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Abstract 

Many problems in computer vision involve assigning each pixel a label, which 

represents some spatially varying quantity such as image intensity in image 

denoising or object index label in image segmentation. In general, such quan-

tities in image processing tend to be spatially piecewise smooth, since they 

vary smoothly in the object surface and change dramatically at object bound-

aries, while in video processing, additional temporal smoothness is satisfied as 

the corresponding pixels in different frames should have similar labels. Markov 

random field (MRF) models provide a robust and unified framework for many 

image and video applications. The framework can be elegantly expressed as 

an MRF-based energy minimization problem, where two penalty terms are 

defined with different forms. Many approaches have been proposed to solve 

the MRF-based energy optimization problem, such as simulated annealing, 

iterated conditional modes, graph cuts, and belief propagation. 

In this dissertation, we propose three methods to solve the problems of 

interactive image segmentation, video completion, and image denoising, which 

are all formulated as MRF-based energy minimization problems. In our al-

gorithms, different MRF-based energy functions with particular techniques 

according to the characteristics of different tasks are designed to well fit the 

problems. With the energy functions, different optimization schemes are pro-

posed to find the optimal results in these applications. In interactive image 

segmentation, an iterative optimization based framework is proposed, where in 



each iteration an MRF-based energy function incorporating an estimated ini-

tial probabilistic map of the image is optimized with a relaxed global optimal 

solution. In video completion, a well-defined MRF energy function involving 

both spatial and temporal coherence relationship is constructed based on the 

local motions calculated in the first step of the algorithm. A hierarchical belief 

propagation optimization scheme is proposed to efficiently solve the problem. 

In image denoising, label relaxation based optimization on a Gaussian MRF 

energy is used to achieve the global optimal closed form solution. 

Promising results obtained by the proposed algorithms, with both quan-

titative and qualitative comparisons to the state-of-the-art methods, demon-

strate the effectiveness of our algorithms in these image and video processing 

applications. 
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摘要 

計算機視覺領域中很多問題涉及到為每個像素分配一個標註，這個標註代表着在 

空間上變化的一個參量，比如在圖像去噪中代表圖像灰度，在圖像分割中代表物 

體的索引編號。一般情況下，這類參量在圖像處理中趨於空間上的分段平滑，因 

為他們在圖像物體的表面變化平缓而在物體的邊緣變化劇烈。同時在視頻處理 

中，時間域上的平滑性也同樣滿足，因為視頻中不同幀上對應的像素應該有相似 

的標註值。馬爾可夫場模型為許多圖像和視頻處理問題提供了一個統一而魯棒的 

框架。這個框架能夠被表述為一個基於馬爾可夫場的能量最小化問題，其中能量 

函數中的兩個懲罰項能夠被定義為不同的形式。己經有許多方法被提出來去解決 

基於馬爾可夫場的能量優化問題，比如模擬退火法，條件模式迭代法，圖切割算 

法和置信傳播算法。 

本論文提出了三個算法分別解決了交互式圖像分割問題，視頻修補問題和圖像去 

噪問題。三個算法都被表述為基於馬爾可夫場的能量最小化問題。在各個的算法 

中，根據不同任務的特點，用不同的技巧設計出了不同的馬爾可夫場能量函數來 

更好地適應問題本身。有了能量函數，在這些應用中，不同的優化方案被提出來 

尋找最優的結果。在交互式圖像分割問題中，我們提出了一個基於迭代優化的算 

法框架。在每一次迭代中，結合了被估計出的圖像概率圖譜的馬爾可夫場能量函 

数被優化從而得到一個寬鬆的全局最優解。在視頻修復問題中，基於在算法第一 

步中計算出的局部運動，我們建立了一個包括空間域和時間域一致性關係的馬爾 

可夫場能量函數。為了有效地解決這個優化問題，我們提出了多級置信傳播方案。 

在圖像去噪問題中，我們通過標註鬆她優化得到了高斯馬爾可夫場能量優化問題 

的全局最優封閉解。 

本文提出的算法所得到的實驗結果以及與最新方法定性定量的比較都證明了我 

們的算法對於這些圖像和視頻處理應用的有效性。 
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Chapter 1 

Introduction 

Many vision problems require estimating some spatially varying quantities 

from noisy measurements. Therefore, label assignment is the essential part in 

a range of image and video processing tasks. In image denoising, the label of 

each pixel in the image is the noise-free intensity, which we need to estimate 

from the observed noisy image. In the context of interactive foreground object 

extraction problem (interactive image segmentation), the label is defined as 

the object/background index obtained by using user specified prior information 

(color, texture, or location). Moreover, the label in image and video completion 

can be regarded as the source patch index, which guides the process of filling 

in the missing regions. Besides, there are many more applications involving 

the labelling problem, such as image matting, image photomontage, etc. 

It has been known for decades that such labelling problems can be ele-

gantly expressed as Markov Random Fields (MRFs), since for each pixel we 

only consider pairwise connections with its neighboring pixels. Therefore the 

Markov random fields based image and video processing can be formulated as 

an MRF-based energy minimization problem, which has been demonstrated 

to well model these problems. The MRF models provide a robust and unified 

framework, which is justified in terms of maximum a posteriori (MAP) estima-

tion of a Markov random field in the Bayesian framework. In the next section, 

we will briefly introduce the basic Markov random fields model. 
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1.1 Markov Random Fields Model 

Markov Random Fields model is first introduced in computer vision in [25 

One of the reasons why this framework is so popular is that it can be justified 

in terms of maximum a posteriori (MAP) estimation of a Markov random 

field. An MRF, which from graphic model perspective is an undirected graph 

with each node being a random variable and each undirected link denoting 

the neighboring connection [6], has several components in the context of an 

image and video processing application. For every pixel p, its label Ip is a 

random variable taking a value in some label set. Different applications have 

different label sets and different physical meanings of the label. Af denote 

some neighborhood system. For a single image, only spatial neighborhood 

system (e.g., 4—connected or 8—connected neighborhood system) is used. For 

a video, a temporal neighborhood system (e.g., corresponding pixels in different 

frames) is considered as well. L = [/i, I2,In] is the collection of all pixel label 

assignment, where n is the number of pixels in the image. With each particular 

label assignment (label configuration), L corresponds to a realization of the 

field. 

In order to be an MRF, L must satisfy 

P{lp\ls-{p}) = P{fp\fNip)). VpG {1，2,…，n}, (1.1) 

where S is the set of all pixels, and N(p) is the neighbors of p. This condition 

states that each random variable Ip only depends on its neighbors. Based on the 

Hammersley-Clifford theorem [4], the prior probability P[L) (joint probability 

represented by an MRF undirected graph) can be modeled by MRFs whose 

clique potentials involve pairs of neighboring pixels, defined as 
n 

P{L) oc exp( - ^ ^ M k M , (1.2) 

where Vij{li, Ij) is the clique potential representing the prior knowledge of the 
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label relationship, which is also called the smoothness penalty function im-

posing the pairwise smoothness. Therefore the MRF framework can express 

a wide variety of spatially and temporally varying priors by choosing different 

forms of Vij{li, Ij), which we will discuss below. 

In general, the field L need to be estimated based on the observation or 

some prior information obtained from the data, which is represented by X . 

P{X\L) is a likelihood function and can be represented by the sensor noise 

model [11]: 

n 

P p q L ) ( x ; Q e x p ( - i M Z…， (1.3) 
i=i 

where A f t ) is called the data penalty function that penalizes the inconsistency 

between the labels and the data. 

With the prior probability P{L) and the likelihood function P(X|L)，by 

using the Bayes' rule and removing P{X), which is a constant with respect to 

L, maximizing the posterior probability P[L\X) is to find L such that 

L = argmaxP(X|L)P(L). (1.4) 
L 

From (1.4), (1.3), and (1.2), we can see that the MAP estimation is equiv-

alent to minimizing the following energy function: 
n n 

E{L) = j2m)̂ Yl E ViAhjj), (1.5) 

On the other hand, the general MRF-based energy is composed of a data 

energy E^ and a smoothness energy Es, defined as 

E = Ed-\-XE,. (1.6) 

The data energy is simply the sum of a set of per-pixel data cost A � 

n 

= (1.7) 



Chapter 1 Introduction 4 

And the smoothness energy is 

Es= 从 （1.8) 

{ijyeAf 

With the definition of the data energy (1.7) and the smoothness energy (1.8) 

substituting to the MRF energy (1.6), the MRF energy function is consistent 

with the MAP estimation derived in (1.5). Therefore the formulation of the 

MRF model is justified in terms of the MAP estimation of the MRFs in the 

Bayesian framework. 

In general the data term A � has various forms modeling the sensor noise 

in different applications. The choice of the clique potential function Kj (“ ’ Ij) is 

a critical issue and many clique potential functions have been proposed. Based 

on the piecewise smoothness assumption on L which is an intrinsic property 

of the image and video, a good clique potential should be able to enforce 

spatial homogeneity in low contrast regions and preserve discontinuity in high 

contrast regions such as object boundaries. Popular clique potentials include 

the generalized Potts Model [11], Wij(l—d(Ji—lj)), where is the unit impulse 

function, the truncated linear clique potential [12], Wij • min{|/i — lj\,K}, and 

the truncated quadratic function [12], Wij • min{(/i — /j)^, K}. The factor 

Wij in these functions denotes the affinity value between pixels i and j and 

spatially varies to control the degree of the smoothness constraint in different 

neighborhoods. It is obvious that the MAP estimation L, which maximizes 

or equivalently minimizes E{L), tends to be consistent with the 

observed data X as well as to preserve the piecewise continuity. 

Some special cases of MRF-based energy minimization can be solved by 

fast exact algorithms. For example, if there are only two labels, the Potts 

model can be solved exactly with graph cuts [31]. However, the MRF-based 

energy minimization with multi-labels in the discrete domain is generally NP-

hard, which implies that the vast majority of MRF-based energy functions are 

intractable. The major obstacle of the optimization is the large computational 
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cost owing to the high dimensional computing space. In the next section, we 

will introduce some related optimization approaches for minimizing the MRF-

based energy functions. 

1.2 Optimization Approaches 

Despite the elegance and power of the MRF model in image and video pro-

cessing, its early adoption was slowed by computational considerations. The 

optimization problem is generally NP-hard in the discrete domain. Many ap-

proaches have been proposed to solve the MRF-based energy optimization such 

as simulated annealing, the iterated conditional modes (ICM)，recently devel-

oped graph cuts (GC)，belief propagation (BP) and tree-reweighted message 

passing (TRW-S), and some continuous optimization algorithms. The details 

of these optimization approaches are described as follows. 

Simulated annealing is used to carry out the MRF optimization in [25]. It 

can handle arbitrary energy functions and achieve the global optimum theo-

retically. However, the main problem with simulated annealing is that it is 

very time consuming and usually cannot obtain the global optimum in limited 

running time. The iterated conditional modes (ICM) [4] is also used to solve 

the problem using a deterministic greedy strategy to find a local minimum. It 

starts with an estimate of the labelling, and then, for each pixel, it chooses 

the label giving the largest decrease of the energy function. This process is 

repeated until convergence, which is guaranteed to occur, and, in practice, is 

very rapid. Unfortunately, the results are extremely sensitive to the initial 

estimate. 

Over the last few years, energy minimization approaches have had a re-

naissance, primarily due to the development of new powerful optimization 

algorithms such as graph cuts [11], [12], [42], belief propagation [85], [82], and 

tree-reweighted message passing (TRW-S) [40] 
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Graph cuts techniques map the energy function to a proper constructed 

graph and find the labelling of the nodes that minimizes the energy function by 

using the min-cut/max-flow [10]. The two most popular graph cuts algorithms, 

called expansion-move algorithm and swap-move algorithm, which perform 

comparably well and both converge to a strong local optimum in different 

criteria, are introduced in [12]. Both algorithms work by repeatedly computing 

the global minimum of a binary labelling problem in their inner loops. 

For a pair of labels a and /?, a swap move takes some subset of the pixels 

currently given the label a and assigns them the label (3 and vice versa. The 

swap-move algorithm finds a local minimum such that there is no swap move, 

for any pair of labels a and which will produce a lower energy labelling. 

Analogously, an expansion move for a label a is defined to increase the set of 

pixels that are given this label. The expansion-move algorithm finds a local 

minimum such that no expansion move, for any label a, yields a labelling with 

lower energy. 

The expansion-move algorithm and the swap-move algorithm always obtain 

good results. However, as shown in [42], the two algorithms only can be 

used when the following regularity condition holds: in the expansion-move 

algorithm, for all labels a, /?, and 7, 

+ < + (1.9) 

in the swap-move algorithm, for all labels a and 

+ < (1.10) 

If the energy does not obey these constraints, graph cuts algorithms can still be 

applied by "truncating" the violating terms [69]. In this case, however, we are 

no longer guaranteed to find the optimal labelling with respect to expansion 

or swap moves. 

Belief propagation is a message passing algorithm. The max-product and 

sum-product algorithms are two typical BP algorithms [23]. Normally the 
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two algorithms are both defined in terms of probability distributions. In im-

plementation, the sum-product algorithm computes the marginal probability 

distribution of each node directly and finds the minimum mean-squared error 

estimation of the labels. But for max-pro duct, an equivalent computation can 

be performed with negative log probabilities, where the max-product becomes 

a min-sum. In this thesis, we consider this max-product formulation because it 

is less sensitive to numerical artifacts, and it uses the energy function definition 

more directly. 

The max-product BP algorithm works by passing messages around the 

graph defined by image grid. Each message is a vector of dimension given by 

the number of possible labels. Let m “ be the message that node p sends to a 

neighboring node q at time t. All entries in m ^ are initialized to zero, and at 

each iteration new messages are computed in the following way, 

f \ 
= min W + A X W + ^ , (1.11) 

" \ / 

where M{p)\q denotes the neighbors of p other than q. After T iterations a 

belief vector is computed for each node, 

b M = D M + (1.12) 

Finally, the label that minimizes bq{lq) individually at each node is selected. 

TRW-S is a message passing algorithm similar to belief propagation, and 

often performs as well as BP and GC. An interesting feature of TRW-S is that 

it computes a lower bound on the energy. In this dissertation, we do not use 

TRW-S, and therefore will not describe the details of this method. 

The approaches introduced above are discrete optimization techniques. Al-

ternatively, label relaxation provides a strategy to convert the combinatorial 

optimization problem to a continuous optimization problem, which can be 

solved easier in the continuous domain [18，35, 63, 67, 79]. In this thesis, con-

tinuous optimization for MRF-based energy with quadratic smoothness term 
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Domain Results Condition Optimization Mode 
GC 
BP 
CF 

discrete 
discrete 

continuous 

local 
local 

global 

regularity 
/ 

L2 smoothness 

iterative 
iterative 

closed form 

Table 1.1： Comparison of algorithms GC, BP, and CF. 

is considered. For such a problem, closed form global optimal solutions can be 

obtained in the continuous domain. We call this a closed form (CF) optimiza-

tion. Detailed explanation of how to get the closed form solution is given in 

the context of specific applications in this dissertation. 

Table 1.1 is the comparison of the algorithms GC, BP, and CF in aspects 

of application domain, results, work condition, and optimization mode. 

1.3 Our Work and Contributions 

With the flourish of these optimization techniques, MRF-based algorithms 

have been widely used in many image and video processing such as image 

denoising [11, 12], interactive segmentation [7, 9, 68], stereo correspondence 

37, 41，78], image completion [83], etc. In this thesis, we propose three al-

gorithms to solve the problems of interactive image segmentation, video com-

pletion, and image denoising, which are all formulated as MRF-based energy 

minimization problems. 

The goal of interactive image segmentation is to find the region of a fore-

ground object using as little interactive effort as possible. We propose a gen-

eral framework to address the problem, which can well utilize and expand 

user provided information to iteratively refine the optimization target to solve 

the problem, leading to more precise results naturally. In each iteration, we 

design an MRF-based energy function and use the label relaxation optimiza-

tion scheme to find the optimal label configuration with respect to the current 

confidence seeds and obtained color models. Recursively, the continuous label 
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configurations are refined to indicate the foreground as accurately as possi-

ble, leading to the final precise foreground object extraction result when the 

algorithm converges. 

The target of video completion is to restore the spatial-temporal missing 

regions of a video in a visually plausible way. We propose a novel global opti-

mization based approach for video completion. Our algorithm consists of two 

stages: motion field completion and color completion via global optimization. 

The local motions are completed greedily, and the video completion is formu-

lated as a global energy minimization problem by MRFs with a well-defined 

MRF-based energy function involving both spatial and temporal coherence re-

lationship. To avoid the computational impracticability caused by the large 

number of label candidates in the optimization process of belief propagation, 

we propose a hierarchical BP optimization scheme to optimize the energy and 

obtain good results. 

Image denoising is to restore the noise-free image. We formulate it as a 

continuous label assignment problem based on a Gaussian MRF model and 

obtain a closed form global optimal solution. Since the Gaussian MRFs tend 

to over-smooth images and blur edges, we incorporate pre-estimated edge in-

formation into the energy function to better preserve image structures. Patch 

similarity based pairwise interaction is also involved to better preserve image 

details and make the algorithm more robust to impulse noise. 

Promising results obtained by the proposed algorithms, with both quan-

titative and qualitative comparisons to the state-of-the-art methods, demon-

strate the effectiveness of our algorithms in these image and video processing 

applications. 

Our work has been published in or submitted to [49, 51，16, 52, 50，47, 48 

The details of the three proposed algorithms are presented in Chapters 2 — 4. 



Chapter 2 

Iterative Foreground Object 

Extraction 

In this chapter we propose a general framework to address the problem of in-

teractive foreground object extraction from an image, which can well utilize 

and expand user provided information to iteratively refine the optimization 

target to solve the problem, leading to more precise results naturally. The 

basic operations in the framework are objective energy construction and its 

optimization. We incorporate an initial probabilistic map of the image asso-

ciated with foreground into the energy construction, which is calculated from 

prior foreground and background color models. By iteratively expanding con-

fidence seed sets to train the color models, we can improve the accuracy of the 

initial probabilistic map, ensure a better energy function to be optimized, and 

achieve good foreground extraction results. 

Based on our general framework, we design a Markov random field (MRF) 

based objective energy function and propose a label relaxation optimization 

scheme in each iteration to find the optimal label configuration with respect to 

the current confidence seeds and obtained color models. Specifically, in each 

iteration we estimate two Gaussian mixture models from the confidence seeds, 

one for foreground and the other for background, and define two quantities to 

measure the initial probabilities of each pixel belonging to the foreground and 

10 
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the background respectively, which generate the initial probabilistic maps of 

the image associated with the foreground and background. With the energy 

function constructed based on the initial probabilistic map and the boundary 

and coherent region information, a closed form global optimal solution can be 

achieved by relaxing the hard binary segmentation to a soft labelling prob-

lem in the continuous domain. The global optimum can be regarded as an 

optimized probabilistic map, which directly provides us the clues to update 

the confidence seed sets. Recursively, the continuous label configurations are 

refined to indicate the foreground as accurately as possible, leading to the final 

precise foreground object extraction result when the algorithm converges. 

Our algorithm is simple and accurate, as demonstrated by high-quality 

segmentation results on natural images and qualitative and quantitative com-

parisons with state-of-the-art methods on a segmentation database. 

2.1 Introduction 

Our proposed algorithm in this chapter addresses the problem of user de-

sired foreground object extraction from an image, which is of great practical 

importance in many applications such as image retrieval, object recognition, 

and photo/movie editing. Without additional prior information, segmentation 

process is generally an ill-posed problem. Current fully automatic segmenta-

tion methods [87, 72, 17] are far from satisfactory and often generate results 

deviating from what the user wants. Therefore, interactive image segmenta-

tion guided by user provided information becomes popular and draws much 

attention from researchers. 

The aim of interactive segmentation is to accurately find the region of a 

foreground object using as little interactive effort as possible. There are two 

main ways for the user to provide foreground and background information: 

boundary-based and region-based. 
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A boundary-based tool, such as [26, 58, 59, 64] requires the user to draw 

along the object boundary and then adjusts the curve to snap to the real 

boundary piecewise. When the tool cannot adjust the curve well, the user 

needs to provide additional boundary seed points in order to avoid the devia-

tion of the curve from the desired boundary. These tools need plenty of user 

interaction and attention to obtain satisfactory results. Besides, they cannot 

be easily generalized to 3D images. Region-based tools are developed recently 

and highly improve the efficiency of interactive segmentation. Instead of ac-

curately indicating the object boundary, a region-based tool requires the user 

to specify two small sets of pixels belonging to the foreground and the back-

ground. Then an underlying algorithm carries out the segmentation based on 

the user input cue. Region-based methods are more convenient to use than 

boundary-based methods. Next we review recent region-based methods. 

Magic Wand in Photoshop fulfills the segmentation by grouping similar 

pixels using only the color statistics of the user-specified pixels or regions. In-

telligent paint [66] merges image regions by using a hierarchical tobogganing 

algorithm and interactively selects the foreground based on the properties of 

the underlying regions obtained from each stroke indicated by the user. These 

two approaches are based on some variations of traditional region growing, 

where the segmentation boundary is not optimized and may lead to unsatis-

factory results. 

Recently, many approaches have been proposed to solve the segmentation 

problem by modeling it as an energy minimization problem [9, 68，46, 7，24，88], 

where an objective energy function is derived from Markov Random Fields 

(MRFs) [25] and hard constraints specified by the user [9]. The key of this 

kind of algorithms is the design of the energy function and the optimization 

scheme. The energy function should precisely model the problem with the full 

use of the user provided information, and the optimization strategy should 

try to obtain the global optimum. Graph cuts, as an efficient optimization 
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technique, is rapidly developed recently [12, 10，42). Thus graph cut based 

image segmentation methods are highly promoted and achieve promising re-

sults [68，46, 7, 88]. Inspired by [9], GrabCut in [68] and Lazy Snapping in 

46] are proposed. With a similar objective energy function to that in [9], 

Lazy Snapping utilizes pre-segmentation to increase its running speed. The 

pre-segmentation may cause the final result not to be optimal. Extended from 

46], Progressive Cut proposed in [88] models the user's intention into a graph 

cut framework for the segmentation. The user's intention is analyzed from 

additional strokes and the results obtained from previous strokes. GrabCut in 

68] incorporates Gaussian mixture color models into an MRF-based energy 

function (GMMRF) and iteratively uses graph cuts for optimization. In addi-

tion, shape priors can also be incorporated into graph cuts based formulation to 

generate more effective segmentation algorithm [24]. Graph cuts optimization 

is carried out in discrete domain, which can be regarded as a hard segmenta-

tion technique in the context of segmentation problem. Although these graph 

cuts based approaches can generally achieve impressive segmentation results, 

they may fail in low-contrast boundaries and other ambiguous regions. Thus 

further border editing is often required to capture the desired object [68, 46 . 

Moreover, for those methods that utilize seed-based estimated color models 

in the objective energy function [68, 46], generating precise prior color mod-

els from limited user provided information is critical to achieve high quality 

extraction results. 

In contrast to graph cut based discrete optimization, the algorithms in [30, 

28，29] carry out the segmentation in continuous domain, which are essentially 

based on relaxation from discrete optimization to continuous one, and achieve 

more impressive results. They are random walk based interactive segmentation 

approaches, obtaining results by assigning each unlabelled pixel to the label 

with the highest reaching probability of a random walker starting from this 

unlabelled pixel to all pre-labelled ones (user-specified seeds). The approach 
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in [28] is an extension of the methods in [30, 29] with prior model involved to 

solve the problem in [30，29] that they can only produce a segmentation where 

each segment is connected to a labeled pixel. 

Our proposed algorithm is also region-based where several strokes (seeds) 

are provided by the user to indicate the foreground and the background and 

then the algorithm does the segmentation automatically. It is worth mention-

ing that except GrabCut [68], the region-based approaches discussed above 

with prior models have the limitation that they are very sensitive to the num-

ber and the locations of user provided seeds because the prior color models 

for foreground and background rely on the seeds and the locations of seeds 

encode the spatial foreground/background confidence information. In our ex-

periments, we observe that the more confidence seeds for training the color 

models, the more accurate models and spatial information can be achieved, 

resulting in precise segmentation outputs. Therefore, we propose an iterative 

optimization framework to conquer the drawback. Our algorithm iteratively 

estimates more and more confidence seeds to update the color models, which 

provide more useful spatial information. In each iteration, two Gaussian mix-

ture models (GMMs) for modeling the foreground and background are trained 

using the updated confidence seeds. An initial probabilistic map associated 

with the foreground is estimated from the updated models. We formulate the 

segmentation as a problem of labelling the non-seed pixels as 1 (the foreground) 

and 0 (the background). Thus the labels can be regarded as the probabilities of 

the pixels belonging to the foreground. By optimizing a well defined objective 

energy function in the continuous domain, a global optimal label configura-

tion, which is the best probabilistic map of the image with respect to the 

current color models and coherent region information, can be achieved. Once 

obtaining the optimal probabilistic map, we update the confidence seeds by 

the lower and upper thresholding of it to find more accurate color models. The 

final label configuration in the continuous domain can be generated when the 
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algorithm converges. Finally, by thresholding the probabilistic map, we have 

the binary segmentation result. The effectiveness of the proposed algorithm 

is demonstrated by our high-quality segmentation results and favorable qual-

itative and quantitative comparisons with the state-of-the-art methods on a 

segmentation database. 

2.2 Our Approach 

Before formulating the segmentation problem, we first define some notations 

used in this chapter. 

SJ^ and SB are used to denote the foreground and background confidence 

seed sets, respectively, which are comprised of the pixels used to train the 

foreground and background color models. P = is the initial 

probabilistic map of the image in each iteration associated with the foreground, 

where pfi is the initial probability that pixel i belongs to the foreground, 

and n is the number of image pixels. L = [/i, h^ •••, n̂]̂  denotes the label 

configuration of the image, where U is the label of pixel i taking 1 (foreground) 

or 0 (background). 

2.2.1 A General Framework 

Given the seed sets SJ^ and SB, we can train a color model M , for the fore-

ground and a color model Mb for the background. However, using only the 

user-specified seeds, which are usually limited, cannot accurately model the 

color statistical properties of the foreground and background. Our motivation 

is to iteratively expand ST and SB through obtained label configurations, and 

then to iteratively achieve more and more precise segmentation results. 

The strategy of our framework is as follows. First we construct an objective 

energy function / (L , P) replying on an initial configuration P from the color 

models. Then by applying some optimization technique to the optimization 
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problem argmin^/(L, F), we obtain the optimal label configuration L*. Based 

on L*’ more pixels can be stamped as foreground or background seeds to 

update ST and SB, which are used to refine the color models to generate a 

better configuration P. Recursively, we can finally reach the optimal label 

configuration L* corresponding to a good segmentation result. 

It is worth mentioning that this framework is general and can be applied to 

different color models, energy functions, and optimization schemes. In the next 

section, we elaborate our iterative optimization based algorithm, including the 

color model, objective energy function, optimization inference, and iteration 

strategy. 

2.2.2 Iterative Optimization Based Object Extraction 

In this section, we specifically describe our iterative optimization based fore-

ground object extraction algorithm in detail. The main parts of our algorithm 

include the calculation of the initial probabilistic map from the prior color 

models, the construction of the MRF-based objective energy function, the in-

ference of the closed form global optimal solution in continuous domain, and 

the iterative optimization strategy, which are all elaborated below. 

Initial Probabilistic Map 

In our approach, two GMMs each with K components {K 二 10 in our al-

gorithm) are used to model the color distributions of the foreground and the 

background, which are defined as 
K 

GMf{c) - ^WfkOfkic； (2.1) 

K 

GMb{c) = 仇 fc(c;/X6fc,S6fc)， (2.2) 
k=i 

where c denotes the vector consisting of the R, G and B components of a 

pixel, gfk {gbk) is the k-th Gaussian component of the foreground (background) 
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Figure 2.1: Iterative optimization results, where the first row and the second 
row are for iterations 1 and 5, respectively. In each row from left to right: 
confidence seed sets ST (pixels in white regions) and SB (pixels in black 
regions) in their corresponding iteration, probabilistic map P, optimal label 
configuration L\ and foreground object extraction result by thresholding L*, 

with its mean fifkifJ'bk) and covariance matrix S/fc (E5/5；), 0 < Wjk < 1 with 

切fk = 1 and 0 < Wbk < 1 with 旭bk = 1 are weighting factors. 

The parameters Wfk, Wbk, Â fc，f̂ bk, ^fk and Sbk, 1 < A; < are estimated 

by ST and SB, as showed in Fig. 2.1(a) and Fig. 2.1(e). The details about how 

to obtain the estimations can be found from [6]. Here GMf{c) {GMi,[c)) can 

be considered as the likelihood of c belonging to the foreground (background). 

Then each component pji of the initial probabilistic map P associated with the 

foreground and the initial probability p^i of pixel i belonging to the background 

are defined as 

Pfi = 
GMfia) 

GMf{ci) + GM^,ic^) Phi = 
G 风 ( Q ) 

GMf{ci) + GMb[Ci) (2.3) 

Note that as the sizes of the confidence seed sets increase, GMf and GM5 

become more distinguishable from each other in the color space (say, RGB), 

leading to a more accurate initial probabilistic map P at the beginning of each 

iteration. From Fig. 2.1 we can see that Pfi in Fig. 2.1(f), which is obtained 

from the updated color models trained by more confidence seeds in Fig. 2.1(e), 
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provides a better initial probabilistic map than the one in Fig. 2.1(b). 

An Objective Function 

From Fig. 2.1, it is obvious to see that there are some error parts close to 

the foreground object boundary in the initial probabilistic map P although P 

reflects the main object region well. The global optimization of a MRF-based 

energy function involving spatial coherent constraint can solve this problem. 

We define a data cost function D{li,pfi,pbi) to measure the inconsistency 

between the assigned label k and the initial probabilities, where 

D[k = l,pfi,:pbi) = [ l—Pfi)\ (2.4) 

D{k = 0,pfi,pM) = { l - P b i f . (2.5) 

Since pfi = 1 — pti, the above two equations can be combined as the following 

one: 

D{h,Pfi,Pbi) = i k - p f i f . (2.6) 

On the other hand, an natural image usually has the property of pairwise 

smoothness. Thus we define a smoothness penalty term ? % ( / � — I j ? to impose 

this constraint. Now our objective function is defined as 

/ ( L , = + 亡 ^ y j 务 I j f , (2.7) 
i=l i=l jeAf{i) 

where J\f{i) is a neighborhood of pixel i (8-neighbors of a pixel are chosen as 

the neighborhood system in our approach), and Wij is a factor defined later. 

Our aim is to find the label configuration that minimizes f[L, P). This label 

configuration should best balance the data cost and the piecewise smoothness 

constraint. 

A good smoothness term should be able to not only enforce spatial homo-

geneity in low contrast regions but also preserve discontinuity in high contrast 
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areas such as object boundaries. We incorporate the contrast information into 

Wij, which denotes the affinity value between pixels i and j, and spatially varies 

to control the degree of the smoothness constraint in different neighborhoods. 

It is defined as 

= a . k{ij) ’ e x p ( ) 〜 :， ) 2 )， (2.8) 

where a is a positive factor to control the influence of the smoothness term, af 

is the deviation of {pfi — p " ) over the neighborhood of pixel i, and k(i, j)= 

e x p ( — i s a Gaussian kernel function to measure the contributions of 

the neighboring pixels with different distances dij. Note that if the colors of 

pixels i and j are similar, {pfi -VfjY' is small; if the colors are quite different, 

(pfi —pfj)2 is larger. Apparently, the local contrast information encoded in Wij 

imposes the coherence in homogeneous regions and ensures the discontinuity 

in object boundaries. Therefore, our objective function f[L, P) is contrast-

sensitive that is crucial for accurate segmentation, especially in low-contrast 

or blurred regions. 

Here it should be mentioned that the energy function rely on iteratively 

updated initial probabilistic map P. Therefore the more accurate P is, the 

better optimization target we obtain, resulting in precise optimal solution. 

A Closed Form Solution 

With the objective function f[L,P), we need to carry out an optimization 

process to obtain the optimal label configuration. In hard segmentation, li 

takes 1 or 0. Many methods can be used to perform the minimization of 

/ (L , P), such as graph cuts [12], [42] and belief propagation [23]. However, 

in our iterative optimization framework, we need to find new confidence seeds 

based on the optimal label configuration in each iteration. The binary result 

achieved from graph cuts or belief propagation is not capable of providing 

this kind of information. However, instead of binary labels, if an optimization 



Chapter 2 Iterative Foreground Object Extraction 20 

procedure can generate continuous labels in [0,1] with 1 denoting definite 

foreground and 0 definite background, we can use these labels to update ST 

and SB. Based on the above analysis, we relax the binary labelling problem 

to the continuous one, ranging from 0 to 1. Consequently, we can obtain a 

closed form global optimal solution to this continuous optimization problem. 

At first, we construct an undirected weighted graph Q = (V, S)^ where V 

is the set of vertices denoting all the image pixels and S is the set of weighted 

edges. The elements of the adjacency matrix W = [Wij]nxn of G are obtained 

by 

W,.= 

w. u： if j , j €A / ' ( z ) 

0, (2-9) 

c, if i = j, 

where c > 0 is some constant. Let D he an n x n diagonal matrix with the 

(z, f)-th entry Da = 购j.. By using a positive constant c, we have Da — 0 

and W becomes nonsingular. Moreover, c builds up numerical stability for our 

solution. With the design of Wij, Da may be very small for some pixels that 

have edges with small weights. Since the final closed form solution derived 

below involves and a proper c can make the computation of them 

numerically stable. We find that it is a good choice for c to be comparable 

with the value of the parameter a in (2.8). Thus, in our algorithm, we set 

c = a. 

With the objective function / (L , P) and the corresponding graph Q, a 

closed form solution can be achieved to the following problem: 
n n 

m m / ( L , P ) = + ^ — h ? ) - (2.10) 
i= l i，j=l 

From (2.10), we can see that different c has no effect on f(L, P) since c{li—li)= 

0. Let R = [n,厂2，…’ 严，where 7\ = y/D^ili^ 1 < z < n, form a set of medium 
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variables. Then we have L = D'^R, and f(L, P) = j\(R’ P) with 

。、2 

(2.11) 

where || • ||:f is the Frobenius norm of a matrix, 

-
V
/
 

\2 2(RT 工 R). 
VWi ^/D 

(2.12) 

(2.13) 
33 

1 1 
and L = — W)D~2 (called the normalized Laplacian matrix of Q). 

To minimize fi {R, P), taking its derivative with respect to R and setting 

it to zero yields 
dfi[R,n 

dR 
=2D-'2{D--2R - P ) + 4Li? = 0， (2.14) 

which results in {D'^ + 2L)R 二 D—计,Since H^ and I are positive semi-

definite, (_D—1 + 2L) is nonsingular. Finally, the closed form global solution 

is： 

L* = D-^R = + 2L)-^D-2P. (2.15) 

We consider L* as a refined probabilistic map with each component being 

the probability of the pixel belonging to the foreground. An example is showed 

in Fig. 2.1(c) and Fig. 2.1(g). We can update SJ^ and SB to refine the color 

models by the upper and lower thresholding of L* (upper threshold t^ = 0.7 

and lower threshold ti = 0.3 in our work). The algorithm stops at iteration 

t when \m — LJ_i||2 < e or t — T, where L; is the optimal continuous label 

configuration in the 亡-th iteration, e and T are manually set constants to control 

the algorithm convergence. Finally we use a threshold (0.5 here) on the final 

continuous global optimum to obtain a binary segmentation result. 
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Input and Initialization 
a) Input: an image and user provided strokes to indicate 

foreground seed set F and background seed set B. 
b) Initialization: confidence seed sets SF = F and SB = B. 

Iterative Optimization 
1. Train the Gaussian mixture color models GM^ and GMJor the 

foreground and the background using the current confidence 
seed sets SF and SB, respectively. 

2. Calculate the initial probabilistic map P using the current color 
models with (2.3). 

3. With the energy function f(L,P) in (2.7), find the continuous 
global optimal label configuration L* with (2.15). 

4. Use the current L with the upper and lower thresholds, = 0.7 
and t = 0.3, to update the confidence seed sets SF and SB. 

5. Repeat steps 1 ~ 4 until convergence. 

6. Obtain a binary segmentation result by thresholding (with 0.5) 
the final global optimal probabilistic map L\ 

22 

Figure 2.2: Our framework for foreground object extraction. 

Our foreground object extraction framework is summarized in Fig. 2.2. It 

should be noticed that since the global optimum can be achieved in the opti-

mization procedure, the main factor affecting the result quality is the energy 

construction, in other words, the accuracy of the initial probabilistic map. 

Thus we iteratively refine the color models trained from updated confidence 

seeds to ensure the accuracy improvement of the initial probabilistic map. Be-

sides, the user provided information is iteratively propagated and expanded 

in our algorithm, which makes it not sensitive to the number and locations of 

user provided seeds and require less cost of users' interaction and attention. 
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2.3 Application Extensions 

Besides the application of two class interactive image segmentation, our algo-

rithm can be easily extended to some other tasks such as multi-object segmen-

tation and object extraction from a group of images sharing the same object 

with similar color and texture. 

In the context of the multi-object (say, m foreground objects) segmenta-

tion problem, we can apply our algorithm with respect to each object and 

obtain m final probabilistic maps {l:i}l:\’;:::: with each corresponding to one 

object. At the end, pixel i is assigned to label o* E { 1 , 2 , m } , where 

o* = argmaXo=i’ ，饥Z二。 To extract similar objects of interest from a group 

of images using only the user provided seeds in one reference image, we can 

first find the final object color/texture model in the reference image by our 

approach, and then utilize the model to obtain the initial probabilistic maps 

and optimal label configurations of the other images until convergence, which 

naturally leads to object extraction from all the images in the group. 

Moreover, by applying the thresholding process in our algorithm, the final 

probabilistic map of the image we obtain can be directly transformed to a 

trimap for the initialization of image matting. Our experiments show that 

the trimaps generated by our algorithm are much better than those generated 

by the uniform boundary erosion and dilation of rough segmentation results 

regardless of local image characteristics [68 . 

2.4 Experimental Results 

In our experiments, we compare our algorithm with belief propagation [23 

graph cuts [9], the adaptive GMMRF (AGMMRF) based algorithm [7]，and 

random walk based method [28], which are abbreviated to BP, GC, AG-

MMRF, and RW, respectively. Note that they are not iterative optimization 

approaches. The objective energy function optimized by BP and GC is from 
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68]. The parameters used in these algorithms are all best tuned. In our al-

gorithm, the number of iterations is set to 5. The algorithms proposed in 

46], [68], and [88] are not compared here because their outputs are obtained 

through multiple user interactions to fine tune the results. 

Before showing the qualitative and quantitative comparisons between our 

algorithm and other related approaches, to demonstrate the effectiveness of 

our iterative optimization scheme, we first present the visual comparisons of 

the binary segmentation results generated in the first and the last iterations 

of our algorithm in Fig. 2.3 on two natural images. Similar observation can 

be found in Fig. 2.1, which shows the results of our algorithm on a challeng-

ing case with complicated foreground and background color characteristics, 

including the confidence seed sets, initial probabilistic maps, optimal label 

configurations, and corresponding binary results obtained in iterations 1 and 5 

of our algorithm. We can see the label configuration and binary segmentation 

result in Fig. 2.1(g) and Fig. 2.1(h) are much better than those in Fig, 2.1(c) 

and Fig. 2.1(d), and our final segmentation results in Fig. 2.3 are much more 

accurate than those obtained in first iteration. Therefore the advantage of 

our iterative refinement scheme of the initial probabilistic maps for achieving 

precise object extraction results is explicitly demonstrated, especially in the 

challenging case as showed in Fig. 2.1. In addition, with the same user spec-

ified seeds and prior color models, the object extraction result obtained by 

RW [28] is essentially the same as the one obtained in the first iteration of 

our algorithm since they both are the binary versions of the continuous global 

optimal label configuration for the same objective energy function / (L , P). 

Thus the above experimental comparisons display the better performance of 

our algorithm than RW as well. 

The second experiment is the visual comparison of the results obtained by 

BP, GC, and our algorithm. Since the AGMMRF algorithm is not available 

publicly, its results are not included in this experiment. Fig. 2.4 shows the 



Figure 2.3: Foreground object extraction results on two natural images. From 
top to bottom: input images with user specified strokes, the results generated 
in the first and the last iterations of our algorithm. 
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results on two images with initial simple user indications of the foreground and 

the background. These results clearly demonstrate the better performance of 

our algorithm with the precise extraction of the foreground objects, especially 

on the edges of the central flower in the first image, and on the hair and the 

collar near the neck of the person in the second image. 

To make our experimental comparison more convincing, we conduct a quan-

titative comparison among BP, GC, AGMMRF, RW, and our algorithm. The 

authors of AGMMRF [7] provided a database containing 50 natural images 

with both user initial foreground and background inputs and the ground truth 

results 1 . Although there are many segmentation databases with ground truth 

results, the database in [7], to the best of our knowledge, is the only one with 

seed regions provided, as showed in Fig. 2.5. With the results generated by 

these algorithms based on the same user provided information, we can quanti-

tatively compute their average error rates using the ground truth. Table. 2.1 

clearly shows that our algorithm performs the best. This quantitative compar-

ison over a large set of natural images convincingly demonstrates the excellent 

performance of our algorithm. Fig. 2.5 illustrates some typical visual and 

quantitative outputs of our approach, from which we can see that our results 

are of great visual quality. 

Here it should be mentioned that the provided information about the fore-

ground and background for each image in this database is abundant since all 

pixels are labelled except for a narrow band around the boundary of the ob-

ject, as showed in Fig. 2.5. Therefore, the virtue of our proposed framework 

that the accuracy is improved iteratively as the expansion of the seed sets is 

not fully exploited. In practical applications, the user is not expected to give 

so abundant information. When fewer seeds are provided, the improvement 

between our algorithm and the others is more obvious, as showed in Fig. 2.3 

and Fig. 2.4. 

1 Available at http://research.inicrosoft.com/vision/canibridge. 

http://research.inicrosoft.com/vision/canibridge
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Figure 2.4: Results on "Flower" and "Person" images. From top to bottom: 
input images with user guided strokes, the results of BP, GC, and our algo-
rithm. We also zoom in some regions for better observation. 
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Error rate: 2.03% Error rate: 6.46% Error rate: 2.28% 

Figure 2.5: Results on "Teddy", "Cat", and "Mushroom" images in the 
database [7]. From top to bottom: input images, provided seed images, ground 
truth results, and our object extraction results. The error rates computed from 
our results and ground truth are showed here as well. 
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Algorithm BP GC AGMMRF RW Ours 
Error rate (%) 8.4 7.2 7.9 5.8 5.5 

Table 2.1: Comparison of the error rates by the algorithms on all the 50 natural 
images in the database [7 . 

To validate the good performance of our algorithm on foreground object 

extraction with little user interaction, we apply our algorithm to many natural 

images with diversified objects and background. Fig. 2.6 shows some excellent 

results by our algorithm. 

2.5 Conclusions 

In this chapter, an iterative optimization based framework is proposed to ad-

dress the problem of foreground object extraction from an image. We model 

the problem as an iterative energy minimization problem to find the optimal 

label configuration. In our algorithm, the foreground and background color 

models are iteratively refined by expanding the confidence seed sets, which 

improves the accuracy of the initial probabilistic map at the beginning of each 

iteration. Based on the initial probabilistic map and the boundary and co-

herent information in the image, we construct an MRF-based energy function 

in our optimization problem. Then by relaxing the hard segmentation to the 

soft one, a closed form global optimal solution can be achieved, which can 

be regarded as a refined probabilistic map providing us the clues for updat-

ing the confidence seed sets. The more accurate initial information we use 

in the objective energy construction, the more precise label configuration we 

can obtain by energy minimization. Therefore, through the iterative optimiza-

tion scheme, high-quality foreground object extraction results can be achieved 

by our algorithm. We have compared our algorithm with several related ap-

proaches on many natural images both visually and quantitatively. The results 

demonstrate the excellent performance of our algorithm. 
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Figure 2.6: Some experimental results obtained by our algorithm. 



Chapter 3 

Video Completion via 

Spatial-Temporal Global 

Optimization 

The target of video completion is to restore the spatial-temporal missing re-

gions of a video in a visually plausible way. These missing pixels are caused by 

some damage to the video or the removal of unwanted objects. In this chapter, 

a novel global optimization based approach is proposed for video completion. 

Our algorithm consists of two stages: motion field completion and color com-

pletion via global optimization. First, local motions within the missing parts 

are completed patch-by-patch greedily using pre-computed available motions 

in the video. Then the missing regions are filled by sampling patches from 

available parts of the video. We formulate the video completion as a global 

energy minimization problem by Markov random fields (MRFs). Based on the 

completed motion field of the video, a well-defined energy function involving 

both spatial and temporal coherence relationship is constructed. Belief propa-

gation is used to solve the problem. To avoid the computational impracticabil-

ity caused by the large number of label candidates in the optimization process 

of belief propagation, we utilize a coarse-to-fine optimization scheme whose 

31 
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essential idea is to carry out belief propagation multiple times with sharply re-

duced numbers of label candidates, instead of running belief propagation only 

one time with a large number of label candidates. Based on our motion guided 

spatial-temporal global optimization framework, good video completion results 

are obtained in the experiments, which demonstrate the excellent performance 

of our algorithm. 

3.1 Introduction 

Image and video completion, also known as image and video inpainting, are of 

great importance in many computer vision and computer graphics applications 

such as photo and movie editing and post-production. Their goal is to auto-

matically reconstruct missing regions in an image/video in a non-detectable 

form, which is challenging and wide-open for researchers. 

3.1.1 Related Work 

A number of methods have been proposed to deal with the problem of image 

completion [3, 45, 21, 19, 43, 83]. The algorithm presented in [3] is PDE-based 

and can effectively restore small missing portions with strong structures in the 

image while failing to reconstruct large holes in texture areas. Following [3], 

the authors in [45] solve the problem based on prior image knowledge by using 

global image statistics. Inspired by the texture synthesis technique in [22], 

exemplar-based technique [19], which repairs the missing regions by merging 

with the best source patches obtained by searching the available regions of the 

image, are more suitable for the completion of large textured holes. However, 

this greedily filling process may lead to visual inconsistency since in the greedy 

scheme a pixel cannot change its value once it has been filled in each process-

ing iteration. Besides, it may lose some important structure information, and 

its high computational complexity is also a limitation for practical using. In 
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19], the order by which the process is carried out is well studied, and the 

confidence map is proposed to guide the filling priority of each pixel to enforce 

the structure propagation. To overcome the shortcomings of the greedy com-

pletion techniques, global optimization based algorithms have been proposed 

recently [43, 83]. In [43]，image completion problem is posed in the form of 

a discrete global optimization problem with a well-defined objective function, 

and a new scheme called Priority-BP is proposed to solve the optimization 

problem efficiently. The algorithm proposed in [83] follows the spirit of [43 

and add a structure constraint into the objective function to ensure the proper 

structure propagation. 

Intuitively, video completion can be considered as an extension of 2D image 

completion to 3D video completion. However, compared with image comple-

tion, video completion is more challenging in two aspects. First, it is more 

important to enforce temporal coherency than spatial coherency in the comple-

tion process since human visual system is more sensitive to motion distortion. 

Simply treating video as a set of independent images and then applying an im-

age completion method to them are not advisable. Second, video completion 

contains much more data and thus needs more efficient algorithms. 

One of the first efforts for video completion is made in [2]，which is a PDE-

based approach and handles the video frame by frame. It works well in small 

structured holes, but fails to complete large holes in a video sequence and does 

not utilize the temporal information from the video. 

Many segmentation based or layer extraction based video completion algo-

rithms are developed recently [38，89, 71, 90, 74, 62]. The algorithm in [38 

extracts the background and foreground and repairs them separately frame 

by frame with different strategies. Although achieving impressive results, this 

method is limited owing to its complexity, requirement of user interaction to 

manually indicate layers with different depths, and its restriction to periodic 

motion. Another motion layer segmentation based approach in [89] combines 
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motion compensation and region completion to restore the motion layers in the 

reference frame and then transfers the information to other frames to generate 

a completed video sequence. Similarly, the authors in [71] utilize the motion 

manifold obtained after the foreground and background segmentation to recon-

struct the missing parts of the video. This approach can handle camera motion 

and distortion, but it is still restricted to the periodic motion. An interest-

ing algorithm in [62] first builds the mosaics of background, foreground, and 

optical flow, and then fulfills the motion inpainting and background inpaint-

ing in turn guided by the pre-computed priority. While the layer extraction 

based algorithms are effective for video completion, it is very difficult to ob-

tain accurate layers in general, especially for the scenes with complex motions. 

In addition, all these methods are restricted to the videos with only periodic 

motion. 

Extending the exemplar-based approach to video completion, the algorithm 

in [86] treats video completion as a global optimization problem with a well-

defined objective function. It fills the missing portions by exhaustive search-

ing for the most similar space-time source patches available in the video and 

weighted blending of the selected candidates. The spatial-temporal consistency 

is enforced by the global optimization. However, the algorithm also relies on 

the assumption of periodic motion and is computationally inefficient due to the 

pixel-by-pixel filling process and the exhaustive search for candidates. In ad-

dition, the similarity-based merging scheme for calculating each pixel's value 

leads to noticeable blurring artifacts. The authors in [39] present another 

exemplar-based approach which uses tracking to reduce the search space and 

applies graph cuts algorithm for merging the source and target patches to 

maintain details. 

A newly published algorithm in [75] restores local motion in the holes of the 

video by sampling spatial-temporal motion patches, instead of directly using 

the color copy-and-paste scheme. With the completed motion volume, color 



Chapter 3 Video Completion via Spatial- Temporal Global Optimization 35 

is propagated into the holes to complete the video. As discussed in [75], the 

algorithm is more sensitive to noise than directly using color sampling and 

does not work well for the completion of videos with large motions. Moreover, 

the results of this algorithm have blurring effects due to the weighted average 

scheme in color propagation. It is worth noting that the assumption in this 

algorithm that motion information is sufficient to fill holes in videos cannot be 

true in some cases such as the video with the same missing regions in all the 

frames, in which little motion appears. 

3.1.2 Our Framework 

In our work, we propose a motion guided spatial-temporal global video comple-

tion algorithm to combine motion field completion and global exemplar-based 

color completion. The two steps in our algorithm are briefly described as 

follows. 

Motion field completion. We use hierarchical Lucas-Kanade optical flow 

computation method [53，8] to calculate local motion vector of each pixel in 

the video except the pixels in the holes. Then the motion in the data missing 

regions is completed patch-by-patch using the computed motion vectors in 

the available regions, where a copy-and-paste scheme is adopted based on a 

pre-defined similarity measurement. 

Spatial-temporal global optimization. The global exemplar-based 

color completion in our algorithm is formulated as a discrete global optimiza-

tion problem with a well defined objective function, which is constructed under 

the Markov random field (MRF) models incorporating both spatial and tem-

poral constraint terms to enforce the spatial and temporal consistency. The 

design of the temporal constraint term is guided by the completed motion 

fields obtained in our first stage above. To carry out the optimization process, 

we propose a coarse-to-fine belief propagation (BP) technique, which can deal 
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with the intolerable computational cost caused by the large number of label 

candidates in the optimization. 

Our algorithm combines the motion and color information to accurately fill 

the missing parts of the video, which preserves the temporal consistency based 

on the completed motion field, and globally optimizes the color completion 

process. It avoids the blurring effect caused by the sampling and blending 

process, while maintaining the video details and structures well. Besides, the 

proposed framework unifies the problems of image completion and video com-

pletion and solves them in a consistent form. Moreover, our algorithm is not 

restricted to videos containing periodic motion only and can handle a wide 

variety of videos, producing visually natural results without obvious artifacts. 

The experimental results have demonstrated the excellent performance of our 

algorithm. 

3.2 Motion Guided Spatial-Temporal Global 

Optimization 

We formulate the video completion problem as a labeling problem modeled by 

discrete Markov Random Fields (MRFs). The target regions are filled globally 

by using exemplar patches taken from the source region of the video. 

Let f = be the input video of T frames with the region n = 

where is the region of ft. Suppose that $ = { 少 ” i s the source region 

and n = is the target region (data missing region). Then we have 

$ +17 = + = mi, = n. 

3.2.1 Model Construction 

Firstly, we sparsely sample each frame with a horizontal spacing hs and vertical 

spacing vs. Then we can obtain sampled pixels P = 二i in the target 
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region, where N* is the number of sampled pixels in the target region of the 力th 

frame. The process of video completion is to fill the target region by pasting 

some w X h patches taken from the source region to the locations centered at 

the positions in P. 

We construct an undirected weighted graph Q = (V, 5), where the node 

set V = contains all the pixels in P, and Z is the set of edges 

connecting each node to nodes in its neighborhood system. A 4-neighborhood 

system is used to enforce the spatial consistency constraint in the same frame, 

while some nodes in sequential frames, called temporal neighbors, are included 

in our neighborhood system to enforce the temporal consistency constraint. 

The detail of temporal neighbors is described as follows. 

Let C — be the set of label candidates containing all the w x h 

patches taken from the source region. Then our labeling problem is to find 

the best label configuration X = such that an energy function 

is minimized, where x\ E C and xf 二 Ik represents that the label (patch) for 

node vj is Ik- In our approach, the best label configuration is estimated by 

minimizing the following energy function: 

E[X) 二 Es[X) + aEt[X), (3.1) 

where E s { X ) , called spatial term, enforces the spatial consistency constraint, 

E人X), called temporal term, enforces the temporal consistency constraint, and 

a is a positive constant to balance these two terms. Fig. 3.1 illustrates the 

spatial and temporal terms. The details of them are discussed in the following 

two sections. It is worth noting that if a is set to 0, our energy function has 

only spatial term to be optimized, which is a suitable model for the problem 

of single image completion. 
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Figure 3.1: Illustration of the spatial and temporal terms. The dots indicate 
the sampled pixels which correspond to the vertices in the graph. Regions 1, 2’ 
3, and 4 are overlapping parts for the calculation of Ei{xl), E2{xl, 
and 丑 <”， r e s p e c t i v e l y . The patch centered at p计 1 (the cross ) is copied 
from xl-

3.2.2 The Spatial Term 

The spatial term is used to enforce the spatial consistency, of which the implied 

assumption is that the overlapping parts of patches should have consistent 

texture and structure information in the patch pasting process. Based on the 

MRF model, it is defined as: 

E , {X ) = J 2 E , { x D + Y 1 五2(4 々 ， (3.2) 

where 6s is the spatial 4-neighborhood system, Ei(oof) is the cost for label a;-, 

and 五2(略工5) is the consistency cost for label pair (x-, Xj). 

Similar to [19] and [83], the confidence map is also used in our algorithm 

to represent the importance of nodes in the filling process. In the map, the 

pixels in the target region closer to the source region in each frame have larger 

confidence values. Fig. 3.2 is an example of the map of the confidence values. 

With the confidence map, the cost for label xj is defined as: 

E i i x l ) = C [ d ( a : l , ¥ � (3.3) 

where Cf is the confidence value for node vl and d(xl,屯亡）constrains the syn-

thesized patch xl to match well with the source region which overlaps with the 

node v .̂ d{x\^ is calculated as the sum of the squared differences (SSD) 
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(c) 

Figure 3.2: An example of the confidence map�（a) One frame of an input video� 

(b) The mask (in green) of the object to be removecL (c) The confidence map 
in the mask, in which the brighter a pixel is, the larger the confidence value is� 

of pixel colors in the overlapping part between xl and # (e.g., region 1 sur-

rounded by the red dashed curve in F ig�3 .1 )�When x\ and do not overlap, 

Since structure (e.g., lines, curves) continuity is important for human per-

ception and texture reflects the details of an image, we incorporate both struc-

ture and texture in the completion process�The consistency cost 五2(略 

(3.2) is thus defined as 

in 

E2[x\ 
Cl^C] 

2 
(3.4) 

where C\ and Cj are the confidence values of nodes v\ and Vj, respectively, 

5 ^j) is used to enforce consistency for texture propagation, E'^ixj, Xj) is 

for structure propagation, and Ai and 入2 are two factors to balance E i ,冯 , 

and E' ‘� 

In our algorithm, E2(xl,x]) is computed by 

E'2ixlx]) = d{xl (3.5) 
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where d{x\^ x p is the SSD in the overlapping part between the patches centered 

at nodes v\ and i*�(e.g., region 2 surrounded by the red solid curve in Fig. 3.1). 

五J (X“》）is computed by 

E'i{xl 4 ) = 《 狀 4 ) + dlM, (3.6) 

where dgh{x\̂  x̂ j) and dgy{x\^ Xj) are the gradient differences between x- and Xj 

in the image horizontal and vertical directions, respectively. The gradient of 

a patch is denoted as the maximum gradient of the pixels in the patch, which 

describes the structure of the patch. The constraint of gradient consistency 

propagates the structure information. 

With the design of the spatial term Es{X), which is an MRF-based energy 

function incorporating the texture and structure information, our framework 

well models the problem of image completion by removing the temporal term 

(a = 0). The experimental results demonstrate the excellent performance of 

our framework for image completion. 

3.2.3 The Temporal Term 

The temporal term enforces the consistency constraint between two sequen-

tial frames, meaning that two corresponding patches in two sequential frames 

should have consistent colors. In our algorithm, the correspondence is found 

via local motion estimation. There exits many optical flow algorithms [53, 34， 

60] for motion estimation. In our algorithm, the hierarchical Lucas-Kanade 

algorithm [73] is used. 

If dense motion is estimated, correspondence for all patches without missing 

pixels in a video can be constructed. The current problem is that in the context 

of video completion there are many data missing regions in the input video, and 

thus optical flows cannot estimate the motions for the pixels in these regions. 

To obtain a completed dense motion map, we first calculate the motions for 

all the pixels in the source region. Then motion field transfer technique [75 
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is used to compensate the motion in the target region, which utilizes a copy-

and-paste scheme to carry out the motion completion based on some similarity 

measurement criteria. The details are described as follows. 

Motion Completion 

In our approach, a copy-and-paste process, i.e.，copying the best motion patch 

from the source region and pasting it to the target region, fills in the motion 

in the target region patch by patch. Here the compensation process, which is 

different from the global color propagation, is completed greedily. 

Motion completion in our approach starts from the boundary of the target 

region and goes towards the inner region. When one motion patch is filled, 

the new target region is obtained by assigning the filled pixels to the source 

region. 1 At each time, the selected target patch is centered at the boundary 

of the target region. Therefore, each selected target patch includes both pixels 

in the source region and pixels in the target region. The selection order of 

the target patch is determined by the number of pixels belonging to the source 

region in the target patch. The target patch with the largest number is selected 

for being filled in first. 

Before defining the criteria for choosing the best source patch for a target 

region, the motion difference measurement is introduced. Suppose that the 

motion vector of pixel q in frame t is (m*, v^^Y . If we regard the 2D motion as 

a 3D vector in the spatial-temporal domain by padding the temporal element 

t, then the 3D vector is defined as m* = (n*, uj, t)^. The difference between 

two motion vectors m and m' is defined as the angular difference [1]: 

dm(m, m') = 1 — m m =工 一 cos 没， （ 3 . 7 ) 
m| m'l 

where 0 is the angle between the two motion vectors m and m'. Since this 

1 Target region update is only for motion compensation. For color completion, the target 
region is kept unchanged. 
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expression is defined in homogenous coordinates, the measurement relies on 

the differences in both direction and magnitude. 

For a source motion patch As and a target motion patch At {As and At 

are 3D in the spatial-temporal domain), the difference measurement between 

them is defined as: 

1 
dmp{As,At) = dmiml^ml) , (3.8) 

…丨gt€Qs 

where Qs is the set of points in At belonging to the source region, |Qs| is the 

number of pixels in Qs, Qs and qt are two corresponding pixels in As and At 

respectively, and tg and tt are the frames in which As and At are respectively. 

Then for At the best source patch As is chosen by minimizing (3.8): 

As 二 argmin dmp{As, At). (3.9) 

Temporal Energy Function 

Once the motion compensation is completed, a dense motion map can be ob-

tained for all the pixels in the input video. With the estimated local motions 

of all the pixels, the relationship between two sequential frames can be con-

structed. Before defining the temporal term, the temporal neighborhood is 

introduced first. For a sampled pixel p\ whose corresponding graph vertex is 

vl̂  if its motion is known, then we can find its corresponding point p亡+i in the 

next frame. We call the set of the four vertices in frame t-\-\ corresponding 

to the four sampled vertices nearest to p奸^ the temporal neighborhood of vj 

(see Fig. 3.3). If i)广 is a temporal neighbor of vj, then we denote them as 

The definition of the temporal term is similar to the spatial term, which is 

expressed as the sum of two parts: 

二 ；^五3(动 + E 私(4^4+1)， (3.10) 
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Figure 3.3: Illustration of the temporal neighborhood system, pi is a sampled 
pixel in frame t with its corresponding graph vertex vj. The cross in frame 
t + 1 is the corresponding position of p] based on the motion estimated. Then 
vertices corresponding to the four nearest sampled pixels in frame t-\-l are the 
temporal neighbors of vertex vj (connected with vj by red dashed lines). 

where St is the temporal neighborhood system, represents the temporal 

inconsistency between x\ and its corresponding source region in frame t + 1, 

and represents the temporal inconsistency between oc\ and x^^ .̂ 

The definitions of Es{xl) and E4[:jcI, cc*严)are similar to those of Ei{xl) 

and E2{xl,x^j), respectively. Compared with Ei(xl) and E2{xl,x*j), there is 

no confidence and structure information in Es{xl) and 五 r c j + i ) . They are 

defined as: 

= (3.11) 

恥;,4+1) 二 ,4+1). (3.12) 

As in the spatial term, here d is the SSD value in the overlapping region of 

the two parts. Suppose that the corresponding point of pj in frame t + 1 is 

； T o calculate d{xl, and d(xl, the first step is to put the center 

of the patch x^ at Then d(xj, is the SSD value in the overlapping 

region between the patch and 少糾(e.g., region 3 surrounded by the purple 

dashed curve in Fig. 3.1), and is the SSD value in the overlapping 

region between the patch and rcj+i (e.g., region 4 surrounded by the purple 

solid curve in Fig. 3.1). 
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3.3 Optimization Scheme 

Recall our discussion in Chapter 1. The problem of minimizing the energy 

function (3.1) is an NP-hard problem. Belief propagation can find a local op-

timum for such an MRF energy function. The max-product and sum-product 

are two typical BP algorithms [23]. In our algorithm, the max-product algo-

rithm is used since it is less sensitive to numerical inaccuracy and is derived 

directly to the problem of energy minimization. 

The max-product BP works iteratively by passing messages along the graph. 

For a graph with N nodes and K label candidates, the running time for T it-

erations is 0{TNK^). In our video completion approach, the main problem 

with such a standard BP algorithm is that the number of label candidates K is 

too large to be used in practice. For instance, there may be more than 100,000 

patches for a video clip with 30 frames of size 256 x 256. It takes the standard 

BP several days to run to achieve the video completion result. Therefore, to 

overcome this problem, we use a coarse-to-fine scheme to greatly reduce the 

computational time. The main idea of this scheme is to perform BP R times 

with Kr label candidates in each time, r = 1,..., R, instead of running BP only 

one time with K candidates, where K^ is much smaller than K. The steps of 

our coarse-to-fine strategy are described as follows. 

First, an i?-level patch pyramid is constructed (see Fig. 3.4). In the bottom 

level of the pyramid, elements are all label candidates C taken from the source 

region. Then we use the k-means algorithm to classify all patches in C into 悬 

clusters. The means of the ^ clusters are regarded as the elements in level 

i? — 1 of the pyramid. Then elements are clustered into clusters 

and the mean values are the elements of level R — 2. The rest is deduced 

similarly and we can obtain the patch pyramid with the element number Ki 

in the top level. 

After the patch pyramid is completed, we perform BP R times from the 
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Figure 3.4: The pyramid of patch candidates, 
patches in level R of the pyramid are the mean 
patch sets in level i? + 1. 

Except in the bottom level, 
values of their corresponding 

top level to the bottom level. Except for BP execution in the first level, where 

Ki elements are regarded as the label candidates for all the nodes, in level i?'s 

BP optimization, R 一 1, different nodes have different label candidates. For 

each node, its label candidates are all the elements in the cluster corresponding 

to the center label assigning to the node in the R — 1 level of BP. Totally, BP 

is performed R times, and the result obtained by BP in level R is the final 

result. Since the higher the pyramid level is, the more blurring the elements 

are, BP in the lower level obtains more detailed results. Recall that the com-

putational complexity of BP is proportional to the square of the number of 

label candidates. Therefore, our coarse-to-fine BP is at least K^/ J2r K � t i m e s 

faster than the standard BP. 

For simplicity, we take a two-layer pyramid as an example to explain the 

scheme. Let Ki and K2 be the numbers of candidates in the first and the 

second BP executions respectively. We first use the k-means algorithm to 

classify all the patches in C into K\ clusters, denoted as ， 5 * 2 , … ， , i.e., 

C = {^i, 6*2,..., The first running of BP takes the Ki cluster centers as 

the label candidates C^ = {ci,c2, to find the best label configuration 

Xi = {x\,x\, that minimizes the objective energy function, where x] G 
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1 < 2 < Â . Then we perform BP again. Suppose that after the first BP, 

the best label for node Vi is xj = c^^. In the second round BP, the new label 

candidates for node Vi are all the elements^ belonging to the cluster with 

center Ck̂ . Using such different label candidate sets for different nodes, the 

second BP runs to find the best label configuration. 

Obviously, such a coarse-to-fine BP scheme leads to a result different from 

that obtained with the standard BP. However, our experiments show that this 

scheme can achieve satisfactory results and is not sensitive to the initialization 

of the k-means algorithm. The most important benefit of this scheme is that 

it can make our algorithm practical. Such a coarse-to-fine BP can also be 

used to speed up some other MRF based applications in computer vision and 

computer graphics. 

3.4 Experimental Results 

In our experiments, we validate our algorithm on various videos represent-

ing different interesting and challenging cases to demonstrate its effectiveness. 

Here we show a few selected results from four representative videos, 120-frame 

"performance" (180 x 240) [75], 88-frame "beach" (80 x 170) [86]，40-frame 

"running" (240 x 320) [62], and 19-frame "car" (240 x 320) [62]. For all our 

experiments, the parameters in our algorithm are chosen as A! = 1’ A2 = 1.5, 

and Q； = 5. The number of levels R in the multi-level BP is chosen as 2 or 3, 

depending on the size of a video. 

Fig. 3.5 shows the visual comparison results for the video "performance" 

between the algorithm in [75] and our algorithm. The first row gives 4 original 

frames. We want to remove the walking spectator. The second row shows the 

manually removed regions roughly covering the spectator. The last two rows 

2To limit the maximum label candidate number, if the number is larger than K2, K2 
candidates are randomly selected. 



Figure 3.5: Some results on the "performance" video�The four rows show the 
original frames, the manually removed regions, the video completion results 
by [75], and the results by our algorithm, respectively. 

display the completion results by [75] and our algorithm. Fig. 3.6 and Fig. 3.7 

show the other results by our algorithm� 

As shown in Fig. 3.5, the spectator takes a large space in each frame, and 

non-periodic motion happens in this video. The approach in [62], therefore, 

cannot handle this video completion well due to its periodic motion constraint 

and the large data missing. From Fig. 3.5，we can see that the algorithm [75 

leads to serious blurring results for this video, as stated in [75], because of its 

simple weighted average scheme in color propagation. However, our algorithm 

generates promising results on this challenging case. In the "running" video, 

the camera taking the video is also moving. Our algorithm can fill in the holes 

well. Another challenging case in video completion is to complete the regions 
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Figure 3.6: Some results on the "beach" and "running" videos. For each video, 
the original frames, the manually removed regions, and the video completion 
results by our algorithm are showed. 

where the sizes of the objects change. Fig. 3.7 is such an example where the 

car moves closer to the camera. Our algorithm is still successful to complete 

the removed sign post. 

From the experimental results, we can see that our algorithm can handle 

a variety of video completion tasks with different situations, such as dynamic 

foreground and background, camera motion, object scale changing, and large 

data missing. Besides, there is no periodic motion restriction imposed on our 

algorithm. 



Figure 3.7: Some results on the "car" video. 

As we discussed, the proposed framework can handle the problem of image 

completion by removing the temporal consistency constraint. We validate 

our framework on many natural images and make comparisons with related 

algorithms [19, 43]. Fig. 3.8 gives the comparative results. We can see that the 

results generated by [19] have obvious artifacts due to its greedy scheme, [43: 

leads to the results losing some strong structures, and our algorithm produces 

visually natural results with good texture and structure visual consistency. 

Fig. 3.9 shows more results by our algorithm, which illustrate the excellent 

performance of the proposed framework on image completion. 

3.5 Conclusions 

In this chapter, a novel video completion algorithm has been proposed by com-

bining motion completion and global exemplar-based color completion. For a 

video with holes, the motion field in the holes is filled locally first. Based on 

the completed motion field, color is restored in a global exemplar-based scheme 

by minimizing an MRF energy function. The color completion is a patch copy-

and-paste process, i.e., copying patches in the source region and pasting them 
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Figure 3.8: Comparative results of image completion�The first row contains 
two pairs of original and masked images. On the second and the third rows, 
from left to right: the results obtained by [19], [43], and our algorithm� 

to the data missing region. The proposed objective function enforces both 

spatial and temporal consistency constraints in the color completion process. 

Besides, our framework can also well handle the problem of image completion 

as a special case of video completion when there are no temporal informa-

tion and constraints (set a = 0 in our energy function). Belief propagation 

is used to solve the energy minimization problem. To avoid the computa-

tional impracticability caused by the large number of label candidates in BP 

optimization process, we utilize a coarse-to-fine optimization scheme whose 

essential idea is to carry out BP multiple times with sharply reduced number 

of label candidates, instead of running BP only one time with a large number 

of label candidates. Such a coarse-to-fine scheme makes BP practicable in our 

algorithm. The experimental results on a variety of videos and images have 

demonstrated the effectiveness of our proposed uniform framework for image 

and video completions. 
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Figure 3.9: Image completion results by our algorithm. 
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Chapter 4 

Continuous MRF Based Image 

Denoising 

In this chapter, we tackle the problem of image denoising by formulating it 

as maximum a posterior (MAP) estimation problem using Markov random 

fields (MRFs). The estimation, which has been demonstrated to well model 

the problem, is equivalent to a maximum likelihood estimation constrained 

on spatial homogeneity and is generally NP-hard in discrete domain as our 

discussion in Chapter 1. To make it tractable, we convert it to a continuous 

label assignment problem based on a Gaussian MRF model and obtain a closed 

form global optimal solution, which is similar to our derivation in Chapter 2 

for interactive foreground object extraction. Since the Gaussian MRFs tend 

to over-smooth images and blur edges, we incorporate pre-estimated edge in-

formation into the energy function to better preserve image structures. Patch 

similarity based pairwise interaction is also involved to better preserve image 

details and make the algorithm more robust to impulse noise. Both quantita-

tive and qualitative comparative experimental results are given to demonstrate 

the better performance of our algorithm over several state-of-the-art related 

algorithms. 

52 
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4.1 Introduction 

Due to the imperfection of image acquisition and transmission systems, images 

are often corrupted by noise. The contamination on images not only affects 

their visual quality but also precludes many further higher-level computer vi-

sion tasks such as image/video coding, recognition, scene understanding, and 

object tracking. Therefore, either as a stand-alone processing or as a pre-

processing, it remains one of the most active topics in image processing. In 

most cases, a noisy image can be modeled as X = F + _/V，where X, F, and N 

represent the observed noisy image, the noise-free image, and the noise that is 

often considered as Gaussian with zero mean. The goal of image denoising is to 

remove the noise while maintaining and recovering the details and structures 

of the image as much as possible. 

Many denoising approaches have been developed over the past decades. 

They can be grouped into two basic categories: filtering in the spatial domain 

and filtering in the frequency domain. The former in essence estimates the 

value of each pixel with its neighboring pixels in some way. The basic idea of 

the latter is to project an image onto a set of orthogonal bases, usually referred 

to as wavelet bases, and then to discard small coefficients (mainly representing 

the noise) in the transformed representation using some kind of thresholding 

or by shrinking [20]. In [14]，the authors consider the evaluation of a good 

denoising algorithm in three aspects: no structure loss, no artifact generation, 

and optimal neighborhood selection. Their analysis indicates that algorithms 

in both the spatial and frequency domains are of great importance for image 

denoising. Some good algorithms in the frequency domain hold the property 

of no structure loss in denoised images but generate artifacts. On the other 

hand, some classic spatial filters are artifact free but destroy useful structures 

of original images. Since our algorithm is developed in the spatial domain, we 

focus on the discussion and comparison of the spatial filtering methods in this 
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chapter. 

Traditional image denoising methods in spatial domain use linear local 

smoothing filters to do the work. The most common and simplest one is the 

Gaussian filter [27] that has the advantage of fast computation. However, since 

these linear filters are all based on the assumption of stationarity of the whole 

image, which is not true in common real-world images, they are incapable of 

preserving edges and details well. Nonlinear models, on the other hand, can 

preserve edges better and reduce the blurring effect. Many nonlinear filters 

are based on partial differential equations (PDEs). Total Variation (TV) filter 

70] solving a 2nd-order nonlinear PDE suffers the staircase effect and the 

loss of image texture information, although it can keep edges well. To avoid 

this effect, a 4th-order PDE filter combined with the TV filter is presented in 

54] and some algorithms based on iterated total variation [81], [61] are also 

proposed. Another popular model of PDEs based approaches is the anisotropic 

filter [65], [15] which uses an anisotropic diffusion (AD) equation to smooth a 

noisy image. While maintaining boundaries well, the AD removes small details 

and fine structures of the image. 

In order to use the grey level information of neighborhoods in the local 

smoothing process, the sigma-filter is developed by Lee in [44], whose idea is 

to average neighboring pixels with similar grey levels to the reference pixel's. 

Two popular algorithms, called SUSAN filter [76] and bilateral filter [84], take 

the average value of the pixels close to the reference pixel in both grey level 

and spatial location, while other local filters only consider the geometric close-

ness of pixels. The bilateral filter can keep relatively sharp image edges and 

maintain the structures well. However, relying on the grey levels between two 

single pixels is not robust for the denoising of a seriously noisy image. Re-

cently, considerable interests have been given to the use of image partition for 

denoising [32], [56], [57]. These approaches share the same idea: smoothing 

the reference pixel or region by using the ones belonging to the same cluster 
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obtained through a segmentation procedure to maintain sharp edges. 

Buades et al. present a non-local means (NL-means) algorithm for image 

denoising [14], [13]. They argue that the local smoothing methods aim at noise 

reduction and the reconstruction of the main geometrical configurations of the 

image, but not at the preservation of fine details and textures. To address this 

problem, the NL-means approach estimates the "true" value for a pixel as the 

weighted average grey level of all pixels whose Gaussian neighbors look like 

the neighbors of the reference pixel with a close neighborhood configuration. 

This approach is based on the assumption that neighborhood similarities of 

each pixel exist in nature images. It is suitable for denoising images with 

periodicity texture patterns, but it fails in images with strong noise due to the 

corruption of the image structures. Besides, the nature of the simply weighted 

average calculation may cause grey-level inconsistency in some regions. 

Recall our introduction to the Markov random field (MRF) models [25 

in Chapter 1. The MRF models can handle the problem of image denois-

ing through an MRF-based energy minimization problem. The formulation 

is justified in terms of maximum a posteriori (MAP) estimation of a Markov 

random field in the Bayesian framework. However, as a multi-label assign-

ment problem, image denoising modeled as the MRF energy minimization in 

the discrete domain is generally NP-hard. The major obstacle of the optimiza-

tion is the large computational cost owing to the high dimensional computing 

space. The approaches proposed to solve the MRF energy optimization have 

been described in Chapter 1，including simulated annealing [25] being very 

time consuming, the iterated conditional modes (ICM) [4] with a determinis-

tic greedy strategy to obtain a local minimum, and recently developed algo-

rithms based on graph cuts [11，12, 42, 10], belief propagation [85, 82，80], and 

tree-reweighted message passing (TRW-S) [40]. Graph cuts, which minimizes 

the energy function by using the min-cut/max-flow on a properly constructed 

graph, has demonstrated its good performances to handle MRF optimization 
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problems, although it converges to a local optimum in the context of image 

denoising. Belief propagation and TRW-S as message passing algorithms of-

ten performs as well as graph cuts. All these algorithms work in the discrete 

domain and usually can only find a local optimum. Moreover, they carry out 

the optimization iteratively without a closed form solution. We also find that 

these methods cannot well preserve image edges and the large labels in the 

denoising task, especially for color images, cause the optimization procedure 

to be very slow. 

In this chapter, we also formulate image denoising as an MRF energy 

minimization problem with elaborately defined pairwise relationship between 

neighboring pixels. Our optimization approach is based on label relaxation. 

We solve the label estimation by transforming it to a continuous optimization 

problem, where the labels of the pixels are relaxed from discrete values to con-

tinuous values. Compared with the related approaches, the contributions of 

our work are summarized as follows: 1) In the continuous domain, a closed 

form global optimal solution can be obtained, which provides a good prereq-

uisite for our final result. 2) Image edges and details can be better preserved 

in our algorithm since pre-estimated edge information and patch based simi-

larity are incorporated into the design for the MRF energy function. 3) While 

obtaining better or comparable results, our algorithm is more efficient than 

belief propagation, graph cuts, and NL-means. 4) Our formulation for gray 

level image denoising can be directly extended to the denoising of color im-

ages with the CIE-Lab color space used without increasing the computational 

complexity. Our experimental results have demonstrated these advantages of 

our approach and shown that it outperforms several state-of-the-art related 

methods both quantitatively and qualitatively. 
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4.2 The Basic MAP-MRF Model 

From Chapter 1 we know that the formulation of the MRF model is justified in 

terms of the MAP estimation of the MRFs in the Bayesian framework. Next 

we give the specific explanation of the MAP justification for MRF energy 

optimization in the context of image denoising. 

Let an input image and its labelling be represented by X = [xi,x2, 

and F = [/i, /2, /nF，respectively, where Xi is the intensity of pixel i and fi 

is its corresponding label (restored intensity), 1 < i < n, and n is the number 

of the pixels. F is the restored image denoting a realization of the MRF. From 

probabilistic perspective, image denoising can be regarded as an optimization 

problem that is to maximize the posterior probability P[F\X) such that the 

global optimal solution can be found. 

We know that the MAP estimation F such that F = argmaxp P{X\F)P{F) 

is equivalent to minimizing the following energy function: 
n n 

+ E 氏“力 )， (4-1) 

where the data penalty function Diixi, fi) that penalizes the inconsistency 

between the labels and the data comes from the likelihood function P{X\F), 

and Si,j[fi’ fj) as the clique potential of MRFs representing the prior knowledge 

of the labels is from the prior probability P(F). H{i) is the neighborhood of i. 

Here it is straightforward to explain our claim in Chapter 1 that can 

be represented by the sensor noise model [11], since the inconsistency between 

the data and labels in image denoising is just the noise model we assume. 

Based on the energy function (4.1), it is obvious that the MAP estimation 

F, which maximizes P(X\F)P(F) or equivalently minimizes E(F), tends to 

be a balanced label configuration (restored image) that is consistent with the 

data X (observed image) as well as following the smoothness constraint. 
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4.3 Continuous MRF Based Image Denoising 

In our work, we focus on grey-level images, but the formulation can be directly 

extended to handling color images. 

The data term A f e , fi) in our approach is chosen as 

= (4.2) 

which models the additive Gaussian noise and is commonly used in image 

denoising. The clique potential is defined as 

(4.3) 

where Wij denotes the affinity value between pixels i and j and is used to 

control the smoothness degree for each pairwise interaction. The quadratic 

label difference without truncation is not edge preserving. However, with the 

special design of the affinity value Wij, where pre-estimated edge information 

is incorporated into its calculation, we can maintain edge sharpness in the 

denoised image. Furthermore, patch based similarity measurement is also used 

in the design of Wij, which further preserves image details as much as possible. 

Before giving Wij explicitly, we first define the patch based similarity be-

tween pixels i and j as 

A ( � j ) = ||x_ -x_||V|^( i )| ’ （4.4) 

where x即）and x恥）represent the grey-level vectors of the pixels in two same-

size blocks B{i) and B{j) centered at pixels i and j, respectively. \B{i)\ is the 

cardinality of B{i). 

We design Wij in this way: 1) if the difference between the blocks centered 

at neighboring pixels i and j is large in the input image, the smoothness 

penalty Si�j(Ji, fj) should be small; 2) the farther the distance between pixels 

i and j , the less effect of them on Si,j(fi, / j ) ; 3) if pixels i and j fall into two 
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Figure 4.1: Explanation of the region indexes. The curve denotes an edge 
separating the window into two regions. Pixels i and ji have the same region 
index (Ci = CjJ, but pixels i and j] have different region indexes (Ci + Cj^). 

regions separated by an edge, they have no effect on Sij{fi, fj). Based on these 

criteria, we define Wij as 

w“ = a . . kii,j) • T(Q = Cj), (4.5) 

where a and b are two positive factors to control the contribution of Wij to 

the smoothness penalty, k{i,j) = exp{—djj/2) is a Gaussian kernel function 

to reach target 2) above, and T(Cj = Cj) is used towards target 3). T(-) is 

1 if its argument is true and 0 otherwise. Ci and Cj are region indexes that 

can be explained with Fig. 4.1, in which an edge separates the window into 

two regions and pixels i and ji have the same region index but pixels i and j] 

have different region indexes, i.e., Ci = Cĵ  and Q Cj^. We use Canny edge 

detector to find edges in the input image since this edge detector is not much 

sensitive to noise, and then assign indexes to different regions. The design of 

Wij in (4.5) makes our algorithm not only be able to denoise but also preserve 

edges and details well. 

With the data penalty (4.2) and the smoothness penalty (4.3), the energy 

function (4.1) can be written as 

E{F) = - + E E 切 漏 — 力 ( 4 - 6 ) 

i=l i=l jeA/•� 

This objective function represents a Gaussian MRF. The approaches in 

12, 42, 85, 82，23] can solve the energy minimization problem by graph cuts 

)r belief propagation. However, solutions obtained by them are locally optimal 
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in the discrete domain. On the other hand, the algorithm proposed in [36] can 

exactly optimize the energy function (4.6) in the discrete domain by converting 

the problem into a min-cut/max-flow [10] problem with a complicated directed 

graph. However, this algorithm is not suitable for image denoising due to the 

heavy computational burden caused by the large sets of the nodes and edges 

of the graph. 

Next we give our closed form global optimal solution to this optimization 

problem. It is based on the relaxation of the labels from discrete values to 

continuous values and the utilization of the normalized Laplacian matrix cor-

responding to an undirected weighted graph. 

With the smoothness term in (4.6), the MRF is isotropic and we can con-

struct an undirected weighted graph Q = (V, E), where V is the set of vertices 

denoting the image pixels and S is the set of weighted edges. Then the ad-

jacency matrix of Q, which has the similar definition to the one proposed in 

Chapter 2, is Vl̂  = [Wij]nxn whose elements are defined as 

购j ’ 

0, if i ^ j j ^ A/'(z) (4.7) 

c, if i = j , 

It is clear that c has no effect on the energy 

cifi- • = 0. Let D be an n X n diagonal 

matrix with the (i, z)-th entry Da = ^ij- When Da 二 0, we call i 

an isolated vertex in the graph that causes W to be singular. By using the 

positive constant c, Da + 0 and singular W is avoided. Moreover, c builds up 

numerical stability for our solution and is better to be comparable with the 

value of the parameter a as we discussed in Chapter 2. 

Based on the construction of the energy function E{F) and the correspond-

ing graph Q, similar to derivation process in Chapter 2，a closed form global 

optimal solution in the continuous domain to minimize E{F) can be obtained 
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as 

F = LT 如 + 2L)-^D--2X. (4.8) 

where L is the normalized Laplacian matrix of Q defined as L = — 

W)D-l 

From our formulation and the derived solution, it is not difficult to see that 

our approach is able to handle color image denoising directly. Given a color 

image, we treat the color of each pixel as a three dimensional vector. In the 

CIE-Lab color space, the three channels are relatively independent. Based on 

the perceptual linearity of CIE-Lab, we use the Euclidean distance in this space 

as the color difference measurement involved in (4.5)，which is consistent with 

human perception. With the replacement of the gray-level values by the color 

vectors, we achieve the same closed form solution for color image denoising as 

in (4.8). 

It is worth noting that the above derivation of the global optimal F is 

based on the assumption that F is a continuous vector, which is preferred 

if the denoised image is used for further higher-level processing. However, 

if we want to display the denoised image, the pixel intensities (labels) have 

to be discrete. After obtaining the optimal continuous solution, we quantize 

it to obtain its discrete version, which naturally results in the deviation of 

denoising output from the global optimal solution. Fortunately, we find that 

discrete result slightly falls away and the error is even within a known bound. 

The optimal property will be elaborated in the next section. 

4.4 Optimal Property 

Optimal property discussion is meaningful for MRF energy optimization tech-

niques, especially for those converging to a local minimum according to some 
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criteria, e.g., iterated conditional modes (ICM) [4], graph cuts based expan-

sion algorithm and swap algorithm [12] and belief propagation [85],[23]. To 

the best of our knowledge, except for the expansion algorithm by which the 

optimized energy is within a known factor 2c of the global optimum, where 

c = m a x i ， j �二 ) ) ， o t h e r algorithms converging to the local mini-

mum do not have theoretical analysis for their optimal properties, although it 

is undeniable that many of them have desirable visually outputs. 

To present output image, discretization is carried out on our global opti-

mal solution in continuous domain by setting its components to their closest 

discrete values. It is easy to see that the the error caused by dicretization of 

intensity values affects the output energy in (4.6). As an optimization tech-

nique for energy minimization, we should consider the worst case to give an 

insight into the optimal property of our approach. Since the error between 

global optimal energy and the one after discretization in our algorithm can be 

proved within a known bound, our algorithm has the guaranteed optimality 

property. 

Before giving the energy error bound, we first introduce some notations. 

Let /* and fi denote the optimal continuous label and corresponding dis-

cretized one for pixel i, 1 < i < n, ranging from 0 to 1. E—, Edis rep-

resent the global optimal energy in the continuous domain and the energy 

after label discretization, respectively. We have Eopt — E âta + Esmooths where 

Eaaia = - 工 a n d E 誦 - = E I U •⑷切”..if： — /；)'• Wi th 

these notations, the following theorem gives the energy error bound between 

Eopt and Edis. 

Theorem 1. The error between Eopt and Edis, represented by AE = Edis — 

I^opt> tuHds the upper hound 2 化 妨 广 " ， ) + 成 that IS, 

+ 或 (4.9) 

where A � 0 { n ) , is some constant, k is the number of neighborhood for each 
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pixel and c = max(maxij(wjj), 0.5), the operation�*] denotes taking upper 

integer. 

Proof. With the definitions of /*, /《，and the energy function (4.6), we have 

E 叫]• ( ( / ^ — — - f;y 

n 

^=1 jej\r(i) 

+ ^ (di + [ + 
i=l j.eÂ  � 

(4.10) 

where di = fi — f*, 1 < i < n. It is obvious that di is in (—0.5,0.5] due to the 

rounding operation for discretization, and therefore di + dj G (—1,1. 

Considering the worst case that \di\ and \di-\-dj\ take their maximal values 

(say, 0.5 and 1) respectively, which in general can not be achieved simultane-

ously in alH, 1 < 2 < n and {i,j), (i, j ) G J\f, by substituting \di\ = 0.5 and 

c^d dj.l == 1 into (4.10) we have 

E 2 叫 厂 丨 + A 
jEM(i) 

(4.11) 

where A = •�也 i j , is a constant and A �(9(n). 

Based on the inequation + < + b) where a, 6 > 0, (4.11) can 

be further advanced as 

< 2c(V^)(「树严)"，j-^Edata + \E_oth + A 

「丨。必1+咖])V^ + A， (4.12) 

where c = max(max^j(w;ij),0.5) • 
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With Theorem 1, we have the upper bound for the energy deviation AE 

caused by the label discretization, which demonstrates the guaranteed optimal 

property of the proposed algorithm. Moreover, our experiments show that the 

energy of the discrete solution is very close to the global optimal energy. 

4.5 Experimental Results 

To demonstrate the performance of our algorithm, we compare our algorithm 

with five most related algorithms: swap graph cuts (GC) [12], max-product be-

lief propagation (BP) [80], Gaussian filter (GF) [27], bilateral filter (BF) [84], 

and NL-means (NL) [14]. GC [12] and BP [80] are representative MRF-based 

approaches, GF [27] is a linear local smoothing filter, BF [84] is a nonlinear 

local smoothing filter, and NL [14] is a nonlocal method. We test these al-

gorithms on a set of classic grey level images, "Barbara", "Boat", "House", 

"Pepper", and "Lena" of size 256 x 256, and all 300 natural images in the 

Berkeley segmentation benchmark [55]. These images are contaminated by 

adding Gaussian noise of five levels with standard deviations a = 10, 20, 30， 

50 and 100. Both visual quality comparisons and quantitative comparisons 

are given. Peak signal-to-noise ratio (PSNR) is used for the quantitative eval-

uations. The experiments are divided into two parts: comparisons with the 

two MRF-model based algorithms and comparisons with the other three algo-

rithms. 

4.5.1 Comparisons with the MRF Based Algorithms 

The max-product belief propagation and the swap graph cuts are the most 

popular algorithms for MRF optimization and have been used successfully in 

many applications including image denoising. The comparisons with them can 

better demonstrate the superiority and efficiency of our algorithm. Further-

more, the obtained energy values by these algorithms are also provided. 
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Different energy functions generate different results. Our energy function 

is constructed by the quadratic data and smoothness terms with spatially 

varying Wij to force labelling discontinuity at edges and labelling smoothness 

in homogenous regions. The energy functions of BP and GC are given in 

80] and [12], respectively. The parameters of the three algorithms are tuned 

best in terms of the largest PSNR at each noise level. In BP and GC, the 

data truncation constant, the smoothness truncation constant, and the affinity 

value 入 range from 3000 to 10000, 200 to 500, and 2 to 10，respectively. We 

cannot find better results of BP and GC when these parameters are not in 

these intervals. The iteration numbers in BP and GC are set to 15 and 20， 

respectively, which are large enough to ensure the convergence of them. In our 

algorithm, the parameter a ranges from 1 to 3 and the parameter b is fixed 

to 100. We find that the best parameter setting in our algorithm is easier to 

obtain and is more stable than those in BP and GC. 

The PSNR comparisons of the denoising results on the five commonly-

used testing images at the five noise levels are given in Table 4,1. From the 

quantitative comparison, we can see that our algorithm outperforms BP and 

GC. Among all the PSNR values, our algorithm obtains the better results than 

BP and GC. 

Some denoised images "Barbara" and "Boat" are showed in Fig. 4.2 and 

Fig. 4.3. The presented visual results correspond to the largest PSNR outputs 

generated by the three algorithms. These visual comparisons indicate that our 

algorithm performs much better than BP and GC. It well preserves the edges 

although some small details are lost. In contrast, BP and GC remove the 

details and main structures and over-smooth the images. There are also some 

isolated undesirable noise pixels in BP'S and GC's results that badly affect the 

visual quality. 

As energy minimization techniques, BP and GC have been proven to be 

powerful energy minimization techniques converging to strong local optima. 
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image a PSNR image a GC BP GF BF NL Ours 

Barbara 

10 29.79 29.76 27.82 30.15 31.67 31.21 

Barbara 
20 24.62 24.73 23.89 25.72 28.40 28.32 

Barbara 30 22.15 22.55 22.43 23.82 25.60 26.15 Barbara 
50 20.03 20.84 21.28 21.26 20.92 21.32 

Barbara 

100 17.72 18.08 19.04 19.25 14.58 19.46 

Boat 

10 30.55 30.55 29.69 30.42 30.29 30.79 

Boat 
20 26.43 26.60 25.78 26.65 27.27 27.12 

Boat 30 24.24 24.55 23.90 24.81 25.71 25.92 Boat 
50 20.85 22.11 22.23 22.34 22.28 22.54 

Boat 

100 18.15 18.70 19.81 19.91 14.54 20.06 

Pepper 

10 28.77 27.29 30.48 32.79 33.34 33.68 

Pepper 
20 27.03 25.04 27.05 28.91 30.15 30.42 

Pepper 30 24.64 22.35 25.27 26.42 27.79 28.43 Pepper 
50 22.31 21.02 23.34 23.45 23.89 24.92 

Pepper 

100 15.93j 13.58 20.10 20.31 14.78 20.82 

House 

10 30.67 30.72 31.17 33.70 35.36 35.52 

House 
20 28.98 28.43 28.04 30.05 32.25 32.34 

House 30 27.29 26.21 26.43 27.85 29.21 30.82 House 
50 25.09 23.43 24.42 25.85 25.03 26.43 

House 

100 18.71 15.19 21.32 22.27 14.81 22.54 

Lena 

10 31.65 31.74 30.53 32.00 32.61 32.35 

Lena 
20 27.56 27.79 27.13 28.35 29.53 29.22 

Lena 30 25.10 25.80 25.44 26.36 27.28 27.51 Lena 
50 22.89 23.56 23.62 24.24 23.88 25.24 

Lena 

100 18.95 19.75 20.65 21.14 14.70 21.37 

Table 4.1: PSNR values obtained by GC，BP, GF, BF, NL, and our algorithm 
on the five noisy images at five noise levels. 
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Figure 4.2: Results of the MRF-based denoising algorithms on the "Barbara" 
image with the noise cr = 20 (the first row) and (j = 30 (the second row). From 
left to right: the noisy image, the results of BP, GC, and our algorithm. 

Figure 4.3: Results of the MRF-based denoising algorithms on the "Boat" 
image with the noise a = 20 (the first row) and cr = 30 (the second row). 
From left to right: the noisy image, the results of BP, GC, and our algorithm. 



Chapter 4 Continuous MRF Based Image Denoising 68 

image Eapt Eours EBP Egc 
Barbara 2.4309 2.4353 2.4863 2.5863 

Boat 2.4086 2.4133 2.4353 2.5483 
House 0.9128 0.9205 0.9295 1.0181 
Pepper 1.8740 1.8798 1.9168 2.0523 
Lena 1.3662 1.3730 1.4240 1.5961 

Table 4.2; Comparison of the energy values (xlO^) obtained by the three 
algorithms on the five noisy images with a = 20. 

On the other hand, the deviation from the global optimum in the continuous 

domain to the discrete output in our algorithm is unavoidable. Therefore, the 

discussion of the optimal property in terms of output energy deviation from 

global optimum is important. We know that the GC expansion algorithm 

produces a solution within a known factor 2c of the global optimum, where c 二 

maxi 传TV"(max•^州?:��).The factor can be as small as 2 in the best situation 
、代八 ^ mm/辨 s{fi,fj) > 

where smooth term is Potts model, but Potts model does not suit for denoising 

task since as the piecewise constant model, Potts model denoising generates 

serious staircase effect. Under other smoothness constraint model applicable 

for expansion algorithm like linear truncated one, the optimal factor is always 

large in image denoising, which leads to the insignificant optimal guarantee. 

With our energy and optimization strategy that is effective for image denoising, 

the optimal guarantee is attainable with Theorem. 1. However, the error bound 

depends on the continuous global optimal energy E p̂i found by our algorithm 

in the continuous domain. To demonstrate the optimal property in practice, 

we calculate the ratio parameter (factor) of our output energy with respect to 

specific Eopt on five noisy images with a = 20. The factors are all around 1.5, 

which validates the optimal property of our algorithm. 

Moreover, we compare the output energy values obtained by BP, GC and 

our algorithm using the same energy function as in (4.6). Table 4.2 shows the 

results where Eô t are also given. From the table, we can see that the output 

energy values (丑�贈）of our algorithm are closer to the optimal values than 
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Ebp and which are obtained by BP and GC，respectively. The results in 

Table 4.1 and Table 4.2 are consistent, showing that our algorithm works best 

both in terms of denoising outputs and energy outputs. 

4.5.2 Comparisons with the Other Three Algorithms 

In this section, we compare our algorithm with the other three state-of-the-

art spatial denoising approaches. Similarly, we choose the best parameters for 

the algorithms in terms of the best PSNR outputs at each noise level. The 

window size and the standard deviation in GF are from 7 to 19 and 0.5 to 2, 

respectively. The window size of BF is between 7 and 11 with the standard 

deviations of the spatial domain and the intensity domain ranging from 1 to 

2 and 0.1 to 2, respectively. The search window size in NL is 15 to 21 and the 

similarity measurement window is 7 x 7 with the filter degree between 100 and 

1000. The parameter setting of our algorithm here is the same as the one in 

the experiments described in Section 4.5.1. 

The PSNR values are given in Table 4.1. From these results, we can see 

that NL and our algorithm almost always outperform the other two. At less 

noise levels with a = 10 and 20, our algorithm obtains comparable PSNR 

values to those by NL. For seriously noisy images {a = 30，50, 100), our 

algorithm achieves the best results. It is worth noticing that NL degrades 

sharply on strongly noisy images due to its simply weighted averaging scheme 

for grey-level estimation based on the self-similarity structure in the image. In 

a strongly noisy image, the noise causes the structures lost and the structure 

similarity is unreliable. 

The visual results corresponding to the best PSNR outputs on the noisy 

images "Pepper" and "House" with a = 20 and 30 are showed in Fig. 4.4 and 

Fig. 4.5. The figures indicate that the results of our algorithm and NL are much 

better than the others. The outputs of GF and BF are under-smoothed with 



Figure 4.5: Results of the four algorithms on the "House" image with the noise 
a = 20 (the first row) and cr = 30 (the second row). From left to right: the 
noisy image, the results of GF, BF, NL, and our algorithm. 
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Figure 4.4: Results of the four algorithms on the "Pepper" image with the 
noise cr = 20 (the first row) and cr 二 30 (the second row). From left to right: 
the noisy image, the results of GF, BF, NL, and our algorithm. 
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cr 10 20 30 50 100 
GF 30.84 26.98 25.40 23.43 20.29 
BF 31.43 27.95 26.36 23.84 20.75 

PSNR NL 31.92 28.42 27.02 23.53 15.82 PSNR BP 31.09 27.57 25.95 23.63 19.06 
GC 30.95 27.41 25.65 23.12 18.76 

Ours 32.22 28.93 27.49 25.17 21.26 

Table 4.3: Average PSNR values on the 300 noisy images in the Berkeley 
segmentation benchmark. 

obvious blurring effect. NL and our algorithm can remove the noise effectively 

while preserving the details and edges very well. 

Fig. 4.6 shows the visual comparison among all the six algorithms on the 

noisy "Lena" image with a = 20, 30 and 50. It is easy to see that our algorithm 

performs best. 

The final experiment is carried out on the Berkeley segmentation bench-

mark [55]. All its 300 nature images are corrupted by the Gaussian noise with 

a = 10, 20, 30, 50, and 100. The parameters for each algorithm are the same 

as those in the above experiments. Table 4.3 shows the average PSNR values, 

and indicates again that our algorithm outperforms the others. 

It is also worth noticing that our algorithm can obtain the closed form 

solution and is much faster than BP and GC that are iterative algorithms, 

and the computational efficiency of our algorithm is also higher than the NL 

algorithm. For a 256 x 256 noisy image, the computational times taken by the 

BP, GC, GF, BF, NL, and our algorithms are about 30, 120, 0.3，1, 300, and 

10 seconds, respectively. GF, BF, NL, and our algorithms are implemented in 

Matlab, and BP and GC are in VC++. All the algorithms are running on a 

Pentium IV PC with a 2.8 GHz CPU. 



Figure 4.6: Results of all the six algorithms on the "Lena" image with the 
noise a = 20 (the first column), cr = 30 (the second column) and a = bO (the 
third column). From top to bottom: the noisy image, the results by BP, GC, 
GF, BF，NL, and our algorithm. 
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4.6 Conclusions 

In this chapter, a novel image denoising algorithm has been proposed. The 

image denoising problem is formulated as an energy minimization problem 

based on the MRF model. The objective function we propose is a Gaussian 

MRF based energy. With the special design to incorporate pre-estimated edge 

information and patch similarity based pairwise interaction into the energy 

function, our algorithm can effectively reduce noise while maintaining image 

structures and details well. Furthermore, by relaxing the labels from discrete 

values to continuous values, a closed form global optimal solution can be ob-

tained. In our extensive experiments, we compare our algorithm with two 

representative MRF-based denoising algorithms and three recent spatial filter-

ing methods. The results clearly show that our algorithm outperforms these 

state-of-the-art algorithms both qualitatively and quantitatively. 



Chapter 5 

Summary and Discussion 

Label assignment is the essential part in many low-level computer vision tasks 

such as image and video denoising, segmentation, and completion. With the 

spatial piecewise smoothness constraint, which is regarded as the intrinsic 

property of an image, label assignment is elegantly expressed as an MRF-based 

energy minimization problem, which has been demonstrated to well model 

these problems. For those video based applications, the temporal coherence 

constraint is further added into the energy function to ensure the label smooth-

ness of the corresponding pixels in consecutive frames. Many approaches have 

been proposed to solve the MRF-based energy optimization problem, such as 

the iterated conditional modes, graph cuts, and belief propagation. 

As the MRF model is a powerful general model for many image and video 

processing applications, for each particular problem in the context of an ap-

plication, the keys for achieving good results lie in two parts: 1) constructing 

an objective energy function to well fit the problem; 2) developing an efficient 

and effective optimization technique to find the optimal results. In this disser-

tation, we propose three algorithms to handle the problems of interactive fore-

ground object extraction, video completion, and image denoising, respectively. 

All of the three algorithms utilize MRF model to formulate the problems as 

MRF-based energy minimization problems, and design different optimization 

schemes to efficiently achieve the optimal results. 

74 
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Our work has been published in or submitted to [49, 51, 16, 52, 50, 47，48 . 

Next we conclude our work in this dissertation and discuss some future work 

as follows. 

5.1 Contributions of Our Work 

In Chapter 2, an iterative optimization based framework is proposed to ad-

dress the problem of foreground object extraction from an image. We model 

the problem as an iterative MRF energy minimization problem to find the 

optimal label configuration. In each iteration, an MRF-based energy function 

with an iteratively refined initial probabilistic map of the image is designed. 

By optimizing the energy function in the continuous domain, a global opti-

mal label configuration can be achieved, which can be regarded as a refined 

probabilistic map providing us the clues for updating the color models to es-

timate more accurate initial probabilistic map for the energy construction. 

Through the iterative optimization scheme, user provided information is iter-

atively propagated and expanded, which makes our work not sensitive to the 

number and locations of user provided seeds and require less cost of users' in-

teraction and attention. Moreover, as the accuracy of the initial probabilistic 

map is iteratively improved ensuring a more precise MRF-based energy func-

tion as optimization target, high-quality foreground object extraction results 

can be obtained in the end by our algorithm. 

Chapter 3 presents our work on video completion, which combines motion 

completion and global exemplar-based color completion. In the proposed algo-

rithm, the motion field in the missing region of the video is filled locally first. 

Based on the completed motion field, color is restored in a global exemplar-

based scheme by minimizing an MRF-based energy function. The global op-

timization problem is solved by a coarse-to-fine belief propagation scheme to 

avoid the computational impracticability caused by the large number of label 
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candidates in the optimization process. By using the motion and color infor-

mation, our work preserves the temporal consistency based on the completed 

motion field，and globally optimizes the color completion process. It avoids the 

blurring effect caused by the sampling and blending process, while maintaining 

the video details and structures well. Besides, the proposed framework unifies 

the problems of image completion and video completion and solves them in a 

consistent form. Moreover, our algorithm is not restricted to videos contain-

ing periodic motion only and can handle a wide variety of videos, producing 

visually natural results without obvious artifacts. 

In Chapter 4，we focus on the problem of image denoising, which is formu-

lated as an MRF-based energy minimization problem with pre-estimated edge 

information and patch similarity based pairwise interaction involved. The opti-

mization problem is generally NP-hard in discrete domain. In our work, by re-

laxing the labels from discrete values to continuous values, a closed form global 

optimal solution can be achieved. Compared with the related approaches, our 

work has the contributions: 1) A continuous closed form global optimal solu-

tion can be obtained, which provides a good prerequisite for our final result. 

2) Image edges and details can be better preserved in our algorithm since pre-

estimated edge information and patch based similarity are incorporated into 

the MRF energy function. 3) While obtaining better or comparable results, our 

algorithm is more efficient than belief propagation, graph cuts, and NL-means. 

4) Our formulation for gray level image denoising can be directly extended to 

the denoising of color images without increasing the computational complexity. 

5.2 Discussion and Future Work 

For MRF-based image and video processing algorithms, there are three main 

parts: particular applications, well-defined MRF-based energy functions to be 

optimized, and developed optimization techniques. According to these three 
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parts, we will talk about the future work related to our work in this disserta-

tion. 

Other applications 

Our model for image denoising with a Gaussian MRF energy and label relax-

ation based global optimal solution can be extended to the problem of stereo 

vision, which is to find the disparity (depth) map of a scene by using two images 

capturing the scene with slight different angles. The label in stereo is the dis-

parity and the data penalty is calculated by using the Birchfield and Tomasi's 

pixel dissimilarity measurement [5]. The results on "Tsukuba" (16 labels) and 

"Venus" (20 labels) images are shown in Fig. 5.1. We can see that our work 

obtains better results than [78] and [41], which are customized for stereo vi-

sion with standard MRF energy function optimized by belief propagation and 

graph cuts respectively. However, there are many particular algorithms with 

special designed MRF energy functions for stereo, such as [77] and [33], which 

perform better than our general model. 

As our discussion in Chapter 2 that by applying the thresholding process 

we can conveniently obtain a good trimap for the initialization of image mat-

ting, which is a process of estimating the foreground, the background, and the 

transparent factor (alpha) for each pixel. Since the MRF model is suitable 

to model the alpha map as well, we can try to formulate the segmentation 

and matting problems in an unified framework and therefore carry out the two 

tasks simultaneously. 

Energy function design and optimization scheme development 

For video based applications, the MRF energy function should not only enforce 

the spatial coherence but also the temporal consistency. Our work on video 

completion ensures the temporal consistency by adding the temporal term to 

the MRF energy function, which is constructed by the estimated local motions. 
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Figure 5.1: Stereo correspondence results on "Tsukuba" ‘ and "Venus" images. 
From left to right: left image of the input image pair, ground truth, the results 
of belief propagation [78], grapb. cuts [41], and our algorithm. 

The same idea can be applied to other video based applications, such as video 

denoising. By adopting our model for image denoising and adding a temporal 

constraint term in a similar way to the one in Chapter 3, we can construct a 

spatial-temporal MRF model for video denoising. 

In our work on foreground object extraction, the core idea is to iteratively 

refine the color model and thus the optimization target, which will lead to 

more precise results and make the algorithm not very sensitive to the user 

interactions. The proposed framework is general and can be applied to different 

color models, energy functions, and optimization schemes, which still need 

further exploration. Moreover, although the analysis of user interaction is not 

quite related to the algorithm design, it is very important for the performance 

evaluation of the algorithms on interactive applications. Therefore, we can try 

to build some user interaction analysis criteria or benchmark data sets for this 

evaluation. 
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