursty features, 

MS models i t using three states for the stock-scgmeiits Oi, d飞 and O3, which are 

、shown as dot ted lines in the top figure of Figure 3.3. In tu i t ive ly , i t suggests 

tha t the observed stock-segment Oi is composed of two different factors (02 and 

03). The bursty feature i n t e r e s t contr ibutes signif icantly to the continuous 

observed stock-segment and should be considered as a new state in the modeling. 

In the last cvcis of Figure 3.3, we show the event s imi lar i ty at the beginning of 

the segment 02 is 1 and then decline sharply on 12/21/2006. Since the event 

s imi lar i ty is smaller than the m in imum event s imi lar i ty threshold, MS declare 

tha t day is the end point of d!. 

One advantage of MS is tha t i t can detect changes in an early stage. Figure 

3.4 i l lustrates an example. The top panel shows the stock price of the stock HSBC 

‘ f r o m 2 /1 /2006 to 3/30/2006，where SS identifies seven segments by moni to r ing 

the changes of the stock price. In the middle panel, we track the associated 

event s imi lar i ty between the event at the star t of the current segment and tha t 

at the current t ime. I t is wor th r iot ing tha t , in the beginning of the segment, 

the s imi lar i ty is rather high and then drops steadily over the t ime. The bo t t om 
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panel shows how MS works. A t most of t ime, it works exactly as SS does, and 

identifies the change of stock trend. I t also utilizes the informat ion provided 

by event similari ty. It is noted that f rom t ime tick 30, the stock price starts a 

significant rise trend, and SS identifies i t unt i l the t ime 42, when a drop trend 

begins. On the other hand, as we moni tor the event similar i ty, s tar t ing from , 

t ime 30. it drops dramat ical ly at t ime 34 and even readies 0 at t ime 36, which 

indicates the emergence of a new'event. MS notes this change and dcclarcs a new 

market state at t ime 36, in an much earlier stage than SS does. W i t h informat ion 

f rom mult ip le sources, MS is more sensitive to the cluwiges in a stock market. 

We wi l l i l lustrate its benefit in our experiment studies. 

3.2.3. Evaluation 

We evaluate our proposed approach by conducting a market s imulat ion based on 

two different rneasiireirients: the accuracy of the predictions and the accumulated 

profits/ loss according to a buy-arid-hold test. 

E x p e r i m e n t S e t u p 

We conducted the fol lowing experiments to compare w i th our proposed ap-

proach: 功 

1. SS-based P r e d i c t i o n : We detect the end of point of the segment by SS 

and use the mean slope of the predicted hidden state 5,4-1 as our predicted 

trend slope. 

2. M S - b a s e d P r e d i c t i o n : We detect the end point of the segment by MS 

and use the mean slope of the most likely state 万…as the predict ion trend 

slope. 

3. Base l i ne P r e d i c t i o n : We detect the end point of the segment by SS, but 

the trend predict ion is determined solely on the slope formed by the last 

point of the previous segment and the first point of upcoming segment. 
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Sectors Stock Stock Stock Stock 

(Highest rise) (Highest drop) (Largest f luctuat ion) (Largest volume) 

Propert ies 0083 0016 0083 0001 

Uti l i t ies 0002 0006 0002 0006 

Conirnerco 0941 0008 0883 0941 

Finance 0388 0011 2388 0Q05 

Table 3.1: S(]ectc、d Stocks(Code) 
* 

4. H M M P r e d i c t i o n : We detect the end point of the segriiciit by SS, but 

• the trend predict ion is ba^sod on H M M only, wi thout using any of the 

news articles. Th is approach is luscd to i l lustrate how iiiuch th(3 coiitext-

s(Misitivity(iie\vs article) improve the result per se. 

The stock prices (opening and closing) and the news articles, used in the 

market simulat ion, are archived from the Hong Kong Exchange Market and The 

Standard^ dur ing 1/1/2005 and 12/31/2006’ respectively. There are thousands 

of stocks in the market. We selected the stocks as follows. (1) They are Hang 

Seng Index (HSI) stocks, because HSI is a market indicator. (2) The stocks are 

selected f rom the four main sectors: Properties, Uti l i t ies, Commerce k Industry, 

and Finance. (3) For each of the sectors, we chose the stocks w i th the largest 

fluctuation, the largest exchange volume, the highest percentage of rise, and the 

highest percentage of drop. The 12 stocks selected are summarized in Table 3.1. 

For the data preprocessing of the news articles, all features are stemmed 

using the Porter stemmer. Features are words that appear in the news articles, 

w i t h the exception of digits, web page address, email address and stopwords. 

Features that appear more than 80% of the tota l news articles in a day are 

categorized as stopwords. Meanwhile, features that appear less than 5% of the 

to ta l news articles in a day are categorized as noisy features. Both the stopwords 

and noisy features are removed. A l l features are weighted using the tf . zd/(70 

^http://www.thestandard.com.hk 

http://www.thestandard.com.hk
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Figure 3.5: Prediction Accuracy 

schema whenever necessary. After the data preprocessing, we identify a total 

number of 928 features. Then the technology as we discussed in section 3.2.2 is 

explored to identify the associated events for each specific stock. A l l data from 

1/1/2005 to 5/31/>^006 arc used for training, and the data from 6/1/2006 to 

12/29/2006 are usal for evakiAtion. ‘ 

The non-homogeneous hidden Markov model ( N H M M ) is trained using the 

N H M M toolbox^. Wc conducted a series of experiments to obtain the best sett ing 

of the N H M M model. Heretoforth, unless otherwise specified, we use the follow-

ing opt imal parameters: Number of features selected using inter-coirelation and 

intra-correlation: M = N = 1 0 0 ; and Number of hidden states: K = Q] M in imum 

simi lar i ty among events: 6 = 0.01; Influence fading rate: a = The regression 

maximum error is set to maintain the durat ion of each segment has the mean 

around 3. A l l other parameters vary and depend on the specific stock. 

P r e d i c t i o n A c c u r a c y 

The accuracy of the prediction is obtained by checking whether the direction 

of the predicted trend is the same as the actual trend. For instance, if the 

prediction for the upcoming trend is “up” and the upcoming trend is really 

^Sergey provides a nice toolbox containing algorithms for modeling multivariate time series 

with hidden Markov models (h t tp : //www. cs . u a l b e r t a . ca/-sergey/MVNHMM/) 
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rising, then we say that t l ie prediction is correct. Otherwise, if the prediction 

is “down”，but the upcoming trend is rising, then we say that the pmciiction is 

wrong. 

Figure 3.5 suminarizes the results of the accuracy of the predictions using 

four different approaches against the 12 selected stocks. In all the 12 selected 

stocks, except for OOl l .HK, the SS-baaed Prediction approach performs much 

better than the bfi^seline approach, while the MS-ba^ed Prediction approach al-

ways outperforms the SS-based Prediction approach. However, we note that in 

some of the stocks (0083, 0016, 0002) their difFerences arc insignificant, which 

means the improvement from SS-teased Prediction to MS-based Prediction ap-

proach is marginal. One may criticize the importance of including the market 

information (news articles) dur ing the segmentation in MS. Wc wi l l explain it in 

details in the next section - profits generated by the market simulation. 

Consider Figure 3.5. I t is obvious that the MS-based Prediction approach 

excels all other approaches. By using the M S - b縦 d Prediction approach, four 

stocks (0001, 0941, 0883 and 0005) obtained the accuracy higher than 70%, in 

which three of these stocks (0001, 0941 and 0005) came from the largest exchange 

volume from their sector. This implies that our approach is most effective when 

i t applies on the stocks which have the largest amount of transactions. 

The prediction accuracy of 0006 using the SS-babied Prediction approach is 

the same as the MS-based Prediction approach. The reason is that there are 

extremely few news articles that are related to 0006 directly. As a result, the 

prediction made by both of the approaches are the same, as we do not have any 

news articles to assist/change our predictions. 

The result from H M M prediction further supports the effect of using news 

articles. Al though i t sometimes performs better than the baseline approach 

(0083, 0(316, etc), i t performs worse than both SS-based Prediction and MS-

based Prediction approach in all the stocks. 

To summarize, our MS Prediction approach is most effective when there 

are many news articles related to the stock (such as the sector of Commerce k 
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Finance) and may not perform significantly better for the stocks wi th few news 

articles (such as the sector of Uti l i t ies). 

P r o f i t s G e n e r a t e d 

We evaluate the profits generated by difforciit approaches using a Buy-and-

Hokl test [34]. The profit is measured by the rate of return, r which is computed 

as below: 

r = y (3.20) 

where y^ is the price of stock at t ime i. In this test, profit (loss) is made when 

shares are sold (short are bought). The assumption of zero transaction cost is 

taken. Two strategies that are used to determine the decisions of buy, sell arid 

hold are given below. 

1. If the prediction of the upcoming trend is positive, then shares of that 

stock are purchased. If a profit of 1% or more could be made wi th in this 

detected segment, then all shares are sold imriiediately; otherwise they are 

sold at the beginning of the next segment. 

2. If the prediction of the upcoming trend is negative, then shares of that 

stock are sold for short. If the trading pricc is dropped 1% or more than 

the shorted price w i th in this detected segment, then shares of that stock 

are purchased immediately; otherwise they are purchased at the beginning 

of next detected segment. 
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Figure 3.7: l^rccliclions on 0005 (HSBC) from 10/12/2006 to 11/20/2006 

\V(、are conccrned wi th the rate of return, how much sluires are bought in 

each transaction is ignored. Figure 3.6 shows the CAirnulative prof i t of the 12 

selected stocks using different prediction approaches. Our MS-based Prediction 

approach docs not make any loss. A l l other approac'hes may incur loss in some 

stocks. 

In the previous scctioii, wc showed that the improvement, for some of stocks 

i l l terms of the prediction accuracy, between SS-based Prediction and MS-bailed 

Predict ion approach is insignificant. However, in terms of the prof i t generated, 

the improvement is noticeable. For instance, for the stock 0001, the prediction 

accuracy is only improved by 2% (Figure 3.5), but the profit generated is iiri-

provcd by almost 20%. We explain i t below. Take the stock 0005 (HSBC) as 

an example. Figure 3.7 shows the prediction made by different approaches from 

10/12/2006 to 11/20/2006 against 0005 (HSBC). The prediction approaches are： 

Bguselinc Predict ion approach (top), SS-ba^ed Predict ion approach (middle) and 

MS-ba5ed Predict ion approach (bot tom). A t point A, a prediction is made by 

the three different prediction approaches simultaneously. Since the ba^seliiic ap-
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proach relics on the slope of the last segment and the first, point of ihe upcoming 

segment, this is why an "up" prediction is made. On the other hand, the SS-

hased Prediction approach and the MS-basod Prediction approach both i imkr 

use of the contents of the news articles for prediction, that is why both of them 

made a correct “(lowii” prediction at point A. Another prediction is made at. 

point B because the approximation errors (e!，62 and e：^) all exccod the prede-

fined threshold. A t that, point all approaches made a corrcct prediction. Now 

for the iVlS-ba^sod Prediction approach, i l made the th i rd prediction at |)oiiit 

E, whereas both of the other approaches made the th i rd prediction at point F. 

MS-hased Prediction approach can make prediction at point E, not because the 

error, e^ cxcecds the predefined threshold. The reason that MS-based Prediction 

approach made a prediction is because at that moment, the contents of ti io news 

articles are very different from the contents of the news articles that we have 

archived previously. As a result, the prediction is made early than the other two 

approaches. Al though all of the three approaches made correct predictions, MS-

bascd Prediction approach made an early prediction, which implies that i t can 

generate a larger profi t . This is why even though in some cases the prediction 

accuracy of SS-based Prediction approach and MS-based Prediction approach 

arc similar, the resulting profits generated can be noticeably different. 

B u r s t y Fea tu res V S . N e w s Sens i t i ve 

Another interesting problem for our approach is whether the bursty features 

from news articles would help to improve the prediction performance coiiiparncl 

to other news based prediction approaches and in what extent it can help. We 

compare MS-based Prediction wi th news sensitive prediction, NS-based Predic-

t ion [22], where the training is conducted in three phases: first the news articles 

relevant to a specific stock are aligned to the stock trend according to their 

tirnestamp, then the approach would cluster the news articles into positive and 

negative sample set, finally, the classification model is bui l t to account for the 

prediction task. And in the testing phase, the arrival of a relevant news article 

would trigger the prediction system and an alarm wil l be generated if the news 
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Slock MS NS Stock MS NS 

0083 0.35 0.01 OOIG 0.12 0.10 

0 0 0 1 0 . 2 6 -0.12 0002 0.11 -0.03 

(3006 0.06 0.03 0 9 4 1 0 . 3 5 0.10 

0008 0.16 -0.21 0883 0.23 0.09 

U388 0.36 0.19 0011 0.14 -0.04 

2388 0.13 -0.07 0005 0.24 0.08 

Tabic 3.2: Comparison between MS and NS 

article is classified as a positive or negative news. The difference in porfoniuince 

of profit generation is highlighted in Table 3.2. 

From Table 3.2, the cumulative profit of MS-bascd Prediction outpcrfoniis 

NS-bas(xi Prediction in the selected stocks, where in most cases, the margin 

is larger than 20%. Even for stocks which have large exchange vohiine and 

a lot of relevant news articles (0001, 0941 and 0005), the performance of NS-

based Prediction is not comparable to MS-ba^sed Prediction. The reason is that 

NS-based Prediction makes a strong requirement on the clataset that the news 

articles for both training and prediction should be relevant to the specific stock. 

But in our experiment setup, the news articles arc from a general finance news 

corpus. Under this settings, the approach in [22] is unable to distinguish the news 

articles wi th impact on the pricc change of a specific stock. The noisy training 

set eventually leads to the unsatisfying performance of the classification model. 

On the other hand, MS-baiied Prediction looks deeper into the text corpus by 

identifying the relevant events as a set of bursty features significantly related to 

stock price changes and achieves much better results. Apart from the rea^soii of 

dataset, instead conducting prediction purely based on the news articles as NS-

based Prediction, MS-based Prediction also considers the information from the 

t ime series of stock price, which gives the prediction a basis as well as additional 

confidence. 
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3.2.4. Summary 

In this work, we proposed an evcnt-clriven approach ba^sed on a noi卜h()mogen(、()us 

hidden Markov model ( N H M M ) . W i t h N H M M , wc consider the stocluuslic pro-

cess of markr l state sequence S as a discrete Markov chain, where s, ^ i depends 

only on the state、6、and tl ic corres|)ondiiig (went, slat e !：,+卜 A k(、y issue addressed 

il l this work is how t,o identify t he ass()ciat,(、d event states for a sj^ccific stock and 

how to make use of thoni as a part of N H M M for stock prediction. We 

gave our solutions using Inirst.y features that are the keywords suddenly appcaj-

iiip; frequently in bursty periods. We considered the foaluro iiiflucnce on stock 

prices, ami proposed a new segmentation approach to segment stock prices wi th 

t.iic consideration of the impacts of bursty features. We studied our approach tor 

a stock market, but our approach can be applied to other financial markets and 

applications when it is best to util ize information from mult iple data sources. 

We conducted our experimental studies iisiiig real {la.ta.s(?t8. The expcMiiiicMit-al 

results coi i f inncd the effectiveness of our approach. 

3.3. Stock Risk Mining by News 

In this section, we present our technique to predict stock volat i l i ty by analyzing 

news contont. Al though there have been in any existing studies [83, 49, 67] which 

can predict the up/down trend of stock prices, volat i l i ty prediction and ranking 

from news is a new and challenging problem. We highlight the unique issues of 

volat i l i ty prediction, and discuss why the existing work for stock ticMid prediction 

can not he directly applied. 

First, volat i l i ty carries different i i i formatiori from a trend. Figure 3.8(a) and 

(b) show the stock volat i l i ty and stock prices during 37 trading days (from Sept. 

01, 2008 to Nov. 09, 2008), respectively. We can see that there is no olwious 

correlation between these two t ime series. Some volat i l i ty l)ursts occur at the 

turn ing points of stock price trends (e.g., point 13 and point 27) while others 
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Figure 3.8: Volati l i ty, Prices, and Feat,iires 

appc^ar when there is no obvious change of stock prico trend (e.g., point 21). This 

is because that volat i l i ty is computed as the standard deviation of stock price 

arid therefore reflects market activities from a microscope perspective. As shown 

i l l the example, dramatic changes of daily stock prices can causc volat i l i ty bursts, 

but stable daily stock prices do not necessarily imply a stable volati l i ty. A stock 

which has very stable daily prices may have a big fluctuation in intra-day prices, 

thus may produce a large volat i l i ty value. 

Second, the claims distr ibut ion of training text samples is very skewed if 

wc use a text categorization approach ba^icd on news articles to prcdict stock 

volati l i ty. Consider the daily ICBC stock prices in 37 days in Figure 3.8. There 

arc 12 up trends and 25 down trends, wi th a ratio of 1:2 between up and down 

trends. On the other hand, there arc only 4 volati l i ty bursts out of 37, wi th 

a ratio of 1:8 between bursty and non-bursty volatil ity. Furtherinorc, there are 

185 news articles associated wi th the up trend, and 363 news articles associated 

wi th the down trend, wi th a ratio of 1:2. On the contrary, there are only 51 
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news articles as posit ivc saiiiples, a«s‘so(、iat,(、(l w i th l)ursty volat i l i ty, and ‘197 news 

articles <ls lu^gat.ive samples, associatocl w i th non-l)iirst,y volat i l i ty, w i th a rat io 

of al)o\it 1:10. W(、have observed similar skewed distr ibut ions in our large-scale 

exporiineiits as well. The small number of positive samples related to t l ie nir(、 

volat i l i ty bursts makes the piohk、iii of pr(、dict,iiig volat i l i ty hursts challenging. 

Th i rd , vo lat i l i ty huist. predict ion shares some si in i lar i ly w i th the predict ion 

of the slopes of stock troncis, â s both problems focus on the inagni lude of changes. 

Exist ing studies [83, 49, 67] can predict, the up /down trond, but, may not, predict 

t he slope of a trend acciiratoly, hccause the available infor inat io i i is i io l sufficient. 

This ovi(l(MKT also s\iggost.s that the existing methods on trond pmi ict . ion in ay 

not work on volat i l i ty pi edict,ion. 

In this thesis, we concent,rat,(、' on volat i l i ty predict ion by ut i l iz ing l)ot l i t ime 

serit\s data (stock priccs) and textual in fo in ia t ion (news articlos). First, the tex-

tual in for inal ion is transfoniuHl into t ime series by using t ho measure A D F I D F 

(Adjusted Docuineiit, Frequency 1 nverse Document Frequency). Sccond, rcpn、-

scntative bursty volat i l i ty features arc selected based on the co-occurrences of 

historical stock pricc volat i l i ty and news articles. Th i rd , the feature weights, 

which measure the degree of importance of those features for cach stock are 

learned. Then, based on the feature weights and t l ic incoming news, the volati l-

i ty of the conesponding stock is predicted. To improve the predict ion accuracy 

on stocks which have very l imi ted news reports, a random walk model is used 

to propagate the impacts f rom news among stocks based on their correlation. 

Final ly, a volat i l i ty index is constructed as a t ime series of predicted volat i l i ty. 

Stocks can be further ranked based on the predicted volat i l i ty values. 

M a i n C o n t r i b u t i o n s 

The main conlr ib i i t io i is of the work are summarized â s follows. 

• We study a new problem of predict ing stock risks based on the predicted 

volat i l i ty by ut i l iz ing both t ime series i i i fonnat ion (stock price) and textual 

in format ion (news articles). 
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• We propose a new feature selection algor i thm to select bursty volat i l i ty 

foaturos which have co-occurring bursty patterns w i th the volat i l i ty bursts 

of slocks. A set of such selcctcxi bursty volat i l i ty features can acciiratcly 

roi)resonl the stock volati l i ty. F'eature weights are learnod from historical 

stock prices and news art ifles to nieiusiire the impact of" bursty keywords 

on stock volat i l i ty. 

• Wc further use raiuloin walk to propagate t l ic impacts of news among 

slocks biusecl on their corr(^lation. The random walk^ approach can greatly 

improve the volat i l i ty prediction performance for those stocks w i th v(、iy 

l i i i i i t tni news reports. The volat i l i ty prediction and ranking methods are 

bui l t on top of the rai idoin walk model. 

• Wc cuiuiuctod extensive experimental studies using real ciatasots and 

(Icmonstratcd the superiority of our approach in comparison w i th exist-

ing approaches. 

In the rest sections, the definit ion of stock volat i l i ty and the problem formu-

lat ion are introduced in Section 3.3.1. Wc study bursty volat i l i ty feature selection 

in Section 3.3.1, and stock volat i l i ty prediction in Section 3.3.2. Section 3.3.3 

presents the experimental study. Finally, Section 3.3.4 concludes this work. 

3.3.1. Problem Statement 

P r o b l e m S t a t e m e n t : Given a set of stocks S 二 {«Si’ ^S�，...} where S�is a t ime 

series, and a set. of documents T = {7、，7̂ 2，...} available before; or at t ime t, we 

focus on predict ing stock volat i l i ty and ranking stocks based on the predicted 

volat i l i ty at the next t ime uni t t + 1, based on the available textual information. 

B u r s t y V o l a t i l i t y Fea tu res 

To predict stock volat i l i ty, we could detect breaking events from available 

news articles that are indicators of volat i l i ty bursts. Here, the breaking event 

is defined as the event which suddenly appears and trigger the burst of stock 



i 
Chapter 3. Pat tern Discovery on Time Series and News •Sfrcvi/" 82 

volati l i ty. So the prohknn is how to select a small set. of features which can 

represent all breaking events. 

As we discussed, the number of volatility bursts in a stock is consitieiahly 

small in comparison wi th the total nuinher of i ip /down trends occurring in the 

same stock. Ev(、n though the number of news articles that are related to the 

volat i l i ty hursts in the stock is also observed to be small, wo believe that, 

t l io features il l those clocuinents can potential ly predict / rank volat i l i ty bursts 

effectively. Here we define the features which trigger the burst of t ime series 

volat i l i ty bursty volat i l i ty features. Tht、desirable properties of a feature are 

discussed below. • 

B u r s t y Occu r rences : A n effective feature needs to be a bursty feature rather 

than a stable feature over a t ime interval. It is most likely that, such bursty 

features can efFcctively represent volat i l i ty bursts. 

H i g h I n d i c a t i v e A b i l i t y : A n effective feature needs to have high abi l i ty t,o 

indicate volat i l i ty bursts, i.e., the huists of a feature need to bo a good indicator of 

the volat i l i ty bursts of the ccHTCspondiug stock. Features whose high occurrences 

are always accompanied w i t h volat i l i ty bursts are more preferable than those 

features whose high occurrences only cause volat i l i ty bursts occasionally. 

H i g h C o v e r a g e a n d L o w R e d u n d a n c y : A min imal set of solcctcd cfFective 

features needs to cover the volat i l i ty bursts as much as possible. By coverage wc 

mean that the set of selected effective features, as a whole, captures all volat i l i ty 

bursts. By redundancy wc mean that some solectcd features may give similar 

information. 

In the following, we discuss bursty feature nieasurenient and how to select 

bursty volat i l i ty features. 

A D F I D F Measure 

As each stock is representing a company, if t l ioro are some i inpor ta i i t things 

related to the company, the news appears immediately. Generally, the wider the 

news is reported, the more impor tant the news is. If there is no bursty news, 

the value which measures the feature biirstness should be around average. In the 
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fo l lowing, we discuss how to capture the widencss of a tex t feature. 

Given a set of stocks S = { S i , S2�...}, where a stock S^ = [ski, Sk2�..., 

is a sequence of stock prices in the t ime interval I . In t l ie same t ime interval 

X, there exists a set of nows/documcnts, T = {T\, T^y .}，where a document 

T, G T contains a set of features { / l y j J L i - We iissiime tha t i t is known which 

stock Sk a document T, is related to. The assumpt ion is reasonable since most 

f inancial news providers do provide such in fo rmat ion when d i s t r i bu t i ng f inancial 

news articles. Then tho features in the document T\ can also be ident i f ied to 

which stock they arc related. We represent a feature f related to a stock S^ in 

the l ime interval I cus a t ime series, f ( k ) 二 [广(1)，产⑵’...，产(2")], where / 人•⑴ 

is defined as follows. 

广 ⑴ = 織 - “ • 剛 

where DF^jit) is the number of related documents in T conta in ing tho feature 

f for the stock S^ at t ime t�and N^•(t) is tho to ta l lui i i iber of docunioi i ts in T 

related to the stock S � a t t ime t. Here t is a t ime un i t defined by user, such as 

one month , one day, or one hour. In th is work, t is defined as one day in our 

evaluat ion. T h e r e f o r e ,产⑴ reflects the wideness of the feature f for the stock 

Sk at t ime t. In the fol lowing, we cal l 广 ⑴ the A D F I D F (Ad jus ted Document 

Frequency Inverse Document Frequency) value of a feature f related to stock S^ 

at t ime t. 
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A l g o r i t h m 7 FeatureRank{5^, Fjt, 7 ) 
INPUT： stock S^, bursty feature set F^, decay factor 7 

OUTPUT： a l ist of pairs (J” E{Sk, f j ) ) for f j e Fk • 

in descending order 

1： compute TBf、 for f i E F k： 

2： for all € Fk do 

3： compute E(Sk, f t ) using Eq. (3.22); 

4: end for 

5: £： — 0; '、 

6： w h i l e Ffc ^ 0 d o 

7： sort Fjt in decreasing order based on E(Sk, /t)； 

8： let f be the first feature in the sorted F/t; 

9： remove f f rom Fjt； 

10:, append the pair ( / , E{Sk, / ) ) into S\ 

11： f o r a l l f j e Fk d o ‘ 

• 12： B = TBj. nTB/； 

13： . i f B ^ 0 t h e n 

14： for t e B-

15： update E { S k J j ) based on Eq. (3.22); 

16: end if 

17： end for 

18： e n d w h i l e 

19： re turn E\ 

Given al l f ^ { t ) values, Vt € X, we ident i fy the bursty t ime interval using 

the technique discussed in Section 3.1.2. We denoted i t as TB!�for feature / , 

representing a set of t ime intervals where f appears to be a bursty feature. 

I t is wor th not ing tha t the commonly-used measure, T F I D F ( term frequency 

inverse document frequency) [70], cannot be used since we need the features tha t 

witness a stock in a t ime interval rather than the importance of the features for 
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a document. Therefore, we use a new measure A D F I D F . The idea of D F I D F 

is brought from [33], but A D F I D F is different from i t . The original D F I D F is 

computed for the whole document set, so the D F and I D F values are global. 

However, A D F I D F is computed for a subset of documents containing all news 

related to a specific stock Sk. Moreover, the A D F I D F value is computed for a 

specific t ime uni t t as in 产⑴. 

B u r s t y Volati l i ty Features 

We identify all bursty features based on A D F I D F . Then we introduce a co-

occurrence rate�denoted as E(Sk, / ) , to measure how a bursty feature f and the 

volat i l i ty bursts of a stock S^ occur at the same time. The larger 人-’/) is, 

the more impor tant the feature f to the stock Sk- The idea of co-occurrence is, 

if a feature always bursts together w i th the stock volat i l i ty bursts in the same 

t ime interval, the feature is valuable for identi fying volat i l i ty bursts. E(Sk, f ) is 

defined below. 

where V ( S / : , I ) is the sum of the bursty volat i l i ty values regarding stock Sk in 

the t ime interval X. 

= (3.23) 

te i 

where V{Sk, t) refers to volat i l i ty at t ime t computed using Eq.(3.3) and then 

transformed using the approach we deal w i th bursty features. Recall that TBj 

is the set of bursty t ime intervals of the feature / , and X is the entire t ime 

interval. In Eq.(3.22), the numerator computes the average volat i l i ty over the 

cooccurrence t ime intervals of the bursty feature f and volat i l i ty bursts. The 

normal izat ion by the denominator makes the co-occurrence rates of features w i th 

respect to different stocks comparable. So the rat ional behind the equation is 

tha t we give higher co-occurrence rate to the features in whose bursty periods 

the stock index volat i l i ty is also very high. 

B u r s t y Volat i l i ty Features Select ion 
N. ‘ N 
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In the previous subsections, we have discussed A D F I D F for feature burstness 

measure and the cooccurrence rate E(Sk, f ) for indicat ive abi l i ty measure for 

a feature / . We w i l l discuss how to select a compact set of bursty vo la t i l i t y 

features to ensure high coverage and low redundancy. 

Consider the example in Figure 3.8. There are three vo la t i l i t y bursts of 

the I C B C stock, denoted as shown in Figure 3.8(a). In addi t ion there are 

three A D F I D F sequences of bursty features “cu t ” (denoted as f 丄 “capit’，(/") 

and "boost"(八)，shown in Figure 3.8(c)-{e), respectively. Here, the two A D -

F I D F sequences and have 2 s imi lar bursts corresponding to 2 out of 3 

- vo la t i l i t y bursts of Sk, and the only burst in f ^ corresponds to the remain ing 

vo la t i l i t y burst in Figure 3.8(a). The three bursty vo la t i l i t y features, / x , /"， 

and 八，together cover the three vo la t i l i t y bursts in By “cover”，we mean 

tha t the features jo in t l y represent the vo la t i l i t y in format ion about S^. Assume 

E[Sk, /x) = E{Sk, f y ) > fz) and the goal is to select top-2 bursty vo la t i l i t y 

features. I f we select bo th f x and fy , then one of t hem is considered as redundant 

and the t h i r d vo la t i l i t y burst cannot be captured. 

In order to select a set of representative bursty vo la t i l i t y features, we design 

an a lgor i thm to rank al l bursty vo la t i l i t y features such tha t the top-A: features, 

to be selected f rom the rank ing l ist, w i l l be more l ikely to accurately capture 

the corresponding vo la t i l i t y bursts of a stock. The a lgor i thm FeatureRank is 

out l ined in A l g o r i t h m 7. The main idea is to reduce E { S k J y ) if i ts burst t ime 

, interval T B / ^ is overlapped w i t h another T B f : for a higher ranked feature / x , 

using a feature decay factor 7 . As shown in A l g o r i t h m 7，it takes a stock Sk、a set 

of bursty features Fk related to Sk、and a feature decay factor 7 . I t computes the 

bursty t ime interval TB八 for every feature G Fk ( l ine 1), and then computes 

, E(SkJt) using Eq.(3.22) (lines 2-4). Let S keep a l ist of pairs {fj,E{SkJj)) 

in descending order of E { S k J j ) - I n a whi le loop (lines 6-18), in every itera-

t ion, i t selects the top bursty vo la t i l i t y feature f f rom Fk and appends the pair 

{ f , E ( S k J ) ) to S. I t then recomputes E{SkJj) for al l remaining f ] 6 Fk using 

the decay factor 7 ’ i f there is an overlap between the burst t ime interval TBj of 
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the selected feature f and TBj^ of the feature f j . 

According to A lgor i thm 7, the top-2 bursty volat i l i ty features in Figure 3.8 

would be either f : ( “ c u t ” ) or fy ( “ cap i t ” ) plus f : ( "boost " ) . 

3.3.2. Volatility Prediction 

We have discussed how to select bursty volat i l i ty features in last section. Such 

bursty volat i l i ty features are selected based on how the burst features in docu-

ments co-occur w i th the volat i l i ty bursts in stocks. In this section, we discuss 

how such selected bursty volat i l i ty features are used to predict the stock volati l-

ity. The bursty volat i l i ty features can have both direct impacts on stock volat i l i ty 

and propagated impacts on stock volat i l i ty through stock-stock correlation, as 

volat i l i ty of a stock may affect and be affected by others. ， 

To predict the stock volat i l i ty at t ime t, we use news articles which arrive 

before t. For example, to predict stock volat i l i ty on a part icular day, we collect 

news articles which appear before 10:00AM on that day (market opening t ime) 

for predict ion. The news articles which appear after 10:00AM wi l l be used for 

next day prediction. 

Graph Construction 

We construct an edge-weighted node-labeled graph G(V,S) where V = V ^ U 

Vs is a set of nodes, V f represents the set of bursty volat i l i ty features, and Vs 

represents the set of stocks. S = Sps^^ss is a set of edges, where Sps represents 

a set of edges f rom a node in V> to a node in Vs, and Sss represents a set of 

edges f rom a node in Vs to another node in Vs. A node in V is associated w i th 

a unique label, so we treat labels as node identifiers. The edge weight on an 

edge {v f .vs) € Eps represents the impact of a bursty volat i l i ty feature v j G Vp 

to a stock Vs G Vs- The higher the weight, the larger impact of the feature on 

the stock. The edge weight on an edge (-Usu^sa) ^ Ess represents the degree 

of co-occurrences of volat i l i ty bursts between two stocks t;，！ and Vŝ  in Vs. The 

higher the weight, the more co-occurrences of the volat i l i ty bursts of two stocks. 
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Figure 3.9: Volat i l i ty Predict ion Based on Random Walk 

Figure 3.9 shows a simple graph 5 ( V , E). Here, Vp contains 6 bursty volati l-

. i ty features, "wor th" , "s lump", "war r i " , “rescu”，“led”’ and "hope". Vs contains 

3 stocks^ “Hang Seng Bank" , "Henderson Land” , and "Hutchison". Table 3.3 

shows the edge weights f rom a feature (a node in VV) to a stock (a node in Vs) 

for Figure 3.9. The feature “rescu” is l inked to all three stocks w i th different 

weights, which means that all these stocks are influenced by the feature "rescu". 

Some features may only have impacts on a subset of stocks. For example, the 

feature "led" does not have any impacts on "Hang Seng Bank" or "Hutchison", 

so there is no edge from "led" to "Hang Seng Bank" or "Hutchison". 
- t 

Based on the graph Q{V,S), we perform random walk and calculate the 

volat i l i ty of a stock at t ime t + 1 based on the available bursty feature informat ion 
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Feature Hang Seng Bank Henderson Land Hutchison 

worth 0 0.88213 1.2434 

slump 0.94723 0.61459 0 

worri 0.98096 0.72786 0.33304 

rescu 0.38712 0.56985 1.0362 

led 0 0.61459 0 

hope 0.63762 0.68553 0 

Table 3.3: Impacts of Bursty Volat i l i ty Features 

at t ime t ’ as well as predicted volat i l i ty of correlated stocks, as in Eq.(3.24). 

V ( S , , t + l ) = a ⑴ ， 丄 ) + 
U、，s “彻 s 

+ 、 (3.24) 

Here, the first part measures the accumulated direct impacts f rom bursty volatil-

i ty features to a stock. This is the information we captured from news to stocks. 

Recall that f i { t ) is the A D F I D F value to indicate how the feature f i is related 

to stock Sk at t ime t (Eq.(3.21))，and E{Sky f i ) is the co-occurrence rate to mea-

sure how feature bursts of f i and volat i l i ty bursts of Sk occur at the same time. 

The second part captures the propagated volat i l i ty bursts from correlated stocks 

Sj based on random walk, as stocks may affect each other in the stock market. 

This part can also improve volat i l i ty prediction for stocks which have very l i t t le 

related news. The correlation factor Sk) is computed as follows. 

5 . ) = ” - 職 彻 - ( 3 . 2 5 ) 

Here, V{Sk,r) is the bursty volat i l i ty at t ime r computed using Eq.(3.3). V{Sj) 

and V{Sk) are the mean volat i l i ty values of the two stocks Sj and Sk、respectively. 

(Tv{Sj) and av{Sjt) are the standard deviation of volat i l i ty for the two stocks in 

the t ime interval [1，亡. 

Volatility Prediction 
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Based on the graph and random walk model, we discuss the procedure of 

volati l i ty prediction. Volat i l i ty prediction involves two phases, namely a training 

phase and a testing phase. The training phase is done based on a set of documents 

(news articles) T , and a set of stocks 5, obtained in the time interval [1,X]. The 

testing phase is, given a set of new documents T'�on a t ime step t, to predict 

stocks volat i l i ty on the next t ime unit t I. 

The training phase is done as follows. First, for each stock Sk € S, 

we compute the volat i l i ty over the t ime interval (1,X], denoted as V { S k ) = 

<71,(72’... where a^ is computed using Eq.(3.3). Then we determine a set 

of bursty features F^ = {/i，/2，...}’ where 人 G Fk corresponds to a time se-

ries of ADFIDF = [//^(l)，/f ⑵’…，斤(：01 in the time interval 

t e [ I , ! ] , is computed using Eq.(3.21). Second, we compute the co-occurrence 

rate E { S k J t ) for every G Fk using Eq.{3.22). Th i rd , we obtain a list of pairs 

(/“ fi)) using Algor i thm 7 to rank the features wi th a decay factor 7 . Fi-

nally, we compute the correlation Sk) between two stocks Sj and Sk using 

Eq. (3.25). 

The testing phase is done as follows. Suppose that we obtain a set of new 

documents T'�at t ime t. First, we compute for every fi in a document in 

T\ that is related to Second, we construct an edge-weighted graph G{V,S). 

V = V f U V s , where Vf is the set of features that both appear in V and are burst 

volat i l i ty features obtained in the training phase. The edge weight for an edge 

( / j ’ Sk), f rom a bursty volat i l i ty feature fi to a stock Sk is assigned as E队 f t ) 

which is computed in the training phase. The edge weight for an edge (Sj.Sk), 

between two stock nodes, is assigned as p{Sj, Sk) computed in the training phase. 

An example is i l lustrated in Figure 3.9. Th i rd , we compute V{Sk, t + 1), for every 

Sk e S�using Eq.(3.24) iteratively, unt i l i t converges based on random walk. 

Volatility Index and Volatility Ranking 

Based on the predicted stock volati l i ty, we could perform two analytical 

tasks: volat i l i ty index construction and stock volat i l i ty ranking. 

A volat i l i ty index for stock Sk in the time interval I is a t ime series of 
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Figure 3.10: Prediction based on Bursty Features 

predicted volat i l i ty values: NI{Sk) = l ) ,V (5 ) t , 2 ) , . . We call 

i t VN-index since it is a volat i l i ty index constructed from news. If the predicted 

volat i l i ty is accurate, the correlation between VN-index and the real volat i l i ty 

sequence in the testing period should be large. The correlation is quantitat ively 

measured using the Pearson correlation coefficient. 

p _ S k 、 、 V 腳 二 ⑶ v , 〈 S k 、 、 V 腳 ( 3 . 2 6 ) ‘ 

A • 

. w h e r e NI{Sk) is the volat i l i ty index sequence, V(Sk) is the real volat i l i ty se-

‘ q u e n c e , and cov means covariance. We wi l l evaluate the quality of the con-

siructed VN-index in the experiment p a r t . . 

、 Besides the volat i l i ty index construction, we can further rank stocks based 

‘ on their predicted volat i l i ty values y{Sk,X -f- 1) for each stock Sk G S. The 

ranking quality wi l l also be evaluated below. 

3.3.3. Evaluation 

In this section, we evaluate our proposed volat i l i ty prediction approach through 

twQ groups of experiments: volat i l i ty index construction and volat i l i ty ranking. 

We archive the minute-level intra-day stock prices and the news articles 
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Figure 3.11: Predict ion based oii Random Walk 

f rom the Hong Kong Exchange Market and Don Jones Factiva database] f rom ‘ 

Jan. 1, 2008 to Dec. 31, 2008, respectively. A l l 42 component stocks for Hang 

Seng Index (HSI) are selected, which are the most inf luent ial and most widely 

held publ ic stocks in Hong Kong. A t each day t, the dai ly realized volat i l i ty is 

computed by apply ing Eq.(3.3) on the 1-minute t ime series. 

In tota l , over 150，000 news articles are collected. Each news article is related 

to a specific stock according to Factiva's classification system. Besides, we only 

tag news articles which appear before 10:00AM as the news art icle at that day ‘ 

for predict ion, since most newspapers wi l l release their news story before the 

market opens. The news articles which appear after 10:00AM wi l l be labeled as 

the news articles of next day for prediction, e.g., the news release at 7:00PM wi l l 

be used for next day predict ion. 

For the preprocessing of these news articles, al l features are stemmed using 

the Porter stemmer. Features are words tha t appear in the news articles, w i th 

the exception of digits, web page address, email address and stop words. Features 

that appear more than 80% of the to ta l news articles in a day are categorized 

as stop words. Features tha t appear less than 5% of the to ta l news articles in 

a day are categorized as noisy features. Bo th the stop words and noisy features 

^http:/ /www.fact iva.com/ 

j 

http://www.fact
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“ are removed. A l l data f rom Jan. 1, 2008 to Nov. 30, 2008 are used for t ra in ing, 

and the data f rom Dec. 1’ 2008 to Dec. 31，2008，are used for evaluation. 

We per form the experiments on a PC w i t h a Pent ium I V 3.4GHz C P U and 

2 G B R A M . 

Volatility Index Construction 

In this par t , we construct the VN-ir idex babied on predicted vo la t i l i t y values 

and evaluate the quali ty. We focus on the fol lowing questions: 

(1) W h a t are the effects of the proposed techniques (e.g., direct impacts f rom 

bursty vo la t i l i ty features versus propagated impacts based on random walk) 

in our a lgor i thm? How much improvement can each of them contr ibute 

respectively? 

(2) W h a t is the overall qual i ty of the VN- index compared w i t h the ground 

t ru th? 

Prediction based on Bursty Features 

Firs t , the VN- index is constructed purely based on the news in format ion 

w i t hou t tak ing the stock-stock correlat ion into consideration. T h a t means the 

predicted vo la t i l i ty is computed by set t ing o； == 1 in Eq.(3.24). 

The result is show in Figure 3 . 1 0 / Each column in the figure represents 

a correlat ion value between the real stock vo la t i l i ty and the VN- index for a 

stock. The average correlat ion value is 0.4252, the max imum one is 0.7951, 

and the m in imum one is -0 .1944 . A l though the overall performance looks good 

(note tha t the average value of correlat ion between stocks is only 0.4094), the 

performance varies dramat ica l ly for different stocks. 

We further analyze the result for those stocks whose correlat ion is very 

low, i.e., the predicted vo la t i l i t y is inaccurate. We find tha t for those stocks, 

their related features are much less than the average number. When a stock's 

related features are not sufficient t o describe the stock price changes, the vo la t i l i t y 

predict ion based on news is inaccurate. 
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Figure 3.12: Comparison wi th Correlation between Stocks 

Prediction based on Random Walk 

To improve the prediction for stocks which have very insufficient news re-

ports, we exploit the stock-stock correlation through random walk to propagate 

the news impacts. In this experiment, the VN-index is constructed based on 

Eq.(3.24). 

As shown in Figure 3.11，the left columns are the correlation results based on 

volat i l i ty prediction from news only, while the right columns are the correlation 

results based on both news direct impacts and propagated impacts from random 

walk. When random walk is added to the prediction model, the average corre-

lat ion is 0.6021, which improves a lot f rom 0.4252. In addit ion, the correlation 

value for every stock is positive. 

Comparison with Stock-Stock Correlation 

We further compare the correlation of the predicted volat i l i ty and the true 

volat i l i ty and the correlation between stocks. As shown in Figure 3.12, 's-s' 

means the correlation value between one stock and the other 41 stocks in the 

whole year of 2008. ‘w/s，and 'w /o ' represent the results w i th random walk and 

wi thout random walk, respectively. 

The mean value of correlation between stocks is 0.4094. For our approach 

wi thout random walk, the average correlation between stock volat i l i ty and VN-

4 
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Figure 3.13: Vo la t i l i ty Ranking Comparison 

index is 0.4252. When random walk is applied, the performance is even better. 

T h a t means the co-movement of VN- index and stock vo la t i l i ty is better than the 

CO-movement of vo la t i l i ty of different stocks in the stock market. 

Volatility Ranking 

In th is section, we evaluate the qual i ty of ranking stocks based on their 

predicted vo la t i l i t y values. We focus on the fol lowing questions: 

(1) How does our approach compare w i t h other approaches in vo la t i l i ty rank-

ing? 

(2) W h a t are the effects of the proposed techniques (e.g., bursty feature, ran-
� 

dom walk) in our algor i thm? How much improvement can each of them 

contr ibute respectively? 

(3) I f we combine our approach w i t h t rad i t iona l approach purely based on 

histor ical stock price data (e.g., G A R C H ) , can we achieve any fur ther im-

provement? 

In th is experiment, we use a much smaller t ra in ing set for evaluation. Specif-

ically, the data f rom Sept. 01，2008 to Oct. 24，2008 are used for t ra in ing, and 

the data f rom Oct. 25 to Nov. 09’ 2008 are used for evaluation. 
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N o r m a l i z e d 

Rea l Vola t i l i ty V b N G A R C H S V M 

CHALCO Li Fung Esprit HIdgs Esprit Hldgs 

Li Fung CHALCO Li Fung FIH 

New World Dev Esprit Hldgs IIK & China Gas CITIC Pacific 

Ksprit Hldgs FIH New World Dov CHALCO 

C O S C O Pacific Henderson Land Sino Land Sinopec Corp 

M T R Corporat ion COSCO Pacific Hutchison C N O O C 

Sino Land Hutchison China Shenhua C L P Hldgs 

China Mer Hldgs HK & China Gas Henderson Land Hutchison 

Cathay Pac Air China Mer Hldgs FIH Hang Seng Bank 

Hang Lung Prop Sino Land Cheung Kong Li & Fung 

China Unicorn New World Dev HKEx BOC Hong Kong 

CITIC Pacific Cathay Pac Air Hang Seng Bank Bank of E Asia 

China Resources Yue Yuen Ind China Mer Hldgs China Resources 

Yvie Yuen ]t>d Hang Seng Bank Cathay Pac Air SHK Prop 

Henderson Land Cheung Kong C H A L C O ICI3C • 

Table 3.4: Ranking Result Comparison 

Ranking Quality Comparison 

We compare our proposed volat i l i ty ranking approach, denoted as V b N , for 

Volat i l i ty-by-News, w i th the fol lowing approaches. 

• Random Selection: The volat i l i ty rank list is formed based on random 

selection. The accuracy is the stat ist ical mean accuracy value for ranking. 

• Baseline Model: The volat i l i ty rank list is formed based on average 

volat i l i ty on the t ra in ing set. 

• G A R C H : We apply G A R C H model to predict the volat i l i ty of next day 

and rank the stocks based on the predicted volat i l i ty. We use a five year 

dai ly stock data for t ra in ing G A R C H model, because if the t ime series is 

not long enough, the performance wi l l be bad. The UCSD Garch toolbox 

is used in the experiments. 

• S V M : we label news articles as positive and negative based on whether the 

volat i l i ty bursts occur after the news release, using a similar approach as 
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in [67]. We use the most promis ing tex t classif ication model suppor t vector 

machine ( S V M ) [39], to t r a i n the tex t classifier. Based on the classifier and 

the news features in the test ing phase, the vo la t i l i t y of stocks is ranked. 

In th is exper iment , since stocks have vo la t i l i t y in di f ferent scales, al l the 

predicted and real vo la t i l i t y values are normal ized by their mean value and arc 

t rans form into relat ive volat i l i ty . T h e accuracy is measured by over lap-s imi lar i ty 

72], 0 5 ( t i , T2), which indicates the degree of overlap between the top n vo la t i l i t y 

stocks of the two rankings t ! and T2，where t j is the rank ing computed by a 

predic t ion model (i.e., sort the stocks by the predicted vo la t i l i t y ) , and T2 is the 

actual rank ing f rom ground t r u t h (i.e., sort the stocks by the realized stock 

vo la t i l i t y ) . The overlap of two stock sets A and D (each of size k) is defined 

as As a case study, Table 3.4 shows a comparison among V b N , G A R C H , 

and S V M against the ground t r u t h , using top* 15 stocks t ha t have h igh vo la t i l i t y 

bursts in the next t ime un i t . Here the stock rank ing l ist for the three models 

are based on their predicted vo la t i l i t y values. In Table 3.4，stocks are ranked 

in descending order of the corresponding vo la t i l i t y value. For results in Table 

3.4, the over lap-s imi lar i ty between V b N and the ground t r u t h (normal ized real 

vo la t i l i t y ) is 0.67, larger than t h a t between G A R C H / S V M and the ground t r u t h , 

which are 0.53 and 0.33，respectively. 

We fur ther test V b N in compar ison w i t h the other four methods by vary ing 

lc= 3_15 in the top-A: rank ing l ist. F igure 3.13 shows the mean value of accu-

racy compar ison between di f ferent methods over the ent i re tes t ing per iod. Prom 

Figure 3.13，when k is smal l {k = 3), the accuracy of V b N is 40% higher than 
i 

S V M , 25% higher t han Random Selection, and 20% higher t han G A R C H . W h e n 

k increases, the accurstcy of al l methods increase, bu t V b N outper fo rms the other 

. methods in al l cases. When k = 15, V b N achieves an accuracy of 50% which is 

'、’ . a r o u n d 15% higher than other approaches. 

Volatil ity Ranking based on Bursty Features 

I n th is exper iment , we evaluate the effectiveness of burs ty features and the 
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Figure 3.14: Vo la t i l i t y Rank ing w i t h Different 6 

impacts of the threshold 6 on vo la t i l i ty ranking. I f 6 = 0, al l related features 

are included in the bursty feature set. O n the other hand, if S is set to a large 

value, there may not be any bursty feature being selected. Figure 3.14 shows the 

results. The x-axis is in a range of /x + xcr, where /x is the mean of ADF IDF，o 

is i ts deviat ion, and x is an integer in the range of [0，10]. y-axis is the average 

accuracy of top-A: results for k— 1-15. As shown in Figure 3.14，capturing bursty 

features is a very impor tan t factor for rank ing stocks based on volat i l i ty . When 

b = / i + 2 . 7 5 a , the rank ing accuracy is the highest (39.5%), which is 7.7% higher 

than using al l the bursty features (31.8%) and 8% higher than using no news 

in format ion (31,5%). As the purpose of th is experiment is to measure the effect 

of bursty features, we set a = 1 in Eq.(3.24). 

- We evaluate the effectiveness of V b N based on random walk w i t h a == 0.95 

in Eq.(3.24). We observe tha t the rank ing of al l component stocks in Hang Seng 

Index is not not iceably affected by vary ing a . I t is because tha t the component 

stocks of Hang Seng Index are reported intensively. Therefore, the improvement 

based on propagated impacts by random walk is not obvious. In th is experiment, 

‘ we test another set of 42 stocks inc luding 11 HSI-component stocks and 31 non 

HSI-component stocks tha t only receive few news articles f rom t ime to t ime. 

F igure 3.15 shows the mean value accuracy comparison for the bottom-/c out of 

the 42 stocks, when a = I (w i thou t random walk) and a = 0.95 (w i t h random 
、 
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Figure 3.15: Volat i l i ty Ranking by Random Walk 

walk) over the entire testing period. As seen in Figure 3.15, when a = 0.95 

(w i th random walk) , its accuracy becomes 27.5% which is 20% higher than the 

accuracy when a = 1 (w i thout random walk). When we increase the k value of 

the bottom-A: stocks f rom 1 to 15, the smallest accuracy margin is st i l l as large 

as 10%, which indicates random walk is effective to improve the accuracy for 

ranking stocks tha t do not frequently receive news articles. 

- V 為 

3.3.4. Summary 
« 

I n this section, we studied a new research problem of predict ing and ranking stock 

vo la t i l i ty based on news, where volat i l i ty is an impor tan t stock risk measure. We 

discussed the unique challenges of vo lat i l i ty predic t ion/ ranking, and showed that 

the exist ing approaches on stock t rend predict ion cannot effectively solve our 

problem. We defined the bursty vo lat i l i ty features and proposed an a lgor i thm to 

select a set of highly indicat ive ^bursty volat i l i ty features to represent volat i l i ty 

bursts. The main idea is to ut i l ize features in news articles to strengthen the 
� 

predict ion and ranking of volat i l i ty. In addi t ion, we proposed a random walk 

based approach tha t propagates the news impacts through correlated stocks. 

,‘ We conducted extensive performance study on volat i l i ty index construct ion and 

stock vo la t i l i ty ranking using real datasets and demonstrated the effectiveness of 

our proposed approach. 

4 
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3.4. Detect ing Priming News Events 

In the last two sections, we have studies the effect of news event on t ime series 

movement. A n question rises natural ly, what are these event and how they 

are organized. In this section, we t r y to answer this question and study the 

problem of detect ing p r im ing events f rom a t ime series index and an evolving 

document stream. Part icular ly, we use the news event related to approval index 

of Uni ted States President to demonstrate our technique. A n d the technique can 

be applied to f inancial da ta t o detect p r iming events related to a f inancial t ime 

series directly. 

In Figure 3.16，we take the weekly approval index of US President Obama 

f rom Jan 20, 2009 to Feb 28, 2010 as an example to i l lustrate the di f f icul ty of 

th is problem. In Figure 3.16, the approval index (blue line) evolves and drops 

f rom 67% to 45% in the last 56 weeks. In Part icular, there are two periods when 

the index drops dramatical ly. One is f rom February to March w i t h a drop f rom 

60% to 55%. The other is in Ju ly w i t h a drop f rom 54% to 48%. For a user who 

is interested in pol i t ics and wants to know what events tr igger these significant 

changes, he/she may issue a query "President Obama" to the search engine. Bu t 

the result w i l l only be a l ist of news articles indicat ing the events tha t President 

Obama part icipates in dur ing these periods. In Figure 3.16, we tag a small par t 

of them on the index. As we can see, in the first period, there are 7 events 

inc luding his meeting w i t h Kev in , announcement of tax cut , signed an executive 

order, proposed a b i l l for f inancial reform, etc. On ly w i t h this in format ion, we 

cannot fu l f i l l the user's need since we cannot differentiate the role tha t each event 

plays to drag down the approval index in that t ime period. Th is urges us to th ink 

about the fol lowing questions. W h a t makes an event pr iming? Does i t contain 

some elements which w i l l a t t rac t publ ic eyes and change their mind? Besides, if 

such elements do exist, could we f ind, their existence evidence f rom other t ime 

per iod and use them to jus t i f y the importance of the local event containing them? 

In this thesis, we call such elements inf luential topics and use them as basic ‘ 
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U1 V \ V I , Puŝ oO mo CI B to ritttp 
> A \ Uov參« P#opo««ii 、 / / 
B ‘ U ̂ ^^lo ov«fM»4ji country \ I/ 」 
昆 I U •OLiCMlKifiBl SyatMm \ I 

IL—̂  «f>unv<3 ••wvuftv* on m* ^ ̂ ^ \ / v yy 
I I cor<(»i>n>r«u mw u«« of «ufT an • 、 Z \ /—V >V 

I •"itKyo»vc <:••_• ！ »' V̂  / V 
45 - I M:<«n|>tkc '。》••»(：»、 \ -

* Pfoposod a b«H o" hn； oc roguiotton foto'̂ n 
'*9mtt Mu» Mny July Sop Nov J«n Mvr 

T i m e 

Figure 3.16: Approval Index of President Obama 

units to form a pr iming event. Specifically, we identify the inf luential topics at 

a global level by integrat ing information from both a text stream and an index 

stream. Then at a micro level, we detect such evidences and organize them into 

several topic clusters to represent different events going on at each period. Af ter 

that , we further connect similar topic clusters in consecutive t ime periods to 

form the pr iming events. Finally, we rank these pr iming events to identify their 

influence to the index. 

The contr ibut ions of this work are highlighted as follows. 

• To the best of our knowledge, we are the first to formulate the problem of 

detecting pr iming events f rom a text stream and a t ime series index. A 

pr iming event is an object which consists of three components: (1) Two 

timestamps to denote the beginning and ending of the event; (2) A sequence 

of local inf luential topic groups identified f rom the text stream; (3) a score 

representing its influence on the index. 

• We design an algor i thm that first discovers the influential topics at a global 

level and then dri l ls down to local t ime periods to detect and organize the 

pr iming events based on the influential topics. 

• We evaluate the algor i thm on a real wor ld dataset and the result shows 
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Figure 3.17: Framework 

that our method can discover the pr iming events effectively. 

In the rest of sections, Section 3.4.1 formulates the problem and gives an 

overview to our approach. Section 3.4.2 discusses how we detect bursty text 

features and measure the change of t ime series index. Section 3.4.3 describes the 

influential topic detection algorithm and Section 3.4.4 discusses how we use the 

influential topics to detect and rank pr iming events. Section 3.4.5 presents our 

experimental result. Section 3.4.6 concludes this work. 

3.4.1. Problem Formulation 

Let T) = [ d i , d2y...} be a text corpus, where each document di is associated wi th a 

timestamp. Let I be the interested index, which consists of \W\ consecutive and 

non-overlapping t ime windows W. V is then part i t ioned into \W\ sets according 

to the timestamp of the documents. Let F be a set containing all different 

features in X>, where a feature / G F is a word in the text corpus. 

Given the interested index I and the text corpus X>, our target is to detect 

the pr iming events that trigger the movement of the index. As discussed above, 

the first step is to discover the influential topics. A possible approach [25, 32 
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is to first retrieve all the topics from the documents using the t radi t ional ap-

proach in topic detection and tracking ( T D T ) . Then we detect the influential 

topics by comparing the strength of the topic w i th the change of the index over 

t ime. We argue that this approach is inappropriate because the topic detection 

is purely based on the occurrence of the words and ignores the behaviors of the 

index. Consider the feature worker. Typical T D T approach would consider its 

co-occurrences wi th other features when deciding to form a topic. By enumerat-

ing all the possibilities, it wi l l form a topic w i th features such as union because 

worker union frequently appears in news documents. However, if we take the 

presidential approval index into consideration, the most important event about 

worker related to the index would be that President Bush increased the Fed-

eral M in imum Wage rate for workers ever since 1997. This event helped h im to 

stop the continuous drop trend of the approval index and make i t stay above 

30%. Therefore, i t is more favorable to group worker w i th wage rather than 

w i th union. This example urges us to consider how to leverage the information 

f rom the index to help us organize the features into influential topics. These 

inf luential topics take in not only the feature occurrence informat ion but also 

the changing behavior of the index. We formally define such topics as follows. 

Definition 1. (Influential Topics) An influential topic 9i is represented by a 

set of semantically coherent features C F with a score indicating its influence 

on the time series index I. 

Based on the definit ion of influential topics, the next step is to represent 

pr iming events using these topics. One simple and direct way is to take each 

occurrence of a topic 氏 as a pr iming event. However, this approach has one 

major problem. We observe mult iple topics at a t ime window w and these topics 

are actually not independent but correlated and represent the same on-going 

event. Our topic detection algor i thm may not merge them into a single topic 

because they only co-occur at tha t certain window but separate in other windows. 

For example, the topic of {str ike target} would appear together w i th the topic 

{force t roop afghanistan} in 2001. Bu t in 2003, when the Iraq war starts, i t 
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co-occurs w i th the topic {gul f war} instead. Therefore, in order to capture such 

merge-and-separate behavior of topics, we define the local topic duster as follows. 

Definition 2. (Local Topic Cluster) A local topic cluster c^,,, in w consists of 

a set of topics which occur in highly overlapped documents to represent the same 

event. 

Based on the definit ion of local topic cluster, we further define a pr iming 

event as follows. 

Definition 3. (Priming Event) A priming event pe consists of three compo-

nents: (1) Two timestamps to denote the beginnmg and the ending of the event in 

the window Wp^; (2) A sequence of local topic clusters c 如 ’ G Wpe； (3) a score 

Score[pe) representing its priming effect, i.e., how significant the event triggers 

the movement of the time series index. 

Our framework is out l ined in Figure 3.17. There are three major steps: (1) 

Data Transformation, (2) Global Inf luential Topic Detection, (3) Local Pr iming 

Event Detection and Ranking. Details are given in the following sections. 

3.4.2. Data Transformation 

In this section, we present how we transform and normalize the features F and 

the index I . 

We first determine the bursty probabi l i ty of each feature using the technique 

introduced in Section 3.1.2. A n d let P ( / , w^p^) represents the bursty rate of f 

in window w. W i t h the transformation, we obtain the bursty probabi l i ty t ime 

series for each feature f e F as p ( f ) = { p ( f , l ) , p ( / , 2 ) , . . . ， p ( / ， a n d the 

bursty windows of f are denoted as Bj. 

We now discuss how to monitor the change of the index I to reflect the 

effect of p r iming events. According Section 3.1.4，we can transform the index 

t ime series I to the volat i l i ty of t ime series, VI = {Wi，…，VIiw\}-

Given the volat i l i ty index V I , we observe tha t there are some abnormal 

behavior at certain t ime windows. For example, in the 911 event, there is a 
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volat i l i ty burst for President Bush's approval index. Such phenomena wi l l br ing 

tremendous bias to the events happening in these volat i l i ty bursty windows. In 

order to avoid such bias, we further transform the volat i l i ty index VI to obtain a 

discrete representation w i th equal probabi l i ty [54]. According to our experiment, 

the volat i l i ty index can fit into a logistic distr ibut ion. Therefore, we can produce 

a equal-sized area under the logistic curve [60] and transform the index volat i l i ty 

t ime series into a probabil istic t ime series PV/ = {PVIu ...， 

3.4.3. Global Influential Topic Detection 

Given the feature set F and the probabi l i ty volat i l i ty index PVI, our task here 

is to identify a set of influential topics {0 i ’ …，Ok}, where each topic Qk is formed 

by a set of keywords Fq^ = /权知山…’ foh\o“. The problem can be solved by f inding 

the opt imal Ok such that the probabi l i ty of the influential bursty features grouped 

together is max imum for the text stream V and PVI. Below, we formally define 

the probabi l i ty of 

Definition 4. (Influential Topic Probability) The probability of an influen-

tial topic 6k is given by 

P , " -N P I / N N P V L M O K ) P { E , ) , P{e,\v, PVI) = ~ ~ p ^ p p y j ) . (丄 27) 

Since P ( D , PVI) is independent of we only consider the numerator of 

Eq. (3.27). We use the topic 6k to account for the dependency between V and 

PVI. Therefore, given 〜、V and PVI are independent. Our objective funct ion 

then becomes: 

ma^ P{PVI, (〜）=max {3-28) 

Some observations can be made on Eq. (3.28). The second component 

P{V\6k) represents the probabi l i ty that the influential topic generates the docu-

ments. And intuit ively, we expect the document overlap of the features f rom the 



Chapter 3. Pattern Discovery on Time Series auci News St renin 71 

same topic to be high. The th i rd component of P(Ok) represents the probabi l i ty 

of the features to be grouped together. And two features should be grouped 

together if they usually co-occur temporally. Therefore, these two components 

basically require the features of Q̂^ to be coherent at both the document level 

and the temporal level. So generally, if more features are grouped together, the 

values of the second and the th i rd components wi l l decrease. And the first com-

ponent P[PVrepresents the probabi l i ty that the influential topic triggers 

the volat i l i ty of the t ime series index. Obviously, if the features in the group 

cover more windows w i th high volat i l i ty probabi l i ty, the value of the first com-

ponent wi l l be higher. This wi l l make the algor i thm look for the features w i th 

high potential impact on the index. Below, we show how we estimate these three 

components. 

First, we define the document s imi lar i ty of two features using Jaccard Co-

efficient [72 . 
Df 门 Df 

s 如 ( 几 ̂  = 75̂775̂， （3.29) 

where Dj^ is the document set containing feature Then the P[V\6k) can be 

estimated as below: 

糊J；。/圳九力). (3.30) 

Second, in order to compute P(0k)、we estimate the temporal s imi lar i ty of 

two features by comparing their cooccurrence over the whole set of windows W 

as below: 

f 、 i P j / i ) ' P ( / j ) \ /o o.x 
湖= raR7;]T’ （3.31) 

where p ( / i ) = { p ( / i , l ) , p ( / t , 2), is the bursty probabi l i ty t ime se-

ries of computed in Section 3.1.2. Then the probabi l i ty of a set of features 

belonging to can be estimated by the average simi lar i ty for each pair of fea-

tures: 
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p m = " " " " n E M 几 ( ^ - 3 2 ) 

Finally, in order to estimate the 尸 w e define the influence proba-

bil ity for a feature P{PVI\f) as: 

• PVI 
P{PVI\f) - • p l j • (3-33) 

Z^/eF Z^tuersf ^ ^ ^^ 

Since the denominator of Eq.(3.33) holds the same for all the features, we just 

take the numerator for computat ion. And P { P V I \ e k ) can be estimated as 

P{PVI\e,) = ^ P{PVI\f). (3.34) 

f讯k 

Finally, the topic can be extracted using a greedy algor i thm by maximizing 

Eq. (3.28) for each topic in a similar way as in [25 . 

However, Eq. (3.28) is different from the objective funct ion defined in [25 

since we extract topics w i th respect to an interested t ime series index / rather 

than purely based on text documents. Consider the worker example again. The 

document simi lar i ty and the temporal simi lar i ty of worker and union are 0.31 and 

0.25，while those of worker and wage are 0.35 and 0.1. I f we do not consider the 

index I by setting P(PK/|(9/t) = 1’ by Eq. (3.33)，P{worker, union\V, PVI)= 

0.31 X 0.25 = 0.0775 and P{worker, wagelV, PVI) 二 0.35 x 0.1 = 0.035. 

As a result, the algor i thm would combine worker and union. However, since 

P{PVI\union) = 30 and 夕e) = 74，by considering the feature influ-

ence to the index I�we have P(worker, union\V, PVI) = 0.0775 * 30 = 2.325 

and 尸(ti;orA:er,imicm|r>，PV7) = 0.035 * 74 = 2.59. In this way, the algor i thm 

wi l l instead group worker and wage together to make an influential topic w i th 

respect to I . 

As shown above, since influential topics carry the volat i l i ty index informa-

t ion, i t brings benefits to the pr iming event detection. In the above example, if 

we detect a new event containing the common topic {worker, union}, the event 
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may be t r iv ia l since the topic has a low influence probabil i ty in tho history. But 

if we dctect an event w i th {worker, luage} instead, this event has a higher prob-

abil i ty to be a pr iming event. This is because the high influence probabi l i ty of 

tl ie topic indicates that the events wi th such topic attracted the public attention 

and changed people's mind in the past. 

After extracting each 6t^�the bursty rate of Ok in a window w can be com-

puted as below: 

m’H = r ^ ^ Pif.w) (3.35) 

The bursty period of Oî  is determined in a similar way to detecting the 

bursty period of features and we use to denote all the bursty topics in window 

w. 

3.4.4. Micro Priming Event Detection 

In this section, we describe how to detect pr iming events. A pr iming event pe 

consists of three components: (1) Two timestamps to denote the beginning and 

the ending of the event in the window Wpe； (2) A sequence of local correlated 

topic clusters C^^ w G VVpe； (3) A score representing its influence on the index. 

Local Topic Cluster Detect ion 

As discussed in Section 3.4.1, we usually observe mult iple correlated bursty 

topics at a t ime window w representing the same event. Therefore, we first group 

the correlated topics into topic clusters at each t ime window w. 

Intuit ively, if two topics and 6j belong to the same event, the reporter 

usually discusses them in the same news article and they would have a high 

degree of document overlap. We first define the document frequency vector for 

a topic 6k at a window w. 

Let 6yj be a set of bursty topics in window w and D切 be the set of documents 

in window w. We define Dj^j = …’ be the term frequency 

vector for feature / in the documents in window w. 
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Figure 3.18: Evolving Topic Clusters 

Then, the document frequency vector for a topic Qk at a window w is com-

puted by the average of the term frequency vector as below: 

D o … = E 〜 . (^-36) 
’' � f ^ ^ o . 

Then the s imi lar i ty between two topics 氏 and Q] at window w can be esti-

mated by the cosine simi lar i ty: 

sim{9i, Oj,w) = cos{Do„uj, Do，,w、. (3.37) 

In order to cluster the set of topics into several topic clusters, we use the 

K-Means clustering a lgor i thm [72]. We determine the opt imal cluster number by 

examining the qual i ty of the clustering result under different cluster number k. 

A n d the qual i ty of the clustering is measured based on the rat io of the weighted 

average inter-cluster to the weighted average intra-cluster s imi lar i ty [62]. Af ter 

clustering, for a window w, we obtain a set of topic clusters C也={c^y,i，（：„；,2’...}. 

Composite Topic Cluster Path Detect ion 

A detected topic cluster represents the progress of a pr iming event 

at window it; - 1, and the fol lowing question is whether this event wi l l keep 

developing in the next window w. Intui t ively, i f we find another topic cluster 
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which is simi lar to then we can c la im tha t they bdor ig to the same 

event and can associate thorn together. 

We measure the s imi la r i ty between two dusters in two consecutive windows, 

c^u.i and by looking at their intersection of inf luent ia l topics. More specif-

ically, the s imi lar i ty of two topic clusters can be computed by adding the topic 

probabi l i ty P(Oi,\T>, PVI) as a weight to the Jaccard Coefficient. 

讓（c c ) 巧 叫 刀 , 户 明 (3 38) 
讓 ( 〜 ’ 队 l u c " , …尸 (叫双斤 ,） . （3.38) 

Eq. (3.38) assigns a higher s imi lar i ty score to two topic clusters whose 

overlapping topics have higher topic probabi l i ty , i.e., the topics are more coherent 

and inf luent ial . 

Then we l ink two clusters together if their s imi lar i ty score is higher than a 

threshold a and fo rm a directed acyclic graph ( D A G ) between windows. Figure 

3.18 shows a topic cluster graph w i t h 9 clusters l inked by 7 edges ly ing on 4 

consecutive windows. A n d we formal ly define a Path P in this graph as follows. 

Definition 5. (Topic Cluster Path) A topic cluster path P of length I m a 

topic cluster graph is a sequence of I clusters: c^；,,!, —>• —> • • • Cu^山， 

such that {ij；!,..., wi} are I consecutive windows and there is an edge between 

two consecutive clusters in the graph. 

We can easily ident i fy three cluster paths f rom the g*aph in Figure 3.18. T w o 

paths s ta r t ing f rom window 1, Pi： Ci’i C2,i — C3,i —> C4,i，P2： Ci’2 —> (2,2 

C3丨i C4’i and another pa th s ta r t ing f rom window 2，P3： 02,3 ->〔3,2 —> ai’2. We 

can see tha t f \ and P2 have two overlapping clusters C3’i and C4J. Th i s indicates 

tha t a l though these two cluster paths in i t ia l f rom dif ferent topic clusters, they 

may express different aspects of the same p r im ing event. For example, in the 

gul f war event, one topic cluster pa th may show the progress of the bat t le in 

I raq, whi le another pa th may record the actions f rom US's allay. Therefore, we 

measure the s imi lar i ty between two overlapping paths as follows: 
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應 ( 尸 I , 尸 = ( 3 . 则 

I f the s imi lar i ty between two paths sim(尸i, P j ) is higher than a threshold 7, 

then we group these two paths and form a pr iming event. 
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Algorithm 8 DiscoverPrimingEvents 
INPUT： News document stream D and index I 

O U T P U T： priming events P E ^ 

1： loop 

2： Move w and retrieve the burst topics a-t w, 6 

3： C^ <r- KMeans{0^) 

4： for each c切 6 C^ do 

5： new Path = true 

6： for every c ^ j ^ - i j G C^-i do 

7： Compute topic similarity cSim^c^^^, c^-i^) according to Eq. 3.38 

8: if sim(c^y,“ > cr then 

9： for each path P^ in the inverted path list do 

10： Add c^，i to Pk 

11： Add Pk to inverted path list of c叫“ I Pc^ ^ 

12： new Path = false 

13： end for 

14： end if 

15： end for 

16： if new Path == false then 

17： for every path pair Pm.Pn in IPc— do 

18： add Cuĵ i to InterSect[Pm, Pn) 

19： end for 

20: else 

21： generate a new Path Pk 

22： add Pk to inverted path list IPc^ ^ 

23: end if 

24: end for 

25： Ou tpu t PE^a = G ener ate Event [P, inter sect) 

26: end loop 
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Algorithm 9 outputPr imingEvents 
INPUT： Topic Cluster Path P and path intersection record Intersect 

OUTPUT： pr iming events PE 

1： compute sim�P” Pj) for every P�, P] G P according to Eq.3.39 

2: repeat 

3： merge Pn into Pm 

4: for every other path Pr ^ Pm d o 

5： intersect{Pm, Pr) = inter sect {Pm. Pr) U intersect[P^, Pr) 

6： update sim{Pm,尸r) 

7： end for 

8： u n t i l No path pair w i th sim{Pm, Pn) > 7 

9： return PE = P '• 

The process is described in A lgor i thm 8. Let w be the newly arrival window 

and be the inf luential topics bursty in this window. Line 3 groups the topic 

into topic clusters C^ . From line 6, for each cluster in C如、c切 , ” we compare 

w i t h al l the topic cluster in the last t ime window by computing cluster similar i ty 

according to Eq. (3.38) (Note if w is the first window, we would skip this step.) 

In lines 8-14, we l ink two clusters and c ^ - i j if their s imi lar i ty is higher than 

cr and extend all the paths in the path inverted list of c ^ - i j to Besides, we 

also maintain the inverted path list of c^.i, IPc^ ,. In lines 16-20’ if (^.x belongs 

to one of paths in iz; - 1, we maintain the path node intersection in lines 19-23 

for further processing. Bu t if i t is not an extension f rom any path in w - I, 

we generate a new path for i t . Finally, the outputPrimingEvents a lgor i thm 

identifies and ranks the pr iming events in line 25. 

A lgor i thm 9 shows how to process the path information and eventually out-

put the pr iming events. In line 1’ we compute the path simi lar i ty using the path 

node intersection information. Then in lines 2-8, we merge two paths if their 

s imi lar i ty is higher than 7 . Af ter merging, we update the path intersection infor-

mat ion for the new list, as well as the path similarity. The algor i thm terminates 
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when there is no pa th tha t can be merged. The final pa th l ist is the p r im ing 

events. 

Priming Event Ranking 

Let be the set of inf luent ia l topics contained in a p r im ing event pe 

at window w. We describe how to rank the events according to their influence 

on the index. I f the p r im ing event is impor tan t , i t must satisfy the fol lowing 

condit ions: 

1. H igh Event Intensi ty Bpg for w G Wpe： The event must contain inf luent ia l 

topics tha t have h igh bursty effect. The intensity is est imated as follows: 

Bpe.^ = (3.40) 

2. H igh Index Vo la t i l i t y P V I w - The index must have high vo la t i l i t y dur ing 

the bursty per iod of th is event. 

We combine these two condit ions and define the p r im ing rate of the p r im ing 

event as below: 

Score^pe) = 二 Bpe.to . ( 3 . 4 1 ) 

A rank ing l ist of the p r im ing events PE can then be obtained according to the 

score of each event. 

3.4.5. Evaluation 

We archive the President Approva l ra t ing index and the news articles f rom the 

Ga l lup P o l ” and ProQuest database^ f rom Jan. 1，2001 to Feb. 28，2010，respec-

t ively. 

In ProQuest, we take "President Bush" and "President Obama" as the query 

keywords and ext ract 15,542 and 1,643 news articles, respectively. For the pre-

processing of these news articles, al l features are stemmed using the Porter stem-

、 mer. Features are words tha t appear in the news articles, w i t h the exception of 

4http://www.gallup.com 
^http://www.proquest.com/ 

http://www.gallup.com
http://www.proquest.com/
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Topics Bush Obama 

Oj bin laden file bankruptcy 

02 nor th Korean Israel peace 

03 Israel Pa les t in ian finance regulat ion 

04 immigra t ion il legal mortgage loan 

05 destruct mass small business lend 

Table 3.5: Inf luent ial Topics 

digits, web page address, email address and stop words. Features tha t appear 

more than 80% of the to ta l news articles in a day are categorized as stop words. 

Features tha t appear less than 5% of the to ta l news articles in a day are catego-

rized as noisy features. Bo th the stop words and noisy features are removed. 

For President Bush's Approval Rat ing, the pol l is taken every 10 days ap-

proximately. A n d for President Obama, we take a weekly average ra t ing based 

on the Gal lup dai ly tracking. We further ident i fy the bursty probabi l i ty t ime 

series and vo la t i l i ty t ime series according to the methods introduced in Section 

3.1.2 and Section 3.1.4. 

Af ter these preprocessing, we have two real datasets. 

• B u s h . I t contains 1186 bursty feature probabi l i ty streams and 1 vo la t i l i ty 

t ime series w i t h equal length of 281 in the 8 years of Bush's administ rat ion. 

• O b a m a . I t contains 1197 bursty feature probabi l i ty streams and 1 volat i l -

i ty t ime series w i t h equal length of 56 in the 13 months of Obama's admin-

istrat ion. 

We implemented our framework using and performed the experiments 

on a PC w i t h a Pent ium I V 3.4GHz C P U and 3GB R A M . 

Identifying Influential Topics 

W i t h the a lgor i thm in Section 3.4.3，we ident i fy 385 and 207 inf luent ial top-

ics from Bush and Obama, respectively. Table 3.5 gives the top 5 inf luent ial 
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Figure 3.19: Top 10 Pr iming Events of President Bush 

topics and the rank is based on the influential topic probabi l i ty in Eq. (3.27). 

As shown in the second column of the table, {b in laden}, {no r th Korea} are 

2-gram names which are regarded as the largest threaten for Bush's administra-

t ion from 2001-2008. Each of the other three topics consists of a set of features 

which are not 2-gram names but coherent and influential keywords in the doc-

ument stream. The th i rd column of the table shows the influential topics from 

Obama. Compared w i th Bush's where 4 out of 5 topics are about international 

affairs, there are significant evolution of the influential topics of Obama's topics. 

In part icular, only the second topic of Obama is about the international issue, 

i.e., peace progress of Israel. Others are all about how obama deals w i th finan-

cial tsunami in domestic: The first topic {f i le bankrupty} and the four th topic 

{mortgage loan} are about the crisis itself, i.e., Obama supported the bankruptcy 

of Chrysler and General Motors in Apr i l and June, 2009 and the mortgage loan 

issue; while the th i rd topic {finance regulat ion} and the fifth topic {smal l busi-

ness lend} are about his policy on solving the crisis, i.e., regulating the finance 

industry and lending to small business. As discussed before, these influential 

topics detected at a global level give us evidences in detecting pr iming events at 

a micro level. 

Identifying Priming Events 
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Figure 3.20: Pr iming Event: 911 Terrorist At tack 

W i t h the influential topics, we can identify the pr iming events w i th by the 

algor i thm in Section 3.4.4. Figure 3.19 shows the approval index of President 

Bush and the top 10 pr iming events automatical ly detected over his eight years 

administrat ion. As shown in the upper part of Figure 3.19, the approval index 

starts f rom 57% and has a big j ump up to 90% in Sep 2001. Then i t drops 

quickly unt i l a rebound back to 70% in 2003. After that , i t continues dropping 

w i th some small rebound in the middle and eventually reaches 34% in 2008. In 

the lower part , the blue line shows the volat i l i ty index according to Section 3.4.2 

and the colored waves represent the ranked pr iming events (we normalize the 

value of these two t ime series and plot them in same graph). The rank is based 

on the score given by Eq. (3.41) and the wave w i th deeper color represents 

the pr iming event w i t h a higher rank. The magnitude of the wave represents 

the intensity of the event according to Eq. (3.40). Prom the figure, we have 

two obvious observations: 1) the value of the volat i l i ty index increased when a 

significant t rend change happened for the approval index. 2) Dur ing the periods 

when the volat i l i ty index increased significantly, we detect a burst of pr iming 

events. For example, after September 2001, we observe a significant increase of 

the volat i l i ty index reflecting the big j ump of the approval index. A t the same 

t ime, we detect the top 1 pr iming event about the 911 terrorist attack. Figure 

3.20 further shows its structure which contains a composite topic cluster path 

w i t h a length of 9 star t ing f rom window 22 to window 30. In each window, the 

path contains a topic cluster w i t h a set of topics ly ing in a highly overlapped 

document set. For example, in window 22, the cluster consists of 5 bursty topics 

including the influential topics of {b in laden} and {Sept Terrorist A t tack} that 
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Figure 3.21: Top 10 Pr iming Events of President Obama 

indicate the start of the 911 event. After that , in window 23’ we observe another 

cluster containing {b in laden} and we connect i t w i th the previous one since 

{b in laden} has a high influential topic probabi l i ty and dominates the topic 

similar i ty measure according to Eq. (3.38). We can also see a certain degree 

of evolution between these two topic clusters since the second cluster contains a 

new topic {force t roop Afghanistan} that is about U.S. sending troop to start 

the war. In the following windows, we can see the topic clusters evolute but all 

contain the influential topic { b i n laden}. This event ends in window 30 w i th a 

topic {c iv i l ian death} indicat ing that the war results in the civi l ian death of the 

country. From this pr iming event, we can see that the attack makes the U.S. 

people united and support their President. Similarly, the volat i l i ty index also 

reflects the rebounding of the approval index in 2003. A n d the pr iming event 

covering that period is about the Iraq war w i th the ending of U.S. victory which 

increased the public support of President Bush. Other periods w i th significant 

increasing volat i l i ty such as those in Mar 2001 and Jul 2004 can also be explained 

by the detected pr iming events, i.e., President Bush released the energy plan and 

won the mid- term campaign over John Kerry. 

Figure 3.21 shows the approval index of President Obama and the top 10 

pr iming events detected over his 13 months administration. As discussed before, 
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Figure 3.22: Two Pr iming Events of Finance Regulation 

users may be curious about what happened in the two quick drop periods in 

March and July, 2009. In the lower part of Figure 3.21’ we can see that the 

volat i l i ty corresponding to these two drops increased and we detect two pr iming 

events whose waves cover these two periods: President Obama's bailout policy 

on bank industry and his cri t icism of the police who arrested Prof. Gate. On 

the other hand, the algor i thm also detects that his reform on lending to small 

business and the approval on bankruptcy of G M help his approval index to 

stabilize and even win back some points from the public in Apr i l and May, 2009’ 

respectively. 

In addit ion, among the top 10 pr iming events, we observe that two of them 

both contain the topic {regulate finance}. Figure 3.22 shows the event structure 

of them. As we can see, the first pr iming event is about the bank industry bailout 

program we just mentioned w i th a composite topic cluster path of length 2. In 

addi t ion to the topic {regulate finance}, i t also contains a more specific topic 

{bank industry ba i lout } , indicat ing the details of the finance regulation reform. 

The second event happened in June and has a composite topic cluster path of 

length 3. In addit ion to the topic {regulate finance}, i t also contains a topic 

{product Jun consume protect angency}, indicat ing that i t is about President 

Obama's release of the consumer protection plan, another form of the finance 

regulation. Therefore, we can conclude that , by detecting the highly influential 

topic such as {regulate finance} at a global level, we can form more specific 

pr iming events by integrating w i th other topics at a micro level. 
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Our experimental results just i fy that the pr iming events detected for Pres-

ident Bush and Obama are able to explain most of the index volat i l i ty bursty 

periods in their administrations. 

3.4.6. Summary 

In this work, we study the problem of detecting pr iming events based on a t ime 

series index and an evolving document stream. We measure the effect of the 

pr iming events by the volat i l i ty rate of the t ime series index. We propose a two-

step framework to detect the pr iming events by first detecting influential topics at 

a global level and then forming pr iming events using detected influential topics 

at a micro level. The experimental result on the presidential approval rat ing 

shows that our algor i thm is able to detect the pr iming events that trigger the 

movement of the rat ing effectively. For the future work, we plan to extend our 

algor i thm to other application domains, such as detecting pr iming events for 

financial tsunami and sales volume of a company. 

3.5. Chapter summary: time series stream and 

news stream 

I t is a very attract ive and challenging problem to discover patterns from the 

co-evolving news stream and t ime series stream and apply the patterns to fi-

nancial applications. We introduced three techniques which investigate these 

possibilities. First, we presented a N H M M model which integrate both news 

and price information into stock price trend prediction. Second, we presented a 

technique which predict the stock volat i l i ty introduced by news events. Th i rd , 

we introduced an event extract ion algori thm that detects and organizes prim-

ing event which pose great impact on t ime series movement. Through extensive 

experiment on real dataset, we conclude that i t is possible to detect promising 

patterns f rom news stream and t ime series stream and support advanced financial 
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applications. 



C H A P T E R 4 

CONCLUSION 

In this thesis, we focus on discovering patterns from two types of data streams, 

the t ime series index stream and news stream. We started f rom investigating 

the CO-movement relationship of mult iple t ime series. We introduced techniques 

to study two aspects of this problem. First, we proposed a co-movement model 

for constructing financial port fol io by analyzing and mining the cornoveinent 

patterns among two t ime series. Second, we presented an efficient streaming 

algor i thm to discover leaders from mult ip le t ime series stream. Bo th of the al-

gorithms are evaluated using real t ime series indices data and the result proves 

that CO-movement patterns and detected leaders are promising and can support 

various applications including portfol io management, high frequency t rading and 

risk management. Then, we studied the patterns between news stream and t ime 

series indices stream. We transformed the news stream into a set of bursty fea-

ture (keywords) t ime series streams and proposed three technique to study their 

relationship to t ime series index. First , we explored a Non-homogeneous Hidden 

Markov Model ( N H M M ) to predict the stock market process which takes both 

stock prices and news articles into consideration. Second, we proposed a risk 

analyt ical model to predict the volat i l i ty of price indices by integrat ing news in-

formation. Finally, we devised an algor i thm to detect the pr iming event f rom text 

and a t ime series index. The evaluation on real world dataset suggests that the 

significant correlation exists between news stream and t ime series stream and our 

122 
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pattern discover algorithm can detect promising patterns from this relationship 

and support real world applications effectively. 
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